
Designed for

Microsoft"
Windows NT"
Windows'"95

Volume Four
of the four-volume

Microsoft Visual C++ 5.0
Programmer's Reference Set

Complete documentation for
Microsoft Visual C++ version 5.0

Language Re~rence

Microsoft Press

C Language Reference

· soft' .

lSualC+T
Language Reference

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 1997 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted
in any form or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Microsoft Visual C++ Language Reference / Microsoft Corporation.

p. cm.
Includes index.
ISBN 1-57231-521-0
1. C++ (Computer program language) 2. Microsoft Visual C++.

I. Microsoft Corporation.
QA76.73.C153M533 1997
005.26'8--dc21 97-2404

CIP

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 MLML 2 1 0 9 8 7

Distributed to the book trade in Canada by Macmillan of Canada, a division of Canada Publishing
Corporation.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further
information about international editions, contact your local Microsoft Corporation office. Or contact
Microsoft Press International directly at fax (206) 936-7329.

Microsoft, Microsoft Press, MS, MS-DOS, Visual C++, Win32, Windows, and Windows NT are
registered trademarks of Microsoft Corporation. Other product and company names mentioned herein
may be the trademarks of their respective owners.

Acquisitions Editor: Eric Stroo
Project Editor: Maureen Williams Zimmerman

Introduction xi
Organization of the C Language Reference xi

Scope of this Manual xi

ANSI Conformance xii

Chapter 1 Elements of C 1
Tokens 1

White-Space Characters 2

Comments 2

Evaluation of Tokens 4

Keywords 4

Identifiers 5

Multibyte and Wide Characters 7

Trigraphs 8

Constants 9

Floating-Point Constants 9

Integer Constants 12

Character Constants 15

String Literals 18

Type for String Literals 19

Storage of String Literals 19
String Literal Concatenation 20

Maximum String Length 21

Punctuation and Special Characters 21

Chapter 2 Program Structure 23
Source Files and Source Programs 23

The main Function and Program Execution 27

Using wmain 28
Argument Description 29

Expanding Wildcard Arguments 30

Parsing Command-Line Arguments 30

Customizing Command-Line Processing 32

Contents

iii

Contents

iv

Lifetime, Scope, Visibility, and Linkage 32

Lifetime 33

Scope and Visibility 34
Summary of Lifetime and Visibility 34

Linkage 36

Name Spaces 37

Chapter 3 Declarations and Types 39
Overview of Declarations 39
Storage Classes 42

Storage-Class Specifiers for External-Level Declarations 43
Storage-Class Specifiers for Internal-Level Declarations 45
Storage-Class Specifiers with Function Declarations 48

Type Specifiers 49
Data Type Specifiers and Equivalents 50

Type Qualifiers 51

Declarators and Variable Declarations 52
Simple Variable Declarations 54

Enumeration Declarations 55
Structure Declarations 58
Union Declarations 63

Array Declarations 66
Pointer Declarations 68
Based Pointers 70

Abstract Declarators 71
Interpreting More Complex Declarators 72

Initialization 74
Initializing Scalar Types 75

Initializing Aggregate Types 77

Initializing Strings 80
Storage of Basic Types 81
Incomplete Types 85
Typedef Declarations 86

Extended Storage-Class Attributes 88

DLL Import and Export 89
Naked 89

Thread Local Storage 90

Chapter 4 Expressions and Assignments 93
Operands and Expressions 93

Primary Expressions 94
L-Value and R-Value Expressions 95

Constant Expressions 96

Expression Evaluation 97
Operators 99

Precedence and Order of Evaluation 100
Usual Arithmetic Conversions 102

Postfix Operators 103
Unary Operators 108

Cast Operators 112
Multiplicative Operators 113

Additive Operators 114
Bitwise Shift Operators 116

Relational and Equality Operators 117

Bitwise Operators 119
LogicalOperators 121
Conditional-Expression Operator 122

Assignment Operators 123
Sequential-Evaluation Operator 125

Type Conversions 126
Assignment Conversions 126
Type-Cast Conversions 132

Function-Call Conversions 133

Chapter 5 Statements 135
Overview of Statements 135

The break Statement 136
The Compound Statement 137
The continue Statement 138
The do-while Statement 139

The Expression Statement 139
The for Statement 140
The goto and Labeled Statements 141

The if Statement 142
The Null Statement 143

The return Statement 144

Contents

v

Contents

The switch Statement 145

The try-except Statement 148
The try-finally Statement 150
The while Statement 151

Chapter 6 Functions 153
Overview of Functions 153

Obsolete Forms of Function Declarations and Definitions 154

Function Definitions 155
Function Attributes 157

DLL Import and Export Functions 158
Naked Functions 162

Storage Class 164

Return Type 166
Parameters 167
Function Body 169

Function Prototypes 169
Function Calls 171

Arguments 173
Calls with a Variable Number of Arguments 175
Recursive Functions 176

Appendixes

vi

Appendix A C Language Syntax Summary 177
Definitions and Conventions 177
Lexical Grammar 178

Tokens 178
Keywords 179

Identifiers 179
Constants 179

String Literals 181
Operators 181
Punctuators 182

Phrase Structure Grammar 182
Expressions 182
Declarations 184

Statements 187

External Definitions 188

Appendix 8 Implementation-Defined Behavior 189
Translation: Diagnostics 189

Environment 190

Arguments to main 190

Interactive Devices 190

Identifiers 191

Significant Characters Without External Linkage 191

Significant Characters with External Linkage 191

Uppercase and Lowercase 191

Characters 191

The ASCII Character Set 191

Multibyte Characters 192

Bits per Character 192

Character Sets 192
Unrepresented Character Constants 192

Wide Characters 193

Converting Multibyte Characters 193

Range of char Values 193

Integers 194

Range of Integer Values 194

Demotion of Integers 194

Signed Bitwise Operations 194

Remainders 195

Right Shifts 195

Floating-Point Math 195

Values 195

Casting Integers to Floating-Point Values 196

Truncation of Floating-Point Values 196

Arrays and Pointers 196

Largest Array Size 196

Pointer Subtraction 196

Registers: Availability of Registers 196

Structures, Unions, Enumerations, and Bit Fields 197

Improper Access to a Union 197
Padding and Alignment of Structure Members 197

Sign of Bit Fields 197

Storage of Bit Fields 198

The enum type 198

Contents

vii

Contents

viii

Qualifiers: Access to Volatile Objects 198

Declarators: Maximum number 198

Statements: Limits on Switch Statements 199
Preprocessing Directives 199

Character Constants and Conditional Inclusion 199
Including Bracketed Filenames 199

Including Quoted Filenames 199
Character Sequences 200
Pragmas 200

Default Date and Time 200
Library Functions 200

NULL Macro 200

Diagnostic Printed by the assert Function 201
Character Testing 201

Domain Errors 201
Underflow of Floating-Point Values 201
The fmod Function 202

The signal Function 202

Default Signals 202
Terminating Newline Characters 202

Blank Lines 202
Null Characters 202

File Position in Append Mode 203
Truncation of Text Files 203
File Buffering 203

Zero-Length Files 203
Filenames 203
File Access Limits 203

Deleting Open Files 204

Renaming with a Name That Exists 204
Reading Pointer Values 204
Reading Ranges 204
File Position Errors 204

Messages Generated by the perror Function 205
Allocating Zero Memory 205
The abort Function 206

The atexit Function 206
Environment Names 206

The system Function 206

The strerror Function 207
The Time Zone 208

The clock Function 208

Index 209

Tables
Table 1.1 Trigraph Sequences 8
Table 1.2 Limits on Floating-Point Constants 10

Table 1.3 Limits on Integer Constants 14
Table 1.4 Escape Sequences 17
Table 2.1 Summary of Lifetime and Visibility 35

Table 3.1 Type Specifiers and Equivalents 50
Table 3.2 Sizes of Fundamental Types 81

Table 3.3 Floating-Point Types 83
Table 3.4 Lengths of Exponents and Mantissas 83

Table 3.5 Range of Floating-Point Types 84

Table 4.1 Precedence and Associativity of C Operators 100
Table 4.2 Conversions from Signed Integral Types 127
Table 4.3 Conversions from Unsigned Integral Types 128

Table 4.4 Conversions from Floating-Point Types 130
Table 4.5 Legal Type Casts 132

Table B.l Escape Sequences 192

Contents

ix

Introduction

Organization of the C Language Reference
• Elements of C

• Program Structure

• Declarations and Types

• Expressions and Assignments

o Statements

o Functions

• C Language Syntax Summary

• Implementation-Defined Behavior

Scope of this Manual
C is a flexible language that leaves many programming decisions up to you. In
keeping with this philosophy, C imposes few restrictions in matters such as type
conversion. Although this characteristic of the language can make your programming
job easier, you must know the language well to understand how programs will behave.
This book provides information on the C language components and the features of the
Microsoft implementation. The syntax for the C language is from ANSI X3.159-1989,
American National Standardfor Information Systems - Programming Language - C
(hereinafter called the ANSI C standard), although it is not part of the ANSI C
standard. Appendix A, C Language Syntax Summary, provides the syntax and a
description of how to read and use the syntax definitions.

This book does not discuss programming with C++. See C++ Language Reference for
information about the C++ language.

Note For information on Microsoft product support, see the PSS.HLP file.

xi

Introduction

ANSI Conformance

xii

Microsoft® C conforms to the standard for the C language as set forth in the
ANSI C standard. Microsoft extensions to the ANSI C standard are noted in
the text and syntax of this book as well as in the online reference. Because
the extensions are not a part of the ANSI C standard, their use may restrict
portability of programs between syste,ns. By default, the Microsoft extensions
are enabled. To disable the extensions, specify the IZa compiler option. With
IZa, all non-ANSI code generates errors or warnings.

CHAPTER

Elements of C

This chapter describes the elements of the C programming language, including the
names, numbers, and characters used to construct a C program. The ANSI C syntax
labels these components "tokens." This chapter explains how to define tokens and
how the compiler evaluates them.

The following topics are discussed:

• Tokens

• Comments

• Keywords

• Identifiers

• Constants

• String literals

• Punctuation and special characters

The chapter also includes reference tables for trigraphs, floating-point constants,
integer constants, and escape sequences.

"Operators" are symbols (both single characters and character combinations) that
specify how values are to be manipulated. Each symbol is interpreted as a single unit,
called a token. For more information, see "Operators" on page 99 in Chapter 4.

Tokens
In a C source program, the basic element recognized by the compiler is the "token."
A token is source-program text that the compiler does not break down into
component elements.

C Language Reference

Syntax
token:

keyword
identifier
constant
string-literal
operator
punctuator

Note See the introduction to Appendix A, "e Language Syntax Summary," for an explanation
of the ANSI syntax conventions.

The keywords, identifiers, constants, string literals, and operators described in this
chapter are examples of tokens. Punctuation characters such as brackets ([]), braces
({ }), parentheses (()), and commas (,) are also tokens.

White-Space Characters
Space, tab, linefeed, carriage-return, formfeed, vertical-tab, and newline characters are
called "white-space characters" because they serve the same purpose as the spaces
between words and lines on a printed page-they make reading easier. Tokens are
delimited (bounded) by white-space characters and by other tokens, such as operators
and punctuation. When parsing code, the C compiler ignores white-space characters
unless you use them as separators or as components of character constants or string
literals. Use white-space characters to make a program more readable. Note that the
compiler also treats comments as white space.

Comments

2

A "comment" is a sequence of characters beginning with a forward slash/asterisk
combination (1*) that is treated as a single white-space character by the compiler and
is otherwise ignored. A comment can include any combination of characters from the
representable character set, including newline characters, but excluding the "end
comment" delimiter (*1). Comments can occupy more than one line but cannot be
nested.

Comments can appear anywhere a white-space character is allowed. Since the
compiler treats a comment as a single white-space character, you cannot include
comments within tokens. The compiler ignores the characters in the comment.

Use comments to document your code. This example is a comment accepted by the
compiler:

/* Comments can contain keywords such as
for and while without generating errors. */

Comments can appear on the same line as a code statement:

pri ntf("Hell o\n"); /* Comments can go here * /

Chapter 1 Elements of C

You can choose to precede functions or program modules with a descriptive
comment block:

1* MATHERR.C illustrates writing an error routine
* for math functions.
*1

Since comments cannot contain nested comments, this example causes an error:

1* Comment out this routine for testing

1* Open file *1
fh = _open("myfile.c". _O_RDONLY);

*1

The error occurs because the compiler recognizes the first * /, after the words Open
f i 1 e, as the end of the comment. It tries to process the remaining text and produces
an error when it finds the * / outside a comment.

While you can use comments to render certain lines of code inactive for test purposes,
the preprocessor directives #if and #endif and conditional compilation are a useful
alternative for this task. For more information, see "Preprocessor Directives" in the
Preprocessor Reference.

Microsoft Specific ~

The Microsoft compiler also supports single-line comments preceded by two forward
slashes (II). If you compile with IZa (ANSI standard), these comments generate errors.
These comments cannot extend to a second line.

II This is a valid comment

Comments beginning with two forward slashes (II) are terminated by the next newline
character that is not preceded by an escape character. In the next example, the newline
character is preceded by a backslash (\), creating an "escape sequence." This escape
sequence causes the compiler to treat the next line as part of the previous line. (For
more information, see "Escape Sequences" on page 16.)

II my comment \
i++;

Therefore, the i ++; statement is commented out.

The default for Microsoft C is that the Microsoft extensions are enabled. Use /Za to
disable these extensions.

END Microsoft Specific

3

C Language Reference

Evaluation of Tokens
When the compiler interprets tokens, it includes as many characters as possible in
a single token before moving on to the next token. Because of this behavior, the
compiler may not interpret tokens as you intended if they are not properly separated
by white space. Consider the following expression:

i+++j

In this example, the compiler first makes the longest possible operator (++) from the
three plus signs, then processes the remaining plus sign as an addition operator (+).
Thus, the expression is interpreted as (i ++) + (j), not (i) + (++ j). In this and
similar cases, use white space and parentheses to avoid ambiguity and ensure proper
expression evaluation.

Microsoft Specific -7

The C compiler treats a CTRL+Z character as an end-of-file indicator. It ignores any
text after CTRL+Z.

END Microsoft Specific

Keywords

4

"Keywords" are words that have special meaning to the C compiler. In translation
phases 7 and 8, an identifier cannot have the same spelling and case as a C keyword.
(See a description of "translation phases" in the Preprocessor Reference; for
information on identifiers, see "Identifiers" on page S.) The C language uses the
following keywords:

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto size of volatile

do if static while

You cannot redefine keywords. However, you can specify text to be substituted for
keywords before compilation by using C preprocessor directives.

Microsoft Specific -7

The ANSI C standard allows identifiers with two leading underscores to be reserved
for compiler implementations. Therefore, the Microsoft convention is to precede
Microsoft-specific keyword names with double underscores. These words cannot be
used as identifier names. For a description of the ANSI rules for naming identifiers,
including the use of double underscores, see "Identifiers" on page S.

Chapter 1 Elements of C

The following keywords and special identifiers are recognized by the Microsoft C
compiler:

--asm dllimport2
--int8

--based l __ except __ int16

--cdecI _3astcall --int32

__ decIspec __ finally --int64

dlIexpore --inline --leave

1 The _based keyword has limited uses for 32-bit target compilations.

naked2

__ stdcall

thread2

__ try

2 These are special identifiers when used with _declspec; their use in other contexts is not restricted.

Microsoft extensions are enabled by default. To ensure that your programs are fully
portable, you can disable Microsoft extensions by specifying the /Za option (compile
for ANSI compatibility) during compilation. When you do this, Microsoft-specific
keywords are disabled.

When Microsoft extensions are enabled, you can use the keywords listed above in
your programs. For ANSI compliance, most of these keywords are prefaced by a
double underscore. The four exceptions, dllexport, dllimport, naked, and thread, are
used only with __ declspec and therefore do not require a leading double underscore.
For backward compatibility, single-underscore versions of the rest of the keywords are
supported.

END Microsoft Specific

Identifiers
"Identifiers" or "symbols" are the names you supply for variables, types, functions,
and labels in your program. Identifier names must differ in spelling and case from any
keywords. You cannot use keywords (either C or Microsoft) as identifiers; they are
reserved for special use. You create an identifier by specifying it in the declaration of
a variable, type, or function. In this example, res u 1 t is an identifier for an integer
variable, and rna; nand p r; n t f are identifier names for functions.

void maine)
{

int result;

if (result != 0)
pri ntf("Bad fil e handl e\n");

Once declared, you can use the identifier in later program statements to refer to the
associated value.

A special kind of identifier, called a statement label, can be used in goto statements.
(Declarations are described in Chapter 3, "Declarations and Types." Statement labels
are described in "The goto and Labeled Statements" on page 141 in Chapter 5.)

5

C Language Reference

6

Syntax
identifier :

nondigit
identifier nondigit
identifier digit

nondigit: one of
_ abc d e f g h ij kim n 0 p q r stu v w x y z
ABC D E F G HIJ KLMN 0 PQ RS TUV W X Y Z

digit: one of
0123456789

The first character of an identifier name must be a nondigit (that is, the first character
must be an underscore or an uppercase or lowercase letter). ANSI allows six
significant characters in an external identifier's name and 31 for names of internal
(within a function) identifiers. External identifiers (ones declared at global scope or
declared with storage class extern) may be subject to additional naming restrictions
because these identifiers have to be processed by other software such as linkers.

Microsoft Specific --7

Although ANSI allows 6 significant characters in external identifier names and 31
for names of internal (within a function) identifiers, the Microsoft C compiler allows
247 characters in an internal or external identifier name. If you aren't concerned with
ANSI compatibility, you can modify this default to a smaller or larger number using
the IH (restrict length of external names) option.

END Microsoft Specific

The C compiler considers uppercase and lowercase letters to be distinct characters.
This feature, called "case sensitivity," enables you to create distinct identifiers that
have the same spelling but different cases for one or more of the letters. For example,
each of the following identifiers is unique:

add
ADD
Add
aDD

Microsoft Specific --7

Do not select names for identifiers that begin with two underscores or with an
underscore followed by an uppercase letter. The ANSI C standard allows identifier
names that begin with these character combinations to be reserved for compiler use.
Identifiers with file-level scope should also not be named with an underscore and
a lowercase letter as the first two letters. Identifier names that begin with these
characters are also reserved. By convention, Microsoft uses an underscore and an
uppercase letter to begin macro names and double underscores for Microsoft-specific
keyword names. To avoid any naming conflicts, always select identifier names that

Chapter 1 Elements of C

do not begin with one or two underscores, or names that begin with an underscore
followed by an uppercase letter.

END Microsoft Specific

The following are examples of valid identifiers that conform to either ANSI or
Microsoft naming restrictions:

j
count
tempI
top_of_page
skipI2
LastNum

Microsoft Specific ~

Although identifiers in source files are case sensitive by default, symbols in object
files are not. Microsoft C treats identifiers within a compilation unit as case sensitive.

The Microsoft linker is case sensitive. You must specify all identifiers consistently
according to case.

The "source character set" is the set of legal characters that can appear in source
files. For Microsoft C, the source set is the standard ASCII character set. The source
character set and execution character set include the ASCII characters used as escape
sequences. See "Character Constants"on page 15 for information about the execution
character set.

END Microsoft Specific

An identifier has "scope," which is the region of the program in which it is known,
and "linkage," which determines whether the same name in another scope refers to
the same identifier. These topics are explained in "Lifetime, Scope, Visibility, and
Linkage" on page 32 in Chapter 2.

Multibyte and Wide Characters
A multibyte character is a character composed of sequences of one or more bytes.
Each byte sequence represents a single character in the extended character set.
Multibyte characters are used in character sets such as Kanji.

Wide characters are multilingual character codes that are always 16 bits wide. The
type for character constants is char; for wide characters, the type is wchar_t. Since
wide characters are always a fixed size, using wide characters simplifies programming
with international character sets.

The wide-character-string literal L" hello" becomes an array of six integers of type
wchar_t.

{L'h', L'e', L'l', L'l', L'o', 0}

7

C Language Reference

The Unicode specification is the specification for wide characters. The run-time
library routines for translating between multibyte and wide characters include
mbstowcs, mbtowc, wcstombs, and wctomb.

Trigraphs

8

The source character set of C source programs is contained within the 7 -bit ASCII
character set but is a superset of the ISO 646-1983 Invariant Code Set. Trigraph
sequences allow C programs to be written using only the ISO (International Standards
Organization) Invariant Code Set. Trigraphs are sequences of three characters
(introduced by two consecutive question marks) that the compiler replaces with their
corresponding punctuation characters. You can use trigraphs in C source files with a
character set that does not contain convenient graphic representations for some
punctuation characters.

Table 1.1 shows the nine trigraph sequences. All occurrences in a source file of the
punctuation characters in the first column are replaced with the corresponding
character in the second column.

Table 1.1 Trigraph Sequences

Trigraph Punctuation Character Trigraph Punctuation Character

??= # ??< {

??([??! I

??I ??> }

??) ??-
??' A

A trigraph is always treated as a single source character. The translation of trigraphs
takes place in the first translation phase, before the recognition of escape characters in
string literals and character constants. Only the nine trigraphs shown in Table 1.1 are
recognized. All other character sequences are left untranslated.

The character escape sequence, \?, prevents the misinterpretation of trigraph-like
character sequences. (For information about escape sequences, see "Escape Sequences"
on page 16.) For example, if you attempt to print the string What??! with this printf
statement

printf("What??!\n");

the string printed is W hat I because ?? ! is a trigraph sequence that is replaced with
the I character. Write the, statement as follows to correctly print the string:

p.rintf("What?\?!\n");

In this printf statement, a backslash escape character in front of the second question
mark prevents the misinterpretation of ??! as a trigraph.

Chapter 1 Elements of C

Constants
A "constant" is a number, character, or character string that can be used as a value in a
program. Use constants to represent floating-point, integer, enumeration, or character
values that cannot be modified.

Syntax
constant:

floating-point-constant
integer-constant
enumeration-constant
character-constant

Constants are characterized by having a value and a type. Floating-point, integer, and
character constants are discussed in the next three sections. Enumeration constants are
described in "Enumeration Declarations" on page 55 in Chapter 3.

Floating-Point Constants
A "floating-point constant" is a decimal number that represents a signed real number.
The representation of a signed real number includes an integer portion, a fractional
portion, and an exponent. Use floating-point constants to represent floating-point
values that cannot be changed.

Syntax
floating-point-constant :

fractional-constant exponent-part opt floating-suffix opt

digit-sequence exponent-part floating-suffix opt

fractional-constant:
digit-sequence opt. digit-sequence
digit-sequence •

exponent-part:
e sign opt digit-sequence
E sign opt digit-sequence

sign: one of
+-

digit-sequence:
digit
digit-sequence digit

floating-suffix: one of
f I F L

9

C Language Reference

10

You can omit either the digits before the decimal point (the integer portion of the
value) or the digits after the decimal point (the fractional portion), but not both. You
can leave out the decimal point only if you include an exponent. No white-space
characters can separate the digits or characters of the constant. .

The following examples illustrate some forms of floating-point constants and
expressions:

15.75
1. 575E1
1575e-2
-2.5e-3
25E-4

/* 15.75 */
/* = 15.75 */
/* = -0.0025 */
1* = 0.0025 *1

Floating-point constants are positive unless they are preceded by a minus sign (-).
In this case, the minus sign is treated as a unary arithmetic negation operator.
Floating-point constants have type float, double, long, or long double.

A floating-point constant without an C, F, I, or L suffix has type double. If the letter C
or F is the suffix, the constant has type float. If suffixed by the letter I or L, it has type
long double. For example:

100L 1* Has type long double *1
100F 1* Has type float *1
100D 1* Has type double *1

Note that the Microsoft C compiler maps long double to type double. See "Storage of
Basic Types" on page 81 in Chapter 3 for information about type double, float, and long.

You can omit the integer portion of the floating-point constant, as shown in the
following examples. The number. 7 5 can be expressed in many ways, including the
following:

.0075e2
0.075e1
.075e1
75e-2

Limits on Floating-Point Constants
Microsoft Specific -7

Limits on the values of floating-point constants are given in Table 1.2. The header file
FLOAT.H contains this information. *
Table 1.2 Limits on Floating-Paint Constants

Constant

FLT_DIG
DBL_DIG
LDBL_DIG

Meaning Value

Number of digits, q, such that a 6
floating-point number with q 15
decimal digits can be rounded into 15
a floating-point representation and
back without loss of precision.

Table 1.2 Limits on Floating-Point Constants (continued)

Constant

FLT_EPSILON
DBL_EPSILON
LDBL_EPSILON

FLT_GUARD

FLT_MANT_DIG
DBL_MANT_DIG
LDBL_MANT_DIG

FLT_MAX
DBL_MAX
LDBL_MAX

FLT _MAX_IO_EXP
DBL_MAX_IO_EXP
LDBL_MAX_IO_EXP

FLT_MAX_EXP
DBL_MAX_EXP
LDBL_MAX_EXP

FLT_MIN
DBL_MIN
LDBL_MIN

FLT_MIN_IO_EXP
DBL_MIN_IO_EXP
LDBL_MIN_IO_EXP

FLT_MIN_EXP
DBL_MIN_EXP
LDBL_MIN_EXP

FLT_NORMALIZE

FLT_RADIX
_DBL_RADIX
_LDBL_RADIX

FLT_ROVNDS
_DBL_ROUNDS
_LDBL_ROUNDS

Meaning

Smallest positive number x, such
that x + 1.0 is not equal to 1.0

Number of digits in the radix
specified by FLT_RADIX in the
floating-point significand. The
radix is 2; hence these values
specify bits.

Maximum representable
floating-point number.

Maximum integer such that 10
raised to that number is a
representable floating-point
number.

Maximum integer such that
FLT_RADIX raised to that
number is a representable
floating-point number.

Minimum positive value.

Minimum negative integer such
that 10 raised to that number is a
representable floating-point
number.

Minimum negative integer such
that FLT_RADIX raised to that
number is a representable
floating-point number.

Radix of exponent representation.

Rounding mode for floating-point
addition.

Chapter 1 Elements of C

Value

1. 192092896e-07F
2.2204460492503131e-016
2.2204460492503131e-016

o
24
53
53

3 .402823466e+ 3 8F
1.7976931348623158e+308
1.7976931348623158e+308

38
308
308

128
1024
1024

1. 175494351e-38F
2.2250738585072014e-308
2.2250738585072014e-308

-37
-307
-307

-125
-1021
-1021

o
2
2
2

(near)
1 (near)
1 (near)

Note that the information in Table 1.2 may differ in future implementations.

END Microsoft Specific

11

C Language Reference

Integer Constants

12

An "integer constant" is a decimal (base 10), octal (base 8), or hexadecimal (base 16)
number that represents an integral value. Use integer constants to represent integer
values that cannot be changed.

Syntax
integer-constant:

decimal-constant integer-suffix opt

octal-constant integer-suffix opt

hexadecimal-constant integer-suffix opt

decimal-constant:
nonzero-digit
decimal-constant digit

octal-constant:
o
octal-constant octal-digit

hexadecimal-constant:
Ox hexadecimal-digit
OX hexadecimal-digit
hexadecimal-constant hexadecimal-digit

nonzero-digit: one of
123456789

octal-digit: one of
01234567

hexadecimal-digit: one of
0123456789
abcdef
ABCDEF

integer-suffix:
unsigned-suffix long-suffix opt

long-suffix unsigned-suffix opt

unsigned-suffix: one of
uU

long-suffix: one of
IL

64-bit integer-suffix:
i64

Integer constants are positive unless they are preceded by a minus sign (-). The minus
sign is interpreted as the unary arithmetic negation operator. (See "Unary Arithmetic
Operators" on page 110 in Chapter 4 for information about this operator.)

Chapter 1 Elements of C

If an integer constant begins with the letters Ox or OX, it is hexadecimal. If it begins
with the digit 0, it is octal. Otherwise, it is assumed to be decimal.

The following lines are equivalent:

0x1C 1* = Hexadecimal representation for decimal 28 *1
034 1* = Octal representation for decimal 28 *1

No white-space characters can separate the digits of an integer constant. These
examples show valid decimal, octal, and hexadecimal constants.

1* Decimal Constants *1
10
132
32179

1* Octal Constants *1
012
0204
076663

1* Hexadecimal Constants *1
0xa or 0xA
0x84
0x7dB3 or 0X7DB3

Integer Types
Every integer constant is given a type based on its value and the way it is expressed.
You can force any integer constant to type long by appending the letter I or L to the
end of the constant; you can force it to be type unsigned by appending u or U to the
value. The lowercase letter I can be confused with the digit 1 and should be avoided.
Some forms of long integer constants follow:

1* Long decimal constants *1
10L
79L

1* Long octal constants *1
012L
0115L

1* Long hexadecimal constants *1
0xaL or 0xAL
0X4fL or 0x4FL

1* Unsigned long decimal constant *1
776745UL
778866LU

13

C Language Reference

14

The type you assign to a constant depends on the value the constant represents. A
constant's value must be in the range of representable values for its type. A constant's
type determines which conversions are performed when the constant is used in an
expression or when the minus sign (-) is applied. This list summarizes the conversion
rules for integer constants.

• The type for a decimal constant without a suffix is either int, long int, or unsigned
long int. The first of these three types in which the constant's value can be
represented is the type assigned to the constant.

• The type assigned to octal and hexadecimal constants without suffixes is int,
unsigned int, long int, or unsigned long int depending on the size of the constant.

• The type assigned to constants with a u or U suffix is unsigned int or unsigned
long int depending on their size.

• The type assigned to constants with an I or L suffix is long int or unsigned long
int depending on their size.

• The type assigned to constants with a u or U and an I or L suffix is unsigned
long int.

Integer Limits
Microsoft Specific ~

The limits for integer types are listed in Table 1.3. These limits are defined in the
standard header file LIMITS.H. Microsoft C also permits the declaration of sized
integer variables, which are integral types of size 8-, 16-, or 32-bits. For more
information on sized integers, see "Sized Integer Types" on page 82 in Chapter 3.

Table 1.3 Limits on Integer Constants

Constant Meaning

Number of bits in the smallest variable that
is not a bit field.

Value

8

Minimum value for a variable of type -128
signed char.

Maximum value for a variable of type 127
signed char.

Maximum value for a variable of type 255 (Oxff)
unsigned char.

Minimum value for a variable oftype char. -128; 0 if /J option used

Maximum value for a variable of type char. 127; 255 if /J option
used

Maximum number of bytes in a 2
multicharacter constant.

Minimum value for a variable of type short. -32768

Maximum value for a variable of type short. 32767

Chapter 1 Elements of C

Table 1.3 Limits on Integer Constants (continued)

Constant Meaning Value

USHRT_MAX Maximum value for a variable of type 65535 (Oxffff)
unsigned short.

INT_MIN Minimum value for a variable of type int. -2147483647-1

INT_MAX Maximum value for a variable of type int. 2147483647

UINT_MAX Maximum value for a variable of type 4294967295 (Oxffffffff)
unsigned int.

LONG_MIN Minimum value for a variable of type long. -2147483647-1

LONG_MAX Maximum value for a variable of type long. 2147483647

ULONG_MAX Maximum value for a variable of type 4294967295 (Oxffffffff)
unsigned long.

If a value exceeds the largest integer representation, the Microsoft compiler generates
an error.

END Microsoft Specific

Character Constants
A "character constant" is formed by enclosing a single character from the representable
character set within single quotation marks (' I). Character constants are used to
represent characters in the execution character set.

Syntax
character-constant:

, c-char-sequence'
L' c-char-sequence'

c-char-sequence :
c-char
c-char-sequence c-char

c-char:
Any member of the source character set except the single quotation mark ('),
backslash (\), or newline character
escape-sequence

escape-sequence :
simple-escape-sequence
octal-esc ape-sequence
hexadecimal-escape-sequence

simple-escape-sequence: one of
\a \b \f \n \r \t \ v
\' \" \\ \?

15

C Language Reference

16

octal-escape-sequence :
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence :
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

Character Types
An integer character constant not preceded by the letter L has type int. The value of
an integer character constant containing a single character is the numerical value of
the character interpreted as an integer. For example, the numerical value of the
character a is 97 in decimal and 61 in hexadecimal.

Syntactically, a "wide-character constant" is a character constant prefixed by the
letter L. A wide-character constant has type wchar_t, an integer type defined in the
STDDEEH header file. For example:

char schar 'x I: /* A character constant */
wchar_t wchar = L'x'; /* A wide-character constant for

the same character */

Wide-character constants are 16 bits wide and specify members of the extended
execution character set. They allow you to express characters in alphabets that are too
large to be represented by type char. See "Multibyte and Wide Characters" on page 7
for more information about wide characters.

Execution Character Set
This book often refers to the "execution character set." The execution character set is
not necessarily the same as the source character set used for writing C programs. The
execution character set includes all characters in the source character set as well as
the null character, newline character, backspace, horizontal tab, vertical tab, carriage
return, and escape sequences. The source and execution character sets may differ in
other implementations.

Escape Sequences
Character combinations consisting of a backs lash (\) followed by a letter or by a
combination of digits are called "escape sequences." To represent a newline character,
single quotation mark, or certain other characters in a character constant, you must
use escape sequences. An escape sequence is regarded as a single character and is
therefore valid as a character constant.

Escape sequences are typically used to specify actions such as carriage returns and
tab movements on terminals and printers. They are also used to provide literal

Chapter 1 Elements of C

representations of nonprinting characters and characters that usually have special
meanings, such as the double quotation mark ("). Table 1.4 lists the ANSI escape
sequences and what they represent.

Note that the question mark preceded by a backslash (\?) specifies a literal question
mark in cases where the character sequence would be misinterpreted as a trigraph.
See "Trigraphs" for more information.

Table 1.4 Escape Sequences

Escape Sequence

\a

\b

\f

\n

\r

\t

\v

\'

\"

\\

\?

\000

\xhhh

Microsoft Specific ~

Represents

Bell (alert)

Backspace

Formfeed

New line

Carriage return

Horizontal tab

Vertical tab

Single quotation mark

Double quotation mark

Backslash

Literal question mark

ASCII character in octal notation

ASCII character in hexadecimal notation

If a backslash precedes a character that does not appear in Table 1.4, the compiler
handles the undefined character as the character itself. For example, \x is treated as an x.

END Microsoft Specific

Escape sequences allow you to send nongraphic control characters to a display device.
For example, the ESC character (\033) is often used as the fjrst character of a control
command for a terminal or printer. Some escape sequences are device-specific. For
instance, the vertical-tab and formfeed escape sequences (\v and \f) do not affect
screen output, but they do perform appropriate printer operations.

You can also use the backslash (\) as a continuation character. When a newline
character (equivalent to pressing the RETURN key) immediately follows the backslash,
the compiler ignores the backslash and the newline character and treats the next line
as part of the previous line. This is useful primarily for preprocessor definitions longer
than a single line. For example:

#define assert(exp) \
((exp) ? (void) 0:_assert(#exp. __ FILE __ • LINE »

17

C Language Reference

Octal and Hexadecimal Character Specifications
The sequence \000 means you can specify any character in the ASCII character
set as a three-digit octal character code. The numerical value of the octal integer
specifies the value of the desired character or wide character.

Similarly, the sequence \xhhh allows you to specify any ASCII character as a
hexadecimal character code. For example, you can give the ASCII backspace
character as the normal C escape sequence (\b), or you can code it as \010 (octal)
or \xOOS (hexadecimal).

You can use only the digits 0 through 7 in an octal escape sequence. Octal escape
sequences can never be longer than three digits and are terminated by the first
character that is not an octal digit. Although you do not need to use all three digits,
you must use at least one. For example, the octal representation is \10 for the ASCII
backspace character and \101 for the letter A, as given in an ASCII chart.

Similarly, you must use at least one digit for a hexadecimal escape sequence, but you
can omit the second and third digits. Therefore you could specify the hexadecimal
escape sequence for the backspace character as either \xS, \xOS, or \xOOS.

The value of the octal or hexadecimal escape sequence must be in the range of
representable values for type unsigned char for a character constant and type
wchar_t for a wide-character constant. See "Multibyte and Wide Characters" on
page 7 for information on wide-character constants.

Unlike octal escape constants, the number of hexadecimal digits in an escape
sequence is unlimited. A hexadecimal escape sequence terminates at the first
character that is not a hexadecimal digit. Because hexadecimal digits include the
letters a through f, care must be exercised to make sure the escape sequence
terminates at the intended digit. To avoid confusion, you can place octal or
hexadecimal character definitions in a macro definition:

/fdefi ne Bell '\x07'

For hexadecimal values, you can break the string to show the correct value clearly:

"\xabc" /* one character */
"\xab" "c" /* two characters */

String Literals

18

A "string literal" is a sequence of characters from the source character set enclosed
in double quotation marks (" "). String literals are used to represent a sequence of
characters which, taken together, form a null-terminated string. You must always
prefix wide-string literals with the letter L.

Chapter 1 Elements of C

Syntax
string-literal:

"s-char-sequence opt"

L" s-clzar-sequence opt"

s-char-sequence :
s-char
s-char-sequence s-char

s-char:
any member of the source character set except the double quotation mark ("),
backslash (\), or newline character
escape-sequence

The example below is a simple string literal:

char amessage = "This is a string literal.";

All escape codes listed in Table 1.4 are valid in string literals. To represent a double
quotation mark in a string literal, use the escape sequence \". The single quotation
mark (') can be represented without an escape sequence. The backslash (\) must
be followed with a second backslash (\\) when it appears within a string. When a
backs lash appears at the end of a line, it is always interpreted as a line-continuation
character.

Type for String Literals
String literals have type array of char (that is, char[D. (Wide-character strings have
type array of wchar_t (that is, wchar_t[D.) This means that a string is an array with
elements of type char. The number of elements in the array is equal to the number of
characters in the string plus one for the terminating null character.

Storage of String Literals
The characters of a literal string are stored in order at contiguous memory locations.
An escape sequence (such as \\ or \") within a string literal counts as a single
character. A null character (represented by the \0 escape sequence) is automatically
appended to, and marks the end of, each string literal. (This occurs during translation
phase 7. Note that the compiler may not store two identical strings at two different
addresses. The /Gf (Eliminate Duplicate Strings) compiler option forces the compiler
to place a single copy of identical strings into the executable file.

Microsoft Specific -7

Strings have static storage duration. See "Storage Classes" on page 42 in Chapter 3
for information about storage duration.

END Microsoft Specific

19

C Language Reference

String Literal Concatenation

20

To form string literals that take up more than one line, you can concatenate the two
strings. To do this, type a backslash, then press the RETURN key. The backslash causes
the compiler to ignore the following newline character. For example, the string literal

"Long strings can be bro\
ken into two or more pieces."

is identical to the string

"Long strings can be broken into two or more pieces."

String concatenation can be used anywhere you might previously have used a
backslash followed by a newline character to enter strings longer than one line.

To force a new line within a string literal, enter the newline escape sequence (\0)
at the point in the string where you want the line broken, as follows:

"Enter a number between 1 and 100\nOr press Return"

Because strings can start in any column of the source code and long strings can be
continued in any column of a succeeding line, you can position strings to enhance
source-code readability. In either case, their on-screen representation when output
is unaffected. For example:

printf ("This is the first half of the string, "
"this is the second half ") ;

As long as each part of the string is enclosed in double quotation marks, the parts
are concatenated and output as a single string. This concatenation occurs according
to the sequence of events during compilation specified by translation phases.

"This is the first half of the string, this is the second half"

A string pointer, initialized as two distinct string literals separated only by white
space, is stored as a single string (pointers are discussed in "Pointer Declarations"
on page 68 in Chapter 3). When properly referenced, as in the following example,
the result is identical to the previous example:

char *string = "This is the first half of the string, "
"this is the second half";

printf("%s" • string) ;

In translation phase 6, the multibyte-character sequences specified by any sequence
of adjacent string literals or adjacent wide-string literals are concatenated into a
single multi byte-character sequence. Therefore, do not design programs to allow
modification of string literals during execution. The ANSI C standard specifies that
the result of modifying a string is undefined.

Chapter 1 Elements of C

Maximum String Length
Microsoft Specific ~

ANSI compatibility requires a compiler to accept up to 509 characters in a string literal
after concatenation. The maximum length of a string literal allowed in Microsoft C is
approximately 2,048 bytes. However, if the string literal consists of parts enclosed in
double quotation marks, the preprocessor concatenates the parts into a single string,
and for each line concatenated, it adds an extra byte to the total number of bytes.

For example, suppose a string consists of 40 lines with 50 characters per line (2,000
characters), and one line with 7 characters, and each line is surrounded by double
quotation marks. This adds up to 2,007 bytes plus one byte for the terminating null
character, for a total of 2,008 bytes. On concatenation, an extra character is added
for each of the first 40 lines. This makes a total of 2,048 bytes. Note, however, that
if line continuations (\) are used instead of double quotation marks, the preprocessor
does not add an extra character for each line.

END Microsoft Specific

Punctuation and Special Characters
The punctuation and special characters in the C character set have various uses,
from organizing program text to defining the tasks that the compiler or the compiled
program carries out. They do not specify an operation to be performed. Some
punctuation symbols are also operators (see "Operators" on page 99 in Chapter 4).
The compiler determines their use from context.

Syntax
punctuator: one of

[] () {} * , : = ; ... #

These characters have special meanings in C. Their uses are described throughout
this book. The pound sign (#) can occur only in "preprocessing directives."

21

CHAPTER 2

Program Structure

This chapter gives an overview of C programs and program execution. Terms and
features important to understanding C programs and components are also introduced.
Topics discussed include:

• Source files and source programs

• The main function and pro grain execution

• Parsing command-line arguments

• Lifetime, scope, visibility, and linkage

• Name spaces

Because this chapter is an overview, the topics discussed contain introductory material
only. See the cross-referenced information for more detailed explanations.

Source Files and Source Programs
A source program can be divided into one or more "source files," or "translation
units." The input to the compiler is called a "translation unit."

Syntax
translation-unit:

external-declaration
translation-unit external-declaration

external-declaration:
function-definition
declaration

"Overview of Declarations" on page 39 in Chapter 3 gives the syntax for the
declaration nonterminal, and the Preprocessor Reference explains how the translation
unit is processed.

Note See the introduction to Appendix A, "C Language Syntax Summary," for an explanation
of the ANSI syntax conventions.

23

C Language Reference

24

The components of a translation unit are external declarations that include function
definitions and identifier declarations. These declarations and definitions can be in
source files, header files, libraries, and other files the program needs. You must
compile each translation unit and link the resulting object files to make a program.

A C "source program" is a collection of directives, pragmas, declarations, definitions,
statement blocks, and functions. To be valid components of a Microsoft C program,
each must have the syntax described in this book, although they can appear in any
order in the program (subject to the rules outlined throughout this book). However,
the location of these components in a program does affect how variables and functions
can be used in a program. (See "Lifetime, Scope, Visibility, and Linkage" on page 32
for more information.)

Source files need not contain executable statements. For example, you may find it
useful to place definitions of variables in one source file and then declare references
to these variables in other source files that use them. This technique makes the
definitions easy to find and update when necessary. For the same reason, constants
and macros are often organized into separate files called "include files" or "header
files" that can be referenced in source files as required. See the Preprocessor
Reference for information about macros and include files.

Directives to the Preprocessor
A "directive" instructs the C preprocessor to perform a specific action on the text
of the program before compilation. Preprocessor directives are fully described in
the Preprocessor Reference. This example uses the preprocessor directive#define:

#define MAX 100

This statement tells the compiler to replace each occurrence of MAX by 100 before
compilation. The C compiler preprocessor directives are:

#define

#elif

#else

Pragmas
Microsoft Specific ~

#endif

#error

#if

#ifdef

#ifndef

#include

#line

#pragma

#Undef

A "pragma" instructs the compiler to perform a particular action at compile time.
Pragmas vary from compiler to compiler. For example, you can use the optimize
pragma to set the optimizations to be performed on your program. The Microsoft C
pragmas are:

alloc_text data_seg inline_recursion setlocale

auto_inline function intrinsic warning

check_stack hdrstop message

code_seg include_alias optimize

comment inline_depth pack

Chapter 2 Program Structure

See Chapter 2, "Pragma Directives," in the Preprocessor Reference for a description
of the Microsoft C compiler pragmas.

END Microsoft Specific

Declarations and Definitions
A "declaration" establishes an association between a particular variable, function, or
type and its attributes. "Overview of Declarations" on page 39 in Chapter 3 gives the
ANSI syntax for the declaration non terminal. A declaration also specifies where and
when an identifier can be accessed (the "linkage" of an identifier). See "Lifetime,
Scope, Visibility, and Linkage" on page 32 for information about linkage.

A "definition" of a variable establishes the same associations as a declaration but also
causes storage to be allocated for the variable.

For example, the rn a ; n, f; n d, and co U n t functions and the va r and val variables are
defined in one source file, in this order:

void maine)
{
}

int var = 0;
double val[MAXVAL];

char find(fileptr)
{

}

int count(double f)
{
}

The variables va r and val can be used in the f; n d and co U n t functions; no further
declarations are needed. But these names are not visible (cannot be accessed) in rna; n.

Function Declarations and Definitions
Function prototypes establish the name of the function, its return type, and the type
and number of its formal parameters. A function definition includes the function body.

Both function and variable declarations can appear inside or outside a function definition.
Any declaration within a function definition is said to appear at the "internal" or "local"
level. A declaration outside all function definitions is said to appear at the "external,"
"global," or "file scope" level. Variable definitions, like declarations, can appear at the
internal level (within a functlon definition) or at the external level (outside all function
definitions). Function definitions always occur at the external level. Function definitions
are discussed further in "Function Definitions" on page 155 in Chapter 6. Function
prototypes are covered in "Function Prototypes" on page 169 in Chapter 6.

25

C Language Reference

26

Blocks
A sequence of declarations, definitions, and statements enclosed within curly
braces ({ }) is called a "block." There are two types of blocks in C. The "compound
statement," a statement composed of one or more statements (see "The Compound
Statement" on page 137 in Chapter 5), is one type of block. The other, the "function
definition," consists of a compound statement (the body of the function) plus the
function's associated "header" (the function name, return type, and formal
parameters). A block within other blocks is said to be "nested."

Note that while all compound statements are enclosed within curly braces, not
everything enclosed within curly braces constitutes a compound statement. For
example, although the specifications of array, structure, or enumeration elements
can appear within curly braces, they are not compound statements.

Example Program
The following C source program consists of two source files. It gives an overview
of some of the various declarations and definitions possible in a C program. Later
sections in this book describe how to write these declarations, definitions, and
initializations, and how to use C keywords such as static and extern. The printf
function is declared in the C header file STDIO.H.

The rna in and max functions are assumed to be in separate files, and execution
of the program begins with the rna in function. No explicit user functions are
executed before rna in.

/***
FILE1.C - main function

***1

#define ONE 1
#define TWO 2
#define THREE 3
#include <stdio.h>

int a = 1;
int b = 2;

extern int max(int a. int b);

int main()
{

int c;
int d;

extern int u;

static int v;

1* Defining declarations
1* of external variables

1* Function prototype

/* Function definition
/* for main function
/* Definitions for
/* two uninitialized
1* local variables

1* Referencing declaration
1* of external variable
1* defined elsewhere
/* Definition of variable
1* with continuous lifetime

*/
*/

*/

*1
*/
*/
*/
*/

*1
*/
*/
*/
*1

Chapter 2 Program Structure

int w = ONE, x = TWO, y THREE;
int z = 0;
z=max(x, Y);
w = max(z, w);
printf("%d %d\n", z, w);
return 0;

/* Executable statements */

/**
FILE2.C - definition of max function

**/

int max(int a, int b)

if(a > b)
return(a);

else
return(b);

/* Note formal parameters are */
/* included in function header */

FILEI.C contains the prototype for the max function. This kind of declaration is
sometimes called a "forward declaration" because the function is declared before it
is used. The definition for the rna in function includes calls to max.

The lines beginning with #defi ne are preprocessor directives. These directives tell
the preprocessor to replace the identifiers 0 N E, TW 0, and T H R E E with the numbers
1, 2, and 3, respectively, throughout FILE1.C. However, the directives do not apply
to FILE2.C, which is compiled separately and then linked with FILE1.C. The line
beginning with #i ncl ude tells the compiler to include the file STDIO.H, which
contains the prototype for the printf function. Preprocessor directives are explained
in the Preprocessor Reference.

FILE1.C uses defining declarations to initialize the global variables a and b. The local
variables c and d are declared but not initialized. Storage is allocated for all these
variables. The static and external variables, u and v, are automatically initialized to O.
Therefore only a, b, u, and v contain meaningful values when declared because they
are initialized, either explicitly or implicitly. FILE2.C contains the function definition
for max. This definition satisfies the calls to max in FILE1.C.

The lifetime and visibility of identifiers are discussed in "Lifetime, Scope, Visibility, and
Linkage" on page 32. For more information on functions, see Chapter 6, "Functions."

The main Function and Program Execution
Every C program has a primary (main) function that must be named main. If your
code adheres to the Unicode programming model, you can use the wide-character
version of main, wmain. The main function serves as the starting point for program
execution. It usually controls program execution by directing the calls to other
functions in the program. A program usually stops executing at the end of main,

27

C Language Reference

although it can terminate at other points in the program for a variety of reasons.
At times, perhaps when a certain error is detected, you may want to force the
termination of a program. To do so, use the exit function. See the Run-Time
Library Reference for information on and an example using the exit function.

Functions within the source program perform one or more specific tasks. The main
function can call these functions to perform their respective tasks. When main calls
another function, it passes execution control to the function, so that execution begins
at the first statement in the function. A function returns control to main when a
return statement is executed or when the end of the function is reached.

You can declare any function, including main, to have parameters. The term
"parameter" or "formal parameter" refers to the identifier that receives a value
passed to a function. See "Parameters" on page 167 in Chapter 6 for information on
passing arguments to parameters. When one function calls another, the called function
receives values for its parameters from the calling function. These values are called
"arguments." You can declare formal parameters to main so that it can receive
arguments from the command line using this format:

maine int argc, char *argv[], char *envp[])

When you want to pass information to the main function, the parameters are
traditionally named argc and argv, although the C compiler does not require these
names. The types for argc and argv are defined by the C language. Traditionally, if
a third parameter is passed to main, that parameter is named envp. The type for the
envp parameter is mandated by ANSI, but the name is not. Examples later in this
chapter show how to use these three parameters to access command-line arguments.
The following sections explain these parameters.

See "Using wmain" for a description of the wide-character version of main.

Using wmain

28

Microsoft Specific --7

In the Unicode programming model, you can define a wide-character version of the
main function., Use wmain instead of main if you want to write portable code that
adheres to the Unicode programming model.

You declare formal parameters to wmain using a similar format to main. You can
then pass wide-character arguments and, optionally, a wide-character environment
pointer to the program. The argv and envp parameters to wmain are of type wchar_t*.
For example:

wmain(int argc, wchar_t *argv[], wchar_t *envp[])

If your program uses a main function, the multibyte-character environment is created
by the run-time library at program startup. A wide-character copy of the environment
is created only when needed (for example, by a call to the _ wgetenv or _ wputenv
functions). On the first call to _wputenv, or on the first call to _wgetenv if an MBCS

Chapter 2 Program Structure

environment already exists, a corresponding wide-character string environment is
created and is then pointed to by the _ wenviron global variable, which is a wide
character version of the _environ global variable. At this point, two copies of the
environment (MBCS and Unicode) exist simultaneously and are maintained by the
operating system throughout the life of the program.

Similarly, if your program uses a wmain function, a wide-character environment is
created at program startup and is pointed to by the _ wenviron global variable. An
MBCS (ASCII) environment is created on the first call to _putenv or getenv, and is
pointed to by the _environ global variable.

For more information on the MBCS environment, see "Internationalization" in the
Run-Time Library Reference.

END Microsoft Specific

Argument Description
The argc parameter in the main and wmain functions is an integer specifying
how many arguments are passed to the program from the command line. Since the
program name is considered an argument, the value of argc is at least one.

The argv parameter is an array of pointers to null-terminated strings representing
the program arguments. Each element of the array points to a string representation
of an argument passed to main (or wmain). (For information about arrays, see
"Array Declarations" on page 66 in Chapter 3.) The argv parameter can be declared
either as an array of pointers to type char (c h a r * a r 9 v [J) or as a pointer to
pointers to type char (cha r **a rgv). For wmain, the argv parameter can be
declared either as an array of pointers to type wchar_t (wchar _t *argv[]) or
as a pointer to pointers to type wchar_t (wcha r _t **a rgv). The first string
(a rgv [0]) is the program name. The last pointer (a rgv [a rgc]) is NULL. (See
getenv in the Run-Time Library Reference for an alternative method for getting
environment variable information.)

The envp parameter is a pointer to an array of null-terminated strings that represent
the values set in the user's environment variables. The envp parameter can be declared
as an array of pointers to char (c h a r * en v p [J) or as a pointer to pointers to char
(char **envp). In a wmain function, the envp parameter can be declared as an
array of pointers to wchar_t (wcha r _t *envp [J) or as a pointer to pointers to
wchar_t (wcha r _t **envp). The end of the array is indicated by a NULL *pointer.
Note that the environment block passed to main or wmain is a "frozen" copy of the
current environment. If you subsequently change the environment via a call to
_putenv or _wputenv, the current environment (as returned by getenv/_wgetenv and
the _environ or _wenviron variables) will change, but the block pointed to by envp
will not change.

29

C Language Reference

Expanding Wildcard Arguments
Microsoft Specific ~

When running a C program, you can use either of the two wildcards-the question
mark (?) and the asterisk (*)-to specify filename and path arguments on the
command line.

Command-line arguments are handled by a routine called _setargv (or _wsetargv
in the wide-character environment), which by default does not expand wildcards
into separate strings in the argv string array. You can replace the normal_setargv
routine with a more powerful version of _setargv that does handle wildcards by
linking with the SETARGV.OBJ file. If your program uses a wmain function, link
with WSETARGV.OBJ.

To link with SETARGV.OBJ or WSETARGV.OBJ, use the /link option. For example:

cl typeit.c Ilink setargv.obj

The wildcards are expanded in the same manner as operating system commands. (See
your operating system user's guide if you are unfamiliar with wildcards.) Enclosing an
argument in double quotation marks (" ") suppresses the wildcard expansion. Within
quoted arguments, you can represent quotation marks literally by preceding the
double-quotation-mark character with a backslash (\). If no matches are found for
the wildcard argument, the argument is passed literally.

END Microsoft Specific

Parsing Command-Line Arguments

30

Microsoft Specific ~

Microsoft C startup code uses the following rules when interpreting arguments given
on the operating system command line:

• Arguments are delimited by white space, which is either a space or a tab.

• A string surrounded by double quotation marks is interpreted as a single argument,
regardless of white space contained within. A quoted string can be embedded in an
argument. Note that the caret (A) is not recognized as an escape character or
delimiter.

• A double quotation mark preceded by a backslash, \", is interpreted as a literal
double quotation mark (").

• Backslashes are interpreted literally, unless they immediately precede a double
quotation mark.

Chapter 2 Program Structure

• If an even number of backslashes is followed by a double quotation mark, then
one backslash (\) is placed in the argv array for every pair of backslashes (\\), and
the double quotation mark (") is interpreted as a string delimiter.

• If an odd number of backslashes is followed by a double quotation mark, then
one backslash (\) is placed in the argv array for every pair of backslashes (\\) and
the double quotation mark is interpreted as an escape sequence by the remaining
backslash, causing a literal double quotation mark (") to be placed in argv.

This list illustrates the rules above by showing the interpreted result passed to a rgv
for several examples of command-line arguments. The output listed in the second,
third, and fourth columns is from the ARGS.C program that follows the list.

Command-Line Input

"a b e" d e
"ab\"e" "\\" d
a\\\b d"e f"g h

a\\\"b e d

a\\\\"b e" d e

argv[1]

abc
ab"e
a\\\b
a\"b
a\\b e

argv[2]

d

\

de fg

e
d

argv[3]

e
d

h

d

e

/* ARGS.C illustrates the following variables used for accessing
* command-line arguments and environment variables:
* argc argv envp
*/

#include <stdio.h>

void main(int argc. /* Number of strings in array argv */

{

}

char *argv[]. /* Array of command-line argument strings */
char **envp) /* Array of environment variable strings */

int count;

/* Display each command-line argument. */
printf("\nCommand-line arguments:\n");
for(count 0; count < argc; count++)

printf(" argv[%d] %s\n". count. argv[count]);

/* Display each environment variable. */
printf("\nEnvironment variables:\n");
while(*envp 1= NULL)

printf(" %s\n". *(envp++));

return;

31

C Language Reference

One example of output from this program is:

Command-line arguments:
argv[0] C:\MSC\TEST.EXE

Environment variables:
COMSPEC=C:\NT\SYSTEM32\CMD.EXE

PATH=c:\nt;c:\binb;c:\binr;c:\nt\system32;c:\word;c:\help;c:\msc;c:\;
PROMPT=[$p]
TEMP=c:\tmp
TMP=c:\tmp
EDITORS=c: \bi nr
WINDIR=c:\nt

END Microsoft Specific

Customizing Command-Line Processing
If your program does not take command-line arguments, you can save a small
amount of space by suppressing use of the library routine that performs command-line
processing. This routine is called _setargv (or _ wsetargv in the wide-character
environment), as described in "Expanding Wildcard Arguments" on page 30. To
suppress its use, define a routine that does nothing in the file containing the main
function and name it setargv (or _wsetargv in the wide-character environment). The
call to _setargv or wsetargv is then satisfied by your definition of _setargv or
_ wsetargv , and the library version is not loaded.

Similarly, if you never access the environment table through the envp argument, you
can provide your own empty routine to be used in place of _setenvp (or _ wsetenvp),
the environment-processing routine.

If your program makes calls to the _spawn or _exec family of routines in the C
run-time library, you should not suppress the environment-processing routine,
since this routine is used to pass an environment from the spawning process to the
new process.

Lifetime, Scope, Visibility, and Linkage

32

To understand how a C program works, you must understand the rules that determine
how variables and functions can be used in the program. Several concepts are crucial
to understanding these rules:

• Lifetime

• Scope and visibility

• Linkage

Chapter 2 Program Structure

Lifetime
"Lifetime" is the period during execution of a program in which a variable or
function exists. The storage duration of the identifier determines its lifetime.

An identifier declared with the storage-class-specifier static has static storage
duration. Identifiers with static storage duration (also called "global") have
storage and a defined value for the duration of a program. Storage is reserved
and the identifier's stored value is initialized only once, before program startup.
An identifier declared with external or internal linkage also has static storage
duration (see "Linkage" on page 36).

An identifier declared without the static storage-class specifier has automatic
storage duration if it is declared inside a function. An identifier with automatic
storage duration (a "local identifier") has storage and a defined value only within
the block where the identifier is defined or declared. An automatic identifier is
allocated new storage each time the program enters that block, and it loses its
storage (and its value) when the program exits the block. Identifiers declared in
a function with no linkage also have automatic storage duration.

The following rules specify whether an identifier has global (static) or local
(automatic) lifetime:

• All functions have static lifetime. Therefore they exist at all times during
program execution. Identifiers declared at the external level (that is, outside all
blocks in the program at the same level of function definitions) always have
global (static) lifetimes.

• If a local variable has an initializer, the variable is initialized each time it is
created (unless it is declared as static). Function parameters also have local
lifetime. You can specify global lifetime for an identifier within a block by
including the static storage-class specifier in its declaration. Once declared
static, the variable retains its value from one entry of the block to the next.

Although an identifier with a global lifetime exists throughout the execution of the
source program (for example, an externally declared variable or a local variable
declared with the static keyword), it may not be visible in all parts of the program.
See "Scope and Visibility" on page 34 for information about visibility, and see
"Storage Classes" on page 42 in Chapter 3 for a discussion of the
storage-class-specifier nonterminal.

Memory can be allocated as needed (dynamic) if created through the use of special
library routines such as malloc. Since dynamic memory allocation uses library
routines, it is not considered part of the language. See the malloc function in the
Run-Time Library Reference.

33

C Language Reference

Scope and Visibility
An identifier's "visibility" determines the portions of the program in which it can be
referenced-its "scope." An identifier is visible (i.e., can be used) only in portions of
a program encompassed by its "scope," which may be limited (in order of increasing
restrictiveness) to the file, function, block, or function prototype in which it appears.
The scope of an identifier is the part of the program in which the name can be used.
This is sometimes called "lexical scope." There are four kinds of scope: function, file,
block, and function prototype.

All identifiers except labels have their scope determined by the level at which the
declaration occurs. The following rules for each kind of scope govern the visibility of
identifiers within a program:

File scope The declarator or type specifier for an identifier with file scope appears
outside any block or list of parameters and is accessible from any place in the
translation unit after its declaration. Identifier names with file scope are often
called "global" or "external." The scope of a global identifier begins at the point
of its definition or declaration and terminates at the end of the translation unit.

Function scope A label is the only kind of identifier that has function scope. A label
is declared implicitly by its use in a statement. Label names must be unique within
a function. (For more information about labels and label names, see "The goto
and Labeled Statements" on page 141 in Chapter 5.)

Block scope The declarator or type specifier for an identifier with block scope
appears inside a block or within the list of formal parameter declarations in a
function definition. It is visible only from the point of its declaration or definition
to the end of the block containing its declaration or definition. Its scope is limited
to that block and to any blocks nested in that block and ends at the curly brace that
closes the associated block. Such identifiers are sometimes called "local variables."

Function-prototype scope The declarator or type specifier for an identifier with
function-prototype scope appears within the list of parameter declarations in a
function prototype (not part of the function declaration). Its scope terminates at the
end of the function declarator.

The appropriate declarations for making variables visible in other source files are
described in "Storage Classes" on page 42 Chapter 3. However, variables and functions
declared at the external level with the static storage-class specifier are visible only
within the source file in which they are defined. All other functions are globally visible.

Summary of Lifetime and Visibility

34

Table 2.1 is a summary of lifetime and visibility characteristics for most identifiers. The
first three columns give the attributes that define lifetime and visibility. An identifier
with the attributes given by the first three columns has the lifetime and visibility shown
in the fourth and fifth columns. However, the table does not cover all possible cases.
Refer to "Storage Classes" on page 42 in Chapter 3 for more information.

Chapter 2

Table 2.1 Summary of Lifetime and Visibility

Attributes: Result:
Storage-Class

Level Item Specifier Lifetime Visibility

File scope Variable static Global Remainder of source
definition file in which it occurs

Variable extern Global Remainder of source
declaration file in which it occurs

Function static Global Single source file
prototype or
definition

Function extern Global Remainder of source
prototype file

Block scope Variable extern Global Block
declaration

Variable static Global Block
definition

Variable auto or register Local Block
definition

The following example illustrates blocks, nesting, and visibility of variables:

#include <stdio.h>

int i = 1: 1* i defined at external level

int main()
{

1* main function defined at external level

}

printf("%d\n", i): 1* Prints 1 (value of external level i)
{ 1* Begin first nested block

int i = 2, j = 3: 1* i and j defined at internal
printf("%d %d\n", i, j): 1* Prints 2,3
{ 1* Begi n second nested block

i nt i = 0: 1* i is redefi ned
printf("%d %d\n", i, j): 1* Prints 0,3

pri ntf("%d\n", i):

printf("%d\n",):

return 0:

1* End of second nested block
1* Prints 2 (outer definition
1* restored)
1* End of first nested block
1* Prints 1 (external level
1* definition restored)

1 evel

*1

*1

*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1

In this example, there are four levels of visibility: the external level and three block
levels. The values are printed to. the screen as noted in the comments following each
statement.

Program Structure

35

C Language Reference

Linkage

36

Identifier names can refer to different identifiers in different scopes. An identifier
declared in different scopes or in the same scope more than once can be made to refer
to the same identifier or function by a process called "linkage." Linkage determines
the portions of the program in which an identifier can be referenced (its "visibility").
There are three kinds of linkage: internal, external, and no linkage.

Internal Linkage
If the declaration of a file-scope identifier for an object or a function contains the
storage-class-specifier static, the identifier has internal linkage. Otherwise, the
identifier has external linkage. See "Storage Classes" on page 42 in Chapter 3 for
a discussion of the storage-class-specifier nonterminal.

Within one translation unit, each instance of an identifier with internal linkage
denotes the same identifier or function. Internally linked identifiers are unique to
a translation unit.

External Linkage
If the first declaration at file-scope level for an identifier does not use the static
storage-class specifier, the object has external linkage.

If the declaration of an identifier for a function has no storage-class-specifier, its
linkage is determined exactly as if it were declared with the storage-class-specifier
extern. If the declaration of an identifier for an object has file scope and no
storage-class-specifier, its linkage is external.

An identifier's name with external linkage designates the same function or data
object as does any other declaration for the same name with external linkage. The
two declarations can be in the same translation unit or in different translation units.
If the object or function also has global lifetime, the object or function is shared by
the entire program.

No Linkage
If a declaration for an identifier within a block does not include the extern
storage-class specifier, the identifier has no linkage and is unique to the function.

The following identifiers have no linkage:

• An identifier declared to be anything other than an object or a function

• An identifier declared to be a function parameter

• A block-scope identifier for an object declared without the extern storage-class
specifier

If an identifier has no linkage, declaring the same name again (in a declarator or type
specifier) in the same scope level generates a symbol redefinition error.

Chapter 2 Program Structure

Name Spaces
The compiler sets up "name spaces" to distinguish between the identifiers used
for different kinds of items. The names within each name space must be unique
to avoid conflict, but an identical name can appear in more than one name space.
This means that you can use the same identifier for two or more different items,
provided that the items are in different name spaces. The compiler can resolve
references based on the syntactic context of the identifier in the program.

Note Do not confuse the limited C notion of a name space with the C++ "namespace"
feature. See "Namespaces" in the C++ Language Reference for more information.

This list describes the name spaces used in C.

Statement labels Named statement labels are part of statements. Definitions
of statement labels are always followed by a colon but are not part of case
labels. Uses of statement labels always immediately follow the keyword goto.
Statement labels do not have to be distinct from other names or from label
names in other functions.

Structure, union, and enumeration tags These tags are part of structure, union,
and enumeration type specifiers and, if present, always immediately follow the
reserved words struct, union, or enum. The tag names must be distinct from
all other structure, enumeration, or union tags with the same visibility.

Members of structures or unions Member names are allocated in name spaces
associated with each structure and union type. That is, the same identifier can
be a component name in any number of structures or unions at the same time.
Definitions of component names always occur within structure or union type
specifiers. Uses of component names always immediately follow the member
selection operators (-> and .). The name of a member must be unique within
the structure or union, but it does not have to be distinct from other names in
the program, including the names of members of different structures and
unions, or the name of the structure itself.

Ordinary identifiers All other names fall into a name space that includes variables,
functions (including formal parameters and local variables), and enumeration
constants. Identifier names have nested visibility, so you can redefine them
within blocks.

Typedef names Typedef names cannot be used as identifiers in the same scope.

For example, since structure tags, structure members, and variable names are in
three different name spaces, the three items named student in this example do not
conflict. The context of each item allows correct interpretation of each occurrence
of student in the program. (For information about structures, see "Structure
Declarations" on page 58 in Chapter 3.)

37

C Language Reference

38

struct student
char student[20];
int class;
int id;
} student;

When stu den t appears after the struct keyword, the compiler recognizes it as a
structure tag. When student appears after a member-selection operator (-> or .), the
name refers to the structure member. In other contexts, student refers to the structure
variable. However, overloading the tag name space is not recommended since it
obscures meaning.

CHAPTER 3

Declarations and Types

This chapter describes the declaration and initialization of variables, functions, and
types. The C language includes a standard set of basic data types. You can also add
your own data types, called "derived types," by declaring new ones based on types
already defined. The following topics are discussed:

• Overview of declarations

• Storage classes

• Type specifiers

• Type qualifiers

• Declarators and variable declarations

• Interpreting more complex declarators

• Initialization

• Storage of basic types

• Incomplete types

• Typedef declarations

• Extended storage-class attributes

Overview of Declarations
A "declaration" specifies the interpretation and attributes of a set of identifiers. A
declaration that also causes storage to be reserved for the object or function named by
the identifier is called a "definition." C declarations for variables, functions, and types
have this syntax:

Syntax
declaration :

declaration-specifiers init-declarator-list opt;

39

C Language Reference

40

declaration-specifiers :
storage-class-specifier attribute-seq opt declaration-specifiers opt

/* attribute-seq opt is Microsoft specific */
type-specifier declaration-specifiers opt

type-qualifier declaration-specifiers opt

init-declarator-list :
init-declarator
init-declarator-list , init-declarator

in it-de cla ra tor :
declarator
declarator = initializer

Note This syntax for declaration is not repeated in the following sections. Syntax in the
following sections usually begin with the declaratornonterminal.

The declarations in the init-declarator-list contain the identifiers being named; init
is an abbreviation for initializer. The init-declarator-list is a comma-separated
sequence of dec1arators, each of which can have additional type information, or an
initializer, or both. The declarator contains the identifiers, if any, being declared. The
declaration-specifiers nonterminal consists of a sequence of type and storage-class
specifiers that indicate the linkage, storage duration, and at least part of the type of the
entities that the. declarators denote. Therefore, declarations are made up of some
combination of storage-class specifiers, type specifiers, type qualifiers, declarators,
and initializers.

Declarations can contain one or more of the optional attributes listed in attribute-seq;
seq is an abbreviation for sequence. These Microsoft-specific attributes perform a
variety of functions, which are discussed in detail throughout this book. For a list of
these attributes, see Appendix A, "e Language Syntax Summary."

In the general form of a variable declaration, type-specifier gives the data type of the
variable. The type-specifier can be a compound, as when the type is modified by const
or volatile. The declarator gives the name of the variable, possibly modified to
declare an array or a pointer type. For example,

int const *fp;

declares a variable named fp as a pointer to a nonmodifiable (const) int value. You
can define more than one variable in a declaration by using multiple declarators,
separated by commas.

A declaration must have at least one declarator, or its type specifier must declare a
structure tag, union tag, or members of an enumeration. Declarators provide any
remaining information about an identifier. A declarator is an identifier that can be
modified with brackets ([D, asterisks (*), or parentheses (()) to declare an array,

Chapter 3 Declarations and Types

pointer, or function type, respectively. When you declare simple variables (such as
character, integer, and floating-point items), or structures and unions of simple
variables, the declarator is just an identifier. For more information on declarators,
see "Declarators and Variable Declarations" on page 52.

All definitions are implicitly declarations, but not all declarations are definitions.
For example, variable declarations that begin with the extern storage-class specifier
are "referencing," rather than "defining" declarations. If an external variable is to be
referred to before it is defined, or if it is defined in another source file from the one
where it is used, an extern declaration is necessary. Storage is not allocated by
"referencing" declarations, nor can variables be initialized in declarations.

A storage class or a type (or both) is required in variable declarations. Except for
__ declspec, only one storage-class specifier is allowed in a declaration and not all
storage-class specifiers are permitted in every context. The __ declspec storage class
is allowed with other storage-class specifiers, and it is allowed more than once. The
storage-class specifier of a declaration affects how the declared item is stored and
initialized, and which parts of a program can reference the item.

The storage-class-specijier terminals defined in C include auto, extern, register,
static, and typedef. In addition, Microsoft C includes the storage-class-specijier
terminal __ declspec. All storage-class-specijier terminals except typedef and
__ declspec are discussed in "Storage Classes" on page 42. See "Typedef Declarations"
on page 86 for information about typedef. See "Extended Storage-Class Attributes"
on page 88 for information about __ declspec.

The location of the declaration within the source program and the presence or absence
of other declarations of the variable are important factors in determining the lifetime
of variables. There can be multiple redeclarations but only one definition. However,
a definition can appear in more than one translation unit. For objects with internal
linkage, this rule applies separately to each translation unit, because internally linked
objects are unique to a translation unit. For objects with external linkage, this rule
applies to the entire program. See "Lifetime, Scope, Visibility, and Linkage" on
page 32 in Chapter 2 for more information about visibility.

Type specifiers provide some information about the data types of identifiers. The
default type specifier is int. For more information, see "Type Specifiers" on page 49.
Type specifiers can also define type tags, structure and union component names, and
enumeration constants. For more information see "Enumeration Declarations" on
page 55, "Structure Declarations" on page 58, and "Union Declarations" on page 63.

There are two type-qualijier terminals: const and volatile. These qualifiers specify
additional properties of types that are relevant only when accessing objects of that
type through I-values. For more information on const and volatile, see "Type
Qualifiers" on page 51. For a definition of I-values, see "L-Value and R-Value
Expressions" on page 95 in Chapter 4.

41

C Language Reference

Storage Classes

42

The "storage class" of a variable determines whether the item has a "global" or "local"
lifetime. C calls these two lifetimes "static" and "automatic." An item with a global
lifetime exists and has a value throughout the execution of the program. All functions
have global lifetimes.

Automatic variables, or variables with local lifetimes, are allocated new storage each
time execution control passes to the block in which they are defined. When execution
returns, the variables no longer have meaningful values.

C provides the following storage-class specifiers:

Syntax
storage-class-speciJier :

auto
register
static
extern
typedef
__ declspec (extended-decl-modiJier-seq) 1* Microsoft Specific *1

Except for __ declspec, you can use only one storage-class-speciJier in the
declaration-speciJier in a declaration. If no storage-class specification is made,
declarations within a block create automatic objects.

Items declared with the auto or register specifier have local lifetimes. Items
declared with the static or extern specifier have global lifetimes.

Since typedef and __ declspec are semantically different from the other four
storage-class-speciJier terminals, they are discussed separately. For specific
information on typedef, see "Typedef Declarations" on page 86. For specific
information on __ declspec, see "Extended Storage-Class Attributes" on page 88.

The placement of vaD-able and function declarations within source files also affects
storage class and visibility. Declarations outside all function definitions are said to
appear at the "external level." Declarations within function definitions appear at the
"internal level."

The exact meaning of each storage-class specifier depends on two factors:

• Whether the declaration appears at the external or internal level

o Whether the item being declared is a variable or a function

"Storage-Class Specifiers for External-Level Declarations" on page 43 and
"Storage-Class Specifiers for Internal-Level Declarations" on page 45 describe the
storage-class-speciJier terminals in each kind of declaration and explain the default
behavior when the storage-class-speciJier is omitted from a variable. "Storage-Class
Specifiers with Function Declarations" on page 48 discusses storage-class specifiers
used with functions.

Chapter 3 Declarations and Types

Storage-Class Specifiers for External-Level Declarations
External variables are variables at file scope. They are defined outside any
function, and they are potentially available to many functions. Functions can
only be defined at the external level and, therefore, cannot be nested. By default,
all references to external variables and functions of the same name are references
to the same object, which means they have "external linkage." (You can use the
static keyword to override this. See information later in this section for more
details on static.)

Variable declarations at the external level are either definitions of variables
("defining declarations"), or references to variables defined elsewhere
("referencing declarations").

An external variable declaration that also initializes the variable (implicitly or
explicitly) is a defining declaration of the variable. A definition at the external
level can take several forms:

• A variable that you declare with the static storage-class specifier. You, can
explicitly initialize the static variable with a constant expression, as described
in "Initialization." If you omit the initializer, the variable is initialized to 0 by
default. For example, these two statements are both considered definitions of
the variable k.

static int k = 16;
static int k;

• A variable that you explicitly initialize at the external level. For example, i n t j
3; is a definition of the variable j.

In variable declarations at the external level (that is, outside all functions), you can
use the static or extern storage-class specifier or omit the storage-class specifier
entirely. You cannot use the auto and register storage-class-specifier terminals at
the external level.

Once a variable is defined at the external level, it is visible throughout the rest of the
translation unit. The variable is not visible prior to its declaration in the same source
file. Also, it is not visible in other source files of the program, unless a referencing
declaration makes it visible, as described below.

The rules relating to static include:

• Variables declared outside all blocks without the static keyword always retain their
values throughout the program. To restrict their access to a particular translation
unit, you must use the static keyword. This gives them "internal linkage." To make
them global to an entire program, omit the explicit storage class or use the keyword
extern (see the rules in the next list). This gives them "external linkage." Internal
and external linkage are also discussed in "Linkage" on page 36 in Chapter 2.

43

C Language Reference

44

• You can define a variable at the external level only once within a program. You
can define another variable with the same name and the static storage-class
specifier in a different translation unit. Since each static definition is visible only
within its own translation unit, no conflict occurs. This provides a useful way to
hide identifier names that must be shared among functions of a single translation
unit, but not visible to other translation units.

• The static storage-class specifier can apply to functions as well. If you declare a
function static, its name is invisible outside of the file in which it is declared.

The rules for using extern are:

• The extern storage-class specifier declares a reference to a variable defined
elsewhere. You can use an extern declaration to make a definition in another
source file visible, or to make a variable visible prior to its definition in the same
source file. Once you have declared a reference to the variable at the external level,
the variable is visible throughout the remainder of the translation unit in which the
declared reference occurs.

• For an extern reference to be valid, the variable it refers to must be defined once,
and only once, at the external level. This definition (without the extern storage
class) can be in any of the translation units that make up the program.

Example
The example below illustrates external declarations:

/**
SOURCE FILE ONE

***/

extern int
void next(

void rna in ()
{

i++;
printf(
next();

int i = 3;

void next(
{

i++;
printf(
other();

}

i ;
void) ;

"%d\n",

void)

"%d\n",

) ;

) ;

/* Reference to i, defined below */
/* Function prototype */

/* equals 4 */

1* Definition of */

/* equals 5 */

Chapter 3 Declarations and Types

1**
SOURCE FILE TWO

***1

extern int i;

void other(void
{

i++;
pri ntf("%d\n". i);

1* Reference to i in *1
1* first source file *1

1* i equals 6 *1

The two source files in this example contain a total of three external declarations
of i . Only one declaration is a "defining declaration." That declaration,

int i "" 3;

defines the global variable i and initializes it with initial value 3. The "referencing"
declaration of i at the top of the first source file using extern makes the global
variable visible prior to its defining declaration in the file. The referencing declaration
of i in the second source file also makes the variable visible in that source file. If a
defining instance for a variable is not provided in the translation unit, the compiler
assumes there is an

extern int x;

referencing declaration and that a defining reference

int x = 0;

appears in another translation unit of the program.

All three functions, rna; n, next, and other, perform the same task: they increase i
and print it. The values 4, 5, and 6 are printed.

If the variable i had not been initialized, it would have been set to 0 automatically.
In this case, the values 1, 2, and 3 would have been printed. See "Initialization" on
page 74 for information about variable initialization.

Storage-Class Specifiers for Internal-Level Declarations
You can use any of four storage-class-specijier terminals for variable declarations at
the internal level. When you omit the storage-class-specijier from such a declaration,
the default storage class is auto. Therefore, the keyword auto is rarely seen in a C
program.

The auto Storage-Class Specifier
The auto storage-class specifier declares an automatic variable, a variable with a
local lifetime. An auto variable is visible only in the block in which it is declared.
Declarations of auto variables can include initializers, as discussed in "Initialization"
on page 74.

45

C Language Reference

46

Since variables with auto storage class are not initialized automatically, you
should either explicitly initialize them when you declare them, or assign them
initial values in statements within the block. The values of uninitialized auto
variables are undefined. (A local variable of auto or register storage class is
initialized each time it comes in scope if an initializer is given.)

An internal static variable (a static variable with local or block scope) can
be initialized with the address of any external or static item, but not with the
address of another auto item, because the address of an auto item is not a
constant.

The register Storage-Class Specifier
Microsoft Specific ~

The Microsoft C/C++ compiler does not honor user requests for register
variables. However, for portability all other semantics associated with the
register keyword are honored by the compiler. For example, you cannot
apply the unary address-of operator (&) to a register object nor can the
register keyword be used on arrays.

END Microsoft Specific

The static Storage-Class Specifier
A variable declared at the internal level with the static storage-class specifier
has a global lifetime but is visible only within the block in which it is declared.
For constant strings, using static is useful because it alleviates the overhead of
frequent initialization in often-called functions.

If you do not explicitly initialize a static variable, it is initialized to 0 by
default. Inside a function, static causes storage to be allocated and serves as
a definition. Internal static variables provide private, permanent storage visible

, to only a single function.

The extern Storage-Class Specifier
A variable declared with the extern storage-class specifier is a reference to a
variable with the same name defined at the external level in any of the source
files of the program. The internal extern declaration is used to make the
external-level variable definition visible within the block. Unless otherwise
declared at the external level, a variable declared with the extern keyword is
visible only in the block in which it is declared.

Chapter 3 Declarations and Types

Example
This example illustrates internal- and external-level declarations:

#include <stdio.h>
int i = 1;
void other(void);

void main()
{

/* Reference to i. defined above: */
extern i nt i;

/* Initial value is zero; a is visible only within main: */
static int a;

/* b is stored in a register. if possible: */
register int b = 0;

/* Default storage class is auto: */
int c = 0;

/* Values printed are 1. 0. 0. 0: */
pri ntf("%d\n%d\n%d\n%d\n". i. a. b. c);
other() ;
return;

void other(void
{

/* Address of global
static int *external

assigned to pointer variable: */
= &i;

/* i is redefined; global i no longer visible: */
int i = 16;

/* This a is visible only within the other function: */
static int a = 2;

a += 2;
/* Values printed are 16. 4. and 1: */
printf("%d\n%d\n%d\n". i. a. *external_i);

In this example, the variable i is defined at the external level with initial value 1.
An extern declaration in the rna i n function is used to declare a reference to the
external-level i. The static variable a is initialized to ° by default, since the
initializer is omitted. The call to p r i n t f prints the values 1, 0, 0, and 0.

47

C Language Reference

In the 0 the r function, the address of the global variable i is used to initialize the
static pointer variable ext ern a ,_ i. This works because the global variable has static
lifetime, meaning its address does not change during program execution. Next, the
variable i is redefined as a local variable with initial value 16. This redefinition does
not affect the value of the external-level i , which is hidden by the use of its name for
the local variable. The value of the global i is now accessible only indirectly within
this block, through the pointer ex t ern a ,_ i . Attempting to assign the address of the
auto variable i to a pointer does not work, since it may be different each time the
block is entered. The variable a is declared as a static variable and initialized to 2~
This a does not conflict with the a in rna in, since static variables at the internal level
are visible only within the block in which they are declared.

The variable a is increased by 2, giving 4 as the result. If the othe r function were
called again in the same program, the initial value of a would be 4. Internal static
variables keep their values when the program exits and then reenters the block in
which they are declared.

Storage-Class Specifiers with Function Declarations

48

You can use either the static or the extern storage-class specifier in function
declarations. Functions always have global lifetimes.

Microsoft Specific ~

Function declarations at the internal level have the same meaning as function
declarations at the external level. This means that a function is visible from its point
of declaration throughout the rest of the translation unit even if it is declared at local
scope.

END Microsoft Specific

The visibility rules for functions vary slightly from the rules for variables, as follows:

• A function declared to be static is visible only within the source file in which it is
defined. Functions in the same source file can call the static function, but functions
in other source files cannot access it directly by name. You can declare another
static function with the same name in a different source file without conflict.

• Functions declared as extern are visible throughout all source files in the program
(unless you later redeclare such a function as static). Any function can call an
extern function.

• Function declarations that omit the storage-class specifier are extern by default.

Microsoft Specific ~

Microsoft allows redefinition of an extern identifier as static.

END Microsoft Specific

Chapter 3 Declarations and Types

Type Specifiers
Type specifiers in declarations define the type of a variable or function declaration.

Syntax
type-specifier:

void
char
short
int
long
float
double
signed
unsigned
struct-or-union-specifier
enum-specifier
typedef-name

The signed char, signed int, signed short int, and signed long int types, together with
their unsigned counterparts and enum, are called "integral" types. The float, double,
and long double type specifiers are referred to as "floating" or "floating-point" types.
You can use any integral or floating-point type specifier in a variable or function
declaration. If a type-specifier is not provided in a declaration, it is taken to be int.

The optional keywords signed and unsigned can precede or follow any of the integral
types, except enum, and can also be used alone as type specifiers, in which case they
are understood as signed int and unsigned int, respectively. When used alone, the
keyword int is assumed to be signed. When used alone, the keywords long and short
are understood as long int and short int.

Enumeration types are considered basic types. Type specifiers for enumeration types
are discussed in "Enumeration Declarations" on page 55.

The keyword void has three uses: to specify a function return type, to specify an
argument-type list for a function that takes no arguments, and to specify a pointer
to an unspecified type. You can use the void type to declare functions that return no
value or to declare a pointer to an unspecified type. See "Arguments" on page 173
in Chapter 6 for information on void when it appears alone within the parentheses
following a function name.

Microsoft Specific ~

Type checking is now ANSI -compliant, which means that type short and type int are
distinct types. For example, this is a redefinition in the Microsoft C compiler that was
accepted by previous versions of the compiler.

i n t my fun c () ;
s h 0 r t my fun c () ;

49

C Language Reference

This next example also generates a warning about indirection to different types:

i nt *pi;
short *ps;

ps = pi; /* Now generates warning */

The Microsoft C compiler also generates warnings for differences in sign. For example:

signed int *pi;
unsigned int *pu

pi = pu; /* Now generates warning */

Type void expressions are evaluated for side effects. You cannot use the (nonexistent)
value of an expression that has type void in any way, nor can you convert a void
expression (by implicit or explicit conversion) to any type except void. If you do use
an expression of any other type in a context where a void expression is required, its
value is discarded.

To conform to the ANSI specification, void** cannot be used as int**. Only void*
can be used as a pointer to an unspecified type.

END Microsoft Specific

You can create additional type specifiers with typedef declarations, as described in
"Typedef Declarations" on page 86. See "Storage of Basic Types" on page 81 for
information on the size of each type.

Data Type Specifiers and Equivalents

50

This book generally uses the forms of the type specifiers listed in Table 3.1 rather than
the long forms, and it assumes that the char type is signed by default. Therefore,
throughout this book, char is equivalent to signed char.

Table 3.1 Type Specifiers and Equivalents

Type Specifier Equivalent(s}

signed chari

signed int

signed short int

signed long int

unsigned char

unsigned int

unsigned short int

unsigned long int

float

long douhle2

char
signed, int

short, signed short

long, signed long

unsigned

unsigned short

unsigned long

I When you make the char type unsigned by default (by specifying the /J compiler option), you cannot
abbreviate signed char as char.

2 In 32-bit operating systems, the Microsoft C compiler maps long double to type double.

Chapter 3 Declarations and Types

Microsoft Specific ~

You can specify the /J compiler option to change the default char type from signed
to unsigned. When this option is in effect, char means the same as unsigned char,
and you must use the signed keyword to declare a signed character value. If a char
value is explicitly declared signed, the /J option does not affect it, and the value is
sign-extended when widened to an int type. The char type is zero-extended when
widened to int type.

END Microsoft Specific

Type Qualifiers
Type qualifiers give one of two properties to an identifier. The const type qualifier
declares an object to be nonmodifiable. The volatile type qualifier declares an item
whose value can legitimately be changed by something beyond the control of the
program in which it appears, such as a concurrently executing thread.

The two type qualifiers, const and volatile, can appear only once in a declaration.
Type qualifiers can appear with any type specifier; however, they cannot appear
after the first comma in a multiple item declaration. For example, the following
declarations are legal:

typedef volatile int VI;
const int ci;

These declarations are not legal:

typedef int *i. volatile *vi;
float f. const cf;

Type qualifiers are relevant only when accessing identifiers as I-values in expressions.
See "L-Value and R-Value Expressions" on page 95 in Chapter 4 for information
about I-values and expressions.

Syntax
type-qualifier:

const
volatile

The following are legal const and volatile declarations:

int const *p_ci; /* Pointer to constant int
int const (*p_ci) ; /* Pointer to constant int
int *const cp_i; /* Constant pointer to int
int (*const cp_i); /* Constant pointer to int
int volatile vint; /* Volatile integer

*/
*/
*/
*/
*/

If the specification of an array type includes type qualifiers, the element is qualified,
not the array type. If the specification of the function type includes qualifiers, the
behavior is undefined. Neither volatile nor const affects the range of values or
arithmetic properties of the object.

51

C Language Reference

This list describes how to use const and volatile.

• The const keyword can be used to modify any fundamental or aggregate type, or
a pointer to an object of any type, or a typedef. If an item is declared with only
the const type qualifier, its type is taken to be const int. A const variable can be
initialized or can be placed in a read-only region of storage. The const keyword is
useful for declaring pointers to const since this requires the function not to change
the pointer in any way. .

• The compiler assumes that, at any point in the program, a volatile variable can
be accessed by an unknown process that uses or modifies its value. Therefore,
regardless of the optimizations specified on the command line, the code for each
assignment to or reference of a volatile variable must be generated even if it
appears to have no effect.

If volatile is used alone, int is assumed. The volatile type specifier can be used to
provide reliable access to special memory locations. Use volatile with data objects
that may be accessed or altered by signal handlers, by concurrently executing
programs, or by special hardware such as memory-mapped I/O control registers.
You can declare a variable as volatile for its lifetime, or you can cast a single
reference to be volatile.

• An item can be both const and volatile, in which case the item could not be
legitimately modified by its own program, bllt could be modified by some
asynchronous process.

Declarators and Variable Declarations

52

The rest of this chapter describes the form and meaning of declarations for variable
types summarized in this list. In particular, the remaining sections explain how to
declare the following:

Type of Variable

Simple variables

Arrays

Pointers

Enumeration variables

Structures

Unions

Description

Single-value variables with integral or floating-point type

Variables composed of a collection of elements with the same type

Variables that point to other variables and contain variable
locations (in the form of addresses) instead of values

Simple variables with integral type that hold one value from a set
of named integer constants

Variables composed of a collection of values that can have
different types

Variables composed of several values of different types that occupy
the same storage space

A declarator is the part of a declaration that specifies the name that is to be introduced
into the program. It can include modifiers such as * (pointer-to) and any of the
Microsoft calling-convention keywords.

Chapter 3 Declarations and Types

Microsoft Specific ~

In the declarator

__ declspec(thread) char *var:

char is the type specifier, _decl spec(thread) and * are the modifiers, and var
is the identifier's name.

END Microsoft Specific

You use declarators to declare arrays of values, pointers to values, and functions
returning values of a specified type. Declarators appear in the array and pointer
declarations described later in this chapter.

Syntax
declarator:

pointer opt direct-declarator

direct-declarator:
identifier
(declarator)
direct-declarator [constant-expression opt]

direct-declarator (parameter-type-list)
direct-declarator (identifier-list opt)

type-qualifier-list :pointer :
* type-qualifier-list opt

* type-qualifier-list opt pointer

type-qualifier
type-qualifier-list type-qualifier

Note See the syntax for declaration in "Overview of Declarations" on page 39, or see
Appendix A, "e Language Syntax Summary," for the syntax that references a declarator.

When a declarator consists of an unmodified identifier, the item being declared has
a base type. If an asterisk (*) appears to the left of an identifier, the type is modified
to a pointer type. If the identifier is followed by brackets ([]), the type is modified
to an array type. If the identifier is followed by parentheses, the type is modified
to a function type. For more information about interpreting precedence within
declarations, see "Interpreting More Complex Declarators" on page 72.

Each declarator declares at least one identifier. A declarator must include a type
specifier to be a complete declaration. The type specifier gives the type of the
elements of an array type, the type of object addressed by a pointer type, or the
return type of a function.

53

C Language Reference

Array and pointer declarations are discussed in more detail later in this chapter.
The following examples illustrate a few simple forms of declarators:

int list[20]: 1* Declares an array of 20 int values named list *1
char *cp: 1* Declares a pointer to a char value *1
double func(void): 1* Declares a function named func. with no

arguments. that returns a double value *1
int *aptr[10] 1* Declares an array of 10 pointers *1

Microsoft Specific -7

The Microsoft C compiler does not limit the number of declarators that can modify an
arithmetic, structure, or union type. The number is limited only by available memory.

END Microsoft Specific

Simple Variable Declarations

54

The declaration of a simple variable, the simplest form of a direct declarator,
specifies the variable's name and type. It also specifies the variable's storage class
and data type.

Storage classes or types (or both) are required on variable declarations. Untyped
variables (such as va r;) generate warnings.

Syntax
declarator:

pointer opt direct-declarator

direct-declarator:
identifier

identifier:
nondigit
identifier nondigit
identifier digit

For arithmetic, structure, union, enumerations, and void types, and for types
represented by typedef names, simple declarators can be used in a declaration since
the type specifier supplies all the typing information. Pointer, array, and function
types require more complicated declarators.

You can use a list of identifiers separated by commas (,) to specify several variables
in the same declaration. All variables defined in the declaration have the same base
type. For example:

int x. y: 1* Declares two simple variables of type int *1
int const z = 1: 1* Declares a constant value of type int *1

The variables x and y can hold any value in the set defined by the int type for a
particular implementation. The simple object z is initialized to the value 1 and is
not modifiable.

Chapter 3 Declarations and Types

If the declaration of z was for an uninitialized static variable or was at file scope, it
would receive an initial value of 0, and that value would be unmodifiable.

unsigned long reply. flag; /* Declares two variables
named reply and flag */

In this example, both the variables, rep 1 y and f 1 a g, have unsigned long type and
hold unsigned integral values.

Enumeration Declarations
An enumeration consists of a set of named integer constants. An enumeration type
declaration gives the name of the (optional) enumeration tag and defines the set of
named integer identifiers (called the "enumeration set," "enumerator constants,"
"enumerators," or "members"). A variable with enumeration type stores one of the
values of the enumeration set defined by that type.

Variables of enum type can be used in indexing expressions and as operands of all
arithmetic and relational operators. Enumerations provide an alternative to the #define
preprocessor directive with the advantages that the values can be generated for you
and obey normal scoping rules.

In ANSI C, the expressions that define the value of an enumerator constant always
have int type; thus, the storage associated with an enumeration variable is the storage
required for a single int value. An enumeration constant or a value of enumerated type
can be used anywhere the C language permits an integer expression.

Syntax
enum-specifier :

enum identifier opt { enumerator-list}
enum identifier

The optional identifier names the enumeration type defined by enumerator-list. This
identifier is often called the "tag" of the enumeration specified by the list. A type
specifier of the form

enum identifier { enumerator-list}

declares identifier to be the tag of the enumeration specified by the enumerator-list
nonterminal. The enumerator-list defines the "enumerator content." The
enumerator-list is described in detail below.

If the declaration of a tag is visible, subsequent declarations that use the tag but omit
enumerator-list specify the previously declared enumerated type. The tag must refer to
a defined enumeration type, and that enumeration type must be in current scope. Since
the enumeration type is defined elsewhere, the enumerator-list does not appear in this
declaration. Declarations of types derived from enumerations and typedef declarations
for enumeration types can use the enumeration tag before the enumeration type is
defined.

55

C Language Reference

56

Syntax
enumerator-list:

enumerator
enumerator-list, enumerator

enumerator:
enumeration-constant
enumeration-constant = constant-expression

enumeration-constant:
identifier

Each enumeration-constant in an enumeration-list names a value of the enumeration
set. By default, the first enumeration-constant is associated with the value O. The next
enumeration-constant in the list is associated with the value of (constant-expression +
1), unless you explicitly associate it with another value. The name of an
enumeration-constant is equivalent to its value.

You can use enumeration-constant = constant-expression to 'override the default
sequence of values. Thus, if enumeration-constant = constant-expression appears in
the enumerator-list, the enumeration-constant is associated with the value given by
constant~expression. The constant-expression must have iot type and can be negative.

The following rules apply to the members of an enumeration set:

• An enumeration set can contain duplicate constant values. For example, you could
associate the value 0 with two different identifiers, perhaps named n u 11 and z e r 0,

in the same set.

• The identifiers in the enumeration list must be distinct from other identifiers in the
same scope with the same visibility, including ordinary variable names and
identifiers in other enumeration lists.

• Enumeration tags obey the normal scoping rules. They must be distinct from other
enumeration, structure, and union tags with the same visibility.

Examples
These examples illustrate enumeration declarations:

enum DAY /* Defines an enumeration type */
{

saturday, /* Names day and declares a */
sunday = 0, /* variable named workday with */
monday, /* that type */
tuesday,
wednesday, /* wednesday is associated with 3 */
thursday,
friday

workday;

Chapter 3 Declarations and Types

The value 0 is associated with saturday by default. The identifier sunday is
explicitly set to O. The remaining identifiers are given the values 1 through 5 by
default.

In this example, a value from the set DAY is assigned to the variable tad ay.

enum DAY today = wednesday;

Note that the name of the enumeration constant is used to assign the value. Since
the DAY enumeration type was previously declared, only the enumeration tag DAY
is necessary.

To explicitly assign an integer value to a variable of an enumerated data type, use
a type cast:

workday = (enum DAY) (day_value - 1);

This cast is recommended in C but is not required.

enum BOOLEAN 1* Declares an enumeration data type called BOOLEAN */
{

false, 1* false = 0, true = 1 *1
true

} ;

enum BOOLEAN end_flag, match_flag; 1* Two variables of type BOOLEAN *1

This declaration can also be specified as

enum BOOLEAN { false, true} end_flag, match_flag;\

or as

enum BOOLEAN { false, true} end_flag;
enum BOOLEAN match_flag;

An example that uses these variables might look like this:

if (match_flag == false)
{

1* statement */

end_fl ag = true;

Unnamed enumerator data types can also be declared. The name of the data type
is omitted, but variables can be declared. The variable res pan s e is a variable of
the type defined:

enum { yes, no } response;

57

C Language Reference

Structure Declarations

58

A "structure declaration" names a type and specifies a sequence of variable values
(called "members" or "fields" of the structure) that can have different types. An
optional identifier, called a "tag," gives the name of the structure type and can be used
in subsequent references to the structure type. A variable of that structure type holds
the entire sequence defined by that type. Structures in C are similar to the types
known as "records" in other languages.

Syntax
struct-or-union-specifier :

struct-or-union identifier opt {struct-declaration-list}
struct-or-union identifier

struct-or-union :
struct
union

struct-declaration-list :
struct-declaration
struct-declaration-list struct-declaration

The structure content is defined to be

struct-declaration :
specifier-qualifier-list struct-declarator-list ;

specifier-qualifier-list :
type-specifier specifier-qualifier-list opt

type-qualifier specifier-qualifier-list opt

struct-declarator-list :
struct-declarator
struct-declarator-list , struct-declarator

struct-declarator :
declarator

The declaration of a structure type does not set aside space for a structure. It is only a
template for later declarations of structure variables.

A previously defined identifier (tag) can be used to refer to a structure type defined
elsewhere. In this case, struct-declaration-list cannot be repeated as long as the
definition is visible. Declarations of pointers to structures and typedefs for structure
types can use the structure tag before the structure type is defined. However, the
structure definition must be encountered prior to any actual use of the size of the
fields. This is an incomplete definition of the type and the type tag. For this definition
to be completed, a type definition must appear later in the same scope.

Chapter 3 Declarations and Types

The struct-declaration-list specifies the types and names of the structure members. A
struct-declaration-list argument contains one or more variable or bit-field declarations.

Each variable declared in struct-declaration-list is defined as a member of the structure
type. Variable declarations within struct-declaration-list have the same form as other
variable declarations discussed in this chapter, except that the declarations cannot
contain storage-class specifiers or initializers. The structure members can have any
variable types except type void, an incomplete type, or a function type.

A member cannot be declared to have the type of the structure in which it appears.
However, a member can be declared as a pointer to the structure type in which it
appears as long as the structure type has a tag. This allows you to create linked lists
of structures.

Structures follow the same scoping as other identifiers. Structure identifiers must be
distinct from other structure, union, and enumeration tags with the same visibility.

Each struct-declaration in a struct-declaration-list must be unique within the list.
However, identifier names in a struct-declaration-list do not have to be distinct from
ordinary variable names or from identifiers in other structure declaration lists.

Nested structures can also be accessed as though they were declared at the file-scope
level. For example, given this declaration:

struct a
{

int x;
struct b
{

int y;
var2;

varl;

these declarations are both legal:

struct a var3;
struct b var4:

Examples
These examples illustrate structure declarations:

struct employee 1* Defines a structure variable named temp *1
{

char name[20];
int id;
long class:

temp;

The employee structure has three members: name, ; d, and cl ass. The name
member is a 20-element array, and ; d and c 1 ass are simple members with int and
long type, respectively. The identifier emp 1 oyee is the structure identifier.

struct employee student. faculty. staff;

59

C Language Reference

60

This example defines three structure variables: student, facul ty, and staff. Each
structure has the same list of three members. The members are declared to have the
structure type emp 1 oyee, defined in the previous example.

struct
{

float x, y;
complex;

1* Defines an anonymous struct and a */
1* structure variable named complex *1

The compl ex structure has two members with float type, x and y. The structure type
has no tag and is therefore unnamed or anonymous.

struct sample 1* Defines a structure named x */
{

char c;
float *pf;
struct sample *next;

x;

The first two members of the structure are a char variable and a pointer to a float
value. The third member, next, is declared as a pointer to the structure type being
defined (sampl e).

Anonymous structures can be useful when the tag named is not needed. This ~s the
case when one declaration defines all structure instances. For example:

struct
{

int x;
i nt y;

mystruct;

Embedded structures are often anonymous.

struct somestruct
{

struct
{

/* Anonymous structure */

int x, y;
point;

int type;
w;

Microsoft Specific --?

The compiler allows an unsized or zero-sized array as the last member of a structure.
This can be useful if the size of a constant array differs when used in various
situations. The declaration of such a structure looks like this:

struct identifier
{

};

set-oj-declarations
type array-name[];

Chapter 3 Declarations and Types

Un sized arrays can appear only as the last member of a structure. Structures
containing unsized array declarations can be nested within other structures as long
as no further members are declared in any enclosing structures. Arrays of such
structures are not allowed. The sizeof operator, when applied to a variable of this
type or to the type itself, assumes 0 for the size of the array.

Structure declarations can also be specified without a declarator when they are
members of another structure or union. The field names are promoted into the
enclosing structure. For example, a nameless structure looks like this:

struct s
{

float y;
struct
{

int a, b, c;
} ;

char str[10];

p_s->b = 100; 1* A reference to a field in the s structure *1

See "Structure and Union Members" on page 106 in Chapter 4 for information about
structure references.

END Microsoft Specific

Bit Fields
In addition to declarators for members of a structure or union, a structure declarator
can also be a specified number of bits, called a "bit field." Its length is set off from the
declarator for the field name by a colon. A bit field is interpreted as an integral type.

Syntax
struct-declarator:

declarator
type-specifier declarator opt: constant-expression

The constant-expression specifies the width of the field in bits. The type-specifier for
the declarator must be unsigned int, signed int, or int, and the constant-expression
must be a nonnegative integer value. If the value is zero, the declaration has no
declarator. Arrays of bit fields, pointers to bit fields, and functions returning bit fields
are not allowed. The optional declarator names the bit field. Bit fields can only be
declared as part of a structure. The address-of operator (&) cannot be applied to
bit-field components.

Unnamed bit fields cannot be referenced, and their contents at run time are
unpredictable. They can be used as "dummy" fields, for alignment purposes. An

61

C Language Reference

62

unnamed bit field whose width is specified as 0 guarantees that storage for the
member following it in the struct-declaration-list begins on an int boundary.

Bit fields must also be long enough to contain the bit pattern. For example, these
two statements are not legal:

short a:17:
int long y:33:

/*Illegal!*/
/*Illegal!*/

This example defines a two-dimensional array of structures named s ere en.

struct
{

unsigned short icon: 8:
unsigned short color: 4:
unsigned short underline: 1:
unsigned short blink: 1:

screen[25][80] :

The array contains 2,000 elements. Each element is an individual structure containing
four bit-field members: i con, co lor, unde rl i ne, and b 1 ink. The size of each
structure is two bytes.

Bit fields have the same semantics as the integer type. This means a bit field is used in
expressions in exactly the same way as a variable of the same base type would be
used, regardless of how many bits are in the bit field.

Microsoft Specific ~

Bit fields defined as int are treated as signed. A Microsoft extension to the ANSI C
standard allows char and long types (both signed and unsigned) for bit fields.
Unnamed bit fields with base type long, short, or char (signed or unsigned) force
alignment to a boundary appropriate to the base type.

Bit fields are allocated within an integer from least-significant to most-significant bit.
In the following code

struct mybitfields
{

unsigned short a 4· ,
unsigned short b 5 . ,
unsigned short c 7 :

test:

void main(void) :
{

test.a 2 :
test.b = 31:
test.c 0:

the bits would be arranged as follows:

00000001 11110010
cccccccb bbbbaaaa

Chapter 3 Declarations and Types

Since the 8086 family of processors stores the low byte of integer values before the
high byte, the integer 0 x 01 F 2 above would be stored in physical memory as 0 x F 2
followed by 0 x 01.

END Microsoft Specific

Storage and Alignment of Structures
Microsoft Specific -7

Structure members are stored sequentially in the order in which they are declared: the
first member has the lowest memory address and the last member the highest.

Every data object has an alignment-requirement. For structures, the requirement is
the largest of its members. Every object is allocated an offset so that

offset % alignment-requirement == 0

Adjacent bit fields are packed into the same 1-,2-, or 4-byte allocation unit if the
integral types are the same size and if the next bit field fits into the current allocation
unit without crossing the boundary imposed by the common alignment requirements
of the bit fields ..

To conserve space or to conform to existing data structures, you may want to store
structures more or less compactly. The /Zp [n] compiler option and the #pragma pack
control how structure data is "packed" into memory. When you use the /Zp[n] option,
where n is 1, 2,4, 8, or 16, each structure member after the first is stored on byte
boundaries that are either the alignment requirement of the field or the packing size
(n), whichever is smaller. Expressed as a formula, the byte boundaries are the

mine n, sizeof(item))

where n is the packing size expressed with the /Zp[n] option and item is the structure
member. The default packing size is /Zp8.

To use the pack pragma to specify packing other than the packing specified on the
command line for a particular structure, give the pack pragma, where the packing
size is 1,2,4, 8, or 16, before the structure. To reinstate the packing given on the
command line, specify the pack pragma with no arguments.

Bit fields default to size long for the Microsoft C compiler. Structure members are
aligned on the size of the type or the /Zp[n] size, whichever is smaller. The default
size is 4.

END Microsoft Specific

Union Declarations
A "union declaration" specifies a set of variable values and, optionally, a tag naming
the union. The variable values are called "members" of the union and can have
different types. Unions are similar to "variant records" in other languages.

63

C Language Reference

64

Syntax
struct-or-union-specifier :

struct-or-union identifier opt {struct-declaration-list}
struct-or-union identifier

struct-or-union :
struct
union

struct-declaration-list :
struct-declaration
struct-declaration-list struct-declaration .

The union ~ontent is defined to be

struct-declaration :
specifier-qualifier-list struct-declarator-list ;

specifier-qualifier-list:
type-specifier specifier-qualifier-list opt

type-qualifier specifier-qualifier-list opt

struct-declarator-list:
struct-declarator
struct-declarator-list, struct-declarator

A variable with union type stores one of the values defined by that type. The same
rules govern structure and union declarations. Unions can also have bit fields.

Members of unions cannot have an incomplete type, type void, or function type.
Therefore members cannot be an instance of the union but can be pointers to the
union type being declared.

A union type declaration is a template only. Memory is not reserved until the
variable is declared.

Note If a union of two types is declared and one value is stored, but the union is accessed
with the other type, the results are unreliable. For example, a union of float and int is declared.
A float value is stored, but the program later accesses the value as an int. In such a situation,
the value would depend on the internal storage of float values. The integer value would not
be reliable.

Examples
The following are examples of unions:

union sign 1* A definition and a declaration *1
{

int svar;
unsigned uvar;

number;

This example defines a union variable with s i 9 n type and declares a variable named
number that has two members: sva r, a signed integer, and uva r, an unsigned integer.

Chapter 3 Declarations and Types

This declaration allows the current value of n umbe r to be stored as either a signed or
an unsigned value. The tag associated with this union type is s i 9 n.
union
{

struct
{

/* Defines a two-dimensional */
/* array named screen */

unsigned int icon: 8;
unsigned color: 4;

window1;
int screenval;

screen[25][80];

The screen array contains 2,000 elements. Each element of the array is an individual
union with two members: wi ndow1 and screenva 1. The wi ndow1 member is a
structure with two bit-field members, i con and color. The screenva 1 member is
an int. At any given time, each union element holds either the int represented by
s ere e n valor. the structure represented by win d ow 1.

Microsoft Specific ~

Nested unions can be declared anonymously when they are members of another
structure or union. This is an example of a nameless union:
struct str
{

int a, b;
union
{

} ;

char c[4];
long 1;
float f;

char c_array[10];
my_str;

/ * Unnamed union */

my_str.l == 0L; /* A reference to a field in the my_str union */

Unions are often nested within a structure that includes a field giving the type of data
contained in the union at any particular time. This is an example of a declaration for
such a union:
struct x
{

union
{

int x;
float y;

See "Structure and Union Members" on page 106 in Chapter 4 for information about
referencing unions.
END Microsoft Specific

65

C Language Reference

Storage of Unions
The storage associated with a union variable is the storage required for the largest
member of the union. When a smaller member is stored, the union variable can
contain unused memory space. All members are stored in the same memory space
and start at the same address. The stored value·is overwritten each time a value is
assigned to a different member. For example:

union
{

1* Defines a union named x *1

char *a. b;
float f[20];

x;

The members of the x union are, in order of their declaration, a pointer to a char
value, a char value, and an array of float values. The storage allocated for x is the
storage required for the 20-element array f, since f is the longest member of the
union. Because no tag is associated with the union, its type is unnamed or
"anonymous."

Array Declarations

66

An "array declaration" names the array and specifies the type of its elements. It can
also define the number of elements in the array. A variable with array type is
considered a pointer to the type of the array elements.

Syntax
declaration :

declaration-specifiers init-declarator-list opt;

init-declarator-list :
in it-declarator
init-declarator-list , init-declarator

init-declarator :
declarator
declarator = initializer

declarator:
pointer opt direct-declarator

direct-declarator:
direct-declarator [constant-expression opt]

Because constant-expression is optional, the syntax has two forms:

• The first form defines an array variable. The constant-expression argument within
the brackets specifies the number of elements in the array. The constant-expression,
if present, must have integral type, and a value larger than zero. Each element has
the type given by type-specifier, which can be any type except void. An array
element cannot be a function type.

Chapter 3 Declarations and Types

• The second form declares a variable that has been defined elsewhere. It omits the
constant-expression argument in brackets, but not the brackets. You can use this
form only if you previously have initialized the array, declared it as a parameter, or
declared it as a reference to an array explicitly defined elsewhere in the program.

In both forms, direct-declarator names the variable and can modify the variable's
type. The brackets ([]) following direct-declarator modify the declarator to an array
type.

Type qualifiers can appear in the declaration of an object of array type, but the
qualifiers apply to the elements rather than the array itself.

You can declare an array of arrays (a "multidimensional" array) by following the
array declarator with a list of bracketed constant expressions in this form:

type-specifier declarator [constant-expression] [constant-expression] ...

Each constant-expression in brackets defines the number of elements in a given
dimension: two-dimensional arrays have two bracketed expressions, three-dimensional
arrays have three, and so on. You can omit the first constant expression if you have
initialized the array, declared it as a parameter, or declared it as a reference to an array
explicitly defined elsewhere in the program.

You can define arrays of pointers to various types of objects by using complex
declarators, as described in "Interpreting More Complex Declarators" on page 72.

Arrays are stored by row. For example, the following array consists of two rows with
three columns each:

char A[2][3];

The three columns of the first row are stored first, followed by the three columns of
the second row. This means that the last subscript varies most quickly.

To refer to an individual element of an array, use a subscript expression, as described
in "Postfix Operators" on page 103 in Chapter 4.

Examples
These examples illustrate array declarations:

float matrix[10][15];

The two-dimensional array named matri x has 150 elements, each having float type.

struct {
float x. y;

} complex[100];

This is a declaration of an array of structures. This array has 100 elements; each
element is a structure containing two members.

extern char *name[];

67

C Language Reference

This statement declares the type and name of an array of pointers to char. The actual
definition of n a me occurs elsewhere.

Microsoft Specific ~

The type of integer required to hold the maximum size of an array is the size of size_to
Defined in the header file STDDEEH, size_t is an unsigned int with the range
OxOOOOOOOO to Ox7CFFFFFF.

END Microsoft Specific

Storage of Arrays
The storage associated with an array type is the storage required for all of its elements.
The elements of an array are stored in contiguous and increasing memory locations,
from the first element to the last.

Pointer Declarations

68

A "pointer declaration" names a pointer variable and specifies the type of the object to
which the variable points. A variable declared as a pointer holds a memory address.

Syntax
declarator:

pointer opt direct-declarator

direct-declarator:
identifier

pointer:

(declarator)
direct-declarator [constant-expression opt]

direct-declarator (parameter-type-list)
direct-declarator (identifier-list opt)

* type-qualifier-list opt

* type-qualifier-list opt pointer

type-qualifier-list:
type-qualifier
type-qualifier-list type-qualifier

The type-specifier gives the type of the object, which can be any basic, structure, or
union type. Pointer variables can also point to functions, arrays, and other pointers.
(For information on declaring and interpreting more complex pointer types, refer to
"Interpreting More Complex Declarators" on page 72.)

By making the type-specifier void, you can delay specification of the type to which
the pointer refers. Such an item is referred to as a "pointer to void" and is written as
v 0 i d *. A variable declared as a pointer to void can be used to point to an object
of any type. However, to perform most operations on the pointer or on the object to
which it points, the type to which it points must be explicitly specified for each

Chapter 3 Declarations and Types

operation. (Variables of type char * and type void * are assignment-compatible
without a type cast.) Such conversion can be accomplished with a type cast (see
"Type-Cast Conversions" on page 132 in Chapter 4 for more information).

The type-qualifier can be either const or volatile, or both. These specify, respectively,
that the pointer cannot be modified by the program itself (const), or that the pointer
can legitimately be modified by some process beyond the control of the program
(volatile). (See "Type Qualifiers" on page 51 for more information on const and
volatile.)

The declarator names the variable and can include a type modifier. For example, if
declarator represents an array, the type of the pointer is modified to be a pointer to
an array.

You can declare a pointer to a structure, union, or enumeration type before you
define the structure, union, or enumeration type. You declare the pointer by using the
structure or union tag as shown in the examples below. Such declarations are allowed
because the compiler does not need to know the size of the structure or union to
allocate space for the pointer variable.

Examples
The following examples illustrate pointer declarations.

char *message: /* Declares a pointer variable. named message */

The message pointer points to a variable with char type.

int *pointers[10]: /* Declares an array of pointers */

The poi nters array has 10 elements; each element is a pointer to a variable with
int type.

int (*pointer)[10]: /* Declares a pointer to an array of 10 elements */

The pointer variable points to an array with 10 elements. Each element in this array
has int type.

int const *x: /* Declares a pointer variable, x,
to a constant value */

The pointer x can be modified to point to a different int value, but the value to which
it points cannot be modified.

canst int some_object = 5 :
int other_object = 37:
int *const y = &fixed_object:
canst volatile *const z = &some_object:
int *const volatile w = &some_object:

The variable y in these declarations is declared as a constant pointer to an int value.
The value it points to can be modified, but the pointer itself must always point to the
same location: the address of fi xed_obj ect. Similarly, z is a constant pointer, but.
it is also declared to point to an int whose value cannot be modified by the program.
The additional specifier vol at i 1 e indicates that although the value of the const int

69

C Language Reference

pointed to by z cannot be modified by the program, it could legitimately be modified
by a process running concurrently with the program. The declaration of w specifies
that the program cannot change the value pointed to and that the program cannot
modify the pointer.

struct list *next, *previous: /* Uses the tag for list */

This example declares two pointer variables, next and prey; ous, that point to the
structure type 1 ; st. This declaration can appear before the definition of the 1 ; s t
structure type (see the next example), as long as the 1; st type definition has the same
visibility as the declaration.

struct list
{

char *token:
int count;
struct list *next;

1 i ne;

The variable 1; ne has the structure type named 1; st. The 1; st structure type has
three members: the first member is a pointer to a char value, the second is an int
value, and the third is a pointer to another 1 ; s t structure.

struct id
{

unsigned int id_no:
struct name *pname;

record:

The variable record has the structure type; d. Note that pname is declared as a
pointer to another structure type named name. This declaration can appear before the
name type is defined.

Storage of Addresses
The amount of storage required for an address and the meaning of the address depend
on the implementation of the compiler. Pointers to different types are not guaranteed to
have the same length. Therefore, sizeof(char *) is not necessarily equal to sizeof(int *).

Microsoft Specific ~

For the Microsoft C compiler, sizeof(char *) is equal to sizeof(int *).

END Microsoft Specific

Based Pointers

70

Microsoft Specific ~

For the Microsoft 32-bit C compiler, a based pointer is a 32-bit offset from a 32-bit
pointer base. Based addressing is useful for exercising control over sections where
objects are allocated, thereby decreasing the size of the executable file and increasing
execution speed. In general, the form for specifying a based pointer is

type __ based(base) declarator

Chapter 3 Declarations and Types

The "based on pointer" variant of based addressing enables specification of a pointer
as a base. The based pointer, then, is an offset into the memory section starting at the
beginning of the pointer on which it is based. Pointers based on pointer addresses
are the only form of the __ based keyword valid in 32-bit compilations. In such
compilations, they are 32-bit displacements from a 32-bit base.

One use for pointers based on pointers is for persistent identifiers that contain
pointers. A linked list that consists of pointers based on a pointer can be saved to
disk, then reloaded to another place in memory, with the pointers remaining valid.

The following example shows a pointer based on a pointer.

void *vpBuffer;

struct llist_t
{

void __ based(vpBuffer) *vpData;
struct llist_t __ based(vpBuffer) *llNext;

} ;

The pointer vpBuffer is assigned the address of memory allocated at some later point
in the program. The linked list is relocated relative to the value of vpBuffer.

END Microsoft Specific

Abstract Declarators
. An abstract declarator is a declarator without an identifier, consisting of one or more
pointer, array, or function modifiers. The pointer modifier (*) always precedes the
identifier in a declarator; array ([]) and function (()) modifiers follow the identifier.
Knowing this, you can determine where the identifier would appear in an abstract
declarator and interpret the declarator accordingly. See "Interpreting More Complex
Declarators" on page 72 for additional information and examples of complex
declarators. Generally typedef can be used to simplify declarators. See "Typedef
Declarations" on page 86.

Abstract declarators can be complex. Parentheses in a complex abstract declarator
specify a particular interpretation, just as they do for the complex declarators in
declarations.

These examples illustrate abstract declarators:

int * /* The type name for a pointer to type i nt: */

int *[3] /* An array of three pointers to int */

int (*) [5] /* A pointer to an array of five int */

int *() /* A function with no parameter specification */
/* returning a pointer to int */

71 .

C Language Reference

/* A pointer to a function taking no arguments and
* returning an int
*/

int (*) (void

/* An array of an unspecified number of constant pointers to
* functions each with one parameter that has type unsigned int
* and an unspecified number of other parameters returning an int
*/

int (*const [J) (unsigned int, ...)

Note The abstract declarator consisting of a set of empty parentheses, (), is not allowed
because it is ambiguous. It is impossible to determine whether the implied identifier belongs
inside the parentheses (in which case it is an unmodified type) or before the parentheses
(in which case it is a function type).

Interpreting More Complex Declarators

72

You can enclose any declarator in parentheses to specify a particular interpretation of
a "complex declarator." A complex declarator is an identifier qualified by more than
one array, pointer, or function modifier. You can apply various combinations of array,
pointer, and function modifiers to a single identifier. Generally typedef may be used
to simplify declarations. See "Typedef Declarations" on page 86.

In interpreting complex deGlarators, brackets and parentheses (that is, modifiers to
the right of the identifier) take precedence over asterisks (that is, modifiers to the left
of the identifier). Brackets and parentheses have the same precedence and associate
from left to right. After the declarator has been fully interpreted, the type specifier is
applied as the last step. By using parentheses you can override the default association
order and force a particular interpretation. Never use parentheses, however, around
an identifier nam~ by itself. This could be misinterpreted as a parameter list.

A simple way to interpret complex declarators is to read them "from the inside out,"
using the following four steps:

1. Start with the identifier and look directly to the right for brackets or parentheses
(if any).

2. Interpret these brackets or parentheses, then look to the left for asterisks.

3. If you encounter a right parenthesis at any stage, go back and apply rules 1 and 2
to everything within the parentheses.

4. Apply the type specifier.

char *(*(*var)())[10J:

7 642 1 3 5

Chapter 3 Declarations and Types

In this example, the steps are numbered in order and can be interpreted as follows:

1. The identifier va r is declared as

2. a pointer to

3. a function returning

4. a pointer to

5. an array of 10 elements, which are

6. pointers to

7. char values.

Examples
The following examples illustrate other complex declarations and show how
parentheses can affect the meaning of a declaration.

int *var[5]; /* Array of pointers to int values */

The array modifier has higher priority than the pointer modifier, so va r is declared to
be an array. The pointer modifier applies to the type of the array elements; therefore,
the array elements are pointers to int values.

int (*var)[5]; /* Pointer to array of int values */

In this declaration for va r, parentheses give the pointer modifier higher priority than
the array modifier, and va r is declared to be a pointer to an array of five int values.

long *var(long. long); /* Function returning pointer to long */

Function modifiers also have higher priority than pointer modifiers, so this declaration
for va r declares va r to be a function returning a pointer to a long value. The function
is declared to take two long values as arguments.

long (*var)(long. long); /* Pointer to function returning long */

This example is similar to the previous one. Parentheses give the pointer modifier
higher priority than the function modifier, and va r is declared to be a pointer to a
function that returns a long value. Again, the function takes two long arguments.

struct both
{

int a;
char b;

/* Array of pointers to functions */
/* returning structures */

} (*var[5])(struct both. struct both);

The elements of an array cannot be functions, but this declaration demonstrates how
to declare an array of pointers to functions instead. In this example, va r is declared to
be an array of five pointers to functions that return structures with two members. The
arguments to the functions are declared to be two structures with the same structure
type, bot h. Note that the parentheses surrounding * va r [5] are required. Without

73

C Language Reference

them, the declaration is an illegal attempt to declare an array of functions, as shown
below:

/* ILLEGAL */
struct both *var[5](struct both, struct both);

The following statement declares an array of pointers.

unsigned int *(* const *name[5][10]) (void);

The n arne array has 50 elements organized in a multidimensional array. The elements
are pointers to a pointer that is a constant. This constant pointer points to a function
that has no parameters and returns a pointer to an unsigned type.

This next example is a function returning a pointer to an array of three double values.

double (*var(double (*)[3]))[3];

In this declaration, a function returns a pointer to an array, since functions returning
arrays are illegal. Here va r is declared to be a function returning a pointer to an array
of three double values. The function va r takes one argument. The argument, like the
return value, is a pointer to an array of three double values. The argument type is
given by a complex abstract-declarator. The parentheses around the asterisk in the
argument type are required; without them, the argument type would be an array of
three pointers to double values. For a discussion and examples of abstract declarators,
see "Abstract Declarators" on page 71.

union sign
{

int x;
unsigned y;

**var[5][5];

/* Array of arrays of pointers */
1* to pointers to unions */

As the above example shows, a pointer can point to another pointer, and an array can
contain arrays as elements. Here va r is an array of five elements. Each element is a
five-element array of pointers to pointers to unions with two members.

union sign *(*var[5])[5]; /* Array of pointers to arrays
of pointers to unions */

This example shows how the placement of parentheses changes the meaning of the
declaration. In this example, va r is a five-element array of pointers to five-element
arrays of pointers to unions. For examples of how to use typedef to avoid complex
declarations, see "Typedef Declarations" on page 86.

Initialization

74

An "initializer" is a value or a sequence of values to be assigned to the variable being
declared. You can set a variable to an initial value by applying an initializer to the
declarator in the variable declaration. The value or values of the initializer are
assigned to the variable.

Chapter 3 Declarations and Types

The following sections describe how to initialize variables of scalar, aggregate, and
string types. "Scalar types" include all the arithmetic types, plus pointers. "Aggregate
types" include arrays, structures, and unions.

Initializing Scalar Types
When initializing scalar types, the value of the assignment-expression is assigned to
the variable. The conversion rules for assignment apply. (See "Type Conversions" on
page 126 in Chapter 4 for information on conversion rules.)

Syntax
declaration :

declaration-specifiers init-declarator-list opt;

declaration-specifiers:
storage-class-specifier declaration-specifiers opt

type-specifier declaration-specifiers opt

type-qualifier declaration-specifiers opt

init-declarator-list :
in it-declarator
init-declarator-list , init-declarator

init-declarator :
declarator
declarator = initializer 1* For scalar initialization *1

initializer :
assignment-expression

You can initialize variables of any type, provided that you obey the following rules:

• Variables declared at the file-scope level can be initialized. If you do not explicitly
initialize a variable at the external level, it is initialized to 0 by default.

• A constant expression can be used to initialize any global variable declared with
the static storage-class-specifier. Variables declared to be static are initialized
when program execution begins. If you do not explicitly initialize a global static
variable, it is initialized to 0 by default, and every member that has pointer type is
assigned a null pointer.

• Variables declared with the auto or register storage-class specifier are initialized
each time execution control passes to the block in which they are declared. If you
omit an initializer from the declaration of an auto or register variable, the initial
value of the variable is undefined. For automatic and register values, the initializer
is not restricted to being a constant; it can be any expression involving previously
defined values, even function calls.

• The initial values for external variable declarations and for all static variables,
whether external or internal, must be constant expressions. (For more information,
see "Constant Expressions" on page 96 in Chapter 4.) Since the address of any

75

C Language Reference

76

externally declared or static variable is constant, it can be used to initialize an
internally declared static pointer variable. However, the address of an auto
variable cannot be used as a static initializer because it may be different for each
execution of the block. You can use either constant or variable values to initialize
auto and register variables.

• If the declaration of an identifier has block scope, and the identifier has external
linkage, the declaration cannot have an initialization.

Examples
The following examples illustrate initializations:

int x = 10;

The integer variable x is initialized to the constant expression 10.

register int *px = 0;

The pointer px is initialized to 0, producing a "null" pointer.

const int c = (3 * 1024);

This example uses a constant expression (3 * 1024) to initialize c to a constant
value that cannot be modified because of the const keyword.

int *b = &x;

This statement initializes the pointer b with the address of another variable, x.

int *const a = &z;

The pointer a is initialized with the address of a variable named z. However, since it is
specified to be a const, the variable a can only be initialized, never modified. It
always points to the same location.

int GLOBAL;

int function(void
{

i nt LOCAL ;
static int *lp = &LOCAL; 1* Illegal initialization *1
static int *gp = &GLOBAL; 1* Legal initialization *1
register int *rp = &LOCAL; 1* Legal initialization *1

The global variable G LO BA L is declared at the external level, so it has global lifetime.
The local variable LOCA L has auto storage class and only has an address during the
execution of the function in which it is declared. Therefore, attempting to initialize the
static pointer variable 1 p with the address of LOCAL is not permitted. The static
pointer variable gp can be initialized to the address of GLOBAL because that address is
always the same. Similarly, * r p can be initialized because r p is a local variable and
can have a nonconstant initializer. Each time the block is entered, LOCAL has a new
address, which is then assigned to rp.

Chapter 3 Declarations and Types

Initializing Aggregate Types
An "aggregate" type is a structure, union, or array type. If an aggregate type
contains members of aggregate types, the initialization rules apply recursively.

Syntax
initializer :

{ illitializer-list } 1* For aggregate initialization *1
{ initializer-list , }

initializer-list :
initializer
initializer-list , initializer

The initializer-list is a list of initializers separated by commas. Each initializer in the
list is either a constant expression or an initializer list. Therefore, initializer lists can
be nested. This form is useful for initializing aggregate members of an aggregate type,
as shown in the examples in this section. However, if the initializer for an automatic
identifier is a single expression, it need not be a constant expression; it merely needs
to have appropriate type for assignment to the identifier.

For each initializer list, the values of the constant expressions are assigned, in order,
to the corresponding members of the aggregate variable.

If initializer-list has fewer values than an aggregate type, the remaining members
or elements of the aggregate type are initialized to 0 for external and static variables.
The initial value of an automatic identifier not explicitly initialized is undefined. If
initializer-list has more values than an aggregate type, an error results. These rules
apply to each embedded initializer list, as well as to the aggregate as a whole.

A structure's initializer is either an expression of the same type, or a list of initializers
for its members enclosed in curly braces ({ n. Unnamed bit-field members are not
initialized.

When a union is initialized, initializer-list must be a single constant expression. The
value of the constant expression is assigned to the first member of the union.

If an array has unknown size, the number of initializers determines the size of the
array, and its type becomes complete. There is no way to specify repetition of an
initializer in C, or to initialize an element in the middle of an array without providing
all preceding values as well. If you need this operation in your program, write the
routine in assembly language.

Note that the number of initializers can set the size of the array:

int x[] = { 0, 1. 2 }

If you specify the size and give the wrong number of initializers, however, the
compiler generates an error.

77

C Language Reference

78

Microsoft Specific ~

The maximum size for an array is defined by size_t. Defined in the header file
STDDEEH, size_t is an unsigned int with the range OxOOOOOOOO to Ox7CFFFFFE

END Microsoft Specific

Examples
This example shows initializers for an array.

int P[4][3] =
{

} ;

1, 1, I}'
2, 2, 2 },
3, 3, 3,},
4, 4, 4,},

This statement declares P as a four-by-three array and initializes the elements of its
first row to I, the elements of its second row to 2, and so on through the fourth row.
Note that the initializer list for the third and fourth rows contains commas after the last
constant expression. The last initializer list ({ 4. 4. 4.}.) is also followed by a
comma. These extra commas are permitted but are not required; only commas that
separate constant expressions from one another, and those that separate one initializer
list from another, are required.

If an aggregate member has no embedded initializer list, values are simply assigned:
in order, to each member of the subaggregate. Therefore, the initialization in the
previous example is equivalent to the following:

int P[4][3]
{

1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4
} ;

Braces can also appear around individual initializers in the list and would help to
clarify the example above.

When you initialize an aggregate variable, you must be careful to use braces and
initializer lists properly. The following example illustrates the compiler's
interpretation of braces in more detail:

typedef struct
{

int nl, n2, n3;
} triplet;

triplet nlist[2][3]
{

} ;

1, 2, 3 },
10,11,12 },

4, 5, 6 },
13,14,15 },

7, 8, 9
16,17,18

} , 1* Row 1 *1
} 1* Row 2 *1

Chapter 3 Declarations and Types

In this example, n 1 i s t is declared as a 2-by-3 array of structures, each structure
having three members. Row 1 of the initialization assigns values to the first row of
nl i st, as follows:

1. The first left brace on row 1 signals the compiler that initialization of the first
aggregate member of n 1 is t (that is, n 1 is t [0]) is beginning.

2. The second left brace indicates that initialization of the first aggregate member of
n 1 i s t [0] (that is, the structure at n 1 i s t [0] [0]) is beginning.

3. The first right brace ends initialization of the structure n 1 i s t [0] [0]; the next left
brace starts initialization of n 1 i s t [0] [1] .

4. The process continues until the end of the line, where the closing right brace ends
initialization of n 1 i s t [0] .

Row 2 assigns values to the second row of n 1 i s t in a similar way. Note that the outer
sets of braces enclosing the initializers on rows 1 and 2 are required. The following
construction, which omits the outer braces, would cause an error:

triplet nlist[2][3] = 1* THIS CAUSES AN ERROR *1
{

1. 2. 3 }.{ 4. 5. 6 }.{ 7. 8. 9 }. 1* Line 1 *1
10.11.12 }.{ 13.14.15 }.{ 16.17.18 } 1* Line 2 *1

} ;

In this construction, the first left brace on line 1 starts the initialization of n 1 i s t [0] ,
which is an array of three structures. The values 1, 2, and 3 are assigned to the three
members of the first structure. When the next right brace is encountered (after the
value 3), initialization of n 1 is t [0] is complete, and the two remaining structures in
the three-structure array are automatically initialized to O. Similarly, { 4. 5 • 6 }
initializes the first structure in the second row of n 1 is t. The remaining two structures
of n 1 i s t [1] are set to O. When the compiler encounters the next initializer list
({ 7. 8 • 9 }), it tries to initialize n 1 i s t [2]. Since n 1 i s t has only two rows, this
attempt causes an error.

In this next example, the three int members of x are initialized to 1, 2, and 3,
respectively.

struct list
{

int i. j. k;
float m[2][3];

} x = {
1.
2.
3.

{4.0. 4.0. 4.0}
} ;

In the 1 i s t structure above, the three elements in the first row of m are initialized to
4.0; the elements of the remaining row of m are initialized to 0.0 by default.

79

C Language Reference

union
{

char x[2][3];
int i, j, k;

} y = { {

}
} ;

{' 1 '}.
{' 4'}

The union variable y, in this example, is initialized. The first element of the union is
an array, so the initializer is an aggregate initializer. The initializer list { , 1 ' } assigns
values to the first row of the array. Since only one value appears in the list, the
element in the first column is initialized to the character 1, and the remaining two
elements in the row are initialized to the value 0 by default. Similarly, the first element
of the second row of x is initialized to the character 4, and the remaining two elements
in the row are initialized to the value O.

Initializing Strings

80

You can initialize an array of characters (or wide characters) with a string literal (or
wide string literal). For example:

char eode[] = "abc";

initializes code as a four-element array of characters. The fourth element is the null
character, which terminates all string literals.

An identifier list can only be as long as the number of identifiers to be initialized.
If you specify an array size that is shorter than the string, the extra characters are
ignored. For example, the following declaration initializes code as a three-element
character array:

char eode[3] = "abed";

Only the first three characters of the initializer are assigned to code. The character d
and the string-terminating null character are discarded. Note that this creates an
unterminated string (that is, one without a 0 value to mark its end) and generates a
diagnostic message indicating this condition.

The declaration

char s[] = "abc", t[3] = "abc";

is identical to

char s[] = {'a', 'b', 'e', '\0'}.
t[3] = {'a', 'b', 'e' };

If the string is shorter than the specified array size, the remaining elements of the
array are initialized to O.

Microsoft Specific ~

In Microsoft C, string literals can be up to 2048 bytes in length.

END Microsoft Specific

Chapter 3 Declarations and. Types

Storage of Basic Types
Table 3.2 summarizes the storage associated with each basic type.

