
The Essential Guide to
Microsoft Visual lnterDev 6.0

·6.0
Programmer's Guide

Microsoft Press

Microsoft®

Visual
lnterDev™
6.0

Programmer's
Guide

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright© 1998 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form
or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Microsoft Visual Studio Core Reference Set I Microsoft Corporation.

p. cm.
Includes index.
ISBN 1-57231-884-8
1. Microsoft Visual BASIC. 2. BASIC (Computer program language)

I. Microsoft Corporation.
QA76.73.B3M5598 1998
005 .26'8--dc21

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 wcwc 3 2 1 0 9 8

Distributed in Canada by ITP Nelson, a division of Thomson Canada Limited.

A CIP catalogue record for this book is available from the British Library.

98-6655
CIP

Microsoft Press books are available through booksellers and distributors worldwide. For further information
about international editions, contact your local Microsoft Corporation office or contact Microsoft Press
International directly at fax (425) 936-7329. Visit our Web site at mspress.microsoft.com

Active Desktop, ActiveX, FoxPro, FrontPage, IntelliSense, JScript, Microsoft, the Microsoft Internet
Explorer logo, Microsoft Press, the Microsoft Press logo, PowerPoint, Visual Basic, Visual C++,
Visual FoxPro, Visual InterDev, Visual J++, Visual Studio, WebBot, Windows, and Windows NT are
either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other
countries. Other product and company names mentioned herein may be the trademarks of their
respective owners.

The example companies, organizations, products, people, and events depicted herein are fictitious. No
association with any real company, organization, product, person, or event is intended or should be
inferred.

Acquisitions Editor: Eric Stroo
Project Editor: Anne Taussig

Part No. 097-0001982

Contents

Introduction Introducing Visual lnterDev. ix

Part 1 Basics. 1

Chapter 1 Web Project Management . 3
Creating a Web Project ... 4

Adding Files . 6

Deleting a Web Project. 7

Chapter 2 Web Basics . 9
Creating Pages . 9

Saving Pages . 11

Previewing Pages . 11

Chapter 3 Database Basics. 13
Connecting to a Database . 14

Querying the Database . 16

Displaying Records . 17

Creating Event-Driven Forms . 18

Chapter 4 Editing Basics .. 23
Editing HTML . 23

Adding Components to a Page ... 26

Adding Scripts . 28

Choosing an Alternate Editor . 29

Chapter 5 Walkthroughs . 31
Creating a Home Page . 31

Debugging Script. 38

Working with Multiple Developers . 45

Deploying a Web Application . 51

Simplifying Data Entry Pages . 55

iii

Contents

iv

Part 2 Creating Web Projects . 71

Chapter 6 Web Project Concepts . 73
Project Architecture . 73

Web File Processing . 78

The Web Application Development Cycle . 84

Source Control . 97

Security. 102

Chapter 7 Working Locally ... 117
Developing Applications Independently . 117

Specifying a Project Mode. 118

Getting Master Copies Locally. 119

Previewing a Web Application. 120

Updating the Master Web Application . 121

Updating the Local Web Application. 122

Working Offline . 122

Chapter 8 Working with Multiple Developers 125
Setting Up Source Control on a Web Server. 125

Adding Source Control to a Web Application . 127

Working Under Source Control. 129

Troubleshooting Source Control . 134

Chapter 9 Adding Security . 135
Adding Security Pages . 135

Setting Web Application Permissions . 136

Connecting to a Proxy Server . 140

Chapter 10 Managing Web Projects. 143
Synchronizing Master and Local Files . 143

Copying Web Projects. 146

Reorganizing Project Structure . 148

Part 3 Designing Sites . 149

Chapter 11 Site Design. 151
Link Verification ·. 154

Site Consistency. 160

Contents

Chapter 12 Designing a Web Site. 169
Creating a Site Diagram . 169

Adding Pages to a Site Diagram . 170

Adding a Home Page to a Site Diagram . 171

Mapping Multiple Pages to an .asp File . 172

Converting Active Server Pages to HTM Pages . 173

Applying a Theme and Layout to Pages. 174

Printing a Site Diagram. 174

Chapter 13 Designing Site Navigation . 175
Arranging Pages in a Site Diagram . 175

Adding a Page to the Global Navigation Bars. 176

Removing a Page from a Site Diagram. 177

Deleting Pages in a Site Diagram. 178

Chapter 14 Managing a Site Diagram . 179
Managing the Size of a Site Diagram . 179

Viewing the Full Page Path . 180

Previewing a Page in a Browser. 180

Editing the Source for a Page . 181

Renaming Page Labels . 181

Opening a Site Diagram . 182

Renaming a Site Diagram . 182

Saving a Site Diagram . 183

Deleting a Site Diagram . 183

Chapter 15 Viewing Links for an Item . 185
Viewing Links for an Item in a Project. 185

Viewing Links for an Item on the WWW . 186

Refreshing a Link Diagram with Current Project Information. 186

Previewing Items in a Browser . 187

Launching Editors on Items in a Link Diagram. 187

Printing a Link Diagram . 188

v

Contents

vi

Chapter 16 Maintaining Links. 189
Filtering Links . 189

Viewing Link Diagrams . ·. 192

Changing a Link Diagram Layout . 195

Repairing Links . 196

Chapter 17 Customizing Page Appearance . 199
Creating Files with Templates . 199

Editing Style Sheets . 200

Applying Themes . 202

Laying Out Pages . 207

Part 4 Integrating Databases. 213

Chapter 18 Database Concepts . 215
Data Access Architecture ... 215

The Data Environment . 225

Data Binding . 228

Chapter 19 Viewing Data . 237
Getting Records .. 237

Displaying Data on Your Web Page . 241

Chapter 20 Modifying Data . 245
Getting Values from the Current Record. 246

Updating Records ... 247

Adding Records . 248

Deleting Records . 251

Chapter 21 Accessing Databases Directly 253
Debugging Stored Procedures and Triggers. 253

Executing Parameterized Queries. 256

Chapter 22 Managing Database Projects . 265
Populating a Database Project . 265

Using Database Projects and Web Projects Together 267

Adding Source Control to a Database Project . 268

Contents

Part 5 Editing and Scripting . 269

Chapter 23 Scripting Concepts ... 271
Editing Modes : . 271

Scripts in Web Applications . 277

The Scripting Object Model . 285

Document Elements . 290

The Script Debugging Process. 294

Chapter 24 Scripting with Design-Time Controls and Script Objects 299
Creating Forms with Design-Time Controls. 299

Writing Script for Script Objects . 304

Extending the Scripting Object Model Across Pages . 312

Executing Server Script Remotely . 318

Chapter 25 Scripting with HTML Elements. 321
Choosing a Scripting Language. 321

Handling Events with HTML Elements . 323

Gathering Information with HTML Forms . 327

Displaying Information to the User . 332

Navigating Conditionally . 335

Sharing Dynamic Information . 338

Writing Reusable Script . 343

Creating Portable Script . 346

Chapter 26 Debugging Your Pages .. 351
Debugging Client Script . 351

Debugging Server Script. 356

Debugging Mixed Client and Server Script. 359

Debugging a Global.asa File . 363

Chapter 27 Packaging Script as Objects 367
Types of Scriptlets . 367

Creating a DHTML Scriptlet. 368

Defining Properties and Methods in DHTML Scriptlets. 369

Exposing Events in DHTML Scriptlets . 373

Adding DHTML Scriptlets to Your Application . 376

vii

Contents

viii

Part 6 Building Integrated Solutions . 379

Chapter 28 Web Application Deployment . 381
Production Server Capabilities. 382

Deployment Activities and Results. 382

Tips for Easy Deployment. 383

Chapter 29 Integration Tasks 385
Using FrontPage and Visual InterDev to Create Web Sites. 385

Debugging Remotely . 388

Chapter 30 Deploying and Maintaining Web Applications. 393
Deploying a New Web Application .. 393

Deploying an Integrated Web Solution . 396

Appendix A Troubleshooting . 399
Web Projects . 399

Databases ... 405

Editing and Scripting . 408

Debugging . 418

Migrating from Visual InterDev 1.0 to Visual InterDev 6.0 421

Appendix B Visual lnterDev Glossary. 431

INTRODUCTION

Introducing Visual InterDev

Microsoft Visual InterDev 6.0 is a Web development tool designed for programmers who
want to create:

• Data-driven Web applications using a data source supported by ODBC or OLE DB, such
as the database management systems from Microsoft.

• Broad-reach Web pages using HTML and script in Web applications that take advantage
of the latest advances in browser technology, such as Microsoft Internet Explorer 4.0,
Dynamic HTML and multimedia features.

• Robust development environment with a Scripting Object Model, design-time controls
(DTCs), and an extensible toolbox for rapid design, testing, and debugging of your
pages.

• Web teams that can develop pages in isolation and maintain ready access to a master
version, or teams that include nonprogrammers who work on the master version
through Microsoft FrontPage.

• Integrated solutions that can include applets or components created in Microsoft
Visual Basic, Visual C++, Visual J++, and Visual FoxPro.

The following figure provides a summary of features and tools to try in Visual InterDev.

Programmer's Guide ix

Introduction

Quick access to a variety
of objects and controls Integrated debugger for Isolated development

through I ocal mode th•ough the Toolbox ~mm ond 'I lent mlpt

°!'Eile £:dit ~ew ey~j~~t· ~~ild :~b~~w·~~~lsw·:~d~~··:el~·~~·:'" ~':l vidue/My'w'ebApplication2 - icrosoft Visual lnterDev (design] l!lff.113

'il~.~~~~I~i~~.~.L~~ .. ~~~~I .. ,, '. -:c~ :~l ~ u ml~ :. ·
Toolbox £1

· server otijects · · ·
!°'~) DataEntry.asp" l!llil

• vidue/MyWebApplicat:..J

..• 8 ~~:~:~·~ u·.i'·,,,·····,.· .-1.,~ pataEnfrr:~s?' ·
·I..~ global.asa '.

El ·· ti1'ffi DataEnvironment :
. ffi... 8-;. Connection ~: '. t

'3.1··1"'1; . " .. , .•.. ··· .•..• , . ·!_f-1

This figure shows an .asp file open in the Design view of the HTML editor. The toolbox,
Project Explorer, and Data View window have been resized so you can see their contents
easily. You can customize your work area by closing, resizing, or rearranging any of the
toolbars, toolboxes, or windows.

x Programmer's Guide

Introducing Visual InterDev

Prototype with Site Diagrams, Themes, and Layouts
Why type everything into a text file when you can use tools that let you concentrate on
your content and functionality? Leave the details of file management, link repair, and
navigation to the tools provided in Visual InterDev 6.0.

Visual InterDev 6.0 includes site design tools that help you easily plan pages, organize
their links, and apply a consistent theme to your Web site.

Site diagrams You can use site diagrams to plan the overall structure of the Web site, to
specify navigation between pages, and to take advantage of general visual design elements
quickly and easily.

In a site diagram, you can create a prototype site containing multiple files and, at the same
time, identify the hierarchical relationships between the files. It is this hierarchy that is
used to define the site navigation structure. For example, your home page is considered a
parent file. You can "attach" other pages below it to create children files.

Layouts Once you have established your navigation structure, you can add navigation
bars to your Web pages. Using a layout, you can quickly define navigation bars that
include combinations of parent, children and sibling files. For example, the home page can
link to several children that can link to siblings and so on.

Themes Easily add a consistent visual impact to your Web pages through themes.

The themes and layouts are extensible and customizable so you can create different styles
for all of the pages in your Web application or apply them to parts of your site.

When you use site diagrams, layouts, and themes to develop your Web site, the actual file
structure and navigation bars are created automatically. To simplify maintenance once
you've developed your Web application, site diagrams allow you to keep your navigation
bars current when you update the site diagram.

Programmer's Guide xi

Introduction

Add new or existing pages to the diagram.

of the diagram.

~-Site Diagraml .wdm : Site Diagram'"' II~ 13

Right-click and add a theme or layout.

In the figure above, a new site diagram has just been opened. Any pages added to this
diagram are also added to the project when you save the diagram.

Try It!

• Create a site diagram by right-clicking your project in the Project Explorer and
choosing Add and then Site Diagram.

• Add some files to this diagram by using the first button on the Site Diagram toolbar.
Save the diagram and notice that files appear in your project.

• Preview the new pages in your Web browser and test the navigation automatically
supplied. If you see "[vinavbar]" on your page, you need to install the NavBar
FrontPage extension. You can do this by running Setup and installing the server
component.

xii Programmer's Guide

Introducing Visual InterDev

• Change the relationships of files in the site diagram, save the diagram, and preview it.
Notice that the navigation links have been automatically updated.

• Apply a theme and layout to your files by selecting files in the site diagram, choosing
Apply Theme and Layout from the shortcut menu, and selecting the theme or layout
you want.

Develop in WYSIWYG View or Colorized Code
Visual InterDev 6.0 includes three ways to view your HTML and ASP pages.

These three views are the cornerstone of Visual InterDev 6.0. They replace the simple
source code editor included with Visual InterDev 1.0 and support design-time controls
(DTCs), debugging, statement completion, and object browsing.

Design view Creates your page in WYSIWYG view. You enter content or drag items from
the toolbox or data environment directly to your page. Use the toolbox, toolbars, and
menus to build your page.

Format text using the Format Menu or toolbar.

- D x

DTCRecordsetl

\connectioril . ~j
Q.atabase Object: l!'.9~1~.s .. rn.'" :J Qbject Name:

Web Visitor Information
ID

First name lc~'.2l.r:'.!!:~,::.~----- .. --!
Last name

R1 Owns a PC

LB~GiJ]
@3 F~r~M~na~e~ 1 ml

In s e rt a tab I e and t hen add c on tr o I s to its c e 11 s
to position the controls on the page.

Programmer's Guide xiii

Introduction

Source view Shows the HTML or ASP source code. Like Design view, you can enter
content or drag items from the toolbox or data environment directly to your page. Use the
toolbox, toolbars, and menus to build your page.

i~~~:_'_~~~~--------~"-'::_'.'':_°~~·:~I
' <%@ LANGUAGE=VBScript %> l•
I <!--METADATA TYPE="EditorGenerated" startspan
I 'F' 'll'>l <~Cl' 1' t)t J l' '! 1. -~,$.., :~· , •• ::.... ,..; ,.. ~ ..,.· ,_, , 1S, ~ ..
I ;,

! </COMHENT> -->
<! lude y/prn.aspff-->
<% if StartPageProcessing() Then Response.End() %>
<FORM na:me=thisForm METHOD=post>
< !--METADATA TYPE="EditorGenerated" endspan---->
<HTML>
<HEAD>
<META NAME="GENERA.TOR" Content="Microsoft Visual Studio
<MET A HTTP-EQUIV= "Content-Type rr content= "text/ html">
</HEAD>
<BODY>

; r~ orcFi~c~rdset1 _

HTML tags, tag attributes, and values appear in different colors.

Control as object editing.

Quick view Displays the results of HTML code and client script before the page is saved.
If you want to view your page in a browser, you need to save the page. This view does not
use a Web server so does not process server script.

Try It!

• Experiment with the Design view by opening a file and adding some text. Select the
text and use the HTML toolbar to change the font and size of your text.

• Insert an event by browsing a list of events in the HTML Outline window. Double
click an event and notice that the event prototype is inserted into the Source view of the
document.

• Add a control and modify its properties. Select the control and choose Properties from
the shortcut menu.

• Explore statement completion in the Source view. Add a script block to the file and
then type "window" to display a list of properties and methods.

xiv Programmer's Guide

• When in Design or Source view, notice the properties on HTML elements in the
Properties window. Notice that changing properties here can affect tag attributes
without your having to edit the tags directly.

Introducing Visual InterDev

• Edit and create cascading style sheets in the dedicated CSS editor. Open any CSS file,
such as those in the Themes directories of the project. If your project doesn't have a
theme directory, you need to apply a theme.

Connect to Data and Create Reusable Data Commands
The new data environment provides easy commands for making your Web application
data-driven. Instead of burying complex SQL statements deep within an .asp file, the
statements are now exposed, maintained, and reused at the application level through the
data environment under the Global.asa file. Instead of modifying the query within each
page, you can modify the data command and your changes are incorporated into files that
reference that data command. Also, you can drag fields from the command directly onto
your HTML or ASP page.

-~='""'--A command can be
-. ~! based on a stored

I procedure, tables,
•· ~ view, or synonym.
: •.. :l

Try It!

• Create a new data connection by right-clicking the project name in the Project Explorer
and selecting Add Data Connection.

• After creating the data connection, notice that a Data Environment object appears
under the Global.asa node. Under the Data Environment, you can find the connection.

• Using the connection, you can add a data command to create a reusable SQL statement
in the data environment. Right-click on the project and select Add Data Command. Fill
out the property pages to specify the data source for the data command.

• Try dragging fields directly out of the data environment onto the page. Notice that
DTCs are inserted on the page for each field copied.

Programmer's Guide xv

Introduction

Display Data with Data-bound Controls
Creating an interactive Web page with data is as simple as dragging and dropping, setting
some properties, and saving the page. No coding is required.

However, for those so inclined, Visual InterDev exposes a full object model that allows
you to fine-tune your application, perform client validation, and have full control of your
Web application. Visual InterDev 6.0 supports not only full-reach applications, using the
ASP engine to produce simple HTML pages for the client, but also DHTML and Microsoft
Internet Explorer 4.0 data binding for a richer client experience.

For example, this figure shows a simple data entry page that was created using data-bound
controls.

Project Explorer· vidue/MyWel::Appli .• :EJ

Tooloox · .,· • . : . , El Drag controls to your page from l 1. .• · DataEntry.asp
the too I box or fr om the Data j /. ~ Default.htm

1

j
! Server Objects .~J E n"' i r 0 nm e nt · l ~}·/..~ Global, asa !
> Activex C:antrals · · ..,..)------------------.;--1

_ g ... ftmJ oataEnvironment :o··· ··

i_~~~l9.ll-Ti~eJ;.~~~~!~J: g... ~ Connectionl I .
' 111... · El·· rm1 Commandl :· · ·, I "t' Pointer Eil .
; ! ! LfilID j
. '%s RE Lfil FName Jdl I

.A,j L.: Lfil LName I
r:·•·:::c: ... -:-•······,,,.,··c•·~·•: ... ;•·;;·:•.·:···~·· .. :···,.,,...,'C".,;'1.,., ... , .••. -::·7 •:•;-:-:······ • • •• •••• · · •• I j:U .. Addr.ess j·

1·+.~.DTCRecordsetl -·'C"'C".-. -·. -.. - r•'r ... ·.~···· ' · ···· · "·;·· • · 1.·.• -:i .. l .. ~ Li~ 1~-·· ' ·. . !..:..!..&J

.: R'jCt

l··~:f01
.. -1~·· ~L

I~~
:~F~
i c:;J P(

L
'~Tii

l~~··-.,"·-c

[~.9~~~E~.~E11 1 •J
[T~~I~~ J~·

Web Visitor Information
ID

First name Ef±~r:!'~~t?L--~··-·····J
Last name IL,1.~:~!'1~~'.:L ~~-·-J

~Owns a PC

xvi Programmer's Guide

DEntry
,,.,.,.,,,

Introducing Visual InterDev

Try It!

• After creating a new data connection, drag a Recordset control from the Design-Time
Control toolbox tab onto a page. Set the control's properties to bind this recordset to
the data connection of your choice. You can also drag a data command onto a page to
add a recordset bound to that data command.

• Drag a Textbox control onto the page. Open its properties and bind it to the Recordset
control. You can also drag fields from the data environment directly.

• Drag a RecordsetN av bar control on to the page. Again, open its properties and bind it
to the Recordset control.

• Make sure the PageObject control is still the first control on the page and publish the
page. Navigate through the records at will.

• Switch the type of HTML used by the control. Open the Properties window for the
recordset and go to the Implementation tab.

• Select either Generic HTML (ASP-based) or Internet Explorer 4.0 HTML (DHTML
based). Republish the page.

Notice that for Internet Explorer 4.0, the page does not make a round trip to the server
for each new record; instead, the record is replaced in line.

• Go to Source View and notice the object model exposed by each of the Design-Time
Controls when the outline tab is displayed.

Debug Server and Client Script within Visual lnterDev
To debug script, you can use Visual InterDev installed on the Web server or you can use
Visual InterDev on a separate machine to debug script remotely.

Note In this version, remote debugging is supported only with Microsoft Windows NT
systems. Using a Microsoft Windows 95 client is not yet supported.

Visual InterDev 6.0 supports full client and server script debugging using everything you
expect from a full-featured debugger.

Programmer's Guide xvii

Introduction

This figure shows an ASP page open in the HTML editor and the debugger active.

[.S~~tb,:akpol~t'~~~lng.F9. . ~Find oommand< '"lated to debugging.

j1·@ Ble [dit. ~ew. e.roject: ~uil~. !;!ebug tools ~Jndow l:lelp

rosoft Visual lnterDev [design] - [ASP Pagel.asp] l!llilt3

1~1-~_ •. '@ :: 1 __ ·!2: ~-" l Jb ·· ."'!..:.· 1._::. ;)£) li---............... ·~~·~l~J ~~~·--~~~-~··--·-
! <SCRIPT LAf\JGUAGE=rrJavaScr iptrr> Project Explorer· vidue/My\.v'eb ... EJ
i :function validatePassword () { .J:(J r~ •t~ ~ l
' var password;

I password = document. forml. Passwordtxt , Solut.i.on 'Project4' (1 project)~· •.•. · ••.. ·•··.·.··•· •. ··· :: e alert (rryou entered rr + password) ; El .. ~ vidue/MyWebApplicat, ·
e i:f (password. length < 4) { $.. CJ _private J;

alert (rryou must enter .q characters $... CJ _Scriptlibrary Ii ·
forml. Passwordtxt. focus; } rfl .. CJ images I[

else { forml. submit () ; } ! ... ·.?.~ fllllfl!ll !'

Try It!

!· .. ·R.Jll DataEntry.asp j

i····f~ •.. ~ ..• ?.~.t~.~.~~~x~~c~·lfJ

:s:tatu:s: me:s::s:age:s: at run time.

View the 11 alue:s: of selected 11ariabl e:s: or
watch expre:s::s:ion:s:.

Ent er ex pre :s: :s:i o n:s: to be executed.

View the 11alue:s: of local variables: in the current :s:tack frame.

View the 11alue:s: of local variables: in the current :s:tack frame.

• Specify a start page for debugging. Right-click a file in the Project Explorer and choose
Set as Start Page.

• View an .asp or .htm file in the browser. In Visual InterDev, choose Processes from the
Project menu. After viewing the file, connect Visual Studio to the Internet Explorer and
Microsoft Internet Information Server (US) processes.

• Debug the file just like you would debug any other form or function. View your
running documents, open documents to debug, set breakpoints, and then preview the
files again. Breakpoints on the client or server will occur and you can single-step
through your script and check the process state.

xviii Programmer's Guide

Introducing Visual InterDev

Develop Web Applications on a Team
Visual InterDev 6.0 is specifically designed to meet the unique challenges of team-based
Web development. Visual InterDev Web projects are connections to Web applications on a
Web server. With Visual InterDev Web projects in local mode, you can take advantage of
developer isolation to change and test application files locally before they are committed to
the master Web server.

Add pages.

b ~
Work with the local and master versions
of your Web applications .

.

@it@(j:ij

i: cf J [1'.) t~ [;@ I ~
frsf5~1~iio·~ -------.. ·-- ·- -----'"-·-------·-- ·'
1

:: r@ vidue/MyWebApplication
~... CJ _private
~ ... CJ _ScriptLibrary

ffl·· CJ images
i 1..~ ~1D1~111-a-m-1
~h?..<£) global. asa

~ El·· tlfm DataEnvironment
~ ~... ~~ Connection
L. .. 8 [!) search. htm

Right-click to choose aw orking mode.

Try It!

• When creating a Web project, select local mode. You can change this later by choosing
from the Working Mode options available from the Project menu.

• With a local copy of a file, save the file, and preview it in the browser.

Notice that the file is being served by the local system, not the master Web server. If
IIS is installed on the client system, .asp files can also be previewed.

• If you are working with team members on the application, try refreshing the project to
view files they have been added to the master Web application by other developers. To
refresh the project, use the Refresh button on the Project Explorer toolbar or right-click
the project and select Refresh.

• Use Microsoft Visual SourceSafe to add version control to your Web application.

Programmer's Guide xix

Introduction

Creating and Modifying Database Objects
If you are using Microsoft SQL Server, you can also work on your database using the
Microsoft Visual Database tools. After you create a connection in your project, you can
work on database diagrams, database objects, and queries.

~d~.~~-s--........ - .. ·-·-····-IY3.!.~.~-~-~----·-
city 1 varchar

:char !5 0 0

11 0 0

Try It!

My Database Project

. S~lution 'My Database Project' (

El··· I@
EJ... (j pubs (VIDUE)

i ~.=.' .. Queryl.dtq
, i§l Schemal .dtq

Solution 'My Database Projedr.o.:

a... rffi1 Bx:i?¥fa§~sif>r~l~c~ 11 ;

g... (j pubs (VIDUE) :: .
~ .. ~Database Diagra

1
,

~... erg Database Di~:.
· ltJ·.. [ill authors !,

ltJ ... [ill employe~!
Ltl ... [ill jobs

ltJ ... [ill titleauth(i

! rfl... !ml titles

B .. erg Database Dil

! Ltl·.. [ill authors f
! rfl... [ill titleauthtL

B .. f:tm Tables I:.
! Ltl... [ill authors ;

i LtJ... [ill discounts

~... rrm employee

: m emp_id
................. ,, ·:-·~·

• Explore the database by expanding the list of database objects in the Data View
window.

• Experiment with the design of your database without affecting the database until you
choose to save your new design by creating a new database diagram.

xx Programmer's Guide

Introducing Visual InterDev

• Create, modify, or delete database objects such as tables, views, and stored procedures
using Data View.

• Open a table and add data or choose to design the table and complete complex DDL
operations by changing a column's data type.

• View and save change scripts of the SQL code for the changes you made in a database
diagram. You can submit change scripts to database administrators for review and
execution in controlled database environments.

Using the Query Designer, you can choose from four different ways to construct and
execute queries against any ODBC-compliant database. The figure below shows a query
open in the Query Designer.

'. Solution 'My Database Project' (
El.. ~ My Database Project

El ·· @ pubs (VIDUE)

... [§].' .Q~~rv~ '.~~9;

.. ~ Schemal.dtq

Solution 'My Database Projec
~ My Database Project

B· · IS pubs (VIDUE)
~.. ~ Database Diagr a .

l±J .. c:J5 Database Die:

. B--· c:J5 Database Di~'.
J gi... [] authors Li
! ffi... [IT) titleauth~
~--· t1ni Tables
. tii .. mn authors

gi... I[} discounts

a.. III employee

' i··--· [} emp _id
j en fname
j ... en minit

!·---- m lname
: en job_id

L::· ~, j9b_1~1

Programmer's Guide xxi

Introduction

Try It!

• Create a new view using the Query Designer. In the Data View window, right-click the
Views node and select New View.

• Drag tables from the Data View tables section to the query and use graphical controls
to manipulate the query definition. Drag fields between the table to specify a
relationship.

• Specify search criteria, sort order, and output columns in the criteria grid.

• Create a variety of query types: Select, Insert, Update, and Delete. Use an SQL pane to
type ANSI-SQL statements - or let the Query Designer generate the SQL for you.

• Browse and edit live views of data in your database tables.

xxii Programmer's Guide

P A R T

Basics

The chapters in the Basics section provide you with the core background and "how to"
information for Microsoft Visual InterDev. Each chapter lists the explicit procedural steps
to accomplish common Web application tasks.

Chapter 1 Web Project Management

A Web project contains the files and information needed to create and publish a single
Web application within Microsoft Visual Studio. This chapter takes you through the steps
to create a Web project and add new or existing files to it.

Chapter 2 Web Basics

This chapter steps you through creating pages, modifying them, and previewing them, in
the browser of your choice.

Chapter 3 Database Basics

Database Basics describes how to create a connection to a database, query the database,
display data from the database on your Web pages, and create a form that allows your
users to edit and update database records.

Chapter 4 Editing Basics

This chapter covers basic HTML editing, adding components to your Web pages, adding
script to make your Web pages more dynamic, and choosing an alternate editor.

Chapter 5 Walkthroughs

The W alkthroughs take you through common Web application scenarios with instructions
and illustrations. Scenarios covered in this chapter include "Creating a Home Page,"
"Debugging Script," "Working with Multiple Developers," "Deploying a Web
Application," and "Simplifying Data Entry Pages."

C H A P T E R

Web Project Management

In Microsoft Visual InterDev, you first create a Web project so that you can:

• Manage working files locally.

• Maintain master files on a server.

A Web project contains the files and information needed to create and publish a single
Web application within Microsoft Visual Studio. The files within a Web application can
consist of several different file formats that you modify during design time: HTML pages,
Active Server Pages (ASP), image files, layouts, themes, and so on.

A Web project manages two copies of the Web application: local and master. All the
master Web application files are stored on the master Web server. Before editing files, you
retrieve files from the server so that working copies of the files are placed locally into your
local Web application.

In a multiple-developer scenario, each member of the development team has his or her own
project, which can refer to the same master Web application. For a walkthrough scenario,
see "Working with Multiple Developers" in Chapter 5, "Walkthroughs." For more
information about projects, servers, and Web applications, see "Project Architecture" in
Chapter 6, "Web Project Concepts."

Note You can create two types of projects with Visual InterDev - Web projects and
database projects. For information on database projects, see Chapter 22, "Managing
Database Projects."

Programmer's Guide 3

Part 1 Basics

Creating a Web Project
A Microsoft Visual InterDev Web project is stored locally on your machine. The files
on your machine make up the local Web application. In Microsoft Visual Studio, Web
projects and other project types are accessed from a solution.

To create a new Web project

• Add a new project to a solution if you have one already open in the Project Explorer.

-or-

Create a new solution and a new project simultaneously.

If you are creating your first Web application, then it's easiest to create a solution and a
project at the same time.

To create a solution and a Web project at the same time

1. From the File menu, select New Project.

2. From the New tab, select Visual InterDev Projects in the left pane and New Web
Project in the right pane.

N ~w P,roject . :. . _ _ , ,' _ · • · _ El

[:i N.;]'.~~~~l;[~~l
(. ~.:= r-··~ ~,~J~~~JJ~t~!~~,~J:E~i~E~~~j
[il r±J .. fill Visual Studio

u

!
le

-----~J; __ _

Sample App
Wizard

t1 1:<
•-:;;--:;::.".;~;-W·~ .. -·v~~-~-Vh"=m,-,,--:;;-;~',";;.:~~'..":-:';';:;"'.'.';'';~·~.~-~WW~•~ty•~w- v'v'~~~~--V-V'W'-'""'~~~~7;;-.;;::T;:':::'T\~::;;;:-;T~:-::·:;~-:::•;::••,~:.:::;:.~-::·.:;:,W•::;:-V~V'•..,_....hWAvJ

.::. ~

H tit ;1.ocatiory:·_--_.
; .. ~r·· ...

rofiles\DevA\Personal\Visual Studio Projects\Project1 1: Jr
:-l!\ J;;lose curref1t :sol~t:ri·o/'~'=·:· ''t'"'S?'S- ----. -

~]~ '. . . ···•· . !l 8d~ to• c:ren! ~~tion .
f :_; ---~~~~--....... --~~~~~---------~~...--~...--------...--..........

4 Programmer's Guide

Chapter 1 Web Project Management

3. In the Name text box, type a name for the new solution.
If you already have a solution open, select the Close current solution option.

4. ..~!!".~ _ _Qp_~~: .!~}~}~~!1".~e~ -~h_e_ ~~!'.-~!_?j ~~!. ~-~z,~-~~-- ·······--··--··---·------· ------·-····---.. ----
Web Project Wizard -- Step 1 of 4 ' , · . . ,

Specify a seiver and mode
The Web server must have FrontPage98 server extensions installed. To allow you to
debug on the server, the Web server must also be running llS 4.0.

Master mode updates the master Web application automatically, and local mode
allows you to make updates explicitly.

What .§erver do you want to use?

l'(~~r§ :_ry:,r, ,.
r; • !;;onnect using Secure Sockets La_yer

What mode do you want to work in?
C Master mode

(."; .bocal mode

Cancel

Step 1: Specify a server and mode

Specify the name of your Web server, whether you want to connect using Secure
Sockets Layer, and specify Master or Local mode.

Step 2: Specify your Web

You can choose to have Visual Inter Dev create a new Web application on your
Web server, or you can connect to an exisiting Web application.

Step 3: Apply a layout

It is not necessary to use a layout. If you want, you can select None now and apply
a layout at a later time.

Step 4: Apply a theme

It is not necessary to use a theme. If you want, you can select None now and apply
a layout at a later time.

Programmer's Guide 5

Part 1 Basics

Proiect Explorer - YourSerlier . . . 13
·r~':'t~,

Solution 'project 1' (1 project)

rB··· ~ YourSerlier/Project1

The new solution appears in the Project Explorer. If the Project Explorer is not visible,
choose Project Explorer from the View menu. Expand the solution to see the new project
and its files.

Adding Files
Once you have created a Web project, you can add any type of file to the project.

To insert a file into a project

1. In the Project Explorer, select the project or subfolder where you want to insert the file.

2. From the Project menu, choose Add Item.

The Add File dialog box appears.

3. In the New tab, choose a file type in the right pane and provide a name in the Name
box. For more information, see "Creating Pages" in Chapter 2, "Web Basics."

-or-

In the Existing tab, browse to the file or files to be inserted. Be sure to select the
appropriate file type in the Files of Type box.

4. Click Open to add the file to the Web project.

Note You can also add files or folders to a project by dragging them from
Windows Explorer onto a folder in the Project Explorer.

6 Programmer's Guide

Chapter 1 Web Project Management

Deleting a Web Project
You can delete a Web Project and its associated Web application or just remove the project
from a solution without deleting its files.

A Web application has two copies of the Web files that are managed by the Web project:
local and master. In addition to deleting the project file (.vip), you can delete one or both
of these copies of the application. For more information about local and master files, see
"Web File Processing" in Chapter 6, "Web Project Concepts."

To delete a Web project

1. In the Project Explorer, select the Web project you want to delete and from the Edit
menu, choose Delete Project.

2. In the Delete Project dialog box, choose which copy of the files you want to delete.

To delete Choose

Your local Web project (.vip) file and the local
copy of the Web application

Local Web project and all associated files

Your local Web project (.vip) file and the master
copy of the Web application

Master Web project and all associated files

Your local Web project (.vip) file and both the
local and master copies of the Web application

Both the master and local Web projects and
all files

3. Choose OK.

Note If you choose to delete only the local Web project and files, you can later create
a project that points to the master copy of the Web application that remains on the
server.

If you choose to delete only the master copies, you also delete the local project file
(.vip), but the local directory and Web application files remain on your machine.

You might want to keep your project and its associated files but remove it from the
solution.

To remove a project from a solution

1. In the Project Explorer, select the Web project you want to remove.

2. From the File menu, choose Remove Project.

3. In the message, choose Yes.

The project reference in the solution file is removed but the project file and the local
and master Web files remain.

Programmer's Guide 7

CHAPTER 2

Web Basics

Once you've started working in a Web project, you typically want to experiment with your
HTML pages and Active Server Pages before updating the Web server with new files.
Microsoft Visual InterDev makes it easy to create pages, modify them, and preview them,
in the browser of your choice, before actually updating the server.

Creating Pages
Once you have a Web project, you can add HTML pages and active server pages
(.asp files) to make your Web site functional.

Note Client-side script is added to HTML pages. Server-side script is added to
active server pages.

To create a new page

1. In the Project Explorer, select the project or subfolder where you want to add the
new page.

2. From the Project menu, choose Add Item.

3. In the Add Item dialog box, click the New tab.

4. In the right pane, select HTML Page or ASP Page.

5. Type a new file name in the Name box.

6. Click Open.

Programmer's Guide 9

Part 1 Basics

Microsoft Visual InterDev opens the new page in the editor.

• The default view of the editor for HTML pages is Design View. As you edit your page
in Design View, your text appears with all the formatting applied, the way you see
documents in a word processor. For more information, see "Editing HTML" in
Chapter 4, "Editing Basics."

~·~ HIM Lt Ra gel . htm . · . · l!lliJ 13

• The default view for ASP pages is Source View. As you edit in Source View, your tags
and script are color-coded, making them easier to read. For more information, see
"Adding Scripts" in Chapter 4, "Editing Basics."

%@ LANGUAGE=VBScript %>
<HTML> 'c:'.:

<HEAD> I:'.
<META NAME="GENER~i\.TOR" Content="Microsofd '.

~t ;
<META HTTP-EQUIV="Content-Type" content='T
</HEAD> L
<BODY> II

<P>Insert Content Here</P>

</BODY>
</HTML>

10 Programmer's Guide

Saving Pages
It is always a good idea to save your pages regularly to avoid losing your work.

To save the current page

1. Click the page to make sure it has the focus.

2. From the File menu, choose Save.

The file is saved to your local machine. Depending on your network connection, the file
might also be updated in the master Web project:

Network Local mode

Online The page is only saved locally.

Offline The page is only saved locally.

Master mode

The page is saved locally and updated
on the master Web server.

The page is only saved locally.

For more information about the differences between local mode and master mode,
see "Project Architecture" in Chapter 6, "Web Project Concepts."

After you save the page, you can preview the page in Quick View or any browser.
For more information, see the next section, "Previewing Pages."

Previewing Pages
While editing HTML or ASP pages, you can easily check your progress by previewing
the page.

To preview a page you are editing

• In the editor, click the Quick View tab at the bottom of the window.

Note It is not necessary to save a file before viewing it in Quick View.

When you preview a page, you see how the page would appear in Microsoft Internet
Explorer 4.0. However, because you are previewing the page locally, there are certain
limitations:

• Server-side script is not processed.

• Data-bound design-time controls do not display data.

To get around these limitations, view the page directly in a browser, such as Microsoft
Internet Explorer 4.0.

Chapter 2 Web Basics

Programmer's Guide 11

Part 1 Basics

To preview a page in a browser

1. In the Project Explorer, select the file.

2. From the View menu, choose View in Browser.

If you are working locally, a local copy of the file is opened by the default browser.
You can also preview the page in a different browser, or change the default browser.

To preview a page in a different browser

1. In the Project Explorer, select the file.

2. From the View menu, choose Browse With.

3. In the Browse With dialog box, select a browser.

If you have a browser installed on your machine that is not listed in the dialog box,
you can add it to the list by clicking Add.

Note You can change the default browser in the Browse With dialog box by
selecting a browser from the list and then choosing Set as Default.

12 Programmer's Guide

CHAPTER 3

Database Basics

Microsoft Visual InterDev gives you the capability to connect to data in most databases.
For example, you can connect to SQL Server, Microsoft Access, or Oracle databases.
Once you've established a connection to a database, you can select a particular set of
records from the database, and display this set of records on your Web page.

To make displaying and editing data on your Web page easy, Microsoft Visual InterDev
supplies a wide variety of data-bound design-time controls:

• The Recordset control references a database and allows you to extract a set of records.

• The RecordsetNavbar control lets you move from record to record within the database
from your Web page.

• Additional individual controls, such as labels, text boxes, and list boxes, display the
data from the database.

o The Grid control makes it easy to display the data from your database on the Web
page. You can display multiple records in a grid, sort the records, and control the
formatting and layout of the data.

When you add a design-time control to an ASP or HTML page, the control automatically
places script on the page, which displays the data and enables functionality such as editing
the data or navigating through the records. You can also extend the functionality of the
Web page (for example, add validation or custom navigation) by writing event handlers
which can modify the state of the controls.

Note You can also use the data environment to add data connections and create
and manage data-bound controls in one location. This enables you to create powerful
custom solutions directly, using the Microsoft Visual InterDev editor and debugger to
modify the script that displays and manipulates the data on the Web page. For more
information, see "The Data Environment" in Chapter 18, "Database Concepts."

Programmer's Guide 13

Part 1 Basics

Connecting to a Database
Before you can display or edit data on your Web page in Microsoft Visual InterDev, you
must connect to a database. A data connection provides your Visual InterDev project with
access to a particular database. You can then use this data connection to connect to the
database and display its data on your Web page.

When you connect to a database, you first create a data source name (DSN) for the
database or choose an existing one. Then, you use the DSN to create a data connection
and add it to your project.

To create a data source name

1. Open your Visual InterDev project and select it in the Project Explorer.

2. From the Project menu, choose Add Data Connection.

The Select Data Source dialog box appears.

,

Look jn: .••. • l?~:~·~.~~!2~~::-cocc::::-··;7-:::-:T···,,, ... '""-··~-, ''7 ·;c-····-::: ::·· ··c:··7', •• , ""''':"~J~J ·.

•Help

14 Programmer's Guide

Chapter 3 Database Basics

3. On the File Data Source tab, choose New.

4. Select the database driver you want and choose Next. The database driver must match
the type of database you are connecting to. For example, if your database is a SQL
Server database, select the SQL Server driver.

5. Type the name for the connection file and choose Next.

The extension .dsn is automatically added to the file name.

6. Choose Finish.

7. In the dialog box or boxes that appear, fill in the driver-specific information, such as
the name of the database to access or the file to open.

Note When you specify a database, use the relative path to the database, not its
location on your development computer. For example, if the database is located on
a Web server, use the UNC path to the database. This ensures the database will be
available from your Web server.

You are returned to the Select Data Source dialog box, and the file data source name
you created is displayed in the list.

For more information on the types of data sources you can create, see "Choosing a Data
Source Name" in the Microsoft Visual Database Tools online documentation.

Tip You can also use the ODBC Data Source Administrator (located in the ODBC
folder of your Control Panel) to create and name data sources. These data sources will
appear in the Select Data Source dialog box, and you can use them to create data
connections in Microsoft Visual Inter Dev.

Once you've created a data source name for a database, you can use it to establish a data
connection to that database.

To add a data connection to your project

1. On the File Data Source tab of the Select Data Source dialog box, select the data
source name you created and choose OK.

A dialog box showing parameters for the data connection is displayed. The dialog box
you see depends on the type of data source you have selected. For example, if you
select a SQL Server data source, you'll see a SQL Server Login dialog box.

2. Enter the data connection parameters. For example, for a SQL Server database, enter
the login ID and password.

The data connection is displayed under the DataEnvironment folder in your project,
underneath the global.asa folder. You can also browse and edit the data from this
database in the Data View window.

You are now ready to retrieve and view the data you want from the database. For more
information, see the next section, "Querying the Database."

Programmer's Guide 15

Part 1 Basics

Querying the Database
Once you've added a data connection to a database, you can query the database to specify
a set of records that you want to use with a particular Web page. Microsoft Visual InterDev
makes sets of database records available through the Recordset design-time control.

To add a Recordset control to an ASP or HTML page

1. Make sure that you have set options to view controls graphically. From the View
menu, choose View Controls Graphically. To set this option as default, use the
HTML node of the Options dialog box.

2. Open the ASP or HTML page in the editor. For information on creating ASP or HTML
pages, see "Creating Pages," in Chapter 2, "Web Basics."

3. Drag the Recordset control from the Design-Time Controls tab of the Toolbox onto
the page.

Tip If the Recordset control is not shown in the Toolbox, right-click on the
Toolbox, choose Customize Toolbox, and add the Recordset control.

You can now specify a set of records for the Recordset control.

To specify a set of records

1. In the Recordset control on the ASP or HTML page, set the Connection property to
the name of the data connection for the database whose records you want to see.

2. Set the Database Object property to Table to display all the records in a table in the
database. (You can also set this property to other sets of records in the database, such
as a view or a stored procedure.)

3. Set the Object Name property to the name of the table or other database object whose
records you want to use.

You can display data from this set of records by adding a data-bound control to your ASP
or HTML page and setting the Recordset control as the control's data source. The control
is then bound to the records in that table. For more information, see the next section,
"Displaying Records."

Note You can also create data connections and add Recordset controls to your
Visual InterDev project using the data environment. The data environment is especially
valuable if you want the ability to programmatically manage your data and recordsets
in one location. For more information, see Chapter 19, "Viewing Data," and "The Data
Environment" in Chapter 18, "Database Concepts."