Table 3.2 Sizes of Fundamental Types

Type

char, unsigned char, signed char

short, unsigned short

int, unsigned int

long, unsigned long

float

double

long double

Storage

1 byte

2 bytes

4 bytes

4 bytes

4 bytes

8 bytes

8 bytes

The C data types fall into general categories. The "integral types" include char, int,
short, long, signed, unsigned, and enum. The "floating types" include float, double,
and long double. The "arithmetic types" include all floating and integral types.

Type char
The char type is used to store the integer value of a member of the representable
character set. That integer value is the ASCII code corresponding to the specified
character.

Microsoft Specific ~

Character values of type unsigned char have a range from 0 to OxFF hexadecimal. A
signed char has range Ox80 to Ox7F. These ranges translate to 0 to 255 decimal, and
-128 to +127 decimal, respectively. The IJ compiler option changes the default from
signed to unsigned.

END Microsoft Specific

Type int
The size of a signed or unsigned int item is the standard size of an integer on a
particular machine. For example, in 16-bit operating systems, the int type is usually
16 bits, or 2 bytes. In 32-bit operating systems, the int type is usually 32 bits, or 4
bytes. Thus, the int type is equivalent to either the short int or the long int type, and
the unsigned int type is equivalent to either the unsigned short or the unsigned long
type, depending on the target environment. The int types all represent signed values
unless specified otherwise.

The type specifiers int and unsigned int (or simply unsigned) define certain features
of the C language (for instance, the enum type). In these cases, the definitions of int
and unsigned int for a particular implementation determine the actual storage.

81

C Language Reference

82

Microsoft Specific -7

Signed integers are represented in two's-complement form. The most-significant bit
holds the sign: 1 for negative, 0 for positive and zero. The range of values is given in
Table 1.3, which is taken from the LIMITS.H header file.

END Microsoft Specific

Note The int and unsigned int type specifiers are widely used in C programs because they
allow a particular machine to handle integer values in the most efficient way for that machine.
However, since the sizes of the int and unsigned int types vary, programs that depend on
a specific int size may not be portable to other machines. To make programs more portable,
you can use expressions with the sizeof operator (as discussed in ''The sizeof Operator" on
page 111 in Chapter 4) instead of hard-coded data sizes.

Sized Integer Types
Microsoft Specific -7

Microsoft C features support for sized integer types. You can declare 8-, 16-,32-, or
64-bit integer variables by using the __ iotn type specifier, where n is the size, in bits,
of the integer variable. The value of n can be 8, 16,32, or 64. The following example
declares one variable of each of the four types of sized integers:

_int8 nSmall;
int16 nMedium;

_int32 nLarge;
_int64 nHuge;

II Declares 8-bit integer
II Declares 16-bit integer
II Declares 32-bit integer
II Declares 64-bit integer

The first three types of sized integers are synonyms for the ANSI types that have the
same size, and are useful for writing portable code that behaves identically across
multiple platforms. Note that the __ iotS data type is synonymous with type char,
__ iot16 is synonymous with type short, and __ iot32 is synonymous with type iot.
The __ iot64 type has no equivalent ANSI counterpart.

END Microsoft Specific

Type float
Floating-point numbers use the IEEE (Institute of Electrical and Electronics
Engineers) format. Single-precision values with float type have 4 bytes, consisting
of a sign bit, an 8-bit excess-127 binary exponent, and a 23-bit mantissa. The
mantissa represents a number between 1.0 and 2.0. Since the high-order bit of the
mantissa is always 1, it is not stored in the number. This representation gives a
range of approximately 3.4E-38 to 3.4E+38 for type float.

You can declare variables as float or double, depending on the needs of your
application. The principal differences between the two types are the significance
they can represent, the storage they require, and their range. Table 3.3 shows the
relationship between significance and storage requirements.

Chapter 3 Declarations and Types

Table 3.3 Floating-Point Types

Type

float

double

Significant digits

6-7

15-16

Number of bytes

4

8

Floating.:.point variables are represented by a mantissa, which contains the value of the
number, and an exponent, which contains the order of magnitude of the number.

Table 3.4 shows the number of bits allocated to the mantissa and the exponent for
each floating-point type. The most significant bit of any float or double is always the
sign bit. If it is 1, the number is considered negative; otherwise, it is considered a
positive number.

Table 3.4 Lengths of Exponents and Mantissas

Type

float

double

Exponent length

8 bits

11 bits

Mantissa length

23 bits

52 bits

Because exponents are stored in an unsigned form, the exponent is biased by half
its possible value. For type float, the bias is 127; for type double, it is 1023. You
can compute the actual exponent value by subtracting the bias value from the
exponent value.

The mantissa is stored as a binary fraction greater than or equal to 1 and less than 2.
For types float and double, there is an implied leading 1 in the mantissa in the
most-significant bit position, so the mantissas are actually 24 and 53 bits long,
respectively, even though the most-significant bit is never stored in memory.

Instead of the storage method just described, the floating-point package can store
binary floating-point numbers as denormalized numbers. "Denormalized numbers"
are nonzero floating-point numbers with reserved exponent values in which the
most-significant bit of the mantissa is O. By using the denormalized format, the range
of a floating-point number can be extended at the cost of precision. You cannot
control whether a floating-point number is represented in normalized or denormalized
form; the floating-point package determines the representation. The floating-point
package never uses a denormalized form unless the exponent becomes less than the
minimum that can be represented in a normalized form.

Table 3.5 shows the minimum and maximum values you can store in variables of
each floating-point type. The values listed in this table apply only to normalized
floating-point numbers; denormalized floating-point numbers have a smaller
minimum value. Note that numbers retained in 80x87 registers are always repre::;ented
in 80-bit normalized form; numbers can only be represented in denormalized form
when stored in 32-bit or 64-bit floating-point variables (variables of type float and
type long).

83

C Language Reference

84

Table 3.5 Range of Floating-Point Types

Type

float

double

Minimum value

1.175494351 E-38

2.2250738585072014 E - 308

Maximum value

3.402823466 E + 38

1.7976931348623158 E + 308

If precision is less of a concern than storage, consider using type float for floating-point
variables. Conversely, if precision is the most important criterion, use type double.

Floating-point variables can be promoted to a type of greater significance (from type
float to type double). Promotion often occurs when you perform arithmetic on
floating-point variables. This arithmetic is always done in as high a degree of
precision as the variable with the highest degree of precision. For example, consider
the following type declarations:

float f_short;
double f_long;
long double f_longer;

f_short = f_short * f_long;

In the preceding example, the variable f _s h 0 r t is promoted to type double and
multiplied by f _long; then the result is rounded to type float before being assigned
to f _short.

In the following example (which uses the declarations from the preceding example),
. the arithmetic is done in float (32-bit) precision on the variables; the result is then
promoted to type double:

f_longer = f_short * f_short;

Type double
Double precision values with double type have 8 bytes. The format is similar to the
float format except that it has an II-bit excess-l 023 exponent and a 52-bit mantissa,
plus the implied high-order 1 bit. This format gives a range of approximately
1.7E-308 to 1.7E+308 for type double.

Microsoft Specific --7

The double type contains 64 bits: 1 for sign, 11 for the exponent, and 52 for the
mantissa. Its range is +/-1.7E308 with at least 15 digits of precision.

END Microsoft Specific

Type long double
The range of values for a variable is bounded by the minimum and maximum values
that can be represented internally in a given number of bits. However, because of C's
conversion rules (discussed in detail in "Type Conversions" on page 126 in Chapter 4)
you cannot always use the maximum or minimum value for a constant of a particular
type in an expression.

Chapter 3 Declarations and Types

For example, the constant expression - 32768 consists of the arithmetic negation
oper~tor (-) applied to the constant value 32,768. Since 32,768 is too large to
represent as a short int, it is given the long type. Consequently, the constant
expression - 32768 has long type. You can only represent -32,768 as a short int
by type-casting it to the short type. No information is lost in the type cast, since
-32,768 can be represented internally in 2 bytes.

The value 65,000 in decimal notation is considered a signed constant. It is given the
long type because 65,000 does not fit into a short. A value such as 65,000 can only be
represented as an unsigned short by type-casting the value to unsigned short type,
by giving the value in octal or hexadecimal notation, or by specifying it as 65000U.
You can cast this long value to the unsigned short type without loss of information,
since 65,000 can fit in 2 bytes when it is stored as an unsigned number.

Microsoft Specific ~

The long double contains 80 bits: 1 for sign, 15 for exponent, and 64 for mantissa. Its
range is +/-1.2E4932 with at least 19 digits of precision. Although long double and
double are separate types, the representation of long double and double is identical.

END Microsoft Specific

Incomplete Types
An incomplete type is a type that describes an identifier but lacks information needed
to determine the size of the identifier. An "incomplete type" can be:

• A structure type whose members you have not yet specified.

• A union type whose members you have not yet specified.

• An array type whose dimension you have not yet specified.

The void type is an incomplete type that cannot be completed. To complete an
incomplete type, specify the missing information. The following examples show how
to create and complete the incomplete types.

• To create an incomplete structure type, declare a structure type without specifying
its members. In this example, the ps.pointer points to an incomplete structure type
called student.

struct student *ps;

• To complete an incomplete structure type, declare the same structure type later in
the same scope with its members specified, as in

struct student
{

int num;
/* student structure now completed */

85

C Language Reference

• To create an incomplete array type, declare an array type without specifying its
repetition count. For example:

char a[]; /* a has incomplete type */

• To complete an incomplete array type, declare the same name later in the same
scope with its repetition count specified, as in

char a[25]; /* a now has complete type */

Typedef Declarations

86

A typedef declaration is a declaration with typedef as the storage class. The declarator
becomes a new type. You can use typedef declarations to construct shorter or more
meaningful names for types already defined by C or for types that you have declared.
Typedef names allow you to encapsulate implementation details that may change.

A typedef declaration is interpreted in the same way as a variable or function
declaration, but the identifier, instead of assuming the type specified by the
declaration, becomes a synonym for the type.

Syntax
declaration :

declaration-specifiers init-declarator-list opt;

declaration-specifiers :
storage-class-specifier declaration-specifiers opt

type-specifier declaration-specifiers opt

type-qualifier declaration-specifiers opt

storage-class-specifier :
typedef

type-specifier:
void
char
short
int
long
float
double
signed
unsigned
struct-or-union-specifier
enum-specifier
typedef-name

typedefname :
identifier

Chapter 3 Declarations and Types

Note that a typedef declaration does not create types. It creates synonyms for existing
types, or names for types that could be specified in other ways. When a typedef name
is used as a type specifier, it can be combined with certa~n type specifiers, but not
others. Acceptable modifiers include const and volatile.

Typedef names share the name space with ordinary identifiers (see "Name Spaces" on
page 37 in Chapter 2 for more information). Therefore, a program can have a typedef
name and a local-scope identifier by the same name. For example:

typedef char FlagType;

int main()
{
}

int myproc(int)
{

i nt Fl agType;

When declaring a local-scope identifier by the same name as a typedef, or when
declaring a member of a structure or union in the same scope or in an inner scope, the
type specifier must be specified. This example illustrates this constraint:

typedef char FlagType;
const FlagType x;

To reuse the Fl agType name for an identifier, a structure member, or a union
member, the type must be provided:

const int FlagType; 1* Type specifier required *1

It is not sufficient to say

const FlagType; 1* Incomplete specification *1

because the F 1 a 9 Ty P e is taken to be part of the type, not an identifier that is being
redeclared. This declaration is taken to be an illegal declaration like

int; 1* Illegal declaration *1

You can declare any type with typedef, including pointer, function, and array types.
You can declare a typedef name for a pointer to a structure or union type before you
define the structure or union type, as long as the definition has the same visibility as
the declaration.

Typedef names can be used to improve code readability. All three of the following
declarations of s i 9 n a 1 specify exactly the same type, the first without making use of
any typedef names.

typedef void fv(int). (*pfv)(int); 1* typedef declarations *1

void (*signal(into void (*) (int») (int);
fv *signal(into fv *); 1* Uses typedef type *1
pfv signal(into pfv); 1* Uses typedef type *1

87

C Language Reference

Examples
The following examples illustrate typedef declarations:

typedef int WHOLE; 1* Declares WHOLE to be a synonym for int *1

Note that WHO L E could now be used in a variable declaration such as WHO LEi ; or
con s t WHO LEi ;. However, the declaration 1 0 n 9 WHO LEi ; would be illegal.

typedef struct club
{

char name[30];
int size. year;

GROUP;

This statement declares GROU P as a structure type with three members. Since a
structure tag, cl ub, is also specified, either the typedefname (GROUP) or the structure
tag can be used in declarations. You must use the struct keyword with the tag, and
you cannot use the struct keyword with the typedef name.

typedef GROUP *PG; 1* Uses the previous typedef name
to declare a pOinter */

The type PG is declared as a pointer to the GROUP type, which in tum is defined as a
structure type.

typedef void DRAWF(into int);

This example provides the type DRAWF for a function returning no value and taking
two int arguments. This means, for example, that the declaration

DRAWF box;

is equivalent to the declaration

void box(into int);

Extended Storage-Class Attributes

88

Microsoft Specific ~

Extended attribute syntax simplifies and standardizes the Microsoft-specific
extensions to the C language. The storage-class attributes that use extended attribute
syntax include thread, naked, dllimport, and dllexport.

The extended attribute syntax for specifying storage-class information uses the
__ declspec keyword, which specifies that an instance of a given type is to be stored
with a Microsoft-specific storage-class attribute (thread, naked, dllimport, or
dllexport). Examples of other storage-class modifiers include the static and extern
keywords. However, these keywords are part of the ANSI C standard and as such are .
not covered by extended attribute syntax.

Chapter 3 Declarations and Types

Syntax
storage-class-specifier :

__ declspec (extended-decl-modifier-seq) /* Microsoft Specific */

extended-decl-modifier-seq :
extended-decl-modifier opt

extended-decl-modifier-seq extended-dec I-modifier

extended-decl-modifier :
thread
naked
dllimport
dllexport

White space separates the declaration modifiers. Note that extended-decl-modifier-seq
can be empty; in this case, __ declspec has no effect.

The thread, naked, dllimport, and dllexport storage-class attributes are a property
only of the declaration of the data or function to which they are applied; they do not
redefine the type attributes of the function itself. The thread attribute affects data
only. The naked attribute affects functions only. The dllimport and dllexport
attributes affect functions and data.

END Microsoft Specific

DLL Import and Export
Microsoft Specific ~

The dllimport and dllexport storage-class modifiers are Microsoft-specific
extensions to the C language. These modifiers define the DLL's interface to its client
(the executable file or another DLL). For specific information about using these
modifiers, see "DLL Import and Export Functions" on page 158 in Chapter 6.

END Microsoft Specific

Naked
Microsoft Specific ~

The naked storage-class attribute is a Microsoft-specific extension to the C language.
The compiler generates code without prolog and epilog code for functions declared
with the naked storage-class attribute. Naked functions are useful when you need to
write your own prolog/epilog code sequences using inline assembler code. Naked
functions are useful for writing virtual device drivers.

For specific information about using the naked attribute, see "Naked Functions" on
page 162 in Chapter 6.

END Microsoft Specific

89

C Language Reference

Thread Local Storage

90

Microsoft Specific ~

Thread Local Storage (TLS) is the mechanism by which each thread in a given
multithreaded process allocates storage for thread-specific data. In standard
multithreaded programs, data is shared among all threads of a given process, whereas
thread local storage is the mechanism for allocating per-thread data. For a complete
discussion of threads, see "Processes and Threads" in the Microsoft Win32® Software
Development Kit online documentation.

The Microsoft C language includes the extended storage-class attribute, thread,
which is used with the __ declspec keyword to declare a thread local variable. For
example, the following code declares an integer thread local variable and initializes
it with a value:

__ declspec(thread) int tls_i = 1;.

These guidelines must be observed when you are declaring statically bound thread
local variables:

• You can apply the thread attribute only to data declarations and definitions. It
cannot be used on function declarations or definitions. For example, the following
code generates a compiler error:

#define Thread __ declspec(thread)
Thread void func(); /* Error */

• You can specify the thread attribute only on data items with static storage duration.
This includes global data (both static and extern) and local static data. You cannot
declare automatic data with the thread attribute. For example, the following code
generates compiler errors:

#define Thread __ declspec(thread)
voi d func1 ()
{

Thread int tls_i;

int func2(Thread int tls_i
{

/* Error */

/* Error */

• You must use the thread attribute for the declaration and the definition of thread
local data, regardless of whether the declaration and definition occur in the same
file or separate files. For example, the following code generates an error:

#define Thread __ declspec(thread)
extern int tls_i; /* This generates an error, because the */
int Thread tls_i; /* declaration and the definition differ. */

Chapter 3 Declarations and Types

• You cannot use the thread attribute as a type modifier. For example, the following
code generates a compiler error:

char *ch __ declspec(thread); /* Error */

• The address of a thread local variable is not considered constant, and any expression
involving such an address is not considered a constant expression. This means that
you cannot use the address of a thread local variable as an initializer for a pointer.
For example, the compiler flags the following code as an error:

#define Thread __ declspec(thread)
Thread int tls_i;
int *p = &tls_i; /* Error */

• C permits initialization of a variable with an expression involving a reference to
itself, but only for objects of nonstatic extent. For example:

#define Thread __ declspec(thread)
Thread int tls i tls_i;
i nt j = j;
Thread int tls i sizeof(tls_i)

/* Error */
/* Error */
/* Okay */

Note that a sizeof expression that includes the variable being initialized does not
constitute a reference to itself and is allowed.

For more information about using the thread attribute, see "Multithreading Topics"
in Visual C++ Programmer's Guide online.

END Microsoft Specific

91

CHAPTER 4

Expressions and Assignments

This chapter describes how to form expressions and to assign values in the C language.
Constants, identifiers, strings, and function calls are all operands that are manipulated in
expressions. The C language has all the usual language operators. This chapter covers
those operators as well as operators that are unique to C or Microsoft C. The topics
discussed include:

• L-value and r-value expressions

• Constant expressions

• Side effects

• Sequence points

• Operators

• Operator precedence

• Type conversions

• Type casts

Operands and Expressions
An "operand" is an entity on which an operator acts. An "expression" is a sequence
of operators and operands that performs any combination of these actions:

• Computes a value

• Designates an object or function

• Generates side effects

Operands in C include constants, identifiers, strings, function calls, subscript
expressions, member-selection expressions, and complex expressions formed by
combining operands with operators or by enclosing operands in parentheses. The
syntax for these operands is given in "Primary Expressions" on page 94.

93

C Language Reference

Primary Expressions

94

The operands in expressions are called "primary expressions."

Syntax
primary-expression:

identifier
constant
string-literal
(expression)

expression :
assignment-expression
expression, assignment-expression

Identifiers in Primary Expressions
Identifiers can have integral, float, enum, struct, union, array, pointer, or function
type. An identifier is a primary expression provided it has been declared as
designating an object (in which case it is an I-value) or as a function (in which case
it is a function designator). See "L-Value and R-Value Expressions" on page 95 for
a definition of I-value.

The pointer value represented by an array identifier is not a variable, so an array
identifier cannot form the left-hand operand of an assignment operation and
therefore is not a modifiable I-value.

An identifier declared as a function represents a pointer whose value is the address
of the function. The pointer addresses a function returning a value of a specified type.
Thus, function identifiers also 'cannot be I-values in assignment operations. For more
information, see "Identifiers" on page 5 in Chapter 1.

Constants in Primary Expressions
A constant operand has the value and type of the constant value it represents. A
character constant has int type. An integer constant has int, long, unsigned int, or
unsigned long type, depending on the integer's size and on the way the value is
specified. See "Constants" on page 9 in Chapter 1 for more information.

String Literals in Primary Expressions
A "string literal" is a character, wide character, or sequence of adj acent characters
enclosed in double quotation marks. Since they are not variables, neither string literals
nor any of their elements can be the left-hand operand in an assignment operation.
The type of a string literal is an array of char (or an array of wchar_t for wide-string
literals). Arrays in expressions are converted to pointers. See "String Literals" on
page 18 in Chapter 1 for more information about strings.

Chapter 4 Expressions and Assignments

Expressions in Parentheses
You can enclose any operand in parentheses without changing the type or value of the
enclosed expression. For example, in the expression

(10 + 5) / 5

the parentheses around 10 + 5 mean that the value of 10 + 5 is evaluated first and it
becomes the left operand of the division (I) operator. The result of (10 + 5) / 5
is 3. Without the parentheses, 10 + 5 / 5 would evaluate to 11.

Although parentheses affect the way operands are grouped in an expression, they
cannot guarantee a particular order of evaluation in all cases. For example, neither the
parentheses nor the left-to-right grouping of the following expression guarantees what
the value of i will be in either of the sUbexpressions:

(i++ +1) * (2 + i)

The compiler is free to evaluate the two sides of the multiplication in any order. If the
initial value of i is zero, the whole expression could be evaluated as either of these
two statements:

(0 + 1 + 1) * (2 + 1)
(0 + 1 + 1) * (2 + 0)

Exceptions resulting from side effects are discussed in "Side Effects" on page 97.

L-Value and R -Value Expressions
Expressions that refer to memory locations are called "I-value" expressions. An
I-value represents a storage region's "locator" value, or a "left" value, implying that
it can appear on the left of the equal sign (=). L-values are often identifiers.

Expressions referring to modifiable locations are called "modifiable I-values." A
modifiable I-value cannot have an array type, an incomplete type, or a type with the
const attribute. For structures and unions to be modifiable I-values, they must not
have any members with the const attribute. The name of the identifier denotes a
storage location, while the value of the variable is the value stored at that location.

An identifier is a modifiable I-value if it refers to a memory location and if its type is
arithmetic, structure, union, or pointer. For example, if pt r is a pointer to a storage
region, then *pt r is a modifiable I-value that designates the storage region to which
pt r points.

Any of the following C expressions can be I-value expressions:

• An identifier of integral, floating, pointer, structure, or union type

• A subscript ([]) expression that does not evaluate to an array

• A member-selection expression (-> or.)

• A unary-indirection (*) expression that does not refer to an array

95

C Language Reference

• An I-value expression in parentheses

• A const object (a nonmodifiable I-value)

The term "r-value" is sometimes used to describe the value of an expression and to
distinguish it from an I-value. AlII-values are r-values but not all r-values are I-values.

Microsoft Specific ~

Microsoft C includes an extension to the ANSI C standard that allows casts of I-values
to be used as I-values, as long as the size of the object is not lengthened through the
cast. (See "Type-Cast Conversions" on page 132 for more information.) The following
example illustrates this feature:

char *p ;
short i;
long 1;

(long *) p = &1 ;
(long) i = 1 ;

/* Legal cast */
/* Illegal cast */

The default for Microsoft C is that the Microsoft extensions are enabled. Use the IZa
compiler option to disable these extensions.

END Microsoft Specific

Coristant Expressions

96

A constant expression is evaluated at compile time, not run time, and can be used
in any place that a constant can be used. The constant expression must evaluate to
a constant that is in the range of representable values for that type. The operands of
a constant expression can be integer constants, character constants, floating-point
constants, enumeration constants, type casts, sizeof expressions, and other constant
expressions.

Syntax
constant-expression:

conditional-expression

conditional-expression:
10 gical-O R -expression
logical-OR-expression ? expression: conditional-expression

expression:
assignment-expression
expression, assignment-expression

assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression

assignment-operator: one of
= *= 1= %= += -= «= »= &= A= 1=

Chapter 4 Expressions and Assignments

The.nonterminals for struct declarator, enumerator, direct declarator, direct-abstract
declarator, and labeled statement contain the constant-expression nonterminal.

An integral constant expression must be used to specify the size of a bit-field
member of a structure, the value of an enumeration constant, the size of an array,
or the value of a case constant.

Constant expressions used in preprocessor directives are subject to additional
restrictions. Consequently, they are known as "restricted constant expressions."
A restricted constant expression cannot contain size of expressions, enumeration
constants, type casts to any type, or floating-type constants. It can, however,
contain the special constant expression defined (identifier).

Expression Evaluation
Expressions involving assignment, unary increment, unary decrement, or calling a
function may have consequences incidental to their evaluation (side effects). When
a "sequence point" is reached, everything preceding the sequence point, including
any side effects, is guaranteed to have been evaluated before evaluation begins on
anything following the sequence point.

"Side effects" are changes caused by the evaluation of an expression. Side effects
occur whenever the value of a variable is changed by an expression evaluation. All
assignment operations have side effects. Function calls can also have side effects if
they change the value of an externally visible item, either by direct assignment or by
indirect assignment through a pointer.

Side Effects
The order of evaluation of expressions is defined by the specific implementation,
except when the language guarantees a particular order of evaluation (as outlined in
"Precedence and Order of Evaluation" on page 100). For example, side effects occur
in the following function calls:

add (i + 1. i = j + 2);
my pro c (get c (), get c ());

The arguments of a function call can be evaluated in any order. The expression; + 1
may be evaluated before; = j + 2, or; = j + 2 may be evaluated before; + 1.
The result is different in each case. Likewise, it is not possible to guarantee what
characters are actually passed tp the myproc. Since unary increment and decrement
operations involve assignments, such operations can cause side effects, as shown in
the following example:

xCi] = i++;

In this example, the value of x that is modified is unpredictable. The value of the
subscript could be either the new or the old value of ; . The result can vary under
different compilers or different optimization levels.

97

C Language Reference

98

Since C does not define the order of evaluation of side effects, both evaluation
methods discussed above are correct and either may be implemented. To make sure
that your code is portable and clear, avoid statements that depend on a particular order
of evaluation for side effects.

Sequence Points
Between consecutive "sequence points" an object's value can be modified only once
by an expression. The C language defines the following sequence points:

• Left operand of the logical-AND operator (&&). The left operand of the
logical-AND operator is completely evaluated and all side effects complete before
continuing. If the left operand evaluates to false (0), the other operand is not
evaluated.

• Left operand of the logical-OR operator (II). The left operand of the logical-OR
operator is completely evaluated and all side effects complete before continuing.
If the left operand evaluates to true (nonzero), the other operand is not evaluated.

• Left operand of the comma operator. The left operand of the comma operator is
completely evaluated and all side effects complete before continuing. Both
operands of the comma operator are always evaluated. Note that the comma
operator in a function call does not guarantee an order of evaluation.

• Function-call operator. All arguments to a function are evaluated and all side
effects complete before entry to the function. No order of evaluation among the
arguments is specified.

• First operand of the conditional operator. The first operand of the conditional
operator is completely evaluated and all side effects complete before continuing.

• The end of a full initialization expression (that is, an expression that is not part of
another expression such as the end of an initialization in a declaration statement).

• The expression in an expression statement. Expression statements consist of an
optional expression followed by a semicolon (;). The expression is evaluated for
its side effects and there is a sequence point following this evaluation.

• The controlling expression in a selection (if or switch) statement. The expression is
completely evaluated and all side effects complete before the code dependent on
the selection is executed.

• The controlling expression of a while or do statement. The expression is
completely evaluated and all side effects complete before any statements in the
next iteration of the while or do loop are executed.

• Each of the three expressions of a for statement. The expressions are completely
evaluated and all side effects complete before any statements in the next iteration
of the for loop are executed.

• The expression in a return statement. The expression is completely evaluated and
all side effects complete before control returns to the calling function.

Chapter 4 Expressions and Assignments

Operators
There are three types of operators. A unary expression consists of either a
unary operator prepended to an operand, or the size of keyword followed by
an expression. The expression can be either the name of a variable or a cast
expression. If the expression is a cast expression, it must be enclosed in
parentheses. A binary expression consists of two operands joined by a binary
operator. A ternary expression consists of three operands joined by the
conditional-expression operator.

C includes the following unary operators:

Symbol

--I

* &

size of

+

++ --

Name

Negation and complement operators

Indirection and address-of operators

Size operator

Unary plus operator

Unary increment and decrement operators

Binary operators associate from left to right. C provides the following binary
operators:

Symbol

* I %

+-

« »

< > <= >= -- !=
& I /\

&& II

Name

Multiplicative operators

Additive operators

Shift operators

Relational operators

Bitwise operators

Logical operators

Sequential-evaluation operator

The conditional-expression operator has lower precedence than binary expressions
and differs from them in being right associative.

Expressions with operators also include assignment expressions, which use
unary or binary assignment operators. The unary assignment operators are the
increment (++) and decrement (--) operators; the binary assignment operators are
the simple-assignment operator (=) and the compound-assignment operators.
Each compound-assignment operator is a combination of another binary operator
with the simple-assignment operator.

99

C Language Reference

Precedence and Order of Evaluation

100

The precedence and associativity of C operators affect the grouping and
evaluation of operands in expressions. An operator's precedence is meaningful
only if other operators with higher or lower precedence are present. Expressions
with higher-precedence operators are evaluated first. Precedence can also be
described by the word "binding." Operators with a higher precedence are said to
have tighter binding.

Table 4.1 summarizes the precedence and associativity (the order in which the
operands are evaluated) of C operators, listing them in order. of precedence from
highest to lowest. Where several operators appear together, they have equal
precedence and are evaluated according to their associativity. The operators in the
table are described in the sections beginning with "Postfix Operators" on page 103.
The rest of this section gives general information about precedence and associativity.

Table 4.1 Precedence and Associativity of C Operators

Symbol1 Type of Operation

[] () . -> postfix ++ and
postfix --

prefix ++ and prefix -
sizeof & * + - - !

typecasts

* 1 %

+-

« »

< > <= >=

-- !=

&

"
1

&&
II

? :

= *= 1= %=
+= -= «= »=
&= "= 1=

Expression

Unary

Unary

Multiplicative

Additive

Bitwise shift

Relational

Equality

Bitwise-AND

Bitwise-exclusive-OR

Bitwise-inclusive-OR

Logical-AND

Logical-OR

Conditional-expression

Simple and compound
assignment2

Sequential evaluation

Associativity

Left to right

Right to left

Right to left

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Right to left

Right to left

Left to right

1 Operators are listed in descending order of precedence. If several operators appear on the same line or in a
group, they have equal precedence.

2 All simple and compound-assignment operators have equal precedence.

Chapter 4 Expressions and Assignments

An expression can contain several operators with equal precedence. When several
such operators appear at the same level in an expression, evaluation proceeds
according to the associativity of the operator, either from right to left or from left
to right. The direction of evaluation does not affect the results of expressions that
include more than one multiplication (*), addition (+), or binary-bitwise (& I A)
operator at the same level. Order of operations is not defined by the language. The
compiler is free to evaluate such expressions in any order, if the compiler can
guarantee a consistent result.

Only the sequential-evaluation (,), logical-AND (&&), logical-OR (II),
conditional-expression (? :), and function-call operators constitute sequence
points and therefore guarantee a particular order of evaluation for their operands.
The function-call operator is the set of parentheses following the function identifier.
The sequential-evaluation operator (,) is guaranteed to evaluate its operands from
left to right. (Note that the comma operator in a function call is not the same as the
sequential-evaluation operator and does not provide any such guarantee.) For more
information, see "Sequence Points" on page 98.

Logical operators also guarantee evaluation of their operands from left to right.
However, they evaluate the smallest number of operands needed to determine the
result of the expression. This is called "short-circuit" evaluation. Thus, some
operands of the expression may not be evaluated. For example, in the expression

x && y++

the second operand, y++, is evaluated only if x is true (nonzero). Thus, y is not
incremented if x is false (0).

Examples
The following list shows how the compiler automatically binds several sample
expressions:

Expression

a & b II c
a = b I I c
q && r I I s--

Automatic Binding

(a & b) I I c

a = (b I I c)

(q && r) I I s--

In the first expression, the bitwise-AND operator (&) has higher precedence than
the logical-OR operator (II), so a & b forms the first operand of the logical-OR
operation.

In the second expression, the logical-OR operator (I I) has higher precedence than
the simple-assignment operator (=), so b II c is grouped as the right-hand
operand in the assignment. Note that the value assigned to a is either 0 or 1.

The third expression shows a correctly formed expression that may produce an
unexpected result. The logical-AND operator (&&) has higher precedence than the
logical-OR operator (II), so q && r is grouped as an operand. Since the logical

101

C Language Reference

operators guarantee evaluation of operands from left to right, q && r is evaluated
before s - -. However, if q && r evaluates to a nonzero value, s - - is not evaluated,
and s is not decremented. If not decrementing s would cause a problem in your
program, s - - should appear as the first operand of the expression, or s should be
decremented in a separate operation.

The following expression is illegal and produces a diagnostic message at compile
time:

Illegal Expression Default Grouping

p == 0 ? P += 1: p += 2 (p == 0 ? P += 1 : p) += 2

In this expression, the equality operator (==) has the highest precedence, so p == 0
is grouped as an operand. The conditional-expression operator (? :) has the
next-highest precedence. Its first operand is p == 0, and its second operand is p +=
1. However, the last operand of the conditional-expression operator is considered
to be p rather than p += 2, since this occurrence of p binds more closely to the
conditional-expression operator than it does to the compound-assignment operator.
A syntax error occurs because += 2 does not have a left-hand operand. You should
use parentheses to prevent errors of this kind and produce more readable code. For
example, you could use parentheses as shown below to correct and clarify the
preceding example:

(P == 0) ? (P += 1) : (P += 2)

Usual Arithmetic Conversions

102

Most C operators perform type conversions to bring the operands of an expression
to a common type or to extend short values to the integer size used in machine
operations. The conversions performed by C operators depend on the specific operator
and the type of the operand or operands. However, many operators perform similar
conversions on operands of integral and floating types. These conversions are known
as "arithmetic conversions." Conversion of an operand value to a compatible type
causes no change to its value.

The arithmetic conversions summarized below are called "usual arithmetic
conversions." These steps are applied only for binary operators that expect arithmetic
type and only if the two operands do not have the same type. The purpose is to yield
a common type which is also the type of the result. To determine which conversions
actually take place, the compiler applies the following algorithm to binary operations
in the expression. The steps below are not a precedence order.

1. If either operand is of type long double, the other operand is converted to type
long double.

2. If the above condition is not met and either operand is of type double, the other
operand is converted to type double.

Chapter 4 Expressions and Assignments

3. If the above two conditions are not met and either operand is of type float, the
other operand is converted to type float.

4. If the above three conditions are not met (none of the operands are of floating
types), then integral conversions are performed on the operands as follows:

• If either operand is of type unsigned long, the other operand is converted to
type unsigned long.

• If the above condition is not met and either operand is of type long and the other
of type unsigned int, both operands are converted to type unsigned long.

• If the above two conditions are not met, and either operand is of type long, the
other operand is converted to type long.

• If the above three conditions are not met, and either operand is of type unsigned
int, the other operand is converted to type unsigned int.

• If none of the above conditions are met, both operands are converted to type int.

The following code illustrates these conversion rules:

float fVal;
double dVal;
int iVal;
unsigned long ulVal;

dVal = iVal * ulVal; /* iVal converted to unsigned long
* Uses step 4.
* Result of multiplication converted to double
*/

dVal ulVal + fVal; /* ulVal converted to float

Postfix Operators

* Uses step 3.
* Result of addition converted to double
*/

The postfix operators have the highest precedence (the tightest binding) in expression
evaluation.

Syntax
postfix-expression:

primary-expression
postfix-expression [expression]
postfix-expression (argument-expression-list opt)

postfix-expression. identifier
postfix-expression -> identifier
postfix-expression ++
postfix-expression --

Operators in this precedence level are the array subscripts, function calls, structure
and union members, and postfix increment and decrement operators.

103

C Language Reference

104

One-Dimensional Arrays
A postfix expression followed by an expression in square brackets ([D is a
subscripted representation of an element of an array object. A subscript expression
represents the value at the address that is expression positions beyond
postfix-expression when expressed as

postfix-expression [expression]

Usually, the value represented by postfix-expression is a pointer value, such as an
array identifier, and expression is an integral value. However, all that is required
syntactically is that one of the expressions be of pointer type and the other be of
integral type. Thus the integral value could be in the postfix-expression position and
the pointer value could be in the brackets in the expression, or "subscript," position.
For example, this code is legal:

int sum. *ptr. a[10];

int maine)
{

ptr = a;
sum = 4[ptr];

}

Subscript expressions are generally used to refer to array elements, but you can apply
a subscript to any pointer. Whatever the order of values, expression must be enclosed
in brackets ([D.

The subscript expression is evaluated by adding the integral value to the pointer
value, then applying the indirection operator (*) to the result. (See "Indirection and
Address-of Operators" on page 109 for a discussion ofthe indirection operator.) In
effect, for a one-dimensional array, the following four expressions are equivalent,
assuming that a is a pointer and b is an integer:

a[b]
*(a + b)
*(b + a)
b[a]

According to the conversion rules for the addition operator (given in "Additive
Operators" on page 114), the integral value is converted to an address offset by
multiplying it by the length of the type addressed by the pointer.

For example, suppose the identifier 1 i n e refers to an array of int values. The
following procedure is used to evaluate the subscript expression 1 i n e [i] :

1. The integer value i is multiplied by the number of bytes defined as the length of
an int item. The converted value of i represents i int positions.

2. This converted value is added to the original pointer value (1 i ne) to yield an
address that is offset i int positions from 1 i n e.

Chapter 4 Expressions and Assignments

3. The indirection operator is applied to the new address. The result is the value of the
array element at that position (intuitively, 1 i n e [i]).

The subscript expression 1 i n e [0] represents the value of the first element of line,
since the offset from the address represented by 1 i n e is O. Similarly, an expression
such as 1 i n e [5] refers to the element offset five positions from line, or the sixth
element of the array.

Multidimensional Arrays
A subscript expression can also have multiple subscripts, as follows:

expression] [expression2] [expression3] ...

Subscript expressions associate from left to right. The leftmost SUbscript expression,
expression][expression2], is evaluated first. The address that results from adding
expression] and expression2 forms a pointer expression; then expression3 is added
to this pointer expression to form a new pointer expression, and so on until the last
subscript expression has been added. The indirection operator (*) is applied after the
last subscripted expression is evaluated, unless the final pointer value addresses an
array type (see examples below).

Expressions with multiple subscripts refer to elements of "multidimensional arrays."
A multidimensional array is an array whose elements are arrays. For example, the
first element of a three-dimensional array is an array with two dimensions.

Examples
For the following examples, an array named pro p is declared with three elements,
each of which is a 4-by-6 array of iot values.

int prop[3][4][6]:
int i. *ip. (*ipp)[6]:

A reference to the pro p array looks like this:

i = prop[0][0][1]:

The example above shows how to refer to the second individual iot element of prop.
Arrays are stored by row, so the last subscript varies most quickly; the expression
pro p [0] [0] [2] refers to the next (third) element of the array, and so on.

i = prop[2][1][3]:

This statement is a more complex reference to an individual element of prop. The
expression is evaluated as follows:

1. The first subscript, 2, is multiplied by the size of a 4-by-6 iot array and added to
the pointer value prop. The result points to the third 4-by-6 array of prop.

2. The second subscript, 1, is multiplied by the size of the 6-element iot array and
added to the address represented by pro p [2] .

105

C Language Reference

106

3. Each element of the 6-element array is an iot value, so the final subscript, 3,
is multiplied by the size of an iot before it is added to pro p [2] [1]. The
resulting pointer addresses the fourth element of the 6-element array.

4. The indirection operator is applied to the pointer value. The result is the iot
element at that address.

These next two examples show cases where the indirection operator is not applied.

ip = prop[2][1];

ipp = prop[2];

In the first of these· statements, the expression pro p [2] [1] is a valid reference to the
three-dimensional array prop; it refers to a 6-element array (declared above). Since
the pointer value addresses an array, the indirection operator is not applied.

Similarly, the result of the expression prop[2] in the second statement i pp
pro p [2] : is a pointer value addressing a two-dimensional array.

Function Call
A "function call" is an expression that includes the name of the function being called
or the value of a function pointer and, optionally, the arguments being passed to the
function.

Syntax
postfix-expression:

postfix-expression (argument-expression-list opt)

argument-expression-list :
assignment-expression
argument-expression-list, assignment-expression

The postfix-expression must evaluate to a function address (for example, a function
identifier or the value of a function pointer), and argument-expression-list is a list of
expressions (separated by commas) whose values (the "arguments") are passed to the
function. The argument-expression-list argument can be empty.

A.iunction-call expression has the value and type of the function's return value. A
function cannot return an object of array type. If the function's return type is void (that is,
the function has been declared never to return a value), the function-call expression also
has void type. (See "Function Calls" on page 171 in Chapter 6 for more information.)

Structure and Union Members
A "member-selection expression" refers to members of structures and unions. Such an
expression has the value and type of the selected member.

Syntax
postfix-expression. identifier

postfix-expression -> identifier

Chapter 4 Expressions and Assignments

This list describes the two forms of the member-selection expressions:

1. In the first form, postfix-expression represents a value of struct or union type, and
identifier names a member of the specified structure or union. The value of the
operation is that of identifier and is an I-value if postfix-expression is an I-value.
See "L-Value and R-Value Expressions" on page 95 for more information.

2. In the second form, postfix-expression represents a pointer to a structure or union,
and identifier names a member of the specified structure or union. The value is that
of identifier and is an I-value.

The two forms of member-selection expressions have similar effects.

In fact, an expression involving the member-selection operator (-» is a shorthand
version of an expression using the period (.) if the expression before the period
consists of the indirection operator (*) applied to a pointer value. Therefore,

expression -> identifier

is equivalent to

(*expression) • identifier

when expression is a pointer value.

Examples
The following examples refer to this structure declaration. For information about the
indirection operator (*) used in these examples, see "Indirection and Address-of
Operators" on page 109.

struct pair
{

int a;
int b;
struct pair *sp;

} item. list[10];

A member-selection expression for the; tern structure looks like this:

item.sp = &item;

In the example above, the address of the; t em structure is assigned to the s p member
of the structure. This means that; tern contains a pointer to itself.

(item.sp)->a = 24;

In this example, the pointer expression; tern. s p is used with the member-selection
operator (-» to assign a value to the member a.

list[8].b = 12;

This statement shows how to select an individual structure member from an array of
structures.

107

C Language Reference

Postfix Increment and Decrement Operators
Operands of the postfix increment and decrement operators are scalar types that are
modifiable I-values.

Syntax
postfix-expression:

postfix-expression ++
postfix-expression --

The result of the postfix increment or decrement operation is the value of the operand.
After the result is obtained, the value of the operand is incremented (or decremented).
The following code illustrates the postfix increment operator.

if (va r++ > 0)
*p++ = *q++;

In this example, the variable va r is compared to 0, then incremented. If va r was
positive before being incremented, the next statement is executed. First, the value of
the object pointed to by q is assigned to the object pointed to by p. Then, q and p are
incremented.

Unary Operators

108

Unary operators appear before their operand and associate from right to left.

Syntax
unary-expression:

postfix-expression
++ unary-expression
-- unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-name)

unary-operator: one of
& * + - - !

Prefix Increment and Decrement Operators
The unary operators (++ and --) are called "prefix" increment or decrement operators
when the increment or decrement operators appear before the operand. Postfix
increment and decrement has higher precedence than prefix increment and decrement.
The operand must have integral, floating, or pointer type and must be a modifiable
I-value expression (an expression without the const attribute); The result is an I-value.

When the operator appears before its operand, the operand is incremented or
decremented and its new value is the result of the expression.

Chapter 4 Expressions and Assignments

An operand of integral or floating type is incremented or decremented by the integer
value 1. The type of the result is the same as the operand type. An operand of pointer
type is incremented or decremented by the size of the object it addresses. An
incremented pointer points to the next object; a decremented pointer points to the
previous object.

Example
This example illustrates the unary prefix decrement operator:

if(line[--iJ !- '\n')
return;

In this example, the variable i is decremented before it is used as a subscript to 1 i ne.

Indirection and Address-of Operators
The indirection operator (*) accesses a value indirectly, through a pointer. The
operand must be a pointer value. The result of the operation is the value addressed by
the operand; that is, the value at the address to which its operand points. The type of
the result is the type that the operand addresses.

If the operand points to a function, the result is a function designator. If it points to a
storage location, the result is an I-value designating the storage location.

If the pointer value is invalid, the result is undefined. The following list includes some
of the most common conditions that invalidate a pointer value.

• The pointer is a null pointer.

• The pointer specifies the address of a local item that is not visible at the time of the
reference.

• The pointer specifies an address that is inappropriately aligned for the type of the
object pointed to.

• The pointer specifies an address not used by the executing program.

The address-of operator (&) gives the address of its operand. The operand of the
address-of operator can be either a function designator or an I-value that designates an
object that is not a bit field and is not declared with the register storage-class .
specifier.

The result of the address operation is a pointer to the operand. The type addressed by
the pointer is the type of the operand.

The address-of operator can only be applied to variables with fundamental, structure,
or union types that are declared at the file-scope level, or to subscripted array
references. In these expressions, a constant expression that does not include the
address-of operator can be added to or subtracted from the address expression.

109

C Language Reference

110

Examples
The following examples use these declarations:

int *pa. x;
int a[20];
double d;

This statement uses the address-of operator:

pa = &a[5];

The address-of operator (&) takes the address of the sixth element of the array a.
The result is stored in the pointer variable pa.

x = *pa;

The indirection operator (*) is used in this example to access the int value at the
address stored in pa. The value is assigned to the integer variable x.

if(x == *&x)
printf("True\n");

This example prints the word True, demonstrating that the result of applying the
indirection operator to the address of x is the same as x.

int roundup(void); /* Function declaration */

int *proundup = roundup;
int *pround = &roundup;

Once the function r 0 u n d u p is declared, two pointers to r 0 u n d u p are declared
and initialized. The first pointer, proundup, is initialized using only the name of
the function, while the second, pround, uses the address-of operator in the
initialization. The initializations are equivalent.

Unary Arithmetic Operators
The C unary plus, arithmetic-negation, complement, and logical-negation operators
are discussed in the following list:

Operator

+

Description

The unary plus operator preceding an expression in parentheses forces the
grouping of the enclosed operations. It is used with expressions involving
more than one associative or commutative binary operator. The operand must
have arithmetic type. The result is the value of the operand. An integral
operand undergoes integral promotion. The type of the result is the type of
the promoted operand.

The arithmetic-negation operator produces the negative (two's complement)
of its operand. The operand must be an integral or floating value. This
operator performs the usual arithmetic conversions.

Chapter 4 Expressions and Assignments

(continued)

Operator Description

The bitwise-complement (or bitwise-NOT) operator produces the bitwise
complement of its operand. The operand must be of integral type. This
operator performs usual arithmetic conversions; the result has the type of the
operand after conversion.

The logical-negation (logical-NOT) operator produces the value 0 if its
operand is true (nonzero) and the value 1 if its operand is false (0). The result
has int type. The operand must be an integral, floating, or pointer value.

Unary arithmetic operations on pointers are illegal.

Examples
The following examples illustrate the unary arithmetic operators:

short x = 987:
x = -x:

In the example above, the new value of x is the negative of 987, or -987.

unsigned short y = 0xAAAA:
y = -y:

In this example, the new value assigned to y is the one's complement of the unsigned
value OxAAAA, or Ox5555.

if(!(x < y))

If x is greater than or equal to y, the result of the expression is I (true). If x is less
than y, the result is 0 (false).

The sizeof Operator
The sizeof operator gives the amount of storage, in bytes, required to store an object
of the type of the operand. This operator allows you to avoid specifying
machine-dependent data sizes in your programs.

Syntax
sizeof unary-expression

size of (type-name)

The operand is either an identifier that is a unary-expression, or a type-cast
expression (that is, a type specifier enclosed in parentheses). The unary-expression
cannot represent a bit-field object, an incomplete type, or a function designator.
The result is an unsigned integral constant. The standard header STDDEF.H defines
this type as size_t.

111

C Language Reference

When you apply the sizeof operator to an array identifier, the result is the size of the
entire array rather than the size of the pointer represented by the array identifier.

When you apply the sizeof operator to a structure or union type name, orlo an
identifier of structure or union type, the result is the number of bytes in the structure
or union, including internal and trailing padding. This size may include internal and
trailing padding used to align the members of the structure or union on memory
boundaries. Thus, the result may not correspond to the size calculated by adding up
the storage requirements of the individual members.

If an unsized array is the last element of a structure, the sizeof operator returns the size
of the structure without the array.

buffer = calloc(100, sizeof (int));

This example uses the sizeof operator to pass the size of an int, which varies among
machines, as an argument to a run-time function named calloc. The value returned by
the function is stored in buffer.

static char *strings[] ={
"this is string one",
"this is string two",
"this is string three",
} ;

const int string_no = (sizeof strings) / (sizeof strings[0]);

In this example, s t r i n 9 s is an array of pointers to char. The number of pointers is
the number of elements in the array, ,but is not specified. It is easy to determine the
number of pointers by using the sizeof operator to calculate the number of elements in '
the array. The const integer value s t r i n 9_n 0 is initialized to this number. Because it
is a const value, s t r i n 9_n 0 cannot be modified.

Cast Operators

112

A type cast provides a method for explicit conversion of the type of an object in a
specific situation.

Syntax
cast-expression :

unary-expression
(type-name) cast-expression

The compiler treats cast-expression as type type-name after a type cast has been made.
Casts can be used to convert objects of any scalar type to or from any other scalar
type. Explicit type casts are constrained by the same rules that determine the effects of
implicit conversions, discussed in "Assignment Conversions" on page 126. Additional
restraints on casts may result from the actual sizes or representation of specific types.
See "Storage of Basic Types" on page 81 in Chapter 3 for information on actual sizes
of integral types. For more information on type casts, see "Type-Cast Conversions"
on page 132.

Chapter 4 Expressions and Assignments

Multiplicative Operators
The multiplicative operators perform multiplication (*), division (I), and remainder
(%) operations.

Syntax
multiplicative-expression:

cast-expression
multiplicative-expression * cast-expression
multiplicative-expression I cast-expression
multiplicative-expression % cast-expression

The operands of the remainder operator (%) must be integral. The multiplication (*)
and division (I) operators can take integral- or floating-type operands; the types of the
operands can be different.

The multiplicative operators perform the usual arithmetic conversions on the
operands. The type of the result is the type of the operands after conversion.

Note Since the conversions performed by the multiplicative operators do not provide for
overflow or underflow conditions, information may be lost if the result of a multiplicative
operation cannot be represented in the type of the operands after conversion.

The C multiplicative operators are described below:

Operator

*
/

%

Description

The multiplication operator causes its two operands to be multiplied.

The division operator causes the first operand to be divided by the second. If
two integer operands are divided and the result is not an integer, it is
truncated according to the following rules:

• The result of division by 0 is undefined according to the ANSI C
standard. The Microsoft C compiler generates an error at compile time or
run time.

• If both operands are positive or unsigned, the result is truncated
toward O.

~ If either operand is negative, whether the result of the operation is the
largest integer less than or equal to the algebraic quotient or is the
smallest integer greater than or equal to the algebraic quotient is
implementation defined. (See the Microsoft Specific section below.)

The result of the remainder operator is the remainder when the first operand
is divided by the second. When the division is inexact, the result is
determined by the following rules:

• If the right operand is zero, the result is undefined.

• If both operands are positive or unsigned, the result is positive.

• If either operand is negative and the result is inexact, the result is
implementation defined. (See the Microsoft Specific section below.)

113

C Language Reference

Microsoft Specific ~

In division where either operand is negative, the direction of truncation is toward O.

If either operation is negative in division with the remainder operator, the result has
the same sign as the dividend (the first operand in the expression).

END Microsoft Specific

Examples
The declarations shown below are used for the following examples:

int i = 10, j = 3, n;
double x = 2.0, y;

This statement uses the multiplication operator:

y = x * i;

In this case, x is multiplied by i to give the value 20.0. The result has double type.

n = i / j;

In this example, 10 is divided by 3. The result is truncated toward 0, yielding the
integer value 3.

n = i % j;

This statement assigns n the integer remainder, 1, when 10 is divided by 3.

Microsoft Specific ~

The sign of the remainder is the same as the sign of the dividend. For example:

50 % -6 = 2
-50 % 6 = -2

In each case, 50 and 2 have the same sign.

END Microsoft Specific

Additive Operators

114

The additive operators perform addition (+) and subtraction (-).

Syntax
additive-expression:

multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

Note Although the syntax for additive-expression includes multiplicative-expression, this
does not imply that expressions using multiplication are required. See the syntax in Appendix A,
"C Language Syntax Summary," for mUltiplicative-expression, cast-expression, and
unary-expression.

Chapter 4 Expressions and Assignments

The operands can be integral or floating values. Some additive operations can also be
performed on pointer values, as outlined under the discussion of each operator.

The additive operators perform the usual arithmetic conversions on integral and
floating operands. The type of the result is the type of the operands after conversion.
Since the conversions performed by the additive operators do not provide for
overflow or underflow conditions, information may be lost if the result of an additive
operation cannot be represented in the type of the operands after conversion.

Addition (+)
The addition operator (+) causes its two operands to be added. Both operands can be
either integral or floating types, or one operand can be a pointer and the other an
integer.

When an integer is added to a pointer, the integer value (0 is converted by multiplying
it by the size of the value that the pointer addresses. After conversion, the integer
value represents i memory positions, where each position has the length specified by
the pointer type. When the converted integer value is added to the pointer value, the
result is a new pointer value representing the address i positions from the original
address. The new pointer value addresses a value of the same type as the original
pointer value and therefore is the same as array indexing (see "One-Dimensional
Arrays" on page 104 and "Multidimensional Arrays" on page 105). If the sum pointer
points outside the array, except at the first location beyond the high end, the result is
undefined. For more information, see "Pointer Arithmetic" on page 116.

Subtraction (-)
The subtraction operator (-) subtracts the second operand from the first. Both
operands can be either integral or floating types, or one operand can be a pointer
and the other an integer.

When two pointers are subtracted, the difference is converted to a signed integral
value by dividing the difference by the size of a value of the type that the pointers
address. The size of the integral value is defined by the type ptrdiff_t in the standard
include file STDDEEH. The result represents the number of memory positions of that
type between the two addresses. The result is only guaranteed to be meaningful for
two elements of the same array, as discussed in "Pointer Arithmetic" on page 116.

When an integer value is subtracted from a pointer value, the subtraction operator
converts the integer value (i) by multiplying it by the size of the value that the pointer
addresses. After conversion, the integer value represents i memory positions, where
each position has the length specified by the pointer type. When the converted integer
value is subtracted from the pointer value, the result is the memory address i positions
before the original address. The new pointer points to a value of the type addressed by
the original pointer value.

115

C Language Reference

Using the Additive Operators
The following examples, which illustrate the addition and subtraction operators, use
these declarations:

i nt i == 4, j:
float x[10]:
float *px:

These statements are equivalent:

px -= &x[4 + i]:
px "" &x[4] + i:

The value of; is multiplied by the length of a float and added to &x [4]. The resulting
pointer value is the address of x [8] .

j = &x[i] - &x[i-2]:

In this example, the address of the third element of x (given by x [; - 2]) is subtracted
from the address of the fifth element of x (given by x [;]). The difference is divided
by the length of a float; the result is the integer value 2.

Pointer Arithmetic
Additive operations involving a pointer and an integer give meaningful results only
if the pointer operand addresses an array member and the integer value produces an
offset within the bounds of the same array. When the integer value is converted to an
address offset, the compiler assumes that only memory positions of the same size lie
between the original address and the address plus the offset.

This assumption is valid for array members. By definition, an array is a series of values
of the same type; its elements reside in contiguous memory locations. However, storage
for any types except array elements is not guaranteed to be filled by the same type of
identifiers. That is, blanks can appear between memory positions, even positions of the
same type. Therefore, the results of adding to or subtracting from the addresses of any
values but array elements are undefined.

Similarly, when two pointer values are subtracted, the conversion assumes that only
values of the same type, with no blanks, lie between the addresses given by the
operands.

Bitwise Shift Operators

116

The shift operators shift their first operand left «<) or right (») by the number of
positions the second operand specifies.

Syntax
shift-expression :

additive-expression
shift-expression «additive-expression
shift-expression .» additive-expression

Chapter 4 Expressions and Assignments

Both operands must be integral values. These operators perform the usual arithmetic
conversions; the type of the result is the type of the left operand after conversion.

For leftward shifts, the vacated right bits are set to O. For rightward shifts, the vacated
left bits are filled based on the type of the first operand after conversion. If the type is
unsigned, they are set to O. Otherwise, they are filled with copies of the sign bit. For
left-shift operators without overflow, the statement

exprl « expr2

is equivalent to multiplication by 2cxpr2. For right-shift operators,

exprl » expr2

is equivalent to division by 2cxpr2 if exprl is unsigned or has a nonnegative value.

The result of a shift operation is undefined if the second operand is negative, or if the
right operand is greater than or equal to the width in bits of the promoted left operand.

Since the conversions performed by the shift operators do not provide for overflow or
underflow conditions, information may be lost if the result of a shift operation cannot
be represented in the type of the first operand after conversion.

unsigned int x. y. z;

x = 0x00AA;
y = 0x5500;

z = (x « 8) + (y » 8);

In this example, x is shifted left eight positions and y is shifted right eight positions.
The shifted values are added, giving OxAA55, and assigned to z.

Shifting a negative value to the right yields half the absolute value, rounded down.
For example, -253 (binary 11111111 00000011) shifted right one bit produces -127
(binary 1111111110000001). A positive 253 shifts right to produce +126.

Right shifts preserve the sign bit. When a signed integer shifts right, the
most-significant bit remains set. When an unsigned integer shifts right, the
most-significant bit is cleared.

If OxFOOO is unsigned, the result is Ox7800. If OxFOOOOOOO is signed, a right shift
produces OxF8000000. Shifting a positive number right 32 times produces
OxFOOOOOOO. Shifting a negative number right 32 times produces OxFFFFFFFF.

Relational and Equality Operators
The binary relational and equality operators compare their first operand to their
second operand to test the validity of the specified relationship. The result of a
relational expression is 1 if the tested relationship is true and 0 if it is false. The
type of the result is int.

117

C Language Reference

118

Syntax
relational-expression:

shift-expression
relational-expression < shift-expression
relational-expression> shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression != relational-expression

The relational and equality operators test the following relationships:

Operator Relationship Tested

<

>

<=
>=

!=

First operand less than second operand

First operand greater than second operand

First operand less than or equal to second operand

First operand greater than or equal to second operand

First operand equal to second operand

First operand not equal to second operand

The first four operators in the list above have a higher precedence than the equality
operators (== and !=). See the precedence information in Table 4.1.

The operands can have integral, floating, or pointer type. The types of the operands
can be different. Relational operators perform the usual arithmetic conversions
on integral and floating type operands. In addition, you can use the following
combinations of operand types with the relational and equality operators:

• Both operands of any relational or equality operator can be pointers to the
same type. For the equality (==) and inequality (!=) operators, the result of the
comparison indicates whether the two pointers address the same memory location.
For the other relational operators «, >, <=, and >=), the result of the comparison
indicates the relative position of the two memory addresses of the objects pointed
to. Relational operators compare only offsets.

Pointer comparison is defined only for parts of the same object. If the pointers
refer to members of an array, the comparison is equivalent to comparison of the
corresponding subscripts. The address of the first array element is "less than" the
address of the last element. In the case of structures, pointers to structure members
declared later are "greater than" pointers to members declared earlier in the
structure. Pointers to the members of the same union are equal.

• A pointer value can be compared to the constant value 0 for equality (==) or
inequality (!=). A pointer with a value of 0 is called a "null" pointer; that is, it does
not point to a valid memory location.

Chapter 4 Expressions and Assignments

• The equality operators follow the same rules as the relational operators, but permit
additional possibilities: a pointer can be compared to a constant integral expression
with value 0, or to a pointer to void. If two pointers are both null pointers, they
compare as equal. Equality operators compare both segment and offset.

Examples
The examples below illustrate relational and equality operators.

int x = 0, y = 0;
if (x < y)

Because x and y are equal, the expression in this example yields the value O.

char array[10];
char *p;

for (p = array; p < &array[10]; p++)
*p = '\0';

The fragment in this example sets each element of a rray to a null character constant.

enum color { red, white, green} col;

if (col red)

These statements declare an enumeration variable named col with the tag color.
At any time, the variable may contain an integer value of 0, 1, or 2, which represents
one of the elements of the enumeration set color: the color red, white, or green,
respectively. If co 1 contains 0 when the if statement is executed, any statements
depending on the if will be executed.

Bitwise Operators
The bitwise operators perform bitwise-AND (&), bitwise-exclusive-OR (A), and
bitwise-inclusive-OR (I) operations.

Syntax
AND-expression:

equality-expression
AND-expression & equality-expression

exclusive-OR-expression :
AND-expression
exclusive-OR-expression 1\ AND-expression

119

C Language Reference

120

inclusive-OR-expression :
exclusive-OR-expression
inclusive-OR-expression I exclusive-OR-expression

The operands of bitwise operators must have integral types, but their types can be
different. These operators perform the usual arithmetic conversions; the type of the
result is the type of the operands after conversion.

The C bitwise operators are described below:

Operator Description

& The bitwise-AND operator compares each bit of its first operand to the
corresponding bit of its second operand. If both bits are 1, the corresponding result
bit is set to 1. Otherwise, the corresponding result bit is set to O.

The bitwise-exc1usive-OR operator compares each bit of its first operand to the
corresponding bit of its second operand. If one bit is 0 and the other bit is 1, the
corresponding result bit is set to 1. Otherwise, the corresponding result bit is set to O.

The bitwise-inc1usive-OR operator compares each bit of its first operand to the
corresponding bit of its second operand. If either bit is 1, the corresponding result bit
is set to 1. Otherwise, the corresponding result bit is set to O.

Examples
These declarations are used for the following three examples:

short i = 0xAB00;
short j = 0xABCD;
short n;

n = i & j;

The result assigned to n in this first example is the same as i (OxABOO hexadecimal).

n j;

n = 1\ j;

The bitwise-inclusive OR in the second example results in the value OxABCD
(hexadecimal), while the bitwise-exclusive OR in the third example produces OxCD
(hexadecimal) .

Microsoft Specific --7

The results of bitwise operation on signed integers is implementation-defined
according to the ANSI C standard. For the Microsoft C compiler, bitwise operations
on signed integers work the same as bitwise operations on unsigned integers. For
example, - 16 & 99 can be expressed in binary as

11111111 11110000
& 00000000 01100011

00000000 01100000

The result of the bitwise AND is 96 decimal.

END Microsoft Specific

Chapter 4 Expressions and Assignments

Logical Operators
The logical operators perfonn logical-AND (&&) and logical-OR (II) operations.

Syntax
logical-AND-expression :

inclusive-OR -expression
logical-AND-expression && inclusive-OR-expression

logical-OR-expression :
10 gical-AND-expression
logical-OR-expression IIlogical-AND-expression

Logical operators do not perform the usual arithmetic conversions. Instead, they
evaluate each operand in terms of its equivalence to O. The result of a logical
operation is either 0 or 1. The result's type is int.

The C logical operators are described below:

Operator

&&

II

Description

The logical-AND operator produces the value 1 if both operands have nonzero
values. If either operand is equal to 0, the result is O. If the first operand of a
logical-AND operation is equal to 0, the second operand is not evaluated.

The logical-OR operator performs an inclusive-OR operation on its operands.
The result is 0 if both operands have 0 values. If either operand has a nonzero
value, the result is 1. If the first operand of a logical-OR operation has a
nonzero value, the second operand is not evaluated.

The operands of logical-AND and logical-OR expressions are evaluated from left
to right. If the value of the first operand is sufficient to determine the result of the
operation, the second operand is not evaluated. This is called "short-circuit evaluation."
There is a sequence point after the first operand. See "Sequence Points" on page 98 for
more infonnation.

Examples
The following examples illustrate the logical operators:

into w. x. Y. z;

if (x < y && y < z)
pri ntf("x is 1 ess than z\n");

In this example, the p r i n t f function is called to print a message if x is less than y
and y is less than z. If x is greater than y, the second operand (y < z) is not
evaluated and nothing is printed. Note that this could cause problems in cases where
the second operand has side effects that are being relied on for some other reason.
p r i n t f ("% d " • (x == w I I x == y I I x == z));

In this example, if x is equal to either w, y, or z, the second argument to the p r i n t f
function evaluates to true and the value 1 is printed. Otherwise, it evaluates to false
and the value 0 is printed. As soon as one of the conditions evaluates to true,
evaluation ceases.

121

C Language Reference

Conditional-Expression Operator

122

C has one ternary operator: the conditional-expression operator (? :).

Syntax
conditional-expression:

logical-OR-expression
logical-OR-expression ? expression: conditional-expression

The logical-OR-expression must have integral, floating, or pointer type. It is evaluated
in terms of its equivalence to 0. A sequence point follows logical-OR-expression.
Evaluation of the operands proceeds as follows:

• If logical-OR-expression is not equal to 0, expression is evaluated. The result of
evaluating the expression is given by the nonterminal expression. (This means
expression is evaluated only if logical-OR-expression is true.)

• If logical-OR-expression equals 0, conditional-expression is evaluated. The result
of the expression is the value of conditional-expression. (This means
conditional-expression is evaluated only if logical-OR-expression is false.)

Note that either expression or conditional-expression is evaluated, but not both.

The type of the result of a conditional operation depends on the type of the expression
or conditional-expression operand, as follows:

• If expression or conditional-expression has integral or floating type (their types can
be different), the operator performs the usual arithmetic conversions. The type of
the result is the type of the operands after conversion.

• If both expression and conditional-expression have the same structure, union, or
pointer type, the type of the result is the same structure, union, or pointer type.

• If both operands have type void, the result has type void.

• If either operand is a pointer to an object of any type, and the other operand is a
pointer to void, the pointer to the object is converted to a pointer to void and the
result is a pointer to void.

• If either expression or conditional-expression is a pointer and the other operand is a
constant expression with the value 0, the type of the result is the pointer type.

In the type comparison for pointers, any type qualifiers (const or volatile) in the type
to which the pointer points are insignificant, but the result type inherits the qualifiers
from both components of the conditional.

Examples
The following examples show uses of the conditional operator:

j = (1 < 0) ? (-1) : (1);

Chapter 4 Expressions and Assignments

This example assigns the absolute value of i to j. If i is less than 0, - i is assigned to
j. If i is greater than or equal to 0, i is assigned to j.

void H(void);
void f2(void);
int x;
int y;

x == y) ? (fIe)) : (f2());

In this example, two functions, f 1 and f 2, and two variables, x and y, are declared.
Later in the program, if the two variables have the same value, the function fl is
called. Otherwise, f 2 is called.

Assignment Operators
An assignment operation assigns the value of the right-hand operand to the storage
location named by the left-hand operand. Therefore, the left-hand operand of an
assignment operation must be a modifiable I-value. After the assignment, an
assignment expression has the value of the left operand but is not an I-value.

Syntax
assignment-expression:

conditional-expression
unary-expression assignment-operator assignment-expression

assignment-operator: one of
= *= 1= %= += -= «= »= &= 1\= 1=

The assignment operators in C can both transform and assign values in a single
operation. C provides the following assignment operators:

Operator

=

*=
1=

%=

+=

-=

«=
»=
&=

1=

Operation Performed

Simple assignment

Multiplication assignment

Division assignment

Remainder assignment

Addition assignment

Subtraction assignment

Left-shift assignment

Right-shift assignment

Bitwise-AND assignment

Bitwise-exc1usive-OR assignment

Bitwise-inc1usive-OR assignment

123

C Language Reference

124

In assignment, the type of the right-hand value is converted to the type of the left-hand
value, and the value is stored in the left operand after the assignment has taken place.
The left operand must not be an array, a function, or a constant. The specific conversion
path, which depends on the two types, is outlined in detail in "Type Conversions" on
page 126.

Simple Assignment
The simple-assignment operator assigns its right operand to its left operand. The value
of the right operand is converted to the type of the assignment expression and replaces
the value stored in the object designated by the left operand. The conversion rules for
assignment apply (see "Assignment Conversions" on page 126).

double x:
int y:

x = y:

In this example, the value of y is converted to type double and assigned to x.

Compound Assignment
The compound-assignment operators combine the simple-assignment operator with
another binary operator. Compound-assignment operators perform the operation
specified by the additional operator, then assign the result to the left operand. For
example, a compound-assignment expression such as

expression1 + = expression2

can be understood as

expression1 = expression1 + expression2

However, the compound-assignment expression is not equivalent to the expanded
version because the compound-assignment expression evaluates expression1 only
once, while the expanded version evaluates expression1 twice: in the addition
operation and in the assignment operation.

The operands of a compound-assignment operator must be of integral or floating type.
Each compound-assignment operator performs the conversions that the corresponding
binary operator performs and restricts the types of its operands accordingly. The
addition-assignment (+=) and subtraction-assignment (-=) operators can also have a
left operand of pointer type, in which case the right-hand operand must be of integral
type. The result of a compound-assignment operation has the value and type of the left
operand.

#define MASK 0xff00

n &= MASK:

In this example, a bitwise-incIusive-AND operation is performed on n and MASK, and
the result is assigned to n. The manifest constant MAS K is defined with a #define
preprocessor directive.

Chapter 4 Expressions and Assignments

Sequential-Evaluation Operator
The sequential-evaluation operator, also called the "comma operator," evaluates its
two operands sequentially from left to right.

Syntax
expression:

assignment-expression
expression, assignment-expression

The left operand of the sequential-evaluation operator is evaluated as a void
expression. The result of the operation has the same value and type as the right
operand. Each operand can be of any type. The sequential-evaluation operator does
not perform type conversions between its operands, and it does not yield an I-value.
There is a sequence point after the first operand, which means all side effects from
the evaluation of the left operand are completed before beginning evaluation of the
right operand. See "Sequence Points" on page 98 for more information.

The sequential-evaluation operator is typically used to evaluate two or more
expressions in contexts where only one expression is allowed.

Commas can be used as separators in some contexts. However, you must be careful
not to confuse the use of the comma as a separator with its use as an operator; the
two uses are completely different.

Example
This example illustrates the sequential-evaluation operator:

for (i = j = 1; i + j < 2 0; i += i, j - -);

In this example, each operand of the for statement's third expression is evaluated
independently. The left operand i += i is evaluated first; then the right operand,
j - -, is evaluated.

func_one(x, y + 2, Z);
func_two((x--, y + 2), Z);

In the function call to func_one, three arguments, separated by commas, are
passed: x, y + 2, and z. In the function call to func_two, parentheses force the
compiler to interpret the first comma as the sequential-evaluation operator. This
function call passes two arguments to func_two. The first argument is the result
of the sequential-evaluation operation (x - -. y + 2), which has the value and
type of the expression y + 2; the second argument is z.

125

C Language Reference

Type Conversions
Type conversions depend on the specified operator and the type of the operand
or operators. Type conversions are performed in the following cases:

• When a value of one type is assigned to a variable of a different type or an
operator converts the type of its operand or operands before performing an
operation

• When a value of one type is explicitly cast to a different type

• When a value is passed as an argument to a function or when a type is returned
from a function

A character, a short integer, or an integer bit field, all either signed or not, or an
object of enumeration type, can be used in an expression wherever an integer can
be used. If an int can represent all the values of the original type, then the value is
converted to int; otherwise, it is converted to unsigned int. This process is called
"integral promotion." Integral promotions preserve value. That is, the value after
promotion is guaranteed to be the same as before the promotion. See "Usual
Arithmetic Conversions" on page 1 02 for more information.

Assignment Conversions

126

In assignment operations, the type of the value being assigned is converted to
the type of the variable that receives the assignment. C allows conversions by
assignment between integral and floating types, even if information is lost in the
conversion. The conversion method used depends on the types involved in the
assignment, as described in "Usual Arithmetic Conversions" on page 102 and in
the following sections.

Type qualifiers do not affect the allowability of the conversion although a const
I-value cannot be used on the left side of the assignment.

Conversions from Signed Integral Types
When a signed integer is converted to an unsigned integer with equal or greater
size and the value of the signed integer is not negative, the value is unchanged.
The conversion is made by sign-extending the signed integer. A signed integer is
converted to a shorter signed integer by truncating the high-order bits. The result
is interpreted as an unsigned value, as shown in this example.

int i = -3;
unsigned short u;

u = i;
pri ntf("%hu\n". u); 1* Pri nts 65533 *1

Chapter 4 Expressions and Assignments

No information is lost when a signed integer is converted to a floating value, except
that some precision may be lost when a long int or unsigned long int value is
converted to a float value.

Table 4.2 summarizes conversions from signed integral types. This table assumes
that the char type is signed by default. If you use a compile-time option to change
the default for the char type to unsigned, the conversions given in Table 4.3 for the
unsigned char type apply instead of the conversions in Table 4.2.

Table 4.2 Conversions from Signed Integral Types

From To Method

charI short Sign-extend

char long Sign-extend

char unsigned char Preserve pattern; high-order bit loses function as sign bit

char unsigned short Sign-extend to short; convert short to unsigned short

char unsigned long Sign-extend to long; convert long to unsigned long

char float Sign-extend to long; convert long to float

char double Sign-extend to long; convert long to double

char long double Sign-extend to long; convert long to double

short char Preserve low-order byte

short long Sign-extend

short unsigned char Preserve low-order byte

short unsigned short Preserve bit pattern; high-order bit loses function as sign bit

short unsigned long Sign-extend to long; convert long to unsigned long

short float Sign-extend to long; convert long to float

short double Sign-extend to long; convert long to double

short long double Sign-extend to long; convert long to double

long char Preserve low-order byte

long short Preserve low-order word

long unsigned char Preserve low-order byte

long unsigned short Preserve low-order word

long unsigned long Preserve bit pattern; high-order bit loses function as sign bit

long float Represent as float. If long cannot be represented exactly,
some precision is lost.

long double Represent as double. If long cannot be represented exactly
as a double, some precision is lost.

long long double Represent as double. If long cannot be represented exactly
as a double, some precision is lost.

1 All char entries assume that the char type is signed by default.

127

C Language Reference

128

Microsoft Specific -7

For the Microsoft 32-bit C compiler, an integer is equivalent to a long. Conversion of
an int value proceeds the same as for a long.

END Microsoft Specific

Conversions from Unsigned Integral Types
An unsigned integer is converted to a shorter unsigned or signed integer by truncating
the high-order bits, or to a longer unsigned or signed integer by zero-extending
(see Table 4.3).

When the value with integral type is demoted to a signed integer with smaller size,
or an unsigned integer is converted to its corresponding signed integer, the value is
unchanged if it can be represented in the new type. However, the value it represents
changes if the sign bit is set, as in the following example.

i nt j;
unsigned short k = 65533;

j = k;
printf("%hd\n". j); 1* Prints -3 */

If it cannot be represented, the result is implementation-defined. See "Type-Cast
Conversions" on page 132 for information on the Microsoft C compiler's handling of
demotion of integers. The same behavior results from integer conversion or from type
casting the integer.

Unsigned values are converted in a way that preserves their value and is not
representable directly in C. The only exception is a conversion from unsigned long
to float, which loses at most the low-order bits. Otherwise, value is preserved, signed
or unsigned. When a value of integral type is converted to floating, and the value is
outside the range representable, the result is undefined. (See "Storage of Basic Types"
on page 81 in Chapter 3 for information about the range for integral and floating-point
types.)

Table 4.3 summarizes conversions from unsigned integral types.

Table 4.3 Conversions from Unsigned Integral Types

From To Method

unsigned char char Preserve bit pattern; high-order bit becomes sign bit

unsigned char short Zero-extend

unsigned char long Zero-extend

unsigned char unsigned short Zero-extend

unsigned char unsigned long Zero-extend

unsigned char float Convert to long; convert long to float

unsigned char double Convert to long; convert long to double

unsigned char long double Convert to long; convert long to double

Chapter 4 Expressions and Assignments

Table 4.3 Conversions from Unsigned Integral Types (continued)

From To Method

unsigned short char Preserve low-order byte

unsigned short short Preserve bit pattern; high-order bit becomes sign bit

unsigned short long Zero-extend

unsigned short unsigned char Preserve low-order byte

unsigned short unsigned long Zero-extend

unsigned short float Convert to long; convert long to float

unsigned short double Convert to long; convert long to double

unsigned short long double Convert to long; convert long to double

unsigned long char Preserve low-order byte

unsigned long short Preserve low-order word

unsigned long long Preserve bit pattern; high-order bit becomes sign bit

unsigned long unsigned char Preserve low-order byte

unsigned long unsigned short Preserve low-order word

unsigned long float Convert to long; convert long to float

unsigned long double Convert directly to double

unsigned long long double Convert to long; convert long to double

Microsoft Specific --7

For the Microsoft 32-bit C compiler, the unsigned int type is equivalent to the
unsigned long type. Conversion of an unsigned int value proceeds in the same way
as conversion of an unsigned long. Conversions from unsigned long values to float
are not accurate if the value being converted is larger than the maximum positive
signed long value.

END Microsoft Specific

Conversions from Floating-Point Types
A float value converted to a double or long double, or a double converted to a
long double, undergoes no change in value. A double value converted to a float
value is represented exactly, if possible. Precision may be lost if the value cannot
be represented exactly. If the result is out of range, the behavior is undefined. See
"Limits on Floating-Point Constants" on page 10 in Chapter 1 for the range of
floating-point types.

A floating value is converted to an integral value by first converting to a long, then
from the long value to the specific integral value, as described below in Table 4.4.
The decimal portion of the floating value is discarded in the conversion to a long.
If the result is still too large to fit into a long, the result of the conversion is
undefined.

129

C Language Reference

130

Microsoft Specific ~

When converting a double or long double floating-point number to a smaller
floating-point number, the value of the floating-point variable is truncated toward
zero when an underflow occurs. An overflow causes a run-time error. Note that the
Microsoft C compiler maps long double to type double.

END Microsoft Specific

Table 4.4 summarizes conversions from floating types.

Table 4.4 Conversions from Floating-Point Types

From To

float char

float short

float long

float unsigned short

float unsigned long

float double

float long double

double char

double short

double long

double unsigned short

double unsigned long

double float

long double char

long double short

long double long

long double unsigned short

long double unsigned long

long double float

long double double

Method

Convert to long; convert long to char

Convert to long; convert long to short

Truncate at decimal point. If result is too large to
be represented as long, result is undefined.

Convert to long; convert long to unsigned short

Convert to long; convert long to unsigned long

Change internal representation

Change internal representation

Convert to float; convert float to char

Convert to float; convert float to short

Truncate at decimal point. If result is too large to
be represented as long, result is undefined.

Convert to long; convert long to unsigned short

Convert to long; convert long to unsigned long

Represent as a float. If double value cannot be
represented exactly as float, loss of precision
occurs. If value is too large to be represented as
float, the result is undefined.

Convert to float; convert float to char

Convert to float; convert float to short

Truncate at decimal point. If result is too large to
be represented as long, result is undefined.

Convert to long; convert long to unsigned short

Convert to long; convert long to unsigned long

Represent as a float. If double value cannot be
represented exactly as float, loss of precision
occurs. If value is too large to be represented as
float, the result is undefined.

The long double value is treated as double.

Conversions from float, double, or long double values to unsigned long are not
accurate if the value being converted is larger than the maximum positive long value.

Chapter 4 Expressions and Assignments

Conversions to and from Pointer Types
A pointer to one type of value can be converted to a pointer to a different type.
However, the result may be undefined because of the alignment requirements and
sizes of different types in storage. A pointer to an object can be converted to a pointer
to an object whose type requires less or equally strict storage alignment, and back
again without change.

A pointer to void can be converted to or from a pointer to any type, without restriction
or loss of information. If the result is converted back to the original type, the original
pointer is recovered.

If a pointer is converted to another pointer with the same type but having different or
additional qualifiers, the new pointer is the same as the old except for restrictions
imposed by the new qualifier.

A pointer value can also be converted to an integral value. The conversion path
depends on the size of the pointer and the size of the integral type, according to the
following rules:

• If the size of the pointer is greater than or equal to the size of the integral type, the
pointer behaves like an unsigned value in the conversion, except that it cannot be
converted to a floating value.

• If the pointer is smaller than the integral type, the pointer is first converted to a
pointer with the same size as the integral type, then converted to the integral type.

Conversely, an integral type can be converted to a pointer type according to the
following rules:

• If the integral type is the same size as the pointer type, the conversion simply
causes the integral value to be treated as a pointer (an unsigned integer).

• If the size of the integral type is different from the size of the pointer type, the
integral type is first converted to the size of the pointer, using the conversion
paths given in Table 4.2 and Table 4.3. It is then treated as a pointer value.

An integral constant expression with value 0 or such an expression cast to type void *
can be converted by a type cast, by assignment, or by comparison to a pointer of any
type. This produces a null pointer that is equal to another null pointer of the same
type, but this null pointer is not equal to any pointer to a function or to an object.
Integers other than the constant 0 can be converted to pointer type, but the result is
not portable.

Conversions from Other Types
Since an enum value is an int value by definition, conversions to and from an enum
value are the same as those for the int type. For the Microsoft C compiler, an integer
is the same as a long.

131

C Language Reference

Microsoft Specific ~

No conversions between structure or union types are allowed.

Any value can be converted to type void, but the result of such a conversion can
be used only in a context where an expression value is discarded, such as in an
expression statement.

The void type has no value, by definition. Therefore, it cannot be converted to any
other type, and other types cannot be converted to void by assignment. However, you
can explicitly cast a value to type void, as discussed in "Type-Cast Conversions."

END Microsoft Specific

Type-Cast Conversions

132

You can use type casts to explicitly convert types.

Syntax
cast-expression:

unary expression
(type-name) cast-expression

type-name:
specifier-qualifier-list abstract-declarator opt

The type-name is a type and cast-expression is a value to be converted to that type.
An expression with a type cast is not an I-value. The cast-expression is converted as
though it had been assigned to a variable of type type-name. The conversion rules for
assignments (outlined in "Assignment Conversions" on page 126) apply to type casts
as well. Table 4.5 shows the types that can be cast to any given type.

Table 4.5 Legal Type Casts

Destination Types

Integral types

Floating-point

A pointer to an object, or (void *)

Function pointer

A structure, union, or array

Void type

Potential Sources

Any integer type or floating-point type, or pointer
to an object

Any arithmetic type

Any integer type, (void *), a pointer to an object,
or a function pointer

Any integral type, a pointer to an object, or a
function pointer

None

Any type

Any identifier can be cast to void type. However, if the type specified in a type-cast
expression is not void, then the identifier being cast to that type cannot be a void
expression. Any expression can be cast to void, but an expression of type void cannot
be cast to any other type. For example, a function with void return type cannot have
its return cast to another type.

Chapter 4 Expressions and Assignments

Note that a void * expression has a type pointer to void, not type void. If an object is
cast to void type, the resulting expression cannot be assigned to any item. Similarly,
a type-cast object is not an acceptable I-value, so no assignment can be made to a
type-cast object.

Microsoft Specific ~

A type cast can be an I-value expression as long as the size of the identifier does not
change. For information on I-value expressions, see "L-Value and R-Value
Expressions" on page 95.

END Microsoft Specific

You can convert an expression to type void with a cast, but the resulting expression
can be used only where a value is not required. An object pointer converted to void *
and back to the original type will return to its original value.

Function-Call Conversions
The type of conversion performed on the arguments in a function call depends on the
presence of a function prototype (forward declaration) with declared argument types
for the called function.

If a function prototype is present and includes declared argument types, the compiler
performs type checking (see Chapter 6, "Functions").

If no function prototype is present, only the usual arithmetic conversions are
performed on the arguments in the function call. These conversions are performed
independently on each argument in the call. This means that a float value is converted
to a double; a char or short value is converted to an int; and an unsigned char or
unsigned short is converted to an unsigned int.

133

CHAPTER 5

Statements

The statements of a C program control the flow of program execution. In C, as in
other programming languages, several kinds of statements are available to perform
loops, to select other statements to be executed, and to transfer control. Following
a brief overview of statement syntax, this chapter describes the C statements in
alphabetical order:

break statement

compound statement

continue statement

do-while statement

expression statement

for statement

go to and labeled statements

if statement

null statement

return statement

switch statement

try-except statement

try-finally statement

while statement

Overview of Statements
C statements consist of tokens, expressions, and other statements. A statement
that forms a component of another statement is called the "body" of the enclosing
statement. Each statement type given by the following syntax is discussed in this
chapter.

Syntax
statement:

labe led-statement
compound-statement
expression-statement
selection-statement
iteration-statement
jump-statement
try-except-statement 1* Microsoft Specific *1
try-jinally-statement 1* Microsoft Specific *1

135

C Language Reference

Frequently the statement body is a "compound statement." A compound statement
consists of other statements that can include keywords. The compound statement is
delimited by braces ({ }). All other C statements end with a semicolon (;). The
semicolon is a statement terminator.

The expression statement contains a C expression that can contain the arithmetic or
logical operators introduced in Chapter 4, "Expressions and Assignments." The null
statement is an empty statement.

Any C statement can begin with an identifying label consisting of a name and a
colon. Since only the goto statement recognizes statement labels, statement labels are
discussed with goto. See "The goto and Labeled Statements" on page 141 for more
information.

The break Statement

136

The break statement terminates the execution of the nearest enclosing do, for, switch,
or while statement in which it appears. Control passes to the statement that follows the
terminated statement.

Syntax
jump-statement:

break;

The break statement is frequently used to terminate the processing of a particular
case within a switch statement. Lack of an enclosing iterative or switch statement
generates an error.

Within nested statements, the break statement terminates only the do, for, switch, or
while statement that immediately encloses it. You can use a return or go to statement
to transfer control elsewhere out of the nested structure.

This example illustrates the break statement:

for (i = 0; i < LENGTH; i++)
{

}

for (j - 0; j < WIDTH; j++)
{

}

if lines[i][j] == '\0')
{

lengths[i] - j;
break;

/* Execution returns here when */
/* break statement is executed */

The example processes an array of variable-length strings stored in 1 ; n e s. The break
statement causes an exit from the interior for loop after the terminating null character
(, \ 0 ') of each string is found and its position is stored in 1 eng t h s [;].

The variable j is not incremented when break causes the exit from the interior loop.
Control then returns to the outer for loop. The variable i is incremented and the
process is repeated until i is greater than or equal to LENGTH.

The Compound Statement
A compound statement (also called a "block") typically appears as the body of
another statement, such as the if statement. Chapter 3, "Declarations and Types,"
describes the form and meaning of the declarations that can appear, at the head of
a compound statement.

Syntax
compound-statement:

{ declaration-list opt statement-list opt}

declaration-list:
declaration
declaration-list declaration

statement-list:
statement
statement-list statement

If there are declarations, they must come before any statements. The scope of
each identifier declared at the beginning of a compound statement extends from
its declaration point to the end of the block. It is visible throughout the block
unless a declaration of the same identifier exists in an inner block.

Identifiers in a compound statement are presumed auto unless explicitly declared
otherwise with register, static, or extern, except functions, whiGh can only be
extern. You can leave off the extern specifier in function declarations and the
function will still be extern.

Storage is not allocated and initialization is not pepnitted if a variable or function
is declared in a compound statement with storage class extern. The declaration
refers to an external variable or function defined elsewhere.

Variables declared in a block with the auto or register keyword are reallocated
and, if necessary, initialized each time the compound statement is entered. These
variables are not defined after the compound statement is exited. If a variable
declared inside a block has the static attribute, the variable is initialized when
program execution begins and keeps its value throughout the program. See
"Storage Classes" on page 42 in Chapter 3 for information about static.

Chapter 5 Statements

137

C Language Reference

This example illustrates a compound statement:

if (i > 0)

{

line[iJ x;
x++;
i - - ;

In this example, if i is greater than 0, all statements inside the compound statement
are executed in order.

The continue Statement

138

The continue statement passes control to the next iteration of the do, for, or while
statement in which it appears, bypassing any remaining statements in the do, for, or
while statement body. A typical use of the continue statement is to return to the start
of a loop from within a deeply nested loop.

Syntax
jump-statement:

continue;

The next iteration of a do, for, or while statement is determined as follows:

• Within a do or a while statement, the next iteration starts by reevaluating the
expression of the do or while statement.

• A continue statement in a for statement causes the first expression of the
for statement to be evaluated. Then the compiler reevaluates the conditional
expression and, depending on the result, either terminates or iterates the
statement body. See "The for Statement" on page 140 for more information
on the for statement and its nonterminals.

This is an example of the continue statement:

while (;-- > 0
{

x = f(i);
if(x==l

continue;
y += x * x;

In this example, the statement body is executed while i is greater than O. First f (i)
is assigned to x; then, if x is equal to 1, the continue statement is executed. The rest
of the statements in the body are ignored, and execution resumes at the top of the
loop with the evaluation of the loop's test.

Chapter 5 Statements

The do-while Statement
The do-while statement lets you repeat a statement or compound statement until a
specified expression becomes false.

Syntax
iteration-statement:

do statement while (expression) ;

The expression in a do-while statement is evaluated after the body of the loop is
executed. Therefore, the body of the loop is always executed at least once.

The expression must have arithmetic or pointer type. Execution proceeds as follows:

1. The statement body is executed.

2. Next, expression is evaluated. If expression is false, the do-while statement
terminates and control passes to the next statement in the program. If expression
is true (nonzero), the process is repeated, beginning with step 1.

The do-while statement can also terminate when a break, goto, or return statement
is executed within the statement body.

This is an example of the do-while statement:

do
{

y = f(x);
x--;

wh il e (x > 0);

In this do-while statement, the two statements y = f (x): and x - - : are executed,
regardless of the initial value of x. Then x > 0 is evaluated. If x is greater than 0, the
statement body is executed again and x > 0 is reevaluated. The statement body is
executed repeatedly as long as x remains greater than O. Execution of the do-while
statement terminates when x becomes 0 or negative. The body of the loop is executed
at least once.

The Expression Statement
When an expression statement is executed, the expression is evaluated according to
the rules outlined in Chapter 4, "Expressions and Assignments."

Syntax
expression-statement:

expression opt;

All side effects from the expression evaluation are completed before the next
statement is executed. An empty expression statement is called a null statement.
See "The Null Statement" on page 143 for more information.

139

C Language Reference

These examples demonstrate expression statements.

x = (y + 3) ; 1* x is assigned the value of y + 3 *1
x++; 1* x is incremented *1
x = y = 0; 1* Both x and yare initialized to 0 *1
proc(argl, arg2) ; 1* Function call returning void *1
y = z = (f(x) + 3) ; 1* A function-call expression *1

In the last statement, the function-call expression, the value of the expression, which
includes any value returned by the function, is increased by 3 and then assigned to
both the variables y and z.

The for Statement

140

The for statement lets you repeat a statement or compound statement a specified
number of times. The body of a for statement is executed zero or more times until an
optional condition becomes false. You can use optional expressions within the for
statement to initialize and change values during the for statement's execution.

Syntax
iteration-statement:

for (init-expression opt; cond-expression opt; loop-expression opt) statement

Execution of a for statement proceeds as follows:

1. The init-expression, if any, is evaluated. This specifies the initialization for the
loop. There is no restriction on the type of init-expression.

2. The cond-expression, if any, is evaluated. This expression must have arithmetic or
pointer type. It is evaluated before each iteration. Three results are possible:

• If cond-expression is true (nonzero), statement is executed; then loop-expression,
if any, is evaluated. The loop-expression is evaluated after each iteration. There
is no restriction on its type. Side effects will execute in order. The process then
begins again with the evaluation of cond-expression.

• If cond-expression is omitted, cond-expression is considered true, and execution
proceeds exactly as described in the previous paragraph. A for statement
without a cond-expression argument terminates only when a break or return
statement within the statement body is executed, or when a goto (to a labeled
statement outside the for statement body) is executed.

• If cond-expression is false (0), execution of the for statement terminates and
control passes to the next statement in the program.

A for statement also terminates when a break, goto, or return statement within the
statement body is executed. A continue statement in a for loop causes loop-expression
to be evaluated. When a break statement is executed inside a for loop, loop-expression
is not evaluated or executed. This statement

fore ;;);

Chapter 5 Statements

is the customary way to produce an infinite loop which can only be exited with a
break, goto, or return statement.

This example illustrates the for statement:

for (= space = tab = 0; i < MAX; i++
{

if line[iJ ")
space++;

if (line[iJ
{

tab++;
line[iJ

'\ t')

, '.

This example counts space (, ') and tab (, \ t ') characters in the array of characters
named 1 i n e and replaces each tab character with a space. First i, spa c e, and tab are
initialized to O. Then i is compared with the constant MAX; if i is less than MAX, the
statement body is executed. Depending on the value of 1 i n e [i], the body of one or
neither of the if statements is executed. Then i is incremented and tested against MAX;
the statement body is executed repeatedly as long as i is less than MAX.

The goto and Labeled Statements
The goto statement transfers control to a label. The given label must reside in the
same function and can appear before only one statement in the same function.

Syntax
statement:

labeled-statement
jump-statement

jump-statement:
go to identifier;

labeled-statement:
identifier: statement

A statement label is meaningful only to a goto statement; in any other context, a
labeled statement is executed without regard to the label.

A jump-statement must reside in the same function and can appear before only one
statement in the same function. The set of identifier names following a goto has its
own name space so the names do not interfere with other identifiers. Labels cannot be
redeclared. See "Name Spaces" on page 37 in Chapter 2 for more information.

It is good programming style to use the break, continue, and return statement in
preference to goto whenever possible. Since the break statement only exits from one
level of the loop, a go to may be necessary for exiting a loop from within a deeply
nested loop.

141

C Language Reference

This example demonstrates the goto statement:

void main()
{

}

int i. j;

for (i = 0; i < 10; i++)
{

printf("Outer loop executing.
for (j = 0; j < 3; j++)
{

%d\n".) ;

printf(" Inner loop executing. j = %d\n". j);
if (i == 5)

goto stop;

/* This message does not print: */
printf("Loop exited. i = %d\n". i);
stop: pri ntf("Jumped to stop. i = %d\n". i);

In this example, a go to statement transfers control to the point labeled s top when
I equals 5.

The if Statement

142

The if statement controls conditional branching. The body of an if statement is executed
if the value of the expression is nonzero. The syntax for the if statement has two forms.

Syntax
selection-statement:

if (expression) statement
if (expression) statement else statement

In both forms of the if statement, the expressions, which can have any value except a
structure, are evaluated, including all side effects.

In the first form of the syntax, if expression is true (nonzero), statement is executed. If
expression is false, statement is ignored. In the second form of syntax, which uses
else, the second statement is executed if expression is false. With both forms, control
then passes from the if statement to the next statement in the program unless one of
the statements contains a break, continue, or goto.

The following are examples of the if statement:

if (i > 0
y = x / i;

else
{

x = i;
y f(x);

}

In this example, the statement y = xl;: is executed if; is greater than 0. If; is
less than or equal to 0, ; is assigned to x and f (x) is assigned to y. Note that
the statement forming the if clause ends with a semicolon.

When nesting if statements and else clauses, use braces to group the statements
and clauses into compound statements that clarify your intent. If no braces are
present, the compiler resolves ambiguities by associating each else with the
closest if that lacks an else.

if(i>0)
if(j>i

x = j;

else
x = i;

/* Without braces */

The else clause is associated with the inner if statement in this example. If; is
less than or equal to 0, no value is assigned to x.

if (i > 0)
{

if j > i
x = j;

else
x = i;

/* With braces */

The braces surrounding the inner if statement in this example make the else
clause part of the outer if statement. If; is less than or equal to 0, ; is
assigned to x.

The Null Statement
A "null statement" is a statement containing only a semicolon; it can appear
wherever a statement is expected. Nothing happens when a null statement is
executed. The correct way to code a null statement is:

Syntax

Statements such as do, for, if, and while require that an executable statement
appear as the statement body. The null statement satisfies the syntax requirement
in cases that do not need a substantive statement body.

As with any other C statement, you can include a label before a null statement.
To label an item that is not a statement, such as the closing brace of a compound
statement, you can label a null statement and insert it immediately before the
item to get the same effect.

Chapter 5 Statements

143

C Language Reference

This example illustrates the null statement:

for (i = 0; i < 10; line[i++] = 0)

In this example, the loop expression of the for statement 1 i n e [i ++] = 0 initializes
the first 10 elements of 1 i n e to O. The statement body is a null statement, since no
further statements are necessary.

The return Statement

144

The return statement terminates the execution of a function and returns control to the
calling function. Execution resumes in the calling function at the point immediately
following the call. A return statement can also return a value to the calling function.
See "Return Type" on page 166 in Chapter 6 for more information.

Syntax
jump-statement:

return expression opt;

The value of expression, if present, is returned to the calling function. If expression is
omitted, the return value of the function is undefined. The expression, if present, is
converted to the type returned by the function. If the function was declared with return
type void, a return statement containing an expression generates a warning and the
expression is not evaluated.

If no return statement appears in a function definition, control automatically returns
to the calling function after the last statement of the called function is executed. In
this case, the return value of the called function is undefined. If a return value is not
required, declare the function to have void return type; otherwise, the default return
type is int.

Many programmers use parentheses to enclose the expression argument of the return
statement. However, C does not require the parentheses.

This example demonstrates the return statement:

void draw(int I, long L);
long sq(int s);
int main()
{

long y;
int x;

y = sq(x);
draw(x, y);
return();

Chapter 5 Statements

long sq(int s
(

return(s * s);

void draw(int I. long L)
{

/* Statements defining the draw function here */
return;

In this example, the rna; n function calls two functions: sq and draw. The sq function
returns the value of x * x to rn a ; n, where the return value is assigned to y. The d raw
function is declared as a void function and does not return a value. An attempt to
assign the return value of d raw would cause a diagnostic message to be issued.

The switch Statement
The switch and case statements help control complex conditional and branching
operations. The switch statement transfers control to a statement within its body.

Syntax
selection-statement:

switch (expression) statement

labeled-statement:
case constant-expression: statement
default : statement

Control passes to the statement whose case constant-expression matches the value of
switch (expression). The switch statement can include any number of case instances,
but no two case constants within the same switch statement can have the same value.
Execution of the statement body begins at the selected statement and proceeds until
the end of the body or until a break statement transfers control out of the body.

Use of the switch statement usually looks something like this:

switch (expression)
{

declarations

case constant-expression:

145

C Language Reference

146

}

statements executed if the expression equals the
value of this constant-expression

break;
default :

statements executed if expression does not equal
any case constant-expression

You can use the break statement to end processing of a particular case within the
switch statement and to branch to the end of the switch statement. Without break, the
program continues to the next case, executing the statements until a break or the end
of the statement is reached. In some situations, this continuation may be desirable.

The default statement is executed if no case constant-expression is equal to the value
of switch (expression). If the default statement is omitted, and no case match is
found, none of the statements in the switch body are executed. There can be at most
one default statement. The default statement need not come at the end; it can appear
anywhere in the body of the switch statement. In fact it is often more efficient if it
appears at the beginning of the switch statement. A case or default label can only
appear inside a switch statement.

The type of switch expression and case constant-expression must be integral. The
value of each case constant-expression must be unique within the statement body.

The case and default labels of the switch statement body are significant only in
the initial test that determines where execution starts in the statement body. Switch
statements can be nested. Any static variables are initialized before executing into
any switch statements.

Note Declarations can appear at the head of the compound statement forming the switch
body, but initializations included in the declarations are not performed. The switch statement
transfers control directly to an executable statement within the body, bypassing the lines that
contain initializations.

The following examples illustrate switch statements:

5w;tchC c)
{

}

case 'A':
capa++;

case 'a':
lettera++;

default:
total++;

All three statements of the switch body in this example are executed if c is equal to
, A' since a break statement does not appear before the following case. Execution
control is transferred to the first statement (c a p a ++ :) and continues in order through
the rest of the body. If c is equal to 'a', 1 ettera and tota 1 are incremented. Only
tota 1 is incremented if c is not equal to 'A' or ' a ' .

switch (;)
{

case -1:
n++;
break;

case 0 :
z++;
break;

case 1 :
p++;
break;

In this example, a break statement follows each statement of the switch body.
The break statement forces an exit from the statement body after one statement is
executed. If i is equal to -1, only n is incremented. The break following the
statement n++: causes execution control to pass out of the statement body, bypassing
the remaining statements. Similarly, if i is equal to 0, only z is incremented; if i is
equal to 1, only p is incremented. The final break statement is not strictly necessary,
since control passes out of the body at the end of the compound statement, but it is
included for consistency.

A single statement can carry multiple case labels, as the following example shows:

case o a 0

case o bO
case o c 0

case 'd 0

case o e 0

case ' f' hexcvt(c);

In this example, if constant-expression equals any letter between 'a' and 'f' , the
hexcvt function is called.

Microsoft Specific ~

Microsoft C does not limit the number of case values in a switch statement. The
number is limited only by the available memory. ANSI C requires at least 257 case
labels be allowed in a switch statement.

The default for Microsoft C is that the Microsoft extensions are enabled. Use the /Za
compiler option to disable these extensions.

END Microsoft Specific

Chapter 5 Statements

147

C Language Reference

The try-except Statement

148

Microsoft Specific ~

The try-except statement is a Microsoft extension to the C language that enables
applications to gain control of a program when events that normally terminate
execution occur. Such events are called exceptions, and the mechanism that deals
with exceptions is called structured exception handling.

Exceptions can be either hardware- or software-based. Even when applications
cannot completely recover from hardware or software exceptions, structured
exception handling makes it possible to display error information and trap the
internal state of the application to help diagnose the problem. This is especially
useful for intermittent problems that cannot be reproduced easily.

Syntax
try-except-statement :

__ try compound-statement
__ except (expression) compound-statement

The compound statement after the __ try clause is the guarded section. The compound
statement after the __ except clause is the exception handler. The handler specifies a
set of actions to be taken if a~ exception is raised during execution of the guarded
section. Execution proceeds as follows:

1. The guarded section is executed.

2. If no exception occurs during execution of the guarded section, execution
continues at the statement after the __ except clause.

3. If an exception occurs during execution of the guarded section or in any routine the
guarded section calls, the __ except expression is evaluated and the value returned
determines how the exception is handled. There are three values:

EXCEPTION_CONTINUE_SEARCH Exception is not recognized. Continue
to search up the stack for a handler, first for containing try-except statements,
then for handlers with the next highest precedence.

EXCEPTION_CONTINUE_EXECUTION Exception is recognized but
dismissed. Continue execution at the point where the exception occurred.

EXCEPTION_EXECUTE_HANDLER Exception is recognized. Transfer
control to the exception handler by executing the __ except compound statement,
then continue execution at the point the exception occurred.

Because the __ except expression is evaluated as a C expression, it is limited to a
single value, the conditional-expression operator, or the comma operator. If more
extensive processing is required, the expression can call a routine that returns one
of the three values listed above.

Note Structured exception handling works with C and C++ source files. However, it
is not specifically designed for C++. You can ensure that your code is more portable
by using C++ exception handling. Also, the C++ exception handling mechanism is
much more flexible, in that it can handle exceptions of any type.

For C++ programs, C++ exception handling should be used instead of structured
exception handling. For more information, see "Exception Handling" in the C++
Language Reference.

Each routine in an application can have its own exception handler. The
__ except expression executes in the scope of the __ try body. This means it
has access to any local variables declared there.

The __ leave keyword is valid within a try-except statement block. The effect
of __ leave is to jump to the end of the try-except block. Execution resumes
after the end of the exception handler. Although a goto statement can be used
to accomplish the same result, a go to statement causes stack unwinding. The
__ leave statement is more efficient because it does not involve stack
unwinding.

Exiting a try-except statement using the longjmp run-time function is
considered abnormal termination. It is illegal to jump into a __ try statement,
but legal to jump out of one. The exception handler is not called if a process
is killed in the middle of executing a try-except statement.

Example
Following is an example of an exception handler and a termination handler.
See "The try-finally Statement" on page 150 for more information about
termination handlers.

puts("hello");
_try{

puts("in try");
_try{

puts("in try");
RAISE_AN_EXCEPTION();

}_finally{
puts("in finally");

}

}_except(puts ("i n fi lter"). EXCEPTION_EXECUTE_HANDLER){
puts("in except");

}

puts("world");

Chapter 5 Statements

149

C Language Reference

This is the output from the example, with commentary added on the right:

hell 0

in try
in try
in fi lter
in finally
in except
world

END Microsoft Specific

/* fa 11 into try
/* fa 11 into nested try
/* execute filter; returns 1 so
/* unwind nested finally
/* transfer control to selected
/* flow out of handler

*/
*/

accept */
*/

handler */
*/

The try-finally Statement

150

Microsoft Specific ~

The try-finally statement is a Microsoft extension to the C language that enables
applications to guarantee execution of cleanup code when execution of a block of
code is interrupted. Cleanup consists of such tasks as deallocating memory, closing
files, and releasing file handles. The try-finally statement is especially useful for
routines that have several places where a check is made for an error that could cause
premature return from the routine.

Syntax
try-finally-statement :

__ try compound-statement
__ finally compound-statement

The compound statement after the __ try clause is the guarded section. The compound
statement after the __ finally clause is the termination handler. The handler specifies
a set of actions that execute when the guarded section is exited, whether the guarded
section is exited by an exception (abnormal termination) or by standard fall through
(normal termination).

Control reaches a __ try statement by simple sequential execution (fall through).
When control enters the __ try statement, its associated handler becomes active.
Execution proceeds as follows:

1. The guarded section is executed.

2. The termination handler is invoked.

3. When the termination handler completes, execution continues after the __ finally
statement. Regardless of how the guarded section ends (for example, via a go to
statement out of the guarded body or via a return statement), the termination
handler is executed before the flow of control moves out of the guarded section.

Chapter 5 Statements

The __ leave keyword is valid within a try-finally statement block. The effect of
__ leave is to jump to the end of the try-finally block. The termination handler is
immediately executed. Although a go to statement can be used to accomplish the
same result, a goto statement causes stack unwinding. The __ leave statement is
more efficient because it does not involve stack unwinding.

Exiting a try-finally statement using a return statement or the longjmp run-time
function is considered abnormal termination. It is illegal to jump into a __ try
statement, but legal to jump out of one. All __ finally statements that are active
between the point of departure and the destination must be run. This is called a
"local unwind."

The termination handler is not called if a process is killed while executing a
try-finally statement.

Note Structured exception handling works with C and C++ source files. However, it is not
specifically designed for C++. You can ensure that your code is more portable by using C++
exception handling. Also, the C++ exception handling mechanism is much more flexible, in that
it can handle exceptions of any type.

For C++ programs, C++ exception handling should be used instead of structured exception
handling. For more information, see "Exception Handling" in the C++ Language Reference.

See the example for the "try-except statement" on page 149 to see how the try-finally
statement works.

END Microsoft Specific

The while Statement
The while statement lets you repeat a statement until a specified expression becomes
false.

Syntax
iteration-statement:

while (expression) statement

The expression must have arithmetic or pointer type. Execution proceeds as follows:

1. The expression is evaluated.

2. If expression is initially false, the body of the while statement is never executed,
and control passes from the while statement to the next statement in the program.

If expression is true (nonzero), the body of the statement is executed and the
process is repeated beginning at step 1.

151

C Language Reference

152

The while statement can also terminate when a break, goto, or return within the
statement body is executed. Use the continue statement to terminate an iteration
without exiting the while loop. The continue statement passes control to the next
iteration of the while statement.

This is an example of the while statement:

while (i)= 0)
{

stringl[i] = string2[i];
i - - ;

}

This example copies characters from s t r i n 9 2 to s t r i n 9 1. If i is greater than or
equal to 0, s t r i n 9 2 [i] is assigned to s t r i n 9 1 [i] and i is decremented. When i
reaches or falls below 0, execution of the while statement terminates.

CHAPTER 6

Functions

The function is the fundamental modular unit in C. A function is usually designed
to perform a specific task, and its name often reflects that task. A function contains
declarations and statements. This chapter describes how to declare, define, and call
C functions. Other topics discussed are:

• Overview of functions

• Function attributes

• Specifying calling conventions

• Inline functions

• DLL export and import functions

• Naked functions

• Storage class

• Return type

• Arguments

• Parameters

Overview of Functions
Functions must have a definition and should have a declaration, although a definition
can serve as a declaration if the declaration appears before the function is called. The
function definition includes the function body-the code that executes when the
function is called.

A function declaration establishes the name, return type, and attributes of a function
that is defined elsewhere in the program. A function declaration must precede the
call to the function. This is why the header files containing the declarations for the
run-time functions are included in your code before a call to a run-time function.
If the declaration has information about the types and number of parameters, the
declaration is a prototype. See "Function Prototypes" on page 169 for more
information.

153

C Language Reference

The compiler uses the prototype to compare the types of arguments in subsequent
calls to the function with the function's parameters and to convert the types of the
arguments to the types of the parameters whenever necessary.

A function call passes execution control from the calling function to the called
function. The arguments, if any, are passed by value to the called function. Execution
of a return statement in the called function returns control and possibly a value to the
calling function.

Obsolete Forms of Function Declarations
and Definitions

154

The old-style function declarations and definitions use slightly different rules for
declaring parameters than the syntax recommended by the ANSI C standard. First, the
old-style declarations don't have a parameter list. Second, in the function definition,
the parameters are listed, but their types are not declared in the parameter list. The
type declarations precede the compound statement constituting the function body.
The old-style syntax is obsolete and should not be used in new code. Code using
the old-style syntax is still supported, however. This example illustrates the obsolete
forms of declarations and definitions:

double old_style(); 1* Obsolete function declaration *1

double alt_style(a , real) 1* Obsolete function definition *1
double *real;
int a;

return (*real + a) ;

Functions returning an integer or pointer with the same size as an int are not required
to have a declaration although the declaration is recommended.

To comply with the ANSI C standard, old-style function declarations using an ellipsis
now generate an error when compiling with the /Za option and a level 4 warning when
compiling with /Ze. For example:

void functl(a, ...)
int a;
{
}

1* Generates a warning under IZe or *1
1* an error when compiling with IZa *1

You should rewrite this declaration as a prototype:

void functl(int a, ...)
{
}

Old-style function declarations also generate warnings if you subsequently declare or
define the same function with either an ellipsis or a parameter with a type that is not
the same as its promoted type.

Chapter 6 Functions

The next section, "Function Definitions," shows the syntax for function definitions,
including the old-style syntax. The nonterminal for the list of parameters in the
old-style syntax is identifier-list.

Function Definitions
A function definition specifies the name of the function, the types and number of
parameters it expects to receive, and its return type. A function definition also
includes a function body with the declarations of its local variables, and the statements
that determine what the function does.

Syntax
translation-unit:

external-declaration
translation-unit external-declaration

external-declaration :
function-definition
declaration

1* Allowed only at external (file) scope *1

function-definition: 1* Declarator here is the function declarator *1
declaration-specifiersopt attribute-seq opt declarator declaration-listopt

compound-statement 1* attribute-seq is Microsoft Specific * /

Prototype parameters are:

declaration-specifiers :
storage-class-specifier declaration-specifiers opt

type-specifier declaration-specifiers opt

type-qualifier declaration-specifiers opt

declaration-list
declaration
declaration-list declaration

declarator
pointer opt direct-declarator

direct-declarator: 1* A function declarator *1
direct-declarator (parameter-type-list) 1* New-style declarator *1
direct-declarator (identifier-list opt) 1* Obsolete-style declarator *1

The parameter list in a definition uses this syntax:

parameter-type-list :
parameter-list
parameter-list, •••

1* The parameter list *1

155

C Language Reference

156

parameter-list:
parameter-declaration
parameter-list, parameter-declaration

parameter-declaration:
declaration-specifiers declarator
declaration-specifiers abstract-declarator opt

The parameter list in an old-style function definition uses this syntax:

identifier-list: /* Used in obsolete-style function definitions and declarations */
identifier
identifier-list, identifier

The syntax for the function body is:

compound-statement: /* The function body */
{ declaration-list opt statement-list opt}

The only storage-class specifiers that can modify a function declaration are extern
and static. The extern specifier signifies that the function can be referenced from
other files; that is, the function name is exported to the linker. The static specifier
signifies that the function cannot be referenced from other files; that is, the name
is not exported by the linker. If no storage class appears in a function definition,
extern is assumed. In any case, the function is always visible from the definition
point to the end of the file.

The optional declaration-specifiers and mandatory declarator together specify
the function's return type and name. The declarator is a combination of the
identifier that names the function and the parentheses following the function
name. The optional attribute-seq nonterminal is a Microsoft-specific feature
defined in "Function Attributes" on page 157.

The direct-declarator (in the declarator syntax) specifies the name of the function
being defined and the identifiers of its parameters. If the direct-declarator includes
a parameter-type-list, the list specifies the types of all the parameters. Such a
declarator also serves as a function prototype for later calls to the function.

A declaration in the declaration-list in function definitions cannot contain
a storage-class-specifier other than register. The type-specifier in the
declaration-specifiers syntax can be omitted only if the register storage class
is specified for a value of int type.

The compound-statement is the function body containing local variable declarations,
references to externally declared items, and statements.

The sections "Function Attributes," "Storage Class," "Return Type," "Parameters,"
and "Function Body" on pages 157 through 169 describe the components of the
function definition in detail.

Function Attributes
Microsoft Specific ~

The optional attribute-seq nonterminal allows you to select a calling convention on
a per-function basis. You can also specify functions as __ fastcall or __ inline.

END Microsoft Specific

Specifying Calling Conventions
Microsoft Specific ~

For information on calling conventions, see "Calling Conventions Topics" in
Visual C++ Programmer's Guide online.

END Microsoft Specific

Inline Functions
Microsoft Specific ~

The __ inline keyword tells the compiler to substitute the code within the function
definition for every instance of a function call. However, substitution occurs only at
the compiler's discretion. For example, the compiler does not in line a function if its
address is taken or if it is too large to inline.

For a function to be considered as a candidate for inlining, it must use the new-style
function definition.

Use this form to specify an inline function:

__ inline type opt!unction-definition;

The use ·of inline functions generates faster code and can sometimes generate
smaller code than the equivalent function call generates for the following reasons:

• It saves the time required to execute function calls.

• Small inline functions, perhaps three lines or less, create less code than the
equivalent function call because the compiler doesn't generate code to handle
arguments and a return value.

• Functions generated inline are subject to code optimizations not available to
normal functions because the compiler does not perform interprocedural
optimizations.

Functions using __ inline should not be confused with inline assembler code.
See "Inline Assembler" on page 158 for more information.

END Microsoft Specific

Chapter 6 Functions

157

C Language Reference

The Inline Assembler
Microsoft Specific ~

The inline assembler lets you embed assembly-language instructions directly in your
C source programs without extra assembly and link steps. The inline assembler is built
into the compiler-you don't need a separate assembler such as the Microsoft Macro
Assembler (MASM).

Because the inline assembler doesn't require separate assembly and link steps, it
is more convenient than a separate assembler. Inline assembly code can use any
C variable or function name that is in scope, so it is easy to integrate it with your
program's C code. And because the assembly code can be mixed with C statements,
it can do tasks that are cumbersome or impossible in C alone.

The __ asm keyword invokes the inline assembler and can appear wherever a C
statement is legal. It cannot appear by itself. It must be followed by an assembly
instruction, a group of instructions enclosed in braces, or, at the very least, an empty
pair of braces. The term " __ asm block" here refers to any instruction or group of
instructions, whether or not in braces.

The code below is a simple __ asm block enclosed in braces. (The code is a custom
function prolog sequence.)

asm

push ebp
mav ebp. esp
sub esp. LOCAL_SIZE

Alternatively, you can put __ asm in front of each assembly instruction:

_asm push ebp
_asm mav ebp. esp
_asm sub esp. _LOCAL_SIZE

Since the __ asm keyword is a statement separator, you can also put assembly
instructions on the same line:

_asm push ebp

END Microsoft Specific

asm mav ebp. esp asm sub esp. _LOCAL_SIZE

DLL Import and Export Functions

158

Microsoft Specific ~

The dllimport and dllexport storage-class modifiers are Microsoft-specific
extensions to the C language. These modifiers explicitly define the DLL's interface
to its client (the executable file or another DLL). Declaring functions as dllexport
eliminates the need for a module-definition (.DEF) file. You can also use the
dllimport and dllexport modifiers with data and objects.

The dllimport and dllexport storage-class modifiers must be used with the
extended attribute syntax keyword, __ declspec, as shown in this example:

#define Dlllmport __ declspec(dllimport
#define DllExport __ declspec(dllexport)

DllExport void func();
DllExport int i = 10;
DllExport int j;
DllExport int n;

For specific information about the syntax for extended storage-class modifiers,
see "Extended Storage-Class Attributes" on page 88 in Chapter 3.

END Microsoft Specific

Definitions and Declarations
Microsoft Specific -7

The DLL interface refers to all items (functions and data) that are known to be
exported by some program in the system; that is, all items that are declared as
dllimport or dllexport. All declarations included in the DLL interface must
specify either the dllimport or dllexport attribute. However, the definition
can specify only the dllexport attribute. For example, the following function
definition generates a compiler error:

#define Dlllmport __ declspec(dllimport)
#define DllExport __ declspec(dllexport)

Dlllmport int func()

return 1;
}

1* Error; dllimport prohibited in *1
1* definition. *1

This code also generates an error:

#define Dlllmport __ declspec(dllimport)
#define DllExport __ declspec(dllexport)

Dlllmport int i = 10; 1* Error; this is a definition. *1

However, this is correct syntax:

#define Dlllmport __ declspec(dllimport
#define DllExport __ declspec(dllexport

DllExport int i = 10; 1* Okay: this is an export definition. *1

Chapter 6 Functions

159

C Language Reference

160

The use of dllexport implies a definition, while dlIimport implies a declaration.
You must use the extern keyword with dllexport to force a declaration; otherwise,
a definition is implied.

#define OllImport __ declspec(dllimport
#define OllExport __ declspec(dllexport

extern OllImport int k;
011 import i nt j;

END Microsoft Specific

/* These are correct and imply */
/* a declaration. */

Defining Inline Functions with dllexport and dllimport
Microsoft Specific --7

You can define as inline a function with the dllexport attribute. In this case, the
function is always instantiated and exported, whether or not any module in the
program references the function. The function is presumed to be imported by
another program.

You can also define as inline a function declared with the dlIimport attribute. In
this case, the function can be expanded (subject to the lOb (inline) compiler option
specification) but never instantiated. In particular, if the address of an inline imported
function is taken, the address of the function residing in the DLL is returned. This
behavior is the same as taking the address of a non-inline imported function.

Static local data and strings in inline functions maintain the same identities between
the DLL and client as they would in a single program (that is, an executable file
without a DLL interface).

Exercise care when providing imported inline functions. For example, if you update
the DLL, don't assume that the client will use the changed version of the DLL. To
ensure that you are loading the proper version of the DLL, rebuild the DLL's client
as well.

END Microsoft Specific

Rules and Limitations for dllimportldllexport
Microsoft Specific --7

• If you declare a function without the dlIimport or dllexport attribute, the function
is not considered part of the DLL interface. Therefore, the definition of the
function must be present in that module or in another module of the same program.
To make the function part of the DLL interface, you must declare the definition of
the function in the other module as dllexport. Otherwise, a linker error is generated
when the client is built.

• If a single module in your program contains dlIimport and dllexport declarations
for the same function, the dllexport attribute takes precedence over the dlIimport
attribute. However, a compiler warning is generated. For example:

#define Dlllmport __ declspec(dllimport
#define DllExport __ declspec(dllexport

Dlllmport void funcl(void);
DllExport void funcl(void); /* Warning; dllexport */

/* takes precedence. */

• You cannot initialize a static function pointer with the address of a function'
declared with the dllimport attribute, or initialize a static data pointer with the
address of a data object declared with the dllimport attribute. For example, the
following code generates errors:

#define Dlllmport __ declspec(dllimport
#define DllExport __ declspec(dllexport

Dlllmport void funcl(void);
DllImport int i;

i nt *pi = &i;
static void (*pf)(void)

void func2()
{

static int *pi = &i;
static void (*pf)(void

&funcl;

) = &funcl;

/* Error */
/* Error */

/* Error */
/* Error */

However, because a program that includes the dllexport attribute in the declaration
of an object must provide the definition for that object somewhere in the program,
you can initialize a global or local static function pointer with the address of a
dllexport function. Similarly, you can initialize a global or local static data pointer
with the address of a dllexport data object. For example, the following code does
not generate errors:

#define Dlllmport __ declspec(dllimport
#define DllExport __ declspec(dllexport

Dlllmport void funcl(void);
Dlllmport int i;

DllExport void funcl(void);
DllExport int i;

i nt *pi = &i;
static void (*pf)(void)

void func2()
{

static int
static void (*pf)(void

END Microsoft Specific

&funcl;

) &funcl;

/* Okay */
/* Okay */

/* Okay */
/* Okay */

Chapter 6 Functions

161

C Language Reference

Naked Functions

162

Microsoft Specific ~

The naked storage-class attribute is a Microsoft-specific extension to the C language.
For functions declared with the naked storage-class attribute, the compiler generates
code without prolog and epilog code. You can use this feature to write your own
prolog/epilog code sequences using inline assembler code. Naked functions are
particularly useful in writing virtual device drivers.

Because the naked attribute is only relevant to the definition of a function and is
not a type modifier, naked functions use the extended attribute syntax, described in
"Extended Storage-Class Attributes" on page 88 in Chapter 3.

The following example defines a function with the naked attribute:

__ declspec(naked) int func(formal_parameters)
{

/* Function body */

Or, alternatively:

#define Naked __ declspec(naked)

Naked int func(formal_parameters
{

/* Function body */

The naked attribute affects only the nature of the compiler's code generation for the
function's prolog and epilog sequences. It does not affect the code that is generated
for calling such functions. Thus, the naked attribute is not considered part of the
function's type, and function pointers cannot have the naked attribute. Furthermore,
the naked attribute cannot be applied to a data definition. For example, the following
code generates errors:

__ declspec(naked) int i; /* Error--naked attribute not */
/* permitted on data declarations. */

The naked attribute is relevant only to the definition of the function and cannot
be specified in the function's prototype. The following declaration generates a
compiler error:

__ declspec(naked) int func(); /* Error--naked attribute not */
/* permitted on function declarations. */

END Microsoft Specific

Chapter 6 Functions

Rules and Limitations for Using Naked Functions
Microsoft Specific --7

• The return statement is not permitted in a naked function. However, you can
return an int by moving the return value into the EAX register before the RET
instruction.

• Structured exception handling constructs are not permitted in a naked function,
because the constructs must unwind across the stack frame.

• The setjrnp run-time function is not permitted in a naked function, because it too
must unwind across the stack frame. However, the longjrnp run-time function is
permitted.

• The _alloca function is not permitted in a naked function.

• To ensure that no initialization code for local variables appears before the prolog
sequence, initialized local variables are not permitted at function scope.

• Frame pointer optimization (the lOy compiler option) is not recommended, but it
is automatically suppressed for a naked function.

END Microsoft Specific

Considerations when Writing Prolog/Epilog Code
Microsoft Specific --7

Before writing your own prolog and epilog code sequences, it is important to
understand how the stack frame is laid out. It is also useful to know how to use the
__ LOCAL_SIZE predefined constant.

Stack Frame Layout
This example shows the standard prolog code that might appear in a 32-bit function:

push
mov
sub
push

ebp
ebp, esp
esp, 1 oca 1 bytes
<registers>

Save ebp
Set stack frame pointer
Allocate space for locals
Save registers

The 1 0 cal by t e s variable represents the number of bytes needed on the stack for
local variables, and the reg i s t e r s variable is a placeholder that represents the list of
registers to be saved on the stack. After pushing the registers, you can place any other
appropriate data on the stack. The following is the corresponding epilog code:

pop
mov
pop
ret

<registers>
esp, ebp
ebp

Restore registers
Restore stack pointer
Restore ebp
Return from function

The stack always grows down (from high to low memory addresses). The base pointer
(e b p) points to the pushed value of e b p. The local variables area begins at e b p - 2. To
access local variables, calculate an offset from e b p by subtracting the appropriate
value from ebp.

163

C Language Reference

The __ LOCAL_SIZE Constant
The compiler provides a constant, __ LOCAL_SIZE, for use in the inline assembler
block of function prolog code. This constant is used to allocate space for local
variables on the stack frame in custom prolog code.

The compiler determines the value of __ LOCAL_SIZE. The value is the total
number of bytes of all user-defined local variables and compiler-generated temporary
variables. __ LOCAL_SIZE can be used only as an immediate operand; it cannot
be used in an expression. You must not change or redefine the value of this constant.
For example:

mov eax, __ LOCAL_SIZE
mov eax, [ebp - __ LOCAL_SIZE]

:Immediate operand--Okay
:Error

The following example of a naked function containing custom prolog and epilog
sequences uses __ LOCAL_SIZE in the prolog sequence:

__ declspec (naked) func()
{

i nt i:
i nt j:

asm
{

push
mov

/* prolog */

ebp
ebp, esp

sub esp, LOCAL_
}

/* Function body */

asm /* epilog */
{

mov esp, ebp
pop ebp
ret
}

END Microsoft Specific

SIZE

Storage Class

164

The storage-class specifier in a function definition gives the function either extern
or static storage class.

Syntax
function-definition :

declaration-specifiers opt attribute-seq opt declarator declaration-list opt

compound-statement 1* attribute-seq is Microsoft Specific *1

declaration-specifiers:
storage-class-specifier declaration-specifiers opt

type-specifier declaration-specifiers opt

type-qualifier declaration-specifiers opt

storage-class-specifier: 1* For function definitions *1
extern
static

If a function definition does not include a storage-class-specifier, the storage
class defaults to extern. You can explicitly declare a function as extern, but it is
not required.

If the declaration of a function contains the storage-class-specifier extern, the
identifier has the same linkage as any visible declaration of the identifier with file
scope. If there is no visible declaration with file scope, the identifier has external
linkage. If an identifier has file scope and no storage-class-specifier, the identifier
has external linkage. External linkage means that each instance of the identifier
denotes the same object or function. See "Lifetime, Scope, Visibility, and Linkage"
on page 32 in Chapter 2 for more information about linkage and file scope.

Block-scope function declarations with a storage-class specifier other than extern
generate errors.

A function with static storage class is visible only in the source file in which it is
defined. All other functions, whether they are given extern storage class explicitly
or implicitly, are visible throughout all source files in the program. If static storage
class is desired, it must be declared on the first occurrence of a declaration (if any)
of the function, and on the definition of the function.

Microsoft Specific --7

When the Microsoft extensions are enabled, a function originally declared without
a storage class (or with extern storage class) is given static storage class if the
function definition is in the same source file and if the definition explicitly specifies
static storage class.

When compiling with the IZe compiler option, functions declared within a block
using the extern keyword have global visibility. This is not true when compiling
with IZa. This feature should not be relied upon if portability of source code is
a consideration.

END Microsoft Specific

Chapter 6 Functions

165

C Language Reference

Return Type

166

The return type of a function establishes the size and type of the value returned by the
function and corresponds to the type-specifier in the syntax below:

Syntax
function-definition :

declaration-specifiers opt attribute-seq opt declarator declaration-list opt

compound-statement /* attribute-seq is Microsoft Specific */

declaration-specifiers:
storage-class-specifier declaration-specifiers opt

type-specifier declaration-specifiers opt

type-qualifier declaration-specifiers opt

type-specifier:
void
char
short
int
long
float
double
signed
unsigned
struct-or-union-specifier
enum-specifier
typedef-name

The type-specifier can specify any fundamental, structure, or union type. If you
do not include type-specifier, the return type int is assumed.

The return type given in the function definition must match the return type in
declarations of the function elsewhere in the program. A function returns a value
when a return statement containing an expression is executed. The expression is
evaluated, converted to the return value type if necessary, and returned to the point
at which the function was called. If a function is declared with return type void, a
return statement containing an expression generates a warning and the expression
is not evaluated.

The following examples illustrate function return values.

typedef struct
{

char name[20]:
int id:
long class:

STUDENT:

1* Return type is STUDENT: */

STUDENT sortstu(STUDENT a, STUDENT b
{

return ((a.id < b.id) ? a : b);
}

This example defines the STUDENT type with a typedef declaration and defines the
function sortstu to have STUDENT return type. The function selects and returns
one of its two structure arguments. In subsequent calls to the function, the compiler
checks to make sure the argument types are STUDENT.

Note Efficiency would be enhanced by passing pointers to the structure, rather than the
entire structure.

char *smallstr(char sl[], char s2[])
{

i nt i;

i = 0;
while (sl[i] != '\0' && s2[i] != '\0')

i++;
if (sl[i] == '\0'

return (sl);
else

return s2);

This example defines a function returning a pointer to an array of characters. The
function takes two character arrays (strings) as arguments and returns a pointer to the
shorter of the two strings. A pointer to an array points to the first of the array elements
and has its type; thus, the return type of the function is a pointer to type char.

You need not declare functions with int return type before you call them, although
prototypes are recommended so that correct type checking for arguments and return
values is enabled.

Parameters
Arguments are names of values passed to a function by a function call. Parameters are
the values the function expects to receive. In a function prototype, the parentheses
following the function name contain a complete list of the function's parameters and
their types. Parameter declarations specify the types, sizes, and identifiers of values
stored in the parameters.

Syntax
function-definition :

declaration-specifiers opt attribute-seq opt declarator declaration-list opt

compound-statement /* attribute-seq is Microsoft Specific */

Chapter 6 Functions

167

C Language Reference

168

declarator:
pointer opt direct-declarator

direct-declarator: /* A function declarator */
direct-declarator (parameter-type-list) /* New-style declarator */

parameter-type-list : /* A parameter list */
parameter-list
parameter-list, •••

parameter-list:
parameter-declaration
parameter-list, parameter-declaration

parameter-declaration :
declaration-specifiers declarator
declaration-specifiers abstract-declarator opt

The parameter-type-list is a sequence of parameter declarations separated by
commas. The form of each parameter in a parameter list looks like this:

[register] type-specifier [declarator]

Function parameters declared with the auto attribute generate errors. The identifiers
of the parameters are used in the function body to refer to the values passed to the
function. You can name the parameters in a prototype, but the names go out of scope
at the end of the declaration. Therefore parameter names can be assigned the same
way or differently in the function definition. These identifiers cannot be redefined in
the outermost block of the function body, but they can be redefined in inner, nested
blocks as though the parameter list were an enclosing block.

Each identifier in parameter-type-list must be preceded by its appropriate type
specifier, as shown in this example:

void new(double x. double y. double z)
{

/* Function body here */

If at least one parameter occurs in the parameter list, the list can end with a comma
followed by three periods (, •.•). This construction, called the "ellipsis notation,"
indicates a variable number of arguments to the function. (See "Calls with a Variable
Number of Arguments" on page 175 for more information.) However, a call to the
function must have at least as many arguments as there are parameters before the last
comma.

If no arguments are to be passed to the function, the list of parameters is replaced
by the keyword void. This use of void is distinct from its use as a type specifier.

The order and type of parameters, including any use" of the ellipsis notation,
must be the same in all the function declarations (if any) and in the function
definition. The types of the arguments after usual arithmetic conversions must

be assignment-compatible with the types of the corresponding parameters.
(See "Usual Arithmetic Conversions" on page 102 in Chapter 4 for information
on arithmetic conversions.) Arguments following the ellipsis are not checked. A
parameter can have any fundamental, structure, union, pointer, or array type.

The compiler performs the usual arithmetic conversions independently on,each
parameter and on each argument, if necessary. After conversion, no parameter is
shorter than an int, and no parameter has float type unless the parameter type
is explicitly specified as float in the prototype. This means, for example, that
declaring a parameter as a char has the same effect as declaring it as an int.

Function Body
A "function body" is a compound statement containing the statements that specify
what the function does.

Syntax
function-definition :

declaration-specifiers opt attribute-seq opt declarator declaration-list opt

compound-statement /* attribute-seq is Microsoft Specific */

compound-statement: /* The function body */
{ declaration-list opt statement-list opt}

Variables declared in a function body, "local variables," have auto storage class
unless otherwise specified. When the function is called, storage is created for the local
variables and local initializations are performed. Execution control passes to the first
statement in compound-statement and continues until a return statement is executed
or the end of the function body is encountered. Control then returns to the point at
which the function was called.

A return statement containing an expression must be executed if the function is to
return a value. The return value of a fun"Ction is undefined if no return statement is
executed or if the return statement does not include an expression.

Function Prototypes
A function declaration precedes the function definition and specifies the name, return
type, storage class, and other attributes of a function. To be a prototype, the function
declar'l-tion must also establish types and identifiers for the function's arguments.

Syntax
declaration :

declaration-specifiers attribute-seq opt init-declarator-list opt;

/* attribute-seqopt is Microsoft Specific */

Chapter 6 Functions

169

C Language Reference

170

declaration-specifiers :
storage-class-specifier declaration-specifiers opt

type-specifier declaration-specifiers opt

type-qualifier declaration-specifiers opt

init-declarator-list :
in it-declarator
init-declarator-list , init-declarator

init-declarator :
declarator
declarator = initializer

declarator:
pointer opt direct-declarator

direct-declarator: /* A function declarator */
direct-declarator (parameter-type-list) /* New-style declarator */
direct-declarator (identifier-list opt) /* Obsolete-style declarator */

The prototype has the same form as the function definition, except that it is
terminated by a semicolon immediately following the closing parenthesis and
therefore has no body. In either case, the return type must agree with the return
type specified in the function definition.

Function prototypes have the following important uses:

• They establish the return type for functions that return types other than int.
Although functions that return int values do not require prototypes, prototypes
are recommended.

• Without complete prototypes, standard conversions are made, but no attempt is
made to check the type or number of arguments with the number of parameters.

• Prototypes are used to initialize pointers to functions before those functions are
defined.

• The parameter list is used for checking the correspondence of arguments in the
function call with the parameters in the function definition.

The converted type of each parameter determines the interpretation of the arguments
that the function call places on the stack. A type mismatch between an argument and
a parameter may cause the arguments on the stack to be misinterpreted. For example,
on a 16-bit computer, if a 16-bit pointer is passed as an argument, then declared as a
long parameter, the first 32 bits on the stack are interpreted as a long parameter. This
error creates problems not only with the long parameter, but with any parameters that
follow it. You can detect errors of this kind by declaring complete function prototypes
for all functions.

Chapter 6 Functions

A prototype establishes the attributes of a function so that calls to the function that
precede its definition (or occur in other source files) can be checked for argument-type
and return-type mismatches. For example, if you specify the static storage-class
specifier in a prototype, you must also specify the static storage class in the function
definition.

Complete parameter declarations (i nt 'a) can be mixed with abstract declarators
(i n t) in the same declaration. For example, the following declaration is legal:

int add(int a, int);

The prototype can include both the type of, and an identifier for, each expression that
is passed as an argument. However, such identifiers have scope only until the end of
the declaration. The prototype can also reflect the fact that the number of arguments is
variable, or that no arguments are passed. Without such a list, mismatches may not be
revealed, so the compiler cannot generate diagnostic messages concerning them. See
"Arguments" on page 173 for more information on type checking.