Visual InterDev allows you to take advantage of Microsoft Internet Explorer 4.0' s
client-side data binding, as well as the more traditional server-side data binding. For
a discussion of client-side data binding, see "Data Binding" in Chapter 18, "Database
Concepts."

16 Programmer's Guide

Chapter 3 Database Basics

Displaying Records
You can display data on your Web page by using data-bound design-time controls, such
as labels, text boxes, and list boxes, and provide navigation among the records by using a
navigation control.

To add a data-bound control to an ASP or HTML page

1. Make sure that you have set options to view controls graphically. From the View
menu, choose View Controls Graphically. To set this option as default, use the
HTML node of the Options dialog box.

2. Open an ASP or HTML page that contains a Recordset control in the editor.

3. Drag a data-bound control from the Design-Time Controls tab of the Toolbox onto
the page. For example, you can drag a Textbox control onto the page to display the
contents of a particular field.

4. Right-click the control and choose Properties.

5. Set the Recordset property of the control to the name of a Recordset control on the
current page.

6. If the control has a Field property, set it to the name of the field from the recordset
you want the control to display.

7. Set other control properties as desired.

For more information on data-bound controls and setting their properties, see
"Design-Time Controls" and "Dialog Boxes and Windows" in the Visual InterDev
online documentation.

8. Close the properties window, save the .asp or .htm file, and preview the file in
the browser. The text box will display the field you selected for the first record in the
connected database.

For information on previewing ASP or HTML pages in a browser, see "Previewing a
Page in a Browser," in Chapter 14, "Managing a Site Diagram."

You can easily provide navigation among the records you display on your Web page by
using the RecordsetNavbar control.

To provide navigation among records

1. Open the ASP or HTML page in the editor.

2. Drag the RecordsetNavbar control from the Design-Time Controls tab of the Toolbox
onto the page.

3. Right-click the control and choose Properties.

Programmer's Guide 17

Part 1 Basics

4. Set the Recordset property of the control to the name of a Recordset control on the
ASP or HTML page.

5. If you want, close the properties window, save the .asp or .htm file, and preview
the file in the browser. You can use the RecordsetNavbar control to move among the
records in the underlying recordset.

By default, the RecordsetNavbar control provides Move to First, Next, Previous, and
Move to Last buttons. You can use these buttons to display the different records in the
underlying recordset on the page.

You can also customize navigation behavior by writing event handlers and using the object
model exposed by this control.

You can also use the Grid design-time control to display multiple records from a database
on your page. For more information, see the "Data-bound Grid Sample" and "Grid
Properties Dialog Box" in the Visual InterDev online documentation.

For more information about displaying your data on Web pages, see Chapter 19, "Viewing
Data"; Chapter 20, "Modifying Data"; and the next section, "Creating Event-Driven
Forms."

Creating Event-Driven Forms
You can easily create a form with different modes on your Web page using the
FormManager control. For example, you can create a data-entry form with Insert, Update,
and Delete modes. When specified control events, such as clicking a button, occur, the
form moves from one mode to another.

You can also specify property settings and methods to run both when a particular form
mode is established, and during the transitions from mode to mode. All of this is
accomplished without scripting, using the FormManager control's property pages.

For detailed examples of how to create a data-entry form using the FormManager control,
see "Simplifying Data Entry Pages" in Chapter 5, "Walkthroughs."

The first steps in creating a Web page on which you'll use the FormManager control are
to add a Recordset control and any other design-time controls you'll want to display on the
page in the various form modes. For example, you may want text boxes to display data,
and buttons to use to switch between form modes. For information on how to add data
bound controls to ASP or HTML pages, see "Querying the Database," and "Displaying
Records," earlier in this chapter and Chapter 19, "Viewing Data."

When you have the controls you want to use in your form modes on the page, you can add
a FormManager control, and then define its modes and transitions.

Note Although it's common, you don't have to display data on forms created using the
FormManager control. If you aren't displaying data on your forms, you don't need to
use a Recordset control.

18 Programmer's Guide

Chapter 3 Database Basics

To add a FormManager control to a page

1. Make sure that you have set options to view controls graphically. From the View
menu, choose View Controls Graphically. To set this option as default, use the
HTML node of the Options dialog box.

2. Open the ASP or HTML page in the editor.

3. Drag the FormManager control from the Design-Time Controls tab of the Toolbox
onto the page.

Note If you're using DHTML on your page, be sure to place the FormManager
control on the page below any of the controls you want to use with the form. This
ensures that the FormManager will have access to all objects on the page.

To add a form mode

1. Right-click the FormManager control on the page and select the Properties command
from the shortcut menu.

2. On the Form Mode tab of the Property Pages, enter a name for the FormManager
control if you want. This name is used to identify the control in the script that it
generates. If you don't supply a name, a default name is used.

3. In the States group, enter the name you want to use for the mode in the New
Mode box.

4. Choose the arrow key to the right of the New Mode box.

5. The new mode's name is displayed in the Form Mode list.

For information on how to define the mode, see "To define a mode" later in this
chapter.

To specify a default mode

1. Right-click the FormManager control on the page and select the Properties command
from the shortcut menu.

2. On the Form Mode tab of the Property Pages, select the mode you want to use for the
default mode in the Default Mode list.

This mode must be one of the modes you've named and placed in the Form Mode list.

To define a mode

1. Right-click the FormManager control on the page and select the Properties command
from the shortcut menu.

2. On the Form Mode tab of the Property Pages, select the mode you want to define in
the Form Mode list.

3. In the Actions Performed for Mode table, select a control whose property you want to
set or for which you want to run a method in the Object field. For example, you can set
a Textbox control's disabled property to true, or use the addltem method to add a value
to a Listbox control.

Programmer's Guide 19

Part 1 Basics

4. In the Member field, select the property you want to set or the method you want
to run.

5. In the Value field enter the value you want to set the property to, or any parameters
for the method.

If you're setting a property, the Value field will show <value>. Replace this with the
property setting. If the setting is a string, use quotation marks.

If you're running a method, the Value field will show empty parentheses. Put any
parameters for the method inside the parentheses. In the drop-down list in the Member
field, the methods are listed with their parameters.

6. Repeat steps 3 through 5 until you've defined all the property settings and methods for
this form mode.

For more information on defining form modes, see "Simplifying Data Entry Pages" in
Chapter 5, "Walkthroughs."

To specify when mode transitions occur

1. Right-click the FormManager control on the page and select the Properties command
from the shortcut menu.

2. On the Action tab of the Property Pages, select the mode whose transition you want
to define in the Current Mode field of the Form Mode Transitions table.

3. In the Object field, select the object you want to use to trigger a change from this
mode to another mode. For example, you may want the user to click the Insert button
to move from Update mode to Insert mode.

4. In the Event field, select the control event that will trigger the mode transition. For
example, the onclick event of the Insert button.

5. In the Next Mode field, select the mode you want to move to when the control event
occurs. For example, you might move to Insert mode.

6. Repeat steps 2 through 5 until you've defined transitions among all the modes on
your form.

7. In the Actions Performed Before Transition table, you can also set properties and
define methods that will take effect when a mode transition occurs, but before you
move to the new mode. For information on how to make these settings, see "To define
a mode," earlier in this chapter.

In addition to the methods provided with Microsoft Visual InterDev and the design-time
controls' Scripting Object Model, you can also reference methods you've defined in the
page's script in a mode or a mode transition. For example, you might want to run a method
that validates data after you press a Save button, but before you move to a new mode.

20 Programmer's Guide

Chapter 3 Database Basics

To associate user-defined methods with a mode

1. Follow the instructions in "To define a mode" or "To specify when mode transitions
occur" above.

2. In the Member field of the Actions Performed for Mode table on the Form Mode
tab, or the Member field of the Actions Performed Before Transition table on the
Action tab, enter your user-defined method.

3. Enter the method's parameters (if any) within parentheses in the Value field.

Your method will run when the mode is activated, or when the mode transition occurs.
If you have more than one user-defined method, the methods will run in the order in
which they appear in the table on the property pages.

For an example of a user-defined method on a data-entry form, see the Data Entry Form
Sample in the online Visual InterDev documentation.

Programmer's Guide 21

CHAPTER 4

Editing Basics

Microsoft Visual InterDev application development is centered on creating Web pages.
To help you, Visual Inter Dev provides a rich set of tools for editing and scripting HTML
pages (.htm files) and Active Server Pages (.asp files).

Your primary tool is a Web page editor. You can work with Web pages using a number
of editors, depending on your preference and what you are doing with the Web page. The
default editor is the Visual InterDev HTML editor, which allows you to work in Design
view to see your page as it will look in a browser. Alternatively, you can work in Source
view, which allows you to work with the "raw" HTML text and objects on your pages.

Editing HTML
To display text in a Web page, you simply start a new HTML document (.htm file) or ASP
page (.asp file) and enter text onto the page. If you want to format the text, or add features
such as images or links to your page, you use HTML (Hypertext Markup Language).

If you aren't an HTML expert, you will probably want be familiar with how HTML works
before getting started. Knowing HTML can help you get the most out of your Web-based
application.

When you are creating HTML text, you most often use Design view in the editor, which
displays text with all the formatting applied, the way you see documents in a word
processor. Design view is the default editor for .htm files.

For more precise control over your document, you can edit in Source view, which displays
your text and the HTML tags that are used to format it.

Working with HTML Tags
HTML is built around tags, which are formatting instructions embedded in the text. Tags
are surrounded by angle brackets (< and >) to distinguish them from the surrounding text.
Tags are also typically used in pairs around the text you want to format - an opening tag,
the text, and a closing tag, which is marked with a slash (/). For example, the following
line shows how you would format some text as bold (tag) and some as italic (<l> tag):

Welcome<IB> to my <I>home page<JI>.

Programmer's Guic.lc 23

Part 1 Basics

When displayed in a browser, this line would look like this:

Welcome to my home page.

HTML includes tags for character formatting and paragraph formatting (for example,
centering a paragraph). Tags are also used to specify features such as images, links, tables,
and forms. The following table provides a brief outline of commonly used tags.

To insert

New paragraph

Image

Link

Table

Form

Use

 plus the name of the image file to display

<A> plus the address of the page to jump to,
followed by link text

<TABLE> to define the table
<TR> for each row
<TD> for each cell

<FORM> to define the form
<INPUT> to define controls such as text boxes
and buttons

Example

<P>This is a
paragraph<IP><P> This is a
second paragraph<IP>

Go to
Home Page</ A>

<TABLE>
<TR>

<TD> Row 1, Cell 1
<ITD>

<ITR>
<TR>

<TD>Row 2, Cell 1
<ITD>

<ITR>
</TABLE>

<FORM>
Name:
<INPUT Type="Text">
<INPUT Type="Submit">
<!FORM>

Note You can easily create HTML elements in your documents using commands from
the HTML menu.

For details, refer to the topics "Inserting Links and Bookmarks in Web Pages" and
"Creating and Editing Tables in the HTML Editor" in the Visual InterDev online
documentation.

To create forms, you can use Visual InterDev design-time controls. For details,
see "Creating Forms with Design-Time Controls" in Chapter 24, "Scripting
with Design-Time Controls and Script Objects."

24 Programmer's Guide

Chapter 4 Editing Basics

Creating HTML in the Editor
The Visual InterDev editor allows you create HTML in new pages or existing ones.
For details, see "Creating Pages" in Chapter 2, "Web Basics."

When you are editing, you can work with HTML in different ways:

• In Design view, you can format text and paragraphs the way you would in a word
processor and the editor will embed the appropriate HTML tags for you.

For example, if you select text and click the bold button in the toolbar, the editor
inserts and <IB> tags around the selected text. For more complex tags, such
as an image or table tag, you can insert an entire element by filling in choices in a
dialog box.

• In Source view, you can see HTML tags and edit them directly. You can also embed
HTML tags using toolbar buttons or menu commands, as you can in Design view.
For example, you can insert a link by choosing a menu command and specifying a
target page.

The editor colors HTML text in Source view to help you distinguish the different parts
of HTML tags at a glance. For example, tag names are displayed in one color, tab
attributes such as SIZE= in another, and so on. Unrecognized text is colored also,
which helps you find errors, such as unmatched tag brackets, quickly.

Tip You can change the editor font style and colors in the Options window. From
the Tools menu, choose Options, expand the Text Editor node, and choose Fonts
and Colors.

• In Quick view, you can see what .htm files will look like in Microsoft
Internet Explorer. (Quick view might not show you an accurate rendering of .asp files.)

At any point during your editing you can switch between views to see the effects of edits
you are making.

To switch between views

• At the bottom of the editing window, choose the tab for the view you want.

Note When you switch from Source to Design view, the editor might adjust white
space (for example, spaces and tabs) and completes any incomplete HTML tags that
exist in the Web page. For details, refer to the topic "Design View, HTML Editor" in
the Visual InterDev online documentation.

When you initially create or open a Web page, it is displayed in either Design or Source
view, depending on the default for the type of Web page you are editing.

To change the default view

1. From the Tools menu, choose Options.

2. In the left pane, expand HTML.

3. In the Initial view area, choose the default view for HTML (.htm or .html) pages
and ASP (.asp) pages.

Programmer's Guide 25

Part 1 Basics

Adding Components to a Page
In addition to typing HTML text, you can add a variety of components to your page,
including:

• Controls and objects

• References to other files, including images, links, and style sheets

• Database connections

• HTMLtext

In general, you can add components to your page by dragging them from either the
Toolbox or the Project Explorer.

Adding Controls and Objects
When you are working in Microsoft Visual InterDev, the Toolbox lists controls that you
can use on your page. These include:

• Visual lnterDev design-time controls User interface controls such as text boxes
and buttons that allow you to use standard object-oriented techniques for creating and
scripting Web pages.

• ActiveX controls Controls that are registered on your computer.

• HTML controls Standard HTML controls such as text areas and buttons.

• Server components A list of the components and objects supported on Microsoft
Internet Information Server (IIS) that you can use in server script. These include
ActiveX Data Objects (ADO), Index Server objects, and more.

To use any of these components, drag them from the Toolbox onto your page at the
location you want them to appear. Most controls and objects are displayed graphically in
the HTML editor in both Design view and Source view. In Source view, you can specify
that you want to see the text version of an object.

Note You can customize the Toolbox by adding new elements and tabs. For details,
refer to the topic "Toolbox" in the Visual InterDev online documentation.

Adding References to Files
When you add images, links, documents, and style sheets to your page, you don't actually
embed the element in your page. Instead, you add a reference to that element. For example,
when you add an image, you are adding an HTML tag that includes the name of
the .gif file containing the image.

26 Programmer's Guide

Chapter 4 Editing Basics

You can add a referenced element to your page by dragging it from the Project Explorer.
You can do this with:

• Images If you drag an image from the Project Explorer to the page (for example,
from the images node), the HTML editor creates an tag.

• Web pages By dragging an .htm or .asp file onto the page, you automatically create
a hyperlink to that document.

• Documents You can drag a text file or word processing document from the Project
Explorer onto the page to create a link that allows users to download the document.

• Style sheets If you drag a style sheet (.css file) from the Project Explorer into the
header of the document, you automatically create a link to that style sheet.

You can drag elements onto the page from any drag source, including Windows Explorer.
When you do, the URL of the element is made relative to your project root.

Note You might need to fix the URL of the link in Source view to be correct for your
deployed project.

Adding Database Connectivity
If your Web pages interact with a database, you can easily create data commands in your
Web project and data-bound controls on a page. Using drag and drop, you can:

o Add a data connection to your Web project. A data connection contains information
required to connect to a specific database in a specific location.

o Add a data command to an existing data connection. A data command is a pointer to
a database object- a table or view, stored procedure, database diagram, or query.

• Create data-bound controls on the page.

For more information about data connectivity, see Chapter 3, "Database Basics"
and Chapter 18, "Database Concepts." For details about using data-bound controls,
see "Getting Records" and "Displaying Data on Your Web Page" in Chapter 19,
"Viewing Data."

Storing and Reusing HTML Text
If you want to reuse any element in your page - HTML text, a control, a script, a link,
or any other element that you can select - you can store it on the Toolbox. Select the
text, and then drag it to the Toolbox. When you drop it, the Toolbox creates a new
element called HTML Fragment. You can then drag the element from the Toolbox to
any other page.

If you want to store multiple elements this way, you can give them meaningful names
and even create a special tab in the Toolbox for them.

Programmer's Guide 27

Part 1 Basics

Adding Scripts
You can create basic Web pages using nothing more than text and HTML tags. However,
if you want to create sophisticated, data-driven applications, you can add script to your
Web pages.

Scripts are programs that run when users display your Web page. They can be simple or
complex, depending on your needs. You can include either client scripts or server scripts.

For example, you can use script to create these types of Web pages:

• A page that includes the current time and date along with the text.

• A page that displays the number of times that the Web site has been visited.

• A page that displays a form for users to fill in and then returns requested information
or updates a database.

• A page that performs database operations that include transaction processing and other
sophisticated data management operations.

You can write script in a variety of scripting languages. Two common scripting languages
are Microsoft Visual Basic, Scripting Edition (VB Script) and JScript, Microsoft's
implementation of the ECMAScript language.

You can choose whichever language you prefer, and you can even use different languages
for different scripts on the same Web page.

The Microsoft Visual InterDev editor helps you create script with these features:

• Source view, where you can write script directly.

• Colored text that clearly shows you the different elements of your script statements.

• IntelliSense, which helps you create error-free script statements by presenting you with
the names of methods and properties as soon as you've typed in the name of an object.

• The Script Outline Window, which displays the client and server objects in your page,
and a list of the events that you can write script for.

Note You can use Visual InterDev design-time controls to generate script for common
tasks such as querying a database, presenting an input form, or displaying a report. For
details, see Chapter 19, "Viewing Data," Chapter 20, "Modifying Data," and Chapter
24, "Scripting with Design-Time Controls and Script Objects."

For more information about scripting, see "Editing and Scripting" and "Scripts in Web
Applications" in Chapter 23, "Scripting Concepts."

After you've written scripts, you can use the built-in debugger commands to help you find
errors in them. For more information, see "The Script Debugging Process" in Chapter 23,
"Scripting Concepts" and Chapter 26, "Debugging Your Pages."

28 Programmer's Guide

Choosing an Alternate Editor
Microsoft Visual InterDev allows you to choose from a variety of editors to work with
files in your project. The default editors are:

Chapter 4 Editing Basics

• The HTML editor, which allows you to edit the layout of your Web page and create
scripts. The HTML editor opens automatically when you create or open an HTML
page or ASP page.

• The style sheet editor, which opens when you create or edit a cascading style sheet
(.css file).

o The text editor, which opens when you create or edit a text file.

If you prefer, you can use an alternate editor. Choices include:

• Microsoft FrontPage, which you might use if you are already familiar with FrontPage,
or if you want to take advantage of specific FrontPage features such as W ebBots.

• An external editor of your choice.

You can choose a specific editor to open a page as needed, or you can make it the default
editor for that type of page.

To open a Web page in a selected editor

1. In the Project Explorer, right-click the name of the file and then choose Open With.

2. Select an editor to use. If you want to make your choice the default editor, choose Set
as Default.

3. Choose OK.

Programmer's Guide 29

CHAPTER 5

Walkthroughs

The topics in this section provide mini-tutorials that walk you through some typical Web
application development scenarios using Microsoft Visual Inter Dev. These walkthroughs
are intended to provide:

• A guide to accomplish the primary tasks you'll need in your own work.

• Step-by-step instructions to be used as a learning exercise.

• A means to get acquainted with Visual InterDev.

• Pointers to more detailed information in other topics.

Creating a Home Page
Creating a home page for your Web site is a great way to become familiar with a new Web
authoring and development product. If you already know how to create navigation bars,
how to design page layouts, and how to code with JavaScript, this is an opportunity to see
how to accomplish these tasks using Microsoft Visual Inter Dev.

In Visual InterDev, creating a home page consists of some or all of these steps:

• Creating a Visual InterDev Web Project

• Adding the Home Page

• Including Graphics

• Applying a Consistent Visual Design

• Adding Navigation to Your Pages

• Customizing Your Home Page

• Maintaining Your Home Page

Creating a Visual lnterDev Web Project
Before you can begin drafting a home page, you must first create a Web project.
A Visual InterDev Web project organizes the files used for a Web application,
such as images, documents, and HTML pages.

When you create a Web project, you specify a Web server and project name for the
Web application. You can also specify a page layout and a visual presentation style
for all pages.

Programmer's Guide 31

Part 1 Basics

To create a Visual lnterDev Web project

1. From the File menu, choose New Project.

The New Project dialog box appears.

2. On the New tab, choose Visual InterDev Projects from the left pane and then select
New Web Project from the right pane.

3. In the Name text box, enter a name for the Web project.

4. Click Open.

The Web Project Wizard appears.

The Web Project wizard steps you through the process of selecting a master Web server,
a Web application name, as well as a default theme and layout for the Web application.

For more information, see "Creating a Web Project" in Chapter 1, "Web Project
Management," and Chapter 10, "Managing Web Projects."

Adding the Home Page
You can easily add a home page to your Web application using a site diagram. A site
diagram is an electronic whiteboard that allows you to rapidly prototype a new Web
application with skeleton HTML or ASP pages you can later customize.

To create a new home page

1. From the Project menu, choose Add Item.

The New Tab (Add Item Dialog Box) appears.

2. From the Web Project Files folder, select Site Diagram.

3. In the Name text box, type a name for the site diagram.

4. Click Open.

A new site diagram opens.

5. From the Diagram menu, choose Add Home Page.

32 Programmer's Guide

Chapter 5 Walkthroughs

A page graphic appears in the site diagram with the name "Home."

~ E.ile !;.dit ~Jew E.roject ~uild [lebug Diagram~ Iools Window tlelp

i ~. ~m [~ ~ ~ 1 · ·Jb · . ~,, ·~~@·~~~-tlTML Page ctrl+Shift+H

® New A2.P Page Ctrl+Shift+A

·c · ~£ Add E~isting File, , . Ctrl+Shift+E
·:~!
_:::!.J

r§l Add to ~lobal Navigation Bar C:trl+Shift+G

s+i Reorder Global [:iavigation Bar

£. Q.etachfrornParent C:tt·l+Shift+D

Home

~Jew Page Breaks

· [@] B_ecalculate Page Breaks

6. From the File menu, choose Save.

The changes to the site diagram have been saved and Visual InterDev creates a new
home page called Default. htm or Default. asp depending on the Web server
you use.

Note Microsoft Internet Information Server specifies def au 1 t . asp for a home
page and Microsoft Personal Web Server specifies default. htm for a home page
by default.

For more information, see Chapter 12, "Designing a Web Site," and Chapter 14,
"Managing a Site Diagram."

Including Graphics
Adding multimedia, such as .gif, .wav, or .avi files, to a Web page helps liven the overall
appearance and presentation of a page. You can easily add graphics and other HTML
elements to your home page using the WYSIWYG approach of Design View in the
HTML editor.

To include a graphic on your home page

1. In the Project Explorer, right-click your home page and choose Open.

Note Microsoft Internet Information Server specifies def au 1 t . asp for a home
page and Microsoft Personal Web Server specifies default. htm for a home page
by default.

2. In the HTML editor, select the Design tab.

Progra1111rn:r's Guide 33

Part 1 Basics

3. From the HTML menu, choose Image.

The Insert Image Dialog Box appears.

4. In the Picture Source text box, type the name of the .gif or .jpeg file.

-or-

Click Browse to search for the image file.

5. In the Alternate Text box, type the information you want users to see if the image
doesn't display.

6. Click OK.
~·~~~~~~~----.. ~.-. -.. -.... ~-.. -.. -.. -.. -.~,.H-.. -... -.. -.. -... ~

~at• Default.htm l!ll!l 13

My Home Page

Applying a Consistent Visual Design
Establishing a consistent visual appearance for pages gives your Web site a professionally
designed look. You can use a Microsoft theme to give the pages in your Web application
visual consistency. Themes can be applied to an entire project, or to individual pages.

To create a consistent visual look using Microsoft themes

1. In the Project Explorer, select your home page.

Note Microsoft Internet Information Server specifies default. asp for a home
page and Microsoft Personal Web Server specifies default. htm for a home page
by default.

34 Programmer's Guide

2. From the Edit menu, choose Apply Theme and Layout.

The Apply Theme and Layout dialog box appears.

3. On the Theme tab, choose a theme name.

A graphic of the theme appears in the preview pane.

Them~ j Layout)

C E,reserve current theme:

f!, · 8J)ply theme:

<none>
Arcs
Artsy
Automotive
Blue Mood
Blue Rose
Construction Zone
Expedition
Grid
In Motion
lfE.

Nature
Network Blitz

.:

~:~;l~~-·-·---~:~:::~c:··:-· ... · 2J: · ~··::".·::·::"·,,,,,.,,,

Q.irectory:

i":f Bullet

C:\Program Files\Common Files\Microsoft Shared\MSThemes\

Be store Def a ult Directory

4. Click OK.

OK

Cancel

For more information, see "Site Consistency" in Chapter 11, "Site Design," and
Chapter 17, "Customizing Page Appearance."

Adding Navigation to Your Pages

Chapter 5 W alkthroughs

Navigation bars contain the links that allow your users to move through your Web site.
Making that navigation consistent will make it easier for your users to browse your site.
You can automatically generate navigation bars using layouts or a design-time control and
site diagrams.

When you apply a layout or use the PageNavbar control, you can use site diagrams to design
and maintain the navigation structure of a Web page. Visual InterDev then uses the navigation
structure you designed to generate the links on the navigation bars for your pages.

Programmer's Guide 35

Part 1 Basics

To add a layout to a page

1. In the Project Explorer, select your home page.

2. From the Edit menu, choose Apply Theme and Layout.

The Apply Theme and Layout dialog box appears.

3. On the Layout tab, choose a layout name.

A graphic of the layout appears in the preview pane.

Apply J heme and Layout 13

4. Click OK.

D
D
D
D
D

'----'

Left:
• sibling buttons

61(,,.l·
ir;;;72~,~~~f'.;'.~ 1 ·.

· : ;,ti~,;:'.:· :::I

For more information about site navigation, see Chapter 13, "Designing Site Navigation."

Customizing Your Home Page
Once you have used the built-in features to create and design the basic structure of your
home page, you can easily customize your pages. Use HTML text and tags to create the
content for your page. You can also use script to perform tasks to enhance your Web
pages. For example, you can use with client-side script to generate text that tells visitors
when the home page was last updated.

36 Programmer's Guide

To add an update message

1. From the Project Explorer, right-click the home page and choose Open.

The home page opens in the HTML editor.

2. On the Source tab, type the following code after the <BODY> tag:

<Script language="JavaScript">
< ! - -

document. write("< I> Page Last Updated: <I I> "+document. 1 astModifi ed):
II -->
<!Script>

3. On the Standard toolbar, click Save.

4. To view the last updated text, click the Quick View tab.

For more information, see "Adding Scripts" in Chapter 4, "Editing Basics," and
Chapter 25, "Scripting with HTML Elements."

Maintaining Your Home Page

Chapter 5 Walkthroughs

Once you have created your home page, the task switches to maintaining that page. It is
important to your users that the links work correctly. You can maintain the links between
items in your home page using Link View. You can quickly see if a link is broken and read
the error for the link.

Programmer's Guide 37

Part 1 Basics

To view the links for your home page

• From the Project Explorer, right-click the home page and select View Links.

A link diagram appears displaying the home page in the middle of the diagram. The
link diagram can be filtered to show different types of links to make managing those
links easier. The link diagram can be filtered to show different types of links to make
managing those links easier.

.->·.:~.-
,. / ,. !:! Layout Header Start

(;

If you link more items to your home page, you can use Link View to verify them. For more
information, see "Link Verification" in Chapter 11, "Site Design," and "Repairing Links"
in Chapter 16, "Maintaining Links."

Debugging Script
Debugging script allows you to find errors in your script, such as syntax errors, run-time
errors, and logic errors, before you publish that script to the World Wide Web. You
probably already know how to set breakpoints for debugging and how to step through lines
of script. Now you can see how to accomplish these tasks using Microsoft Visual InterDev.

In Visual Inter Dev, debugging script consists of some or all of these steps, once you have
added script to a page:

• Adding Client Script to an HTML Page

• Setting Breakpoints

• Stepping Through Lines of Script

• Changing the Value of a Variable

38 Programmer's Guide

Chapter 5 Walkthroughs

Adding Client Script to an HTML Page
Debugging client script is an easy way to become familiar with debugging in
Visual InterDev. Client-side script is processed on the browser, while server-side script is
processed on the Web server. For more information about client and server script,
see "Debugging Client Script" and "Debugging Server Script" in Chapter 26, "Debugging
Your Pages."

To use this walkthrough, you will need to create a file with script to debug. The sample
client script, located between the <SCRIPT> <ISCRI PT> tags in the example below,
validates the length of password entries made in a simple form. The remaining HTML tags
define the form and do not participate in the script debugging process.

To use the script below, create a new .htm file and switch to Source view in the HTML
editor. Copy the script and HTML then right-click and choose Paste As Text from the
shortcut menu. For more information, see Chapter 25, "Scripting with HTML Elements."

<SCRIPT LANGUAGE="JavaScript">
function validatePassword()
{

var password;
password= document.frml.txtPassword.value;
II debugger;
alert("You entered "+password);
if (password.length< 4) (

alert("You must enter 4 characters or more!");
document.frml.txtPassword.select();
return false;

else (

}

alert ("Your form is being submitted!");
return true;

}

<!SCRIPT>
<P><H2>Please enter a password.</H2>
<P>
<FORM NAME="frml" METHOD="Post" ACTION="Process.asp" OnSubmit="return validatePassword()">

<INPUT NAME="txtPassword" TYPE="Password">
<INPUT NAME="btnSubmit" TYPE="Submit" VALUE="Submit">
<INPUT NAME="btnReset" TYPE="Reset" VALUE="Reset">

<!FORM>

Note JavaScript is case sensitive, so the sample script above must appear in your .htm
file exactly as it does here.

Programmer's Guide 39

Part 1 Basics

Please enter your password.

When the user clicks the Submit button, the script checks that the password length is four
characters or greater. The script generates a message box listing the password the user
entered. If the password is four characters or greater in length, the user is then redirected to
the page called by the Action element of the <FORM> tag.

If you haven't created Process.asp, the file that the form will call, the browser will display
the "object not found" error. If the password is fewer than four characters in length, a
message box appears indicating the character length requirement.

Setting Breakpoints
To specify a place in the script where you want to stop and examine the state of the
process, you can use breakpoints. Breakpoints indicate the line of script you want to stop
on in the application. You can then step through, step into, or step over lines of script
individually to find errors. Breakpoints show up as red octagons to the left of a line of
script in Source view.

Note To debug client scripts in Microsoft Internet Explorer, you must be using
Internet Explorer 4.0 and debugging must be enabled. For details, see the
Internet Explorer documentation.

40 Programmer's Guide

To set breakpoints

1. Open the .htm file and select Source view.

2. Place the cursor in the line of script you want to set a breakpoint in.

3. From the Debug menu, choose Insert Breakpoint.

A red octagon appears to the left of the line of script.

Note You can also set or remove a breakpoint by placing the cursor in a line of
script and pressing F9.

To~unchthedebugger

1. In the Project Explorer, right-click the .htm file and select Set As Start Page.

2. Launch Internet Explorer 4.0 and load the .htm page into the browser.

3. From the Debug menu in Visual InterDev, choose Processes.

The Processes dialog box appears.

4. In the Process area, select Microsoft Internet Explorer, and then select Attach.

Microsoft Internet Explorer and your machine name appear in the Debugged
Processes area.

5. In Internet Explorer, enter a password and choose Submit.

Chapter 5 Walkthroughs

The script executes until Internet Explorer reaches the breakpoint. When Internet Explorer
reaches the breakpoint, it stops and displays the source script in Source view.

A yellow arrow superimposed over the breakpoint icon indicates the line of script where
the debugger stopped.

For more information, see "Debugging Client Script" in Chapter 26, "Debugging
Your Pages."

Stepping Through Lines of Script
To execute script one line at a time, you can use Step Into. After stepping through each
line, you can view the effects of the statement by looking at the page in Internet Explorer.

To step into lines of script

1. Open the .htm file in Source view and set a breakpoint at the following line of script:

<FORM NAME="frml" METHOD="Post" ACTION="Process.asp" OnSubmit="return
validatePassword()">

Programmer's Guide 41

Part 1 Basics

<•- f>as:s:word.Htm ' , l!lliJ 13

<P><H2>Please enter a passworct.</H2>

<P>
<FORM NAME= rrfrrnl rr METHOD= rrpost rr ACTION= "Process. asp"

On.Su.brrii t= rrret urn val ictatePassworct () rr>

<INPUT N]1.ME = rr t :x t Pass wo r ct rr TYPE= rr Pass wo r ct rr >

<INPUT NAME=,,btnSubrnit" TYPE="Subrnit" VALUE="Subrnit

<INPUT NAME= "btnReset rr TYPE= rrReset rr VALUE= rrReset ">

</FORM>

Note When you place a breakpoint in the line of HTML above, you are actually
specifying that the script stop executing when you click the Submit button,
OnSubmit="return validatePassword()".

2. Launch the debugger.

3. Enter a two-character password and choose Submit.

<P><H2>Please enter a passworct.</H2>

<P>
<FORM NAME= "frm1 rr METHOD= rrpost rr ACTION= rrprocess. asp rr

OnSu.l::irnit=rrreturn validatePassword () rr>
<INPUT NAME= ''txtPassword" TYPE= "Password">
<INPUT NAME= rrbtnSubrni t" TYPE= "Subrni t" VALUE= ''Subrni t

<INPUT NAME="btnReset'' TYPE=''Reset'' VALUE="Reset">
</FORM>

Internet Explorer reaches the breakpoint and switches to Source view. A yellow arrow
appears superimposed over the breakpoint icon.

4. From the Debug menu, choose Step Into, and then choose Step Into a second time.

The following line of script is highlighted:

alert("You entered "+password);

5. From the Debug menu, choose Step Into again.

42 Programmer's Guide

Chapter 5 Walkthroughs

IJ £ile £.dit Y:iew §o F_sivorites .t!.elp

~ ¢:i c;> @ [fl ~ ·~
'

Back Forward Stop Refresh Home Search

!J ; Address @) http: 11 my ~J ebserv er/ my w ebappl i cation/ pass\\I ord. htm

I
Please enter yo;

I
-1.~---J:

- !
I

I·
I.

I

M.icrosoft lnte'rnet.EKplor~r ·.~Bl·

Yol~ have entered to

l.r::::::::::::9:~::::::::::::1J

Internet Explorer executes the alert script and displays the message box.

6. Choose OK.

Internet Explorer reaches the next line of script and switches to Source view.

You can continue stepping into lines of script and view the results in Internet Explorer.

To execute procedures in script as a single unit, you can use Step Over. Step Over allows
you to skip a procedure or function and step through the next procedure or function.

After stepping over a procedure, you can view the effects of the procedure by looking at
the page in Internet Explorer.

To step over lines of script

1. Open the .htm file in Source view and set a breakpoint at the following line of script:

<FORM NAME="frml" METHOD="Post" ACTION="Process.asp" OnSubmit="return
validatePassword()">

Note When you place a breakpoint in the line of HTML above, you are actually
specifying that the script stop executing when you click the Submit button,
OnSubmit="return validatePassword()".

2. Launch the debugger.

Programmer's Guide 43

Part 1 Basics

~. Enter a three-character password and choose Submit.

Internet Explorer reaches the breakpoint and switches to Source view. A yellow arrow
appears superimposed over the breakpoint icon.

4. From the Debug menu, choose Step Over.

5. Choose OK in each alert message.

Internet Explorer executes the following script as a procedure unit:

password= document.frml.txtPassword.value;
//debugger;
alert("You entered"+ password);
if (password.length< 4){

alert("You must enter 4 characters or more!");
document.frml.txtPassword.select();
return false:

Internet Explorer reaches the line of script after the procedure unit and switches back to
Source view. For more information, see Chapter 26, "Debugging Your Pages."

Changing the Value of a Variable
You can assign variables in your script as you debug. You change the value of a variable
from the Immediate window. When Internet Explorer reaches a breakpoint and switches to
Source view, you can then change the value of a variable and view the results in the Locals
window.

To change the value of a variable

1. Open the .htm file in Source view and set a breakpoint at the following line of script:

<FORM NAME="frml" METHOD="Post" ACTION="Process.asp" ONSUBMIT="return
validatePassword()">

2. Launch the debugger.

3. Enter a three-character password and choose Submit.

Internet Explorer reaches the breakpoint and switches to Source view. A yellow arrow
appears superimposed over the breakpoint icon.

4. From the Debug menu in Visual InterDev, choose Step Into.

5. From the View menu, select Debug Windows, and then select Immediate.

6. In the Immediate window, type the following:

password="test"

44 Programmer's Guide

7. Press Enter.

8. From the View menu, select Debug Windows, and then select Locals.
,-:---·-·-----·-·- -···--·----··------·--·---·-·-----------·-··-··-----·-·--··--·--·--·----·---·-----······-·-··-·-··. --·---·-------------·---·---

11~-a~~~~~~~~~~~~~~c~-~~·- ·--- ---c- -----~-,--~------~---~---c-;------.. -. ____ Ji]
'Name I Value I T~1pe A
-~?_~ord ____ flest" ~. '

1

The Locals window displays the new value of the variable you entered in the
Immediate window.

Working with Multiple Developers

Chapter 5 W alkthroughs

Sometimes it takes more than a single developer to create and maintain a Web application.
When you work with a Web project, the master Web application is stored on a master Web
server. When you work in a team taking advantage of Visual InterDev's developer
isolation feature, individual team members work in local mode, with a local copy of the
master application. This enables multiple developers to access the same master Web
application from their local Web projects.

~h
@ ~

@.I t I
Develop.'.!r~stations I Master Web Server

In addition to working in local mode, to facilitate team-based Web application
development, you can use the built-in source control features of Visual InterDev.

Programmer's Guide 45

Part 1 Basics

In this walkthrough, the following scenarios are discussed:

• Using Source Control Features of Visual Inter Dev

• Creating a Master Web Application

• Sharing Web Application Files on the Master Web Server

• Controlling Sources with Microsoft Visual SourceSafe

Using Source Control Features of Visual lnterDev
Visual InterDev' s built-in source control features allow multiple developers to work on the
same files at the same time. When there are conflicts between different versions of the file,
Visual InterDev' s source control helps you merge the differences.

Visual Inter Dev allows multiple developers to create their own unique local Web projects
that access the same master Web application, which resides on a master Web server. Each
developer is able to get working copies of files, edit them, and then update the master
server.

If you have a copy of Microsoft Visual SourceSafe, you can use that to control your
sources instead of Visual InterDev's built-in source control features. Visual SourceSafe is
discussed later in this chapter under "Controlling Sources with Microsoft Visual
SourceSafe."

Creating a Master Web Application
You can create a master Web application on the master Web server and then share it with
other developers on your development team.

To create a master Web application

1. From the File menu, choose New Project. The New Project dialog box appears.

2. On the New tab, choose Visual InterDev Projects from the left pane and then select
New Web Project from the right pane.

3. In the Name text box, enter a name for the Web project.

4. In the Location box, enter a location on your computer for the new local project.

Note The name and location settings are for your local project only. These settings
are not saved to the server and do not affect the name of the Web application or the
Web site.

5. Click Open.

46 Programmer's Guide

Chapter 5 W alkthroughs

The Web Project Wizard appears.

Specify a server and mode
The Web server must have FrontPage98 server extensions installed. To allow you to

· . debug on the server, the 'Web server must also be running 11 S 4. 0.

Master mode Llpdates the master Web application automatically, and local mode
allows you to make updates explicitly.

What .§.erver do you want to use?

l~?;~~§ .. ~.~:;~:-·:;c::·-:::-;;;.-;:.:-:::·::::::::·:;:::::::·::-:::·-:·:-::·:-;-;::::·:;::-:c:..=:...,,=,.::".'"."''.--··:··:.---:::I±J ... ·.-.:::;-:;-:;::·:~

·~~~I:

[1' ,Connect using Secure.Sockets L13~e(: ;.

.,_...._~ What mode do you want to work in?
0 · Master mode

€ 1 1ocal mode

Cancel < ~ack ..) C::::::B:~~:~>:::::::JI

Step 1: Specify a server and mode

Specify the name of your master Web server and select Local mode. Local mode is
typically the preferred mode for each developer working in a multi-developer
environment. This allows the developer to edit and test files independently from the
master Web application.

Step 2: Specify your Web

Select Create a new Web application and type in a name.

Step 3: Apply a layout

It is not necessary to use a layout. If you want, you can select <none> now and
apply a layout at a later time.

Step 4: Apply a theme

It is not necessary to use a theme. If you want, you can select <none> now and
apply a theme at a later time.

6. Click Finish.

Eini:sh.

Programrrn:r's Guide 47

Part 1 Basics

Visual InterDev simultaneously creates the new Web application on the master Web server
and a new local project on your machine. After the new project is created, you see it
displayed in the Project Explorer in your solution.

You are now able to use the commands on the Project menu to add HTML and ASP pages,
get working copies, edit files, and update the server.

Now it's time to share files with one or more additional developers on your team. All new
developers need to create their own local projects that access the existing master Web
application. They follow steps that are similar to the ones above, except they do not create
a new W eh application.

To create local projects for an existing application

1. The new developer clicks New Project on the File menu to display the New Project
dialog box.

2. On the New tab, the developer selects Visual InterDev Web Projects in the left pane
and then New Web Project in the right pane.

3. The developer types his own settings in the Name and Location boxes for the new
local project and then chooses Open.

Note It is up to the developer's discretion whether or not to use the same name as
the first developer. Using the same name can make it easier to identify a project
that points to a shared Web application on the master Web server.

4. Click Open.

The Web Project Wizard appears.

Step 1: Specify a server and mode

The new developer specifies the same server as the first developer and also selects
Local mode.

Step 2: Specify your Web

The new developer selects the Connect to an existing Web application on
<server name> option.

The drop-down list contains a list of all available Web applications on the specified
server. The new developer selects the appropriate Web application from the list.

5. Click Finish.

Visual Inter Dev accesses the master Web application on the master Web server and creates
the new local project on the developer's machine. The developer then sees the new project
in the Project Explorer. The developer now has access to all the files that are in the Web
application on the master Web server.

For more information about working with local copies of a Web application, see Chapter 7,
"Working Locally," and "Project Architecture" in Chapter 6, "Web Project Concepts."

48 Programmer's Guide

Chapter 5 W alkthroughs

Sharing Web Application Files on the Master Web Server
You and other developers can now access the same files in the master Web application.
Each developer is able to get the latest version of each file. He can also get working copies,
edit them locally, and then update the server with the changes.

Visual InterDev's source control features prevent you and the other developers from
overwriting each other's work on the master Web server.

In the following scenarios Developer A and Developer B each have local projects on their
machines that access the same master Web application.

To synchronize local projects with the master Web application

1. Developer A chooses Add Item on the Project menu to add multiple files to his
project.

The files are now in his local Web application, but are not in the master Web
application. The (flag) icon indicates that a file exists in a local project but not in the
master project.

2. Developer A adds the files to the master Web application by selecting the files and then
clicking the Project menu, Web Files, and then Add to Master Web.

The new files are copied to the master Web application. However, Developer B's
project still reflects the former state of the master Web application.

3. Developer B synchronizes her project with the master Web application by clicking the
Project menu, Web Project, and then Synchronize Files.

Tip When working with other developers, it is a good idea to synchronize your
local project frequently.

Developer B's local project now reflects the changes made to the master Web server by
Developer A.

To resolve conflicts between files

1. Developer A wants to work on a local copy of Filename.htm. He selects the file in the
Project Explorer, chooses Web Files from the Project menu, and then chooses Get
Working Copy. He begins to edit the file.

2. Developer B also wants to work on Filename.htm. She selects the file in the Project
Explorer and clicks the Project menu, Web Files, and then Get Working Copy.

Even though Developer A has already obtained a working copy of the file,
Visual InterDev also allows Developer B to obtain a working copy.

3. Developer A has saved the file and wants to update the master Web application with
his latest version. He clicks the Project menu, Web Files, and then Release Working
Copy The master Web application is updated to reflect Developer A's changes.

Programmer's Guide 49

Part 1 Basics

4. Now Developer B has saved her changes and is finished with the file. She clicks the
Project menu, Web Files, and then Release Working Copy.

Visual Inter Dev compares Developer B's working copy against the master Web
application's version and detects merge conflicts. The Merge dialog box is displayed
to resolve conflicts.

5. Developer B can view all conflicts and choose how to resolve them. After resolving the
conflicts, the master Web application is updated with the resolved version of the file.

6. Developer A's list of files in the Project Explorer is now out of synch with the master
Web application. To get the latest version of the file in his local Web application, he
chooses Web Files from the Project menu, and then chooses Get Latest Version.

For more information about working with others on Web application files, see Chapter 10,
"Managing Web Projects" and Chapter 7, "Working Locally."

Controlling Sources with Microsoft Visual SourceSafe
If you have Microsoft Visual SourceSafe, you can extend the capabilities of
Visual InterDev's built-in source control to include version control, rollback, and other
source control features.

To use Visual SourceSafe with Visual lnterDev

1. In order to use Visual SourceSafe with a master Web application, you need to first
install it on the master Web server.

Because Visual InterDev is compatible with Visual SourceSafe, it is not necessary to
install Visual SourceSafe on the client (your local machine).

For information about installing Visual SourceSafe, see "Setting Up Source Control on
a Web Server" in Chapter 8, "Working with Multiple Developers."

2. After you have installed Visual SourceSafe on the server, you need to enable it on the
master Web application. Once one developer has enabled it on the master Web
application. Other developers must refresh their local project to take advantage of
source control.

To enable Visual SourceSafe as the source control, see "Adding Source Control to a
Web Application" in Chapter 8, "Working with Multiple Developers."

Now, instead of "getting" and "releasing" files, you "check out" and "check in" files.

For more information about using Visual SourceSafe, see Chapter 8, "Working with
Multiple Developers" and the Visual SourceSafe documentation.

50 Programmer's Guide

Chapter 5 W alkthroughs

Deploying a Web Application
Deploying a Web application creates a duplicate of your Web application in another
location. For example, you might want to make the application available to end users on a
production server or add a copy to an archive. The copy of the Web application created
when you deploy it is separate from your master Web application.

Once you have finished developing your application, Microsoft Visual InterDev makes
deployment easy. You simply specify the URL for the application and Visual InterDev
handles the details of copying the application to another server.

Deployment takes your application from a project to a published Web application.

In the figure above, the URL for the deployed application shows that the production Web
server is isl ehopl, the application name is myproducti onserver, and the start page for the
application is Headlines. asp. For more information about identifying start pages, see the
documentation for your Web server, such as Microsoft Internet Information Server.

In Visual InterDev, deployment consists of some or all of these steps:

• Preparing for Deployment

• Deploying to the Web Server

• Verifying Production Server Content

Programmer's Guide 51

Part 1 Basics

Preparing for Deployment
You can make deployment easier by verifying a few things before you deploy. For more
information about previewing and debugging, see "Previewing Pages" in Chapter 2, "Web
Basics," and Chapter 26, "Debugging Your Pages."

Deployment Check List

Do the links work?

Sometimes a link can be valid, but it jumps to the wrong page. You might want to verify that air of
your links jump to the appropriate page. For more information about verifying links, see "Repairing
Links" in Chapter 16, "Maintaining Links" and "Viewing Links for an Item in a Project" in
Chapter 15, "Viewing Links for an Item."

Are all files used by the application included in the Web project?

You can include any file that your application references. For example, if you provide documents to
download, such as a user's guide or production information, you can include the document file in
your Web project. For more information, see "Adding Files" in Chapter 1, "Web Project
Management."

Are all files updated on the master Web server?

If you have haven't released all of your working copies, the master Web may not have your latest
versions. For more information about updating the master Web server, see "Synchronizing Master
and Local Files" in Chapter 10, "Managing Web Projects."

Does your data connection point to the production database?

If your Web application will be using a different database than the database you used during
development, you need to make sure the data connection in your project points to the appropriate
database. For more information about preparing a data connection for deployment, see "Data Access
Architecture" in Chapter 18, "Database Concepts," or Chapter 28, "Web Application Deployment"

Deploying to the Web Server
Once you have your project ready for deployment, you can quickly make your application
available to your users. This procedure assumes that your production server has Microsoft
FrontPage Server Extensions installed. For information about deploying to a server without
FrontPage Server Extensions, see Chapter 28, "Web Application Deployment."

52 Programmer's Guide

Chapter 5 Walkthroughs

To deploy the Web application

1. In the Project Explorer, select the project for the Web application you want to deploy.

Project Explorer'~ Serye'r/My· .• : El

.LrL1J~t!~L~.L~------·~··-J
I .,.. Solution 'MyWebApplication
I a' ... r.121i - -
I ~
I ~··· CJ _private

I $··· CJ _Scriptlibrary
1 [±J-·· CJ images
I :
i ~··~ global.asa
' 1·?..<M Headlines, asp

I • L..s@) search.htm

ii.-""--------------
2. From the Project menu, choose Web Project and then Copy Web Application to

display the Copy Project dialog box.

Enter or select the name of
your production Web server.

rsource Web Server --- -------------·-····-----·-

! r.'.· Master Web server: h tp:llM yD evS e rve r

I (', b,ocal Web server: C \ My\•Ve b P roj e cts\My\•Ve bAp p\MyWebP..p p_I o ce I

rDestination Web server'~1~.:~~~~,;.,.:.....---"-~""""''"'~~~--'--~~~~..........,

;2.erver Name: · http: 11 •.·· ... L,~Y~~-~-~-~~~~~-~-~~~~~~-,-

W~b project: L.~~~~~~p~li~-~~~~---·-···~-7,,M, ... , , ...
[J' Connect !!Sing Secured Sockets Layer

r r
. n ~~.~.-.-~~.-.~.6.-.i~.!~ .i.6.g:w·~·~·:.e.~.91~·~.~1 C:. B,egister server components

1 · OK Cancel tlelp

Enter a name for the application on the production server.

Clear so that all files are copied.

Visual InterDev creates the application root on the production server specified and copies
your Web application. Your Web application is now ready to run in its new location.

Progra1111111.:r's Guide 53

Part 1 Basics

Verifying Production Server Content
You can verify the application by viewing it in your Web browser. You might also have
someone else run the application to make sure it is running properly. For best results, test
the application on a computer that does not contain a copy of the Web project files.

To verify your deployed application

• In the address box of a Web browser, enter the full URL to the application on the
production server.

Your application is ready for your users to browse.

54 Programmer's Guide

Chapter 5 W alkthroughs

Simplifying Data Entry Pages
Would you like to maintain a single page that accommodates all aspects of data entry
instead of several pages, each with similar sets of labels, text boxes, and buttons? Would
you like to concentrate on the functionality and leave the details of scripting and multiple
object models to Microsoft Visual InterDev?

Using the new FormManager design-time control to generate run-time script, you can
create a versatile page that uses modes for displaying, editing, and adding records to your
database.

Instead of scripting your own HTML forms, the modes you specify for the FormManager
handle property settings for controls and events on the page. Using modes, you can
simplify your Web application design by creating multipurpose pages.

The FormManager control makes creating a data entry page quick and simple, and later on,
maintenance is easy. Just open the file and change the FormManager's properties. For
more information about this control, see "Creating Event-Driven Forms" in Chapter 3,
"Database Basics."

A Data-Bound Form on a Web Page

''"'

Oh; play

Web VISitor Information

ID ti 9 __________ ,

First name t.Jon

::==========::::
Last name IV·/h e e I er

·----------------··---~-·-·······-··-·-··-~

M Owns a PC

Programmer's Guide 55

Part 1 Basics

To accomplish the data entry tasks, this page has two modes.

• Display mode provides a read-only view of a record. This is also the mode used when
the page is opened.

• Edit mode allows the user to enter and save changes to the record, add records, and
delete records.

To simplify the example, this page displays a few fields for each record. In a real
application, you can place as many fields as you need to accomplish your goal. The data
binding concepts are the same regardless of the number of fields.

Before creating a data entry page, be sure you have the following items ready.

Create a Web Project.

Solution
~ vidue/MyWebApplication

~... (2] _private
~-·· Gii _Scriptlibr ary

rE··· Gii images

.----..-----!·····.P.al 1•111111!1
[~J..l~ global .asa

~ B·.. ~ffm DataEnvironment
,....,..,...-....,!=----rE· .. ~Connection

L .. a [!) search. htm

Add a data connection.

Add an ASP with the
Scripting Object Model
enabled.

You can also create HTML pages using these controls. For more information, see
"Changing Target Platforms" and "Creating Forms With Design-Time Controls" in
Chapter 24, "Scripting with Design-Time Controls and Script Objects."

Once you are ready to begin, you can add data entry controls and modes to your ASP page
with the following steps:

• Creating the Data Entry Form

• Simplifying Scripting with Form Modes

• Completing the Data Entry Page

56 Programmer's Guide

Chapter 5 Walkthroughs

Creating the Data Entry Form
You can create a form on a Web page using data-bound controls. You may have used
HTML <FORM> and <INPUT> tags in the past, but data entry forms are most easily
implemented and maintained using Recordset and data-bound controls because you get the
same scripting object model in both ASP and Microsoft Internet Explorer 4.0 DHTML.

To add the Recordset control to your page

• From the toolbox, drag the Recordset control to your page. For details, see "Displaying
Records" in Chapter 3, "Database Basics."

Note The Scripting Object Model must be enabled to use the design-time controls.

For more information about the scripting object model, see Chapter 24, "Scripting with
Design-Time Controls and Script Objects."

Specifying an Updatable Recordset Control
After you drag the Recordset control to the page, choose the source of data and set the lock
type to anything other than read-only.

In the example, the Recordset control uses the DEntry table of the Gallery database
provided with the Visual InterDev samples available when you install Visual InterDev.
The type of lock used is "Optimistic" so that the form can update records.

Also, make sure the recordset is based on a database object that is updatable. For example,
views without a primary key or a unique index are not updatable, regardless of the cursor
type you select. For more information about updating records and specifying record sets,
see Chapter 20, "Modifying Data." For more information about the Gallery, see the
Visual InterDev online documentation.

Programmer's Guide 57

Part 1 Basics

Settings for an Updatable Recordset Control

Property Pages

c ~
f,. .~

I,·
I,:>
! .~ . ~ ·'

Set the cur:s:or type.

11 '-i -------1 1---------------------'· J
l ~

Choo:s:e an updateable lock type (any but
"read-only").

Choo:s:e where the cur:s:or i:s: proce:s::s:ed.

Adding Controls for Record Display and Mode Transitions
Once you have a Recordset control on your page, you can create the form for displaying
the fields you want to show the user anq for making changes to the records.

Using the design-time controls from the toolbox, you can quickly specify which recordset
fields to appear on the page. The field is a property of the control and makes the data
display easy to add and, as long as the fields in the recordset do not change, simple to
maintain. For more information about using data-bound controls to display records, see
"Displaying Records" in Chapter 3, "Database Basics."

58 Programmer's Guide

Chapter 5 Walkthroughs

Forms Made with Data-Bound Controls are Easy to Create and Maintain.

Add controls for changing the
mode of the form

Add co ntro Is for committing or
canceling changes to the database

~onnection: l_~on~~~t\on ~ _ ~~J
I Q.atabase Object: I T_ci,~lt::s _ Qbject Name: ' ..::::.1

Web Visitor Information

l_I_~~---------------·---j
fNameb::t

[;?i Owns a PC

;_B~_i]~
: ~ Forml'.,.lanager 1 -- ---- j

\o~~ig·~- l J~r~~J~~~":: >\ t$~~tg;:itit~~·'. ./

Add controls for displaying a record Add a navigation bar for moving
between records

To finish the visual design of the page, add and format text to provide a title for the form.
Also, create the row of buttons by adding a table to the page and dragging Button controls
into the cells of the table.

For the record display, drag Label, Textbox, and RecordSetNavBar controls to the page.
In the example, the textbox controls and the Checkbox control are bound to the recordset
using the property pages to specify the field that the control displays. For a list of all of the
initial property settings for the controls on this page, see "Completing the Data Entry
Page" later in this chapter.

Programmer's Guitlc 59

Part 1 Basics

Simplifying Scripting with Form Modes
Instead of creating and maintaining several pages with variations of the same control set,
the FormManager consolidates it all in a single page that can handle multiple tasks and is
easy to maintain.

Using the FormManger control, you can specify modes for your form without scripting the
controls and changes. The modes handle changes to the controls and updates to the
records.

In addition, you no longer need to scroll through page after page to find the method or
event you want to change. The FormManager Properties Dialog Box summarizes all of the
property changes and event handling for the page into two tabs.

Using the FormManager, you can specify modes for your form without scripting the
controls and changes. Of course, if you have user-defined functions, you can reference
them in the FormManager control as well. For example, you might have a validation
function that you want to use in the form. You can use the FormManager to call the
function and validate data whenever the recordset is updated.

Specifying modes covers three main concepts:

• Identifying each mode and specifying the property settings and methods for the
controls while the mode is active. In the data entry form, the modes specify when the
Save, Add, and Cancel buttons are hidden. In Edit mode, the Save and Cancel button
are shown, but the Add button is hidden. In Insert mode, the Add button is shown and
the Save button is hidden.

• Specifying the transition events that move between the modes or trigger specific
actions. For example, clicking the Edit button transitions the form from Display mode
into Edit mode.

• Adding the actions that occur after the transition event is triggered but before the
transition is complete. For example, clicking the Save button not only switches from
Edit mode to Display mode, but also updates the recordset with changes the user made
in the form.

To add Display and Edit modes to the data entry form, complete the following steps.

To specify modes

1. Open or create an ASP page that has controls for displaying records and buttons for
switching modes.

Tip Before adding modes, make sure you have all of the controls you need on the
form. For example, you may need to add buttons, such as an Edit button for moving
to the Edit mode and a Save button for triggering transition events in that mode.

If you decide to add more controls you can do that later, but adding controls before
adding the modes makes them readily available to the FormManager control. This
also applies to functions and methods you want to script in the page.

60 Programmer's Guide

Chapter 5 Walkthroughs

2. From the toolbox, add a FormManager control. Right-click the FormManager in the
editor to display its property pages.

3. Identify the modes you want and the control settings for each.

A plan for two modes and their control settings

Display mode

Display controls
are read-only

Edit button
is enabled

Save and Cancel
buttons are hidden

Edit mode

Display controls
a re \l'rite- enabled

Display button
is enabled

Save and Cancel
butt o n s a r e vis i b I e
and enabled

4. On the Form Mode tab, add a new mode for each mode you have identified.

Specify a name for the FormManager
object on your page.

'-
liame:

I
-States:

New

D~fault Mode

[)i~pl~Y

Enter a name for
the mode.

Close

Click here to add to
the mode list.

Programmer's Guide 61

Part 1 Basics

5. For each mode, specify the property settings and method calls for the display controls
and the form mode buttons on the Form Mode tab.

Note For each property you want to set for a control, add a line in the
PropertyNalue pairs grid. For example, if you want the button, btnNew, to be both
visible and disabled for the mode, in one line set the disabled property to true and
in another line, specify the Show() method. If you want to call a function you
created, you can leave the Object column blank and enter the function's name in
the Member column and any parameters in the Value column. Be sure to include
parenthesis around the parameters.

Tip To ensure proper form behavior, set the properties and methods for each
control in each mode. The Web environment is stateless so settings for controls
may remain into the next mode unexpectedly. For example, specify the Hide()
method for controls that should not be visible during that mode and Show() for
controls that should be visible. If you don't specify the Hide() or Show() methods
for each visual element in each mode, the buttons or textboxes may be visible or
hidden depending on a setting specified for those controls in the previous mode.

For a complete list of the mode settings for this form, see "Completing the Data
Entry Page" later in this chapter.

62 Programmer's Guide

Specify the Property Settings and Method Calls for the Mode.

Choose a mode to specify settings for.

Form Mode 1 Action]

~ame: ... i
States:------·---------------·-

New Eorm Mode:

> I I - •

Edit
D§.f ault Mode

I [)isplay L~J

er Value

~-....;..._.;...._·Q~sJ~.~Y~-~r:i. .. __ ~·-· ... J 9J~~~J~~·~-----·····-J tru~·····- •····-············-·
Editbtn J~!~.~~I_~~- J~_~I-~.~--- ,_
Savebtn ! disabled I true
Deletebtn --·Thid~- ····- ······1()- ·""

Select an object.

Clos~ :J Help

Specify a property
or method.

Enter a value or
para mete rs.

Note Be sure that the disabled property is properly set. If you want to enable the
control, its disabled property needs to be "false." These values are case-sensitive.
It is easy to inadvertently set it to the opposite.

Also, to make a control visible or hidden, use the Show() and Hide() methods. The
server will translate them into the appropriate tags and attributes when it sends the
HTML to the Web browser.

Chapter 5 W alkthroughs

6. On the Action tab, specify transition events for each mode button on the form. For a
complete list of the action settings for this form, see "Completing the Data Entry Page"
later in this chapter.

For example, when the Edit button is clicked, the form switches from Display mode to
Edit mode. Without additional scripting, the mode determines the changes the controls'
properties as specified in the Form Mode tab.

Programmi:r's Guide 63

Part 1 Basics

The Edit button triggers the switch to the next mode.

I Display Mode r Edit Button Edit Mode

While in Display mode, the Edit button specifies only that a new mode is active.
Additional actions are not required.

Select a mode. Select a mode to switch to.

Property Pages ": ,; El

Select an object and event that
triggers the switch to the next mode.

Some transition events require actions in order to complete the entire task intended by
the mode.

7. As needed, identify and specify actions to complete between the event and the
next mode.

For example, in Edit mode when the Cancel button is clicked, the changes should be
discarded before switching to Display mode. When the Save button is clicked, the
recordset should be updated before switching to display mode.

64 Programmer's Guide

A plan for the transitions and actions between modes

Edit Mode

Cancel Button--------.

Cancel Record
Update

I Display Mode I
......__ ___ .. ,Save Button llt-, ____ t

I
Update Re co rd set

Co ntro I

On the Action tab, these actions are specified as shown in the following figure.

The actions occur after the event happens and just before the mode switches.

Select an object, Enter v a I u es or parameters.

Specify a property that changes or
a met ho d a p p I i e d be for e th e t r a n s it i o n,

8. Choose Close.

Note If you add more controls and/or user-defined functions to the page, be sure to
incorporate them into the modes using the FormManager control.

Chapter 5 Walkthroughs

Programmer's Guide 65

Part 1 Basics

Completing the Data Entry Page
Now that you understand the basic use of the FormManager control, you can finish
specifying the modes and actions for the data entry page. You can use the tables below for
additional settings you might make to complete the data entry page.

• Initial Property Settings for the Controls on the Form

• Completing the Mode Settings for Controls

• Mode Transitions and Actions

Initial Property Settings for the Controls
You can set the initial properties for the controls on the form on the General tab of the
property pages for the control.

Example of Property Setting for a Button

The following table shows the property settings for the controls on the form before you add
the modes.

66 Programmer's Guide

Chapter 5 W alkthroughs

Controls for the record Initial settings

Recordset Connection to the Gallery database used with the Visual InterDev samples.
Database object = DEntry table
Lock type = Optimistic or Batch optimistic

Labell Inlbl Visible

Text boxl Idtxt Disabled (read-only), visible

Label2 Fnamelbl Visible

Text box 2 Fnametxt Disabled (read-only), visible

Label 3 Lnamelbl Visible

Text box 3 Lnametxt Disabled (read-only), visible

Label 4 PCchk Visible

RecordSetNavBar Visible, set to recordsetdtcl

Controls for form modes Initial settings

Display Button Name= Displaybtn
Caption = Display
Visible = true
Disabled = true

Edit Button

Save Button

New Button

Delete Button

Cancel Button

Name= Editbtn
Caption = Edit
Visible = true
Disabled = false

Name= Savebtn
Caption = Save Record
Visible =false
Disabled = false

Name= Newbtn
Caption= New
Visible = true
Disabled = false

Name= Deletebtn
Caption = Delete
Visible = true
Disabled = false

Name= Cancelbtn
Caption = Cancel
Visible =false
Disabled = false

Programmer's Guide 67

Part 1 Basics

Completing the Mode Settings for Controls
You can complete the mode settings for the data entry form by adding the PropertyNalue
pairs into the Form Mode tab.

Use the Form Mode tab of the FormManager control to specify a mode.

This tables shows the entire set of PropertyN alue pairs needed to complete the data
entry page.

Record display controls Display state Edit state

Labell Show() Show()

Textboxl Show() Show()
Disabled = true Disabled = false

Label2 Show() Show()

Text box 2 Show() Show()
Disabled = true Disabled = false

Label 3 Show() Show()

68 Programmer's Guide

Chapter 5 Walkthroughs

(continued)

Record display controls Display state Edit state

Text box 3 Show() Show()
Disabled = true Disabled = false

Label4 Show() Show()

Text box 4 Show() Show()
Disabled = true Disabled = false

RecordSetNavBar Show() Hide()

Mode event buttons Display mode Edit mode

Display Button Show() Show()
Disabled= true Disabled = false

Edit Button Show() Show()
Disabled = false Disabled = true

Mode action buttons Display mode Edit mode

Save Button Hide() Show()
Disabled = true Disabled = false

Insert Button Hide() Show()
Disabled = true Disabled = false

Add Button Hide() Show()
Disabled = true Disabled = false

Cancel Button Hide() Show()
Disabled = true Disabled = false

Delete Button Hide() Show()
Disabled = true Disabled = false

Mode Transitions and Actions
You can complete the transition and action settings for the data entry form by identifying
the events you want to use to switch between modes and the actions that occur before the
switch is completed.

Programmer's Guide 69

Part 1 Basics

Use the Action tab of the FormManager control to specify transitions and actions.

Property Pages 13

This table shows the settings for both panels in the Action tab of the FormManager control.
Remember, the mode itself specifies properties and methods on the display controls. The
following settings specify events that trigger the mode and the actions that must be
completed before entering the next mode.

Current mode Object and event Next mode Button actions

Display btnEdit Edit None

Edit btnDisplay Display None

Edit btnSave Display Recordset. Update()

Edit btnCancel Display Recordset.UpdateCancel()
Recordset.MoveNext()

Recordset.AddRecord() btnNew Display
Recordset.MoveLast()

Recordset.DeleteRecord() btnDelete Display
Recordset.MoveFirst()

70 Programmer's Guide

P A R T 2

Creating Web Projects

Part 2 provides a detailed look at Web applications and Web projects including
information about working modes, source code control, security, and the development
cycle.

Chapter 6 Web Project Concepts

Chapter 6 deals with some of the fundamental Web project concepts that underlie Visual
InterDev Web applications, including "Project Architecture," "Web File Processing," "The
Web Application Development Cycle," "Source Control," and "Security."

Chapter 7 Working Locally

In Visual InterDev, you have two options when working online. You can work directly
with the master Web files in master mode, or you can develop your own working model of
the Web application or its parts in local mode. This chapter covers how to work locally and
how to integrate with the master Web application when you are working locally.

Chapter 8 Working with Multiple Developers

Whether you are working on a team or by yourself, you can track and save your changes to
files easily with Microsoft Visual SourceSafe. This chapter explains using source control
with your Web application.

Chapter 9 Adding Security

This chapter covers security-related issues such as "Adding Security Pages," "Setting Web
Application Permissions," and "Connecting to a Proxy Server."

Chapter 10 Managing Web Projects

As you work on your Web application files, you might want to change the structure of your
project or make copies to other servers. This chapter discusses "Synchronizing Master and
Local Files," "Copying Web Projects," and "Reorganizing Project Structure."

CHAPTER 6

Web Project Concepts

Project Architecture
The project architecture in Microsoft Visual InterDev is designed to provide you with
everything you need to create robust Web sites and Web applications. By working through
a project you can concentrate on the details unique to your Web application and leave the
issues of file and source management to Visual Inter Dev.

The following sections provide descriptions of projects, Web applications, and system
components.

• The Web Project and Two Web Applications

• Local Mode and Master Mode

• The Project and Web Applications

The Web Project and Two Web Applications
A Web application contains the files that hold your Web content and functionality
such as .htm, .asp, and image files - for all or a portion of your Web site. Through the
Visual InterDev Web project, you can identify and manipulate your Web application files.
The project is not part of the Web application file set. Instead, it is a file used by
Visual Inter Dev to point to the files associated with your Web application.

Each developer creates a Web project in order to work on the Web application. The Web
project provides a graphical representation of the Web application files in the Project
Explorer. The Web project file remains on the developer's local computer and is not part
of the Web application. When you deploy a Web application, the project file does not get
copied with it, only the files containing your Web content and functionality.

When you create a Web project, you actually work with two separate Web applications.
One is the master set of files on the master Web server. A second local set of files exists on
your computer. When you make changes to the Web files in the project, those changes are
made directly on the local set of files.

Programmer's Guide 73

Part 2 Creating Web Projects

A Web project points to two Web applications

Developer
Workstation

Master Web

Ma st er
Web

Application

j

The project architecture provides you with several benefits. Visual InterDev uses the Web
project with its pointers to local and master versions of the Web application to carry out
your commands and to maintain the two file sets.

Project Explorer for managing Web files The Project Explorer gives you a single window
for managing the Web files in each of the Web applications. You can use the Project
Explorer to choose files to work with and to perform a variety of tasks.

The Project Explorer provides information about the files, including the status of each of
the files. The icons next to the file names communicate information about the specific files.

Isolated development This project architecture allows you to work independently from the
master set of files so that others using the master are not affected by the changes you make
to the files until you are finished working on the files. The project does this by managing
two versions of the Web application simultaneously. One version is the master version of
the Web files and can be available to other Web developers or to your end-users. The
second version resides locally for isolated development, testing, and debugging on your
local machine.

For example, in the figure above, you can see that one directory containing the Web files
is located on a server. This is the master Web application. The second set of the files is
located on your drive C. This is the local Web application. Through the Project Explorer,
a Web project facilitates the management of these files. You can work on the local set of
files, and when you are ready, update the master set of files.

Since the project is a file that is independent from the Web application, you can delete
the project from your local computer without affecting the master Web application files.
You can also use Visual Inter Dev to delete both the project and the Web application if
you want.

Easy access for multiple developers Using projects to manage the Web application files
allows many developers to work on the Web application simultaneously. Each developer
creates a project that points to the master application. Using their own projects, they can
work independently on their local machines.

74 Programmer's Guide

Chapter 6 Web Project Concepts

Projects in a Solution
Each Visual InterDev Web project you create in the Project Explorer is also part of a
solution. A solution can contain several projects of the same type or of different types. For
example, you might have a solution that contains one project consisting of a Web
application that you make available to the general public and a separate project containing
Web pages designed for a restricted group of users. Although both projects are in a single
solution, each points to a different Web application that may reside on different
Web servers.

Your solution can also include other types of projects, such as a database project or a
project created in Microsoft Visual J++. The . sin file stores the information pointing to the
project~hat are in the solution. When you open a solution file, the projects within the
solution are also opened in the Project Explorer. Like the project file, this solution file is
not considered a Web application and does not exist in the master Web application.

One solution can contain several projects

i , , Solution 'MySolution' (3 projects)
'EJ ... ~
! l rB··· D _private

i I riJ ... CJ _Scriptlibrary

l rB··· D images

! riJ··R.~ global.asa

j j·····P.. [!) HTML Pagel .htm

l L...-a ~ search.htm

itJ... ~ MyDatabase

rB··· f&3 MyVisualJApplet

If you create a Web project and do not have a solution open, one is created for you.

Local Mode and Master Mode
A project always maintains two copies of the Web application files, the master files and the
local files. When you make changes to files, those changes are made on the local copy of
the Web application files. The project's working mode determines when changes you make
to your local files are sent to the master Web application.

A project can work in one of two modes: local and master. Typically, you pick a mode
when you create a project and stay with that mode throughout your development cycle.

Programmer's Guide 75

Part 2 Creating Web Projects

Local mode Changes you make are saved only to your local version of the file set. The
master Web application is only updated with your changes when you specifically choose to
do so.

Master mode Changes you make to your local version of a file are saved to the local
version and the master version at the same time. Two sets of files are still maintained, but
they are updated simultaneously.

Note In addition to the two project modes, you can also work offline if you do not
want to connect to a Web server. For more information, see "Working Offline," later in
this chapter.

For more information about using project modes, see "Web File Processing," and "The
Web Application Development Cycle," later in this chapter; or Chapter 7, "Working
Locally."

The Project and Web Applications
You can find the project folder and its local Web application folder on the developer
workstation. The developer workstation generally contains the "local" copy of the Web
project files. The master Web server folder is located on the master Web server containing
the files available to other developers or, possibly, the end user.

Local Folders and Files
When you create a new Web project, you can reference either an existing Web application
on the master Web server or you can create a new Web application. When you create a
new project, Visual InterDev creates the following on your workstation:

• A new folder contains a local copy of the Web application. This folder includes a
subfolder for the local Web application that is used by the Web server on the
workstation when you preview and debug the pages.

• Web project definition files store information Visual InterDev uses to maintain and
manage the project. For example, you have the solution definition file (.sin file), the
project definition file (.vip file), and the Visual InterDev Cache file (.vie file).

• A newly created project appears in the Project Explorec If you choose to create a new
Web application, the files in the project reflect the files you specified in the wizard,
such as a search page (search.htm). If you choose to reference an existing Web
application, your new project mirrors the structure and contents of that Web
application.

• A new virtual root is specified on the local Web server if a Web server is present.

76 Programmer's Guide

Chapter 6 Web Project Concepts

Master Web Server Files
If you choose to create a new Web application at the same time that you create a new
project, Visual InterDev creates the following on the master Web server:

• A master Web application folder contains the master copies of the Web application.
Typically, this folder is a direct subfolder of the Web server's root directory and has
the same name as the Web application. This folder also includes several hidden
folders that store the metadata about your files. If you are running Microsoft Internet
Information Server, you also get a virtual root. For more information about virtual
directories, see the Internet Information Server documentation.

• A new application root points to the Web application folder and has permissions set
to allow pages to be read and script to be executed.

• An empty startup page (Global.asa file) and a search page (Search.htm file)
might appear in the root of the Web application folder, depending on the options you
selected. The Global.asa file allows you to control the Web application in a similar
manner as the main function or program in a traditional application. It is executed
when a visitor opens a page of the Web application and controls a variety of events for
the Web application.

Examples of File Names and Locations
To provide an example of where Visual InterDev places Web project files after you create
a new project, the following table contains sample paths for a typical set of files.

File type Project folder1 Local Web application Web server folder2
subfolder1

Solution definition \personal\projectname No No
(.sin)

Web project definition \personal\projectname No No
(.vip)

Web application file \personal\proj ectname \ \Default Web Site\ Web
(Global.asa) projectname_local\ application name

global.asa

Web application pages \personal\proj ectname \ \Default Web
(.htm, .asp) projectname_local\ Web Site\application name

application pages

1 For Windows NT, the default directory for Web projects is \winnt\Profiles\<Usemame>\Personal.
2 For Internet Information Server, the default root is Default Web Site. Your Web server may be set up differently.

Programmer's Guide 77

Part 2 Creating Web Projects

Web File Processing
How and when Web files are processed depends on a variety of factors, including the stage
of the development cycle you are in, the project mode you are working in, and the needs of
your Web application.

The following sections describe system components that affect your files and what
happens to your files at run time, design time, and test time.

• System Components Affecting Your Web Application

• Web Server Connections

• Run-Time Interaction of Components

• Local Mode Interaction

• Master Mode Interaction

• Offline Projects

System Components Affecting
Your Web Application
Each Web application requires a combination of hardware and software pieces that are
needed for developing a Web application that incorporates a database. The following table
provides a brief description of each.

Component

Developer workstation

Database server

Web server with
FrontPage Extensions

Web browser

Function

Creating a Web project, storing the project information, and connecting to other
components

Storing database definitions and data used by the Web application, if required

Storing the master Web application, sending your Web application pages to the
client, and processing server script and data requests including connections to
the database server

Testing and previewing the pages and processing client script

These components may reside on a single computer, or they can exist on two or more
computers in a network.

78 Programmer's Guide

Chapter 6 Web Project Concepts

Typical set of Web system components

Developer
Workstation

Master

End User
Workstation

:::::: Web Server (llS)
FP Server Extensions
ODBC Drivers

Web Server Connections
The detailed interaction of the components depends on the mode of your project. The
following section shows the difference between the interaction of system components
for designing and testing in local and master modes.

Typically the system components interact using HTTP, except for the database
components which are likely to use a Local Area Network (LAN) connection or Wide
Area Network (WAN).

Visual InterDev communicates with the master Web server via HTTP. Communicating
via HTTP allows you to develop Web applications in a distributed environment where
the master Web server and local development machine might only be connected via the
Internet. An HTTP connection also allows you to connect to the master Web server
through firewalls and proxy servers that protect you from unauthorized access to your local
development site. For information on configuring Visual InterDev for a proxy server, see
"Connecting to a Proxy Server" in Chapter 9, "Adding Security."

If your Web application uses a database server, you need to add an ODBC database
connection to your Web project to take advantage of the Microsoft Visual Database Tools.
For more information about creating a data connection and using databases with your Web
application, see Chapter 18, "Database Concepts."

After you have established a database connection, you can use the Visual Database Tools
to manipulate the database.

Programmer's Guide 79

Part 2 Creating Web Projects

Run-Time Interaction of Components
The simplest scenario for understanding how the components work together occurs at
run time. At run time, the Web server is the central component in the Web application.
It receives requests for Web pages from the user's Web browser, sends any requests for
data or database commands to the database server, receives data from the database server,
processes server script, and sends pages and data back to the user's browser.

When your Web application is ready for others to see, you can make the Web pages
available using the master Web server or you can deploy the Web application to a
production Web server.

A production server that is separate from your master Web server is recommended because
it provides an added layer of protection. For example, if you have multiple developers
updating the master server with their local files, it is possible that the changes made by
one developer can conflict with changes made by another, and "break" parts of the Web
application. With a production server, you can test the master server and only update the
application shown to the public when the "final" working version of the Web application is
available.

If you plan to use a production Web server, Visual InterDev makes it easy to copy the Web
application from the master Web server to a production Web server where end users can
browse the Web application. For more information, see Chapter 28, "Web Application
Deployment."

The following diagram shows the interaction between the system components at run time.
Notice that the project is not used at run time. The project is used only at design time and
during testing and debugging.

Interaction of system components at run time

Your
Workstation

Master Server

Master Web
Application Files

Locates page and then
processes server script

Web Requests a page~ Web Server and ...

-i data requests +-Returns HTML,---t
............ ---~ DHTML, and

client script

80 Programmer's Guide

Chapter 6 Web Project Concepts

Local Mode Interaction
Local mode is designed to provide you with an isolated version of the Web application
files for development. The following sections show how the various components work to
isolate your work yet quickly send your changes to the master version at your command.

Design-Time Interaction of Components
The development of Web application files takes place on local copies, which are updated
on the master server only when you explicitly update the master server with the local
copies.

If someone has made changes to the file while you were working locally, you can
review the differences and merge the files when you update the master server. The
Visual Inter Dev project plays a key role in the development of the Web application
files. The project gives you a view of both the local and master Web application files.

Design-time interaction of components in local mode

Your
Workstation

Master Server

Master Web
Application files

Sends updates

Web Server

Front Page

Replaces old versions
with new as soon as
the file is released

Server
Extensions_----~~ on command -

t Local Web
Saves changes Applicatio,_n.....__ __ _,

L_. Files
ODBC Connects to database

Drivers

Test-Time Interaction of Components
In local mode, the Web files you test are the local copies stored in the project folder on
your computer. You can test the files by using the Quick View tab of the editor or by
previewing the Web application in your Web browser.

The Quick View tab does not use your local Web server, if your workstation has one, and
will not process the server script in your Web application.

Previewing in your Web browser, you can test your client script. If your workstation has
a Web server, you can also test your server script and ASPs in your Web browser. The
following figure shows the interaction between components while you're testing your Web
application in local mode.

Programmer's Guide 81

Part 2 Creating Web Projects

Test-time interaction of components in local mode

Your
Workstation

Requests a pagB-P-

-t1--Returns HTML,-----1
........,...~~~~ DHTML, and

client script

Local Web
Application Files

Local Web
Server

Locates page and then
processes server script
and ...

ODBC Drivers +idata requests

Database
Server

For more information about testing your Web application, see "The Web Application
Development Cycle," later in this chapter; "Link Verification" in Chapter 11, "Site
Design"; and "The Script Debugging Process" in Chapter 23, "Scripting Concepts."

Master Mode Interaction
Master mode propagates the changes you save to files automatically to the master Web
application. This can affect the results of other developers working on the Web application.
Master mode is useful if you are the only person who modifies the Web files, but is not
recommended in multi-developer situations because intermediate changes to files may
affect others working on the application.

Design-Time Interaction of Components
The design-time interaction between the system components depends on the tasks you are
performing. In master mode, development of files takes place on local copies but changes
are updated on the master server immediately when you save changes to the files.

If someone has made changes to the file, you are prompted to review the differences and
merge the files when you release your working copy. The Visual InterDev project plays a
key role in the development of the Web application files.

82 Programmer's Guide

Chapter 6 Web Project Concepts

Design-time interaction of components in master mode

Your
Workstation

Master Server

Master
Web

Application

Sends updates
automatical ly

Web Server

FP Server
Extensions

_J Replaces old versions
with new as soon as
the file is saved

Connects to database
on save ODBC Drivers

+
Saves

changes

Local Web
Application

Files
'--it-.__ ___ __.

Test-Time Interaction of Components

Database
S er11 er

You can test in master mode by previewing the Web application in your Web browser,
by using the preview mode of the editor, or by verifying links in Link View.

The copies you are testing are those on the master Web server. If you use the editor's
Quick View tab, you are viewing the local file and the server script is not processed even
if you have a local Web server.

Test-time interaction of components in master mode

Your
Workstation

Master Server

Master Web
Application Files

Requests a page--+
_J Locates page and then

processes server script

Web Server and ...

! data requests ~Returns HTML,---
.__,. ___ __, DHTML, and

client script

The local Web application and local Web server are not used during testing in Master
mode.

For more information about testing your Web application, see the next section, "The Web
Application Development Cycle"; "Link Verification" in Chapter 11, "Site Design"; and
"The Script Debugging Process" in Chapter 23, "Scripting Concepts."

Programm1:r's Guide 83

Part 2 Creating Web Projects

Offline Projects
You can take your project offline and continue to work on your Web application files.
For example, you might need to work on your files while completely disconnected from
the servers if you use a laptop.

Working offline is similar to local mode, except that you cannot update the Web server
until you are back on line.

For more information about the project modes or working offline, see Chapter 7, "Working
Locally" and "Working Offline," later in this chapter.

The Web Application Development Cycle
The development of Web applications requires the same iterative phases as other
applications, however, the Web application itself is not the same as traditional applications.

A traditional application requires a special set of files during development, but distributes
different outputs. For example, the class files, image files, and source code files used to
develop a Java applet can reside in a single Microsoft Visual J ++ project. For distribution,
however, those files are compiled into a single executable that is independent of the files
kept in the developer's Visual J++ project. The resulting executable does not require the
presence of the source code files that were used to develop it.

Web applications, on the other hand, are composed of the same set of files used during
development and after deployment. There is no compiled executable file produced that
becomes the Web application. For example, the .htm, .asp, and .exe files in your Web
project are the same files you propagate to your production Web server. The source code,
or script, in these Web files is executed on the client or server only when a browser
requests the Web page.

84 Programmer's Guide

Chapter 6 Web Project Concepts

Source files and outputs for traditional and Web applications

Traditional App Ii ca ti on

Source1.cpp ~
Source2.cpp ~ Application.exe
Header1.h i;--~~-

:::::

Source files are into outputs that for installation on a
compiled.,, are distributed.,, ~' o rks tati on or server.

Web Application

Source1. htm
Source2.asp
Source3. gif
Java. class
Camp on ent. o ex

Source files are
developed locally
and on a master
Web server then ...

Source1. htm
Source2. asp
Source3. gif
Java. class
Component. ocx

are deployed to a Web
server available to the end
user.

You typically consider the following process in developing your Microsoft
Visual InterDev Web application:

• Planning a Web Application

• Building a Solution

• Creating and Testing Web Items

• Deploying and Maintaining a Web Application

Planning a Web Application
You can use the Visual InterDev tools to get a fast start on your Web application
development. You can save even more time with careful planning. If you address a few
issues in the early stages of development, you are better able to implement features and
functionality efficiently. For example, the design decisions you make at the start can
impact how you create items in the Web application.

When you plan your Web application, consider the following activities before creating
your Web solution.

• Identifying the Audience and the Browser

• Specifying the Web Application's Purpose

• Determining Content

• Analyzing Development Resources

Programmer's Guide 85

Part 2 Creating Web Projects

Identifying the Audience and the Browser
A primary consideration in planning is identifying who will use the Web application - the
audience. You can define your Web application's audience by identifying those who have
access to the Web application and the type of Web browser they use. Access can come
through an intranet, the Internet, or an extranet. An extranet is an area on a Web site
available only to a set of registered visitors.

In many respects, access to the Web application helps you to determine the type of browser
your Web application needs to accommodate. For example, if the Web application is
designed for an intranet, typically you know which browser everyone is using and can
program your Web application to take advantage of its features.

The capabilities of the Web browser also shape your plans for using client and server script
in your Web application. Using server script and Active Server Pages (ASP), you can
generate browser-independent pages easily. The server processes the server script and then
sends HTML to the browser for processing. In contrast, if you know what type of browser
the user will have, you can use client script to generate the page and minimize the load on
the server. Depending on the needs of your Web application, you can incorporate both to
take advantage of your system and the capabilities of your target audience.
The audience also determines what type of run-time security your Web application needs.
Do you want everyone to be able to read the Web application's pages? Are some pages for
everyone and other pages only for those meeting certain criteria? For example, you might
want your download page available to those who completed a particular form. For more
information about run-time security, see "Security," later in this chapter, and visit The
Security Advisor Site at http://www.microsoft.com/Security/.

Specifying the Web Application's Purpose
Another key factor in development is the purpose of the Web application. For example,
your Web application may be a set of announcement pages that inform visitors of current
events. Maybe your Web application is an order-entry component on a large commercial
Web site. Your Web application might be a game designed to attract Web visitors and
introduce them to products sold on the site.

After you clearly specify the Web application's purpose, you can determine the features
and functions that define the visitor's experience.

Determining Content
The content includes all of the Web items and design elements used to specify the features
of your Web application and fulfill the Web application's purpose. For example, content
for announcement pages can be implemented using simple HTML pages or using a
database connection to populate an Active Server Page. An order-entry Web application
can incorporate a variety of forms and database transactions using server script processing
and client script processing. A game Web application can be created using Java applets or
dynamic HTML and page objects to take advantage of quick client-side processing.

86 Programmer's Guide

Chapter 6 Web Project Concepts

Before you plan the details, you might want to review the variety of content you need to
consider and explore which Visual InterDev tools can implement your design quickly.

Some tools, such as the wizards and templates, quickly implement content without your
having to plan the details. Other tools, such as the design-time controls, let you worry
about the details of a design while the tool takes care of the code and script for
implementing the design.

You can consider this list to help plan content to include in your Web application.

• Visual design and site navigation using themes and layouts

• Web application introduction and general information

• Database integration for displaying, updating, adding, or deleting records

• Web application control

• Forms and interactive pages

• Script for conditional processing

o Design-time and run-time security

Details about tools to use and implementation ideas are covered in "Building a Solution,"
and "Creating and Testing Web Items," later in this chapter.

Analyzing Development Resources
Your development resources affect how you plan and design your Web application.
Here are some questions to help you analyze your development resource combination.

Who is on your development team?

Do you have a team of Web developers? Does your team include content authors and
graphic designers? Do you want to use source control? Should source control be set to
allow multiple checkouts of a single file or should it impose exclusive checkouts? What
security levels do each of the team members need? What tools do developers need on their
workstations?