Prototype scope in the Microsoft C compiler is now ANSI-compliant when compiling
with the /Za compiler option. This means that if you declare a struct or union tag
within a prototype, the tag is entered at that scope rather than at global scope. For
example, when compiling with /Za for ANSI compliance, you can never call this
function without getting a type mismatch error:

void funcI(struct S *);

To correct your code, define or declare the struct or union at global scope before the
function prototype:

struct S;
void funcI(struct S *);

Under /Ze, the tag is still entered at global scope.

Function Calls
A function call is an expression that passes control and arguments (if any) to a
function and has the form

expression (expression-list opt)

where expression is a function name or evaluates to a function address and
expression-list is a list of expressions (separated by commas). The values of
these latter expressions are the arguments passed to the function. If the function
does not return a value, then you declare it to be a function that returns void.

If a declaration exists before the function call, but no information is given
concerning the parameters, any undeclared arguments simply undergo the usual
arithmetic conversions.

171

C Language Reference

172

Note The expressions in the function argument list can be evaluated in any order, so
arguments whose values may be changed by side effects from another argument have
undefined values. The sequence point defined by the function-call operator guarantees
only that all side effects in the argument list are evaluated before control passes to the
called function. (Note that the order in which arguments are pushed on the stack is a
separate matter.) See "Sequence Points" on page 98 in Chapter 4 for more information.

The only requirement in any function call is that the expression before the
parentheses must evaluate to a function address. This means that a function can
be called through any function-pointer expression.

Example
This example illustrates function calls called from a switch statement:

void maine)
{

/* Function prototypes */

long lift(int), step(int), drop(int);
void work(int number, long (*function)(int i));

int select, count;

select = 1 ;
switch(select
{

case 1 : work(count, 1 i ft) ;

break;

case 2 : work(count, step) ;

break;

case 3: work(count, drop);
/* Fall through to next case */

default:
break;

/* Function definition */

void work(int number, long (*function)(int i))
{

i nt i;
long j;

for (= j = 0; i < number; i++
j += (*function)(i);

In this example, the function call in rna; n,

work(count, lift);

passes an integer variable, count, and the address of the function 1; ft to the
function wo r k. Note that the function address is passed simply by giving the function
identifier, since a function identifier evaluates to a pointer expression. To use a
function identifier in this way, the function must be declared or defined before the
identifier is used; otherwise, the identifier is not recognized. In this case, a prototype
for work is given at the beginning of the rna; n function.

The parameter fun c t ; 0 n in w 0 r k is declared to be a pointer to a function taking one
int argument and returning a long value. The parentheses around the parameter name
are required; without them, the declaration would specify a function returning a
pointer to a long value.

The function wo r k calls the selected function from inside the for loop by using the
following function call:

(*function)(i);

One argument, ;, is passed to the called function.

Arguments
The arguments in a function call have this form:

expression (expression-list opt) 1* Function call *1

In a function call, expression-list is a list of expressions (separated by commas).
The values of these latter expressions are the arguments passed to the function. If
the function takes no arguments, expression-list should contain the keyword void.

An argument can be any value with fundamental, structure, union, or pointer type. All
arguments are passed by value. This means a copy of the argument is assigned to the
corresponding parameter. The function does not know the actual memory location of
the argument passed. The function uses this copy without affecting the variable from
which it was originally derived.

Although you cannot pass arrays or functions as arguments, you can pass pointers
to these items. Pointers provide a way for a function to access a value by reference.
Since a pointer to a variable holds the address of the variable, the function can use
this address to access the value of the variable. Pointer arguments allow a function
to access arrays anq functions, even though arrays and functions cannot be passed
as arguments.

The order in which arguments are evaluated can vary under different compilers
and different optimization levels. However, the arguments and any side effects are
completely evaluated before the function is entered. See "Side Effects" on page 97
in Chapter 4 for information on side effects.

Chapter 6 Functions

173

C Language Reference

174

The expression-list in a function call is evaluated and the usual arithmetic conversions
are performed on each argument in the function call. If a prototype is available, the
resulting argument type is compared to the prototype's corresponding parameter. If
they do not match, either a conversion is performed, or a diagnostic message is issued.
The parameters also undergo the usual arithmetic conversions.

The number of expressions in expression-list must match the number of parameters,
unless the function's prototype or definition explicitly specifies a variable number of
arguments. In this case, the compiler checks as many arguments as there are type
names in the list of parameters and converts them, if necessary, as described above.
See "Calls with a Variable Number of Arguments" on page 175 for more information.

If the prototype's parameter list contains only the keyword void, the compiler expects
zero arguments in the function call and zero parameters in the definition. A diagnostic
message is issued if it finds any arguments.

Example
This example uses pointers as arguments:

void mainC)
(

/* Function prototype */

void swap(int *numl. int *num2):
int x. y:

swap(&x. &y): /* Function call */

/* Function definition */

void swap(int *numl. int *num2)
.(

int t:

t = *numl:
*numl *num2:
*num2 = t:

In this example, the swa p function is declared in rna into have two arguments,
represented respectively by identifiers n urnl and n urn2, both of which are pointers to
int values. The parameters nurnl and nurn2 in the prototype-style definition are also
declared as pointers to int type values.

In the function call

swap(&x. &y)

Chapter 6 Functions

the address of x is stored in nurnl and the address of y is stored in nurn2. Now two
names, or "aliases," exist for the same location. References to *nurnl and *nurn2 in
swap are effectively references to x and y in rna; n. The assignments within swap
actually exchange the contents of x and y. Therefore, no return statement is
necessary.

The compiler performs type checking on the arguments to s w a p because the prototype
of swa p includes argument types for each parameter. The identifiers within the
parentheses of the prototype and definition can be the same or different. What is
important is that the types of the arguments match those of the parameter lists in both
the prototype and the definition.

Calls with a Variable Number of Arguments
A partial parameter list can be terminated by the ellipsis notation, a comma followed
by three periods (, •••), to indicate that there may be more arguments passed to the
function, but no more information is given about them. Type checking is not
performed on such arguments. At least one parameter must precede the ellipsis
notation and the ellipsis notation must be the last token in the parameter list. Without
the ellipsis notation, the behavior of a function is undefined if it receives parameters in
addition to those declared in the parameter list.

To call a function with a variable number of arguments, simply specify any number of
arguments in the function call. An example is the printf function from the C run-time
library. The function call must include one argument for each type name declared in
the parameter list or the list of argument types.

All the arguments specified in the function call are placed on the stack unless the
__ fastcall calling convention is specified. The number of parameters declared for the
function determines how many of the arguments are taken from the stack and assigned
to the parameters. You are responsible for retrieving any additional arguments from
the stack and for determ1ning how many arguments are present. The STDARGS.H file
contains ANSI-style macros for accessing arguments of functions which take a
variable number of arguments. Also, the XENIX®- style macros in VARARGS.H are
still supported.

This sample declaration is for a function that calls a variable number of arguments:

int average(int first, ...);

Microsoft Specific ~

To maintain compatibility with previous versions of Microsoft ·c, a Microsoft
extension to the ANSI C standard allows a comma without trailing periods (,) at the
end of the list of parameters to indicate a variable number of arguments. However, it
is recommended that code be changed to incorporate the ellipsis notation.

END Microsoft Specific

175

C Language Reference

Recursive Functions

176

Any function in a C program can be called recursively; that is, it can call itself.
The number of recursive calls is limited to the size of the stack. See the "Stack
Allocations" (/STACK) linker option in the Visual c++ Programmer's Guide
online for information about linker options that set stack size. Each time the function
is called, new storage is allocated for the parameters and for the auto and register
variables so that their values in previous, unfinished calls are not overwritten.
Parameters are only directly accessible to the instance of the function in which they
are created. Previous parameters are not directly accessible to ensuing instances of
the function.

Note that variables declared with static storage do not require new storage with each
recursive call. Their storage exists for the lifetime of the program. Each reference to
such a variable accesses the same storage area.

Example
This example illustrates recursive calls:

int factorial(int num);

void main()
{

int result. number;

/* Function prototype */

result factorial(number);

int factorial(int num)
{

/* Function definition */

if ((num > 0) II (num <= 10)
return(num * factorial(num - 1));

APPENDIX A

C Language Syntax Summary

This appendix gives the full description of the C language and the Microsoft-specific
C language features. You can use the syntax notation in this appendix to determine the
exact syntax for any language component. The explanation for the syntax appears in
the section of this manual where a topic is discussed.

Note This syntax summary is not part of the ANSI C standard, but is included for information
only. Microsoft-specific syntax is noted in comments following the syntax.

Definitions and Conventions
Terminals are endpoints in a syntax definition. No other resolution is possible.
Terminals include the set of reserved words and user-defined identifiers.

N onterminals are placeholders in the syntax and are defined elsewhere in this syntax
summary. Definitions can be recursive.

An optional component is indicated by the subscripted opt. For example,

{ expression opt}

indicates an optional expression enclosed in curly braces.

The syntax conventions use different font attributes for different components of the
syntax. The symbols and fonts are as follows:

Attribute

nontenninal

const

opt

default typeface

Description

Italic type indicates nonterminals.

Terminals in bold type are literal reserved words and symbols that must
be entered as shown. Characters in this context are always case sensitive.

Nonterminals followed by opt are always optional.

Characters in the set described or listed in this typeface can be used as
terminals in C statements.

A colon (:) following a nonterminal introduces its definition. Alternative definitions
are listed on separate lines, except when prefaced with the words "one of."

177

C Language Reference

Lexical Grammar
Tokens

178

token:
keyword
identifier
constant
string-literal
operator
punctuator

preprocessing-token:
header-name
identifier
pp-number
character-constant
string-literal
operator
punctuator
each nonwhite-space character that cannot be one of the above

header-name:
< path-spec>
"path spec"

path-spec:
Legal file path

pp-number:
digit
• digit
pp-number digit
pp-number nondigit
pp-number e sign
pp-number E sign
pp-number.

Appendix A C Language Syntax Summary

Keywords
keyword: one of

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue

default

do

Identifiers
identifier:

nondigit

for

go to

if

identifier nondigit
identifier digit

nondigit : one of
_abcdefghijklm

nopqrstuvwxyz
ABCDEFGHIJKLM
NOPQRSTUVWXYZ

digit: one of
0123456789

Constants
constant:

floating-point-constant
integer-constant

enumeration-constant
character-constant

floating-point-constant :

signed void

sizeof volatile

static while

fractional-constant exponent-part opt floating-suffix opt

digit-sequence exponent-part floating-suffix opt

fractional-constant:
digit-sequence opt • digit-sequence
digit-sequence .

exponent-part:
e sign opt digit-sequence
E sign opt digit-sequence

179

C Language Reference

180

sign: one of
+ -

digit-sequence :
digit
digit-sequence digit

floating-suffix: one of
f I F L

integer-constant:
decimal-constant integer-suffix opt

octal-constant integer-suffix opt

hexadecimal-constant integer-suffix opt

decimal-constant:
nonzero-digit
decimal-constant digit

octal-constant:
o
octal-constant octal-digit

hexadecimal-constant:
Ox hexadecimal-digit
OX hexadecimal-digit
hexadecimal-constant hexadecimal-digit

nonzero-digit: one of
123456789

octal-digit: one of
01234567

hexadecimal-digit: one of
0123456789
abcdef
ABCDEF

unsigned-suffix: one of
uU

long-suffix: one of
IL

character-constant:
'c-char-sequence'
L' c-char-sequence'

integer-suffix:
unsigned-suffix long-suffix opt

long-suffix unsigned-suffix opt

c-char-sequence :
c-char
c-char-sequence c-char

Appendix A C Language Syntax Summary

c-char:
Any member of the source character set except the single quotation mark ('),

backslash (\), or newline character
escape-sequence

escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence

simple-escape-sequence : one of
\a \b \f \n \r \t \v
\' \" \\ \?

octal-escape-sequence :
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadecimal-esc ape-sequence :
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

String Literals
string-literal:

"s-char-sequence opt"

L" s-char-sequence opt"

s-char-sequence :
s-char
s-char-sequence s-char

s-char:
any member of the source character set except the double-quotation mark ("),

backslash (\), or newline character
escape-sequence

Operators
operator: one of

[] () . ->
++ -- & * + - - ! sizeof
I % « » < > <= >= == != " 1 && !!
? :
= *= 1= %= += -= «= »= &= "= 1=
, # 1#1

assignment-operator: one of
= *= 1= %= += -= «= »= &= "= 1=

181

C Language Reference

Punctuators
punctuator: one of

[] () {} * , : = ; ••• #

Phrase Structure Grammar
Expressions

182

primary-expression:
identifier
constant
string-literal
(expression)

expression:
assignment-expression
expression, assignment-expression

constant-expression:
conditional-expression

conditional-expression :
logical-OR-expression
logical-OR-expression ? expression: conditional-expression

assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression

postfix-expression:
primary-expression
postfix-expression [expression]
postfix-expression (argument-expression-list opt)

postfix-expression. identifier
postfix-expression -> identifier
postfix-expression ++
postfix-expression --

argument-expression-list :
assignment-expression
argument-expression-list , assignment-expression

unary-expression:
postfix-expression
++ unary-expression
-- unary-expression
unary-operator cast-expression
sizeof unary-expression
size of (type-name)

unary-operator: one of
&*+--!

cast-expression:
unary-expression
(type-name) cast-expression

multiplicative-expression:
cast-expression
multiplicative-expression * cast-expression
multiplicative-expression / cast-expression
multiplicative-expression % cast-expression

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

shift-expression:
additive-expression
shift-expression « additive-expression
shift-expression » additive-expression

relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression> shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression != relational-expression

AND-expression:
equality-expression
AND-expression & equality-expression

exclusive-OR-expression:
AND-expression
exclusive-OR-expression 1\ AND-expression

inclusive-OR-expression :
exclusive-OR -expression
inclusive-OR-expression I exclusive-OR-expression

Appendix A C Language Syntax Summary

183

C Language Reference

logical-AND-expression :
inclusive-OR -expression
logical-AND-expression && inclusive-OR-expression

logical-OR-expression :.
logical-AND-expression
logical-OR-expression IIlogical-AND-expression

Declarations

184

declaration :
declaration-specifiers attribute-seq opt init-declarator-list opt;

1* attribute-seq is Microsoft Specific *1
declaration-specifiers:

storage-class-specifier declaration-specifiers opt

type-specifier declaration-specifiers opt .

type-qualifier declaration-specifiers opt

attribute-seq: 1* attribute-seq is Microsoft Specific *1
attribute attribute-seq opt

attribute : one of 1* Microsoft Specific *1
__ fastcall __ asm

__ based

__ cdecl

in it-de clara tor-list :
init-declarator

__ inline

__ stdcall

init-declarator-list , init-declarator
init-declarator :

declarator
declarator = initializer 1* For scalar initialization *1

storage-class-specifier :
auto
register
static
extern
typedef
__ declspec (extended-decl-modifier-seq) 1* Microsoft Specific *1

type-specifier:
void
char
short
int
__ intS
__ int16
__ int32
__ int64

1* Microsoft Specific *1
1* Microsoft Specific *1
1* Microsoft Specific *1
1* Microsoft Specific *1

Appendix A C Language Syntax Summary

long
float
double
signed
unsigned
struct-or-union-speciJier
enum-specifier
typedef-name

type-qualifier:
const
volatile

declarator:
pointer opt direct-declarator

direct-declarator:
identifier
(declarator)
direct-declarator [constant-expression opt]

direct-declarator (parameter-type-list) /* New-style declarator */
direct-declarator (identifier-list opt) /* Obsolete-style declarator */

pointer:
* type-qualifier-list opt

* type-qualifier-list opt pointer
parameter-type-list : /* The parameter list */

parameter-list
parameter-list, •••

parameter-list:
parameter-declaration
parameter-list, parameter-declaration

type-qualifier-list:
type-qualifier
type-qualifier-list type-qualifier

enum-specifier :
enum identifier opt { enumerator-list}
enum identifier

enumerator-list:
enumerator
enumerator-list, enumerator

enumerator:
enumeration-constant
enumeration-constant = constant-expression

enumeration-constant:
identifier

struct-or-union-specifier :
struct-or-union identifier opt { struct-declaration-list }
struct-or-union identifier

185

C Language Reference

186

struct-or-union :
struct
union

struct-declaration-list :
struct-declaration
struct-declaration-list struct-declaration

struct-declaration :
specifier-qualifier-list struct-declarator-list ;

specifier-qualifier-list:
type-specifier specifier-qualifier-list opt

type-qualifier specifier-qualifier-list opt

struct-declarator-list :
struct-declarator
struct-declarator-list , struct-declarator

struct-declarator :
declarator
type-specifier declarator opt: constant-expression

parameter-declaration :
declaration-specifiers declarato r /* Named declarator */
declaration-specifiers abstract-declarator opt /* Anonymous declarator */

identifier-list: /* For old-style declarator *1
identifier
identifier-list, identifier

abstract-declarator: 1* Used with anonymous declarators */
pointer
pointer opt direct-abstract-declarator

direct-abstract-declarator :
(abstract-declarator)
direct-abstract-declarator opt [constant-expression opt]

direct-abstract-declarator opt (parameter-type-list opt)

initializer :
assignment-expression
{ initializer-list }
{ initializer-list , }

initializer-list :
initializer
initializer-list , initializer

type-name:

/* For aggregate initialization */

specifier-qualifier-list abstract-declarator opt

typedef-name :
identifier

extended-decl-modifier-seq: /* Microsoft Specific */
extended-decl-modifier opt

extended-decl-modifier-seq extended-decl-modifier

extended-decl-modifier :
thread
naked
dllimport
dllexport

Statements
statement:

labeled-statement
compound-statement
expression-:statement
selection-statement
iteration-statement
jump-statement
try-except-statement
try-jinally-statement

jump-statement:
goto identifier;
continue;
break;
return expression opt;

compound-statement:

1* Microsoft Specific *1

1* Microsoft Specific *1
1* Microsoft Specific *1

{ declaration-list opt statement-list opt}

declaration-list:
declaration
declaration-list declaration

statement-list:
statement
statement-list statement

expression-statement:
expression opt;

iteration-statement:
while (expression) statement
do statement while (expression);

Appendix A C Language Syntax Summary

for (expression opt; expression opt; expression opt) statement
selection-statement:

if (expression) statement
if (expression) statement else statement
switch (expression) statement

labeled-statement:
identifier: statement
case constant-expression: statement
default: statement

187

C Language Reference

try-except-statement: 1* Microsoft Specific *1
__ try compound-statement
__ except (expression) compound-statement

try-finally-statement : 1* Microsoft Specific *1
__ try compound-statement
__ finally compound-statement

External Definitions

188

translation-unit:
external-declaration
translation-unit external-declaration

external-declaration: 1* Allowed only at external (file) scope *1
function-definition
declaration

function-definition: 1* Declarator here is the function declarator *1
declaration-specifiers opt declarator declaration-list opt compound-statement

APPENDIX B

Implementation-Defined Behavior

ANSI X3.159-1989, American National Standardfor Information Systems
Programming Language-C, contains an appendix called "Portability Issues."
The ANSI appendix lists areas of the C language that ANSI leaves open to each
particular implementation. This appendix describes how Microsoft C handles
these implementation-defined areas of the C language.

This appendix follows the same order as the ANSI appendix. Each item covered
includes references to the ANSI chapter and section that explains the
implementation-defined behavior.

Note This appendix describes the U.S. English-language version of the C compiler only.
Implementations of Microsoft C for other languages may differ slightly.

Translation: Diagnostics
ANSI 2.1.1.3 How a diagnostic is identified

Microsoft C produces error messages in the form:

filename(line-number) : diagnostic Cnumber message

where filename is the name of the source file in which the error was encountered;
line-number is the line number at which the compiler detected the error; diagnostic
is either "error" or "warning"; number is a unique four-digit number (preceded by
a C, as noted in the syntax) that identifies the error or warning; message is an
explanatory message.

189

C Language Reference

Environment
Arguments to main

ANSI 2.1.2.2.1 The semantics of the arguments to main

In Microsoft C, the function called at program startup is called main. There is
no prototype declared for main, and it can be defined with zero, two, or three
parameters:

int main(void)
int main(int argc, char *argv[])
int main(int argc, char *argv[], char *envp[])

The third line above, where main accepts three parameters, is a Microsoft extension
to the ANSI C standard. The third parameter, envp, is an array of pointers to
environment variables. The envp array is terminated by a null pointer. See "The
main Function and Program Execution" on page 27 in Chapter 2 for more
information about main and envp.

The variable argc never holds a negative value.

The array of strings ends with argv[argc], which contains a null pointer.

All elements of the argv array are pointers to strings.

A program invoked with no command-line arguments will receive a value of one
for argc, as the name of the executable file is placed in argv[O]. (In MS-DOS
versions prior to 3.0, the executable-file name is not available. The letter "c" is
placed in argv[O].) Strings pointed to by argv[1] through argv[argc -1] represent
program parameters.

The parameters argc and argv are modifiable and retain their last-stored values
between program startup and program termination.

Interactive Devices
ANSI 2.1.2.3 What constitutes an interactive device

Microsoft C defines the keyboard and the display as interactive devices.

190

Appendix B Implementation-Defined Behavior

Identifiers
Significant Characters Without External Linkage

ANSI 3.1.2 The number of significant characters without external linkage

Identifiers are significant to 247 characters. The compiler does not restrict the
number of characters you can use in an identifier; it simply ignores any characters
beyond the limit.

Significant Characters with External Linkage
ANSI3.1.2 The number of significant characters with external linkage

Identifiers declared extern in programs compiled with Microsoft C are significant
to 247 characters. You can modify this default to a smaller number using the IH
(restrict length of external names) option.

Uppercase and Lowercase
ANSI 3.1.2 Whether case distinctions are significant

Microsoft C treats identifiers within a compilation unit as case sensitive.

The Microsoft linker is case sensitive. You must specify all identifiers consistently
according to case.

Characters
The ASCII Character Set

ANSI 2.2.1 Members of source and execution character sets

The source character set is the set of legal characters that can appear in source files.
For Microsoft C, the source character set is the standard ASCII character set.

Warning Because keyboard and console drivers can remap the character set, programs
intended for international distribution should check the country code.

191

C Language Reference

Multibyte Characters
ANSI 2.2.1.2 Shift states for multibyte characters

Multibyte characters are used by some implementations, including Microsoft C,
to represent foreign-language characters not represented in the base character set.
However, Microsoft C does not support any state-dependent encodings. Therefore,
there are no shift states. See "Multibyte and Wide Characters" on page 7 in Chapter 1
for more information.

Bits per Character
ANSI 2.2.4.2.1 Number of bits in a character

The number of bits in a character is represented by the manifest constant
CHAR_BIT. The LIMITS.H file defines CHAR_BIT as 8.

Character Sets
ANSI 3.1.3.4 Mapping members of the source character set

The source character set and execution character set include the ASCII characters
listed in Table B.l. Escape sequences are also shown in the table.

Table B.1 Escape Sequences

Escape Sequence Character ASCII Value

\a Alertlbell 7

\b Backspace 8

\f Forrnfeed 12

\n Newline 10

\r Carriage return 13

\t Horizontal tab 9

\v Vertical tab 11

\" 'Double quotation. 34

\' Single quotation 39

\\ Backslash 92

Unrepresented Character Constants

192

ANSI 3.1.3.4 The value of an integer character constant that contains a character or escape
sequence not represented in the basic execution character set or the extended character set
for a wide character constant

All character constants or escape sequences can be represented in the extended
character set.

Appendix B Implementation-Defined Behavior

Wide Characters
ANSI 3.1.3.4 The value of an integer character constant that contains more than one
character or a wide character constant that contains more than one multibyte character

The regular character constant, "ab" has the integer value (int)Ox6162. When
there is more than one byte, previously read bytes are shifted left by the value of
CHAR_BIT and the next byte is compared using the bitwise-OR operator with
the low CHAR_BIT bits. The number of bytes in the multibyte character constant
cannot exceed sizeof(int), which is 4 for 32-bit target code.

The multibyte character constant is read as above and this is converted to a
wide-character constant using the mbtowc run-time function. If the result is not a
valid wide-character constant, an error is issued. In any event, the number of bytes
examined by the mbtowc function is limited to the value of MB_ CUR_MAX.

Converting Multibyte Characters
ANSI 3.1.3.4 The current locale used to convert multibyte characters into corresponding
wide characters (codes) for a wide character constant

The current locale is the "e" locale by default. It can be changed with the setlocale
library routine. The LC_ CTYPE category of the current locale sets the current
working code page, which determines correspondence and conversion between the
multibyte and wide-character sets. The mbstowcs, wcstombs, mbtowc, and wctomb
library routines provide direct mappings between the multibyte and wide-character
sets. Also, many of the stream routines, such as the print, scan, get, and put families,
automatically provide mappings between these two character sets.

Range of char Values
ANSI3.2.1.1 Whether a "plain" char has the same range of values as a signed char or an
unsigned char

All signed character values range from -128 to 127. All unsigned character values
range from 0 to 255.

The /J compiler option changes the default from signed to unsigned.

193

C Language Reference

Integers
Range of Integer Values

ANSI 3.1.2.5 The representations and sets of values of the various types of integers

Integers contain 32 bits (four bytes). Signed integers are represented in
two's-complement form. The most-significant bit holds the sign: 1 for negative, 0
for positive and zero. The values are listed below:

Type

unsigned short

signed short

unsigned long

signed long

Minimum and Maximum

o to 65535

-32768 to 32767

o to 4294967295

-2147483648 to 2147483647

Demotion of Integers
ANSI 3.2.1.2 The result of converting an integer to a shorter signed integer, or the result of
converting an unsigned integer to a signed integer of equal length, if the value cannot be
represented

When a long integer is cast to a short, or a short is cast to a char, the least-significant
bytes are retained.

For example, this line

short x = (short)0x12345678L;

assigns the value Ox5678 to x, and this line

char y = (char)0x1234;

assigns the value Ox34 to y.

When signed variables are converted to unsigned and vice versa, the bit patterns
remain the same. For example, casting -2 (OxFE) to an unsigned value yields 254
(also OxFE).

Signed Bitwise Operations

194

ANSI 3.3 The results of bitwise operations on signed integers

Bitwise operations on signed integers work the same as bitwise operations on
unsigned integers. For example, -16 & 99 can be expressed in binary as

11111111 11110000
& 00000000 01100011

00000000 01100000

The result of the bitwise AND is 96.

Appendix B Implementation-Defined Behavior

Remainders
ANSI 3.3.5 The sign of the remainder on integer division

The sign of the remainder is the same as the sign of the dividend. For example,

50 / -6 == -8
50 % -6 == 2

-50 / 6 == -8
-50 % 6 == -2

Right Shifts
ANSI3.3.7 The result of a right shift of a negative-value signed integral type

Shifting a negative value to the right yields half the absolute value, rounded down.
For example, -253 (binary 11111111 00000011) shifted right one bit produces -127
(binary 1111111110000001). A positive 253 shifts right to produce +126.

Right shifts preserve the sign bit. When a signed integer shifts right, the
most-significant bit remains set. When an unsigned integer shifts right, the
most-significant bit is cleared.

If OxFOOO is unsigned, the result is Ox7800.

If OxFOOOOOOO is signed, a right shift produces OxF8000000. Shifting a positive
number right 32 times produces OxFOOOOOOO. Shifting a negative number right
32 times produces OxFFFFFFFF.

Floating -Point Math
Values

ANSI 3.1.2.5 The representations and sets of values of the various types of floating-point
numbers

The float type contains 32 bits: 1 for the sign, 8 for the exponent, and 23 for the
mantissa. Its range is +/- 3.4E38 with at least 7 digits of precision.

The double type contains 64 bits: 1 for the sign, 11 for the exponent, and 52 for the
mantissa. Its range is +/- 1.7E308 with at least 15 digits of precision.

The long double type contains 80 bits: 1 for the sign, 15 for the exponent, and 64
for the mantissa. Its range is +/- 1.2E4932 with at least 19 digits of precision. With
the Microsoft C compiler, the representation of type long double is identical to
type double.

195

C Language Reference

Casting Integers to Floating-Point Values
ANSI 3.2.1.3 The direction of truncation when an integral number is converted to a
floating-point number that cannot exactly represent the original value

When an integral number is cast to a floating-point value that cannot exactly
represent the value, the value is rounded (up or down) to the nearest suitable value.

For example, casting an unsigned long (with 32 bits of precision) to a float (whose
mantissa has 23 bits of precision) rounds the number to the nearest multiple of 256.
The long values 4,294,966,913 to 4,294,967,167 are all rounded to the float value
4,294,967,040.

Truncation of Floating-Point Values
ANSI 3.2.1.4 The direction of truncation or rounding when a floating-point number is converted
to a narrower floating-point number

When an underflow occurs, the value of a floating-point variable is rounded down to
zero. An overflow may cause a run-time error or it may produce an unpredictable
value, depending on the optimizations specified.

Arrays and Pointers
Largest Array Size

ANSI 3.3.3.4, 4.1.1 The type of integer required to hold the maximum size of an array-that is,
the size of size_t

The size_t typedef is an unsigned int with the range OxOOOOOOOO to Ox7CFFFFFF.

Pointer Subtraction
ANSI 3.3.6, 4.1.1 The type of integer required to hold the difference between two pointers to
elements of the same array, ptrdifCt

A ptrdiff_t is a signed int in the range -4,294,967,296 to 4,294,967,295.

Registers: Availability of Registers

196

ANSI 3.5.1 The extent to which objects can actually be placed in registers by use of the
register storage-class specifier

The 32-bit compiler does not honor user requests for register variables. Instead, it
makes it own choices when optimizing.

Appendix B Implementation-Defined Behavior

Structures, Unions, Enumerations,
and Bit Fields
Improper Access to a Union

ANSI 3.3.2.3 A member of a union object is accessed using a member of a different type

If a union of two types is declared and one value is stored, but the union is accessed
with the other type, the results are unreliable.

For example, a union of float and int is declared. A float value is stored, but the
program later accesses the value as an iot. In such a situation, the value would
depend on the internal storage of float values. The integer value would not be
reliable.

Padding and Alignment of Structure Members
ANSI 3.5.2.1 The padding and alignment of members of structures and whether a bit field
can straddle a storage-unit boundary

Structure members are stored sequentially in the order in which they are declared:
the first member has the lowest memory address and the last member the highest.

Every data object has an alignment-requirement. The alignment-requirement for
all data except structures, unions, and arrays is either the size of the object or the
current packing size (specified with either /Zp or the pack pragma, whichever is
less). For structures, unions, and arrays, the alignment-requirement is the largest
alignment-requirement of its members. Every object is allocated an offset so that

offset % alignment-requirement == 0

Adjacent bit fields are packed into the same 1-,2-, or 4-byte allocation unit if the
integral types are the same size and if the next bit field fits into the current allocation
unit without crossing the boundary imposed by the common alignment requirements
of the bit fields.

Sign of Bit Fields
ANSI 3.5.2.1 Whether a "plain" int field is treated as a signed int bit field or as an unsigned int
bit field

Bit fields can be signed or unsigned. Plain bit fields are treated as signed.

197

C Language Reference

Storage of Bit Fields
ANSI 3.5.2.1 The order of allocation of bit fields within an int

Bit fields are allocated within an integer from least-significant to most-significant bit.
In the following code

struct mybitfields
{

unsigned a 4;
unsigned b 5;
unsigned c 7;

} test;

void main(void
{

test.a = 2;
test.b = 31;
test. c = 0;

the bits would be arranged as follows:

00000001 11110010
cccccccb bbbbaaaa

Since the 80x86 processors store the low byte of integer values before the high byte,
the integer OxOlF2 above would be stored in physical memory as OxF2 followed
by OxOl.

The enum type
ANSI 3.5.2.2 The integer type chosen to represent the values of an enumeration type

A variable declared as eoum is an iot.

Qualifiers: Access to Volatile Objects
ANSI 3.5.5.3 What constitutes an access to an object that has volatile-qualified type

Any reference to a volatile-qualified type is an access.

Declarators: Maximum number

198

ANSI 3.5.4 The maximum number of declarators that can modify an arithmetic, structure,
or union type

Microsoft C does not limit the number of declarators. The number is limited only
by available memory.

Appendix B Implementation-Defined Behavior

Statements: Limits on Switch Statements
ANSI 3.6.4.2 The maximum number of case values in a switch statement

Microsoft C does not limit the number of case values in a switch statement.
The number is limited only by available memory.

Preprocessing Directives
Character Constants and Conditional Inclusion

ANSI 3.8.1 Whether the value of a single-character character constant in a constant
expression that controls conditional inclusion matches the value of the same character constant
in the execution character set. Whether such a character constant can have a negative value

The character set used in preprocessor statements is the same as the execution
character set. The preprocessor recognizes negative character values.

Including Bracketed Filenames
ANSI 3.8.2 The method for locating includable source files

For file specifications enclosed in angle brackets, the preprocessor does not search
directories of the parent files. A "parent" file is the file that has the #include directive in
it. Instead, it begins by searching for the file in the directories specified on the compiler
command line following II. If the II option is not present or fails, the preprocessor uses
the INCLUDE environment variable to find any include files within angle brackets. The
INCLUDE environment variable can contain multiple paths separated by semicolons
(;). If more than one directory appears as part of the II option or within the INCLUDE
environment variable, the preprocessor searches them in the order in which they appear.

Including Quoted Filenames
ANSI 3.8.2 The support for quoted names for includable source files

If you specify a complete, unambiguous path specification for the include file between
two sets of double quotation marks (" "), the preprocessor searches only that path
specification and ignores the standard directories.

For include files specified as #include "path-spec", directory searching begins
with the directories of the parent file, then proceeds through the directories of any
grandparent files. Thus, searching begins relative to the directory containing the source
file currently being processed. If there is no grandparent file and the file has not been
found, the search continues as if the filename were enclosed in angle brackets.

199

C Language Reference

Character Sequences
ANSI 3.8.2 The mapping of source file character sequences

Preprocessor statements use the same character set as source file statements with the
exception that escape sequences are not supported.

Thus, to specify a path for an include file, use only one backslash:

/linclude "pathllpath2/myfile"

Within source code, two backslashes are necessary:

fil = fopen("pathl\\path2\\myfile", "rt");

Pragmas
ANSI 3.8.6 The behavior on each recognized #pragma directive

The following pragmas are defined for the Microsoft C compiler:

alloc_text data_seg include_alias

auto_inline function intrinsic

check_stack hdrstop message

code_seg inline_depth optimize

comment inline_recursion pack

Default Date and Time

setlocale

warning

ANSI 3.8.8 The definitions for _DATE_ and _ TIME_ when, respectively, the date and time of
translation are not available

When the operating system does not provide the date. and time of translation, the
default values for _DATE_ and _TIME_ are May 03 1957 and 17: 00: 00".

Library Functions
NULL Macro

ANSI4.1.S The null pointer constant to which the macro NULL expands

Several include files define the NULL macro as ((v 0; d *) 0) .

200

Appendix B Implementation-Defined Behavior

Diagnostic Printed by the assert Function
ANSI 4.2 The diagnostic printed by and the termination behavior of the assert function

The assert function prints a diagnostic message and calls the abort routine if the
expression is false (0). The diagnostic message has the form

Assertion failed: expression, fileJilename, line linenumber

where filename is the name of the source file and linenumber is the line number of
the assertion that failed in the source file. No action is taken if expression is true
(nonzero).

Character Testing
ANSI4.3.1 The sets of characters tested for by the isalnum, isalpha, iscntrl, islower,
isprint, and isupper functions

The following list describes these functions as they are implemented by the Microsoft
C compiler.

Function

isalnum

isalpba

iscntrl

islower

isprint

isupper

Tests For

Characters 0-9, A-Z, a-z
ASCII 48-57,65-90,97-122

Characters A - Z, a-z
ASCII 65-90, 97-122

ASCII 0-31, 127

Characters a-z
ASCII 97-122

Characters A-Z, a-z, 0-9, punctuation, space
ASCII 32-126

Characters A-Z
ASCII 65-90

Domain Errors
ANSI4.S.1 The values returned by the mathematics functions on domain errors

The ERRNO.H file defines the domain error constant ED OM as 33.

Underflow of Floating-Point Values
ANSI 4.S.1 Whether the mathematics functions set the integer expression errno to the value
of the macro ERANGE on underflow range errors

A floating-point underflow does not set the expression errno to ERANGE. When
a value approaches zero and eventually underflows, the value is set to zero.

201

C Language Reference

The fmod Function
ANSI 4.5.6.4 Whether a domain error occurs or zero is returned when the fmod function has
a second argument of zero

When the fmod function has a second argument of zero, the function returns zero.

The signal Function
ANSI4.7.1.1 The set of signals for the signal function

The first argument passed to signal must be one of the symbolic constants described
in the Run-Time Library Reference for the signal function. The information in the
Run-Time Library Reference also lists the operating mode support for each signal.
The constants are also defined in SIGNAL.H.

Default Signals
ANSI 4.7.1.1 If the equivalent of signal (sig, SIG_DFL) is not executed prior to the call of a
signal handler, the blocking of the signal that is performed

Signals are set to their default status when a program begins running.

Terminating Newline Characters
ANSI 4.9.2 Whether the last line of a text stream requires a terminating newline character

Stream functions recognize either new line or end of file as the terminating character
for a line.

Blank Lines
ANSI 4.9.2 Whether space characters that are written out to a text stream immediately before
a newline character appear when read in

Space characters are preserved.

Null Characters

202

ANSI 4.9.2 The number of null characters that can be appended to data written to a binary
stream

Any number of null characters can be appended to a binary stream.

Appendix B Implementation-Defined Behavior

File Position in Append Mode
ANSI 4.9.3 Whether the file position indicator of an append mode stream is initially positioned
at the beginning or end of the file

When a file is opened in append mode, the file-position indicator initially points to the
end of the file.

Truncation of Text Files
ANSI 4.9.3 Whether a write on a text stream causes the associated file to be truncated beyond
that point

Writing to a text stream does not truncate the file beyond that point.

File Buffering
ANSI 4.9.3 The characteristics of file buffering

Disk files accessed through standard I/O functions are fully buffered. By default, the
buffer 40lds 512 bytes.

Zero-Length Files
ANSI 4.9.3 Whether a zero-length file actually exists

Files with a length of zero are permitted.

Filenames
ANSI 4.9.3 The rules for composing valid file names

A file specification can include an optional drive letter (always followed by a colon),
a series of optional directory names (separated by backslashes), and a filename.

Filenames and directory names can contain up to eight characters followed by a period
and a three-character extension. Case is ignored. The wildcards * and ? are not
permitted within the name or extension.

File Access Limits
ANSI 4.9.3 Whether the same file can be open multiple times

Opening a file that is already open is not permitted.

203

C Language Reference

Deleting Open Files
ANSI 4.9.4.1 The effect of the remove function on an open file

The remove function deletes a file, even if the file is open.

Renaming with a Name That Exists
ANSI 4.9.4.2 The effect if a file with the new name exists prior to a call to the rename
function

If you attempt to rename a file using a name that exists, the rename function fails
and returns an error code.

Reading Pointer Values
ANSI 4.9.6.2 The input for %p conversion in the fscanf function

When the %p format character is specified, the fscanf function converts pointers
from hexadecimal ASCII values into the correct address.

Reading Ranges
ANSI 4.9.6.2 The interpretation of a dash (-) character that is neither the first nor the last
character in the scanlist for % [conversion in the fscanf function

The following line

fscanf(fileptr, "%[A-Z]", strptr);

reads any number of characters in the range A-Z into the string to which strptr
points.

File Position Errors

204

ANSI 4.9.9.1, 4.9.9.4 The value to which the macro errno is set by the fgetpos or ftell
function on failure

When fgetpos or ftell fails, errno is set to the manifest constant EINVAL if the
position is invalid or EBADF if the file number is bad. The constants are defined
inERRNO.H.

Appendix B Implementation-Defined Behavior

Messages Generated by the perror Function
ANSI 4.9.10.4 The messages generated by the perror function

The perror function generates these messages:

o Error 0
1
2 No such file or directory
3
4
5
6
7 Arg list too long
8 Exec format error
9 Bad file number
10
11
12 Not enough core
13 Permission denied
14
15
16
17 File exists
18 Cross-device link
19
20
21
22 Invalid argument
23
24 Too many open files
25
26
27
28 No space left on device
29
30
31
32
33 Math argument
34 Result too large
35
36 Resource deadlock would occur

Allocating Zero Memory
ANSI4.10.3 The behavior of the calloc, malloc, or realloc function if the size requested
is zero

The caIIoc, maIIoc, and realloc functions accept zero as an argument. No actual
memory is allocated, but a valid pointer is returned and the memory block can be
modified later by realloc.

205

C Language Reference

The abort Function
ANSI 4.10.4.1 The behavior of the abort function with regard to open and temporary files

The abort function does not close files that are open or temporary. It does not flush
stream buffers.

The atexit Function
ANSI 4.10.4.3 The status returned by the atexit function if the value of the argument is other
than zero, EXIT_SUCCESS, or EXIT_FAILURE

The atexit function returns zero if successful, or a nonzero value if unsuccessful.

Environment Names
ANSI 4.10.4.4 The set of environment names and the method for altering the environment list
used by the getenv function

The set of environment names is unlimited.

To change environment variables from within a C program, call the _putenv
function. To change environment variables from the command line in Windows 95
or Windows NT, use the SET command (for example, SET LIB = D:\ LIBS).

Environment variables set from within a C program exist only as long as their
host copy of the operating system command shell is running (CMD.EXEin
Windows NT and COMMAND.COM in Windows 95). For example, the line

system(SET LIB - D:\LIBS);

would run a copy of the Windows NT command shell (CMD.EXE), set the
environment variable LIB, and return to the C program, exiting the secondary
copy of CMD.EXE. Exiting that copy of CMD.EXE removes the temporary
environment variable LIB.

This example also runs on the Windows 95 platform.

Likewise, changes made by the _putenv function last only until the program ends.

The system Function

206

ANSI 4.10.4.5 The contents and mode of execution of the string by the system function

The system function executes an internal operating system command, or an .EXE,
.COM (.CMD in Windows NT) or .BAT file from within a C program rather than
from the command line.

Appendix B Implementation-Defined Behavior

The system function finds the command interpreter, which is typically CMD.EXE
in the Windows NT operating system or COMMAND.COM in Windows 95. The
system function then passes the argument string to the command interpreter.

The strerror Function
ANSI 4.11.6.2 The contents of the error message strings returned by the strerror function

The strerror function generates these messages:

o
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

Error 0

No such file or ~irectory

Arg list too long
Exec format error
Bad file number

Not enough core
Permission denied

File exists
18 Cross-device link
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

Invalid argument

Too many open files

No space left on device

Math argument
Result too large

Resource deadlock would occur

207

C Language Reference

The Time Zone
ANSI4.12.1 The local time zone and Daylight Savings Time

The local time zone is Pacific Standard Time. Microsoft C supports Daylight
Savings Time.

The clock Function

208

ANSI 4.12.2.1 The era for the clock function

The clock function's era begins (with a value of 0) when the C program starts
to execute. It returns times measured in 1/CLOCKS_PER_SEC (which equals
111000 for Microsoft C).

- (arithmetic negation operator) 110
-- (decrement operator) 108
- (subtraction operator) 114-115
- > (member-selection operator) 107
! (logical negation operator) 110
" " (double quotation marks), usage in command-line

arguments 30
(number sign), in preprocessing directives 21
% (remainder operator) 113
%= (remainder assignment operator) 123
& (address-of operator)

described 109
example 110
register objects 46

& (bitwise-AND operator) 120
&& (logical-AND operator)

described 121
sequence points 101

&= (bitwise-AND assignment operator) 123
() (parentheses)

enclosing expression arguments 144
in abstract declarators 71
in declarations 53
in function declarations 71
specifying evaluation order 95

* (asterisk), in declarations 53
* (indirection operator)

described 109
example 110
I-value expressions 95

* (multiplicative operator) 113
* (wildcard) in filenames and paths 30
*= (multiplication assignment operator) 123
, (comma)

in constant expressions 78
in initializer lists 78
sequential evaluations 101, 125

, ... (ellipsis notation)
indicating variable number of arguments 168
terminating partial parameter list 175

Index

. (period), member-selection operator 107
I (division operator) 113
1* *1 (comment delimiters) 2
II (comment delimiters) 3
1= (division assignment operator) 123
: (colon) in bit-field declarations 61
:? (conditional-expression operator) 101, 122
; (semicolon)

null statement 143-144
statement terminator 136

? (wildcard) in filenames and paths 30
??' (trigraph) translates as II character 8
??- (trigraph) translates as ,.., character 8
??! (trigraph) translates as I character 8
??(trigraph) translates as [character 8
??) (trigraph) translates as] character 8
??I (trigraph) translates as \\ character 8
??< (trigraph) translates as { character 8
??= (trigraph) translates as # character 8
??> (trigraph) translates as } character 8
[] (brackets)

in arrays 104
in declarations 53, 66, 71

\ (backslash), usage in command-line arguments 30
\ (backslash, line-continuation character) 17, 19
\" (escape sequence, double quotation mark) 30
\? (escape sequence, literal question mark) 17
\? (escape sequence, literal question mark) 8
\\ \ (escape sequence, backslash) 17
\\' (escape sequence, single quotation mark) 17
\" (escape sequence, double quotation mark) 17
II (bitwise-exclusive-OR operator) 119-120
"= (bitwise-exclusive-OR assignment operator) 123
__ (double underscore), identifier name prefix 4,6
{ } (braces)

__ asm block delimiters 158
compound statement delimiters 26, 136
in initializer lists 79

I (bitwise-inclusive-OR operator) 119-120

209

Index

210

II (logical-OR operator)
described 121
sequence points 101

1= (bitwise-inclusive-OR assignment operator) 123
,..., (bitwise-complement operator) 110
+ (addition operator) 114-115
+ (unary plus operator) 110
++ (increment operator) 108
+= (addition assignment operator) 123
+= (compound assignment operator) 124
« (bitwise left-shift operator) 116
«= (left-shift assignment operator) 123
=-- (decrement operator) 108
= (simple assignment operator) 124
-= (subtraction assignment operator) 123
== (equality operator) 117-119
» (bitwise right-shift operator) 116
»= (right-shift assignment operator) 123

A
\a (escape sequence, bell) 17
abort function 206
Abstract declarators

described 71
example 71
in parameter declarations 171

Accessing files 203
Addition assignment operator (+=) 123
Addition operator (+) 114-116
Additive operators, syntax 114
Addresses

access with address-of operator (&) 109
I-values 95
storing 70

Address-of operator (&)
described 110
with register objects 46

Aggregate types, initializing 77-78, 80
Alarm See Bell character escape sequence
Alignment

bit fields 61
structure members 63

Allocating memory
dynamic 33
zero-sized 205

Anonymous structures 60
ANSI C standard 189, xi
ANSI conformance xii

Apostrophe (') See Escape sequences
Append mode, files 203
argc parameter, passing information to main 29
Arguments

ANSI compatibility 190
command-line 28, 30, 32
defined 28, 167
function See Function arguments
to main 190

argv parameters, passing information to main 29
Arithmetic conversions

See also Usual arithmetic conversions
additive operators 115
binary operators, steps 102
example 103
logical operators 121
multiplicative operators 113
summary of 102

Arithmetic negation (-) operator 110
Arithmetic operators, unary (table) 110
Arithmetic types, defined 81
Array declarations

brackets ([]) in 53,67,71
elements 66
example 67-68
maximum size 68
multidimensional 67
specifying array size 66
syntax 66-67

Array type, incomplete 85
Arrays

as last member of structure 60
character, initializing 80
declaring 53,67-68
defined 52
determining size of 61, 77
element types 19
errors 77
in expressions 94
in structures 112
initializing 77-78, 80
maximum size 196
multidimensional 67, 105 -1 06
of pointers 67
one-dimensional 104
pointer arithmetic 115-116
pointer comparison 118
postfix expressions 104-105
size, maximum 68

Arrays (continued)
storing 67-68
subscript expressions 104

ASCII character sets 191
__ asm keyword, invoking inline assembler 158
Assembler, inline See Inline assembler
assert function 201
Assignment conversions

See also Type conversions 124
compound assignment operator 124
described 126
floating-point types 130
operators 124
other types 132
pointer types 131
signed integral types 126
unsigned integral types 128

Assignment operations, side effects 97
Assignment operators

compound 99
expression evaluation 124
syntax 123
table 123

Associativity
C operators (table) 100
defined 100
operator types C 99

Asterisk (*)
in declarations 53
wildcard in filenames 30

atexit function 206
auto storage class

default 45
lifetime 34
local variables 169
visibility 34

auto storage class
local variables 45

Automatic identifiers, storage allocation for 33
Automatic variables

allocating 42
initializing 46, 75
visibility of 46

B
\b (escape sequence, backspace 17
Backslash (\\) escape sequence 17
Backslash (\\) escape sequence (\\) 17

Index

Backspace (\\b) escape sequence 17
Based addressing 70-71
__ based keyword 70
Based pointers 70
Bell character (\\a) escape sequence 17
Binary expressions 99
Binary numbers, floating point 83-84
Binary operators, defined 99
Binding

See also Precedence
defined 100
expressions 101

Bit fields
colon (:) in declarations 61
declaring 61
defined 61
example 62
signed 197
storage allocation 198
storing 62

Bitwise left-shift operator «<) 116
Bitwise operators

described 116
example 120
listed 120
overflow conditions 117
signed integers 194
syntax 119
using 117

Bitwise right-shift operator (») 116
Bitwise shifts, integers 117
Bitwise-AND assignment operator (&=) 123
Bitwise-AND operator (&) 120
Bitwise-complement operator (-) 110
Bitwise-exclusive-OR assignment operator ("=) 123
Bitwise-exclusive-OR operator (A) 119-120
Bitwise-inclusive-OR assignment operator (1=) 123
Bitwise-inclusive-OR operator (I) 119-120
Block scope

identifiers 76
visibility 34

Blocks
See also Compound statements
defined 26
delimiters ({ }) 26
nesting 35

Braces ({ })
block delimiters 26
compound statement delimiters 136

211

Index

212

Braces ({ }) (continued)
enclosing __ asm blocks 158
in initializer lists 79

Brackets ([]) in array declarations 53, 66-67, 71
Branching operations See if statements; switch

statements
break statements

See also continue statements
example 136
in switch statements 145-146
syntax 136
terminating a for statement 140

Buffering files 203

c
"C" locale 193
Calling conventions, specifying 157
Calling functions 1 06
Calling variable number of arguments, example 175
Carriage-return escape sequence (\\r) 17
case labels in switch statements 145-146
Case sensitivity

defined 6
identifiers 191
specifying 7

case statements, maximum allowed 199
Casting integers to enumerations 57
Casts, type See Type casts
char type

changing default 51
conversion 127
storing integer value 81

Character arrays 80
Character constants, described 15
Character sets

compared 16
escape sequences 192
mapping 193
multibyte 192
preprocessing 199
source file 7, 200

Character types, wchar_t 7
Characters

ASCII compatibility 191
backs lash escape sequence (\\) 17
backspace escape sequence (\ \b) 17
bell escape sequence (\\a) 17
carriage-return escape sequence (\\r) 17

Characters (continued)
double-quotation-mark escape sequence (\\") 17
end-of-file indicator 4
escape sequences See Escape sequences
formfeed escape sequence (\\f) 17
hexadecimal 17 -18
horizontal tab escape sequence (\\t) 17
international 7
line-continuation (\\) 17, 19
multibyte 7, 193
new line (\\n) 17,202
nongraphic control 17
null 19,202,
octal escape sequences 17 -18
range of values 193
single-quotation-mark escape sequence (\\') 17
size in bits 192
spaces preserved 202
special 21
string literals 18
testing 201
types 16
vertical-tab escape sequence (\\v) 17
White-space 2, 17
wide 7,193

clock function 208
Colon (:), used in bitfield declarations 61
Comma (,)

in constant expressions 78
in initializer lists 78
operator See Sequential evaluation operator

Command-line arguments
ANSI requirements 29
interpreting 30
main function 28
parsing 30,31,32
_setargv function 30
syntax 28

Command-line processing, customizing 32
Comments 2-3
Compiler options

/H (restrict length of external names) 6
II (search directory for include files) 199
IJ (change default character type) 51,81, 193
fW 4 (setting warning level 4) 6
IZa (enable Microsoft extensions) 3,5,29
IZe (visibility of functions) 165
IZp (pack structure members) 63, 197

Compiling translation units 24

Complex declarators, intrepreting 72-74
Compound assignment expressions, evaluation 124
Compound assignment operator (+=) 124
Compound statements

See also Blocks
defined 26, 136
example 138
function definitions 156
repeating 140
syntax 137

Concatenating string literals 20
Conditional branching See if statements; switch

statements
Conditional compilation, testing code 3
Conditional expressions, sequence points 122
Conditional-expression operator (?:) 122-123
const type qualifier

identifiers, nonmodifiable I-values 95
pointers 52, 69
using 52
variables 51-52

Constant expressions 96-97
Constants

character 15, 192
defined 9
described 16-18
enumeration 56
floating-point 9-11
integer 12-13
integer, conversion rules 14
syntax 9, 179
types 94

continue statement 138
Conventions, syntax 177
Conversions

See also Type conversions
arithmetic 102
assignment 128, 130-132
char type 127
enumeration type 132
function call 133
integral types 129-130
pointer types 131-132
pointers 204
rules

arithmetic 102-103
floating-point types 130
integer constants 14

Conversions (continued)
rules (continued)

type conversions 126
unsigned integral types 128

signed integral types 126, 128-129
type cast 132

Creating types 87
CTRL+Z character (end-of-file indicator) 4
Current locale See Locale

D
Data types See Types
__ DATE __ predefined macro, default 200
Decimal

constants See Integer constants
defined 12

Declarations
arrays 66-68
automatic variables 46
bit fields 61
defined 25, 39-40
defining 41,43,45
enumerations 55-57
examples 46, 54
external See External
function prototypes 171
fundions See Function declarations
in declaration list 156
internal 42,46
placement in source file 137
pointers 68-70
referencing 41,43,45
specifying types 49-50
structures 58-63
syntax 40, 184
typedef See typedef declarations
union 63-66
variables See Variable declarations

Declarators
See also Identifiers
abstract 71, 171
complex 72-74
function 156
initializing 74-80
interpreting 72-74
maximum allowed 198
restrictions on use 54
syntax 52

Index

213

Index

214

Declaring
bit fields 61
const variables 52
pointers 69
thread-local variables, guidelines 90
variables See Variable declarations

Declaring functions 53
__ declspec storage-class specifier 41, 88
decrement operator, prefix (--) 108
Default labels in switch statements 145
Defaults

bit fields 63
Microsoft C extensions enabled 96
type specifiers 41

#define preprocessor directive, enumerations as an
alternative 55

Defining declarations 41, 43
Definitions

See also Function definitions
defined 25,39
external 43
serving as declarations 153
used as declarators 41

Deleting open files 204
Denormalized numbers 83-84
Derivedtypes,defined 39
Diagnostic messages See Error messages
Displaying nongraphic control characters 17
Division assignment operator (/=) 123
Division operator (I) 113
Divisor, integer remainder 195
dllexport storage-class attribute

dynamic-link libraries (DLLs) 158
overview 89
used with extern keyword 160
used with inline functions 160

dllimport storage-class attribute
dynamic-link libraries (DLLs) 158
overview 89
used with inline functions 160

DLLs
exporting functions to Windows, using

dllexport 158
exporting, importing 89

Documenting code, writing comments 2
Domain errors, math functions 201

double type
floating-point constants 10
format and precision 82
range 84

Double underscore C_), identifer name prefix 7
do-while statements

continue statements in 138
example 139
expression evaluation 139
syntax 139
terminating 136, 139

Dynamic memory allocation 33
Dynamic-link libraries See DLLs

E
Ellipsis notation (, ...)

indicating variable number of arguments 168
terminating partial parameter list 175

else clauses, nesting 143
Embedded structures 60
End-of-file indicator, CTRL+Z 4
Enumeration declarations

conversion 132
defined 55
example 56
types 49

Enumeration tags
name spaces 37
syntax 55

Enumerations
assigning values to members 56-57
casting 57
declarations See Enumeration declarations
declaring pointers to 69
defined 52
naming members 56
overriding default values 56
storing 55
syntax 55
types of 49,55, 198
unnamed 57

Environment variables
changing 206
COMSPEC 206

envp parameter 29,32
Epilog code

naked functions 162
writing 89, 163

Equality operators
example 119
list of 117
syntax 118

Error messages
assert function 201
Microsoft C error format 189
strerror function 207

Errors
arrays 77
file position 204
integer constants 15
math functions 201
messages 189
symbol redefinition 36

Escape sequences
described 16
hexadecimal notation 17
in string literals 19
list with ASCII values 192
octal notation 17
table 17

Evaluating expressions See Expression evaluation
Evaluation order, effect of parentheses 95
Example programs See Sample programs
__ except statements 148
Exception handling 148
_exec function 32
Execution character set, compared to source character

set 16
exit function, terminating programs 27
Expanding wildcard arguments 30
Exponents, floating-point variables 83
Export functions

module-definition (.DEF) files 158
specifying with dllexport and dllimport 158, 159

Exporting DLLs, dllexport 89
Expression evaluation

assignment operators 124
compound assignment expressions 124
conditional-expression operator 122
constants 96
example 102
function arguments 174
if statements 142
logical operators 101
order of operators 101
sequence points 97-98, 122
sequential evaluation operator (,) 125

Expression evaluation (continued)
short circuit 101, 121
side effects 97, 140
statements 136
subscript expressions 104-105
tokens 4

Expression statements 139-140
Expressions

binary 99
binding 101
conditional, sequence points 122
constant

defined 96-97
restricted 97
syntax 51

defined 93
evaluating 4
floating-point 10
function calls 171
infinite loops 141
I-value 95
member-selection 95, 106-107
operands 99
parentheses used in 95
primary 93
subscript 104-105
syntax 182
ternary 99
unary 99
void 50

Extended attribute syntax, __ declspec keyword 88
Extended storage-class attributes

dllexport 158
dllimport 158
naked 89
thread 90

Extended storage-class modifiers, dllexport and
dllimport 158

Index

Extensions, Microsoft-specific See Microsoft-specific
extensions

extern keyword
See also extern storage class
used with dllexport storage-class attribute 160

extern storage class
declarations 48
function definitions 156, 164, 165
linkage 36
rules for using 44

215

Index

216

extern storage class (continued)
syntax 43-44
visibility 34

External declarations
described 36, 42-45
example 44-45
functions 25,48
lifetime 34
placement of 42
storage-Class specifiers 43
using extern 44, 46
visibility of 43

External definitions
defined 43
syntax 188

Externallinkage 36,41,43, 165
External variables

initializing 75
static 43
visibility 46

F
\f (escape sequence, form feed 17
File buffering 203
File scope 26,34,43, 75, 165
Filenames

valid 203
wildcards 30

Files
access limits 203
append mode 203
buffering 203
end-of-file indicator 4
file position errors 204
header See Header (.H) files
include 24
naming restrictions 203
object 24
renaming 204
source 200
zero-length 203

float type
floating-point constants 10
format and precision 82
range 84

FLOAT.H header file, content of 10

Floating-point
constants

decimal point, using 10
IEEE format 82
naming 10
range limits 10-11
representation of 9
syntax 9
types 10

mantissas 84
numbers, storing as denomalized 83
numbers, storing as denormalized 83-84
range errors 201
representation 195
truncation 196
types

conversions 129-130
format and precision 82
listed 49
promoting 84
ranges 84
table of conversions 130
variables, declaring as 83-84

variables
described 83
promoting 84

fmod function 202
for statement

continue statements in 138
example 141
expression evaluation 140
syntax 140
terminating 136

Formal parameters See Parameters
Formfeed escape sequence (\\f) 17
fscanf function 204
Function arguments

argument to parameter correspondence 170
arithmetic conversions 174
defined 167
example 174-175
expression evaluation 174
function calls 106, 154
passed by value 173
passing pointers 173
syntax 173
type checking 171

Function body
See also Function definitions
compound-statement 156
defined 169

Function calls
arguments 106, 154
arithmetic conversions 133
conversions 133
example 173
expression evaluation 174
pointers to functions 172
postfix expressions 106
recursive 176
sequence points 171
side effects 97
syntax 106, 171
variable number of arguments 175

Function declarations
See also Declarations
abstract declarators as parameters 171
ANSI compliant 154
defined 153
dllexport attribute 158-159
dllimport attribute 158-159
example 26-27
extern 48
file scope 165
inline 157
naked attribute 162
obsolete declaration forms 154
parentheses in 53, 71
parentheses in 71
placement 42, 153
specifying calling convention 157
static 48
syntax 169
type specifiers 49,51
visibility 42

Function declarators 156
Function definitions

compound statement block 26
contents of 25
described 155
dllexport attribute 159
example 26-27
file scope 26
local variables 169
parameter list 155
return statement 169

Function definitions (continued)
return types 166-167
storage classes 156
syntax 155-156, 169
used as declarations 153

Function identifiers as addresses 94
Function parameters

abstract declarators 171
argument to parameter correspondence 171
arithmetic conversions 169
ellipsis notation 168-169
function-prototype scope 171
local lifetime 33
parameter list 168
parameter types 168
syntax 155, 167
type conversions 168
void 49-50

Function prototypes
See also Function declarations
ANSI compliant 171
argument to parameter correspondence 170
defined 25
scope 34
scope of parameters 171
syntax 155-156, 169
type conversion 133, 170
type-checking arguments 154, 171

Function return types
matching function call types 106
void 144

Function return values, example 166
Function scope 34
Functions

abort 206
assert 201
atexit 206
attributes See Function declarations
calling 106
clock 208
declarators 156
declaring 53
definitions See Function definitions
dllexport 158
dllimport 158
_exec '32
exit 27
exporting 158, 159
extern 48

Index

217

Index

218

Functions (continued)

G

external declarations 25,48
fmod 202
fscanf 204
headers 26
inline 42, 160
lifetime 33
linkage, external 165
main 190,27,29
malloc 33
naked 162
naming 44
nesting 43
perror 205
pointer 172
prototypes See Function prototypes
_putenv 206
recursive 176
return types

specifying 50
syntax 166
void 49

scope 34
_setargv 30, 32
_setenvp 32
signal 202
_spawn 32
specifying calling conventions 157
static 44,48
storage classes 156, 164
strerror 207
system 206
visibility 44,48, 165

IGd option, compiler 157
Generating faster code, inline functions 157
Global

declarations 26
identifiers 33
lifetime 33,42
variables 48

goto statements
example 142
exiting loops with 141
syntax 141
terminating for statements 140
transferring control 136

H
IH option, compiler 6
Header (.H) files

defined 24
FLOAT.H 10
LIMITS.H 14, 82
STDARGS.H 175
VARARGS.H 175

. Hexadecimal
constants See Integer constants
defined 12
escape sequences 17 -18

Horizontal-tab escape sequence (\\t) 17

/I option, compiler 199
Identifiers

See also Variables
arrays 94
attributes 34
block scope 34, 76
case sensitivity 6-7, 191
const 51
declared as a function 94
defined 5
described 7
enumeration tags 55
enumerator lists 56
external 33, 36
functions

prototype scope 34
scope 34

global 33
hiding names of 43
in compound statements 137
initializing 33
internal linkage 36
lifetime 33
linkage 7,25,36
local 33
I-values 95
name spaces 37
names

in different scopes 36
nested visibility 37
requiring __ (double underscore) prefix 6

Identifiers (continued)
naming

case sensitivity 7
floating-point constants 10
functions 44
integer constants 13
leading underscores 4, 6
restrictions on 5-6, 191
structure members 59

scope 7,34, 137
statement labels 141
storage class 33
storage duration 33
structure members 59
structure tags 58
syntax 6, 179
types 94
using 5
visibility 34

IEEE format, floating-point numbers 82
if statement 142-143
Implementation-defined behavior 189
Importing DLLs, dllimport 89
Include files

contents 24
search path 199

Incomplete types 85
Increment operator (++) 108
Indirection operator (*)

described 109
example 110
I-values 95
subscript expressions 105

Inequality operator (!=) 118
Initializations, example 76
Initializers

aggregate types 77
braces ({ }) in 79
defined 74
nesting 77

Initializing
aggregate types 77-78, 80
arrays 77-78,80
block scope identifiers 76
declarators 74-80
local variables 33
scalar types 75-76
strings 80
structures 77

Index

Initializing (continued)
syntax 75
variables

aggregate 77
auto 75
example.78-79
external 75
file scope 75
global 76
internal static 46
register 75
rules for 75
scalar 74
static 46, 75
string 80

Inline assembler, using 158
Inline functions

reasons to use 157
syntax 157
used with dllexport storage-class attribute 160
used with dllimport storage-class attribute 160
using 157

Institute of Electrical and Electronics Engineers See
IEEE format

int type
signed 49
size of 81

Integer constants 12-14
Integer division, remainder 195
Integers

converting 126, 128
demotion 194
enumerations 55, 198
limits 14
range of values 194
shifting 195
size of 81
storing 63, 81
types 13
widening 51

Integral promotion 126
Integral types

conversions 126, 128-130
listed 49

Interactive devices 190
Internal declarations 25,42,46
Internallinkage 36, 41, 43

219

Index

220

Internal variables
static 46
visibility 48

International characters 7
Interpreting command-line arguments 30
Interpreting complex declarators 72

J
IJ option, compiler 51, 81, 193

K
Keywords 4-5

L
Labeled statements 141
Labels

in case statements 145
names spaces 37
scope 34-

Leading underscores C_), identifier name prefix 4
__ leave statements 149, 151
Left-shift assignment operator «<=) 123
Left-shift operator «<) 116
Lexical scope See Scope
Lifetime

automatic (local) 42
defined 33
determining 41
functions 42
global 33, 42, 46
local 33, 42, 46
static (global) 42, 48
table 34

Limits
floating-point constants 10-11
integers 14

LIMITS.H header file
limits for integer types 14
range of signed integer values 82

Line-continuation character (\\) 17
Linkage

defined 7, 25
effect on storage duration 33
external 36,41,43
function identifiers 165
identifiers 25

Linkage (continued)
internal 36, 41, 43
types of 36

Linked lists 59
Linking

export functions 160
object files 24
with SETARGV.OBJ 30

Local declarations 25
Local scope 46
Local variables

declared in functions 169
initializing 33
storage allocated for 33

__ LOCAL_SIZE predefined macro 163,164
Locale "C" 193
Logical expressions, sequence points 121
Logical negation operator (!) 110
Logical operators

evaluation order 101
example 121
syntax 121

Logical-AND operator (&&)
described 121
sequence points 101

Logical-OR operator (II) 121
long double type

conversion 130
floating-point constants 10

long type
conversion 121
floating-point constants 10
integer constants 13
usage 49

Loops, continue statements 138
L-values

accessing 51
assignment operations 123
casts of I-values 96
defined 95
expressions 95
identifiers as 94
Microsoft C extension 96
modifiable 94-95, 108, 123
prefix increment and decrement operators 108
r-values, difference 96

M
Macros

See also Predefined macros
defining 18
NULL 200

main function
command-line arguments 190,29
described 27

malloc function 33
Mantissas, floating-point variables 83-84
Mapping character sets 193
Math functions, domain errors 201
mblen function 8
mbstowcs function 8
mbtowc function 8
Member-selection expressions

I-values 95
syntax 106-107

Member-selection operator (.) 107
Member-selection operator (-» 107
Memory access, using volatile 52
Memory allocation

dynamic 33
static variables 46
zero-sized 205

Microsoft extensions
ANSI conformance xii
casts of I-values 96
disabling with /Za option 96
effect on storage classes 165

Microsoft product support xi
Modifiable I-values 95
Module-definition (.DEF) files, exporting

functions 158
Multibyte characters 7, 192-193
Multidimensional arrays

declaring 67
defined 105
postfix expressions 105-106

Multiplication assignment operator (*=) 123
Multiplicative operators, syntax 113
Multithreaded programs See Thread-local storage

N
\n (escape sequence, new-line character) 17, 202
Naked functions

described 162
rules and limitations for writing 163

naked storage-class attribute 89
Name spaces 37
Names

files 203
typedef 37,87
union members 37

Naming identifiers
case sensitivity 7
floating-point constants 10
functions 44
integer constants 13
leading underscores C_) 4, 6
restrictions on 5, 6
structure members 59

Negation operators 110
Nested

else clauses 143
initializer lists 77
switch statements 146

Nested
if statements 143
structures 59
unions 65

Nesting comments 2-3
Newline character escape sequence (\\n) 17, 202
Nonterminals, definition 177
Null characters 19,202
NULL macro 200
Null pointers

invalid pointers 109
produced by conversions 131

Null statements
defined 139
described 143
empty 136
example 144
using 144

Index

Number sign (#,) using in preprocessing directives 21

o
Object files, linking 24
Octal

character specifications 18
constants See Integer constants
defined 12
escape sequences 17

One-dimensional arrays, postfix expressions 104, 105
Open files, deleting 204

221

Index

222

Operands
defined 93
expressions 99

Operators
addition (+) 114
addition assignment (+=) 123
additive 114-115
address-of (&) 109
arithmetic negation (-) 110
arithmetic, unary (list) 110
assignment 99, 123-124
associativity 99
associativity and precedence table 100
binary, list 99
bitwise 119-120,194
bitwise complement (-) 110
bitwise shift «<, ») 116-117
bitwise-AND (&) 120
bitwise-complement (-) 110
bitwise-exclusive-OR (A) 120
bitwise-inclusive-OR (I) 120
compound assignment (+=) 124
conditional-expression (?:) 122-123
defined 1
division (I) 113
division assignment (1=) 123
equality (==) 117-119
greater-than (» 117
greater-than-or-equal-to (>=) 118
increment (++) 108
indirection (*) 105
inequality (!=) 118
left-shift assignment «<=) 123
left-shift operator « <) 123
less-than «) 117
less-than-or-equal-to «=) 117
list of 99
logical 121
logical evaluation order 101
logical negation (!) 110
logical-AND operator (&&) 121
logical-OR operator (II) 121
member-selection operator (.) 107
member-selection operator (-» 107
multiplication assignment (*=) 123
multiplicative (*) 113
negation 110
postfix 103-107
postfix decrement (--) 108

Operators (continued)
postfix increment (++) 108
precedence 99
precedence and associativity table 100
prefix decrement (--) 108
prefix increment (++) 108
relational

example 119
listed 117
precedence 118

remainder (%) 113
remainder assignment (%=) 123
right-shift (») 113, 123
sequence points 101
sequential expression (,) 125
simple assignment (=) 124
sizeof 84, 111-112
subtraction (-) 114-115
subtraction assignment (-=) 123
syntax 181
unary

arithmetic 110
list 99

unary arithmetic negation
floating-point constants 10
integer constants 12

unary plus (+) operator 110
Order of evaluation See Precedence

p
pack pragma 63, 197
Packing

data options 197
structures 63

Parameters
argc 29
argv 29
declarations, abstract declarators 171
defined 28, 167
envp 29,32
function See Function parameters

Parentheses ()
determining evaluation order 95
enclosing expression arguments 144
in complex abstract declarators 71
in function declarations 53. 71

Parsing command-line arguments 30, 32
peffor function 205

Phases, translation
identifier names 4
trigraphs 8

Plus operator (+) 110
Pointers

argv parameter 29
arithmetic 196, 115-116
as arguments 174
based on pointers 71
based on void 71
const 52,69
converting 131-132
declarations 68-70
declaring 53
defined 52
detennining size of 70
envp parameter 29
function 172
function arguments 173
invalid 109
null 29, 109, 131
pointer conversions 204
relational operators 118
storing 70
string, storing 20
subscript expressions 104
to structure types 59
to unspecified types 50
to void 68, 131, 133
types 69, 131-132
void 49-50
volatile 69

Portability
data size 82
ensuring 5
function visibility 165
implementation-defined behavior 189
sizeof operator 84
type conversion issues 131

Postfix expressions, function calls 106
Postfix operators

decrement (--) 108
described 108
example 104
expression evaluation 104-105
function calls 106
increment (++) 108
member-selection operators (.), (-» 107
syntax 103, 108

Pragmas
defined 24
list of 200
pack 63, 197

Precedence
C operators (table) 100
example 101
postfix operators 103
prefix increment and decrement operators 108
relational operators 118
sequence points 101

Precision of floating-point types 82
Predefined macros

__ DATE __ 200
__ LOCAL_SIZE 163-164
__ TIME __ 200

Prefix increment and decrement operators 108
Preprocessing, character set 200
Preprocessor directives

alternative to enumerations 55
character set 199-200
defined 24
#endif 3
example 27
#if 3

Primary expressions
defined 93
syntax 94

Product support xi
Programs, terminating 27
Prolog code

naked functions 162
writing 89, 163

Promoting
floating-point types 84
integers 126

Prototype scope, ANSI compliant 171
Prototypes See Function prototypes
Punctuation, C character set 21
Punctuators 21, 182
_putenv function 206

Q
Question mark (?), wildcard in filenames 30
Question mark escape sequence (\ \?) 17
Quotation mark

escape sequence (\\\', \\") 17
usage 17,19

Index

223

Index

224

R
\r (escape sequence, carriage return 17
Ranges

floating-point types
conversions 129
limits 10, 14, 84

integers, limits 14
reading 204

Read-only variables 52
Records See Structure declarations
Recursive functions 176
Redefining keywords 4-5
Referencing

bit fields 61
declarations 43, 45
structures 106

register storage class
lifetime 42
purpose of 46
registers used 196
specifier, described 46
visibility 34

register variables
address-of operator (&) 46
initializing 75
visibility 46

Registers
availability 196
storage 46

Relational operators
comparing addresses 118-119
example 119
precedence 118
syntax 117
usual arithmetic conversions 118

Remainder assignment operator (%=) 123
Remainder operator (%) 113
Renaming files 204
Repeating statements 151-152
Restricted constant expressions 97
return statements

controlling execution 28, 136, 154
example 144
expression evaluation 144
expressions 169
syntax 144

Return types
function 49-50, 144
specified in function definition 170
syntax 166

Right-shift (») 116, 123
Right-shift assignment operator (»=) 123
Rules

conversions 102, 126
declaring parameters 154

R-value expressions, defined 95-96

s
Sample programs

blocks 35
equality operators 119
initializations 76
initializers for array 78
nested structure declarations 59
nesting 35
recursive calls 176
unions 65
visibility of variables 35

Scalar
initialization 75-76
types, postfix operators 108

Scope
See also Visibility
block 34
defined 7, 34
determining 34
file 34,43
function 34
function parameters 171
function-prototype 34
identifiers in compound statements 137
local 46,48
prototype 171
structures 59

Search paths 199
Semicolon (;)

null statement 143-144
statement terminator 136

Sequence points
conditional expressions 122
defined 97
in logical expressions 121
list of 98
operators 10 1

Sequence points (continued)
sequential evaluation operator (,) 125
side effects 172

Sequential-evaluation operator (,)
example 125
sequence points 101
syntax 125

_setargv function 30, 32
SETARGV.OBJ file, linking with 30
_setenvp function 32
Shifting

integers 195
values 117

shor type, conversion 127
short type, usage 49
Short-circuit evaluation 101, 121
Side effects

defined 97
expression evaluation 98, 139-140
in function calls 97
sequence points 172
void expressions 50

signal function 202
Signals, defaults 202
Signed integers

bitwise operations 194
limits 14
range 82
table of conversions 126

signed types, declaring 49
Sign-extending integral types 51
Significance, floating-point types 83-84
Simple assignment operator (=) 123-124
Single quotation mark

escape sequence (\\\') 17
forming character constants (\') 15

Size
arrays 77
floating-point types 82
of data types, determining 111
signed int 81
types 81
unsigned int 81

size_t type 111
Sized integer types 82
sizeof operator

example 112
portability issues 84

Index

sizeof operator (continued)
structure padding 112
with unsized arrays 61

Source character set
compared to execution character set 16
defined 7

Source files
character set 200
contents 24
example 27
referencing external variables 46

Source programs See Source files
_spawn function 32
Special characters, C character set 21
Stack frame layout, writing prolog/epilog code 163
Statements

body, defined 135
break 136
case 199
compound 26, 137, 156
continue 138
do-while 139
__ except 148
expression 136, 139
for 140
goto 141
if 142
labeled 37, 141
__ leave 149, 151
list of 135
null 136, 139, 143
repeating 140
restrictions on 199
return 28, 144, 154, 169
switch 145
syntax 135, 187
terminator 136
__ try 148
used in go to statements 5, 136
while 151

Static storage class
external declarations 43
function declarations 48
function definitions 156, 164-165
internal declarators 46
internal linkage 36
lifetime 34
overriding external linkage 43
rules for using 43

225

Index

226

Static storage class (continued)
specifying 33
syntax 42
variables, initializing 46, 76
visibility 34

STDARGS.H 175
Storage

enumeration variables 55
floating-point type requirements 83-84
integers 81
registers 46
string literals 19
structures 63
types 81,84-85
unsigned int 81

Storage classes
See also Storage-class attributes
auto 42,45-46,137
__ declspec 42
defaults 45, 165
defined 41
described 42-44,48
determining 42
example 45
extended attributes 88
extern 42
function declarations 48
functions 156, 164
identifiers 33
internal identifiers 45
internal variables 46
local variables 169
register See register storage class
required in declarations 54
restrictions on 42
specifiers list 42
static See static storage class
syntax 41
typedef 42, 86-88

Storage duration
automatic 33
determining 33
static 33, 43

Storage-class attributes
dllexport 89
dllimport 89
naked 89
thread 90

Storing
addresses 70
arrays 67-68
integers 63
pointers 70
string pointers 20
structures 63, 197
unions 64, 66
variables 25

strerror function 207
String literals

defined 94
described 18-21
maximum length 21
syntax 181

. types 19
String pointers, storing 20
Strings

initializing 80
static storage duration 19

Structure declarations
bit fields

alignment 61
memory allocation 62
unnamed 61

defined 58
example 59
nested 60
packing 63
specifying members 59
tags 58
without declarators 61

Structure members
defined 58
initializing 59
member-selection operators (., -» 106
name spaces 37
naming 59
selecting member from an array 107
types 59

Structured exception handling 148
Structures

aggregate types 77-78, 80
alignment of 63, 197
anonymous 60
arrays in 60
arrays in 61
bit fields 61-62
declaring pointers to 69

Structures (continued)
default packing size 63
defined 52
definition 58
fields 58
incomplete type 85
initializing 77
naming members 59
nested 61
pointers to structure type 59
referencing 106
scope of 59
storing 63, 197
syntax 58
tags 37,58,60

Subscript expressions
applying to pointers 104
arrays 104
expression evaluation 104-105
I-values 95
multiple subscripts 105

Subtraction assigmnent operator (-=) 123
Subtraction operator (-) 114-116
switch statements

described 145
example 145-146
expression evaluation 145-146
labels in 145-146
limits to case values 147
maximum case statements allowed 199
multiple case labels 147
nesting 146
terminating 136
using 145

Symbols See Identifiers
Syntax

constants 179
declarations 184
document conventions 177
expressions 182
external definitions 188
identifiers 179
keywords 179
operators 181
punctuators 182
statements 187
string literals 181
tokens 178

system function 206

Index

T
Tab escape sequence (\\t) 17
Tags

enumerations 56
enumerations 55
name spaces 37
structures 58
union 63

Technical support xi
Terminating

for statements 140
program execution 27, 136

Ternary expressions 99
Ternary operator See Conditional-expression operator
Testing code 3
thread storage-class attribute 90
Thread-local storage 90
Thread-local variables, guidelines for declaring 90
__ TIME __ predefined macro, default 200
Time zone 208
Tokens

comments within 2
defined 1
interpreting 4
syntax 178

Translation phases
identifier names 4
trigraph translation 8

Translation units
compiling 24
components 24
defined 23

Trigraphs 8, 17
Truncation, text files 203
__ try statements 148
try-except statements

example 149
flow of control 148
return values 148
syntax 148

try-finally statements
example 149
flow of control 150
syntax 150

Type casts
conversions 128,130-131
implementation 194
integers 128
I-values 96

227

Index

228

Type casts (continued)
restrictions 112
rounding of numbers 196
syntax 112, 132
table oflegal 133
type conversions 126

Type checking
ANSI compliant 50
performed by compiler 133

Type conversions
arithmetic conversions 102
assignment conversions 126
constants 14
floating-point values 196
function parameters 168
other types 132
overview 126
pointer types 131
signed integral types 126
simple assignment operators 124
type casts 112
unsigned integral types 128

Type qualifiers
const 41
described 51
volatile 41, 198

Type specifiers
default 41
equivalents 50
function 49
list of 49
overview 49
required in declarators 53

typedef declarations
creating 87
defined 86
described 87
example 87
improving code readability with 87
name spaces 37
names 87
simplifying declarators 71
storage class 86-88
syntax 86

Types
aggregate 74,77-78,80
arithmetic 81
casting integers to enumerations 57
char 81,94,127,192

Types (continued)
characters 16
checking 50
conversions 14, 102
creating 87
default 49
derived 39
double 10, 49, 84
enumerations 49,55-57, 198
float 10, 82, 84 .
floating-point 49, 129, 195
function return' 106, 166-167
in declarations 53-54
incomplete 85
int 13,49, 126
integer bit fields 61-62
integer constants 16
integer ranges 194
integral 49
integral conversions 126, 128-130
long 10,13,49,127
long double 10,49,84
pointer 68-69
pointer conversions 131-132
scalar 75, 108
short 49, 127
signed 49
size of 81
size_t 111
sized integers 82
specifying 49-50
storage 81,84-85
string literals 19
structure members 59
structures 58
typedef 86-88
union 64
unsigned 13
void 85

function parameters 168
function-call expressions 106
pointers 133
type specifier, expressions 50
used with return statement 144

wchar_t 7, 94

u
Unary arithmetic negation operator

floating-point constants, used with 10
integer constants, used with 12

Unary operators
address-of (&) 109
arithmetic 110
defined 99
prefix increment and decrement 108
sizeof operator 112
syntax 108

Underflow conditions, rounding of values 196
Unicode specification, wide characters 8
Union declarations

accessing 197
aggregate types, initializing 77-78, 80
defined 63
described 66
example 65
incomplete types 85
member types 64
members 106
tags 63

Union members
name spaces 37
selecting 107

Union tags, name spaces 37
Unions

declaring pointers to 69
defined 52
example 64
nested 65
referencing 106
storing 64, 66

unsigned char type
integer constants 13
limits 13
range 81

Unsigned integers
converting 128
limits 14
shifting 117
size 81

Unsigned integral types, table of conversions 128
unsigned keyword, with integral types 49
Untyped variables 54
Usual arithmetic conversions

binary operators, steps 102
bitwise shift operators 117

Usual arithmetic conversions (continued)
defined 102

v

example 103
function parameters 169
function prototype 133
list of 113
multiplicative operators 115
relational operators 118

Values
characters 16
converting to void 132
integers 16
referring to with identifiers 5
shifting 117

V ARARGS.H 175
Variable declarations

automatic 42
defined 25
example 55
external 43
floating-point types 83,84
information in 54
lifetime 42
multiple 54
placement 42
storage classes 41
volatile variables 52

Variable definitions, defined 25
Variables

accessing 25
aggregate type, initializing 77-80
allocating storage for 25
array 66
automatic 42,45-46, 137
constant 51
declarations, example 55
declaring floating-point types 83-84
determining lifetime 41
environment See Environment variables
external 43-45
file scope 43, 75
floating-point described 83
global 33, 48
initializing 33,46,74,76-77,79-80
internal 45-46,48
lifetime 33, 42, 46

Index

229

Index

230

Variables (continued)
local 34,42
read-only 52
register 46, 137
scalar type 75 - 7 6
shared 43
simple declarations 54
static, initializing 43, 75
storage classes 42-46, 48
storage in registers 46
storing 33
strings, initializing 80
type declarations 52
type specifiers 49,51-52
untyped 54
values, undefined 45
visibility 35, 44, 46
volatile 52

.variant records See Union declarations
Vertical tab escape sequence (\\v) 17
Visibility

See also Scope
defined 34
detennining 34
example 35
external variables 43-44, 46
function declarations 42
functions 44, 48, 165
global 36
identifiers in compound statements 137
internal variables 48
register variables 46
static definitions 43
static identifiers 34
summary table 34
variables

declared with register storage class 46
detennined by placement 42
prior to defining declaration 45
static 46

void
expressions

sequential evaluations 125
side effects 50

type, incomplete type 85
void keyword

function parameters 168
type specifier, used with pointers 68
uses 49

void pointers
converting 131
uses of 49, 50

volatile type qualifier

w

accessing volatile types 198
pointers 69
using 52
variables 51

/W 4 option, compiler 6
wchar_t character type 7
wcstombs function 8
wctomb function 8
while statements

continue statements in 138
example 152
expression evaluation 151
loop control 152
syntax 151
tenninating 136

White-space characters, defined 2
Wide-character constants 193
Widening integers 51
Wildcards

*, ? 30
_setargv function 30
in filenames and paths 30
suppressing expansion of 30

wmain function, described 27

z
/Za option, compiler 3,5,29
/Ze option, compiler 165
/Zp option, compiler 197, 63
Zero-extending 51
Zero-length files 203
Zero-sized allocation 205

Contributors to C Language Reference

Richard Carlson, Index Editor

David Adam Edelstein, Art Director

Seth Manheim, Writer

Rod Wilkinson, Editor

WASSERStudios, Production

Quick.
Explain COM,

OLE and

U.S.A. $22.95
U.K. £20.99
Canada $30.95
ISBN 1-57231-216-5

Microsoft Press@ products are available worldwide wherever quality
computer books are sold. For more information, contact your book retailer,
computer reseller, or local Microsoft Sales Office.

To locate your nearest source for Microsoft Press products, reach us at
www.microsoft.com/mspress/. or call 1-800-MSPRESS in the U.S.
(in Canada: 1-800-667-1115 or 416-293-8464).

To order Microsoft Press products, call 1-800-MSPRESS in the U.S.
(in Canada: 1-800-667-1115 or 416-293-8464)_

Prices and availability dates are subject to change.

A6tiveX~
When it comes to strategiC technologies like these,
what decision makers need first is a good explana
tion----one that gives them a quick, clear understand
ing of the parts and the greater whole. And that's
exactly what UNDERSTANDING ACTiVE)(AND OLE does.
Here you'll learn the strategic significance of the
Component Object Model (COM) as the foundation
for Microsoft's object technology. You'll understand
the evolution of OLE. You'll discover the powerful
ActiveX technology for the Internet. And in all these
subjects and more, you'll gain a firm conceptual
grounding without extraneous details or implementing
specifics. UNDERSTANDING ACTiVE)(AND OLE is also easy
to browse, with colorful illustrations and "fast track"
margin notes. Get it quick. And get up to speed on a
fundamental business technology.

The Strategic Technology series Is for
executives, business planners, software
deSigners, and technical managers who
need a quick, comprehensive introduction
to important technologies and their impli
cations for business.

U.S.A. $34.99
U.K. £32.99 [V.AI. included)
Canada $46.99
ISBN 1-57231-349-8

The Component Object Model (COM) isn't just another
standard. It's the basis of Microsoft's approach to distributed
computing. It's also the method for customizing Microsoft~
applications, present and future. And it's the foundation of
OLE and ActiveXT~ In short, COM is a major key to the future
of development. And this is the book that unlocks COM. In it,
you'll discover:

• A clear and simple, practical guide to building elegant,
robust, portable COM components

• An eye-opening presentation of how accessible COM can
be-especially for those already familiar with C++

• An insightful, progressive view of COM design
• Plenty of illustrations in the form of code samples

INSIDE COM is for intermediate to advanced C++ program
mers; beginning to advanced COM, ActiveX, and OLE
programmers; academics with an interest in component
design; and even programmers who want to use COM when
it's ported to UNIX, MVS, and other environments. To put it
simply, if you work with COM, then INSIDE COM was written for
you.

Microsoft Press~ products are available worldwide wherever quality computer books are sold. For
more information, contact your book retailer, computer reseller, or local Microsoft Sales Office.

To locate your nearest source for Microsoft Press products, reach us at wwwmicrosoft com!
~ or call1-800-MSPRESS in the U.S. (in Canada: 1-800-667-1115 or 416-293-8464).

To order Microsoft Press products, call1-800-MSPRESS in the U.S. (in Canada: 1-800-667-1115
or 416-293-8464).

Prices and availability dates are subject to change.

C++ Language Reference

Language Reference

Introduction xv
Scope of this Manual xv

Organization xv

Special Terminology in this Manual xvii

Chapter 1 Lexical Conventions 1
Overview of File Translation 1
Tokens 2

Comments 3
Identifiers 4

Keywords 6

Punctuators 7

Operators 7
Literals 9

Integer Constants 10
Character Constants 11

Floating-Point Constants 14
String Literals 15

Chapter 2 Basic Concepts 19
Terms 19
Declarations and Definitions 20

Declarations 20
Definitions 21

Scope 22
Point of Declaration 23
Hiding Names 24

Scope of Formal Arguments to Functions 26
Program and Linkage 26

Types of Linkage 26
Linkage in Names with File Scope 27

Linkage in Names with Class Scope 27

Linkage in Names with Block Scope 27

Contents

iii

Contents

iv

Names with No Linkage 28

Linkage to Non-C++ Functions 29

Startup and Termination 30
Program Startup: the main Function 30

Customizing Command-Line Processing 34

Program Termination 35

Additional Startup Considerations 36

Additional Termination Considerations 36

Storage Classes 38

Automatic 38

Static 38

Register 39

External 39

Initialization of Objects 39

Types 41
Fundamental Types 41

Sized Integer Types 43

Derived Types 44

TypeNames 50
L-Values and R-Values 50

Numerical Limits 51

Integer Limits 51

Floating Limits 52

Chapter 3 Standard Conversions 55
Integral Promotions 56

Integral Conversions 57

Converting Signed to Unsigned 57

Converting Unsigned to Signed 57

Standard Conversion 58

Floating Conversions 58

Floating and Integral Conversions 58

Floating to Integral 59

Integral to Floating 59

Arithmetic Conversions 59

Pointer Conversions 60

Null Pointers 60

Pointers to Type void 61

Pointers to Objects 61

Pointers to Functions 61

Pointers to Classes 61

Pointer Expressions 63

Pointers Modified by const or volatile 63

Reference Conversions 63

Pointer-to-Member Conversions 64

Integral Constant Expressions 64

Pointers to Base-Class Members 64

Chapter 4 Expressions 65
Types of Expressions 65

Primary Expressions 66

Postfix Expressions 68
. Expressions with Unary Operators 77

Expressions with Binary Operators 88

Expressions with the Conditional Operator 102

Constant Expressions 103

Expressions with Explicit Type Conversions 103

Expressions with Pointer-to-Member Operators 107

Semantics of Expressions 109

Order of Evaluation 110

Notation in Expressions 112

Casting 113

Casting Operators 114

Run-Time Type Information 121

Chapter 5 Statements 125
Overview of Statements 126

Labeled Statements 126

Using Labels with the goto Statement 126

Using Labels in the case Statement 127
Expression Statement 128

The Null Statement 128

Compound Statements (Blocks) 129

Selection Statements 129

The if Statement 129

The switch Statement 130

Contents

v

Contents

vi

Iteration Statements 133
. The while Statement 134

The do Statement 134
The for 'Statement 135

Jump Statements 137
The break Statement 137

The continue Statement 137
The return Statement 138

The goto Statement 139

Declaration Statements 139
Declaration of Automatic Objects 139
Declaration of Static Objects 141

Exception Handling 143
The try, catch, and throw Statements 143

Structured Exception Handling 148

Chapter 6 Declarations 151
Specifiers 152

Storage-Class Specifiers 153

Function Specifiers 154
typedef Specifier 158

friend Specifier 162

Type Specifiers 162
Enumeration Declarations 166

Enumerator Names 169
Definition of Enumerator Constants 169

Conversions and Enumerated Types 170
Linkage Specifications 170

Template Specifications 173
Referencing a Template 175

Function Templates 176
Member Function Templates 176
Explicit Instantiation 177
Differences from Other Implementations 178

Namespaces 178
namespace Declaration 179
namespace Definition 181
Defining names pace Members 182

Namespace Alias 182

using Declaration 183
using Directive 187
Explicit Qualification 190

Chapter 7 Declarators 191
Overview of Declarators 191
Type Names 193

Abstract Declarators 194

Ambiguity Resolution 195
Pointers 195
References 198

Pointers to Members 203
Array 208

Function Declarations 211
Default Arguments 218

Function Definitions 220
Functions with Variable Argument Lists 221

Initializers 223
Initializing Pointers to const Objects 224
Uninitialized Objects 224

Initializing Static Members 224
Initializing Aggregates 224
Initializing Character Arrays 227

Initializing References 228

Chapter 8 Classes 231
Overview of Classes 231

Defining Class Types 232
Class-Type Objects 234

Class Names 236

Declaring and Accessing Class Names 236
typedef Statements and Classes 237

Class Members 238
Class-Member Declaration Syntax 239

Declaring Unsized Arrays in Member Lists 241
Storage of Class-Member Data 241
Member Naming Restrictions 242

Contents

vii

Contents

viii

Member Functions 242

Overview of Member Functions 243

The this Pointer 245

Static Data Members 247

Unions 248

Member Functions in Unions 249

Unions as Class Types 249

Union Member Data 250

Anonymous Unions 250

Bit Fields 251

Restrictions on Use of Bit Fields 253

Nested Class Declarations 253

Access Privileges and Nested Classes 254

Member Functions in Nested Classes 254

Friend Functions and Nested Classes 255

Type Names in Class Scope 256

Chapter 9 Derived Classes 257
Overview of Derived Classes 257

Single Inheritance 258

Multiple Inheritance 262

Virtual Base Class Hierarchies 262

Class Protocol Implementation 263

Base Classes 263

Multiple Base Classes 264

Virtual Base Classes 265

Name Ambiguities 267

Virtual Functions 270

Abstract Classes 274

Restrictions on Using Abstract Classes 274

Summary of Scope Rules 275

Ambiguity 276

Global Names 276

Names and Qualified Names 276

Function Argument Names 277

Constructor Initializers 277

Chapter 10 Member-Access Control 279
Controlling Access to Class Members 279

Access Specifiers 280

Access Specifiers for Base Classes 281

Access Control and Static Members 282

Friends 283
Friend Functions 283

Class Member Functions and Classes as Friends 285

Friend Declarations 286

Defining Friend Functions in Class Declarations 287

Protected Member Access 287

Access to Virtual Functions 288

Multiple Access 288

Chapter 11 Special Member Functions 291
Constructors 292

What a Constructor Does 293

Rules for Declaring Constructors 293

Constructors and Arrays 296

Order of Construction 296

Destructors 297

Declaring Destructors 298

Using Destructors 298

Order of Destruction 299

Explicit Destructor Calls 301

Temporary Objects 301

Conversions 302

Conversion Constructors 303

Conversion Functions 305

The new and delete Operators 307

The operator new Function 307

Handling Insufficient Memory Conditions 309

The operator delete Function 312

Initialization Using Special Member Functions 314

Explicit Initialization 315
Initializing Arrays 316

Initializing Static Objects 317

Initializing Bases and Members 317

Contents

ix

Contents

Copying Class Objects 320

Compiler-Generated Copying 321

Memberwise Assignment and Initialization 322

Chapter 12 Overloading 325
Overview of Overloading 325

Argument Type Differences 326
Restrictions on Overloaded Functions 326

Declaration Matching 327

Argument Matching 329

Argument Matching and the this Pointer 331

Argument Matching and Conversions 331

Address of Overloaded Functions 335

Overloaded Operators 336

General Rules for Operator Overloading 338

U nary Operators 340

Binary Operators 343

Assignment 344

Function Call 345
Subscripting 345

Class-Member Access 347

Appendixes

x

Appendix A Grammar Summary 349
Keywords 349

Expressions 350

Declarations 355

Declarators 359

Classes 361

Statements 362

Microsoft Extensions 363

Appendix B Microsoft-Specific Modifiers 365
Based Addressing 365

Using __ based in 32-bit Compilations 366

Calling and Naming Convention Modifiers 367

Extended Storage-Class Attributes 367

Extended Attribute Syntax 367

The thread Attribute 368

The naked Attribute 370

The dllexport and dlliffiPOrt Attributes 372

Using dlliffiPOrt and dllexport in C++ 375

C++ Inline Asseffibler 377

Appendix C Microsoft-Specific Compiler COM Support Classes 379
_COffi_error 379

Meffiber Functions 380

_COffi_error: :_COffi_error 380

_COffi_error: :Description 380

_coffi_error::Error 381

_coffi_error::ErrorInfo 381

_COffi_error: :ErrorMessage 381

_coffi_error::GUID 381

_coffi_error::HelpContext 382

_coffi_error::HelpFile 382

_coffi_error::HRESULTToWCode 382

_coffi_error::Source 382

_coffi_error::WCode 383

_coffi_error::WCodeToHRESULT 383

Operators 384

_coffi_error::operator = 384

_coffi_ptr_t 384

Meffiber Functions 385

_coffi_ptr_t: :_coffi_ptr_t 385

_coffi_ptr_t: :AddRef 387

_coffi_ptr_t::Attach 387

_coffi_ptr_t::CreateInstance 387

_coffi_ptr_t::Detach 388

_coffi_ptr_t: : GetlnterfacePtr 388

_coffi_ptr_t::QueryInterface 388

_coffi_ptr_t::Release 389

Operators 389

_COffi_ptr_t::operator = 389

_COffi_ptr_t Relational Operators 390

_coffi_ptr_t Extractors 391

Relational Function Teffiplates 391

_bstr_t 392

Contents

xi

Contents

xii

Member Functions 393

_bstct::_bstr_t 393

_bstCt::copy 394
_bstct: :length 394

Operators 394

_bstct::operator = 394

_bstct::operator +=, + 394
_bstct::operator! 395

_bstct Relational Operators 395

_bstct::wchar_t*, _bstr_t::char* 395

_ varianCt 396

Member Functions 396

_ varianCt::_ varianCt 396

_ varianct: : Attach 399

_varianCt::Clear 399
_ varianCt: :ChangeType 399

_varianCt::Detach 399

_ varianCt: :SetString 400

Operators 400

_varianCt::operator = 400

_ varianCt Relational Operators 401

_ varianCt Extractors 401

Appendix D Charts 403
ASCII Character Codes Chart 1 404

ASCII Character Codes Chart 2 405

ASCII Multilingual Codes Chart 406

ANSI Character Codes Chart 407
Key Codes Chart 1 408

Key Codes Chart 2 409

Index 411

Figures and Tables
Figures
Figure 1.1 Escapes and String Concatenation 16

Figure 2.1 Block Scope and Name Hiding 24

Figure 3.1 Inheritance Graph for Illustration of Base-Class Accessibility 61
Figure 4.1 Expression-Evaluation Order 110

Figure 4.2 Expression-Evaluation Order with Parentheses I,ll

Figure 4.3 Class Hierarchy 113

Figure 4.4 Class C with B Subobject and A Subobject 114
Figure 4.5 Class Hierarchy Showing MUltiple Inheritance 116

Figure 4.6 Class Hierarchy Showing Virtual Base Classes 116

Figure 4.7 Class Hierarchy Showing Duplicate Base Classes 117
Figure 7.1 Specifiers, Modifiers, and Declarators 192
Figure 7.2 Conceptual Layout of Multidimensional Array 209
Figure 7.3 Parts of a Function Definition 221

Figure 7.4 Decision Graph for Initialization of Reference Types 229
Figure 8.1 Storage of Data in NumericType Union 249
Figure 8.2 Memory Layout of Date Object 252

Figure 8.3 Layout of Date Object with Zero-Length Bit Field 252
Figure 9.1 Simple Single-Inheritance Graph 258

Figure 9.2 Sample of Directed Acyclic Graph 259
Figure 9.3 Simple Multiple-Inheritance Graph 262
Figure 9.4 Multiple Instances of a Single Base Class 264

Figure 9.5 Simulated Lunch-Line Graph 265
Figure 9.6 Simulated Lunch-Line Object 265
Figure 9.7 Simulated Lunch-Line Object with Virtual Base Classes 266

Figure 9.8 Virtual and Nonvirtual Components of the Same Class 266
Figure 9.9 Object Layout with Virtual and Nonvirtual Inheritance 266

Figure 9.10 Virtual vs. Nonvirtual Derivation 268
Figure 9.11 Ambiguous Conversion of Pointers to Base Classes 270

Figure 10.1 Access Control in Classes 280
Figure 10.2 Implications of friend Relationship 286

Figure 10.3 Access Along Paths of an Inheritance Graph 289
Figure 11.1 Inheritance Graph Showing Virtual Base Classes 300

Figure 12.1 Graph Illustrating Preferred Conversions 333
Figure 12.2 Multiple-Inheritance Graph Illustrating Preferred Conversions 333

Contents

xiii

Contents

xiv

Tables
Table 1.1 C++ Operator Precedence and Associativity 8
Table 1.2 C++ Reserved or Nongraphic Characters 13
Table 2.1 C++ Terminology 19
Table 2.2 Results of Parsing Command Lines 34
Table 2.3 Fundamental Types of the C++ Language 42
Table 2.4 Sizes of Fundamental Types 43
Table 2.5 Operators and Constructs Used with Pointers to Members 46
Table 2.6 Limits on Integer Constants 51
Table 2.7 Limits on Floating-Point Constants 52
Table 3.1 Conditions for Type Conversion 59
Table 3.2 Base-Class Accessibility 62
Table 4.1 Postfix Operators 68
Table 4.2 Types Used with Additive Operators 91
Table 4.3 Relational and Equality Operators 93
Table 4.4 Assignment Operators 98
Table 4.5 Operand Types Acceptable to Operators 113
Table 5.1 Switch Statement Behavior 131
Table 5.2 C++ Iteration Statements 133
Table 5.3 for Loop Elements 135
Table 6.1 Use of static and extern 154
Table 6.2 Type Name Combinations 162
Table 6.3 Effects of Linkage Specifications 172
Table 7.1 Overloading Considerations 214
Table 8.1 Access Control and Constraints of Structures, Classes, and Unions 233
Table 8.2 Semantics of this Modifiers 246
Table 10.1 Member-Access Control 279
Table 10.2 Member Access in Base Class 281
Table 11.1 Summary of Function Behavior 292
Table 11.2 Default and Copy Constructors 293
Table 11.3 Destruction Points for Temporary Objects 302
Table 11.4 Scope for operator new Functions 307
Table 12.1 Trivial Conversions 332
Table 12.2 Redefinable Operators 336
Table 12.3 Nonredefinable Operators 338
Table 12.4 Redefinable Unary Operators 340
Table 12.5 Redefinable Binary Operators 343
Table B.1 Microsoft-Specific Keywords 365

Introduction

Scope of this Manual
C++, like C, is a language that is heavily reliant on a rich set of library functions to
provide the following:

• Portable operating-system interface (file and screen 110)

• String and buffer manipulation

• Floating-point math transformations

• Other supporting functionality

For information about the run-time library functions, see the Run-Time Library
Reference. For information on the Microsoft Foundation classes or the iostream
classes, see the Class Library Reference or the iostream Class Library Reference,
respectively.

Organization
This manual is organized as follows:

Chapter 1, "Lexical Conventions," introduces the fundamental elements of a C++
program as they are meaningful to the compiler. These elements, called "lexical
elements," are used to construct statements, definitions, declarations, and so on,
which are used to construct complete programs.

Chapter 2, "Basic Concepts," explains concepts such as scope, linkage, program
startup and termination, storage classes, and types. These concepts are key to
understanding C++. Terminology used in this book is also introduced.

Chapter 3, "Standard Conversions," describes the type conversions the compiler
performs between built-in, or "fundamental," types. It also explains how the compiler
performs conversions among pointer, reference, and pointer-to-member types.

xv

Introduction

xvi

Chapter 4, "Expressions," describes C++ expressions -sequences of operators and
operands that are used for computing values, designating objects or functions, or
generating other side effects.

Chapter 5, "Statements," explains the C++ program elements that control how and
in what order programs are executed. Among the statements covered are expression
statements, null statements, compound statements, selection statements, iteration
statements, jump statements, and declaration statements.

Chapter 6, "Declarations," is one of three chapters devoted to how complete
declarations are used to form declaration statements. This chapter describes such
topics as storage-class specifiers, function definitions, initializations, enumerations,
class, struct, and union declarations, and typedef declarations. Related information
can be found in Chapter 7, "DecIarators," and Appendix B, "Microsoft-Specific
Modifiers."

Chapter 7, "Declarators," explains the portion of a declaration statement that names
an object, type, or function.

Chapter 8, "Classes," introduces C++ classes. C++ treats an object declared with the
class, struct, or union keyword as a class type. This chapter explains how to use
these class types.

Chapter 9, "Derived Classes," covers the details of inheritance-a process by which
you can define a new type as having all the attributes of an existing type, plus any new
attributes you add.

Chapter 10, "Member-Access Control," explains how you can control access to class
members. Use of access-control specifiers can help produce more robust code because
you can limit the number of ways an object's state can be changed.

Chapter 11, "Special Member Functions," describes special functions unique to class
types. These special functions perform initialization (constructor functions), cleanup
(destructor functions), and conversions. This chapter also describes the new and
delete operators, which are used for dynamic memory allocation.

Chapter 12, "Overloading," explains a C++ feature that enables you to define a group
of functions with the same name but different arguments. Which function in the group
is called depends on the argument list in the actual function call. In addition, this
chapter covers overloaded operators, a mechanism for defining your own behavior
for C++ operators.

Appendix A, "Grammar Summary," is a summary of the C++ grammar with the
Microsoft extensions. Portions of this grammar are shown throughout this manual in
"Syntax" sections.

Appendix B, "Microsoft-Specific Modifiers," describes the modifiers specific to
Microsoft C++. These modifiers control memory addressing, calling conventions,
and so on.

Appendix C, "Microsoft-Specific Compiler COM Support Classes," is a reference to
four Microsoft-specific classes used to support some Component Object Model types.

Appendix D, "Charts," contains the following charts: ASCII Character Codes, ASCII
Multilingual Codes, ANSI Character Codes, and Key Codes.

Note For information on Microsoft product support, see the technical support help file,
PSS.HLP.

Special Terminology in this Manual
In this manual, the term "argument" refers to the entity that is passed to a function.
In some cases, it is modified by "actual" or "formal," which mean the argument
expression specified in the function call and the argument declaration specified in
the function· definition, respectively. .

The term "variable" refers to a simple C-type data object. The term "object" refers
to both C++ objects and variables; it is an inclusive term.

For more information on terminology, see "Terms" on page 19 in Chapter 2.

Introduction

xvii

C HAP T E R

Lexical Conventions

This chapter introduces the fundamental elements of a C++ program. You use these
elements, called "lexical elements" or "tokens" to construct statements, definitions,
declarations, and so on, which are used to construct complete programs. The
following lexical elements are discussed in this chapter:

• Tokens

• Comments

• Identifiers

• C++ keywords

• Punctuators

• Operators

• Literals

This chapter also includes Table 1.1, which shows the precedence and associativity
of C++ operators (from highest to lowest precedence). For a complete discussion of
operators, see Chapter 4, "Expressions."

Overview of File Translation
C++ programs, like C programs, consist of one or more files. Each of these files is
translated in the following conceptual order (the actual order follows the "as if' rule:
translation must occur as if these steps had been followed):

1. Lexical tokenizing. Character mapping and trigraph processing, line splicing, and
tokenizing are performed in this translation phase.

2. Preprocessing. This translation phase brings in ancillary source files referenced
by #include directives, handles "stringizing" and "chari zing" directives, and
performs token pasting and macro expansion (see "Preprocessor Directives" in
the Preprocessor Reference for more information). The result of the preprocessing
phase is a sequence of tokens that, taken together, define a "translation unit."

c++ Language Reference

Preprocessor directives always begin with the number-sign (#) character (that is,
the first nonwhite-space character on the line must be a number sign). Only one
preprocessor directive can appear on a given line.
For example:

#include <iostream.h> II Include text of iostream.h in
II translation unit.

#define NDEBUG II Define NDEBUG (NDEBUG contains empty
II text string).

3. Code generation. This translation phase uses the tokens generated in the
preprocessing phase to generate object code.

During this phase, syntactic and semantic checking of the source code is
performed.

See "Phases of Translation" in the Preprocessor Reference for more
information.

The C++ preprocessor is a strict superset of the ANSI C preprocessor, but the
C++ preprocessor differs in a few instances. The following list describes several
differences between the ANSI C and the C++ preprocessors:

• Single-line comments are supported. See "Comments" for more information.

• One predefined macro, __ cplusplus, is defined only for C++. See "Predefined
Macros" in the Preprocessor Reference for more information.

• The C preprocessor does not recognize the C++ operators: .*, ->*; and ::.
See "Operators" on page 7 and Chapter 4, "Expressions," for more information
about operators.

Tokens

2

A token is the smallest element of a C++ program that is meaningful to the compiler.
The C++ parser recognizes these kinds of tokens: identifiers, keywords, literals,
operators, punctuators, and other separators. A stream of these tokens makes up a
translation unit.

Tokens are usually separated by "white space." White space can be one or more:

• Blanks

• Horizontal or vertical tabs

• New lines

• Formfeeds

• Comments

Chapter 1 Lexical Conventions

Syntax
token:

keyword
identifier
constant
operator
punctuator

preprocessing-token:
header-name
identifier
pp-number
character-constant
string-literal
operator
punctuator
each nonwhite-space character that cannot be one of the above

The parser separates tokens from the input stream by creating the longest token
possible using the input characters in a left-to-right scan. Consider this code fragment:

a = i+++j;

The programmer who wrote the code might have intended either of these two
statements:

a = i + (++j)

a=(i++)+j

Because the parser creates the longest token possible from the input stream, it chooses
the second interpretation, making the tokens i ++, +, and j.

Comments
A comment is text that the compiler ignores but that is useful for programmers.
Comments are normally used to annotate code for future reference. The compiler
treats them as white space. You can use comments in testing to make certain lines of
code inactive; however, #if/#endif preprocessor directives work better for this because
you can surround code that contains comments but you cannot nest comments.

A C++ comment is written in one of the following ways:

• The 1* (slash, asterisk) characters, followed by any sequence of characters
(including new lines), followed by the * I characters. This syntax is the same as
ANSI C.

• The I I (two slashes) characters, followed by any sequence of characters. A new
line not immediately preceded by a backslash terminates this form of comment.
Therefore, it is commonly called a "single-line comment."

3

c++ Language Reference

The comment characters (/ *, * /, and / /) have no special meaning within a character
constant, string literal, or comment. Comments using the first syntax, therefore, cannot
be nested. Consider this example:

1* Intent: Comment out this block of code.
Problem: Nested comments on each line of code are illegal.

FileName = String("hello.dat"); /* Initialize file string */
cout« "File: " « FileName« "\n"; /* Print status message */
*/

The preceding code will not compile because the compiler scans the input stream from
the first / * to the first * / and considers it a comment. In this case, the first * / occurs
at the end of the In it i ali ze fil est ri ng comment. The last * /, then, is no
longer paired with an opening / *.
Note that the single-line form (/ /) of a comment followed by the line-continuation
token (\) can have surprising effects. Consider this code:

#include <stdio.h>

voi d rna in ()
{

printf("This is a number %d", II \
5);

After preprocessing, the preceding code contains errors and appears as follows:

#include <stdio.h>

void main()
{

printf("Thi sis a number %d",

Identifiers
An identifier is a sequence of characters used to denote one of the following:

• Object or variable name

• Class, structure, or union name

• Enumerated type name

• Member of a class, structure, union, or enumeration

• Function or class-member function

• typedef name

• Label name

• Macro name

• Macro parameter

4

Chapter 1 Lexical Conventions

Syntax
identifier:

nondigit
identifier nondigit
identifier digit

nondigit: one of
_abcdefghijklm
nopqrstuvwxyz
ABCDEFGHIJKLM
NOPQRSTUVWXYZ

digit: one of
0123456789

Microsoft Specific ~

Only the first 247 characters of Microsoft C++ identifiers are significant. This
restriction is complicated by the fact that names for user-defined types are "decorated"
by the compiler to preserve type information. The resultant name, including the type
information, cannot be longer than 247 characters. (See "Decorated Names" in the
Visual c++ Programmer's Guide online for more information.) Factors that can
influence the length of a decorated identifier are:

• Whether the identifier denotes an object of user-defined type or a type derived
from a user-defined type.

• Whether the identifier denotes a function or a type derived from a function.

• The number of arguments to a function.

END Microsoft Specific

The first character of an identifier must be an alphabetic character, either uppercase
or lowercase, or an underscore (_). Because C++ identifiers are case sensitive,
fi 1 eName is different from Fi 1 eName.

Identifiers cannot be exactly the same spelling and case as keywords. Identifiers that
contain keywords are legal. For example, Pin t is a legal identifier, even though it
contains int, which is a keyword.

Use of two sequential underscore characters (__) at the beginning of an identifier,
or a single leading underscore followed by a capital letter, is reserved for C++
implementations in all scopes. You should avoid using one leading underscore
followed by a lowercase letter for names with file scope because of possible
conflicts with current or future reserved identifiers.

5

c++ Language Reference

Keywords

6

Keywords are predefined reserved identifiers that have special meanings. They cannot
be used as identifiers in your program. The following keywords are reserved for C++:

Syntax
keyword: one of

asm! auto bad_cast bad_typeid

bool break case catch

char class const consCcast

continue default delete do

double dynamic_cast else enum

except explicit extern false

finally float for friend

goto if inline int

long mutable namespace new

operator private protected public

register reinterpreCcast return short

signed sizeof static static_cast

struct switch template this

throw true try type_info

typedef typeid typename union

unsigned using virtual void

volatile while xalloc

1 Reserved for compatibility with other C++ implementations, but not implemented. Use __ asm.

Microsoft Specific ~

In Microsoft C++, identifiers with two leading underscores are reserved for compiler
implementations. Therefore, the Microsoft convention is to precede Microsoft-specific
keywords with double underscores. These words cannot be used as identifier names.

allocate3 __ except __ int64 __ single_inheritance
__ asm! __ fastcall __ leave --stdcall

--based2 __ finally __ multiple_inheritance thread3

__ cdecl __ inline naked3 __ try

__ declspec __ intS nothrow3 uuid3

dllexpore __ int16 property3 __ uuidof

dllimport3 __ int32 selectany3 __ virtual_inheritance

1 Replaces C++ asm syntax.

2 The __ based keyword has limited uses for 32-bit target compilations.

3 These are special identifiers when used with _decIspec; their use in other contexts is not restricted.

Chapter 1 Lexical Conventions

Microsoft extensions are enabled by default. To ensure that your programs
are fully portable, you can disable Microsoft extensions by specifying the
ANSI-compatible /Za command-line option (compile for ANSI compatibility)
during compilation. When you do this, Microsoft-specific keywords are
disabled.

When Microsoft extensions are enabled, you can use the previously-listed keywords
in your programs. For ANSI compliance, these keywords are prefaced by a double
underscore. For backward compatibility, single-underscore versions of all the
keywords except __ except, __ finally, __ leave, and __ try are supported. In addition,
__ cdecl is available with no leading underscore.

END Microsoft Specific

Punctuators
Punctuators in C++ have syntactic and semantic meaning to the compiler but do not,
of themselves, specify an operation that yields a value. Some punctuators, either alone
or in combination, can also be C++ operators or be significant to the preprocessor.

Syntax
punctuator: one of

!%A&*()_+={}I_
[] \; , : "< >?,.f #

The punctuators [], (), and { } must appear in pairs after translation phase 4.

Operators
Operators specify an evaluation to be performed on one of the following:

• One operand (unary operator)

• Two operands (binary operator)

• Three operands (ternary operator)

The C++ language includes all C operators and adds several new operators. Table 1.1
lists the operators available in Microsoft C++.

Operators follow a strict precedence which defines the evaluation order of
expressions containing these operators. Operators associate with either the
expression on their left or the expression on their right; this is called "associativity."
Operators in the same group have equal precedence and are evaluated left
to right in an expression unless explicitly forced by a pair of parentheses, (). Table 1.1
shows the precedence and associativity of C++ operators (from highest to lowest
precedence).

7

c++ Language Reference

Table 1.1 C++ Operator Precedence and Associativity

Operator Name or Meaning Associativity

.. Scope resolution None

.. Global None

[] Array subscript Left to right

() Function call Left to right

() Conversion None

Member selection (object) Left to right

-> Member selection (pointer) Left to right

++ Postfix increment None

Postfix decrement None

new Allocate object None

delete Deallocate object None

delete[] Deallocate object None

++ Prefix increment None

Prefix decrement None

* Dereference None

& Address-of None

+ Unary plus None

Arithmetic negation (unary) None

Logical NOT None

Bitwise complement None

sizeof Size of object None

size of () Size of type None

typeid() type name None

(type) Type cast (conversion) Right to left

consCcast Type cast (conversion) None

dynamic_cast Type cast (conversion) None

reinterpreC cast Type cast (conversion) None

static_cast Type cast (conversion) None

* Apply pointer to class member (objects) Left to right

->* Dereference pointer to class member Left to right

* Multiplication Left to right

I Division Left to right

% Remainder (modulus) Left to right

+ Addition Left to right

Subtraction Left to right

« Left shift Left to right

8

Chapter 1 Lexical Conventions

Table 1.1 C++ Operator Precedence and Associativity (continued)

Operator

»

<

>

<=
>=

!=

&
II

&&

el?e2:e3

*=
1=

%=

+=

«=
»=
&=

1=

Literals

Name or Meaning

Right shift

Less than

Greater than

Less than or equal to

Greater than or equal to

Equality

Inequality

Bitwise AND

Bitwise exclusive OR

Bitwise OR

Logical AND

Logical OR

Conditional

Assignment

Multiplication assignment

Division assignment

Modulus assignment

Addition assignment

Subtraction assignment

Left-shift assignment

Right-shift assignment

Bitwise AND assignment

Bitwise inclusive OR assignment

Bitwise exclusive OR assignment

Comma

Associativity

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Right to left

Right to left

Right to left

Right to left

Right to left

Right to left

Right to left

Right to left

Right to left

Right to left

Right to left

Right to left

Left to right

Invariant program elements are called "literals" or "constants." The terms "literal" and
"constant" are used interchangeably here. Literals fall into four major categories:
integer, character, floating-point, and string literals.

Syntax
literal:

integer-constant
character-constant
floating-constant
string-literal

9

c++ Language Reference

Integer Constants

10

Integer constants are constant data elements that have no fractional parts or
exponents. They always begin with a digit. You can specify integer constants in
decimal, octal, or hexadecimal form. They can specify signed or unsigned types
and long or short types.

Syntax
integer-constant:

decimal-constant integer-suffixopt
octal-constant integer-suffixopt
hexadecimal-constant integer-suffixopt
, c-char-sequence'

decimal-constant:
nonzero-digit
decimal-constant digit

octal-constant:
o
octal-constant octal-digit

hexadecimal-constant:
Ox hexadecimal-digit
OX hexadecimal-digit
hexadecimal-constant hexadecimal-digit

nonzero-digit: one of
123456789

octal-digit: one of
01234567

hexadecimal-digit: one of
0123456789
abcdef
ABCDEF

integer-suffix:
unsigned-suffix long-suffixopt
long-suffix unsigned-suffixopt

unsigned-suffix: one of
uU

long-suffix: one of
IL

64-bit integer-suffix:
i64

Chapter 1 Lexical Conventions

To specify integer constants using octal or hexadecimal notation, use a prefix that
denotes the base. To specify an integer constant of a given integral type, use a suffix
that denotes the type.

To specify a decimal constant, begin the specification with a nonzero digit. For
example:

int i 157; I I Decimal constant
int j = 0198;
int k = 0365;

II Not a decimal number; erroneous octal constant
II Leading zero specifies octal constant, not decimal

To specify an octal constant, begin the specification with 0, followed by a sequence
of digits in the range 0 through 7. The digits 8 and 9 are errors in specifying an octal
constant. For example:

i nt i = 0377; I I Octal constant
int j = 0397; II Error: 9 is not an octal digit

To specify a hexadecimal constant, begin the specification with 0x or 0X (the case of
the "x" does not matter), followed by a sequence of digits in the range 0 through 9
and a (or A) through f (or F). Hexadecimal digits a (or A) through f (or F) represent
values in the range 10 through 15. For example:

int i = 0x3fff;
int j = 0X3FFF;

II Hexadecimal constant
II Equal to i

To specify an unsigned type, use either the u or U suffix. To specify a long type, use
either the I or L suffix. For example:

unsigned uVal = 328u;
long lVal = 0x7FFFFFL;

unsigned long ulVal = 0776745ul;

Character Constants

II Unsigned value
II Long value specified
II as hex constant
II Unsigned long value

Character constants are one or more members of the "source character set," the
character set in which a program is written, surrounded by single quotation marks (').
They are used to represent characters in the "execution character set," the character set
on the machine where the program executes.

Microsoft Specific ~

For Microsoft C++, the source and execution character sets are both ASCII.

END Microsoft Specific

There are three kinds of character constants:

• Normal character constants

• Multicharacter constants

• Wide-character constants

11

c++ Language Reference'

12

Note Use wide-character constants in place of multicharacter constants to ensure portability.
Character constants are specified as one or more characters enclosed in single
quotation marks. For example:

char ch = 'x';
int mbch = 'ab';

II Specify normal character constant.
II Specify system-dependent
II multi character constant.

wchar_t wcch = L'ab'; II Specify wide-character constant.

Note that mb chis of type int. If it were declared as type .char, the second byte would
not be retained. A multicharacter constant has four meaningful characters; specifying
more than four generates an error message.

Syntax
character-constant:

, c-char-sequence'
L' c-char-sequence'

c-char-sequence:

c-char:

c-char
c-char-sequence c-char

any member of the source character set except the single quotation mark (') ,
backs lash (\), or newline character

escape-sequence

escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence

simple-escape-sequence: one of
\' \" \? \\
\a \b \f \n \r \t \ v

octal-escape-sequence:
\octal-digit
\octal-digit octal-digit
\octal-digit octal-digit octal-digit

hexadecimal-escape-sequence:
'J(.hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

Microsoft C++ supports normal, multicharacter, and wide-character constants. Use
wide-character constants to specify members of the extended execution character set
(for example, to support an international application). Normal character constants
have type char, multicharacter constants have type int, and wide-character constants
have type wchar_t. (The type wchar_t is defined in the standard include files
STDDEEH, STDLIB.H, and STRING.H. The wide-character functions, however, are
prototyped only in STDLIB.H.)

Chapter 1 Lexical Conventions

The only difference in specification between nonnal and wide-character constants is
that wide-character constants are preceded by the letter L. For example:

char schar = 'x';
wchar_t wchar = L'\xSl\x19';

II Normal character constant
II Wide-character constant

Table i.2 shows reserved or nongraphic characters that are system dependent or not
allowed within character constants. These characters should be represented with
escape sequences.

Table 1.2 C++ Reserved or Nongraphic Characters

Character ASCII Representation

Newline

Horizontal tab

Vertical tab

Backspace

Carriage return

Formfeed

Alert

Backslash

Question mark

Single quotation mark

Double quotation mark

Octal number

Hexadecimal number

Null character

NL (LF)

HT
VT

BS

CR

FF

BEL

\

?

000

hhh

NUL

ASCII Value

10 or OxOa

9

11 or OxOb

8

13 or OxOd

12 or OxOc

7

92 or Ox5c

63 or Ox3f

39 or Ox27

34 or Ox22

o

Escape Sequence

\n

\t

\v

\b

\r

\f

\a

\\

\?

\'

\"

\000

\xhhh

\0

If the character following the backslash does not specify a legal escape sequence,
the result is implementation defined. In Microsoft C++, the character following the
backslash is taken literally, as though the escape were not present, and a level 1
warning ("unrecognized character escape sequence") is issued.

Octal escape sequences, specified in the fonn \000, consist of a backslash and one,
two, or three octal characters. Hexadecimal escape sequences, specified in the fonn
\xhhh, consist of the characters \x followed by a sequence of hexadecimal digits.
Unlike octal escape constants, there is no limit on the number of hexadecimal digits
in an escape sequence.

Octal escape sequences are terminated by the first character that is not an octal digit,
or when three characters are seen. For example:

wchar_t och = L'\076a'; II Sequence terminates at a
char ch = '\233'; II Sequence terminates after 3 characters

Similarly, hexadecimal escape sequences terminate at the first character that is not
a hexadecimal digit. Because hexadecimal digits include the letters a through f (and
A through F), make sure the escape sequence terminates at the intended digit.

13

c++ Language Reference

Because the single quotation mark (,) encloses character constants, use the escape
sequence \ ' to represent enclosed single quotation marks. The double quotation mark
(") can be represented without an escape sequence. The backslash character (\) is a
line-continuation character when placed at the end of a line. If you want a backslash
character to appear within a character constant, you must type two backslashes in a
row (\ \). (See "Phases of Translation" in the Preprocessor Reference for more
information about line continuation.)

Floating-Point Constants

14

Floating-point constants specify values that must have a fractional part. These values
contain decimal points (.) and can contain exponents.

Syntax
floating-constant:

fractional-constant exponent-partopt floating-su!fixopt
digit-sequence exponent-part floating-su!fixopt

fractional-constant:
digit-sequenceopt . digit-sequence
digit-sequence.

exponent-part:
e signopt digit-sequence
E signopt digit-sequence

sign: one of
+-

digit-sequence:
digit
digit-sequence digit

floating-suffix: one of
flFL

Floating-point constants have a "mantissa," which specifies the value of the number,
an "exponent," which specifies the magnitude of the number, and an optional suffix
that specifies the constant's type. The mantissa is specified as a sequence of digits
followed by a period, followed by an optional sequence of digits representing the
fractional part of the number. For example:

18.46
38.

The exponent, if present, specifies the magnitude of the number as a power of 10, as
shown in the following example:

18.46e0
18.46e1

II 18.46
II 184.6

Chapter 1 Lexical Conventions

If an exponent is present, the trailing decimal point is unnecessary in whole numbers
such as 18E0.

Floating-point constants default to type double. By using the suffixes f or I (or F or
L-the suffix is not case sensitive), the constant can be specified as float or long
double, respectively.

Although long double and double have the same representation, they are not the same
type. For example, you can have overloaded functions like

void func(double);

and

void func(long double);

String Literals
A string literal consists of zero or more characters from the source character set
surrounded by double quotation marks ("). A string literal represents a sequence of
characters that, taken together, form a null-terminated string.

Syntax
string-literal:

"s-char-sequenceopt ' ,

L II s-char-sequenceopt II

s-char-sequence:

s-char:

s-char
s-char-sequence s-char

any member of the source character set except the double quotation mark (II) ,
backslash (\), or newline character

escape-sequence

c++ strings have these types:

• Array of char[n], where n is the length of the string (in characters) plus 1 for the
terminating '\0' that marks the end of the string

• Array of wchar_t, for wide-character strings

The result of modifying a string constant is undefined. For example:

char *szStr = "1234";
szStr[2] = 'A'; II Results undefined

15

c++ Language Reference

16

Microsoft Specific ~

In some cases, identical string literals can be "pooled" to save space in the executable
file. In string-literal pooling, the compiler causes all references to a particular string
literal to point to the same location in memory, instead of having each reference point
to a separate instance of the string literal. The /Gf compiler option enables string
pooling.

END Microsoft Specific

When specifying string literals, adjacent strings are concatenated. Therefore, this
declaration:

char szStr[] = "12" "34";

is identical to this declaration:

char szStr[] = "1234";

This concatenation of adjacent strings makes it easy to specify long strings across
multiple lines:

cout « "Four score and seven years"
"ago, our forefathers brought forth"
"upon this continent a new nation.";

In the preceding example, the entire string Fou r s core and seven yea rs ago,
our forefathers brought forth upon this continent a new nation.
is spliced together. This string can also be specified using line splicing as follows:

cout « "Four score and seven years \
ago, our forefathers brought forth \
upon this continent a new nation.";

After all adjacent strings in the constant have been concatenated, the NULL character,
, \ 0 ' , is appended to provide an end-of-string marker for C string-handling functions.

When the first string contains an escape character, string concatenation can yield
surprising results. Consider the following two declarations:

char szStrl[] = "\01" "23";
char szStr2[] = "\0123";

Although it is natural to assume that szStrl and szStr2 contain the same values, the
values they actually contain are shown in Figure 1.1.

Figure 1.1 Escapes and String Concatenation

"\01" "23"

"\0123"

Chapter 1 Lexical Conventions

Microsoft Specific ---?

The maximum length of a string literal is approximately 2,048 ,bytes. This limit
applies to strings of type char[] and wchar_t[]. If a string literal consists of parts
enclosed in double quotation marks, the preprocessor concatenates the parts into a
single string, and for each line concatenated, it adds an extra byte to the total number
of bytes.

For example, suppose a string consists of 40 lines with 50 characters per line (2,000
characters), and one line with 7 characters, and each line is surrounded by double
quotation marks. This adds up to 2,007 bytes plus one byte for the terminating null
character, for a total of 2,008 bytes. On concatenation, an extra character is added to
the total number of bytes for each of the first 40 lines. This makes a total of 2,048
bytes. (The extra characters are not actually written to the string.) Note, however, that
if line continuations (\) are used instead of double quotation marks, the preprocessor
does not add an extra character for each line.

END Microsoft Specific

Determine the size of string objects by counting the number of characters and adding
1 for the terminating I \ 0 I or 2 for type wchar_t.

Because the double quotation mark (") encloses strings, use the escape sequence (\ ")
to represent enclosed double quotation marks. The single quotation mark (I) can
be represented without an escape sequence. The backslash character (\) is a line
continuation character when placed at the end of a line. If you want a backslash
character to appear within a string, you must type two backslashes (\ \). (See
"Phases of Translation" in the Preprocessor Reference for more information
about line continuation.)

To specify a string of type wide-character (wchar_t[D, precede the opening
double quotation mark with the character L. For example:

wchar_t wszStr[] = L"lalg";

All normal escape codes listed in "Character Constants" on page 11 are valid in string
constants. For example:

cout « "First line\nSecond line";
cout « "Error! Take corrective action\a";

Because the escape code terminates at the first character that is not a hexadecimal
digit, specification of string constants with embedded hexadecimal escape codes can
cause unexpected results. The following example is intended to create a string literal
containing ASCII 5, followed by the characters fi ve:

\x05five"

The actual result is a hexadecimal SF, which is the ASCII code for an underscore,
followed by the characters i ve. The following example produces the desired results:

"\005fi ve" I I Use octal constant.
"\x05" "five" II Use string splicing.

17

CHAPTER 2

Basic Concepts

This chapter explains concepts that are critical to understanding C++. C programmers
will be familiar with many of these concepts, but there are some subtle differences that
can cause unexpected program results. The following topics are included:

• Terms

• Declarations and definitions

• Scope of a C++ object or function

• Program definition and linkage rules

• Startup and termination

• Storage classes

• Types

Additional topics include I-values, r-values, and numerical limits.

Terms
C++ terms used in this book are defined in Table 2.1:

Table 2.1 C++ Terminology

Term Meaning

Declaration A declaration introduces names and their types into a program without
necessarily defining an associated object or function. However, many
declarations serve as definitions.

Definition

Lifetime

A definition provides information that allows the compiler to allocate
memory for objects or generate code for functions.

The lifetime of an object is the period during which an object exists,
including its creation and destruction.

(continued)

19

c++ Language Reference

Table 2.1 C++ Terminology (continued)

Term

Linkage

Name

Object

Scope

Storage class

Type

Variable

Meaning

Names can have external linkage, internal linkage, or no linkage. Within a
program (a set of translation units), only names with external linkage denote
the same object or function. Within a translation unit, names with either
internal or external linkage denote the same object or function (except when
functions are overloaded). (For more information on translation units, see
"Phases of Translation", in the Preprocessor Reference.) Names with no
linkage denote unique objects or functions.

A name denotes an object, function, set of overloaded functions, enumerator,
type, class member, template, value, or label. C++ programs use names to
refer to their associated language element. Names can be type names or
identifiers.

An object is an instance (a data item) of a user-defined type (a class type).
The difference between an object and a variable is that variables retain state
information, whereas objects can also have behavior.

This manual draws a distinction between objects and variables: "object"
means instance of a user-defined type, whereas "variable" means instance of
a fundamental type.

In cases where either object or variable is applicable, the term "object" is
used as the inclusive term, meaning "object or variable."

Names can be used only within specific regions of program text. These
regions are called the scope of the name.

The storage class of a named object determines its lifetime, initialization,
and, in certain cases, its linkage.

Names have associated types that determine the meaning of the value or
values stored in an object or returned by a function.

A variable is a data item of a fundamental type (for example, int, float, or
double). Variables store state information but define no behavior for how that
information is handled. See the preceding list item "Object" for information
about how the terms "variable" and "object" are used in this documentation.

Declarations and Definitions
Declarations tell the compiler that a program element or name exists. Definitions
specify what code or data the name describes. A name must be declared before it
can be used.

Declarations

20

A declaration introduces one or more names into a program. Declarations can occur
more than once in a program. Therefore, classes, structures, enumerated types, and
other user-defined types can be declared for each compilation unit. The constraint

Chapter 2 Basic Concepts

on this multiple declaration is that all declarations must be identical. Declarations
also serve as definitions, except when the declaration:

• Is a function prototype (a function declaration with no function body).

• Contains the extern specifier but no initializer (objects and variables) or function
body (functions). This signifies that the definition is not necessarily in the current
translation unit and gives the name extemallinkage.

• Is of a static data member inside a class declaration.

Because static class data members are discrete variables shared by all objects of the
class, they must be defined and initialized outside the class declaration. (For more
information about classes and class members, see Chapter 8, "Classes.")

• Is a class name declaration with no following definition, such as c 1 ass T;.

• Is a typedef statement.

Examples of declarations that are also definitions are:

II Declare and define int variables i and j.
i nt i;
int j = 10;

II Declare enumeration suits.
enum suits { Spades = 1. Clubs. Hearts. Diamonds };

II Declare class CheckBox.
class CheckBox public Control
{

public:
Boolean IsChecked();

virtual int ChangeState() = 0;
} ;

Some declarations that are not definitions are:

extern int i;
char *strchr(const char *Str. const char Target);

Definitions
A definition is a unique specification of an object or variable; function, class, or
enumerator. Because definitions must be unique, a program can contain only one
definition for a given program element.

There can be a many-to-one correspondence between declarations and definitions.
There are two cases in which a program element can be declared and not defined:

• A function is declared but never referenced with a function call or with an
expression that takes the function's address.