The answers to these questions help you decide whether you need to use source control and
what type of design-time security you need to consider. For more information, see
"Security," later in this chapter.

If you are on a team, you probably want everyone to work in Web projects using local
mode. Local mode allows the developer to work in isolation from changes made by other
developers. For more information about project modes, see Chapter 7, "Working Locally."

By working with a team of developers, you can blend the skills of different developers to
create Web applications that would be difficult or impossible for a single developer to
create. When working on a team, the following concepts become important.

Programmer's Guide 87

Part 2 Creating Web Projects

Work Simultaneously with Web Projects Visual InterDev allows multiple developers to
work with files in the same Web application at the same time. For multiple developers to
work on the same Web application, it must first exist on the master server. Developers can
then create local project files that point to this Web application. This allows developers to
maintain their own option settings and their own local copies of the master files.

If your team includes authors using Microsoft FrontPage, they can also refer to your Web
application in one of their projects. For more information on creating Web projects, see
"Project Architecture,"earlier in this chapter. For more information about using FrontPage
with Web applications, see "Using FrontPage and Visual InterDev to Create Web Sites" in
Chapter 29, "Integration Tasks."

Source Control Because all files reside on the master server, more than one person can
work with the Web application files at a time. Multiple users can get files from the server,
work with them, and then update the server copy with their changes.

To prevent more than one user from changing the same file at the same time, you can
install Microsoft Visual SourceSafe 5.0 or later and enable source control for your project.
For more information about using Visual SourceSafe with Visual InterDev, see "Source
Control," later in this chapter.

Multiple Checkouts and Merge Resolution With multiple developers, you can also have
more than one person working on the same file at a time. For example, you might have
an author working on the content and a developer changing some script in the same file.
When the file is updated on the master server, the second person saving the changes has
the opportunity to merge the differences. For more information, see Chapter 8, "Working
with Multiple Developers."

What is your development system?

Do you have a single developer workstation with both the server and client components
needed to develop and test a Web application? Are your Web server components, database
development components, and developer tools on separate machines? What level of
design-time security does your Web application require?

The location of the components affects how you test your Web items and the Web
application. For example, Web applications tested locally without a local Web server
cannot process Active Server Pages. If you don't have a copy of a Web server on your
developer workstation, you might want to consider using a Web project in master mode
so that you do not have to explicitly update the master and test on the master server.

What is your testing system?

Do you have a testing or staging server that the team uses simultaneously for
development? Do your team members each develop their files locally, then move
them up to the staging server? Where does your test database reside?

The locations for testing help determine which project mode you want to use. Preferably
testing and development of individual pages is isolated from the testing performed on the
master version by setting your project to use local mode.

88 Programmer's Guide

Chapter 6 Web Project Concepts

What is your deployment system?

Are you deploying your Web application on the same Web server that you are using for
testing? Is your master server also your production server? Where does your production
database reside? What level of run-time security does your Web application require of the
deployment server?

The relationship of your testing server and production server determines how you perform
some server management and file management tasks. Preferably, Web applications under
development and the production versions are maintained on separate machines. For more
information, see "Project Architecture," earlier in this chapter.

Developing Enterprise Applications
As most people use the term, an enterprise application is scalable, distributed, component
based, and mission-critical. Enterprise applications tend to be data-centric, and must meet
stringent requirements for security, administration, and maintenance.

Developing extensive enterprise-level applications adds a level or two of complexity to the
Web application development process. But Visual InterDev, in conjunction with other
Microsoft Visual Studio tools, allows you to create these complex applications.

All the points in this topic that apply to Web applications apply as well to enterprise
applications, but here are a couple of additional points you'll want to keep in mind when
developing enterprise applications:

• Plan extensively. Think about scalability and performance in the design phase. If you
anticipate a lot of network traffic, plan to take advantage of Microsoft Transaction
Server technology and ASP connection pooling. Separate business logic, databases,
and user interfaces as much as possible.

• Create components when possible. Encapsulating functionality into ActiveX controls
and COM objects allows you to share and maintain code more efficiently. Microsoft
Visual Basic, Visual FoxPro and Visual C++ make it easy to encapsulate your code
into components that can be leveraged from Visual InterDev applications.

For a detailed discussion of enterprise application development, see Developing for the
Enterprise. "What is an Enterprise Application" presents a good overview of the enterprise
application model and it is a good place to start when planning your enterprise application.

Building a Solution
A solution allows you to work on several projects at one time efficiently. For example, a
solution can have both a Web and a Microsoft Visual J++ project in it. The Web project
manages all of the files that make up the pages of the Web application. For example, you
might have several pages that make up the front-end to your database. Or you can create

Programmer's Guide 89

Part 2 Creating Web Projects

and deploy some pages to inform your users that the Web application is in development.
For this set of pages, you can create one Web project for publishing some basic Web pages
that announce the Web application and keep visitors updated on when the full Web
application will be available.

You can add a second Web project to the solution for developing a prototype of the
final Web application. Also, if you plan to create a database, you can add a database
project. Your Web project can also include Web components created in Visual Basic
or Visual C++.

In building a solution, you will probably want to perform the following general activities:

• Make a Web project to create and manage the files in your Web application.

• Add a database connection or create a new database.

• Develop a prototype by adding Web items to your Web project.

Making a Web Project
To minimize the time and effort you spend in creating a Web application, Visual InterDev
sets up the basic components you need and gives you the option to standardize the look
and feel from the start.

To set up a Web project, you need to provide the following information.

• Name of the master Web server

• Name for the local project and physical directories

• Name for the Web application and virtual root

• Mode for updating the master server: master or local

• Theme (optional)

• Layout (optional)

After you have created a Web project, you can add items that implement the features you
identified during the planning phase.

Working Independently

Your Web project actually supports two sets of Web application files. One resides on the
master Web server and one locally in your project directory. The local version allows you
to develop and test independently from the master version depending on the mode of the
project. For more information, see Chapter 7, "Working Locally."

Your project can operate in one of two modes: local mode or master mode. In local mode,
you can save and test the changes you make to files in the local Web application without
changing the master copy. You work in isolation from changes made by others to the
master Web application. Your changes are not saved to the master Web server until you
release the local copy. For more information about the two modes, see "Specifying a
Project Mode" in Chapter 7, "Working Locally."

90 Programmer's Guide

Chapter 6 Web Project Concepts

When you work in local mode, the changes you make are applied to a local disk-based
Web application called the local Web application. The local Web application mirrors the
structure of the master Web application as it was when you last updated the master Web
application, refreshed the project, or synchronized the file sets. For more information,
see "Synchronizing Master and Local Files" in Chapter 10, "Managing Web Projects."

At times your local Web application can contain a different set of files than the master
Web application. For example, if you add a file while in local mode, the file is immediately
added to your local Web application but not to the master. If team members update the
master from their local Web application, your Web project will not show those changes.
To resolve these issues, update the master Web application, refresh your project, or
synchronize your local Web application with the master Web application. For more
information, see "Updating the Master Web Application" and "Updating the Local Web
Application" in Chapter 7, "Working Locally."

Working Offline

If you do not need to access the server or if the server is down, you can work offline. When
working offline, commands that require the server are not available. For example, you can
make changes to files in your local directory, but you can't release the changes and update
the master Web application. For more information, see "Working Offline" in Chapter 7,
"Working Locally."

In addition, the functionality available for testing your project offline depends on the
system components on your developer workstation. If you have a Web server on your
developer workstation, the project sets up a Web application root that allows you to test
against a Web server and server extensions on your workstation. If you do not have a
Web server and the appropriate extensions, the file is loaded directly from the local Web
directory. For more information about the components you need for testing various Web
items, see "Project Architecture, earlier in this chapter.

Working Outside of a Project

If you add, create, or delete Web application files outside of Visual InterDev and the
Project Explorer, you need to refresh the project when you return to the Project Explorer.
For example, if you add or delete a file using the Windows Explorer, the project would
not show that change to the local directory and the local files until you refresh the project.
For more information about refreshing the Web project, see "Synchronizing Master and
Local Files" in Chapter 10, "Managing Web Projects."

Adding a Database
If your Web application plans include database access, you can integrate existing databases
or modify a database specifically for your Web application. In the Web project, just add a
connection to the database and you can use information from the database in your Web
application files. This connection also displays a Data View window you can use to view
the objects in the database and adds a data environment to your project.

Programmer's Guide 91

Part 2 Creating Web Projects

You can also modify the database objects from your Web project using the Microsoft
Visual Database Tools. After you have a database connection, you can continue working
from within the Web project to develop a prototype. For more information on the
Visual Database Tools, see Chapter 18.

Developing a Prototype
After you have created your Web project and data connection, you can quickly develop
a prototype of your Web application. Some developers wait to add the look and feel
elements of their Web application until after they have finished implementing the core
features and functionality. You may have already added those elements to your Web
application when you created the project and chose a theme and layout. For more
information about themes and layouts, see "Site Consistency" in Chapter 11, "Site
Design."

Create and Organize a Set of Pages

Using your content plans, you can outline the HTML and ASP pages for your Web
application by creating a site diagram. A site diagram provides a graphical view of the
pages in a Web project. The pages automatically incorporate the theme and layout defaults
you selected when you set up your Web project.

After you have setup the initial prototype pages and Web application organization, you can
modify them to meet your Web application's requirements.

By establishing hierarchical relationships between the pages in a site diagram, you can
easily design the navigation links for your Web pages. If you want to modify the look and
feel, you can do that quickly by changing the theme or layout. For more information about
site diagrams, see Chapter 12, "Designing a Web Site."

Author Text to Introduce the Web Application

Web application pages typically have some information that rarely changes. HTML is used
to implement this text.

Your Web application should probably include at least one page with information that
introduces the purpose of the Web application and informs the Web visitor how to use the
Web application or a specific page. Typically this information is provided on the start page
for the Web application and provides a common entry point to the Web application. It can
include other design elements such as forms, data, or interactive objects.

If you are designing for the Internet, this page should be browser-independent and inform
the user of any special software or browser requirements your Web application needs to
run properly.

92 Programmer's Guide

Chapter 6 Web Project Concepts

Implement Data and Script
After you have created your initial set of pages, you can open the pages in the editor and
add the text, images, and script that fulfill your Web application's purpose. One of the
main considerations in determining how you implement content is whether you want the
processing performed on the client or the server. This answer depends on the audience,
their browser capabilities, and the resources on your deployment system. For a summary of
Web items to consider using, see the following section, "Creating and Testing Web Items."

Whether you decide to use client or server scripting, Visual InterDev offers a Web page
editor and a data environment that allows you to implement your functionality quickly. For
example, you can use the data environment to create a recordset object for use on multiple
pages. The editor also offers several data-bound design-time controls you can easily add to
your pages that display those records. For more information, see "Scripts in Web
Applications" and "Document Elements" in Chapter 23, "Scripting Concepts."

Control the Web Application
To control your pages as a Web application, you can use server processing with Active
Server Pages and its special file, the Global.asa file. In the Global.asa file, you can script
session- and Web application-level events and variables that are available to all of the
pages in the Web application that use server script.

Creating and Testing Web Items
Visual InterDev provides a variety of visual designers and ActiveX controls you can use
to implement your feature set.

Identifying Items to Use
When planning your Web application's functionality, you might want to consider using a
variety of items to specify the features in your Web application. Since a Web application
actually consists of a set of files that reside on a Web server, you can identify each item
by its file type. For example, you can incorporate any of the following items into your
Web application.

To add Consider

Static pages or client script

Server script

Data publishing

Design tools

Visual design

Interactive pages

Integrated Web solution

Downloadable documents

.htm files

.asp files

Recordsets

Design-time controls

Templates, themes, layouts, images and multimedia files

ActiveX controls

Output files from other projects such as applets

Document files, spreadsheets

Programmer's Guide 93

Part 2 Creating Web Projects

Creating Simple Information Pages
You might want to create a set of straight HTML pages that announce that your new Web
application is in development, when to expect it to be deployed, and what your user can
expect to gain from it. A few static information pages can hold the place of your Web
application and create interest in using it. You can deploy this set of pages to establish a
Web presence that can be as useful on an intranet as it is on the Internet.

After deploying your introductory version of these pages, they can easily evolve into the
start pages for your dynamic Web application. After your Web application is complete, all
you need to do is deploy the full set of files and replace the previous versions with your
improved pages and the additional pages that make up the Web application. Links to the
original introduction pages will continue to work to bring the user directly into your Web
application.

You can use a site diagram if you want to create several pages or simply create a single
HTML page that contains the announcement. You might want to add images or other
effects to make the page more visually appealing.

Publishing Data Dynamically
A Web application can serve as the front-end to any ODBC data source. You can design
pages that display data or allow users to update, add, or delete records. For displaying
data, you can use data-bound design-time controls. You can choose whether the data is
processed on the server and sent as text to the client or you can implement some dynamic
data capabilities on the client. For more information on data connections, see Chapter 18,
"Database Concepts," and "Connecting to a Database" in Chapter 3, "Database Basics."

Scripting Interactive Pages
Typically a Web application includes pages with forms or other items that require or
respond to user actions. Forms are made up of intrinsic elements of HTML. You can use
design-time controls to quickly tailor elements on a form to fulfill your Web application's
requirements. With dynamic HTML, you can create dynamic effects on the pages and
script them to respond to events or the passage of time. For more information, see Part 5,
"Editing and Scripting."

Although many of the Visual InterDev wizards and tools generate the basic code and script
for many elements of your Web application, you probably want to use certain criteria to
control the results on your Web page. For example, you might want certain pages that
appear for a user who completed a form and a prompt to finish the form for users who did
not fill out the form. For more information about using the editor and scripting pages, see
"The Scripting Object Model," or "Scripts in Web Applications," in Chapter 23, "Scripting
Concepts."

94 Programmer's Guide

Chapter 6 Web Project Concepts

Adding Run-Time Security
You can protect your resources from unauthorized use by implementing security. In
addition to the security you set through your server, you can also add password pages and
user verification script through your Web application. For example, you can add pages
that integrate an HTML form that collects user identification and password with server
script that compares the information to a database. For more information about security
guidelines and adding security to a Web application, see "Security," later in this chapter.

Designing Visual Impact and Site Navigation
The visual design and site navigation determines your Web visitor's initial impression of
your Web application. The way you apply colors, images, and sounds can make your Web
application intuitive and easy to use. Carefully designing your site navigation makes it
easy for the user to move from page to page through your Web application. Using a site
diagram, you can graphically lay out your pages and specify the navigation at the
same time.

Before creating your Web application, plan the general look and feel of your site. Or,
choose a Visual InterDev theme and layout to give your Web application consistent visual
impact while you create the pages in your Web application. When you create a project,
you can specify one of the themes provided by Visual InterDev.

If you have a theme design in mind, you can create your own themes, templates, and
layouts to quickly add consistency to the Web application.

Themes and Layout Files
Visual InterDev offers you several themes and layout files you can use to give your Web
application a consistent look and feel. For more information, see Chapter 17, "Customizing
Page Appearance."

Site Navigation
Site Designer provides a graphical method of designing your site navigation. Create site
diagrams to define the hierarchical relationships between pages. When you specify the
relationships, the site diagram automatically specifies the links between the pages and
adds them to your Web pages. For more information, see Chapter 13, "Designing Site
Navigation."

Dynamic HTML and ActiveX Controls
You can use Dynamic HTML to lay out text, images, and multimedia items on HTML
pages. Dynamic HTML provides you with a rich set of controls for scripting multimedia
pages. These controls give you a set of objects and parameters you can change
dynamically to change visual and sound effects on your page. For more information
about using controls, see Chapter 24, "Scripting with Design-Time Control and Script
Objects."

Programmer's Guide 95

Part 2 Creating Web Projects

Testing Links and Debugging Script
You can test the entire Web application as you progress. The two main areas to test are
links and script.

Find Broken Links and Pages Without Links

In creating a Web application, one of the primary concerns is the verification and testing of
links between the Web pages. Visual InterDev provides tools for you to verify and test the
links within your Web application.

Check links on a single page Using Link View, you can verify that each link on a page
points to a page that exists. Through the link diagram, you can see a graphic representation
of the links to and from your Web page. Link View only verifies that a link points to a
page that is an existing Web page. It does not determine whether the link points to the
correct page. For more information about Link View, see "Link Verification" in
Chapter 11, "Site Design."

Check links in the entire Web application If you want to find out all of the broken links and
files without links in the entire Web application, you can generate a list using the Broken Link
Report. For more information, see "Repairing Links" in Chapter 16, "Maintaining Links."

Verify link destinations To test that each link goes to the correct page, you need to open
the page in a browser and click each link. To test links while your project is in local mode
or offline, you need to make sure that all the files you want to view are in the local
directory. If the target file is not in the local directory, the browser can't resolve the link.

Automatically repair links Visual InterDev also offers a link repair feature that
automatically fixes links when you make changes to the files. For example, if you rename
a file, all links to that file must be updated with the new file name. Even simply renaming
or moving a single file may force many other files in the project to be changed.

Link repair modifies the necessary files on your behalf, updating the links to point to the
correct file. The link changes are first applied to the master Web application and then to the
local Web application and all affected files are updated. If an affected file is open in an
external editor or if another developer has the file open, the links in those files must be fixed
manually. For more information, see "Repairing Links" in Chapter 16, "Maintaining Links."

Debugging Script

You can debug script much as you would in a traditional Web application. When you
preview your pages, you can find syntax errors, run-time errors, and logic errors.

Using the editor and its debugger, you can control the execution of your script and monitor
values of variables and properties to identify the cause for errors you encounter. For more
information about debugging script, see "The Script Debugging Process" in Chapter 23,
"Scripting Concepts," or Chapter 26, "Debugging Your Pages."

96 Programmer's Guide

Chapter 6 Web Project Concepts

Deploying and Maintaining a Web Application
After you have tested the Web application and are satisfied with its performance, you can
deploy it to the Web server you make available to your users. Since a Web application is
actually a set of files, you need to copy the virtual root and its file set to the production
Web server. If your pages use the virtual root as the basis for their links, all links should
still work. If your project includes a dependent project, you need to make sure the server
component outputs are properly registered on the server. For more information about
registering components, see Part 6, "Building Integrated Solutions."

The advantage of a Web application is easy maintenance. To upgrade a Web application
you don't need to recompile and redistribute an entirely new executable file. All you need
to do is add new files and replace previous versions.

During an upgrade, your users are not interrupted while they are working because their
browser is using the original copy of the file it got from the Web server. When the file is
replaced with a newer version, the user sees the new version only after refreshing the page
not while viewing it. The upgrade to a new file set is seamless. For more information, see
Chapter 30, "Deploying and Maintaining Web Applications."

Source Control
Your Web application can easily grow into a large set of files. To keep your Web
application fresh and current, you may need a team of people to create and maintain those
files. Whether you are working on a team or by yourself, you can track and save your
changes to files easily using Microsoft Visual SourceSafe. To manage changes to your
Web files, you can use Visual SourceSafe in unison with Microsoft Visual InterDev.

Using source control, you and other Web team members can share files, modify them
independently, and later merge the changes. Visual SourceSafe also saves past versions of
the files in a database, tracks the date and time of changes, and provides an option to keep
a comment log.

The most commonly used Visual SourceSafe commands are available directly from within
Visual InterDev. The rest of the Visual SourceSafe command set is always available from
the Visual SourceSafe Explorer.

To use source control with Visual InterDev, you need to understand:

• The Components for Source Control

• Your Interaction with Visual SourceSafe

• The Interaction Between Visual InterDev and Visual SourceSafe

Programmer's Guide 97

Part 2 Creating Web Projects

The Components for Source Control
To use source control with your Web files, you need the following items.

• Visual SourceSaf e server installed on your master Web server with the integration
option selected. For more information, see "Installing Visual SourceSafe on a
Web Server" in Chapter 8, "Working with Multiple Developers."

Note Installing the Visual SourceSafe client on your developer workstation is
optional. The client is not necessary for checking your Web application files in and
out as long as Visual SourceSafe is installed on the master Web server.

• FrontPage Extensions installed on the master Web server. Visual Inter Dev uses the
FrontPage Extensions to send commands to Visual SourceSafe.

• Visual InterDev installed on your developer workstation.

• Source control enabled on the Web application and set to use Visual SourceSafe on
the master Web server.

Note For best results with source control, use Visual SourceSafe on a server running
Microsoft Windows NT with an NTFS file system.

Your Interaction with Visual SourceSafe
You can interact with Visual SourceSafe on several levels depending on the task you want
to complete. Some tasks need to be performed only once, while others may take place on a
regular basis.

The following table shows a list of typical tasks you might perform, how often you will
need to perform the tasks, and the interface you use to complete the task. For more
information about each task, use the link provided in the table.

Task Frequency Software used

Installing and setting up Once for each master Web server Windows and Visual SourceSafe Setup
Visual SourceSafe

Setting options for Occasionally as needed Visual SourceSafe Administrator
multi-user checkout

Adding source control to a Once for each Web application Visual InterDev
Web application

Checking files in and out Often as needed Visual InterDev

98 Programmer's Guide

(continued)

Task

Resolving merge conflicts

Setting checkout code options

Reviewing file history

Restoring past versions

Frequency

Occasionally as needed

Occasionally as needed

Occasionally as needed

Occasionally as needed

Chapter 6 Web Project Concepts

Software used

Visual InterDev

Visual InterDev

Visual SourceSafe Explorer*

Visual SourceSafe Explorer*

* If you're using a proxy server for remote access, you won't be able to use the Visual SourceSafe Explorer to view your
Visual SourceSafe database because the Explorer requires a LAN connection. For more information, see "Project Architecture"
in Chapter 6, "Web Project Concepts."

The following sections describe file tracking, simultaneous checkout and merging, history
details, and other Visual SourceSafe options.

File Tracking
After you have Visual SourceSafe installed and enabled for your Web application, you can
typically work directly in Visual InterDev. Visual SourceSafe and Visual InterDev work
together seamlessly to track your file changes as you add, save, and remove files in your
Web project. Any changes you make to your Web application files are propagated to the
Visual SourceSafe project without requiring you to open Visual SourceSafe.

When you check out a file in your Web project, you get a write-enabled copy of the file in
your local Web. When you check the file in, the new version is copied to the master Web
application on the master server and is sent to the Visual SourceSafe repository. Your local
version becomes read-only. If you have been working offline, when you go online and
check in a file, the new version is copied to both the master Web application and the
Visual SourceSafe repository. For more information, see "Working under Source Control"
in Chapter 8, "Working with Multiple Developers."

Simultaneous Checkout and Merging
If Visual SourceSafe is set to allow simultaneous checkouts, you are warned if someone
else has made changes to the file while you had it checked out. When this happens, you
can review the differences between the two files and choose to merge them, accept specific
changes, or disregard changes in either version.

For example, you might be working on the script and someone else might be changing
content on a Web page. When you check in the file, you can merge the two versions into
one file containing both changes.

The option for simultaneous checkout is set using the Visual SourceSafe Administrator.
For more information about multiple checkouts, see "Resolving Merge Conflicts" in
Chapter 8, "Working with Multiple Developers."

Programrm:r's Guide 99

Part 2 Creating Web Projects

File History Details
Visual SourceSafe offers the option to keep notes about each check in by prompting you
for a comment when you check in a file. If you do not plan to keep a comment history, you
can use the Source Control options in the Visual SourceSafe Administrator to prevent the
comment dialog box from appearing.

Visual SourceSafe Options
You can also set additional options for how Visual SourceSafe provides alerts and handles
changes to files. These settings affects the Visual SourceSafe options for the Web
application and, therefore, everyone who works on the Web application. For more
information about setting options, see "Options Command" in the Visual SourceSafe
topics.

You can also set check out options that determine whether you always get a write-enabled
copy, a read-only copy, or a prompt to choose. For more information about setting default
options, see "Checking a File Out" in Chapter 8, "Working with Multiple Developers."

The Interaction Between Visual lnterDev
and Visual SourceSafe
Visual InterDev and Visual SourceSafe interact through the FrontPage server extensions.
Visual SourceSafe and the FrontPage extensions must reside on the same machine working
against the same master Web server. If you have Microsoft Internet Information Server 4.0,
you can have multiple virtual master Web servers, but a single Visual SourceSafe project
can reference only one.

The FrontPage server extensions provide HTTP connection services between
Visual InterDev and other services on the Web server. When you check in a file,
the file moves from Visual InterDev on your developer workstation to the FrontPage
extensions, which update the master Web application and give a copy to
Visual SourceSafe. Visual SourceSafe adds the copy to its repository along with a
record of the date, time, and user who checked the file in. If you choose to add
comments, this text is included as well.

100 Programmer's Guide

Chapter 6 Web Project Concepts

Visual lnterDev and the FrontPage server extensions

Your
Workstation

Master Server

.--...._ __ -I

Master Web
Application

Front Page
Server

Extensions

Visual
Source Safe
Database

This table shows what happens when you perform common file commands.

Task

Check out and open a file

Save a file

Save and check in a file

Action

Local and master mode Checks if the file is already checked out
exclusively. If not, checks out the file and places a write-enabled copy of
the file in your local Web application.

If you are offline: You cannot check out files while you are disconnected
from the server. You need to check them out before going offline.

Local mode Saves the file to the local Web application The file is not
saved to the master Web application and is not checked in to
Visual SourceSafe.

Master mode Saves the file to the local Web application and updates the
copy on the master Web application. The file is not checked in to
Visual SourceSafe.

If you are offline: The file is saved to the local Web application, but not to
the master Web application. The file is not checked in to
Visual SourceSafe.

Local mode and master mode Checks in the file and updates the copy in
Visual SourceSafe and in the master Web application. Depending on your
check-in options, may also remove the write-enabled copy from the local
Web application.

If you are offline: You cannot check in files while disconnected from the
server. You need to check them in after you go back online.

Programmer's Guide 101

Part 2 Creating Web Projects

Security
The World Wide Web and HTTP provide the largest imaginable audience for Web
applications and a proportionately increased need for security. In addition, Web
development teams can now span the globe. To control just how that audience and team
work with Web application files and gain access to the system that supports them
requires security.

Security for Web applications is a complicated subject because it can be set at several
levels in several different ways. The choices depend on the system and servers used and
the needs of the Web application.

Some of the considerations are:

• Locations for Setting Security

• User Authentication

• Permitting Access to Web Applications, Folders, and Files

• Guidelines for Design-Time Security

• Guidelines for Run-Time Security

• Securing HTTP Transmissions (SSL)

• Administration and Maintenance Considerations

For more information about security, see "Authentication and Security for Internet
Developers" in the MSDN Technical Articles section or see the Microsoft Security
Advisor Web site at http://www.microsoft.com/security/.

Locations for Setting Security
You can set security options in several locations depending on your system and the
assumptions you can make about your visitors. For example, basic security for an intranet
can be handled and maintained in parallel with the security for the network itself. For an
Internet Web application, you can add security through the pages provided to the Web
browser using the Web application.

The following table shows a summary of many options you have for security locations. As
you can see, you may need to use several interfaces to get the results you want. This table
assumes you are using Microsoft Windows NT with Microsoft Internet Information Server
for your Web services and Microsoft SQL Server for your database server.

Location Example interface

Operating system

Folder

Web server

102 Programmer's Guide

User accounts specified in Windows NT* User Manager

Sharing properties set in the Windows NT Explorer

User accounts and server properties set in Internet Information Server Administrator

Chapter 6 Web Project Concepts

(continued)

Location

Virtual root

Database

Example interface

Internet Information Server Administrator

Permissions specified in SQL Server, Enterprise Manager

Web application Web application properties set in Visual Inter Dev Web Permissions and stored in a
session

Page Server script written in Visual InterDev, Source Code Editor

Source control User accounts and permissions specified in Visual SourceSafe Administrator

* Applies only to Web servers on Microsoft Windows NT with FS file system. NTFS allows you to specify per-file Access Control
Lists (ACLs). Use of the FAT file system, whether on a Microsoft Windows 95 or Windows NT server, greatly reduces the security
features available.

For all interactions with your Web server, Visual InterDev uses the Microsoft FrontPage
server extensions that may use the existing security features of your operating system and
Web server. For example, the extensions are integrated with Windows NT and Internet
Information Server to manage Web application security. You interact with the FrontPage
extensions through the Visual InterDev user interface.

Visual lnterDev and security components

Master Server

Your
Workstation

Front Page
Server

Extensions

Operating
System

Web '---..--------'
Server

Database
Server

When planning which security options to use for your Web application and where you
want to set those options, it is helpful to consider four types of access to your site. You
may want to:

• Allow any Web visitor to execute ASP pages and read HTML pages at run time.

• Restrict access to registered Web visitors at run time.

• Allow Web developers and authors to write to your files at design time.

• Restrict Web administration to certain authorized users.

Programmer's Guide 103

Part 2 Creating Web Projects

I

For a complete understanding of security options affecting your Web application, read
about the security features of the FrontPage server extensions, Internet Information Server,
and Windows NT. If you use a database in your Web application, you might want to
become familiar with the security models of ODBC databases, such as Microsoft Access
or SQL Server. For more information about setting security options for Windows NT
and Internet Information Server, see the documentation for those products.

User Authentication
In Web security, your central concerns are identifying a user and controlling the user's
access to your Web application and its resources. You accomplish this by implementing
measures to authenticate users and specify access permissions.

In choosing your security options, you need to specify how the user provides an
identification to your Web application, how that identity is verified, and what level of
access or permissions that user is allowed. The following table provides guidelines to help
you choose the appropriate options for your Web application.

Location

Operating system

Web server

Database

Web application

Example interface

Domain and user account specified in Windows NT

User accounts and server properties set in Internet Information Server Administrator

Permissions specified in SQL Server, Enterprise Manager

Web application properties set in Visual InterDev Web Permissions dialog box,
login pages, and variables stored in a session

Each of these locations provides a different feature set for implementing user
identification, verification, and permission levels. Depending on the systems and software
you are using, the feature sets may work together to set options at the operating system
level or they may change related options at other levels. For example, if you set
permissions on a file or folder in the Visual InterDev Web Permissions dialog box, you are
also setting the permissions in Windows NT.

Operating System Level
Security choices you make for the operating system depend on the features and options
your operating system offers. For example, if you are using Windows NT, you can
implement authentication for a large number of people without explicitly specifying user
accounts by using a special user account, referred to as the "guest user." This account is set
up by default. If you want to distinguish between individual users and track them, you need
to implement security options at a different level than your operating system.

104 Programmer's Guide

Chapter 6 Web Project Concepts

In addition to authentication, the file system used by your operating system also affects the
permissions you are able to grant to the user. For example, Windows NT may use either
Window NT File System (NTFS) or File Allocation Table (FAT). NTFS allows you to
specify an Access Control List (ACL) for files and folders so you can control access more
granularly. FAT, on the other hand, does not provide the ability to specify lists and offers
less control.

Web Server Level
Once the operating system has verified the identity of the user, the Web server can also
evaluate the user's identity. The Web server primarily controls access at run time. For
example, if you are using the default configuration for Internet Information Server, the
Web server processes anonymous requests as the anonymous Internet Information Server
user, IUSR_ <machinename>.

The anonymous user set up by Internet Information Server is similar to an Internet guest
account defined in Windows NT User Manager. However, password changes are not
handled automatically. Changes to passwords for one requires an explicit change to the
other.

If you have set the anonymous account to allow access to the requested file, Internet
Information Server allows access to the file and satisfies the request. Otherwise, Internet
Information Server rejects the request, returns an error to the client and informs the client
of the authentication methods that Internet Information Server supports.

For more information, see the security topics in the documentation for the Web server you
are using.

Database Level
Visual InterDev allows you to connect to a wide variety of data sources. The security
measures you set for your database depend on the database management system you are
using. The following paragraphs provide a few tips for setting security on databases used
in Web applications. For the most recent information about setting security for your
database, see the security topics in your database management system's documentation.

For file-based systems such as .mdb files in Microsoft Access, you can control security
through the sharing permissions available on the folders and files for the operating system.
If you are using SQL Server, you can use the features for granting and revoking privileges
offered within the database management system. For example, Microsoft SQL Server has
a Security Manager that allows you to specify the privileges available to a single user or a
group of users.

Although SQL Server for Windows NT offers three types of login security, the standard
security choice is recommended. Standard login security requires a login ID and a
password to access the server. Your Web application provides this information through
the data connection and your users do not need to provide any additional identification.

Progra111111cr's Guide 105

Part 2 Creating Web Projects

While not recommended for all systems, some Web applications might use integrated
security. If you choose to use integrated security, keep in mind that SQL Server will use
Windows NT security to authenticate users so the Web application and database must
reside on the same server. Windows NT does not delegate security to another server.

Web Application Level
In your Web application, you can take advantage of the security features provided through
FrontPage server extensions and through the Global.asa file processing available with
Active Server Pages.

FrontPage Server Extensions

Visual InterDev works through the FrontPage server extensions to provide the ability to
manage design-time Web permissions using the underlying security model of the host
operating system on the master Web server.

If your operating system is Windows NT with the NTFS file system, the FrontPage
extensions manage access for administrators and authors using file ACLs for the DLLs
in the following table. These directories are hidden to the Web server but available to the
file system:

Function

Administrative (i.e., setting Web
permissions)

Authoring (i.e., opening a file)

Browsing (i.e., viewing links)

DLL

Admin.dll

Author.dll

Dvwssr.dll

Location

<W ebdir>/ _ vti_bin/ _ vti_adm

<W ebdir>/ _ vti_bin/ _ vti_aut

<W ebdir>/ _ vti_bin/ _ vti_aut

When you perform a function, such as changing permissions on a Web application, your
request is sent over HTTP at the server and routed to one of these ISAPI DLLs. For
example, a request to perform an administrative function is handled by that Web
application's Admin.dll. In the request, the client provides credentials that identify the user
who is logged in to the client workstation. This user must have read permission (equivalent
to read and execute individual permissions) for the DLL handling the request; otherwise,
the request is denied.

Thus FrontPage restricts who may perform a given request by controlling read permission
on the DLLs in _vti_bin. Whenever a change is made to a Web application's permissions
via the Web Permissions dialog box, the FrontPage extensions on the server modify the
ACLs on the DLL's _vti_adm and _vti_aut directories in that Web application's _vti_bin
directory according! y.

Note FrontPage does not change ACLs on content files to manage design-time
security; it only changes ACLs on the directories that contain the gatekeeper files
admin.dll, author.dll, and dvwssr.dll. FrontPage manipulates content file ACLs to
manage run-time security, which is the topic of the next section.

106 Programmer's Guide

Chapter 6 Web Project Concepts

Global.asa File Processing

Visual InterDev supports Web applications that make full use of Active Server Pages. One
of the features of an Active Server Page is the automatic processing of a Web application's
Global.asa file, if present, at the start of a new session with that Web application. You can
use the Web application and session to control access and processing of your Web
application. The user never actually sees the Global.asa file and the security provisions
you add to it.

Permitting Access to Web Applications,
Folders, and Files
After specifying a way of identifying users, you can control access to your system
resources through setting permissions. Typically, you set permissions based on files and
directories.

At the operating system level, you can set permissions for individual user to read, write,
execute, delete, change permissions on, or take ownership of a file.

In addition, Windows NT defines some standard permissions that combine one or more
individual permissions. It is these standard permissions that are usually assigned to files or
directories. For instance, having change permission is equivalent to having read, write,
execute, and delete individual permissions. Having full control is equivalent to having all
the individual permissions. Having the standard read permission is equivalent to having
individual read and execute permissions.

In this document, standard permissions are used unless otherwise noted.

Controlling User Access to Resources with ACLs
Identity and permissions together determine a user's access to resources. The entire set of
permissions assigned to a resource, for example, a file or directory, is called an Access
Control List (ACL). When a user attempts to access a resource, the operating system
checks the ACL of the resource to verify that the user has the proper permissions for the
type of access being attempted. For instance, if a user who has read-only permission on a
file attempts to delete that file, that user is denied access and cannot delete the file.

Here is a simple example: A Web site manager wants to use security to protect a single file
on the site, say Sample.htm, from being read by users browsing the site anonymously. By
simply changing the permissions on Sample.htm so that the anonymous user account does
not have read permissions for the file, anonymous users will not be able to view
Sample.htm.

Note The permissions you set for the Windows NT group, "Everyone," also includes
the anonymous user.

Prngramm~r·s Guide 107

Part 2 Creating Web Projects

Visual lnterDev Web Applications
Visual InterDev exposes the security model defined by FrontPage for Webs hosted on
a server running the FrontPage server extensions. This model is summarized here, and
described in more detail in "Using the FrontPage 97 Server Extensions with the
Microsoft Internet Information Server" in the FrontPage documentation. It extends to
Web applications the permissions model discussed above for files and directories.

Levels of Web Access

FrontPage server extensions define three levels of access for a Web application. An
individual user, or an entire group of users, is either assigned one of these three levels or
has no access. Access is defined on a per-Web application basis. The operation of defining
access on a Web is referred to as "setting Web permissions." The three levels of access are
administer, author, and browse. These are described below.

Access level

Administer

Author

Browse

Permission to

Author and browse files

If on a root Web, create or delete Web applications on the root Web server

If on a Web application, change permissions on that Web application

Browse, open, and modify files in that Web application, including adding or
deleting content

View the content of that Web through a browser

By default, when a Web application is created, browse access is granted to all users. You
can restrict browse access for a Web application to specific users who have been given
browse access.

Guidelines for Design-Time Security
Design-time security is managed by controlling which users and groups of users are
granted administer and author access to Web applications.

To give a user full design-time access to a Web application, the user should be granted
administer access to that Web application. If you want a user to be able to create new
Web applications on a server, the user needs administer privileges on the root Web of that
server. To give a user enough access to fully modify an existing Web application, but not
to delete it, the user should be granted author access to the Web application.

During design time, you might need to provide various levels of access to members of your
Web development team. Not all members need administrative privileges. Some members
may need only write access to certain folders or directories. By default, Web applications
inherit the same rights that the root had at the time the Web application was first created.
For more information about specifying privileges for design time, see "Setting Web
Application Permissions" in Chapter 9, "Adding Security."

108 Programmer's Guide

Chapter 6 Web Project Concepts

Controlling Developer Access to your Development
Web Application
If you want to control the privileges that members of your Web team have for changing
your Web application files, you can use Visual InterDev along with settings at other
locations. You can use the following tables to help you choose security settings that are
appropriate for your Web applications.

Location for setting

Operating system

Windows Explorer folder (OS)

Web server

Database

Visual InterDev Web project

Visual SourceSafe

Typical Intranet setting

Windows NT Challenge/Response (NTLM)

Add user group or individuals to permissions list

Server-specific

In the Enterprise Manager, set security type to Standard

Add user to Visual InterDev Web Permissions list

Add users to Visual SourceSafe Administrator

The following table shows typical settings for security on the Internet.

Location for setting

Operating system

Windows Explorer folder (OS)

Web server

Database

Visual InterDev Web project

Visual SourceSafe

Typical Internet setting

Basic clear text

Add user group or individuals to permissions list

Same as operating system

In the Enterprise Manager, set security type to Standard

Add user to Visual Inter Dev Web Permissions list

Add users to Visual SourceSafe Administrator

Specifying Web Administrators
When you first install your Web server, you are prompted to supply a Web administrator
password. You can specify that other users have the same administrator privileges for your
Web applications. For example, you might want someone else to add new users or change
Web permissions.

Programmer's Guide 109

Part 2 Creating Web Projects

You can use the following table to help you choose what security options are appropriate
for your Web applications.

Location for setting Typical Intranet setting

Operating system (Windows NT)

Windows Explorer folder (OS)

Web server

Database

Web application

Visual InterDev Web project

Windows NT Challenge/Response (NTLM)

Add user group or individuals to permissions list

User groups and password settings must match the operating
system

In Enterprise Manager, provide appropriate database permissions

Global.asa file

Add user to Visual InterDev Web Permissions list

This table shows typical settings for the Internet.

Location for setting

Operating system (Windows NT)

Windows Explorer folder (OS)

Web server

Database

Web application

Visual InterDev Web project

Using Source Control

Typical Internet setting

Basic clear text

Add user group or individuals to permissions list

Allow Anonymous

Provide TCP/IP access and special .dll
In Enterprise Manager, provide appropriate database permissions

Global.asa file

Add user to Visual Inter Dev Web Permissions list

Applying source control to your Web application during development is another way you
can add security during design time. Visual SourceSafe added to your Web server helps
control who can check out and modify files in the Web application.

Guidelines for Run-Time Security
After a default installation of Microsoft Internet Information Server and FrontPage server
extensions, Web applications on a FrontPage server may be read anonymously by any
browser that can make an HTTP request to the server. To secure their Web applications
from such unrestricted access, Visual InterDev authors use run-time security.

As part of the development process, authors routinely test their Web applications by using
a W cb browser of their choice to read their Web pages. For this reason authors must be
aware of run-time security considerations even while authoring.

110 Programmer's Guide

Chapter 6 Web Project Concepts

Note If you use the same Web server for production as you do for development and
testing, then the run-time security becomes the same as production security. However,
if a Web application is put into production on a different server, the security settings on
the production server should be reviewed and adjusted as necessary.

For example, if the production server has FrontPage extensions and the Web
application was transferred to the production server using the Copy Web command,
security settings need to be reestablished through Visual Inter Dev. If the production
server is an Internet Information Server without FrontPage extensions, then the security
should be established using Windows Explorer to manage file and directory ACLs on
the Web applications content.

Run-time security is managed, first, by controlling whether all users or only registered
users are permitted to browse a Web application, and, second, by controlling which users
are granted browse access to those Web applications that only permit registered browsers.

Browsing Permissions
The FrontPage security model facilitates the use of two access levels for end users:
unrestricted browsing and restricted browsing.

Unrestricted Browsing
Unrestricted browsing is the default setting for new Web applications. All users may read
(browse) the content of a Web application that permits unrestricted browsing. End-user
requests to read Web pages are satisfied anonymously; that is, end users are not required
to identify themselves before fetching pages.

Note Because end-users are never required to identify themselves, it makes no
difference whether they have browse access to the Web application. For an explanation
of how the unrestricted browsing state is implemented using the Allow Anonymous
setting of Internet Information Server, see "Run-Time Security Considerations," later
in this chapter.

Restricted Browsing
Using the Web Permissions dialog box, any root Web or sub-Web application may be set
to restrict browsing to only registered users. The FrontPage extensions remove read access
for the anonymous user from all the content files of the Web application. An anonymous
end-user's request to read a page of that Web application is then rejected by the Internet
Information Server. End-users must authenticate their identity in the Windows NT domain,
and the authenticated user account must have browse access to the Web application before
the request will be satisfied. When a user is given browse access to a Web application, the
FrontPage extensions grant the user account read access to all the content files of that Web
application. (See "Run-Time Security Considerations," later in this chapter.)

For complete control over who can browse a Web application, restrict the Web application
so that only registered users can browse it, and then give specific users and/or groups
browse access to the Web application.

Programml!r's Guide 111

Part 2 Creating Web Projects

Run-Time Security Implementation Details

The FrontPage extensions manage run-time Web permissions using the underlying security
model of the WWW server software. Here we consider only the case where this is Internet
Information Server 3.0 running on Windows NT with the NTFS file system. Security on
non-Internet Information Server servers is beyond the scope of this topic. Security features
on non-NTFS file systems are severely limited.

FrontPage Run-Time Security
FrontPage manages run-time security differently than design-time security. This is because
run-time HTTP requests to read pages are not directed to ISAPI DLLs, as are design-time
requests. Internet Information Server goes directly to the file being requested and attempts
to read it, as described below. For this reason FrontPage directly alters the ACLs on
content files in a Web application in order to control run-time security.

Run-Time Security Considerations
At run time, you might want to allow everyone to read the Web applications pages or
restrict access to certain authorized users.

Allowing Access to Any Web Visitor

You can set up your system to allow access to any Web visitor. The following table shows
some typical settings you can use to control security for your Web application. Other
settings and combinations may produce run-time errors for certain Web visitors.