21

c++ Language Reference

• A class is used only in a way that does not require its definition be known.
However, the class must be declared. The following code illustrates such a case:

class WindowCounter;

class Window

II Forward reference; no definition

{

} ;

static WindowCounter windowCounter; II Definition of
II WindowCounter
II not required.

Scope

22

c++ names can be used only in certain regions of a program. This area is called the
"scope" of the name. Scope determines the "lifetime" of a name that does not denote
an object of static extent. Scope also determines the visibility of a name, when class
constructors and destructors are called, and when variables local to the scope are
initialized. (For more information, see "Constructors" and "Destructors" on pages 292
and 297 in Chapter 11.) There are five kinds of scope:

• Local scope. A name declared within a block is accessibl~ only within that block
and blocks enclosed by it, and only after the point of declaration. The names of
formal arguments to a function in the scope of the outermost block of the function
have local scope, as if they had been declared inside tp.e block enclosing the
function body. Consider the following code fragment:

{

i nt i;

Because the declaration of i is in a block enclosed by curly braces, i has local
scope and is never accessible because no code accesses it before the closing curly
brace.

• Function scope. Labels are the only names that have function scope. They can be
used anywhere within a function but are not accessible outside that function.

• File scope. Any name declared outside all blocks or classes has file scope. It is
accessible anywhere in the translation unit after its declaration. Names with file
scope that do not declare static objects are often called "global" names.

• Class scope. Names of class members have class scope. Class member functions
can be accessed only by using the member-selection operators (. or -» or
pointer-to-member operators (. * or ->*) on an object or pointer to an object of
that class; nonstatic class member data is considered local to the object of that
class. Consider the following class declaration:

class Point
{

} ;

int x;
int y;

Chapter 2 Basic Concepts

The class members x and yare considered to be in the scope of class Poi nt.

• Prototype scope. Names declared in a function prototype are visible only until the
end of the prototype. The following prototype declares two names (s z Des t,
s z Sou r c e); these names go out of scope at the end of the prototype:

char *strcpy(char *szDest, const char *szSource);

Point of Declaration
A name is considered to be declared immediately after its declarator but before its
(optional) initializer. (For more information on declarators, see Chapter 7,
"Declarators.") An enumerator is considered to be declared immediately after the
identifier that names it but before its (optional) initializer.

Consider this example:

double dVar = 7.0;

void main()
{

double dVar = dVar;

If the point of declaration were after the initialization, then the local d V a r would be
initialized to 7.0, the value of the global variable d V a r. However, since that is not the
case, d V a r is initialized to an undefined value.

Enumerators follow the same rule. However, enumerators are exported to the
enclosing scope of the enumeration. In the following example, the enumerators
Spades, Cl ubs, Hea rts, and Di amonds are declared. Because the' enumerators are
exported to the enclosing scope, they are considered to have global scope. The
identifiers in the example are already defined in global scope.

Consider the following code:

const int Spades = 1, Clubs = 2, Hearts 3, Diamonds = 4;

enum Suits
{

} ;

Spades = Spades,
Clubs,
Hearts,
Diamonds

II error
II error
II error
II error

Because the identifiers in the preceding code are already defined in global scope, an
error message is generated.

Note Using the same name to refer to more than one program element-for example, an
enumerator and an object-is considered poor programming practice and should be avoided.
In the preceding example, this practice causes an error.

23

c++ Language Reference

Hiding Names

24

You can hide a name by declaring it in an enclosed block. In Figure 2.1, i is
redeclared within the inner block, thereby hiding the variable associated with i
in the outer block scope.

Figure 2.1 Block Scope and Name Hiding

Sample::Func(char *szWhat)
{

I

Il
}

-

int 1 = 0
cout « "i = " « i « "\n";
{

int i = 7, j = 9;
cout « "i = " « i « "\n"

« "j = " « j « "\n";
}

cout « "i = " « i « "\n";

-Inner block contains local scope
objects i and j.

~

~

- Outer block contains
local-scope object i
and format parameter
szWhat.

The output from the program shown in Figure 2.1 is:

o
7

j 9
o

Note The argument s z W hat is considered to be in the scope of the function. Therefore, it is
treated as if it had been declared in the outermost block of the function.

Hiding Names with File Scope
You can hide names with file scope by explicitly declaring the same name in block
scope. However, file-scope names can be accessed using the scope-resolution operator
(::). For example:

#include <iostream.h>

int i = 7; II i has file scope--declared
II outside all blocks

void maine int argc, char *argv[])
{

int i = 5; II i has block scope--hides
II the i with file scope

Chapter 2 Basic Concepts

cout « "Block-scoped i has the val ue: " « i « "\n";
cout « "File-scoped i has the value: " « ::i « "\n";

The result of the preceding code is:

Block-scoped i has the value: 5
File-scoped i has the value: 7

Hiding Class Names
You can hide class names by declaring a function, object or variable, or enumerator in
the same scope. However, the class name can still be accessed when prefixed by the
keyword class.

II Declire class Account at file scope.
class Account
{

public:
Account(double InitialBalance

{ balance = InitialBalance;
double GetBalance()

{ return balance;
private:

double balance;
} ;

double Account 15.37;

void main()
{

II Hides class name Account

class Account Checking(Account); II Qualifies Account as
II class name

}

cout « "Opening account with balance of: "
« Checking.GetBalance() « "\n";

Note that any place the class name (Account) is called for, the keyword class must be
used to differentiate it from the file-scoped variable Account. This rule does not
apply when the class name occurs on the left side of the scope-resolution operator (::).
Names on the left side of the scope-resolution operator are always considered class
names. The following example demonstrates how to declare a pointer to an object of
type Account using the class keyword:

class Account *Checking = new class Account(Account);

The Account in the initializer (in parentheses) in the preceding statement has file
scope; it is of type double.

Note The reuse of identifier names as shown in this example is considered poor
programming style.

25

c++ Language Reference

For more information about pointers, see "Derived Types" on page 44. For
information about declaration and initialization of class objects, see Chapter 8,
"Classes." For information about using the new and delete free-store operators,
see Chapter 11, "Special Member Functions."

Scope of Formal Arguments to Functions
Formal arguments (arguments specified in function definitions) to functions are
considered to be in the scope of the outermost block of the function body.

Program and Linkage
A program consists of one or more translation units linked together. Execution
(conceptually) begins in the translation unit that contains the function main.
(For more information on translation units, see "Phases of Translation," in the
Preprocessor Reference.) For more information about the main function, see
"Program Startup: the main Function.")

Types of Linkage

26

The way the names of objects and functions are shared between translation units is
called "linkage." These names can have:

• Internal linkage, in which case they refer only to program elements inside their
own translation units; they are not shared with other translation units.

The same name in another translation unit may refer to a different object or a
different class. Names with internal linkage are sometimes referred to as being
"local" to their translation units.

An example declaration of a name with internal linkage is:

static int i: II The static keyword ensures internal linkage.

• External linkage, in which case they can refer to program elements in any
translation unit in the program-the program element is shared among the
translation units.

The same name in another translation unit is guaranteed to refer to the same object
or class. Names with external linkage are sometimes referred to as being "global."

An example declaration of a name with external linkage is:

extern int i:

• No linkage, in which case they refer to unique entities. The same name in another
scope may not refer to the same object. An example is an enumeration. (Note,
however, that you can pass a pointer to an object with no linkage. This makes the
object accessible in other translation units.)

Chapter 2 Basic Concepts

Linkage in Names with File Scope
The following linkage rules apply to names (other than typedef and enumerator
names) with file scope:

• If a name is explicitly declared as static, it has internal linkage and identifies a
program element inside its own translation unit.

• Enumerator names and typedef names have no linkage.

• All other names with file scope have external linkage.

Microsoft Specific -7

• If a function name with file scope is explicitly declared as inline, it has external
linkage if it is instantiated or its address is referenced. Therefore, it is possible for
a function with file scope to have either internal or external linkage.

END Microsoft Specific

A class has internal linkage if it:

• Uses no C++ functionality (for example, member-access control, member
functions, constructors, destructors, and so on).

• Is not used in the declaration of another name that has external linkage. This
constraint means that objects of class type that are passed to functions with
external linkage cause the class to have external linkage.

Linkage in Names with Class Scope
The following linkage rules apply to names with class scope:

• Static class members have external linkage.

• Class member functions have external linkage.

• Enumerators and typedef names have no linkage.

Microsoft Specific -7

• Functions declared as friend functions must have external linkage. Declaring
a static function as a friend generates an error.

END Microsoft Specific

Linkage in Names with Block Scope
The following linkage rules apply to names with block scope (local names):

• Names declared as extern have external linkage unless they were previously
declared as static.

• All other names with block scope have no linkage.

27

c++ Language Reference

N ames with No Linkage

28

The only names that have no linkage are:

• Function parameters.

• Block-scoped names not declared as extern or static.

• Enumerators.

• Names declared in a typedef statement. An exception is when the typedef
statement is used to provide a name for an unnamed class type. The name may
then have external linkage if the class has external linkage. The following
example shows a situation in which a typedef name has external linkage:

typedef struct
{

short x;
short y;

POINT;
extern int MoveTo(POINT pt);

The typedef name, PO I NT, becomes the class name for the unnamed structure.
It is then used to declare a function with external linkage.

Because typedef names have no linkage, their definitions can differ between
translation units. Because the compilations take place discretely, there is no way
for the compiler to detect these differences. As a result, errors of this kind are not
detected until link time. Consider the following case:

II Translation unit 1
typedef int INT

INT myInt;

II Translation unit 2
typedef short INT

extern INT myInt;

The preceding code generates an "unresolved external" error at link time.

C++ functions can be defined only in file or class scope. The following example
illustrates how to define functions and shows an erroneous function definition:

#include <iostream.h>

void ShowChar(char ch);

void ShowChar(char ch
{

cout « ch;

II Declare function ShowChar.

II Define function ShowChar.
II Function has file scope.

Chapter 2 Basic Concepts

struct Char
{

} ;

cha r Show();
char Get();
char ch;

char Char::Show()
{

cout « ch;
return ch;

void GoodFuncDef(char ch)
{

int BadFuncDef(int i)
{

return i * 7;

II Define class Char.

II Declare Show function.
II Declare Get function.

II Define Show function
II with class scope.

II Define GoodFuncDef
II with file scope.
II Erroneous attempt to
II nest functions.

for(int i = 0;
cout « ch;

cout « "\n";

< BadFuncDef(2); ++i)

Linkage to Non-C++ Functions
C functions and data can be accessed only if they are previously declared as having
C linkage. However, they must be defined in a separately compiled translation unit.

Syntax
linkage-specification:

extern string-literal { declaration-listopt }

extern string-literal declaration

declaration-list:
declaration
declaration-list declaration

Microsoft C++ supports the strings "c" and "C++" in the string-literal field. The
following example shows alternative ways to declare names that have C linkage:

II Declare printf with C linkage.
extern "C" i nt pri ntf(const cha r *fmt, ...);

II Cause everything in the header file "cinclude.h"
II to have C linkage.
extern "C"
{

#include <cinclude.h>
}

29

c++ Language Reference

II Declare the two functions ShowChar and GetChar
II with C linkage.
extern "c"

char ShowChar(char ch);
char GetChar(void);

II Define the two functions ShowChar and GetChar
II with C linkage.
extern "c" char ShowChar(char ch)
{

putchar(ch);
return ch;

extern "c" char GetChar(void)
{

}

char ch;

ch = getchar();
return ch;

II Declare a global variable, errno, with C linkage.
extern "c" int errno;

Startup and Termination
Program startup and termination is facilitated by using two functions: main and exit.
Other startup and termination code may be executed.

Program Startup: the main Function

30

A special function called main is the entry point to all C++ programs. This function is
not predefined by the compiler; rather, it must be supplied in the program text. If you
are writing code that adheres to the Unicode programming model, you can use the
wide-character version of main, wmain. The declaration syntax for main is:

int main();

or, optionally:

int main(int argc[, char *argv[] [, char *envp[]]]);

The declaration syntax for wmain is as follows:

int wmain();

or, optionally:

int wmain(int argc[, wchar_t *argv[] [, wchar_t *envp[]]]);

Chapter 2 Basic Concepts

Alternatively, the main and wmain functions can be declared as returning void (no
return value). If you declare main or wmain as returning void, you cannot return
an exit code to the parent process or operating system using a return statement; to
return an exit code when main or wmain are declared as void, you must use the
exit function.

Using wmain Instead of main
In the Unicode programming model, you can define a wide-character version of the
main function. Use wmain instead of main if you want to write portable code that
adheres to the Unicode specification.

You declare formal parameters to wmain using a similar format to main. You can then
pass wide-character arguments and, optionally, a wide-character environment pointer
to the program. The argv and envp parameters to wmain are of type wchar_t*.

If your program uses a main function, the multi byte-character environment is created
by the operating system at program startup. A wide-character copy of the environment
is created only when needed (for example, by a call to the _ wgetenv or _ wputenv
functions). On the first call to _wputenv, or on the first call to _wgetenv if an MBCS
environment already exists, a corresponding wide-character string environment is
created and is then pointed to by the _ wenviron global variable, which is a wide
character version of the _environ global variable. At this point, two copies of the
environment (MBCS and Unicode) exist simultaneously and are maintained by the
operating system throughout the life of the program.

Similarly, if your program uses a wmain function, an MBCS (ASCII) environment
is created on the first call to _putenv or getenv, and is pointed to by the _environ
global variable.

For more information on the MBCS environment, see "Single-byte and Multibyte
Character Sets" in Chapter 1 of the Run-Time Library Reference.

Argument Definitions
The arguments in the prototype

int main(int argc[, char *argv[] [, char *envp[]]]);

or

int wmain(int argc[, wchar_t *argv[] [, wchar_t *envp[]]]);

allow convenient command-line parsing of arguments and, optionally, access to
environment variables. The argument definitions are as follows:

argc An integer that contains the count of arguments that follow in argv. The argc
parameter is always greater than or equal to 1.

31

c++ Language Reference

32

argv An array of null-tenninated strings representing command-line arguments entered
by the user of the program. By convention, argv[O] is the command with which the
program is invoked, argv[l] is the first command-line argument, and so on, until
argv[argc], which is always NULL. See "Customizing Command Line Processing"
on page 34 for information on suppressing command-line processing.

The first command-line argument is always argv[1] and the last one is
argv[argc - 1].

Microsoft Specific ~

envp The envp array, which is a common extension in many UNIX® systems, is
used in Microsoft C++. It is an array of strings representing the variables set in the
user's environment. This array is tenninated by a NULL entry. See "Customizing
Command Line Processing" on page 34 for information on suppressing
environment processing.

END Microsoft Specific

The following example shows how to use the argc, argv, and envp arguments to
main:

#include<iostream.h)
#include <string.h)

void maine int argc, char *argv[], char *envp[])
{

int iNumberLines = 0; II Default is no line numbers.

II If more than .EXE filename supplied, and if the
II In command-line option is specified, the listing
II of environment variables is line-numbered.

if(argc == 2 && stricmp(argv[1], "In") == 0)
iNumberLines = 1;

II Walk through list of strings until a NULL is encountered.
fore int i = 0; envp[i] != NULL; ++i)
{

if(iNumberLines)
cout « i « ". " « envp[i] « "\n";

Wildcard Expansion
Microsoft Specific ~

You can use wildcards~he question mark (?) and asterisk (*)~o specify filename
and path arguments on the command line.

Command-line arguments are handled by a routine called _setargv. By default,
_setargv expands wildcards into separate strings in the a r 9 v string array. If no
matches are found for the wildcard argument, the argument is passed literally.

END Microsoft Specific

Chapter 2 Basic Concepts

Parsing Command-Line Arguments
Microsoft Specific ~

Microsoft C/C++ startup code uses the following rules when interpreting arguments
given on the operating system command line:

• Arguments are delimited by white space, which is either a space or a tab.

• The caret character (A) is not recognized as an escape character or delimiter.
The character is handled completely by the command-line parser in the operating
system before being passed to the a rgv array in the program.

• A string surrounded by double quotation marks ('I string") is interpreted as a single
argument, regardless of white space contained within. A quoted string can be
embedded in an argument.

• A double quotation mark preceded by a backslash (\") is interpreted as a literal
double quotation mark character (").

• Backslashes are interpreted literally, unless they immediately precede a double
quotation mark.

• If an even number of backslashes is followed by a double quotation mark, one
backslash is placed in the a r 9 v array for every pair of backslashes, and the double
quotation mark is interpreted as a string delimiter.

• If an odd number of backslashes is followed by a double quotation mark, one
backslash is placed in the a r 9 v array for every pair of backslashes, and the double
quotation mark is "escaped" by the remaining backslash, causing a literal double
quotation mark (") to be placed in a rgv.

The following program demonstrates how command-line arguments are passed:

include <iostream.h>

void maine int argc,
char *argv[],
char *envp[])

int count;

II Number of strings in array argv
II Array of command-line argument strings
II Array of environment variable strings

II Display each command-line argument.
cout « "\nCommand -1 i ne arguments: \n";·
fore count = 0; count < argc; count++)

cout «" argv["« count « "]
« argv[count] « "\n";

33

c++ Language Reference

Table 2.2 shows example input and expected output, demonstrating the rules in the
preceding list.

Table 2.2 Results of Parsing Command Lines

Command·Line Input argv[1] argv[2] argv[3]

"abc" d e abc d e
a\\\b d"e f"g h a\\ \b de fg h
a\\\"b c d a\"b c d
a\\\\"b c" d e a\\b c d e

END Microsoft Specific

Customizing Command-Line Processing

34

Microsoft Specific -7

If your program does not take command-line arguments, you can save a small
amount of space by suppressing use of the library routine that performs command-line
processing. This routine is called _setargv and is described in "Wildcard Expansion"
on page 32. To suppress its use, define a routine that does nothing in the file
containing the main function, and name it _setargv. The call to _setargv is then
satisfied by your definition of _setargv, and the library version is not loaded.

Similarly, if you never access the environment table through the envp argument,
you can provide your own empty routine to be used in place of _setenvp, the
environment-processing routine. Just as with the _setargv function, _setenvp
must be declared as extern "C".

Your program might make calls to the spawn or exec family of routines in the
C run-time library. If this is the case, you should not suppress the environment
processing routine, since this routine is used to pass an environment from the parent
process to the child process.

END Microsoft Specific

main Function Restrictions
Several restrictions apply to the main function that do not apply to any other C++
functions. The main function:

• Cannot be overloaded (see Chapter 12, "Overloading").

• Cannot be declared as inline.

• Cannot be declared as static.

• Cannot have its address taken.

• Cannot be called.

Chapter 2 Basic Concepts

Program Termination
In C++, there are several ways to exit a program:

• Call the exit function.

• Call the abort function.

• Execute a return statement from main.

exit Function
The exit function, declared in the standard include file STDLIB.H, terminates a
C++ program.

The value supplied as an argument to exit is returned to the operating system as the
program's return code or exit code. By convention, a return code of zero means that
the program completed successfully.

Note You can use the constants EXIT_FAILURE and EXIT_SUCCESS, defined in STDLlB.H,
to indicate success or failure of your program.

Issuing a return statement from the main function is equivalent to calling the exit
function with the return value as its argument.

For more information, see "exit" in the Run-Time Library Reference.

abort Function
The abort function, also declared in the standard include file STDLIB.H, terminates
a C++ program. The difference between exit and abort is that exit allows the C++
run-time termination processing to take place (global object destructors will be
called), whereas abort terminates the program immediately. For more information, see
abort in the Run-Time Library Reference.

return Statement
Issuing a return statement from main is functionally equivalent to calling the exit
function. Consider the following example:

int maine)
{

}

exit(3);
return 3;

The exit and return statements in the preceding example are functionally identical.
However, C++ requires that functions that have return types other than void return a
value. The return statement allows you to return a value from main.

35

c++ Language Reference

Additional Startup Considerations
In C++, object construction and destruction can involve executing user code.
Therefore, it is important to understand which initializations happen before entry
to main and which destructors are invoked after exit from main. (For detailed
information about construction and destruction of objects, see "Constructors"
and "Destructors" on pages 292 and 297 in Chapter 11.)

The following initializations take place prior to entry to main:

• Default initialization of static data to zero. All static data without explicit
initializers are set to zero prior to executing any other code, including run-time
initialization. Static data members must still be explicitly defined.

• Initialization of global static objects in a translation unit. This may occur either
before entry to main or before the first use of any function or object in the
object's translation unit.

Microsoft Specific ~

In Microsoft C++, global static objects are initialized before entry to main.

END Microsoft Specific

Global static objects that are mutually interdependent but in different translation
units may cause incorrect behavior.

Additional Termination Considerations

36

You can terminate a c++ program by using exit, return, or abort. You can add exit
processing using the atexit function. These are discussed in the following sections.

Using exit or return
When you call exit or execute a return statement from main, static objects are
destroyed in the reverse order of their initialization. This example shows how such
initialization and cleanup works:

#include <stdio.h>

class ShowData
{

public:
II Constructor opens a file.
ShowData(const char *szDev)
{

OutputDev = fopen(szDev, "w");

II Destructor closes the file.
~ShowData() { fclose(OutputDev); }

Chapter 2 Basic Concepts

II Disp function shows a string on the output device.
void Disp(char *szData)
{

fputs(szData, OutputDev);

private:
FILE *OutputDev;

} ;

II Define a static object of type ShowData. The output device
II selected is "CON" -- the standard output device.
ShowData sdl = "CON";
II Define another static object of type ShowData. The output
II is directed to a file called "HELLO.DAT"
ShowData sd2 = "hello.dat";

int maine)
{

sdl.Disp("hello to default device\n");
sd2.Disp("hello to file hello.dat\n");

return 0;

In the preceding example, the static objects s d 1 and s d 2 are created and initialized
before entry to rna in. After this program tenninates using the retu rn statement, first
sd2 is destroyed and then sdl. The destructor for the ShowData class closes the files
associated with these static objects. (For more information about initialization,
constructors, and destructors, see Chapter 11, "Special Member Functions.")

Anot~er way to write this code is to declare the ShowData objects with block scope,
allowing them to be destroyed when they go out of scope:

int maine)
{

ShowData sdl, sd2("hello.dat");

sdl.Disp("hello to default device\n");
sd2.Disp("hello to file hello.dat\n");

return 0;

Using atexit
With the atexit function, you can specify an exit-processing function that executes
prior to program tennination. No global static objects initialized prior to the call to
atexit are destroyed prior to execution of the exit-processing function.

37

c++ Language Reference

Using abort
Calling the abort function causes immediate termination. It bypasses the normal
destruction process for initialized global static objects. It also bypasses any special
processing· that was specified using the atexit function.

Storage Classes
Storage classes govern the lifetime, linkage, and treatment of objects and variables in
C++. A given object can have only one storage class. This section discusses the C++
storage classes for data:

• Automatic

• Static

• Register

• External

Automatic
Objects and variables with automatic storage are local to a given instance of a block.
In recursive or multithreaded code, automatic objects and variables are guaranteed to
have different storage in different instances of a block. Microsoft C++ stores
automatic objects and variables on the program's stack.

Objects and variables defined within a block have auto storage unless otherwise
specified using the extern or static keyword. Automatic objects and variables can be
specified using the auto keyword, but explicit use of auto is unnecessary. Automati,c
objects and variables have no linkage.

Automatic objects and variables persist only until the end of the block in which they
are declared.

Static

38

Objects and variables declared as static retain their values for the duration of the
program's execution. In recursive code, a static object or variable is guaranteed to
have the same state in different instances of a block of code.

Objects and variables defined outside all blocks have static lifetime and external
linkage by default. A global object or variable that is explicitly declared as static
has intemallinkage.

Static objects and variables persist for the duration of the program's execution.

Chapter 2 Basic Concepts

Register
Only function arguments and local variables can be declared with the register storage
class.

Like automatic variables, register variables persist only until the end of the block in
which they are declared.

The compiler does not honor user requests for register variables; instead, it makes its
own register choices when global optimizations are on. However, all other semantics
associated with the register keyword are honored by the compiler.

External
Objects and variables declared as extern declare an object that is defined in another
translation unit or in an enclosing scope as having external linkage.

Declaration of const variables with the extern storage class forces the variable to
have external linkage. An initialization of an extern const variable is allowed in the
defining translation unit. Initializations in translation units other than the defining
translation unit produce undefined results.

The following code shows two extern declarations, Def; nedEl sewhere (which
refers to a name defined in a different translation unit) and Def; nedHere (which
refers to a name defined in an enclosing scope):

extern int DefinedElsewhere;

void main()
{

int DefinedHere;
{

extern int DefinedHere;

Initialization of Objects

II Defined in another translation
II unit.

II Refers to DefinedHere in
II the enclosing scope.,

A local automatic object or variable is initialized every time the flow of control
reaches its definition. A local static object or variable is initialized the first time the
flow of control reaches its definition. Consider the following example, which defines
a class that logs initialization and destruction of objects and then defines three objects,
I 1, I 2, and I 3:

#include <iostream.h>
#include <string.h>

II Define a class that logs initializations and destructions.
class InitDemo
{

39

c++ Language Reference

40

public:
InitDemo(const char *szWhat);
~lnitDemo() ;

private:
char *szObjName;

} ;

II Constructor for class InitDemo
InitDemo::lnitDemo(const char *szWhat
{

if(szWhat 1= 0 && strlen(szWhat) > 0)
{

II Allocate storage for szObjName, then copy
II initializer szWhat into szObjName.
szObjName = new char[strlen(szWhat) + 1 J;
strcpy(szObjName, szWhat);

cout « "Initializing: " « szObjName « "\n";

else
szObjName 0;

II Destructor for InitDemo
InitDemo::~lnitDemo()
{

}

if(szObjName 1= 0
{

cout« "Destroying: "« szObjName« "\n";
delete szObjName;

II Enter main function
void main()
{

}

InitDemo I1("Auto 11");
{

cout « "In block.\n";
InitDemo 12("Auto 12");
stati c InitDemo 13("Stati c 13");

cout « "Exited block.\n";

The preceding code demonstrates how and when the objects 11, 12, and 13 are
initialized and when they are destroyed. The output from the program is:

Initializing: Auto 11
In block.
Initializing: Auto 12
Initializing: Static 13
Destroying: Auto 12
Exited block.
Destroying: Auto 11
Destroying: Static 13

Chapter 2 Basic Concepts

There are several points to note about the program.

First, I 1 and 12 are automatically destroyed when the flow of control exits the block
in which they are defined.

Second, in C++, it is not necessary to declare objects or variables at the beginning of a
block. Furthermore, these objects are initialized only when the flow of control reaches
their definitions. (I2 and 13 are examples of such definitions.) The output shows
exactly when they are initialized.

Finally, static local variables such as 13 retain their values for the duration of the
program but are destroyed as the program terminates.

Types
C++ supports three kinds of object types:

• Fundamental types are built into the language (such as int, float, or double).
Instances of these fundamental types are often called "variables."

• Derived types are new types derived from built-in types. See page 44.

• Class types are new types created by combining existing types. These are
discussed in Chapter 8, "Classes."

Fundamental Types
Fundamental types in C++ are divided into three categories: "integral," "floating,"
and "void." Integral types are capable of handling whole numbers. Floating types
are capable of specifying values that may have fractional parts.

The void type describes an empty set of values. No variable of type void can be
specified-it is used primarily to declare functions that return no values or to declare
"generic" pointers to untyped or arbitrarily typed data. Any expression can be
explicitly converted or cast to type void. However, such expressions are restricted
to the following uses:

• An expression statement. (See Chapter 4, "Expressions," for more information.)

• The left operand of the comma operator. (See "Comma Operator" on page 10 I' in
Chapter 4 for more information.)

• The second or third operand of the conditional operator (? :). (See "Expressions
with the Conditional Operator" on page 102 in Chapter 4 for more information.)

41

c++ Language Reference

42

Table 2.3 explains the restrictions on type sizes. These restrictions are independent
of the Microsoft implementation.

Table 2.3 Fundamental Types of the C++ Language

Category Type Contents

Integral

Floating

char

short

int

long

float

double

long double!

Type char is an integral type that usually contains
members of the execution character set-in
Microsoft C++, this is ASCII.

The C++ compiler treats variables of type char,
signed char, and unsigned char as having different
types. Variables of type char are promoted to int as
if they are type signed char by default, unless the /1
compilation option is used. In this case they are
treated as type unsigned char and are promoted to
int without sign extension.

Type short int (or simply short) is an integral type
that is larger than or equal to the size of type char,
and shorter than or equal to the size of type int.

Obj ects of type short can be declared as signed
short or unsigned short. Signed short is a synonym
for short.

Type int is an integral type that is larger than or
equal to the size of type short int, and shorter than
or equal to the size of type long.

Objects of type int can be declared as signed int or
unsigned int. Signed int is a synonym for int.

Sized integer, where n is the size, in bits, of the
integer variable. The value of n can be 8, 16, 32,
or 64.

Type long (or long int) is an integral type that is
larger than or equal to the size of type int.

Objects of type long can be declared as signed long
or unsigned long. Signed long is a synonym for
long.

Type float is the smallest floating type.

Type double is a floating type that is larger than or
equal to type float, but shorter than or equal to the
size of type long double. !

Type long double is a floating type that is equal to
type double.

1 The representation of long double and double is identical. However, long double and double are separate
types.

Chapter 2 Basic Concepts

Microsoft Specific ~

Table 2.4 lists the amount of storage required for fundamental types in Microsoft C++.

Table 2.4 Sizes of Fundamental Types

Type

char, unsigned char, signed char

short, unsigned short

int, unsigned int

long, unsigned long

float

double

long double!

Size

1 byte

2 bytes

4 bytes

4 bytes

4 bytes

8 bytes

8 bytes

1 The representation of long double and double is identical. However, long double and double are
separate types.

For more information about type conversion, see Chapter 3, "Standard Conversions."

END Microsoft Specific

Sized Integer Types
Microsoft C++ also supports sized integer types. You can declare 8-, 16-,32-, or
64-bit integer variables by using the __ intn type specifier, where n is the size, in bits,
of the integer variable. The value of n can be 8, 16, 32, or 64. The following example
declares one variable for each of these types of sized integers:

_intB nSmall;
int16 nMedium;

_int32 nLarge;
_int64 nHuge;

II Declares B-bit integer
II Declares 16-bit integer
II Declares 32-bit integer
II Declares 64-bit integer

The types __ intS, __ int16, and __ int32, are synonyms for the ANSI types that have
the same size, and are useful for writing portable code that behaves identically across
multiple platforms. Note that the __ intS data type is synonymous with type char,
__ int16 is synonymous with type short, and __ int32 is synonymous with type into
The __ int64 data type has no ANSI equivalent.

Since __ intS, __ int16, and __ int32 are considered synonyms by the compiler, care
should be taken when using these types as arguments to overloaded function calls.
For example, the following C++ code will generate a compiler error:

void MyFunc(intB) {}
void MyFunc(char) {}

void maine)
{

}

_intB newVal;
char MyChar;
MyFunc(MyChar);
MyFunc(newVal);

II Ambiguous function calls;
II char is synonymous with intB.

43

c++ Language Reference

Derived Types

44

Derived types are new types that can be used in a program, and can include directly
derived types and composed derivative types.

Directly Derived Types
New types derived directly from existing types are types that point to, refer to, or
(in the case of functions) transform type data to return a new type.

• Arrays of Variables or Objects

• Functions

• Pointers of a Given Type

• References to Objects

• Constants

• Pointers to Class Members

Arrays of Variables or Objects
Arrays of variables or objects can contain a specified number of a particular type. For
example, an array derived from integers is an array of type int. The following code
sample declares and defines an array of 10 int variables and an array of 5 objects of
class Sampl eel ass:

int ArrayOfInt[10];
SampleClass aSampleClass[5];

Functions
Functions take zero or more arguments of given types and return objects of a specified
type (or return nothing, if the function has a void return type).

Pointers of a Given Type
Pointers to variables or objects select an object in memory. The object can be global,
local (or stack-frame), or dynamically allocated. Pointers to functions of a given type
allow a program to defer selection of the function used on a particular object or
objects until run time. The following example shows a definition of a pointer to a
variable of type char:

char *szPathStr;

References to Objects
References to objects provide a convenient way to access objects by reference but
use the same syntax required to access objects by value. The following example
demonstrates how to use references as arguments to functions and as return types
of functions:

Chapter 2 Basic Concepts

BigClassType &func(BigClassType &objname
{

objname.DoSomething();

objname.SomeData = 7;

return objname;

II Note that member-of operator(.)
II is used.
II Data passed by non-const
II reference is modifiable.

The important points about passing objects to a function by reference are:

• The syntax for accessing members of class, struct, and union objects is the same
as if they were passed by value: the member-of operator (.).

• The objects are not copied prior to the function call; their addresses are passed.
This can reduce the overhead of the function call.

Additionally, functions that return a reference need only accept the address of the
object to which they refer, instead of a copy of the whole object.

Although the preceding example describes references only in the context of
communication with functions, references are not constrained to this use. Consider,
for example, a case where a function needs to be an l-value-a common requirement
for overloaded operators:

class Vector
{

public:

} ;

Point &operator[](int nSubscript); II
II

Function returns a
reference type

The preceding declaration specifies a user-defined subscript operator for class
Ve c tor. In an assignment statement, two possible conditions occur:

Vector vI;
i nt i ;
Point p;
vl[7] = p;
p = v1[7];

II Vector used as an l-value
II Vector used as an r-value

The latter case, where v 1 [7] is used as an r-value, can be implemented without use of
references. However, the former case, where v 1 [7] is used as an I-value, cannot be
implemented easily without functions that are of reference type. Conceptually, the last
two statements in the preceding example translate to the following code:

vl.operator[](7) = 3;
i = vl.operator[](7);

II Vector used as an l-value
II Vector used as an r-value

When viewed in this way, it is easier to see that the first statement must be an I-value
to be semantically correct on the left side of the assignment statement.

For more information about overloading, and about overloaded operators in particular,
see "Overloaded Operators" on page 336 in Chapter 12.

45

c++ Language Reference

46

You can also use references to declare a const reference to a variable or object. A
reference declared as const retains the efficiency of passing an argument by reference,
while preventing the called function from modifying the original object. Consider the
following code:

II IntValue is a const reference.
void PrintInt(canst int &IntValue
{

printf("%d\n", IntValue):
}

Reference initialization is different from assignment to a variable of reference type.
Consider the following code:

int i = 7;
int j = 5;

II Reference initialization
int &ri i; II Initialize ri to refer to i.
int &rj = j; II Initialize rj to refer to j.

II Assignment
ri 3 ; II now equal to 3.
rj 12; II j now equal to 12.
ri r j ; II now equals j (12) .

Constants
See "Literals" in Chapter 1 for more information about the various kinds of constants
allowed in C++.

Pointers to Class Members
These pointers define a type that points to a class member of a particular type. Such a
pointer can be used by any object of the class type or any object of a type derived
from the class type.

D se of pointers to class members enhances the type safety of the C++ language. Three
new operators and constructs are used with pointers to members, as shown in Table 2.5.

Table 2.5 Operators and Constructs Used with Pointers to Members

Operator or
Construct

::*

.*

Syntax

type::*ptr-name

obj-name. *ptr-name

Use

Declaration of pointer to member. The type
specifies the class name, and ptr-name specifies
the name of the pointer to member. Pointers to
members can be initialized. For example:

MyType::*pMyType = &MyType::i;

Dereference a pointer to a member using an
object or object reference. For example:

. int j = Object.*pMyType;

Chapter 2 Basic Concepts

Table 2.5 Operators and Constructs Used with Pointers to Members (continued)

Operator or
Construct

->*,

Syntax

obj-ptr->*ptr-name

Use

Dereference a pointer to a member using a
pointer to an object. For example:

int j = pObject->*pMyType;

Consider this example that defines a class ACl ass and the derived type pDAT,
which points to the member I 1 :

#include <iostream.h>

II Define class AClass.
class AClass
(

public:
i nt 11;
Show() (cout« 11 « "\n"; }

} ;

II Define a derived type pDAT that points to 11 members of
II objects of type AClass.
int AClass::*pDAT = &AClass::ll;

void main()
(

AClass aClass;
AClass *paClass

II Define an object of type AClass.
&aClass; II Define a pointer to that object.

i nt i;

aClass.*pDAT = 7777;
aClass.Show();

i = paClass->*pDAT;
cout « i « "\n";

II Assign to aClass::ll using .* operator.

II Dereference a pointer using ->*operator.

The pointer to member p DA T is a new type derived from class AC 1 ass. It is more
strongly typed than a "plain" pointer to int because it points only to int members of
class ACl ass (in this case, II). Pointers to static members are plain pointers rather
than pointers to class members. Consider the following example:

class HasStaticMember
(

public:
static int SMember;

} ;
int HasStaticMember::SMember = 0;

int *pSMember = &HasStaticMember::SMember;

Note that the type of the pointer is "pointer to int," not "pointer to
HasStati cMember: : i nt."

47

c++ Language Reference

48

Pointers to members can refer to member functions as well as member data.
Consider the following code:

#include <stdio.h>

II Declare a base class, A, with a virtual function, Identify.
II (Note that in this context, struct is the same as class.)
struct A
{

virtual void Identify() = 0; II No definition· for class A.
} ;

II Decla~e a pointer to the Identify member function.
void (A::*pIdentify)() = &A::Identify;

II Declare class B derived from class A.
struct B : public A
{

void Identify();
} ;

II Define Identify functions for classe B
void B::Identify()
{

printfC "Identification is B::Identify\n");

void maine)
{

B BObject;
A *pA;

pA == &BObject;
(pA->*pIdentify)();

II Declare objects of type B
II Declare pointer to type A.

II Make pA point to an object of type B.
II Call Identify function through pointer
II to member pIdentify.

The output from this program is:

Identification is B::Identify

The function is called through a pointer to type A. However, because the function is
a virtual function, the correct function for the object to which pA refers is called.

Composed Derivative Types
This section describes the following composed derivative types:

• Classes

• Structures

• Unions

Information about aggregate types and initialization of aggregate types can be found
in "Initializing Aggregates" on page 224 in Chapter 7.

Chapter 2 Basic Concepts

Classes
Classes are a composite group of member objects, functions to manipulate these
members, and (optionally) access-control specifications to member objects and
functions.

By grouping composite groups of objects and functions in classes, C++ enables
programmers to create derivative types that define not only data but also the
behavior of objects.

Class members default to private access and private inheritance. Classes are covered
in Chapter 8, "Classes," access control is covered in Chapter 10, "Member-Access
Control."

Structures
C++ structures are the same as classes, except that all member data and functions
default to public access, and inheritance defaults to public inheritance.

For more information about access control, see Chapter 10, "Member-Access
Control."

Unions
Unions enable programmers to define types capable of containing different kinds of
variables in the same memory space. The following code shows how you can use a
union to store several different types of variables:

II Declare a union that can hold data of types char. int.
II or char *
union ToPrint
{

char chVar;
int iVar;
char *szVar;

} ;

II Declare an enumerated type that describes what type to print.
enum PrintType { CHAR_T. INT_T. STRING_T };

void Print(ToPrint Var. PrintType Type)
{

}

switch(Type
{
case CHAR_T:

printf("%c". Var.chVar);
break;

case INT_T:
printf("%d". Var.iVar);
break;

case STRING_T:
printf("%s". Var.szVar);
break;

49

c++ Language Reference

Type Names
Synonyms for both fundamental and derived types can be defined using the typedef
keyword. The following code illustrates the use of typedef:

typedef unsigned char BYTE;
typedef BYTE * PBYTE;

BYTE Ch;
PBYTE pbCh;

II a-bit unsigned entity.
II Pointer to BYTE.

II Declare a variable of type BYTE.
II Declare a pOinter to a BYTE
/1 variable.

The preceding example shows uniform declaration syntax for the fundamental type
unsigned char and its derivative type unsigned char *. The typedef construct is also
helpful in simplifying declarations. A typedef declaration defines a synonym, not a
new independent type. The following example declares a type name (PV FN)
representing a pointer to a function that returns type void. The advantage of this
declaration is that, later in the program, an array of these pointers is declared very
simply.

II Prototype two functions.
void func1();
void func2();

II Define PVFN to represent a pointer to a function that
II returns type void.
typedef void (*PVFN)();

II Declare an array of pointers to functions.
PVFN pvfn[] = { funcl. func2 };

II Invoke one of the functions.
(*pvfn[l])();

L-Values and R -Values

50

Expressions in c++ can evaluate to "I-values" or "r-values." L-values are
expressions that evaluate to a type other than void and that designate a variable.

L-values appear on the left side of an assignment statement (hence the "I" in I-value).
Variables that would normally be I-values can be made nonmodifiable by using the
const keyword; these cannot appear on the left of an assignment statement. Reference
types are always I-values.

The term r-value is sometimes used to describe the value of an expression and
to distinguish it from an I-value. AlII-values are r-values but not all r-values are
I-values.

Chapter 2 Basic Concepts

Some examples of correct and incorrect usages are:

i 7 ;
7 = i;

II Correct. A variable name, i, is an l-value.
II Error. A constant, 7, is an r-value.
II Error. The expression j * 4 yields an r-value.
II Correct. A dereferenced pointer is an l-value.

j * 4 = 7;
*p = i;
const int ci
ci = 9;

7; II Declare a const variable.
II ci is a nonmodifiable l-value, so the
II assignment causes an error message to
II be generated.

«i < 3) ? i : j) = 7; II Correct. Conditional operator (? :)
II returns an l-value.

Note The examples in this section illustrate correct and incorrect usage when operators are
not overloaded. By overloading operators, you can make an expression such as j * 4 an
I-value.

Numerical Limits
The two standard include files, LIMITS.H and FLOAT.H, define the "numerical
limits," or minimum and maximum values that a variable of a given type can hold.
These minimums and maximums are guaranteed to be portable to any C++ compiler
that uses the same data representation as ANSI C. The LIMITS.H include file defines
the numerical limits for integral types, and FLOAT.H defines the numerical limits for
floating types.

Integer Limits
Microsoft Specific ~

The limits for integer types are listed in Table 2.6. These limits are also defined in the
standard header file LIMITS.H.

Table 2.6 Limits on Integer Constants

Constant

CHAR_MIN

CHAR_MAX

Meaning

Number of bits in the smallest variable that
is not a bit field.

Minimum value for a variable of type signed
char.

Maximum value for a variable of type
signed char.

Maximum value for a variable of type
unsigned char.

Minimum value for a variable of type char.

Maximum value for a variable of type char.

Value

8

-128

127

255 (Oxff)

-128; 0 if IJ option used

127; 255 iffJ option used

(continued)

51

c++ Language Reference

Table 2.6 Limits on Integer Constants (continued)

Constant Meaning

MB_LEN_MAX Maximum number of bytes in a
multi character constant.

SHRT_MIN Minimum value for a variable of type short.

SHRT_MAX Maximum value for a variable of type short.

USHRT_MAX Maximum value for a variable of type
unsigned short.

INT_MIN Minimum value for a variable of type int.

INT _MAX Maximum value for a variable of type int.

UINT _MAX Maximum value for a variable of type
unsigned int.

LONG_MIN Minimum value for a variable of type long.

LONG_MAX Maximum value for a variable of type long.

ULONG_MAX Maximum value for a variable of type
unsigned long.

Value

2

-32768

32767

65535 (Oxffff)

-2147483647-1

2147483647

4294967295 (Oxffffffff)

-2147483647-1

2147483647

4294967295 (Oxffffffff)

If a value exceeds the largest integer representation, the Microsoft compiler generates
an error.

END Microsoft Specific

Floating Limits

52

Microsoft Specific ~

Table 2.7 lists the limits on the values of floating-point constants. These limits are also
defined in the standard header file FLOAT.H.

Table 2.7 Limits on Floating-Point Constants

Constant Meaning Value

FLT_DIG Number of digits, q, such that 6
DBL_DIG a floating-point number with q 15
LDBL_DIG decimal digits can be rounded into 15

a floating-point representation and
back without loss of precision.

FLT_EPSILON Smallest positive number x, such 1. 192092896e-07F
DBL_EPSILON that x + 1.0 is not equal to 1.0. 2.2204460492503131e-016
LDBL_EPSILON 2.2204460492503131e-016

FLT_GUARD 0

FLT_MANT_DIG Number of digits in the radix 24
DBL_MANT_DIG specified by FLT_RADIX in the 53
LDBL_MANT_DIG floating-point significand. The 53

radix is 2; hence these values
specify bits.

Table 2.7 Limits on Floating-Point Constants (continued)

Constant

FLT_MAX
DBL_MAX
LDBL_MAX

FLT_MAX_10_EXP
DBL_MAX_lO_EXP
LDBL_MAX_10_EXP

FL T_MAX_EXP
DBL_MAX_EXP
LDBL_MAX_EXP

FLT_MIN
DBL_MIN
LDBL_MIN

FLT_MIN_lO_EXP
DBL_MIN_10_EXP
LDBL_MIN_10_EXP

FLT_MIN_EXP
DBL_MIN_EXP
LDBL_MIN_EXP

FLT_NORMALIZE

FLT_RADIX
_DBL_RADIX
_LDBL_RADIX

FLT_ROUNDS
_DBL_ROUNDS
_LDBL_ROUNDS

Meaning

Maximum representable
floating-point number.

Maximum integer such that 10
raised to that number is a
representable floating-point
number.

Maximum integer such that
FLT_RADIX raised to that number
is a representable floating-point
number.

Minimum positive value.

Minimum negative integer such
that 10 raised to that number is
a representable floating-point
number.

Minimum negative integer such
that FLT_RADIX raised to
that number is a representable
floating-point number.

Radix of exponent
representation.

Rounding mode for
floating-point addition.

Chapter 2 Basic Concepts

Value

3 .402823466e+ 3 8F
1.7976931348623158e+308
1.797 6931348623158e+ 308

38
308
308

128
1024
1024

1. 175494351e-38F
2.2250738585072014e-308
2.2250738585072014e-308

-37
-307
-307

-125
-1021
-1021

o
2
2
2

1 (near)
1 (near)
1 (near)

Note that the information in Table 2.7 may differ in future versions of the product.

END Microsoft Specific

53

CHAPTER 3

Standard Conversions

The C++ language defines conversions between its fundamental types. It also
defines conversions for pointer, reference, and pointer-to-member derived types.
These conversions are called "standard conversions." (For more information about
types, standard types, and derived types, see "Types" on page 41 in Chapter 2.)

This chapter discusses the following standard conversions:

• Integral promotions

• Integral conversions

• Floating conversions

• Floating and integral conversions

• Arithmetic conversions

• Pointer conversions

• Reference conversions

• Pointer-to-member conversions

Note User-defined types can specify their own conversions. Conversion of user-defined types
is covered in "Constructors" and "Conversions" on pages 292 and 302 in Chapter 11.

The following code causes conversions (in this example, integral promotions):

long lnuml, lnum2;
int inurn;

II inurn promoted to type long prior to assignment.
lnuml = inurn;

II inurn promoted to type long prior to multiplication.
lnum2 = inurn * lnum2;

55

c++ Language Reference

Note The result of a conversion is an I-value only if it produces a reference type. For example,
a user-defined conversion declared as
operator i nt&()

returns a reference and is an I-value. However, a conversion declared as
operator i nt ()

returns an object and is not an I-value.

Integral Promotions

56

Objects of an integral type can be converted to another wider integral type (that is,
a type that can represent a larger set of values). This widening type of conversion is
called "integral promotion." With integral promotion, you can use the following in
an expression wherever another integral type can be used:

• Objects, literals, and constants of type char and short int

• Enumeration types

• int bit fields

• Enumerators

c++ promotions are "value-preserving." That is, the value after the promotion is
guaranteed to be the same as the value before the promotion. In value-preserving
promotions, objects of shorter integral types (such as bit fields or objects of type
char) are promoted to type int if int can represent the full range of the original type.
If int cannot represent the full range of values, then the object is promoted to type
unsigned int. Although this strategy is the same as that used by ANSI C,
value-preserving conversions do not preserve the "signedness" of the object.

Value-preserving promotions and promotions that preserve signedness normally
produce the same results. However, they can produce different results if the promoted
object is one of the following:

• An operand of I, %,/=, %=, <, <=, >, or >=

These operators rely on sign for determining the result. Therefore, value-preserving and
sign-preserving promotions produce different results when applied to these operands.

• The left operand of »or »=

These operators treat signed and unsigned quantities differently when performing a
shift operation. For signed quantities, shifting a quantity right causes the sign bit to
be propagated into the vacated bit positions. For unsigned quantities, the vacated
bit positions are zero-filled.

• An argument to an overloaded function or operand of an overloaded operator that
depends on the signedness of the type of that operand for argument matching. (See
"Overloaded Operators" on page 336 in Chapter 12 for more about defining
overloaded operators.)

Chapter 3 Standard Conversions

Integral Conversions
Integral conversions are performed between integral types. The integral types are
char, int, and long (and the short, signed, and unsigned versions of these types).

This section describes the following types of integral conversions:

• Converting signed to unsigned

• Converting unsigned to signed

• Standard conversion

Converting Signed to Unsigned
Objects of signed integral types can be converted to corresponding unsigned types.
When these conversions occur, the actual bit pattern does not change; however, the
interpretation of the data changes. Consider this code:

#include <iostream.h>

void main()
{

short i = -3;
unsigned short u;

cout « (u = i) « "\n";

The following output results:

65533

In the preceding example, a signed short, i, is defined and initialized to a negative
number. The expression (u = i) causes i to be converted to an unsigned short prior
to the assignment to u.

Converting Unsigned to Signed
Objects of unsigned integral types can be converted to corresponding signed types.
However, such a conversion can cause misinterpretation of data if the value of the
unsigned object is outside the range representable by the signed type, as demonstrated
in the following example:

#include <iostream.h>

void main()
{

short i;
unsigned short u = 65533;

cout « (i = u) « "\n";
}

57

c++ Language Reference

The following output results:

-3

In the preceding example, u is an unsigned short integral object that must be
converted to a signed quantity to evaluate the expression (; -= u). Because its
value cannot be properly represented in a signed short, the data is misinterpreted
as shown.

Standard Conversion
Objects of integral types can be converted to shorter signed or unsigned integral
types. Such a conversion is called "standard conversion." It can result in loss of
data if the value of the original object is outside the range representable by the
shorter type.

Note The compiler issues a high-level warning when a conversion to a shorter type
takes place.

Floating Conversions
An object of a floating type can be safely converted to a more precise floating
type-that is, the conversion causes no loss of significance. For example,
conversions from float to double or from double to long double are safe, and
the value is unchanged.

An object of a floating type can also be converted to a less precise type, if it is in a
range representable by that type. (See "Floating Limits" on page 52 in Chapter 2 for
the ranges of floating types.) If the original value cannot be represented precisely, it
can be converted to either the next higher or the next lower representable value.
If no such value exists, the result is undefined. Consider the following example:

cout « (float)lE300 « endl:

The maximum value representable by type float is 3.402823466E38-a much
smaller number than lE300. Therefore, the number is converted to infinity, and
the result is 1.#INE

Floating and Integral Conversions

58

Certain expressions can cause objects of floating type to be converted to integral
types; or vice versa.

This section describes the following types of floating and integral conversions:

• Floating to integral

• Integral to floating

Chapter 3 Standard Conversions

Floating to Integral
When an object of floating type is converted to an integral type, the fractional part is
truncated. No rounding takes place in the conversion process. Truncation means that a
number like 1.3 is converted to 1, and -1.3 is converted to -1.

Integral to Floating
When an object of integral type is converted to a floating type and the original value
cannot be represented exactly, the result is either the next higher or the next lower
representable value.

Arithmetic Conversions
Many binary operators (discussed in "Expressions with Binary Operators" on page 88
in Chapter 4) cause conversions of operands and yield results the same way. The way
these operators cause conversions is called "usual arithmetic conversions." Arithmetic
conversions of operands of different types are performed as shown in Table 3.1.

Table 3.1 Conditions for Type Conversion

Conditions Met

Either operand is of type long
double.

Preceding condition not met
and either operand is of type
double.

Preceding conditions not met
and either operand is of type
float.

Preceding conditions not met
(none of the operands are of
floating types).

Conversion

Other operand is converted to type long double.

Other operand is converted to type double.

Other operand is converted to type float.

Integral promotions are performed on the operands as
follows:

• If either operand is of type unsigned long, the other
operand is converted to type unsigned long.

• If preceding condition not met, and if either operand is
of type long and the other of type unsigned int, both
operands are converted to type unsigned long.

• If the preceding two conditions are not met, and if either
operand is of type long, the other operand is converted
to type long.

• If the preceding three conditions are not met, and if
either operand is of type unsigned int, the other operand
is converted to type unsigned int.

• If none of the preceding conditions are met, both
operands are converted to type int.

59

c++ Language Reference

The following code illustrates the conversion rules described in Table 3.1:

float fVal;
double dVal;
int iVal;
unsigned long ulVal;

dVal = iVal * ulVal; II iVal converted to unsigned long;
II result of multiplication converted to double.

dVal = ulVal + fVal; II ulVal converted to float;
II result of addition converted to double.

The first statement in the preceding example shows multiplication of two integral
types, i Val and u 1 Va 1 . The condition met is that neither operand is of floating type
and one operand is of type unsigned into Therefore, the other operand, i Val, is
converted to type unsigned int. The result is assigned to d V a 1 . The condition met
is that one operand is of type double; therefore, the unsigned int result of the
multiplication is converted to type double.

The second statement in the preceding example shows addition of a float and an
integral type, fVa 1 and u 1 Va 1 . The u 1 Val variable is converted to type float
(third condition in Table 3.1). The result of the addition is converted to type double
(second condition in Table 3.1) and assigned to dVa 1.

Pointer Conversions
Pointers can be converted during assignment, initialization, comparison, and other
expressions. This section describes the following pointer conversion:

• Null pointers

• Pointers to type void

• Pointers to objects

• Pointers to functions

• Pointers to classes

• Expressions

• Pointers modified by const or volatile

'Null Pointers

60

An integral constant expression that evaluates to zero, or such an expression cast
to type void *, is converted to a pointer called the "null pointer." This pointer is
guaranteed to compare unequal to a pointer to any valid object or function (except
for pointers to based objects, which can have the same offset and still point to
different objects).

Chapter 3 Standard Conversions

Pointers to Type void
Pointers to type void can be converted to pointers to any other type, but only with an
explicit type cast (unlike in C). (See "Expressions with Explicit Type Conversions" on
page 103 in Chapter 4 for more information about type casts.) A pointer to any type
can be converted implicitly to a pointer to type void.

A pointer to an incomplete object of a type can be converted to a pointer to void
(implicitly) and back (explicitly). The result of such a conversion is equal to the value
of the original pointer. An object is considered incomplete if it is declared, but there is
insufficient information available to determine its size or base class.

Pointers to Objects
A pointer to any object that is not const or volatile can be implicitly converted to a
pointer of type void *.

Pointers to Functions
A pointer to a function can be converted to type void *, if type void * is large enough
to hold that pointer.

Pointers to Classes
There are two cases in which a pointer to a class can be converted to a pointer to a
base class.

The first case is when the specified base class is accessible and the conversion is
unambiguous. (See "Multiple Base Classes" on page 264 in Chapter 9 for more
information about ambiguous base-class references.)

Whether a base class is accessible depends on the kind of inheritance used in
derivation. Consider the inheritance illustrated in Figure 3.1.

Figure 3.1 Inheritance Graph for Illustration of Base-Class Accessibility

61

c++ Language Reference

62

Table 3.2 shows the base-class accessibility for the situation illustrated in Figure 3.l.

Table 3.2 Base-Class Accessibility

Conversion from
Type of Function Derivation B* to A* Legal?

External (not class-scoped) function Private No

Protected No

Public Yes

B II?-ember function (in B scope) Private Yes

Protected Yes

Public Yes

C member function (in C scope) Private No

Protected Yes

Public Yes

The second case in which a pointer to a class can be converted to a pointer to a base
class is when you use an explicit type conversion. (See "Expressions with Explicit
Type Conversions" on page 103 in Chapter 4 for more information about explicit
type conversions.)

The result of such a conversion is a pointer to the "subobject," the portion of the
object that is completely described by the base class.

The following code defines two classes, A and B, where B is derived from A. (For
more information on inheritance, see Chapter 9, "Derived Classes.") It then. defines
bObj ect, an object of type B, and two pointers (pA and pB) that point to the object.

class A
{

public:

} ;

int AComponent;
int AMemberFunc();

class B public A
{

public:

} ;

int BComponent;
int BMemberFunc();

B bObject;
A *pA = &bObject;
B *pB = &bObject;

pA->AMemberFunc();
pB->AMemberFunc();
pA->BMemberFunc();

II OK in class A
II OK: inherited from class A
II Error: not in class A

Chapter 3 Standard Conversions

The pointer pA is of type A *, which can be interpreted as meaning "pointer to an
object of type A." Members of bObj ect (such as BComponent and BMemberFunc)
are unique to type B and are therefore inaccessible through pA. The pA pointer allows
access only to those characteristics (member functions and data) of the object that are
defined in class A.

Pointer Expressions
Any expression with an array type can be converted to a pointer of the same type. The
result of the conversion is a pointer to the first array element. The following example
demonstrates such a conversion:

char szPath[_MAX_PATH]; II Array of type char.
char *pszPath = szPath; II Equals &szPath[0].

An expression that results in a function returning a particular type is converted to a
pointer to a function returning that type, except when:

• The expression is used as an operand to the address-of operator (&).

• The expression is used as an operand to the function-call operator.

Pointers Modified by const or volatile
c++ does not supply a standard conversion from a const or volatile type to a type that
is not const or volatile. However, any sort of conversion can be specified using
explicit type casts (including conversions that are unsafe).

Note Ctt pointers to members, except pointers to static members, are different from normal
pointers and do not have the same standard conversions. Pointers to static members are
normal pointers and have the same conversions as normal pointers. (See "Pointers to Class
Members" page 46 in Chapter 2 for more information.)

Reference Conversions
A reference to a class can be converted to a reference to a base class in the following
cases:

• The specified base class is accessible (as defined in "Pointers to Classes" on page 61).

• The conversion is unambiguous. (See "Multiple Base Classes"·on page 264 in
Chapter 9 for more information about ambiguous base-class references.)

The result of the conversion is a pointer to the subobject that represents the base class.

For more information about references, see "References to Objects" on page 44 in
Chapter 2.

63

c++ Language Reference

Pointer-to-Member Conversions
Pointers to class members can be converted during assignment, initialization,
comparison, and other expressions. This section describes the following
pointer-to-member conversions:

• Integral constant expressions

• Pointers to base-class members

Integral Constant Expressions
An integral constant expression that evaluates to zero is converted to a pointer called
the "null pointer." This pointer is guaranteed to compare unequal to a pointer to any
valid object or function (except for pointers to based objects, which can have the same
offset and still point to different objects).

The following code illustrates the definition of a pointer to member i in class A.
The pointer, pa i, is initialized to 0, which is the null pointer.

class A
{

public:
i nt i;

} ;

int A: :*pai = 0;

Pointers to Base-Class Members

64

A pointer to a member of a base class can be converted to a pointer to a member of a
class derived from it, when the following conditions are met:

• The inverse conversion, from pointer to derived class to base-class pointer, is
accessible.

• The derived class does not inherit virtually from the base class.

When the left operand is a pointer to member, the right operand must be of
pointer-to-member type or be a constant expression that evaluates to O. This
assignment is valid only in the following cases:

• The right operand is a pointer to a member of the same class as the left operand.

• The left operand is a pointer to a member of a class derived publicly and
unambiguously from the class of the right operand.

CHAPTER 4

Expressions

This chapter describes C++ expressions. Expressions are sequences of operators
and operands that are used for one or more of these purposes:

• Computing a value from the operands.

• Designating objects or functions.

• Generating "side effects." (Side effects are any actions other than the evaluation
of the expression - for example, modifying the value of an object.)

In C++, operators can be overloaded and their meanings can be user-defined.
However, their precedence and the number of operands they take cannot be modified.
This chapter describes the syntax and semantics of operators as they are supplied
with the language, not overloaded. The following topics are included:

• Types of expressions

• Semantics of expressions

(For more information about overloaded operators, see "Overloaded Operators" on
page 336 in Chapter 12.)

Note Operators for built-in types cannot be overloaded; their behavior is predefined.

Types of Expressions
C++ expressions are divided into several categories:

• Primary expressions. These are the building blocks from which all other
expressions are formed.

• Postfix expressions. These are primary expressions followed by an operator-for
example, the array subscript or postfix increment operator.

• Expressions formed with unary operators. Unary operators act on only one operand
in an expression.

• Expressions formed with binary operators. Binary operators act on two operands in
an expression.

65

c++ Language Reference

• Expressions with the conditional operator. The conditional operator is a ternary
operator-the only such operator in the C++ language -and takes three operands.

• Constant expressions. Constant expressions are formed entirely of constant data.

• Expressions with explicit type conversions. Explicit type conversions, or "casts,"
can be used in expressions.

• Expressions with pointer-to-member operators.

• Casting. Type-safe "casts" can be used in expressions.

• Run-Time Type Information. Determine the type of an object during program
execution.

Primary Expressions

66

Primary expressions are the building blocks of more complex expressions. They are
literals, names, and names qualified by the scope-resolution operator (::).

Syntax
primary-expression:

literal
this
•• identifier
:: operator-Junction-name
:: qualified-name
(expression)
name

A literal is a constant primary expression. Its type depends on the form of its
specification. See "Literals" on page 9 in Chapter 1 for complete information about
specifying literals.

The this keyword is a pointer to a class object. It is available within non static member
functions and points to the instance of the class for which the function was invoked.
The this keyword cannot be used outside the body of a class-member function.

The type of the this pointer is type *const (where type is the class name) within
functions not specifically modifying the this pointer. The following example shows
member function declarations and the types of this:

class Example
{

public:

} ;

void Func(); II * const this
void Func() const; II const * const this
void Func() volatile; II volatile * const this

See "Type of this Pointer" on page 245 in Chapter 8 for more information about
modifying the type of the this pointer.

Chapter 4 Expressions

The scope-resolution operator (::) followed by an identifier, operator-Junction-name, or
qualified-name constitutes a primary expression. The type of this expression is determined
by the declaration of the identifier, operator-Junction-name, or name. It is an I-value if the
declaring name is an I-value. The scope-resolution operator allows a global name to be
referred to, even if that name is hidden in the current scope. See "Scope" on page 22 in
Chapter 2 for an example of how to use the scope-resolution operator.

An expression enclosed in parentheses is a primary expression whose type and value
are identical to those of the unparenthesized expression. It is an I-value if the
unparenthesized expression is an I-value.

Names
In the C++ syntax for primary-expression, a name is a primary expression that can appear
only after the member-selection operators (. or -», and names the member of a class.

Syntax
name:

identifier
operator-Junction-name
conversion-function-name
"" class-name
qualified-name

Any identifier that has been declared is a name.

An operator-Junction-name is a name that is declared in the form

operator operator-name(argument1 [, argument2]);

See "Overloaded Operators" on page 336 in Chapter 12 for more information about
declaration of operator-Junction-name.

A conversion-Junction-name is a name that is declared in the form

operator type-name()

Note You can supply a derivative type name such as char * in place of the type-name when
declaring a conversion function.

Conversion functions supply conversions to and from user-defined types. For more
information about user-supplied conversions, see "Conversion Functions" on
page 305 in Chapter 11.

A name declared as - class-name is taken as the "destructor" for objects of a class
type. Destructors typically perform cleanup operations at the end of an object's lifetime.
For information on destructors, see "Destructors" on page 297 in Chapter 11.

67

c++ Language Reference

Qualified Names
Syntax
qualified-name:

qualified-class-name :: name
If a qualified-class-name is followed by the scope-resolution operator (::) and then the
name of a member of either that class or a base of that class, then the scope-resolution
operator is considered a qualified-name. The type of a qualified-name is the same as
the type of the member, and the result of a qualified-name expression is the member.
If the member is an I-value, then the qualified-name is also an I-value. For information
about declaring qualified-class-name, see "Type Specifiers" on page 162 in Chapter 6
or "Class Names" on page 236 in Chapter 8.

The class-name part of a qualified-class-name can be hidden by redeclaration of the
same name in the current or enclosing scope; the class-name is still found and used. See
"Scope" on page 22 in Chapter 2 for an example of how to use a qualified-class-name
to access a hidden class-name.

Note Class constructors and destructors of the form class-name:: class-name and
class-name:: ,.. class-name, respectively, must refer to the same class-name.

A name with more than one qualification, such as the following, designates a member
of a nested class:

class-name :: class-name :: name

Postfix Expressions

68

Postfix expressions consist of primary expressions or expressions in which postfix
operators follow a primary expression. The postfix operators are listed in Table 4.1.

Table 4.1 Postfix Operators

Operator Name

. Subscript operator

Function-call operator

Explicit type conversion operator

Member-selection operator

Postfix increment operator

Postfix decrement operator

Syntax
postfix-expression:

Operator Notation

[]

()

type-name()

.or->

++

primary-expression
postfix-expression [expression]
postfix-expression (expression-!istopt)

simple-type-name (expression-!istopt)

postfix-expression. name

Chapter 4 Expressions

postfix-expression -> name
postfix-expression ++
postfix-expression -

expression-list:
assignment-expression
expression-list, assignment-expression

Subscript Operator
A postfix-expression followed by the subscript operator, [], specifies array
indexing. One of the expressions must be of pointer or array type - that is, it must
have been declared as type* or type[]. The other expression must be of an integral
type (including enumerated types). In common usage, the expression enclosed in
the brackets is the one of integral type, but that is not strictly required. Consider
the following example:

MyType m[10 J : II Declare an array of a user-defined type.

MyType nl = m[2J: II Select third el~ment of array.
MyType n2 = 2[mJ: II Select third element of array.

In the preceding example, the expression m [2] is identical to 2 [m]. Although m is not
of an integral type, the effect is the same. The reason that m [2] is equivalent to 2 [m]
is that the result of a subscript expression el[e2] is given by:

*((e2) + (el))

The address yielded by the expression is not e2 bytes from the address e 1. Rather, the
address is scaled to yield the next object in the array e2. For example:

double aDbl[2J:

The addresses of aD b [0] and aD b [1] are 8 bytes apart - the size of an object of
type double. This scaling according to object type is done automatically by the
C++ language and is defined in "Additive Operators" on page 90 where addition and
subtraction of operands of pointer type is discussed.

Positive and Negative Subscripts
The first element of an array is element O. The range of a C++ array is from array[O]
to array[size - 1]. However, C++ supports positive and negative subscripts. Negative
subscripts must fall within array boundaries or results are unpredictable. The
following code illustrates this concept:

#include <iostream.h>

void main()
{

int iNumberArray[1024J:
int *iNumberLine = &iNumberArray[512J:

69

c++ Language Reference

70

cout « iNumberArray[-256] « "\n";
cout « iNumberLine[-256] « "\n";

II Unpredictable
II OK

The negative sUbscript in i NumberArray can produce a run-time error because it
yields an address 256 bytes lower in memory than the origin of the array. The object
i Number Line is initialized to the middle of i NumberArray; it is therefore possible
to use both positive and negative array indexes on it. Array subscript errors do not
generate compile-time errors, but they yield unpredictable results.

The subscript operator is commutative. Therefore, the expressions array[index] and
index[array] are guaranteed to be equivalent as long as the subscript operator is not
overloaded (see "Overloaded Operators" on page 336 in Chapter 12). The first form
is the most common coding practice, but either works.

Function-Call Operator
A postfix-expression followed by the function-call operator, (), specifies a function
call. The arguments to the function-call operator are zero or more expressions
separated by commas - the actual arguments to the function.

The postfix-expression must be of one of these types:

• Function returning type T. An example declaration is

T func(int i)

• Pointer to a function returning type T. An example declaration is

T (*func)(int i)

• Reference to a function returning type T. An example declaration is

T (&func)(int i)

• Pointer-to-member function dereference returning type T. Example function calls
are

(pObject->*pmf)();
(Object.*pmf)();

Formal and Actual Arguments
Calling programs pass information to called functions in "actual arguments." The
called functions access the information using corresponding "formal arguments."

When a function is called, the following tasks are performed:

• All actual arguments (those supplied by the caller) are evaluated. There is no
implied order in which these arguments are evaluated, but all arguments are
evaluated and all side effects completed prior to entry to the function.

• Each formal argument is initialized with its corresponding actual argument in
the expression list. (A formal argument is an argument that is declared in the
function header and used in the body of a function.) Conversions are done as if

Chapter 4 Expressions

by initialization - both standard and user-defined conversions are performed
in converting an actual argument to the correct type. The initialization performed
is illustrated conceptually by the following code:

void Func(int i); II Function prototype

Func(7); II Execute function call

The conceptual initializations prior to the call are:

int Temp_i = 7;
Func (Temp_i);

Note that the initialization is performed as if using the equal-sign syntax instead
of the parentheses syntax. A copy of i is made prior to passing the value to the
function. (For more information, see "Initializers" on page 223 in Chapter 7, and
"Conversions," "Initialization Using Special Member Functions," and "Explicit
Initialization" in Chapter 11 on pages 302, 314, and 315, respectively.

Therefore, if the function prototype (declaration) calls for an argument of type
long, and if the calling program supplies an actual argument of type int, the actual
argument is promoted using a standard type conversion to type long (see Chapter 3,
"Standard Conversions").

It is an error to supply an actual argument for which there is no standard or
user-defined conversion to the type of the formal argument.

For actual arguments of class type, the formal argument is initialized by calling
the class's constructor. (See "Constructors" on page 292 in Chapter 11 for more
about these special class member functions.)

• The function call is executed.

The following program fragment demonstrates a function call:

void func(long paraml. double param2);

void main()
{

int i. j;

II Call func with actual arguments and j.
func (i. j);

}

II Define func with formal parameters paraml and param2.
void func(long paraml. double param2)
{

When fun c is called from main, the formal parameter par amI is initialized with
the value of i (i is converted to type long to correspond to the correct type using a
standard conversion), and the formal parameter pa ram2 is initialized with the value
of j (j is converted to type double using a standard conversion).

71

c++ Language Reference

72

Treatment of Argument Types
Formal arguments declared as const types cannot be changed within the body of a
function. Functions can change any argument that is not of type const. However, the
change is local to the function and does not affect the actual argument's value unless
the actual argument was a reference to an object not of type const.

The following functions illustrate some of these concepts:

int funcl(const int i . int j. char *c)

{

i = 7; II Error: i is const.
j = i; II OK. but value of j is

II lost at return.
*c = 'a' + j; II OK: changes value of c

II in calling function.

return i;
}

double& func2(double& d. const char *c)
{

d = 14.387;

*c = 'a';

return d;
}

II OK: changes value of d
II in calling function.
II Error: c is a pointer to
II a const object.

Ellipses and Default Arguments
Functions can be declared to accept fewer arguments than specified in the function
definition, using one of two methods: ellipsis (...) or default arguments.

Ellipses denote that arguments may be required but that the number and types are
not specified in the declaration. This is normally poor C++ programming practice
because it defeats one of the benefits of C++: type safety. Different conversions are
applied to functions declared with ellipses than to those functions for which the
formal and actual argument types are known:

• If the actual argument is of type float, it is promoted to type double prior to the
function call.

• Any signed or unsigned char, short, enumerated type, or bit field is converted
to either a signed or an unsigned int using integral promotion.

• Any argument of class type is passed by value as a data structure; the copy is
created by binary copying instead of by invoking the class's copy constructor
(if one exists).

Chapter 4 Expressions

Ellipses, if used, must be declared last in the argument list. For more information
about passing a variable number of arguments, see the discussion of va_arg, va_start,
and va_list in the Run-Time Library Reference.

Default arguments enable you to specify the value an argument should assume if none
is supplied in the function call. The following code fragment shows how default
arguments work. For more information about restrictions on specifying default
arguments, see "Default Arguments" on page 218 in Chapter 7.

#include <iostream.h>

II Declare the function print that prints a string,
II then a terminator.
void print(const char *string,

const char *terminator "\n");

void maine)
{

}

print("hello,");
print("world!");

print("good morning"," ");
print("sunshine.");

II Define print.
void print(char *string, char *terminator)
{

}

if(string != NULL
cout « string;

if(terminator != NULL
cout « terminator;

The preceding program declares a function, p r; nt, that takes two arguments.
However, the second argument, term; nat 0 r, has a default value, "\ n ". In main, the
first two calls to p r; n t allow the default second argument to supply a new line to
terminate the printed string. The third call specifies an explicit value for the second
argument. The output from the program is

he 11 0,

world!
good morning, sunshine.

Function-Call Results
A function call evaluates to an r-value unless the function is declared as a reference
type. Functions with reference return type evaluate to I-values, and can be used on the
left side of an assignment statement as follows:

#include <iostream.h>

class Point
{

73

c++ Language Reference

74

public:
II Define "accessor" functions as
II reference types.
unsigned& xC) { return _x; }
unsigned& y() { return -y; }

private:
unsigned _x;
unsigned -y;

} ;

void maine)
{

Point ThePoint;

ThePoint.x() = 7;
unsigned y = ThePoint.y();

II Use xC) as an l-value.
II Use y() as an r-value.

II Use xC) and y() as r-values.
cout « "x = " « ThePoint.x() « "\n"

« "y = " « ThePoint.y() « "\n";
}

000000

The preceding code defines a class called Poi nt, which contains private data objects
that represent x and y coordinates. These data objects must be modified and their
values retrieved. This program is only one of several designs for such a class; use of
the GetX and SetX or GetY and SetY functions is another possible design.

Functions that return class types, pointers to class types, or references to class types
can be used as the left operand to member-selection operators. Therefore, the
following code is legal:

class A
{

public:
int SetAe int i) { return (I = i); }

int GetA() {return I; }

private:
i nt I;

} ;

II Declare three functions:
II funcl. which returns type A
II func2. which returns a pointer to type A
II func3. which returns a reference to type A
A funcl();
A* func2();
A& func3();

int iResult = funcl().GetA();
func2()->SetA(3);
func3().SetA(7);

Chapter 4 Expressions

Functions can be called recursively.· For more information about function declarations,
see "Function Specifiers" and "Member Functions." Related material is in "Program
and Linkage."

Member-Selection Operator
A postfix-expression followed by the member-selection operator (.) and a name is
another example of a postfix-expression. The first operand of the member-selection
operator must have class or class reference type, and the second operand must identify
a member of that class.

The result of the expression is the value of the member, and it is an I-value if the
named member is an I-value.

A postfix-expression followed by the member-selection operator (-» and a name is a
postfix-expression. The first operand of the member-selection operator must have type
pointer to a class object (an object 4eclared as class, struct, or union type), and the
second operand must identify a member of that class.

The result of the expression is the value of the member, and it is an I-value if the
named member is an I-value. The -> operator dereferences the pointer. Therefore, the
expressions e->member and (*e).member (where e represents an expression) yield
identical results (except when the operators -> or * are overloaded).

When a value is stored through one member of a union but retrieved through another
member, no conversion is performed. The following program stores data into the
object U as int but retrieves the data as two separate bytes of type char:

#include <iostream.h>

void main()
{

struct ch
{

} ;

char bl;
char b2;

union u
{

} ;

struct ch uch;
short i;

u U;

U. i = 0x6361; / / Bit pattern for "ac"
cout « U.uch.bl « U.uch.b2 « "\n";

75

c++ Language Reference

76

Postfix Increment and Decrement Operators
c++ provides prefix and postfix increment and decrement operators; this section
describes only the postfix increment and decrement operators. (For more information,
see "Increment and Decrement Operators." The difference between the two is that in
the postfix notation, the operator appears after postfix-expression, whereas in the
prefix notation, the operator appears before expression. The following example shows
a postfix-increment operator:

i++

The effect of applying the postfix increment, or "postincrement," operator (++) is that
the operand's value is increased by one unit of the appropriate type. Similarly, the
effect of applying the postfix decrement, or "postdecrement," operator (- -) is that the
operand's value is decreased by one unit of the appropriate type.

For example, applying the postincrement operator to a pointer to an array of objects of
type long actually adds four to the internal representation of the pointer. This behavior
causes the pointer, which previously referred to the nth element of the array, to refer to
the (n+ I)th element.

The operands to postincrement and postdecrement operators must be modifiable (not
const) I-values of arithmetic or pointer type. The result of the postincrement or
postdecrement expression is the value of the postfix-expression prior to application
of the increment operator. The type of the result is the same as that of the
postfix-expression, but it is no longer an I-value.

The following code illustrates the postfix increment operator.

i f (va r++ > 0)
*p++ = *q++;

In this example, the variable va r is compared to 0, then incremented. If va r was
positive before being incremented, the next statement is executed. First, the value
of the object pointed to by q is assigned to the object pointed to by p. Then, q and p
are incremented.

Postincrement and postdecrement, when used on enumerated types, yield integral
values. Therefore, the following code is illegal:

enum Days {

} ;

Sunday = I,
Monday.
Tuesday.
Wednesday,
Thursday.
Friday,
Saturday

Chapter 4 Expressions

void main()
{

Days Today = Tuesday;
Days SaveToday;

SaveToday = Today++; II error

The intent of this code is to save today's day and then move to tomorrow. However,
the result is that the expression Today++ yields an iot-an error when assigned to an
object of the enumerated type Days.

Expressions with Unary Operators
Unary operators act on only one operand in an expression. The unary operators are:

• Indirection operator (*)

• Address-of operator (&)

• Unary plus operator (+)

• Unary negation operator (-)

• Logical NOT operator (!)

• One's complement operator

• Prefix increment operator (++)

• Prefix decrement operator (--)

• sizeof operator

• new operator

• delete operator

These operators have right-to-Ieft associativity.

Syntax
unary-expression:

postfix-expression
++unary-expression
- -unary-expression
unary-operator cast-expression
size of . unary-expression
sizeof (type-name)
allocation-expression
deallocation-expression

unary-operator: one of
*&+-!

77

c++ Language Reference

78

Indirection Operator (*)
The unary indirection operator (*) "dereferences" a pointer; that is, it converts a
pointer value to an I-value. The operand of the indirection operator must be a pointer
to a type. The result of the indirection expression is the type from which the pointer
type is derived. The use of the * operator in this context is different from its meaning
as a binary operator, which is multiplication.

If the operand points to a function, the result is a function designator. If it points to a
storage location, the result is an I-value designating the storage location.

If the pointer value is invalid, the result is undefined. The following list includes some
of the most common conditions that invalidate a pointer value.

• The pointer is a null pointer.

• The pointer specifies the address of a local item that is not visible at the time of
the reference.

• The pointer specifies an address that is inappropriately aligned for the type of the
object pointed to.

• The pointer specifies an address not used by the executing program.

Address-Of Operator (&)
The unary address-of operator (&) takes the address of its operand. The address-of
operator can be applied only to the following:

• Functions (although its use for taking the address of a function is unnecessary)

• L-values

• Qualified names

In the first two cases listed above, the result of the expression is a pointer type (an
r-value) derived from the type of the operand. For example, if the operand is of type
char, the result of the expression is of type pointer to char. The address-of operator,
applied to const or volatile objects, evaluates to const type * or volatile type *, where
type is the type of the original object.

The result produced by the third case, applying the address-of operator to a
qualified-name, depends on whether the qualified-name specifies a static member.
If so, the result is a pointer to the type specified in the declaration of the member.
If the member is not static, the result is a pointer to the member name of the class
indicated by qualified-class-name. (See "Primary Expressions" on page 66 for more
about qualified-class-name.) The following code fragment shows how the result
differs, depending on whether the member is static:

class PTM
{

public:
int iValue;

static float fValue;
} ;

Chapter 4 Expressions

int PTM::*piValue = &PTM::iValue;
float PTM::*pfValue = &PTM::fValue;
float *spfValue = &PTM::fValue;

II OK: non-static
II Error: static
II OK

In this example, the expression &PTM: : fVa 1 ue yields type float * instead of type
fl oa t PTM:: * because fVa 1 ue is a static member.

The address of an overloaded function can be taken only when it is clear which
version of the function is being referenced. See "Address of Overloaded Functions"
on page 335 in Chapter 12 for information about how to obtain the address of a
particular overloaded function.

Applying the address-of operator to a reference type gives the same result as applying
the operator to the object to which the reference is bound. The following program
demonstrates this concept:

#include <iostream.h>

void maine)
{

double d; II Define an object of type double.
double& rd =d; II Define a reference to the object.

II Compare the address of the object to the address
II of the reference to the object.
if(&d == &rd)

cout « "&d equals &rd" « "\n";
else

cout « "&d is not equal to &rd" « "\n";

The output from the program is always &d equa 1 s &rd.

Unary Plus Operator (+)
The result of the unary plus operator (+) is the value of its operand. The operand to
the unary plus operator must be of an arithmetic type.

Integral promotion is performed on integral operands. The resultant type is the type to
.which the operand is promoted. Thus, the expression +ch, where ch is of type char,
results in type int; the value is unmodified. See "Integral Promotions" on page 56 in
Chapter 3 for more information about how the promotion is done.

Unary Negation Operator (-)
The unary negation operator (-) produces the negative of its operand. The operand
to the unary negation operator must be an arithmetic type.

Integral promotion is performed on integral operands, and the resultant type is the
type to which the operand is promoted. See "Integral Promotions" on page 56 in
Chapter 3 for more information on how the promotion is done.

79

c++ Language Reference

80

Microsoft Specific ---?

Unary negation of unsigned quantities is performed by subtracting the value of the
operand from 2n

, where n is the number of bits in an object of the given unsigned
type. (Microsoft C++ runs on processors that utilize two's-complement arithmetic.
On other processors, the algorithm for negation can differ.)

END Microsoft Specific

Logical NOT Operator (!)
The result of the logical NOT operator (!) is 0 if its operand evaluates to a nonzero
value; the result is I only if the operand is equal to O. The operand must be of
arithmetic or pointer type. The result is of type int.

For an expression e, the unary expression !e is equivalent to the expression
(e == 0), except where overloaded operators are involved.

The following example illustrates the logical NOT operator (!):

if(! (x < y))

If x is greater than or equal to y, the result of the expression is 1 (true). If x is less
than y, the result is 0 (false).

Unary arithmetic operations on pointers are illegal.

One's Complement Operator (N)
The one's complement operator ("'), sometimes called the "bitwise complement"
operator, yields a bitwise one's complement of its operand. That is, every bit that is set
in the operand is 0 in the result. Conversely, every bit that is 0 in the operand is set in
the result. The operand to the one's complement operator must be an integral type.

unsigned short y = 0xAAAA;
y = -y;

In this example, the new value assigned to y is the one's complement of the unsigned
value OxAAAA, or Ox5555.

Integral promotion is performed on integral operands, and the resultant type is the
type to which the operand is promoted. See "Integral Promotions" on page 56 in
Chapter 3 for more information on how the promotion is done.

Increment and Decrement Operators (++, --)
The prefix increment operator (++), also called the "preincrement" operator, adds
one to its operand; this incremented value is the result of the expression. The operand
must be an I-value not of type const. The result is an I-value of the same type as the
operand.

Chapter 4 Expressions

The prefix decrement operator (- -), also called the "predecrement" operator, is
analogous to the preincrement operator, except that the operand is decremented by
one and the result is this decremented value.

Both the prefix and postfix increment and decrement operators affect their operands.
The key difference between them is when the increment or decrement takes place in
the evaluation of an expression. (For more information, see "Postfix Increment and
Decrement Operators" on page 76.) In the prefix form, the increment or decrement
takes place before the value is used in expression evaluation, so the value of the
expression is different from the value of the operand. In the postfix form, the
increment or decrement takes place after the value is used in expression evaluation,
so the value of the expression is the same as the value of the operand.

An operand of integral or floating type is incremented or decremented by the integer
value 1. The type of the result is the same as the operand type. An operand of pointer
type is incremented or decremented by the size of the object it addresses. An
incremented pointer points to the next object; a decremented pointer points to the
previous object.

This example illustrates the unary decrement operator:

if(line[--i] != '\n')
return;

In this example, the variable i is decremented before it is used as a sUbscript to 1 i ne.

Because increment and decrement operators have side effects, using expressions
with increment or decrement operators in a macro can have undesirable results
(see "Macros" in the Preprocessor Reference for more information about macros).
Consider this example:

#define max(a,b) «a)«b))?(b):(a)

int i, j, k;

k = max(++i, j);

The macro expands to:

k = «++i)«j))?(j):(++i);

If i is greater than or equal to j, it will be incremented twice.

Note C++ in line functions are preferable to macros in many cases because they eliminate
side effects such as those described here, and allow the language to perform more complete
type checking.

81

c++ Language Reference

82

sizeof Operator
The size of operator yields the size of its operand with respect to the size of type char.
The result of the sizeof operator is of type size_t, an integral type defined in the
include file STDDEEH. The operand to size of can be one of the following:

• A type name. To use sizeof with a type name, the name must be enclosed in
parentheses.

• An expression. When used with an expression, sizeof can be specified with or
without the parentheses. The expression is not evaluated.

When the size of operator is applied to an object of type char, it yields 1. When the
sizeof operator is applied to an array, it yields the total number of bytes in that array.
For example:

#include <iostream.h>

void main()
{

char szHello[] = "Hello, world!";

cout « "The size of the type of " « szHello « " is:
« sizeof(char) « "\n";

cout « "The 1 ength of " « szHello « " is: "
« sizeof szHello « "\n";

The program output is:

The size of the type of Hello, world! is: 1
The length of Hello, world! is: 14

When the size of operator is applied to a class, struct, or union type, the result is the
number of bytes in an object of that class, struct, or union type, plus any padding
added to align members on word boundaries. (The IZp [pack structure members]
compiler option and the pack pragma affect alignment boundaries for members.)
The sizeof operator never yields 0, even for an empty class.

The size of operator cannot be used with the following operands:

• Functions. (However, size of can be applied to pointers to functions.)

• Bit fields.

• Undefined classes.

• The type void.

• Incomplete types.

• Parenthesized names of incomplete types.

When the sizeof operator is applied to a reference, the result is the same as if size of
had been applied to the object itself.

Chapter 4 Expressions

The size of operator is often used to calculate the number of elements in an array using
an expression of the form:

sizeof array / sizeof array[0]

new Operator
The new operator attempts to dynamically allocate (at run time) one or more objects
of type-name. The new operator cannot be used to allocate a function; however, it can
be used to allocate a pointer to a function.

Syntax
allocation-expression:

: :opt new nmodelopt placementopt new-type-name new-initializeropt
::opt new nmodeloptplacementopt (type-name) new-initializeropt

placement:
(expression-list)

new-type-name:
type-specifie r-list new-dec la ra to r opt

The new operator is used to allocate objects and arrays of objects. The new operator
allocates from a program memory area called the "free store." In C, the free store is
often referred to as the "heap."

When new is used to allocate a single object, it yields a pointer to that object; the
resultant type is new-type-name * or type-name *. When new is used to allocate a
singly dimensioned array of objects, it yields a pointer to the first element of the array,
and the resultant type is new-type-name * or type-name *. When new is used to
allocate a multidimensional array of objects, it yields a pointer to the first element
of the array, and the resultant type preserves the size of all but the leftmost array
dimension. For example:

new float[10][25][10]

yields type flo a t (*) [25] [10]. Therefore, the following code will not work
because it attempts to assign a pointer to an array of float with the dimensions
[2 5] [10] to a pointer to type flo at:

float *fp;
fp = new float[10][25][10];

The correct expression is:

float (*cp)[25][10];
cp = new float[10][25][10];

The definition of c p allocates a pointer to an array of type flo a t with dimensions
[25] [10] - it does not allocate an array of pointers.

83

c++ Language Reference

84

All but the leftmost array dimensions must be constant expressions that evaluate to
positive values; the leftmost array dimension can be any expression that evaluates to
a positive value. When allocating an array using the new operator, the first dimension
can be zero - the new operator returns a unique pointer.

The type-speciJier-list cannot contain const, volatile, class declarations, or
enumeration declarations. Therefore, the following expression is illegal:

volatile char *vch = new volatile char[20];

The new operator does not allocate reference types because they are not objects.

If there is insufficient memory for the allocation request, by default operator new returns
NULL. You can change this default behavior by writing a custom exception-handling
routine and calling the _seCnew _handler run-time library function with your function
name as its argument. Alternately, you can choose to have new throw a C++ exception
(of type xalloc) in the event of a memory allocation failure. For more details on these
two recovery schemes, see "The operator new Function" on page 307 in Chapter 11.

Lifetime of Objects Allocated with new
Objects allocated with the new operator are not destroyed when the scope in which
they are defined is exited. Because the new operator returns a pointer to the objects it
allocates, the program must define a pointer with suitable scope to access those
objects. For example:

void main()
{

}

II Use new operator to allocate an array of 20 characters.
char *AnArray = new char[20];

fore int i = 0; i < 20; ++i)
{

liOn the first iteration of the loop, allocate
II another array of 20 characters.
if(i == 0)
{

char *AnotherArray new char[20];

delete AnotherArray; II Error: pointer out of scope.
delete AnArray; II OK: pointer still in scope.

Once the pointer AnotherArray goes out of scope in the example, the object can no
longer be deleted.

Chapter 4 Expressions

Initializing Objects Allocated with new
An optional new-initializer field is included in the syntax for the new operator. This
allows new objects to be initialized with user:-defined constructors. For more information
about how initialization is done, see "Initializers" on page 223 in Chapter 7.

The following example illustrates how to use an initialization expression with the
new operator:

#include <iostream.h>

class Acct
{

public:
II Define default constructor and a constructor that accepts
II an initial balance.
AcctO { balance = 0.0; }
Acct(double init_balance) { balance = init_balance; }

private:
double balance;

} ;

void mainO
{

Acct *CheckingAcct = new Acct;
Acct *SavingsAcct = new Acct 34.98);
double *HowMuch = new double (43.0);

In this example, the object Checki ngAcct is allocated using the new operator,
but no default initialization is specified. Therefore, the default constructor for the
class, Acct (), is called. Then the object Savi ngsAcct is allocated the same way,
except that it is explicitly initialized to 34.98. Because 34.98 is of type double, the
constructor that takes an argument of that type is called to handle the initialization.
Finally, the nonclass type HowMuch is initialized to 43.0.

If an object is of a class type and that class has constructors (as in the preceding
example), the object can be initialized by the new operator only if one of these
conditions is met:

• The arguments provided in the initializer agree with those of a constructor.

• The class has a default constructor (a constructor that can be called with no
arguments).

Access control and ambiguity control are performed on operator new and on the
constructors according to the rules set forth in "Ambiguity" on page 276 in Chapter 9
and "Initialization Using Special Member Functions" on page 314 in Chapter 11.

No explicit per-element initialization can be done when allocating arrays using
the new operator; only the default constructor, if present, is called. See "Default
Arguments" on page 218 in Chapter 7 for more information.

85

c++ Language Reference

86

If the memory allocation fails (operator new returns a value of 0), no initialization
is performed. This protects against attempts to initialize data that does not exist.

As with function calls, the order in which initialized expressions are evaluated is not
defined. Furthermore, you should not rely on these expressions being completely
evaluated before the memory allocation is performed. If the memory allocation fails
and the new operator returns zero, some expressions in the initializer may not be
completely evaluated.

How new Works
The allocation-expression-the expression containing the new operator-does
three things:

• Locates and reserves storage for the object or objects to be allocated. When this
stage is complete, the correct amount of storage is allocated, but it is not yet an
object.

• Initializes the object(s). Once initialization is complete, enough information is
present for the allocated storage to be an object.

• Returns a pointer to the object(s) of a pointer type derived from new-type-name
or type-name. The program uses this pointer to access the newly allocated object.

The new operator invokes the function operator new. For arrays of any type, and for
objects that are not of class, struct, or union types, a global function, ::operator
new, is called to allocate storage. Class-type objects can define their own operator
new static member function on a per-class basis.

When the compiler encounters the new operator to allocate an object of type type, it
issues a call to type: : operator new(sizeof(type)) or, if no user-defined operator
new is defined, ::operator new(sizeof(type)). Therefore, the new operator can
allocate the correct amount of memory for the object.

Note The argument to operator new is of type size_t. This type is defined in OIRECIH,
MALLOC.H, MEMORY.H, SEARCH.H, STOOEF.H, STOIO.H, STOLlB.H, STRING.H, and
TIME.H.

An option in the syntax allows specification of placement (see Syntax for
"new Operator" on page 83). The placement parameters can be used only for
user-defined implementations of operator new; it allows extra information to
be passed to operator new. An expression with a placement field such as

T *TObject = new (0x0040) T;

is translated to

T *TObject = T::operator new(sizeof(T). 0x0040);

The original intention of the placement field was to allow hardware-dependent
objects to be allocated at user-specified addresses.

Note Although the preceding example shows only one argument in the placement field,
there is no restriction on how many extra arguments can be passed to operator new
this way.

Even when operator new has been defined for a class type, the global operator
can be used by using the form of this example:

T *TObject =::new TObject;

The scope-resolution operator (::) forces use of the global new operator.

delete Operator
The delete operator deallocates an object created with the new operator. The
delete operator has a result of type void and therefore does not return a value.
The operand to delete must be a pointer returned by the new operator.

Using delete on a pointer to an object not allocated with new gives unpredictable
results. You can, however, use delete on a pointer with the value O. This provision
means that, because new always returns 0 on failure, deleting the result of a failed
new operation is harmless.

Syntax
deallocation-expression:

: :opt delete cast-expression
: :opt delete [] cast-expression

Using the delete operator on an object deallocates its memory. A program that
dereferences a pointer after the object is deleted can' have unpredictable results
or crash.

If the operand to the delete operator is a modifiable I-value, its value is
undefined after the object is deleted.

Pointers to const objects cannot be deallocated with the delete operator.

How delete Works
The delete operator invokes the function operator delete. For objects of class
types (class, struct, and union), the delete operator invokes the destructor for an
object prior to deallocating memory (if the pointer is not null). For objects not of
class type, the global delete operator is invoked. For objects of class type, the
delete operator can be defined on a per-class basis; if there is no such definition
for a given class, the global operator is invoked.

Chapter 4 Expressions

87

c++ Language Reference

Using delete
There are two syntactic variants for the delete operator: one for single objects and
the other for arrays of objects. The following code fragment shows how these differ:

void main()
{

II Allocate a user-defined object, UDObject, and an object
II of type double on the free store using the
II new operator.
UDType *UDObject = new UDType;
double *dObject = new double;

II Delete the two objects.
delete UDObject;
delete dObject;

II Allocate an array of user~defined objects on the
II free store using the new operator.
UDType (*UDArr)[7] = new UDType[5][7];

II Use the array syntax to delete the array of objects.
delete [] UDArr;

These two cases produce undefined results: using the array form of delete (delete [])
on an object and using the nonarray form of delete on an array.

Expressions with Binary Operators
Binary operators act on two operands in an expression. The binary operators are:

• Multiplicative operators

• Multiplication (*)

• Division (I)

• Modulus (%)

• Additive operators

• Addition (+)

• Subtraction (-)

• Shift operators

• Right shift (»)

• Left shift «<)

• Relational and equality operators

• Less than «)
• Greater than (»

88

Chapter 4 Expressions

• Less than or equal to «=)

• Greater than or equal to (>=)

• Equal to (==)

• Not equal to (!=)

• Bitwise operators

• Bitwise AND (&)

• Bitwise exclusive OR (1\)

• Bitwise inclusive OR (I)

• Logical AND (&&)

• Logical OR (II)

Multiplicative Operators
The multiplicative operators are:

• Multiplication (*)

• Division (I)

• Modulus or "remainder from division" (%)

These binary operators have left-to-right associativity.

Syntax
multiplicative-expression:

pm-expression
multiplicative-expression * pm-expression
multiplicative-expression I pm-expression
multiplicative-expression % pm-expression

The multiplicative operators take operands of arithmetic types. The modulus
operator (%) has a stricter requirement in that its operands must be of integral type.
(To get the remainder of a floating-point division, use the run-time function, fmod.)
The conversions covered in "Arithmetic Conversions" on page 59 in Chapter 3 are
applied to the operands, and the result is of the converted type.

The multiplication operator yields the result of multiplying the first operand by the
second.

The division operator yields the result of dividing the first operand by the second.

The modulus operator yields the remainder given by the following expression, where
el is the first operand and e2 is the second: el - (ell e2) * e2, where both operands
are of integral types.

89

c++ Language Reference

90

Division by 0 in either a division or a modulus expression is undefined and causes a
run-time error. Therefore, the following expressions generate undefined, erroneous
results:

i % 0
f / 0.0

If both operands to a multiplication, division, or modulus expression have the same
sign, the result is positive. Otherwise, the result is negative. The result of a modulus
operation's sign is implementation-defined.

Microsoft Specific ~

In Microsoft C++, the result of a modulus expression is always the same as the sign
of the first operand.

END Microsoft Specific

If the computed division of two integers is inexact and only one operand is negative,
the result is the largest integer (in magnitude, disregarding the sign) that is less than
the exact value the division operation would yield. For example, the computed value
of -11 /3 is -3.666666666. The result of that integral division is -3.

The relationship between the multiplicative operators is given by the identity
(el / e2) * e2 + el % e2 == el.

Additive Operators
The additive operators are:

• Addition (+)

• Subtraction (-)

These binary operators have left-to-right associativity.

Syntax
additive-expression:

multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

The additive operators take operands of arithmetic or pointer types. The result of
the addition (+) operator is the sum of the operands. The result of the subtraction (-)
operator is the difference between the operands. If one or both of the operands are
pointers, they must be pointers to objects, not to functions.

Additive operators take operands of arithmetic, integral, and scalar types. These are
defined in Table 4.2.

Chapter 4 Expressions

Table 4.2 Types Used with Additive Operators

Type

arithmetic

integral

scalar

Meaning

Integral and floating types are collectively called "arithmetic" types.

Types char and int of all sizes (long, short) and enumerations are
"integral" types.

Scalar operands are operands of either arithmetic or pointer type.

The legal combinations for these operators are:

arithmetic + arithmetic
scalar + integral
integral + scalar
arithmetic - arithmetic
scalar - scalar

Note that addition and subtraction are not equivalent operations.

If both operands are of arithmetic type, the conversions covered in "Arithmetic
Conversions" on page 59 in Chapter 3 are applied to the operands, and the result is
of the converted type.

Addition of Pointer Types
If one of the operands in an addition operation is a pointer to an array of objects, the
other must be of integral type. The result is a pointer that is of the same type as the
original pointer and that points to another array element. The following code fragment
illustrates this concept:

short IntArray[10]; II Objects of type short occupy 2 bytes
short *plntArray = IntArray;

for(int i = 0; i < 10; ++i)
{

*plntArray = i;
cout « *plntArray « "\n";
plntArray = plntArray + 1;

Although the integral value 1 is added to pIntAr ray, it does not mean "add 1 to the
address"; rather it means "adjust the pointer to point to the next object in the array"
that happens to be 2 bytes (or s i zeof (i nt » away.

Note Code of the form pI ntArray = pI ntArray + 1 is rarely found in C++ programs;
to perform an increment, these forms are preferable: pIn tA r r ay++ or pIn tA r r ay += 1.

Subtraction of Pointer Types
If both operands are pointers, the result of subtraction is the difference (in array
elements) between the operands. The subtraction expression yields a signed integral
result of type ptrrliff_t (defined in the standard include file STDDEEH).

91

c++ Language Reference

92

One of the operands can be of integral type, as long as it is the second operand. The
result of the subtraction is of the same type as the original pointer. The value of the
subtraction is a pointer to the (n - i)th array element, where n is the element pointed to
by the original pointer and i is the integral value of the second operand.

Shift Operators
The bitwise shift operators are:

• Right shift (»)

• Left shift «<)

These binary operators have left-to-right associativity.

Syntax
shift-expression:

additive-expression
shift-expression « additive-expression
shift-expression » additive-expression

Both operands of the shift operators must be of integral types. Integral promotions
are performed according to the rules described in "Integral Promotions" on page 56 in
Chapter 3. The type of the result is the same as the type of the left operand. The value
of a right-shift expression el » e2 is el / 2e2

, and the value of a left-shift expression
el « e2 is el * 2e2

•

The results are undefined if the right operand of a shift expression is negative or if
the right operand is greater than or equal to the number of bits in the (promoted) left
operand.

The left-shift operator causes the bit pattern in the first operand to be shifted left the
number of bits specified by the second operand. Bits vacated by the shift operation are
zero-filled. This is a logical shift, as opposed to a shift-and-rotate operation.

The right-shift operator causes the bit pattern in the first operand to be shifted right
the number of bits specified by the second operand. Bits vacated by the shift operation
are zero-filled for unsigned quantities. For signed quantities, the sign bit is propagated
into the vacated bit positions. The shift is a logical shift if the left operand is an
unsigned quantity; otherwise, it is an arithmetic shift.

Microsoft Specific ~

The result of a right shift of a signed negative quantity is implementation dependent.
Although Microsoft C++ propagates the most-significant bit to fill vacated bit
positions, there is no guarantee that other implementations will do likewise.

END Microsoft Specific

Chapter 4 Expressions

Relational and Equality Operators
The relational and equality operators determine equality, inequality, or relative values
of their operands. The relational operators are shown in Table 4.3.

Table 4.3 Relational and Equality Operators

Operator Meaning

-- Equal to

!= Not equal to

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

Relational Operators
The binary relational operators determine the following relationships:

• Less than

• Greater than

• Less than or equal to

• Greater than or equal to

Syntax
relational-expression:

shift-expression
relational-expression < shift-expression
relational-expression> shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

The relational operators have left-to-right associativity. Both operands of relational
operators must be of arithmetic or pointer type. They yield values of type int. The
value returned is 0 if the relationship in the expression is false; otherwise, it is 1.
Consider the following code, which demonstrates several relational expressions:

#include <iostream.h>

void main()
{

cout «
«

cout «
«

cout «
«

"The true expression 3 >
(3 > 2) « "\n";
"The false expression 20
(20 < 10) « "\n";
"The expression 10 < 20
(10 < 20 < 5) « "\n";

2 yields: "

< 10 yields: "

< 5 yields: "

93

c++ Language Reference

94

The output from this program is:

The true expression 3 > 2 yields 1
The false expression 20 < 10 yields 0
The expression 10 < 20 < 5 yields 1

The expressions in the preceding example must be enclosed in parentheses because
the insertion operator «<) has higher precedence than the relational operators.
Therefore, the first expression without the parentheses would be evaluated as:

(cout « "The true expression 3 > 2 yields: " « 3) < (2 « "\n");

Note that the third expression evaluates to 1-because of the left-to-right
associativity of relational operators, the explicit grouping of the expression
10 < 20 < 5 is:

(10 < 20) < 5

Therefore, the test performed is:

1 < 5

and the result is 1 (or true).

The usual arithmetic conversions covered in "Arithmetic Conversions" on page 59
in Chapter 3 are applied to operands of arithmetic types.

Comparing Pointers Using Relational Operators
When two pointers to objects of the same type are compared, the result is determined
by the location of the objects pointed to in the program's address space. Pointers can
also be compared to a constant expression that evaluates to 0 or to a pointer of type
void *. If a pointer comparison is made against a pointer of type void *, the other
pointer is implicitly converted to type void *. Then the comparison is made.

Two pointers of different types cannot be compared unless:

• One type is a class type derived from the other type.

• At least one of the pointers is explicitly converted (cast) to type void *. (The other
pointer is implicitly converted to type void * for the conversion.)

Two pointers of the same type that point to the same object are guaranteed to compare
equal. If two pointers to nonstatic members of an object are compared, the following
rules apply:

• If the class type is not a union, and if the two members are not separated by an
access-specifier, such as public, protected, or private, the pointer to·the member
declared last will compare greater than the pointer to the member declared earlier.
(For information on access-specifier, see the Syntax section in "Access Specifiers"
on page 280 in Chapter 10.)

• If the two members are separated by an access-specifier, the results are undefined.

• If the class type is a union, pointers to different data members in that union
compare equal.

Chapter 4 Expressions

If two pointers point to elements of the same array or to the element one beyond the
end of the array, the pointer to the object with the higher sUbscript compares higher.
Comparison of pointers is guaranteed valid only when the pointers refer to objects in
the same array or to the location one past the end of the array.

Equality Operators
The binary equality operators compare their operands for strict equality or inequality.

Syntax
equality-expression:

relational-expression
equality-expression == relational-expression
equality-expression != relational-expression

The equality operators, equal to (==) and not equal to (!=), have lower precedence
than the relational operators, but they behave similarly.

The equal-to operator (==) returns true if both operands have the same value;
otherwise, it returns false. The not-equal-to operator (!=) returns true if the operands
do not have the same value; otherwise, it returns false.

Equality operators can compare pointers to members of the same type. In such a
comparison, pointer-to-member conversions, as discussed in "Pointer-to-Member
Conversions" on page 64 in Chapter 3 are performed. Pointers to members can also
be compared to a constant expression that evaluates to O.

Bitwise Operators
The bitwise operators are:

• Bitwise AND (&)

• Bitwise exclusive OR (A)

• Bitwise inclusive OR (I)

These operators return bitwise combinations of their operands.

Bitwise AND Operator
The bitwise AND operator (&) returns the bitwise AND of the two operands. All bits
that are on (1) in both the left and right operand are on in the result; bits that are off
(0) in either the left or the right operand are off in the result.

Syntax
and-expression:

relational-expression
and-expression & equality-expression

95

c++ Language Reference

96

Both operands to the bitwise AND operator must be of integral types. The usual
arithmetic conversions covered in "Arithmetic Conversions" on page 59 in Chapter 3,
are applied to the operands.

Bitwise Exclusive OR Operator
The bitwise exclusive OR operator (1\) returns the bitwise exclusive OR of the two
operands. All bits that are on (1) in either the left or right operand, but not both, are
on in the result. Bits that are the same (either on or oft) in both operands are off in
the result.

Syntax
exclusive-or-expression:

and-expression
exclusive-or-expression 1\ and-expression

Both operands to the bitwise exclusive OR operator must be of integral types. The
usual arithmetic conversions covered in "Arithmetic Conversions" on page 59 in
Chapter 3 are applied to the operands.

Bitwise Inclusive OR Operator
The bitwise inclusive OR operator (I) returns the bitwise inclusive OR of the two
operands. All bits that are on (1) in either the left or right operand are on in the result.
Bits that are off (0) in both operands are off in the result.

Syntax
inclusive-or-expression:

exclusive-or-expression
inclusive-or-expression I exclusive-or-expression

Both operands to the bitwise inclusive OR operator must be of integral types. The
usual arithmetic conversions covered in "Arithmetic Conversions" on page 59 in
Chapter 3 are applied to the operands.

Logical Operators
The logical operators, logical AND (&&) and logical OR (II), are used to combine
multiple conditions formed using relational or equality expressions.

Logical AND Operator
The logical AND operator (&&) returns the integral value 1 if both operands are
nonzero; otherwise, it returns O. Logical AND has left-to-right associativity.

Syntax
logical-and-expression:

inclusive-or-expression
logical-and-expression && inclusive-or-expression

Chapter 4 Expressions

The operands to the logical AND operator need not be of the same type, but they
must be of integral or pointer type. The operands are commonly relational or
equality expressions.

The first operand is completely evaluated and all side effects are completed before
continuing evaluation of the logical AND expression.

The second operand is evaluated only if the first operand evaluates to true (nonzero).
This evaluation eliminates needless evaluation of the second operand when the
logical AND expression is false. You can use this short-circuit evaluation to
prevent null-pointer dereferencing, as shown in the following example:

char *pch =- 0;

(pch) && (*pch ... 'a');

If pch is null (0), the right side of the expression is never evaluated. Therefore, the
assignment through a null pointer is impossible.

Logical OR Operator
The logical OR operator (II) returns the integral value 1 if either operand is nonzero;
otherwise, it returns O. Logical OR has left-to-right associativity.

Syntax
10 gical-or-exp ression:

logical-and-expression
logical-or-expression IIlogical-and-expression

The operands to the logical OR operator need not be of the same type, but they
must be of integral or pointer type. The operands are commonly relational or
equality expressions.

The first operand is completely evaluated and all side effects are completed
before continuing evaluation of the logical OR expression.

The second operand is evaluated only if the first operand evaluates to false (0).
This eliminates needless evaluation of the second operand when the logical OR
expression is true.

printf("%d" . (x """" w II x == y II x =- z));

In this example, if x is equal to either w, y, or z, the second argument to the pri ntf
function evaluates to true and the value 1 is printed. Otherwise, it evaluates to false
and the value 0 is printed. As soon as one of the conditions evaluates to true,
evaluation ceases.

97

c++ Language Reference

98

Assignment Operators
Assignment operators store a value in the object designated by the left operand.
There are two kinds of assignment operations: "simple assignment," in which the
value of the second operand is stored in the object specified by the first operand,
and "compound assignment," in which an arithmetic, shift, or bitwise operation is
performed prior to storing the result. All assignment operators in Table 4.4 except
the = operator are compound assignment operators.

Table 4.4 Assignment Operators

Operator

=

*=

1=

%=

+=

-=

«=

»=

&=

11.=

1=

Syntax

Meaning

Store the value of the second operand in the object specified by the first
operand ("simple assignment").

Multiply the value of the first operand by the value of the second operand;
store the result in the object specified by the first operand.

Divide the value of the first operand by the value of the second operand;
store the result in the object specified by the first operand.

Take modulus of the first operand specified by the value of the second
operand; store the result in the object specified by the first operand.

Add the value of the second operand to the value of the first operand; store
the result in the object specified by the first operand.

Subtract the value of the second operand from the value of the first operand;
store the result in the object specified by the first operand.

Shift the value of the first operand left the number of bits specified by the
value of the second operand; store the result in the object specified by the
first operand.

Shift the value of the first operand right the number of bits specified by the
value of the second operand; store the result in the object specified by the
first operand.

Obtain the bitwise AND of the first and second operands; store the result in
the object specified by the first operand.

Obtain the bitwise exclusive OR of the first and second operands; store the
result in the object specified by the first operand.

Obtain the bitwise inclusive OR of the first and second operands; store the
result in the object specified by the first operand.

assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression

assignment-operator: one of
= *= 1= %= += -= «= »= &= 11.= 1=

Chapter 4 Expressions

Result of Assignment Operators
The assignment operators return the value of the object specified by the left operand
after the assignment. The resultant type is the type of the left operand. The result of
an assignment expression is always an I-value. These operators have right-to-Ieft
associativity. The left operand must be a modifiable I-value.

Note In ANSI C, the result of an assignment expression is not an I-value. Therefore, the
legal C++ expression (a += b) += c is illegal in C.

Simple Assignment
The simple assignment operator (=) causes the value of the second operand to be
stored in the object specified by the first operand. If both objects are of arithmetic
types, the right operand is converted to the type of the left, prior to storing the value.

Objects of const and volatile types can be assigned to I-values of types that are just
volatile or that are neither const nor volatile.

Assignment to objects of class type (struct, union, and class types) is performed by
a function named operator=. The default behavior of this operator function is to
perform a bitwise copy; however, this behavior can be modified using overloaded
operators. (See "Overloaded Operators" on page 336 in Chapter 12 for more
information.)

An object of any unambiguously derived class from a given base class can be assigned
to an object of the base class. The reverse is not true because there is an implicit
conversion from derived class to base class but not from base class to derived class.
For example:

#include <iostream.h>

class ABase
{

public:
ABase() { cout « "constructing ABase\n"; }

} ;

class ADeriYed public ABase
{

public:
ADerived() { cout « "constructing ADerived\n"; }

} ;

void maine)
{

ABase aBase;
ADerived aDerived;

aBase = aDerived; II OK
aDerived = aBase; II Error

99

c++ Language Reference

100

Assignments to reference types behave as if the assignment were being made to-the
object to which the reference points.

For class-type objects, assignment is different from initialization. To illustrate how
different assignment and initialization can be, consider the code

UserTypel A;
UserType2 B = A;

The preceding code shows an initializer; it calls the constructor for Use r Ty pel that
takes an argument of type UserTypel. Given the code

UserTypel A;
UserType2 B;

B = A;

the assignment statement

B = A;

can have one of the following effects:

• Call the function operator= for UserType2, provided operator= is provided with
a UserTypel argument.

• Call the explicit conversion function UserTypel: : operator UserType2, if
such a function exists.

• Call a constructor UserType2: : UserType2, provided such a constructor exists,
that takes a Use r T y pel argument and copies the result.

Compound Assignment
The compound assignment operators, shown in Table 4.4, are specified in the form
el op= e2, where el is a modifiable I-value not of const type and e2 is one of the
following:

• An arithmetic type

• A pointer, if op is + or -

The el op= e2 form behaves as el = el op e2, but el is evaluated only once.

Compound assignment to an enumerated type generates an error message. If the left
operand is of a pointer type, the right operand must be of a pointer type or it must _be
a coristant expression that evaluates to O. If the left operand is of an integral type, the
right operand must not be of a pointer type.

Chapter 4 Expressions

Comma Operator
The comma operator allows grouping two statements where one is expected.

Syntax
expression:

assignment-expression
expression, assignment-expression

The comma operator has left-to-right associativity. Two expressions separated by a
comma are evaluated left to right. The left operand is always evaluated, and all side
effects are completed before the right operand is evaluated.

Consider the expression

el ,e2

The type and value of the expression are the type and value of e2; the result
of evaluating el is discarded. The result is an I-value if the right operand is an
I-value.

Where the comma has special meaning (for example in actual arguments to functions
or aggregate initializers), the comma operator and its operands must be enclosed in
parentheses. Therefore, the following function calls are not equivalent:

II Declare functions:
void Func(int, int);
void Func(int);

Func(argl, arg2);
Func((argl, arg2));

II Call Func(int, int
II Call Func(int)

This example illustrates the comma operator:

for (i = j = 1; i + j < 20; i += i, j - -);

In this example, each operand of the for statement's third expression is evaluated
independently. The left operand i += i is evaluated first; then the right operand,
j - -, is evaluated.

func_one(x, Y + 2, Z);
func_two((x--, Y + 2), Z);

In the function call to func_one, three arguments, separated by commas, are passed:
x, y + 2, and z. In the function call to func_two, parentheses force the compiler
to interpret the first comma as the sequential-evaluation operator. This function
call passes two arguments to func_two. The first argument is the result of the
sequential-evaluation operation (x - -. y + 2), which has the value and type of
the expression y + 2; the second argument is z.

101

c++ Language Reference

Expressions with the Conditional Operator

102

The conditional operator (? :) is a ternary operator (it takes three operands).
The conditional operator works as follows:

• The fIrst operand is evaluated and all side effects are completed before continuing.

• If the fIrst operand evaluates to true (a nonzero value), the second operand is
evaluated.

• If the fIrst operand evaluates to false (0), the third operand is evaluated.

The result of the conditional operator is the result of whichever operand is evaluated
- the second or the third. Only one of the last two operands is evaluated in a
conditional expression.

Syntax
conditional-expression:

10 gical-o r-expression
logical-or-expression ? expression: conditional-expression

Conditional expressions have no associativity. The fIrst operand must be of integral
or pointer type. The following rules apply to the second and third expressions:

• If both expressions are of the same type, the result is of that type.

• If both expressions are of arithmetic types, usual arithmetic conversions (covered
in "Arithmetic Conversions" on page 59 in Chapter 3) are performed to convert
them to a common type.

• If both expressions are of pointer types or if one is a pointer type and the other is
a constant expression that evaluates to 0, pointer conversions are performed to
convert them to a common type. .

• If both expressions are of reference types, reference conversions are performed to
convert them to a common type.

• If both expressions are of type void, the common type is type void.

• If both expressions are of a given class type, the common type is that class type.

Any combinations of second and third operands not in the preceding list are illegal.
The type of the result is the common type, and it is an I-value if both the second
and third operands are of the same type and both are I-values.

For example:

(val)= 0) ? val : - val

If the condition is true, the expression evaluates to val. If not, the expression
equals - val.

Chapter 4 Expressions

Constant Expressions
c++ requires constant expressions - expressions that evaluate to a constant
for declarations of:

• Array bounds

• Selectors in case statements

• Bit-field length specification

• Enumeration initializers

Syntax
constant-expression:

conditional-expression

The only operands that are legal in constant expressions are:

• Literals

• Enumeration constants

• Values declared as const that are initialized with constant expressions

• size of expressions

Nonintegral constants must be converted (either explicitly or implicitly) to integral
types to be legal in a constant expression. Therefore, the following code is legal:

const double Size - 11.0:

char chArray[(int)Size]:

Explicit conversions to integral types are legal in constant expressions; all other types
and derived types are illegal except when used as operands to the size of operator.

The comma operator and assignment operators cannot be used in constant
expressions.

Expressions with Explicit Type Conversions
c++ provides implicit type conversion, as described in Chapter 3, "Standard
Conversions." You can also specify explicit type conversions when you need more
precise control of the conversions applied.

Explicit Type Conversion Operator
c++ allows explicit type conversion using a syntax similar to the function -call syntax.
A simple-type-name followed by an expression-list enclosed in parentheses constructs
an object of the specified type using the specified expressions. The following example
shows an explicit type conversion to type int:

int i = int(d):

103

c++ Language Reference

104

The following example uses a modified version of the Poi n t class defined in
"Function-Call Results."

#include <iostream.h>

class Point
{

public:
II Define default constructor.
Pointe) { _x = -y = 0: }
II Define another constructor.
Poi n t (i n t X. i n t Y) { _x = X: -y Y:}

II Define "accessor" functions as
II reference types.
unsigned& xC) { return _x:
unsigned& y() { return -y:
voi d Show() {cout« "x "« _x « "

«"y "« -y « "\n":
private:

unsigned x·
unsigned -y:

} :

void main()
{

Point Point1. Point2:

II Assign Point1 the explicit conversion
I I of (10. 10).
Point1 = Pointe 10. 10):

II Use xC) as an l-value by assigning an explicit
II conversion of 20 to type unsigned.
Point1.x() = unsigned(20):
Point1.Show():

II Assign Point2 the default Point object.
Point2 = Pointe):
Point2.Show():

The output from this program is:

x = 20. y = 10
x = 0. y = 0

Although the preceding example demonstrates explicit type conversion using
constants, the same technique works to perform these conversions on objects.
The following code fragment demonstrates this:

int i = 7:
float d:

d=float():

Chapter 4 Expressions

Explicit type conversions can also be specified using the "cast" syntax. The previous
example, rewritten using the cast syntax, is:

d = (float)i:

Both cast and function-style conversions have the same results when converting
from single values. However, in the function-style syntax, you can specify more than
one argument for conversion. This difference is important for user-defined types.
Consider a Poi nt class and its conversions:

struct Point
{

Pointe short x, short y) { x = x: _y = y:

} :

Point pt = Pointe 3, 10):

The preceding example, which uses function-style conversion, shows how to convert
two values (one for x and one for y) to the user-defined type Poi nt.

Important Use the explicit type conversions with care, since they override the C++ compiler's
built-in type checking.

Syntax
cast-expression:

unary-expression
(type-name) cast-expression

The cast notation must be used for conversions to types that do not have a
simple-type-name (pointer or reference types, for example). Conversion to types
that can be expressed with a simple-type-name can be written in either fonn. See
"Type Specifiers" on page 162 in Chapter 6 for more information about what
constitutes a simple-type-name.

Type definition within casts is illegal.

Legal Conversions
You can do explicit conversions from a given type to another type if the conversion
can be done using standard conversions. The results are the same. The conversions
described in this section are legal; any other conversions not explicitly defined by
the user (for a class type) are illegal.

A value of integral type can be explicitly converted to a pointer if the pointer is large
enough to hold the integral value. A pointer that is converted to an integral value can
be converted back to a pointer; its value is the same. This identity is given by the
following (where p represents a pointer of any type):

p == (type *) integral-conversion(p)

105

c++ Language Reference

106

With explicit conversions, the compiler does not check whether the converted value
fits in the new type except when converting from pointer to integral type or vice versa.

This section describes the following conversions:

• Converting pointer types

• Converting the null pointer

• Converting to a forward reference class type

• Converting to reference types

• Converting among pointer to member types

Converting Pointer Types
A pointer to one object type can be explicitly converted to a pointer of another object
type. A pointer declared as void * is considered a pointer to any object type.

A pointer to a base class can be explicitly converted to a pointer to a derived class as
long as these conditions are met:

• There is an unambiguous conversion.

• The base class is not declared as virtual at any point.

Because conversion to type void * can change the representation of an object, there is
no guarantee that the conversion typel* void * type2* is equivalent to the conversion
typel* type2* (which is a change in value only).

When such a conversion is performed, the result is a pointer to the subobject of the
original object representing the base class.

See Chapter 9, "Derived Classes," for more information about ambiguity and virtual
base classes.

C++ allows explicit conversions of pointers to objects or functions to type void *.
Pointers to object types can be explicitly converted to pointers to functions if the
function pointer type has enough bits to accommodate the pointer to object type.

A pointer to a const object can be explicitly converted to a pointer not of const type.
The result of this conversion points to the original object. An object of const type,
or a reference to an object of const type, can be cast to a reference to a type that is
not const. The result is a reference to the original object. The original object was
probably declared as const because it was to remain constant across the duration
of the program. Therefore, an explicit conversion defeats this safeguard, allowing
modification of such objects. The behavior in such cases is undefined.

A pointer to an object of volatile type can be cast to a pointer to a type that is not
volatile. The result of this conversion refers to the original object. Similarly, an
object of volatile type can be cast to a reference to a type that is not volatile.

Chapter 4 Expressions

Converting the Null Pointer
The null pointer (0) is converted into itself.

Converting to a Forward-Reference Class Type
A class that has been declared but not yet defined (a forward reference) can be used
in a pointer cast. In this case, the compiler returns a pointer to the original object,
not to a subobject as it might if the class's relationships were known.

Converting to Reference Types
Any object whose address can be converted to a given pointer type can also be
converted to the analogous reference type. For example, any object whose address can
be converted to type char * can also be converted to type char &. No constructors or
class conversion functions are called to make a conversion to a reference type.

Objects or values can be converted to class-type objects only if a constructor or
conversion operator has been provided specifically for this purpose. For more
information about these user-defined functions, see "Conversion Constructors"
on page 303 in Chapter 11.

Conversion of a reference to a base class, to a reference to a derived class (and
vice versa) is done the same way as for pointers.

A cast to a reference type results in an I-value. The results of casts to other types
are not I-values. Operations performed on the result of a pointer or reference cast
are still performed on the original object.

Converting Among Pointer-to-Member Types
A pointer to a member can be converted to a different pointer-to-member type
subject to these rules: Either the pointers must both be pointers to members in the
same class or they must be pointers to members of classes, one of which is derived
unambiguously from the other. When converting pointer-to-member functions,
the return and argument types must match.

Expressions with Pointer-to-Member Operators
The pointer-to-member operators, . * and ->*, return the value of a specific class
member for the object specified on the left side of the expression. The following
example shows how to use these operators:

#include <iostream.h>

class Window
{

public:

} ;

void Paint(); II Causes window to repaint.
int WindowId;

107

c++ Language Reference

108

II Define derived types pmfnPaint and pmWindowId.
II These types are pointers to members Paint() and
II WindowId. respectively.
void (Window::*pmfnPaint)() = &Window::Paint;
int Window::*pmWindowId = &Window::WindowId;

void main()
{

Window AWindow;
Window *pWindow = new Window;

II Invoke the Paint function normally. then use pointer to member.

}

AWi ndow. Pa i nt () ;
. (AWindow.*pmfnPaint)();

pWindow->Paint();
(pWind9w->*pmfnPaint)(); II Parentheses required since * binds

II less tightly than the function call.

int Id;
II Retrieve window id.
Id = AWindow.*pmWindowId;
Id = pWindow->*pmWindowId;

In the preceding example, a pointer to a member, pmfn P a in t, is used to invoke
the member function Pa i nt. Another pointer to a member, pmWi ndowId, is used
to access the Win d ow I d member.

Syntax
pm-expression:

cast-expression
pm-expression. * cast-expression
pm-expression ->* cast-expression

The binary operator. * combines its first operand, which must be an object of class
type, with its second operand, which must be a pointer-to-member type.

The binary operator ->* combines its first operand, which must be a pointer to
an object of class type, with its second operand, which must be a pointer-to-member
type.

In an expression containing the. * operator, the first operand must be of the
class type of, and be accessible to, the pointer to member specified in the second
operand or of an accessible type unambiguously derived from and accessible to
that class.

In an expression containing the ->* operator, the first operand must be of the type
"pointer to the class type" of the type specified in the second operand, or it must be
of a type unambiguously derived from that class.

Consider the following classes and program fragment:

class BaseClass
{

public:
BaseClass(); II Base class constructor.
void Funcl();

} ;

II Declare a pointer to member function Funcl.
void (BaseClass::*pmfnFuncl)() - &BaseClass::Funcl;

class Derived: public BaseClass
{

public:
Derived(); II Derived class constructor.
void Func2();

} ;

II Declare a pointer to member function Func2.
void (Derived::*pmfnFunc2)() &Derived::Func2;

void main()
{

BaseClass ABase;
Derived ADerived;

(ABase.*pmfnFuncl)();
(ABase.*pmfnFunc2)();

(ADerived.*pmfnFuncl)();

(ADerived.*pmfnFunc2)();

II OK: defined for BaseClass.
II
II
II
II
II
II

Error: cannot use base class to
access pointers to members of
derived classes.

OK: Derived is unambiguously
derived from BaseClass.

OK: defined for Derived.

The result of the. * or ->* pointer-to-member operators is an object or function of
the type specified in the declaration of the pointer to member. So, in the preceding
example, the result of the expression ADeri ved. *pmfn Funcl () is a pointer to
a function that returns void. This result is an I-value if the second operand is
an I-value.

Note If the result of one of the pointer-to-member operators is a function, then the result
can be used only as an operand to the function call operator.

Semantics of Expressions
This section explains when, and in what order, expressions are evaluated. It
includes descriptions of certain expression that are ambiguous in their meaning,
and compatible types that can be used in expressions. In addition, it describes
certain expressions that are ambiguous in their meaning and compatible types
that can be used in expressions.

Chapter 4 Expressions

109

c++ Language Reference

The following topics are included:

• Order of evaluation

• Sequence points

• Ambiguous expressions

• Notation in expressions

Order of Evaluation

110

This section discusses the order in which expressions are evaluated but does not
explain the syntax or the semantics of the operators in these expressions. The earlier
sections in this chapter provide a complete reference for each of these operators.

Expressions are evaluated according to the precedence and grouping of their
operators. (Table 1.1 in Chapter 1, "Lexical Conventions," shows the relationships
the C++ operators impose on expressions.) Consider this example:

#include <iostream.h>

void main()
{

int a = 2. b = 4. c = 9;

cout « a + b * c « "\n";
cout « a + (b * c) « "\n";
cout « (a + b) * c « "\n";

The output from the preceding code is:

38
38
54

Figure 4.1 Expression-Evaluation Order

The order in which the expression shown in Figure 4.1 is evaluated is determined
by the precedence and associativity of the operators:

1. Multiplication (*) has the highest precedence in this expression; hence the
subexpression b * c is evaluated first.

2. Addition (+) has the next highest precedence, so a is added to the product of
band c.

Chapter 4 Expressions

3. Left shift «<) has the lowest precedence in the expression, but there are two
occurrences. Because the left-shift operator groups left-to-right, the left
subexpression is evaluated first and then the right one.

When parentheses are used to group the subexpressions, they alter the precedence
and also the order in which the expression is evaluated, as shown in Figure 4.2.

Figure 4.2 Expression-Evaluation Order with Parentheses

'---__ « __J

Expressions such as those in Figure 4.2 are evaluated purely for their side effects
in this case, to transfer information to the standard output device.

Note The left-shift operator is used to insert an object in an object of class ostream. It is
sometimes called the "insertion" operator when used with iostream. For more about the
iostream library, see the iostream Class Library Reference.

Sequence Points
An expression can modify an object's value only once between consecutive "sequence
points."

Microsoft Specific ~

The C++ language definition does not currently specify sequence points. Microsoft
C++ uses the same sequence points as ANSI C for any expression involving C
operators and not involving overloaded operators. When operators are overloaded,
the semantics change from operator sequencing to function-call sequencing.
Microsoft C++ uses the following sequence points:

• Left operand of the logical AND operator (&&). The left operand of the logical
AND operator is completely evaluated and all side effects completed before
continuing. There is no guarantee that the right operand of the logical AND
operator will be evaluated.

• Left operand of the logical OR operator (II). The left operand of the logical OR
operator is completely evaluated and all side effects completed before continuing.
There is no guarantee that the right operand of the logical OR operator will be
evaluated.

• Left operand of the comma operator. The left operand of the comma operator is
completely evaluated and all side effects completed before continuing. Both
operands of the comma operator are always evaluated.

111

c++ Language Reference

• Function-call operator. The function-call expression and all arguments to a
function, including default arguments, are evaluated and all side effects completed
prior to entry to the function. There is no specified order of evaluation among the
arguments or the function-call expression.

• First operand of the conditional operator. The first operand of the conditional
operator is completely evaluated and all side effects completed before continuing.

• The end of a full initialization expression, such as the end of an initialization in a
declaration statement.

• The expression in an expression statement. Expression statements consist of an
optional expression followed by a semicolon (;). The expression is completely
evaluated for its side effects.

• The controlling expression in a selection (if or switch) statement. The expression
is completely evaluated and all side effects completed before the code dependent
on the selection is executed.

• The controlling expression of a while or do statement. The expression is
completely evaluated and all side effects completed before any statements in the
next iteration of the while or do loop are executed.

• Each of the three expressions of a for statement. Each expression is completely
evaluated and all side effects completed before moving to the next expression.

• The expression in a return statement. The expression is completely evaluated and
all side effects completed before control returns to the calling function.

END Microsoft Specific

Ambiguous Expressions
Certain expressions are ambiguous in their meaning. These expressions occur most
frequently when an object's value is modified more than once in the same expression.
These expressions rely on a particular order of evaluation where the language does
not define one. Consider the following example:

int i = 7;

func(;, ++i);

The C++ language does not guarantee the order in which arguments to a function
call are evaluated. Therefore, in the preceding example, func could receive the
values 7 and 8, or 8 and 8 for its parameters, depending on whether the parameters
are evaluated from left to right or from right to left.

Notation in Expressions

112

The C++ language specifies certain compatibilities when specifying operands.
Table 4.5 shows the types of operands acceptable to operators that require operands
of type type.

Chapter 4 Expressions

Table 4.5 Operand Types Acceptable to Operators

Type Expected Types Allowed

type

type *

const type

volatile type

const type
volatile type
type &
const type&
volatile type&
volatile const type
volatile const type&

type* const
type* volatile
type* volatile const

type
const type
const type&

type
volatile type
volatile type&

Because the preceding rules can always be used in combination, a const pointer to a
volatile object can be supplied where a pointer is expected.

Casting
The C++ language provides that if a class is derived from a base class containing
virtual functions, a pointer to that base class type can be used to call the
implementations of the virtual functions residing in the derived class object. A
class containing virtual functions is sometimes called a "polymorphic class."

Since a derived class completely contains the definitions of all the base classes from
which it is derived, it is safe to cast a pointer up the class hierarchy to any of these
base classes. Given a pointer to a base class, it might be safe to cast the pointer down
the hierarchy. It is safe if the object being pointed to is actually of a type derived from
the base class. In this case, the actual object is said to be the "complete object." The
pointer to the base class is said to point to a "subobject" of the complete object.
For example, consider the class hierarchy shown in Figure 4.3:

Figure 4.3 Class Hierarchy

113

c++ Language Reference

An object of type C could be visualized as shown in Figure 4.4:

Figure 4.4 Class C with B Subobject and A Subobject

:,
A

.: B

C

Given an instance of class C, there is a B subobject and an A subobject. The instance
of C, including the A and B subobjects, is the "complete object."

Using run-time type information, it is possible to check whether a pointer actually
points to a complete object and can be safely cast to point to another object in its
hierarchy. The dynamic_cast operator can be used to make these types of casts.
It also performs the run-time check necessary to make the operation safe.

Casting Operators

114

There are several casting operators specific to the C++ language. These operators are
intended to remove some of the ambiguity and danger inherent in old style C language
casts. These operators are:

• dynamic_cast Used for conversion of polymorphic types.

• static_cast Used for conversion of nonpolymorphic types.

• consCcast Used to remove the const, volatile, and __ unaligned attributes.

• reinterpret_cast Used for simple reinterpretation of bits.

Use const_cast and reinterpret_cast as a last resort, since these operators present
the same dangers as old style casts. However, they are still necessary in order to
completely replace old style casts.

dynamic_cast Operator
The expression dynamic_cast<type-id>(expression) converts the operand
expression to an object of type type-id. The type-id must be a pointer or a
reference to a previously defined class type or a "pointer to void". The type of
expression must be a pointer if type-id is a pointer, or an I-value if type-id is
a reference.

Syntax
dynamic_cast < type-id > (expression)

If type-id is a pointer to an unambiguous accessible direct or indirect base class
of expression, a pointer to the unique subobject of type type-id is the result.
For example:

Chapter 4 Expressions

cl ass B { ... };
class C public B };
class 0 public C };

void f(D* pd)
{

C* pc ~ dynamic_cast<C*>(pd);

B* pb == dynamic_cast<B*>(pd);

II ok: C is a direct base class
II pc points to C subobject of pd

II ok: B is an indirect base class
II pb points to B subobject of pd

This type of conversion is called an "upcast" because it moves a pointer up a class
hierarchy, from a derived class to a class it is derived from. An upcast is an implicit
conversion.

If type-id is void*, a run-time check is made to determine the actual type of
expression. The result is a pointer to the complete object pointed to by expression.
For example:

class A { };

class B { };

void f()
{

A* pa = new A;
B* pb = new B;
void* pv = dynamic_cast<void*>(pa);
II pv now points to an object of type A

pv = dynamic_cast<void*>(pb);
II pv now points to an object of type B

}

If type-id is not void*, a run-time check is made to see if the object pointed to by
expression can be converted to the type pointed to by type-id.

If the type of expression is a base class of the type of type-id, a run-time check is made
to see if expression actually points to a complete object of the type of type-id. If this is
true, the result is a pointer to a complete object of the type of type-id. For example:

class B { ... };
class 0 : public B { ... };

void f()
{

}

B* pb = new 0;
B* pb2 == new B;

0* pd = dynamic_cast<D*>(pb);

0* pd2 == dynamic_cast<D*>(pb2);

II unclear but ok

II ok: pb actually points to a 0

Ilerror: pb2 points to a B. not a 0
II pd2 == NU LL

115

c++ Language Reference

116

This type of conversion is called a "downcast" because it moves a pointer down a
class hierarchy, from a given class to a class derived from it.

In cases of multiple inheritance, possibilities for ambiguity are introduced. Consider
the class hierarchy shown in Figure 4.5:

Figure 4.5 Class Hierarchy Showing Multiple Inheritance

A pointer to an object of type D can be safely cast to B or C. However, if D is cast
to point to an A object, which instance of A would result? This would result in
an ambiguous casting error. To get around this problem, you can perform two
unambiguous casts. For example:

void f()
{

0* pd = new 0;
A* pa = dynamic_cast<A*>(pd);
B* pb = dynamic_cast<B*>(pd);
A* pa2 = dynamic_cast<A*>(pb);

II error: ambiguous
II first cast to B
II ok: unambiguous

Further ambiguities can be introduced when you use virtual base classes. Consider
the class hierarchy shown in Figure 4.6:

Figure 4.6 Class Hierarchy Showing Virtual Base Classes

In this hierarchy, A is a virt1;lal base class. See "Virtual Base Classes" on page 265 in
Chapter 9 for the definition of a virtual base class. Given an instance of class E and a
pointer to the A subobject, a dynamic_cast to a pointer to B will fail due to ambiguity.
You must first cast back to the complete E object, then work your way back up the
hierarchy, in an unambiguous manner, to reach the correct B object.

Chapter 4 Expressions

Consider the class hierarchy shown in Figure 4.7: .

Figure 4.7 Class Hierarchy Showing Duplicate Base Classes

Given an object of type E and a pointer to the D subobject, to navigate from the
D subobject to the left-most A subobject, three conversions can be made. You
can perform a dynamic_cast conversion from the D pointer to an E pointer, then
a conversion (either dynamic_cast or an implicit conversion) from E to B, and
finally an implicit conversion from B to A. For example:

void fCD* pd)
{

dynamic_cast<E*>(pd); E* pe
B* pb
A* pa

pe; II upcast. implicit conversion
pb; II upcast. implicit conversion

The dynamic_cast operator can also be used to perform a "cross cast." Using the
same class hierarchy, it is possible to cast a pointer, for example, from the B subobject
to the D subobject, as long as the complete object is of type E.

Considering cross casts, it is actually possible to do the conversion from a pointer to
D to a pointer to the left-most A subobject in just two steps. You can perform a cross
cast from D to B, then an implicit conversion from B to A. For example:

void f(D* pd)
{

B* pb
A* pa

dynamic_cast<B*>Cpd);
pb;

II cross cast
II upcast. implicit conversion

A null pointer value is converted to the null pointer value of the destination type
by dynamic_cast.

When you use dynamic_cast < type-id > (expression), if expression cannot
be safely converted to type type-id, the run-time check causes the cast to fail.
For example:

class A };

class B };

117

c++ Language Reference

118

void f()
{

A* pa = new A;
B* pb = dynamic_cast(B*>(pa); II fails, not safe;

II B not derived from A

}

The value of a failed cast to pointer type is the null pointer. A failed cast to reference
type throws a bad_cast exception.

bad_cast Exception
The dynamic_cast operator throws a bad_cast exception as the result of a failed cast
to a reference type. The interface for bad_cast is:

class bad_cast: public logic {
public:

} ;

bad_cast(const __ exString& what_arg)
void raise() { handle_raise(); throw
II virtual __ exString what() const;

static_cast Operator

: logic(what_arg) {}
*this; }

I Ii nherited

The expression static_cast < type-id > (expression) converts expression to the type
of type-id based solely on the types present in the expression. No run-time type check
is made to ensure the safety of the conversion.

Syntax
static_cast < type-id > (expression)

The static_cast operator can be used for operations such as converting a pointer to a
base class to a pointer to a derived class. Such conversions are not always safe. For
example:

class B { ... };

class 0 public B { ... };

void f(B* pb, 0* pd)
{

0* pd2 static_cast(D*>(pb);

B* pb2 static_cast(B*>(pd);

II not safe, pb may
II point to just B

II safe conversion

In contrast to dynamic_cast, no run-time check is made on the static_cast conversion
of pb. The object pointed to by pb may not be an object of type D, in which case the
use of *pd2 could be disastrous. For instance, calling a function that is a member of
the D class, but not the B class, could result in an access violation.

Chapter 4 Expressions

The dynamic_cast and static_cast operators move a pointer throughout a class
hierarchy. However, static_cast relies exclusively on the information provided in
the cast statement and can therefore be unsafe. For example:

class B ... };
class D : public B { ... };

void f(B* pb)
{

D* pdl dynamic_cast<D*>(pb);
D* pd2 = static_cast<D*>(pb);

If pb really points to an object of type D, then pd 1 and pd2 will get the same value.
They will also get the same value if pb == 0.

If pb points to an object of type B and not to the complete D class, then dynamic_cast
will know enough to return zero. However, static_cast relies on the programmer's
assertion that pb points to an object of type D and simply returns a pointer to that
supposed D object.

Consequently, static_cast can do the inverse of implicit conversions, in which case
the results are undefined. It is left to the programmer to ensure that the results of a
static_cast conversion are safe.

This behavior also applies to types other than class types. For instance, static_cast
can be used to convert from an int to a char. However, the resulting char may not
have enough bits to hold the entire int value. Again, it is left to the programmer to
ensure that the results of a static_cast conversion are safe.

The static_cast operator can also be used to perform any implicit conversion,
including standard conversions and user-defined conversions. For example:

typedef unsigned char BYTE

void f()
{

char ch;
int i = 65;
float f = 2.5;
doubl e dbl;

ch = static_cast<char)(i);
dbl = static_cast<double)(f);

i = static_cast<BYTE)(ch);

II int to char
II float to double

The static,-cast operator can explicitly convert an integral value to an enumeration
type. If the value of the integral type does not fall within the range of enumeration
values, the resulting enumeration value is undefined.

119

c++ Language Reference

120

The static_cast operator converts a null pointer value to the null pointer value of the
destination type.

Any expression can be explicitly converted to type void by the static_cast operator.
The destination void type can optionally include the const, volatile, or __ unaligned
attribute.

The static_cast operator cannot cast away the const, volatile, or __ unaligned
attributes. See "consCcast Operator" for information on removing these attributes.

const_cast Operator
The consCcast operator can be used to remove the const, volatile, and __ unaligned
attribute(s) from a class.

Syntax
consCcast < type-id > (expression)

A pointer to any object type or a pointer to a data member can be explicitly converted
to a type that is identical except for the const, volatile, and __ unaligned qualifiers.
For pointers and references, the result will refer to the original object. For pointers to
data members, the result will refer to the same member as the original (uncast) pointer
to data member. Depending on the type of the referenced object, a write operation
through the resulting pointer, reference, or pointer to data member might produce
undefined behavior.

The consCcast operator converts a null pointer value to the null pointer value of
the destination type.

reinterpret_cast Operator
The reinterpreCcast operator allows any pointer to be converted into any other
pointer type. It also allows any integral type to be converted into any pointer type
and vice versa. Misuse of the reinterpreCcast operator can easily be unsafe. Unless
the desired conversion is inherently low-level, you should use one of the other cast
operators.

Syntax
reinterpret_cast < type-id > (expression)

The reinterpret_cast operator can be used for conversions such as cha r* to ; nt*,
or One_cl ass* to Unrel ated_cl ass*, which are inherently unsafe.

The result of a reinterpreCcast cannot safely be used for anything other than being
cast back to its original type. Other uses are, at best, nonportable.

The reinterpret_cast operator cannot cast away the const, volatile, or __ unaligned
attributes. See "consCcast Operator" for information on removing these attributes.

The reinterpreCcast operator converts a null pointer value to the null pointer value
of the destination type.

Chapter 4 Expressions

Run-Time Type Information
Run-time type information (RTTI) is a mechanism that allows the type of an
object to be determined during program execution. RTTI was added to the
C++ language because many" vendors of class libraries were implementing this
functionality themselves. This caused incompatibilities between libraries. Thus,
it became obvious that support for run-time type information was needed at
the language level.

For the sake of clarity, this discussion of RTTI is almost completely restricted
to pointers. However, the concepts discussed also apply to references.

There are three main C++ language elements to run -time type information:

• The dynamic_cast operator.
Used for conversion of polymorphic types. See "dynamic_cast Operator" on
page 114 for more information.

• The typeid operator.
Used for identifying the exact type of an object.

• The type_info class.
U sed to hold the type information returned by the typeid operator.

typeid Operator
The typeid operator allows the type of an object to be determined at run time.

Syntax
typeid(type-id)
typeid(expression)

The result of a typeid expression is a const type_info&. The value is a reference to
a type_info object that represents either the type-id or the type of the expression,
depending on which form of typeid is used. See "type_info Class" on page 122 for
more information.

The typeid operator does a run-time check when applied to an I-value of a
polymorphic class type, where the true type of the object cannot be determined
by the static information provided. Such cases are:

• A reference to a class

• A pointer, dereferenced with *
• A subscripted pointer (i.e. [D. (Note that it is generally not safe to use a subscript

with a pointer to a polymorphic type.)

121

c++ Language Reference

122

If the expression points to a base class type, yet the object is actually of a type derived
from that base class, a type_info reference for the derived class is the result. The
expression must point to a polymorphic type, that is, a class with virtual functions.
Otherwise, the result is the type_info for the static class referred to in the expression.
Further, the pointer must be dereferenced so that the object it points to is used.
Without dereferencing the pointer, the result will be the type_info for the pointer,
not what it points to. For example:

class Base { ... };

class Derived: public Base { ... };

void f()
{

Derived* pd = new Derived;
Base* pb = pd;

const type_info& t = typeid(pb); II t holds pointer type_info
const type_info& tl = typeid(*pb); II tl holds Derived info

If the expression is dereferencing a pointer, and that pointer's value is zero, typeid
throws a bad_typeid exception. If the pointer does not point to a valid object, a
__ non_rttCobject exception is thrown.

If the expression is neither a pointer nor a reference to a base class of the object,
the result is a type_info reference representing the static type of the expression.

bad_typeid Exception
Under some circumstances, the typeid operator throws a bad_typeid exception.
The interface for bad_typeid is:

class bad_typeid : public logic {
public:

bad_typeid(const char * what_arg) : logic(what_arg) {}
void raise() {handle_raise(); throw *this; }
II virtual __ exString what() const; Ilinherited

} ;

See "typeid Operator" on page 121 for more information.

type_info Class
The type_info class describes type information generated within the program by
the compiler. Objects of this class effectively store a pointer to a name for the type.
The type_info class also stores an encoded value suitable for comparing two types
for equality or collating order. The encoding rules and collating sequence for types
are unspecified and may differ between programs.

The type; nfo. h header file must be included in order to use the type_info class.

class type_info {
public:

virtual -type_info();
int operator==(const type_info& rhs) const;
int operator!=(const type_info& rhs) const;
int befofe(const type_info& rhs) const;
const char* name() const;
const char* raw_name() const;

private:

} ;

The operators == and ! = can be used to compare for equality and inequality with
other type_info objects, respectively.

There is no link between the collating order of types and inheritance relationships.
Use the type_info::before member function to determine the collating sequence
of types. There is no guarantee that type_info::before will yield the same result in
different programs or even different runs of the same program. In this manner,
type_info::before is similar to the address-of (&) operator.

The type_info::name member function returns a const char* to a null-terminated
string representing the human-readable name of the type. The memory pointed to
is cached and should never be directly deallocated.

The type_info: :raw _name member function returns a const char* to a null
terminated string representing the decorated name of the object type. The name
is actually stored in its decorated form to save space. Consequently, this function
is faster than type_info::name because it doesn't need to undecorate the name.
The string returned by the type_info: :raw _name function is useful in comparison
operations but is not readable. If you need a human-readable string, use the
type_info: :name function instead.

Type information is generated for polymorphic classes only if the lOR (Enable
Run-Time Type Information) compiler option is specified.

Chapter 4 Expressions

123

CHAPTER 5

Statements

c++ statements are the program elements that control how and in what order objects
are manipulated. This chapter includes:

• Overview

• Labeled Statements

• Categories of Statements

• Expression statements. These statements evaluate an expression for its side
effects or for its return value.

o Null statements. These·statements can be provided where a statement is required
by the C++ syntax but where no action is to be taken.

• Compound statements. These statements are groups of statements enclosed in
curly braces ({ }). They can be used wherever the grammar calls for a single
statement.

• Selection statements. These statements perform a test; they then execute one
section of code if the test evaluates to true (nonzero). They may execute another
section of code if the test evaluates to false.

• Iteration statements. These statements provide for repeated execution of a block
of code until a specified termination criterion is met.

• Jump statements. These statements either transfer control immediately to
another location in the function or return control from the function.

• Declaration statements. Declarations introduce a name into a program. (Chapter 6,
"Declarations," provides more detailed information about declarations.)

• Exception handling statements, which include C++ exception handling (try, throw,
catch) and structured exception handling C_try/ __ except, __ try'-_finally). The
try-except statement provides a method to gain control of a program when events
that normally terminate execution occur. The try-finally and leave statements
provide a method to guarantee execution of cleanup code when execution of a
block of code is interrupted.

125

c++ Language Reference

Overview of Statements
c++ statements are executed sequentially, except when an expression statement, a
selection statement, an iteration statement, or a jump statement specifically modifies
that sequence.

Syntax
statement:

labeled-statement
expression-statement
compound-statement
selection-statement
iteration-statement
jump-statement
declaration-statement
try-throw-catch

In most cases, the C++ statement syntax is identical to that of ANSI C. The primary
difference between the two is that in C, declarations are allowed only at the start of a
block; C++ adds the declaration-statement, which effectively removes this restriction.
This enables you to introduce variables at a point in the program where a precomputed
initialization value can be calculated.

Declaring variables inside blocks also allows you to exercise precise control over the
scope and lifetime of those variables.

Labeled Statements
To transfer program control directly to a given statement, the statement must be
labeled.

Syntax
labeled-statement:

identifier : statement
case constant-expression statement
default : statement

U sing Labels with the goto Statement

126

The appearance of an identifier label in the source program declares a label. Only
a go to statement can transfer control to an identifier label. The following code
fragment illustrates use of the goto statement and an identifier label to escape a
tightly nested loop:

fore p = 0; p < NUM_PATHS; ++p)
(

NumFiles = FillArray(pFileArray, pszFNames)
fore i = 0; i < NumFiles; ++i)
{

if((pFileArray[i] = fopen(pszFNames[i], "r" » == NULL)
goto FileOpenError;

II Process the files that were opened.

FileOpenError:
cerr « "Fatal file open error. Processing interrupted. \n");

In the preceding example, the go to statement transfers control directly to the
statement that prints an error message if an unknown file-open error occurs.

A label cannot appear by itself but must always be attached to a statement. If a
label is needed by itself, place a null statement after the label.

The label has function scope and cannot be redec1ared within the function.
However, the same name can be used as a label in different functions.

U sing Labels in the case Statement
Labels that appear after the case keyword cannot also appear outside a switch
statement. (This restriction also applies to the default keyword.) The following
code fragment shows the correct use of case labels:

II Sample Microsoft Windows message processing loop.
switch (msg)
(

case WM_TIMER: II Process timer event.
SetClassWord(hWnd, GCW_HICON, ahIcon[nIcon++]);
ShowWindow(hWnd, SW_SHOWNA);
nIcon %= 14;
Yield();
break;

case WM_PAINT:
II Obtain a handle to the device context.
II BeginPaint will send WM_ERASEBKGNO if appropriate.

memset(&ps, 0x00, sizeof(PAINTSTRUCT));
hOC = BeginPaint(hWnd, &ps);

II Inform Windows that painting is complete.

EndPaint(hWnd, &ps);
break;

case WM_CLOSE:
II Close this window and all child windows.

Chapter 5 Statements

127

c++ Language Reference

KillTimer(hWnd, TIMERI);
DestroyWindow(hWnd);
if(hWnd == hWndMain)

PostQuitMessage(0); II Quit the application.
break;

default:
II This choice is taken for all messages not specifically
II covered by a case statement.

return DefWindowProc(hWnd, Message, wParam, lParam);
break;

Expression Statement
Expression statements cause expressions to be evaluated. No transfer of control or
iteration takes place as. a result of an expression statement.

Syntax
expression-statement:

expressionopt ;

All expressions in an expression statement are evaluated and all side effects are
completed before the next statement is executed. The most common expression
statements are assignments and function calls. C++ also provides a null statement.

The Null Statement

128

The "null statement" is an expression statement with the expression missing. It is
useful when the syntax of the language calls for a statement but no expression
evaluation. It consists of a semicolon.

Null statements are commonly used as placeholders in iteration statements or as
statements on which to place labels at the end of compound statements or functions.

The following code fragment shows how to copy one string to another and
incorporates the null statement:

char *strcpy(char *Dest, const char *Source)
{

}

char *DestStart = Dest;

II Assign value pointed to by Source to
II Dest until the end-of-string 0 is
II encountered.
while(*Dest++ = *Source++)

II Null statement.

return DestStart;

Chapter 5 Statements

Compound Statements (Blocks)
A compound statement consists of zero or more statements enclosed in curly braces
({ D. A compound statement can be used anywhere a statement is expected.
Compound statements are commonly called "blocks."

Syntax
compound-statement:

{ statement-listopt }

statement-list:
statement
statement-list statement

The following example uses a compound statement as the statement part of the if
statement (see "The if Statement" on page 129 for details about the syntax):

if(Amount> 100)
{

cout « "Amount was too large to handle\n";
Alert();

else
Bal~nce ~= Amount;

Note Because a declaration is a statement, a declaration can be one of the statements in the
statement-list. As a result, names declared inside a compound statement, but not explicitly
declared as static, have local scope and (for objects) lifetime. See "Scope" on page 22 in
Chapter 2 for details about treatment of names with local scope.

Selection Statements
The C++ selection statements, if and switch, provide a means to conditionally execute
sections of code.

Syntax
selection-statement:

if (expression) statement
if (expression) statement else statement
switch (expression) statement

The if Statement
The if statement evaluates the expression enclosed in parentheses. The expression
must be of arithmetic or pointer type, or it must be of a class type that defines an
unambiguous conversion to an arithmetic or pointer type. (For information about
conversions, see Chapter 3, "Standard Conversions.")

129

c++ Language Reference

In both forms of the if syntax, if the expression evaluates to a nonzero value (true),
the statement dependent on the evaluation is executed; otherwise, it is skipped.

In the if •.. else syntax, the second statement is executed if the result of evaluating the
expression is zero.

The else clause of an if ..• else statement is associated with the closest previous if
statement that does not have a corresponding else statement. The following code
fragment demonstrates how this works:

if(conditionl == true)
if(condition2 == true

cout « "conditionl true; condition2 true\n";
else

cout« "conditionl true; condition2 false\n";
else

cout « "condition 1 false\n";

Many programmers use curly braces ({ }) to explicitly clarify the pairing of
complicated if and else clauses, such as in the following example:

if(conditionl == true)
{

}

if(conditionl == true
cout « "conditionl true; condition2 true\n";

else
cout « "conditionl true; condition2 false\n";

else
cout « "condition 1 false\n";

Although the braces are not strictly necessary, they clarify the pairing between if and
else statements.

The switch Statement

130

The C++ switch statement allows selection among multiple sections of code,
depending on the value of an expression. The expression enclosed in parentheses,
the "controlling expression," must be of an integral type or of a class type for which
there is an unambiguous conversion to integral type. Integral promotion is performed
as described in "Integral Promotions" on page 56 in Chapter 3.

The switch statement causes an unconditional jump to, into, or past the statement
that is the "switch body," depending on the value of the controlling expression, the
values of the case labels, and the presence or absence of a default label. The switch
body is normally a compound statement (although this is not a syntactic requirement).
Usually, some of the statements in the switch body are labeled with case labels or with
the default label. Labeled statements are not syntactic requirements, but the switch
statement is meaningless without them. The default label can appear only once.

Syntax
case constant-expression: statement

default : statement

The constant-expression in the case label is converted to the type of the controlling
expression and is then ~ompared for equality. In a given switch statement, no two
constant expressions in case statements can evaluate to the same value. The behavior
is shown in Table 5.1.

Table 5.1 Switch Statement Behavior

Condition

Converted value matches that of the promoted
controlling expression.

None of the constants match the constants in
the case labels; default label is present.

None of the constants match the constants in
the case labels; default label is not present.

Action

Control is transferred to the statement
following that label.

Control is transferred to the default label.

Control is transferred to the statement after
the switch statement.

An inner block of a switch statement can contain definitions with initializations as
long as they are reachable - that is, not bypassed by all possible execution paths.
Names introduced using these declarations have local scope. The following code
fragment shows how the switch statement works:

switch(tolower(*argv[l]))
{

II Error. Unreachable declaration.
char szChEntered[] = "Character entered was: It;

case 'a' :

II Declaration of szChEntered OK. Local scope.
char szChEntered[] = "Character entered was: It;
cout « szChEntered « "a\n";
}

break;

case 'b' :
II Value of szChEntered undefined.
cout « szChEntered « "b\n";
break;

default:
II Value of szChEntered undefined.
cout « szChEntered « "neither a nor b\n";
break;

Chapter 5 Statements

131

c++ Language Reference

132

A switch statement can be nested. In such cases, case or default labels associate with
the most deeply nested switch statements that enclose them. For example:

switch(msg)
{

case WM_COMMANO:
switch(wParam
{

case IOM_F_NEW:
delete wfile;

II Windows command. Find out more.

II File New menu command.

wfile = new WinAppFile;
break;

case IOM_F_OPEN: II File Open menu command.
wfile->FileOpenOlg();
break;

break;
case WM_PAINT:

break;
default:

II Create window.

II Window needs repainting.

return OefWindowProc(hWnd. Message. wParam. lParam);

The preceding code fragment from a Microsoft Windows® message loop shows how
switch statements can be nested. The switch statement that selects on the value of
wPa ram is executed only if msgis WM_COMMAND. The case labels for menu
selections, I DM_F _N EW and I DM_F _0 PEN, associate with the inner switch statement.

Control is not impeded by case or default labels. To stop execution at the end of a
part of the compound statement, insert a break statement. This transfers control to the
statement after the switch statement. This example demonstrates how control "drops
through" unless a break statement is used:

Baal fClosing = FALSE;

switch (wPa ram)
{

case IOM_F_ClOSE:
fClosing = TRUE;
II fall through

II File close command.

case IOM_F_SAVE: II File save command.
if(document->IsOirty())

if(document->Name() "UNTITlEO"
FileSaveAs(document);

else
FileSave(document);

Chapter 5 Statements

if(fClosing)
document->Close();

break;

The preceding code shows how to take advantage of the fact that case labels do not
impede the flow of control. If the s wi t c h statement transfers control to I DM_F _SA V E,
fCl as i ng is FALSE. Therefore, after the file is saved, the document is not closed.
However, if the switch statement transfers control to I DM_F _C LOSE, fel as i ng is
set to TRU E, and the code to save a file is executed.

Iteration Statements
Iteration statements cause statements (or compound statements) to be executed zero
or more times, subject to some loop-termination criteria. When these statements
are compound statements, they are executed in order, except when either the break
statement or the continue statement is encountered. (For a description of these
statements, see "The break Statement" and "The continue Statement" on page 137.)

C++ provides three iteration statements - while, do, and for. Each of these iterates
until its termination expression evaluates to zero (false), or until loop termination is
forced with a break statement. Table 5.2 summarizes these statements and their
actions; each is discussed in detail in the sections that follow.

Table 5.2 C++ Iteration Statements

Statement Evaluated At

while Top of loop

do Bottom of loop

for Top of loop

Syntax
iteration-statement:

Initialization

No

No

Yes

while (expression) statement
do statement while (expression) ;

Increment

No

No

Yes

for (Jor-init-statement expressionopt expressionopt) statement

Jor-init-statement:
expression-statement
declaration-statement

The statement part of an iteration statement cannot be a declaration. However, it can
be a compound statement containing a declaration.

133

c++ Language Reference

The while Statement
The while statement executes a statement repeatedly until the termination condition
(the expression) specified evaluates to zero. The test of the termination condition takes
place before each execution of the loop; therefore, a while loop executes zero or more
times, depending on the value of the termination expression. The following code uses
a while loop to trim trailing spaces from a string:

char *trim(char *szSource)
{

}

char *pszEOS:

II Set pointer to end of string to point to the character just
II before the 0 at the end of the string.
pszEOS = szSource + strlen(szSource) - 1:

while(pszEOS)= szSource && *pszEOS
*pszEOS-- = '\0':

return szSource:

The termination condition is evaluated at the top of the loop. If there are no trailing
spaces, the loop never executes.

The expression must be of an integral type, a pointer type, or a class type with an
unambiguous conversion to an integral or pointer type.

The do Statement

134

The do statement executes a statement repeatedly until the specified termination
condition (the expression) evaluates to zero. The test of the termination condition is
made after each execution of the loop; therefore, a do loop executes one or more
times, depending on the value of the termination expression. The following function
uses the do statement to wait for the user to press a specific key:

void WaitKey(char ASCIICode)
{

}

char chTemp;

do
{

}
chTemp = _getch():

while(chTemp 1= ASCIICode):

A do loop rather than a while loop is used in the preceding code - with the do loop,
the _getch function is called to get a keystroke before the termination condition is
evaluated. This function can be written using a while loop, but not as concisely:

Chapter 5 Statements

void WaitKey(char ASCIICode)
{

char chTemp;

chTemp - _getch();

while(chTemp !- ASCIICode
{

chTemp = _getch();

The expression must be of an integral type, a pointer type, or a class type with an
unambiguous conversion to an integral or pointer type.

The for Statement
The for statement can be divided into three separate parts, as shown in Table 5.3.

Table 5.3 for Loop Elements

Syntax Name

!or-init-statement

expression1

expression2

When Executed

Before any other element of
the for statement or the
sub statement.

Before execution of a given
iteration of the loop, including
the first iteration.

At the end of each iteration of
the loop; expression1 is tested
after expression2 is evaluated.

Contents

Often used to initialize loop indices.
It can contain expressions or
declarations.

An expression that evaluates to an
integral type or a class type that has
an unambiguous conversion to an
integral type.

Normally used to increment loop
indices.

The for-init-statement is commonly used to declare and initialize loop-index variables.
The expression1 is often used to test for loop-termination criteria. The expression2 is
commonly used to increment loop indices.

The for statement executes the statement repeatedly until expression1 evaluates to
zero. The for-init-statement, expression 1 , and expression2 fields are all optional.

The following for loop:

fore for-init-statement; expressionl; expression2)
{

II Statements
}

is equivalent to the following while loop:

for-init-statement;
while(expressionl)
{

II Statements
expression2;

135

c++ Language Reference

136

A convenient way to specify an infinite loop using the for statement is:

for(; ;)
{

II Statements to be executed.
}

This is equivalent to:

while(1)
{

II Statements to be executed.
}

The initialization part of the for loop can be a declaration statement or an
expression statement, including the null statement. The initializations can include
any sequence of expressions and declarations, separated by commas. Any object
declared inside afor-init-statement has local scope, as if it had been declared
immediately prior to the for statement. Although the name of the object can be
used in more than one for loop in the same scope, the declaration can appear
only once. For example:

#include <iostream.h>

void main()
{

for(int i 0; i < 100; ++i)

}

cout« «"\n";

II The loop index. i. cannot be declared in the
II for-init-statement here because it is still in scope.
for(i = 100; i >= 0; --i)

cout « i « "\n";

Although the three fields of the for statement are normally used for initialization,
testing for termination, and incrementing, they are not restricted to these uses. For
example, the following code prints the numbers 1 to 100. The sub statement is the
null statement:

#include <iostream.h>

void main()
{

for(int 0; < 100; cout « ++i « endl)

Jump Statements
The C++ jump statements perform an immediate local transfer of control.

Syntax
jump-statement:

break;
continue;
return expressionopt ;

go to identifier ;

The break Statement
The break statement is used to exit an iteration or switch statement. It transfers
control to the statement immediately following the iteration sub statement or
switch statement.

The break statement terminates only the most tightly enclosing loop or switch
statement. In loops, break is used to terminate before the termination criteria
evaluate to O. In the switch statement, break is used to terminate sections of
code - normally before a case label. The following example illustrates the use
of the break statement in a for loop:

fore ; ;)
{

II No termination condition.

if(List->AtEnd()
break;

List->Next();

cout « "Control transfers to here.\n";

Note There are other simple ways to escape a loop. It is best to use the break statement
in more complex loops, where it can be difficult to tell whether the loop should be terminated
before several statements have been executed.

For an example of using the break statement within the body of a switch statement,
see "The switch Statement" on page 130.

The continue Statement
The continue statement forces immediate transfer of control to the loop-continuation
statement of the smallest enclosing loop. (The "loop-continuation" is the statement
that contains the controlling expression for the loop.) Therefore, the continue
statement can appear only in the dependent statement of an iteration statement
(although it may be the sole statement in that statement). In a for loop, execution of
a continue statement causes evaluation of expression2 and then expression}.

Chapter 5 Statements

137

c++ Language Reference

The following example shows how the continue statement can be used to bypass
sections of code and skip to the next iteration of a loop:

#include <conio.h>

II Get a character that is a member of the zero-terminated
II string. szLegalString. Return the index of the character
II entered.
int GetLegalChar(char *szLegalString
{

}

char *pch:

do
{

char ch = _getch():

II Use strchr library function to determine if the
II character read is in the string. If not. use the
II continue statement to bypass the rest of the
II statements in the loop.
if((pch = strchr(szLegalString. ch)) == NULL)

continue:

II A character that was in the string szLegalString
II was entered. Return its index.
return (pch - szLegalString):

II The continue statement transfers control to here.
while(1):

return 0:

The return Statement

138

The return statement allows a function to immediately transfer control back to the
calling function (or, in the case of the main function, transfer control back to the
operating system). The return statement accepts an expression, which is the value
passed back to the calling function. Functions of type void, constructors, and
destructors cannot specify expressions in the return statement; functions of all
other types must specify an expression in the return statement.

The expression, if specified, is converted to the type specified in the function
declaration, as if an initialization were being performed. Conversion from the type
of the expression to the return type of the function can cause temporary objects to be
created. See "Temporary Objects" on page 301 in Chapter 11 for more information
about how and when temporaries are created.

When the flow of control exits the block enclosing the function definition, the result
is the same as it would be if a return statement with no expression had been executed.
This is illegal for functions that are declared as returning a value.

A function can have any number of return statements.

The goto Statement
The go to statement perfonns an unconditional transfer of control to the named label.
The label must be in the current function.

For more infonnation about labels and the go to statement, see "Labeled Statements"
and "Using Labels with the goto Statement" on page 126.

Declaration Statements
Declaration statements introduce new names into the current scope. These names
can be:

• Type names (class, struct, union, enum, typedef, and pointer-to-member).

• Object names.

• Function names.

Syntax
declaration-statement:

declaration

If a declaration within a block introduces a name that is already declared outside
the block, the previous declaration is hidden for the duration of the block. After
termination of the block, the previous declaration is again visible.

Multiple declarations of the same name in the same block are illegal.

For more infonnation about declarations and name hiding, see "Declarations and
Definitions" and "Scope" in Chapter 2 on pages 20 and 22, respectively.

Declaration of Automatic Objects
In C++, objects can be declared with automatic storage class using the auto or
register keyword. If no storage-class keyword is used for a local object (an object
declared inside a function), auto is assumed. C++ initializes and declares these
objects differently than objects declared with static storage classes.

Initialization of Automatic Objects
Each time declaration statements for objects of storage class auto or register are
executed, initialization takes place. The following example, from The continue
Statement, shows initialization of the automatic object ch inside the do loop.

#include <conio.h>

II Get a character that is a member of the zero-terminated string,
II szLegalString. Return the index of the character entered.
int GetLegalChar(char *szLegalString)
{

char *pch;

Chapter 5 Statements

139

c++ Language Reference

140

}

do
{

II This declaration statement is executed once for each
II execution of the loop.
char ch = _getch();

if((pch = strchr(szLegalString, ch))
continue;

NULL)

II A character that was in the string szLegalString
II was entered. Return its index.
return (pch - szLegalString);

while(1);

For each iteration of the loop (each time the declaration is encountered), the macro
_getch is evaluated and ch is initialized with the results. When control is transferred
outside the block using the ret urn statement, chis destroyed (in this case, the
storage is deallocated).

See "Storage Classes" on page 38 in Chapter 2 for another example of initialization.

Destruction of Automatic Objects
Objects defined in a loop are destroyed once per iteration of the loop, on exit from the
block, or when control transfers to a point prior to the declaration. Objects declared in
a block that is not a loop are destroyed on exit from the block or when control transfers
to a point prior to the declaration.

Note Destruction can mean simply deallocating the object or, for class-type objects, invoking
the object's destructor.

When a jump statement transfers control out of a loop or block, objects declared in
the block transferred from are destroyed; objects in the block transferred to are not
destroyed.

When control is transferred to a point prior to a declaration, the object is destroyed.

Transfers of Control
You can use the go to statement or a case label in a switch statement to specify a
program that branches past an initializer. Such code is illegal unless the declaration
that contains the initializer is in a block enclosed by the block in which the jump
statement occurs.

The following example shows a loop that declares and initializes the objects. tot a 1 ,
ch, and i. There is also an erroneous goto statement that transfers control past an
initializer.

Chapter 5 Statements

II Read input until a nonnumeric character is entered.
while(1)
{

int total'" 0;

char ch = _getch();

if(ch >= '0' II ch <= '9')
{

goto Labell: II Error: transfers past initialization
I I of i.

int i = ch - '0':
Labell:

total += i;
II i would be destroyed here if the
II goto error were not present.

else
II Break statement transfers control out of loop,
II destroying total and ch.
break;

In the preceding example, the goto statement tries to transfer control past the initialization
of i . However, if i were declared but not initialized, the transfer would be legal.

The objects tota 1 and ch, declared in the block that serves as the statement of the
w hi 1 e statement, are destroyed when that block is exited using the b rea k statement.

Declaration of Static Objects
An object can be declared with static storage class using the static or extern keyword.
Local objects must be explicitly declared as static or extern to have static storage
class. All global objects (objects declared outside all functions) have static storage
class. You cannot declare static instances in a tiny-model program.

Initialization of Static Objects
Global objects are initialized at program startup. (For more information about construction
and destruction of global objects, see "Additional Startup Considerations" and "Additional
Termination Considerations" on page 36 in Chapter 2.)

Local objects declared as static are initialized the first time their declarations are
encountered in the program flow. The following class, introduced in Chapter 2, "Basic
Concepts", shows how this works:

#include <iostream.h>
#include <string.h>

II Define a class that logs initializations and destructions.
class InitDemo
{

141

c++ Language Reference

142

public:
InitDemo(char *szWhat);
~InitDemo() ;

private:
char *szObjName;

} ;

II Constructor for class InitDemo.
InitDemo::InitDemo(char *szWhat)
{

if(szWhat != 0 && strlen(szWhat) > 0
{

szObjName = new char[strlen(szWhat + 1];
strcpy(szObjName, szWhat);

else
szObjName = 0;

clog « "Initializing: " « szObjName « "\n";

II Destructor for InitDemo.
InitDemo::~InitDemo()

{

if(szObjName != 0
{

clog « "Destroyi ng: " « szObj Name « "\n";
delete szObjName;

II Main function.
void maine int argc, char *argv[])
{

if(argc < 2)
{

}

cerr « "Supply a one-letter argument.\n";
return -1;

i f (* a r 9 v [1] == 'a')
{

}

cout « "*argv[1] was an 'a'\n";

II Declare static local object.
static InitDemo Il("static Il");

else
cout « "*argv[1] was not an 'a'\n";

If the command-line argument supplied to this program starts with the lowercase letter
"a," the declaration of I 1 is executed, the initialization takes place, and the result is:

Chapter 5 Statements

*argv[l] was an 'a'
Initializing: static 11
Destroying: static 11

Otherwise, the flow of control bypasses the declaration of 11 and the result is:

*argv[1] was not an 'a'

When a static local object is declared with an initializer that does not evaluate to
a constant expression, the object is given the value 0 (converted to the appropriate
type) at the point before execution enters the block for the first time. However,
the object is not visible and no constructors are called until the actual point of
declaration.

At the point of declaration, the object's constructor (if the object is of a class type)
is called as expected. (Static local objects are only initialized the first time they
are seen.)

Destruction of Static Objects
Local static objects are destroyed during termination specified by atexit.

If a static object was not constructed because the program's flow of control
bypassed its declaration, no attempt is made to destroy that object.

Exception Handling
Microsoft c++ supports two kinds of exception handling, C++ exception
handling (try, throw, catch) and structured exception handling L_tryC_except,
__ try/ __ finally). If possible, you should use C++ exception handling rather than
structured exception handling.

Note In this section, the terms "structured exception handling" and "structured exception"
(or "C exception") refer exclusively to the structured exception handling mechanism provided
by Win32®. All other references to exception handling (or "C++ exception") refer to the C++
exception handling mechanism.

Although structured exception handling works with C and C++ source files, it is not
specifically designed for C++. For C++ programs, you should use C++ exception
handling.

The try, catch, and throw Statements
The C++ language provides built-in support for handling anomalous situations, known
as "exceptions," which may occur during the execution of your program. The try, throw,
and catch statements have been added to the C++ language to implement exception
handling. With C++ exception handling, your program can communicate unexpected
events to a higher execution context that is better able to recover from such abnormal
events. These exceptions are handled by code which is outside the normal

143

c++ Language Reference

144

flow of control. The Microsoft c++ compiler implements the c++ exception handling
model based on the ISO WG2l/ANSI X3J16 working papers towards the evolving
standard for C++.

Syntax
try-block:

try compound-statement handler-list

handler-list:
handler handler-listopt

handler:
catch (exception-declaration) compound-statement

exception-declaration :
type-speciJier-list declarator
type-speciJier-list abstract-declarator
type-speciJier-list

throw-expression:
throw assignment-expressionopt

The compound-statement after the try clause is the guarded section of code. The
throw-expression "throws" (raises) an exception. The compound-statement after the
catch clause is the exception handler, and "catches" (handles) the exception thrown
by the throw-expression. The exception-declaration statement indicates the type of
exception the clause handles. The type can be any valid data type, including a C++
class. If the exception-declaration statement is an ellipsis (..•), the catch clause
handles any type of exception, including a C exception. Such a handler must be the
last handler for its try block.

The operand of throw is syntactically similar to the operand of a return statement.

Note Microsoft C++ does not support the function throw signature mechanism, as described
in section 15.5 of the ANSI C++ draft.

Execution proceeds as follows:

1. Control reaches the try statement by normal sequential execution. The guarded
section (within the try block) is executed.

2. If no exception is thrown during execution of the guarded section, the catch
clauses that follow the try block are not executed. Execution continues at the
statement after the last catch clause following the try block in which the exception
was thrown.

3. If an exception is thrown during execution of the guarded section or in any routine
the guarded section calls (either directly or indirectly), an exception object is
created from the object created by the throw operand. (This implies that a copy
constructor may be involved.) At this point, the compiler looks for a catch clause

Chapter 5 Statements

in a higher execution context that can handle an exception of the type thrown (or
a catch handler that can handle any type of exception). The catch handlers are
examined in order of their appearance following the try block. If no appropriate
handler is found, the next dynamically enclosing try block is examined. This
process continues until the outermost enclosing try block is examined.

4. If a matching handler is still not found, or if an exception occurs while unwinding,
but before the handler gets control, the predefined run-time function term; nate is
called. If an exception occurs after throwing the exception, but before the unwind
begins, term; nate is called.

5. If a matching catch handler is found, and it catches by value, its formal parameter
is initialized by copying the exception object. If it catches by reference, the
parameter is initialized to refer to the exception object. After the formal parameter
is initialized, the process of "unwinding the stack" begins. This involves the
destruction of all automatic objects that were constructed (but not yet destructed)
between the beginning of the try block associated with the catch handler and the
exception's throw site. Destruction occurs in reverse order of construction. The
catch handler is executed and the program resumes execution following the last
handler (that is, the first statement or construct which is not a catch handler).
Control can only enter a catch handler through a thrown exception; never via a
got 0 statement or a cas e label in a s w; t c h statement.

The following is a simple example of a try block and its associated catch handler.
This example detects failure of a memory allocation operation using the new operator.
If new is successful, the catch handler is never executed:

#include <iostream.h>

int main()
{

char *buf;
try
{

buf = new char[512];
i f(buf == 0)

throw "Memory allocation failure!";

catch(char * str)
{

}

II

cout « "Exception raised: " « str « '\n';

return 0;

The operand of the throw expression specifies that an exception of type c h a r * is
being thrown. It is handled by a catch handler that expresses the ability to catch an
exception of type c h a r *. In the event of a memory allocation failure, this is the
output from the preceding example:

Exception raised: Memory allocation failure!

145

c++ Language Reference

146

The real power of c++ exception handling lies not only in its ability to deal with
exceptions of varying types, but also in its ability to automatically call destructor
functions during stack unwinding, for all local objects constructed before the
exception was thrown.

The following example demonstrates C++ exception handling using classes with
destructor semantics:

#include <iostream.h>

void MyFunc(void);

class CTest
{

public:

} ;

CTest() {};
-CTest () {} ;
const char *ShowReason() const { return "Exception in CTest class."; }

class CDtorDemo
{

public:

} ;

CDtorDemo();
-CDtorDemo();

CDtorDemo::CDtorDemo()
{

cout « "Constructing CDtorDemo.\n";
}

CDtorDemo::-CDtorDemo()
{

cout « "Destructing CDtorDemo.\n";

v 0 i d My Fun c ()
{

}

CDtorDemo 0;
cout« "In MyFunc(). Throwing CTest exception.\n";
throw CTest();

int main()
{

cout « "In main.\n";
try
{

co u t < < "I n try b 1 0 c k. c a 11 i n g My Fun c () . \ n" ;
MyFunc() ;

Chapter 5 Statements

catch(CTest E
{

cout « "In catch handler.\n";
cout « "Caught CTest exception type: ft.

cout « E.ShowReason() « "\n";

catch(char *str)
{

cout « "Caught some other exception: " « str « "\n";

cout « "Back in main. Execution resumes here.\n";
return 0;

This is the output from the preceding example:

In main.
In try block. calling MyFunc().
Constructing CDtorDemo.
In MyFunc(). Throwing CTest exception.
Destructing CDtorDemo.
In catch handler.
Caught CTest exception type: Exception in CTest class.
Back in main. Execution resumes here.

Note that in this example, the exception parameter (the argument to the catch clause)
is declared in both catch handlers:

catch(CTest E)
I I ...
catch(char *str
I I ...

You do not need to declare this parameter; in many cases it may be sufficient to notify
the handler that a particular type of exception has occurred. However, if you do not
declare an exception object in the exception-declaration, you will not have access to
that object in the catch handler clause.

A throw-expression with no operand re-throws the exception currently being handled.
Such an expression should appear only in a catch handler or in a function called from
within a catch handler. The re-thrown exception object is the original exception object
(not a copy). For example:

try
{

throw CSomeOtherException();

catch(...)
{

II Handle all exceptions

II Respond (perhaps only partially) to exception
II

throw; II Pass exception to some other handler

147

c++ Language Reference

Unhandled Exceptions
If a matching handler (or ellipsis catch handler) cannot be found for the current
exception, the predefined termi nate function is called. (You can also explicitly
call te rmi nate in any of your handlers.) The default action of te rmi nate is to
call abort. If you want termi nate to call some other function in your program
before exiting the application, call the set_termi nate function with the name of
the function to be called as its single argument. You can call set_termi nate at
any point in your program. The termi nate routine always calls the last function
given as an argument to set_termi nate. For example:

#include <eh.h> II For function prototypes
II ...
void term_func() II
int main()
{

try
{

II
set_terminate(term_func);
I I ...
throw "Out of memory!"; II No catch handler for this exception

catch (i nt
{

cout « "Integer exception raised.";

return 0;

The term_func function should terminate the program or current thread, ideally by
calling ex it. If it doesn't, and instead returns to its caller, abo rt is called.

For more information about C++ exception handling, see the C++ Annotated
Reference Manual by Margaret Ellis and Bjame Stroustrup.

Structured Exception Handling

148

The __ try/ __ except and __ try'-_finally statements are a Microsoft extension to the
C language that enables applications to gain control of a program after events that
would normally terminate execution.

Note Structured exception handling works with C and C++ source files. However, it is not
specifically designed for C++. Although destructors for local objects will be called if you use
structured exception handling in a C++ program (if you use the IGX compiler option), you can
ensure that your code is more portable by using C++ exception handling. The C++ exception
handling mechanism is more flexible, in that it can handle exceptions of any type.

For more information, see ''The try-except Statement" and ''The try-finally Statement" in the
C Language Reference.

Syntax
try-except-statement :

__ try compound-statement
__ except (expression) compound-statement

try-finally-statement :
__ try compound-statement
__ finally compound-statement

If you have C modules that use structured exception handling, they can be mixed
with C++ modules that use C++ exception handling. When a C (structured) exception
is raised, it can be handled by the C handler, or it can be caught by a C++ catch
handler, whichever is dynamically closest to the exception context. One of the major
differences between the two models is that when a C exception is raised, it is always
of type unsigned int, whereas a C++ exception can be of any type. That is, C
exceptions are identified by an unsigned integer value, whereas C++ exceptions are
identified by data type. However, while a C++ catch handler can catch a C exception
(for example, via an "ellipsis" catch handler), a C exception can also be handled as a
typed exception by using a C exception wrapper class. By deriving from this class,
each C exception can be attributed a specific derived class.

To use a C exception wrapper class, you install a custom C exception translator
function which is called by the internal exception handling mechanism each time
a C exception is thrown. Within your translator function, you can throw any typed
exception, which can be caught by an appropriate matching C++ catch handler.
To specify a custom translation function, call the _set_s e_t rans 1 ator function
with the name of your translation function as its single argument.

Chapter 5 Statements

149

CHAPTER 6

Declarations

Declarations introduce new names into a program. Topics covered in this chapter
include the following uses for declarations:

• Specify storage class, type, and linkage for an object.

• Specify storage class, type, and linkage for a function.

• Define a function.

• Provide an initial value for an object.

• Associate a name with a constant (enumerated type declaration).

• Declare a new type (class, struct, or union declaration).

• Specify a synonym for a type (typedef declaration).

• Specify a family of classes or functions (template declaration).

• Specify a namespace.

In addition to introducing a new name, a declaration specifies how an identifier is to
be interpreted by the compiler. Declarations do not automatically reserve storage
associated with the identifier-reserving storage is done by definitions.

Note Most declarations are also definitions.

Syntax
declaration:

decl-specijiersopt declarator-listopt ;

function-definition
·linkag e-specijication
template-specijication

The declarators in declarator-list contain the names being declared. Although the
declarator-list is shown as optional, it can be omitted only in declarations or
definitions of a function.

Note The declaration of a function is often called a "protqtype." This declaration provides
type information about arguments and the function's return type that allows the compiler to
perform correct conversions and to ensure type safety.

151

c++ Language Reference

The decl-specifiers part of a declaration is also shown as optional; however, it can be
omitted only in declarations of class types or enumerations.

Declarations occur in a scope. This controls the visibility of the name declared and the
duration of the object defined (if any). For more information about how scope rules
interact with declarations, see "Scope" on page 22 in Chapter 2.

An object declaration is also a definition unless it contains the extern storage-class
specifier described in "Storage-Class Specifiers" on page 153. A function declaration
is also a definition unless it is a prototype-a function header with no defining
function body. An object's definition causes allocation of storage and appropriate
initializations for that object.

Specifiers

152

This section explains the decl-specifiers portion of declarations. (The syntax for
declarations is given at the beginning of this chapter.)

Syntax
decl-specifiers:

decl-specifiersopt decl-specifier

decl-specifier:
storage-class-specifier
type-specifier
Jet-specifier
friend
typedef
__ declspec (extended-decl-modifier-seq)

The Microsoft-specific keyword, __ declspec, is discussed in "Extended Attribute
Syntax" on page 367 in Appendix B.

The decl-specifiers portion of a declaration is the longest sequence of decl-specifiers
that can be construed to be a type name. The remainder of the declaration is the name
or names introduced. The examples in the following list illustrates this concept:

Declaration dec/-specifiers name

char *lpszAppName: char * lpszAppName
typedef char * LPSTR: char * LPSTR
LPSTR strcpy(LPSTR. LPSTR) : LPSTR strcpy
volatile void *pvvObj: volatile void * pvvObj

Because signed, unsigned, long, and short all imply int, a typedef name following one
of these keywords is taken to be a member of declarator-list, not of decl-specifiers.

Note Because a name can be redeclared, its interpretation is subject to the most recent
declaration in the current scope. Redeclaration can affect how names are interpreted by the
compiler, particularly typedef names.

Chapter 6 Declarations

Storage-Class Specifiers
The C++ storage-class specifiers tell the compiler the duration and visibility of the
object or function they declare, as well as where an object should be stored.

Syntax
storage-class-specijier:

auto
register
static
extern

Automatic Storage-Class Specifiers
The auto and register storage-class specifiers can be used only to declare names used
in blocks or to declare formal arguments to functions. The term "auto" comes from the
fact that storage for these objects is automatically allocated at run time (normally on
the program's stack).

The auto Keyword
Few programmers use the auto keyword in declarations because all block-scoped
objects not explicitly declared with another storage class are implicitly automatic.
Therefore, the following two declarations are equivalent:

auto int i;
int j;
}

II Explicitly declared as auto.
II Implicitly auto.

The register Keyword
Microsoft Specific ~

The compiler does not accept user requests for register variables; instead, it makes its
own register choices when global register-allocation optimization (fOe option) is on.
However, all other semantics associated with the register keyword are honored.

END Microsoft Specific

ANSI C does not allow for taking the address of a register object; this restriction does
not apply to C++. However, if the address-of operator (&) is used on ~m object, the
compiler must put the object in a location for which an address can be represented
in practice, this means in memory instead of in a register.

Static Storage-Class Specifiers
The static storage-class specifiers, static and extern, can be applied to objects and
functions. Table 6.1 shows where the keywords static and extern can and cannot
be used.

153

c++ Language Reference

Table 6.1 Use of static and extern

Construct

Function declarations within a block

Formal arguments to a function

Objects in a block

Objects outside a block

Functions

Class member functions

Class member data

typedef names

Can static Can extern
be Used? be Used?

No Yes

No No

Yes Yes

Yes Yes

Yes Yes

Yes No

Yes No

No No

A name specified using the static keyword has internal linkage except for the static
members of a class that have external linkage. That is, it is not visible outside the
current translation unit. A name specified using the extern keyword has external
linkage unless previously defined as having internal linkage. For more information
about the visibility of names, see "Scope" and "Program and Linkage" in Chapter 2,
on pages 22 and 26, respectively.

Note Functions that are declared as inline and that are not class member functions are
given the same linkage characteristics as functions declared as static.

A class name whose declaration has not yet been encountered by the compiler can be
used iIi an extern declaration. The name introduced with such a declaration cannot
be used until the class declaration has been encountered.

Names Without Storage-Class Specifiers
File-scope names with no explicit storage-class specifiers have external linkage unless
they are:

• Declared using the const keyword.

• Previously declared with internal linkage.

Function Specifiers

154

You can use the inline and virtual keywords as specifiers in function declarations.
This use of virtual differs from its use in the base-class specifier of a class definition.

inline Specifier
The inline specifier instructs the compiler to replace function calls with the code of
the function body. This substitution is "inline expansion" (sometimes called
"inlining"). Inline expansion alleviates the function-call overhead at the potential cost
of larger code size.

Chapter 6 Declarations

The inline keyword tells the compiler that inline expansion is preferred. However,
the compiler can create a separate instance of the function (instantiate) and create
standard calling linkages instead of inserting the code inline. 1\vo cases where
this can happen are:

• Recursive functions.

• Functions that are referred to through a pointer elsewhere in the translation
unit.

Note that for a function to be considered as a candidate for inlining, it must
use the new-style function definition. Functions that are declared as inline
and that are not class member functions have intemallinkage unless otherwise
specified.

Microsoft Specific ~

The __ inline keyword is equivalent to inline.

END Microsoft Specific

As with normal functions, there is no defined order of evaluation of the arguments
to an inline function. In fact, it could be different from the order in which the
arguments are evaluated when passed using normal function call protocol.

Microsoft Specific ~

Recursive functions can be substituted inline to a depth specified by the inline_depth
pragma. After that depth, recursive function calls are treated as calls to an instance
of the function. The inline_recursion pragma controls the in line expansion of a
function currently under expansion.

END Microsoft Specific

Inline Class Member Functions
A function defined in the body of a class declaration is an inline function. Consider
the following class declaration:

class Account
{

public:
Account(double initial_balance) {balance initial_balance;}
double GetBalance();
double Deposit(double Amount);
double Withdraw(double Amount);

private:
double balance;

} ;

155

c++ Language Reference

156

The Ace 0 U n t constructor is an inline function. The member functions Get B a 1 an c e,
Depos it, and Wi thd raw are not specified as inline but can be implemented as inline
functions using code such as the following:

inline double Account::GetBalance()
{

return balance;
}

inline double Account::Deposit(double Amount)
{

return (balance += Amount);
}

inline double Account::Withdraw(double Amount)
{

return (balance -= Amount);
}

Note In the class declaration, the functions were declared without the inline keyword.
The inline keyword can be specified in the class declaration; the result is the same.

A given inline member function must be declared the same way in every compilation
unit. This constraint causes inline functions to behave as if they were instantiated
functions. Additionally, there must be exactly one definition of an inline function.

A class member function defaults to external linkage unless a definition for that
function contains the inline specifier. The preceding example shows that these
functions need not be explicitly declared with the inline specifier; using inline in
the function definition causes it to be an inline function. However, it is illegal to
redeclare a function as inline after a call to that function.

Inline Functions versus Macros
Although inline functions are similar to macros (because the function code is
expanded at the point of the call at compile time), inline functions are parsed by
the compiler, whereas macros are expanded by the preprocessor. As a result, there
are several important differences:

• Inline functions follow all the protocols of type safety enforced on normal
functions.

• Inline functions are specified using the saine syntax as any other function except
that they include the inline keyword in the function declaration.

• Expressions passed as arguments to inline functions are evaluated once. In some
cases, expressions passed as arguments to macros can be evaluated more than
once. The following example shows a macro that converts lowercase letters
to uppercase:

Chapter 6 Declarations

#include <stdio.h>
#include <conio.h>

#define toupper(a) «a) >= 'a' && «a) <= 'z') ? «a)-('a'-'A')):(a))

void maine)
(

char ch = toupper(_getch());
printf("%c", ch);

The intent of the expression to U p per (_g etc h ()) is that a character should
be read from the console device (stdin) and, if necessary, converted to uppercase.

Because of the implementation, _getch is executed once to determine whether the
character is greater than or equal to "a," and once to determine whether it is less
than or equal to "z." If it is in that range, _getch is executed again to convert the
character to uppercase. This means the program waits for two or three characters
when, ideally, it should wait for only one.

Inline functions remedy this problem:

#include <stdio.h>
#include <conio.h>

inline char toupper(char a)
{

return «a >= 'a' && a <- 'z') ? a-('a,-tA,) a);

void main()
(

char ch toupper(_getch());
pri ntf("%c", ch);

When to Use Inline Functions
Inline functions are best used for small functions such as accessing private data
members. The main purpose of these one- or two-line "accessor" functions is
to return state information about objects; short functions are sensitive to the
overhead of function calls. Longer functions spend proportionately less time
in the calling/returning sequence and benefit less from inlining.

The Po; n t class, introduced in "Function-Call Results" on page 73 in Chapter 4
can be optimized as follows:

class Point
(

public:
II Define "accessor" functions as
II reference types.
unsigned& xC);
unsi gned& y();

157

c++ Language Reference

private:
unsigned _x;
unsigned _y;

} ;

inline unsigned& Point::x()
{

return _x;
}

inline unsigned& Point::y()
{

return 3;
}

Assuming coordinate manipulation is a relatively common operation in a client of
such a class, specifying the two accessor functions (x and y in the preceding example)
as inline typically saves the overhea~ on:

• Function calls (including parameter passing and placing the object's address on
the stack)

• Preservation of caller's stack frame

• New stack-frame setup

• Return-value communication

• Old stack-frame restore

• Return

virtual Specifier
The virtual keyword can be applied only to nonstatic class member functions. It
signifies that binding of calls to the function is deferred until run time. For more
information, see "Virtual Functions" on page 270 in Chapter 9.

typedef Specifier

158

The typedef specifier defines a name that can be used as a synonym for a type or
derived type. You cannot use the typedef specifier inside a function definition.

Syntax
typedef-name:

identifier

A typedef declaration introduces a name that, within its scope, becomes a synonym
for the type given by the decl-specifiers portion of the declaration. In contrast to the
class, struct, union, and enum declarations, typedef declarations do not introduce
new types-they introduce new names for existing types.

One use of typedef declarations is to make declarations more uniform and compact.
For example:

Chapter 6 Declarations

typedef char CHAR;
typedef CHAR * PSTR;

II Character type.
II Pointer to a string (char *).

LPSTR strchr(LPSTR source, CHAR target);

The names introduced by the preceding declarations are synonyms for:

Name

CHAR

PSTR

Synonymous Type

char

char *
The preceding example code declares a type name, CHAR, which is then used to define
the derived type name PSTR (a pointer to a string). Finally, the names are used in
declaring the function strchr. To see how the typedef keyword can be used to clarify
declarations, contrast the preceding declaration of strchr with the following
declaration:

char * strchr(char * source, char target);

To use typedef to specify fundamental and derived types in the same declaration, you
can separate declarators with commas. For example:

typedef char CHAR, *PSTR;

A particularly complicated use of typedef is to define a synonym for a "pointer to a
function that returns type T." For example, a typedef declaration that means "pointer
to a function that takes no arguments and returns type void" uses this code:

typedef void (*PVFN)();

The synonym can be handy in declaring arrays of functions that are to be invoked
through a pointer: '

#include <iostream.h>
#include <stdlib.h>

extern void funcl();
extern void func2();
extern void func3();
extern void func4();

typedef void (*PVFN)();

II Declare 4 functions.
II These functions are assumed to be
II defined elsewhere.

II Declare synonym for pointer to
II function that takes no arguments
II and returns type void.

void maine int argc, char * argv[]
{

II Declare an array of pOinters to functions.
PVFN pvfnl[] = { funcl, func2, func3, func4 };

II Invoke the function specified on the command line.
if(argc > 0 && *argv[l] > '0' && *argv[l] <= '4')
(*pvfnl[atoi(argv[l]) - l])();

159

c++ Language Reference

160

Redeclaration of typedef Names
The typedef declaration can be used to redeclare the same name to refer to the same
type. For example:

II FILE1.H
typedef char CHAR;

II FILE2.H
typedef char CHAR;

II PROG.CPP
4foinclude "file1.h"
4foinclude "file2.h" II OK

The program PROG.CPP includes two header files, both of which contain typedef
declarations for the name CHAR. As long as both declarations refer to the same type,
such redeclaration is acceptable.

A typedef cannot redefine a name that was previously declared as a different type.
Therefore, if FILE2.H contains

II FILE2.H
typedef int CHAR; II Error

the compiler issues an error because of the attempt to redeclare the name CHAR to
refer to a different type. This extends to constructs such as:

typedef char CHAR;
typedef CHAR CHAR; II OK: redeclared as same type

typedef union REGS II OK: name REGS redeclared
{ II by typedef name with the

struct word regs x; II same meaning.
struct byte regs h;

REGS;

Use of typedef with Class Types
Use of the typedef specifier with class types is supported largely because of the ANSI
C practice of declaring unnamed structures in typedef declarations. For example,
many C programmers use the following:

typedef struct
{

unsigned x;
unsigned y;

POINT;

II Declare an unnamed structure and give it
II the typedef name POINT.

The advantage of such a declaration is that it enables declarations like:

POINT ptOrigin;

instead of:

struct point_t ptOrigin;

In C++, the difference between typedef names and real types (declared with the
class, struct, union, and enum keywords) is more distinct. Although the C practice
of declaring a nameless structure in a typedef statement still works, it provides no
notational benefits as it does in C.

In the following code, the PO I NT function is not a type constructor. It is interpreted
as a function declarator with an int return type.

typedef struct
{

POINT() ; II Not a constructor.
unsigned x;
unsigned y;

POINT;

The preceding example declares a class named PO I NT using the unnamed class
typedef syntax. POI NT is treated as a class name; however, the following
restrictions apply to names introduced this way:

• The name (the synonym) cannot appear after a class, struct, or union prefix.

• The name cannot be used as constructor or destructor names within a class
declaration.

In summary, this syntax does not provide any mechanism for inheritance,
construction, or destruction.

Name Space of typedef Names
Names declared using typedef occupy the same name space as other identifiers
(except statement labels). Therefore, they cannot use the same identifier as a
previously declared name, except in a class-type declaration. Consider the
following example:

typedef unsigned long UL;
int UL;

II Declare a typedef name, UL.
II Error: redefined.

The name-hiding rules that pertain to other identifiers also govern the visibility
of names declared using typedef. Therefore, the following example is legal
in C++:

typedef unsigned long UL; II Declare a typedef name, UL.

long Beep
{

unsigned int UL;

}

II Redeclaration hides typedef name.

II typedef name "unhidden" here.

Chapter 6 Declarations

161

c++ Language Reference

friend Specifier
The friend specifier is used to designate functions or classes that have the same
access privileges as class member functions. Friend functions and classes are
covered in detail in "Friends" on page 283 in Chapter 10.

Type Specifiers

162

Type specifiers determine the type of the name being declared.

Syntax
. type-specifier:

simple-type-name
class-specifier
enum-specifier
elaborated-type-specifier
:: class-name
const
volatile

The following sections discuss simple type names, elaborated type specifiers,
and nested type names.

Simple Type Names
A simple type name is the name of a complete type.

Syntax
simple-type-name:

complete-class-name
qualified-type-name
char
short
int
long
signed
unsigned
float
double
void

Table 6.2 shows how the simple type names can be used together.

Table 6.2 Type Name Combinations

Type Can Appear With

int

long

long or short, but not both

int or double

Comments

Type int implies type long int.

Type long implies type long int.

Chapter 6 Declarations

Table 6.2 Type Name Combinations (continued)

Type Can Appear With

short

signed

unsigned

int

char, short, int, or long

char, short, int, or long

Elaborated Type Specifiers

Comments

Type short implies type short int.

Type signed implies signed int. The most
significant bit of objects of type signed
char and bit fields of signed integral types
is taken to be the sign bit.

Type unsigned implies unsigned int. The
most-significant bit of objects of type
unsigned char and bit fields of unsigned
integral types is not treated as the sign bit.

Elaborated type specifiers are used to declare user-defined types. These can be either
class- or enumerated-types.

Syntax
elaborated-type-specifier:

class-key class-name
class-key identifier
enum enum-name

class-key:
class
struct
union

If identifier is specified, it is taken to be a class name. For example:

class Window;

This statement declares the Win d ow identifier as a class name. This syntax is used for
forward declaration of classes. For more information about class names, see "Class
Names" on page 236 in Chapter 8.

If a name is declared using the union keyword, it must also be defined using the union
keyword. Names that are defined using the class keyword can be declared using the
struct keyword (and vice versa). Therefore, the following code samples are legal:

II Legal example 1
struct A; II Forward declaration of A.

class A
{

public:
i nt . i ;

} ;

II Define A.

163

c++ Language Reference

164

II Legal example 2
class A: II Forward declaration of A.

struct A
{

private:
i nt i:

} :

II Define A.

II Legal example 3
union A: II Forward declaration of A.

union A
{

II Define A.

i nt i:
char ch[2]:

} :

These examples, however, are illegal:

II Illegal example 1
union A: II Forward declaration of A.

struct A
{

i nt i:
} :

II Define A.

II Illegal example 2
union A: II Forward declaration of A.

class A
{

public:

II Define A.

i nt i:
} :
II Illegal example 3
struct A: II Forward declaration of A.

union A II Define A.
{

i nt i:
char ch[2]:

} :

Nested Type Names
Microsoft C++ supports declaration of nested types ---both named and anonymous.

Syntax
qualified-type-name:

typedef-name
class-name :: qualified-type-name

complete-class-name:
qualified-class-name
:: qualified-class-name

Chapter 6 Declarations

qualified-class-name:
class-name
class-name :: qualified-class-name

In some programming situations, it makes sense to define nested types. These types
are visible only to member functions of the class type in which they are defined.
They can also be made visible by constructing a qualified type name using the
scope-resolution operator (::).

Note One commonly used class hierarchy that employs nested types is iostream. In the
iostream header files, the definition of class ios includes a series of enumerated types,
which are packaged for use only with the iostream library.

The following example defines nested classes:

class WinSystem
{

public:

} ;

class Window
(

public:
Window();
-Window();
int NumberOf();
int Count();

private:
static int CCount;

} ;

class CommPort
(

public:
CommPort() ;
-CommPort();
int NumberOf();
int Count();

private:
static int CCount;

} ;

II Default constructor.
II Destructor.
II Number of objects of class.
II Count number of objects of class.

II Default constructor.
II Destructor.
II Number of objects of class.
II Count number of objects of class.

II Initialize WinSystem static members.
int WinSystem: :Window::CCount = 0;
int WinSystem: :CommPort::CCount = 0;

To access a name defined in a nested class, use the scope-resolution operator (::) to
construct a complete class name. Use of this operator is shown in the initializations of
the static members in the preceding example. To use a nested class in your program,
use code such as:

WinSystem::Window Desktop;
WinSystem::Window AppWindow;

cout« "Number of active windows: "« Desktop.Count() «"\n";

165

c++ Language Reference

Nested anonymous classes or structures can be defined as:

class Ledger
{

} ;

class
{

publ i c:
double PayableAmt;
unsigned PayableDays;

Payables;

class
{

public:
double RecvableAmt;
unsigned RecvableDays;

Receivables;

An anonymous class must be an aggregate that has no member functions and no
static members.

Note Although an enumerated type can be defined inside a class declaration, the reverse
is not true; class types cannot be defined inside enumeration declarations.

Enumeration Declarations

166

An enumeration is a distinct integral type that defines named constants.
Enumerations are declared using the enum keyword.

Syntax
enum-name:

identifier

enum-specifier:
enum identifieropt { enum-listopt }

enum-list:
enumerator
enum-list , enumerator

enumerator:
identifier
identifier = constant-expression

Enumerated types are valuable when an object can assume a known and
reasonably limited set of values. Consider the example of the suits from a
deck of cards:

class Card
{

public:
enum Suit
{

} ;

Diamonds,
Hearts,
Clubs,
Spades

II Declare two constructors: a default constructor,
II and a constructor that sets the cardinal and
II suit value of the new card.
Card();
Card(int CardInit, Suit SuitInit);

II Get and Set functions.
int GetCardinal (); II Get cardinal value
int . SetCardinal(); II Set cardinal value
Suit GetSuit() ; II Get suit of card.
void SetSuit(Suit new_suit); II Set suit of card.

Chapter 6 Declarations

of card.
of card.

char *NameOf(); II Get string representation of card.
private:

Suit suit;
int cardinalValue;

} ;

II Define a postfix increment operator for Suit.
inline Card::Suit operator++(Card::Suit &rs, int
{

return rs = (Card::Suit)(rs + 1);

The preceding example defines a class, Ca rd, that contains a nested enumerated
type, Sui t. To create a pack of cards in a program, use code such as:

Card *Deck[52];
i nt j = 0;

fore Card::Suit curSuit = Card::Diamonds; curSuit <= Card::Spades;
curSuit++)
fore int i = 1; i <= 13; ++i)

Deck[j++] = new Card(i, curSuit);

In the preceding example, the type S u ; t is nested; therefore, the class name
(Ca rd) must be used explicitly in public references. In member functions, however,
the class name can be omitted.

In the first segment of code, the postfix increment operator for Ca rd: : Sui tis
defined. Without a user-defined increment operator, curSu; t could not be
incremented. For more information about user-defined operators, see
"Overloaded Operators" on page 336 in Chapter 12.

167

c++ Language Reference

168

Consider the code for the NameOf member function (a better implementation is
presented later):

char* Card::NameOf() II Get the name of a card.
{

static char szName[20];
static char *Numbers[] =
{"I", "2", "3", "4", "5", "6", "7", "8", "9",

"10", "Jack", "Queen", "King"
} ;

static char *Suits[] =
{ "Diamonds", "Hearts", "Clubs", "Spades" };

if(GetCardinal() < 13)
strcpy(szName, Numbers[GetCardinal()]);

strcat(szName, " of ");

switch(GetSuit()
{

II Diamonds, Hearts, Clubs, and Spades do not need explicit

}

II class qualifier.
case Diamonds: strcat(
case Hearts: strcat(
case Clubs: strcat(
case Spades: strcat(
}

return szName;

szName,
szName,
szName,
szName,

"Diamonds") ; break;
"Hearts") ; break;
"Clubs") ; break;
"Spades") ; break;

An enumerated type is an integral type. The identifiers introduced with the enum
declaration can be used wherever constants appear. Normally, the first identifier's
value is 0 (D; amonds, in the preceding example), and the values increase by one
for each succeeding identifier. Therefore, the value of Spades is 3.

Any enumerator in the list, including the first one, can be initialized to·a value other
than its default value. Suppose the declaration of S u; t had been the following:

enum Suit
{

} ;

Diamonds 5,
Hearts,
Clubs = 4.
Spades

Then the values of D; amonds, Hea rts, Cl ubs, and Spades would have been
5,6,4, and 5, respectively. Note that 5 is used more than once.

The default values for these enumerators simplify implementation of the NameOf
function:

char* Card::NameOf() II Get the name of a card.
{

static char szName[20];
static char *Numbers[] =
{"I", "2", "3", "4", "5", "6", "7", "8", "9",

"10", "Jack", "Queen", "King"
} ;

static char *Suits[] =
{ "Diamonds", "Hearts", "Clubs", "Spades"};

if(GetCardinal() < 13)
strcpy(szName, Numbers[GetCardinal()]);

strcat(szName, " of ");

strcat(szName, SUits[GetSuit()]);

return szName;

The accessor function GetSui t returns type Sui t, an enumerated type.
Because enumerated types are integral types, they can be used as arguments to
the array subscript operator. (For more information, see "Subscript Operator"
on page 69 in Chapter 4.)

Enumerator Names
The names of enumerators must be different from any other enumerator or
variable in the same scope. However, the values can be duplicated.

Definition of Enumerator Constants
Enumerators are considered defined immediately after their initializers; therefore,
they can be used to initialize succeeding enumerators. The following example
defines an enumerated type that ensures that any two enumerators can be
combined with the .oR operator:

enum FileOpenFlags
{

} ;

OpenReadOnly
OpenReadWrite
OpenBinary
OpenText
OpenShareable

1,
= OpenReadOnly
= OpenReadWrite

OpenBinary
OpenText

« 1,
« 1,
« 1,
« 1

In this example, the preceding enumerator initializes each succeeding
enumerator.

Chapter 6 Declarations

169

c++ Language Reference

Conversions and Enumerated Types
Because enumerated types are integral types, any enumerator can be converted to
another integral type by integral promotion. Consider this example:

enum Days
{

} ;

Sunday,
Monday,
Tuesday,
Wednesday,
Thursday,
Friday,
Saturday

i nt i;
Days d = Thursday;

i = d; II Converted by integral promotion.
cout « "i = " « i « "\n";

However, there is no implicit conversion from any integral type to an enumerated type.
Therefore (continuing with the preceding example), the following statement is in error:

d = 6; II Erroneous attempt to set d to Saturday.

Assignments such as this, where no implicit conversion exists, must use a cast to
perform the conversion:

d = (Days)6; II Explicit cast-style conversion to type Days.
d = Days(4); II Explicit function-style conversion to type Days.

The preceding example shows conversions of values that coincide with the
enumerators. There is no mechanism that protects you from converting a value that
does not coincide with one of the enumerators. For example:

d = Days(967);

Some such conversions may work. However, there is no guarantee that the resultant
value will be one of the enumerators. Additionally, if the size of the enumerator is too
small to hold the value being converted, the value stored may not be what you expect.

Linkage Specifications

170

The term "linkage specification" refers to the protocol for linking functions (or
procedures) written in different languages. The following calling conventions
are affected:

• Case sensitivity of names.

• Decoration of names. In C, the compiler prefixes names with an underscore. This
is often called "decoration." In C++, name decoration is used to retain type

Chapter 6 Declarations

information through the linkage phase. (See "Decorated Names" in Visual c++
Programmer's Guide online.)

• Order in which arguments are expected on the stack.

• Responsibility for adjusting the stack on function return. Either the called function
or the calling function is responsible.

• Passing of hidden arguments (whether any hidden arguments are passed).

Syntax
linkage-specification:

extern string-literal { declaration-listopt }

extern string-literal declaration

declaration-list:
declaration
declaration-list

Linkage specification facilitates gradually porting C code to C++ by allowing the
use of existing code.

Microsoft Specific --7

The only linkage specifications currently supported by Microsoft C++ are "c"
and "C++".

END Microsoft Specific

The following example declares the functions at 0 i and at 0 1 with C linkage:

extern "e"
{

int atoi (char *string) ;
long atol (char *string) ;

}

Calls to these functions are made using C linkage. The same result could be achieved
with these two declarations:

extern "e" int atoi(char *string);
extern "e" long atol(char *string);

Microsoft Specific --7

All Microsoft C standard include files use conditional compilation directives to detect
C++ compilation. When a C++ compilation is detected, the prototypes are enclosed in
an extern "c" directive as follows:

1/ Sample.h
#if defined(__ cplusplus)
extern "e"
{

#endif

171

c++ Language Reference

172

II Function declarations

#if defined(__ cplusplus)
}

#endif

END Microsoft Specific

You do not need to declare the functions in the standard include files as
extern "C".

If a function is overloaded, no more than one of the functions of the same name
can have a linkage specifier. (For more information, see "Function Overloading"
on page 214 in Chapter 7.)

Table 6.3 shows how various linkage specifications work.

Table 6.3 Effects of Linkage Specifications

Specification Effect

On an object

On a function .

On a class

Affects linkage of that object only

Affects linkage of that function and all functions or objects
declared within it

Affects linkage of all nonmember functions and objects declared
within the class

If a function has more than one linkage specification, they must agree; it is an
error to declare functions as having both C and C++ linkage. Furthermore, if two
declarations for a function occur in a program--one with a linkage specification
and one without-the declaration with the linkage specification must be first.
Any redundant declarations of functions that already have linkage specification
are given the linkage specified in the first declaration. For example:

extern "C" int CFuncl() ;

int CFuncl(); II Redeclaration is benign; C linkage is
II retained.

int CFunc2();

extern "C" int CFunc2(); II Error: not the first declaration of
II CFunc2; cannot contain linkage
II specifier.

Functions and objects explicitly declared as static within the body of a compound
linkage specifier ({ }) are treated as static functions or objects; the linkage specifier
is ignored. Other functions and objects behave as if declared using the extern
keyword. (See "Storage-Class Specifiers" on page 153 for details about the
extern keyword.)

Template Specifications
The template declaration specifies a set of parameterized classes or functions.

Note For more information, see ''Template Topics" in Visual C++ Programmer'sGuide
online.

Syntax
template-declaration:

template < template-argument-list > declaration

template-argument-list:
template-argument
template-argument-list , template-argument

template-argument:
type-argument
argument-declaration

type-argument:
class identifier
typename identifier

The declaration declares a furiction or a class. With function templates, each
template-argument must appear at least once in the template-argument-list
of the function being declared.

The teniplate-argument-list is a list of arguments used by the template
function that specifies which parts of the following code will vary.
For example:

template< class T, int i > class MyStack ...

In this case the template can receive a type (c 1 ass T) and a constant
parameter (i n t I). The template will use type T and the constant integer i
upon construction. Within the body of the My S t a c k declaration, you must
refer to the T identifier.

The typename keyword can be used in the template-argument-list. The
following template declarations are identical:

template< class T1, class T2 > class x ...
template< typename T1, typename T2 > class x ...

Template arguments of the following form are allowed:

template<typename Type> class allocator {};
template<typename Type,

typename Allocator allocator<Type> > class stack {};
stack<int> MyStack;

Chapter 6 Declarations

173

c++ Language Reference

174

Visual C++ 5.0 now supports the reuse of template parameters in the template
parameter list. For example, the following code is now legal:

class Y {. .. };
template<class T. T* pT> class Xl { ... };
template<class T1. class T2 = T1> class X2 { ... };

YaY;

X1<Y. &aY> xl;
X2<int> x2;

A template declaration itself does not generate code; it specifies a family of
classes or functions, one or more of which will be generated when referenced
by other code.

Template declarations have global or namespace scope.

Visual C++ 5.0 now performs syntax checking of template definitions. This
version of Visual C++ can detect errors that previous versions cannot. The
compiler can now detect syntax errors of templates that are defined but never
instantiated.

Here is a list of common errors which could compile with the Visual C++ 4.0
compiler, but not the Visual C++ 5.0 compiler:

• A user-defined type is used in a template declaration before it is declared,
but it is declared before the first instantiation or use of the template.
For example:

template<class T> class X {\
II ...

IIError Visual C++ 5.0. Data not defined
} ;

class Data { ... };

void g() { X<int> xl; }

• Move the declaration of D a t a before the class template X to fix this problem.

• A member function is declared outside a class template, whereas it is never
declared inside the class. For example:

template<class T> class X
Ilno mf declared here

} ;

II This definition did not cause an error with Visual
II C++ 4.0. but it will cause an error with Visual
II C++ 5.0
II
template<class T> void X<T>::mf() { ... };

• A class identifier is considered to be a normal class unless declared to be
a class template. For example, the following code generates an error with
Visual C++ 5.0 but not with Visual C++ 4.0:

x { template<class T> class
friend class Y<T>; II Parsed as Y 'less-than'

II T 'greater-than';
Z<T> mf(); II Parsed as Z 'less-than'

II T 'greater-than';
} ;

template<class T> class Y { ... };
template<class T> class Z { ... };

X<int> x;

To fix the problem, forward declare Y and Z before the definition of X.

template<class T> class Y { ... };
template<class T> class Z { ... };

template<class T> class X { ... };

Referencing a Template
To reference a template class or function use the following syntax:

Syntax
template-class-name:

template-name < template-arg-list >

template-arg-list:
template-arg
template-arg-list , template-arg

template-arg:
expression
type-name

All template-arg arguments must be constant expressions. The compiler creates
a new instance (called an instantiation) of the templated class or function if there
is no exact match to a previously generated template. For example:

MyStack< unsigned long, 5 > stack1;

MyStack< DWORD, 5 > stack2;
MyStack< char, 6 > stack3;
MyStack< MyClass, 6 > stack4;

II creates a stack of
II unsigned longs
II uses code created above
II
II
II

generates new code
generates stack of
MyClass objects

Each generated template function creates its own static variables and members.

Chapter 6 Declarations

175

c++ Language Reference

Function Templates
Class templates define a family of related classes that are based on the parameters
passed to the class upon instantiation. Function templates are similar to class
templates, but define a family of functions. Here is a function template that swaps
two items:

template< class T > void MySwap(T& a, T& b)
{

T c;
c = a; a = b; b = c;

Although this function could be performed by a nontemplated function, using void
pointers, the template version is type-safe. Consider the following calls:

int j = 10;
i nt k = 18;
CString Hello = "Hello, Windows!";
My S w a p (j, k); / / 0 K
MySwap(j, Hello); //error

The second MySwap call triggers a compile-time error, since the compile cannot
generate a MySwa p function with parameters of differenttypes. If void pointers were
used, both function calls would compile correctly, but the function would not work
properly at run 'time.

Explicit specification of the template arguments for a function template is allowed.
For example:

template<class T> void f(T) { ... }
void g(char j) {

f<int>(j); //generate the specialization feint)

When the template argument is explicitly specified, normal implicit conversions are done
to convert the function argument to the type of the corresponding function template
parameters. In the above example, the compiler will convert (cha r j) to type; nt.

Member Function Templates

176

After declaring a templated class, define member functions as function templates.
For example:

template<class T, int i> class MyStack
{

T* pStack;
T StackBuffer[i];
int cltems = i * sizeof(T);

public:

} ;

MyStack(void);
void push(const T item);
T& pope void);

template< class T, int > MyStack< T, i >: : MyStack(void)

{ ... } ;
template< class T, int > void MyStack< T, i >: :push(const T item
{ ... } ;
template< class T, int > T& MyStack< T, i >: : pope void)

{ ... } ;

Note that the definition of the constructor function does not include the template
argument list twice.

Explicit Instantiation

)

Explicit instantiation lets you create an instantiation of a templated class or function
without actually using it in your code. Since this is useful when you are creating
library (.LIB) files that use templates for distribution, uninstantiated template
definitions are not put into object (.OBJ) files.

The following explicitly instantiates MyStack for int variables and six items:

template class MyStack<int, 6>;

This statement creates an instantiation of My S t a c k without reserving any storage
for an object; code is generated for all members.

The following explicitly instantiates only the constructor member function:

template MyStack<int, 6>::MyStack(void);

Visual C++ 5.0 now supports explicit instantiation of function templates. Previous
versions only supported the explicit instantiation of class templates. For example,
the following code is now legal:

template<class T> void f(T) { ... }

IIInstantiate f with the explicitly specified template
Ilargument 'int'
II
template void f<int> (int);

IIInstantiate f with the deduced template argument 'char'
II
template void f(char);

Microsoft Specific -7

You can use the extern keyword to prevent the automatic instantiation of members.
For example:

extern template class MyStack<int, 6>;

Chapter 6 Declarations

177

c++ Language Reference

Similarly, you can mark specific members as being external and not instantiated as
follows:

extern template MyStack<int. 6>::MyStack(void);

Note The extern keyword in the specialization only applies to member functions defined
outside of the body of the class. Functions defined inside the class declaration are considered
inline functions and are always instantiated.

END Microsoft Specific

Differences from Other Implementations
Microsoft Specific -7

Templates are not officially standardized and, as a result, different C++ compiler
vendors have implemented them differently. The following list shows some
differences between this version of Visual C++ and other compilers. Note that this list
will change in future versions of the compiler.

• The compiler cannot instantiate a template outside of the module in which it is
defined.

• Templates cannot be used with functions declared with __ declspec (dllimport) or
__ declspec (dllexport).

• All template arguments must be of an unambiguous type that exactly matches that
of the template parameter list. For example:

template< class T > T check(T);
template< class S > void watch(int (*)(S));
watch(check); //error

The compiler should instantiate the c h e c k templated function in the form i n t
c h e c k (i n t), but the inference can not be followed.

• Friend functions must be declared before they are used in a templated class. You
cannot have a friend function defined within a class definition. This is because the
friend function could be a templated function, which would cause an illegal nested
template definition.

END Microsoft Specific

Namespaces

178

The C++ language provides a single global namespace. This can cause problems with
global name clashes. For instance, consider these two C++ header files:

II one.h
char func(char);
class String { ... };

II somelib.h
class String { ... };

With these definitions, it is impossible to use both header files in a single program;
the S t r i n 9 classes will clash.

A namespace is a declarative region that attaches an additional identifier to any
names declared inside it. The additional identifier makes it less likely that a name
will conflict with names declared elsewhere in the program. It is possible to use the
same name in separate namespaces without conflict even if the names appear in the
same translation unit. As long as they appear in separate namespaces, each name
will be unique because of the addition of the namespace identifier. For example:

II one.h
namespace one
{

char func(char);
class String { ... };

II somelib.h
namespace SomeLib
{

class String { ... };

N ow the class names will not clash because they become 0 n e: : S t r i n 9 and
Somel i b: : Stri ng, respectively.

Declarations in the file scope of a translation unit, outside all namespaces, are still
members of the global namespace.

namespace Declaration
A namespace declaration identifies and assigns a name to a declarative region.

Syntax
original-namespace-name "

identifier

namespace-definition "
original-namespace-definition
extension-namespace-definition
unnamed-namespace-definition

original-namespace-definition "
names pace identifier { namespace-body }

extension-namespace-definition "
namespace original-namespace-name { namespace-body }

unnamed-namespace-definition "
namespace { namespace-body }

namespace-body "
declaration-seq opt

Chapter6 Declarations

179

c++ Language Reference

180

The identifier in an original-namespace-definition must be unique in the
declarative region in which it is used. The identifier is the name of the namespace
and is used to reference its members. Subsequently, in that declarative region, it
is treated as an original-namespace-name.

The declarative region of a namespace-definition is its names pace-body.

A namespace can contain data and function declarations. The declaration-seq is
a list of these declarations which are said to be members of the namespace.

Unnamed namespaces
An unnamed-namespace-definition behaves as if it were replaced by:

namespace unique { namespace-body }
using namespace unique;

Each unnamed namespace has an identifier, represented by unique, that differs
from all other identifiers in the entire program. For example:

namespace { int i;
voi d f() { i++; }

names pace A {
names pace {

i nt I;
i nt j;

}

using namespace A;

void h()
{

}

1++;
A: :i++;
j++;

II unique::i
II unique::i++

II A::unique::i
II A::unique::j

II error: unique::i or A: :unique::i
II error: A::i undefined
II A::unique::j++

Unnamed namespaces are a superior replacement for the static declaration of
variables. They allow variables and functions to be visible within an entire
translation unit, yet not visible externally. Although entities in an unnamed
namespace might have external linkage, they are effectively qualified by a
name unique to their translation unit and therefore can never be seen from
any other translation unit.

namespace Definition
A namespace-definition can be nested within another namespace-definition.
Every namespace-definition must appear either at file scope or immediately
within another namespace-definition.

For example:

namespace A {
int j = 3;
int f(int k);

namespace Outer
int n = 6;
int func(int num);

namespace Inner {
fl oa t f = 9.993;

void main()
{

namespace local { ... } II error: not at global scope

Unlike other declarative regions, the definition of a namespace can be split over
several parts of a single translation unit.

namespace A {
II declare namespace A variables
i nt i;
int j;

names pace B {

}

namespace A {
II declare namespace A functions
void func(void);
int int_func(int i);

When a namespace is continued in this manner, after its initial definition, the
continuation is called an extension-namespace-definition.

Chapter 6 Declarations

181

c++ Language Reference

Defining namespace Members
. Members of a namespace maybe defined within that namespace. For example:

namespace X { void f() { } }

Members of a named namespace can be defined outside the namespace in which
they are declared by explicit qualification of the name being defined. However,
the entity being defined must already be declared in the namespace. In addition,
the definition mtist appear after the point of declaration in a namespace that
encloses the declaration's namespace. For example:

names pace Q {
namespace V {

void f();

void V::f() { }
void V::g() { }

namespace V {
void g();

II ok
II error, g() is not yet a member of V

N amespace Alias

182

A namespace-alias is an alternative name for a namespace.

Syntax
namespace-alias :

identifier

namespace-alias-definition :
namespace identifier = qualified-namespace-specifier;

qualified-namespace-specifier :
: :opt nested-name-specifieropt class-or-namespace-name

A namespace-alias-definition declares an alternate name for a namespace. The
identifier is a synonym for the qualified-namespace-specifier and becomes a
namespace-alias. For example:

namespace a_very_long_namespace_name { ... }
namespace AVLNN = a_very_long_namespace_name;
II AVLNN is now a namespace-alias for a_very_long_namespace_name.

A namespace-name cannot be identical to any other entity in the same declarative
region. In addition, a global names pace-name cannot be the same as any other
global entity name in a given program.

using Declaration
The using declaration introduces a name into the declarative region in which the
using declaration appears. The name becomes a synonym for an entity declared
elsewhere. It allows an individual name from a specific namespace to be used
without explicit qualification. This is in contrast to the using directive, which
allows all the names in a names pace to be used without qualification. See
"using Directive" on page 187 for more information.

Syntax
using-declaration:

using ::opt nested-name-speciJier unqualiJied-id
using :: unqualiJied-id

A using-declaration can be used in a class definition. For example:

class B
{

} :

void f(char):
void g(char):

cl ass D : B
{

} :

using B: :f:
void feint)
void g(int)

f('c'):
g ('c') :

II calls B::f(char)
II recursively calls D::g(int)
II only B::f is being used

When used to declare a member, a using-declaration must refer to a member of
a base class. For example:

class C
{

int g():
} :

class D2 : public B
{

using B:: f: II ok: B is a base of D2
using C:: g; II error: C isn't a base of D2

} ;

Members declared with a using-declaration can be referenced using explicit
qualification. The :: prefix refers to the global namespace. For example:

void f():

namespace A
{

void g():

Chapter 6 Declarations

183

c++ Language Reference

184

namespace X
{

}

using: :f:
using A: :g:

void h()
{

X: : f() :

X: : g() :

II global f
II A's g

/I calls ::f
II calls A::g

Just as with any declaration, a using-declaration can be used repeatedly only where
multiple declarations are allowed. For example:

namespace A
{

i nt i:

void f()
{

using A::i:
using A::i:

class B
{

protected:
i nt i:

} :

class X public B
{

public:
using B::i:

II ok: double declaration

using B::i: II error: class members cannot be multipally declared
} :

When a using-declaration is made, the synonym created by the declaration refers only
to definitions that are valid at the point of the using-declaration. Definitions added to
a namespace after the using-declaration are not valid synonyms. For example:

names pace A
{

void feint):
}

using ,A: :f:

namespace A
{

void f(char):

II f is a synonym for A::f(int) only

void fC)
{

Chapter 6 Declarations

fC 'a'); II refers to A::f(int), even though A::f(char) exists

void b()
{

using A::f;
f ('a') ;

II refers to A::f(int) AND A::f(char)
II calls A::f(char);

A name defined by a using-declaration is an alias for its original name. It does not
affect the type, linkage or other attributes of the original declaration.

If a set of local declarations and using-declarations for a single name are given in a
declarative region, they must all refer to the same entity, or they must all refer to
functions. For example:

names pace B
{

int i;
void fCint);
void f(double);

void g()
{

i nt i;
using B::i;
void f(char);
using B: :f;

II error: declared twice

II ok: each f is a function

In the example above, the us; n 9 B::; statement causes a second ; n t i to be
declared in the 9 () function. The us; n 9 B:: f statement does not conflict with the
f (c h a r) function because the function names introduced by B : : f have different
parameter types.

A local function declaration cannot have the same name and type as a function
introduced by a using-declaration. For example:

namespace B
{

}

void fCint);
void f(double);

names pace C
{

void fCint);
void f(double);
void f(char);

185

c++ Language Reference

186

void h()
{

using B: :f;
using C: :f;
f('h') ;
f(1) ;
void f(int);

II introduces B::f(int) and B::f(double)
II C::f(int). C::f(double). and C::f(char)
II calls C::f(char)
II error: ambiguous: B::f(int) or C::f(int)?
II error: conflicts with B::f(int) and C::f(int)

When a using-declaration introduces a name from a base class into a derived class
scope, member functions in the derived class override virtual member functions with
the same name and argument types in the base class. For example:

struct B
{

virtual void f(int);
virtual void f(char);
void g(int);
void h(int);

} ;

struct D : B
{

} ;

using B: :f;
void f(int);

using B: :g;
void g(char);

using B: :h;
void h(int);

void f(D* pd)
{

pd->f(1);
pd - >f (, a ') ;
pd->g(l);
pd - >g (, a ') ;

II ok: 0: :f(int) overrides B: :f(int)

II ok: there is no B::g(char)

II error: D::h(int) conflicts with B::h(int)
II B::h(int) is not virtual

II calls 0: :f(int)
II calls B::f(char)
II calls B::g(int)
II calls D::g(char)

All instances of a name mentioned in a using-declaration must be accessible. In
particular, if a derived class uses a using-declaration to access a member of a base
class, the member name must be accessible. If the name is that of an overloaded
member function, then all functions named must be accessible. For example:

class A
{

private:
void f(char);

public:
void f(int);

protected:
void g();

} ;

Chapter 6 Declarations

class B : public A
{

using A: :f;
public:

using A: :g;
} ;

II error: A::f(char) is inaccessible

II B::g is a public synonym for A::g

See Chapter 10, "Member-Access Control" for more information on accessibility
of members.

using Directive
The using-directive allows the names in a namespace to be used without the
namespace-name as an explicit qualifier. In contrast to a using declaration, which
allows an individual name to be used without qualification, the using directive
allows all the names in a namespace to be used without qualification. See "using
Declaration" on page 183 for more information.

Syntax
using-directive:

using namespace : :opt nested-name-specijieropt namespace-name

The intent of the using-directive is to allow unique, descriptive names to be used
when declaring functions and variables, without requiring the complete name every
time access to the functions or variables is needed. Of course, the complete, qualified
name can still be used to retain clarity.

The unqualified names can be used from the point of the using directive on. If a
namespace is extended after a using-directive is given, the additional members of
the names pace can be used, without qualification, after the extended-namespace
definition. For example:

names pace M
{

int i;

using namespace M;

namespace N
{

i nt j;
double f() { return M::d; } II error: M::d does not yet exist

namespace M
{

double d;

II namespace extension

II now M::d can be used

187

c++ Language Reference

188

It is possible for a using-directive to introduce conflicting names when used in another
namespace. For example:

names pace
{

i nt i;
}

names pace
{

i nt i;
using

void f()
{

M

N

namespace M;

using namespace N;
i = 7;

}

II no error here

I I error: ambi guous: M:: i or N:: i?

In this example, bringing M: : i into n a me spa c e N does not hide the declaration
of N : : i, but instead creates an ambiguity when N : : i is used. In this manner,
the using-directive can easily introduce unintended ambiguities. Consider the
following code fragment:

names pace 0
{

}

int dl;
void fCint);
void f(char);

using namespace 0:

int dl:

names pace· E
{

int e:
void fCint):

names pace 0
{

int d2;

II no conflict with D::dl

II namespace extension

using namespace E:
void fCint):

}

void f()
{

Chapter 6 Declarations

dl++;
: :dl++;
0: :dl++;
d2++;
e++;
f(l) ;

f(' a');

II error: ambiguous: ::dl or D::dl?
II ok
II ok
II ok: D::d2
II ok: E::e
II error: ambiguous: D::f(int) or E::f(int)?
I I ok 0: :f(char)

When a variable is referenced after a using-directive, the local variable of the same name
takes precedence over the one declared in the specified namespace. For example:

namespace N
int data = 4;

void f(bool flag)
int data = 0;

if (flag) {
using namespace N;

prinf("data=%d\n", data);

void main()
f(true);

In the above code, the variable d a t a referenced in the printf statement is the local
variable initialized to 0, instead of the variable initialized in namespace N. The output
is da ta=0 instead of da ta=4.

In the presence of namespace using-directives, the way qualified names are looked up
is shown in the following example:

names pace A {
int flat = 0;

names pace B {
using namespace A;

names pace C {
using namespace A;
using namespace B;

void maine) {
printf("C: :flag = %d\n", C: :flag);

}

The qualified name (C: : fl a g) is resolved to (A: : fl a g) due to the namespace
using-directives in namespace C.

189

c++ Language Reference

Explicit Qualification

190

A name in a class or namespace can be accessed using an explicit qualifier.

Syntax
id-expression :

unqualified-id
qualified-id

nested-name-speciJier :
class-or-namespace-name :: nested-name-specifieropt

class-or-namespace-name :
class-name
namespace-name

namespace-name :
original-namespace-name
namespace-alias

This is very similar to using the scope operator to resolve access to a member of
a class. For more information, see "Qualified Names" on page 68 in Chapter 4.

CHAPTER 7

Declarators

A "declarator" is the part of a declaration that names an object, type, or function.
Declarators appear in a declaration as one or more names separated by commas;
each name can have an associated initializer.

Syntax
declarator-list:

in it-declarator
declarator-list, init-declarator

in it-declarator:
declarator initializeropt

This chapter includes the following topics:

• Overview

• Type names

• Abstract declarators

• Function definitions

• Initializers

Overview of Declarators
Declarators are the components of a declaration that specify names. Declarators
can also modify basic type information to cause names to be functions or
pointers to objects or functions. (Specifiers, discussed on page 152 in Chapter 6,
"Declarations," convey properties such as type and storage class. Modifiers,
discussed in this chapter and in Appendix B, "Microsoft-Specific Modifiers,"
modify declarators.) Figure 7.1 shows a complete declaration of two names,
s z B u f and s t rep y, and calls out the components of the declaration.

191

c++ Language Reference

192

Figure 7.1 Specifiers, Modifiers, and Declarators

/

[specifiers
,/

[declarator1 [declarator2
,,,.-______ ---1.. ______ --.....,

* szBuf.strcpy(char *dest. char *source);

_jar, *, and 0 modifiers

Microsoft Specific -7

Most Microsoft extended keywords can be used as modifiers to form derived types;
they are not specifiers or declarators. (See Appendix B, "Microsoft-Specific
Modifiers.")

END Microsoft Specific

Syntax
declarator:

dname
ptr-operator declarator
declarator (argument-declaration-list) cv-mod-list
declarator [constant-expressionopt]

(declarator)
ptr-operator:

* cv-qualijier-listopt

& cv-qualijier-listopt

complete-class-name :: * cv-qualijier-listopt

cv-qualifier-list:
cv-qualijier cv-qualijier-listopt

cv-qualifier:
const
volatile

cv-mod-list:
cv-qualijier cv-mod-listopt

pmodel cv-mod-listopt

dname:
name
class-name
,..., class-name
typedef-name
qualijied-type-name

Declarators appear in the declaration syntax after an optionallist of specifiers
(decl-specijiers). These specifiers are discussed in Chapter 6, "Declarations,"
A declaration can contain more than one declarator, but each declarator declares

only one name. The following sample declaration shows how specifiers and
declarators are combined to form a complete declaration:

const char *pch, ch:

In this preceding declaration, the keywords const and char make up the list of
specifiers. '!\vo declarators are listed: *pch and ch. The simplified syntax of a
declaration, then, is the following, where canst cha r is the type and *pch
and c h are the declarators:

type declaratorl[' declarator2[••• ,declaratorn]] ;

When the binding of elements in a declarator list does not yield the desired result,
you can use parentheses for clarification. A better technique, however, is to use
a typedef or a combination of parentheses and the typedef keyword. Consider
declaring an array of pointers to functions. Each function must obey the same
protocol so that the arguments and return values are known:

II Function returning type int that takes one
II argument of type char *.
typedef int (*PIFN)(char *);

II Declare an array of 7 pointers to functions
II returning int and taking one argument of type
II char *.
PIFN pifnDispatchArray[7]:

The equivalent declaration can be written without the typedef declaration, but it is
so complicated that the potential for error exceeds any benefits:

int (*pifnDispatchArray[7])(char *):

Type Names
Type names are used in some declarators in the following ways:

• In explicit conversions

• As arguments to the sizeof operator

• As arguments to the new operator

• In function prototypes

• In typedef statements

A type name consists of type specifiers, as described in Chapter 6, "Declarations,"
and the next section, "Abstract Declarators."

In the following example, the arguments to the function strcpy are supplied using
their type names. In the case of the s au r c e argument, can s t c h a r is the specifier
and * is the abstract declarator:

static char *szBuf, *strcpy(char *dest, canst char *source):

Chapter 7 Dec1arators

193

c++ Language Reference

Syntax
type-name:

type-specifie r-list abstract-dec la ra to r opt

type-specifier-list:
type-specifier type-specifier-listopt

abstract-declarator:
ptr-operator abstract-declaratoropt
abstract-declaratoropt (argument-declaration-list) cv-qualifier-listopt
abstract-declaratoropt [constant-expressionopt]
(abstract-declarator)

Abstract Declarators

194

An abstract declarator is a declarator in which the identifier is omitted. (For related
information, see the previous section, "Type Names.")

The following abstract declarators are discussed in this section:

• Pointers

• References

• Pointers to members

• Arrays

• Functions

• Default arguments

An abstract declarator is a declarator that does not declare a name- the identifier
is left out. For example,

char *

declares the type "pointer to type char." This abstract declarator can be used in a
function prototype as follows:

char *strcmp(char *. char *);

In this prototype (declaration), the function's arguments are specified as abstract
declarators. The following is a more complicated abstract declarator that declares
the type "pointer to a function that takes two arguments, both of type char * ," and
returns type char *:

char * (*)(char *. char *)

Since abstract declarators completely declare a type, it is legal to form expressions
of the form:

II Get the size of array of 10 pointers to type char.
size_t nSize = sizeof(char *[10]);

Chapter 7 Dec1arators

II Allocate a pointer to a function that has no
II return value and takes no arguments.
typedef void (PVFN *)();
PVFN *pvfn = new PVFN;

II Allocate an array of pointers to functions that
II return type WinStatus. and take one argument of
II type WinHandle.
typedef WinStatus (PWSWHFN *)(WinHandle);
PWSWHFN pwswhfnArray[] = new PWSWHFN[10];

Ambiguity Resolution
To perform explicit conversions from one type to another, you must use casts,
specifying the desired type name. Some type casts result in syntactic ambiguity.
The following function-style type cast is ambiguous:

char *aName(String(s));

It is unclear whether it is a function declaration or an object declaration with a
function-style cast as the initializer: It could declare a function returning type char *
that takes one argument of type Stri ng, or it could declare the object aName and
initialize it with the value of s cast to type S t r i n g.

If a declaration can be considered a valid function declaration, it is treated as such.
Only if it cannot possibly be a function declaration -that is, if it would be
syntactically incorrect-is a statement examined to see if it is a function-style type
cast. Therefore, the compiler considers the statement to be a declaration of a function
and ignores the parentheses around the identifier s. On the other hand, the statements:

char *aName((String)s);

and

char *aName = String(s);

are clearly declarations of objects, and a user-defined conversion from type S t r i n 9
to type char * is invoked to perform the initialization of aName.

Pointers
Pointers are declared using the declarator syntax:

* cv-qualifier-listopt dname

A pointer holds the address of an object. The full declaration, then, is:

decl-specifiers * cv-qualifier-listopt dname ;

A simple example of such a declaration is:

char *pch;

The preceding declaration specifies that pch points to an object of type char.

195

c++ Language Reference

196

const and volatile Pointers
The const and volatile keywords change how pointers are treated. The const keyword
specifies that the pointer cannot be modified after initialization; the pointer is
protected from modification thereafter.

The volatile keyword specifies that the value associated with the name that follows
can be modified by actions other than those in the user application. Therefore, the
volatile keyword is useful for declaring objects in shared memory that can be
accessed by multiple processes or global data areas used for communication with
interrupt service routines.

When a name is declared as volatile, the compiler reloads the value from memory
each time it is accessed by the program. This dramatically reduces the possible
optimizations. However, when the state of an object can change unexpectedly, it is
the only way to ensure predictable program performance.

To declare the object pointed to by the pointer as const or volatile, use a declaration
of the form:

const char *cpch;
volatile char *vpch;

To declare the value of the pointer -that is, the actual address stored in the pointer
as const or volatile, use a declaration of the form:

char * const pchc;
char * volatile pchv;

The C++ language prevents assignments that would allow modification of an object
, or pointer declared as const. Such assignments would remove the information that
the object or pointer was declared with, thereby violating the intent of the original
declaration. Consider the following declarations:

const char cch = 'A';
char ch = '8';

Given the preceding declarations of two objects (cch, of type const char, and ch,
of type char), the following declarationlinitializations are valid:

const char *pchl &cch;
const char *const pch4 &cch;
const char *pch5 &ch;
char *pch6 &ch;
char *const pch7 &ch;
const char *const pchS &ch;

The following declarationlinitializations are erroneous.

char *pch2 = &cch;
char *const pch3 = &cch;

II Error
II Error

The declaration of pc h 2 declares a pointer through which a constant object might
be modified and is therefore disallowed. The declaration of pc h 3 specifies that the
pointer is constant, not the object; the declaration is disallowed for the same reason
the pc h 2 declaration is disallowed ..

The following eight assignments show assigning through pointer and changing of
pointer value for the preceding declarations; for now, assume that the initialization
was correct for pchl through pchB.

*pchl = 'A';
pchl = &ch;
*pch2 = 'A';
pch2 = &ch;
*pch3 = 'A';
pch3 = &ch;
*pch4 = 'A';
pch4 = &ch;

II Error: object declared canst
II OK: pointer not declared canst
I 10K: normal poi nter
II OK: normal pointer
II OK: object not declared canst
II Error: pointer declared canst
II Error: object declared canst
II Error: pointer declared canst

Pointers declared as volatile or as a mixture of const and volatile obey the
same rules.

Pointers to const objects are often used in function declarations as follows:

char *strcpy(char *szTarget. canst char *szSource);

The preceding statement declares a function, strcpy, that takes two arguments of
type "pointer to char" and returns a pointer to type char. Because the arguments
are passed by reference and not by value, the function would be free to modify both
szTa rget and szSource if szSource were not declared as const. The declaration
of s z Sou r c e as const assures the caller that s z Sou r c e cannot be changed by the
called function.

Note Because there is a standard conversion from lypename * to const lypename *,
it is legal to pass an argument of type char * to strcpy. However, the reverse is not true;
no implicit conversion exists to remove the const attribute from an object or pointer.

A const pointer of a given type can be assigned to a pointer of the same type.
However, a pointer that is not const cannot be assigned to a const pointer. The
following code shows correct and incorrect assignments:

int *const cpObject = 0;
int *pObject;

void main()
{

pObject = cpObject; II OK
cpObject = pObject; II Error

Chapter 7 Declarators

197

c++ Language Reference

References

198

References are declared using the declarator syntax:

Syntax
& cv-qualijier-listopt dname

A reference holds the address of an object but behaves syntactically like an object.
A reference declaration consists of an (optional) list of specifiers followed by a
reference declarator.

Syntax
decl-specijiers & cv-qualijier-listopt dname ;

Consider the user-defined type Date:

struct Date
{

} :

short DayOfWeek:
short Month:
short Day:
short Year:

The following statements declare an object of type Date and a reference to
that object:

Date Today: II Declare the object.
Date& TodayRef = Today: II Declare the reference.

The name of the object, Today, and the reference to the object, TodayRef,
can be used identically in programs:

Today.DayOfWeek = 3:
TodayRef.Month = 7:

II Tuesday
/I July

Reference-Type Function Arguments
It is often more efficient to pass references, rather than functions, to large objects.
This allows the compiler to pass the address of the object while maintaining the
syntax that would have been used to access the object. Consider the following
example that uses the D ate structure:

II Create a Julian date of the form DDDYYYY
II from a Gregorian date.
long JulianFromGregorian(Date& GDate
{

static int cDayslnMonth[] = {
31,28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
} :
long JDate;

II Add in days for months already elapsed.
for(int i = 0; i < GDate.Month - 1; ++i)

JDate += cDaysInMonth[i];

II Add in days for this month.
JDate += GDate.Day;

II Check for leap year.
if(GDate.Year % 100 1- 0 && GDate.Year % 4 -- 0)

JDate++;

II Add in year.
JDate *- 10000;
JDate +- GDate.Year;

return JDate;

The preceding code shows that members of a structure passed by reference are
accessed using the member-selection operator (.) instead of the pointer
member-selection operator (-».

Although arguments passed as reference types observe the syntax of nonpointer
types, they retain one important characteristic of pointer types: they are modifiable
unless declared as const. Because the intent of the preceding code is not to modify
the object GDa te, a more appropriate function prototype is:

long JulianFromGregorian(const Date& GDate);

This prototype guarantees that the function J ul ; an FromGregor; an will not
change its argument.

Any function prototyped as taking a reference type can accept an object of the
same type in its place because there is a standard conversion from typename
to typename&.

Reference-Type Function Returns
Functions can be declared to return a reference type. There are two reasons to
make such a declaration:

• The information being returned is a large enough object that returning a
reference is more efficient than returning a copy .

• The type of the function must be an I-value.

Just as it can be more efficient to pass large objects to functions by reference, it
also can be more efficient to return large objects from functions by reference.
Reference-return protocol eliminates the necessity of copying the object to a
temporary location prior to returning.

Chapter 7 Dec1arators

199

c++ Language Reference

200

Reference-return types can also be useful when the function must evaluate to an
I-value. Most overloaded operators fall into this category, particularly the assignment
operator. Overloaded operators are covered in "Overloaded Operators" on page 336
in Chapter 12. Consider the Poi nt example from Chapter 4:

class Point
{

public:
II Define "accessor" functions as
II reference types.
unsigned& x():
unsigned& y():

private:

} :

unsigned obj_x:
unsigned obj-y:

unsigned& Point .. x()
{

return obj_x:

unsigned& Point .. y()
{

return obj-y :

void main()
{

Point ThePoint:

II Use x() and y() as l-values.
ThePoint.x() 7:
ThePoint.y() = 9:

II Use x() and y() as r-values.
cout « "x = " « ThePoi nt. x() « "\n"

« "y = " « ThePoi nt.y () « "\n":

Notice that the functions x and y are declared as returning reference types. These
functions can be used on either side of an assignment statement.

Declarations of reference types must contain initializers except in the following
cases:

• Explicit extern declaration

• Declaration of a class member

• Declaration within a class

• Declaration of an argument to a function or the return type for
a function

References to Pointers
References to pointers can be declared in much the same way as references to
objects. Declaring a reference to a pointer yields a modifiable value that is used
like a normal pointer. The following code samples illustrate the difference between
using a pointer to a pointer and a reference to a pointer:

#include <iostream.h>
#include <string.h>

II Define a binary tree structure.
struct BTree
{

} ;

char *szText;
BTree *Left;
BTree *Right;

II Define a pointer to the root of the tree.
BTree *btRoot = 0;

int AddI(BTree **Root. char *szToAdd);
int Add2(BTree*& Root. char *szToAdd);
void PrintTree(BTree* btRoot);

int maine int argc. char *argv[J
{

if(argc < 2)
{

cerr « "Usage: Refptr [1 I 2J" « "\n";
cerr « "\n\twhere:\n";
cerr « "\tI uses double indirection\n";
cerr « "\t2 uses a reference to a pOinter.\n";
cerr « "\n\tlnput is from stdin.\n";
return I;

char *szBuf = new char[I32J;

II Read a text file from the standard input device and
II build a binary tree.
while(!cin.eof())
{

cin.get(szBuf. 132. '\n');
cin.get();
if(strlen(szBuf)

switch (*a rgv [1]
{

II Method 1: Use double indirection.
case '1':

AddI(&btRoot. szBuf);
break;

Chapter 7 Dec1arators

201

c++ Language Reference

202

II Method 2: Use reference to a pointer.
case '2':

Add2(btRoot, szBuf);
break;

default:
cerr « "Illegal value '" « *argv[l]

« '" supplied for add method.\n"
« "Choose 1 or 2.\n";

return -1;

II Display the sorted list.
PrintTree(btRoot);
return 0;

II PrintTree: Display the binary tree in order.
void PrintTree(BTree* btRoot)
{

II Traverse the left branch of the tree recursively.
if(btRoot->Left)

PrintTree(btRoot->Left);

II Print the current node.
cout « btRoot->szText « "\n";

II Traverse the right branch of the tree recursively.
if(btRoot->Right)

PrintTree(btRoot->Rfght);

II Addl: Add a node to the binary tree.
II Uses double indirection.
int Addl(BTree **Root, char *szToAdd)
{

if ((* Roo t) == 0
{

(*Root) = new BTree;
(*Root)->Left = 0;
(*Root)->Right = 0;
(*Root)->szText = new char[strlen(szToAdd) + 1];
strcpy((*Root)->szText, szToAdd);
return 1;

else if(strcmp((*Root)->szText, szToAdd) > 0)
return Addl(&«*Root)->Left), szToAdd);

else
return Addl(&«*Root)->Right), szToAdd);

II Add2: Add a node to the binary tree.
II Uses reference to pointer
int Add2(BTree*& Root. char *szToAdd)
{

if(Root == 0
{

Root = new BTree;
Root-)left = 0;
Root-)Right = 0;
Root-)szText = new char[strlen(szToAdd) + 1];
strcpy(Root-)szText. szToAdd);
return 1;

else if(strcmp(Root-)szText. szToAdd) > 0)
return Add2(Root-)left. szToAdd);

else
return Add2(Root-)Right. szToAdd);

In the preceding program, functions Add! and Add2 are functionally equivalent·
(although they are not called the same way). The difference is that Add! uses double
indirection whereas Add2 uses the convenience of a reference to a pointer.

Pointers to Members
Declarations of pointers to members are special cases of pointer declarations.

Syntax
decl-specifiers class-name :: * cv-qualifier-listopt dname ;

A pointer to a member of a class differs from a normal pointer because it has
type information for the type of the member and for the class to which the member
belongs. A normal pointer identifies (has the address of) only a single object in
memory. A pointer to a ~ember of a class identifies that member in any instance
of the class. The following example declares a class, Wi ndow, and some pointers
to member data.

class Window
{

public:

} ;

Window();
Window(int xl. int y1.

int x2. int y2);
BOOl SetCaption(const char *szTitle);
const char *GetCaption();
char *szWinCaption;

II Default constructor.
II Constructor specifying
II window size.
II Set window caption.
II Get window caption.
II Window caption.

II Declare a pointer to the data member szWinCaption.
char * Window::* pWCaption = &Window::szWinCaption;

Chapter 7 Dec1arators

203

c++ Language Reference

204

In the preceding example, pwC apt ion is a pointer to any member of class Win d ow
that has type char*. The type of pwCapt i on is cha r * Wi ndow: : *. The next code
fragment declares pointers to the Set Cap t ion and Get Cap t ion member functions.

const char * (Window::*pfnwGC)() = &Window::GetCaption;
BOOl (Window::*pfnwSC)(const char *) = &Window::SetCaption;

The pointers pfnwGC and pfnwSC point to GetCapti on and SetCapti on of the
Wi ndow class, respectively. The code copies information to the window caption
directly using the pointer to member pwCa pt ion:

Window wMainWindow;
Window *pwChildWindow = new Window;
char *szUntitled = "Untitled - ";
int cUntitledlen strlen(szUntitled);

strcpy(wMainWindow.*pwCaption. szUntitled);
(wMainWindow.*pwCaption)[cUntitledlen - 1] = '1'; Iisame as
IlwMainWindow.SzWinCaption [] = '1';
strcpy(pwChildWindow->*pwCaption. szUntitled);
(pwChildWindow->*pwCaption)[szUntitledlen - 1] = '2'; Iisame as
IlpwChildWindow->szWinCaption[] = '2';

The difference between the. * and ->* operators (the pointer-to-member operators)
is that the. * operator selects members given an object or object reference, while the
->* operator selects members through a pointer. (For more about these operators,
see "Expressions with Pointer-to-Member Operators" on page 107 in Chapter 4.)

The result of the pointer-to-member operators is the type of the member-in this
case, char *.

The following code fragment invokes the member functions GetCapti on and
SetCa pt i on using pointers to members:

II Allocate a buffer.
char szCaptionBase[100];

II Copy the main window caption into the buffer
II and append" [View 1]".
strcpy(szCaptionBase. (wMainWindow.*pfnwGC)());
strcat(szCaptionBase. " [View 1]");

II Set the child window's caption.
(pwChildWindow->*pfnwSC)(szCaptionBase);

Restrictions on Pointers to Members
The address of a static member is not a pointer to member. It is a regular pointer to
the one instance of the static member. Because only one instance of a static member
exists for all objects of a given class, the ordinary address-of (&) and dereference·(*)
operators can be used.

Chapter 7 Declarators

Pointers to Members and Virtual Functions
Invoking a virtual function through a pointer-to-member function works as if the
function had been called directly: the correct function is looked up in the v-table and
invoked. The following code shows how this is done:

class Base
(

public:
virtual void Print();

} ;

void (Base ::* bfnPrint)() = &Base .. Print;

void Base :: Print()
{

cout « "Print function for class 'Base'\n";

class Derived: public Base
(

public:
void Print(); II Print is still a virtual function.

} ;

void Derived :: Print()
(

cout « "Print function for class 'Derived'\n";

void main()
{

Base *bPtr;
Base bObject;
Derived dObject;

bPtr = &bObject; II Set pointer to address of bObject.
(bPtr->*bfnPrint)();

bPtr = &dObject; II Set pointer to address of dObject.
(bPtr->*bfnPrint)();

The output from this program is:

Print function for class 'Base'
Print function for class 'Derived'

The key to virtual functions working, as always, is invoking them through a pointer
to a base class. (For more information about virtual functions, see "Virtual Functions"
on page 270 in Chapter 9.)

205

c++ Language Reference

206

Representing Pointers to Members of Classes Using
Inheritance
Declaring a pointer to a member of a class prior to the class definition impacts the size
and speed of the resulting executable file. The number of bytes required to represent
a pointer to a member of a class and the code required to interpret the representation
may depend on whether the class is defined with no, single, multiple, or virtual
inheritance.

In general, the more complex the inheritance used by a class, the greater the number
of bytes required to represent a pointer to a member of the class and the larger the
code required to interpret the pointer.

If you need to declare a pointer to a member of a class prior to defining the class, you
must use either the Ivmg command-line option or the related pointers_to_members
pragma. Or you can specify the inheritance used in the class declaration using the
__ single_inheritance, __ multiple_inheritance, or __ virtual_inheritance keywords,
thus allowing control of the code generated on a per-class basis. These options are
explained in the following.

Note If you always declare a pointer to a member of a class after defining the class, you don't
need to use any of these options.

Microsoft attempts to optimize the representation and code generated for pointers to
members by selecting the most compact representation possible. This requires
defining the class the pointer to member is based upon at the point where the pointer
to member is declared. The pointers_to_members pragma allows you to relax this
restriction and to control the pointer size and the code required to interpret the pointer.

Syntax
#pragma pointers_to_members(pointer-declaration, [most-general-

representation])

The pointer-declaration argument specifies whether you have declared a pointer to a
member before or after the associated function definition. The pointer-declaration
argument can be either fulCgenerality or best_case.

The most-general-representation argument specifies the smallest pointer
representation that the compiler can safely use to reference any pointer to a member
of a class in a translation unit. This argument can be single_inheritance,
multiple_inheritance, or virtual_inheritance.

The pointers_to_members pragma with the besCcase argument is the compiler
default. You can use this default if you always define a class before declaring a pointer
to a member of the class. When the compiler encounters the declaration of a pointer
to a member of a class, it already has knowledge of the kind of inheritance used

by the class. Thus, the compiler can use the smallest possible representation of a
pointer and generate the smallest amount of code required to operate on the pointer
for each kind of inheritance. This is equivalent to using Ivmb on the command-line
to specify best-case representation for all classes in the compilation unit.

Use the pointers_to_members pragma with the full~enerality argument if
you need to declare a pointer to a member of a class before defining the class.
(This need can arise if you define members in two different classes that reference
each other using pointers to members. For such mutually referencing classes,
one class must be referenced before it is defined.) The compiler uses the most
general representation for the pointer to the member. This is equivalent to the
Ivmg compiler option. If you specify full-generality, you must also specify
single-inheritance, multiple-inheritance, or virtual-inheritance. This
is equivalent to using the Ivmg compiler option with the Ivms, Ivmm, or
Ivmv option.

The pointers_to_members pragma with the full_generality, single_inheritance
arguments (lvms option with the Ivmg option) specifies that the most general
representation of a pointer to a member of a class is one that uses no inheritance
or single inheritance. This is the smallest possible representation of a pointer to
a member of a class. The compiler generates an error if the inheritance model
of a class definition for which a pointer to a member is declared is multiple or
virtual. For example, placing this statement

#pragma pointers_to_members(full_generality, single_inheritance)

before a class definition declares that all class definitions that follow use only single
inheritance. Once specified, the option specified with the pointers_to_members
pragma cannot be changed.

The pointers_to_members pragma with the full_generality, multiple_inheritance
arguments (lvmm option with the Ivmg option) specifies that the most general
representation of a pointer to a member of a class is one that uses multiple
inheritance. This representation is larger than that required for single inheritance.
The compiler generates an error if the inheritance model of a class definition for
which a pointer to a member is declared is virtual.

The pointers_to_members pragma with the full_generality, virtual_inheritance
arguments (lvmv option with the Ivmg option) specifies that the most general
representation of a pointer to a member of a class is one that uses virtual
inheritance. In terms of pointer size and the code required to interpret the
pointer, this IS the most expensive option. However, this option never
causes an error and is the default when the full_generality argument to the
pointers_to_members pragma is specified or when the Ivmg command-line
option is used.

Chapter 7 Declarators

207

c++ Language Reference

Syntax
The equivalent language construction uses this syntax:

class-declaration:
class inheritance-typeopt class-name;

inheritance-type:
__ single_inheritance
__ multiple_inheritance
__ virtual_inheritance

As shown in this example,

class __ single_inheritance S;
int S: :p;

regardless of compiler options or pragmas, pointers to members of class S will use
the smallest possible representation.

You can also explicitly give a forward declaration to the pointer-to-member
representation of a class that has a forward declaration.

Note The same forward declaration of a class pointer-to-member representation should
occur in every translation unit that declares pointers to members of that class, and the
declaration should occur before the pointers to members are declared.

Array

208

An array is a collection of like objects. The simplest case of an array is a vector.
C++ provides a convenient syntax for declaration of fixed-size arrays:

Syntax
decl-specifiers dname [constant-expressionopt] ;

The number of elements in the array is given by the constant-expression. The first
element in the array is the Oth element, and the last element is the (n-l th) element,
where n is the size of the array. The constant-expression must be of an integral type
and must be greater than O. A zero-sized array is legal only when the array is the last
field in a struct or union and when the Microsoft extensions (lZe) are enabled.

Arrays are derived types and can therefore be constructed from any other derived or
fundamental type except functions, references, and void.

Arrays constructed from other arrays are multidimensional arrays. These
multidimensional arrays are specified by placing multiple [constant-expression]
specifications in sequence. For example, consider this declaration:

int i2[5][7];

It specifies an array of type int, conceptually arranged in a two-dimensional matrix
of five rows and seven columns, as shown in Figure 7.2.

Figure 7.2 Conceptual Layout of Multidimensional Array

0. 0 0, 1 0, 2 0. 3 0. 4 0, 5 0. 6
1. 0 1, 1 1. 2 1. 3 1, 4 1. 5 1. 6
2. 0 2, 1 2. 2 2. 3 2. 4 2, 5 2. 6
3. 0 3, 1 3. 2 3. 3 3, 4 3. 5 3. 6
4. 0 4. 1 4. 2 4. 3 4, 4 4. 5 4, 6

In declarations of multidimensioned arrays that have an initializer-list (as described
in "Initializers" on page 223), the constant-expression that specifies the bounds for
the first dimension can be omitted. For example:

const int cMarkets = 4;

II Declare a float that represents the transportation costs.
double TransportCosts[][cMarkets] =
{ { 32.19. 47.29. 31.99. 19.11 },

{ 11.29. 22.49, 33.47, 17.29 }.
{ 41.97. 22.09, 9.76, 22.55} };

The preceding declaration defines an array that is three rows by four columns. The
rows represent factories and the columns represent markets to which the factories
ship. The values are the transportation costs from the factories to the markets. The
first dimension of the array is left out, but the compiler fills it in by examining
the initializer.

The technique of omitting the bounds specification for the first dimension of a
multidimensioned array can also be used in function declarations as follows:

#include <float.h>
#include <iostream.h>

const int cMkts = 4;

II Includes DBL_MAX.

II Declare a float that represents the transportation costs.
double TransportCosts[][cMkts]
{ { 32.19, 47.29. 31.99. 19.11 }.

{ 11.29. 22.49. 33.47. 17.29 }.
{ 41.97. 22.09. 9.76. 22.55} };

II Calculate size of unspecified dimension.
const int cFactories = sizeof TransportCosts I sizeof(double[cMkts]);

double FindMinToMkt(int Mkt. double TransportCosts[][cMkts],
int cFacts);

void maine int argc. char *argv[])
(

double MinCost;
MinCost = FindMinToMkt(*argv[1] - '0'. TransportCosts. cFacts);
cout « "The minimum cost to Market" « argv[1] « " is: "

« MinCost « "\n";

Chapter 7 Dec1arators

209

c++ Language Referehce

210

double FindMinToMkt(int Mkt, double TransportCosts[][cMkts],
int cFacts)

{

double MinCost = DBL_MAX;
for(int i = 0; i < cFacts; ++i)

MinCost = (MinCost < TransportCosts[i][Mkt]) ?
MinCost : TransportCosts[i][Mkt];

return MinCost;
}

The function Fi ndMi nToMkt is written such that adding new factories does not
require any code changes, just a recompilation.

Using Arrays
Individual elements of arrays are accessed using the array subscript operator ([D.
If a singly dimensioned array is used in an expression with no subscript, the array
name evaluates to a pointer to the first element in the array. For example:

char chArray[10];

char *pch = chArray;
char ch = chArray[0];

ch = chArray[3];

II Pointer to first element.
II Value of first element.
II Value of fourth element.

When using multidimensioned arrays, various combinations are acceptable in
expressions. The following example illustrates this:

double multi[4][4][3]; II Declare the array.

double (*p2multi)[3];
double (*plmulti);

cout « multi[3][2] [3] « "\n";
p2multi = multi[3];

plmulti = multi[3][2];

II Use three subscripts.
II Make p2multi point to
II fourth "plane" of multi.
II Make plmulti point to fourth
II plane, second row of multi.

In the preceding code, mu 1 t i is a three-dimensional array of type double. The
p2mu 1 t i pointer points to an array of type double of size three. The array is used
with one, two, and three subscripts in this example. Although it is more common to
specify all the subscripts, as in the cout statement, it is sometimes useful to select a
specific subset of array elements as shown in the succeeding statements.

Arrays in Expressions
When an identifier of an array type appears in an expression other than sizeof,
address-of (&), or initialization of a reference, it is converted to a pointer to the'
first array element. For example:

char szErrorl[] = "Error: Disk drive not ready.";
char *psz = szErrorl;

Chapter 7 Declarators

The pointer psz points to the first element of the array szErrorl. Note that arrays,
unlike pointers, are not modifiable I-values. Therefore, the following assignment is
illegal:

szErrorl = psz;

Interpretation of Subscript Operator
Like other operators, the subscript operator ([]) can be redefined by the user. The
default behavior of the subscript operator, if not overloaded, is to combine the array
name and the subscript using the following method:

*((array-name) + (subscript))

As in all addition that involves pointer types, scaling is performed automatically to
adjust for the size of the type. Therefore, the resultant value is not subscript bytes from
the origin of array-name; rather, it is the subscriptth element of the array. (For more
information about this conversion, see "Additive Operators" on page 90 in Chapter 4.)

Similarly, for multidimensional arrays, the address is derived using the following
method:

*((array-name) + (subscriptl * maX2 * nzax3 ... maxn)
+ subscript2 * max3 ... maxn)

... + subscriptn))

Indirection on Array Types
Use of the indirection operator (*) on an n-dimensional array type yields an n-l
dimensional array. If n is 1, a scalar (or array element) is yielded.

Ordering of C++ Arrays
c++ arrays are stored in row -major order. Row-major order means the last subscript
varies the fastest.

Function Declarations
This section includes the following topics:

• Function declaration syntax

• Variable argument lists

• Declaring functions that take no arguments

• Function overloading

• Restrictions on functions

• The argument declaration list

• Argument lists in function prototypes (nondefining declaration)

• Argument lists in function definitions

211

c++ Language Reference

212

• Default arguments

• Default argument expressions

• Other considerations

Function definition is covered in "Function Definitions" on page 220.

Function Declaration Syntax
Syntax
decl-specifiers dname (argument-declaration-list) cv-mod-listopt
argument-declaration-list:

arg-declaration-list, •••
arg -declaration-list:

argument-declaration
arg-declaration-list , argument-declaration

argument-declaration:
decl-specifiers declarator
decl-specifiers declarator = expression
decl-specifiers abstract-declaratoropt
decl-specifiers abstract-declaratoropt = expression

The identifier given by dname has the type "cv-mod-list function, taking
argument-declaration-list, and returning type decl-specifiers."

Note that const, volatile, and many of the Microsoft-specific keywords can appear in
cv-mod-list and in the declaration of the name. The following example shows two
simple function declarations:

char *strchr(char *dest, char *src);
static int atai(canst char *ascnum) canst;

The following syntax explains the details of a function declaration:

Syntax
arg ument -declaration-list:

arg-declaration-listopt "'opt

arg-declaration-list , •••
arg-declaration-list:

argument-declaration
arg-declaration-list , argument-declaration

argument-declaration:
decl-specifiers declarator
decl-specifiers declarator , expression
decl-specifiers abstract-declaratoropt
decl-specifiers abstract-declaratoropt , expression

Chapter 7 Declarators

Variable Argument Lists
Function declarations in which the last member of argument-declaration-list is the
ellipsis (...) can take a variable number of arguments. In these cases, C++ provides
type checking only for the explicitly declared arguments. You can use variable
argument lists when you need to make a function so general that even the number
and types of arguments can vary. The printf family of functions is an example of
functions that use variable argument lists.

To access arguments after those declared, use the macros contained in the standard
include file STDARG.H as described in "Functions with Variable Argument Lists"
on page 221.

Microsoft Specific ~

Microsoft C++ allows the ellipsis to be specified as an argument if the ellipsis is the
first argument and the ellipsis is preceded by a comma. Therefore, the declaration
int Func(int i, ...);islegal,butint Func(int i ...);isnot.

END Microsoft Specific

Declaration of a function that takes a variable number of arguments requires at least
one "placeholder" argument, even if it is not used. If this place-holder argument is not
supplied, there is no way to access the remaining arguments.

When arguments of type char are passed as variable arguments, they are converted
to type int. Similarly, when arguments of type float are passed as variable arguments,
they are converted to type double. Arguments of other types are subject to the usual
integral and floating-point promotions. See "Integral Promotions" on page 56 in
Chapter 3 for more information.

Declaring Functions That Take No Arguments
A function declared with the single keyword void in argument-declaration-list
takes no arguments, as long as the keyword void is the first and only member of
argument-declaration list. Arguments of type void elsewhere in
argument-declaration-list produce errors. For example:

long GetTickCount(void); II OK
long GetTickCount(int Reset. void); II Error
long GetTickCount(void. int Reset); II Error

In C++, explicitly specifying that a function requires no arguments is the same as
declaring a function with no argument-declaration-list. Therefore, the following two
statements are identical:

long GetTickCount();
long GetTickCount(void);

Note that, while it is illegal to specify a void argument except as outlined here, types
derived from type void (such as pointers to void and arrays of void) can appear
anywhere in argument-declaration-list.

213

c++ Language Reference

214

Function Overloading
c++ allows specification of more than one function of the same name in the same
scope. These are called "overloaded functions" and are described in detail in
Chapter 12, "Overloading." Overloaded functions enable programmers to supply
different semantics for a function, depending on the types and number of arguments.

For example, a print function that takes a string (or char *) argument performs very
different tasks than one that takes an argument of type double. Overloading permits
uniform naming and prevents programmers from having to invent names such as
p r i n t_s z or p r i n t_d. Table 7.1 shows what parts of a function declaration C++
uses to differentiate between groups of functions with the same name in the same
scope.

Table 7.1 Overloading Considerations

Function Declaration Element

Function return type

Number of arguments

Type of arguments

Presence or absence of ellipsis

Use of typedef names

Unspecified array bounds

const or volatile (in cv-mod-list)

Used for Overloading?

No

Yes

Yes

Yes

No

No

Yes

Although functions can be distinguished on the basis of return type, they cannot be
overloaded on this basis.

The following example illustrates how overloading can be used. Another way to solve
the same problem is presented in "Default Arguments" on page 218.

#include <iostream.h>
#include <math.h>
#include <stdlib.h>

II Prototype three print functions.
int print(char *s) :
int print(double dvalue) :
int print(double dvalue, int prec

void maine int argc, char *argv[]
{

const double d = 893094.2987:

if(argc < 2
{

II Print a string.
II Print a double.

) : II Print a double with a
II given precis~on.

II These calls to print invoke print(char *s).
print("This program requires one argument."):
print("The argument specifies the number of"):
print("digits precision for the second number"):
print("printed."):

II Invoke print(double dvalue).
print(d);

II Invoke print(double dvalue, int prec).
print(d, atoi(argv[l]));

II Print a string.
int print(char *s
(

cout « s « endl;
return cout.good();

II Print a double in default precision.
int print(double dvalue)
(

cout « dvalue « endl;
return cout.good();

II Print a double in specified preclslon.
II Positive numbers for precision indicate how many digits'
II precision after the decimal point to show. Negative
II numbers for precision indicate where to round the number
II to the left of the decimal point.
int print(double dvalue, int prec)
{

II Use table-lookup for rounding/truncation.
static const double rgPow10[] = {

} ;

10E-7, 10E-6, 10E-5, 10E-4, 10E-3, 10E-2, 10E-1, 10E0,
10E1, 10E2, 10E3, 10E4, 10E5, 10E6

const int iPowZero = 6;

II If precision out of range, just print the number.
if(prec < -6 I I prec > 7)

return print(dvalue);

II Scale, truncate, then rescale.
dvalue = floor(dvalue I rgPow10[iPowZero - prec]) *

rgPow10[iPowZero - prec];

cout « dvalue « endl;
return cout.good();

The preceding code shows overloading of the p r i n t function in file scope.

For restrictions on overloading and information on how overloading affects other
elements of C++, see Chapter 12, "Overloading."

Chapter 7 Declarators

215

c++ Language Reference

216

Restrictions on Functions
Functions cannot return arrays or functions. They can, however, return references
or pointers to arrays or functions. Another way to return an array is to declare a
structure with only that array as a member:

struct Address
{ char szAddress[31]; };

Address GetAddress();

It is illegal to define a type in either the return-type portion of a function declaration
or in the declaration of any argument to a function. The following legal C code is
illegal in C++:

enum Weather { Cloudy, Rainy, Sunny} GetWeather(Date Today)

The preceding code is disallowed because the type We a the r has function scope
local to GetWeather and the return value cannot be properly used. Because
arguments to functions have function scope, declarations made within the argument
list would have the same problem if not allowed.

C++ does not support arrays of functions. However, arrays of pointers to functions
can be useful. In parsing a Pascal-like language, the code is often separated into a
lexical analyzer that parses tokens and a parser that attaches semantics to the tokens.
If the analyzer returns a particular ordinal value for each token, code can be written
to perform appropriate processing as shown in this example:

int ProcessFORToken(char *szText);
int ProcessWHILEToken(char *szText);
int ProcessBEGINToken(char *szText);
int ProcessENDToken(char *szText);
int ProcessIFToken(char *szText);
int ProcessTHENToken(char *szText);
int ProcessELSEToken(char *szText);
int (*ProcessToken[])(char *) = {

ProcessFORToken, ProcessWHILEToken, ProcessBEGINToken,
ProcessENDToken, ProcessIFToken, ProcessTHENToken,
ProcessELSEToken };

const int MaxTokenID = sizeof ProcessToken / sizeof(int (*)());

int DoProcessToken(int TokenID, char *szText)
{

}

if(TokenID < MaxTokenID)
return (*ProcessToken[TokenID])(szText);

else
return Error(szText);

The Argument Declaration List
The argument-declaration-list portion of a function declaration:

• Allows the compiler to check type consistency among the arguments the function
requires and the arguments supplied in the call.