Location for setting

Operating system
(Windows NT) I Web server

Folder

Database

Web application

Page

Unrestricted Browsing

Intranet setting

Allow anonymous

Permissions are handled
through the Web server

SQL Server - Standard

Nothing special

Nothing special

Internet setting

Allow anonymous

Add Anonymous ID to appropriate User
Groups, also permissions are handled
through the Web server

SQL Server - Standard

Nothing special

Nothing special

When a Web application is set to allow unrestricted browsing, FrontPage grants the
anonymous user account standard read access to all the content files in that Web
application.

112 Programmer's Guide

Chapter 6 Web Project Concepts

Restricting Web Visitor Access

You can restrict access to your Web application by setting security options in several areas.
Some developers set up a site that has one Web application with unlimited access for
introductory and general content that links to another Web application that is available
only to authorized visitors. Typically this second Web application requires the visitor to
login so that an ID and password can be compared against a database of registered users.

You can use the following table to help you choose what security options are appropriate
for your Web application.

Location for setting Intranet setting

Operating system Windows NT Challenge/Response
(Windows NT)/ Web server (IIS) (NTLM)

Windows Explorer folder (OS)

Database

Web application

Page

Registered Users

Add permissions for User Groups
and/or individuals; user groups and
password settings must match the
operating system

Add user group or individuals to
permissions list

Standard

Global.asa file

Use .asp files and server script

Internet setting

Basic clear text
Add anonymous user ID to
appropriate user groups

Add user group or individuals to
permissions list

Standard

Global.asa file - identify
authorized users and store session
state for a user

Use .asp files and server script

When a Web application is set to allow only registered users to browse it, FrontPage
removes all anonymous user account permissions from the Web application's content files.
Since Internet Information Server impersonates the anonymous user during all requests
that do not contain user credentials (when Allow Anonymous is checked), this causes such
requests to fail initially and begin the authentication process described above.

Securing HTTP Transmissions (SSL)
SSL (Secure Sockets Layer) is a protocol that is used to protect HTTP transmissions
from unwanted eavesdropping. Visual InterDev supports the optional use of SSL over the
client/server link at design time and when performing a Web Copy operation. You can also
use SSL during run time. You choose to use an SSL connection when you create a new
Web project or initiate a Web Copy operation.

Programmer's Guide 113

Part 2 Creating Web Projects

When an SSL connection is in use, all HTTP requests and replies are encrypted before
transmission and decrypted after receipt. This process does require additional time and
slows performance.

Except for this encryption/decryption step, all Visual InterDev operations take place
exactly as they would over a non-SSL connection. You must obtain and install an SSL
certificate on your Web server before you can initiate an SSL connection. For more
information on obtaining and installing an SSL certificate on an Internet Information
Server, see "Securing Your Site Against Intruders" in the Internet Information Server
documentation.

Administration and Maintenance Considerations
In choosing which settings are appropriate for your Web application and system, you
might also consider the administration requirements to maintain your security plan.

For example, if you choose to use Windows NT Challenge Response, the Web permissions
are based on the individuals and user groups defined for that server. This setting works
well for intranets because user profiles are likely to be setup and maintained on a regular
basis and the quantity of user is known. Web permissions can be provided at the same time
as network permissions.

If, however, your Web application is running on the Internet and you use the Windows NT
Challenge Response, the number of potential requests for profiles could make user
administration a full-time job for the system administrator. Also, operating systems
typically have a limit on the number of user profiles you can specify.

Simplifying Run-Time Security
As was the case with design-time security, you can simplify the task of managing run-time
security by creating a local group, say Web_Readers, on the Web server, and giving the
group browse access to the root Web application. Be sure to restrict the root Web
application so that only registered users can browse it. When new sub-Web applications
are created, keep their default setting of inheriting permissions from the root Web
application.

Now the task of permitting a new user to browse the Web applications on this server is
reduced to simply adding the new user's name to the Web_Readers group using the
Windows NT User Manager. For more information about adding groups, see "Setting
Web Application Permissions" in Chapter 9, "Adding Security."

114 Programmer's Guide

Chapter 6 Web Project Concepts

Managing Security for Multiple Web Applications
Permission settings are stored and applied on a Web-by-Web basis. You can save time by
creating sub-Web applications that inherit the permissions from the root Web above it.

Any changes in root Web permissions apply to all sub-Web applications that inherit from
the root Web. An administrator may not change permissions directly on a sub-Web
application until it is set to have its own, unique permissions.

Managing Permissions Efficiently
For convenience, Windows NT permits the definition of named collections of users, called
"groups." Once a group has been defined and users have been added to it, each user in the
group can be granted or denied access to a resource by changing the group's permissions
on that resource.

Programmer's Guide 115

CHAPTER 7

Working Locally

In Microsoft Visual InterDev, you have two options when working online. You can work
directly with the master Web files in master mode or you can develop your own working
model of the Web application or its parts in local mode.

In local mode, you make changes to a write-enabled copy of the Web application without
affecting the master Web application. You can use the local mode functionality to
prototype new versions of your Web application without changing your master Web files
or interfering with the work done by other developers.

In addition to local and master mode, if for some reason you need to work without a
connection to the master Web server, you can choose to work offline. For example, you
can place a local copy of your Web application on a laptop and work on the files offline.
For more information, see "Working Offline," later in this chapter.

Developing Applications Independently
You might want to work on your Web application in isolation without changing your
master Web application or being affected by changes to the master Web files made by
other Web developers.

In Microsoft Visual InterDev, you can use local mode to make changes to a Web page and
then test how your page works in the context of several other pages without impacting the
master file or other developers. If your master Web server is your production server, any
changes you make to the local Web files will not affect your Web visitors. You can open
multiple files, make changes, test them as a local Web application, and then release your
local copies to update the master Web application. Other developers or your visitors see
the changes only after the files have been released.

You can use the following major steps to work locally and to identify other tasks you
might want to do. Detailed procedures for each major step are provided in related topics.

Programmer's Guide 117

Part 2 Creating Web Projects

To work locally

1. Open or create a project for the Web application. For more information, see "Creating
a Web Project" in Chapter 1, "Web Project Management."

2. Make sure your project is set for local mode. For more information about selecting a
mode, see the next section, "Specifying a Project Mode."

3. Make sure you have a local copy of the files you want to work on. For more
information about getting the latest version or a local copy of a file, see "Getting
Master Copies Locally," later in this chapter.

4. Open the files, edit the files, and save your changes. Since your project is in local
mode, the changes are saved to your local Web application only; the master Web
application does not change. For more information, see the procedures for editing and
saving your changes in Chapter 2, "Web Basics."

5. If you have moved files or manually added links, you can do a quick visual check of
the links using Link View. For more information about using Link View, see "Link
Verification" in Chapter 11, "Site Design."

6. Preview the working version of the Web application in the Web browser. If you don't
have a Web server on your developer workstation, the file is loaded with a file URL
and server-script won't work. If you do have a local Web server, your .asp files use the
local Web server to process the server script. A virtual root is automatically created and
the page is loaded into the Web browser. For more information about previewing, see
"Previewing Pages" in Chapter 2, "Web Basics."

7. Update the master Web application. When you are satisfied with your working
versions, you can release your local copy to update the master Web application. For
more information, see "Updating the Master Web Application," later in this chapter.

Specifying a Project Mode
You can switch between local and master modes for your project. Local mode is
recommended because it allows you to work in "isolation" from the master server. Local
mode ensures that your local copies of the files are not affected by updates made to the
master Web application by other developers. This mode also keeps your changes from
affecting others using the master Web application.

To specify local mode for your project

1. In the Project Explorer, select the project you want in local mode.

2. From the Project menu, choose Web Project and then choose Working Mode.

3. From the submenu, choose Local.

If you work alone and do not use the master server as your production server, you can
work directly in master mode without impacting others using the application.

118 Programmer's Guide

Chapter 7 Working Locally

To switch to master mode

1. In the Project Explorer, select the project you want to switch to master mode.

2. From the Project menu, choose Web Project and then choose Working Mode.

3. From the submenu, choose Master.

Getting Master Copies Locally
To work and test locally, you need copies of your Web files in your local Web application.
You can get copies of the master versions from the master Web server.

You have the option of getting a write-enabled or a read-only copy of the files. If you want
to edit the files, get write-enabled copies of the files. For testing your Web application, you
also need to get copies of related files you might want to use during testing. These related
files can be either write-enabled or read-only.

To get a write-enabled copy of a file

1. In the Project Explorer, select the file you want to edit.

2. From the Project menu, point to Web Files, and then choose Get Working Copy.

Note If you are using source control, you may need to choose Checkout from the
Source Control submenu on the Project menu.

A write-enabled working copy of the file is placed in your local Web application. With
write-enabled copies of your files in your local Web application, you are ready to begin
editing, and saving files in your application. For more information about these operations,
see Chapter 1, "Web Project Management"; Chapter 2, "Web Basics"; and Chapter 4,
"Editing Basics."

To test pages with links specified with relative paths, you need to copy the related files
from the master Web application to your local directory. For example, if you want to test a
link in the file MyFile.htm, which points to the file TargetFile.htm, you need to have a
copy of TargetFile.htm in your local Web application. Relative paths for links between
files within the same application are recommended as they are portable if the Web
application is copied to another Web server.

To get related files

1. In the Project Explorer, select the related files you want.

2. From the Project menu, point to Web Files, and then choose Get Latest Version.

Note If you are using source control, you may need to choose Get Latest Version
from the Source Control submenu on the Project menu.

Programmer's Guide 119

Part 2 Creating Web Projects

The latest master version is copied to your local Web application. If the local file was read
only, it will be read-only in your local Web application. If you already had a write-enabled
copy and the master version is newer, you will be prompted to merge the two versions,
replace the local with the master, or skip updating and keep the local version.

You might want to place a copy of the entire Web application on your local computer.
Depending on the size of your application, this operation may take quite a bit of time and
space on your computer.

To copy the entire Web application to your local directory

1. In the Project Explorer, select the project you want to get.

2. From the Project menu, point to Web Project, and then choose Refresh.

3. From the Project menu, point to Web Project, and then choose Get Latest Version.

Note If you are using source control, you need to select the files individually and
choose Get Latest Version from the Source Control submenu on the Project menu.

If you have any write-enabled copies and the master version is newer, you will be
prompted to select merge, replace, or skip.

Previewing a Web Application
When you are ready to test your local Web application, you can view its files in the Web
browser. Previewing your local Web application allows you to test its functionality before
releasing the copies to the master server. You can also test your links visually using Link
View before running the application in a Web browser. For more information about testing
links, see "Link Verification" in Chapter 11, "Site Design," and Chapter 16, "Maintaining
Links."

The testing functionality available in your local Web application prototype depends on the
system components on your local computer. You can always test your .htm files and your
client script using the local Web application.

To fully test .asp files with server script, however, you need to have a local version of a
Web server that supports .asp files. For more information about getting local versions, see
"Getting Master Copies Locally," earlier in this chapter. For more information about what
you can test, see "Test-Time Interaction of Components" in Chapter 6, "Web Project
Concepts."

As long as you have a connection to the master Web server, you can still verify your links
to other files without getting a local copy of those files. Even in local mode,
Visual InterDev contacts the master Web server to verify links.

To test links while you are working offline, however, you need to get copies of the files to
use in your local Web application because the connection to the master Web server is not
available.

120 Programmer's Guide

Chapter 7 Working Locally

To preview the local Web application

• From the View menu, choose View in Browser.

If a Web server resides on the same computer as the local Web application, you can test
your server script as well as your client script and HTML. If you do not have a Web server
on the same computer, you can test only your client script and HTML. Server script
requires a Web server for processing.

You might want to review how the current version of master Web application performs.

To preview the master Web application

o If your project is in local mode, you need to open your Web browser and specify the
URL for the Web application on the master Web server.

-or-

If your project is in master mode, choose View in Browser from the View menu.

Updating the Master Web Application
After you have saved your changes to your local Web application and you are ready to
propagate your changes to the master Web application, you can release the working copies.

To update the master Web application

1. In the Project Explorer, select the files you want to save to the master Web application.

2. From Project menu, point to Web Files, and then choose Release Working Copy.

Your local versions of the files are copied to the master Web server and become the current
versions on the master Web application. If someone else has made changes to the master
version since you got the copy you changed, the Merge dialog box appears and allows you
to review differences and accept or reject the changes. For more information, see
"Resolving Merge Conflicts" in Chapter 8, "Working with Multiple Developers."

You might not want your changes propagated to the master Web server. For example,
you may have decided you like the way the current version handled a scripting challenge
better than the changes you just made to the local file. You can discard your current
write-enabled copy, leaving the master version in tact.

To discard changes to a local copy

1. In the Project Explorer, select the files you do not want to release to the master
Web application.

2. From Project menu, point to Web Files, and then choose Discard Changes.

Your local copy of each selected file is replaced by the master version of the file.

Programmer's Guide 121

Part 2 Creating Web Projects

Updating the Local Web Application
While working in local mode, your local copies of the Web application files are protected
from the changes made by other team members to the master Web application. You might
want to explore the changes made by other Web developers. For example, others may have
made changes to existing files or added new files to the master Web application. If you
want to get the latest file list from the master, you can refresh your project. If you want to
get the latest versions of files that you already have locally, you can synchronize your local
Web application with the master Web application. Also, if someone has enabled source
control on the Web project since you last opened the project, you need to refresh your
project to take advantage of the source control features.

To get changes to the project structure

1. In the Project Explorer, select the project you want to refresh.

2. From Project menu, point to Web Project, and then choose Refresh Project View.

The file list in the Project Explorer and local read-only files are updated to reflect the
current state of the application on the master server. Although the Project Explorer
view changes, write-enabled copies of local files are not changed even if the master
version of that file has been changed.

For example, if you have a local copy of a write-enabled file that was deleted from the
master application, your local copy remains as it was before the refresh. However,
read-only copies of local files are updated to reflect any changes made on the master
server. For example, such changes as newer versions, deleted files, and renamed files
are made locally.

Note Refreshing the project view does not place new local copies of write-enabled
files on your machine. For information about getting the latest versions of files, see
"Synchronizing Master and Local Files" in Chapter 10, "Managing Web Projects."

You might want to get updated files from the master server, but not the entire Web
application. You can synchronize your local version of specific files with the master
version.

To get changed files

1. In the Project Explorer, select the project with the files you want to get.

2. From Project menu, point to Web Project, and then choose Synchronize Files.

Working Offline
You might want to take your laptop to a meeting to demonstrate your current version of the
application. You can incorporate suggestions and changes right at the meeting without a
connection to your master Web server. With your project offline, you can open a project, edit
local (working) copies of files, preview changes, etc., without a connection to the Web server.

122 Programmer's Guide

Chapter 7 Working Locally

To work offline

1. Open or create a project for the Web application. For more information, see "Creating a
Web Project" in Chapter 1, "Web Project Management."

2. Make sure you have a local copy of the files you want to work on. For more
information about getting the latest version or a local copy of a file, see "Getting
Master Copies Locally" or "Updating the Local Web Application," earlier in this
chapter.

3. Set your project to work offline. For more information, see the procedure below.

When your project is offline, you work in the project just as you would for local mode,
except that commands that update, restructure, or need information from the master
Web application are not available. For example, you can't get the latest versions,
release working copies, or move files in the project.

4. Open files, edit your files, and save your changes.

Since you are working offline, the changes are saved to your local Web application
only. For more information, see the procedures for editing and saving your changes in
Chapter 2, "Web Basics."

5. Preview the local version of the Web application in the Web browser.

If you don't have a Web server on your computer, the file is loaded with a file URL
and server-script won't work. If you do have a Web server, your .asp files use the local
Web server to process the server script. A virtual root is automatically created and the
page is loaded into the Web browser. For more information about previewing, see
"Previewing Pages" in Chapter 2, "Web Basics."

If you have a database server, you can also perform database-related functions.

6. Set your project to work online.

If your project is in local mode when you switch to offline, you might want to update
the master Web application after you return online. If your project is in master mode,
the master Web is automatically updated when you return online. For more
information, see "Updating the Master Web Application," earlier in this chapter.

To set your project to offline

1. In the Project Explorer, select the Web project you want to take offline.

2. Make sure you have a local copy of the files you want to work on and related files you
need for testing in your local Web application. For more information about getting the
latest version or a write-enabled copy of a file, see the procedures in "Getting Master
Copies Locally," earlier in this chapter.

3. From the Project menu, choose Web Project, choose Working Mode, and then
choose Work Offline.

Note If you want to make changes to the site structure, rename files, or move files,
you need to be online.

Programmer's Guide 123

CHAPTER 8

Working with Multiple Developers

Whether you are working on a team or by yourself, you can track and save your changes to
files easily with Microsoft Visual SourceSafe. When using source control on your Web
applications, you might perform some tasks every day, some occasionally, and others only
once.

Setting Up Source Control on a Web Server
To install Microsoft Visual SourceSafe and set it up to work with Microsoft
Visual InterDev, you need to complete several procedures using a couple of different
interfaces.

The first step involves installing Visual SourceSafe on the master Web server using
Microsoft Windows and Visual SourceSafe Setup.

To set up source control on your Web server

1. Install Visual SourceSafe on the master Web server. For more information, see
"Installing Visual SourceSafe on a Web Server," in the next section.

2. In Visual SourceSafe, grant Visual SourceSafe permission to users. For more
information, see "To grant permissions to a user," in the next section.

3. For Web servers on Microsoft Windows NT, add permissions to the anonymous user
account. For more information, see "To add permissions for the Anonymous user
account," in the next section.

4. Share source control between Web projects.

Installing Visual SourceSafe on a Web Server
When installing Visual SourceSafe, be sure .to install the Visual SourceSafe server on the
same computer as the master Web server. Make sure the option for integration with other
visual products is selected. Without that option set, Visual SourceSafe runs independently
and does not recognize the commands used by Visual InterDev. If you plan to check files
in and out from within Visual InterDev, you don't need to install the Visual SourceSafe
client on your local computer.

The following procedure assumes you have Microsoft Internet Information Server and
FrontPage Server Extensions already installed on your master Web server.

Programmer's Guide 125

Part 2 Creating Web Projects

To install Visual SourceSafe on the master Web server

I. Run the Visual SourceSafe setup program.

2. Choose Custom and make sure that you are installing at least the following
components:

• Create SourceSafe Database

• Administrative Programs

• Enable SourceSafe Integration

3. If you are running Windows 95 and Microsoft Personal Web Server, download and
install the Distributed Component Object Model (DCOM).

If you need to download the Distributed Component Object Model (DCOM), go to the
Microsoft corporate Web site at http://www.microsoft.com/search/default.asp and search
for"DCOM."

After you've installed Visual SourceSafe on a Web server, you must grant read/write
permissions to all users whom you want to be able to author files using Visual InterDev or
Microsoft FrontPage.

To grant permissions to a user

1. Run the Visual SourceSaf e Administrator application. This application should appear
in the Programs section of the Start menu. If it doesn't, check that you installed all of
the components listed above.

2. Select the Users menu and then choose Add User.

3. Enter the user's name and, if desired, leave the Password box blank. Make sure the
Read-Only option is not selected.

Note If you assign a password, the user will have an additional login step to complete
when using the project.

In addition to granting read/write permissions to specific users, if you have installed
Visual SourceSafe on a Windows NT server, you must also add permissions for the
Anonymous user account.

To add permissions for the Anonymous user account

1. On the server, open Internet Information Manager.

2. In the Microsoft Management Console, choose Internet Information Server, and then
select the computer that is running the Visual Source Safe Administrator.

3. Select Default Web Site and open its properties dialog box.

4. On the Directory Security tab, choose Edit to change the Authentication Methods.

126 Programmer's Guide

Chapter 8 Working with Multiple Developers

5. In the Anonymous User Account dialog box, copy the usemame.

Note By default, this property setting is IUSR_machinename, where machinename is
the name of the server where you have installed the Visual SourceSafe Administrator.

6. In the Visual SourceSafe Administrator application, create a user account for the
Anonymous user by choosing Add User from the Users menu and pasting in the value
of the UserName property. Leave the Password box blank and make sure that the
Read-Only option is not selected.

When Visual SourceSafe tracks changes, it uses the operating system to identify and
record who made the changes.

Certain operating systems can only recognize and record the anonymous user name for
changes. If your Web server is running Windows 95, or Windows NT using the File
Allocation Tables (FAT) file system, then all files checked out through Visual SourceSafe
will always be checked out to the same user account. This user account might not represent
the user performing the operation.

On a Windows NT FAT system, the anonymous user account performs all source control
operations on the server. On a Windows 95 system, the user account specified when
Windows 95 was started performs all source control operations on the server.

Adding Source Control to a Web Application
Once you've installed and set up Microsoft Visual SourceSafe, you can enable source
control for a Web application using any Web project that references that application.
Only one developer needs to enable source control for the application.

Visual SourceSafe provides two ways to control source files.

• Exclusive Checkout. The default option which allows only one user to check out a file
at a time.

• Multiple Checkouts. An option that allows more than one person to check out the same
file at a time. For information about resolving conflicts resulting from multiple
checkouts, see "Resolving Merge Conflicts," later in this chapter.

After a developer has enabled source control for a Web application, other developers with
open projects that reference the Web application must either refresh or reopen their Web
projects for source control to take effect on those projects.

To enable source control for a Web application

1. In Visual InterDev, open or create a Web project that references the Web application
you want to place under source control.

2. In the Project Explorer, select the project you want to use with source control.

Pmgra1111m:r's Guide 127

Part 2 Creating Web Projects

3. From the Project menu, select Source Control, and choose Add to Source Control.

4. In the Enable Source Control dialog box, verify that the project name is the one you
want for the Source Control Project, and then click OK.

You can enter a different name for the Visual SourceSafe project if you want. If you
use a different name, it must be preceded by the dollar sign ($) and forward slash (!).
For example: $/MyWebApplication.

If you want to enable multiple checkouts, you need administrator privileges to the
Visual SourceSafe Administrator on your master Web server.

To enable multiple checkouts for a Visual SourceSafe project

1. In Visual SourceSafe Administrator, from the Tools menu, choose Options.

2. On the General tab, choose. Allow multiple checkouts.

3. Click OK.

If you do not know whether a Web application has source control enabled, you can check
the property sheet for your project that references that Web application.

To determine whether source control has been enabled for a Web application

• In the Project Explorer, check for a lock icon next to the project name.

If the project is under source control, the lock icon will appear next to the project name.
If the project is not under source control, there will be no lock icon.

You can also disable source control for a Web application from any Web project that
references that Web application.

To disable source control for a Web application

1. Open or create a new Web project that references the Web application you want to
remove from source control.

2. In the Project Explorer, select the project you want to remove from source control.

3. From the Project menu, select Source Control, and then choose Disconnect Web
Project.

When you disable source control for a Web application, the Visual SourceSafe project
created when you first enabled source control for that Web application remains on the
Visual SourceSafe server. This means you can re-enable source control and choose that
Visual SourceSafe project for your Web application.

Re-enabling source control after disabling it may cause some unexpected results. For
example, if you disable source control, then delete files from the Web application, then
re-enable source control, the files that you deleted will show up in your Web project
again. This happens because the files were deleted outside of source control and so the
original Visual SourceSafe project still shows them as part of the project. You can remove
the Visual SourceSafe project by deleting it from within Visual SourceSafe Explorer.

128 Programmer's Guide

Chapter 8 Working with Multiple Developers

Working Under Source Control
Once a Web application has source control enabled, you check your files in and out instead
of getting and releasing working copies as you did before.

By checking files in and out through the Web projects in Microsoft Visual InterDev, team
members have more control over when the master Web application and Visual SourceSafe
repository are updated with newer versions from your local Web applications.

Note If you use the Visual SourceSafe client instead of the Visual InterDev features to
perform source control tasks, be sure to refresh your Web project in Visual InterDev
before continuing with your work.

Adding Files to a Source Control-Enabled
Web Application
Once you've enabled source control for a Web application, any files that you create or add
to that Web application using Visual InterDev are added automatically to the
Visual SourceSafe project. This includes files that are created in any Visual InterDev editor
or files that you create in other applications and add to a Web project.

Note If you add files directly to the project directory on the server, through the file
system, those files will not be automatically added to the Visual SourceSafe project. To
add those files to the Visual SourceSafe project, you need to refresh the project view
by synchronizing the local Web application with the master Web application.

To synchronize the local and master Web applications

1. In the Project Explorer, select the Web project.

2. From the Project menu, select Web Project, and then choose Synchronize Files.

Your view of the Project Explorer is refreshed and all files contained in the project
directory appear in the Project Explorer.

If you see an icon with a red "X," the associated file is not in the Visual SourceSafe
project.

If you have a file in your Web project that for some reason is not under source control, you
can add it manually.

To add a file manually to source control

1. In Visual InterDev, select the file in the Project Explorer that you want to add to source
control.

2. From the Project menu, select Source Control, and then choose Add to Source
Control.

Programmer's Guide 129

Part 2 Creating Web Projects

To remove files from source control

1. In Visual InterDev, select the file in the Project Explorer that you want to add to source
control.

2. From the Project menu, select Source Control, and then choose Remove from
Source Control.

For more information about using Visual SourceSafe, see "Troubleshooting Source
Control," later in this chapter.

Checking a File Out
You can check out a file directly in the Visual Inter Dev Project Explorer without running
the Visual SourceSafe client. By default, when you check out a file, no one else can get a
write-enable copy of the file. If you request a local copy of a file that another user has
already checked out, Visual SourceSafe displays a message indicating that another user
has the file checked out, and only allows you to get a read-only version of the file.

To check out a file

1. In the Project Explorer, select the file you want to check out.

2. From the Project menu, select Source Control, and then choose Check Out.

In the Project Explorer, files that are write-enabled in the local directory are shown in
color, while read-only copies and files without any local copy appear in shades of gray.

File Status in the Project Explorer

~---·~ ASP Pagel .asp

i····~ Code.asp j
j: ... 11 ~ CountA.htm 1

L~ ~ ~~~~~~:~:~ LJ
i····ll ~ DEntryA.htm I
1 fii ~ DEntryB.htm \

~
! '{'" ~ DEntryC. htm ; i

• • r±l·~ global .asa l:J
Personal files are not available on the master server.

Master files are not available locally.

Checked out files are write-enabled.

Checked in files are read-only.

130 Programmer's Guide

Chapter 8 Working with Multiple Developers

When a file is checked out, you get a write-enabled copy of the file and Visual SourceSafe
marks the file as checked out in the Project Explorer. When you check in the local copy,
the file is marked as checked in and all changes to the files are saved to the master Web
server.

By default, you are prompted to choose between a write-enabled or a read-only copy of
the file. If you know you always want one or the other, you can set Visual SourceSafe to
always provide one or the other.

To specify how files are checked out

1. From the Tools menu, choose Options.

2. In the Options dialog box, choose Project and then Web Projects.

3. From the When opening a file box, choose the source control option you want.

4. Click OK.

Allowing Multiple Checkouts
If your team members want to be able to work on the same file simultaneously, your
Visual SourceSafe administrator can allow more than one person to check out and edit a
file by allowing multiple checkouts. This option allows more than one person to work on a
file at the same time.

When multiple checkouts are allowed, each user who checks out the file gets a write
enabled copy of the file. If you are the second person to check the file in, you can review
the differences and choose to merge the two versions.

To allow multiple checkouts

1. On your master Web server, open the Visual SourceSafe Administrator.

2. From the Tools menu, choose Options.

3. On the General tab, choose Allow Multiple Checkouts.

4. Click OK.

Getting the Master Version of a File
If you want to review the latest version of a file without making changes to the file, you
can get a copy of the master version of a file without checking the file out. When you get
the latest version of a file, a read-only copy of the master file is placed on your local Web
server. For example, you might want to get the latest version of files that link to the files
you are developing.

Programmer's Guide 131

Part 2 Creating Web Projects

To get a copy of the master version of a file

• From the Project menu, select Source Control, and then choose Get Latest Version.

If you already have a local copy of the file, Visual Inter Dev displays a dialog box in
which you choose to keep the existing local file or to replace it with the master copy.
A copy of the requested file is placed on your local Web application.

Note If the local directory is not synchronized with the master Web directory, this
command may fail. If this happens, use the Refresh command on the View menu to
synchronize the project with the Web directory, and then try the command again.

Checking Files In
When you check in a file, you replace the current version of the file in Visual SourceSafe
with a revised version of the file from your local Web directory. Visual Inter Dev
automatically interacts with Visual SourceSafe to check the file in; you don't have to
perform any additional steps.

To check in a file

• From the Project menu, select Source Control, and then choose Check In.

Note The Check In command is different from the Save command. The Save
command updates the file in the local or master Web applications, but does not
update the source control version in Visual SourceSafe.

After the file is checked in, the version you originally checked out is placed in the
Visual SourceSafe history for that file.

If you made changes to the file, but do not want to save them as the latest version in
Visual SourceSafe, you can use the Discard Changes command to abandon all changes
made since getting the local copy.

To discard changes made to a file

• From the Project menu, select Source Control, and then choose Undo Check Out.

Resolving Merge Conflicts
When multiple checkouts are allowed, you might need to resolve merge conflicts if other
team members have made changes to the file you are checking in.

When you check in a file in that has been altered by another user, Visual InterDev detects
the merge conflicts and displays the Merge dialog box for you to review the two different
versions. For example, you check out a file to change some client script and a Web author
checks out the same file to rewrite some of the content. If the Web author checks in the
modified file before you, the Web author's version of the file becomes the new master
version. When you check in your copy of the file, the Merge dialog box appears allowing
you to merge the two versions and save the merged file as the latest version.

132 Programmer's Guide

Chapter 8 Working with Multiple Developers

If someone made changes to the master version after you got the copy you changed, the
Merge dialog box appears when you release the your local copy. In the Merge dialog box,
you can review differences between the files and accept or reject the changes.

·:>· ,, ··~· ::~·T~l~l :·~~r~ .. v·u
Source~~~;;--~--------- rlocal version

--~~~~~~~~~~~~~~-

5 <BODY> 5 <BODY>
6 6
7 7
8 8
9 9
10 10
11 11

<META NAME="GENERATOR" Content="Microsof t Visual
</HEAD>
<BODY> tJ
~l<_P_>_&~n-b_s __ p_;_<_/~P~>--~

<P>Order online or visit a store near you!</P>

For example, in the Visual SourceSafe version is the master version that someone saved to
the server. The local version reflects the latest local copy. The Original version pane allows
you to edit the file and shows the merge decisions you have made.

To merge the files

1. In the bottom pane, locate and select the conflict area you want to resolve.

2. Right-click and from the menu, choose the changes you want to merge.

3. Close the dialog box and choose Save.

Both the master and the local copies reflect the changes you saved.

You can also view differences by comparing the version in Visual SourceSafe and the local
version.

To manually view differences

• From the Project menu, select Source Control, and then choose Compare Versions.

For more information about comparing files, see the File Difference Options dialog box.

Programmer's Guide 133

Part 2 Creating Web Projects

Troubleshooting Source Control
If you experience difficulty in using Microsoft Visual InterDev with Microsoft
Visual SourceSafe, you may need to make changes outside of Visual InterDev in the
applications that support Visual Inter Dev. You can check the following items to resolve
issues with enabling and using Visual InterDev with Visual SourceSafe.

Appropriate Login and Permissions
• On your local computer, make sure that you are logged in as yourself, at your client

machine. If someone else has used your computer and doesn't have the same
permissions as you, you may be denied permissions. To solve the problem, log in as
yourself to get appropriate access to files.

• In the Visual SourceSafe Administrator, make sure that you are entered as a valid user.
Also, make sure your server's anonymous user is in the user list. By default, the
anonymous user name is IUSR_ <machinename>. If you don't know your computer's
anonymous user name, you can find it in the Internet Information Server configuration
in the properties for the WWW service.

• In the Microsoft Internet Information Server Manager, make sure that either Basic
authentication or NT Challenge/Response is enabled. If the No Authentication option is
selected, access is not available to modify projects.

Proper Software Installation
• On your Web server, check that you have installed the FrontPage Server Extensions,

Active Server Pages, and Visual SourceSafe. If Visual SourceSafe was installed using
the Typical or Client installations, you need to reinstall and use the "Custom" or
"Server" installation, and select the option to "Enable Source Safe Integration."

Visual SourceSafe Connection
If you have Visual SourceSafe installed on your local computer in addition to the Web
server, make sure the LAN connection between your computer and the server is working
and that the appropriate permissions are set.

You do not need Visual SourceSafe on your local computer; you only need
Visual InterDev. If you want to use the Visual SourceSafe Explorer to work with your
Web files directly in the VSS database, you can install the Visual SourceSafe client on
your local computer.

134 Programmer's Guide

CHAPTER 9

Adding Security

Security can be added to your Web application at many levels and depends on your system
and the users you want to accommodate.

For a complete understanding of security options affecting your Web application, read
about the security features of Microsoft FrontPage, your Web server such as Microsoft
Internet Information Server, and your operating system such as Microsoft Windows NT.

If you use a database in your Web application, you might want to become familiar with
the security models of ODBC databases, such as Microsoft Access or SQL Server.

Adding Security Pages
You can combine HTML forms with client and server script to secure your site. Since
ASP pages generate what your visitor sees dynamically before sending it to the browser,
you can also control what code and text is visible as source code in your visitor's browser.
Typical security pages include login or registration pages. For example, you can add login
pages that control entrance to the rest of the application.

The actual pages and script you add to establish security depend on what your design goals
are. The following procedure provides one way to implement security pages on your site.

To add security pages

1. Add an HTML form to your main site page that gathers user identification and
password information. For details, see "Gathering Information with HTML Forms"
in Chapter 25, "Scripting with HTML Elements."

2. In the main site page, add client script that verifies that values were entered in the form.
For details, see "Adding Scripts" in Chapter 4, "Editing Basics."

3. In a database, add a table that stores the user identification and password information.

4. In the project, add a connection to the database and table. For details, see "Connecting
to a Database" in Chapter 3, "Database Basics."

5. Create an ASP page that retrieves a record based on the user input and compares the
input with the values in the database.

6. Add server script that handles failed logins and successful logins that link to the site.

Programmer's Guide 135

Part 2 Creating Web Projects

Setting Web Application Permissions
Every Web application on the Web server has permission settings that identify authorized
users and specify their privileges. In Microsoft Visual InterDev, you can set the design
time permissions for your Web application. By default, a new Web application inherits the
same permissions as the root directory. You can customize these permissions, and then
control the permissions for individual users and for groups.

Setting Web application permissions involves the following:

• Customizing Permissions for a Web Application

• Setting Permissions for Individuals

• Setting Permissions for Groups

• Setting Permissions for Computers

• Simplifying Design-Time Security

• Revoking Permissions

Customizing Permissions for a Web Application
You can set unique permissions for the Web application of the currently active Web
project. Unique permissions must be set for a Web application before you can modify
its users and groups.

To set unique permissions for a Web application

1. In the Project Explorer, select the project you want to set permissions for.

2. From the Projects menu, choose Web Project and then Web Permissions.

3. On the Settings tab, select Use unique permissions for this Web application.
This specifies that the current Web application does not inherit its permissions
setting from the root Web application.

4. Choose Apply.

Note You need to apply the change to unique settings in this tab before the other
tabs are available for changes.

136 Programmer's Guide

Chapter 9 Adding Security

Setting Permissions for Individuals
After you have set custom permissions for your Web application, you can add individual
users and control their permissions.

To add users to a Web application

1. From the Projects menu, choose Web Project and then Web Permissions.

2. On the Settings tab, select Use unique permissions for this Web application and
then Apply.

3. On the Users tab, choose Add.

4. In the Add Names box, type the domain and user name for the new user in this format:
domain\username.

-or-

In the Obtain list from box, select the domain and add users from the Names field.

5. In the New users can box, select the permission level of the new users.

Note that the selected permission level applies to all new users in the
Add Names field.

6. Choose Apply.

You can edit the permissions for each user.

To change permissions for a user

1. From the Projects menu, choose Web Project and then Web Permissions.

2. On the Users tab, select the user to edit and choose Edit.

3. In the Edit Users box, select the new level of permission for the user.

4. Choose Apply.

Setting Permissions for Groups
You can control the read and write permissions granted to groups of users.

Note If your master W eh server is on an operating system using the File Allocation
Table file system (FAT), such as Windows 95, instead of NT File System (NTFS),
you cannot change the permissions for groups.

To add groups of users to a Web application

1. From the Projects menu, choose Web Project and then Web Permissions.

2. On the Settings tab, select Use unique permissions for this Web application and
then Apply.

3. On the Groups tab, choose Add.

Programmer's Guide 137

Part 2 Creating Web Projects

4. In the Add Names box, type the domain and group name for the new groups in this
format: domain\group name.

-or-

In the Obtain list from box, select the domain and add groups from the Names field.

5. In the New users can box, select the permission level of the new groups. Note that the
selected permission level applies to all new groups in the Add Names field.

6. Choose Apply.

Once a group has been given permissions, you can change the permissions of the group.

To change permissions for a group

1. From the Projects menu, choose Web Project and then Web Permissions.

2. On the Groups tab select the group to edit and choose Edit.

3. In the Edit Groups dialog box, select the new level of permission for the group.

4. Choose Apply.

Setting Permissions for Computers
You can control the read and write permissions granted to computers based on an
IP address.

Note If your master Web server is on an operating system using the File Allocation
Table file system (FAT), such as Windows 95, instead of NT File System (NTFS),
you cannot change the permissions for computers.

To add a computer to a Web application

1. From the Projects menu, choose Web Project and then Web Permissions.

2. On the Settings tab, select Use unique permissions for this Web application and
then Apply.

3. On the Computers tab, choose Add.

4. In the IP Address boxes, type the address for the computer.

Note You can specify a group of computers that have the same initial address
by using an asterisk (*).

5. In the Computer permissions box, select the permission level for the computer.

6. Choose Apply.

Once a computer has been given permissions, you can change the permissions of the
computers.

138 Programmer's Guide

Chapter 9 Adding Security

To change permissions for a computer

1. From the Projects menu, choose Web Project and then Web Permissions.

2. On the Computers tab select the computer or computer mask to edit and choose Edit.

3. In the Edit Computer dialog box, select the new level of permission for the group.

4. Choose Apply.

Simplifying Design-Time Security
You can simplify design-time security easily by modifying Web permissions once and then
using the Microsoft Windows NT User Manager utility for subsequent security changes.

Note If your master Web server is on an operating system using the File Allocation
Table file system (FAT), such as Windows 95, you cannot change the permissions
for groups.

To simplify design-time security

1. In the Windows NT User Manager on your Web server, create two new local groups
of users.

For example, you might create one for administrators called Web_Admins and one for
developers called Web_Devs.

2. In Visual InterDev, add the new groups to the Web permission.

When you create new Web applications on this server, you can choose to have the new
Web application inherit the permissions of the root directory.

You can grant new users administer or author access to the Web applications on this server
by simply adding their names to the appropriate group using the Windows NT User
Manager, without reinvoking the Web Permissions dialog box.

However, if you want to maintain a single sub-Web application with different permissions
than the other applications on the server, you must set it up to have unique permissions and
then manage its users and groups separately.

Programmer's Guide 139

Part 2 Creating Web Projects

Revoking Permissions
You can revoke the permissions that an individual or group has by deleting them from
the user or group lists.

To delete user or group permissions on a Web application

1. From the Projects menu, choose Web Project and then Web Permissions.

2. Select the user to remove from the Users tab or the group to remove from the
Group tab.

Note If your master Web server is on an operating system using the File
Allocation Table file system (FAT), such as Windows 95, instead of NT File
System (NTFS), you cannot change the permissions for groups.

3. Choose Remove.

4. Choose Apply.

Connecting to a Proxy Server
If your system allows you to connect to the proxy server, you can connect to it using
Microsoft Visual InterDev. You might want to work on Internet Web applications on
a Web server outside of your intranet. For example, you might need to change some
Web files located on a Web server beyond your corporate firewall.

With Visual Inter Dev, you can connect to the proxy server in order to access the Internet.
The specific connection and capabilities available to you depend on the system you are
working on and the one you want to connect to.

You can either specify that the project use the same proxy settings as the Internet settings
for the operating system or you can specify a different proxy server.

To specify the same proxy server as operating system

1. From the Tools menu, choose Options.

2. In the Options dialog box, choose Projects and then Web Proxy Settings.

3. On the Web Project Proxy tab, select Use system settings.

The settings for the system appear on the tab, but are read-only. To change the actual
setting, you need to change the Internet settings for the operating system. For example,
if you were using Windows NT Workstation, then you would go to the Control Panel
and change the proxy server settings in the Internet Properties dialog box.

If you do not want to use the same proxy server as the operating system, you can specify
a different one for the Web project to use.

140 Programmer's Guide

Chapter 9 Adding Security

To specify a proxy server for only the Web project

1. From the Tools menu, choose Options.

2. In the Options dialog box, choose Projects and then Web Proxy Settings.

3. On the Web Project Proxy tab, clear Use system settings.

4. Enter the name of the proxy server you want to use in the HTTP Proxy box.

5. In the List of hosts without proxy box, enter any IP addresses for servers that you
want to access without going through the proxy server.

6. Select the Do not use proxy server for local (intranet) address box, if you want
local addresses to be processed without using the proxy server.

Note When you create or copy a Web application, you can specify the target Web
server using either the server name or by explicitly entering its IP address. If using
the IP address instead of the name, and it is a local or Intranet address, you need to
enter the IP address in the List of hosts without proxy box. Although an IP address
may identify a local address, IP addresses are sometimes processed through the
proxy server anyway and may generate an authentication error.

Visual InterDev uses the Web project proxy server that you specify only for operations
on files in the Web project. You can separately specify a proxy server to be used by a
Web browser. If you want to specify a proxy server for Microsoft Internet Explorer, you
can do so on the Connection tab of the Internet Explorer Internet Options dialog box.

Programmer's Guide 141

C H A P T E R 1 0

Managing Web Projects

As you work on your Web application files, you might want to change the structure of your
project or make copies to other servers.

Synchronizing Master and Local Files
Since Microsoft Visual InterDev 6.0 keeps two copies of the application while you are
working, you may find that some files are on the local but not the master server and vice
versa. For example, if you are working with multiple developers in local mode or offline,
you might to need make sure that your local file list matches the master application.

Tasks you may want to perform:

• Compare a master copy to a local version to view the differences between the
two files.

• Update the master application to reflect changes you have made to the local
application. If you are in master mode, this happens automatically.

• Synchronize the local file set with the master. If you are working with multiple
developers and want to refresh your local version of files others have worked on, you
can get the latest version of read-only files currently in your local application.

• Refresh the Project Explorer to reflect the current list of files in the master and local
applications. Although you may not need the local application to include all of the files
in the master, you might want to see the entire file set that makes up both applications.

Files on the master server that are not in your local directory are called master files.
Local files that are not yet copied to the master directory are called personal files.

Programmer's Guide 143

Part 2 Creating Web Projects

Comparing Master and Local Copies
You can look at the differences in source code between the master and local copies
of a file.

To compare the local and master copies of a file

1. In the Project Explorer, select the file you want to compare.

Note If you are working in master mode, don't save the file before comparing.
If you do save, the changes will be automatically saved to the master server and
the files will be identical.

2. From Project menu, select Web Files, and then choose Compare to Master Web.

The File Difference dialog box appears with the differences highlighted in gray.
If the files aren't different, a message states that they are identical.

For more information about comparing files, see the File Difference dialog box. If you are
using source control with your project, see "Resolving Merge Conflicts" in Chapter 8,
"Working with Multiple Developers."

Updating the Master Application
After you have saved your changes to your local Web application and you are ready to add
your changes to the master Web application, you can release the local copies.

To update the master Web application

1. In the Project Explorer, select the files you want to save to the master Web application.

2. From Project menu, select Web Files, and then choose Release Working Copy.

Note If your project is under source control, choose Check In from the Source
Control submenu on the Project menu.

Your local versions of the files are copied to the master Web server and become the current
versions on the master Web application.

If someone made changes to the master version after you got the copy you changed, the
Merge dialog box appears when you release the your local copy. In the Merge dialog box,
you can review differences between the files and accept or reject the changes.

For example, in the following picture, the SourceSafe version is the master version that
someone saved to the server. The local version reflects the latest local copy. The Original
version pane allows you to edit the file and shows the merge decisions you have made.

144 Programmer's Guide

Chapter 10 Managing Web Projects

urceS af e version , I Local version
--~~~~~~~~~~~~~~

<BODY> 5 <BODY> 1 ...

6
r-;:::--~::-;-.-;:;:;--,-~-:;-~=:;:;~-=:;::~;17

8
9

P <FOUT size=4 ><~3TF:OlLJ

10
11

' :s: bes: t

<META NAME="GENERATOR" Content="Microsoft Visual
</HEAD>
<BODY>

<P>Order online or visit a store near you!</P> ;·~-8.~.·.;····· .. zr,
lines :f~ 1Ln7,Col1 f~. ------.-. -. -,.,,

To merge the files

1. In the bottom pane, locate and select the conflict area you want to resolve.

2. Right-click and from the menu, choose the changes you want to merge.

3. Close the dialog box and choose Save.

Both the master and the local copies reflect the changes you saved.

You might not want your changes propagated to the master Web server. For example, you
may have decided you like the script in the current version better than the changes you just
made to the file. You can discard your current local copy, leaving the master version intact.

To discard changes to a local copy

1. In the Project Explorer, select the files you do not want to save to the master Web
application.

2. From Project menu, select Web Files, and then choose Discard changes.

Note If your project is under source control, choose Undo Checkout from the Source
Control submenu on the Project menu.

Your local copy of each selected file is replaced by the master version of the file.

Programmer's Guide 145

Part 2 Creating Web Projects

Synchronizing the Local Web Application
If you want to get the latest file list from the master Web application, you can refresh your
project. If you want to get the new versions of read-only files that you already have locally,
you can synchronize your local Web application with the master Web application. To
replace your write-enabled files with master copies, you can get the latest versions.

To get changed files from the master Web application

1. In the Project Explorer, select the project with the files you want to get.

2. From Project menu, select Web Project, and then choose Synchronize Files.

Refreshing the Project Explorer
The Project Explorer shows the list of files for the Web application whether they are in the
master or local Web application. If someone has added, deleted, moved, or renamed files
from the master server, your any changes made to the master application.

Also, if someone has enabled or disabled source control on the Web project, you need to
refresh your project to see those changes.

To view the current list of files in both the master and local applications

1. In the Project Explorer, select the project you want to refresh.

2. From Project menu, select Web Project, and then choose Refresh Project View.

Copying Web Projects
You can copy an entire Web application to another server or duplicate the application
on the same server under a new Web application name. To copy to another directory or
another server, you'll need administrator-level privileges on that server in order to create
a new directory. If the destination server does not have Microsoft FrontPage extensions,
you need to use Posting Acceptor 2.0. Posting Acceptor 2.0 is available in the Enterprise
Edition of Visual Studio.

To copy a Web application

1. In the Project Explorer, select the project that points to the Web application you want
to copy.

2. From the Project menu, choose Web Project and then Copy Web Application.

3. In the Copy Project dialog box, choose the copy of the application you want to copy.
Typically, you would choose the master version.

4. In the Server name box, enter the name of the destination Web server.

5. In the Web project box, enter the name you want in the URL.

146 Programmer's Guide

Chapter 10 Managing Web Projects

6. Clear the Copy changed files only checkbox.

Note If the destination server has a Secured Socket Layer (SSL) certificate and you
want to use secure HTTP transmissions during the copy operations, select the Connect
using Secured Socket Layer box. For more information about Secured Socket Layers,
see "Securing HTTP Transmissions (SSL)" in Chapter 6, "Web Project Concepts."

7. Check the options that you want to enable and then choose OK.

• To copy only files updated or added since the last time the Web was copied,
choose Copy changed files only.

• To copy the Web application as a subfolder to an existing destination Web
application, choose Add to an existing Web project. This option merges the
files and folders of the Web application you are copying into the destination
Web application. The destination Web application must already exist; if it does
not, you get an error.

• If the Web application is the root application and you want to copy all of the
Web applications on the source server to the destination server, choose Copy
child Webs.

o If you have components that were marked for server registration and you want to
register them on the destination server when they are copied, choose Register
server components. See "Deploying an Integrated Web Solution" in Chapter 30,
"Deploying and Maintaining Web Applications."

Note If you have components marked for server registration in their property
pages and you clear this option, those components will be unregistered on the
destination server after the operation is complete.

A new application root is created on the Web server and the files in the Web application
are copied to that new folder. The name you specified in the Copy Project dialog box
becomes part of the application's URL.

You can now perform a final verification of the application. The entire Web application,
except its security settings, is duplicated on the destination server under the new name.
The newly copied Web application inherits the destination's root project security settings.
For more information about security settings, see Chapter 9, "Adding Security."

After the copy is complete, the source project remains open and unchanged in the current
solution. To access the newly copied Web application, you need to create and open a
project that references the copy on the destination server.

Programmer's Guide 147

Part 2 Creating Web Projects

Reorganizing Project Structure
You can add, delete, rename, or move files or folders in the Project Explorer. When you
rename or move items, the changes are applied immediately to both the master application
and the local application whether your project is in master or local mode. Other developers
who have the project open can see the changes applied to the master application after they
refresh their Project Explorer.

Caution If the local application is out of synch with the master version, operations to
reorganize the project may fail. You might want to refresh or synchronize your project
before reorganizing the project.

Reorganizing a project also affects the links in the files. Files that you rename, delete, or
move are called target files. Files that link to the target files are called referring files.

You can choose whether referring files are updated to reflect the changes you make to
target files. By default, you are prompted to update the referring files. For more
information about setting link repair options, see "Repairing Links" in Chapter 16,
"Maintaining Links."

To delete files or folders

1. In the Project Explorer, choose files or folders you want to delete.

2. From the Edit menu, choose Delete.

You might need to change the names of files or folders.

To rename files or folders

1. In the Project Explorer, choose the file you want to rename.

2. On the File menu, choose Rename, and then type the new name.

Note If you have a working copy of a file, you need to release it before you are
allowed to rename it.

You might want to change the location of files or folders in your Web application.

To move files or folders

1. Make sure working copies of the files are released.

2. In the Project Explorer, select the files or folder and then drag them to the destination
within the Project Explorer.

You might want to copy files or folders in your Web application.

To copy files or folders

1. In the Project Explorer, select the files or folder you want to copy.

2. Press CTRL and then drag them to the destination within the Project Explorer.

148 Programmer's Guide

PA RT 3

Designing Sites

Part 3 provides information about designing the visual appearance and navigational
structure for a Web application, as well as viewing and maintaining links.

Chapter 11 Site Design

This chapter introduces the Visual InterDev tools and techniques for Site Design, Link
Verification, and Site Consistency.

Chapter 12 Designing a Web Site

You can rapidly design and create a new Web application or redesign an existing Web site
with Site Designer. Chapter 12 explains how to use Site Designer to create a site diagram,
add pages to the diagram, apply themes and layouts, and print the site diagram.

Chapter 13 Designing Site Navigation

Site diagrams give you a visual way to design how users navigate through your site and
provide a fast and efficient way to manage site navigation. This chapter covers "Arranging
Pages in a Site Diagram," "Adding a Page to the Global Navigation Bars," "Removing a
Page from a Site Diagram," and "Deleting Pages in a Site Diagram."

Chapter 14 Managing a Site Diagram

Chapter 14 delves into the ways you can take advantage of the features of a Site Diagram
to manage your Web pages directly from the Site Diagram.

Chapter 15 Viewing Links for an Item

You can use Link View to create a graphical representation of the links to and from items
in a Web application. Chapter 15 covers using Link View to see and manage the links
between files in your Web application.

Part 3 Designing Sites

Chapter 16 Maintaining Links

Visual Inter Dev provides tools to help keep your Web page links up to date. Chapter 16
describes "Filtering Links," "Viewing Link Diagrams," "Changing a Link Diagram
Layout," and "Repairing Links."

Chapter 17 Customizing Page Appearance

With Visual InterDev tools, you can quickly design consistent Web pages. Templates
create standard pages that can contain common HTML and script. Style sheets instruct
the browser to override browser default fonts, sizes, and colors. Themes employ a
common set of graphics. Layouts define how the navigation and content are laid out
on regions of a page.

150 Programmer's Guide

C H A P T E R 1 1

Site Design

Designing a good Web application takes research, careful planning, and thorough testing of
your Web application ideas. When creating your site, you need to consider how to organize
your information and how your users will navigate through your Web application.

Site Designer makes it easy to visually prototype a new Web application or redesign an
existing site with site diagrams. You can easily add new pages to your Web application
and create navigational links between pages in the site diagram.

When you save the diagram, Site Designer adds the pages you created to your project and
updates the navigational links in your files. Site diagrams can make designing a Web
application as simple as dragging and dropping files.

About Us

·Feedback

Home :~ •.
~ ..__,.,.~-t:::t---..,.---', '

Products 1

Even a well designed site requires maintenance to keep the content fresh and accessible.
Site Designer helps you with this by providing a graphical way for you to design and
maintain the navigation structure for a Web application.

Programmer's Guide 151

Part 3 Designing Sites

You can easily arrange and reorganize the navigation links between the pages to define
how users navigate through your Web application. Within minutes, you can create new
pages and define the hierarchical relationship between those pages by dragging graphical
representations of the pages into position on the site diagram. Saving the changes to the
site diagram updates the navigation bars in your site.

For more information about the functionality of site diagrams, see:

• Site Diagrams

• Prototyping a Web Site

• Designing Site Navigation

• Organizing a Site Diagram

Site Diagrams
Site diagrams are graphical representations of the pages in your Web application that
provide information about the navigation structure between pages. Site diagrams give you
a way to interact with the Web application's site structure file, which stores information
about the navigation structure between pages for your Web application.

Within a site diagram, you can create groups of pages with hierarchical relationships.
These groups of pages are called trees. These hierarchical relationships are used to define
the navigation bar links in a site. You can easily move pages around the diagram to change
the hierarchical relationships. Each Web application can have multiple site diagrams and
each site diagram can have multiple trees.

Square nodes represent pages in a site diagram. Pages can have several adorning icons
indicating the type of page it is: an external page, global navigation bar page, modified
page, or home page.

To create relationships between pages, you drag the pages beside or underneath one
another. The link lines that appear when you drag a page underneath or beside another
page identify the type of relationship created between pages.

152 Programmer's Guide

Prototyping a Web Site
Site diagrams provide a way for you to rapidly design and populate a Web application.
You can create new pages for your project directly in a site diagram. When you save the
site diagram, the site structure file is updated and all new pages are created and added to
the project. The new pages are named according to the label names you typed in the site
diagram.

Chapter 11 Site Design

If you have applied themes or defined a layout for the Web application, the new pages are
created using these defaults. The navigation structure for the site is also automatically
incorporated and updated for each page.

Note Each project has a single site structure file that all the site diagrams for a project
interact with. Changes you make in one site diagram can impact another site diagram
for the Web application if both site diagrams share pages.

For more information, see Chapter 12, "Designing a Web Site."

Designing Site Navigation
Site diagrams provide a visual way for you to design and modify the navigation structure
for a new Web application or to maintain the navigation for an existing application. When
you save new pages in a site diagram, the navigation links are added to the pages based on
project defaults and the relationships defined in the site diagram.

You can create several site diagrams for portions of a Web application or a single site
diagram for the entire application. In the site diagram, you design the hierarchical
relationships that define the navigation structure for your site. In addition, you can specify
which pages will appear on the global navigation bar for the application or you can add a
home page to the site diagram.

For more information, see Chapter 13, "Designing Site Navigation."

Organizing a Site Diagram
Site Designer allows you to manipulate the layout and organization of a site diagram to
make it easier to work with the navigational structure of your site.

You can change the magnification of a site diagram or automatically size the site diagram
to fit within the current window. You can also expand and collapse child pages in a tree.
Use the Rotate command to switch between horizontal and vertical tree layouts. You can
also reposition any tree within the site diagram by simply dragging the tree to another
location.

For more information, see Chapter 14, "Managing a Site Diagram."

Programmer's Gukh! 153

Part 3 Designing Sites

Link Verification
Web applications contain multiple links to HTML pages, graphics, and other files.
The larger the Web application, the more complicated verifying and maintaining these
links can be.

You can use Link View to create link diagrams to identify the links between files in a Web
application and to find broken links between items. Link diagrams provide a graphical
view of the links between files to help you easily maintain these links in your Web
application.

In Link View, an item is a resource, such as an .htm file, a design-time control, or an image
file, that is part of a Web application. Items in a Web application are represented by
graphical icons and the relationships between these items are represented by arrows in the
link diagram.

Items in a link diagram are joined by lines that represent links between the items. Arrows
communicate the direction of links, either in or out. You can understand the link
relationships between items by analyzing the graphical representation of those
relationships in a link diagram.

With Link View, you can view the links for a page or item in your Web application or any
page on the World Wide Web. You can also use a link diagram as a launching point for
previewing items in a Web browser, or for editing items in their default editors. For more
information about previewing and editing items, see "Viewing Link Diagrams" in
Chapter 16, "Maintaining Links."

154 Programmer's Guide

To learn more about Link View and the functionality of link diagrams, see the following
sections:

• Link Diagram Layouts

• Verifying Items

• Identifying Broken Links

• Viewing Links for an Item

• Showing and Hiding Items with Filters

• Expanding and Collapsing Links to Other Items

Link Diagram Layouts
Link View uses two layouts for link diagrams: the horizontal layout and the radial layout.
Each layout has a slightly different focus and together they can help you track links
between items in your Web application. For details about diagram layouts, see "Changing
a Link Diagram Layout" in Chapter 16, "Maintaining Links."

Chapter 11 Site Design

Programmer's Guide 155

Part 3 Designing Sites

Horizontal Layout
By default, the horizontal layout appears when you open a link diagram for an item. This
layout shows both the in links and the out links for an item.

In the horizontal layout, in links appear to the left of the expanded item and out links
appear to the right of the expanded item.

156 Programmer's Guide

b lueru le. g if

cat_l.jpg

go _button. g if

h_classified.gif

Radial Layout
The radial layout shows either in links or out links for an item, but not both at the same
time. In radial layout, the link diagram shows all the items linked to the expanded item
arranged radially around it.

newsserver I
testcontent/

cover.asp

Verifying Items
When you create or refresh a link diagram for an item, Link View retrieves information
about the links either from information stored on the master Web server (in the link index
file and the site structure file) or by searching for links on the World Wide Web. Whether
the item is part of the Web application determines how Link View will retrieve the link
information.

Chapter 11 Site Design

Programmer's Guide 157

Part 3 Designing Sites

• For items in a Web application Link View uses the information stored on the master
Web server to quickly determine whether an item is valid or broken.

If the information on the Web server has changed since you created the link diagram,
you must use the Refresh command to retrieve the most current link information for the
Web application.

• For items outside of a Web application Link View dynamically retrieves link
information by searching for the destination of the link on the World Wide Web.
External items are displayed in the link diagram as valid, broken, unknown, or pending.
Link diagrams for external items build slower than link diagrams for internal items due
to varying Internet access speeds.

Note Initially, all external items in a link diagram are displayed as unknown. Use the
Verify or Expand commands to have Link View determine if the link is valid or
broken.

Link View uses the following icons to indicate the state of the link.

Link State Icon

Valid

Broken

Unknown

Pending

Meaning

The item the link points to exists.

The item the link points to does not exist.

The item the link points to may or may not exist. Use the Verify
command to have Link View determine if the link is valid or broken.

Link View is searching for the item the link points to on the World
Wide Web.

Note When a link to an item is determined to be broken, you can position the pointer
over the item's icon to display its ToolTip. The ToolTip contains information about
why the item could not be found. For example, if Link View tries to verify a link to an
HTML page that no longer exists, the ToolTip for the broken link will contain an http
error message.

Identifying Broken Links
Broken links can appear for a number of reasons. For example, the destination file may
have been deleted or the link may contain a typing error.

In Link View, broken links are indicated graphically in the link diagram by the broken link
icon. The ToolTip for the item containing the broken links displays the reason for the
broken link.

158 Programmer's Guide

Chapter 11 Site Design

In addition to using the link diagram, you can quickly create a list of all the broken links in
your Web application by creating a Broken Links Report. A broken ·links report contains a list
of all broken links in a Web application, as well as a list of files that have no in links. Once
you have identified the broken links in your Web application, you can then repair the links.

For more information about identifying and fixing broken links, see "Repairing Links" in
Chapter 16, "Maintaining Links."

Viewing Links for an Item
When you open a link diagram on an item, that item is represented by a large icon in the
middle of the link diagram. The links shown for the item depend on the diagram layout and
any filters applied.

You can create a link diagram on any of the following:

• An item in your Web project. For more information, see "Viewing Links for an Item in
a Project" in Chapter 15, "Viewing Links for an Item."

• An item in an open link diagram. For more information, see "Viewing Links for an
Item in a Project" in Chapter 15, "Viewing Links for an Item."

• Any valid URL. For more information, see "Viewing Links for an Item on the WWW"
in Chapter 15, "Viewing Links for an Item."

Showing and Hiding Items with Filters
You can filter a link diagram to show only the types of items you want to see. Filtering is
useful if you are viewing a particularly large Web application or if you want to view a
specific type of resource. For example, you may want to use a filter to exclude multimedia
files - such as audio and video files - that are used in a Web application or to show only
graphic files included on a page. For more information about displaying links, see
"Filtering Links" in Chapter 16, "Maintaining Links."

Filtering a link diagram to show only out links or only in links can be helpful. For
example, showing in links enables you to determine the impact of renaming or deleting an
item because you can see other pages that currently link to that item. For more information,
see "Changing a Link Diagram Layout" in Chapter 16, "Maintaining Links."

Expanding and Collapsing Links to Other Items
If you want to see more detail in the current link diagram, you can expand links for a
selected item to show the in or out links for that item. The links that appear depend on the
filters currently set for the link diagram. For example, if you set the filters to show only
HTML pages in your link diagram, expanding links on a page will display only links to
other HTML pages. You can also collapse links for an item in a link diagram. Collapsing
a link hides the links for that item and reduces the size of a large link diagram for a site.

For more information about how to display linked items, see "Viewing Link Diagrams"
in Chapter 16, "Maintaining Links."

Programmer's Guide 159

Part 3 Designing Sites

Site Consistency
One of the key differences between an amateur and a professional Web site is consistency.
Professional sites employ well-designed pages that are consistent across the site in their
look and functionality.

When your site is consistent, you have a site that:

Looks professional A professional site is well designed and consistent in its use of the
design. Users are more comfortable with a site that's easy to navigate and easy to read.

Saves development time When you take steps to include consistency in your development
cycle, the number of tasks is reduced and simplified.

Saves authoring time Using templates, layouts, and themes can save time when authoring
new files, letting the author focus on writing the actual content.

To give your Web site a crisp, professional look and feel, you can take advantage of the
many tools available with Microsoft Visual Inter Dev. The larger your team is, the more
effective these tools become.

The Site Consistency Process
When you design consistency into your site, you typically perform some or all of the
following tasks.

1. Create style sheets to define how your pages appear.

2. Design a common layout that meets your requirements for navigation and page
appearance.

3. Create custom templates for authors to create new pages similar to existing ones.

4. Employ a theme that shares common graphics across your site.

Each of these tasks work together to provide a consistent look that assures users you've
done a professional job.

Site Consistency in Visual lnterDev
For each site consistency task, Visual InterDev offers you:

• Pre-packaged solutions.

• Tools to help you create your own from scratch.

Depending on the size of your site and your team, you might use solutions right out of
the box or you may customize them a great deal. The Visual InterDev solutions for
consistency include:

160 Programmer's Guide

Chapter 11 Site Design

• Cascading Style Sheets

• Templates

• Layouts

• Themes

Cascading Style Sheets
Cascading style sheets (CSS) give you the ability to define a set of styles that override the
browser's standard methods for rendering HTML. This lets you give your pages a unique
and consistent design. Style sheets allow you to define the attributes of any tag. For
example, you can adjust the font, line spacing, justification, and border properties.

You apply a style sheet to a page by adding a <LINK> tag in the HTML document heading
- between <HEAD> and </HEAD>. A <LINK> tag referencing a CSS file would look like
this:

<LINK REL="stylesheet" TYPE="text/css" HREF="YourStyles/COLOR0.CSS">

Therefore, you can have as many pages as you want referencing the same style sheet.
Because all the style information is stored in a single file, it is easier to maintain and saves
space on the Web server.

A variety of ordering options awaits
you.

Same Day

For a rush fee, your order will be:

o Processed within two hours of
placement.

1 • Sent on your preferred carrier. L:.J
! \: i~lE§~J~i: x:, f§"~l~JiI!?j ;, A::Q~kkVi~;~7
Page without sty I e sheet

'A variety of ordering options ·
av\1·a its you .

Same Day

~ '
For a rus~ fee, your order \Ni II be:

Processed v· .. dthi n tv-.lo ·,
hours of placement.
Sent on your nreferred , L:.J

i .•.... ' ' .'''''. ',,··.·.·· .. · ... ··.···.·.·•· ... , .•. , •• ,.,.,,.t:'.~······:············.-----1
i\J~r~~JtL.)r ;pxh~t!i11~; · X Quick View /

Pa g e I i n k e d to a st y I e sh e et

ProgranmH:r's Guide 161

Part 3 Designing Sites

Visual InterDev includes a CSS editor that has an easy-to-use interface for setting style
properties. You can use the editor's graphical interface so that you don't have to edit raw
CSS text. For information on using the CSS editor, see "Editing Style Sheets" in
Chapter 17, "Customizing Page Appearance."

Not all browsers support the use of cascading style sheets. However, when cascading styles
are used correctly, browsers that don't support them will ignore them and still render the
page readable. You should keep this in mind when designing with styles to make sure that
the appearance of your page degrades gracefully on older platforms. CSS 1 is supported by
Microsoft Internet Explorer 4.0 and Netscape Navigator 4.0. Internet Explorer 3.0 supports
a subset of CSS 1.

The use of style sheets is endless - varying from the simple to the extremely complex.
For a more detailed description of CSS, see CSS Attributes reference and also see the
World Wide Web Consortium's CSS specification on the Internet at
http://www. w3 .org/pub/WWW /TR/REC-CSS 1.

Style Sheets in Visual lnterDev

Visual InterDev comes with a variety of style sheets:

• A standard template is used in the Add Item dialog box when you create a new style
sheet, from which you can create and modify styles.

• Approximately 60 themes come with Visual InterDev. Each theme contains one or
more style sheets.

You can use any of these style sheets as a model for creating your own style sheet, or you
can simply make a copy and customize it to suit your needs.

Previewing a Style Sheet

When you are editing a style sheet in the CSS editor, you can use the Preview tab to see
how it would look if it were applied to any page, local or on the World Wide Web.

Note If the page you are previewing already has a style sheet attached,
Visual InterDev recognizes that style sheet as the primary style sheet and correctly
applies the one that you are editing in a secondary position.

Templates
Templates can be an invaluable resource. Even though a template is just a master file from
which new copies are made, you can use templates for HTML documents, ASP pages, CSS
files, or any other text-based file. Because it takes time to create a well-designed page, the
time you invest in templates pays off many times over.

162 Programmer's Guide

By default, all templates appear in the Add Item dialog box. To add a template to the
available list, add it to the following directory:

Chapter 11 Site Design

C:\Program Files\Microsoft Visual Studio\VintDev98\Templates\Web Project Items

Note After adding a template to the "Web Project Items" directory, you must restart
Visual lnterDev in order to display the template in the Add Item dialog box.

Take a look at the directory to see the actual templates that ship with Visual InterDev.

Interactive Templates

You can use parameters in your templates to prompt a template user for additional
information, like a theme name or a company name. This allows your templates to be
more flexible. For more information, see "Creating Custom Templates" in Chapter 17,
"Customizing Page Appearance."

Layouts
Layouts define how the content of a page is visually laid out and how users can navigate
among parent, children, and sibling pages by using a PageNavbar design-time control.

How a Layout Works

Layouts control how the regions of a page are laid out. Layouts are comprised from
different possible regions of a page. For example, most layouts utilize two or three of
the following five possible regions:

Top

Left Content

Bottom

Visual InterDev creates the regions by using HTML tables. The result looks something like
the picture below. In the following picture, the Top, Left, Bottom, and Content regions
were utilized.

Programmer's Guide 163

Part 3 Designing Sites

The HTML table information is stored in a Layout Header section and Layout Footer
section of the Web page. The header and footer Layout design-time controls bracket the
content of your page.

Each layout is based on a unique HTML template. The template stores the layout
information. When the layout is applied to a page, Visual InterDev adds the layout design
time controls to the page.

Important Do not manually alter the run-time text of the Layout design-time controls.
If this text is altered, Visual InterDev might not be able to parse the information
correctly. Also, when you apply a different layout, Visual InterDev deletes the current
Layout design-time controls and replaces 'them with new ones.

Because the layout information is maintained within a template, it is easy to change which
layout is applied to the page without affecting content. For step-by-step instructions on
applying or customizing a layout, see "Laying Out Pages" in Chapter 17, "Customizing
Page Appearance."

Layouts Installed on Your Workstation

The list of layouts that are installed on your machine was determined when you chose the
Typical or Custom option while setting up Visual InterDev on your computer.

Typical Install Option The typical install option copies all 18 layouts to your machine.

164 Programmer's Guide

Chapter 11 Site Design

Custom Install Option The Custom install option lets you choose either of the following:

• 0 layouts (no layouts)

• Typical (18 layouts)

Directory Location of Layouts

Layouts reside in the "Layouts" directory, which is found at:

C:\Program Files\Microsoft Visual Studio\VintDev98\Layouts

The files that make up a layout are added to the master server automatically when you
apply a layout so that the layout can be shared with other developers who might be
working on the same project and need access to the files as well. Layouts are stored on the
master server in a directory named "Layouts" in the project's top-level directory. These
files are needed at design time, but not at run time.

Themes
Themes are comprised of a set of graphics and one or more cascading style sheets that
control styles, font, and graphics. You apply themes to pages so that there is visual
consistency shared across your pages.

You can set a default theme for an entire project so that each page that you create in that
project will have the same theme applied. Even if a default theme is set for a project, you
can choose to override the default on particular files where you might want to apply a
different theme or no theme at all.

When you set a default theme for your project, you automatically benefit from the theme's
pre-packaged design. Another advantage of themes is the ability to easily switch between
different themes, without changing content, to give your site a whole different look.

Programmer's Guide 165

Part 3 Designing Sites

!i htip:Uvidue/i0217bvidue/themeb_ h ___ 1!!13 Ci

Artsy theme applied to page Expedition theme applied to page

You can use one of the many themes that come with Visual InterDev, modify one of the
existing themes, or create your own custom theme. For step-by-step information about
applying and creating themes, see "Applying Themes" in Chapter 17, "Customizing Page
Appearance."

How Themes are Referenced in a Page

When you apply a theme to a page, Visual InterDev inserts <LINK> tags within the
<HEAD> block. For example, the following text is inserted when the Artsy theme is
applied:

<LINK REL="stylesheet" TYPE="text/css" HREF="Themes/artsy/COLOR0.CSS" VI98THEME="artsy">
<LINK REL="stylesheet" TYPE="text/css" HREF="Themes/artsy/GRAPH0.CSS" VI98THEME="artsy">
<LINK REL="stylesheet" TYPE="text/css" HREF="Themes/artsy/THEME.CSS" VI98THEME="artsy">
<LINK REL="stylesheet" TYPE="text/css" HREF="Themes/artsy/CUSTOM.CSS" VI98THEME="artsy">

In the example above, four <LINK> tags have been inserted because the Artsy theme uses
four cascading style sheets.

166 Programmer's Guide

Themes Installed on Your Local Machine
The list of themes that are installed on your machine was determined when you chose
Typical or Custom while setting up Visual InterDev on your computer.

Typical Install Option The Typical install option copies 17 themes to your machine.
These 17 themes include:

• New themes that were created for Visual InterDev 6.0.

• Upgraded versions of themes that shipped with Visual InterDev 1.0.

• Upgraded versions of Microsoft FrontPage 98 themes.

Custom Install Option The Custom install option lets you choose one of the following:

• 0 themes (no themes)

• Typical (17 themes)

• Complete (all themes)

Location of Themes on Your Workstation
Each set of files that makes up a theme is maintained in a single directory. The directory
name is identical to the theme name.

The theme directories are stored locally in the "Themes" directory, which is typically
found at:

C:\Program Files\Common Files\Microsoft Shared\Themes

Note In Visual InterDev 1.0, the theme files were spread across different directories.
In Visual InterDev 6.0, all the files that make up a theme reside in the same directory.

Location of Themes on the Server
Themes are stored on the master server in a directory named "Themes" in the project's
top-level directory. The files that make up a theme are added to the master server
automatically when you apply a theme.

Chapter 11 Site Design

When you deploy your Web application, include the Themes directory and sub-directories
when you copy the files to the production server.

Sharing Themes Between Visual lnterDev and FrontPage
You can access a master application on the server from either a Visual InterDev Web
project or a FrontPage project. This allows team members to use their preferred tool of
choice. For example, a team might have developers who use Visual InterDev's enhanced
scripting capabilities to access the master application and designer and writers who prefer
to use the design features of FrontPage to access the same master application.

For information about the differences between Visual InterDev and FrontPage, see "Using
FrontPage and Visual InterDev to Create Web Sites" in Chapter 29, "Integration Tasks."

Programmer's Guide 167

Part 3 Designing Sites

Additional Graphics in Themes

Each theme comes with an assortment of additional graphics to complement the basic ones
that are used by default. You can use these additional graphics to enhance the design of
your pages. Look inside a theme's directory to see all the .GIF images that are available in
a particular theme.

Tip When you drag an image from the Project Explorer onto a page, Visual InterDev
automatically inserts an tag with the correct URL.

When you use images in the Themes directory, be sure to include the correct URL in the
 tag.

Note If you apply a new theme to the page, you will need to manually update the
URLs of all images that you added by hand.

Putting it All Together
After you've decided how the tools discussed above interest you, you can use them to
simplify the process of creating and maintaining a visually appealing and consistent Web
site.You can:

• Use the Web Project wizard to create a new project. The wizard prompts you for a
default theme and layout.

• Apply a theme and a layout to an existing Web project or individual file. To select
a project or file name in the Project Explorer, right-click, and select Apply Theme
and Layout.

When a theme or a layout is applied, it is automatically copied to the master server so that
it can be shared with all team members.

If you want to share a template with team members, make the master copy available to
them. Each team member must then make a copy and place it in the Templates directory
on the workstation.

168 Programmer's Guide

C H A P T E R 1 2

Designing a Web Site

You can rapidly design and create a new Web application or redesign an existing Web
site with Site Designer. In a site diagram, you visually create, add, and organize pages in
a Web application and design the navigation structure for the site. For more information
about designing the navigation structure of a site, see chapter 13, "Designing Site
Navigation."

Site Designer allows you to create new pages directly in a site diagram or add existing
pages from the current Web application or other applications. After you have created a
site diagram, you can apply a theme to the pages or print the diagram.

Creating a Site Diagram
You can use a site diagram to easily design and build the structure of a Web application. In
addition, site diagrams help you to define and modify the navigation links between pages.
For more information, see Chapter 13, "Designing Site Navigation."

Site diagrams can be used to create new Web applications or to redesign the structure
of existing Web applications. A Web application can have multiple site diagrams. For
example, you can create different site diagrams to define the navigation structure between
separate areas of your Web application.

To create a site diagram

1. Open or create a Web project.

2. From the Project menu, choose Add Item.

The Add Item dialog box appears.

3. On the New tab, select the Web Project Files folder and then choose Site Diagram
from the pane on the right.

4. In the Name text box, type a name for the site diagram. Note that site diagram files
have a . wdm extension.

5. Click Open.

A new site diagram appears.

Programmer's Guide 169

Part 3 Designing Sites

Note When you create the first site diagram for a Web application, Site Designer
automatically adds a home page for the site to the diagram. If no home page exists,
Site Designer creates one and adds it to the project when you save the site diagram.

Site Designer determines existing home pages based on information on the Web
server. In general, Site Designer considers files such as default. htm, default. asp,

or index. htm to be home pages. Microsoft Internet Information Server specifies
default. asp for a home page and Microsoft Personal Web Server specifies
default. htm for a home page.

You can add pages to a site diagram from the current project or from other applications.
You can also use Site Designer to add new pages to the site diagram and the Web project.
For more information, see the next section. "Adding Pages to a Site Diagram."

Adding Pages to a Site Diagram
You can add pages to your site diagram in a number of ways. You can drag files from
the Project Explorer into the site diagram or you can create new files directly in the site
diagram. You can also drag files from other applications, such as Microsoft Internet
Explorer or Microsoft FrontPage.
After you have added pages to the site diagram, you can then arrange the pages to create
hierarchical relationships. Navigation bars use these hierarchical relationships to determine
which navigation links to include on the navigation bars for each page in the site diagram.
For more information, see "Arranging Pages in a Site Diagram," in Chapter 13, "Designing
Site Navigation."

Note Each .htm file can only appear once in a site diagram. Other files, such as .asp
files, .gif files, and external pages, can appear multiple times in a site diagram.

To create new pages in the site diagram

1. Open or create a site diagram.

2. From the Diagram menu, choose New HTML Page or New ASP Page.

-or-

Right-click the diagram, and then choose New HTML Page or New ASP Page from
the shortcut menu.

A new page is added to the site diagram. You can then drag the page to position it in the
diagram. The new page is given a default name. For more information about renaming a
page in a site diagram, see "Renaming Page Labels," in Chapter 14, "Managing a Site
Diagram."

Each .htm file can only appear once in a site diagram, but .asp files can appear multiple
times in site diagrams using different parameters. You can add files to site diagrams by
dragging and dropping the files from the Project Explorer into the site diagram or with
the Add Existing File command.

170 Programmer's Guide

Chapter 12 Designing a Web Site

Use the Add Existing File command when you want to create a new instance of a file that
already exists in your site diagrams. Use the drag and drop method when you do not want
to create a new instance of a file but want to include a file in the current site diagram that
already exists in another site diagram. If you attempt to drag in a file that already exists in
the current site diagram, Site Designer highlights the existing file in the diagram but does
not add the file again.

To add pages to a site diagram from a project

1. Open or create a site diagram.

2. From the Diagram menu, choose Add Existing File.

The Choose URL dialog box appears.

3. In the Projects list, select the project name or folder for the file.

4. In the Contents list, select the file you want to add to the diagram.

5. In the Parameters drop-down list, enter a parameter value or bookmark value.

6. Choose OK.

If the file you specify already exists in a site diagram, a message box appears. To add
the existing instance, choose Yes. To create a new instance, choose No. If the file does
not exist in any site diagram, Site Designer adds the file to the current diagram.

You can then drag the page to position it in the diagram.

To add pages from another application

1. Open or create a site diagram.

2. Open the application containing the page you want to add to the site diagram.

3. Drag the link from the source application into Visual InterDev.

4. Drop the file in the site diagram.

If the file already exists in another site diagram, Site Designer will add the file and its
navigation structure to the current diagram. If the file does not exist in any site diagram,
Site Designer adds the file to the current diagram.

Note Each page you add to a site diagram from another application or project displays
the External page icon. An external page cannot have child pages in a site diagram.

Adding a Home Page to a Site Diagram
You can add an existing home page to a site diagram or create a new home page for
the Web application. When you create the first site diagram for a Web application, Site
Designer automatically adds the site's home page to the diagram. If no home page exists,
Site Designer creates one and adds it to the project when you save the site diagram.

Programmer's Guide 171

Part 3 Designing Sites

If a home page already exists in the Web application, Site Designer identifies the home
page based on information on the Web server. In general, Site Designer considers files
such as default. asp, default. htm, or index. htm to be home pages. Microsoft Internet
Information Server specifies def au 1 t . asp for a home page and Microsoft Personal Web
Server specifies default. htm for a home page.

To add a home page to a diagram

1. Open or create a site diagram.

2. From the Diagram menu, choose Add Home Page.

-or-

Right-click the diagram, and then choose Add Home Page from the shortcut menu.

Site Designer automatically adds the current home page for the Web application to the site
diagram. When you save the site diagram, the new home page file is added to the current
project.

Mapping Multiple Pages to an .asp File
With Site Designer, you can quickly prototype a Web application without worrying about
how you will use the pages in your site. For example, if you have added three .htm pages
to your site diagram, you can later map these pages to an .asp file and have the navigation
bars for the pages display correctly.

Site Designer allows you to map pages in a site diagram to a new or existing Active Server
Page in the site structure file. You can also map several pages to an ASP page using
different parameters.

Note You cannot map an external page to a new or existing Active Server Page.

To map multiple pages to an ASP page

1. In the site diagram, select the page you want to map to an .asp file.

2. From the View menu, choose Property Pages.

The Page Tab (Page Properties Dialog Box) appears.

3. Select the Browse button.

The Choose URL dialog box appears.

4. In the Contents text box, select the .asp file to use.

5. In the Parameters drop-down list, enter a parameter value.

6. Click OK.

The navigation bar links will reflect that the selected page is a parameter of an .asp file and
will link to it correctly.

172 Programmer's Guide

Chapter 12 Designing a Web Site

Using the Choose URL dialog box does not add script to the .asp file. You must still add
the appropriate script to the .asp file to get the .asp file to display the pages correctly.

For example, if you have mapped Books. htm and Clothes. htm to Products. asp as
Type=Books and Type=Clothes, you would need to include the following script in
Products. asp so that Books. htm and Clothes. htm would display properly.

<% Select Case Request .OueryString ("Type") %>
<% Case "Books" %>

Books
<% Case "Clothes" %>

Clothes
<% End Select %>

Converting Active Server Pages to HTM Pages
You can create files in Site Designer without regard to the file type and then you
can convert individual ASP pages to HTML pages as needed.

To convert ASP pages to HTML pages

1. Select the .asp file in the Project Explorer that you want to convert.

2. Right-click the page, and choose Rename from the shortcut menu.

Note The Rename command is available for local files only.

3. Change the .asp extension to .htm.

4. Press Enter.

5. In the message box, click OK.

6. In the Link Repair dialog box, click Yes.

The .asp file icon is replaced with the appropriate .htm file icon in the Project
Explorer.

Programmer's Guide 173

Part 3 Designing Sites

Applying a Theme and Layout to Pages
Themes and layouts provide a consistent visual design for information on pages. You can
apply themes and layouts to new pages created using Site Designer or to existing pages in
a site diagram.

When you use layouts or the PageNavbar design-time control, you can take advantage of
the navigation structure design capabilities of Site Designer. For more information, see
Chapter 13, "Designing Site Navigation."

To apply themes and layouts

1. In a site diagram, select the pages you want to have themes and layouts.

2. From the Edit menu, click Apply Theme and Layout.

The Apply Theme and Layout dialog box appears.

3. On the Theme tab, select the name of the theme you want to apply.

4. On the Layout tab, select the name of the layout you want to apply.

5. Click OK.

Printing a Site Diagram
You can print a site diagram for use in presentations or other occasions. Before printing,
you can preview the page breaks for the site diagram.

Site Designer sets the page breaks for a site diagram the first time you print the diagram.
If you later add pages to the diagram, Site Designer does not automatically reset the page
breaks. You can, however, reset the page breaks manually.

You can change the size of your site diagram to make it fit on a page. For more
information, see "Managing the Size of a Site Diagram," in Chapter 14, "Managing
a Site Diagram."

To print a site diagram

• From the File menu, choose Print.

To view the page breaks for a site diagram

• From the Diagram menu, choose View Page Breaks.

Dashed lines appear on the site diagram to indicate page breaks.

To reset page breaks

• From the Diagram menu, choose Recalculate Page Breaks.

The page breaks are now reset to begin at the top left corner of the diagram.

174 Programmer's Guide

C H A P T E R 1 3

Designing Site Navigation

Site diagrams give you a visual way to design how users navigate through your site and
provide a fast and efficient way to manage site navigation. Simply by dragging page icons
into place in your diagram, you can create relationships between your Web pages. These
relationships are reflected in the Web application's site structure file, which contains the
navigation-related information for pages in the Web application.

When you use layouts or the PageNavbar design-time control, Site Designer interprets
the information in the site structure file to determine the types of links to include in the
navigation bars for each Web page in the site diagram.

Once the navigation bars are in place, you can modify the links included in the navigation
bars for a site by adding, moving, and deleting pages from a site diagram. If you have
created a new Web application with a layout or if you have applied a layout or PageNavbar
design-time control to an existing Web application, you can automatically update the
navigation bar links in your pages with Site Designer.

Arranging Pages in a Site Diagram
Site diagrams provide an easy way to design and update the navigation structure of a Web
application. In a site diagram, you create hierarchical relationships between pages by
grouping pages into trees. Trees contain one or more parent pages and one or more child
pages. Each Web application can have multiple site diagrams, and each site diagram can
have multiple trees.

Tip Each .htm file can only appear once in a site diagram. Other files, such as
.asp files, .gif files, and external pages, can appear multiple times in a site diagram.

You drag and drop pages beside or beneath one another in a site diagram to create parent,
child, and sibling hierarchical relationships. Use the link lines to aid you in creating
hierarchical relationships.

Layouts and the PageNavbar design-time control use trees and independent pages to
determine the types of navigation bar links to include in a page.

Programmer's Guide 175

Part 3 Designing Sites

To create separate groups of pages

1. Select a page in the site diagram.

2. From the Diagram menu, choose Detach from Parent.

The selected page and all its children are now separated from the group of pages
above them.

You can easily create child-parent relationships between pages.

To create a parent-child relationship between pages

1. Select the top page of the source tree you want to use as the child pages.

2. Drag the child pages below the parent page until the link line shows the pages
connected.

3. Drop the child pages.

You can also create sibling relationships between pages.

To create a sibling relationship between pages

1. Select a source page in the site diagram.

2. Drag and drop the source page beside the target sibling page.

Note Use the link lines to determine the placement of pages either to the right
or the left of the target sibling page.

Adding a Page to the Global Navigation Bars
You can create hierarchical relationships between pages using site diagrams. These
relationships are used to determine the types of links included on the navigation bars
for a page.

You can also indicate that a page appears as a default link on the global navigation bar
for a site. For example, you may want your help page and search page to be available as
a navigation bar link from any page in your site. Site Designer allows you to do this by
specifying that a page is a global navigation bar page.

Note You must use a layout or the PageNavbar design-time control to take full
advantage of this option.

To add a page to all site navigation bars

1. Select a page in the site diagram.

2. From the Diagram menu, choose Add to Global Navigation Bar.

A message box appears if the page is currently a child page.

The page is now available as a navigation bar link from all the navigation bars in the site.
In the site diagram, the page displays the global navigation bar icon.

176 Programmer's Guide

Chapter 13 Designing Site Navigation

To remove a page from all site navigation bars

1. Select the global navigation bar page in the site diagram.

2. From the Diagram menu, choose Remove from Global Navigation Bar.

-or-

Drag and drop the global navigation bar page over another page to create a parent-child
relationship.

You can also specify the order in which global navigation bar page links appear on the
navigation bars for a site.

To order global navigation bar links

1. From the Diagram menu, choose Reorder Global Navigation Bar.

The Reorder Global Navigation bar dialog box appears.

2. In the Order of pages in global navigation bar list box, select a page.

3. Select Move Up to move the page above another page.

-or-

Select Move Down to move the page below another page.

4. Select OK.

Note You must save the current site diagram in order for the changes to the global
navigation bar page link ordering to appear.

Removing a Page from a Site Diagram
You can easily remove pages from a site diagram without deleting the associated file from
your project. Removing a page from the site diagram does not automatically remove the
page from the project.

You can also delete pages from the navigation bars or the Web project.

Note To remove a parent page without removing the child pages, you must detach all
the child pages from the parent page before using the Remove command.

To remove a page from a site diagram

1. Select the page or pages in the site diagram.

2. From the Edit menu, choose Remove.

Programmer's Guide 177

Part 3 Designing Sites

Deleting Pages in a Site Diagram
You can delete pages from the site navigation bars or you can delete pages from the Web
project from within a site diagram. When deleting pages from the site diagram, the files
associated with the page icons are deleted from the Web application.

You can also remove pages from a site diagram without deleting the page from the site
navigation bars or from the Web project.