• Enables conversions, either implicit or user-defined, to be performed from the
supplied argument type to the required argument type.

• Checks initializations of, or assignments to, pointers to functions.

• Checks initializations of, or assignments to, references to functions.

Argument Lists in Function Prototypes
(Nondefining Declaration)
The form argument-declaration-list is a list of the type names of the arguments.
Consider an argument-declaration-list for a function, func, that takes these three
arguments: pointer to type char, char, and iot.

The code for such an argument-declaration-list can be written:

char *, char, int

The function declaration (the prototype) might therefore be written:

void func(char *, char, int);

Although the preceding declaration contains enough information for the compiler
to perform type checking and conversions, it does not provide much information
about what the arguments are. A good way to document function declarations is
to include identifiers as they would appear in the function definition, as in the
following:

void func(char *szTarget, char chSearchChar, int nStartAt);

These identifiers in prototypes are useful only for default arguments, because
they go out of scope immediately. However, they provide meaningful program
documentation.

Argument Lists in Function Definitions
The argument list in a function definition differs from that of a prototype only in
that the identifiers, if present, represent formal arguments to the function. The
identifier names need not match those in the prototype (if there are any).

Note It is possible to define functions with unnamed arguments. However, these
arguments are inaccessible to the functions for which they are defined.

Chapter 7 Declarators

217

c++ Language Reference

Default Arguments

218

In many cases, functions have arguments that are used so infrequently that a
default value would suffice. To address this, the default-argument facility
allows for specifying only those arguments to a function that are meaningful
in a given call. To illustrate this concept, consider the example presented in
"Function Overloading" on page 214.

II Prototype three print functions.
int print(char *s):
int print(double dvalue):
int print(double dvalue, int prec):

II Print a string.
II Print a double.
II Print a double with a
II given precision.

In many applications, a reasonable default can be supplied for prec, eliminating
the need for two functions:

II Prototype two print functions.
int print(char *s): II Print a string.
int print(double dvalue, int prec=2): II Print a double with a

II given precision.

The implementation of the p r; n t function is changed slightly to reflect the fact
that only one such function exists for type double:

II Print a double in specified precision.
II Positive numbers for precision indicate how many digits'
II precision after the decimal pOint to show. Negative
II numbers for precision indicate where to round the number
II to the left of the decimal point.
int print(double dvalue, int prec)
{

II Use table-lookup for rounding/truncation.
static const double rgPow10[] = {

} :

10E-7, 10E-6, 10E-5, 10E-4, 10E-3, 10E-2, 10E-1, 10E0,
10E1, 10E2, 10E3, 10E4,10E5, 10E6

const int iPowZero = 6:
II If precision out of range, just print the number.

if(prec >= -6 II prec <= 7

}

II Scale, truncate, then rescale.
dvalue = floor(dvalue I rgPow10[iPowZero - prec]) *

rgPow10[iPowZero - prec]:

cout « dvalue « endl:

return cout.good():

To invoke the new p r i n t function, use code such as the following:

print(d);
print(d, 0);

II Precision of 2 supplied by default argument.
II Override default argument to achieve other
II results.

Note these points when using default arguments:

• Default arguments are used only in function calls where trailing arguments
are omitted-they must be the last argument(s). Therefore, the following code
is illegal:

int print(double dvalue = 0.0, int prec);

• A default argument cannot be redefined in later declarations even if the
redefinition is identical to the original. Therefore, the following code produces
an error:

II Prototype for print function.
int print(double dvalue, int prec 2);

II Definition for print function.
int print(double dvalue, int prec = 2)
{

The problem with this code is that the function declaration in the definition
redefines the default argument for prec.

• Additional default arguments can be added by later declarations.

• Default arguments can be provided for pointers to functions. For example:

int (*pShowlntVal)(int i = 0);

Default Argument Expressions
The expressions used for default arguments are often constant expressions, but this
is not a requirement. The expression can combine functions that are visible in the
current scope, constant expressions, and global variables. The expression cannot
contain local variables or nonstatic class-member variables. The following code
illustrates this:

BOOl CreateVScrollBar(HWND hWnd, short nWidth =

GetSystemMetrics(SM_CXVSCROll));

The preceding declaration specifies a function that creates a vertical scroll bar of
a given width for a window. If no width argument is supplied, the Windows API
function, GetSystemMetrics, is called to find the default width for a scroll bar.

Chapter 7 Declarators

219

c++ Language Reference

The default expression is evaluated after the function call, but the evaluation
is completed before the function call actually takes place.

Because formal arguments to a function are in function scope, and because
the evaluation of default arguments takes place prior to entry to this scope,
you cannot use formal arguments, or local variables in default argument
expressions .

. Note that any formal argument declared before a default argument expression
can hide a global name in the function scope, which can cause errors. The
following code is illegal:

const int Categories = 9;

void EnumCategories(char *Categories[J. int n = Categories);

In the preceding code, the global name Cat ego r i e s is hidden at function
scope, making the default argument expression invalid.

Other Considerations
The default argument is not considered part of the function type. Therefore, it
is not used in selecting overloaded functions. 1\vo functions that differ only
in their default arguments are considered multiple definitions rather than
overloaded functions.

Default arguments cannot be supplied for overloaded operators.

Function Definitions

220

Function definitions differ from function declarations in that they supply
function bodies -the code that makes up the function.

Syntax
Junction-definition:

decl-specijiersopt declarator ctor-initializeropt Jet-body
Jet-body:

compound-statement

As discussed in "Functions," the form of the declarator in the syntax is:

dname (argument-declaration-list) cv-mod-listopt

The formal arguments declared in argument-declaration-list are in the
scope of the function body.

Figure 7.3 shows the parts of a function definition. The shaded area is the
function body.

Chapter 7 Declarators

Figure 7.3 Parts of a Function Definition

I decl-specifiers I declarator

int IDoProcessToken(int TokenID, char *szText) I
{

}

if(TokenID < MaxTokenID)
return (*ProcessToken[TokenID])(szText);

else
return Error(szText);

The cv-mod-list element of the declarator syntax specifies how the this pointer is to
be treated; it is only for use with class member functions.

The ctor-initializer element of the syntax is used only in constructors. Its purpose is to
allow initialization of base classes and contained objects. (For more information about
use of ctor-initializer, see "Initializing Bases and Members" on page 317 in Chapter 11.)

Functions with Variable Argument Lists
Functions that require variable lists are declared using the ellipsis (oo.) in the argument
list, as described in "Variable Argument Lists" on page 213. To access arguments
passed to functions using this method, use the types and macros described in the
STDARG.H standard include file.

The following example shows how the va_start, va_arg, and va_end macros, along
with the va_list type (declared in STDARG.H), work together:

#include <stdio.h)
#include <stdarg.h)

II Declaration, but not definition, of ShowVar.
int ShowVar(char *szTypes, ...);

void maine)
(

}

II
II
II
II
II
II

ShowVar("fcsi", 32.4f, 'a', "Test string", 4);

ShowVar takes a format string of the form
"ifcs", where each character specifies the
type of the argument in that position.

i = int
f = float

II c = char
II
II
II
II

s = string (char *)

Following the format specification is a list
of n arguments, where n == strlen(szTypes).

221

c++ Language Reference

222

void ShowVar(char *szTypes, ...)
{

}

i nt i;

II szTypes is the last argument specified; all
II others must be accessed using the variable
II argument macros.
va_start(vl, szTypes);

II Step through the list.
for(i = 0; szTypes[i] != '\0'; ++i)
{

union Printable t
{

i nt i ;
float f;
char c;
char *s;

Printable;

switch(szTypes[i]
{

case'i':

II Type to expect.

Printable.i = va_arg(vl, int);
pri ntf("%i \n", Pri ntabl e. i);
break;

case 'f':
Printable.f = va_arg(vl, float);
printf("%f\n", Printable.f);
break;

case 'c':
Printable.c = va_arg(vl, char);
printf("%c\n", Printable.c);
break;

case's':
Printable.s = va_arg(vl, char *);
printf("%s\n", Printable.s);
break;

de fa ult:
break;

The preceding example illustrates these important concepts:

• A list marker must be established as a variable of type va_list before any variable
arguments are accessed. In the preceding example, the marker is called v 1 .

• The individual arguments are accessed using the va_arg macro. The va_arg
macro needs to be told the type of argument to retrieve so it can transfer the
correct number of bytes from the stack. If an incorrect type of a size different
than that supplied by the calling program is specified to va_arg, the results
are unpredictable.

• The result obtained using the va_arg macro should be explicitly cast to the
desired type.

• The va_end macro must be called to terminate variable-argument processing.

Initializers
Declarators can specify the initial value for objects. The only way to specify a
value for objects of const type is in the declarator. The part of the declarator that
specifies this initial value is called the "initializer."

Syntax
initializer:

= assignment-expression
= {initializer-list ,opt}

(expression-list)
initializer-list:

expression
initializer-list , expression
{ initializer-list ,opt }

There are two fundamental types of initializers:

• The initializer invoked using the equal-sign syntax

• The initializer invoked using function-style syntax

Only objects of classes with constructors can be initialized with the function-style
syntax. The two syntax forms also differ in access control and in the potential use of
temporary objects. Consider the following code, which illustrates some declarators
with initializers:

; nt ; = 7;
Customer CustC "Taxpayer. Joe".

"14 Cherry Lane".
"Manteca". "CA");

II Uses equal-sign syntax.
II Uses function-style
II syntax. Requires presence
II of a constructor.

Declarations of automatic, register, static, and external variables can contain
initializers. However, declarations of external variables can contain initializers only
if the variables are not declared as extern.

These initializers can contain expressions involving constants and variables in the
current scope. The initializer expression is evaluated at the point the declaration is
encountered in program flow, or, for global static objects and variables, at program
startup. (For more information about initialization of global static objects, see
"Additional Startup Considerations" on page 36 in Chapter 2.)

Chapter 7 Declarators

223

c++ Language Reference

Initializing Pointers to const Objects
A pointer to a const object can be initialized with a pointer to an object that is not
const, but not vice versa. For example, the following initialization is legal:

Window StandardWindow;
const Window* pStandardWindow(&StandardWindow);

In the preceding code, the pointer pStanda rdWi ndow is declared as a pointer to a
const object. Although Standa rdWi ndow is not declared as const, the declaration is
acceptable because it does not allow an object not declared as const access to a const
object. The reverse of this is as follows:

const Window StandardWindow;
Window* pStandardWindow(&StandardWindow);

The preceding code explicitly declares Standa rdWi ndow as a const object.
Initializing the nonconstant pointer pStanda rdWi ndow with the address of
Standa rdWi ndow generates an error because it allows access to the const object
through the pointer. That is, it allows removal of the const attribute from the object.

Uninitialized Objects
Objects and simple variables of storage class static that are declared with no initializer
are guaranteed to be initialized to a bit pattern of zeros. No such special processing
takes place for uninitialized objects of automatic or register storage classes. They have
undefined values.

Initializing Static Members
Static member initialization occurs in class scope. Therefore, they can access other
member data or functions. For example:

class DialogWindow
{

public:
static short GetTextHeight();

private:
static short nTextHeight;

} ;

short DialogWindow :: nTextHeight = GetTextHeight();

Note that in the preceding definition of the static member n T ext H e i 9 h t,
GetTextHei ght is implicitly known to be Di a 1 ogWi ndow :: GetTextHei ght.

Initializing Aggregates
An aggregate type is an array, class, or structure type which:

• Has no constructors

224

• Has no nonpublic members

• Has no base classes

• Has no virtual functions

Initializers for aggregates can be specified as a comma-separated list of values
enclosed in curly braces. For example, this code declares an int array of 10 and
initializes it:

int rgiArray[10] = { 9, 8, 4, 6, 5, 6, 3, 5, 6, 11 };

The initializers are stored in the array elements in increasing subscript order.
Therefore, rgi Array [0] is 9, rgi Array [1] is 8, and so on, until rg i Ar ray [9],
which is 11. To initialize a structure, use code such as:

struct RCPrompt
{ .

} ;

short nRow;
short nCol;
char *szPrompt;

RCPrompt rcContinueYN = { 24, 0, "Continue (YIN?)" };

Length of Aggregate-Initializer Lists
If an aggregate initializer list is shorter than the array or class type that is being
initialized, zeros are stored in the elements for which no initializer is specified.
Therefore, the following two declarations are equivalent:

II Explicitly initialize all elements.
int rgiArray[5] = { 3, 2, 0, 0, 0 };

II Allow remaining elements to be zero-initialized.
int rgiArray[5] = { 3, 2 };

As this shows, initializer lists can be truncated but supplying too many initializers
generates an error.

Initializing Aggregates That Contain Aggregates
Some aggregates contain other aggregates -for example, arrays of arrays, arrays
of structures, or structures that are composed of other structures. Initializers can be
supplied for such constructs by initializing each one in the order it occurs with a
brace-enclosed list. For example:

II Declare an array of type RCPrompt.
RCPrompt rgRCPrompt[4] =

{ {4, 7, "Options Are:" },
{6, 7, "1. Main Menu" },
{8, 7, "2. Print Menu" },
{ 10, 7, "3. File Menu" }};

Chapter 7 Declarators

225

c++ Language Reference

226

Note that rgRCPrompt is initialized with a brace-enclosed list of brace-enclosed
lists. The enclosed braces are not syntactically required, but they lend clarity to the
declaration. The following example program shows how a two-dimensional array is
filled by such an initializer:

#include <iostream.h>

void main()
{

int rgI[2][4] 1, 2, 3, 4, 5, 6, 7, 8 };

for(int i = 0; i < 2; ++i
for(int j = 0; j < 4; ++j

cout « "rgI[" « i « "][" « j « "]
« rgI[i][j] « endl;

The output from this program is:

rgI[0][0] = 1
rgI[0][1] = 2
rgI[0][2] = 3
rgI[0][3] = 4
rgl[l][0] = 5
rgl[l][l] = 6
rgl[l][2] = 7
rgl[l][3] = 8

Short initialization lists can be used only with explicit sub aggregate initializers
and enclosed in braces. If rg I had been declared as:

int rgI[2][4] = { { 1, 2 }, { 3, 4 } };

the program output would have been:

rgI[0][0] = 1
rgI[0][1] = 2
rgI[0][2] = 0
rgI[0][3] = 0
rgI[I][0] = 3
rgI[1][I] = 4
rgI[I][2] = 0
rgl[l][3] = 0

Initializing Incomplete Types
Incomplete types, such as unbounded array types, can be initialized as follows:

char HomeRow[] = {'a', '5', 'd', 'f', 'g', 'h', 'j', 'k', '1' };

The compiler computes the size of the array from the number of initializers
provided.

Chapter 7 Dec1arators

Incomplete types, such as pointers to class types that are declared but not defined,
are declared as follows:

class DefinedElsewhere;
class DefinedHere
{

II Class definition elsewhere.

friend class DefinedElsewhere;
} ;

Initializing Using Constructors
Objects of class type are initialized by calling the appropriate constructor for the class.
For complete information about initializing class types, see "Explicit Initialization" on
page 315 in Chapter 11.

Initializers and Unions
Objects of union type are initialized with a single value (if the union does not have
a constructor). This is done in one of two ways:

• Initialize the union with another object of the same union type. For example:
struct Point
{

} ;

unsigned x;
unsigned y;

union PtLong
{

} ;

long 1;
Point pt;

PtLong ptOrigin;
PtLong ptCurrent = ptOrigin;

In the preceding code, pte u r r e ntis initialized with the value of p tOr i gin -
an object of the same type.

• Initialize the union with a brace-enclosed initializer for the first member. For
example:
PtLong ptCurrent = { 0x0a000aL };

Initializing Character Arrays
Character arrays can be initialized in one of two ways:

• Individually, as follows:
char chABCD[4] = { 'a', 'b', 'c', 'd' };

• With a string, as follows:
char chABCD[5] = "abcd";

227

c++ Language Reference

In the second case, where the character array is initialized with a string, the compiler
appends a trailing '\ 0' (end-of-string character). Therefore, the array must be at
least one larger than the number of characters in the string.

Because most string handling uses the standard library functions or relies on the
presence of the trailing end-of-string character, it is common to see unbounded
array declarations initialized with strings:

char chABCD[] = "ABCD";

Initializing References

228

Variables of reference type must be initialized with an object of the type from which
the reference type is derived, or with an object of a type that can be converted to the
type from which the reference type is derived. For example:

int iVar;
long lVar;

long& LongRefl = lVar;
long& LongRef2 = iVar;
const long& LongRef3

LongRefl
LongRef2
LongRef3

23L;
Ill;
llL;

II No conversion required.
II Error.

iVar II OK

II Change lVar through a reference.
II Change iVar through a reference.
II Error.

The only way to initialize a reference with a temporary object is to initialize a
constant temporary object. Once initialized, a reference-type variable always points
to the same object; it cannot be modified to point to another object.

Although the syntax can be the same, initialization of reference-type variables
and assignment to reference-type variables are semantically different. In the
preceding example, the assignments that change i Va rand 1 Va r look similar to the
initializations but have different effects. The initialization specifies the object to
which the reference-type variable points; the assignment assigns to the referred-to
object through the reference.

Because both passing an argument of reference type to a function and returning a
value of reference type from a function are initializations, the formal arguments to
a function are initialized correctly, as are the references returned.

Reference-type variables can be declared without initializers only in the following:

• Function declarations (prototypes). For example:

int func(int&);

• Function-return type declarations. For example:

int& func(int&);

• Declaration of a reference-type class member. For example:

class c
{

public:
int& i;

}; .

• Declaration of a variable explicitly specified as extern. For example:

extern int& iVal;

When initializing a reference-type variable, the compiler uses the decision graph
shown in Figure 7.4 to select between creating a reference to an object or creating
a temporary object to which the reference points.

References to volatile types (declared as volatile typename& identifier) can be
initialized with volatile objects of the same type or with objects that have not been
declared as volatile. They cannot, however, be initialized with const objects of that
type. Similarly, references to const types (declared as const typename& identifier)
can be initialized with const objects of the same type (or anything that has a
conversion to that type or with objects that have not been declared as const).
They cannot, however, be initialized with volatile objects of that type.

References that are not qualified with either the const or volatile keyword can
be initialized only with objects declared as neither const nor volatile.

Figure 7.4 Decision Graph for Initialization of Reference Types

Reference
refers to object

specified in
initializer.

Temporary is
created and the

reference variable .
becomes a name

for that
temporary.

Chapter 7 Declarators

229

CHAPTER 8

Classes

This chapter introduces C++ classes. Classes, which can contain data and functions,
introduce user-defined types into a program. User-defined types in traditional
programming languages are collections of data which, taken together, describe an
object's attributes and state. Class types in C++ enable you to describe attributes
and state, and to define behavior.

The following topics are included:

• Overview

• Class names

• Class members

• Member functions

• Static data members

• Unions

• Bit fields

• Nested class declarations

• Type names in class scope

Overview of Classes
Class types are defined using the class, struct, and union keywords. For simplicity,
types defined with these keywords are called class declarations, except in discussions
of language elements that behave differently depending on which keyword is used.

Names of classes defined within another class ("nested") have class scope of the
enclosing class.

Syntax
class-name:

identifier

231

c++ Language Reference

The variables and functions of a class are called members. When defining a class, it
is common practice to supply the following members (although all are optional):

• Class data members, which define the state and attributes of an object of the
class type.

• One or more "constructor" functions, which initialize an object of the class type.
Constructors are described in "Constructors" on page 292 in Chapter 11.

• One or more "destructor" functions, which perform cleanup functions such as
deallocating dynamically allocated memory or closing files. Destructors are
described in "Destructors" on page 297 in Chapter 11.

• One or more member functions that define the object's behavior.

Defining Class Types

232

Class types are defined using class-specifiers. Class types can be declared using
elaborated-type-specifiers as shown in "Type Specifiers" on page 162 in Chapter 6.

Syntax
class-specifier:

class-head { member-listopt }

class-head:
class-key imodelopt identifieropt base-specopt
class-key imodelopt class-nameopt base-specopt

class-key:
class
struct
union

imodel:
__ declspec

Class names are introduced as identifiers immediately after the compiler processes
them (before entry into the class body); they can be used to declare class members.
This allows declaration of self-referential data structures, such as the following:

class Tree
{

public:

} ;

void *Data;
Tree *Left;
Tree *Right;

Structures, Classes, and Unions
The three class types are structure, class, and union. They are declared using the
struct, class, and union keywords (see class-key syntax). Table 8.1 shows the
differences among the three class types.

Table 8.1 Access Control and Constraints of Structures, Classes, and Unions

Structures

class-key is struct

Default access is public

No usage constraints

Classes

class-key is class

Default access is private

No usage constraints

Anonymous Class Types

Unions

class-key is union

Default access is public

Use only one member at a time

Classes can be anonymous - that is, they can be declared without an identifier.
This is useful when you replace a class name with a typedef name, as in the
following:

typedef struct
{

unsigned x;
unsigned y;

} POINT;

Note The use of anonymous classes shown in the previous example is useful for preserving
compatibility with existing C code. In some C code, the use of typedef in conjunction with
anonymous structures is prevalent.

Anonymous classes are also useful when you want a reference to a class member
to appear as though it were not contained in a separate class, as in the following:

struct PTValue
{

} ;

POINT ptLoc;
union
{

} ;

int iValue;
long lValue;

PTValue ptv;

In the preceding code, i Val ue can be accessed using the object member-selection
operator (.) as follows:

int i = ptv.iValue;

Anonymous classes are subject to certain restrictions. (For more information about
anonymous unions, see "Unions" on page 248.) Anonymous classes:

• Cannot have a constructor or destructor.

• Cannot be passed as arguments to functions (unless type checking is defeated
using ellipses).

• Cannot be returned as return values from functions.

Chapter 8 Classes

233

c++ Language Reference

Point of Class Definition
A class is defined at the end of its class-specifier. Member functions need
not be defined in order for the class to be considered defined. Consider the
following:

class Point
{

public:
Pointe)

{ cx = cy = 0; }
Pointe int x. int y)

{ cx = x. cy = y; }
unsigned &x(unsigned);
unsigned &y(unsigned);

private:
unsigned cx. cy;

} ;

II
II

II

II
II
II

Point class
considered defined.

Constructor defined.

Constructor defined.
Accessor declared.
Accessor declared.

Even though the two accessor functions (x and y) are not defined, the class Poi nt
is considered defined. (Accessor functions are functions provided to give safe
access to member data.)

Class-Type Objects

234

An object is a typed region of storage in the execution environment; in addition to
retaining state information, it also defines behavior. Class-type objects are defined
using class-name. Consider the following code fragment:

class Account
{

public:
Account();
Account(double);

II Class name is Account.

II Default constructor.
II Construct from double.

double& Deposit(double);
double& Withdraw(double. int);

} :

Account CheckingAccount; II Define object of class type.

The preceding code declares a class (a new type) called Account. It then uses this
new type to define an object called Checki ngAccount.

The following operations are defined by C++ for objects of class type:

• Assignment. One object can be assigned to another. The default behavior for this
operation is a memberwise copy. This behavior can be modified by supplying a
user-defined assignment operator.

• Initialization using copy constructors.

The following are examples of initialization using user-defined copy constructors:

• Explicit initialization of an object. For example:
Point myPoint = thatPoint;

declares myPoi nt as an object of type Poi nt and initializes it to the value of
that Poi nt.

• Initialization caused by passing as an argument. Objects can be passed to functions
by value or by reference. If they are passed by value, a copy of each object is
passed to the function. The default method for creating the copy is memberwise
copy; this can be modified by supplying a user-defined copy constructor (a
constructor that takes a single argument of the type "reference to class").

• Initialization caused by the initialization of return values from functions. Objects
can be returned from functions by value or by reference. The default method
for returning an object by value is a memberwise copy; this can be modified by
supplying a user-defined copy constructor. An object returned by reference
(using pointer or reference types) should not be both automatic and local to the
called function. If it is, the object referred to by the return value will have gone
out of scope before it can be used.

"Overloaded Operators" on page 336 in Chapter 12 explains how to redefine other
operators on a class-by-class basis.

Empty Classes
You can declare empty classes, but objects of such types still have nonzero size. The
following example illustrates this:

#include <iostream.h>

class NoMembers
{

} ;

void maine)
{

NoMembers n; II Object of type NoMembers.

cout « "The size of an object of empty class is: "
« sizeof n « endl;

This is the output of the preceding program:

The size of an object of empty class is: 1.

The memory allocated for such objects is of nonzero size; therefore, the objects have
different addresses. Having different addresses makes it possible to compare pointers
to objects for identity. Also, in arrays, each member array must have a distinct address.

Microsoft Specific ~

An empty base class typically contributes zero bytes to the size of a derived class.

END Microsoft Specific

Chapter 8 Classes

235

c++ Language Reference

Class Names
Class declarations introduce new types, called class names, into programs. These class
declarations also act as definitions of the class for a given translation unit. There may
be only one definition for a given class type per translation unit. Using these new class
types, you can declare objects, and the compiler can perform type checking to verify
that no operations incompatible with the types are performed on the objects.

An example of such type checking is:

class Point
{

public:
unsigned x, y;

} ;

class Rect
{

public:
unsigned xl, yl, x2, y2;

} ;

II Prototype a function that takes two arguments, one of type
II Point and the other of type pointer to Rect.
int PtInRect(Point, Rect &);

Point pt;
Rect rect;

rect = pt;
pt = rect;

II Error. Types are incompatible.
II Error. Types are incompatible.

II Error. Arguments to PtInRect are reversed.
cout « "Point is " « PtInRect(recto pt) ? "" : "not"

« " in rectangle" « endl;

As the preceding code illustrates, operations (such as assignment and argument
passing) on class-type objects are subject to the same type checking as objects of
built-in types.

Because the compiler distinguishes between class types, functions can be overloaded
on the basis of class-type arguments as well as built-in type arguments. For more
information about overloaded functions, see "Function Overloading" on page 214 in
Chapter 7 and Chapter 12, "Overloading."

Declaring and Accessing Class Names

236

Class names can be declared in global or class scope. If they are declared in class
scope, they are referred to as "nested" classes.

Microsoft Specific ~

Function definitions are not permitted in local class declarations in Microsoft C++.

END Microsoft Specific

Any class name introduced in class scope hides other elements of the same name
in an enclosing scope. Names hidden by such a declaration can then be referred
to only by using an elaborated-type-specijier. The following example shows
an example of using an elaborated-type-specijier to refer to a hidden name:

struct A
{

int a;
} ;

void maine)
{

II Global scope definition of A.

char A = 'a'; II Redefine the name A as an object.

struct A AObject;

Because the name A that refers to the structure is hidden by the A that refers
to the cha r object, struct (a class-key) must be used to declare AObj ect as
type A.

You can use the class-key to declare a class without providing a definition. This
nondefining declaration of a class introduces a class name for forward reference.
This technique is useful when designing classes that refer to one another in friend
declarations. It is also useful when class names must be present in header files but
the definition is not required. For example:

II RECT. H
class Point;
class Line
{

public:

II Nondefining declaration of class Point.

int Draw(Point &ptFrom. Point &ptTo);

} ;

In the preceding sample, the name Po i n t must be present, but it need not be
a defining declaration that introduces the name.

typedef Statements and Classes
U sing the typedef statement to name a class type causes the typedef name to
become a class-name. For more information, see "typedef Specifier" on page 158
in Chapter 6.

Chapter 8 Classes

237

c++ Language Reference

Class Members

238

Classes can have these kinds of members:

• Member functions.

• Data members.

• Classes, which include classes, structures, and unions. (See "Nested Class
Declarations" on page 253 and "Unions" on page 248.)

• Enumerations.

• Bit fields.

• Friends.

• Type names.

Note Friends are included in the preceding list because they are contained in the class
declaration. However, they are not true class members, because they are not in the scope
of the class.

Syntax
member-list:

member-declaration member-listopt
access-specifier: member-listopt

member-declaration:
decl-specifiersopt member-declarator-listopt ;
!unction-dejinitionopt ;
qualified-name;

member-declarator-list:
member-declarator
member-declarator-list , member-declarator

member-declarator:
declarator pure-specifieropt
identifieropt : constant-expression

pure-specifier:
=0

The purpose of the member-list is to:

• Declare the complete set of members for a given class.

• Specify the access (public, private, or protected) associated with various class
members.

In the declaration of a member list, you can declare members only once; redeclaration
of members produces an error message. Because a member list is a complete set of the
members, you cannot add members to a given class with subsequent class declarations.

Member declarators cannot contain initializers. Supplying an initializer produces an
error message as illustrated in the following code:

class CantInit
{

public:

} ;

long 1 = 7;
static int i 9 ;

II Error: attempt to initialize class member.
II Error: must be defined and initialized

outside of class declaration.

Because a separate instance of nonstatic member data is created for each object of
a given class type, the correct way to initialize member data is to use the class's
constructor. (Constructors are covered in "Constructors" on page 292 in Chapter 11.)
There is only one shared copy of static data members for all objects of a given class
type. Static data members must be defined and can be initialized at file scope.
(For more information about static data members, see "Static Data Members" on
page 247.) The following example shows how to perform these initializations:

class CanInit
{

public:

} ;

CanInit() { 1

long 1 ;
static int i;
static int j;

7; } II Initializes 1 when new objects of type
II CanInit are created.

int CanInit::i = 15; II 1 lS defined at file scope and

int CanInit::j = i;

II initialized to 15. The initializer
II
II
II

is evaluated in the scope of Canlnit.
The right side of the initializer is in

the scope of the object being initialized.

Note The class name, Can In i t ,must precede i to specify that the i being defined is a
member of class Can I nit.

Class-Member Declaration Syntax
Member data cannot be declared as auto, extern, or register storage class. They can,
however, be declared as having static storage class.

The decl-specifiers specifiers can be omitted in member-function declarations.
(For information on decl-specifiers, see "Specifiers" on page 152 in Chapter 6 and
"Member Functions" on page 242; see also "Functions" on page 211 in Chapter 7.)
The following code is therefore legal and declares a function that returns type int:

class NoDeclSpec
{

public:
NoSpeci fi ers () ;

} ;

Chapter 8 Classes

239

c++ Language Reference

240

When you declare a friend class in a member list, you can omit the member
declarator-list. For more information on friends, see "friend Specifier" on page 162
in Chapter 6, and "Friends" on page 283 in Chapter 10. Even if a class name has
not been introduced, it can be used in a friend declaration. This friend declaration
introduces the name. However, in member declarations for such classes, the
elaborated-type-specifier syntax must be used, as shown in the following example:

class HasFriends
{

public:
friend class NotDeclaredYet;

} ;

In the preceding example, there is no member-declarator-list after the class
declaration. Because the declaration for Not Dec 1 are dYe t has not yet been
processed, the elaborated-type-specifier form is used: c 1 as s Not Dec 1 a redYet.
A type that has been declared can be specified in a friend member declaration
using a normal type specifier:

class AlreadyDeclared
{

} ;

class HasFriends
{

public:
friend AlreadyDeclared;

} ;

The pure-specifier (shown in the following example) indicates that no implementation
is supplied for the virtual function being declared. Therefore, the pure-specifier can be
specified only on virtual functions. Consider this example:

class StrBase II Base class for strings.
{

public:

} ;

virtual int IsLessThan(StrBase&) = 0;
virtual int IsEqualTo(StrBase&) = 0;
virtual StrBase& CopyOf(StrBase&) = 0;

The preceding code declares an abstract base class - that is, a class designed to be
used only as the base class for more specific classes. Such base classes can enforce a
particular protocol, or set of functionality, by declaring one or more virtual functions
as "pure" virtual functions, using the pure-specifier.

Classes that inherit from the S t r Bas e class must provide implementations for the
pure virtual functions; otherwise, they, too, are considered abstract base classes.

Abstract base classes cannot be used to declare objects. For example, before an
object of a type inherited from S t r Bas e can be declared, the functions IsLe ssT han,
Is Equa 1 To, and CopyOf must be implemented. (For more information about abstract
base classes, see "Abstract Classes" on page 274 in Chapter 9.)

Declaring Unsized Arrays in Member Lists
. Microsoft Specific ~

Unsized arrays can be declared as the last data member in class member lists if the
program is not compiled with the ANSI-compatibility option (lZa). Because this is
a Microsoft extension, using unsized arrays in this way can make your code less
portable. To declare an un sized array, omit the first dimension. For example:

cl ass Symbol
{

public:

} ;

int Symbol Type;
char SymbolText[];

END Microsoft Specific

Restrictions
If a class contains an un sized array, it cannot be used as the base class for another
class. In addition, a class containing an unsized array cannot be used to declare any
member except the last member of another class. A class containing an unsized array
cannot have a direct or indirect virtual base class.

The size of operator, when applied to a class containing an unsized array, returns the
amount of storage required for all members except the unsized array. Implementors of
classes that contain unsized arrays should provide alternate methods for obtaining the
correct size of the class.

You cannot declare arrays of objects that have unsized array components. Also,
performing pointer arithmetic on pointers to such objects generates an error message.

Storage of Class-Member Data
Nonstatic class-member data is stored in such a way that items falling between access
specifiers are stored at successively higher memory addresses. No ordering across
access specifiers is guaranteed.

Microsoft Specific ~

Depending on the /Zp compiler option or the pack pragma, intervening space can
be introduced to align member data on word or doubleword boundaries.

In Microsoft C++, class-member data is stored at successively higher memory
addresses, even though the C++ language does not require it. Basing assumptions
on this ordering can lead to non portable code.

END Microsoft Specific

Chapter 8 Classes

241

c++ Language Reference

Member Naming Restrictions
A function with the same name as the class in which it is declared is a constructor.
A constructor is implicitly called when an object of this class type is created. (For more
information about constructors, see "Constructors" on page 292 in Chapter 11.)

The following items cannot have the same name as the classes in whose scope they
are declared: data members (both static and non static), enclosed enumerators,
members of anonymous unions, and nested class types.

Member Functions

242

Classes can contain data and functions. These functions are referred to as "member
functions." Any non static function declared inside a class declaration is considered
a member function and is called using the member-selection operators (. and -».
When calling member functions from other member functions of the same class,
the object and member-selection operator can be omitted. For example:

class Point
{

public:
short x() { return _x; }
short y() { return -y; }
voi d Show() { cout « x() «" "« y() « "\n"; }

private:
short _x. _y;

} ;

void main()
{

Point pt;

pt. Show() ;

Note that in the member function, Show, calls to the other member functions,
x and y, are made without member-selection operators. These calls implicitly mean
t his -> x () and t his -> y (). However, in main, the member function, Show, must
be selected using the object pt and the member-selection operator (.).

Static functions declared inside a class can be called using the member-selection
operators or by specifying the fully qualified function name (including the class
name).

Note A function declared using the friend keyword is not considered a member of the class
in which it is declared a friend (although it can be a member of another class). A friend
declaration controls the access a nonmember function has to class data.

The following class declaration shows how member functions are declared:

class Point
{

public:
unsigned GetX();
unsigned GetY();
unsigned SetX(unsigned x);
unsigned SetY(unsigned y);

private:
unsigned ptX. ptY;

} ;

In the preceding class declaration, four functions are declared: GetX, GetY, SetX,
and SetY. The next example shows how such functions are called in a program:

void main()
{

II Declare a new object of type Point.
Point ptOrigin;

II Member function calls use the. member-selection operator.
ptOrigin.SetX(0);
ptOrigin.SetY(0);

II Declare a pointer to an object of type Point.
Point *pptCurrent = new Point; .

II Member function calls use the -) member-selection operator.
pptCurrent-)SetX(ptOrigin.GetX() + 10);
pptCurrent-)SetY(ptOrigin.GetY() + 10);

In the preceding code, the member functions of the object ptOri gi n are called
using the member-selection operator (.). However, the member functions of
the object pointed to by pptCu r rent are called using the -> member-selection
operator.

Overview of Member Functions
Member functions are either static or nonstatic. The behavior of static member
functions differs from other member functions because static member functions
have no implicit this argument. Nonstatic member functions have a this pointer.
Member functions, whether static or nonstatic, can be defined either in or outside
the class declaration.

If a member function is defined inside a class declaration, it is treated as an inline
function, and there is no need to qualify the function name with its class name.
Although functions defined inside class declarations are already treated as inline
functions, you can use the inline keyword to document code.

Chapter 8 Classes

243

c++ Language Reference

244

An example of declaring a function within a class declaration follows:

class Account
{

public:
II Declare the member function Deposit within the declaration
II of class Account.
double Deposit(double HowMuch
{

balance += HowMuch;
return balance;

private:
double balance;

} ;

If a member function's definition is outside the class declaration, it is treated as an
inline function only if it is explicitly declared as inline. In addition, the function name
in the definition must be qualified with its class name using the scope-resolution
operator (::).

The following example is identical to the previous declaration of class Account,
except that the Depos; t function is defined outside the class declaration:

class Account
{

public:
II Declare the member function Deposit but do not define it.
double Deposit(double HowMuch);

private:
double balance;

} ;

inline double Account::Deposit(double HowMuch)
{

balance += HowMuch;
return balance;

Note Although member functions can be defined either inside a class declaration or
separately, no member functions can be added to a class after the class is defined.

Classes containing member functions can have many declarations, but the member
functions themselves must have only one definition in a program. Multiple definitions
cause an error message at link time. If a class contains inline function definitions, the
function definitions must be identical to observe this "one definition" rule.

Nonstatic Member Functions
Nonstatic member functions have an implied argument, this, that points to the
object through which the function is invoked. The type of this is type * const. These
functions are considered to have class scope and can use class data and other member

functions in the same class scope directly. In the preceding example, the expression
bal ance += HowMuch adds the value of HowMuch to the class member bal ance.
Consider the following statements:

Account Checking;

Checking.Deposit(57.00);

The preceding code declares an object of type Account and then invokes the member
function Depos; t to add $57.00 to it. In the function Account: : Depos; t, balance
is taken to mean Check; ng. ba 1 ance (the balance member for this object).

Nonstatic member functions are intended to operate on objects of their class type.
Calling such a function on objects of different types (using explicit type conversions)
causes undefined behavior.

The this Pointer
All nonstatic member functions can use the this keyword, which is a const
(nonmodifiable) pointer to the object for which the function was called. Member
data is addressed by evaluating the expression this->member-name (although
this technique is seldom used). In member functions, using a member name in an
expression implicitly uses this->member-name to select the correct function or
data member.

Note Because the this pointer is nonmodifiable, assignments to this are not allowed.
Earlier implementations of C++ allowed assignments to this.

Occasionally, the this pointer is used directly - for example, to manipulate
self-referential data structures, where the address of the current object is required.

Type of this Pointer
The this pointer's type can be modified in the function declaration by the const and
volatile keywords. To declare a function as having the attributes of one or more of
these keywords, use the cv-mod-list grammar.

Syntax
cv-mod-list:

cv-qualifier cv-mod-listopt

cv-qualifier:
const
volatile

Consider this example:

class Point
{

unsigned X() canst;
} ;

Chapter 8 Classes

245

c++ Language Reference

246

The preceding code declares a member function, X, in which the this pointer is
treated as a const pointer to a const object. Combinations of cv-mod-list options
can be used, but they always modify the object pointed to by this, not the this pointer
itself. Therefore, the following declaration declares function X; the this pointer is a
const pointer to a const object:

class Point
{

unsigned XC) __ far const;
} ;

The type of this is described by the following syntax, where cv-qualifier-list
can be const or volatile, class-type is the name of the class:

cv-qualifier-listopt class-type * const this

Table 8.2 explains more about how these modifiers work.

Table 8.2 Semantics of this Modifiers

Modifier

const

volatile

Meaning

Cannot change member data; cannot invoke member functions
that are not const.

Member data is loaded from memory each time it is accessed;
disables certain optimizations.

It is an error to pass a const object to a member function that is not const.
Similarly, it is an error to pass a volatile object to a member function that is
not volatile.

Member functions declared as const cannot change member data - in such
functions, the this pointer is a pointer to a const object.

Note Constructors and destructors cannot be declared as const or volatile. They can,
however, be invoked on const or volatile objects.

Static Member Functions
Static member functions are considered to have class scope. In contrast to
nonstatic member functions, these functions have no implicit this argument;
therefore, they can use only static data members, enumerators, or nested types
directly. Static member functions can be accessed without using an object of
the corresponding class type. Consider this example:

class WindowManager
{

,public:
static int CountOf(); II Return count of open windows.

void Minimize(); II Minimize current window.
WindowManager SideEffects(); II Function with side effects.

private:
static int wmWindowCount:

} :
int WindowManager::wmWindowCount 0:

II Minimize (show iconic) all windows
fore int i = 0: i < WindowManager::CountOf(): ++i)

rgwmWin[i].Minimize():

In the preceding code, the class Win d owM a nag e r contains the static member function
Co u n to f. This function returns the number of windows open but is not necessarily
associated with a given object of type Wi n d owM a nag e r. This concept is demonstrated
in the loop where the CountOf function is used in the controlling expression; because
CountOf is a static member function, it can be called without reference to an object.

Static member functions have external linkage. These functions do not have this
pointers (covered in the next section). As a result, the following restrictions apply to
such functions:

• They cannot access nonstatic class member data using the member-selection
operators (. or -».

• They cannot be declared as virtual.

• They cannot have the same name as a nonstatic function that has the same
argument types.

Note The left side of a member-selection operator (. or -» that selects a static member
function is not evaluated. This can be important if the function is used for its side effects.
For example, the expression Sid e E f f e c t s () . Co u n to f () does not call the function
Si deEffects.

Static Data Members
Classes can contain static member data and member functions. When a data member
is declared as static, only one copy of the data is maintained for all objects of the
class. (For more information, see "Static Member Functions" on page 246.)

Static data members are not part of objects of a given class type; they are separate
objects. As a result, the declaration of a static data member is not considered a
definition. The data member is declared in class scope, but definition is performed
at file scope. These static members have external linkage. The following example
illustrates this:

class BufferedOutput
{

public:
II Return number of bytes written by any object of this class.
short BytesWritten() { return bytecount: }

Chapter 8 Classes

247

c++ Language Reference

} ;

II Reset the counter.
static void ResetCount() { bytecount = 0; }

II Static member declaration.
static long bytecount;

II Define bytecount in file scope.
long BufferedOutput::bytecount;

In the preceding code, the member bytecount is declared in class
BufferedOutput, but it must be defined outside the class declaration.

Static data members can be referred to without referring to an object of class type.
The number of bytes written using BufferedOutput objects can be obtained
as follows:

long nBytes = BufferedOutput::bytecount;

For the static member to exist, it is not necessary that any objects of the class type
exist. Static members can also be accessed using the member-selection (. and -»
operators. For example:

BufferedOutput Console;

long nBytes = Console.bytecount;

In the preceding case, the reference to the object (Conso 1 e) is not evaluated; the
value returned is that of the static object bytecount.

Static data members are subject to class-member access rules, so private access
to static data members is allowed only for class-member functions and friends.
These rules are described in Chapter 10, "Member-Access Control." The exception
is that static data members must be defined in file scope regardless of their access
restrictions. If the data member is to be explicitly initialized, an initializer must be
provided with the definition.

The type of a static member is not qualified by its class name. Therefore, the type
ofBufferedOutput::bytecount~long.

Unions

248

Unions are class types that can contain only one data element at a time
(although the data element can be an array or a class type). The members
of a union represent the kinds of data the union can contain. An object of
union type requires enough storage to hold the largest member in its
member-list. Consider the following example:

#include <stdlib.h>
#include <string.h>
#include <limits.h>

union NumericType II Declare a union that can hold the following:
{

} ;

int
long
double

iValue; II int value
lValue; II long value
dValue; II double value

void main(int argc, char *argv[])
{

NumericType *Values = new NumericType[argc - 1];

for(int i = 1; i < argc; ++i)
i f(strchr(argv[i], '.') != 0)

II Floating type. Use dValue member for assignment.
Values[i].dValue = atof(argv[i]);

else
II Not a floating type.

II If data is bigger than largest int, store it
II in lValue member.

if(atol(argv[i]) > INT_MAX)
Values[i].lValue = atol(argv[i]);

else
II Otherwise, store it in iValue member.
Values[i].iValue = atoi(argv[i]);

The Numeri cType union is arranged in memory (conceptually) as shown in
Figure 8.1.

Figure 8.1 Storage of Data in NumericType Union

J~::::II-______ ----1 ______ ----.;ij
~ 4 8

Member Functions in Unions
In addition to member data, unions can have member functions, as described in
"Member Functions" on page 242. Although unions can have special functions such
as constructors and destructors, unions cannot contain virtual functions. (For more
information, see "Constructors" and "Destructors" on pages 292 and 297 in Chapter 11.)

Unions as Class Types
Unions cannot have base classes; that is, they cannot inherit the attributes of other
unions, structures, or classes. Unions also cannot be used as base classes for further
inheritance.

Inheritance is covered in detail in Chapter 9, "Derived Classes."

Chapter 8 Classes

249

c++ Language Reference

Union Member Data
Unions can contain most types in their member lists, except for the following:

• Class types that have constructors or destructors

• Class types that have user-defined assignment operators

• Static data members

Anonymous Unions

250

Anonymous unions are unions that are declared without a class-name or
declarator-list.

Syntax
union { member-list} ;

Such union declarations do not declare types - they declare objects. The names
declared in an anonymous union cannot conflict with other names declared in the
same scope.

Names declared in an anonymous union are used directly, like nonmember variables.
The following example illustrates this:

#include <iostream.h>

struct DataForm
{

enum DataType CharData
DataType type;

1. IntData. StringData };

II Declare an anonymous union.
union

} ;

{

} ;

char chCharMem;
char *szStrMem;
int iIntMem;

void print();

void DataForm::print()
{

II Based on the type of the data. print the
II appropriate data type.
switch (type)
{

case CharData:
cout « chCharMem;
break;

case IntData:
cout « szStrMem;
break;

case StringData:
cout « i I ntMem;
break;

In the function Data Form: : pri nt, the three members (chCha rMem, szStrMem,
and i I ntMem) are accessed as though they were declared as members (without the
union declaration). However, the three union members share the same memory.

In addition to the restrictions listed in "Union Member Data" on page 250, anonymous
unions are subject to additional restrictions:

• They must also be declared as static if declared in file scope.

• They can have only public members; private and protected members in
anonymous unions generate errors.

• They cannot have function members.

Note Simply omitting the class-name portion of the syntax does not make a union an
anonymous union. For a union to qualify as an anonymous union, the declaration must
not declare an object.

Bit Fields
Classes and structures can contain members that occupy less storage than an
integral type. These members are specified as bit fields. The syntax for bit-field
member-declarator specification follows:

Syntax
declaratoropt : constant-expression

The declarator is the name by which the member is accessed in the program. It
must be an integral type (including enumerated types). The constant-expression
specifies the number of bits the member occupies in the structure. Anonymous bit
fields - that is, bit-field members with no identifier - can be used for padding.

Note An unnamed bit field of width 0 forces alignment of the next bit field to the next type
boundary, where type is the type of the member.

The following example declares a structure that contains bit fields:

struct Date
{

unsigned nWeekDay 3; II 0 .. 7 (3 bits)
unsigned nMonthDay 6 ; II 0 .. 31 (6 bits)
unsigned nMonth 5 ; II 0 .. 12 (5 bits)
unsigned nYear 8; II 0 .. 100 (8 bits)

} ;

Chapter 8 Classes

251

c++ Language Reference

252

The conceptual memory layout of an object of type Date is shown in
Figure 8.2.

Figure 8.2 Memory Layout of Date Object

Note that n Yea r is 8 bits long and would overflow the word boundary of the
declared type, unsigned int. Therefore, it is begun at the beginning of a new
unsigned int. It is not necessary that all bit fields fit in one object of the
underlying type; new units of storage are allocated, according to the number
of bits requested in the declaration.

Microsoft Specific ~

The ordering of data declared as bit fields is from low to high bit, as shown in
Figure 8.2.

END Microsoft Specific

If the declaration of a structure includes an unnamed field of length 0, as shown
in the following example,

struct Date
{

unsigned nWeekDay 3; II 0 .. 7 (3 bits)
unsigned nMonthDay 6 ; II 0 .. 31 (6 bits)
unsigned 0; II Force alignment to next boundary.
unsigned nMonth 5 ; II 0 .. 12 (5 bits)
unsigned nYear 8; II 0 .. 100 (8 bits)

} ;

the memory layout is as shown in Figure 8.3.

Figure 8.3 Layout of Date Object with Zero-Length Bit Field

nWeekDay l nMonth

l nMonthDaA~ nY~r J "

IIJJ LU LU1111JIJ J;JI;JJJ111J1L 1l1JJJJJUJlJ!! JiL!! IL! LllLILL1UL1Lh
31 031 0

The underlying type of a bit field must be an integral type, as described in
"Fundamental Types" on page 41 in Chapter 2.

Restrictions on Use of Bit Fields
The following list details erroneous operations on bit fields:

• Taking the address of a bit field

• Initializing a reference with a bit field

Nested Class Declarations
A class can be declared within the scope of another class. Such a class is called
a "nested class." Nested classes are considered to be within the scope of the
enclosing class and are available for use within that scope. To refer to a nested
class from a scope other than its immediate enclosing scope, you must use a
fully qualified name.

The following example shows how to declare nested classes:

class BufferedIO
{

public:

} ;

enum IOError { None. Access. General };

II Declare nested class BufferedInput.
class BufferedInput
{

public:
int read();
int goode) { return _inputerror

private:
IOError _inputerror;

} ;

None; }

II Declare nested class BufferedOutput.
class BufferedOutput
{

II Member list
} ;

Buffe red 10: : Buffered I nput and Buffered 10: : Buffe redOut put are
declared within B u f fer e d 10. These class names are not visible outside the scope
of class BufferedIO. However, an object of type BufferedIO does not contain
any objects of types BufferedInput or BufferedOutput.

Nested classes can directly use names, type names, names of static members, and
enumerators only from the enclosing class. To use names of other class members,
you must use pointers, references, or object names.

Chapter 8 Classes

253

c++ Language Reference

In the preceding BufferedIO example, the enumeration IOError can be accessed
directly by member functions in the nested classes, BufferedIO: : Bufferedlnput
or BufferedIO: : BufferedOutput, as shown in function good.

Note Nested classes declare only types within class scope. They do not cause contained
objects of the nested class to be created. The preceding example declares two nested
classes but does not declare any objects of these class types.

Access Privileges and Nested Classes
Nesting a class within another class does not give special access privileges to
member functions of the nested class. Similarly, member functions of the enclosing
class have no special access to members of the nested class.

For more information about access privileges, see Chapter 10, "Member-Access
Control."

Member Functions in Nested Classes

254

Member functions declared in nested classes can be defined in file scope. The
preceding example could have been written:

class BufferedIO
{

public:

} ;

enum IOError { None. Access. General };
class Bufferedlnput
{

public:
int read(); II Declare but do not define member
int goode); II functions read and good.

private:
IOError _inputerror;

} ;

class BufferedOutput
{

II Member list.
} ;

II Define member functions read and good in
I I fil e scope.
int BufferedIO::BufferedInput::read()
{

int BufferedIO::Bufferedlnput::good()
{

return _inputerror == None;

In the preceding example, the qualified-type-name syntax is used to declare
the function name. The declaration:

BufferedIO::BufferedInput::read()

means "the rea d function that is a member of the B u f fer e dIn put class that
is in the scope of the B u f fer e d I 0 class." Because this declaration uses the
qualified-type-name syntax, constructs of the following form are possible:

typedef BufferedIO::BufferedInput BIO_INPUT:

int BIO_INPUT::read()

The preceding declaration is equivalent to the previous one, but it uses a
typedef name in place of the class names.

Friend Functions and Nested Classes
Friend functions declared in a nested class are considered to be in the scope of
the nested class, not the enclosing class. Therefore, the friend functions gain
no special access privileges to members or member functions of the enclosing
class. If you want to use a name that is declared in a nested class in a friend
function and the friend function is defined in file scope, use qualified type
names as follows:

extern char *rgszMessage[]:

class BufferedIO
{

public:

class BufferedInput
{

public:
friend int GetExtendedErrorStatus():

static char *message:
int iMsgNo:

} :
} :
char *BufferedIO::BufferedInput::message:

int GetExtendedErrorStatus()
{

strcpy(BufferedIO::BufferedInput::message,
rgszMessage[iMsgNo]):

return i MsgNo:

Chapter 8 Classes

255

c++ Language Reference

The preceding code shows the function GetExtendedErrorStatus declared
as a friend function. In the function, which is defined in file scope, a message is
copied from a static array into a class member. Note that a better implementation
of GetExtendedErrorStatus is to declare it as:

int GetExtendedErrorStatus(char *message)

With the preceding interface, several classes can use the services of this function
by passing a memory location where they want the error message copied.

Type Names in Class Scope

256

Type names defined within class scope are considered local to their class.
They cannot be used outside that class. The following example demonstrates
this concept:

class Tree
{

public:

} ;

typedef Tree * PTREE;
PTREE Left;
PTREE Right;
void *vData;

PTREE pTree; II Error: not in class scope.

CHAPTER 9

Derived Classes

This chapter explains how to use derived classes to produce extensible programs.

The following topics are included:

• Overview

• Multiple base classes

• Virtual functions

• Abstract classes

o Summary of scope rules

Overview of Derived Classes
New classes can be derived from existing classes using a mechanism called
"inheritance" (see the information beginning in "Single Inheritance" on page 258).
Classes that are used for derivation are called "base classes" of a particular derived
class. A derived class is declared using the following syntax:

Syntax
base-spec:

: base-list
base-list:

base-specifier
base-list, base-specifier

base-specifier:
complete-class-name
virtual access-specifieropt complete-class-name
access-specifier virtualopt complete-class-name

access-specifier:
private
protected
public

257

c++ Language Reference

Single Inheritance

258

In "single inheritance," a common form of inheritance, classes have only one base
class. Consider the relationship illustrated in Figure 9.1.

Figure 9.1 Simple Single-Inheritance Graph

Note the progression from general to specific in Figure 9.1. Another common
attribute found in the design of most class hierarchies is that the derived class has
a "kind of' relationship with the base class. In Figure 9.1, a Book is a kind of a
Pri ntedDocument, and a PaperbackBook is a kind of a book.

One other item of note in Figure 9.1: Book is both a derived class (from
Pri ntedDocument) and a base class (PaperbackBook is derived from Book). A
skeletal declaration of such a class hierarchy is shown in the following example:

class PrintedDocument
{

I I Member 1 i st.
} :

II Book is derived from PrintedDocument.
class Book public PrintedDocument
{

II Member list.
} :

II PaperbackBook is derived from Book.
class PaperbackBook : public Book
{

I I Member 1 i st.
} :

Pri ntedDocument is considered a "direct base" class to Book; it is an "indirect
base" class to PaperbackBook. The difference is that a direct base class appears in
the base list of a class declaration and an indirect base does not.

The base class from which each class is derived is declared before the declaration of
the derived class. It is not sufficient to provide a forward-referencing declaration for
a base class; it must be a complete declaration.

In the preceding example, the access specifier public is used. The meaning of public,
protected, and private inheritance is described in Chapter 10, "Member-Access
Control."

Chapter 9 Derived Classes

A class can serve as the base class for many specific classes, as illustrated in
Figure 9.2.

Figure 9.2 Sample of Directed Acyclic Graph

Document

In the diagram in Figure 9.2, called a "directed acyclic graph" (or "DAG"), some of
the classes are base classes for more than one derived class. However, the reverse is
not true: there is only one direct base class for any given derived class. The graph in
Figure 9.2 depicts a "single inheritance" structure.

Note Directed acyclic graphs are not unique to single inheritance. They are also used to depict
multiple-inheritance graphs. This topic is covered in "Multiple Inheritance" on page 262.

In inheritance, the derived class contains the members of the base class plus any new
members you add. As a result, a derived class can refer to members of the base class
(unless those members are redefined in the derived class). The scope-resolution
operator (::) can be used to refer to members of direct or indirect base classes when
those members have been redefined in the derived class. Consider this example:

class Document
{

public:
char *Name;
void PrintNameOf();

} ;

II Document name.
II Print name.

II Implementation of PrintNameOf function from class Document.
void Document::PrintNameOf()
{

cout « Name « endl;

class Book public Document
{

public:
Book(char *name, long pagecount);

private:
long PageCount;

} ;

II Constructor from class Book.
Book::Book(char *name, long pagecount

259

c++ Language Reference

260

{

} ;

Name = new char[strlen(name) + 1];
strcpy(Name r name);
PageCount = pagecount;

Note that the constructor for Book, (Book: : Book), has access to the data member,
Name. In a program, an object of type Book can be created and used as follows:

II Create a new object of type Book. This invokes the
II constructor Book::Book.
Book LibraryBook("Programming Windows, 2nd Ed", 944);

II Use PrintNameOf function inherited from class Document.
LibraryBook.PrintNameOf();

As the preceding example demonstrates, class-member and inherited data and
functions are used identically. If the implementation for class Boo k calls for a
reimplementation of the P r i n t N am e 0 f function, the function that belongs to the
Document class can be called only by using the scope-resolution (::) operator:

class Book: public Document
{

} ;

Book(char *name, long pagecount);
void PrintNameOf();
long PageCount;

void Book::PrintNameOf()
{

}

cout « "Name of book: ".
Document::PrintNameOf();

Pointers and references to derived classes can be implicitly converted to pointers and
references to their base classes if there is an accessible, unambiguous base class. The
following code demonstrates this concept using pointers (the same principle applies
to references):

#include <iostream.h>

void main()
{

Document *DocLib[10]; II Library of ten documents.

for(int = 0; i < 10; ++i)
{

cout « "Type of document: "
« "P)aperback, M)agazine, H)elp File, C)BT"
« endl;

Chapter 9 Derived Classes

char cDocType;
ci n » cDocType;

switch(tolower(cDocType))
{

case 'p':
DocLib[i] new PaperbackBook;
break;

case 'm':
DocLib[i] new Magazine;
break;

case 'h':
DocLib[i] new HelpFile;
break;

case 'c':
DocLib[i] new ComputerBasedTraining;
break;

default :
- - i ;
break;

for (i = 0; i < 10; ++i)
DocLib[i]->PrintNameOf();

In the S WIT C H statement in the preceding example, objects of different types are
created, depending on what the user specified for cDocType. However, because
these types are all derived from the Document class, there is an implicit conversion
to Document *. As a result, Doc Lib is a "heterogeneous list" (a list in which not
all objects are of the same type) containing different kinds of objects.

Because the Document class has a Pri ntNameOf function, it can print the name
of each book in the library, although it may omit some of the information specific
to the type of document (page count for Boo k, number of bytes for He 1 p F i 1 e,
and so on).

Note Forcing the base class to implement a function such as Pri ntNameOf is often not
the best design. "Virtual Functions" on page 270 offers other design alternatives.

261

c++ Language Reference

Multiple Inheritance
Later versions of c++ introduced a "multiple inheritance" model for inheritance.
In a multiple-inheritance graph, the derived classes may have a number of direct
base classes. Consider the graph in Figure 9.3.

Figure 9.3 Simple Multiple-Inheritance Graph

The diagram in Figure 9.3 shows a class, Co II ect i bleSt ri ng. It is like a
Co II ect i b 1 e (something that can be contained in a collection), and it is like a
Stri ng. Multiple inheritance is a good solution to this kind of problem (where a
derived class has attributes of more than one base class) because it is easy to form a
Coll ecti bl eCustomer, Coll ecti bl eWi ndow, and so on.

lf the properties of either class are not required for a particular application, either class
can be used alone or in combination with other classes. Therefore, given the hierarchy
depicted in Figure 9.3 as a basis, you can form noncollectible strings and collectibles
that are not strings. This flexibility is not possible using single inheritance.

Virtual Base Class Hierarchies

262

Some class hierarchies are broad but have many things in common. The common code
is implemented in a base class, whereas the specific code is in the derived classes.

It is important for the base classes to establish a protocol through which the
derived classes can attain maximum functionality. These protocols are commonly
implemented using virtual functions. Sometimes the base class provides a default
implementation for such functions. In a class hierarchy such as the Document
hierarchy in Figure 9.2, two useful functions are Ide n t i f y and W her e Is.

When called, the Ide n t i f y function returns a correct identification, appropriate to
the kind of document: For aBo 0 k, a function call such as doc -> Ide n t i f y () must
return the ISBN number; however, for a He 1 pFi 1 e, a product name and revision
number are probably more appropriate. Similarly, W her e I s should return a row and
shelf for aBo 0 k, but for a He 1 p F i 1 e it should return a disk location -perhaps a
directory and filename.

It is important that all implementations of the Ide n t i f y and W her e I s functions
return the same kind of information. In this case, a character string is appropriate.

These functions are implemented as virtual functions and then invoked using a pointer
to a base class. The binding to the actual code occurs at run time, selecting the correct
Identi fy or WhereIs function.

Chapter 9 Derived Classes

Class Protocol Implementation
Classes can be implemented to enforce a protocol. These classes are called
"abstract classes" because no object of the class type can be created. They exist
solely for derivation.

Classes are abstract classes if they contain pure virtual functions or if they inherit
pure virtual functions and do not provide an implementation for them. Pure
virtual functions are virtual functions declared with the pure-specifier (= 0),
as follows:

virtual char *Identify() = 0;

The base class, Document, might impose the following protocol on all derived
classes:

• An appropriate Ide n t i f y function must be implemented.

• An appropriate W her e I s function must be implemented.

By specifying such a protocol when designing the Document class, the class designer
can be assured that no nonabstract class can be implemented without I dent i fy and
Whe re I s functions. The Document class, therefore, contains these declarations:

class Document
{

public:

} ;

II Requirements for derived classes: They must implement
II these functions.
virtual char *Identify() = 0;
virtual char *Wherels() = 0;

Base Classes
As discussed previously, the inheritance process creates a new derived class that is
made up of the members of the base class(es) plus any new members added by the
derived class. In a multiple-inheritance, it is possible to construct an inheritance
graph where the same base class is part of more than one of the derived classes.
Figure 9.4 shows such a graph.

In Figure 9.4, pictorial representations of the components of Co 11 e c t i b 1 eSt r i n 9
and Coll ecti bl eSortabl e are shown. However, the base class, Coll ecti bl e, is
in Coll ecti bl eSortabl eStri ng through the Coll ecti bl eStri ng path and the
Co 11 e c t i b 1 e S 0 r tab 1 e path. To eliminate this redundancy, such classes can be
declared as virtual base classes when they are inherited.

For information about declaring virtual base classes and how objects with virtual base
classes are composed, see "Virtual Base Classes" on page 265.

263

c++ Language Reference

Figure 9.4 Multiple Instances of a Single Base Class

CollectibleSortableString

ColiectibleString

Collectible

String

new members

CollectibleSortable

Collectible

Sortable

new members

Multiple Base Classes

264

As described in "Multiple Inheritance" on page 262, a class can be derived from more
than one base class. In a multiple-inheritance model (where classes are derived from
more than one base class), the base classes are specified using the base-list grammar
element (see Syntax in "Overview of Derived Classes" on page 257). For example, the
class declaration for Co 11 ect i onOfBook, derived from Co 11 ect i on and Book, can
be specified:

class CollectionOfBook : public Book. public Collection
{

II New members
} ;

The order in which base classes are specified is not significant except in certain cases
where constructors and destructors are invoked. In these cases, the order in which
base classes are specified affects the following:

• The order in which initialization by constructor takes place. If your code relies on
the Book portion of Co 11 ect i onOfBook to be initialized before the Co 11 ect ion
part, the order of specification is significant. Initialization takes place in the order
the classes are specified in the base-list.

• The order in which destructors are invoked to clean up. Again, if a particular "part"
of the class must be present when the other part is being destroyed, the order is
significant. Destructors are called in the reverse order of the classes specified in
the base-list.

Note The order of specification of base classes can affect the memory layout of the class.
Do not make any programming decisions based on the order of base members in memory.

When specifying the base-list, you cannot specify the same class name more than
once. However, it is possible for a class to be an indirect base to a derived class more
than once.

Chapter 9 Derived Classes

Virtual Base Classes
Because a class can be an indirect base class to a derived class more than once, C++
provides a way to optimize the way such base classes work. Consider the class
hierarchy in Figure 9.5, which illustrates a simulated lunch line.

Figure 9.5 Simulated Lunch-Line Graph

In Figure 9.5, Queue is the base class for both Cas hi erQueue and LunchQueue.
However, when both classes are combined to form LunchCashi erQueue, the
following problem arises: the new class contains two subobjects of type Que u e,
one from Cashi erQueue and the other from LunchQueue. Figure 9.6 shows the
conceptual memory layout (the actual memory layout might be optimized).

Figure 9.6 Simulated Lunch-Line Object

I···· "'cas~~;6~eue"""'1
1········LU·~~6~:~~········1

LunchCashierQueue

Note that there are two Queue subobjects in the LunchCashi erQueue object. The
following code declares Queue to be a virtual base class:

class Queue
{

II Member list
} :

class CashierQueue virtual public Queue
{

II Member list
} :

class LunchQueue : virtual public Queue
{

II Member list
} :

class LunchCashierQueue public LunchQueue, public CashierQueue
{

II Member list
} :

265

c++ Language Reference

266

The vi rtua 1 keyword ensures that only one copy of the subobject Queue is included
(see Figure 9.7).

Figure 9.7 Simulated Lunch-Line Object with Virtual Base Classes

1· .. ····c~~·hie~Q"~e~e··~~r~····L~~~hQ~eu~········1
LunchCashierQueue

A class can have both a virtual component and a nonvirtual component of a given
type. This happens in the conditions illustrated in Figure 9.8.

Figure 9.8 Virtual and Nonvirtual Components of the Same Class

In Figure 9.8., Cashi erQueue and LunchQueue use Queue as a virtual base class.
However, Ta keoutQueue specifies Queue as a base class, not a virtual base class.
Therefore, LunchTakeoutCashi erQueue has two subobjects of type Queue: one
from the inheritance path that includes LunchCashi erQueue and one from the path
that includes Ta keoutQueue. This is illustrated in Figure 9.9.

Figure 9.9 Object Layout with Virtual and Nonvirtuallnheritance

1······;cashieroueue .. 2~r~····Lu~ChQ~eue···~· .. ·1 Queue
............ "' ,.

LunchCashierQueue TakeoutQueue

Lunch TakeoutCashierQueue ..

, , ~,~. , »~,

Note Virtual inheritance provides significant size benefits when compared with nonvirtual
inheritance. However, it can introduce extra processing overhead.

If a derived class overrides a virtual function that it inherits from a virtual base class,
and if a constructor or a destructor for the derived base class calls that function using
a pointer to the virtual base class, the compiler may introduce additional hidden
"vtordisp" fields into the classes with virtual bases. The /vdO compiler option
suppresses the addition of the hidden vtordisp constructor/destructor displacement

Chapter 9 Derived Classes

member. The Ivdl compiler option, the default, enables them where they are
necessary. Tum off vtordisps only if you are sure that all class constructors and
destructors call virtual functions virtually.

The Ivd compiler option affects an entire compilation module. Use the vtordisp
pragma to suppress and then reenable vtordisp fields on a class-by-class basis:

#pragma vtordisp(off)
class GetReal : virtual public { ... };
#pragma vtordisp(on)

N arne Ambiguities
Multiple inheritance introduces the possibility for names to be inherited along more
than one path. The class-member names along these paths are not necessarily unique.
These name conflicts are called "ambiguities."

Any expression that refers to a class member must make an unambiguous reference.
The following example shows how ambiguities develop:

II Declare two base classes, A and B.
class A
{

public:

} ;

unsigned a;
unsigned b();

class B
{

public:
unsigned a(); II Note that class A also has a member "a"
int b(); II and a member "b".
char c;

} ;

II Define class C as derived from A and B.
class C : public A, public B
{

} ;

Given the preceding class declarations, code such as the following is ambiguous
because it is unclear whether b refers to the b in A or in B:

C *pc = new C;

pc-)b();

Consider the preceding example. Because the name a is a member of both class A and
class B, the compiler cannot discern which a designates the function to be called.
Access to a member is ambiguous if it can refer to more than one function, object,
type, or enumerator.

267

c++ Language Reference

268

The compiler detects ambiguities by performing tests in this order:

1. If access to the name is ambiguous (as just described), an error message is
generated.

2. If overloaded functions are unambiguous, they are resolved. (For more information
about function overloading ambiguity, see "Argument Matching" on page 329 in
Chapter 12.)

3. If access to the name violates member-access permission, an error message is
generated. (For more information, see Chapter 10, "Member-Access Control.")

When an expression produces an ambiguity through inheritance, you can manually
resolve it by qualifying the name in question with its class name. To make the
preceding example compile properly with no ambiguities, use code such as:

C *pc = new C;

pc->B::a();

Note When C is declared, it has the potential to cause errors when B is referenced in the
scope of C. No error is issued, however, until an unqualified reference to B is actually made in
C's scope.

Ambiguities and Virtual Base Classes
If virtual base classes are used, functions, objects, types, and enumerators can be
reached through multiple-inheritance paths. Because there is only one instance of the
base class, there is no ambiguity when accessing these names.

Figure 9.10 shows how objects are composed using virtual and nonvirtual inheritance.

Figure 9.10 Virtual VS. Nonvirtual Derivation

IBlcl
D

'~ ____________ ~ ____________ -J/

[Virtual

In Figure 9.10, accessing any member of class A through nonvirtual base classes
causes an ambiguity; the compiler has no information that explains whether to use
the subobject associated with B or the subobject associated with C. However, when
A is specified as a virtual base class, there is no question which subobject is being
accessed.

Chapter 9 Derived Classes

Dominance
It is possible for more than one name (function, object, or enumerator) to be reached
through an inheritance graph. Such cases are considered ambiguous with nonvirtual
base classes. They are also ambiguous with virtual base classes, unless one of the
names "dominates" the others.

A name dominates another name if it is defined in both classes and one class is
derived from the other. The dominant name is the name in the derived class; this name
is used when an ambiguity would otherwise have arisen, as shown in the following
example:

class A
{

public:
int a:

} :

class B : public virtual A
{

public:
int a():

} :

class C public virtual A
{

} :

class D : public B, public C
{

public:
D() { a(): } II Not ambiguous. B::a() dominates A::a.

} :

Ambiguous Conversions
Explicit and implicit conversions from pointers or references to class types can
cause ambiguities. Figure 9.11 shows the following:

• The declaration of an object of type D.

• The effect of applying the address-of operator (&) to that object. Note that the
address-of operator always supplies the base address of the object.

• The effect of explicitly converting the pointer obtained using the address-of
operator to the base-class type A. Note that coercing the address of the
object to type A * does not always provide the compiler with enough
information as to which subobject of type A to select; in this case, two
subobjects exist.

269

c++ Language Reference

The conversion to type A * (pointer to A) is ambiguous because there is no way to
discern which subobject of type A is the correct one. Note that you can avoid the
ambiguity by explicitly specifying which subobject you mean to use, as follows:

(A *) (B *)&d
(A *) (C *)&d

II Use B subobject.
II Use C subobject.

Figure 9.11 Ambiguous Conversion of Pointers to Base Classes

D d;

v
0 &d
B

(A*)&d

0

Virtual Functions

270

"Virtual functions" are functions that ensure that the correct function is called for an
object, regardless of the expression used to make the function call.

Suppose a base class contains a function declared as virtual and a derived class
defines the same function. The function from the derived class is invoked for objects
of the derived class, even if it is called using a pointer or reference to the base class.
The following example shows a base class that provides an implementation of the
Pri ntBa 1 a nce function:

class Account
{

public:
Account(double d);

virtual double GetBalance();
virtual void PrintBalance();

private:
double _balance;

} ;

II Constructor.
II Obtain balance.
II Default implementation.

II Implementation of constructor for Account.
double Account::Account(double d)
{

_balance = d;
}

II Implementation of GetBalance for Account.
double Account::GetBalance()
{

return _balance;

Chapter 9 Derived Classes

II Default implementation of PrintBalance.
void Account::PrintBalance()
{

cerr« "Error. Balance not available for base type."
« endl;

1\vo derived classes, Checki ngAccount and Savi ngsAccount, can be created as
follows:

class CheckingAccount : public Account
{

public:
void PrintBalance();

} ;

II Implementation of PrintBalance for CheckingAccount.
void CheckingAccount::PrintBalance()
{

cout« "Checking account balance: "« GetBalance();

class SavingsAccount : public Account
{

public:
void PrintBalance();

} ;

II Implementation of PrintBalance for SavingsAccount.
void SavingsAccount::PrintBalance()
{

cout « "Savings account balance: " « GetBalance();

The P r i n t B a 1 an c e function in the derived classes is virtual because it is declared as
virtual in the base class, Account. To call virtual functions such as Pri ntBa 1 ance,
code such as the following can be used:

II Create objects of type CheckingAccount and SavingsAccount.
CheckingAccount *pChecking new CheckingAccount(100.00);
SavingsAccount *pSavings = new SavingsAccount(1000.00);

II Call PrintBalance using a pointer to Account.
Account *pAccount = pChecking;
pAccount-)PrintBalance();

II Call PrintBalance using a pointer to Account.
pAccount = pSavings;
pAccount-)PrintBalance();

In the preceding code, the calls to Pri ntBa 1 ance are identical, except for the object
pAccount points to. Because Pri ntBal ance is virtual, the version of the function
defined for each object is called. The P r in t B a 1 an ce function in the derived classes
Checki ngAccount and Savi ngsAccount "override" the function in the base class
Account.

271

c++ Language Reference

272

If a class is declared that does not provide an overriding implementation of the
Pri ntBal ance function, the default implementation from the base class Account
is used.

Functions in derived classes override virtual functions in base classes only if their
type is the same. A function in a derived class cannot differ from a virtual function
in a base class in its return type only; the argument list must differ as well.

When calling a function using pointers or references, the following rules apply:

• A call to a virtual function is resolved according to the underlying type of object
for which it is called.

• A call to a nonvirtual function is resolved according to the type of the pointer or
reference.

The following example shows how virtual and nonvirtual functions behave when
called through pointers:

#include <iostream.h>

II Declare a base class.
class Base
{

public:
virtual void NameOf();

void InvokingClass();
} ;

II Implement the two functions.
void Base::NameOf()
{

cout « "Base::NameOf\n";
}

void Base::InvokingClass()
{

cout « "Invoked by Base\n";
}

II Declare a derived class.
class Derived: public Base
{

public:

II Virtual function.
II Nonvirtual function.

void NameOf(); II Virtual function.
void InvokingClass(); II Nonvirtual function.

} ;

II Implement the two functions.
void Derived::NameOf()
{

cout « "Derived::NameOf\n";
}

Chapter 9 Derived Classes

void Derived::InvokingClass()
{

cout « "Invoked by Derived\n";

void main()
{

II Declare an object of type Derived.
Derived aDerived;
II Declare two pointers. one of type Derived * and the other
II of type Base *. and initialize them to point to aDerived.
Derived *pDerived = &aDerived;
Base *pBase = &aDerived;
II Call the functions.
pBase->NameOf();
pBase->InvokingClass();
pDerived->NameOf();
pDerived->InvokingClass();

The output from this program is:

Derived::NameOf
Invoked by Base
Derived::NameOf
Invoked by Derived

II Call virtual function.
I I Ca 11 nonvi rtua 1 function.
I I Call vi rtual functi on.
I I Ca 11 nonvi rtua 1 function.

Note that regardless of whether the NameOf function is invoked through a pointer to
Bas e or a pointer to De r i v ed, it calls the function for De r i v e d. It calls the function
for Deri ved because NameOf is a virtual function, and both pBase and pDeri ved
point to an object of type De ri ved.

Because virtual functions are called only for objects of class types, you cannot declare
global or static functions as virtual.

The virtual keyword can be used when declaring overriding functions in a derived
class, but it is unnecessary; overrides of virtual functions are always virtual.

Virtual functions in a base class must be defined unless they are declared using the
pure-specifier. (For more information about pure virtual functions, see "Abstract
Classes" on page 274.)

The virtual function-call mechanism can be suppressed by explicitly qualifying the
function name using the scope-resolution operator (::). Consider the preceding
example. To call Pri ntBa 1 ance in the base class, use code such as the following:

CheckingAccount *pChecking = new CheckingAccount(100.00);

pChecking->Account::PrintBalance(); II Explicit qualification.

Account *pAccount = pChecking;

pAccount->Account::PrintBalance();

II Call AccDunt::PrintBalance

II Explicit qualification .

. Both calls to P r i n t B a 1 an c e in the preceding example suppress the virtual
function-call mechanism.

273

c++ Language Reference

Abstract Classes
Abstract classes act as expressions of general concepts from which more specific
classes can be derived. You cannot create an object of an abstract class type; however,
you can use pointers and references to abstract class types.

A class that contains at least one pure virtual function is considered an abstract class.
Classes derived from the abstract class must implement the pure virtual function or
they, too, are abstract classes.

A virtual function is declared as "pure" by using the pure-specifier syntax (described
in "Class Protocol Implementation" on page 263). Consider the example presented in
"Virtual Functions." The intent of class Account is to provide general functionality,
but objects of type Account are too general to be useful. Therefore, Account is a
good candidate for an abstract class:

class Account
{

public:
AccountC double d);

virtual double GetBalanceC);
virtual void PrintBalance() = 0;

private:
double _balance;

} ;

II Constructor.
II Obtain balance.
II Pure virtual function.

The only difference between this declaration and the previous one is that
Pri ntBal ance is declared with the pure specifier (= 0).

Restrictions on Using Abstract Classes

274

Abstract classes cannot be used for:

• Variables or member data

• Argument types

• Function return types

• Types of explicit conversions

Another restriction is that if the constructor for an abstract class calls a pure virtual
function, either directly or indirectly, the result is undefined. However, constructors
and destructors for abstract classes can call other member functions.

Pure virtual functions can be defined for abstract classes, but they can be called
directly only by using the syntax:

abstract-class-name :: function-name()

Chapter 9 Derived Classes

This helps when designing class hierarchies whose base class(es) include pure virtual
destructors, because base class destructors are always called in the process of
destroying an object. Consider the following example:

#include <iostream.h>

II Declare an abstract base class with a pure virtual destructor.
class base
(

public:
base() {}
virtual -base()=0;

} ;

II Provide a definition for destructor.
base: :-base()
{
}

class derived:public base
(

public:

} ;

derived() {}
-derived()(}

void maine)
{

derived *pDerived - new derived;

delete pDerived;

When the object pointed to by pDeri ved is deleted, the destructor for class deri ved
is called and then the destructor for class bas e is called. The empty implementation
for the pure virtual function ensures that at least some implementation exists for the
function.

Note In the preceding example, the pure virtual function bas e: : b as e is called implicitly
from de r i v e d : : d e r i v e d. It is also possible to call pure virtual functions explicitly using a
fully qualified member-function name.

Summary of Scope Rules
This section supplements "Scope" on page 22 in Chapter 2 by adding the concepts
pertaining to classes. The following topics are included:

• Ambiguity

• Global names

• Names and qualified names

• Function argument names

• Constructor initializers

275

c++ Language Reference

Ambiguity
The use of a name must be unambiguous within its scope (up to the point where
overloading is determined). If the name denotes a function; the function must be
unambiguous with respect to number and type of arguments. If the name remains
unambiguous, member-access rules are applied.

Global Names
A name of an object, function, or enumerator is global if it is introduced outside any
function or class or prefixed by the global unary scope operator (::), and if it is not
used in conjunction with any of these binary operators:

• Scope-resolution (::)

• Member-selection for objects and references (.)

• Member-selection for pointers (-»

Names and Qualified Names

276

Names used with the binary scope-resolution operator (::) are called "qualified
names." The name specified after the binary scope-resolution operator must be a
member of the class specified on the left of the operator or a member of its base
class(es).

Names specified after the member-selection operator (. or -» must be members of
the class type of the object specified on the left of the operator or members of its base
class(es). Names specified on the right of the member-selection operator (-» can also
be objects of another class type, provided that the left-hand side of -> is a class object
and that the class defines an overloaded member-selection operator (-» that evaluates
to a pointer to some other class type. (This provision is discussed in more detail in
"Class Member Access" on page 347 in Chapter 12.)

The compiler searches for names in the following order, stopping when the name is
found:

1. Current block scope if name is used inside a function; otherwise, global scope.

2. Outward through each enclosing block scope, including the outermost function
scope (which includes function arguments).

3. If the name is used inside a member function, the class's scope is searched for the
name.

4. The class's base classes are searched for the name.

S. The enclosing nested class scope (if any) and its bases are searched. The search
continues until the outermost enclosing class scope is searched.

6. Global scope is searched.

Chapter 9 Derived Classes

However, you can make modifications to this search order as follows:

1. Names preceded by:: force the search to begin at global scope.

2. Names preceded by the class, struct, and union keywords force the compiler to
search only for class, struct, or union names.

3. Names on the left side of the scope-resolution operator (::) can be only class,
struct, or union names.

If the name refers to a nonstatic member but is used in a static member function, an
error message is generated. Similarly, if the name refers to any nonstatic member in
an enclosing class, an error message is generated because enclosed classes do not
have enclosing-class this pointers.

Function Argument Names
Function argument names in function definitions are considered to be in the scope
of the outermost block of the function. Therefore, they are local names and go out
of scope when the function is exited.

Function argument names in function declarations (prototypes) are in local scope
of the declaration and go out of scope at the end of the declaration.

Default arguments are in the scope of the argument for which they are the default,
as described in the preceding two paragraphs. However, they cannot access local
variables or non static class members. Default arguments are evaluated at the point of
the function call, but they are evaluated in the function declaration's original scope.
Therefore, the default arguments for member functions are always evaluated in class
scope.

Constructor Initializers
Constructor initializers (described in "Initializing Bases and Members" on page 317
in Chapter 11) are evaluated in the scope of the outermost block of the constructor for
which they are specified. Therefore, they can use the constructor's argument names.

277

C HAP T E R 1 0

Member-Access Control

. With C++, you can specify the level of access to member data and functions. There
are three levels of access: public, protected, and private. This chapter explains how
access control applies to objects of class type and to derived classes. This chapter
includes the following topics:

• Controlling access to class members

• . Access specifiers

• Access specifiers for base classes

o Friends

• Protected member access

• Access to virtual functions

• Multiple access

Controlling Access to Class Members
You can increase the integrity of software built with C++ by controlling access to
class member data and functions. Class members can be declared as having private,
protected, or public access, as shown in Table 10.1.

Table 10.1 Member·Access Control

Type of Access

private

protected

public

Meaning

Class members declared as private can be used only by member
functions and friends (classes or functions) of the class.

Class members declared as protected can be used by member
functions and friends (classes or functions) of the class. Additionally,
they can be used by classes derived from the class.

Class members declared as public can be used by any function.

Access control prevents you from using objects in ways they were not intended to be
used. This protection is lost when explicit type conversions (casts) are performed.

279

c++ Language Reference

Note Access control is equally applicable to all names: member functions, member data,
nested classes, and enumerators.

The default access to class members (members of a class type declared using the class
keyword) is private; the default access to struct and union members is public. For
either case, the current access level can be changed using the public, private, or
protected keyword.

Access Specifiers

280

In class declarations, members can have access specifiers.

Syntax
access-specifier : member-!istopt

The access-specifier determines the access to the names that follow it, up to the next
access-specifier or the end of the class declaration. Figure 10.1 illustrates this concept.

Figure 10.1 Access Control in Classes

class Point
{

public:
Point (int,
Point () ;

int &x(int
int &y(int

private:
lint _x;
lnt -y;

} ;

,
int) ;

-
) ;

) ;

I}

-

.-

This public access specifier affects all
members until the next access specifier.

This private access specifier affects all members
until the class end. (If more access specifiers
followed, private would affect all the members
until the next access specifier.)

Although only two access specifiers are shown in Figure 10.1, there is no limit to
the number of access specifiers in a given class declaration. For example, the Point
class in Figure 10.1 could just as easily be declared using multiple access specifiers
as follows:

class Point
{

public: II Declare public constructor.
Pointe int, int) ;

private: II Declare private state variable.
int x' - ,

public: II Declare public constructor.
Pointe);

public: II Declare public accessor.
int &x(int) ;

Chapter 10 Member-Access Control

private:
int 3;

public:

II Declare private state variable.

II Declare public accessor.
int &y(int);

} ;

Note that there is no specific order required for member access, as shown in the
preceding example. The allocation of storage for objects of class types is
implementation dependent, but members are guaranteed to be assigned successively
higher memory addresses between access specifiers.

Access Specifiers for Base Classes
1\vo factors control which members of a base class are accessible in a derived class;
these same factors control access to the inherited members in the derived class:

• Whether the derived class declares the base class using the public access specifier
in the class-head (class-head is described in Syntax in "Defining Class Types"
on page 232 in Chapter 8).

• What the access to the member is in the base class.

Table 10.2 shows the interaction between these factors and how to determine
base-class member access.

Table 10.2 Member Access in Base Class

private protected

Always inaccessible regardless Private in derived class if
of derivation access you use private derivation

Protected in derived class if
you use protected derivation

Protected in derived class if
you use public derivation

The following example illustrates this:

class BaseClass
{

public:

public

Private in derived class if
you use private derivation

Protected in derived class if
you use protected derivation

Public in derived class if you
use public derivation

int PublicFunc(); II Declare a public member.
protected:

int ProtectedFunc(); II Declare a protected member.
private:

int PrivateFunc(); II Declare a private member.
} ;

II Declare two classes derived from BaseClass.
class DerivedClassl public BaseClass
{ };

class DerivedClass2
{ };

private BaseClass

281

c++ Language Reference

In Deri vedCl assl, the member function Publ i cFunc is a public member and
ProtectedFunc is a protected member because BaseCl ass is a public base class.
P r i vat e Fun c is private to Bas e C 1 ass, and it is inaccessible to any derived classes.

In Deri vedCl ass2, the functions Publ i cFunc and ProtectedFunc are considered
private members because BaseCl ass is a private base class. Again, Pri vateFunc is
private to BaseCl ass, and it is inaccessible to any derived classes.

You can declare a derived class without a base-class access specifier. In such a case,
the derivation is considered private if the derived class declaration uses the class
keyword. The derivation is considered public if the derived class declaration uses the
struct keyword. For example, the following code:

class Derived: Base

is equivalent to:

class Derived: private Base

Similarly, the following code:

struct Derived: Base

is equivalent to:

struct Derived: public Base

Note that members declared as having private access are not accessible to functions or
derived classes unless those functions or classes are declared using the friend
declaration in the base class.

A union type cannot have a base class.

Note When specifying a private base class, it is advisable to explicitly use the private keyword
so users of the derived class understand the member access.

Access Control and Static Members

282

When you specify a base class as private, it affects only nonstatic members. Public
static members are still accessible in the derived classes. However, accessing members
of the base class using pointers, references, or objects can require a conversion, at
which time access control is again applied. Consider the following example:

class Base
{

public:
int Print();
static int CountOf();

} ;

II Nonstatic member.
II Static member.

Chapter 10 Member-Access Control

II Derivedl declares Base as a private base class.
class Derived! : private Base
{
} ;
II Derived2 declares Derived! as a public base class.
class Derived2 : public Derived!
{

int ShowCount(); II Nonstatic member.
} ;
II Define ShowCount function for Derived2.
int Derived2::ShowCount()
{

II Call static member function CountOf explicitly.
int cCount = Base::CountOf(); II OK.

II Call static member function CountOf using pointer.
cCount = this->CountOf(); II Error. Conversion of

return cCount;

II Derived2 * to Base * not
II permitted.

In the preceding code, access control prohibits conversion from a pointer to
Deri ved2 to a pointer to Base. The this pointer is implicitly of type Deri ved2 *.
To select the Co u n t 0 f function, this must be converted to type Bas e *. Such a
conversion is not permitted because Ba s e is a private indirect base class to
Deri ved2. Conversion to a private base class type is acceptable only for pointers
to immediate derived classes. Therefore, pointers of type Deri vedl * can be
converted to type Bas e * .
Note that calling the CountOf function explicitly, without using a pointer, reference,
or object to select it, implies no conversion. Therefore, the call is allowed.

Members and friends of a derived class, T, can convert a pointer to T to a pointer to a
private direct base class of T.

Friends
In some circumstances, it is more convenient to grant member-level access to
functions that are not members of a class or to all functions in a separate class. With
the friend keyword, programmers can designate either the specific functions or the
classes whose functions can access not only public members but also protected and
private members.

Friend Functions
Friend functions are not considered class members; they are normal external functions
that are given special access privileges. Friends are not in the class's scope, and they
are not called using the member-selection operators (. and -» unless they are
members of another class. The following example shows a Poi nt class and an
overloaded operator, operator+. (This example primarily illustrates friends, not
overloaded operators. For more information about overloaded operators, see
"Overloaded Operators" on page 336 in Chapter 12.)

283

c++ Language Reference

284

#include <iostream.h>

II Declare class Point.
class' Point
{

public:
II Constructors
Pointe) { _x = -y = 0; }
Pointe unsigned x, unsigned y) { _x = x; -y = y; }
II Accessors
unsigned xC) { return _x; }
unsigned y() { return -y; }
v 0 i d P r i n t () { co u t < < "P 0 i n t (" « _x < <" "< < -y < < ")"

« endl: }

II Friend function declarations
friend Point operator+(Point& pt, int nOffset):
friend Point operator+(int nOffset, Point& pt);

private:
unsigned _x;
unsigned -y;

} ;

II Friend-function definitions
II
II Handle Point + int expression.
Point operator+(Point& pt, int nOffset
{

}

Point ptTemp - pt;
II Change private members x and -y directly.
ptTemp._x += nOffset;
ptTemp.-y += nOffset;

return ptTemp:

II Handle int + Point expression.
Point operator+(int nOffset, Point& pt)
{

}

Point ptTemp = pt;
II Change private members x and -y directly.
ptTemp._x += nOffset;
ptTemp.-y += nOffset;

return ptTemp;

II Test overloaded operator.
void maine)
{

Point pte 10, 20) ;
pt.Print();

pt = pt + 3; II Point + int
pt.Print();

pt = 3 + pt; II int + Point
pt.Print();

}

Chapter 10 Member-Access Control

When the expression pt + 3 is encountered in the rna; n function, the compiler
determines whether an appropriate user-defined operator+ exists. In this case,
the function operator+(Po; nt pt. ; nt nOffset) matches the operands,
and a call to the function is issued. Inthe second case (the expression 3 + pt), the
function operator+(Po; nt pt. ; nt nOffset) matches the supplied operands.
Therefore, supplying these two forms of operator+ preserves the commutative
properties of the + operator.

A user-defined operator+ can be written as a member function, but it takes only one
explicit argument: the value to be added to the object. As a result, the commutative
properties of addition cannot be correctly implemented with member functions; they
must use friend functions instead.

Notice that both versions of the overloaded operator+ function are declared as
friends in class Po; n t. Both declarations are necessary - when friend declarations
name overloaded functions or operators, only the particular functions specified by the
argument types become friends. Suppose a third operator+ function were declared
as follows:

Point &operator+(Point &pt. Point &pt);

The operator+ function in the preceding example is not a friend of class Po; nt,
simply because it has the same name as two other functions that are declared as
friends.

Because friend declarations are unaffected by access specifiers, they can be declared
in any section of the class declaration.

Class Member Functions and Classes as Friends
Class member functions can be declared as friends in other classes. Consider the
following example:

class A
{

private:
int _a;
friend int B::Funcl(A); II Grant friend access to one

II function in class B.
} ;

class B
{

public:

} ;

i nt Funcl(A a
int Func2(A a

return a._a;
return a._a;

II OK: this is a friend.
II Error: a is a private
II member.

285

c++ Language Reference

In the preceding example, only the function B : : Fun c 1 (A) is granted friend access
to class A. Therefore, access to the private member _a is correct in function b of class
B but not in function c.

Suppose the friend declaration in class A had been:

friend class B;

In that case, all member functions in class B would have been granted friend access to
class A. Note that "friendship" cannot be inherited, nor is there any "friend of a friend"
access. Figure 10.2 shows four class declarations: Base, Deri ved, aFri end, and
an 0 the r F r i end. Only class a F r i end has direct access to the private members of
Base (and to any members Base might have inherited).

Figure 10.2 Implications of friend Relationship

class anotherFriend
{

No friend of friend r }:
relationship

X~~··~w~~~~~~
class Base
{

friend class afriend;
t-

class aFriend
(

friend class anotherFriend:
} ; I };

~============~. X , J Inheritance does not imply class Derived: public Base
{

} :
the same friends

Friend Declarations

286

If you declare a friend function that was not previously declared, that funCtion is
exported to the enclosing nonclass scope.

Functions declared in a friend declaration are treated as if they had been declared
using the extern keyword. (For more information about extern, see "Static
Storage-Class Specifiers" on page 153 in Chapter 6.)

Although functions with global scope can be declared as friends prior to their
prototypes, member functions cannot be declared as friends before the appearance
of their complete class declaration. The following code shows why this fails:

class ForwardDeclared;

class HasFriends
{

II Class name is known.

friend int ForwardDeclared::lsAFriend(); II Error.
} ;

Chapter 10 Member-Access Control

The preceding example enters the class name F 0 rw a r d Dec 1 are d into scope,
but the complete declaration- specifically, the portion that declares the function
I sA F r i end - is not known. Therefore, the friend declaration in class Has F r i end s
generates an error.

To declare two classes that are friends of one another, the entire second class must
be specified as a friend of the first class. The reason for this restriction is that the
compiler has enough information to declare individual friend functions only at the
point where the second class is declared.

Note Although the entire second class must be a friend to the first class, you can select which
functions in the first class will be friends of the second class.

Defining Friend Functions in Class Declarations
Friend functions can be defined inside class declarations. These functions are inline
functions, and like member inline functions they behave as though they were defined
immediately after all class members have been seen but before the class scope is
closed (the end of the class declaration).

Friend functions defined inside class declarations are not considered in the scope of
the enclosing class; they are in file scope.

Protected Member Access
Class members declared as protected can be used only by the following:

• Member functions of the class that originally declared these members.

• Friends of the class that originally declared these members.

• Classes derived with public or protected access from the class that originally
declared these members.

• Direct privately derived classes that also have private access to protected members.

Protected members are not as private as private members, which are accessible only
to members of the class in which they are declared, but they are not as public as
public members, which are accessible in any function.

Protected members that are also declared as static are accessible to any friend or
member function of a derived class. Protected members that are not declared as static
are accessible to friends and member functions in a derived class only through a
pointer to, reference to, or object of the derived class.

287

c++ Language Reference

Access to Virtual Functions
The access control applied to virtual functions is determined by the type used to make
the function call. Overriding declarations of the function do not affect the access
control for a given type. For example:

class VFuncBase
{

public:
virtual int GetState() { return _state: }

protected:
int _state:

} :

class VFuncDerived public VFuncBase
{

private:
int GetState() { return _state: }

} :

VFuncDerived vfd:
VFuncBase *pvfb = &vfd:
VFuncDerived *pvfd = &vfd:
int State:

State = pvfb-)GetState():
State = pvfd-)GetState():

II Object of derived type.
II Pointer to base type.
II Pointer to derived type.

II GetState is public.
II GetState is private: error.

In the preceding example, calling the virtual function Get S tat e using a pointer to
type V FuncBase calls V FuncDe r; ved: : GetState, and GetState is treated as
public. However, calling Get S tat e using a pointer to type V Fun c De r; v e d is an
access-control violation because GetState is declared private in class
VFuncDer; ved.

Warning The virtual function GetState can be called using a pointer to the base class
V Fun c Bas e. This does not mean that the function called is the base-class version of that
function.

Multiple Access

288

In multiple-inheritance lattices involving virtual base classes, a given name can be
reached through more than one path. Because different access control can be applied
along these different paths, the compiler chooses the path that gives the most access.
See Figure 10.3.

Chapter 10 Member-Access Control

Figure 10.3 Access Along Paths of an Inheritance Graph

I cl ass VBase

. +
class LeftPath : class RightPath :

virtual private VBase virtual public VBase

T T l class Derived: public LeftPath, public RightPath n
In Figure 10.3, a name declared in class VBase is always reached through class
Rig h t Pat h. The right path is more accessible because Rig h t Pat h declares V Bas e as
a public base class, whereas LeftPath declares VBase as private.

289

C HAP T E R 1 1

Special Member Functions

c++ defines several kinds of functions that can be declared only as class members
these are called "special member functions." These functions affect the way objects of
a given class are created, destroyed, copied, and converted into objects of other types.
Another important property of many of these functions is that they can be called
implicitly (by the compiler).

The special member functions are described briefly in the following list:

• Constructors. These functions enable automatic initialization of
objects.

• Destructors. These functions perform cleanup after objects are explicitly
or implicitly destroyed.

• Conversion Functions. These are used to convert between class types
and other types.

• The new operator. This is used to dynamically allocate storage.

• The delete operator. This is used to release storage allocated using
the new operator.

• The assignment operator (operator=). This operator is used when an
assignment takes place.

All of the items in the preceding list can be user-defined for each
class.

Special member functions obey the same access rules as other member functions.
The access rules are described in Chapter 10, "Member-Access Control." Table 11.1
summarizes how member and friend functions behave.

291

c++ Language Reference

Table 11.1 Summary of Function Behavior

Is Function Can Will Compiler
Inherited Can Function Is Function a Generate
from Base Function Be Return a Member or Function if User

Function Type Class? Virtual? Value? Friend? Does Not?

Constructor No No No Member Yes

Copy No No No Member Yes
Constructor

Destructor No Yes No Member Yes

Conversion Yes Yes No Member No

Assignment No Yes Yes Member Yes
(operator=)

new Yes No void* Static No
member

delete Yes No void Static No
member

Other member Yes Yes Yes Member No
functions

Friend No No Yes Friend No
functions

Constructors

292

A member function with the same name as its class is a constructor function.
Constructors cannot return values, even if they have return statements. Specifying a
constructor with a return type is an error, as is taking the address of a constructor.

If a class has a constructor, each object of that type is initialized with the constructor
prior to use in a program. (For more information about initialization, see
"Initialization Using Special Member Functions" on page 314.)

Constructors are called at the point an object is created. Objects are created as:

• Global (file-scoped or externally linked) objects.

• Local objects, within a function or smaller enclosing block.

• Dynamic objects, using the new operator. The new operator allocates an object on
the program heap or "free store."

• Temporary objects created by explicitly calling a constructor. (For more
information, see "Temporary Objects" on page 301.)

• Temporary objects created implicitly by the compiler. (For more information, see
"Temporary Objects" on page 301.)

• Data members of another class. Creating objects of class type, where the class type
is composed of other class-type variables, causes each object in the class to be
created.

Chapter 11 Special Member Functions

• Base class subobject of a class. Creating objects of derived class type causes the
base class components to be created.

What a Constructor Does
A constructor performs various tasks that are not visible to you as the programmer,
even if you write no code for the constructor. These tasks are all associated with
building a complete and correct instance of class type.

In Microsoft C++ (and some other implementations of C++), a constructor:

• Initializes the object's virtual base pointer(s) (vbptr). This step is performed if the
class is derived from virtual base classes.

• Calls base class and member constructors in the order of declaration.

• Initializes the object's virtual function pointers (vfptr). This step is performed if the
class has or inherits virtual functions. Virtual function pointers point to the class's
virtual function table (v-table) and allow correct binding of virtual function calls to
code.

• Executes optional code in the body of the constructor function.

When the constructor is finished, the allocated memory is an object of a given class
type. Because of the steps the constructor performs, "late binding" in the form of
virtual functions can be resolved at the point of a virtual function call. The constructor
has also constructed base classes and has constructed composed objects (objects
included as data members). Late binding is the mechanism by which C++ implements
polymorphic behavior for objects.

Rules for Declaring Constructors
A constructor has the same name as its class. Any number of constructors can be
declared, subject to the rules of overloaded functions. (For more information, see
Chapter 12, "Overloading.")

Syntax
class-name (argument-declaration-listopt) cv-mod-listopt

C++ defines two special kinds of constructors, default and copy constructors,
described in Table 11.2.

Table 11.2 Default and Copy Constructors

Kind of Construction

Default constructor

Copy constructor

Arguments

Can be called with no
arguments

Can accept a single argument
of reference to same class type

Purpose

Construct a default object
of the class type

Copy objects of the
class type

293

c++ Language Reference

294

Default constructors can be called with no arguments. However, you can declare
a default constructor with an argument list, provided all arguments have defaults.
Similarly, copy constructors must accept a single argument of reference to the same
class type. More arguments can be supplied, provided all subsequent arguments have
defaults.

If you do not supply any constructors, the compiler attempts to generate a default
constructor. If you do not supply a copy constructor, the compiler attempts to generate
one. These compiler-generated constructors are considered public member functions.
An error is generated if you specify a copy constructor with a first argument that is an
object and not a reference.

A compiler-generated default constructor sets up the object (initializes vftables and
'vbtables, as described previously), and it calls the default constructors for base classes
and members, but it takes no other action. Base class and member constructors are
called only if they exist, are accessible, and are unambiguous.

A compiler-generated copy constructor sets up a new object and performs a
memberwise copy of the contents of the object to be copied. If base class or member
constructors exist, they are called; otherwise, bitwise copying is performed.

If all base and member classes of a class type have copy constructors that accept a
const argument, the compiler-generated copy constructor accepts a single argument
of type const type&. Otherwise, the compiler-generated copy constructor accepts a
single argument of type type&.

You can use a constructor to initialize a const or volatile object, but the constructor
itself cannot be declared as const or volatile. The only legal storage class for a
constructor is inUne; use of any other storage-class modifier, including the __ decIspec
keyword, with a constructor causes a compiler error. Constructors and destructors
cannot specify a calling convention other than __ stdcall.

Constructors of base classes are not inherited by derived classes. When an object of
derived class type is created, it is constructed starting with the base class components;
then it moves to the derived class components. The compiler uses each base class's
constructor as that part of the complete object is initialized (except in cases of virtual
derivation, as described in "Initializing Base Classes" on page 319).

Explicitly Called Constructors
Constructors can be explicitly called in a program to create objects of a given type.
For example, to create two Po; n t objects that describe the ends of a line, the
following code can be written:

DrawLine(Pointe 13. 22). Pointe 87. 91));

Two objects of type Po; nt are created, passed to the function Drawl; ne, and
destroyed at the end of the expression (the function call).

Another context in which a constructor is explicitly calied is in an initialization:

Chapter 11 Special Member Functions

Point pt = Point(7, 11);

An object of type Poi nt is created and initialized using the constructor that accepts
two arguments of type int.

Objects that are created by calling constructors explicitly, as in the preceding two
examples, are unnamed and have a lifetime of the expression in which they are
created. This is discussed in greater detail in "Temporary Objects" on page 301.

Calling Member Functions and Virtual Functions from
Within Constructors
It is usually safe to call any member function from within a constructor because the
object has been completely set up (virtual tables have been initialized and so on) prior
to the execution of the first line of user code. However, it is potentially unsafe for a
member function to call a virtual member function for an abstract base class during
construction or destruction.

Constructors can call virtual functions. When virtual functions are called, the function
invoked is the function defined for the constructor's own class (or inherited from its
bases). The following example shows what happens when a virtual function is called
from within a constructor:

#include <iostream.h>

class Base
(

public:
Base(); II Default constructor.
virtual void f(); II Virtual member function.

} ;

Base: :Base()
(

cout « "Constructing Base sub-object\n";
f(); II Call virtual member function

II from inside constructor.

void Base: :f()
{

cout « "Called Base: :f()\n";

class Derived
(

public Base

public:

} ;

Derived();
void f();

Derived: :Derived()
{

II Default constructor.
II Implementation of virtual
II function f for this class.

295

c++ Language Reference

cout « "Constructing Derived object\n";

void Derived::f()
{

cout « "Called Derived: :f()\n";

void main()
{

Derived d;

When the preceding program is run, the declaration Deri ved d causes the following
sequence of events:

1. The constructor for class Deri ved (Deri ved: : Deri ved) is called.

2. Prior to entering the body of the De r i v e d class's constructor, the constructor for
class Base (Base: : Base) is called.

3. Base:: Base calls the function f, which is a virtual function. Ordinarily,
Deri ved: : f would be called because the object d is of type Deri ved. Because
the Bas e : : Bas e function is a constructor, the object is not yet of the De r i ved
type, and Bas e: : f is called.

Constructors and Arrays
Arrays are constructed only using the default constructor. Default constructors are
constructors that either accept no arguments or for which all arguments have a default.
Arrays are always constructed in ascending order. The initialization for each member
of the array is done using the same constructor.

Order of Construction

296

For derived classes and classes that have class-type member data, the order in which
construction occurs helps you understand what portions of the object you can use in
any given constructor.

Construction and Inheritance
An object of derived type is constructed from the base class to the derived class by
calling the constructors for each class in order. Each class's constructor can rely on its
base classes being completely constructed.

For a complete description of initialization, including the order of initialization, see
"Initializing Bases and Members" on page 317.

Chapter 11 Special Member Functions

Construction and Composed Classes
Classes that contain class-type data members are called "composed classes." When an
object of a composed class type is created, the constructors for the contained classes
are called before the class's own constructor.

For a more information about this kind of initialization, see "Initializing Bases and
Members" on page 317.

Destructors
"Destructor" functions are the inverse of constructor functions. They are called when
objects are destroyed (deallocated). Designate a function as a class's destructor by
preceding the class name with a tilde (-). For example, the destructor for class
String is declared: -String().

The destructor is commonly used to "clean up" when an object is no longer necessary.
Consider the following declaration of a S t r i n 9 class:

#include <string.h>

class String
{

public:
String(char *ch); II Declare constructor
~String(); II and destructor.

private:
char *_text;

} ;

II Define the constructor.
String::String(char *ch)
{

II Dynamically allocate the correct amount of memory.
text = new char[strlen(ch) + 1];

II If the allocation succeeds. copy the initialization string.
if(_text)

strcpy(_text. ch);

II Define the destructor.
String::~String()

{

II Deallocate the memory that was previously reserved
II for this string.
delete[] _text;

In the preceding example, the destructor Stri ng: :-Stri ng uses the delete operator
to deallocate the space dynamically allocated for text storage.

297

c++ Language Reference

Declaring Destructors
Destructors are functions with the same name as the class but preceded by a tilde (...).

Syntax
-class-nameO

or

class-name :: -class-nameO

The first form of the syntax is used for destructors declared or defined inside a class
declaration; the second form is used for destructors defined outside a class declaration.

Several rules govern the declaration of destructors. Destructors:

• Do not accept arguments.

• Cannot specify any return type (including void).

• Cannot return a value using the return statement.

• Cannot be declared as const, volatile, or static. However, they can be invoked for
the destruction of objects declared as const, volatile, or static.

• Can be declared as virtual. Using virtual destructors, you can destroy objects
without knowing their type-the correct destructor for the object is invoked using
the virtual function mechanism. Note that destructors can also be declared as pure
virtual functions for abstract classes.

U sing Destructors

298

Destructors are called when one of the following events occurs:

• An object allocated using the new operator is explicitly deallocated using the
delete operator. When objects are deallocated using the delete operator, memory
is freed for the "most derived object," or the object that is a complete object and
not a subobject representing a base class. This "most-derived object" deallocation
is guaranteed to work only with virtual destructors. Deallocation may fail in
multiple-inheritance situations where the type information does not correspond
to the underlying type of the actual object.

• A local (automatic) object with block scope goes out of scope.

• The lifetime of a temporary object ends.

• A program ends and global or static objects exist.

• The destructor is explicitly called using the destructor function's fully qualified
name. (For more information, see "Explicit Destructor Calls" on page 301.)

The cases described in the preceding list ensure that all objects can be destroyed with
user-defined methods.

Chapter 11 Special Member Functions

If a base class or data member has an accessible destructor, and if a derived class
does not declare a destructor, the compiler generates one. This compiler-generated
destructor calls the base class destructor and the destructors for members of the
derived type. Default destructors are public. (For more information about accessibility,
see "Access Specifiers for Base Classes" on page 281 in Chapter 10.)

Destructors can freely call class member functions and access class member data.
When a virtual function is called from a destructor, the function called is the function
for the class currently being destroyed. (For more information, see the next section,
"Order of Destruction.")

There are two restrictions on the use of destructors. The first restriction is that you
cannot take the address of a destructor. The second is that derived classes do not
inherit their base class's destructors. Instead, as previously explained, they always
override the base class's destructors.

Order of Destruction
When an object goes out of scope or is deleted, the sequence of events in its complete
destruction is as follows:

1. The class's destructor is called, and the body of the destructor function is executed.

2. Destructors for nonstatic member objects are called in the reverse order in which
they appear in the class declaration. The optional member initialization list used
in construction of these members does not affect the order of construction or
destruction. (For more information about initializing members, see "Initializing
Bases and Members" on page 317.)

3. Destructors for nonvirtual base classes are called in the reverse order of
declaration.

4. Destructors for virtual base classes are called in the reverse order of declaration.

Destructors for Nonvirtual Base Classes
The destructors for non virtual base classes are called in the reverse order in which the
base class names are declared. Consider the following class declaration:

class Multlnherit : public Basel, public Base2

In the preceding example, the destructor for Bas e 2 is called before the destructor for
Basel.

Destructors for Virtual Base Classes
Destructors for virtual base classes are called in the reverse order of their appearance
in a directed acyclic graph (depth-first, 1eft-to-right, postorder traversal). Figure 11.1
depicts an inheritance graph.

299

c++ Language Reference

300

Figure 11.1 Inheritance Graph Showing Virtual Base Classes

ca ~.
. '. .' ~

I >< l

The following lists the class heads for the classes shown in Figure 11.1.

class A
class B
class C
class 0
class E

vi rtual publ i c A, vi rtual publ i c B
virtual public A, virtual public B
public C, public D, virtual public B

To determine the order of destruction of the virtual base classes of an object of type E,
the compiler builds a list by applying the following algorithm:

1. Traverse the graph left, starting at the deepest point in the graph (in this case, E).

2. Perform leftward traversals until all nodes have been visited. Note the name of the
current node.

3. Revisit the previous node (down and to the right) to find out whether the node
being remembered is a virtual base class.

4. If the remembered node is a virtual base class, scan the list to see whether it has
already been entered. If it is not a virtual base class, ignore it.

5. If the remembered node is not yet in the list, add it to the bottom of the list.

6. Traverse the graph up and along the next path to the right.

7. Go to step 2.

8. When the last upward path is exhausted, note the name of the current node.

9. Go to step 3.

10.Continue this process until the bottom node is again the current node.

Therefore, for class E, the order of destruction is:

1. The nonvirtual base class E.

2. The nonvirtual base class D.

3. The nonvirtual base class C.

4. The virtual base class B.

5. The virtual base class A.

Chapter 11 Special Member Functions

This pro~ess produces an ordered list of unique entries. No class name appears twice.
Once the list is constructed, it is walked in reverse order, and the destructor for each
of the classes in the list from the last to the first is called .

. The order of construction or destruction is primarily important when constructors or
destructors in one class rely on the other component being created first or persisting
longer-for example, if the destructor for A (in the graph in Figure 11.1) relied on B
still being present when its code executed, or vice versa.

Such interdependencies between classes in an inheritance graph are inherently
dangerous because classes derived later can alter which is the leftmost path, thereby
changing the order of construction and destruction.

Explicit Destructor Calls
Calling a destructor explicitly is seldom necessary. However, it can be useful to
perform cleanup of objects placed at absolute addresses. These objects are commonly
allocated using a user-defined new operator that takes a placement argument. The
delete operator cannot deallocate this memory because it is not allocated from the
free store (for more information, see "The new and delete Operators"). A call to the
destructor, however, can perform appropriate cleanup. To explicitly call the destructor
for an object, 5, of class Stri ng, use one of the following statements:

s.String::-String();
ps->String: :-String();

s.-String();
ps->-String();

I I Nonvi rtual call
II Nonvirtual call

1/ Virtual call
II Virtual call

The notation for explicit calls to destructors, shown in the preceding, can be used
regardless of whether the type defines a destructor. This allows you to make such
explicit calls without knowing if a destructor is defined for the type. An explicit call
to a destructor where none is defined has no effect.

Temporary Objects
In some cases, it is necessary for the compiler to create temporary objects. These
temporary objects can be created for the following reasons:

• To initialize a const reference with an initializer of a type different from that of
the underlying type of the reference being initialized.

• To store the return value of a function that returns a user-defined type. These
temporaries are created only if your program does not copy the return value to an
object. For example:

UDT Funcl(); II Declare a function that returns a user-defined
II type.

301

c++ Language Reference

Func1(): II Call Funcl, but discard return value.
II A temporary object is created to store the
II return value.

Because the return value is not copied to another object, a temporary object is
created. A more common case where temporaries are created is during the
evaluation of an expression where overloaded operator functions must be called.
These overloaded operator functions return a user-defined type that often is not
copied to another object.

Consider the expression Compl exResul t = Compl ex! + Compl ex2 +
Compl ex3. The expression Compl ex! + Compl ex2 is evaluated, and the result
is stored in a temporary object. Next, the expression temporary + Comp 1 ex3 is
evaluated, and the result is copied to Compl exResul t (assuming the assignment
operator is not overloaded).

• To store the result of a cast to a user-defined type. When an object of a given type
is explicitly converted to a user-defined type, that new object is constructed as a
temporary object.

Temporary objects have a lifetime that is defined by their point of creation and
the point at which they are destroyed. Any expression that creates more than one
temporary object eventually destroys them in the reverse order in which they were
created. The points at which destruction occurs are shown in Table 11.3.

Table 11.3 Destruction Points for Temporary Objects

Reason Temporary Created

Result of expression
evaluation

Result of expressions using
the built-in (not overloaded)
logical operators (" and &&)

Initializing const references

Destruction Point

All temporaries created as a result of expression
evaluation are destroyed at the end of the expression
statement (that is, at the semicolon), or at the end of
the controlling expressions for for, if, while, do, and
switch statements.

Immediately after the right operand. At this destruction
point, all temporary objects created by evaluation of the
right operand are destroyed.

If an initializer is not an I-value of the same type as
the reference being initialized, a temporary of the
underlying object type is created and initialized with
the initialization expression. This temporary object is
destroyed immediately after the reference object to
which it is bound is destroyed.

Conversions

302

Objects of a given class type can be converted to objects of another type. This is
done by constructing an object of the target class type from the source class type
and copying the result to the target object. This process is called conversion by
constructor. Objects can also be converted by user-supplied conversion functions.

Chapter 11 Special Member Functions

When standard conversions (described in Chapter 3, "Standard Conversions")
cannot completely convert from a given type to a class type, the compiler can select
user-defined conversions to help complete the job. In addition to explicit type
conversions, conversions take place when:

• An initializer expression is not the same type as the object being initialized.

• The type of argument used in a function call does not match the type of argument
specified in the function declaration.

• The type of the object being returned from a function does not match the return
type specified in the function declaration.

• 1\vo expression operands must be of the same type.

• An expression controlling an iteration or selection statement requires a different
type from the one supplied.

A user-defined conversion is applied only if it is unambiguous; otherwise, an error
message is generated. Ambiguity is checked at the point of usage. Hence, if the
features that cause ambiguity are not used, a class can be designated with potential
ambiguities and not generate any errors. Although there are many situations in which
ambiguities arise, these are two leading causes of ambiguities:

• A class type is derived using multiple inheritance, and it is unclear from which
base class to select the conversion (see "Ambiguity" on page 276 in Chapter 9).

• An explicit type-conversion operator and a constructor for the same conversion
exist (see "Conversion Functions" on page 305).

Both conversion by constructor and conversion by conversion functions obey access
control rules, as described in Chapter 10, "Member-Access Control." Access control
is tested only after the conversion is found to be unambiguous.

Conversion Constructors
A constructor that can be called with a single argument is used for conversions from
the type of the argument to the class type. Such a constructor is called a conversion
constructor. Consider the following example:

class Point
{
public:

} ;

Point();
Point(int);

Sometimes a conversion is required but no conversion constructor exists in the class.
These conversions cannot be performed by constructors. The compiler does not look
for intermediate types through which to perform the conversion. For example,
suppose a conversion exists from type Poi nt to type Rect and a conversion exists
from type int to type Poi nt. The compiler does not supply a conversion from type
int to type Rect by constructing an intermediate object of type Poi nt.

303

c++ Language Reference

304

Conversions and Constants
Although constants for built-in types such as int, long, and double can appear in
expressions, no constants of class types are allowed (this is partly because classes
usually describe an object complicated enough to make notation inconvenient).
However, if conversion constructors from built-in types are supplied, constants of
these built-in types can be used in expressions, and the conversions cause correct
behavior. For example, a Money class can have conversions from types long and
double:

class Money
{

public:
Money(long):
Money(double):

Money operator+(const Money&): II Overloaded addition operator.
} :

Therefore, expressions such as the following can specify constant values:

Money AccountBalance = 37.89:
Money NewBalance = AccountBalance + 14L:

The second example involves the use of an overloaded addition operator, which is
covered in the next chapter. Both examples cause the compiler to convert the
constants to type Money before using them in the expressions.

Drawbacks of Conversion Constructors
Because the compiler can select a conversion constructor implicitly, you relinquish
control over what functions are called when. If it is essential to retain full control, do
not declare any constructors that take a single argument; instead, define "helper"
functions to perform conversions, as in the following example:

#include <stdio.h>
#include <stdlib.h>

II Declare Money class.
class Money
{

public:
Money() :

II Define conversion functions that can only be called explicitly.
static Money Convert(ch~r * ch) { return Money(ch): }
static Money Convert(double d) {return Money(d): }:
void Print() { printf("\n%f", _amount): }

private:

} :

Money(char *ch
Money(double d
double _amount:

{ amount
{ amount

atof(ch): }
d: }

Chapter 11 Special Member Functions

void main()
{

II Perform a conversion from type char * to type Money.
Money Acct = Money::Convert("57.29");
Acct.Print();
II Perform a conversion from type double to type Money.
Acct = Money: :Convert(33.29);
Acct.Print();

In the preceding code, the conversion constructors are private and cannot be used in
type conversions. However, they can be invoked explicitly by calling the Convert
functions. Because the Convert functions are static, they are accessible without
referencing a particular object.

Conversion Functions
In conversion by constructors, described in the previous section, objects of one type
can be implicitly converted to a particular class type. This section describes a means
by which you can provide explicit conversions from a given class type to another
type. Conversion from a class type is often accomplished using conversion functions.
Conversion functions use the following syntax:

Syntax
conversion-Junction-name:

operator conversion-type-name 0
conversion-type-name:

type-specifier-list ptr-operatoropt

The following example specifies a conversion function that converts type Money to
type daub 1 e:

class Money
{

public:
Money() ;
operator double() { return _amount; }

private:
double _amount;

} ;

Given the preceding class declaration, the following code can be written:

Money Account;

double CashOnHand = Account;

The initialization of CashOnHand with Account causes a conversion from type
Account to type daub 1 e.

305

c++ Language Reference

306

Conversion functions are often called "cast operators" because they (along with
constructors) are the functions called when a cast is used. The following example uses
a cast, or explicit conversion, to print the current value of an object of type M 0 n ey:

cout « (double)Account « endl;

Conversion functions are inherited in derived classes. Conversion operators hide only
base-class conversion operators that convert to exactly the same type. Therefore, a
user-defined operator int function does not hide a user-defined operator short
function in a base class.

Only one user-defined conversion function is applied when performing implicit
conversions: If there is no explicitly defined conversion function, the compiler does
not look for intermediate types into which an object can be converted.

If a conversion is required that causes an ambiguity, an error is generated. Ambiguities
arise when more than one user-defined conversion is available or when a user-defined
conversion and a built-in conversion exist.

The following example illustrates a class declaration with a potential ambiguity:

#include <string.h>

class String
{

public:
II Define constructor that converts from type char *
String(char *s) { strcpy(_text. s); }
II Define conversion to type char *
operator char *() { return _text; }
int operator==(const String &s)
{ return !strcmp(_text. s._text);

private:
char _text[80];

} ;

int maine)
{

String s("abed");
char *ch = "efgh";

II Cause the compiler to select a conversion.
return s == ch;

In the expression s == ch, the compiler has two choices and no way of determining
which is correct. It can convert c h to an object of type S t r; n 9 using the constructor
and then perform the comparison using the user-defined operator==. Or it can
convert S to a pointer of type c h a r * using the conversion function and then perform
a comparison of the pointers.

Because neither choice is "more correct" than the other, the compiler cannot
determine the meaning of the comparison expression, and it generates an error.

Chapter 11 Special Member Functions

Rules for Declaring Conversion Functions
The following four rules are used when declaring conversion functions (see
"Conversion Functions" on page 305 for syntax):

• Classes, enumerations, and typedef names cannot be declared in the
type-specifier-list. Therefore, the following code generates an error:

operator struct String{ char string_storage; }();

Instead, declare the S t r i n 9 structure prior to the conversion function.

• Conversion functions take no arguments. Specifying arguments generates an error.

• Conversion functions have the return type specified by the conversion-type-name;
specifying any return type for a conversion function generates an error.

• Conversion functions can be declared as virtual.

The new and delete Operators
C++ supports dynamic allocation and deallocation of objects using the new and delete
operators. These operators allocate memory for objects from a pool called the "free
store." The new operator calls the special function operator new, and the delete
operator calls the special function operator delete.

The operator new Function
When a statement such as the following is encountered in a program, it translates into
a call to the function operator new:

char *pch = new char[BUFFER_SIZE];

If the request is for zero bytes of storage, operator new returns a pointer to a distinct
object (that is, repeated calls to operator new return different pointers). If there is
insufficient memory for the allocation request, by default operator new returns
NULL. You can change this default behavior by writing ~ custom exception-handling
routine and calling the _seCnew _handler run-time library function with your
function name as its argument. Optionally, you can choose to have new throw a C++
exception (of type xalloc) in the event of a memory allocation failure. For more
details on these two recovery schemes, see the following section, "Handling
Insufficient Memory Conditions."

The two scopes for operator new functions are described in Table 11.4.

Table 11.4 Scope for operator new Functions

Operator

: :operator new

class-name::operator new

Scope

Global

Class

307

c++ Language Reference

308

The first argument to operator new must be of type size_t (a type defined in
STDDEEH), and the return type is always void *.
The global operator new function is called when the new operator is used to allocate
objects of built-in types, objects of class type that do not contain user-defined
operator new functions, and arrays of any type. When the new operator is used to
allocate objects of a class type where an operator new is defined, that class's
operator new is called.

An operator new function defined for a class is a static member function (which
cannot, therefore, be virtual) that hides the global operator new function for objects
of that class type. Consider the case where new is used to allocate and set memory to a
given value:

#include <malloc.h>
#include <memory.h>

class Blanks
{

public:
Blanks(){}
void *operator new(size_t stAllocateBlock, char chlnit);

} ;

void *Blanks::operator new(size_t stAllocateBlock, char chlnit
{

void *pvTemp = malloc(stAllocateBlock);
if(pvTemp 1= 0)

memset(pvTemp, chlnit, stAllocateBlock);
return pvTemp;

For discrete objects of type Bl anks, the global operator new function is hidden.
Therefore, the following code allocates an object of type B 1 an ks and initializes it
to 0xa5:

int main()
{

Blanks *a5 new(0xa5) Blanks;

return a5 1= 0;

The argument supplied in parentheses to new is passed to B 1 an k s : : 0 per a tor new
as the chI nit argument. However, the global operator new function is hidden,
causing code such as the following to generate an error:

Blanks *SomeBlanks = new Blanks;

For previous versions of the compiler, nonclass types and all arrays (regardless of .
whether they were of class type) allocated using the new operator always used the
global operator new function.

Chapter 11 Special Member Functions

Beginning with Visual c++ 5.0, the compiler supports member array new and delete
operators in a class declaration. For example:

class X {
public:

void* operator new[] (size_t):
void operator delete[] (void*):

} :

void f()
X *pX new X[5]:
delete [] pX:

Handling Insufficient Memory Conditions
Testing for failed memory allocation can be done with code such as the following:

int *pi = new int[BIG_NUMBER]:

i f(pi == 0)
{

cerr « "Insufficient memory" « endl:
return -1:

There are two other ways to handle failed memory allocation requests: write a custom
recovery routine to handle such a failure, then register your function by calling the
_seCnew _handler run-time function, or force operator new to throw a C++
exception of type xalloc (as described in the current ANSI C++ working paper
proposal). These methods are described in the following sections.

Using _set_new_handler
In some circumstances, corrective action can be taken during memory allocation and
the request can be fulfilled. To gain control when the global operator new function
fails, use the _seCnew_handler function (defined in NEW. H) as follows:

#include <stdio.h>
#include <new.h>

II Define a function to be called if new fails to allocate memory.
int MyNewHandler(size_t size)
{

clog« "Allocation failed. Coalescing heap."« endl:

II Call a fictitious function to recover some heap space.
return CoalesceHeap():

void main()
{

II Set the failure handler for new to be MyNewHandler.
_set_new_handler(MyNewHandler):

int *pi = new int[BIG_NUMBER]:

309

c++ Language Reference

310

In the preceding example, the first statement in main sets the new handler to
My N ewH and 1 e r. The second statement tries to allocate a large block of memory using
the new operator. When the allocation fails, control is transferred to MyNewHandl er.
The argument passed to MyNewHandl er is the number of bytes requested. The value
returned from My N ewH and 1 e r is a flag indicating whether allocation should be
retried: a nonzero value indicates that allocation should be retried, and a zero value
indicates that allocation has failed.

MyNewHandl er prints a warning message and takes corrective action. If
My N ewH and 1 e r returns a nonzero value, the new operator retries the allocation.
When MyNewHandl er returns a 0 the new operator stops trying and returns a zero
value to the program.

The _seCnew _handler function returns the address of the previous new handler.
Therefore, if a new handler needs to be installed for a short time, the previous new
handler can be reinstalled using code such as the following:

#include <new.h>

PNH old_handler = _set_new_handler< MyNewHandler);

II Code that requires MyNewHandler.

II Reinstall previous new handler.
_set_new_handler< old_handler);

A call to _seCnew _handler with an argument of 0 causes the new handler to be
removed. There is no default new handler.

The new handler you specify can have any name, but it must be a function returning
type int (nonzero indicates the new handler succeeded, and zero indicates that it
failed).

If a user-defined operator new is provided, the new handler functions are not
automatically called on failure.

The prototype for _seCnew _handler and the type _PNH is defined in NEW.H:

_PNH _set_new_handler< _PNH);

The type _PNH is a pointer to a function that returns type int and takes a single
argument of type size_t.

c++ xalloc Exceptions
Microsoft c++ implements an alternate method of handling new memory allocation
failure, based on the current ANSI C++ working paper proposal. Using this method,
a new run-time function, _standard_new _handler, throws a C++ exception of type
xalloc in the event of a new allocation failure. xalloc exceptions are based on the
exception class hierarchy defined in STDEXCPT.H.

Chapter 11 Special Member Functions

Using xalloc
If the new operator fails to allocate memory for any reason, you can choose to have
your program throw an xalloc exception object.

To facilitate using the exception classes, a new run-time function has been added.
The _standard_new _handler function, declared in STDEXCPT.H, is prototyped as
follows:

If you want new to throw an xalloc exception in the event of a memory allocation
failure, compile with the IGX option (Enable Exception Handling), and in your code,
call_seCnew_handler with _standard_new_handler as its argument. You can then
use try/catch exception handling constructs to detect and handle xalloc exceptions.
In addition, you must copy the STDEXCPT.H header file and associated .CXX
implementation files to your project subdirectory. Be sure to include STDEXCPT.H
in your code, and add the .CXX files in that subdirectory to your own project.

The _standard_new _handler function creates a local static object of the xalloc class,
which in tum calls the raise member function; thereby throwing an xalloc exception.
Note that _standard_new _handler does not allocate memory from the free store
(it does not call new or malloc); thus, it will not recurse.

If you are programming in C++ using the Microsoft Foundation Classes, note that
MFC installs its own new exception handler that throws an exception of type
CMemoryException. This will override the xalloc exception behavior described
above.

Exception Class Hierarchy
The xalloc class defines the type of objects thrown as exceptions to report a failure to
allocate memory. This class, defined in STDEXCPT.H, is part of the exception class
hierarchy. This class hierarchy is provided as a general framework for exception
classes.

The base class for the exception object hierarchy is exception, defined in
STDEXCPT.H. Note that the name xmsg is defined as a synonym for exception. If
your code adheres to older working paper standards, the compiler will not generate
an error if you use xmsg instead of exception. The hierarchy is as follows:

class exception
{

}

class logic: public exception
{

II Defines type of objects thrown as exceptions to
II report logic errors. such as violated preconditions

} ;

311

c++ Language Reference

class domain: public logic
{

} :

II Base class for objects thrown as exceptions in
II response to domain errors

class runtime: public exception
{

} :

II Base class for objects thrown as exceptions in
II response to runtime errors

class range: public runtime
{

} :

II Base class for objects thrown as exceptions in
II response to range errors

class alloc: public runtime
{

} :

II Base class for objects thrown as exceptions to
II report memory allocation failure

class xalloc: public alloc
{

} :

Note Because the xalloc exception specification in the ANSI working paper proposal is not
finalized, Microsoft does not guarantee the same implementation of the exception class
hierarchy in future releases.

The operator delete Function

312

Memory that is dynamically allocated using the new operator can be freed using the
delete operator. The delete operator calls the operator delete function, which frees
memory back to the available pool. Using the delete operator also causes the class
destructor (if there is one) to be called.

There are global and class-scoped operator delete functions. Only one operator
delete function can be defined for a given class; if defined, it hides the global
operator delete function. The global operator delete function is always called for
arrays of any type.

The global operator delete function, if declared, takes a single argument of type
void *, which contains a pointer to the object to deallocate. The return type is void
(operator delete cannot return a value). Two forms exist for class-member operator
delete functions:

void operator delete(void *):
void operator delete(void *, size t);

Chapter 11 Special Member Functions

Only one of the preceding two variants can be present for a given class. The first form
works as described for global operator delete. The second form takes two arguments,
the first of which is a pointer to the memory block to deallocate and the second of
which is the number of bytes to deallocate. The second form is particularly useful
when an operator delete function from a base class is used to delete an object of a
derived class.

The operator delete function is static; therefore, it cannot be virtual. The operator
delete function obeys access control, as described in Chapter 10, "Member-Access
Control."

The following example shows user-defined operator new and operator delete
functions designed to log allocations and deallocations of memory:

#include <iostream.h>
#include <stdlib.h>

int fLogMemory = 0; II Perform logging (0=no; nonzero=yes)?
II Count of blocks allocated. int cBlocksAllocated = 0;

II User-defined operator new.
void *operator new(size_t stAllocateBlock
{

static flnOpNew = 0; II Guard flag.

if(fLogMemory && !flnOpNew
{

fI nOpNew = 1;
clog « "Memory block" «++cBl ocksAll ocated

« " allocated for" « stAllocateBlock
« " bytes\n";

fI nOpNew = 0;

return malloc(stAllocateBlock);
}

II User-defined operator delete.
void operator delete(void *pvMem
{

}

static flnOpDelete = 0; II Guard flag.
if(fLogMemory && !flnOpDelete)
{

fInOpDel ete = 1;
clog « "Memory block" « --cBlocksAllocated

« " deallocated\n";
fInOpDelete = 0;

free(pvMem);

int maine int argc. char *argv[])
{

fLogMemory = 1; II Turn logging on.

313

c++ Language Reference

if(argc > 1)
for(int = 0; i < atoi(argv[l]); ++i)
{

char *pMem = new char[10];
delete[] pMem;

return cBlocksAllocated;

The preceding code can be used to detect "memory leakage" -that is, memory that is
allocated on the free store but never freed. To perform this detection, the global new
and delete operators are redefined to count allocation and deallocation of memory.

Beginning with Visual C++ 5.0, the compiler supports member array new and delete
operators in a class declaration. For example:

class X {
public:

void* operator new[] (size_t);
void operator delete[] (void*);

} ;

void f()
X *pX new X[5];
delete [] pX;

Initialization Using Special Member
Functions

314

This section describes initialization using special member functions. It expands on the
following discussions of initialization:

• "Initializing Aggregates" on page 224 in Chapter 7, which describes how to
initialize arrays of nonclass types and objects of simple class types. These simple
class types cannot have private or protected members, and they cannot have base
classes.

• Constructors, which explains how to initialize class-type objects using special
constructor functions.

The default method of initialization is to perform a bit-for-bit copy from the initializer
into the object to be initialized. This technique is applicable only to:

• Objects of built-in types. For example:

int i ~ 100;

• Pointers. For example:

int i;
int *pi = &i;

Chapter 11 Special Member Functions

• References. For example:

String sFileName("FILE.DAT");
String &rs = sFileName;

• Objects of class type, where the class has no private or protected members, no
virtual functions, and no base classes. For example:

struct Point
{

int x, y;
} ;

Point pt = { 10, 20 }; II Static storage class only

Classes can specify more refined initialization by defining constructor functions. (For
more information about declaring such functions, see "Constructors" on page 292.)
If an object is of a class type that has a constructor, the object must be initialized, or
there must be a default constructor. Objects that are not specifically initialized invoke
the class's default constructor.

Explicit Initialization
c++ supports two forms of explicit initialization.

• Supplying an initializer list in parentheses:

String sFileName("FILE.DAT");

The items in the parenthesized list are considered arguments to the class
constructor. This form of initialization enables initialization of an object with
more than one value and can also be used in conjunction with the new operator.
For example:

Rect *pRect = new Rect(10, 15, 24, 97);

• Supplying a single initializer using the equal-sign initialization syntax. For
example:

String sFileName = "FILE. OAT";

Although the preceding example works the same way as the example shown for
S t r i n 9 in the first list item, the syntax is not adaptable to use with objects
allocated on the free store.

The single expression on the right of the equal sign is taken as the argument to the
class's copy constructor; therefore, it must be a type that can be converted to the
class type.

Note that because the equal sign (=) in the context of initialization is different from
an assignment operator, overloading operator= has no effect on initialization.

The equal-sign initialization syntax is different from the function-style syntax, even
though the generated code is identical in most cases. The difference is that when the
equal-sign syntax is used, the compiler has to behave as if the following sequence of
events were taking place:

315

c++ Language Reference

• Creating a temporary object of the same type as the object being initialized.

• Copying the temporary object to the object.