Note To remove or delete a parent page without removing or deleting the child pages,
you must detach all the child pages from the parent page before using the Delete or
Remove commands.

To delete pages from navigation bars

1. Select the pages you wish to remove from the navigation bars.

2. From the Edit menu, choose Delete.

The Delete Pages dialog box appears.

3. Select the Remove these pages from all navigation bars option, and then click OK.

The selected pages are removed from the current site diagram.

To delete pages from a project

1. Select the pages you wish to remove from the Web application.

2. From the Edit menu, choose Delete.

The Delete Pages dialog box appears.

3. Select the Delete these pages from the Web project option, and then click OK.

The selected pages are removed from the current site diagram and the files are deleted
from the current project.

178 Programmer's Guide

C H A P T E R 1 4

Managing a Site Diagram

You can open, rename, save, and delete site diagrams from a Web application. You can
also change the magnification of a site diagram, rotate trees in a site diagram, and expand
and collapse pages in a site diagram to make viewing the structure of the Web application
easier. Use site diagrams as a launching point for editing the source for a page or for
previewing the page in a browser.

Managing the Size of a Site Diagram
You can manipulate the site diagram to show more or less information, as needed. You can
easily manage the size of a site diagram by expanding or collapsing pages, changing the
magnification of a diagram, and rotating trees to fit your screen.

To expand or collapse a group of pages

• Click the plus sign (+) on the page to expand the page group.

• Click the minus sign (-) on the page to collapse the page group.

You can zoom in and zoom out on a site diagram to fit the diagram on your screen.

To change the magnification of the diagram

1. From the View menu, choose Zoom.

2. Select a zoom level or type a custom level.

3. Click OK.

-or-

1. Right-click the diagram.

2. From the shortcut menu, choose Zoom.

3. From the Zoom submenu, choose Fit.

You can change the layout of the site diagram by rotating the trees in the diagram
horizontally or vertically.

Programmer's Guide 179

Part 3 Designing Sites

To rotate the trees in the diagram

1. Right-click the diagram.

2. From the shortcut menu, choose Rotate.

The page group rotates either up 90 degrees to show all children to the right of the
parent pages or down 90 degrees to show all children below the parent pages.

Viewing the Full Page Path
You can view the file name and path for a page in a site diagram by viewing its Tool Tip.
For files external to the current project, the ToolTip displays the page label and the full
URL for the file. For files in the current project, the ToolTip displays the page label and
the project path for the file. You can also view this information in the property page for
the page.

To view the path for a page

• Position the pointer over the page until the ToolTip appears.

-or-

1. Select a page in the site diagram.

2. Right-click the page, and then choose Properties from the shortcut menu.

The property page for the selected page appears.

Previewing a Page in a Browser
You can launch a browser, such as Microsoft Internet Explorer, to preview Web pages and
see how they will appear to the user.

To preview pages in a browser

1. In the site diagram, right-click a page.

2. From the shortcut menu, choose View in Browser.

If you do not want to preview the page in the default browser, you can open the page using
a different browser.

To preview pages in a specific browser

1. In the site diagram, right-click a page.

2. From the shortcut menu, choose Browse with.

The Browse With dialog box appears.

3. Select a browser from the Browser list and click Browse.

180 Programmer's Guide

Chapter 14 Managing a Site Diagram

Editing the Source for a Page
You can open an editor to modify the source code of a page from within a site diagram.

To edit the source for a page

1. In the site diagram, right-click a page.

2. From the shortcut menu, choose Open.

If you do not want to edit the page in the default editor, you can specify a different editor.

To edit the source for a page in a specific editor

1. In the site diagram, right-click a page.

2. From the shortcut menu, choose Open with.

The Open With dialog box appears.

3. Select a program from the list and click Open.

Renaming Page Labels
Each page in a site diagram has a label that you can change. This label specifies the text
that appears on the navigation bar for that page's link.

Global navigation bar page labels exceeding 15 characters may display multiple button
graphics for a single link on the global navigation bar. To remedy this, use labels that are
under 15 characters or select a smaller font size for the global navbar class in the theme's
.css file.

Note When you create new pages using the New HTML Page or New ASP Page
command, the text you type for the label of a page becomes the name of the file that
is created when you save the site diagram.

To rename a page label

1. Select a page in the site diagram.

2. Type a new name or phrase and press ENTER.

The new label text appears on the page in the site diagram. When you save the modified
site diagram, the change to the navigation bar link is made in the site structure file and the
navigation bars for the site are updated.

Programmer's Guide 181

Part 3 Designing Sites

Opening a Site Diagram
You can open a site diagram from the Project Explorer. Site diagrams have a . wdm file
extension in the current project.

Note If another user makes changes to a site diagram since you last updated your
Web project files, those changes will not appear in your site diagram. To view the
latest changes, close the site diagram and synchronize the Web project.

To open a site diagram

1. In the Project Explorer, right-click the name of the diagram that you want to open.

2. From the shortcut menu, choose Open.

-or-

Double-click the name of the diagram you want to open.

The site diagram appears.

You can now move the pages, add new pages, or remove pages from the site diagram.

Note If you open a site diagram after changing your system colors, the site diagram
colors may not display properly. To correct this, save and close the diagram before
opening the diagram again.

Renaming a Site Diagram
You can change the name of an existing site diagram from the Project Explorer. Renaming
a site diagram file does not affect the site structure file.

Note You cannot rename a site diagram while you are working offline.

To rename a site diagram

1. In the Project Explorer, right-click the name of the diagram that you want to rename.

2. From the shortcut menu, choose Rename.

Note The Rename command is available for local files only.

3. Type a new name for the site diagram, and then press ENTER.

182 Programmer's Guide

Chapter 14 Managing a Site Diagram

Saving a Site Diagram
When you save a site diagram, Site Designer updates the site structure file for the Web
application with your changes. All pages in the project that have navigation bars will have
their navigation bar links updated as well. Any pages you add to the site diagram with the
New HTML Page or New ASP Page command are automatically created and added to the
current project.

Note You can save changes to site diagrams in master and local modes only. You
cannot edit or save a site diagram in offline mode.

To save a site diagram

• From the Standard toolbar, choose Save.

The site diagram is saved with a . wdm file extension in the current Web application.
The modified page icon is removed from the pages you edited in the diagram.

Caution If another user has made changes to the site that conflict with the site diagram
you are trying to save, your changes may not be saved. Instead, an error message will
appear, detailing the site structure file conflicts.

Deleting a Site Diagram
You can delete a site diagram from a Web application in the Project Explorer. When you
delete a site diagram, you delete the . wdm file from the project; you do not delete any of
the pages represented in the site diagram.

To delete a site diagram

1. In the Project Explorer, right-click the name of the diagram that you want to delete.

2. From the shortcut menu, choose Delete.

-or-

Press the DELETE key.

Programmer's Guide 183

C H A P T E R 1 5

Viewing Links for an Item

You can use Link View to create a graphical representation of the links to and from items
in a Web application. This graphical link representation, or link diagram, allows you to
visualize the links for an item. A link diagram also helps you to identify broken links and
to understand the link interactions between items in a Web application ..

Use Link View to view the links for items in the current Web application or for items on
the World Wide Web. You can also preview the items in a Web browser or edit the items
by launching the default editor from the link diagram.

Viewing Links for an Item in a Project
You can view the links for any item located in a Web application, an item in an open link
diagram, or any valid URL.

When you view the links for an item in your current Web application, you see a design
time view of the links. For example, design-time controls and other design-time-only links
appear in a link diagram. Internal items appear as valid or broken in a link diagram.

To view links for an item in a project

o Right-click the item in the Project Explorer, and then choose View Links.

A link diagram appears with an icon representing the selected item in the center of the
diagram. By default, new link diagrams open in horizontal layout, showing both the in
links and out links for an item.

To view links for an item in a link diagram

o Right-click the item's icon in the link diagram, and then choose View Links.

A link diagram appears with an icon representing the selected item in the center of
the diagram.

To view links for any URL, see the next section, "Viewing Links for an Item on the
WWW.''

Programmer's Guide 185

Part 3 Designing Sites

Viewing Links for an Item on the WWW
You can view links for pages outside of your Web application by opening a link diagram
on any valid URL. The URL can point to an internal item or to an item on the World Wide
Web. When viewing external items, keep the following points in mind:

• Link View represents all external items with external icons.

• External items appear as valid, broken, unknown, or pending in a link diagram.

• Link View displays the run-time view of the links for an external URL. Links to items
such as design-time controls do not appear in a link diagram for external items.

• You cannot open an external item in a default editor from a link diagram.

To view links for pages outside of a project

1. From the Tools menu, choose View Links on WWW.

2. In the Address edit box, type the full URL of the page you want to view, and then
choose OK.

A new link diagram appears. The new link diagram does not replace the current link
diagram, if one is open. You can switch between multiple link diagrams from the
Window menu.

Refreshing a Link Diagram with
Current Project Information

When working in a multiuser environment, changes may have been made to the Web
application after you created your link diagram. You can refresh the link diagram at any
time to ensure you are viewing the latest link information.

Link diagrams created using the View Links command use the link information stored
on the master Web server in the link index file and site structure file. These files are
not automatically updated when other users make changes to the site. You must manually
request the latest link information with the Refresh command. Link View rebuilds the link
diagram using the latest link information from the Web server.

Link diagrams created with the View Links on WWW command always use the most
current link information to build a link diagram.

To refresh a link diagram with current project information

• On the View menu, choose Refresh.

Link View creates an updated link diagram for the selected item.

186 Programmer's Guide

Chapter 15 Viewing Links for an Item

Previewing Items in a Browser
You can launch a browser to preview link diagram items and see how they will appear
to the user. For example, if a link to an expanded item in your diagram leads to an
HTML page, you can preview that page in your browser to see how it currently appears.

To preview an item in a browser

1. In the link diagram, right-click an item.

2. From the shortcut menu, choose View in Browser.

The item will appear inside your default browser.

If you do not want to preview the item in the default browser, you can specify a
different browser.

To preview items in a specific browser

1. In the link diagram, right-click an item.

2. From the shortcut menu, choose Browse with.

The Browse With dialog box appears.

3. Select a browser from the list, and then click Browse.

Launching Editors on Items in a Link Diagram
You can select an item in the link diagram and open it using the default editor associated
with that item. For example, if a link diagram shows that an item contains a broken link,
you can quickly open the item with the broken link in its editor and search for the problem.

The default editor for an item is determined by the file-type association set from either
My Computer or the Windows Explorer. For example, if you open an item with a .doc
extension, the document is opened in Microsoft Word. For more information on file-type
associations, see Windows Help online.

To edit an item from Link View using the default editor

• In the link diagram, right-click the item and choose Open from the shortcut menu.

-or-

In the link diagram, double-click the item.

If you do not want to edit the page in the default editor, you can specify a different editor.

Programmer's Guide 187

Part 3 Designing Sites

To edit the source for a page in a specific editor

1. In the link diagram, right-click an item.

2. From the shortcut menu, choose Open with.

The Open With dialog box appears.

3. Select a program from the list, and then click Open.

Printing a Link Diagram
You can print any link diagram in Link View. You can also increase or decrease the size
of the link diagrams you print to fit your page size requirements.

To scale a link diagram for printing

1. Open a link diagram.

2. From the File menu, choose Print Setup.

The Print Setup dialog box appears.

3. Enter a percentage in the Print scale option to increase or decrease the size of the
diagram for printing purposes.

You can easily print any link diagram.

To print a link diagram

• ·From the File menu, choose Print.

188 Programmer's Guide

C H A P T E R 1 6

Maintaining Links

Maintaining the links in your Web application is important to your users. With Link View,
it is easy to visualize links and to fix broken links in your Web application.

You can quickly organize the links in a link diagram by filtering a link diagram to show
only the types of files or only the types of links you want to view. For example, you could
filter out multimedia files so you can focus on finding broken links in .htm or .asp files.

You can also manage the size and complexity of a link diagram by centering the diagram,
changing the magnification of the diagram, or by expanding and collapsing links. By
managing the size of the link diagram, you can fit the entire diagram in the current window
or zoom in to view the file names for items. You can get a different view of your link
diagram by switching between a horizontal layout and radial layout.

Filtering Links
You can filter a link diagram to show only the types of items you want to see. You can
apply more than one filter category to a link diagram. In Link View, you can set filters
based on both the types of items and types of links between items.

• Showing and Hiding Items

• Showing and Hiding Links

Programmer's Guide 189

Part 3 Designing Sites

Showing and Hiding Items
Filters can be used to show and hide specific types of items in the link diagram. Available
filters appear on the Diagram menu and are represented by buttons on the Link View
toolbar.

The following filters apply to all types of items.

Filter category

All items

External files

To select one or more filters

Toolbar button Displays

All types of items

All types of items outside of the project

Note The external files filter category can be useful to hide
all of the files that are not part of the current Web application.

• From the Diagram menu, choose the filters you want to tum on or off in the current
link diagram:

Filter category

Documents

Executable files

HTML pages

Multimedia files

Other protocols

Toolbar button Displays

Files associated with applications, such as Microsoft Word or
Microsoft PowerPoint

Files representing programs, applications, batch files, scripts, and
DLLs

HTML pages, including special types of HTML layouts such as
Active Server Pages

Multimedia files, such as image, audio, video, and virtual reality
files

Links using protocols other than http, such as mail, news, and
telnet

Note When you set a filter, it applies to the current link diagram only. If multiple link
diagrams are open, you must set filters for each diagram separately.

190 Programmer's Guide

Chapter 16 Maintaining Links

Showing and Hiding Links
You can manage the complexity of the link diagram by limiting the types of links that are
shown in the diagram. For example, you can choose to hide repeated links and links within
a page, or to show only inbound links.

Repeated Links
A repeated link occurs if one page has multiple links to another page in the link diagram.
For example, if you have a Web page that contains multiple links to your glossary page,
you may want to reduce the complexity of the link diagram by hiding all but the first link
to the glossary page.

To show and hide repeated links

• Click Show Repeated Links on the Link View toolbar.

When the Show Repeated Links button is pressed in, a separate icon for each repeated
link appears in the link diagram. When the Show Repeated Links button is raised,
multiple links from one item to another item in the link diagram are consolidated into
a single link.

Bookmark Links
Bookmark links are links that refer to a different part of the same page. You can hide all
the bookmark links in a link diagram to reduce the size and complexity of a link diagram.

To show links Inside pages ~

• Click Show Links Inside Pages j'~ on the Link View toolbar.

When the Show Links Inside Pages button is pressed in, a separate link arrow for each
link within a page appears in the link diagram. When the Show Links Inside Pages
button is raised, links inside pages do not appear in the link diagram.

Programmer's Guide 191

Part 3 Designing Sites

In/Out Links
You can also filter the link diagram to show only out links or only in links by changing the
diagram layout options. For example, showing in links enables you to determine the impact
of renaming or deleting an item because you can see other pages that currently link to that
item.

Filter category Toolbar button

Show in links

Show out links

Show in and out links

Displays

Links that point into an expanded item, indicating that the item
at the other end of the line links to the expanded item.

Links that point out of an expanded item, indicating that the
expanded item links to the items it points to.

Both links that point out of an expanded item and links that
point into an expanded item.

~
For more information, see "Changing a Link Diagram Layout," later in this chapter.

Viewing Link Diagrams
You can easily place a link diagram in the center of the current window, change the
magnification of a link diagram, expand and collapse links, select items in a link
diagram, and determine the URL of an item.

• Centering Link Diagrams

• Zooming Link Diagrams

• Expanding and Collapsing Links

• Selecting Items in a Link Diagram

• Identifying the Full URL of an Item

Centering Link Diagrams
By default, the entire link diagram is centered inside the current window when you first
create the link diagram. When you expand the links for items in a link diagram, Link View
horizontally scrolls to keep the expanded items in view.

You can recenter a link diagram around any selected item in the link diagram. You
may want to do this when you have increased the size of the link diagram beyond
the boundaries of your screen.

192 Programmer's Guide

Chapter 16 Maintaining Links

To center an item in the current window

1. Select the item in the link diagram you want to center in the current window.

2. From the View menu, choose Center View.

The selected item is centered inside the current window.

You can also recenter the original expanded item in the current window.

To recenter the original expanded item

1. Click the background of the link diagram to unselect any selected items.

2. From the View menu, choose Center View.

The original expanded item appears in the center of the current window.

Zooming Link Diagrams
You can change the magnification of a link diagram to view your Web application from
different aspects. When you zoom in, items appear larger and you can read their labels
more easily. When you zoom out, you can see more of the whole site at a glance. Link
diagrams are arranged around the initial expanded item.

To zoom a link diagram

• Select a zoom value from the Zoom contro1 l!_~g!£__E] on the Link View toolbar.

The link diagram resizes according to the zoom level you selected.

You can also enter any zoom level you want to resize the link diagram.

To set a custom zoom level

• Type any value directly into the Zoom control l 1 OO% !£1 on the Link View tool bar.
Link View accepts values from 10% to 400%.

The link diagram resizes according to the zoom level you entered.

You can also automatically resize the link diagram to fit within the boundaries of
the current window.

To fit the entire link diagram into the current window

• Select To Fit from the Zoom contro1 f ~-0--0~-0~J-: J-· on the Link View toolbar. When
zooming to fit, Link View will not zoom smaller than 10% or larger than 100%.

Programmi:r's Guide 193

Part 3 Designing Sites

Expanding and Collapsing Links
If you want to see more detail in the current link diagram, you can expand links for the
selected item to show the links for that item. The links that appear depend on the filters
currently set for the link diagram. For example, if you have set filters to show only HTML
pages in your link diagram, expanding links on a page will display only links to other
HTML pages.

You can also collapse links for an item in a link diagram. Collapsing a link hides the
links for that item and reduces the size of a large link diagram for a site.

To expand links on an item

1. In the link diagram, right-click the item that you want to expand.

2. Choose Expand Links. The icon beside the command appears pressed in, and all
links for the current item are displayed.

Note In horizontal layout, Link View expands either in or out links for an item, but
not both. If you expand the items to the left of the center item, Link View displays
only the in links for those items. If you expand items to the right of the centered item,
Link View displays only the out links for those items.

In some cases, an item does not have links to or from other items. Link View, therefore,
does not enable the Expand Links command in these cases. You would also see no links
if the page does not link to any items that meet the currently active filter criteria.

To collapse links on an item

1. In the link diagram, right-click the expanded page that you want to collapse.

2. Choose Collapse Links. All links for the current page are collapsed.

You can collapse links at any level. For example, if item A is expanded to show a link to
item B and item B is then expanded, you can collapse the links to item A without first
collapsing the links to item B.

Selecting Items in a Link Diagram
You can select any single item in a link diagram, and then execute commands on that item.
For example, you can select an item and choose the Open command to view the item in its
default editor.

To select an item in a link diagram

• Click the item.

You can select multiple items in a link diagram to execute commands on the set of selected
items. For example, you can select multiple items and choose the Expand command to see
all the links for all the selected items.

194 Programmer's Guide

Chapter 16 Maintaining Links

To select multiple items in a link diagram

• Individually select items by holding down the CTRL key while you click the items.

-or-

From the Edit menu, choose Select All.

-or-

Click anywhere in the link diagram and drag the pointer. A thin dotted line forms
a rectangle as you drag. When you release the mouse button, all items within the
rectangle are selected.

When you choose the Expand Links command on a group of selected items, Link View
expands each item in the order that it was selected. If your selection includes an item that
cannot be expanded, that item is skipped.

Identifying the Full URL of an Item
When an item appears in a link diagram, it is identified by a label that shows its file name.
If you want to see the complete URL of an item, you can view the item's ToolTip.

Note For broken links, the ToolTip also displays the Winlnet error for the item
indicating why it is broken.

To view the full URL of an item

• Position the pointer over the item until the ToolTip appears.

I http: //www.source.com/index. htm I

Changing a Link Diagram Layout
Link diagrams can have two different layouts: the horizontal layout and the radial layout.
When you view the links for an item, the horizontal layout appears by default.

The horizontal layout shows both the in links and the out links for an item.

The radial layout appears when you choose to see either the in links or the out links for
an item.

You can switch between the two link diagram layouts to get a different view of the links
for an item.

Programmer's Guide 195

Part 3 Designing Sites

To change the layout for a link diagram

• From the Link View toolbar, click Change Diagram Layout.

The link diagram changes to either the horizontal layout or the radial layout.

Repairing Links
In large Web sites, it is essential that you can easily maintain the links in your Web
applications. To facilitate this task, Microsoft Visual InterDev offers the following
assistance:

• Preventing Broken Links

• Updating Link Information

• Finding Broken Links and Unreferenced Files

Preventing Broken Links
When you reorganize your Web application by deleting or moving files and folders, you
might break links within the application. Visual InterDev provides a way to automatically
repair links that would be broken by deleting or moving files and folders.

With link repair enabled for a project, all relative links in target files are repaired. Target
files are the files that are being renamed, moved, or deleted. Referring files are files that
contain links to target files. Links in referring files are repaired depending on the setting of
the Link Repair option in the Web Project Options (Projects - Options Dialog Box) in the
Options dialog box. Link repair for a project is enabled or disabled from the General Tab
(Project Properties Dialog Box).

To control automatic link repair

1. On the Tools menu, choose Options.

2. In the Options dialog box, select Projects, and then select Web Projects in the
navigation pane.

196 Programmer's Guide

Chapter 16 Maintaining Links

3. In the Link repair area, choose a link repair option.

To

Always update links automatically on both the
master Web server and the local Web server

Select

Repair links in referring files

Never update links automatically

Get a prompt and decide each time

Don't repair links in referring files

Ask me each time

Warning When you work with files under source control, you should check all of your
Web application files in before renaming or moving files. If a file is checked out
exclusively by another user, the links within the file may not be updated properly.

You should also periodically update the link information on your local Web server and
the master Web server to provide the most current information for link diagrams and the
Broken Links Report.

Updating Link Information
If you work in a multiple developer environment, chances are high that the changes you
or others make to the master Web server will change the link information for the Web
application. To keep your link information current, you should periodically refresh the
link information on both your local Web server and the master Web server.

You can refresh your link information by using the Recalculate Links command. In master
mode and local mode, the Recalculate Links command first updates the link information
on the master Web server and then updates the link information on the local Web server.
When working offline, Recalculate Links updates only the link information on the local
Web server.

Note Recalculating links can take several minutes, depending on the size of the Web
application. While Visual InterDev recalculates links, you will be unable to work on
other files in Visual InterDev.

To recalculate links explicitly

1. In the Project Explorer, select the root of the project.

2. From the Project menu, choose Web Project, and then choose Recalculate Links.

Visual InterDev examines all of the files in the Web application and updates the link
information. If your project includes a Search.htm file like the one generated by the
Web Project Wizard, this file is also updated.

Recalculating links for a Web project provides the most current link information for link
diagrams and the Broken Links Report.

Programmer's Guide 197

Part 3 Designing Sites

Finding Broken Links and Unreferenced Files
In a large Web site, you need an easy way to find all of the broken links in your files.
Visual InterDev provides two methods for identifying broken links: link diagrams and
the Broken Links Report. A link diagram allows you to visually verify links for individual
files or sets of files. For more information about visualizing broken links, see Chapter 15,
"Viewing Links for an Item."

The Broken Links Report allows you to identify broken links and unreferenced files for an
entire Web project. Unreferenced files are files in your Web project that do not have any in
links. These files may be necessary for creating and maintaining your Web project but do
not need to be deployed to the production server. For example, site diagram files (*.wdm)
contain essential navigation structure information but are not needed on the production
Web server.

Note You can specify which file types are not deployed in the Web Project Options
(Projects - Options Dialog Box) in the Enterprise Edition of Microsoft Visual Studio
and Visual InterDev.

Unreferenced files may also be files that contain links that the Broken Links Report does
not recognize or files that are no longer used and should be deleted.

Note Creating a Broken Link Report can take several minutes, depending on the size
of the Web application. While Visual InterDev verifies links, you will be unable to
work on other files in Visual Inter Dev.

To identify broken links and unreferenced files

1. In the Project Explorer, choose the root of the project.

2. From the View menu, choose Broken Links Report.

The Links Report message appears, indicating that the links for the Web application are
being checked.

When the Broken Links Report is complete, the files with broken links and unreferenced
files are listed in the Task List Window and the Output Window.

From the Task List window, you can double-click any file listed to open the file in the
default editor.

198 Programmer's Guide

C H A P T E R 1 7

Customizing Page Appearance

Professional-looking Web sites stand apart because of their quality and consistency of
design. Microsoft Visual InterDev helps you achieve a high standard of design quality
with templates, style sheets, themes, and layouts.

Using any or all of these features enforces standardization across your Web site as well
as shortens the time you spend on development and production:

• Templates create standard pages that can contain common HTML and script.

• Style sheets instruct the browser to override browser default fonts, sizes, and colors.

• Themes employ a common set of graphics.

• Layouts define how the navigation and content are laid out on regions of a page.

Creating Files with Templates
Any existing HTML or ASP page can be used as a template for creating new identical
pages. Using templates can save you a lot of time as well as give your Web site a
consistent look and feel. When creating a page, you can base it on a standard
Microsoft Visual InterDev template or use one of your own custom templates.

When you create files for your Web project, Visual InterDev looks in the Templates
directory for .htm, .asp, and other files and then displays a list of those templates in
the right pane of the New tab of the Add Item dialog box.

To create a page based on a template

1. From the File menu, choose New File.

-or-

From the Project menu, choose Add Item.

2. In the New tab, select Web Project Files in the left pane.

3. Select the desired template in the right pane.

For information about creating your own templates, see "Creating Custom Templates"
later in this chapter.

Programmer's Guide 199

Part 3 Designing Sites

Editing Style Sheets
Cascading style sheets (CSS) give you the ability to define a set of styles that overrides
the browser's standard methods for rendering HTML. This lets you give your pages a
unique and consistent design. For an in-depth discussion on using style sheets with
Microsoft Visual InterDev, see "Site Consistency" in Chapter 11, "Site Design."

You can create or edit cascading style sheets in the CSS editor. The CSS editor has an
easy-to-use interface for setting style properties. You can use the editor's graphical
interface so that you don't have to edit raw CSS text.

To create a style sheet in your Web project

1. From the Project menu, select Add Web Item and then Style Sheet.

2. Type a name in the Name box and choose Open.

You can also create a style sheet independent from a Web project.

To create a style sheet outside of a Web project

1. From the File menu, choose New File.

2. On the left, choose Visual Inter Dev.

3. On the right, Style Sheet.

4. Type a name in the Name box and choose OK.

The CSS editor will be displayed with your new style sheet.

~ Style sheet
~-.. €pJ HTML Tags

~ : ~-
l·····@zl Classes
L. .. G:l.J Unique IDs

200 Programmer's Guide

Chapter 17 Customizing Page Appearance

Using the CSS Editor
In the CSS editor you select an HTML tag, class, or unique ID in the left pane and then set
its properties in the right pane. For information about the editor's interface, see "CSS
Editor Window" in Visual InterDev's online documentation.

Adding HTML Tags for Editing
Depending on the style sheet that you are editing, you may have many or just a few tags. If you
need to modify the style of a tag that is not listed, you can add it to the list in the left pane.

To add an HTML tag

• From the StyleSheet menu, choose Insert HTML Tag.

Editing HTML Tags
You can override the standard settings of an HTML tag.

To set style properties for an HTML tag

1. Choose the + icon to expand the HTML Tags node.

2. Select a tag.

3. In the right pane, select tabs and options to set the properties of the style.

Editing Classes
You create a class to contain certain properties that you apply to a specific tag or make
available to all tags.

To create a class

1. From the StyleSheet menu, choose Insert Class.

2. In the Insert New Class dialog box, type a name in the Class name box.

3. If you want to apply the class to a specific tag, select Applies only to the following
tag and select a tag from the list box.

After the class has been created and added to your style sheet, you can edit its properties
in the right pane.

Programmer's Guide 201

Part 3 Designing Sites

Editing Unique IDs
Unique IDs are used like classes except they can be used only once per page.

To create a unique ID

1. From the StyleSheet menu, choose Insert Unique ID.

2. In the Insert Unique ID dialog box, type a name in the Unique ID box.

3. If you want to apply the ID to a specific tag, select Applies only to the following tag
and select a tag from the list box.

After the ID has been created and added to your style sheet, you can edit its properties in
the right pane.

Previewing a Style Sheet
You can preview how any page, local or on the World Wide Web, would look if the style
sheet were applied.

To preview a style sheet applied to a page

4. In the CSS editor, choose the Preview tab.

5. In the address box, type the URL of any page.

Note If the page you are previewing already has a style sheet attached,
Visual InterDev recognizes that style sheet as the primary style sheet and
correctly applies the one that you are editing as secondary.

Applying Themes
Give your Web design a professional polish by applying themes. A theme is comprised of
a set of graphics and a cascading style sheet (CSS) that controls the styles, font, and other
elements. For information on site consistency including themes, see "Site Consistency"
in Chapter 11, "Site Design."

You can set a default theme for an entire Web project, or you can apply a specific theme
to an individual file.

Applying a Theme to a Project
When you create a Web project, you can choose a default theme for the project.

To set a default theme when creating a Web project

• Run the Web Project wizard and select a theme when prompted.

Now, by default, all pages that you create in the Web project will use the default theme.

You can still apply a project default theme even if you did not select one when creating
the project.

202 Programmer's Guide

Chapter 17 Customizing Page Appearance

To apply or change the default theme of an existing Web project

1. In the Project Explorer, select the project name.

2. From the View menu, choose Property Pages.

3. In the dialog box, select the Appearance tab.

4. Under Default Theme and Layout, click the Change button to display the Apply
Theme and Layout dialog box.

5. Click the Theme tab.

6. Select Apply theme to activate the scrolling list of themes.

7. Select a theme from the list.

If you later decide that you don't want to use a theme, you can remove it from the project
without affecting the content.

To remove a theme from a Web project

1. In the Project Explorer, select the project name.

2. From the View menu, choose Property Pages.

3. In the dialog box, select the Appearance tab.

4. Under Default Theme and Layout, click the Change button to display the Apply
Theme and Layout dialog box ..

5. Click the Theme tab.

6. Select Apply to activate the scrolling list of themes.

7. At the top of the list, select <none>.

At this point, the theme is no longer applied to the project, but the theme files still exist in
the project. If you want to actually remove the files from the project, select the unwanted
theme in the Themes folder and delete it.

Applying a Theme to a Single Page
You can apply a theme to a single page. If the project that contains the page already has a
default theme, the page-level theme overrides the project-level one.

To apply or change the theme of a single page

1. In the Project Explorer, select an HTML or ASP page.

2. From the Edit menu, choose Apply Theme and Layout.

3. In the dialog box, select the Theme tab.

4. Select Apply and specify a theme.

If you decide that you do not want a particular page associated with a theme, you can opt
to apply no theme or return to the project-level theme.

Programmer's Guide 203

Part 3 Designing Sites

To remove a theme from a single page

1. In the Project Explorer, select an HTML or ASP page.

2. From the Edit menu, choose Apply Theme and Layout.

3. In the dialog box, select the Theme tab.

4. Select Preserve Current Theme.

-or-

Select Apply and then <none> from the list.

Preserve Current Theme instructs Microsoft Visual Inter Dev to use the project's
default theme, while <none> explicitly specifies that there is no theme applied to
the page.

Note The Apply Theme and Layout command is disabled when you are working
offline.

Previewing a Theme
You can browse through all the available themes in the Apply Theme and Layout
dialog box. This preview allows you to test how a theme looks before you apply it
to a page or project.

To preview a theme

1. In the Project Explorer, select an HTML or ASP page.

2. From the Edit menu, choose Apply Theme and Layout.

3. In the dialog box, select the Theme tab.

4. Select Apply theme to activate the list of themes.

204 Programmer's Guide

Chapter 17 Customizing Page Appearance

5. Click on any theme on the left to display a preview on the right.

Apply Theme ·and Layput . . 13

.· Theme J LayoutJ

0 e_reserve current theme:

(!'., 8,Pply theme:

<none>
Arcs
Artsy
Automotive
Blue Mood
Blue Rose

Expedition
Grid
In Motion
Leaves
Nature
Network Blitz
Raygun
Redside
~~.i?I!_. ________________ ~ ~-[!] ,. -

C:\Program Files\Common Files\Microsoft Shared\Themes\

__ B._e_s_to_· r_·~_·o_· ~-f a_u_lt_D_i_re_c_to_r_Y_-"""'J : ~rowse •..

6. Cancel the dialog box if you do not want to apply the theme.

OK

Cancel

tlelp

Visual InterDev fills the list with themes from both your local installation as well as
the themes residing on the project's master server. For information concerning theme
locations, see "Themes Installed on Your Local Machine" in Chapter 11, "Site Design."

Creating a Custom Theme
Creating a custom theme is as simple as supplying files in the correct locations.

To create a custom theme

1. Create a directory named after your theme.

2. Add your cascading style sheets to the theme directory.

3. Add your images to the theme directory.

Programmer's Guide 205

Part 3 Designing Sites

Creating the Theme Directory
All the elements of a theme are maintained in a unique directory.

To create a theme directory

• On your local machine, create a directory in the _Themes directory.

Note If you haven't yet applied a theme to a project or to one of the project files,
then the Themes folder won't yet exist in your project.

The name that you give the directory determines the name of the theme.

Later, when you apply the theme using the Apply Theme and Layout dialog box,
Visual InterDev will look in the _Themes directory and include your custom theme in
the list of available themes. You will also be able to preview your theme in the dialog
box along with the other themes.

The theme is automatically copied to the server when you apply the theme to a page or
project. Visual InterDev copies the directory and all its files to the server.

Creating a Cascading Style Sheet for a Visual lnterDev Theme
Cascading style sheets allow you to format the style of your page without affecting the
content. When used in conjunction with themes, you typically:

• Define the font, name, size, and other attributes of tags.

• Specify image files to use with bulleted lists and horizontal rules.

You can create a cascading style sheet with the CSS editor. You can also use the editor
to modify an existing style sheet. For information on the CSS editor, see "Editing Style
Sheets," in this chapter, or "CSS Editor Window" in Visual InterDev's online
documentation.

When you have finished editing your style sheet, save it and move it to your theme
directory.

Adding Images to the Theme Directory
By default, Visual InterDev references images in the Themes directory. Copy all images
that you want to include in your theme into your custom theme directory.

206 Programmer's Guide

Chapter 17 Customizing Page Appearance

Sharing Customized Themes with FrontPage
Note Be careful if you are sharing a project between Visual InterDev users and
Microsoft FrontPage users.

If you customize one of the themes that is supplied by Visual InterDev, and then apply
the theme to a file using FrontPage, FrontPage might overwrite your customizations.

To avoid this, rename themes when you customize them and use new unique names.
Also, in the theme's .inf file, set the ti t 1 e=- line to reflect the new theme name.

Laying Out Pages
When you lay out a page you design it so that the user can easily scan the page for content,
navigation, and orientation. Microsoft Visual InterDev includes a new feature, layouts,
which makes it easy to organize your pages into logical regions.

When a layout is applied to a page, the layout:

• Defines how the content of the page is visually laid out in regions.

• Implements navigation among parent, children, and sibling pages using the
PageNavBar design-time control.

• Includes a consistent use of a title region, if desired.

Applying a Layout to a Project
When you create a Web project, you can choose a default layout for the project.

To set a default layout when creating a Web project

• Run the Web Project wizard and select a layout when prompted.

Now, by default, all pages that you create in the Web project will use the default layout.

You can still use layouts if you choose not to use one when creating the project.

To apply or change the default layout of an existing Web project

1. In the Project Explorer, select the project name.

2. From the View menu, choose Property Pages.

3. In the dialog box, select the Appearance tab.

4. Under Default Theme and Layout, choose Change to specify a layout.

If you later decide that you don't want to use a layout, you can remove it from the project
without affecting the content.

Programmer's Guide 207

Part 3 Designing Sites

To remove a layout from a Web project

1. In the Project Explorer, select the project name.

2. From the View menu, choose Property Pages.

3. In the dialog box, select the Appearance tab.

4. Under Default Theme and Layout, choose Change.

5. Select Apply to activate the scrolling list of layouts.

6. At the top of the list, select <none>.

At this point, the layout is no longer applied to the project, but the layout files still exist in
the project. If you want to actually remove the files from the project, select the unwanted
layout in your project's Layouts and delete it.

Applying a Layout to a Single Page
You can apply a layout to a single page. If the project that contains the page already has a
default layout, the page-level layout overrides the project default.

To apply or change the layout of a single page

1. In the Project Explorer, select an .htm or .asp file.

2. From the Edit menu, choose Apply Theme and Layout.

3. In the dialog box, select the Layout tab.

4. Select Apply and specify a layout.

If you later decide that you do not want a layout applied to a particular page, you can
choose to apply no layout or return to the project default.

To remove a layout from a single page

1. In the Project Explorer, select an .htm or .asp file.

2. From the Edit menu, choose Apply Theme and Layout.

3. In the dialog box, select the Layout tab.

4. Select Preserve Current Layout.

-or-

Select the Apply option and then <none> from the list.

Preserve Current Layout instructs Visual InterDev to use the project's default layout,
while <none> explicitly specifies that there is no layout applied to the page.

Note The Apply Theme and Layout command is disabled when you are working
offline.

208 Programmer's Guide

Chapter 17 Customizing Page Appearance

Previewing a Layout
You can browse through the layouts in the Apply Theme and Layout dialog box. Images
appear in the dialog box that are representative of the layouts themselves. This preview
allows you to see how a layout looks before you apply it to a page or project.

To preview a layout

1. In the Project Explorer, select an .htm or .asp page.

2. From the Edit menu, choose Apply Theme and Layout.

3. In the dialog box, select the Layout tab.

4. Click on any layout on the left to display a preview on the right.

Th~~e·:: · Layout)

O· e,reserve current layout:

€ 0
• 8JJply layout and theme:

<none>
Bottom 1

Right 1
Top 1
Top and Bottom 1
Top and Bottom 2
Top and Bottom 3
Top and Bottom 4
Top and Left 1
Top and Left 2
Top and Left 3
Top and Left 4
Top and Left 5
Top and Left 6
!IJP.a.r:i~Rigbt!

Q.irectory:

... :

Left:

• sibling pages

r OK I
Cancel: .. ·)

!:!elp: .'.):

Programmer's Guide 209

Part 3 Designing Sites

Creating Custom Layouts
You can create your own custom layout to meet your own design needs. Layouts are
located in the Layouts directory of a project.

Note If you haven't yet applied a layout to a project or to one of the project files,
then the _Layouts folder won't yet exist in your project.

Each Visual InterDev layout is comprised of three files. You can open the files in the
editor in order to become more acquainted with their contents. The files serve the
following purposes:

File name

name.inf

Layout.htm

Preview .htm

Purpose

name is the name of the layout. name matches the name of the
parent folder. This file contains information about the layout.

This template contains the HTML that is inserted into a page
when a layout is applied to the page.

This file is called when the layout is selected in the
Apply Theme and Layout dialog box.

The easiest way to create a custom layout is to copy an existing one and then modify it.

To create a custom layout template

1. In the project's _Layout folder, create a new folder and name it.

2. Copy the files from one of the existing layout folders and paste them into you new folder.

3. In your new folder, select the .inf file and rename it so that it matches the folder name.

4. Double-click the .inf file to open it.

5. On the tit 1 e= line, specify a new title. This is the string that appears in the list of
layouts in the Apply Theme and Layout dialog box.

6. Save and close the .inf file.

7. Double-click Layout.htm to open it in the editor.

8. Click the Source tab of the editor. Now you can see the Layout design-time controls
and the HTML tags that define the layout's table. Modify the HTML tags and text to
suit your needs.

Warning Do not modify the run-time text of the Layout design-time controls.

210 Programmer's Guide

Chapter 17 Customizing Page Appearance

9. Save and close Layout.htm.

10. Double-click Preview.htm to display it in the editor. This file is called when
the layout is selected in the Apply Theme and Layout dialog box. Edit the file
to suit your needs.

11. Save and close Preview.htm.

Now Visual InterDev will automatically include your custom layout in the list of available
layouts when you display the Apply Theme and Layout dialog box.

For detailed information on Layouts, see "Layouts" in Chapter 11, "Site Design."

Creating Custom Templates
A custom Microsoft Visual InterDev template is any .htm, .asp, or other text file that you
create and place in the Templates directory. You can further customize the template by
including parameters that prompt the user for input that is added to the new file based on
the template.

A template can be:

File type

A single .htm file

A single .asp file

Other text file

To create a custom template

Result

An HTML page

An ASP page

A text file

o Move your .htm .asp, or other text file to the Templates directory. The installation
default is "C:\Program Files\Microsoft Visual Studio\VintDev98\Templates."

You can further customize a template so that it prompts the user for input when creating a
new file.

To prompt the user for input

o Use delimiters (<%#and#%>) in the template to create a parameter. Parameters can be
up to 100 characters long and are case-insensitive.

For example, to prompt your user with a question, place text between the delimiters,
as follows:

<%#What is the name of your department?#%> Expense Report<IB>

If the user responds with the input "Marketing," then the new file would contain this
line:

Marketing Expense Report<IB>

Programmer's Guide 211

Part 3 Designing Sites

The following parameters are reserved by Visual InterDev for unique functions.

• <%#DataConnection#%>

When Visual InterDev encounters this parameter, it prompts the template user to select
one of the existing project data connections.

• <%#Filename WithExtension#%>

This parameter automatically inserts the template's file name and extension into the
new .htm or .asp file.

• <%#Filename WithoutExtension#%>

This parameter automatically inserts the template's own file name without its extension
into the new .htm or .asp file.

• <%#ThemeName#%>

When Visual InterDev encounters this parameter, it prompts the template user to select
one of the available themes.

For more detailed information on Visual InterDev templates, read the technical
paper "Creating Your Own Visual Inter Dev Templates" on our Web site at
http://www.microsoft.com/vinterdev/techmat/whitepapers/vitemplt.htm/.

212 Programmer's Guide

PA RT 4

Integrating Databases

Part 4 provides information about data connections, database management, the data
environment object model, server and client access to databases, as well as other data
access information.

Chapter 18 Database Concepts

This chapter covers the concepts behind the Visual InterDev "Data Access Architecture,"
the "Data Environment," and "Data Binding."

Chapter 19 Viewing Data

In Visual InterDev, you can display data on your Web pages using data-bound
design-time controls. This chapter describes "Getting Records" and "Displaying
Data on your Web Page."

Chapter 20 Modifying Data

In addition to displaying data, you can create Web pages that allow users to modify
data - update existing records, add records, and delete records.

Chapter 21 Accessing Databases Directly

This chapter covers debugging stored procedures and working with database commands
through the Data Environment.

Chapter 22 Managing Database Projects

Database projects allow you extensive control over your SQL Server or Oracle database.

C H A P T E R 1 8

Database Concepts

Data Access Architecture
Microsoft Visual InterDev allows you great flexibility in designing Web applications with
a database component. You can use any database supported by ActiveX Data Objects
(ADO) for which you have drivers, including Microsoft SQL Server, Microsoft Access,
Oracle, and others.

You can interact directly with the database or use views, stored procedures, and other
database entities to manage the database. The database can be physically located on the
same computer as your Web server or on a different computer. You can do all your
database access using the Web server, or you can access the database directly from a
client computer.

To prepare for the data access features of Visual InterDev, consider these concepts first:

• Database Integration in Visual InterDev

• Web Servers and Databases

• Data Connections

• Database Management

Database Integration in Visual lnterDev
Visual InterDev integrates a wide array of features to help you create Web applications
with a database component:

• Database projects A type of project you can add to your Visual InterDev solution that
includes tools required to build and manage your databases as a separate component
from Web pages.

• Data View window A window that provides a live view of the data to which your
database or Web project is currently connected. From the Data View window, you can
launch tools to manage your database, whether you are in a database project or Web
project.

Programmer's Guide 215

Part 4 Integrating Databases

• Microsoft Visual Database Tools A set of tools for managing and querying your
database graphically. The Database Designer allows you to create and modify
table definitions, column definitions, and relationships between tables in Microsoft
SQL Server and Oracle databases. Using the Query Designer, you can visually
create and run SQL statements. A View Designer enables you to create views.