The constructor must be accessible before the compiler can perform these steps. Even
though the compiler can eliminate the temporary creation and copy steps in most
cases, an inaccessible copy constructor causes equal-sign initialization to fail.
Consider the following example:

class anlnt
{

anlnt(const anlnt&);
public:

anlnt(int);
} ;

anlnt mylnt = 7;

anlnt mylnt(7);

II Private copy constructor.

II Public int constructor.

II Access-control violation. Attempt to
II reference private copy constructor.
II Correct; no copy constructor called.

When a function is called, class-type arguments passed by value and objects returned
by value are conceptually initialized using the form:

type-name name = value

For example:

String s = "C++";

Therefore, it follows' that the argument type must be a type that can be converted to
the class type being passed as an argument. The class's copy constructor, as well as
user-defined conversion operators or constructors that accept the type of the actual
argument, must be pUblic.

In expressions that use the new operator, the objects allocated on the free store are
conceptually initialized using the form:

type-name name(initializer}, initializer2, ... initializern)

For example:

String *ps = new String("C++");

Initializers for base-class components and member objects of a class are also
conceptually initialized this way. (For more information, see "Initializing Bases
and Members" on page 317.)

Initializing Arrays

316

If a class has a constructor, arrays of that class are initialized by a constructor. If there
are fewer items in the initializer list than elements in the array, the default constructor
is used for the remaining elements. If no default constructor is defined for the class,
the initializer list must be complete-that is, there must be one initializer for each
element in the array.

Chapter 11 Special Member Functions

Consider the Po; nt class that defines two constructors:

class Point
{

public:
Point(); II Default constructor.
Point(int, int); II Construct from two ints.

} ;

An array of Po; nt objects can be declared as follows:

Paint aPoint[3] =

Point(3, 3)
} ;

II Use int, int constructor.

The first element of a Po; ntis constructed using the constructor Po; n t (; n t •
; n t); the remaining two elements are constructed using the default constructor.

Static member arrays (whether const or not) can be initialized in their definitions
(outside the class declaration). For example:

class WindowColors
{

public:
static const char *rgszWindowPartList[7];

} ;

canst char *WindowColors::rgszWindowPartList[7] = {
"Active Title Bar", "Inactive Title Bar", "Title Bar Text",
"Menu Bar", "Menu Bar Text", "Window Background", "Frame" };

Initializing Static Objects
Global static objects are initialized in the order they occur in the source. They are
destroyed in the reverse order. Across translation units, however, the order of
initialization is dependent on how the object files are arranged by the linker; the order
of destruction still takes place in the reverse of that in which objects were constructed.

Local static objects are initialized when they are first encountered in the program flow,
and they are destroyed in the reverse order at program termination. Destruction of
local static objects occurs only if the object was encountered and initialized in the
program flow.

Initializing Bases and Members
An object of a derived class is made up of a component that represents each base class
and a component that is unique to the particular class. Objects of classes that have
member objects may also contain instances of other classes. This section describes
how these component objects are initialized when an object of the class type is
created.

317

c++ Language Reference

318

To perform the initialization, the constructor-initializer, or ctor-initializer, syntax is
used.

Syntax
ctor-initializer:

mem-initializer-list
mem-initializer-list:

mem-initializer
mem-initializer , mem-initializer-list

mem-initializer:
complete-class-name (expression-listopt)

identifier (expression-listopt)

This syntax, used in constructors, is described more fully in the next section,
"Initializing Member Objects," and in "Initializing Base Classes" on page 319.

Initializing Member Objects
Classes can contain member objects of class type, but to ensure that initialization
requirements for the member objects are met, one of the following conditions must be
met:

• The contained object's class requires no constructor.

• The contained object's class has an accessible default constructor.

• The containing class's constructors all explicitly initialize the contained object.

The following example shows how to perform such an initialization:

II Declare a class Point.
class Point
{

public:
Point(int x, int y) { x = x; _y = y; }

private:
int _x, J;

} ;

II Declare a rectangle class that contains objects of type Point.
class Rect
{

public:
Rect(int xl, int yl, int x2, int y2);

private:
Point _topleft, _bottomright;

} ;

II Define the constructor for class Rect. This constructor
II explicitly initializes the objects of type Point.
Rect::Rect(int xl, int yl, int x2, int y2) :
_topleft(xl, yl), _bottomright(x2, y2)
{
}

Chapter 11 Special Member Functions

The Rect class, shown in the preceding example, contains two member objects
of class Poi nt. Its constructor explicitly initializes the objects _top 1 eft and
_b 0 t tom rig h t . Note that a colon follows the closing parenthesis of the constructor
(in the definition). The colon is followed by the member names and arguments with
which to initialize the objects of type Poi nt.

Warning The order in which the member initializers are specified in the constructor does
not affect the order in which the members are constructed; the members are constructed
in the order in which they are declared in the class.

Reference and const member objects must be initialized using the member
initialization syntax shown in Syntax in "Initializing Bases and Members"
on page 317. There is no other way to initialize these objects.

Initializing Base Classes
Direct base classes are initialized in much the same way as member objects.
Consider the following example:

II Declare class Window.
class Window
{

public:
Window(Rect rSize);

} ;

II Declare class DialogBox, derived from class Window.
class DialogBox public Window
{

public:
DialogBox(Rect rSize);

} ;

II Define the constructor for DialogBox. This constructor
II explicitly initializes the Window subobject.
DialogBox::DialogBox(Rect rSize) : Window(rSize)
{
}

Note that in the, constructor for Di a 1 ogBox, the Wi ndow base class is initialized
using the argument r S i z e. This initialization consists of the name of the base
class to initialize, followed by a parenthesized list of arguments to the class's
constructor.

In initialization of base classes, the object that is not the subobject representing a base
class's component is considered a "complete object." The complete object's class is
considered the "most derived" class for the object.

319

c++ Language Reference

The subobjects representing virtual base classes are initialized by the constructor for
the most derived class. That means that where virtual derivation is specified, the most
derived class must explicitly initialize the virtual base class, or the virtual base class
must have a default constructor. Initializations for virtual base classes that appear in
constructors for classes other than the most derived class are ignored.

Although initialization of base classes is usually restricted to direct base classes, a
class constructor can initialize an indirect virtual base class.

Initialization Order of Bases and Members
Base classes and member objects are initialized in the following order:

1. Virtual base classes are initialized in the order in which they appear in the directed
acyclic graph. For information about using the directed acyclic graph to construct
a list of unique subobjects, see "Virtual Base Classes" on page 265 in Chapter 9.
(Note that these subobjects are destroyed by walking the same list in reverse.) For
more information about how the directed acyclic graph is traversed, see "Order of
Destruction" on page 299.

2. Nonvirtual base classes are initialized in the order in which they are declared in the
class declaration.

3. Member objects are initialized in the order in which the objects are declared in the
class.

The order in which base classes and member objects are initialized is not affected by
the order in which the member initializers or base-class initializers appear in the
member-initializer-list of the constructor.

Scope of Initializers
Initializers for base classes and member objects are evaluated in the scope of the
constructor with which they are declared. Therefore, they can refer implicitly to
class-member data.

Copying Class Objects

320

Two operations cause objects to be copied:

• Assignment. When one object's value is assigned to another object, the first object
is copied to the second object. Therefore:

Point a, b;

a = b;

causes the value of b to be copied to a.

• Initialization. Initialization occurs at the point of declaration of a new object, when
arguments are passed to functions by value, and when values are returned from
functions by value.

Chapter 11 Special Member Functions

The programmer can define the semantics of "copy" for objects of class type. For
example, consider the following code:

TextFile a. b;
a.Open("FILE1.DAT");
b.Open("FILE2.DAT");
b = a;

The preceding code could mean "copy the contents of FILE 1.DAT to FILE2.DAT,"
or it could mean "ignore FILE2.DAT and make b a second handle to FILEl.DAT."
The programmer is responsible for attaching appropriate copying semantics to
each class.

Copying is done in one of two ways:

• Assignment (using the assignment operator, operator=).

• Initialization (using the copy constructor). (For more information about the
copy constructor; see "Rules for Declaring Constructors" on page 293.)

Any given class can implement one or both copy methods. If neither method is
implemented, assignment is handled as a member-by-member ("memberwise")
assignment, and initialization is handled as a member-by-member initialization.
Memberwise assignment is covered in more detail in "Memberwise Assignment
and Initialization" on page 322.

The copy constructor takes a single argument of type class-name&, where
class-name is the name of the class for which the constructor is defined.
For example:

class Window
{

public:
Window(const Window&); II Declare copy constructor.

} ;

Note The type of the copy constructor's argument should be const class-name& whenever
possible. This prevents the copy constructor from accidentally changing the object from which
it is copying. It also allows copying from const objects.

Compiler-Generated Copying
Compiler-generated copy constructors, like user-defined copy constructors, have
a single argument of type "reference to class-name." An exception is when all
base classes and member classes have copy constructors declared as taking a single
argument of type const class-name&. In such a case, the compiler-generated copy
constructor's argument is also const.

321

c++ Language Reference

When the argument type to the copy constructor is not const, initialization by copying
a const object generates an error. The reverse is not true: If the argument is const,
initialization by copying an object that is not const.

Compiler-generated assignment operators follow the same pattern with regard
to const. They take a single argument of type class-name& unless the assignment
operators in all base and member classes take arguments of type const class-name&.
In this case, the class's generated assignment operator takes a const argument.

Note When virtual base classes are initialized by copy constructors, compiler-generated or
user-defined, they are initialized only once: at the point when they are constructed.

The implications are similar to those of the copy constructor. When the argument
type is not const, assignment from a const object generates an error. The reverse is
not true: If a const value is assigned to a value that is not const, the assignment
succeeds.

For more information about overloaded assignment operators, see "Assignment"
on page 344 in Chapter 12.

Memberwise Assignment and Initialization

322

The methods for default assignment and initialization are "memberwise assignment"
and "memberwise initialization," respectively. Memberwise assignment consists of
copying one object to the other, a member at a time, as if assigning each member
individually. Memberwise initialization consists of copying one object to the other, a
member at a time, as if initializing each member individually. The primary difference
between the two is that memberwise assignment invokes each member's assignment
operator (operator=), whereas memberwise initialization invokes each member's
copy constructor.

Memberwise assignment is performed only by the assignment operator declared in the
form:

type& type :: operator=([const I volatile] type&)

Default assignment operators for memberwise assignment cannot be generated if any
of the following conditions exist:

• A member class has const members.

• A member class has reference members.

• A member class or its base class has a private assignment operator (operator=).

• A base class or member class has no assignment operator (operator=).

Default copy constructors for memberwise initialization cannot be generated if the
class or one of its base classes has a private copy constructor or if any of the following
conditions exist:

Chapter 11 Special Member Functions

• A member class has const members.

• A member class has reference members.

• A member class or its base class has a private copy constructor.

• A base class or member class has no copy constructor.

The default assignment operators and copy constructors for a given class are always
declared, but they are not defined unless both of the following conditions are met:

• The class does not provide a user-defined function for this copy.

• The program requires that the function be present. This requirement exists if an
assignment or initialization is encountered that requires memberwise copying or if
the address of the class's operator= function is taken.

If both of these conditions are not met, the compiler is not required to generate code
for the default assignment operator and copy constructor functions (elimination of
such code is an optimization performed by the Microsoft C++ compiler). Specifically,
if the class declares a user-defined operator= that takes an argument of type
"reference to class-name," no default assignment operator is generated. If the class
declares a copy constructor, no default copy constructor is generated.

Therefore, for a given class A, the following declarations are always present:

II Implicit declarations of copy constructor
II and assignment operator.
A::A(const A&);
A& A::operator=(const A&);

The definitions are supplied only if required (according to the preceding criteria). The
copy constructor functions shown in the preceding example are considered public
member functions of the class.

Default assignment operators allow objects of a given class to be assigned to objects
of a public base-class type. Consider the following code:

class Account
{

public:
II Public member functions

private:
double _balance;

} ;

class Checking public Account
{

private:
int _fOverdraftProtect;

} ;

323

c++ Language Reference

324

Account account;
Checking checking;

account = checking;

In the preceding example, the assignment operator chosen is Account: : operator=.
Because the default 0 per a t 0 r= function takes an argument of type A c c 0 u n t &
(reference to Account), the Account subobject of check; ng is copied to account;
fOverdraftProtect is not copied.

C HAP T E R 1 2

Overloading

This chapter explains how to use C++ overloaded functions and overloaded operators.
The following topics are included:

• Overview

• Declaration matching

• Argument matching

• Address of overloaded functions

• Overloaded operators

Overview of Overloading
With the C++ language, you can overload functions and operators. Overloading is the
practice of supplying more than one definition for a given function name in the same
scope. The compiler is left to pick the appropriate version of the function or operator
based on the arguments with which it is called. For example:

double max(doubl e dl, double d2
{

return (d1 > d2) ? d1 : d2;

int max(int iI, i nt i 2
{

return (i 1 > i2) ? i 1 : i 2;

The function max is considered an overloaded function. It can be used in code such as
the following:

maine)
{

int i max(12, 8);
double d max(32.9, 17.4);

return + (int)d;

325

c++ Language Reference

In the first case, where the maximum value of two variables of type i ntis being
requested, the function m a x (i nt, i n t) is called. However, in the second case, the
arguments are of type daubl e, so the function max(daubl e, daubl e) is called.

Argument Type Differences
Overloaded functions differentiate between argument types that take different
initializers. Therefore, an argument of a given type and a reference to that type are
considered the same for the purposes of overloading. They are considered the same
because they take the same initializers. For example, max(daubl e, daubl e) is
considered the same as max (daub 1 e &, daub 1 e &). Declaring two such
functions causes an error.

For the same reason, function arguments of a type modified by const or volatile are
not treated differently than the base type for the purposes of overloading.

However, the function overloading mechanism can distinguish between references
that are qualified by const and volatile and references to the base type. This makes
code such as the following possible:

#include <iostream.h>

class Over
{
public:

Over() { cout « "Over default constructor\n"; }
Over(Over &0) { cout « "Over&\n": }
Over(const Over &co) { cout « "const Over&\n": }
Over(volatile Over &vo) { cout « "volatile Over&\n":

} :

void main()
{

}

Over 01:
Over 02(01);
const Over 03;
Over 04(03):
volatile Over 05;
Over 06(05):

II Calls default constructor.
II Calls Over(Over&).
II Calls default constructor.
II Calls Over(const Over&).
II Calls default constructor.
II Calls Over(volatile Over&).

Pointers to const and volatile objects are also considered different from pointers to the
base type for the purposes of overloading.

Restrictions on Overloaded Functions

326

Several restrictions govern an acceptable set of overloaded functions:

• Any two functions in a set of overloaded functions must have different argument
lists.

• Overloading functions with argument lists of the same types, based on return type
alone, is an error.

Chapter 12 Overloading

Microsoft Specific ~

You can overload operator new solely on the basis of return type-specifically, on
the basis of the memory-model modifier specified.

END Microsoft Specific

• Member functions cannot be overloaded solely on the basis of one being static and
the other nonstatic.

• typedef declarations do not define new types; they introduce synonyms for existing
types. They do not affect the overloading mechanism. Consider the following code:

typedef char * PSTR;

void Print(char *szToPrint);
void Print(PSTR szToPrint);

The preceding two functions have identical argument lists. PSTR is a synonym for
type char *. In member scope, this code generates an error.

• Enumerated types are distinct types and can be used to distinguish between
overloaded functions.

• The types "array of" and "pointer to" are considered identical for the purposes of
distinguishing between overloaded functions. This is true only for singly
dimensioned arrays. Therefore, the following overloaded functions conflict and
generate an error message:

void Print(char *szToPrint);
void Print(char szToPrint[]);

For multiply dimensioned arrays, the second and all succeeding dimensions are
considered part of the type. Therefore, they are used in distinguishing between
overloaded functions:

void Print(char szToPrint[]);
void Print(char szToPrint[][7]);
void Print(char szToPrint[][9][42]);

Declaration Matching
Any two function declarations of the same name in the same scope can refer to the
same function, or to two discrete functions that are overloaded. If the argument lists of
the declarations contain arguments of equivalent types (as described in the previous
section), the function declarations refer to the same function. Otherwise, they refer to
two different functions that are selected using overloading.

Class scope is strictly observed; therefore, a function declared in a base class is not in
the same scope as a function declared in a derived class. If a function in a derived
class is declared with the same name as a function in the base class, the derived-class
function hides the base-class function i~stead of causing overloading.

327

c++ Language Reference

328

Block scope is strictly observed; therefore, a function declared in file scope
is not in the same scope as a function declared locally. If a locally declared
function has the same name as a function declared in file scope, the locally
declared function hides the file-scoped function instead of causing overloading.
For example:

#include <iostream.h>

void func(int i)
{

cout « "Called file-scoped func "« «endl;

void func(char *sz)
{

cout « "Ca 11 ed 1 oca 11 y decl a red func "« sz « endl;

void main()
{

II Declare func local to main.
extern void func(char *sz);

func(3); II Error. func(int is hidden.
func("s");

The preceding code shows two definitions from the function fun c. The definition that
takes an argument of type cha r * is local to rna; n because of the extern statement.
Therefore, the definition that takes an argument of type ; ntis hidden, and the first
call to fun c is in error.

For overloaded member functions, different versions of the function can be
given different access privileges. They are still considered to be in the scope of the
enclosing class and thus are overloaded functions. Consider the following code, in
which the member function Depos; t is overloaded; one version is public, the
other, private:

class Account
{

public:
Account() ;
double Deposit(double dAmount. char *szPassword);

private:
double Deposit(double dAmount);
int Validate(char *szPassword);

} ;

The intent of the preceding code is to provide an Account class in which a correct
password is required to perform deposits. This is accomplished using overloading.
The following code shows how this class can be used and also shows an erroneous
call to the private member, Depos; t:

Chapter 12 Overloading

void maine)
(

II Allocate a new object of type Account.
Account *pAcct ~ new Account:

II Deposit $57.22. Error: calls a private function.
pAcct->Deposit(57.22):

II Deposit $57.22 and supply a password. OK: calls a
II public function.
pAcct->Deposit(52.77, "pswd"):

double Account::Deposit(double dAmount, char *szPassword)
(

if(Validate(sZPassword))
return Deposit(dAmount):

else
return 0.0:

Note that the call to Depos; t in Account: : Depos; t calls the private member
function. This call is correct because Account: : Depos; t is a member function and
therefore has access to the private members of the class.

Argument Matching
Overloaded functions are selected for the best match of function declarations in the
current scope to the arguments supplied in the function call. If a suitable function is
found, that function is called. "Suitable" in this context means one of the following:

• An exact match was found.

• A trivial conversion was performed.

• An integral promotion was performed.

• A standard conversion to the desired argument type exists.

• A user-defined conversion (either conversion operator or constructor) to the
desired argument type exists.

• Arguments represented by an ellipsis were found.

The compiler creates a set of candidate functions for each argument. Candidate
functions are functions in which the actual argument in that position can be converted
to the type of the formal argument.

A set of "best matching functions" is built for each argument, and the selected
function is the intersection of all the sets. If the intersection contains more than one
function, the overloading is ambiguous aut! gtalt;ralt;s all t;ffor. Tilt; [uIlclion i.hai. is
eventually selected is always a better match than every other function in the group for

329

c++ Language Reference

330

at least one argument. If this is not the case (if there is no clear winner), the function
call generates an error.

Consider the following declarations (the functions are marked Va ria n t 1, Va ria n t
2, and Va ria n t 3, for identification in the following discussion):

Fraction &Add(Fraction &f, long 1);
Fraction &Add(long 1, Fraction &f);
Fraction &Add(Fraction &f, Fraction &f);

II Variant 1
II Variant 2
II Variant 3

Fraction Fl, F2;

Consider the following statement:

Fl = Add(F2, 23);

The preceding statement builds two sets:

Set 1: Candidate Functions That Have First
Argument of Type Fraction

Variant 1

Variant 3

Set 2: Candidate Functions Whose Second
Argument Can Be Converted to Type int

Variant 1 (int can be converted to long using a
standard conversion)

Functions in Set 2 are functions for which there are implicit conversions from actual
parameter type to formal parameter type, and among such functions there is a function
for which the "cost" of converting the actual parameter type to its formal parameter
type is the smallest.

The intersection of these two sets is Variant 1. An example of an ambiguous function
call is:

Fl = Add(3, 6);

The preceding function call builds the following sets:

Set 1: Candidate Functions That Have First
Argument of Type int

Variant 2 (int can be converted to long
using a standard conversion)

Set 2: Candidate Functions That Have Second
Argument of Type int

Variant 1 (int can be converted to long using a
standard conversion)

Note that the intersection between these two sets is empty. Therefore, the compiler
generates an error message.

For argument matching, a function with n default arguments is treated as n+ 1 separate
functions, each with a different number of arguments.

The ellipsis (...) acts as a wildcard; it matches any actual argument. This can lead to
many ambiguous sets, if you do not design your overloaded function sets with
extreme care.

Chapter 12 Overloading

Note Ambiguity of overloaded functions cannot be determined until a function call is
encountered. At that point, the sets are built for each argument in the function call, and you
can determine whether an unambiguous overload exists. This means that ambiguities can
remain in your code until they are evoked by a particular function call.

Argument Matching and the this Pointer
Class member functions are treated differently, depending on whether they are
declared as static. Because nonstatic functions have an implicit argument that supplies
the this pointer, nonstatic functions are considered to have one more argument than
static functions; otherwise, they are declared identically.

These nonstatic member functions require that the implied this pointer match the
object type through which the function is being called, or, for overloaded operators,
they require that the first argument match the object on which the operator is being
applied. (For more information about overloaded operators, see "Overloaded
Operators" on page 336.)

Unlike other arguments in overloaded functions, no temporary objects are introduced
and no conversions are attempted when trying to match the this pointer argument.

When the -> member-selection operator is used to access a member function, the this
pointer argument has a type of class-name * const. If the members are declared as
const or volatile, the types are const class-name * const and volatile class-name *
const, respectively.

The. member-selection operator works exactly the same way, except that an implicit
& (address-of) operator is prefixed to the object name. The following example shows
how this works:

II Expression encountered in code
obj.name

II How the compiler treats it
(&obj)-)name

The left operand of the ->* and . * (pointer to member) operators are treated the same
way as the. and -> (member-selection) operators with respect to argument matching.

Argument Matching and Conversions
When the compiler tries to match actual arguments against the arguments in function
declarations, it can supply standard or user-defined conversions to obtain the correct
type if no exact match can be found. The application of conversions is. subject to these
rules:

• Sequences of conversions that contain more than one user-defined conversion are
not considered.

331

c++ Language Reference

332

• Sequences of conversions that can be shortened by removing intermediate
conversions are not considered.

The resultant sequence of conversions, if any, is called the best matching sequence.
There are several ways to convert an object of type int to type unsigned long using
standard conversions (described in Chapter 3, "Standard Conversions"):

• Convert from int to long and then from long to unsigned long.

• Convert from int to unsigned long.

The first sequence, although it achieves the desired goal, is not the best matching
sequence-a shorter sequence exists.

Table 12.1 shows a group of conversions, called trivial conversions, that have a
limited effect on determining of which sequence is the best matching. The instances in
which trivial conversions affect choice of sequence are discussed in the list following
the table.

Table 12.1 Trivial Conversions

Convert from Type

type-name

type-name&

type-name[]

type-name(argument-list)

type-name

type-name

type-name *
type-name*

Convert to Type

type-name&

type-name

type-name*

(*type-name) (argument-list)

const type-name

volatile type-name

const type-name*

volatile type-name*

The sequence in which conversions are attempted is as follows:

1. Exact match. An exact match between the types with which the function is
called and the types declared in the function prototype is always the best match.
Sequences of trivial conversions are classified as exact matches. However,
sequences that do not make any of these conversions are considered better than
sequences that convert:

• From pointer, to pointer to const (type * to const type *).

• From pointer, to pointer to volatile (type * to volatile type *).

• From reference, to reference to const (type & to const type &).

• From reference, to reference to volatile (type & to volatile type &).

2. Match using promotions. Any sequence not classified as an exact match that
contains only integral promotions, conversions from float to double, and trivial
conversions is classified as a match using promotions. Although not as good a
match as any exact match, a match using promotions is better than a match using
standard conversions.

Chapter 12 Overloading

3. Match using standard conversions. Any sequence not classified as an exact match
or a match using promotions that contains only standard conversions and trivial
conversions is classified as a match using standard conversions. Within this
category, the following rules are applied:

• Conversion from a pointer to a derived class, to a pointer to a direct or indirect
base class is preferable to converting to void * or const void *.

• Conversion from a pointer to a derived class, to a pointer to a base class
produces a better match the closer the base class is to a direct base class.
Suppose the class hierarchy is as shown in Figure 12.1.

Figure 12.1 Graph Illustrating Preferred Conversions

Conversion from type D* to type C* is preferable to conversion from type D* to
type B *. Similarly, conversion from type D* to type B * is preferable to
conversion from type D* to type A *.

This same rule applies to reference conversions. Conversion from type D& to
. type C& is preferable to conversion from type D& to type B&, and so on.

This same rule applies to pointer-to-member conversions. Conversion from
type T D:: * to type T C:: * is preferable to conversion from type T D:: * to
type T B:: *, and so on (where T is the type of the member).

The preceding rule applies only along a given path of derivation. Consider the
graph shown in Figure 12.2.

Figure 12.2 Multiple-Inheritance Graph Illustrating Preferred Conversions

A

B

Conversion from type C* to type B* is preferable to conversion from type C* to
type A *. The reason is that they are on the same path, and B * is closer. However,

there is no preference because the conversions follow different paths.

333

c++ Language Reference

334

4. Match with user-defined conversions. This sequence cannot be classified as an
exact match, a match using promotions, or a match using standard conversions.
The sequence must contain only user-defined conversions, standard conversions,
or trivial conversions to be classified as a match with user-defined conversions.
A match with user-defined conversions is considered a better match than a match
with an ellipsis but not as good a match as a match with standard conversions.

5. Match with an ellipsis. Any sequence that matches an ellipsis in the declaration is
classified as a match with an ellipsis. This is considered the weakest match.

User-defined conversions are applied if no built-in promotion or conversion exists.
These conversions are selected on the basis of the type of the argument being
matched. Consider the following code:

class UDC
{

public:

} ;

operator i nt () ;
operator 1 ong();

void Print(int);

UDC udc;
Print(udc);

The available user-defined conversions for class UDC are from type int and type long.
Therefore, the compiler considers conversions for the type of the object being
matched: UDC. A conversion to int exists, and it is selected.

During the process of matching arguments, standard conversions can be applied to
both the argument and the result of a user-defined conversion. Therefore, the
following code works:

voi d LogToFil e (long 1);

UDC udc;
LogToFile(udc);

In the preceding example, the user-defined conversion, operator long, is invoked
to convert udc to type long. If no user-defined conversion to type long had been
defined, the conversion would have proceeded as follows: Type UDC would have been
converted to type int using the user-defined conversion. Then the standard conversion
from type int to type long would have been applied to match the argument in the
declaration.

If any user-defined conversions are required to match an argument, the standard
conversions are not used when evaluating the best match. This is true even if more
than one candidate function requires a user-defined conversion; in such a case, the
functions are considered equal. For example:

Chapter 12 Overloading

class UDCl
{

public:
UDCl(int); II User-defined conversion from into

} ;

class UDC2
{

public:
UDC2(long); II User-defined conversion from long.

} ;

void Func(UDCl);
void Func(UDC2);

Func(1);

Both versions of Func require a user-defined conversion to convert type int to the
class type argument. The possible conversions are:

• Convert from type int to type UDCl (a user-defined conversion).

• Convert from type int to type long; then convert to type UDC2 (a two-step
conversion).

Even though the second of these requires a standard conversion, as well as the
user-defined conversion, the two conversions are still considered equal.

Note User-defined conversions are considered conversion by construction or conversion by
initialization (conversion function). Both methods are considered equal when considering the
best match.

Address of Overloaded Functions
Use of a function name without arguments returns the address of that function. For
example:

int Func(int i, int j);
int Func(long 1);

int (*pFunc) (int, int) = Func;

In the preceding example, the first version of Fun c is selected, and its address is
copied iUlo pFune.

335

c++ Language Reference

The compiler determines which version of the function to select by finding a function
with an argument list that exactly matches that of the target. The arguments in the
overloaded function declarations are matched against one of the following:

• An object being initialized (as shown in the preceding example)

• The left side of an assignment statement

• A formal argument to a function

• A formal argument to a user-defined operator

• A function return type

If no exact match is found, the expression that takes the address of the function is
ambiguous and an error is generated.

Note that although a nonmember function, Func, was used in the preceding example,
the same rules are applied when taking the address of overloaded member functions.

Overloaded Operators

336

With C++, you can redefine the function of most built-in operators. These operators
can be redefined, or "overloaded," globally or on a class-by-class basis. Overloaded
operators are implemented as functions and can be class-member or global functions.

The name of an overloaded operator is operatorx, where x is the operator as it appears
in Table 12.2. For example; to overload the addition operator, you define a function
called operator+. Similarly, to overload the addition/assignment operator, +=, define
a function called operator+=.

Although these operators are usually called implicitly by the compiler when they are
encountered in code, they can be invoked explicitly the same way as any member or
nonmember function is called:

Point pt;

pt.operator+(3); II Call addition operator to add 3 to pt.

Table 12.2 Redefinable Operators

Operator

!=

%

%=

&
&

&&

Name

Comma

Logical NOT

Inequality

Modulus

Modulus/assignment

Bitwise AND

Address-of

Logical AND

Type

Binary

Unary

Binary

Binary

Binary

Binary

Unary

Binary

Chapter 12 Overloading

Table 12.2 Redefinable Operators (continued)

Operator Name Type

&= Bitwise AND/assignment Binary

() Function call

* Multiplication Binary

* Pointer dereference Unary

*= Multiplication/assignment Binary·

+ Addition Binary

+ Unary Plus Unary

++ Increment! Unary

+= Addition/assignment Binary

Subtraction Binary

Unary negation Unary

Decrement! Unary

-= Subtraction/assignment Binary

-> Member selection Binary

->* Pointer-to-member selection Binary

I Division Binary

1= Division/assignment Binary

< Less than Binary

« Left shift Binary

«= Left shift/assignment Binary

<= Less than or equal to Binary

= Assignment Binary

-- Equality Binary

> Greater than Binary

>= Greater than or equal to Binary

» Right shift Binary

»= Right shift/assignment Binary

[] Array SUbscript
A Exclusive OR Binary

A= Exclusive OR/assignment Binary

Bitwise inclusive OR Binary

1= Bitwise inclusive OR/assignment Binary

II Logical OR Binary

One's complement Unary

(continued)

337

c++ Language Reference

Table 12.2 Redefinable Operators (continued)

Operator Name Type

delete delete

new new

1 Two versions of the unary increment and decrement operators exist: preincrement and postincrement.

The constraints on the various categories of overloaded operators are described in
"Unary Operators" on page 340, "Binary Operators" on page 343, "Assignment" on
page 344, "Function Call"and "Subscripting" on page 345, "Class-Member Access"
on page 347, and "Increment and Decrement" on page 340.

The operators shown in Table 12.3 cannot be overloaded.

Table 12.3 Nonredefinable Operators

Operator

.*

? :

1#1

Name

Member selection

Pointer-to-member selection

Scope resolution

Conditional

Preprocessor symbol

Preprocessor symbol

General Rules for Operator Overloading

338

The following rules constrain how overloaded operators are implemented. However,
they do not apply to the new and delete operators, which are covered separately in
Chapter 4.

• Operators must either be class member functions or take an argument that is of
class or enumerated type or arguments that are references to class or enumerated
types. For example:

class Point
{

public:

} ;

Point operator« Point &); II Declare a member operator
II overload.

II Declare addition operators.
friend Point operator+(Point&. int);
friend Point operator+(into Point&);

The preceding code sample declares the less-than operator as a member
function; however, the addition operators are declared as global functions that

have friend access. Note that more than one implementation can be provided
for a given operator. In the case of the preceding addition operator, the two
implementations are provided to facilitate commutativity. It is just as likely that
operators that add a Poi nt to a Poi nt, i nt to a Poi nt, and so on, might be
implemented.

• Operators obey the precedence, grouping, and number of operands
dictated by their typical use with built-in types. Therefore, there is no
way to express the concept "add 2 and 3 to an object of type Poi nt,"
expecting 2 to be added to the x coordinate and 3 to be added to the
y coordinate.

• Unary operators declared as member functions take no arguments; if declared
as global functions, they take one argument.

• Binary operators declared as member functions take one argument; if declared
as global functions, they take two arguments.

• Overloaded operators cannot have default arguments.

• All overloaded operators except assignment (operator=) are inherited by
derived classes.

• The first argument for member-function overloaded operators is always of the
class type of the object for which the operator is invoked (the class in which
the operator is declared, or a class derived from that class). No conversions are
supplied for the first argument.

Note that the meaning of any of the operators can be changed completely. That
includes the meaning of the address-of (&), assignment (=), and function-call
operators. Also, identities that can be relied upon for built-in types can be changed
using operator overloading. For example, the following four statements are usually
equivalent when completely evaluated:

var = var + 1;
var += 1;
var++;
++var;

This identity cannot be relied upon for class types that overload operators.
Moreover, some of the requirements implicit in the use of these operators
for basic types are relaxed for overloaded operators. For example, the
addition/assignment operator, +=, requires the left operand to be an I-value
when applied to basic types; there is no such requirement when the operator is
overloaded.

Note For consistency, it is often best to follow the model of the built-in types when
defining overloaded operators. If the semantics of an overloaded operator differ
significantly from its meaning in other contexts, it can be more confusing than
useful.

Chapter 12 Overloading

339

c++ Language Reference

Unary Operators

340

The unary operators are shown in Table 12.4.

Table 12.4 Redefinable Unary Operators

Operator Name

Logical NOT

& Address-of

One's complement

* Pointer dereference

+ Unary plus

++ Increment

Unary negation

Decrement

Of the operators shown in Table 12.4, the postfix increment and decrement operators
(++ and - -) are treated separately in the next section, "Increment and Decrement."

To declare a unary operator function as a non static member, you must declare it in
the form:

ret-type operatoropO

where ret-type is the return type and op is one of the operators listed in Table 12.4.

To declare a unary operator function as a global function, you must declare it in the
form:

ret-type operatorop(arg)

where ret-type and op are as described for member operator functions and the arg is
an argument of class type on which to operate.

Note There is no restriction on the return types of the unary operators. For example, it makes
sense for logical NOT (!) to return an integral value, but this is not enforced.

Increment and Decrement
The increment and decrement operators fall into a special category because there are
two variants of each:

• Preincrement and postincrement

• Predecrement and postdecrement

When you write overloaded operator functions, it can be useful to implement separate
versions for the prefix and postfix versions of these operators. To distinguish between
the two, the following rule is observed: The prefix form of the operator is declared

exactly the same way as any other unary operator; the postfix form accepts an
additional argument of type int.

Important When specifying an overloaded operator for the postfix form of the increment or
decrement operator, the additional argument must be of type int; specifying any other type
generates an error.

The following example shows how to define prefix and postfix increment and
decrement operators for the Poi nt class:

class Point
{

public:
II Declare prefix and postfix increment operators.
Point& operator++(); II Prefix increment operator.
Point operator++(int); II Postfix increment operator.

II Declare prefix and postfix decrement operators.
Point& operator--(); II Prefix decrement operator.
Point operator--(int); II Postfix decrement operator.

II Define default constructor.
Pointe) { _x = -Y = 0; }

II Define accessor functions.
i n t x () { ret urn _x; }
int y() { return -Y; }

private:
int _x, _y;

} ;

II Define prefix increment operator.
Point& Point::operator++()
{

_x++;
-y++;
return *this;

II Define postfix increment operator.
Point Point::operator++(int)
{

Point temp = *this;
++*this;
return temp;

II Define prefix decrement operator.
Point& Point::operator--()
{

_x- -;
-Y- -;
return *this;

Chapter 12 Overloading

341

c++ Language Reference

342

II Define postfix decrement operator.
Point Point::operator--(int)
{

Point temp = *this;
--*this;
return temp;

The same operators can be defined in file scope (globally) using the following
function heads:

friend Point& operator++(Point&)
friend Point& operator++(Point&. int
friend Point& operator--(Point&)
friend Point& operator--(Point&. int

II Prefix increment
II Postfix increment
II Prefix decrement
II Postfix decrement

The argument of type int that denotes the postfix form of the increment or decrement
operator is not commonly used to pass arguments. It usually contains the value O.
However, it can be used as follows:

class Int
{

public:
Int &operator++(int n);

private:
int _i;

} ;

Int& Int::operator++(int n)
{

i f(n != 0)
i += n;

else

II Handle case where an argument is passed.

_i++; II Handle case where no argument is passed.
return *this;

Int i;
i .operator++(25); II Increment by 25.

There is no syntax for using the increment or decrement operators to pass these
values other than explicit invocation, as shown in the preceding code. A more
straightforward way to implement this functionality is to overload the
addition/assignment operator (+=).

Binary Operators
Table 12.5 shows a list of operators that can be overloaded.

Table 12.5 Redefinable Binary Operators

Operator Name

Comma

!= Inequality

% Modulus

%= Modulus/assignment

& Bitwise AND

&& Logical AND

&= Bitwise AND/assignment

* Multiplication

*= Multiplication/assignment

+ Addition

+= Addition/assignment

Subtraction

-= Subtraction/assignment

-> Member selection

->* Pointer-to-member selection

/ Division

1= Division/assignment

< Less than

« Left shift

«= Left shift/assignment

<= Less than or equal to

= Assignment

-- Equality

> Greater than

>= Greater than or equal to

» Right shift

»= Right shift/assignment
1\ Exclusive OR

1\= Exclusive OR/assignment

Bitwise inclusive OR

1= Bitwise inclusive OR/assignment

II Logical OR

Chapter 12 Overloading

343

c++ Language Reference

To declare a binary operator function as a nonstatic member, you must declare it
in the form:

ret-type operatorop(arg)

where ret-type is the return type, op is one of the operators listed in Table 12.5,
and arg is an argument of any type.

To declare a binary' operator function as a global function, you must declare it in
the form:

ret-type operatorop(arg 1, arg2)

where ret-type and op are as described for member operator functions and arg 1
and arg2 are arguments. At least one of the arguments must be of class type.

Note There is no restriction on the return types of the binary operators; however, most
user-defined binary operators return either a class type or a reference to a class type.

Assignment

344

The assignment operator (=) is, strictly speaking, a binary operator. Its declaration
is identical to any other binary operator, with the following exceptions:

• It must be a nonstatic member function. No operator= can be declared as a
nonmember function.

• It is not inherited by derived classes.

• A default operator= function can be generated by the compiler for class types
if none exists. (For more information about default operator= functions, see
"Memberwise Assignment and Initialization" on page 322 in Chapter 11.)

The following example illustrates how to declare an assignment operator:

class Point
{
public:

Point &operator=(Point &): II Right side is the argument.

} :

II Define assignment operator.
Point &Point::operator=(Point &ptRHS
{

_x = ptRHS._x:
_y = ptRHS.-y:

return *this: II Assignment operator returns left side.

Note that the supplied argument is the right side of the expression. The operator
returns the object to preserve the behavior of the assignment operator, which returns
the value of the left side after the assignment is complete. This allows writing
statements such as:

ptl = pt2 = pt3:

Chapter 12 Overloading

Function Call
The function-call operator, invoked using parentheses, is a binary operator. The syntax
for a function call is:

Syntax
primary-expression (expression-listopt)

In this context, primary-expression is the first operand, and expression-list, a possibly
empty list of arguments, is the second operand. The function-call operator is used for
operations that require a number of parameters. This works because expression-list is
a list instead of a single operand. The function-call operator must be a nonstatic
member function.

The function-call operator, when overloaded, does not modify how functions are
called; rather, it modifies how the operator is to be interpreted when applied to objects
of a given class type. For example, the following code would usually be meaningless:

Point pt:
pt (3, 2):

Given an appropriate overloaded function-call operator, however, this syntax can be
used to offset the x coordinate 3 units and the y coordinate 2 units. The following code
shows such a definition:

class Point
{

public:
Point() { _x = _y = 0: }
Point &operator()(int dx, int dy)

{ _x += dx: _y += dy: return *this:
private:

int _x, 3:
} :

Point pt:
pt (3, 2):

Note that the function-call operator is applied to the name of an object, not the name
of a function.

Subscripting
The subscript operator ([]), like the function-call operator, is considered a binary
operator. The subscript operator must be a nonstatic member function that takes a
single argument. This argument can be of any type and designates the desired array
subscdpt.

The following example demonstrates how to create a vector of type int that
implements bounds checking:

345

c++ Language Reference

346

#include <iostream.h>

class IntVector
{

public:
IntVector(int cElements);
-IntVector() { delete _iElements;
int& operator[](int nSubscript);

private:

} ;

int *_iElements;
int _iUpperBound;

II Construct an IntVector.
IntVector::lntVector(int cElements
{

}

_iElements = new int[cElements];
_iUpperBound = cElements;

II Subscript operator for IntVector.
int& IntVector::operator[](int nSubscript
{

}

static int iErr = -1;

if(nSubscript >= 0 && nSubscript < _iUpperBound)
return _iElements[nSubscript];

else
{

clog « "Array bounds vi 01 ati on." « endl;
return iErr;

II Test the IntVector class.
int maine)
{

IntVector v(10);

fore int i = 0; i <= 10; ++i)
v[i] = i;

v[3] = v[9];

fore i = 0; i <= 10; ++i)
cout « "Element: ["« «"] == " « v[i]

« endl;

return v[0];

Chapter 12 Overloading

When i reaches lOin the preceding pro gram, 0 per a tor [] detects that an
out-of-bounds subscript is being used and issues an error message.

Note that the function operator[] returns a reference type. This causes it to be an
I-value, allowing you to use subscripted expressions on either side of assignment
operators.

Class-Member Access
Class-member access can be controlled by overloading the member-selection operator
(-». This operator is considered a unary operator in this usage, and the overloaded
operator function must be a class member function. Therefore, the declaration for
such a function is:

class-type *operator->O

where class-type is the name of the class to which this operator belongs. The
member-selection operator function must be a non static member function.

This operator is used (often in conjunction with the pointer-dereference operator)
to implement "smart pointers" that validate pointers prior to dereference or count
usage.

The. member-selector operator cannot be overloaded.

347

APPENDIX A

Grammar Summary

This appendix describes the formal grammar of the C++ language, as implemented in
the Microsoft C++ compiler. It is loosely organized around the chapter organization
of this book as follows:

• The Keywords section describes keywords, covered in Chapter 1, "Lexical
Conventions."

• The Expressions section describes the syntax of expressions, described in
Chapter 4, "Expressions."

• The Declarations section describes the syntax of declarations, described in
Chapter 6, "Declarations."

• The Declarators section describes the syntax of declarators, covered in Chapter 7,
"Declarators."

• The Classes section covers the syntax used in declaring classes, as covered in
Chapter 8, "Classes."

• The Statements section covers the syntax used in writing statements, as covered in
Chapter 5, "Statements."

• The Microsoft Extensions section covers the syntax of features unique to
Microsoft C++. Many of these features are covered in Appendix B,
"Microsoft-Specific Modifiers."

Keywords
class-name:

identifier

enum-name:
identifier

typedef-name:
identifier

349

c++ Language Reference

identifier: one of
nondigit
identifier nondigit
identifier digit

nondigit: one of
_a bcdefghij kim
nopqrstuvwxyz
ABCDEFGHIJKLM
NOPQRSTUVWXYZ

digit: one of
0123456789

Expressions

350

expression:
assignment-expression
expression , assignment-expression

assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression

assignment-operator: one of
= *= 1= %= += -= >= <= &= A= 1=

conditional-expression:
logical-or-expression
logical-or-expression ? expression conditional-expression

logical-or-expression:
logical-and-expression
logical-or-expression II logical-and-expression

logical-and-expression:
inclusive-or-expression
logical-and-expression && inclusive-or-expression

inclusive-or-expression:
exclusive-or-expression
inclusive-or-expression exclusive-or-expression

exclusive-or-expression:
and-expression
exclusive-or-expression A and-expression

and-expression:
equality-expression
and-expression & equality-expression

equality-expression:
relational-expression
equality-expression -- relational-expression
equality-expression != relational-expression

re lational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression => shift-expression

shift-expression:
additive-expression
shift-expression « additive-expression
shift-expression » additive-expression

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - mUltiplicative-expression

multiplicative-expression:
segment-expression
multiplicative-expression * segment-expression
multiplicative-expression / segment-expression
multiplicative-expression % segment-expression

segment-expression:
pm-expression
segment-expression :> pm-expression

pm-expression:
cast-expression
pm-expression • * cast-expression
pm-expression ->* cast-expression

cast-expression:
unary-expression
(type-name) cast-expression

Appendix A Grammar Summary

351

c++ Language Reference

352

unary-expression:
postfix-expression
+ + unary-expression
-- unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-name)
allocation-expression
deallocation-expression

unary-operator: one of
*&+-!-

allocation-expression:
::opt new nmodeloptplacementopt new-type-name new-initializeropt
::opt new nmodeloptplacementopt (type-name) new-initializeropt

placement:
(expression-list)

new-type-name:
type-specifier-list new-declarator opt

new-declarator:
ms-modifier-list opt * cv-qualifier-list opt new-declaratoropt
ms-modifier-list opt complete-class-name :: *cv-qualifier-listopt

new-declarator opt

new-declaratoropt [expression]

new-initializer:
(initializer-list)

deallocation-expression:
::opt delete cast-expression
: :opt delete [] cast-expression

postfix-expression:
primary-expression
postfix-expression [expression
postfix-expression (expression-list)
simple-type-name (expression-list)
postfix-expression • name
postfix-expression -> name
postfix-expression ++
postfix-expression --
dynamic_cast < type-id > (expression)
static_cast < type-id > (expression)
const_cast < type-id > (expression)
reinterpret_cast < type-id > (expression)

typeid(expression)
typeid(type-id)

expression-list:
assignment-expression
expression-list , assignment-expression

primary-expression:
literal

name:

this
•• identifier
:: operator-Junction-name
:: qualified-name (expression)
name

identifier
operator-Junction-name
conversion-Junction-name

- class-name
qualified-name

qualified-name:
ms-modifier-listopt qualified-class-name •. name

literal:
integer-constant
character-constant
floating-constant
string-literal

integer-constant:
decimal-constant integer-sujfixopt
octal-constant integer-sujfixopt
hexadecimal-constant integer-sujfixopt
, c-char-sequence'

decimal-constant:
nonzero-digit
decimal-constant digit

octal-constant:
o
octal-constant octal-digit

hexadecimal-constant:
Ox hexadecimal-digit
OX hexadecimal-digit
hexadecimal-constant hexadecimal-digit

Appendix A Grammar Summary

353

c++ Language Reference

354

nonzero-digit: one of
123456789

octal-digit: one of
01234567

hexadecimal-digit: one of
0123456789
abcdef
ABCDEF

integer-suffix:
unsigned-suffix long-suffixopt

long-suffix unsigned-suffixopt

unsigned-suffix: one of
uU

long-suffix: one of
IL

character-constant:
, c-char-sequence'
L' c-char-sequence'

c-char-sequence:
c-char
c-char-sequence c-char

c-char:
any member of the source character set except the single quote ('),

backs lash (\), or new line character
escape-sequence

escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence

simple-escape-sequence: one of
\' \" \? \\
\a \b \f \n \r \t \v

octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence:
\xhexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

Appendix A Grammar Summary

floating-constant:
fractional-constant exponent-partoptfloating-suffixopt
digit-sequence exponent-part floating-suffixopt

fractional-constant:
digit-sequenceopt • digit-sequence
digit-sequence .

exponent-part:
e signopt digit-sequence
E signopt digit-sequence

sign: one of
+-

digit-sequence:
digit
digit-sequence digit

floating-suffix: one of
flFL

string literal:
"s-char-sequence opt"

L "s-char-sequence opt"

s-char-sequence:
s-char
s-char-sequence s-char

s-char:
any member of the source character set except double quotation marks (11),

backslash (\), or newline character
escape-sequence

Declarations
declaration:

decl-specijiersopt declarator-listopt ;
asm-declaration
function-definition
linkage-specification
template-declaration:

asm-declaration:
__ asm(string-literal);

decl-specifiers:
decl-specijiersopt decl-specifier

355

c++ Language Reference

356

decl-specifier:
storage-class-specifier
type-specifier
fct-specifier
friend
typedef
__ declspec (extended-decl-modifier-seq)

storage-class-specifier:
auto
register
static
extern

fct-specifier:
inline
virtual

type-specifier:
simple-type-name
class-specifier
enum-specifier
elaborated-type-specifier
const
volatile

extended-decl-modifier-seq:
extended-decl-modifieropt

extended-decl-modifier extended-decl-modifier-seq

extended-dec I-modifier:
thread
naked
dlIimport
dlIexport

simple-type-name:
complete-class-name
qualified-type-name
char
short
int
long
signed
unsigned
float
double
void

elaborated-type-speciJier:
class-key rmodelopt identifier
class-key rmodelopt class-name
enum-name

class-key:
class
struct
union

qualified-type-name:
typedef-name
class-name :: qualified-type-name

complete-class-name:
qualified-class-name
:: qualified-class-name

qualified-class-name:
class-name
class-name :: qualified-class-name

enum-specifier:
enum identifieropt { enwn-listopt }

enum-list:
enumerator
enum-list , enumerator

enumerator:
identifier
identifier = constant-expression

constant-expression:
conditional-expression

linkage-specification:
extern string-literal { declaration-listopt }
extern string-literal declaration

declaration-list:
declaration
declaration-list declaration

template-declaration:
template < template-argument-list > declaration

template-argument-list:
template-argument
template-argument-list , template-argument

Appendix A Grammar Summary

357

c++ Language Reference

358

template-argument:
type-argument
argument-declaration

type-argument:
class identifier

template-class-name:
template-name < template-arg-list >

template-arg-list:
template-arg
template-arg-list , template-arg

template-arg:
expression
type-name

original-namespace-name :
identifier

namespace-definition :
original-namespace-definition
extension-namespace-definition
unnamed-namespace-definition

original-namespace-definition :
namespace identifier { namespace-body }

extension-namespace-definition :
namespace original-namespace-name { namespace-body }

unnamed-namespace-definition :
namespace { namespace-body }

namespace-body :
declaration-seq opt

id-expression :
unqualified-id
qualified-id

nested-name-specifier :
class-or-namespace-name :: nested-name-specifieropt

class-or-namespace-name :
class-name
namespace-name

namespace-name :
original-namespace-name
namespace-alias

namespace-alias :
identijier

namespace-alias-definition :
namespace identijier = qualijied-namespace-specijier;

qualijied-namespace-specijier :
: :opt nested-name-specijieropt class-or-namespace-name

using-declaration:
using ::opt nested-name-specijier unqualijied-id
using :: unqualijied-id

using-directive:
using names pace : :opt nested-name-specijieropt namespace-name

Declarators
declarator-list:

init-declarator
declarator-list, init-declarator

init-declarator:
ms-modijier-listopt declarator initializeropt

declarator:
dname
ptr-operator declarator
declarator (argument-declaration-list) cv-mod-listopt
declarator [constant-expressionopt]
(declarator)

cv-mod-list:
cv-qualijier cv-mod-listopt
rmodel cv-mod-listopt

ptr-operator:
ms-modijier-listopt * cv-qualijier-listopt
ms-modijier-listopt & cv-qualijier-listopt
ms-modijier-listopt complete-class-name •• * cv-qualijier-listopt

cv-qualijier-list:
cv-qualijier cv-qualijier-listopt

cv-qualijier:
const
voiatile

Appendix A Grammar Summary

359

c++ Language Reference

360

dname:
name
class-name
"" class-name
typedef-name
qualijied-type-name

type-name:
type-specijier-list ms-modijier-listopt abstract-declaratoropt

type-specijier-list:
type-specijier type-specijier-listopt

abstract-declarator:
ptr-operator ms-modifier-listopt abstract-declaratoropt
abstract-declaratoropt (argument-declaration-list) cv-qualijier-listopt
abstract-declaratoropt [constant-expressionopt]

(ms-modijier-listopt abstract-declarator)

argument-declaration-list:
arg-declaration-listopt •• ·opt

arg-declaration-list , •.•

arg-declaration-list:
argument-declaration
arg-declaration-list , argument-declaration

argument-declaration:
decl-specijiers ms-modijier-listopt declarator
decl-specijiers ms-modijier-listopt declarator = expression
decl-specijiers ms-modijier-listopt abstract-declaratoropt
decl-specijiers ms-modijier-listopt abstract-declaratoropt = expression

function-definition:
decl-specijiersopt ms-modijier-listopt declarator ctor-initializeropt Jet-body

Jet-body:
compound-statement

initializer:
= expression
= { initializer-list ,opt }

(expression-list)

initializer-list:
expression
initializer-list , expression
{ initializer-list ,opt }

Classes
class-specifier:

class-head { member-listopt }

class-head:
class-key ambient-modelopt identifieropt base-specopt
class-key ambient-modelopt class-name base-specopt

member-list:
member-declaration member-listopt
access-specifier : member-listopt

member-declaration:
decl-specifiersopt member-declarator-listopt
function-definition ;opt

qualified-name ;

member-declarator-list:
member-declarator
member-declarator-list , member-declarator

member-declarator:
ms-modifier-listopt declarator pure-specifieropt
identifieropt : constant-expression

pure-specifier:
= 0

base-spec:
: base-list

base-list:
base-specifier
base-list, base-specifier

base-specifier:
complete-class-name
virtual access-specifieropt complete-class-name
access-specifier virtualopt complete-class-name

access-specifier:
private
protected
public

COilWi'siOit-!Ultctiolt-nume:

operator conversion-type-name

Appendix A Grammar Summary

361

c++ Language Reference

conversion-type-name:
type-specifier-list ptr-operatoropt

ctor-initializer:
: mem-initializer-list

mem-initializer-list:
mem-initializer
mem-initializer , mem-initializer-list

mem-initializer:
complete-class-name (expression-listopt
identifier (expression-listopt

operator-Junction-name:
operator operator

operator: one of
new delete
+ * 1 % 1\ & 1

= < > += -= *= 1=
1\= &= 1= « » »= «= --
<= >= && II ++ ->*
0 []

Statements

362

statement:
labeled-statement
expression-statement
compound-statement
selection-statement
iteration-statement
jump-statement
declaration-statement
asm-statement
try-except-statement
try-finally-statement

labeled-statement:
identifier : statement
case constant-expression statement
default : statement

expression-statement:
expressionopt ;

%=
!=

->

compound-statemen(:
{ statement-listopt }

statement-list:
statement
statement-list statement

selection-statement:
if (expression) statement
if (expression) statement else statement
switch (expression) statement

iteration-statement:
while (expression) statement
do statement while (expression) ;
for (Jor-init-statement expressionopt ; expressionopt) statement

for-init-statement:
expression-statement
declaration-statement

jump-statement:
break;
continue;
return expressionopt
goto identij7er ;

declaration-statement:
declaration

try-except-statement:
__ try compound-statement
__ except (expression) compound-statement

try-finally-statement:
__ try compound-statement
__ finally (expression) compound-statement

Microsoft Extensions
asm-statement:

__ asm assembly-instruction ;opt

__ asm { assembly-instruction-list } ;opt

assembly-instruction-list:
assembly-instruction ;npt

assembly-instruction; assembly-instruction-list ;opt

Appendix A Grammar Summary

363

c++ Language Reference

364

nmodel:
rmodel
__ based expression

ms-modifier-list:
ms-modifier ms-modifier-listopt

ms-modifier:
__ cdecl
__ fastcall
__ stdcall
__ syscall (reserved for future implementations)
__ oldcall (reserved for future implementations)
__ unaligned (reserved for future implementations)
rmodel
based-modifier

based-modifier:
__ based (based-type)

based-type:
name

APPENDIX B

Microsoft-Specific Modifiers

Many of the Microsoft-specific keywords can be used to modify declarators to form
derived types. (For more information about declarators, see Chapter 7, "Declarators").

Table B.1 Microsoft-Specific Keywords

Keyword

__ declspec

__ fastcall

__ stdcall

Meaning

Insert the following assembly-language code.

The name that follows declares a 32-bit offset to the
32-bit base contained in the declaration.

The name that follows uses the C naming and calling
conventions.

The name that follows (thread, naked, dllimport, or
dllexport) specifies a Microsoft-specific storage-class
attribute.

The name that follows declares a function that uses
registers, when available, instead of the stack for
argument passing.

The name that follows specifies a function that observes
the standard calling convention.

Used to Form
Derived Types?

No

Yes

Yes

No

Yes

Yes

The following sections discuss the syntactic usage and semantic meaning of the
Microsoft-specific modifiers.

Based Addressing
This section includes the following topics:

• __ based

• Based pointers

• Pointers based on pointers

365

c++ Language Reference

Using __ based in 32-bit Compilations

366

Based addressing is useful when you need precise control over the segment in which
objects are allocated (static and dynamic based data).

The only form of based addressing acceptable in 32-bit compilations is "based on a
pointer" that defines a type that contains a 32-bit displacement to a 32-bit base or
based on void.

Syntax
based-range-modifier:

__ based (base-expression)

base-expression:
based-variable
based-abstract-declarator
segment-name
segment-cast

based-variable:
identifier

based-abstract-declarator:
abstract-declarator

base-type:
type-name

Based Pointers
Pointers based on pointer addresses are the only form of the __ based keyword valid
in 32-bit compilations. In such compilations, based pointers are 32-bit offsets from
a 32-bit base.

When dereferencing a based pointer, the base must be either explicitly specified or
implicitly known through the declaration.

Pointers Based on Pointers
The "based on pointer" variant of based addressing enables specification of a pointer
as a base-expression. The based pointer, then, is an offset into the segment starting at
the beginning of the pointer on which it is based.

One use for pointers based on pointers is for persistent objects that contain pointers. A
linked list of pointers based on pointers can be saved to disk and reloaded to another
place in memory, and the pointers will still be valid. The following example declares
such a linked list:

void *vpBuffer;

struct llist_t

Appendix B Microsoft-Specific Modifiers

void __ based(vpBuffer) *vpData;
llist_t __ based(vpBuffer) *llNext;

} ;

The pointer, vpBuffer, is assigned the address of memory allocated at some later
point in the program; the linked list is then relocated relative to the value of
vpBuffer.

Pointers based on pointer addresses are the only forms of __ based valid in 32-bit
compilations. In such compilations, they are 32-bit displacements from a 32-bit base.

Calling and Naming Convention Modifiers
Calling conventions determine how functions are called; naming conventions
determine how external names are treated. For more information, see "Calling
Conventions Topics," in Visual c++ Programmer's Guide online.

Extended Storage-Class Attributes
This section describes extended attribute syntax, which simplifies and standardizes
extensions to the Microsoft C and C++ languages. The storage-class attributes that use
extended attribute syntax include thread, naked, dllimport, and dllexport. Use of
these attributes is described later in this section.

Extended Attribute Syntax
The extended attribute syntax for specifying storage-class information uses the
__ declspec keyword, which specifies that an instance of a given type is to be stored
with a Microsoft-specific storage-class attribute (thread, naked, dllimport,
dllexport, nothrow, property, seiectany, or uuid). Examples of other storage-class
modifiers include the static and extern keywords. However, these keywords are part
of the ANSI specification of the C and c++ languages, and as such are not covered by
extended attribute syntax.

This is the extended attribute synt~x for C++:

Syntax
decl-specifier :

__ declspec (extended-decl-modifier-seq)

extended-decl-modifier-seq :
extended-dec I-modifier opt

extended-decl-modifier extended-decl-modifier-seq

extended-decl-modifier :
thread
naked

367

c++ Language Reference

dllimport
dllexport
nothrow
property
selectany
uuid("ComObjectGUID")

White space separates the declaration modifier sequence. Examples of the syntax
appear in later sections.

The thread, naked, dllimport, dllexport, nothrow, property, selectany, and uuid
storage-class attributes are properties only of the declaration of the object or function
to which they are applied. Unlike the __ near and __ far keywords, which actually
affect the type of object or function (in this case, 2- and 4-byte addresses), these
storage-class attributes do not redefine the type attributes of the object itself. The
thread attribute affects data and objects only. The naked attribute affects functions
only. The dllimport and dllexport attributes affect functions, data, and objects. The
property, selectany, and uuid attributes affect COM objects.

The thread Attribute

368

Thread Local Storage (TLS) is the mechanism by which each thread in a
multithreaded process allocates storage for thread-specific data. In standard
multithreaded programs, data is shared among all threads of a given process, whereas
thread local storage is the mechanism for allocating per-thread data. For a complete
discussion of threads, see "Multithreading Topics," in the Visual C++ Programmer's
Guide online.

The C and C++ languages include the extended storage-class attribute, thread. The
thread attribute must be used with the __ declspec keyword to declare a thread
variable. For example, the following code declares an integer thread local variable
and initializes it with a value:

__ declspec(thread) int tls_i = 1;

You must observe these guidelines when declaring thread local objects and variables:

• You can apply the thread attribute only to data declarations and definitions, and
classes that do not have member functions. It cannot be used on function
declarations or definitions. For example, the following code generates a compiler
error:

#define Thread __ declspec(thread)
Thread void func(); / / Error

• You can specify the thread attribute only on data items with static storage duration.
This includes global data objects (both static and extern), local static objects, and
static data members of classes. You cannot declare automatic data objects with the
thread attribute. For example, the following code generates compiler errors:

Appendix B Microsoft-Specific Modifiers

#define Thread __ declspec(thread)
void funcI()
{

Thread int tls_i;

int func2(Thread int tls_i
(

II Error

II Error

• You must use the thread attribute for the declaration and the definition of a thread
local object, whether the declaration and definition occur in the same file or
separate files. For example, the following code generates an error:

#define Thread __ declspec(thread)
extern int tls_i; II This generates an error, because the
int Thread tls_i; II declaration and the definition differ.

• You cannot use the thread attribute as a type·modifier. For example, the following
code generates a compiler error:

char __ declspec(thread) *ch; II Error

• Classes can be instantiated using thread only if they contain no member functions.
The thread attribute is ignored if no object is declared as part of the class
declaration. For example:

__ declspec(thread) class X {
public:

int I; } x; II x is a thread object

X y; II y is not a thread object

Because the declaration of objects that use the thread attribute is permitted, these
two examples are semantically equivalent:

#define Thread __ declspec(thread)
Thread class B
{

II Code
BObject; II Okay--BObject declared thread local.

class B
{

II Code

Thread B BObject; II Okay--BObject declared thread local.

• Standard C permits initialization of an object or variable with an expression
involving a reference to itself, but only for objects of non static extent. Although
C++ normally permits such dynamic initialization of an object with an expression
involving a reference to itself, this type of initialization is not permitted with thread
local objects. For example:

369

c++ Language Reference

#define Thread __ declspecC thread)
Thread int tls tls_i; II C and C++ error
intj = j; II Okay in C++; C error
Thread int tls i sizeofC tls_i) II Okay in C and C++

Note that a sizeof expression that includes the object being initialized does not
constitute a reference to itself and is allowed in C and c++.

The naked Attribute

370

For functions declared with the naked attribute, the compiler generates code without
prolog and epilog code. You can use this feature to write your own prolog/epilog code
sequences using inline assembler code. Naked functions are particularly useful in
writing virtual device drivers.

Because the naked attribute is only relevant to the definition of a function and is not a
type modifier, naked functions use the extended attribute syntax, described previously.
For example, this code defines a function with the naked attribute:

__ declspecC naked) int funcC formal_parameters)
{

II Function body

Or, alternatively:

#define Naked __ declspecC naked)
Naked int funcC formal_parameters
{

II Function body

The naked attribute affects only the nature of the compiler's code generation for the
function's prolog and epilog sequences. It does not affect the code that is generated
for calling such functions. Thus, the naked attribute is not considered part of the
function's type, and function pointers cannot have the naked attribute. Furthermore,
the naked attribute cannot be applied to a data definition. For example, this code
sample generates an error:

__ declspecC naked) int i; II Error--naked attribute not
II permitted on data declarations.

The naked attribute is relevant only to the definition of the function and cannot be
specified in the function's prototype. For example, this declaration generates a
compiler error:

__ declspecC naked) int funcC); II Error--naked attribute not
II permitted on function declarations

Appendix B Microsoft-Specific Modifiers

Rules and Limitations
• The return statement is not permitted in a naked function. However, you can

return an int by moving the return value into the EAX register before the RET
instruction.

• Structured exception handling constructs are not permitted in a naked function,
because the constructs must unwind across the stack frame.

• The setjrnp run-time function cannot be used in a naked function, because it too
must unwind across the stack frame. However, use of the longjrnp run-time
function is permitted.

• Use of the _alloca function is not permitted in a naked function.

• To ensure that no initialization code for local variables appears before the prolog
sequence, initialized local variables are not permitted at function scope. In
particular, the declaration of C++ objects is not permitted at function scope. There
can, however, be initialized data in a nested scope.

• Frame pointer optimization (the lOy compiler option) is not recommended, but it is
automatically suppressed for a naked function.

Considerations for Writing Prolog/Epilog Code
Before writing your own prolog and epilog code sequences, it is important to
understand how the stack frame is laid out. It is also useful to know how to use the
__ LOCAL_SIZE symbol.

C++ Stack Frame Layout
This example shows the standard prolog code that might appear in a 32-bit function:

push
mov
sub
push

ebp
ebp, esp
esp, localbytes
<registers>

Save ebp
Set stack frame pointer
Allocate space for locals
Save registers

The 1 oca 1 bytes variable represents the number of bytes needed on the stack for
local variables, and the < reg; s t e r s > variable is a placeholder that represents the list
of registers to be saved on the stack. After pushing the registers, you can place any
other appropriate data on the stack. The following is the corresponding epilog code:

pop
mov
pop
ret

<registers>
esp, ebp
ebp

Restore registers
Restore stack pointer
Restore ebp
Return from function

The stack always grows down (from high to low memory addresses). The base pointer
(e b p) points to the pushed value of e b p. The locals area begins at e b p - 2. To access
local variables, calculate an offset from e b p by subtracting the appropriate value
from ebp.

371

c++ Language Reference

__ LOCAL_SIZE
The compiler provides a symbol, __ LOCAL_SIZE, for use in the inline assembler
block of function prolog code. This symbol is used to allocate space for local
variables on the stack frame in custom prolog code.

The compiler determines the value of __ LOCAL_SIZE. Its value is the total number
of bytes of all user-defined local variables and compiler-generated temporary
variables. __ LOCAL_SIZE can be used only as an immediate operand; it cannot
be used in an expression. You must not change or redefine the value of this symbol.
For example:

mov
mov

eax, __ LOCAL_SIZE
eax, [ebp - __ LOCAL_SIZE]

;Immediate operand--Okay
;Error

The following example of a naked function containing custom prolog and epilog
sequences uses the __ LOCAL_SIZE symbol in the prolog sequence:

__ declspec (naked) func()
{

i nt i;
i nt j;

asm /* prolog */
{

push ebp
mov ebp, esp
sub esp, LOCAL_SIZE
}

/* Function body */

asm /* epilog */
{

mov esp, ebp
pop ebp
ret
}

The dllexport and dllimport Attributes

372

The dllexport and dIlimport storage-class modifiers export and import functions,
data, and objects to and from a DLL. These modifiers, or attributes, explicitly define
the DLL's interface to its client, which can be the executable file or another DLL.
Declaring functions as dllexport eliminates the need for a module-definition (.DEF)
file, at least with respect to the specification of exported functions. Note that
dllexport replaces the __ export keyword.

The declaration of dllexport and dIlimport uses extended attribute syntax:

__ declspec(dllexport) void func();

Appendix B Microsoft-Specific Modifiers

Alternatively, to make your code more readable, you can use macro definitions:

#define DllImport __ declspec(dllimport)
#define DllExport __ declspec(dllexport)

DllExport void func():
DllExport int i = 10:
DllImport int j:
Dl1Export int n:

Definitions and Declarations
The DLL interface refers to all items (functions and data) that are known to be
exported by some program in the system; that is, all items that are declared as
dllimport or dllexport. All declarations included in the DLL interface must specify
either the dllimport or dllexport attribute. However, the definition must specify only
the dllexport attribute. For example, the following function definition generates a
compiler error:

__ declspec(dllimport) int func() II Error: dllimport
II prohibited on definition.

{

return 1:

This code also generates an error:

#define DllImport __ declspec(dllimport

__ declspec(dllimport) int = 10: II Error: this is a
II definition.

However, this is correct syntax:

__ declspec(dllexport) int i = 10: II Okay--export definition

The use of dllexport implies a definition, while dllimport implies a declaration. You
must use the extern keyword with dllexport to force a declaration; otherwise, a
definition is implied. Thus, the following examples are correct:

#define DllImport __ declspec(dllimport)
#define DllExport __ declspec(dllexport)

extern Dlllmport int k: II These are both correct and imply a
DllImport int j: II declaration.

The following examples clarify the preceding:

static __ declspec(dllimport) int 1: II Error: not declared extern.

void func()
{

static __ declspec(dllimport) int s:

__ dec 1 s p e c (d 11 imp 0 r t) .i n t m:

II Error: not declared
II extern.
II Okay: this is a
II declaration.

373

c++ Language Reference

374

}

__ declspec(dllexport) int n;

extern __ declspec(dllimport int i;

extern __ declspec(dllexport int k;

II Error; implies external
II definition in local scope.
II Okay; this is a
II declaration.
II Okay; extern implies
II declaration.

__ dec 1 s p e c (dll ex p 0 r t) i n t x = 5; I I Err 0 r; imp 1 i e sex t ern a 1
II definition in local scope.

Defining Inline C++ Functions with dllexport and dllimport
You can define as inline a function with the dllexport attribute. In this case, the
function is always instantiated and exported, whether or not any module in the
program references the function. The function is presumed to be imported by another
program.

You can also define as inline a function declared with the dllimport attribute. In
this case, the function can be expanded (subject to lOb specifications), but never
instantiated. In particular, if the address of an inline imported function is taken, the
address of the function residing in the DLL is returned. This behavior is the same as
taking the address of a non-inline imported function.

These rules apply to inline functions whose definitions appear within a class
definition. In addition, static local data and strings in inline functions maintain the
same identities between the DLL and client as they would in a single program (that is,
an executable file without a DLL interface).

Exercise care when providing imported inline functions. For example, if you update
the DLL, don't assume that the client will use the changed version of the DLL. To
ensure that you are loading the proper version of the DLL, rebuild the DLL's client as
well.

General Rules and Limitations
• If you declare a function or object without the dllimport or dllexport attribute, the

function or object is not considered part of the DLL interface. Therefore, the
definition of the function or object must be present in that module or in another
module of the same program. To make the function or object part of the DLL
interface, you must declare the definition of the function or object in the other
module as dllexport. Otherwise, a linker error is generated.

If you declare a function or object with the dUexport attribute, its definition must
appear in some module of the same program. Otherwise, a linker error is generated.

• If a single module in your program contains both dllimport and dllexport
declarations for the same function or object, the dllexport attribute takes
precedence over the dllimport attribute. However, a compiler warning is
generated. For example:

__ declspec(dllimport
__ declspec(dllexport

int i;
i nt i; II Warning; inconsistent;

II dllexport takes precedence.

Appendix B Microsoft-Specific Modifiers

• In C, a compiler error is generated if you initialize a globally declared pointer with
the address of a data object declared with the dllimport attribute. Similarly, you
cannot initialize a static local function pointer with the address of a function
declared with the dllimport attribute, or initialize a static local data pointer with
the address of a data object declared with the dllimport attribute. The C++
compiler does not enforce this restriction, because C++ supports dynamic
initialization of local and global static objects. For example, the following code
generates errors when compiled with the C compiler, but not with the C++
compiler.

_declspec(dllimport voi d func1 (void) :
_declspec(dllimport i nt i:

i nt *pi = &i: II Error in C
static void (*pf)(void) == &funcl: II Error in C

void func2()
{

static i nt *pi == &i: II Error in C
static void (*pf)(void) = &func1: II Error in C

However, because a program that includes the dllexport attribute in the declaration
of an object must provide the definition for that object somewhere in the program,
you can initialize a global or local static function pointer with the address of a
dllexport function. Similarly, you can initialize a global or local static data pointer
with the address of a dllexport data object. For example, the following code does
not generate errors in C or C++:

_declspec(dllexport void funcl(void):
_declspec(dllexport) int i:

int *pi = &i:
static void (*pf)(void) &funcl:

void func2()
{

static i nt *pi = &i:
static void (*pf)(void) = &funcl:

II Okay
II Okay

II Okay
II Okay

Using dllimport and dllexport in C++
You can declare C++ classes with the dllimport or dllexport attribute. These forms
imply that the entire class is imported or exported. Classes exported this way are
called exportable classes.

The following example defines an exportable class. All its member functions and
static c1RtR (lre exported:

375

c++ Language Reference

376

#define DllExport __ declspec(dllexport)

class DllExport C
{

} ;

i nt i;
virtual int func(void)
{ return 1; }

Note that explicit use of the dllimport and dllexport attributes on members of an
exportable class is prohibited.

dllexport Classes
When you declare a class dllexport, all its member functions and static data members
are exported. You must provide the definitions of all such members in the same
program. Otherwise, a linker error is generated. The one exception to this rule applies
to pure virtual functions, for which you need not provide explicit definitions.
However, because a destructor for an abstract class is always called by the destructor
for the base class, pure virtual destructors must always provide a definition. Note that
these rules are the same for nonexportable classes.

If you export data of class type or functions that return classes, be sure to export the
class.

dllimport Classes
When you declare a class dllimport, all its member functions and static data members
are imported. Unlike the behavior of dllimport and dllexport on nonclass types, static
data members cannot specify a definition in the same program in which a dllimport
class is defined.

Inheritance and Exportable Classes
All base classes of an exportable class must be exportable. If not, a compiler warning
is generated. Moreover, all accessible members that are also classes must be
exportable. This rule permits a dllexport class to inherit from a dllimport class,
and a dllimport class to inherit from a dllexport class (though the latter is not
recommended). As a rule, everything that is accessible to the DLL's client (according
to C++ access rules) should be part of the exportable interface. This includes private
data members referenced in inline functions.

Selective Member Import/Export
Because member functions and static data within a class implicitly have external
linkage, you can declare them with the dllimport or dllexport attribute, unless the
entire class is exported. If the entire class is imported or exported, the explicit
declaration of member functions and data as dllimport or dllexport is prohibited. If
you declare a static data member within a class definition as dllexport, a definition
must occur somewhere within the same program (as with nonclass external linkage).

Appendix B Microsoft-Specific Modifiers

Similarly, you can declare member functions with the dllimport or dllexport
attributes. In this case, you must provide a dllexport definition somewhere within
the same program.

It is worthwhile to note several important points regarding selective member import
and export:

• Selective member import/export is best used for providing a version of the
exported class interface that is more restrictive; that is, one for which you can
design a DLL that exposes fewer public and private features than the language
would otherwise allow. It is also useful for fine-tuning the exportable interface:
when you know that the client, by definition, is unable to access some private data,
you need not export the entire class.

• If you export one virtual function in a class, you must export all of them, or at least
provide versions that the client can use directly.

• If you have a class in which you are using selective member import/export with
virtual functions, the functions must be in the exportable interface or defined inline
(visible to the client).

• If you define a member as dllexport but do not include it in the class definition,
a compiler error is generated. You must define the member in the class header.

• Although the definition of class members as dllimport or dllexport is permitted,
you cannot override the interface specified in the class definition.

• If you define a member function in a place other than the body of the class
definition in which you declared it, a warning is generated if the function is defined
as dllexport or dllimport (if this definition differs from that specified in the class
declaration).

c++ Inline Assembler
The inline assembler lets you embed assembly-language instructions in your C source
programs without extra assembly and link steps. The inline assembler is built into the
compiler-you don't need a separate assembler such as the Microsoft Macro
Assembler (MASM).

Because the inline assembler doesn't require separate assembly and link steps, it is
more convenient than a separate assembler. Inline assembly code can use any C
variable or function name that is in scope, so it is easy to integrate it with your
program's C code. And because the assembly code can be mixed with C statements,
it can do tasks that are cumbersome or impossible in C alone.

The __ asm keyword invokes the inline assembler and can appear wherever a
C statement is legal. It cannot appear by itself. It mnst be followed by an assembly
instruction, a group of instructions enclosed in braces, or, at the very least, an empty
pair of braces. The term " __ asm block" here refers to any instruction or group of
instructions, whether or not in braces.

377

c++ Language Reference

378

The following code is a simple __ asm block enclosed in braces. (The code is a
custom function prolog sequence.)

asm

push ebp
mov ebp, esp
sub esp, LOCAL_SIZE

Alternatively, you can put __ asm in front of each assembly instruction:

asm push ebp
__ asm mov ebp, esp

asm sub esp, __ LOCAL_SIZE

Since the __ asm keyword is a statement separator, you can also put assembly
instructions on the same line:

asm push ebp asm mov ebp, esp asm sub esp,

APPENDIX C

Microsoft-Specific Compiler
COM Support Classes

Standard classes are used to support some of the COM types. There are four classes
defined in COMDEEH and the header files generated from the type library.

#include <comdef.h>

Class

_com_error

_com_ptr_t

_hstr_t

_varianCt

com error

Purpose

Defines the error object thrown by _com_raise_error in most failures.

Encapsulates COM intet!ace pointers, and automates the required calls
to AddRef, Release, and Querylnterface.

Wraps the BSTR type to provide useful operators and methods.

Wraps the VARIANT type to provide useful operators and methods.

A _com_error object represents an exception condition detected by the
error-handling wrapper functions in the header files generated from the type
library or by one of the COM support classes. The _com_error class encapsulates
the HRESULT error code and any associated IErrorInfo object.

#include <comdef.h>

Construction

Operators

operator =

Extractor Functions

Error

ErrorInfo

Constructs a _com_error object.

Assigns an existing _com_error object to another.

Retrieves the HRESULT passed to the constructor.

Retrieves the IErrorInfo object passed to the constructor.

RctriCyT C3 the 16-bit errOL cede mapped into th~ cncupsulutcd
HRESULT.

379

c++ Language Reference

IErrorlnfo functions

Description

Help Context

HelpFile

Source

GUID

Format Message Extractor

ErrorMessage

Calls IErrorInfo: : GetDescription function.

Calls IErrorInfo: :GetHelpContext function.

Calls IErrorInfo: : GetHelpFile function

Calls IErrorInfo: : GetSource function.

Calls IErrorInfo: : GetGUID function.

Retrieves the string message for HRESULT stored
in the _com_error object.

Exeplnfo.wCode to HRESULT Mappers

HRESULTToWCode

WCodeToHRESULT

Maps 32-bit HRESULTto 16-bit wCode.

Maps 16-bit wCode to 32-bit HRESULT.

Member Functions
_com_error: :_com_error

_com_error(HRESULT hr, IErrorInfo* perrinfo = NULL) throw();
_com_error(const _com_error& that) throw();

Parameters

Remarks

hr HRESULT information

perrinfo IErrorInfo object

that An existing _com_error object

Constructs a _com_error object. The first constructor creates a new object given an
HRESULT and optional IErrorInfo object. The second creates a copy of an existing
_com_error object.

_com_error: : Description
_bstr_t Description() const throw ();

Return Value

Remarks

380

Returns the result of IErrorInfo::GetDescription for the IErrorInfo object recorded
within the _com_error object. The resulting BSTR is encapsulated in a _bstr_t
object. If no IErrorInfo is recorded, it returns an empty _bstr_t.

Calls the IErrorInfo::GetDescription function and retrieves IErrorInfo recorded
within the _com_error object. Any failure while calling the
IErrorInfo: : GetDescription method is ignored.

Appendix C Microsoft-Specific Compiler COM Support Classes

_com_error: : Error
HRESULT Error() const throw();

Return Value
Raw HRESULT item passed into the constructor.

Remarks
Retrieves the encapsulated HRESULT item in a _com_error object.

_com_error: : ErrorInfo
IErrorInfo * ErrorInfo() const throw();

Return Value

Remarks

Raw IErrorInfo item passed into the constructor.

Retrieves the encapsulated IErrorInfo item in a _com_error object, or NULL if no
IErrorInfo item is recorded. The caller must call Release on the returned object when
finished using it.

_com_error: :ErrorMessage
const TCHAR * ErrorMessage() const throw();

Return Value

Remarks

Returns the string message for the HRESULT recorded within the _com_error
object. If the HRESULT is a mapped 16-bit wCode, then a generic message
"I Di spatch error lI<wCode)" is returned. If no message is found, then a generic
message "Unknown error lI<hresul t)" is returned. The returned string is either a
Unicode or multibyte string, depending on the state of the _UNICODE macro.

Retrieves the appropriate system message text for HRESULT recorded within the
_com_error object. The system message text is obtained by calling the Win32
FormatMessage function. The string returned is allocated by the FormatMessage
API, and it is released when the _com_error object is destroyed.

_com_error::GUID
GUID GUID() const throw();

Return Value
Returns the result of IErrorInfo::GetGUID for the IErrorInfo object recorded
within the _com_error object. If no IErrorInfo object is recorded, it returns
GU!D_NULL.

381

c++ Language Reference

Remarks
Calls the IErrorInfo::GetGUID method. Any failure while calling the
IErrorInfo::GetGUID method is ignored.

_com_error: : HelpContext
DWORD HelpContext() const throw();

Return Value

Remarks

Returns the result of IErrorInfo::GetHelpContext for the IErrorInfo object
recorded within the _com_error object. If no IErrorInfo object is recorded, it
returns a zero.

Calls the IErrorInfo::GetHelpContext interface method. Any failure while calling
the IErrorInfo::GetHelpContext method is ignored.

_com_error: : HelpFile
_hstr_t HelpFiIe() const throw();

Return Value

Remarks

Returns the result of IErrorInfo: : GetHelpFiIe for the IErrorInfo object recorded
within the _com_error object. The resulting BSTR is encapsulated in a _hstr_t
object. If no IErrorInfo is recorded, it returns an empty _hstr_t.

Calls the IErrorInfo::GetHelpFiIe interface method. Any failure while calling the
IErrorInfo::GetHelpFiIe method is ignored.

_com_error: :HRESULTTo WCode
static WORD HRESULTTo WCode(HRESULT hr) throw();

Return Value
16-bit wCode mapped from the 32-bit HRESULT

Parameters

Remarks

hr The 32-bit HRESULT to be mapped to 16-bit wCode

Performs 32-bit HRESULT to 16-bit wCode mapping. See _com_error::WCode for
more information.

See Also: _com",-error::WCode, _com_error::WCodeToHRESULT

_com_error: : Source
_hstr_t Source() const throw();

382

Appendix C Microsoft-Specific Compiler COM Support Classes

Return Value

Remarks

Returns the result of IErrorInfo::GetSource for the IErrorInfo object recorded
within the _com_error object. The resulting BSTR is encapsulated in a _hstr_t
object. If no IErrorInfo is recorded, it returns an empty _hstr_t.

Calls the IErrorInfo::GetSource interface method. Any failure while calling the
IErrorInfo: :GetSource method is ignored.

_com_error:: WCode
WORD WCode () const throw();

Return Value

Remarks

If the HRESULT is within the range Ox80040200 to Ox8004FFFF, the WCode
method returns the HRESULT minus Ox80040200, else it returns zero.

The WCode method retrieves a 16-bit error code which has been mapped into the
encapsulated HRESULT.

The WCode method is used to undo a mapping which happens in the COM support
code. The wrapper for a dispinterface property or method calls a support routine
which packages the arguments and calls IDispatch: :Invoke. Upon return, if a failure
HRESULT of DISP _E_EXCEPTION is returned, the error information is retrieved
from the EXCEPINFO structure passed to IDispatch::lnvoke. The error code can
either be a 16-bit value stored in the wCode member of the EXCEPINFO structure or
a full 32-bit value in the scode member of the EXCEPINFO structure. If a 16-bit
wCode is returned, it must first be mapped to a 32-bit failure HRESULT.

See Also: _com_error: :HRESULTTo WCode, _com_error:: WCodeToHRESULT

_com_error:: WCodeToHRESULT
static HRESULT WCodeToHRESULT(WORD wCode) throw();

Return Value
32-bit HRESULT mapped from the 16-bit wCode.

Parameters

Remarks

wCode The 16-bit wCode to be mapped to 32-bit HRESULT

Performs 16-bit wCode to 32-bit HRESULT mapping. See the WCode member
function.

See Also: _com_error:: WCode, _com_error: :HRESULTTo WCode

383

c++ Language Reference

Operators
_coffi_error::operator =

_com_error& operator = (const _com_error& that) throw ();

Parameters
that A _com_error object

Remarks
Assigns an existing _com_error object to another.

_COffi_ptr_t

384

A _com_ptr_t object encapsulates a COM interface pointer and is called a "smart"
pointer. This template class manages resource allocation and deallocation, via function
calls to the IUnknown member functions: Querylnterface, AddRef, and Release.

A smart pointer is usually referenced by the typedef definition provided by the
_COM_SMARTPTR_TYPEDEF macro. This macro takes an interface name and
the IID, and declares a specialization of _com_ptr_t with the name of the interface
plus a suffix of Ptr. For example,

_COM_SMARTPTR_TYPEDEF(IMylnterface. __ uu;dof(IMylnterface));

declares the _com_ptr_t specialization IMylnterfacePtr.

A set of function templates, not members of this template class, support comparisons
with a smart pointer on the right-hand side of the comparison operator.

#include <comdef.h>

Construction

_com_ptr_t

Low-level Operations

AddRef

Attach

CreateInstance

Detach

GetlnterfacePtr

Query Interface

Release

Calls the AddRef member function of IUnknown on the
encapsulated interface pointer.

Encapsulates a raw interface pointer of this smart pointer's
type.

Creates a new instance of an object given a CLSID or
ProgID.

Extracts and returns the encapsulated interface pointer.

Returns the encapsulated interface pointer.

Calls the QueryInterface member function of IUnknown
on the encapsulated interface pointer.

Calls the Release member function of IUnknown on the
encapsulated interface pointer.

Appendix C Microsoft-Specific Compiler COM Support Classes

Operators

operator =

operators ==, !=, <, >, <=, >=

Extractors

Assigns a new value to an existing _com_ptr_t object.

Compare the smart pointer object to another smart pointer,
raw interface pointer, or NULL.

Extract the encapsulated COM interface pointer.

Member Functions
_com_ptf_t: :_COm_ptf_t

_com_ptr_t() throw();
_com_ptr_t(Interface* plnteiface) throw();
_com_ptr_t(Interface* plnteiface, booifAddRef) throw();
_com_ptr_t(int NULL) throw(_com_error);
tempiate< > _com_ptr_t(const _com_ptr_t& cp) throw();
tempiate<typename _InterfacePtr> _com_ptr_t(const _InterfacePtr& p)

10+ throw(_com_error);
tempiate< > _com_ptr_t(const _ variant_t& varSrc) throw(_com_error);
explicit _com_ptr_t(const CLSID& clsid, DWORD dwClsContext = CLSCTX_ALL)

10+ throw(_com_error);
explicit _com_ptr_t(LPOLESTR IpOleStr, DWORD dwClsContext = CLSCTX_ALL)

10+ throw(_com_error);
explicit _com_ptr_t(LPCSTR IpcStr, DWORD dwClsContext = CLSCTX_ALL)

10+ throw(_com_error);

Parameters

Remarks

plnteiface a raw interface pointer

fAddRef if true, AddRef is called to increment the reference count of the
encapsulated interface pointer

cp a _com_ptr_t object

p a raw interface pointer, its type being different from the smart pointer type of this
_com_ptr_t object

varSrc a _ variant_t object

clsid the CLSID of a coc1ass

dwClsContext context for running executable code

IpOleStr a Unicode string that holds either a CLSID (starting with "{") or a ProgID

IpcStr a multibyte string that holds either a CLSID (starting with "{") or a ProgID.

Constructs a _com_ptr_t object.

• _com_ptr_t() Constructs a NULL smart pointer.

385

c++ Language Reference

386

• _com_ptr_t(pInterfaee) Constructs a smart pointer from a raw interface pointer
of this smart pointer's type. Ad'dRef is called to increment the reference count for
the encapsulated interface pointer.

• _com_ptr_t(plnterfaee,fAddRef) Constructs a smart pointer from a raw
interface pointer of this smart pointer's type. IffAddRefis true, AddRef is called
to increment the reference count for the encapsulated interface pointer. If fAddRef
is false, this constructor takes ownership of the raw interface pointer without
calling AddRef.

• _com_ptr_t(NULL) Constructs a NULL smart pointer. The NULL argument
must be a zero.

• _com_ptr_t(ep) Constructs a smart pointer as a copy of another instance of the
same smart pointer. AddRef is called to increment the reference count for the
encapsulated interface pointer.

• _com_ptr_t(p) Constructs a smart pointer from a different smart pointer type or
from a different raw interface pointer. QueryInterface is called to find an interface
pointer of this smart pointer's type. If QueryInterface fails with an
E_NOINTERFACE error, a NULL smart pointer is constructed. Any other error
causes a _com_error to be raised.

• _com_ptr_t(varSre) Constructs a smart pointer from a _ variant_t object. The
encapsulated VARIANT must be of type VT_DISPATCH or VT_UNKNOWN,
or it can be converted into one of these two types. If QueryInterface fails with an
E_NOINTERFACE error, a NULL smart pointer is constructed. Any other error
causes a _com_error to be raised.

• _com_ptr_t(clsid, dwClsContext) Constructs a smart pointer given the CLSID
of a coc1ass. This function calls CoCreateInstance, by the member function
Createlnstance, to create a new COM object and then queries for this smart
pointer's interface type. If QueryInterface fails with an E_NOINTERFACE
error, a NULL smart pointer is constructed. Any other error causes a _com_error
to be raised.

• _com_ptr_t(IpOleStr, dwClsContext) Constructs a smart pointer given a
Unicode string which holds either a CLSID (starting with "{") or a ProgID. This
function calls CoCreateInstance, by the member function CreateInstance, to
create a new COM object and then queries for this smart pointer's interface type. If
QueryInterface fails with an E_NOINTERFACE error, a NULL smart pointer is
constructed. Any other error causes a _com_error to be raised.

• _com_ptr_t(IpeStr, dwClsContext) Constructs a smart pointer given a multibyte
character string which holds either a CLSID (starting with "{") or a ProgID. This
function calls CoCreatelnstance, by the member function CreateInstance, to
create a new COM object and then queries for this smart pointer's interface type. If
QueryInterface fails with an E_NOINTERFACE error, a NULL smart pointer is
constructed. Any other error causes a _com_error to be raised.

Appendix C Microsoft-Specific Compiler COM Support Classes

_COffi_ptr_t: : AddRef

Remarks

void AddRef() throw(_com_error);

Calls IUnknown: :AddRef on the encapsulated interface pointer, raising an
E_POINTER error if the pointer is NULL.

_COffi_ptr_t: : Attach
void Attach(Interface* plnterface) throw();
void Attach(Interface* plnterface, boolfAddRef) throw();

Parameters

Remarks

plnterface a raw interface pointer

fAddRef If it is true, then AddRef is called. If it is false, the _com_ptr_t object
takes ownership of the raw interface pointer without calling AddRef.

Encapsulates a raw interface pointer of this smart pointer's type.

• Attach(plnterface) AddRef is not called. The ownership of the interface is
passed to this _com_ptr_t object. Release is called to decrement the reference
count for the previously encapsulated pointer .

• Attach(plnterface,fAddRef) IffAddRefis true, Add Ref is called to increment
the reference count for the encapsulated interface pointer. If fAddRef is false, this
_com_ptr_t object takes ownership of the raw interface pointer without calling
AddRef. Release is called to decrement the reference count for the previously
encapsulated pointer.

_COffi_ptr_t: :CreateInstance
HRESULT CreateInstance(const CLSID& rclsid,

10+ DWORD dwClsContext = CLSCTX_ALL) throw();
HRESULT CreateInstance(LPOLESTR clsidString,

10+ DWORD dwClsContext = CLSCTX_ALL) throw();
HRESULT CreateInstance(LPCSTR clsidStringA,

10+ DWORD dwClsContext = CLSCTX_ALL) throw();

Parameters
rclsid the CLSID of an object

clsidString a Unicode string that holds either a CLSID (starting with "{") or a
ProgID

clsidStringA a multibyte string that holds either a CLSID (starting with "{") or a
ProgID

dwClsContext context for running executable code

387

c++ Language Reference

Remarks
Creates a new running instance of an object given a CLSID or ProgID. This member
functions calls CoCreatelnstance to create a new COM object and then queries for
this smart pointer's interface type. The resulting pointer is then encapsulated within
this _com_ptr_t object. Release is called to decrement the reference count for the
previously encapsulated pointer. This routine returns the HRESULT to indicate
success or failure.

• Createlnstance(rclsid, dwClsContext) Creates a new running instance of an
object given a CLSID.

• Createlnstance(clsidString, dwClsContext) Creates a new running instance of
an object given a Unicode string which holds either a CLSID (starting with "{") or
a ProgID.

• Createlnstance(clsidStringA, dwClsContext) Creates a new running instance of
an object given a multibyte character string which holds either a CLSID (starting
with "{") or a ProgID.

_COffi_ptr_t: :Detach

Remarks

Interface* Detach() throw();

Extracts and returns the encapsulated interface pointer, then clears the encapsulated
pointer storage to NULL. This removes the interface pointer from encapsulation. It is
up to you to call Release on the returned interface pointer.

_ COffi_ptr_t: : GetInterfacePtr
Interface* GetlnterfacePtr() const throw();

Remarks
Returns the encapsulated interface pointer, which may be NULL.

_cOffi_ptr_t::QueryInterface
template<typename _InterfaceType> HRESULT Querylnterface (const IID& iid,

10+ _InterfaceType*& p) throw ();
template<typename _InterfaceType> HRESULT QueryInterface (const IID& iid,

10+ _InterfaceType** p) throw();

Parameters
iid lID of an interface pointer

p raw interface pointer

388

Appendix C Microsoft-Specific Compiler COM Support Classes

Remarks
Calls IUnknown::QueryInterface on the encapsulated interface pointer with
the specified lID, and returns the resulting raw interface pointer in p. This routine
returns the HRESULT to indicate success or failure.

_com_ptr_t: :Release

Remarks

void Release() throw(_com_error);

Calls IUnknown::Release on the encapsulated interface pointer, raising an
E_POINTER error if this interface pointer is NULL:

Operators
_com_ptr_t::operator =

Remarks

_com_ptr_t& operator=(Interface* plnterface) throw();
_com_ptr_t& operator=(int NULL) throw(_com_error);
template< > _com_ptr_t& operator=(const _com_ptr_t& cp) throw();
template< > _com_ptr_t& operator=(const _ varianCt& varSrc)

"'+ throw(_com_error);
template<typename _InterfacePtr> _com_ptr_t& operator=

"'+ (const _InterfacePtr& p) throw(_com_error);

Assigns an interface pointer to this _com_ptr_t object:

• operator=(plnterface) Encapsulates a raw interface pointer of this smart
pointer's type. AddRef is called to increment the reference count for the
encapsulated interface pointer, and Release is called to decrement the reference
count for the previously encapsulated pointer.

• operator=(NULL) Sets a smart pointer to NULL. The NULL argument must
be a zero.

• operator=(cp) Sets a smart pointer to be a copy of another instance of the same
smart pointer of the same type. AddRef is called to increment the reference count
for the encapsulated interface pointer, and Release is called to decrement the
reference count for the previously encapsulated pointer.

• operator=('varSrc) Sets a smart pointer to be a _ variant_t object. The
encapsulated VARIANT must be of type VT_DISPATCH or VT_UNKNOWN,
or it can be converted to one of these two types. If QueryInterface fails with an
E_NOINTERFACE error, a NULL smart pointer results. Any other error causes
a _com_error to be raised.

389

c++ Language Reference

• operator=(p) Sets a smart pointer to be a different smart pointer of a different
type or a different raw interface pointer. QueryInterface is called to find an
interface pointer of this smart pointer's type, and Release is called to decrement
the reference count for the previously encapsulated pointer. If QueryInterface
fails with an E_NOINTERFACE, a NULL smart pointer results. Any other error
causes a _com_error to be raised.

_com_ptr_t Relational Operators

Remarks

390

template<typename _InterfacePtr> bool operator==(_InterfacePtr p)
~ throw(_com_error);

template<> bool operator==(Interface* p) throw(_com_error);
template<> bool operator==(_com_ptr_t& p) throw();
template<> bool operator==(int NULL) throw(_com_error);
template<typename _InterfacePtr> bool operator!=(_InterfacePtr p)

~ throw(_com_error);
template<> bool operator!=(Interface* p) throw(_com_error);
template<> bool operator!=(_com_ptr_t& p) throw(_com_error);
template<> bool operator!=(int NULL) throw(_com_error);
template<typename _InterfacePtr> bool operator« _InterfacePtr p)

~ throw(_com_error);
template<> bool operator« Interface* p) throw(_com_error);
template<> bool operator« _com_ptr_t& p) throw(_com_error);
template<> bool operator« int NULL) throw(_com_error);
template<typename _InterfacePtr> bool operator>(_InterfacePtr p)

~ throw(_com_error);
template<> bool operator>(Interface* p) throw();
template<> bool operator>(_com_ptr_t& p) throw(_com_error);
template<> bool operator>(int NULL) throw(_com_error);
template<typename _InterfacePtr> bool operator<=(_InterfacePtr p)

~ throw(_com_error);
template<> bool operator<=(Interface* p) throw();
template<> bool operator<=(_com_ptr_t& p) throw(_com_error);
template<> bool operator<=(int NULL) throw(_com_error);
template<typename _InterfacePtr> bool operator>=(_InterfacePtr p)

~ throw(_com_error);
template<> bool operator>=(Interface* p) throw(_com_error);
template<> bool operator>=(_com_ptr_t& p) throw(_com_error);
template<> bool operator>=(int NULL) throw(_com_error);

Compares a smart pointer object to another smart pointer, raw interface pointer, or
NULL. Except for the NULL pointer tests, these operators first query both pointers
for IUnknown, and compare the results.

Appendix C Microsoft-Specific Compiler COM Support Classes

_com_ptr_t Extractors

Remarks

operator Interface*() const throw();
operator Interface&() const throw(_com_error);
Interface& operator*() const throw(_com_error);
Interface* operator->() const throw(_com_error);
Interface** operator&() throw();
operator bool() const throw();

• operator Interface* Returns the encapsulated interface pointer, which may
be NULL.

• operator Interface& Returns a reference to the encapsulated interface pointer,
and issues an error if the pointer is NULL.

• operator* Allows a smart pointer object to act as though it were the actual
encapsulated interface when dereferenced.

• operator-> Allows a smart pointer object to act as though it were the actual
encapsulated interface when dereferenced.

• operator& Releases any encapsulated interface pointer, replacing it with NULL,
and returns the address of the encapsulated pointer. This allows the smart pointer
to be passed by address to a function which has an out parameter through which it
returns an interface pointer.

• operator bool Allows a smart pointer object to be used in a conditional
expression. This operator returns true if the pointer is not NULL.

Relational Function Templates
template<typename _InterfaceType> bool operator==(int NULL,

-. _com_ptr_t<_InterfaceType>& p) throw(_com_error);
template<typename _Interface, typename _InterfacePtr> bool operator==

-. (_Interface* i, _com_ptr_t<_InterfacePtr>& p) throw(_com_error);
template<typename _Interface> bool operator!=(int NULL,

-. _com_ptr_t<_Interface>& p) throw(_com_error);
template<typename _Interface, typename _InterfacePtr> bool operator!=

-. (_Interface* i, _com_ptr_t<_InterfacePtr>& p) throw(_com_error);
template<typename _Interface> bool operator« int NULL,

-. _com_ptr_t<_Interface>& p) throw(_com_error);
template<typename _Interface, typename _InterfacePtr> bool operator<

-. (_Interface* i, _com_ptr_t<_InterfacePtr>& p) throw(_com_error);
template<typename _Interface> bool operator>(int NULL,

..... _~Q!!!_,t!"_t<_!!!t£!"f?~£>& P) th!"Qw(_~Q!!!_£!"!,,Q!,,);
template<typename _Interface, typename _InterfacePtr> bool operator>

-. (_Interface* i, _com_ptr_t<_InterfacePtr>& p) throw(_com_error);

391

c++ Language Reference

template<typename _Interface> bool operator<=(int NULL,
"+ _com_ptr_t<_Interface>& p) throw(_com_error);

template<typename _Interface, typename _InterfacePtr> bool operator<=
"+ (_Interface* i, _com_ptr_t<_InterfacePtr>& p) throw(_com_error);

template<typename _Interface> bool operator>=(int NULL,
"+ _com_ptr_t<_Interface>& p) throw(_com_error);

template<typename _Interface, typename _InterfacePtr> bool operator>=
"+ (_Interface* i, _com_ptr_t<_InterfacePtr>& p) throw(_com_error);

Parameters

Remarks

a raw interface pointer

p a smart pointer

They are function templates which allow comparison with a smart pointer on the
right-hand side of the comparison operator. These are not member functions of
_com_ptr_t.

bstr t - -

392

A _bstr_t object encapsulates the BSTR data type. The class manages resource
allocation and deallocation, via function calls to SysAllocString and SysFreeString,
and other BSTR APls when appropriate. The _bstr_t class uses reference counting to
avoid excessive overhead.

#include <comdef.h>

Construction

_bstr_t

Operations

copy

Length

Operators

operator =

Operator +=

Operator +

Operator!

Operator ==, !=, <, >, <=, >=

Operator wchar_t*, char*

Constructs a _hstr_t object.

Construuts a copy of the encapsulated BSTR.

Returns the length of the encapsulated BSTR.

Assigns a new value to an existing _bstr_t object.

Appends characters to the end of the _bstr_t object.

Concatenates two strings.

Checks if the encapsulated BSTR is a NULL string.

Compares two _bstr_t objects.

Extract the pointers to the encapsulated Unicode or
multibyte BSTR object.

Appendix C Microsoft-Specific Compiler COM Support Classes

Member Functions
_bstr_t: :_bstr_t

_bstr_t() throw();
_bstr_t(const _bstr_t& sl) throw();
_bstr_t(const char* s2) throw(_com_error);
_bstr_t(const wchar_t* s3) throw(_com_error);
_bstr _t(const _ variant_t& var) throw (_com_error);
_bstr_t(BSTR bstr, booljCopy) throw (_com_error);

Parameters

Remarks

sl a _bstr_t object to be copied

s2 a multibyte string

s3 a Unicode string

var a _ variant_t object

bstr an existing BSTR object

jCopy if false, the bstr argument is attached to the new object without making a copy
by calling SysAllocString.

Constructs a _bstr_t object.

• _bstr_t() Constructs a default _bstr_t object that encapsulates a NULL BSTR
object.

• _bstr_t(_bstr_t& sl) Constructs a _bstr_t object as a copy of another. This is a
"shallow" copy, which increments the reference count of the encapsulated BSTR
object instead of creating a new one.

• _bstr_t(char* s2) Constructs a _bstr_t object by calling SysAllocString to
create a new BSTR object and encapsulate it. This constructor first performs a
multibyte to Unicode conversion.

• _bstr_t(wchar_t* s3) Constructs a _bstr_t object by calling SysAllocString to
create a new BSTR object and encapsulates it.

• _bstr_t(_ variant_t& var) Constructs a _bstr_t object from a _ variant_t object
by first retrieving a BSTR object from the encapsulated VARIANT object.

• _bstr_t(BSTR bstr, booljCopy) Constructs a _bstr_t object from an existing
BSTR (as opposed to a wchar_t* string). IfjCopy is false, the supplied BSTR is
attached to the new object without making a new copy via SysAllocString. This is
the method used by the wrapper functions in the type library headers to encapsulate
and take ownership of a BSTR, returned by an interface method, in a _bstr_t
object.

393

c++ Language Reference

_bstr_t: :copy
BSTR copy() const throwLcom_error);

Remarks
Returns a newly allocated copy of the encapsulated BSTR object.

_bstr_t: : length
unsigned int length () const throw();

Remarks
Returns the length of the encapsulated BSTR object.

Operators
_bstr_t: : operator =

_bstr_t& operator=(const _bstr_t& sl) throw ();
_bstr_t& operator=(const char* s2) throw(_com_error);
_bstr_t& operator=(const wchar_t* s3) throw(_com_error);
_bstr_t& operator=(const _variant_t& var) throw(_com_error);

Parameters

Remarks

sl a _bstr_t object to be assigned to an existing _bstr_t object

s2 a multibyte string to be assigned to an existing _bstr_t object

s3 a Unicode string to be assigned to an existing _bstr_t object

var a _ variant_t object to be assigned to an existing _bstr_t object

Assigns a new value to an existing _bstr_t object.

_bstr_t::operator +=, +
_bstr_t& operator+=(const _bstr_t& sl) throw(_com_error);
_bstr_t operator+(const _bstr_t& sl) const throw(_com_error);
friend _bstr_t.operator+(const char* s2, const _bstr_t& sl);
friend _bstr_t operator+(const wchar_t* s3, const _bstr_t& sl);

Parameters

394

sl a _bstr_t object

s2 a multibyte string

s3 a Unicode string

Appendix C Microsoft-Specific Compiler COM Support Classes

Remarks
These operators perform string concatenation:

• operator+=(sl) Appends the characters in the encapsulated BSTR of sl to the
end of this object's encapsulated BSTR.

• operator+(sl) Returns the new _bstr_t which is formed by concatenating this
object's BSTR with that of sl.

• operator+(s2, sl) Returns a new _bstr_t which is formed by concatenating a
multibyte string s2, converted to Unicode, with the BSTR encapsulated in sl.

• operator+(s3, sl) Returns a new _bstr_t which is formed by concatenating a
Unicode string s3 with the BSTR encapsulated in sl.

_bstr_t: : operator !

Remarks

bool operator!() const throw();

Checks if the encapsulated BSTR object is the NULL string. It returns true if yes,
false if not.

_bstr_t Relational Operators

Remarks

bool operator==(const _bstr_t& str) const throw();
bool operator!=(const _bstr_t& str) const throw();
bool operator« const _bstr_t& str) const throw();
bool operator>(const _bstr_t& str) const throw();
bool operator<=(const _bstr _t& str) const throw();
bool operator>=(const _bstr_t& str) const throw();

These operators compare two _bstr_t objects lexicographically. The operators return
true if the comparisons hold, otherwise return false.

bstr t::wchar t* bstr t::char* - - - ,- -

Remarks

operator const wchar _t*() const throw();
operator wchar_t*() const throw();
operator const char*() const throw(_com_error);
operator char*() const throw(_com_error);

These operators can be used to extract raw pointers to the encapsulated Unicode or
multibyte BSTR object. The operators return the pointer to the actual internal buffer,
so the resulting string cannot be modified.

395

c++ Language Reference

variant t - -
A _variant_t object encapsulates the VARIANT data type. The class manages
resource allocation and deallocation, and makes function calls to Variantlnit and
VariantClear as appropriate.

#include <comdef.h>

Construction

Operations

Attach

Clear

ChangeType

Detach

SetString

Operators

operator =
Operator ==, !=

Extractors

Constructs a _ varianCt object.

Attaches a VARIANT object into the _ varianCt object.

Clears the encapsulated VARIANT object.

Changes the type of the _ varianCt object to the indicated V ARTYPE.

Detaches the encapsulated VARIANT object from this _ varianCt
object.

Assigns a string to this _ varianCt object.

Assigns a new value to an existing _ varianCt object.

Compare two _ varianCt objects for equality or inequality.

Extract data from the encapsulated VARIANT object.

Member Functions
_ variant_t: :_ v ariant_t

396

_ variant_t() throw();
_variant_t(const VARIANT& varSrc) throw(_com_error);
_variant_t(const VARIANT* pVarSrc) throw(_com_error);
_ variant_t(const _ variant_t& var _CSrc) throw(_com_error);
_variant_t(VARIANT& varSrc, boolJCopy) throw(_com_error);
_varianCt(short sSrc, VARTYPE vtSrc = VT_I2) throw(_com_error);
_ variant_t(long ISrc, VARTYPE vtSrc = VT_I4) throw(_com_error);
_ variant_t(float fltSrc) throw();
_variant_t(double dblSrc, VARTYPE vtSrc = VT_RS) throw(_com_error);
_ varianCt(const CY & cySrc) throw();
_ varianCt(const _bstr_t& bstrSrc) throw(_com_error);
_ variant_t(const wchar_t *wstrSrc) throw(_com_error);
_ variant_t(const char* strSrc) throw(_com_error);

Appendix C Microsoft-Specific Compiler COM Support Classes

_ varianCt(bool bSrc) throw();
_ variant_t(IUnknown* pIUknownSrc, boolfAddRef = true) throw();
_ variant_t(IDispatch* pDispSrc, boolfAddRef = true) throw();
_ variant_t(const DECIMAL& decSrc) throw();
_ variant_t(BYTE bSrc) throw();

Parameters

Remarks

varSrc a VARIANT object to be copied into the new _varianCt object

pVarSrc pointer to a VARIANT object to be copied into the new _varianCt object

var _CSrc a _ variant_t object to be copied into the new _ variant_t object

fCopy if false, the supplied VARIANT object is attached to the new _ varianCt
object without making a new copy by VariantCopy

ISrc, sSrc an integer value to be copied into the new _ varianCt object

vtSrc the VARTYPE for the new _varianCt object

jltSrc, dblSrc a numerical value to be copied into the new _ variant_t object

cySrc a CY object to be copied into the new _ variant_t object

bstrSrc a _bstr_t object to be copied into the new _ variant_t object

strSrc, wstrSrc a string to be copied into the new _ variant_t object

bSrc a bool value to be copied into the new _ varianCt object

pIUknownSrc COM interface pointer to a VT_UNKNOWN object to be
encapsulated into the new _ varianCt object

pDispSrc COM interface pointer to a VT_DISPATCH object to be encapsulated
into the new _ varianCt object

decSrc a DECIMAL value to be copied into the new _ varianCt object

bSrc a BYTE value to be copied into the new _ variant_t object

Constructs a _ varianCt object.

• _ variant_t() Constructs an empty _ varianCt object, VT_EMPTY.

• _ variant_t(VARIANT & varSrc) Constructs a _ variant_t object from a copy
of the VARIANT object. The variant type is retained.

• _ varianCt(VARIANT* p VarSrc) Constructs a _ variant_t object from a copy
of the VARIANT object. The variant type is retained.

• _ varianCt(_ varianCt& var _CSrc) Constructs a _ variant_t object from
another _ variant_t object. The variant type is retained.

• _varianCt(VARIANT& varSrc, boolfCopy) Constructs a _varianCt object
from an existing VARiANT object. IfjCopy is iaise, the VARiANT object is
attached to the new object without making a copy.

397

c++ Language Reference

398

• _ variant_t(short sSrc, VARTYPE vtSrc = VT_I2) Constructs a _ variant_t
object of type VT_I2 or VT_BOOL from a short integer value. Any other
VARTYPE results in an E_INVALIDARG error.

• _variant_t(long ISrc, VARTYPE vtSrc = VT_I4) Constructs a _variant_t
object of type VT_I4, VT_BOOL, or VT_ERROR from a long integer value.
Any other VARTYPE results in an E_INVALIDARG error.

• _variant_t(floatfltSrc) Constructs a _variant_t object of type VT_R4 from a
float numerical value.

• _varianCt(double dblSrc, VARTYPE vtSrc = VT_RS) Constructs a _variant_t
object of type VT_RS or VT_DATE from a double numerical value. Any other
VARTYPE results in an E_INVALIDARG error.

• _varianCt(CY & cySrc) Constructs a _varianCt object of type VT_CY from
a CY object.

• _ variant_t(_bstr _t& bstrSrc) Constructs a _ varianCt object of type
VT_BSTR from a _bstr_t object. A new BSTR is allocated.

• _ variant_t(wchar_t *wstrSrc) Constructs a _ variant_t object of type
VT_BSTR from a Unicode string. A new BSTR is allocated.

• _ variant_t(char* strSrc) Constructs a _ variant_t object of type VT_BSTR
from a string. A new BSTR is allocated.

• _ variant_t(bool bSrc) Constructs a _ variant_t object of type VT _BOOL from
a bool value.

• _ variant_t(IUnknown* pIUknownSrc, boolfAddRef = true) Constructs a
_variant_t object of type VT_UNKNOWN from a COM interface pointer. If
fAddRef is true, then AddRef is called on the supplied interface pointer to match
the call to Release that will occur when the _ variant_t object is destroyed. It is
up to you to call Release on the supplied interface pointer. If fAddRef is false, this
constructor takes ownership of the supplied interface pointer; do not call Release
on the supplied interface pointer.

• _ variant_t(IDispatch* pDispSrc, boolfAddRef = true) Constructs a _ variant_t
object of type VT_DISPATCH from a COM interface pointer. IffAddRefis true,
then AddRef is called on the supplied interface pointer to match the call to Release
that will occur when the _ variant_t object is destroyed. It is up to you to call
Release on the supplied interface pointer. If fAddRef is false, this constructor
takes ownership of the supplied interface pointer; do not call Release on the
supplied interface pointer.

• _ variant_t(DECIMAL& decSrc) Constructs a _ variant_t object of type
VT_DECIMAL from a DECIMAL value.

• _variant_t(BYTE bSrc) Constructs a _variant_t object of type VT_UIl from
a BYTE value.

Appendix C Microsoft-Specific Compiler COM Support Classes

_ variant_t: : Attach
void Attach(VARIANT& varSrc) throw(_com_error);

Parameters

Remarks

varSrc a VARIANT object to be attached to this _variant_t object

Takes ownership of the VARIANT by encapsulating it. This member function releases
any existing encapsulated VARIANT, then copies the supplied VARIANT, and sets
its VARTYPE to VT_EMPTY to make sure its resources can only be released by the
_ varianCt destructor.

_ variant_t: :Clear
void Clear() throw(_com_error);

Remarks
Calls VariantClear on the encapsulated VARIANT object.

_ variant_t: : ChangeType
void ChangeType(VARTYPE vartype, const _varianCt* pSrc = NULL)

-.. throw(_com_error);

Parameters

Remarks

vartype the VARTYPE for this _variant_t object

pSrc a pointer to the _ varianCt object to be converted. If this value is NULL,
conversion is done in place.

This member function converts a _ varianCt object into the indicated VARTYPE.
If pSrc is NULL, the conversion is done in place, otherwise this _ varianCt object
is copied from pSrc and then converted.

_ variant_t: :Detach
VARIANT Detach() throw(_com_error);

Return Value

Remarks

The encapsulated VARIANT.

Extracts and returns the encapsulated VARIANT, then clears this _variant_t
object without destroying it. This member function removes the VARIANT from
encapsulation and sets the Vf\RTYPE of this _ vH!"hmt_t object to VT_EMPTY. Tt
is up to you to release the returned VARIANT by calling the VariantInit function.

399

c++ Language Reference

_ variant_t: :SetString
void SetString(const char* pSrc) throw(_com_error);

Parameter

Remarks

pSrc pointer to the multibyte character string

Converts a multibyte character string to a Unicode BSTR object, and assigns it to
this _ varianCt object.

Operators
_ variant_t::operator =

Remarks

400

_variant_t& operator=(const VARIANT& varSrc) throw(_com_error);
_variant_t& operator=(const VARIANT* pVarSrc) throw(_com_error);
_ variant_t& operator=(const _ varianCt& var _CSrc) throw(_com_error);
_ variant_t& operator=(short sSrc) throw(_com_error);
_ variant_t& operator=(long ISrc) throw(_com_error);
_ variant_t& operator=(floatjltSrc) throw(_com_error);
_ variant_t& operator=(double dblSrc) throw(_com_error);
_ variant_t& operator=(const CY & cySrc) throw(_com_error);
_ variant_t& operator=(const _bstr_t& bstrSrc) throw(_com_error);
_ variant_t& operator=(const wchar_t* wstrSrc) throw(_com_error);
_ variant_t& operator=(const char* strSrc) throw(_com_error);
_ variant_t& operator=(IDispatch* pDispSrc) throw(_com_error);
_ variant_t& operator=(bool bSrc) throw(_com_error);
_ variant_t& operator=(IUnknown* pSrc) throw(_com_error);
_ variant_t& operator=(const DECIMAL& decSrc) throw(_com_error);
_ variant_t& operator=(BYTE bSrc) throw(_com_error);

The operator assigns a new value to the _ variant_t object:

• operator=(varSrc) Assigns an existing VARIANT to a _variant_t object.

• operator=(p VarSrc) Assigns an existing VARIANT to a _ variant_t object.

• operator=(var _CSrc) Assigns an existing _ variant_t object to a _ variant_t
object.

• operator=(sSrc) Assigns a short integer value to a _ variant_t object.

• operator=(ISrc) Assigns a long integer value to a _ variant_t object.

• operator=(jltSrc) Assigns a float numerical value to a _ variant_t object.

Appendix C Microsoft-Specific Compiler COM Support Classes

• operator=(dblSrc) Assigns a double numerical value to a _ varianCt object.

• operator=(cySrc) Assigns a CY object to a _ variant_t object.

• operator=(bstrSrc) Assigns a BSTR object to a _ varianCt object.

• operator=(wstrSrc) Assigns a Unicode string to a _ variant_t object.

• operator=(strSrc) Assigns a multibyte string to a _ variant_t object.

• operator=(bSrc) Assigns a bool value to a _ variant_t object.

• operator=(pDispSrc) Assigns a VT_DISPATCH object to a _ variant_t object.

• operator=(pIUnknownSrc) Assigns a VT_UNKNOWN object to a_variant_t
object.

• operator=(decSrc) Assigns a DECIMAL value to a _ variant_t object.

• operator=(bSrc) Assigns a BYTE value to a _ varianCt object.

_ variant_t Relational Operators
bool operator==(const VARIANT& varSrc) const throw(_com_error);
bool operator==(const VARIANT* pSrc) const throw(_com_error);
bool operator!=(const VARIANT& varSrc) const throw(_com_error);
bool operator!=(const VARIANT* pSrc) const throw(_com_error);

Parameter

Remarks

varSrc a VARIANT to be compared with the _variant_t object

pSrc pointer to the VARIANT to be compared with the _ variant_t object

Compares a _ varianCt object with a VARIANT, testing for equality or inequality.
Returns true if comparison holds, false if not.

_ variant_t Extractors
operator short() const throw(_com_error);
operator long() const throw(_com_error);
operator float() const throw(_com_error);
operator double() const throw(_com_error);
operator CY() const throw(_com_error);
operator bool() const throw(_com_error);
operator DECIMAL() const throw(_com_error);
operator BYTE() const throw(_com_error);
operator _bstr_t() const throw(_com_error);
operator IDispatch*() const throw(_com_error);
operator IUnknown*() const throw(_com_error);

401

c++ Language Reference

Remarks

402

Extracts raw data from an encapsulated VARIANT. If the VARIANT is not already
the proper type, V ariant Change Type is used to attempt a conversion, and an error
is generated upon failure:

• operator short() Extracts a short integer value.

• operator long() Extracts a long integer value.

• operator float() Extracts a float numerical value.

• operator double() Extracts a double integer value.

• operator CY() Extracts a CY object.

• operator bool() Extracts a bool value.

• operator DECIMAL() Extracts a DECIMAL value.

• operator BYTE() Extracts a BYTE value.

• operator _bstr_t() Extracts a string, which is encapsulated in a _bstr_t object.

• operator IDispatch*() Extracts a dispinterface pointer from an encapsulated
VARIANT. AddRef is called on the resulting pointer, so. it is up to you to call
Release to free it.

• operator IUnknown*() Extracts a COM interface pointer from an encapsulated
VARIANT. AddRef is called on the resulting pointer, so it is up to you to call
Release to free it.

APPENDIX D

Charts

This appendix contains the following charts:

• ASCII Character Codes

• ASCII Multilingual Codes

• ANSI Character Codes

• Key Codes

ASCII Character Codes Chart
The ASCII character code tables contain the decimal and hexadecimal values of the
extended ASCII (American Standards Committee for Information Interchange)
character set. The extended character set includes the ASCII character set and 128
other characters for graphics and line drawing, often called the "IBM® character set."

ASCII Multilingual Codes Chart
There are a number of variants on the IBM character set, called "code pages." Systems
sold in some European countries use the multilingual character set known as Code
Page 850, which contains fewer graphics symbols and more accented letters and
special characters.

ANSI Character Codes Chart
The ANSI character code chart lists the extended character set of most of the
programs used by Windows. The codes of the ANSI (American National Standards
Institute) character set from 32 through 126 are displayable characters from the ASCII
character set. The ANSI characters displayed as solid blocks are undefined characters
and may appear differently on output devices.

Key Codes Chart
Some keys, such as function keys, cursor keys, and ALT+KEY combinations, have no
ASCII code. When a key is pressed, a microprocessor within the keyboard generates
an "extended scan code" of two bytes. The first (low-order) byte contains the" ASCII
code, if any. The second (high-order) byte has the scan code-a unique code

.403

c++ Language Reference

404

generated by the keyboard when a key is either pressed or released. Because the
extended scan code is more extensive than the standard ASCII code, programs can use
it to identify keys which do not have an ASCII code.

ASCII Character Codes Chart 1
Ctrl Dec Hex Char Code Dec Hex Char Dec Hex Char Dec Hex

"@ 0 00 NUL 32 20 sp 64 40 @ 96 60
"A 1 01 g SOH 33 21 ! 65 41 A 97 61

"B 2 02 e STX 34 22 .. 66 42 B 98 62

"C 3 03 • ETX 35 23 D 67 43 C 99 63
"D 4 04 • EOT 36 24 $ 68 44 D 100 64

"E 5 05 .,. ENQ 37 25 :x 69 45 E 101 65
"F 6 06 • ACK 38 26 & 70 46 F 102 66

"G 7 07 • BEL 39 27 I 71 47 G 103 67
"H 8 08 a BS 40 28 (72 48 H 104 68
"I 9 09 0 HT 41 29) 73 49 I 105 69

"J 10 OA e LF 42 2A * 74 4A J 106 6A

"K 11 OB ~ VT 43 2B + 75 4B H 107 6B
"L 12 OC !l FF 44 2C I 76 4C L 108 6C
"M 13 OD r CR 45 2D - 77 4D J1 109 . 6D

"N 14 OE fJ SO 46 2E 78 4E N 110 6E

"0 15 OF * SI 47 2F / 79 4F 0 111 6F

"P 16 10 ... SLE 48 30 B 80 50 P 112 70

"Q 17 11 --4 CSI 49 31 1 81 51 Q 113 71

"R 18 12 t DC2 50 32 2 82 52 R 114 72

"S 19 13 !! DC3 51 33 3 83 53 S 115 73

"T 20 14 en DC4 52 34 4 84 54 T 116 74

"U 21 15 § NAK 53 35 5 85 55 U 117 75
"V 22 16 - SYN 54 36 G 86 56 V 118 76

"w 23 17 ~ ETB 55 37 7 87 57 W 119 77

"X 24 18 t CAN 56 38 B 88 58 X 120 78

"Y 25 19 J. EM 57 39 9 89 59 Y 121 79

"Z 26 1A -+ SIB 58 3A 90 5A Z 122 7A
"[27 1B -Eo- ESC 59 3B .

~
91 5B [123 7B

"\ 28 1C L FS 60 3C < 92 5C , 124 7C
"] 29 1D ... GS 61 3D = 93 5D] 125 7D

"" 30 IE .. RS 62 3E } 94 5E A 126 7E

" 31 IF .. US - 63 3F ? 95 5F - 127 7F

ASCII code 127 has the code DEL. Under MS-DOS, this code has the same effect as ASCII 8 (BS).
The DEL code can be generated by the CTRL+BKSP key.

Char
..
a
b
C

d
e
r
g
h
i
j
k
I
fit

n
0

P
q
r
S

t
U

U

W

X

Y
Z
{
I
I

}
.....

at

Appendix D Charts

ASCII Character Codes Chart 2

Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char

128 80 Q 160 AO a 192 CO L 224 EO 0:

129 81 U
,

161 Al 1 193 C1 .1 225 E1 P
130 82 e
131 83 A-a

162 A2
,
0

163 A3 U
194 C2

1 195 C3
226 E2 r
227 E3 n

132 84 it 164 A4 n 196 C4 - 228 E4 ~
133 85 a
134 86 a
135 87 ~
136 88 e

165 A5 N
166 A6 !!

167 A7 ~

168 A8 ~

197 C5 i 198 C6
199 C7
200 C8

229 E5 0-

230 E6 V
231 E7 T
232 E8 ~

137 89 e
138 8A e

169 A9 r

170 AA ,
201 C9 n 202 CA

233 E9 e
234 EA n

139 8B "i
140 8C i
141 8D

1

171 AB ~
172 AC ~
173 AD i

203 CB

U 204 CC
205 CD =

235 EB ~
236 EC CD

237 ED s6
142 8E A
143 8F A
144 90

,
E

145 91 (iii!

146 92 fI
147 93 0
148 94 0
149 95 0
150 96 U
151 97

....
U

152 98 Y
153 99 ij

154 9A U
155 9B ¢
156 9C £
157 9D ¥
158 9E H:
159 9F f

174 AE «
175 AF »
176 BO

III 177 B1
178 B2

179 B3
180 B4
181 B5 :

182 B6 I
183 B7 11
184 B8

II 185 B9
186 BA
187 BB D 188 BC
189 BD 11
190 BE ::I
191 BF 1

206 CE Jl

207 CF I
208 DO 11
209 D1 T
210 D2

11 211 D3
212 D4 b

213 D5 f
214 D6

f 215 D7

216 D8
217 D9
218 DA ,
219 DB
220 DC

~ 221 DD
222 DE
223 DF

238 EE E
239 EF n
240 FO -
241 F1 ±
242 F2 2:
243 F3 i
244 F4 J 245 F5
246 F6
247 F7 z
248 F8 0

249 F9
250 FA
251 FB ,J
252 FC n
253 FD 2;

254 FE •
255 FF

405

c++ Language Reference

ASCII Multilingual Codes Chart
0 32 64 @ 96 ~ 128 ~ 160 a 192 L 224 ()

1 0 33 ! 6S A 97a 129 U 161 i 193 .l 225 B
2D 34 u ffi B 98b 130 e 162 6 194 T 226 0
3 • 35 U 67 C 9ge 131 a 163 It 195 ~ 227 0
4+ 36 $ 63 D 100d 132 a 164 ii 196 - 228 0
5~ 37 % 69 E 101 e 133 a 165 N 197 t 229 0
6. 38 & 70 F 102 r 134 a 166 !! 198 a 230 JJ
7 • 39 J 71 G 103g 135 ~ 167 !! 199 A 231 ~

8a 40 (72 H 104h 136 e 168 ~ 200 I! 232 I-
9 0 41) 73 I 105 i 137 e 169 ® 201 Ii' 233 U

10 B 42 * 74 J 106 j 138 e 170 , 202 :!! 234 0
11 cf 43 + 75](107k 139 1 171 ~ 203 Tf 235 U
12 !i! 44 J 76 L 1081 140 i 172 ~ 204 It 236 Y
13 r 45 77 M 1091'11 141 i 173 i 205 = 237 Y
14 n 46 78 N 110n 142 A 174 « 206 it 238 -

15 * 47 / 79 0 1110 143 A 175 » 207 a 239 '

16 ~ 48 e 80 p 112P 144 E 176 ml 208 (i 240 -

17 ~ 49 1 81 Q 113q 145 te 177 II 209 D 241 ±
18 t; 50 2 fQ R 114r 146 fI 178 II 210 E 242 =
19 !! 51 3 83 S 115s 147 0 179 1 211 E 243 %
20 en 52 4 84 T 116t 148 i::i 180 1 212 E 244 en
21 § 53 5 85 U 117u 149 .:. 181 A 213 I 245 §
22 - 54 6 86 U 118 U 150 fi 182 A 214 i 246

23 t 55 7 87 W 119w 151 il 183 A 215 i 247 ...

24 t 56 B 88 X 120x 152 Y 184 © 216 I 248 0

25 J. 57 9 fa Y 121 Y 153 i:i 185 11 217 J 249 ••

26 ~ 58 90 Z 122z 154 U 186 II 218 r 250

27 +- 59 91 [123 { 1558 187 11 219 I 251 I

28 L 60 < 92 '\ 124 ; 156 £ 188 J..I 220 • 252 :I

29 ... 61 = 93] 125 } 157.H 189 ¢ 221 ; 253 2

30 .. 62 > 94 A 126- 158 x 190 ¥ 222 i 254 •

31 '" 63 ? ffi 1270 159 f 191 1 223 • 255

406

ANSI Character Codes Chart
o •
1 •

2 •

3 •

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33 !
34 II

35 U

36 $
37 %
38 &

39

40 (

41)

42 *
43 +

44

45 -

46 •

47 I
48 0

49 1

50 2

51 3
52 4

53 5
54 6
55 7
56 8
57 9
58

59

60 <
61

62 >
63 ?

64 @
65 A
66 B

67 C
68 0
69 E
70 F
71 G
72 H
73 I

74 J
75 K
76 L

77 M
78 H
79 0
80 P
81 Q

82 R
83 S
84 T

85 U
86 U

87 W
88 X
89 Y
90 Z
91 [

92 \

93]

94 A.

95

96 ...

97 a
98 b

99 C

100 d

101 e
102 f
103 g
104 h
105 i
106 j
107 k
108 1
109 (I)

110 n
111 0

112 P
113 q
114 r
115 5

116 t
117 U

118 U

119 IJJ

120 X

121 Y
122 2

123 {

124 I
125 }

126

127 •

TT

128 •

129 •

130 '

TT131 f
132 " TT

160

161 i
162 ¢

163 £.
164 ~

TT133 ••• 165 ¥
1T134 t 166

1T135:t: 167 §
TT136 A. 168

1T137 %0 169 ©

TT138 S 170 ~
TT139 < 171«

1T140 CE 172"

141. 173-

142. 174 @

143 •

144 •

145 '

146 '

Tr147 "

TT148 "

T)49 •

1T150

1T151 -

TT152 -

TT153 TM

TT154 S
TT155)

TT156 ce
157 •

158 •

TT159 Y

175

176 0

177 ±

178 l

179 :J

180

181 J1
182 ,-

183 •

184 ~

185 t

186 Q

187 »

188 %
189 %
190 ~

191 l.

I Indicates that this character is not supported by Windows.

TT Indicates that this character is available only in TrueType fonts.

192 it 224 it
193 A
194 ii
195 A
196 ii
197 ~
198 d:
199 C
200 E
201 E
202 E
203 E
204 i
205 i
206 1
207 Y
208 f)

209 H
210 ()

211 0
212 0
213 ii
214 ii
215 X

216 0

217 iJ
218 (i

219 0
220 U
221 Y
222 tJ
223 B

225 a
226 a

,ov

227 a
228 a
229 a
230 ~

231 ~

232 e
233 e
234 e
235 e

...
236 1

237 i
238 i
239 :.:

240 il
,ov

241 n
242 0
243 6
244 a

,ov

245 0

246 ii
247

248 S

249 U
250 U
251 U
252 U
253 Y
254 Il
255 !J

Appendix D Charts

407

c++ Language Reference

Key Codes Chart 1

ASCII or ASCII or ASCII or
Scan ASCII or Extendedt Extendedt Extendedt

Key Code Extendedt with SHIFf withCIRL withAIT

Dec Hex Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char
ESC 1 01 27 1B ESC 27 1B ESC 27 1B ESC 1 01 NUL§
1! 2 02 49 31 1 33 21 ! 120 78 NUL
2@ 3 03 50 32 2 64 40 @ 3 03 NUL 121 79 NUL
3# 4 04 51 33 3 35 23 # 122 7A NUL
4$ 5 05 52 34 4 36 24 $ 123 7B NUL
5% 6 06 53 35 5 37 25 % 124 7C NUL
6A 7 07 54 36 6 94 5E A 30 IE RS 125 7D NUL
7& 8 08 55 37 7 38 26 & 126 7E NUL
8* 9 09 56 38 8 42 2A * 127 7F NUL
9(10 OA 57 39 9 40 28 (128 80 NUL
0) 11 OB 48 30 0 41 29 } 129 81 NUL
-- 12 OC 45 2D - 95 5F - 31 IF US 130 82 NUL
=+ 13 OD 61 3D = 43 2B + 131 83 NUL
BKSP 14 OE 8 08 8 08 127 7F 14 OE NUL§
TAB 15 OF 9 09 15 OF NUL 148 94 NUL§ 15 A5 NUL§
Q 16 10 113 71 q 81 51 Q 17 11 DC1 16 10 NUL
W 17 11 119 77 w 87 57 W 23 17 ETB 17 11 NUL
E 18 12 101 65 e 69 45 E 5 05 ENQ 18 12 NUL
R 19 13 114 72 r 82 52 R 18 12 DC2 19 13 NUL
T 20 14 116 74 t 84 54 T 20 14 SO 20 14 NUL
Y 21 15 121 79 y 89 59 y 25 19 EM 21 15 NUL
U 22 16 117 75 u 85 55 U 21 15 NAK 22 16 NUL
I 23 17 105 69 i 73 49 I 9 09 TAB 23 17 NUL
a 24 18 111 6F 0 79 4F 0 15 OF SI 24 18 NUL
P 25 19 112 70 P 80 50 P 16 10 DLE 25 19 NUL
[{ 26 1A 91 5B [123 7B { 27 1B ESC 26 lA NUL§
]} 27 1B 93 5D] 125 7D } 29 1D GS 27 1B NUL§
ENTER 28 1C 13 OD CR 13 OD CR 10 OA LF 28 lC NUL§
ENTER£ 28 lC 13 OD CR 13 OD CR 10 OA LF 166 A6 NUL§
LCTRL 29 1D
RCTRL£ 29 1D
A 30 IE 97 61 a 65 41 A 1 01 SOH 30 IE NUL
S 31 IF 115 73 s 83 53 S 19 13 DC3 31 IF NUL
D 32 20 100 64 d 68 44 D 4 04 EaT 32 20 NUL
F 33 21 102 66 f 70 46 F 6 06 ACK 33 21 NUL
G 34 22 103 67 g 71 47 G 7 07 BEL 34 22 NUL
H 35 23 104 68 h 72 48 H 8 08 BS 35 23 NUL
J 36 24 106 6A j 74 4A J 10 OA LF 36 24 NUL
K 37 25 107 6B k 75 4B K 11 OB VT 37 25 NUL
L 38 26 108 6C 1 76 4C L 12 OC FF 38 26 NUL
,. 39 27 59 3B ; 58 3A : 39 27 NUL§
"' 40 28 39 27 , 34 22 " 40 28 NUL§
- 41 29 96 60 , 126 7E - 41 29 NUL§

LSHIFT 42 2A
\1 43 2B 92 5C \ 124 7C I 28 1C FS
Z 44 2C 122 7A z 90 5A Z 26 lA SUB 44 2C NUL
X 45 2D 120 78 x 88 58' X 24 18 CAN 45 2D NUL
C 46 2E 99 63 c 67 43 C 3 03 ETX 46 2E NUL
V 47 2F 118 76 v 86 56 V 22 16 SYN 47 2F NUL
B 48 30 98 62 b 66 42 B 2 02 STX 48 30 NUL
N 49 31 110 6E n 78 4E N 14 OE SO 49 31 NUL
M 50 32 109 6D m 77 4D M 13 OD CR 50 32 NUL
,< 51 33 44 2C , 60 3C < 51 33 NUL§
.> 52 34 46 2E 62 3E > 52 34 NUL§

408

Key Codes Chart 2
ASCII or ASCII or ASCII or

Scan ASCII or Extendedt Extendedt Extendedt
Key Code Extendedt with SHIFT withCIRL withAIT

Dec Hex Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char
/? 53 35 47 2F / 63 3F ? 53 34 NUL§
GRAY 1£ 53 35 47 2F / 63 3F ? 149 95 NUL 164 A5 NUL
R SHIFT 54 36
*PRTSC 55 37 42 2A * PRTSC tt 16 10
LALT 56 38
RALT£ 56 38
SPACE 57 39 32 20 SPC 32 20 SPC 32 20 SPC 32 20 SPC
CAPS 58 3A
F1 59 3B 59 3B NUL 84 54 NUL 94 5E NUL 104 68 NUL
F2 60 3C 60 3C NUL 85 55 NUL 95 5F NUL 105 69 NUL
F3 61 3D 61 3D NUL 86 56 NUL 96 60 NUL 106 6A NUL
F4 62 3E 62 3E NUL 87 57 NUL 97 61 NUL 107 6B NUL
F5 63 3F 63 3F NUL 88 58 NUL 98 62 NUL 108 6C NUL
F6 64 40 64 40 NUL 89 59 NUL 99 63 NUL 109 6D NUL
F7 65 41 65 41 NUL 90 5A NUL 100 64 NUL 110 6E NUL
F8 66 42 66 42 NUL 91 5B NUL 101 65 NUL 111 6F NUL
F9 67 43 67 43 NUL 92 5C NUL 102 66 NUL 112 70 NUL
FlO 68 44 68 44 NUL 93 5D NUL 103 67 NUL 113 71 NUL
Fll£ 87 57 133 85 EO 135 87 EO 137 89 EO 139 8B EO
F12£ 88 58 134 86 EO 136 88 EO 138 8A EO 140 8C EO
NUM 69 45
SCROLL 70 46
HOME 71 47 71 47 NUL 55 37 7 119 77 NUL
HOME£ 71 47 71 47 EO 71 47 EO 119 77 EO 151 97 NUL
UP 72 48 72 48 NUL 56 38 8 141 8D NUL§
UP£ 72 48 72 48 EO 72 48 EO 141 8D EO 152 98 NUL
PGUP 73 49 73 49 NUL 57 39 9 132 84 NUL
PGUP£ 73 49 73 49 EO 73 49 EO 132 84 EO 153 99 NUL
GRAY- 74 4A 45 2D -
LEFT 75 4B 75 4B NUL 52 34 4 115 73 NUL
LEFT£ 75 4B 75 4B EO 75 4B EO 115 73 EO 155 9B NUL
CENTER 76 4C 53 35 5
RIGHT 77 4D 77 4D NUL 54 36 6 116 74 NUL
RIGHT£ 77 4D 77 4D EO 77 4D EO 116 74 EO 157 9D NUL
GRAY+ 78 4E 43 2B +
END 79 4F 79 4F NUL 49 31 1 117 75 NUL
END£ 79 4F 79 4F EO 79 4F EO 117 75 EO 159 9F NUL
DOWN 80 50 80 50 NUL 50 32 2 145 91 NUL§
DOWN£ 80 50 80 50 EO 80 50 EO 145 91 EO 160 AO NUL
PGDN 81 51 81 51 NUL 51 33 3 118 76 NUL
PGDN£ 81 51 81 51 EO 81 51 EO 118 76 EO 161 Al NUL
INS 82 52 82 52 NUL 48 30 0 146 92 NUL§
INS£ 82 52 82 52 EO 82 52 EO 146 92 EO 162 A2 NUL
DEL 83 53 83 53 NUL 46 2E 147 93 NUL§
DEL£ 83 53 83 53 EO 83 53 EO 147 93 EO 163 A3 NUL

Extended codes return 0 (NUL) or EO (decimal 224) as the initial character. This is a signal that a second
(extended) code is available in the keystroke buffer.

§ These key combinations are only recognized on extended keyboards.
£ These keys are only available on extended keyboards. Most are in the Cursor/Control cluster. If the raw

scan code is read from the keyboard port (60h), it appears as two bytes (EOh) followed by the normal scan
code. However, when the keypad ENTER and / keys are read through the BIOS interrupt 16h, only EOh is
seen since the interrupt only gIves one-byte scan codes.

tt Under MS-DOS, SHIFT + PRTSC causes interrupt 5, which prints the screen unless an interrupt handler has
been defined to replace the default interrupt 5 handler.

Appendix D Charts

409

:: scope-resolution operator 24, 244
-> (member-selection operator) 347
-> member-selection operator 243
->* operator 204
([]) array subscript operator 210
. member-selection operator 243
. * operator 204
[] (brackets), subscript operator 345
__ (double underscore), identifer naming 6
{ } (braces), _asm block delimiters 378
,.., (tilde), specifying destructors 297
= (assignment operator) 344

A
abort function

described 35
immediate termination, effects 38

Abstract base classes, object declarations 241
Abstract classes, described 263,274-275
Abstract declarators

arrays 208,210-211
default arguments 220
described 194
function declarations 211
multidimensional arrays 209
pointers 195
pointers to members 203
references 198-199,201

Access privileges 254
Access specifie~s 280
Access to members

base classes 281
controlling 279-280
friends 283,285-287
member-selection operator overloading 347
multiple-inheritance paths 288-289
private members 282
protected members 287
public members 282

Index

Access to members (continued)
specifiers 281-283
types of 279
virtual functions 288

Accessor functions, defined 234
Actual arguments

defined xvii
initializing 70

Acyclic graphs 299,301
Addition operator

binary-operator expressions 90-92
overloading 343

Addresses, returning, overloaded functions 335-336
Address-of operator

overloading 340
unary-operator expressions 78-79

Aggregate types
described 224
initializing 225-226

Aggrcgatc-initializcr lists 225
Allocation of memory

failed, testing for 309-310
new operator 307-308

Ambiguities, multiple-inheritance class
names 267-270

Ambiguity resolution 195
AND operator, bitwise See Bitwise AND operator
AND operator, logical See Logical AND operator
Anonymous class types 166,233-234
Anonymous structures 166
Anonymous types 164
Anonymous unions 250-251
argc argument, main function syntax 31
Argument declaration list 217
Argument expressions, default 219-220
Argument lists

in function declarations 217
in function prototypes 217
'.':!..ri~ble fl!ncticn~ ' . ."ith 221

Argument types, in overloaded functions 326

411

Index

412

Arguments
actual

defined xvii
initializing 70

command-line
handling, _setargv function 32
parsing 33-:-34
syntax 31

conversions, overloaded functions 331-333
default

declarators 220
overview 72

default, declarators 218
defined xvii
ellipses as 213
ellipsis notation 72
formal

defined xvii
initializing 70
scope 26

function, name scope 277
handling, _setargv function 34
matching, overloaded functions 329-332, 334-335
types, treatment of 72
variable number 73
variable, lists 213

argv argument, main function syntax 32
Arithmetic conversions, described 59-60
Array pointers, conversion 63
Array subscript operators 210
Arrays

character, initializing 227
constructors 296
declarators 208-211,217
declarators, in expressions 210
initializing 316-317
ordering of C++ 211
type wchact 16
types 44
types, indirection on 211
unsized, declaring in members 241

ASCII character codes 403
Chart 1 404
Chart 2 405
displayable and undefined characters 403
extended scan code 403
key codes 403

Chart 1 409
Chart 2 407

ASCII character codes 403 (continued)
multilingual

chart 406
overview 403

__ asm keyword, invoking inline assembler 377-378
Assembler, inline See Inline assembler
Assignment operator, overloading 343
Assignment operators

binary-operator expressions 98-100
copying class objects 321-322, 324
overloading 344
(table) 98

Assignment, copying objects 320-324
Associativity, operators 7, 77
Asterisk (*), indirection operator 211
atexit function, described 37
auto keyword

declaration statements 139-140
declarations, used in 153
described 38

Automatic storage class
declaration statements 139-140
specifiers 153

Automatic storage classes described 38

B
Base classes

access specifiers 281-283
conversion 63
declaring 258
defined 257
described 263
initializing 317-320
member access (table) 281
multiple

described 264-266
name ambiguities 267-270

nonvirtual, destructors 299
pointers to

conversion 61, 63
members 64

virtual, described 265-266
virtual functions, described 270-273

Based addressing 366
__ based keyword, described 366-367
Based pointers

based on pointers 366
described 366-367

Binary operators
additive 90-92
assignment 98-100
bitwise AND 95
bitwise exclusive OR 95
bitwise inclusive OR 95
bitwise shift 92
comma 101
equality 93-95
(list) 88-89
logical AND 96-97
logical OR 97
mUltiplicative 89-90
overloading 343-345, 347
relational 93-95

Bit fields
described 252
described, syntax 251
ordering of data 252
restrictions on use 253

Bitwise AND operator
binary-operator expressions 95
overloading 343

Bitwise complement operator, unary-operator
expressions 80

Bitwise exclusive OR operator, binary-operator
expressions 95

Bitwise inclusive operator, overloading 343
Bitwise inclusive OR operator, binary-operator

expressions 95
Bitwise shift operators, binary-operator expressions 92
Block scope, linkage rules 27
Blocks defined 129
brackets (m, subscript operator 345
break statements, using 132-133, 137
_bstct class 392-395

c
c++

file translation order 1-2
keywords (list) 6
manual, overview xv

Calling conventions
linkage specification effects 170-171
modifiers 367

case statements, using labels with 127, 130-133
catch statement 143, 146
char type 42-43

Index

Character arrays, initializing 227-228
Character codes, ASCII See ASCII character codes
Character constants

described 11-12, 14
escape sequences 13
NULL ('\0') 16
wchar_t type 12
wide character 13

Charts, overview 403
Class declarations, friends, defining in 287
class keyword 25, 232
Class members See Members
Class names

declaring and accessing 236
declaring class members 232
declaring types 236

Class scope
described 22
friend functions 238
linkage rules 27
summary of rules 275-277
type names in 256

Class types
anonymous 233-234
anonymous unions 251
classes, user-defined, described 231
declaring 139, 232
defining 232-234
differences among 232
overview 231
typedef, use of 160
union member data 250
unions 248-249

Classes
abstract, described 263,274-275
anonymous 166
base See Base classes
composed, defined 297
conversion 63
declaring with dllimport/dllexport 375
declaring without definition 237
defining 232, 234
derived

multiple inheritance 262,264-270,288-289
single inheritance 258-260, 262
syntax 257
virtual functions 262

described 49
empty, declaring 235

413

Index

414

Classes (continued)
friends, declaring as 285-286
grammar summary 361
member functions 242
members See Members
names

hiding 25
using typedef 237

nested 165,232,253-255
overview 231
pointers to, conversion 61, 63
reference conversion 63
storage See Storage classes

class-keys, nondefining declarations 237
Class-specifiers, use described 232
Class-type objects 234-235
_com_error class 379-384
COM support classes, Microsoft-specific 379-402
Comma operator

binary-operator expressions 101
overloading 343

Command-line arguments
See also Arguments
parsing 33-34
passing to main function 31
syntax 31
wildcards 32

Command-line arguments See Arguments
Command-line options, CL

/G(n) (specifying processor-specific instructions) 12
/Gf (enable string pooling) 16
/vd (enable/suppress vtordisp members) 266
/vmg (specifying inheritance type) 206

Comments 3
Compatibility, operands 112-113
Complement operator See One's complement operator
Composed classes, construction 297
composed derivative types 48
Compound statements 129
_com_ptct class 384-392
Concatenation, string literals 16
Conditional compilation, detecting C++

compilation 171
Conditional operator, expressions 102
const 246
const keyword

pointers, effect on 196
used with this pointer 246

const objects, initializing pointers to 224

Constant expressions
conversion 64
described 103

Constants
character 11-14
decimal 11
described 9
enumerators See Enumerators
floating-point

described 14
limits (table) 52
syntax 14
types 15

hexadecimal 11
integer 10-11
integral limits (table) 51
long integers 11
NULL character 16
octal 11
string literals

concatenation 16
defined 15-17
escape sequences 17
types 15

unsigned integers, described 11
Construction, order 297
Constructors

array, default constructor 296
calling virtual functions 295
conversion, described 303-305
copy 293-294
declaring 293-294,296
default 294, 296
described 303
explicitly calling 294
initialization 295
initializers 277
initializing use 227
tasks performed by 292-293

Constructs, used with pointers to members (table) 46
continue statements, using 137-138
Controlling access to members 279-280
Conversion constructors 303-305
Conversion functions

declaring 307
described 306
syntax 305

Conversions
ambiguities 269-270
arithmetic, described 59-60
base classes 63
by constructors, defined 303
class types 302-303
described 55
enumerators 170
explicit type 103, 105-107
floating and integral conversions 58
floating conversions 58-59
forward-reference class type 107
integral conversions 57-58
integral promotions 56, 59
integral types 57
I-value results 56
pointers 60-61,63-64, 106
references 63
to reference types 107
trivial 332
usual arithmetic 60

Copy constructors 293-294
Copying objects 320-324

D
Data members, static 247-248
Data ordering, bit fields 252
Data storage, class-member 241
Deallocating memory, delete operator 312-314
Decimal constants 11
Declaration statements

automatic objects 139-140
control transfer 140
described 126, 139-143
initializers in blocks 140
static object declaration 141-142

Declarations
See also Declarators; Definitions
ambiguity resolution 195
argument declaration list 217
arrays, unsized, in members 241
auto keyword 153
class types· 232
classes

See also Class declarations
friends, defining in 287
nested 253-254

constructors 293-294,296

Declarations (continued)
conversion functions 307
default argument expressions 219-220
definitions 151
derived classes 257
described 20-21, 151
destructors 298
dllexport extended storage-class attribute 373
dIlimport extended storage-class attribute 373
empty classes 235
enumeration 166-170
explicit instantiation 177
explicit qualification 190
friends 240, 286-287
functions, variable argument lists 213
grammar summary 355
initializers, use 200
linkage specifications 170-172
matching, overloaded functions 327, 329
members

abstract base classes 241
storage class 239

namespace alias 182
namespace definition 181
namespace members 182
namespaces 178-179
nested classes 255
point of declaration 23
prototypes 151
register keyword 153
specifiers

described 152
friend 162
function 154-155
storage-class 153
type 162-163, 165

static, linkage 27
syntax 151
template specifications 173
type 162
typedef 27,50, 158-161
unnamed namespaces 180
used as definitions 152
uses (list) 151
using directive 187
using the class-key 237
using 183-187

Index

415

Index

416

Declarators
abstract

default arguments 220
described 194
pointers 195
references 198-199

aggregate-initializer lists 225
argument lists in function prototypes 217
array types, indirection 211
arrays 208
arrays in expressions 210
arrays, ordering of C++ 211
arrays, using 210
default arguments 218
described 191-193
function declarations See Function declarations
function overloading 214
grammar summary 359
initializers 223
initializing character arrays 227
interpretation of subscript operator 211
multidimentional arrays 209
overview 191
parentheses, use 193
pointers to members 203-206,208
references to pointers 201
reference-type function

arguments 198
returns 199

restrictions on functions 216
syntax generally 192
type name use 193-195
typedef keyword 193
void keyword 213

Declaring, class names 236
__ declspec keyword, described 367
Decorated names, restrictions on length 5
Decrement operator

overloading 340, 342
postfix expressions 76-77
prefix expressions 80-81

Default arguments, declarators 218,220
Default constructor, defined 296
default statements, label restrictions 127, 130-133
Definitions

See also Declarations
declarations 151
described 21
dllexport extended storage-class attribute 373

Definitions (continued)
dllimport extended storage-class attribute 373
function 220-221

delete operator
memory deallocation 312-314
unary-operator expressions 87-88
using 298

Derived classes
abstract 263,274-275
construction of 296
multiple-inheritance

access control 288-289
base classes 264-266
described 262
name ambiguities 267-270

overview 257
pointers to members 64
scope 275-277
single-inheritance 258-260,262
syntax 257
virtual functions 262, 270-273

Derived types 44
classes 48
directly derived 44, 46-48
structures 49
unions 49

Destruction
automatic objects 140
static objects 143

Destructors
calling 301
declaring 298
defined 297
nonvirtual base classes 299
order of destruction 297,299-301
using 298-299
virtual base classes 299

Directives, conditional compilation, uses for 171
Division operator

binary-operator expressions 89-90
overloading 343

dllexport
classes 376
extended storage-class attribute

class declarations 375
defined with inline functions 374
described 372,377
selective member import/export 376

inheritance and exportable classes 376

dllimport
classes 376
extended storage-class attribute

class declarations 375
defined with inline functions 374
described 372,377
selective member import/export 376

inheritance and exportable classes 376
DLLs (Dynamic-link libraries) See dllimport extended

storage-class attribute; dllexport storage-class
attribute

do/while statements
syntax 133
using 133-135

Dominance, object names 269
double type

floating-point constants 14
size of 43

Dynamic allocation
failed, testing for 309-310
freeing memory, delete operator 312-314
new operator 307-308

Dynamic-link libraries (DLLs) See dllimport extended
storage-class attribute; dllexport storage-class
attribute

E
elaborated-type-specifiers 237
Ellipses C •••)

as argument 213
functions requiring variable argument lists 221

else statements, syntax 129-130
Empty classes, declaring 235
enum keyword 166
Enumerators

declared when 23
declaring 23
defining constants 169
described 166-169
integral promotion 170
linkage 27-28
names 166, 169

Environment-processing, _setenvp function 34
envp argument, main function syntax 32
Epilog/prolog code See naked extended storage-class

allribult!

Equality operators
binary-operator expressions 93-95
overloading 343

equals sign (=), assignment operator 344
Escape sequences

described 13
(list) 13
strings 17

Evaluation order
expressions 110-111
operators 7

Exception handling, C++ 143-144, 146
Exclusive OR operator, overloading 343

Index

Exclusive OR operator, bitwise See Bitwise exclusive
OR operator

Execution character set 11
exit function 35-36
Exit processing, atexit function 37
exit statements 35
Exiting programs, ways of 35
Explicit instantiation 177
explicit qualifiers 190
Explicit type conversions

described 105-107
expressions with, described 103
operator 103, 105

Exponents, floating-point constants 14
Expression statements, described 128
Expressions

argument, default 219-220
binary-operator

additive operators 90-92
assignment operators 98-100
bitwise 95
bitwise shift operators 92
comma 101
described 88-89
equality operators 93-95
logical operators 96-97
multiplicative operators 89-90
relational operators 93-95

categories (list) 65-66
conditional-operator 102
constant 103
conversion 63-64
defined 65
evaluation order 110-111
explicit instantiation 177
explicit-type-conversion 103, 105-107

417

Index

418

Expressions (continued)
function templates 176
grammar summary 350
gray expressions 112
member function templates 176
notation 112-113
null pointer 107
pointer types 106
pointer-to-member-operator 107-109
postfix

described 68-69
function-call operator 70
increment and decrement operators 76
member-selection operator 75
subscript operator 69
syntax 69

primary 66-68
sequence points 111-112
unary -operator

address-of operator 78-79
bitwise complement 80
bitwise complement operator 80
decrement operator 80-81
delete operator 87-88
described 77
increment operator 80-81
indirection operator 78
logical NOT operator 80
new operator 83-87
one's complement operator 80
sizeof operator 82-83
unary negation operator 79-80
unary plus operator 79

Extended scan code 403
Extended storage-class attributes

__ declspec keyword 367
described 367
dllexport 372,377
dllimport 372,377
naked 370,372
syntax 367
thread 368

extern keyword
declarations, used in 141, 153-154
linkage specification 171-172
storage class 39

External linkage, described 26
External variables 39

Extractors

F

_com_ptct class 391
_ varianCt class 401

__ far keyword, used with this pointer 246
File scope

described 22
linkage rules 27
names, hiding 24

Files, translation order 1-2
float type, size of 43
FLOAT.H 51
FLOAT.H include file, floating limits 52
Floating and integral conversions, floating to

floating 58
Floating conversions 58-59
Floating types

conversion 58-59
described 41-42
limits, FLOAT.H include file 52

Floating-point constants 14-15
for statements

syntax 133
using 133, 135-136

Formal arguments
defined xvii
initializing 70
scope 26

Forward-reference class type conversion 107
friend declarations 240
friend functions

class members 242
in class declarations 238
linkage 27
nested classes 255
using 283

friend keyword
access to friends 285
using 283

friend specifier 162
Friends

access rules 282-283, 285
declaring 285-287
defining in class declarations 287

Function arguments, name scope 277

Function declarations 211
argument declaration list 217
argument lists in 217
default arguments 218
function overloading 214
no arguments 213
syntax 212
variable argument lists 213

Function definitions, described 220
Function names, declarations 139
Function parameters, linkage 28
Function scope 22
Function specifiers, inline 154-155
Function templates 176
Function-call operator

overloading 345
postfix expressions 70-75

Functions
See also member functions
abort 35
accessor 234
atexit 37
calling C functions 29
conversion 305-307
exit 35-36
friend

class declarations 238
class members 242
nested 256

inline 154-156, 158
main 30
member function templates 176
operator delete 312-314
operator new 307-308, 327
overloading, overview 325
pointers to functions 44
prototypes 151
recursive 155
restrictions on 216
_seCnew_handler 309-310
_setargv 32, 34
_setenvp 34
type conversion 63
types 44
virtual

abstract classes 263
accessing 288
declaring 158

Functions (continued)
virtual (continued)

defined 270
described 262,271-273

with variable argument lists: 221
wmain 30

Fundamental types

G

conversions See Conversions
described 41-43
storage required 43

IG(n) command-line option, CL 12
IGf command-line option, CL 16
Global objects 276
goto statements

labels, using with 126-127
transfer of control 139

Grammar summary 349
Graphs

acyclic 301
inheritance 299,301

Grayexpressions 112
Greater than operator, overloading 343
Greater-than operators, binary-operator

expressions 93-95

H
Handlers, setting 309-310
Hexadecimal constants 11
Hiding

class names 25
names with file scope 24

Hiding names 24

Identifiers
case sensitivity 5
class names 232
described 4
keywords (list) 6
length restrictions 5
Microsoft-specific 6
!!~Tjng 5
scope of 25
syntax 5

if statements, syntax 129-130

Index

419

Index

420

Include (.H) files
FLOAT.H 52
LIMITS.H 51

Inclusive OR operator, bitwise See Bitwise inclusive
OR operator

Incomplete types, initializing 226
Increment operator

overloading 340, 342
postfix expressions 76-77
prefix expressions 80-81

Indirection operator 78, 211
inequality operators, overloading 343
Inheritance

base-class accessibility 61
construction order 296
multiple

access control 288-289
base classes 264-266
described 262
name ambiguities 267-270

single 258-260,262
unions 249
using to represent pointers to members 206, 208

Inheritance and exportable classes 376
Inheritance graphs 300-301
Initialization

aggregate types 225-226
arrays 316-317
automatic objects 139
bases and members 317-320
calling constructors 295
character arrays 227
constructors 277
copying objects 320-324
explicit 315
local variables 39
new operator, objects allocated with 85
objects

from free store 316
using copy constructors 234-235

order of execution 36
pointers to const objects 224
references 228
special member functions, using 314-316
static members 224
static objects 141,143,317
uninitialized objects 224

initializer-lists 209

Initializers
declarators 223
declarators, syntax 223
in blocks 140
and unions 227

Initializing
aggregates 224
incomplete types 226
using constructors 227

Inline assembler, using 378
Inline class member functions 155
Inline expansion, controlling 154
Inline functions 154

compared to macros 156
defined with dllexport 374
defined with dllimport 374
defining 243
described 155-156, 158
linkage 155
scope 27
using 157

inline keyword 154-155
inline specifier 155
inline_depth pragma directive 155
inline_recursion pragma directive 155
Inlining 154
Instances, defined 19
Instantiate, defined 155
Instantiation, explicit 177
Insufficient memory, testing for 309-310
int type, size of 43
Integer constants 10-11
Integer types, sized 43
Integral conversions

constant expressions 64
floating to integral 59
integral to floating 59
signed to unsigned 57
standard 58
types 57
unsigned to signed 57-58

Integral promotions
described 56
enumerators 170
value-preserving 56

Integral types
conversion 57-59
described 41-42
limits, LIMITS.H include file 51

Internal linkage, described 26
Iteration statements 133

K
Keywords

L

grammar summary 349
(list) 6
Microsoft-specific 6, 363
Microsoft-specific (list) 6

Labeled statements 126-127
Labels, case statements, using with 126-127
Late binding, defined 293
Left shift operator

binary-operator expressions 92
overloading 343

Less than operator
binary-operator expressions 93-95
overloading 343

Lexical, elements described 1
Lifetime

new operator, object allocated with 84
scope See Scope

LIMITS.H 51
Linkage

described 26
enumerators 27
external, described 26
internal, described 26
modules in different languages 170
no linkage 26
non-C++ functions 29
program and 26
rules 27,28
specifications, extern 172
static member functions 247
typedef declarations 27
types 26

Linkage specification
calling conventions, effect on 170-171
defined 170
effects of 172
extern 171

Linkage-specification, extern 29
Literals See Constants
Local scope 22
__ LOCAL_SIZE predefined macro 372

Index

Local variables, initialization 39
Logical AND operator

binary-operator expressions 96-97
overloading 343

Logical NOT operator
overloading 340
unary-operator expressions 80

Logical OR operator
binary-operator expressions 97
overloading 343

long double type
floating-point constants 15
size of 43

long type, size of 43
L-values

M

conversion results 56
defined 50-51

Macros, compared to inline functions 156
main function

described 30, 34
initialization considerations 36
restrictions 34
using wmain instead 31

Mantissas floating-point constants, defined 14
Member access in base class (table) 281
Member arrays, unsized, declaring in members 241
Member data, unions 249
Member functions

_bstet 393-394
_com_error 380-383
_com_ptet 385-389
declarations 244
defined 242
described 242-243
friends, declaring as 285-286
in nested classes 254
initializers, scope of 320
initializing arrays 316-317
initializing bases and members 317-319
initializing static objects 317
inline 243
nonstatic

See also Nonstatic members
described 244-245
overloading 331

421

Index

422

Member functions (continued)
nonstatic (continued)

this argument 244
this pointer 245

overloading See overloading
special

initialization using 314-316
(list) 291

static
See also Static members
described 246
overloading 331

templates 176
this pointer 245-246
unions, in 249
_ varianCt 396-400

Member-access control (table) 279
Member-selection operator, postfix expressions 75-76
member-selection operator (.) 243
Member-selection operators

argument matching 331
class scope 22
overloading 343, 347
specifying names 276

Members
See also Data members; Member functions
access See Access
bit fields 251
categories (list) 238
data storage 241
declaration

abstract base classes 241
storage class 239

defined 232
described 238
initializing 317,319-320
initializing declarators 239
naming restrictions 241-242
pointers to

conversion 63-64
declarators 203
described 46,61
restrictions 204

protected, accessing 287
static, initializing 224

Memory allocation
failed, testing for 309-310
new operator 307-308

Memory deallocation, delete operator 312-314

Memory handlers, setting 309-310
Microsoft-specific compiler COM support

classes 379-402
miltilingual character codes 403
Modifiers

__ based keyword 366-367
calling and naming convention 367
__ declspec keyword See Extended storage-class

attributes
grammar summary 363
(list) 365
__ near keyword 365

Modulus operator
binary-operator expressions 89-90
overloading 343

Multiple inheritance
access control 288-289
base classes 264-266
described 262
names 267-270

Multiplication operator
binary-operator expressions 89-90
overloading 343

Multi-threaded processes, programs See thread attribute

N
naked extended storage-class attribute 370, 372
Naked functions 372
Name decoration, linkage specification 170
Name scope, function arguments 277
Name spaces, typedef declarations 161
Names

ambiguity 267-270, 276
classes

hiding 25
use described 236-237

dominance 269
enumerators 169
external, linkage 27
global 276
hiding 24
linkage rules 27-28
members, restrictions 242
multiple-inheritance ambiguities 267-270
primary expressions 67
qualified names

scope rules 276-277
syntax 68

Names (continued)
simple type 162
static keyword 154
typedef 161
typedef, reclarations 160
types See Types
without storage-class specifiers 154

namespace alias 182
namespace declaration 179
names pace definition 181
namespace members 182
Namespaces, global 178
Naming conventions, modifiers 367
Negation operator, unary

overloading 340
unary-operator expressions 79-80

Nested classes 231,236,254-255
Nested types 164
Nesting, classes 165,253-254
new operator

dynamic allocation 307-308
unary-operator expressions 83-87

non-C++ functions, linkage 29
Nonredefinable operators 338
Nonstatic member functions 243-245
NOT operator, logical See Logical NOT operator
Notation in expressions 112-113
NULL character constant ('\0') 16
Null pointers, conversion 60, 64, 107
Null statements, described 128
Numerical limits 51-52

o
Object construction 296-297
Object names, declarations 139
Object types, described 41
Objects

arrays of 44
class-type 234-235
copying 320-324
declaring

automatic 139-140
static 141-142

destructors, using 297-299
global 276
initialization, using copy constructors 234-23S
initializing 224
order of destruction 299-301

Objects (continued)
passing by reference 44-46
static, initializing 317
temporary 301-302
type conversions 302-303

Octal constants 11
One's complement operator

overloading 340
unary-operator expressions 80

Operands
See also Operators
compatibility with operators 112-113
conversions 59-60

operator delete function 312-314
operator new function 307-308, 327
operator= operator 321-323
Operators

addition 343
additive 90-92
address-of 78-79, 340
array subscript 210
assignment 98-100, 321-323, 343-344
associati vity 7
binary

additive 90-92
assignment 98-100
bitwise AND 95
bitwise inclusive OR 95
bitwise shift 92
comma 101
equality 93-95
(list) 88-89
logical AND 96-97
logical OR 97
multiplicative 89-90
overloading 343-345, 347
relational 93-95

bitwise AND 95, 343
bitwise exclusive OR 96
bitwise inclusive 343
bitwise inclusive OR 96
bitwise shift 92
_bstct 394
comma 101,343
_com_error 384
_com_ptct 389-392
conditional 102
decrement 76, 80, 340, 342
delete 87,298,312-314

Index

423

Index

424

Operators (continued)
described 7
division 89, 343
equality 95,343
evaluation order 7
exclusive OR 343
explicit type conversion 103, 105
function-call 70, 345
greater than 343
greater-than 93
increment 76,80,340,342
indirection 211
inequality 343
left shift 343
left-shift 92
less than 343
less-than 93
logical AND 96, 343
logical negation operator 340
logical NOT 80
logical OR 97, 343
member-selection 22, 75, 276, 331,343,347
modulus 89,343
multiplication 343
multiplicative 89
new 83,298,307-308
operand compatibility 112-113
operator= 321-324
overloading

assignment 344
binary 343-344
described 336
function-call 345
(list) 338
member-selection 347
nonredefinable 338
overview 65, 325
redefinable (list) 336
rules 338-339
subscript 345,347
unary 340

pointer dereference 340
pointer-to-member 107-109,204,331,343
postfix

decrement 76-77
described 68-69
function-call 70-75
increment 76-77

Operators (continued)
postfix (continued)

member-selection 75-76
subscript 69-70

precedence (list) 7
redefining 336
relational 93
right shift 343
right-shift 92
scope resolution 165, 259, 276
scope-resolution 24,244
sizeof 82, 241
subscript 69,211,345,347
subtraction 90, 343
syntax 7
unary

address-of 78-79
associativity 77
bitwise complement 80
decrement 80-81
delete 87-88
increment 80-81
indirection 78
(list) 77
logical NOT 80
new 83-87
one's complement 80
overloading 340
sizeof 82-83
unary negation 79-80
unary plus 79

unary negation 340
unary plus 340
used with pointer-to-member (table) 46
_ varianCt 400-402

OR operators
bitwise exclusive See Bitwise exclusive OR

operator
bitwise inclusive See Bitwise inclusive OR operator
logical See Logical OR operator

Order of evaluation 11 0-111
Overloaded function 214
Overloading

functions
address return 335-336
argument conversions 332
argument matching 329-331,334-335
argument type differentiation 326
declaration matching 327

Overloading (continued)

p

functions (continued)
nonstatic 331
operator new 327
restrictions 326-327
scope issues 327,329
static 331

operators
assignment 344
binary 343-344
described 336
function-call 345
(list) 338
member-selection 347
nonredefinable 338
overview 65
redefinable 336
rules 338-339
sUbscript 345,347
unary 340

overview 325
typedef declaration 327

pack pragma directive 241
Parameters See Arguments
Parentheses ()

declarators 193
function-call operator 345

Parsing
arguments 34
command-line arguments 33-34
tokens, described 2-3

Passing objects, by reference to functions 44-46
Plus operator, unary

overloading 340
unary-operator expressions 79

Point of declaration, defined 23
Pointer conversions

array expressions 63
const and volatile types 63
null pointers 64
pointers to base-class members 64
pointers to base-class members, conversion 64
to classes 61, 63
to functions 61
to null pointers 60

Index

Pointer conversions (continued)
to objects 61
to type void 61

Pointer dereference operator, overloading 340
Pointers

based 366-367
const keyword, effect 196
conversions 60
converting types 106
declarators, syntax 195
null pointer 107
references to, declaring 201
smart

_com_ptct object 384
described 347

this
argument matching, overloaded functions 331
type of 245
using 245-246

to const objects, initializing 224
to members 205-206
to members, restrictions 204
volatile keyword, effect 196

Pointers to const objects, initializing 224
Pointers to functions, types 44
Pointers to members

declarators 46, 203
representing, using inheritance 208

pointer-to-member conversions 64
Pointer-to-member conversions, constant

expressions 64
Pointer-to-member operators

: expressions with 107-109
operators and constructs 46
overloading 343
this pointer 331

Polymorphism, late binding 293
Postfix expressions, described 68-69
Postfix operators

decrement 76-77
function-call 70-75
increment 76-77
member-selection 75-76
subscript 69-70
(table) 68

Pragma directives
inline_depth 155
inline_recursion 155

425

Index

426

Pragma directives (continued)
pack 241
vtordisp 266

Precedence, operators 7
Preprocessing, defined 1
Preprocessor directives, grammar summary 363
Primary expressions

described 66-67
names 67
qualified names 68

Private members, access 270,281-282
PROG.CPP 160
Programs

defined 26
file translation order 1-2
fundamental elements 1
lexical elements (list) 1
startup code

initialization considerations 36
main and wmain functions 30
main function 34

tennination 35-36
Prolog/epilog code See naked extended-storage class

attribute
Promotions, integral 56
Protected members

access 279
accessing 281, 287

Prototypes, defined 151
Public members access 279,281-282
Punctuators 7
pure-specifiers 240

Q
Qualification, explicit 190
Qualified names

R

scope rules 276-277
syntax 68

Recursive functions 155
Redeclaration of typedef names 160
Redefining operators See Overloading, operators
Reference, conversion 63
References

declarators 198-199
initializing 228

References (continued)
passing to functions 198
to objects 44-46

Reference-type function returns 199
Reference types, conversions 107
Referencing templates 175
register keyword, declarations, used in 39,

139-140, 153
register variables described 39
Relational operators

binary-operator expressions 93-95
_bstet 395
_com_ptet class 390
_ variant_t 401

return statements
terminating programs 35-36
using 138

Return type conversion 63
Right shift operator

operator, binary-operator expressions 92
overloading 343

R-values, defined 50-51

s
Scope

block, linkage rules 27
classes

constructor initializer 277
described 22
linkage rules 27
qualified names 276
search order 277
type names in 256

file 22,27
formal arguments to functions 26
friend functions and nested classes 255
function 22
hiding class names 25
hidingnames 24
local 22
overloading 327, 329
static member functions 246
summary of rules 275-277

Scope resolution operator 165,259,276
Scope resolution, search order 276-277
Search order, scope resolution 276
Selection statements 129-133

Selective member import/export,
dllimport/dllexport 376

Sequence points, expressions 111-112
_seCnew_handler function 309-310
_setargv function, described 32, 34
_setenvp function, suppressing library routine use 34
Shift operators, bitwise, binary-operator expressions 92
short int type 42
short type 42-43
signed char type 42-43
signed short type 42
signed type

conversion from unsigned 57-58
conversion to unsigned 57

Single inheritance 258-260,262
Sized integer types 43
sizeof operator 82-83,241
Sizes, types 43
Smart pointers, described 347
Source character set 11
Specifications

linkage 170-172
templates 173

Specifiers
access to members 280-283
eleborated-type 237
friend 162
function 154-155
inline 154
pure 240
storage-class 153
syntax 152
type 162-163
typedef 158-161
virtual 158

Stack frame layout, writing prolog/epilog code 371
Standard integral conversion 58
_standard_new _handler function 311
Startup code

command-line arguments, parsing 33-34
initialization considerations 36
main and wmain functions 30
main function 34

Statements
break 133, 137
case 132
catch See catch statement
categories 125
class type 139

Statements (continued)
compound 129
continue 138
declaration 126, 139-143
described 126
do/while 133
enum type 139
expression 128
for 133
function declarations 139
goto 139
grammar summary 362
if/else 129
labeled 126-127
null 128
object declarations 139
return

described 138-139
program termination 35-36

selection 129-131
struct type 139
switch 130
syntax 126
throw See throw statement
try See try statement
typedef declarations 139
union type 139
while 133

Static data members 247-248
static declarations, linkage 27
static keyword

declarations, used in 141-142, 153
described 38
linkage 154
linkage specification 172

Static members
described 243
functions 246
initializing 224

Static objects, initializing 317
Static storage class

declaration statements 141-142
described 38
specifiers 153

Static variables, initialization 39
Storage classes

automatic 38, 153
member declarations 239

Index

427

Index

428

Storage classes (continued)
static 38
types 38

Storage-class specifiers 153-154
String literals 15-17
struct keyword 232
struct type names, declarations 139
Structures

anonymous 166
declaring 232
derived types 49

Subscript operator
described 345
overloading 345,347
postfix expressions 69-70

Subscript operator ([]) 211
Subtraction operator

binary-operator expressions 90-92
overloading 343

switch statements
labels, restrictions 127
using 130-133

Syntax

T

bit fields 251
class-member declaration 239
declarators 192

arrays 208
initializers 223
pointers 195
pointers to members 203
references 198

function declarations 212
function definitions 220
identifiers 5
linkage to non-C++ functions 29
main function 30
operators 7
pointers to members 206
summary 349

Template specifications 173
Templates

differences from other implementations 178
function 176
member functions 176
referencing 175

Temporary objects 301-302

Termination
abort function 35, 38
atexit function, described 37
considerations 36
exit function 35-36
implementing 35
return statement 35-36

Terms defined language 19
Ternary operator See Conditional operator
this argument 244
this pointer

described 245-246
member functions 242
overloaded functions argument matching 331
syntax 246
types 245

thread attribute 368
thread extended storage-class attribute 368
Thread-local storage See thread attribute
throw statement 143, 146
Tokens 1-3
Translation phases 1-2
Translation units

defined 2-3
linkage See Linkage

try statement 143, 146
type casts, syntactic ambiguity 195
Type checking, described 236
Type conversions

See also Conversions
class types 302-303

Type names
combinations 162
declarators, use in 193-195
defining 50
in class scope 256
simple 162

Type specifiers
described 162-165
syntax 162

typedef declarations
described 50, 158, 161
name spaces 161
overloaded functions 327
using 159-160
with class types 160

typedef keyword 193, 233

typedef names
declarations 139
linkage 28

typedef statements, naming class types '237
Types

u

aggregate, initializing 226
anonymous 164, 166
class 163
conversions See Conversions
derived

composed 48-49
described 44
directly derived 44, 46-48

floating 41-42
fundamental

conversions See Conversions
described 41-43
storage required 43

incomplete, initializing 226
integral described 41-42
integral conversions 57
(list) 41
nested 164
numerical limits 51
size of 43
sized integers 43
struct 163
union 163
user-defined 163
void 41
wchact 13, 15

Unary negation operator
overloading 340
unary-operator expressions 79-80

Unary operators
address-of 78-79
associativity 77
bitwise complement 80
decrement 80-81
delete 87-88
increment 80-81
indirection 78
(list) 77
logiCal NOT 80
negation 340
new 83-87

Unary operators (continued)
one's complement 80
overloading 340
size of 82-83
unary negation 79-80
unary plus 79

Unary plus operator
overloading 340
unary-operator expressions 79

Uninitialized objects 224
union keyword

class type declaration 232
defining class types 232,248-250

union type names, declarations 139
Unions

and initializers 227
anonymous 250-251
declaring 232
derived types 49
inheritance restrictions 249
member data 250

unnamed namespace definition 180
unsigned char type 42-43
unsigned int type, size of 43
unsigned long type, size of 43
unsigned short type

described 42
size of 43

unsigned type conversion 57-58
Unsized arrays 241
User-defined types, syntax 163
using declaration 183-187
using directive 187
Usual arithmetic conversions 60

v
Variable argument lists 213
Variables

arrays of 44
automatic described 38
external 39
local, initialization 39
reference type, initializing 228
reference-type, initializing 228-229
register 39
static described 38

_ varianCt class 396-402
Virtual base classes 262,265-266

Index

429

Index

430

Virtual functions
abstract classes 263
accessing 288
declaring 158
defined 270
described 262,271-273
late binding 293
pointers to members and 205

virtual keyword 154, 158
/vmg command-line option, CL 206
void keyword, function declaration 213
void type

described 41
pointer conversion 61

volatile keyword
pointers, effect on 196
used with this pointer 246

vtordisp pragma directive 266

w
while statements 133-134
White space 2-4
Wide-character constants 12
Wide-character strings 16-17
Wildcards, command-line arguments 32
wmain function 30-31
Writing prolog/epilog code, considerations 371

x
xalloc exceptions 310

z
Zero values, conversion to null pointers 60, 64

Contributors to C++ Language Reference

Richard Carlson, Index Editor

David Adam Edelstein, Art Director

Roger Haight, Editor

Mark Hopkins, Editor

Marilyn Johnstone, Writer

Seth Manheim, Writer

Qian Wen, Writer

WAS SERStudios, Production

For experienced
developers, it's the sou ree

of information
on programming in Win32.

This preeminent volume, completely updated for Microsoft® Windows® 95 and Microsoft Windows NT® version
4.0, shows you how to deploy the powerful capabilities of the 32-bit API.

Third Edition

." The Profe\\,oaal :
Oc,eloreriGde :
tnheWin2nPI :

fOlV[U1b ... tMO :
cr:dW;ndoWl 95 :

Jeffrey Richter
Microsoft·Press

U.S.A. $49.99
U.K. £46.99 [V.AJ. included]
Canada $67.99
ISBN 1-57231-548-2

Topics include:
• Exploring virtual memory and using virtual memory in your

own applications
• Understanding kernel objects and their handles
• Managing processes and threads, including thread-local

storage, thread synchronization, and the Windows NT 4.0
thread scheduler

• Taking advantage of fibers and the functions that manipu
late them

• Developing software for international markets using
Unicode

• Writing robust, error-free applications using structured
exception handling

• Writing DLLs and mastering techniques for using them
most effectively

• Sharing code and data among applications using memory
mapped files and sophisticated DLL-injection techniques

• Porting i6-bit Windows-based programs to Win32
• Performing synchronous I/O and using asynchronous tech

niques, including alertable I/O and I/O completion ports

Plus, the enclosed CD-ROM contains dozens of sample
programs, along with sample code and compiled applica
tions. Get ADVANCED WINDOWS. And create state-of-the-art
programs for the Windows 95 and Windows NT operating
systems.

Microsoft Press® products are available worldwide wherever quality computer books are sold. For
more information, contact your book retailer, computer reseller, or local Microsoft Sales Office.

To locate your nearest source for Microsoft Press products, reach us at WWw microsoft com!
~ or call1-800-MSPRESS in the U.S. (in Canada: 1-800-667-1115 or 416-293-8464).

To order Microsoft Press products, call1-800-MSPRESS in the U.S. (in Canada: 1-800-667-1115
or 416-293-8464).

Prices and availability dates are subject to change.

U.S.A. $35.00
U.K. £32.49
Canada $46.95
ISBN 1-55615-900-5

•

"An indispensable road map for those who wish
to write code as fast as humanly possible ... "

- G. Pascal Zachary, author of SHOWSTOPPER!:The Breakneck Race
to Create Windows NT and the Next Generation at Microsoft

In RAPID DEVELOPMENT, award-winning author Steve
McConnell reveals the secrets to taming wild software
schedules. He analyzes the development-speed
implications of many traditional development practices,
pointing out which are effective and which are harmful.
The book alerts you to 36 classic mistakes-practices
intended to shorten the development process that
lengthen it instead. McConnell counters with 27 proven
ways to shorten schedules and reduce the risk of
schedule overruns. RAPID DEVELOPMENT has a hard
headed, practical focus-with the emphasis on
suggestions you can use right away to finish your next
development project faster.

Microsoft Press$ products are available worldwide wherever quality computer books are
sold. For more information, contact your book retailer, computer reseller, or local
Microsoft Sales Office.

To locate your nearest source for Microsoft Press products, reach us at
www microsoft.com/mspress/, or call 1-800-MSPRESS in the U.S. (in Canada:
1-800-667-1115 or 416-293-8464).

To order Microsoft Press products, call 1-800-MSPRESS in the U.S.
(in Canada: 1-800-667~1115 or 416-293-8464).

Prices and availability dates are subject to change.

Preprocessor Reference

soft®
lSualC+T

Introduction v
Special Terminology v

Chapter 1 The Preprocessor 1
Phases of Translation 1

Preprocessor Directives 3

The #define Directive 3

The #error Directive 6

The #if, #elif, #else, and #endif Directives 6

The #ifdef and #ifndef Directives 10

The #import Directive 11

The #inc1ude Directive 19

The #line Directive 21

The Null Directive 22

The #Undef Directive 22

Preprocessor Operators 23

Stringizing Operator (#) 23

Charizing Operator (#@) 25

Token-Pasting Operator (##) 25
Macros 26

Macros and C++ 27

Predefined Macros 28

Chapter 2 Pragma Directives 31
Pragmas Specific to the C++ Compiler 32

iniCseg 32

pointers_to_members 32'

vtordisp 33

C and C++ Compiler Pragmas 34

a110c_text 34

auto_lnllne 35

bss_seg 35

check_stack 35

Contents

iii

Contents

code_seg 36

consCseg 36

comment 36

component 38

data_seg 39

function 39

hdrstop· 39

include_alias 40

inline_depth 41

inline_recursion 42

intrinsic 42

message 43

once 44

optimize 44

pack 45

setlocale 46

warning 46

Appendix Grammar Summary 49
Definitions for the Grammar Summary 49

Conventions 50

Preprocessor Grammar 50

Index 53

Tables
Table 1.1 ANSI Predefined Macros 28

Table 1.2 Microsoft-Specific Predefined Macros

Table 1.3 Values for _M_IX86 29

Table 1.4 Values for _M_MPPC 29

Table 1.5 Values for _M_MRXOOO 29

Table 1.6 Values for _M_PPC 30

Table 2.1 U sing the check_stack Pragma 36

Table 2.2 Parameters of the optimize Pragma 44

iv

28

Introduction

This book explains the preprocessor as it is implemented in Microsoft® C/C++.
The preprocessor is a tool you use to process C and C++ files before they are
passed to the compiler. It allows you to:

• Define and undefine macros.

• Expand macros.

• Conditionally compile code.

• Insert specified files.

• Specify compile-time error messages.

• Apply machine-specific rules to specified sections of code.

Note For information on Microsoft product support, see the technical support help file,
PSS.HLP.

Special Terminology
In this book, the term "argument" refers to the entity that is passed to a function.
In some cases, it is modified by "actual" or "formal," which mean the argument
expression specified in the function call and the argument declaration specified in
the function definition, respectively.

The term "variable" refers to a simple C-type data object. The term "object" refers
to both C++ objects and variables; it is an inclusive term.

v

CHAPTER

The Preprocessor

The preprocessor is a text processor that manipulates the text of a source file as part
of the first phase of translation. The preprocessor does not parse the source text, but
it does break it up into tokens for the purpose of locating macro calls. Although the
compiler ordinarily invokes the preprocessor in its first pass, the preprocessor can
also be invoked separately to process text without compiling.

Microsoft Specific ~

You can obtain a listing of your source code after preprocessing by using the IE or
IEP compiler option. Both options invoke the preprocessor and output the resulting
text to the standard output device, which, in most cases, is the console. The difference
between the two options is that IE includes #line directives and IEP strips these
directives out.

END Microsoft Specific

Phases of Translation
C and C++ programs consist of one or more source files, each of which contains some
of the text of the program. A source file, together with its include files (files that are
included using the #include preprocessor directive) but not including sections of code
removed by conditional-compilation directives such as #if, is called a "translation
unit."

Source files can be translated at different times-in fact, it is common to translate
only out-of-date files. The translated translation units can be kept either in separate
object files or in object-code libraries. These separate translation units are then linked
to form an executable program or a dynamic-link library (DLL).

Preprocessor Reference

2

Translation units can communicate using:

• Calls to functions that have external linkage.

• Calls to class member functions that have external linkage.

• Direct modification of objects that have external linkage.

• Direct modification of files.

• Interprocess communication (for Microsoft Windows® -based applications only).

The following list describes the phases in which the compiler translates files:

Character mapping Characters in the source file are mapped to the internal source
representation. Trigraph sequences are converted to single-character internal
representation in this phase.

Line splicing All lines ending in a backslash (\) and immediately followed by a
newline character are joined with the next line in the source file, forming logical
lines from the physical lines. Unless it is empty, a source file must end in a newline
character that is not preceded by a backslash.

Tokenization The source file is broken into preprocessing tokens and white-space
characters. Comments in the source file are replaced with one space character each.
Newline characters are retained.

Preprocessing Preprocessing directives are executed and macros are expanded into
the source file. The #include statement invokes translation starting with the
preceding three translation steps on any included text.

Character-set mapping All source-character-set members and escape sequences are
converted to their equivalents in the execution-character set. For Microsoft C and
C++, both the source and the execution character sets are ASCII.

String concatenation All adjacent string and wide-string literals are concatenated.
For example, "Stri ng " "concatenati on" becomes "Stri ng concatenati on".

Translation All tokens are analyzed syntactically and semantically; these tokens are
converted into object code.

Linkage All external references are resolved to create an executable program or a
dynamic-link library.

The compiler issues warnings or errors during phases of translation in which it
encounters syntax errors.

The linker resolves all external references and creates an executable program or DLL
by combining one or more separately processed translation units along with standard
libraries.

Chapter 1 The Preprocessor

Preprocessor Directives

Syntax

Preprocessor directives, such as #define and #ifdef, are typically used to make source
programs easy to change and easy to compile in different execution environments.
Directives in the source file tell the preprocessor to perform specific actions. For
example, the preprocessor can replace tokens in the text, insert the contents of other
files into the source file, or suppress compilation of part of the file by removing
sections of text. Preprocessor lines are recognized and carried out before macro
expansion. Therefore, if a macro expands into something that looks like a
preprocessor command, that command is not recognized by the preprocessor.

Preprocessor statements use the same character set as source file statements, with
the exception that escape sequences are not supported. The character set used in
preprocessor statements is the same as the execution character set. The preprocessor
also recognizes negative character values.

The preprocessor recognizes the following directives:

#define #error #import #Undef

#elif #if #include

#else #ifdef #line

#endif #ifndef #pragma

The number sign (#) must be the first nonwhite-space character on the line containing
the directive; white-space characters can appear between the number sign and the
first letter of the directive. Some directives include arguments or values. Any text that
follows a directive (except an argument or value that is part of the directive) must be
preceded by the single-line comment delimiter (II) or enclosed in comment delimiters
(1* *1). Lines containing preprocessor directives can be continued by immediately
preceding the end-of-line marker with a backslash (\).

Preprocessor directives can appear anywhere in a source file, but they apply only to
the remainder of the source file.

The #define Directive
You can use the #define directive to give a meaningful name to a constant in your
program. The two forms of the syntax are:

#define identifier token-stringopt

#define identifier[(identifieropt, ... , identifieropt)] token-stringopt

The #define directive suhstitutes token-string for all subsequent occurrences of an
identifier in the source file. The identifier is replaced only when it forms a token.
(See "Tokens" in the C+ + Language Reference.) For instance, identifier is not
replaced if it appears in a comment, within a string, or as part of a longer identifier.

3

Preprocessor Reference

4

A #define without a token-string removes occurrences of identifier from the source
. file. The identifier remains defined and can be tested using the #if defined and #ifdef
directives.

The token-string argument consists of a series of tokens, such as keywords,
constants, or complete statements. One or more white-space characters must separate
token-string from identifier. This white space is not considered part of the substituted
text, nor is any white space following the last token of the text.

Formal parameter names appear in token-string to mark the places where actual values
are substituted. Each parameter name can appear more than once in token-string, and
the names can appear in any order. The number of arguments in the call must match
the number of parameters in the macro definition. Liberal use of parentheses ensures
that complicated actual arguments are interpreted correctly.

The second syntax form allows the creation of function-like macros. This form
accepts an optional list of parameters that must appear in parentheses. References
to the identifier after the original definition replace each occurrence of
identifier(identifieropt, ... , identifieropt) with a version of the token-string argument
that has actual arguments substituted for formal parameters.

The formal parameters in the list are separated by commas. Each name in the list
must be unique, and the list must be enclosed in parentheses. No spaces can separate
identifier and the opening parenthesis. Use line concatenation-place a backslash (\)
before the newline character-for long directives on multiple source lines. The scope
of a formal parameter name extends to the new line that ends token-string.

When a macro has been defined in the second syntax form, subsequent textual
instances followed by an argument list constitute a macro call. The actual arguments
following an instance of identifier in the source file are matched to the corresponding
formal parameters in the macro definition. Each formal parameter in token-string that
is not preceded by a stringizing (#), charizing (#@), or token-pasting (1#1) operator, or
not followed by a 1#1 operator, is replaced by the corresponding actual argument. Any
macros in the actual argument are expanded before the directive replaces the formal
parameter. (The operators are described in "Preprocessor Operators" on page 23.)

The following examples of macros with arguments illustrate the second form of the
#define syntax:

II Macro to define cursor lines
#define CURSORCtop. bottom) CCtop) « 8) I bottom))

II Macro to get a random integer with a specified range
#define getrandom(min. max) \

(Crand()%(int)«(max) + l)-(min)))+ (min))

Chapter 1 The Preprocessor

Arguments with side effects sometimes cause macros to produce unexpected results.
A given formal parameter may appear more than once in token-string. If that formal
parameter is replaced by an expression with side effects, the expression, with its side
effects, may be evaluated more than once. (See the examples under "Token-Pasting
Operator (##)" on page 25.)

The #Undef directive causes an identifier's preprocessor definition to be forgotten.
See "The #Undef Directive" on page 22 for more information.

If the name of the macro being defined occurs in token-string (even as a result of
another macro expansion), it is not expanded. .

A second #define for a macro with the same name generates an error unless the
second token sequence is identical to the first.

Microsoft Specific ~

Microsoft C/C++ allows the redefinition of a macro, but generates a warning,
provided the new definition is lexically identical to a previous definition. ANSI C
considers macro redefinition an error. For example, these macros are equivalent for
C/C++ but generate warnings:

#define teste f1, f2) (f1 * f2
#define teste aI, a2) (a1 * a2

END Microsoft Specific

This example illustrates the #define directive:

#define WIDTH
#define LENGTH

80
(WIDTH + 10)

The first statement defines the identifier WIDTH as the integer constant 80 and defines
LENGTH in terms of WI DTH and the integer constant 10. Each occurrence of LENGTH is
replaced by (W I DTH + 10). In tum, each occurrence of WIDTH + 10 is replaced by the
expression (80 + 10). The parentheses around WIDTH + 10 are important because
they control the interpretation in statements such as the following:

var = LENGTH * 20:

After the preprocessing stage the statement becomes:

var = (80 + 10) * 20:

which evaluates to 1800. Without parentheses, the result is:

var = 80 + 10 * 20:

which evaluates to 280.

5

Preprocessor Reference

Syntax

Syntax

6

Microsoft Specific ~

Defining macros and constants with the ID compiler option has the same effect as
using a #define preprocessing directive at the beginning of your file. Up to 30 macros
can be defined with the ID option.

END Microsoft Specific

The #error Directive
Error directives produce compiler-time error messages.

#error token-string

The error messages include the argument token-string and are subject to macro
expansion. These directives are most useful for detecting programmer inconsistencies
and violation of constraints during preprocessing. The following example
demonstrates error processing during preprocessing:

#if !defined(__ cplusplus)
#error c++ compiler required.
#endif

When #error directives are encountered, compilation terminates.

The #if, #elif, #else, and #endif Directives
The #if directive, with the #elif, HeIse, and #endif directives, controls compilation
of portions of a source file. If the expression you write (after the #if) has a nonzero
value, the line group immediately following the #if directive is retained in the
translation unit.

conditional:

if-part:

if-line:

if-part elif-partsopt else-partopt endif-line

if-line text

#if constant-expression
Uifdef identifier
Uifndef identifier

elif-parts:
elif-line text
elif-parts elif-line text

elif-line:
#elif constant-expression

Chapter 1 The Preprocessor

else-part:
else-line text

else-line:
HeIse

endif-line:
#endif

Each #if directive in a source file must be matched by a closing #endif directive. Any
number of #elif directives can appear between the #if and #endif directives, but at
most one HeIse directive is allowed. The HeIse directive, if present, must be the last
directive before #endif.

The #if, #elif, HeIse, and #endif directives can nest in the text portions of other #if
directives. Each nested HeIse, #elif, or #endif directive belongs to the closest
preceding #if directive.

All conditional-compilation directives, such as #if and #ifdef, must be matched
with closing #endif directives prior to the end of file; otherwise, an error message
is generated. When conditional-compilation directives are contained in include
files, they must satisfy the same conditions: There must be no unmatched
conditional-compilation directives at the end of the include file.

Macro replacement is performed within the part of the command line that follows
an #elif command, so a macro call can be used in the constant-expression.

The preprocessor selects one of the given occurrences of text for further processing.
A block specified in text can be any sequence of text. It can occupy more than one
line. Usually text is program text that has meaning to the compiler or the preprocessor.

The preprocessor processes the selected text and passes it to the compiler. If text
contains preprocessor directives, the preprocessor carries out those directives. Only
text blocks selected by the preprocessor are compiled.

The preprocessor selects a single text item by evaluating the constant expression
following each #if or #elif directive until it finds a true (nonzero) constant expression.
It selects all text (including other preprocessor directives beginning with #) up to its
associated #elif, HeIse, or #endif.

If all occurrences of constant-expression are false, or if no #eIif directives appear, the
preprocessor selects the text block after the HeIse clause. If the HeIse clause is omitted
and all instances of constant-expression in the #if block are false, no text block is
selected.

The constant-expression is an integer constant expression with these additional
restrictions:

• Expressions must have integral type and can include only integer constants,
character constants, and the defined operator.

• The expression cannot use size of or a type-cast operator.

7

Preprocessor Reference

Syntax

8

• The target environment may not be able to represent all ranges of integers.

• The translation represents type int the same as type long, and unsigned int the
same as unsigned long.

• The translator can translate character constants to a set of code values different
from the set for the target environment. To determine the properties of the target
environment, check values of macros from LIMITS.H in an application built for
the target environment.

• The expression must not perform any environmental inquiries and must remain
insulated from implementation details on the target computer.

The preprocessor operator defined can be used in special constant expressions, as
shown by the following syntax:

defined(identifier)

defined identifier

This constant expression is considered true (nonzero) if the identifier is currently
defined; otherwise, the condition is false (0). An identifier defined as empty text is
considered defined. The defined directive can be used in an #if and an #elif directive,
but nowhere else.

In the following example, the #if and #endif directives control compilation of one of
three function calls:

#if defined(CREDIT)
credit() ;

#elif defined(DEBIT)
debit() ;

#else
printerror();

4foendi f

The function call to ere d i t is compiled if the identifier C RED I T is defined. If the
identifier DEB I T is defined, the function call to deb i t is compiled. If neither identifier
is defined, the call to p r i n t err 0 r is compiled. Note that C R ED IT and ere d it are
distinct identifiers in C and C++ because their cases are different.

The conditional compilation statements in the following example assume a previously
defined symbolic constant named DLEVEL.

#if DLEVEL > 5
#define SIGNAL 1
#if STACKUSE == 1

#define STACK 200·
#else

#define STACK 100
#endif

#else

Chapter 1 The Preprocessor

#define SIGNAL 0
#if STACKUSE == 1

#define STACK 100
#else

#define STACK 50
#endif

#endif
#if DLEVEL == 0

#define STACK 0
#elif DLEVEL == 1

#define STACK 100
#elif DLEVEL > 5

display(debugptr);
#else

#define STACK 200
#endif

The first #if block shows two sets of nested #if, #else, and #endif directives. The first
set of directives is processed only if 0 LEV E L > 5 is true. Otherwise, the statements
after #else are processed.

The #elif and #else directives in the second example are used to make one of four
choices, based on the value of DLEVEL. The constant STACK is set to 0, 100, or 200,
depending on the definition of DLEVEL. If DLEVEL is greater than 5, then the statement

#elif DLEVEL > 5
display(debugptr);

is compiled and STACK is not defined.

A common use for conditional compilation is to prevent multiple inclusions of the
same header file. In C++, where classes are often defined in header files, constructs
like the following can be used to prevent multiple definitions:

II EXAMPLE.H - Example header file

#if !defined(EXAMPLE_H
#define EXAMPLE_H

class Example
{

} ;

#endif II !defined(EXAMPLE_H)

The preceding code checks to see if the symbolic constant EXAM P L E_H is defined. If so,
the file has already been included and need not be reprocessed. If not, the constant
EXAMPLE_H is defined to mark EXAMPLE.H as already processed.

9

Preprocessor Reference

Syntax

10

Microsoft Specific --7

Conditional compilation expressions are treated as signed long values, and these
expressions are evaluated using the same rules as expressions in C++. For example,
this expression:

#if 0xFFFFFFFFL > lUL

is true.

END Microsoft Specific

The #ifdef and #ifndef Directives
The #ifdef and #ifndef directives perform the same task as the #if directive when it is
used with defined(identifier).

#ifdef identifier

#ifndef identifier

is equivalent to

#if defined identifier

#if !defined identifier

You can use the #ifdef and #ifndef directives anywhere #if can be used. The #ifdef
identifier statement is equivalent to #i f 1 when identifier has been defined, and it
is equivalent to #i f 0 when identifier has not been defined or has been undefined
with the #Undef directive. These directives check only for the presence or absence of
identifiers defined with #define, not for identifiers declared in the C or C++ source
code.

These directives are provided only for compatibility with previous versions of the
language. The defined(identifier) constant expression used with the #if directive is
preferred.

The #ifndef directive checks for the opposite of the condition checked by #ifdef. If
the identifier has not been defined (or its definition has been removed with #Unde£),
the condition is true (nonzero). Otherwise, the condition is false (0).

Syntax

Chapter 1 The Preprocessor

Microsoft Specific ~

The identifier can be passed from the command line using the ID option. Up to 30
macros can be specified with /D.

This is useful for checking whether a definition exists, because a definition can be
passed from the command line. For example:

II PROG.CPP
flifndef test
fldefine final
fiend if

II These three statements go in your source code.

CL IDtest prog.cpp II This is the command for compilation.

END Microsoft Specific

The #import Directive
c++ Specific ~

The #import directive is used to incorporate information from a type library. The
content of the type library is converted into C++ classes, mostly describing the
COM interfaces.

#import "filename" [attributes]

#import <filename> [attributes]

attributes:

attributel, attribute2, .. .

attribute} attribute2 .. .

filename is the name of the file containing the type library information. A file can be
one of the following types:

• a type library (.TLB or .ODL) file

• an executable (.EXE) file

• a library (.DLL) file containing a type library resource (such as .OCX)

• a compound document holding a type library

• any other file format that can be understood by the LoadTypeLih API

11

Preprocessor Reference

12

The filename is optionally preceded by a directory specification. The filename must
name an existing file. The difference between the two forms is the order in which the
preprocessor searches for the type library files when the path is incompletely
specified.

Syntax Form

Quoted fonn

Angle-bracket fonn

Action

This fonn instructs the preprocessor to first look for type library
files in the same directory of the file that contains the #import
statement, and then in the directories of whatever files that include
(#include) that file. The preprocessor then searches along the paths
shown below.

This fonn instructs the preprocessor to search for type library files
along the paths shown below.

The compiler will search in the following directories for the named file:

1. the PATH environment variable path list

2. the LIB environment variable path list

3. the path specified by the II (additional include directories) compiler option

#import can optionally include one or more attributes. These attributes tell the
compiler to modify the contents of the type-library headers. A backslash (\) symbol
can be used to include additional lines in a single #import statement. For example:

!limport "test. lib" no_namespace \
rename("OldName". "NewName")

The #import attributes are listed below:

exclude

high_property _prefIXes

inject_statement

no_implementation

raw _dispinterfaces

raw _method_prefIX

raw _property_prefIXes

rename_namespace

high_method_prefix

implementation_only

named~uids

no_namespace

raw _interfaces_only

raw _native_types

rename

#import creates two header files that reconstruct the type library contents in C++
source code. The primary header file is similar to that produced by the Microsoft
Interface Definition Language (MIDL) compiler, but with additional compiler
generated code and data. The primary header file has the same base name as the

Chapter 1 The Preprocessor

type library, plus a . TLH extension. The secondary header file has the same base
name as the type library, with a . TLI extension. It contains the implementations for
compiler-generated member functions, and is included (#include) in the primary
header file.

Both header files are placed in the output directory specified by the !Fo (name object
file) option. They are then read and compiled by the compiler as if the primary header
file was named by a #include directive.

The following compiler optimizations come with the #import directive:

• The header file, when created, is given the same timestamp as the type library.

• When #import is processed, the compiler first checks if the header exists and is
up to date. If yes, then it does not need to be recreated.

• The compiler delays initializing the OLE subsystem until the first #import
command is encountered.

The #import directive also participates in minimal rebuild and can be placed in a
precompiled header file. See "Creating Precompiled Header Files" in Visual C++
Programmers Guide online for more information.

The Primary Type Library Header File
The primary type library header file consists of seven sections:

1. Heading boilerplate: Consists of comments, #include statement for COMDEEH
(which defines some standard macros used in the header), and other miscellaneous
setup information.

2. Forward references and typedefs: Consists of structure declarations such as
s t r u c t I My I n t e r f ace, and typedefs for any TKIND _ALIAS items.

3. Smart pointer declarations: The template class _com_ptr_t is a smart-pointer
implementation that encapsulates interface pointers and eliminates the need
to call AddRef, Release, Querylnterface functions. In addition, it hides the
CoCreatelnstance call in creating a new COM object. This section uses macro
statement _COM_SMARTPTR_TYPEDEF to establish typedefs of COM
interfaces to be template specializations of the _com_ptr_t template class.
For example, for interface IFoo, the .TLH file will contain:

__ COM_SMARTPTR_TYPEDEF(IFoo, __ uuidof(IFoo»:

which the compiler will expand to:

typedef _com_ptr_t<_com_IIID<IFoo, __ uuidof(IFoo» > IFooPtr:

Type I F 0 0 P t r can then be used in place of the raw interface pointer IFoo* .
Consequently, there is no need to call the various IUnknown member
functions.

13

Preprocessor Reference

14

4. Typeinfo declarations: Primarily consists of class definitions and other items
exposing the individual typeinfo items returned by ITypeLib:GetTypeInfo. In this
section, each typeinfo from the type library is reflected in the header in a form
dependent on the TYPE KIND information.

5. Optional old-style aUlD definition: Contains initializations of the named aUlD
constants. These are names of the form CLSID _ Co Class and lID _Interface,
similar to those generated by the MIDL compiler.

6. #include statement for the secondary type library header.

7. Footer boilerplate: Currently includes #pragma pa ck (pop).

All sections, except the heading boilerplate and footer boilerplate section, are enclosed
in a namespace with its name specified by the library statement in the original IDL
file. You can use the names from the type library header either by an explicit
qualification with the namespace name or by including the following statement:

using namespace MyLib;

immediately after the #import statement in the source code.

The namespace can be suppressed by using the no_namespace attribute of the
#import directive. However, suppressing the namespace may lead to name collisions.
The namespace can also be renamed by the rename_namespace attribute.

The exclude attribute
exclude("Name1"[,"Name2", •••])

Name1 First item to be excluded

Name2 Second item to be excluded (if necessary)

Type libraries may include definitions of items defined in system headers or other type
libraries. This attribute can be used to exclude these items from the type library header
files being generated. This attribute can take any number of arguments, each being a
top-level type library item to be excluded.

The high_method_prefix attribute
high_method_prefix(" Prefix' ')

Prefix Prefix to be used

By default, high-level error-handling properties and methods are exposed by
member functions named without a prefix. The names are from the type library. The
high_method_preflX attribute is used to specify a prefix to be used in naming these
high-level properties and methods.

Chapter 1 The Preprocessor

The high_property_prefixes attribute
high_property_prefixes("GetPrefix","PutPrefix","PutRefPrefix")

GetPrefix Prefix to be used for the propget methods

PutPrefix Prefix to be used for the propput methods

PutRefPrefix Prefix to be used for the propputref methods

By default, high-level error-handling propget, propput, and propputref methods
are exposed by member functions named with prefixes Get, Put, and PutRef
respectively. The high_property _prefixes attribute is used to specify alternate
prefixes for all three property methods.

The implementation_only attribute
The implementation_only attribute suppresses the generation of the .TLH header file
(the primary header file). This file contains all the declarations used to expose the
type-library contents. The .TLI header file, with the implementations of the wrapper
member functions, will be generated and included in the compilation.

When this attribute is specified, the content of the . TLI header is in the same
namespace as the one normally used in the .TLH header. In addition, the member
functions are not declared as inline.

The implementation_only attribute is intended for use in conjunction with the
no_implementation attribute as a way of keeping the implementations out of the
precompiled header (PCH) file. An #import statement with the no_implementation
attribute is placed in the source region used to create the PCH. The resulting PCH is
used by a number of source files. An #import statement with the implementation_only
attribute is then used outside the PCH region. You are required to use this statement
only once in one of the source files. This will generate all the required wrapper member
functions without additional recompilation for each source file.

Note The implementation_only attribute in one #import statement must be use in
conjunction with another #import statement, of the same type library, with the
nojmplementation attribute. Otherwise, compiler errors will be generated. This is because
wrapper class definitions generated by the #import statement with the nojmplementation
attribute are required to compile the implementations generated by the implementation_only
attribute.

The inject_statement attribute
injecCstatement(" source_text")

source_text Source text to be inserted into the type library header file

The inject_statement attribute inserts its argument as source text into the type-library
header. The text is placed at the beginning of the names pace declaration that wraps the
type-library contents in the header file.

15

Preprocessor Reference

16

The named_9uids attribute
The named_guids attribute tells the compiler to define and initialize GUID variables
in old style, of the form LIBID_MyLib, CLSID_MyCoClass, IID_MyInterface,
and DIID _MyDispInterface.

The nojmplementation attribute
The no_implementation attribute suppresses the generation of the .TLI header, which
contains the implementations of the wrapper member functions. If this attribute is
specified, the .TLH header, with the declarations to expose type-library items, will be
generated without an #include statement to include the. TLI header file.

This attribute is used in conjunction with implementation_only.

The no_namespace attribute
The type-library contents in the #import header file are normally defined in a
namespace. The namespace name is specified in the library statement of the original
IDL file. If the no_namespace attribute is specified, this namespace is not generated
by the compiler.

If you want to use a different namespace name, use the rename_namespace attribute
instead.

The raw~dispinterfaces attribute
The raw _dispinterfaces attribute tells the compiler to generate low-level wrapper
functions for dispinterface methods and properties that call IDispatch: : Invoke and
return the HRESULT error code.

If this attribute is not specified, only high-level wrappers are generated, which throw
c++ exceptions in case of failure.

The raw_interfaces_only attribute
The raw _interfaces_only attribute suppresses the generation of error-handling
wrapper functions and __ declspec(property) declarations that use those wrapper
functions.

The raw _interfaces_only attribute also causes the default prefix used in naming the
non-property functions to be removed. Normally, the prefix is raw _. If this attribute
is specified, the function names are directly from the type library.

This attribute allows you to expose only the low-level contents of the type library.

Chapter 1 The Preprocessor

The raw_method_prefix attribute
raw _method_prefix(" Prefix"}

Prefix The prefix to be used

Low-level properties and methods are exposed by member functions named with a
default prefix of raw_ to avoid name collisions with the high-level error-handling
member functions. The raw _method_prefix attribute is used to specify a different
prefix.

Note The effects of the raw_method_prefix attribute will not be changed by the presence of
the raw_interfaces_only attribute. The raw_method_prefix always takes precedence over
rawjnterfaces_only in specifying a prefix. If both attributes are used in the same #import
statement, then the prefix specified by the raw_method_prefix attribute is used.

The raw_native_types attribute
By default, the high-level error-handling methods use the COM support classes
_hstr_t and _ varianCt in place of the BSTR and VARIANT data types and raw
COM interface pointers. These classes encapsulate the details of allocating and
deallocating memory storage for these data types, and greatly simplify type casting
and conversion operations. The raw _native_types attribute is used to disable the
use of these COM support classes in the high-level wrapper functions, and force
the use of low-level data types instead.

The raw_property_prefixes attribute
raw_property _preftxes(" GetPrefix", II PutPrefix", II PutRefPrefix"}

GetPrefix Prefix to be used for the propget methods

PutPrefix Prefix to be used for the propput methods

PutRefPrefix Prefix to be used for the propputref methods

By default, low-level propget, propput, and propputref methods are exposed by
member functions named with prefixes of get_, put_, and putref_ respectively. These
prefixes are compatible with the names used in the header files generated by MIDL.
The raw _property _prefixes attribute is used to specify alternate prefixes for all three
property methods.

17

Preprocessor Reference

18

The rename attribute
rename("OldName","NewName")

OldName Old name in the type library

NewName Name to be used instead of the old name

The rename attribute is used to work around name collision problems. If this attribute
is specified, the compiler replaces all occurrences of OldName in a type library with
the user-supplied NewName in the resulting header files.

This attribute can be used when a name in the type library coincides with a macro
definition in the system header files. If this situation is not resolved, then various
syntax errors will be generated, such as C2059 and C2061.

Note The replacement is for a name used in the type library, not for a name used in the
resulting header file.

Here is an example: Suppose a property named MyPa rent exists in a type library, and
a macro Get My Par e ntis defined in a header file and used before #import. Since
Ge t My Par e ntis the default name of a wrapper function for the error-handling get
property, a name collision will occur. To work around the problem, use the following
attribute in the #import statement:

rename("MyParent","MyParentx")

which renames the name MyPa rent in.the type library. An attempt to rename the
GetMyParent wrapper name will fail:

rename("GetMyParent","GetMyParentX")

This is because the name GetMyPa rent only occurs in the resulting type library
header file.

The rename_namespace attribute
rename_namespace("NewName")

NewName The new name of the namespace

The rename_namespace attribute is used to rename the namespace that contains the
contents of the type library. It takes a single argument, NewName, which specifies the
new name for the namespace.

To remove the namespace, use the no_namespace attribute instead.

END C++ Specific

Syntax

Chapter 1 The Preprocessor

The #include Directive
The #include directive tells the preprocessor to treat the contents of a specified file as
if those contents had appeared in the source program at the point where the directive
appears. You can organize constant and macro definitions into include files and then
use #include directives to add these definitions to any source file. Include files are
also useful for incorporating declarations of external variables and complex data
types. You only need to define and name the types once in an include file created for
that purpose.

#include "path-spec"
#include <path-spec>

The path-spec is a filename optionally preceded by a directory specification. The
filename must name an existing file. The syntax of the path-spec depends on the
operating system on which the program is compiled.

Both syntax forms cause replacement of that directive by the entire contents of the
specified include file. The difference between the two forms is the order in which the
preprocessor searches for header files when the path is incompletely specified.

Syntax Form

Quoted fonn

Angle-bracket fonn

Action

This fonn instructs the preprocessor to look for include files in the
same directory of the file that contains the #include statement, and
then in the directories of whatever files that include (#include) that
file. The preprocessor then searches along the path specified by the
II compiler option, then along paths specified by the INCLUDE
environment variable.

This fonn instructs the preprocessor to search for include files first
along the path specified by the II compiler option, then along the
path specified by the INCLUDE environment variable.

The preprocessor stops searching as soon as it finds a file with the given name. If you
specify a complete, unambiguous path specification for the include file between two
sets of double quotation marks (" "), the preprocessor searches only that path
specification and ignores the standard directories.

If the filename enclosed in double quotation marks is an incomplete path
specification, the preprocessor first searches the "parent" file's directory. A parent file
is the file containing the #include directive. For example, if you include a file named
fi 1 e2 within a file named fi 1 el, fi leI is the parent file.

Include files can be "nested"; that is, an #include directive can appear in a file named
by another #include directive. For example, fi 1 e2, above, could include fi 1 e3. In
this case, fi 1 el would still be the parent of fil e2 but would be the "grandparent"
of fi 1 e3.

19

Preprocessor Reference

20

When include files are nested, directory searching begins with the directories of the
parent file and then proceeds through the directories of any grandparent files. Thus,
searching begins relative to the directory containing the source currently being
processed. If the file is not found, the search moves to directories specified by the
II compiler option. Finally, the directories specified by the INCLUDE environment
variable are searched.

The following example shows file inclusion using angle brackets:

#include <stdio.h>

This example adds the contents of the file named STDIO.H to the source program.
The angle brackets cause the preprocessor to search the directories specified by the
INCLUDE environment variable for STDIO.H, after searching directories specified
by the II compiler option.

The following example shows file inclusion using the quoted form:

IIi ncl ude "defs. h"

This example adds the contents of the file specified by DEFS.H to the source
program. The double quotation marks mean that the preprocessor searches the
directory containing the parent source file first.

Nesting of include files can continue up to 10 levels. Once the nested #include is
processed, the preprocessor continues to insert the enclosing include file into the
original source file.

Microsoft Specific --7

To locate includable source files, the preprocessor first searches the directories
specified by the II compiler option. If the II option is not present or fails, the
preprocessor uses the INCLUDE environment variable to find any include files
within angle brackets. The INCLUDE environment variable and II compiler option
can contain multiple paths separated by semicolons (;). If more than one directory
appears as part of the II option or within the INCLUDE environment variable, the
preprocessor searches them in the order in which they appear.

For example, the command

CL IID:\MSVC\INCLUDE MVPROG.C

causes the preprocessor to search the directory D:\MSVC\lNCLUDE for include files
such as STDIO.H. The commands

SET INCLUDE=D:\MSVC\INCLUDE
CL MVPROG.C

have the same effect. If both sets of searches fail, a fatal compiler error is generated.

Syntax

Chapter 1 The Preprocessor

If the filename is fully specified for an include file with a path that includes a colon
(for example, F:\MSVC\SPECIAL\INCL\TEST.H), the preprocessor follows the path.

For include files specified as #include "path-spec", directory searching begins
with the directory of the parent file and then proceeds through the directories of
any grandparent files. Thus, searching begins relative to the directory containing
the source file containing the #include directive being processed. If there is no
grandparent file and the file has not been found, the search continues as if the
filename were enclosed in angle brackets.

END Microsoft Specific

The #line Directive
The #line directive tells the preprocessor to change the compiler's internally stored
line number and filename to a given line number and filename. The compiler uses the
line number and filename to refer to errors that it finds during compilation. The line
number usually refers to the current input line, and the filename refers to the current
input file. The line number is incremented after each line is processed.

#line digit-sequence ''jilename"opt

The digit-sequence value can be any integer constant. Macro replacement can be
performed on the preprocessing tokens, but the result must evaluate to the correct
syntax. The filename can be any combination of characters and must be enclosed in
double quotation marks (" "). If filename is omitted, the previous filename remains
unchanged.

You can alter the source line number and filename by writing a #line directive.
The translator uses the line number and filename to determine the values of the
predefined macros __ FILE __ and __ LINE __ . You can use these macros to insert
self-descriptive error messages into the program text. For more information on these
predefined macros, see "Predefined Macros."

The __ FILE __ macro expands to a string whose contents are the filename,
surrounded by double quotation marks (" ").

If you change the line number and filename, the compiler ignores the previous values
and continues processing with the new values. The #line directive is typically used by
program generators to cause error messages to refer to the original source file instead
of to the generated program.

The following examples illustrate #line and the __ LINE __ and __ FILE __ macros.

In this statement, the internally stored line number is set to 151 and the filename is
changed to copy. c.

tiline 151 "copy.c"

21

Preprocessor Reference

Syntax

Syntax

22

In this example, the macro ASSERT uses the predefined macros __ LINE __ and
__ FILE __ to print an error message about the source file if a given "assertion" is
not true.

#define ASSERT(cond)

if(!(cond))\
{printf("assertion error line %d, file(%s)\n", \
__ LINE __ , __ FILE __);}

The Null Directive
The null preprocessor directive is a single number sign (#) alone on a line. It has
no effect.

The #undef Directive
As its name implies, the #Undef directive removes (un defines) a name previously
created with #define.

#Undef identifier

The #Undef directive removes the current definition of identifier. Consequently,
subsequent occurrences of identifier are ignored by the preprocessor. To remove a macro
definition using #Undef, give only the macro identifier; do not give a parameter list.

You can also apply the #Undef directive to an identifier that has no previous
definition. This ensures that the identifier is undefined. Macro replacement is not
performed within #Undef statements.

The #Undef directive is typically paired with a #define directive to create a region
in a source program in which an identifier has a special meaning. For example, a
specific function of the source program can use manifest constants to define
environment-specific values that do not affect the rest of the program. The #Undef
directive also works with the #if directive to control conditional compilation of the
source program. See "The #if, #elif, #else, and #endif Directives" on page 6 for more
information.

In the following example, the #Undef directive removes definitions of a symbolic
constant and a macro. Note that only the identifier of the macro is given.

#define WIDTH 80
#define ADD(X, V) (X) + (V)

#undef WIDTH
#undef ADD

Chapter 1 The Preprocessor

Microsoft Specific ~

Macros can be undefined from the command line using the IV option, followed by the
macro names to be undefined. The effect of issuing this command is equivalent to a
sequence of #Undef macro-name statements at the beginning of the file.

END Microsoft Specific

Preprocessor Operators
Four preprocessor-specific operators are used in the context of the #define directive
(see the following list for a SUmlnary of each). The stringizing, charizing, and
token-pasting operators are discussed in the next three sections. For information on
the defined operator, see "The #if, #elif, #else, and #endif Directives" on page 6.

Operator

Stringizing operator (#)

Charizing operator (#@)

Token-pasting operator (1#1)

defined operator

Stiingizing Operator (#)

Action

Causes the corresponding actual argument to be
enclosed in double quotation marks

Causes the corresponding argument to be enclosed
in single quotation marks and to be treated as a
character (Microsoft Specific)

Allows tokens used as actual arguments to be
concatenated to form other tokens

Simplifies the writing of compound expressions in
certain macro directives

The number-sign or "stringizing" operator (#) converts macro parameters (after
expansion) to string constants. It is used only with macros that take arguments. If it
precedes a formal parameter in the macro definition, the actual argument passed by
the macro invocation is enclosed in quotation marks and treated as a string literal.
The string literal then replaces each occurrence of a combination of the stringizing
operator and formal parameter within the macro definition.

White space preceding the first token of the actual argument and following the last
token of the actual argument is ignored. Any white space between the tokens in the
actual argument is reduced to a single white space in the resulting string literal. Thus,
if a comment occurs between two tokens in the actuaI argument, it is reduced to a
single white space. The resulting string literal is automatically concatenated with
any adjacent string literals from which it is separated only by white space.

23

Preprocessor Reference

24

Further, if a character contained in the argument usually requires an escape sequence
when used in a string literal (for example, the quotation mark (") or backslash (\)
character), the necessary escape backslash is automatically inserted before the
character. The following example shows a macro definition that includes the
stringizing operator and a main function that invokes the macro:

fldefi ne stri nger (x) pri ntf(fix "\n")

void main()
{

}

stringer(In quotes in the printf function call\n);
stringer("In quotes when printed to the screen"\n);
stringer("This: \" prints an escaped double quote");

Such invocations would be expanded during preprocessing, producing the following
code:

void main()
{

printf("In quotes in the printf function call\n" "\n");
printf("\"In quotes when printed to the screen\"\n" "\n");
printf("\"This: \\\" prints an escaped double quote\"" "\n".);

When the program is run, screen output for each line is as follows:

In quotes in the printf function call

"In quotes when printed to the screen"

"This: \" prints an escaped double quotation mark"

Microsoft Specific ~

The Microsoft C (versions 6.0 and earlier) extension to the ANSI C standard that
previously expanded macro formal arguments appearing inside string literals and
character constants is no longer supported. Code that relied on this extension should
be rewritten using the stringizing (#) operator.

END Microsoft Specific

Chapter 1 The Preprocessor

Charizing Operator (#@)
Microsoft Specific ~

The charizing operator can be used only with arguments of macros. If #@ precedes
a formal parameter in the definition of the macro, the actual argument is enclosed in
single quotation marks and treated as a character when the macro is expanded. For
example:

#define makechar(x) #@x

causes the statement

a = makechar(b);

to be expanded to

a = 'b';

The single-quotation character cannot be used with the charizing operator.

END Microsoft Specific

Token-Pasting Operator (##)
The double-number-sign or "token-pasting" operator (I#/), which is sometimes called
the "merging" operator, is used in both object-like and function-like macros. It permits
separate tokens to be joined into a single token and therefore cannot be the first or last
token in the macro definition.

If a formal parameter in a macro definition is preceded or followed by the
token-pasting operator, the formal parameter is immediately replaced by the
unexpanded actual argument. Macro expansion is not performed on the argument prior
to replacement.

Then, each occurrence of the token-pasting operator in token-string is removed, and
the tokens preceding and following it are concatenated. The resulting token must be
a valid token. If it is, the token is scanned for possible replacement if it represents a
macro name. The identifier represents the name by which the concatenated tokens will
be known in the program before replacement. Each token represents a token defined
elsewhere, either within the program or on the compiler command line. White space
preceding or following the operator is optional.

This example illustrates use of both the stringizing and token-pasting operators in
specifying program output:

#define paster(n) printf("token" #n " = %d", token##n)
int token9 = 9;

25

Preprocessor Reference

If a macro is called with a numeric argument like

paster(9);

the macro yields

printf("token" "9" " = %d", token9);

which becomes

printf("token9 = %d", token9);

Macros

26

Preprocessing expands macros in all lines that are not preprocessor directives (lines
that do not have a # as the first non-white-space character) and in parts of some
directives that are not skipped as part of a conditional compilation. "Conditional
compilation" directives allow you to suppress compilation of parts of a source file by
testing a constant expression or identifier to determine which text blocks are passed
on to the compiler and which text blocks are removed from the source file during
preprocessing.

The #define directive is typically used to associate meaningful identifiers with
constants, keywords, and commonly used statements or expressions. Identifiers
that represent constants are sometimes called "symbolic constants" or "manifest
constants." Identifiers that represent statements or expressions are called "macros."
In this preprocessor documentation, only the term "macro" is used.

When the name of the macro is recognized in the program source text or in the
arguments of certain other preprocessor commands, it is treated as a call to that
macro. The macro name is replaced by a copy of the macro body. If the macro
accepts arguments, the actual arguments following the macro name are substituted
for formal parameters in the macro body. The process of replacing a macro call
with the processed copy of the body is called "expansion" of the macro call.

In practical terms, there are two types of macros. "Object-like" macros take no
arguments, whereas "function-like" macros can be defined to accept arguments so
that they look and act like function calls. Because macros do not generate actual
function calls, you can sometimes make programs run faster by replacing function
calls with macros. (In C++, inline functions are often a preferred method.) However,
macros can create problems if you do not define and use them with care. You may
have to use parentheses in macro definitions with arguments to preserve the proper
precedence in an expression. Also, macros may not correctly handle expressions with
side effects. See the get random example in "The #define Directive" on page 3 for
more information.

Chapter 1 The Preprocessor

Once you have defined a macro, you cannot redefine it to a different value without
first removing the original definition. However, you can redefine the macro with
exactly the same definition. Thus, the same definition can appear more than once in
a program.

The #Under directive removes the definition of a macro. Once you have removed the
definition, you can redefine the macro to a different value. "The #define Directive"
on page 3 and "The #Under Directive" on page 22 dis<;:uss the #define and #Under
directives, respectively.

Macros and C++
c++ offers new capabilities, some of which supplant those offered by the ANSI C
preprocessor. These new capabilities enhance the type safety and predictability of
the language:

• In C++, objects declared as const can be used in constant expressions. This
allows programs to declare constants that have type and value information, and
enumerations that can be viewed symbolically with the debugger. Using the
preprocessor #define directive to define constants is not as precise. No storage
is allocated for a const object unless an expression that takes its address is found
in the program .

• The C++ inline function capability supplants function-type macros. The advantages
of using inline functions over macros are:

• Type safety. Inline functions are subject to the same type checking as nornial
functions. Macros are not type safe.

• Correct handling of arguments that have side effects. Inline functions evaluate
the expressions supplied as arguments prior to entering the function body.
Therefore, there is no chance that an expression with side effects will be unsafe.

For more information on inline functions, see inline, __ inline.

For backward compatibility, all preprocessor facilities that existed in ANSI C and in
earlier C++ specifications are preserved for Microsoft C++.

27

Preprocessor Reference

28

Predefined Macros
The compiler recognizes six predefined ANSI C macros (see Table 1.1), and the
Microsoft C++ implementation provides several more (see Table 1.2). These macros
take no arguments and cannot be redefined. Their value (except for __ LINE __ and
__ FILE __) must be constant throughout compilation. Some of the predefined macros
listed below are defined with multiple values. Their values can be set by selecting the
corresponding option in the development environment, or by using a command-line
switch. See the tables below for more information.

Table 1.1 ANSI Predefined Macros

Macro

__ TIMESTAMP __

Description

The compilation date of the current source file. The date is a string
literal of the form Mmm dd yyyy. The month name Mmm is the
same as for dates generated by the library function asctime
declared in TIME.H.

The name of the current source file. __ FILE __ expands to a string
surrounded by double quotation marks.

The line number in the current source file. The line number is a
decimal integer constant. It can be altered with a #line directive.

Indicates full conformance with the ANSI C standard. Defined as
the integer constant 1 only if the IZa compiler option is given and
you are not compiling C++ code; otherwise is undefined.

The most recent compilation time of the current source file. The
time is a string literal of the form hh:mm:ss.

The date and time of the last modification of the current source
file, expressed as a string literal in the form Ddd Mmm Date
hh:mm:ss yyyy, where Ddd is the abbreviated day of the week
and Date is an integer from 1 to 31.

Table 1.2 Microsoft-Specific Predefined Macros

Macro

_CHAR_UNSIGNED

__ cplusplus

_CPPRTTI

_CPPUNWIND

_DLL

_M_ALPHA

Description

Default char type is unsigned. Defined when IJ is specified.

Defined for C++ programs only.

Defined for code compiled with IGR (Enable Run-Time Type
Information).

Defined for code compiled with IGX (Enable Exception Handling).

Defined when IMD or IMDd (Multithread DLL) is specified.

Defined for DEC ALPHA platforms. It is defined as 1 by the
ALPHA compiler, and it is not defined if another compiler is used.

Defined for x86 processors. See Table 1.3 for more details.

Defined for Power Macintosh platforms. Default is 601 (/QP601).
See Table 1.4 for more details.

Chapter 1 The Preprocessor

Table 1.2 Microsoft-Specific Predefined Macros (continued)

Macro Description

Defined for MIPS platforms. Default is 4000 (/QMR4000).
See Table 1.5 for more details.

Defined for PowerPC platforms. Default is 604 (lQP604).
See Table 1.6 for more details.

Defines the MFC version. Defined as Ox0421 for Microsoft
Foundation Class Library 4.21. Always defined.

Defines the compiler version. Defined as 1100 for Microsoft
Visual C++ ™ 5.0. Always defined.

Defined when IMD or IMDd (Multithreaded DLL) or IMT
or IMTd (Multithreaded) is specified.

Defined for applications for Win32®. Always defined.

As shown in following tables, the compiler generates a value for the preprocessor
identifiers that reflect the processor option specified.

Table 1.3 Values for _M_IX86

Option in Developer Command-Line
Studio Option

Blend lOB

Pentium 105

Pentium Pro 106

80386 103

80486 104

Table 1.4 Values for _M_MPPC

Option in development
environment

PowerPC 601

PowerPC 603

PowerPC 604

PowerPC 620

Command-Line
Option

IQP601

IQP603

IQP604

IQP620

Table 1.5 Values for _M_MRXOOO

Option in Developer
Studio

R4000

R4100

Command-Line
Option

IQMR4000

IQMR4100

Resulting Value

_M_IX86 = 500 (Default. Future compilers
will emit a different value to reflect the
dominant processor.)

_M_IX86 = 500

_M_IX86 = 600

_M_IX86 = 300

_M_IX86 = 400

Resulting Value

_M_MPPC = 601 (Default)

_M_MPPC = 603

_M_MPPC = 604

_M_MPPC = 620

Resulting Value

_M_MR.'XOOO = 4000 (Default)

_M_MRXOOO = 4100

(continued)

29

Preprocessor Reference

30

Table 1.5 Values for _M_MRXOOO (continued)

Option in Developer
Studio

R4200

R4400

Command-Line
Option

IQMR4200

IQMR4400

R4600 IQMR4600

RlOOOO IQMRlOOOO

Table 1.6 Values for _M_PPC

Option in Developer
Studio

PowerPC 601

PowerPC 603

PowerPC 604

PowerPC 620

Command-Line
Option

IQP601

IQP603

IQP604

IQP620

Resulting Value

_M_MRXOOO = 4200

_M_MRXOOO = 4400

_lVClVIRXOOO = 4600

_M_MRXOOO = 10000

Resulting Value

_M_PPC=601

_M_PPC =603

_M_PPC = 604 (Default)

_M_PPC =620

Syntax

CHAPTER 2

Pragma Directives

Each implementation of C and C++ supports some features unique to its host machine
or operating system. Some programs, for instance, need to exercise precise control
over the memory areas where data is placed or to control the way certain functions
receive parameters. The #pragma directives offer a way for each compiler to offer
machine- and operating-system-specific features while retaining overall compatibility
with the C and C++ languages. Pragmas are machine- or operating-system-specific
by definition, and are usually different for every compiler.

#pragma token-string

The token-string is a series of characters that gives a specific compiler instruction and
arguments, if any. The number sign (#) must be the first non-white-space character on
the line containing the pragma; white-space characters can separate the number sign
and the word pragma. Following #pragma, write any text that the translator can parse
as preprocessing tokens. The argument to #pragma is subject to macro expansion.

If the compiler finds a pragma it does not recognize, it issues a warning, but
compilation continues.

Pragmas can be used in conditional statements, to provide new preprocessor
functionality, or to provide implementation-defined information to the compiler.
The C and C++ compilers recognize the following pragmas:

alloc_text comment iniCseg! optimize

auto_inline component inline_depth pack

bss_seg data_seg inline_recursion pointers_to_members!

check_stack function intrinsic setlocale

code_seg hdrstop message vtordisp!

consCseg include_alias once warning

1 Supported only by the C++ compiler.

31

Preprocessor Reference

Pragmas Specific to the C++ Compiler

32

The following pragma directives are specific to the C++ compiler:

• iniCseg

• pointers_to_members

• vtordisp

init_seg
c++ Specific ~

#pragma init_seg({ compiler I lib I user I "section-name" [, 'jUne-name"]})

Specifies a keyword or code section that affects the order in which startup code is
executed. Because initialization of global static objects can involve executing code,
you must specify a keyword that defines when the objects are to be constructed. It is
particularly important to use the init_seg pragma in dynamic-link libraries (DLLs)
or libraries requiring initialization.

The options to the init_seg pragma are:

compiler Reserved for Microsoft C run-time library initialization. Objects in this
group are constructed first.

lib Available for third-party class-library vendors' initializations. Objects
in this group are constructed after those marked as compiler but before any
others.

user Available to any user. Objects in this group are constructed last.

section-name Allows explicit specification of the initialization section.
Objects in a user-specified section-name are not implicitly constructed;
however, their addresses are placed in the section named by
section-name.

June-name Specifies a function to be called in place of exitO when the program exits.
The function specified must have the same signature as the exit function:

int funcname(void (__ cdecl *)(void));

If you need to defer initialization (for example, in a DLL), you may choose to specify
the section name explicitly. You must then call the constructors for each static object.

END C++ Specific

pointers_to_members
C++ Specific ~

#pragma pointers_to_members(pointer-declaration,
[most-general-representation])

Chapter 2 Pragma Directives

Specifies whether a pointer to a class member can be declared before its associated
class definition and is used to control the pointer size and the code required to
interpret the pointer. You can place a pointers_to_members pragma in your source
file as an alternative to using the /vrnx compiler options.

The pointer-declaration argument specifies whether you have declared a pointer to a
member before or after the associated function definition. The pointer-declaration
argument is one of the following two symbols:

Argument

fulCgenerality

BesCcase

Comments

Generates safe, sometimes non optimal code. You use
fulCgenerality if any pointer to a member is declared
before the associated class definition. This argument
always uses the pointer representation specified by the
most-general-representation argument. Equivalent to /vmg.

Generates safe, optimal code using best-case representation
for all pointers to members. Requires defining the class
before declaring a pointer to a member of the class. The
default is besCcase.

The most-general-representation argument specifies the smallest pointer
representation that the compiler can safely use to reference any pointer to a member
of a class in a translation unit. The argument can be one of the following:

Argument

single_inheritance

Multiple_inheritance

Virtual_inheritance

END C++ Specific

vtordisp
C++ Specific ~

#pragma vtordisp{ {on I off})

Comments

The most general representation is single-inheritance,
pointer to a member function. Causes an error if the
inheritance model of a class definition for which a pointer
to a member is declared is ever either multiple or virtual.

The most general representation is multiple-inheritance,
pointer to a member function. Causes an error if the
inheritance model of a class definition for which a pointer
to a member is declared is virtual.

The most general representation is virtual-inheritance,
pointer to a member function. Never causes an error.
This is the default argument when #pragma
pointers_to_members(fuICgenerality) is used.

Enables the addition or the hidden vtordisp construction/destruction displacement
member. The vtordisp pragma is applicable only to code that uses virtual bases. If a
derived class overrides a virtual function that it inherits from a virtual base class, and

33

Preprocessor Reference

if a constructor or destructor for the derived class calls that function using a pointer to
the virtual base class, the compiler may introduce additional hidden "vtordisp" fields
into classes with virtual bases.

The vtordisp pragma affects the layout of classes that follow it. The IvdO and Ivdl
options specify the same behavior for complete modules. Specifying off suppresses
the hidden vtordisp members. Specifying on, the default, enables them where they are
necessary. Tum off vtordisp only if there is no possibility that the class's constructors
and destructors call virtual functions on the object pointed to by the this pointer.

#pragma vtordisp(off)
class GetReal : virtual public { ... }:
#pragma vtordisp(on)

END C++ Specific

C and C++ Compiler Pragmas

34

The following pragmas are defined for both the C and C++ compilers:

alloc_text component iniCseg1 optimize

auto_inUne consCseg inline_depth pack

bss_seg data_seg hiline_recursion pointers_to_members1

check_stack function intrinsic setlocale

code_seg hdrstop message vtordispl

comment include_alias once warning

I Supported only by the C++ compiler.

alloe_text
#pragma alloc_text("textsection",Junctionl, ...)

N ames the code section where the specified function definitions are to reside. The
pragma must occur between a function declarator and the function definition for the
named functions.

The alloc_text pragma does not handle C++ member functions or overloaded
functions. It is applicable only to functions declared with C linkage-that is,
functions declared with the extern"C" linkage specification. If you attempt to
use this pragma on a function with C++ linkage, a compiler error is generated.

Since function addressing using __ based is not supported, specifying section
locations requires the use of the alloc_text pragma. The name specified by textsection
should be enclosed in double quotation marks.

The alloc_text pragma must appear after the declarations of any of the specified
functions and before the definitions of these functions.

Functions referenced in an alloc_text pragma should be defined in the same module
as the pragma. If this is not done and an undefined function is later compiled into a

Chapter 2 Pragma Directives

different text section, the error mayor may not be caught. Although the program will
usually run correctly, the function will not be allocated in the intended sections.

Other limitations on alloc_text are as follows:

• It cannot be used inside a function.

• It must be used after the function has been declared, but before the function has
been defined.

auto_inline
#pragma auto_inline([{on I off}])

Excludes any functions defined within the range where off is specified from being
considered as candidates for automatic inline expansion. To use the auto_inline
pragma, place it before and immediately after (not in) a function definition. The
pragma takes effect at the first function definition after the pragma is seen. Pragma
auto_inline does not apply to explicit inline functions.

bss_seg
#pragma data_seg(r' section-name" [, "section-class"]])

Specifies the default section for unitialized data. The data_seg pragma has the same
effect but works with initialized or unitialized data. In some cases, you can use
bss_seg to speed up your load time by putting all unitialized data in one section.

#pragma bss_seg("MY_DATA")

causes uninitialized data allocated following the #pragma statement to be placed in a
section called MY_DATA.

Data allocated using the bss_seg pragma does not retain any information about its
location.

The second parameter, section-class, is included for compatibilty with versions of
Visual C++ prior to version 2.0, and is now ignored.

check_stack
#pragma check_stack([{on I off}])

#pragma check_stack {+ I - }

Instructs the compiler to tum off stack probes if off (or -) is specified, or to tum on
stack probes if on (or +) is specified. If no argument is given, stack probes are treated
according to the default. This pragma takes effect at the first function defined after the
pragma is seen. Stack probes are not a part of macros nor of functions that are
generated inline.

If you don't give an argument for the check_stack pragma, stack checking reverts to
the behavior specified on the command line. For more information, see "Compiler

35

Preprocessor Reference

36

Reference" in Visual C++ Programmer's Guide online. The interaction of the
#pragma check_stack and the IGs option is summarized in Table 2.1.

Table 2.1 Using the check_stack Pragma

Syntax

#pragma check_stack() or
#pragma check_stack

#pragma check_stack() or
#pragma check_stack

#pragma check_stack(on) or
#pragma check_stack +
#pragma check_stack(off) or
#pragma check_stack -

code_seg

Compiled with
IGs option?

Yes

No

Yes or no

Yes or no

Action

Turns off stack checking for
functions that follow

Turns on stack checking for
functions that follow

Turns on stack checking for
functions that follow

Turns off stack checking for
functions that follow

#pragma code_seg(r'section-name"[,"section-class"]])

Specifies a code section where functions are to be allocated. The code_seg pragma
specifies the default section for functions. You can, optionally, specify the class as
well as the section name. Using #pragma code_seg without a section-name string
resets allocation to whatever it was when compilation began.

const_seg
#pragma const_seg(r'section-name"[, "section-class"]])

Specifies the default section for constant data. The data_seg pragma has the same
effect but works with all data. You can use this pragma to put all your constant data
in one read-only section.

f/pragma const_seg("MY_DATA")

causes constant data allocated following the #pragma statement to be placed in a
section called MY_DATA.

Data allocated using the consCseg pragma does not retain any information about its
location.

The second parameter, section-class, is included for compatibilty with versions of
Visual C++ prior to version 2.0, and is now ignored.

comment
#pragma comment(comment-type [, commentstring])

Places a comment record into an object file or executable file. The comment-type is
one of five predefined identifiers, described below, that specify the type of comment
record. The optional commentstring is a string literal that provides additional

Chapter 2 Pragma Directives

information for some comment types. Because commentstring is a string literal, it
obeys all the rules for string literals with respect to escape characters, embedded
quotation marks ("), and concatenation.

compiler Places the name and version number of the compiler in the object file. This
comment record is ignored by the linker. If you supply a commentstring parameter
for this record type, the compiler generates a warning.

exestr Places commentstring in the object file. At link time, this string is placed in
the executable file. The string is not loaded into memory when the executable file
is loaded; however, it can be found with a program that finds printable strings in
files. One use for this comment-record type is to embed a version number or
similar information in an executable file.

lib Places a library-search record in the object file. This comment type must be
accompanied by a commentstring parameter containing the name (and possibly the
path) of the library that you want the linker to search. Since the library name
precedes the default library-search records in the object file, the linker searches for
this library just as if you had named it on the command line. You can place multiple
library-search records in the same source file; each record appears in the object file
in the same order in which it is encountered in the source file.

linker Places a linker option in the object file. You can use this comment-type to
specify a linker option instead placing the option on the Link tab of the Project
Settings dialog box. For example, you can specity the linclude option to force the
inclusion of a symbol:

#pragma comment(linker, "/include: __ mySymbol")

user Places a general comment in the object file. The commentstring parameter
contains the text of the comment. This comment record is ignored by
the linker.

The following pragma causes the linker to search for the EMAPLLIB library while
linking. The linker searches first in the current working directory and then in the path
specified in the LIB environment variable.

#pragma comment(lib, "emapi")

The following pragma causes the compiler to place the name and version number of
the compiler in the object file:

#pragma comment(compiler)

Note For comments that take a commentstring parameter, you can use a macro in any place
where you would use a string literal, provided that the macro expands to a string literal. You can
also concatenate any combination of string literals and macros that expand to string literals. For
example, the following statement is acceptable:
#pragma comment(user, "Compiled on " DATE

37

Preprocessor Reference

38

component
#pragma component(browser, { on I off} [, references [, name]])
#pragma component(minrebuild, on I off)

Controls the collecting of browse information or dependency information from within
source files.

You can tum collecting on or off, and you can specify particular names to be ignored
as information is collected.

Using on or off controls the collection of browse information from the pragma
forward. For example:

#pragma component(browser, off)

stops the compiler from collecting browse information.

Note To turn on the collecting of browse information with this pragma, browse information
must first be enabled from the Project Settings dialog box or the command line.

The references option can be used with or without the name argument. Using
references without name turns on or off the collecting of references (other browse
information continues to be collected, however). For example:

#pragma component(browser, off, references)

stops the compiler from collecting reference information.

Using references with name and off prevents references to name from appearing in
• the browse information window. Use this syntax to ignore names and types you are

not interested in and to reduce the size of browse information files. For example:

#pragma component(browser, off. references, DWORD)

ignores references to DWORD from that point forward. You can tum collecting of
references to DWORD back on by using on:

#pragma component(browser. on, references. DWORD)

This is the only way to resume collecting references to name; you must explicitly tum
on any name that you have turned off.

To prevent the preprocessor from expanding name (such as expanding NULL to 0),
put quotes around it:

#pragma component(browser, off, references. "NULL")

The Visual C++ minimal rebuild feature requires that the compiler create and store
C++ class dependency information, which takes disk space. To save disk space, you
can use /lpragma component (mi n rebui 1 d, off) whenever you don't need to
collect dependency information, for instance, in unchanging header files. Insert
f/pragma component (m; n rebui 1 d, on) after unchanging classes to tum
dependency collection back on.

Chapter 2 Pragma Directives

data_seg
#pragma data_seg(r' section-name" [, "section-class"]])

Specifies the default section for data. For example:

#pragma data_seg("MY_DATA")

causes data allocated following the #pragma statement to be placed in a section called
MY_DATA.

Data allocated using the data_seg pragma does not retain any information about its
location.

The second parameter, section-class, is included for compatibilty with versions of
Visual C++ prior to version 2.0, and is now ignored.

function
#pragma function(ftmctionl [,junction2, ...])

Specifies that calls to functions specified in the pragma's argument list be generated.
If you use the intrinsic pragma (or /Oi) to tell the compiler to generate intrinsic
functions (intrinsic functions are generated as inline code, not as function calls),
you can use the function pragma to explicitly force a function call. Once a function
pragma is seen, it takes effect at the first function definition containing a specified
intrinsic function. The effect continues to the end of the source file or to the
appearance of an intrinsic pragma specifying the same intrinsic function. The
function pragma can be used only outside of a function-at the global level.

For lists of the functions that have intrinsic forms, see "intrinsic" on page 42.

hdrstop
#pragma hdrstop [(''filename'')]

Controls the way precompiled headers work. The filename is the name of the
precompiled header file to use or create (depending on whether lYu or IY c is
specified). Iffilename does not contain a path specification, the precompiled header
file is assumed to be in the same directory as the source file. Any filename is ignored
when IYX, the automatic precompiled header option, is specified.

If a C or C++ file contains a hdrstop pragma when compiled with either IYX or IY c,
the compiler saves the state of the compilation up to the location of the pragma. The
compiled state of any code that follows thepragma is not saved.

The hdrstop pragma cannot occur inside a header file. It must occur in the source file
at the file level; that is, it cannot occur within any data or function declaration or
definition.

Note The hdrstop pragma is ignored unless either the NX option is specified or the Nu or Nc
option is specified without a filename.

39

Preprocessor Reference

40

Use filename to name the precompiled header file in which the compiled state is
saved. A space between hdrstop and filename is optional. The filename specified in
the hdrstop pragma is a string and is therefore subject to the constraints of any C or
c++ string. In particular, you must enclose it in quotation marks as shown in the
following example:

/lpragma hdrstop("c:\projects\include\mYinc.pch")

The name of the precompiled header file is determined according to the following
rules, in order of precedence:

1. The argument to the /Fp compiler option

2. The filename argument to #pragma hdrstop

3. The base name of the source file with a .PCH extension

include_alias
#pragma include_alias("longJilename", "shortJileilame")
#pragma include_alias(<longJilename>, <shortJilename>)

Specifies that shortJilename is to be used as an alias for longJilename. Some file
systems allow longer header filenames than the 8.3 FAT file system limit. The
compiler cannot simply truncate the longer names to 8.3, because the first eight
characters of the longer header filenames may not be unique. Whenever the compiler
encounters the longJilename string, it substitutes shortJilename, and looks for the
header file shortJilename instead. This pragma must appear before the corresponding
#include directives. For example:

II First eight characters of these two files not unique.
/lpragma include_alias("AppleSystemHeaderQuickdraw.h", "quickdra.h"
/lpragma include_alias("AppleSystemHeaderFruit.h", "fruit.h")

/lpragma include_alias("GraphicsMenu.h", "gramenu.h")

/linclude "AppleSystemHeaderQuickdraw.h"
/linclude "AppleSystemHeaderFruit.h"
/linclude "GraphicsMenu.h"

The alias being searched for must match the specification exactly, in case as well as in
spelling and in use of double quotation marks or angle brackets. The include_alias
pragma performs simple string matching on the filenames; no other filename
validation is performed. For example, given the following directives,

/lpragma include_alias("mymath.h", "math.h")
/linclude "./mymath.h"
/linclude "sys/mymath.h"

no aliasing (substitution) is performed, since the header file strings do not match
exactly. Also, header filenames used as arguments to the /Yu, /Y c, and IYX compiler
options, or the hdrstop pragma, are not substituted. For example, if your source file
contains the following directive,

Chapter 2 Pragma Directives

#include <AppleSystemHeaderStop.h>

the corresponding compiler option should be

IYcAppleSystemHeaderStop.h

You can use the include_alias pragma to map any header filename to another. For
example:

#pragma include_alias("api.h", "c:\version1.0\api.h"
#pragma include_alias(<stdio.h>, <newstdio.h>)
#include "api .h"
#include <stdio.h>

Do not mix filenames enclosed in double quotation marks with filenames enclosed in
angle brackets. For example, given the above two #pragma include_alias directives,
the compiler performs no substitution on the following #include directives:

#include <api .h>
. #include "stdio.h"

Furthermore, the following directive generates an error:

#pragma include_alias«header.h>, "header.h") II Error

Note that the filename reported in error messages, or as the value of the predefined
__ FILE __ macro, is the arne of the file after the substitution has been performed. For
example, after the following directives,

#pragma i ncl ude_a 1 i as ("Very Long Fil eName. H", "myfil e. h")
#include "VeryLongFileName.H"

an error in VERYLONGFILENAME.H produces the following error message:

myfile.h(15) : error C2059 : syntax error

Also note that transitivity is not supported. Given the following directives,

#pragma include_alias("one.h", "two.h")
#pragma include_alias("two.h", "three.h")
#include "one.h"

the compiler searches for the file TWO.H rather than THREE.H.

inline_depth
#pragma inline_depth([0 ... 255])

Controls the number of times inline expansion can occur by controlling the number
of times that a series of function calls can be expanded (from 0 to 255 times). This
pragma controls the inlining of functions marked inline and __ inline or inlined
automatically under the /Ob2 option.

The !!!!!!!e_rlepth prag!!!a controls the nu!!!ber of ti!!!es a series of function calls can
be expanded. For example, if the inline depth is four, and if A calls B and B then calls
C, all three calls will be expanded inline. However, if the closest inline expansion is
two, only A and B are expanded, and C remains as a function call.

41

Preprocessor Reference

42

To use this pragma, you must set the lOb compiler option to 1 or 2. The depth set
using this pragma takes effect at the first function call after the pragma. If you do not
specify a value within the parentheses, inUne_depth sets the inline depth back to its
default value of 8.

The inline depth can be decreased during expansion but not increased. If the inline
depth is six and during expansion the preprocessor encounters an inUne_depth
pragma with a value of eight, the depth remains six.

An inline depth of 0 inhibits inline expansion; an inline depth of 255 places no limit
on inline expansion. If either pragma is used without specifying a value, the default
value is used.

inline_recursion
#pragma inline_recursion([{on lofT}])

Controls the inline expansion of direct or mutually recursive function calls. Use this
pragma to control functions marked as inline and __ inline or functions that the
compiler automatically expands under the IOb2 option. Use of this pragma requires
an lOb compiler option setting of either 1 or 2. The default state for inline_recursion

. is off. This pragma takes effect at the first function call after the pragma is seen and
does not affect the definition of the function.

The inUne_recursion pragma controls how recursive functions are expanded. If
inUne_recursion is off, and if an inline function calls itself (either directly or
indirectly), the function is expanded only once. If inline_recursion is on, the function
is expanded multiple times until the value of inUne_depth is reached or capacity
limits are reached.

intrinsic
#pragma intrinsic(functionl [,junction2, ...])

Specifies that calls to functions specified in the pragma's argument list are intrinsic.
The compiler generates intrinsic functions as inline code, not as function calls. The
library functions with intrinsic forms are listed below. Once an intrinsic pragma is
seen, it takes effect at the first function definition containing a specified intrinsic
function. The effect continues to the end of the source file or to the appearance of a
function pragma specifying the same intrinsic function. The intrinsic pragma can be
used only outside of a function definition -at the global level.

The following functions have intrinsic forms:

_disable _outp abs strcat

fabs strcmp - enable _outpw

labs strcpy _inp - rotl

memcmp strlen _inpw - rotr

memcpy _lrotl - strset

_lrotr memset

Chapter 2 Pragma Directives

Programs that use intrinsic functions are faster because they do not have the
overhead of function calls but may be larger due to the additional code
generated.

Note The _alloca and setjmp functions are always generated inline; this behavior is not
affected by the intrinsic pragma.

The floating-point functions listed below do not have true intrinsic forms. Instead
they have versions that pass arguments directly to the floating-point chip rather than
pushing them onto the program stack:

acos cosh

as in fmod

pow

sinh

tanh

The floating-point functions listed below have true intrinsic forms when you specify
both the 10i and lag compiler options (or any option that includes lag: lOx, 10 1,
and 102):

atan

atan2

cos

exp

log

log10

sin

sqrt

tan

You can use the lap or IZa compiler option to override generation of true intrinsic
floating-point options. In this case, the functions are generated as library routines that
pass arguments directly to the floating-point chip instead of pushing them onto the
program stack.

message
#pragma message(messagestring)

Sends a string literal to the standard output without terminating the compilation. A
typical use of the message pragma is to display informational messages at compile
time.

The following code fragment uses the message pragma to display a message during
compilation:

/lif _M_IX86 == 500 /lpragma message("Pentium processor") /lendif

The messagestring parameter can be a macro that expands to a string literal, and you
can concatenate such macros with string literals in any combination. For example, the
following statements display the name of the file being compiled and the date and
time when the file was last modified:

/lpragma message("Compiling" _FILE_)
/lpragma message("Last modified on " _TIMESTAMP_)

43

Preprocessor Reference

44

once
#pragma once

Specifies that the file, in which the pragma resides, will be included (opened) only
once by the compiler in a build. A common use for this pragma is the following:

Ilheader.h
#pragma once
II Your C or C++ code would follow:

optimize
#pragma optimize(II [optimization-list] ", {on I off})

Feature Only in Professional and Enterprise Editions Code optimization is supported only
in Visual C++ Professional and Enterprise Editions. For more information, see ''Visual C++
Editions" in the online documentation.

Specifies optimizations to be performed on a function-by-function basis. The
optimize pragma must appear outside a function and takes effect at the first function
defined after the pragma is seen. The on and off arguments tum options specified in
the optimization-list on or off.

The optimization-list can be zero or more of the parameters shown in Table 2.2.

Table 2.2 Parameters of the optimize Pragma

Parameter(s)

a

g

p

s or t

w

y

Type of optimization

Assume no aliasing.

Enable global optimizations.

Improve floating-point consistency.

Specify short or fast sequences of machine code.

Assume no aliasing across function calls.

Generate frame pointers on the program stack.

These are the same letters used with the /0 compiler options. For example,

#pragma optimize("atp" , on)

Using the optimize pragma with the empty string (" ") is a special form of the
directive. It either turns off all optimizations or restores them to their original
(or default) settings.

#pragma optimize("", off)

#pragma.optimize(on)

Chapter 2 Pragma Directives

pack
#pragma pack([n])

Specifies packing alignment for structure and union members. Whereas the packing
alignment of structures and unions is set for an entire translation unit by the /Zp
option, the packing alignment is set at the data-declaration level by the pack pragma.
The pragma takes effect at the first structure or union declaration after the pragma is
seen; the pragma has no effect on definitions.

When you use #pragma pack(n), where n is 1,2,4, 8, or 16, each structure member
after the first is stored on the smaller member type or n-byte boundaries. If you use
#pragma pack without an argument, structure members are packed to the value
specified by /Zp. The default /Zp packing size is /Zp8.

The compiler also supports the following enhanced syntax:

#pragma pack([[{pushlpop},] [identifier,]] [n])

This syntax allows you to combine program components into a single translation unit
if the different components use pack pragmas to specify different packing alignments.

Each occurrence of a pack pragma with a push argument stores the current packing
alignment on an internal compiler stack. The pragma's argument list is read from left
to right. If you use push, the current packing value is stored. If you provide a value
for n, that value becomes the new packing value. If you specify an identifier, a name
of your choosing, the identifier is associated with the new packing value.

Each occurrence of a pack pragma with a pop argument retrieves the value at the top
of an internal compiler stack and makes that value the new packing alignment. If you
use pop and the internal compiler stack is empty, the alignment value is that set from
the command-line and a warning is issued. If you use pop and specify a value for n,
that value becomes the new packing value. If you use pop and specify an identifier,
all values stored on the stack are removed from the stack until a matching identifier is
found. The packing value associated with the identifier is also removed from the stack
and the packing value that existed just before the identifier was pushed becomes the
new packing value. If no matching identifier is found, the packing value set from the
command line is used and a level-one warning is issued. The default packing
alignment is 8.

The new, enhanced functionality of the pack pragma allows you to write header files
that ensure that packing values are the same before and after the header file is
encountered:

/* File name: include!.h
*/
#pragma pack(push. enter_include!
/* Your include-file code ... */
#pragma pack(pop. enter_include!
/* End of include!.h */

45

Preprocessor Reference

46

In the previous example, the current pack value is associated with the identifier
enter _i ncl ude1 and pushed, remembered, on entry to the header file. The pack
pragma at the end of the header file removes all intervening pack values that
may have occurred in the header file and removes the pack value associated with
en t e r _ inc 1 u del. The header file thus ensures that the pack value is the same
before and after the header file.

The new functionality also allows you to use code, such as header files, that uses
pack pragmas to set packing alignments that differ from the packing value set in
your code:

#pragma pack(push. before_include1)
#include "include1.h"
#pragma pack(pop. before_include1)

In the previous example, your code is protected from any changes to the packing
value that might occur in i ncl ude. h.

setlocale
#pragma setlocale("locale-string")

Defines the locale (country and language) to be used when translating wide-character
constants and string literals. Since the algorithm for converting multibyte characters
to wide characters may vary by locale or the compilation may take place in a different
locale from where an executable file will be run, this pragma provides a way to
specify the target locale at compile time. This guarantees that the wide-character
strings will be stored in the correct format. The default locale-string is "C". The "c"
locale maps each character in the string to its value as a wchar_t (unsigned short).

warning
#pragma warning(warning-specifier: warning-number-list [,warning-specifier:

warning-number-list ...])

Allows selective modification of the behavior of compiler warning messages.

The warning-specifier can be one of the following:

Warning-specifier

once

Default

1,2,3,4

disable

error

Meaning

Display the specified message(s) only once.

Apply the default compiler behavior to the specified
message(s).

Apply the given warning level to the specified
warning message(s).

Do not issue the specified warning message(s).

Report the specified warnings as errors.

Chapter 2 Pragma Directives

The warning-number-list can contain any warning numbers. Multiple options can be
specified in the same pragma directive as follows:

#pragma warning(disable: 4507 34; once: 4385; error: 164)

This is functionally equivalent to:

#pragma warning(disable: 4507 34)

#pragma warning(once: 4385

#pragma warning(error: 164

II Disable warning messages
II 4507 and 34.
II
II
II
II

Issue warning 4385
only once.

Report warning 164
as an error.

For warning numbers greater than 4699, those associated with code generation, the
warning pragma has effect only when placed outside function definitions. The
pragma is ignored if it specifies a number greater than 4699 and is used inside a
function. The following example illustrates the correct placement of warning pragmas
to disable, and then restore, the generation of a code~generation warning message:

int a;
#pragma warning(disable: 4705)
void func()
{

a;
}

#pragma warning(default 4705)

47

APPENDIX

Grammar Summary

This appendix describes the formal grammar of the preprocessor. It covers the syntax
of preprocessing directives and operators discussed in Chapter 1, "The Preprocessor,"
and Chapter 2, "Pragma Directives."

The following topics are included:

• Definitions

• Conventions

• Preprocessor Grammar

Definitions for the Grammar Summary
Terminals are endpoints in a syntax definition. No other resolution is possible.
Terminals include the set of reserved words and user-defined identifiers.

Nonterminals are placeholders in the syntax. Most are defined elsewhere in this syntax
summary. Definitions can be recursive. The following nonterminals are defined in the
"Grammar Summary" of the C++ Language Reference:

constant, constant-expression, identifier, keyword, operator, punctuator

An optional component is indicated by the subscripted opt. For example, the following
indicates an optional expression enclosed in curly braces:

{ expressionopt }

49

Conventions

Conventions
The conventions use different font attributes for different components of the syntax.
The symbols and fonts are as follows:

Attribute Description

llolltenninai

#inc1ude

opt

default typeface

Italic type indicates nonterminals.

Terminals in bold type are literal reserved words and symbols
that must be entered as shown. Characters in this context are
always case sensitive.

Nonterminals followed by opt are always optional.

Characters in the set described or listed in this typeface can be
used as terminals in statements.

A colon (:) following a nonterminal introduces its definition. Alternative definitions
are listed on separate lines.

Preprocessor Grammar

50

#define identifier token-stringopt

#define identifier[(identifieropt, ... , identifieropt)] token-stringopt

defined(identifier)

. defined identifier

#include "path-spec"

#include <path-spec>

#line digit-sequence ''filename''opt

#Undef identifier

#error token-string

#pragma token-string

conditional:

if-part:

if-line:

if-part elif-partsopt else-partopt endif-line

if-line text

#if constant-expression
#ifdef identifier
#ifndef identifier

elif-parts:
elif-line text
elif-parts elif-line text

elif-line:
#elif constant-expression

else-part:
else-line text

else-line:
#else

endif-line:
#endif

digit-sequence:
digit
digit-sequence digit

digit: one of
0123456789

token-string:

.token:

String of tokens

keyword
identifier
constant
operator
punctuator

filename:
Legal operating system filename

path-spec:
Legal file path

text:
Any sequence of text

Note The following nonterminals are expanded in Appendix A, "Grammar Summary," of
the C++ Language Reference: constant, constant-expression, identifier, keyword, operator,
and punctuator.

Preprocessor Grammar

51

#, null preprocessor directive 22
#, number sign and preprocessor syntax 3

A
alloc_text pragma directive 34
Arguments and side effects 5
Attributes, #import directive (list) 12
auto_inline pragma directive 35

B
besccase 33
bss_seg pragma directive 35

c
_CHAR_UNSIGNED 28
Character mapping 2
Character-set mapping 2
Charizing operator 25
check_stack pragma directive 35
code_seg pragma directive 36
comment pragma directive 36
Compilation, conditional

#if, llelif, #else, and llendif directives 6-10
#ifdef and #ifndef directives 10-11

Compiler options
IE, IEP 1
IGs 35
II 19-20
10 43
lOb 41-42
10i 39
lOp 43
Ivd 33
Ivmx 33
IYX, lYu, IYc 39
IZa 28,43
;Zp 45

Index

component pragma directive 38
Conditional compilation

constant expressions 7
#if, llelif, #else, and llendif directives 6-10
#ifdef and #ifndef directives 10-11
preprocessor directives 26

Constant expressions and conditional compilation 7
consCseg pragma directive 36
Conventions, grammar 50
__ cplusplus 28
_CPPRTII28
_CPPUNWIND 28

D
data_seg pragma directive 39
__ DATE __ predefined macro 28
#define preprocessor directive 6, 26
defined preprocessor operator 8
Directives

See also Macros
error See Error directives
pragma See Pragma directives
preprocessor See Preprocessor directives

_DLL 28

E
IE, IEP compiler options
#elifpreprocessor directive 6-10
#else preprocessor directive 6-10
#endif preprocessor directive 6-10
Error directives 6
#error preprocessor directive 6
Escape characters and string literals 24
exclude attribute, #import directive 14

F
__ FILE __ predefined macro 21,28
full~enerality 33
function pragma directive 39

53

Index

54

Function-like macros 4, 26
Functions

G

floating-point, (list) 43
inline, compared to macros 27
intrinsic forms, (list) 42

Grammar
conventions 50
definitions 49

Grammar summary 49-51
IGs compiler option 35

H
hdrstop pragma directive 39
Header files See Include (.H) files
high_method_prefix attribute, #import directive 14
high_property _prefixes attribute, #import directive 15

/I compiler option 19-20
#if preprocessor directive 6-10
#ifdef preprocessor directive 10-11
#ifndef preprocessor directive 10-11
implementation_only attribute, #import directive 15
#import preprocessor directive 11-18
Include (.H) files

described 19-21
nested 19
search path 19
syntax 19

#include preprocessor directive 19-21
include_alias pragma directive 40
init_seg pragma directive 32
injeccstatement attribute, #import directive 15
Inline functions, compared to macros 27
inline_depth pragma directive 41
inline_recursion pragma directive 42
intrinsic pragma directive 42

L
Line control, preprocessor 21
__ LINE __ predefined macro 21, 28
#line preprocessor directive 21
Line splicing 2
Linkage 2

M
_M_ALPHA 28
_M_IX8628
_M_MPPC 28
_M_MRXOOO 29
_M_PPC 29
Macro expansion, defined 26
Macros

and C++ 27
arguments with side effects 5
compared to inline functions 27
#define directive 3-6
function-like 4, 26
#include directive 19
predefined

(table) 28
line control 21

preprocessing 26-27
#Undef directive 22-23
with arguments 4

Macros-taking arguments 4
message pragma directive 43
_MFC_VER 29
_MSC_VER 29
_MT 29
multiple_inheritance 33

N
named~uids attribute, #import directive 16
Nesting include files 19
no_implementation attribute, #import directive 16
no_namespace attribute, #import directive 16
Nonterminals 49
Null preprocessor directive 22
Number sign (#) 3

o
10 compiler options 43
lOb compiler option 41-42
10i compiler option 39
once pragma directive 44
lOp compiler option 43
Operators, preprocessor

charizing 25
defined operator 8
(list) 23

Operators, preprocessor (continued)
stringizing 23-24
token-pasting 25-26

optimize pragma directive 44

p
pack pragma directive 45
Phases, translation

character, character-set mapping 2
line splicing 2
linkage 2
preprocessing 2
string concatenation 2
tokenization 2

pointers_to_members pragma directive 33
Pragma directives

alloc_text 34
auto_inline 35
bss_seg 35
C and C++ 34
C++ specific 32
check_stack 35
code_seg 36
comment 36
component 38
consCseg 36
data_seg 39
described 31
function 39
hdrstop 39
include_alias 40
inicseg 32
inline_depth 41
inline_recursion 42
intrinsic 42
(list) 31
message 43
once 44
optimize 44
pack 45
pointers_to_members 33
setlocale 46
vtordisp 33
warning 46

#nra!!ma oreorocessor directive 31
P~ec~mpiied~ headers and hdrstop pragma directive 39

Predefined macros
_CHAR_UNSIGNED 28
__ cplusplus 28
_CPPRITI28
_CPPUNWIND 28
__ DATE __ 28
_DLL 28
__ FILE__ 21, 28
__ LINE __ 21, 28
_M_ALPHA 28
_M_IX86 28
_M_MPPC 28
_M_MRXOOO 29
_M_PPC 29
_MFC_VER 29
_MSC_VER 29
_MT 29
__ STDC __ 28
(table) 28
__ TIME __ 28
__ TIMESTAMP __ 28
_WIN32 29

Preprocessing
line control 21
macros 26-27
phases of translation 2
syntax, number sign (#) 3

Preprocessor
described 1
overview v

Preprocessor directives
conditional compilation 26
#define 3-6
described 3
#elif 6-10
#else 6-10
#endif 6-10
#error 6
#if 6-10
#ifdef 10-11
#ifndef 10-11
#import 11-18
#include 19-21
#line 21
(list) 3
ndl 22
#pragma 31
#Undef 22-23, 27

Index

55

Index

56

Preprocessor operators
charizing 25
defined 8
(list) 23
stringizing 23-24
token-pasting 25-26

Primary type library header file 13

R
raw_dispinterfaces attribute, #import directive 16
raw_interfaces_only attribute, #import directive 16
raw _method_prefix attribute, #import directive 17
raw_native_types attribute, #import directive 17
raw_property_prefixes attribute, #import directive 17
rename attribute, #import directive 18
rename_namespace attribute, #import directive 18
Rules, compilation 1

s
setlocale pragma directive 46
Side effects 5
single_inheritance 33
__ STDC __ predefined macro 28
String concatenation 2
String literals

and escape characters 24
and white space 23

Stringizing operator 23-24
Syntax summary 49-51

T
Terminals 49
__ TIME __ predefined macro 28
__ TIMESTAMP __ predefined macro 28
Tokenization 2
Token-pasting operator 25-26
Translation 2
Translation phases 1-2
Translation unit, defined
Type library import, preprocessing 11

#Undef preprocessor directive 22-23, 27

v
/vd compiler options 33
virtuaLinheritance 33
/vrnx compiler options 33
vtordisp pragma directive 33

w
warning pragma directive 46
White space and string literals 23
_WIN3229

v
IYX, lYu, IY c compiler options 39

z
/Za compiler option 28, 43
/Zp compiler option 45

Contributors to Preprocessor Reference

Chris Burt, Writer

Richard Carlson, Index Editor

David Adam Edelstein, Art Director

Roger Haight, Editor

Seth Manheim, Writer

Qian Wen, Writer

WASSERStudios, Production

I'4jc~soft~

VISUaIC++=
Language Reference

This four-volume collection is the complete printed product documentation for Microsoft

Visual C++ version 5, the development system for Win32~ In book form, this information
is portable and easy to access and browse, a comprehensive alternative to the

substantial online help system in Visual C++. The volumes are numbered as a set,
but you can buy only the volumes you need, when you need them.

7 90145 15210 7

Volume 1: MICROSOFT VISUAL C++ MFC LIBRARY REFERENCE, PART 1
Volume 2: MICROSOFT VISUAL C++ MFC LIBRARY REFERENCE, PART 2
This two-volume reference thoroughly documents the Microsoft Foundation Class (MFC)

Jibr.ary, providing a class library overview, an alphabetical listing of MFC classes, and a section

on the library's macros and globals. In-depth class descriptions summarize members by

category and list member functions, operators, and data members. Entries for member

functions include return values, parameters, related classes, important comments, and

source code examples.

Volume 3: MICROSOFT VISUAL C++ RUN-TIME LIBRARY REFERENCE

Combining the information of three books, this volume contains complete descriptions

and alphabetical listings of all the functions and parameters in the iostream class library,
ActiveX'" Template Library (ATL), and run-time library. Entries include helpful source code

examples.

Volume 4: MICROSOFT VISUAL C++ LANGUAGE REFERENCE
Three books in one, the C and C++ references in this volume guide you through the two

languages: terminology and concepts, programming structures, functions, declarations, and

expressions. 'The C++ section also covers Run-Time Type Information (RTII) and Namespaces.

The final section of this valuable resource discusses the preprocessor and translation phases,

integral to C and C++ programming, and includes an alphabetical listing of preprocessor

directives.

U.S.A. $29.99 Programming/Microsoft Visual C++

U.K. £27.49
Canada $39.99 ISBN 1-57231-521-0

[Recommended]

Microsoft Press I
9 781572 315211

Designed for

'.

Microsoft"
Windows NT"
Windows"95

VOLUME

OF FOUR

Microsoft ---
PRESS