• Data Environment A repository in your Web project for information required
to connect to and access data in databases. The data environment stores reusable
connection strings that allow you to access databases from your Web pages. In
addition, the data environment stores data commands that represent recordsets,
based on database objects or SQL commands.

• Data-bound controls Controls such as text boxes, buttons, and so on, that you can
put on a Web page and that are automatically bound to specific fields in a database
record. Data-bound controls already include script required to make data connections,
extract data, and update the database so you can build database access into your
Web pages with little or no scripting.

• Source control for database objects A link between databases and your source
control system so you can put SQL scripts and compiled stored procedures under
source control. This makes development simpler and more secure in companies
with more than one database programmer.

Web Servers and Databases
In Web applications that access databases, two server-like functions are occurring:
the Web server handles requests for pages and a database server or equivalent
software handles database access. Although these two server functions are part of
the same application, each functions separately.

You can configure Web servers and database servers in various ways, depending on
how you want people to use the database server, what the target audience is for your
Web application, and how the application relates to other applications in your business.
The following configuration options are possible:

• The database server can run on the same computer as the Web server.

Client 1 Master Server

216 Programmer's Guide

Chapter 18 Database Concepts

• The database server can be on a separate computer from the Web server. You might
do this if you wanted to optimize each computer for its respective task, if you want to
share a database server among several Web servers, or if the database server is used for
applications other than the Web application.

Client Web Server Database Server

Other
App Ii c ati on:s:

• The database server and Web server can be entirely separate processes that do not
communicate. This model is practical if client computers can access the database
directly, which can increase performance.

Web Server Database Server

~ "
t t ..------'t j 1.---·H---

Client 1 Client 2

@@

Programmer's Guidi.: 217

Part 4 Integrating Databases

• The database can be on a local (client) computer. You might do this in special cases,
such as testing.

Web Server

Client 1

Client 2

Using the Web server as a gateway to the database is the most common strategy, because it
gives Web applications the widest reach- the server does the database work, so it doesn't
matter what type of browser the user has. Server-side database access is therefore a good
choice for public Internet sites, where users might access the site with any browser.

Client-side access, on the other hand, can provide a richer user experience that emphasizes
performance, because the browser can manage data sets independently from the Web
server. However, client-side access requires Internet Explorer DHTML as a browser,
and also that the database be accessible via specific database drivers. Client-side
database access is therefore most practical in intranet sites, such as a corporate Web
site, where users access the site using a standard browser with predictable features.

For information about Web server and database server security, see "Security" in
Chapter 6, "Web Project Concepts."

218 Programmer's Guide

Chapter 18 Database Concepts

Data Connections
To use a database, you add a data connection to your Visual InterDev project, which tells
it how to access the database. Typically, a data connection includes information such as:

• The type of database you are accessing (for example, Microsoft SQL Server) and the
server name (if appropriate).

• The name of the database (for example, pubs).

• A user name.

• A password.

You can add as many data connections to your project as you need. For example, if
your application requires access to two different databases, you would add two data
connections. For details about how to add a data connection, see "Connecting to a
Database" in Chapter 3, "Database Basics."

Creating Connections
When you are creating a data connection, Visual InterDev reads connection information
from a DSN (data source name) on your computer. Your computer can provide the DSN
information in either a file DSN (stored in a .dsn file) or a machine or system DSN
(stored in the Windows registry of your computer).

File Data Source Name

In the case of a file DSN, Visual InterDev reads the connection information from the
DSN and extracts the connection string. It then adds a connection node to your project's
data environment.

The connection string extracted from the DSN is stored in your Web project in a binary
file called DataEnvironment.asa. This is referred to as a "DSN-less" connection, because
the Web project no longer needs the DSN to establish the connection. From then on,
Visual InterDev can simply read the connection information from the binary file as needed.

Machine Data Source Name

In the case of using a machine or system DSN, a connection string is not used. Instead, you
will have to recreate the DSN on each development machine as well as the Web server.

Programmer's Guide 219

Part 4 Integrating Databases

ODBC Drivers

At run time, the server must have the appropriate ODBC driver to make the connection
to the data source. By default, ODBC drivers are installed on both your development
computer and your server when you install Visual InterDev. However, if you deploy your
applications to other servers, you must make sure that those servers also have the correct
ODBC drivers.

Security with Data Connections
Generally, when you are creating an application, you want to have the widest possible
range of privileges so you can manipulate the database and data as needed. However,
when users access the data at run time, you want to limit them to the minimum privileges
required to run the application.

Your first task is to create user profiles on the database. For example, you might create
an administrator-level user profile for yourself to use during development. You can
also create a user profile with privileges appropriate for users of your application. If the
database server is on a different computer than the Web server, you must also make sure
that the correct user profiles have been defined at the operating system level. For more
information, see "Security" in Chapter 6, "Web Project Concepts."

Later, when you create a data connection, you can specify both design-time and run-time
authorization. Design-time authorization is the user name and password you use when
developing the application. Run-time authorization is the user name and password that
Visual InterDev will use when connecting to the database while the application is running.

When specifying design-time authorization, you choose how secure your authorization is.
For maximum security, you can choose to be prompted for a password each time you
connect to the database. If you are not as concerned about security, you can choose not
to be prompted. In that case, Visual InterDev encrypts your password and stores it in
the project.

When you specify run-time authorization, you do not have this choice: you cannot prompt
users for a password, because the prompting would necessarily have to occur on the Web
server. Therefore, you must include the password with the user name. The password is
encrypted and stored in the project so it can be passed to the database each time a user
connects to the database when the application is running.

220 Programmer's Guide

Chapter 18 Database Concepts

Database Management
In addition to helping you create Web pages that are linked to databases, Visual InterDev
allows you to manage databases while directly connected to them at design time.
Depending on the features of your database and your access privileges, you can use
Visual InterDev tools to add, remove, or modify:

o Databases

• Tables or columns

o Views and synonyms

• Relationships between tables

• Indexes

• Constraints and triggers

• Stored procedures, functions, and packages

• Queries that return sets of data, or queries that modify a database by adding, updating,
copying, or deleting records

Note Features that allow you to make structural edits to databases are available only
in the Enterprise Edition of Microsoft Visual Studio.

Programmer's Guide 221

Part 4 Integrating Databases

Managing databases is a separate task from adding database functionality to a Web
application. Therefore, to manage databases in Visual Inter Dev, you create a database
project. To help you perform various database management tasks, a database project in
Visual InterDev provides the following tools:

• Data View window A window that displays all the database objects that you can
currently work with. From the Data View window, you can edit objects such as
tables, views, stored procedures, and triggers.

Data View Window Showing Available Database Objects

Data :View· " . El

... = CorpWeb
El·· 6l pubs

r!J... ®g Database Diagrams

S··· Qml Tables

1 r ~ mth:~~d
! ~ ~..... m au_lname

1 1 1····· m au_fname

! l !···" m phone
l l 1..... m address

~ $··· [ill pub _info
1 $··· [ill publishers
~ ~-·· [ill pub _info
1 $··· ITilJ publishers
l $··· lmJ roysched
$···~Views
rB··· Q®I Stored Procedures

222 Programmer's Guide

• Database Designer A tool that displays your Microsoft SQL Server or Oracle
database as a database diagram, which you can edit to add or modify table and
column definitions, define relationships, create indexes, and add constraints.

Database Diagram Representing a Database Visually

Chapter 18 Database Concepts

~z- Database Diagram 1 : Database Diagram (pubs)" , " . : '. ·, · · ·~·lllil t.3·
' ~... • >:;. •

Programmer's Guide 223

Part 4 Integrating Databases

• Query Designer A designer that allows you to visually create an SQL statement to
query or modify a database.

Query Designer Being Used to Create an SQL Statement

~Z• Pubs \Get Titles. dtq : Design l!llil 13

• View Designer A version of the Query Designer that allows you to visually create the
SQL Statement that defines a view.

• Stored Procedure editor A window for creating stored procedures that includes a link
to the Query Designer to construct SQL statements.

• Trigger editor A window for creating triggers.

• Script editor A window for creating SQL scripts, which are SQL statements that are
independent of any particular database. You can put SQL scripts under source control
as well.

224 Programmer's Guide

Chapter 18 Database Concepts

The Data Environment
The data environment is a repository in your Microsoft Visual InterDev Web project for
the information required in server script to connect and manipulate data in databases.
It provides a standard interface for creating reusable data-related objects and for
placing them on Web pages.

Note The data environment is available on the server. If you are designing a Web
application that uses client access to data (using Microsoft Internet Explorer 4.0
DHTML), the data environment is available at design time, but not used at run time.

The data environment also provides an object you can reference in script, allowing you to
access and manage database objects such as tables, views, stored procedures, and SQL
commands programmatically. It provides an easy-to-use wrapper around ActiveX Data
Objects (ADO), making these objects more accessible and easier to work with in
Visual Inter Dev.

To understand the data environment, you must understand these concepts:

• Data Environment Contents

• Drag and Drop Scenarios in the Data Environment

• The Data Environment Object Model

Data Environment Contents
The primary component of the data environment is a data connection, which includes the
information required to connect to one database with a specific user name. For example,
your data environment might include a connection that links your application to the Pubs
database on a Microsoft SQL Server under the user names Admin (at design time) and
Guest (at run time). If your application requires access to multiple databases, you can
add multiple data connections to your data environment.

Within each data connection, you can add one or more data commands (command objects),
which define a set of data to work with. Command objects can reference a database object
such as a table, query, view, synonym, stored procedure, or SQL statement. For example,
you might create a command object that references the Authors table so you can display
the contents of that table on a Web page. You could also define additional command
objects to reference queries and stored procedures you can call to display and update
data in other tables.

Programmer's Guide 225

Part 4 Integrating Databases

A Web Project Showing the Data Environment and Data Commands

Proiect Explorer - CorpWeb El

l.

i. , Solution 'CorpWeb' (1 project)
: El·· ~ CorpWeb

r rE··· @=) _private
~... @=) _Scriptlibr ary
t'E... @=) images

S .. P..<fi) global. asa
1 El.. ~ DataEnvironment

~ El .. ~-
j rE·.. [§11 Authors

! S... ~l SQL_ Titles
l 1 1 Lfil TITLE_ID
1 l j r§J TITLE
j j L ... Lfil PRICE

l rE... ~ SP _royalty
I .. · .. .?.. I!) home.htm
j p_aJ login. asp
L ... ei I!) search. htm

Command objects are accessible to any page in your application. They therefore become
reusable objects. If the underlying database changes, you can make a single change to the
command object, and all Web pages that reference the command object will continue to
work properly.

Each command object is a node that contains additional information relating to that
command object. For example, a command object that references a table contains a list of
columns in that table. A command object that references a stored procedure can contain a
list of the columns returned by the procedure, or it can contain a list of the procedure's
parameters. For information on adding Command objects, see "Getting Records" in
Chapter 19, "Viewing Data."

Visual InterDev creates a data environment for your project the first time you define
a data connection. As soon as you add the connection, Visual InterDev creates the
DataEnvironment folder and adds it as a node under the Global.asa file. The data
connection you added is displayed in the DataEnvironment node.

As you create additional data connections, they are added to the DataEnvironment node.

Note You can only have one DataEnvironment node (and one data environment)
in a Visual InterDev project. For more information on adding data connections, see
"Connecting to a Database" in Chapter 3, "Database Basics."

226 Programmer's Guide

Chapter 18 Database Concepts

Drag and Drop Scenarios in the Data Environment
An important feature of the data environment is that you can drag objects to and from
it to simplify the process of adding database access to your application. To create new
commands, you can drag database objects from the Data View window to the data
environment. In addition, you can create data-bound controls on a page by dragging
commands and database fields from the data environment to your page.

The following table summarizes how you can use drag and drop with the data
environment.

Drag From Drop on To

Database object Data View Connection Create a command object for the database object you
in data dragged. For example, dragging a table creates a
environment command object whose Database Object type is table.

Command object Data Web page Create a data-bound control.
or Field object environment

Database object Data View Web page Not allowed. Drag objects from the data environment
instead.

For details about using data-bound controls, see Chapter 19, "Viewing Data."

The Data Environment Object Model
The data environment supports its own object model, which you can use when writing
script to manipulate the data you want to display on your Web page. The data environment
object model is based on the ActiveX Data Objects (ADO) object model, but is simpler
to use.

In ADO, the main objects in the data environment object model are the Connection object,
Command object, Recordset object, Field objects, and Parameter objects. Each of these
ADO objects has its own properties and methods.

The data environment abstracts this object model to make it simpler to use. The data
environment itself is an object that can be used in script and that contains these ADO
objects. Within the data environment object, command objects are exposed as methods
in script. You can call a command method to execute it and return the recordset referenced
by the command or to execute its SQL command or stored procedure.

Each of the data environment objects also has properties you can set in the property page
for that object or directly in script. For more information on the data environment object
model and the properties for each object, see "Executing Database Commands Using the
Data Environment" in Chapter 21, "Accessing Databases Directly."

Programmer's Guide 227

Part 4 Integrating Databases

Data Binding
Because of the interaction between browser, Web server, and database, accessing a
database with Web pages is different than working with a database in a traditional
application. Moreover, the process is different for server-based and client-based
database access.

As explained later, if you use Visual Inter Dev tools to design database access for your
application, you, as an application developer, will not need to worry about the underlying
differences. Nonetheless, it is helpful to understand the following concepts:

• Server Access to Databases

• Client Access to Databases

• Data-Bound Controls and the Script Object Model

• Database Access Design in Visual InterDev Applications

Server Access to Databases
In server-based database access, the interaction between database and user shares some
features with ordinary client-server database applications. However, the Web server sits
between the two and introduces a layer of interaction with its own features.

The following characteristics dictate how the browser, Web server, and database server
interact:

• The client (the browser, which presents data entry forms and reports) has no direct
connection to the database. The client can only transmit requests to the Web server,
which then passes them to and from the database.

• The database fulfills requests by sending recordsets to the Web server. The database
server itself does not maintain recordsets, and by extension, does not track the current
record in the recordset.

• Interaction with the database is handled by server scripts, not by client scripts. Server
scripts are processed before a page is sent to the browser, so that when a user interacts
with the page (by clicking a button, for example), all database access for that page has
already been accomplished.

• The browser and the server are not in continual contact. The server does not maintain
information about previous browser requests. For example, a server does not keep
information about what record in a database the browser last requested.

228 Programmer's Guide

Chapter 18 Database Concepts

As a result, interactions between users and databases in Web applications are handled
differently than in traditional applications. For example, a common scenario is that the
user sees a form containing database information and wants to page back and forth
between records.

A typical sequence of events required to accomplish this task is something like this:

1. The user requests a page that contains the form.

2. When the server processes the page, it executes script that connects to the database,
and then executes a query or stored procedure that returns one or more records.

3. The server script moves to one particular record out of the recordset.

4. The server script extracts data from the current record and writes the data into the
Web page as HTML text. Information about the location of the current record, such
as a bookmark or primary key, is stored in a global server variable or packaged up to
be sent to the browser along with the page. Typically, the server then discards the
records et.

5. The server sends the page to the browser, where the user sees the database record in an
HTML form.

6. The user clicks a "Next" button on the page. The button's script submits the HTML
form to the server. Because the server has no connection to the browser, the button
script must pass an indication to the server that the user is navigating to the next record.
If the location of the current record was sent to the browser earlier, the browser sends
that information back to the server.

7. At the server, server script parses the user's submission. In this case, the server detects
that the user wants to navigate. The server then reissues the earlier query, which returns
a new recordset. The server uses the bookmark or primary key saved earlier to navigate
to the correct place in the recordset, and then moves one record forward and repeats
steps 4 and 5.

The scenario seems complicated because in effect the Web server forgets about both the
recordset and the user's state as soon as it sends the page to the browser. As an analogy,
the process is like having a telephone conversation with a friend in which you hang up
after each sentence. Each time you dial and reconnect, your friend has forgotten everything
you've said.

It is possible to cache recordsets so that the query does not have to be repeated each time.
However, when browsing large amounts of data, caching is not recommended. If you do
cache, even a small number of users could easily overwhelm the server's resources.
However, if the recordset contains only a single row and you are going to update it using
an optimistic lock, it can be efficient to cache the recordset on the server.

Programmer's Guide 229

Part 4 Integrating Databases

With server access to the database, the client environment has no direct control over
database access. When the server extracts information from the recordset and writes it into
the page, the information becomes indistinguishable to client scripts from ordinary HTML
text. Client scripts cannot directly execute a command to move in the database. Instead, the
client scripts must send sufficient information to a server script so that the server script can
pick up where it left off in the data.

Note You can use design-time controls and the Visual InterDev scripting object model
to create applications to make the process of handling user requests on the server
transparent. For details, see Chapter 24, "Scripting with Design-Time Controls and
Script Objects."

Client Access to Databases
If your deployment environment makes it practical, you can create direct database
access from the client to the database. You can then manage database access entirely
from client scripts, which often results in faster database access. In addition, the
development environment allows you to create a richer user experience by taking
advantage of browser features.

To access a database from the client, you use features of Dynamic HTML specific to
Microsoft Internet Explorer 4.0. All your users must have Internet Explorer 4.0 as
their browser. In addition, you must keep your database on a server that supports the
correct data access software, or at least use a properly configured server as a gateway
to your database.

When you use client access to databases, the underlying interaction between application
and database is simpler than that in server access. (If you use Visual InterDev tools to
manage database access, the differences are invisible and the way you script for database
access is the same for both types.)

To accomplish the navigation scenario described earlier under Server Access to Databases,
the application follows these steps:

1. The user requests a page that contains the form.

2. The Web server passes the page to the browser. (If necessary, the server processes
scripts on the page first, but server script is not required for database access.)

3. When the browser receives the page, an RDS (Remote Data Service) control on the
page automatically opens the recordset and binds the data to the controls via the
DHTML 4.0 data binding specifications.

4. The user clicks a "Next" button on the page. The button's script navigates to the next
record in the recordset.

230 Programmer's Guide

Chapter 18 Database Concepts

An important difference is that after the Web server has sent the page to the browser, the
application does not require further requests to the server to manage database access,
reducing substantially the number of browser-Web server round trips. In addition, because
the client can cache the recordset, database actions such as navigation do not require that
the recordset be regenerated. Finally, updates can be sent in batches for greater efficiency.

In all cases, the result is faster database access. You can create client-based database
access using Microsoft Remote Data Service (RDS). For information about RDS, see the
Microsoft RDS Web site http://www.microsoft.com/data/rds/.

Data-Bound Controls and the Script Object Model
Although you are not required to use Visual InterDev data-bound controls for database
access in your Web application, they greatly simplify application development.
Data-bound controls provide a complete set of user interface elements, and in addition
include all the logic necessary to connect to, navigate in, and update recordsets.

Data-bound controls include:

• Recordset. Acts as the master control by binding to a database object. Other controls on
the page in tum are bound to a recordset control.

• Individual controls. Display the contents of a single field in a database record, including
text boxes, list boxes, check boxes, option buttons, and labels.

• Grid. Displays a set of records.

• RecordsetNavbar. Includes buttons that allow navigation to the next, previous, first, and
last record in a result set.

In addition to making it easy to add user interface elements for displaying data, the
data-bound design-time controls can take advantage of the Visual InterDev scripting object
model. This object model accomplishes two tasks. First, it provides a consistent interface
for scripting database access, regardless of what type of database you are working with
or whether you are scripting server or client access to databases. Second, it creates a
high-level model for database access and manipulation, hiding from you most of the
complexity involved in Web-based database access.

When working with data-bound controls, you work primarily with the Recordset control,
which uses the scripting object model to expose properties and methods that help you
manage the records in a result set. For example, to navigate between records in a result set,
you can call a moveNext or movePrevious method of the Recordset object. The individual
data-bound controls likewise expose properties and methods that bind them to the
Recordset control and that determine the controls' appearance and behavior.

For more information about working with controls and the scripting object model, see
Chapter 19, "Viewing Data," and "The Scripting Object Model" in Chapter 23, "Scripting
Concepts."

Programmer's Guide 231

Part 4 Integrating Databases

Database Access Design in
Visual lnterDev Applications
Regardless of what database you want to access, Visual InterDev includes tools that
greatly simplify the process. This section provides an overview of how you create a Web
application with a database component, highlighting where you can take advantage along
the way of Visual InterDev features.

Although the underlying process is different for server-based and client-based database
access, the Visual lnterDev database tools make the difference transparent. With only a
few differences, you will be able to create both types of access using the same procedures.

In outline form, the steps required to set up a Web page with database access are as
follows:

1. Establish a connection to a database. You specify a database to connect to by selecting
Add Data Connection from the Project menu.

When you do, Visual InterDev creates a data environment, which acts as a repository
for all data connection information in your project. Because different Web pages can
share a data connection, scripts in the Global.asa file of your Web project maintain the
data environment.

ect EKplorer - CorpWeb . El

Solution 'CorpWeb' (1 project)
El·· ~ CorpWeb

~··· @El _private
iiJ··· @II _Scriptlibr ary
rB··· @] images

s···l.a:i global' asa
1 El·· ~~1-mM.~91•11."'nn•11m~1
! rB··· ~Pubs
l····I.. [!) home. htm
l····..?.Jtl login, asp
L.-ei [!) search, htm

If your application requires access to more than one database (including databases on
different servers), you can establish multiple connections in the data environment.

232 Programmer's Guide

Chapter 18 Database Concepts

2. Define the data to use. For each connection in the data environment, you create one
or more commands, which are objects that encapsulate references to SQL statements,
stored procedures, tables, views, or synonyms. Each command produces a different
result set (which is also called a cursor). For example, if your application reads data
from a table, a query, and a stored procedure, you can define three different commands.

Proiect Explorer - CorpWeb . ~:~ 13

: '""~-5~i~ti·~~ ·c~~~w~b; (1 ~r~i~~t) ·
El.. r@ CorpWeb

iiJ... D _private

iii··· D _Scriptlibr ary
lB·.. D images
l~h?..~ global.asa
1 El.. ~frm DataEnvironment

I
\

.... J

1 El .. S;;ifB
l lB·.. II§] Authors 1t I ~}.. ~L SQL_ Titles
l ; j..... rfil TITLE ID
i i 1 - Command :s: define
1 1 1 r:§1 TITLE :s: et::: of data for I I L. ... m PRICE y OU~ Web project
, r±i E9 SP It to ~. or k \'I 1th . i t±i... §:! _roya y

l"··R.. ~ home.htm
1· .. · l..€t) login. asp
L. .. -a @} search. htm

Programmer's Guide 233

Part 4 Integrating Databases

3. Add a Recordset control to your Web page. On the Web page where you want to use
database data, you add a Recordset control. This control acts as the local controller
when the page is running, providing an object for other data-bound controls to interact
with. It is bound to database objects either directly or by using command objects in the
data environment.

I
' - ~ .,=· =· =' =·=· ==' ===·===··--,,J "°tS; 5~1~-ti~n-;(;;pw~b; (t'-~;~i~~t)···· 1••

234 Programmer's Guide

The Recordset control is bound to a
database object and will act as the

sou re e for other data-bound
controls on the page,

El·· ~ vidue/CorpWeb
[Il·· CJ _private
tti ... CJ _Scriptlibrary
[fl·· CJ images
Eh?..&.il global.asa
· El·· trrm DataEnvironment

El·· f~ ~~bs
'-'-'----'-----'L!.J~~ lilll mll

~} [$ij1 SQL_Titles
! . m TITLE_ID

..... Lfil TITLE

m PRICE
! [±] .. ~ SP _royalty
[... p_ [!) home.htm
! p.dtl login.asp
!··.,/..~Publishing.asp

Chapter 18 Database Concepts

4. Add data-bound controls to your Web page. On the Web page where you have put the
Recordset control, you add data-bound controls such as text boxes, check boxes, and
buttons, as well as a navigation bar. You use these data-bound controls to define data
entry forms, reports, or other user interface elements for the data in the database. Each
data-bound control is linked to a field in a database via the Recordset control.

r-·--- ----.. ------ .. --------·· --- ... ------- -- ------ -.. -- .. -- ------·- . . -- -., ---- ------ ----....
!
!
I

I
Q.atabase Object:

I I Authors List

l

l Name:

Phone:

I
I

C:!.1
Q.bject

IAut.hor name
----·--···--·=-----··-··--···---··

,

I ~ I ··· , .. ,......,,.,....__""'"""'"_"--...,.....----..---------1------------1 i\ Design /\ :£'1mt~J<;i~)\; ·'·'!lfl\~: ,;Jr~w: /

In div id ual controls are bound
to the database th rough the
Recordset control.

5. Add your own script. If the data-bound controls do not provide you with the full
database interaction that you want in your application, you can write additional script.
For example, you can write script that validates the user's entry into a data-bound text
control. You can also write script to perform functions such as updating, adding, or
deleting records by calling methods in the Recordset object. Finally, you can write
script that executes database commands directly by referencing the commands stored
in the data environment.

Programmer's Guide 235

Part 4 Integrating Databases

The scenario listed in the steps above is simple, but even complex scenarios do not require
substantially greater effort. For example, a Web page for a catalog application might
include a drop-down combo box that customers can select a product from. The drop-down
list would be produced by a second recordset (in addition to the recordset being updated by
the catalog page itself). The data access tools in Visual InterDev allow you to easily
maintain both of these recordsets and likewise make it easy to bind specific controls to
each set.

If you want, you can also bypass the data-bound controls and create your own database
access in script. In that case, you would still use the data environment to establish
connections and commands. The data environment presents an object model that you
can interact with using script in order to query the database and modify it. For details,
see "Executing Database Commands Using the Data Environment" in Chapter 21,
"Accessing Databases Directly."

236 Programmer's Guide

C H A P T E R 1 9

Viewing Data

In Microsoft Visual InterDev, you can display data on your Web pages using data-bound
design-time controls. The new data environment makes this process easy by giving you
the ability to create and manage all your data-bound controls from one location.

First, you make a data connection to an existing database. The data connection appears in
the data environment (DataEnvironment) folder in your Web project. You can then easily
add controls bound to this connection to an ASP or HTML page by creating Command
objects in the data environment and dragging them to the page. Visual InterDev creates
data-bound controls that display the data from the database.

You can also drag data-bound controls from the Toolbox to your ASP page to display data.
For example, you can create a data connection and add a Recordset design-time control
based on this connection to an ASP or HTML page. A number of other controls allow
you to display data from the recordset defined by a Recordset control in different ways:
text boxes, labels, list boxes, check boxes, option groups, and so on.

For even more flexibility in presenting your data, you can take advantage of the Grid
design-time control. You can use this control to display data from multiple records in
a grid format.

Getting Records
Getting and displaying records from a database is one of the key features of Microsoft
Visual InterDev. You manipulate data using data-bound design-time controls, primarily
the Recordset control.

A Recordset control is bound to a particular database using a database connection, and
specifies a particular set of records from that database.

Visual InterDev makes it easy to create Recordset controls by using the data environment.
You can also create Recordset controls by using the Toolbox, and then associate these
controls with the data environment. For information on how the data environment
is related to controls and other database features of Visual InterDev, see Chapter 18,
"Database Concepts."

Programmer's Guide 237

Part 4 Integrating Databases

To create a Recordset control using the data environment

1. In your Visual InterDev project, add a data connection to the database whose records
you want to display. For details, see "Connecting to a Database" in Chapter 3,
"Database Basics."

The data connection is displayed in Project Explorer in the DataEnvironment folder,
underneath the Global.asa file.

Solution 'Project13' (2 projects)

$·.. ~ Project 15

. EJ... ~ vidue/Projectl 3
liJ... [] _private

liJ... [] _Scriptlibr ary

r!J... [] images

i···--.?...:ftl ASP Pagel .asp
l?...:ft} ASP Page2.asp

~h?..&i) global. asa

i El·.. ~ DataEnvironment

l iii··· e.;i Connection2

i r!J... e.;i s~mmm1
~ .. ··fil I!} search. htm
L. .. 1.,~ Site Diagram1 .wdm

Tip You can also right-click the DataEnvironment folder and then click Add
Data Connection to create a data connection. The same set of dialog boxes is
displayed that appears when you use the Add Data Connection command on the
Project menu.

238 Programmer's Guide

2. Right-click the DataEnvironment folder and select Add Data Command.

The Command Properties page is displayed.

Command3 Properties · 13 [G~~~.~i!P~r<im~ers[Ad~-----------··-----··---·-··---

Source of Data---..,...----...,.-..,..---........,.--,.....-----.,

c;:, Q at abase 0 bject: l_~_t?.~~-~'~'r_?.?~9~r~ m

.Qbject Name:

C .§.QL Statement:

._I ___ o_K_ 1 ;· n • C~ncel .. ; J : __ B_P_P!Y _ _.I Help · 1

3. Enter a name for this Command object in the Command Name box, such as
CustomersTableRecords.

4. Select the data connection in the Connection box. If you selected a data connection
in the DataEnvironment folder before you dicked Add Data Command, this data
connection will already be in the Connection box.

5. If you want the Command object to contain the set of records in a table, query,
view, stored procedure, or other type of database object, select the button next
to the Database Object box.

Then select this type of database object iri the Database Object box and the name
of an object of this type in the database in the Object Name box.

Chapter 19 Viewing Data

Programmer's Guide 239

Part 4 Integrating Databases

6. If you want to use an explicit SQL statement to select the recordset you want, select
the button next to the SQL Statement box. Then enter the SQL statement in the
SQL Statement box.

To construct this SQL statement, you can press the SQL Builder button, and use the
SQL Builder.

At any time, you can drag the Command object onto an ASP or HTML page. This
creates a Recordset object, which is bound to the specified set of records in the
database.

Using the data environment is the preferred method to create Recordset controls. Once the
Command object is created using the data environment, modifying the Command object is
simple. You only need to update the object once in the data environment. You don't have
to continually recreate a Recordset control on different ASP or HTML pages for the same
set of records.

You can, however, insert a Recordset control onto an ASP or HTML page from the
Toolbox, and then associate this Recordset control with an existing Command object in
the data environment.

To associate a Recordset control with a Command object

1. Open an ASP or HTML page in the editor.

2. Drag the Recordset control from the Toolbox onto the page.

Tip If the Recordset control is not shown in the Toolbox, right-click on the
Toolbox, choose Customize Toolbox, and add the Recordset control.

The Recordset control displays the Connection, Database Object, and Object Name
fields. These are properties of the Recordset object.

<HTML>
<HEAD>
<META NAME="GENERATOR" Content="Microsoft Visual Studio 6.0"
<META HTTP-EQUIV="Content-Type" content="text/html">
</HEAD>
<BODY>

<P>Insert Content Here</P>

</BODY>
<!--METADATA TYPE="EditorGenerated" startspan <COMMENT>

240 Programmer's Guide

Chapter 19 Viewing Data

3. In the Recordset control on the ASP or HTML page, set the Connection property to
the name of the data connection for the database whose records you want to see. This
is the database that the Command object is connected to.

4. Set the Database Object property to DE Commands.

5. Set the Object Name property to the name of the Command object in the data
environment.

<HTML>
<HEAD>
<META NAME=,.GENERATORrr Content=,.Microsoft Visual Studio 6.0"
<META HTTP-EQUIV=rrcontent-Typerr content=,.text/htmlrr>
</HEAD>
<BODY>

<P>Insert Content Here</P>

</BODY>
< ! --METADATJi. TYPE=,.EditorGeneratectrr startspan <COMMENT>

Now that you've created a recordset and specified its records, you can display data
from this recordset on a Web page.

Displaying Data on Your Web Page
Displaying data is easy using Microsoft Visual Inter Dev. You can connect to a
database, specify the set of records to display, and display the records by using
data-bound design-time controls, or you can display data directly using script.
You can also display data in a grid, showing multiple records from a recordset.

To display data using a data-bound control

1. Create a data environment Command object that specifies a set of records from a
database. For details, see "Getting Records," earlier in this chapter.

2. Open an ASP or HTML page in the editor.

Programmer's Guide 241

Part 4 Integrating Databases

3. Drag the Command object from the DataEnvironment folder to the page. This creates
a Recordset control on the page.

4. Drag one or more fields from the Command object to the page.

The fields are displayed under the Command object in the DataEnvironment folder.

Each dragged field creates a data-bound control that will display the data from that
field in the recordset. Text and numeric fields create Textbox controls. Yes/No or
True/False (Boolean) fields create Checkbox controls. For more information, see
"The Data Environment" in Chapter 18, "Database Concepts."

You can easily provide navigation (moving from record to record) among the records you
display on your Web page with the RecordsetNavbar control.

To provide navigation among records

1. Open the ASP or HTML page in the editor.

2. Drag the RecordsetN av bar control from the Toolbox onto the page.

Tip If the RecordsetNavbar control is not shown in the Toolbox, right-click on
the Toolbox, choose Customize Toolbox, and add the RecordsetNavbar control.

The control is inserted onto your ASP or HTML page.

3. Right-click the control and click Properties to open its property pages.

4. Set the Recordset property of the control to the name of a Recordset control whose
records are displayed on the page.

By default, the RecordsetNavbar control provides Move to First, Next, Previous, and
Move to Last buttons. You can use these buttons to move among the records displayed
on the page. You can also customize the functionality of these buttons by modifying the
script that they create.

Navigating Using Script
You can move between records in the recordset by calling navigation methods in the
recordset script object. When you move, the record you move to becomes the current
record.

Important When you navigate to another record, the current record is not
automatically saved. Be sure that you have copied data to the current record and saved
the record before you call a navigation method. For details, see "Updating Records" in
Chapter 20, "Modifying Data."

242 Programmer's Guide

To navigate using script

• Call one of these methods of the recordset script object: moveNext, movePrevious,
moveFirst, moveLast, moveAbsolute, or move.

For example, the following shows the handler you might write for a "Next" button.

Sub btnNext_onclick
rsEmployeelist.moveNext

End Sub

Chapter 19 Viewing Data

If you want to perform a procedure based on navigation, you can write handlers for the
onrowenter and onrowexit events. For example, perhaps your application does not simply
display only the contents of fields. Instead, you want to use a single textbox to display a
combination of first and last names.

To do this, you can write a handler for the onrowenter handler that gets values from the
recordset, concatenates them, and puts them in a textbox. The handler might look like this:

Function rsEmployeelist_onrowenter()
firstName = rsEmployeelist.fields.getValue("lastName")
1 astName = rsEmpl oyeel i st. fields. get Value("fi rstName")
txtFullName.value = lastName & ", " & firstName

End function

You can also create a data grid on your Web page using the Grid design-time control.

Programmer's Guide 243

CHAPTER 20

Modifying Data

In addition to simply displaying data from a database, you can create Web pages that allow
users to modify data - update existing records, add records, and delete records. You build
data modification into your application by using the Recordset control, which creates a
recordset - a virtual table that users can navigate in and update. Modifications are made
to the recordset and then passed to the underlying database.

Alternatively, you can display records on your page using a recordset, and then call stored
procedures to perform actions such as updating, inserting, and deleting. The method for
performing the updates is the same whether you use a recordset or a stored procedure. For
details about binding a Recordset control to stored procedures, see "Executing Database
Commands Using the Data Environment" in Chapter 21, "Accessing Databases Directly."

No matter what method you use, you must first be sure that it will be possible to update
the database at all. Factors to consider are:

• Permissions Many databases require explicit permission for updates. Even if you
as the developer have permission to make updates, you must be sure that your Web
application's users will also.

• Sufficient data As a rule, the recordset must include sufficient information for the
database to find the correct record to modify- usually the primary key or a unique
index value. In addition, only fields that are part of the recordset can be updated.
For example, a recordset might include an employee's ID, first name, and last name,
even though the employee table has many more fields. In that case, you would only
be able to update those three fields or provide only those three fields when adding a
new record.

• Updatable data source If you are updating via the recordset, it must have a Keyset
or Dynamic cursor type and a lock type that is not read-only. In addition, the recordset
must be based on a database object that you can update. For example, if the recordset
is based on a view that contains no primary key or unique index, it cannot be updated,
regardless of what cursor type you have selected. The exact constraints depend on how
you generated a result set and on the features of the database you are using.

Note If you are using stored procedures to update the database, the cursor type
of your recordset is less important, because updates are not passed through the
record set.

Programmer's Guide 245

Part 4 Integrating Databases

Getting Values from the Current Record
By default, when the page runs, the recordset script object opens the table or executes
the query specified in its data binding properties, and then creates a recordset. A pointer
is placed at the first record in the recordset, which becomes the current record.

To display data, you need to get the values from the current record. If you are working
with design-time controls and have established data binding for them, the controls are
automatically updated to reflect database values.

However, if you are working with non-data-bound controls, you must copy values from the
current record to the control. Values from the current record are available in the recordset' s
fields collection.

To get values from the current record

• Call the getValue method for the fields collection and specify which field you want.
For example, the following statement extracts the value of the field "Name" from the
fields collection of a recordset object called rsEmployeeList:

name= rsEmployeelist.fields.getValue("Name")

Tip A good time to get the values from the current record is in a handler for the
recordset's onrowenter event.

After getting a value, you typically display it in a control such as a textbox or label control.
For example, the following script shows how you would display values from the current
record in a set of textbox script objects called txtName, txtAddress, and so on.

txtName.value = rsEmployeelist.fields.getValue("Name")
txtAddress.value = rsEmployeelist.fields.getValueC"Address")
txtCity. va 1 ue = rs Emp 1 oyeel i st. fields. get Va 1 ue("City")
areaCode = rsEmployeelist.fields.getValueC"AreaCode")
phone= rsEmployeelist.fields.getValue("Phone")
txtPhone.value = areaCode & " " & phone

Note You can only copy information from the recordset to a control if the control and
recordset use the same target scripting platform. For more details, see "The Scripting
Object Model" in Chapter 23, "Scripting Concepts," and "Creating Forms with
Design-Time Controls" in Chapter 24, "Scripting with Design-Time Controls and
Script Objects."

If you are displaying data in editable controls - such as textboxes - users can change
the data. To save their changes and write them to the database, see the next section,
"Updating Records."

246 Programmer's Guide

Chapter 20 Modifying Data

Updating Records
The Recordset control includes features that make it easy for you to allow users to update
the current record in a recordset. For example, if you use a RecordsetNavbar control on
your page, you can set an option that automatically updates the current record with user
changes when a user navigates to another record.

Not all recordsets allow changes to be written to the database. The Recordset object's
cursor type must be set to Keyset or Dynamic. You must also have permission to update
the database. Finally, queries can produce recordsets that do not contain sufficient
information to allow updates. For details, see the beginning of this chapter.

To enable automatic navigation updates

• Set the RecordsetNavbar control's updateOnMove property to True.

Note Setting this option to True causes the recordset to be updated each time the
user navigates, even if no changes have been made. If you anticipate that users will
seldom make changes, you might want to use a strategy with less overhead.

If you are working with data-bound design-time controls, they automatically copy their
values to the current record before the update is made. However, if you are working with a
control that is not a data-bound design-time control, you must manually update the current
record before the update is made.

To set values in the current record

• Call the setValue method for the fields collection and specify which field you
want.You specify the field to update and the value.

Tip A good time to get the values from the current record is in a handler for the
recordset's onbeforeupdate event.

For example, the following statement sets the Name field of the current record to the
value of a textbox called Name:

rs Empl oyeel i st. fields. set Value("Name", txtName. value)

Note You can only copy from a control to the recordset if the control and recordset
use the same target scripting platform. For more details, see "The Scripting Object
Model" in Chapter 23, "Scripting Concepts," and "Creating Forms with Design-Time
Controls" in Chapter 24, "Scripting with Design-Time Controls and Script Objects."

You can also update records in script. The basic procedure is to call a method that writes
the current record to the database.

Programmer's Guide 247

Part 4 Integrating Databases

To update records in scripts

1. Be sure there is a Recordset control on your page. For details, see "Getting Records"
in Chapter 19, "Viewing Data." Note the Recordset control's name.

2. If you have controls on the page that are not data-bound design-time controls, copy
their values into the current record as described in the preceding procedure.

3. After you have finished setting all the values you need in the current record, call
the updateRecord method.

The following example shows a handler for a Save button's onclick event, which saves
the current record to the database.

Sub btnSave_onclick
rsEmployeelist.updateRecord

End sub

The following example shows the same procedure, but copies values from non-data-bound
controls to the current record before saving it.

Sub btnSave_onclick
' Copying data to the current record is required only for
' controls that are not data-bound design-time controls
rsEmployeelist.fields.setValue("Name", txtName.value)
rsEmployeelist.fields.setValue("Insured", chklnsured.value)
rsEmployeelist.fields.setValue("LastUpdate", date)
rsEmployeeList.updateRecord

End sub

To help you trap errors when updating a recordset, you can write handlers for the recordset
object's onbeforeupdate and onafterupdate events. Typically you write a handler for the
onbeforeupdate event to make sure that data in the current record is correct. You can use
the onafterupdate event to determine whether the update was successful.

For more information about writing event handlers for design-time controls, see "Writing
Script for Script Objects" in Chapter 24, "Scripting with Design-Time Controls and Script
Objects."

Adding Records
When you work with a recordset object in script, you can add records to the database in
, two ways. The first is a two-step process. First you initialize a new, blank record. The user
can then fill in the record. When the record is complete, the user can click a Save button

· (or similar) to write the current record to the database, just as if an existing record had been
updated. This strategy is useful when you are working with a form where users can edit
existing records or add new ones.

248 Programmer's Guide

Chapter 20 Modifying Data

Alternatively, you can create a new record and populate it in a single operation. Adding
immediately this way can be more efficient if your target scripting platform is Server,
because it avoids a round trip to the server to initialize the new record. This strategy is
particularly useful when you are not using a form, but instead creating new records in
script - especially if you have to add several records to the database at once.

You might not always be able to create new records. You need the correct settings for your
recordset, adequate permissions in the database, and sufficient information to uniquely
identify records. For details, see the beginning of this chapter.

Initializing and Then Updating
You typically use the initialize and update strategy when working with a form. The form
will usually have a New button and a Save button. By using the initialize and update
strategy, you can use the same Save button to update existing records that have been
edited as well as to insert new records.

To initialize a new record in the recordset, you use the Recordset object's addRecord
method. If you are working with data-bound design-time controls, the recordset
automatically clears the controls when you initialize a new record. Then when you save
the record, the values the user has entered are automatically copied to the current record
before it is written to the database.

If you are working with controls that are not data-bound design-time controls, you must
perform some of this work yourself. After initializing a new record, you must manually
clear the controls so users can enter new data. Then when the user clicks a Save button or
similar, you must be sure to copy values from the controls to the current record before it is
written to the database.

To initialize and add a record

1. Be sure there is a Recordset control on your page. For details, see "Getting Records"
in Chapter 19, "Viewing Data." Note the Recordset control's name.

2. In script, call the recordset script object's addRecord method to prepare a new, blank
record in the recordset. For example, the following event handler for a New button
calls the addRecord method.

Sub btnNew_onclick
rsEmployeelist.addRecord

End sub

If your page contains non-data-bound controls, clear them after initializing the new
record, as in this example:

Sub btnNew_onclick
rsEmployeelist.addRecord
txtName.value = ""
chk!nsured.value =false

End sub

Programmer's Guide 249

Part 4 Integrating Databases

Note You can only work with controls and recordsets at the same time if both use the
same target scripting platform. For more details, see "The Scripting Object Model" in
Chapter 23, "Scripting Concepts," and "Creating Forms with Design-Time Controls" in
Chapter 24, "Scripting with Design-Time Controls and Script Objects."

When the user clicks the New button, the user can enter information for the new record.
The Recordset control on the page sets a flag that this is a new record. When the user
clicks the Save button, the Recordset control actually creates the new record, updates it
with the user's data, and writes it to the database.

After the new record has been filled in, it is saved the same way an existing record is (with
the recordset object's updateRecord method). For details, see "Updating Records," earlier
in this chapter.

Adding Immediately
You typically add records to a database immediately if you are creating them in script.
Adding a record immediately to the database is similar to first initializing a record and later
saving it. However, because the add and update functions are performed in a single step,
only one trip is required to the server.

When you create a record immediately, you must gather the information for the fields and
then pass them as parameters when you add the new record.

To add a record immediately

1. Gather the information to be written to the database. You can do this using controls on
the page, values derived from calculations, or any other method.

2. Create two arrays, one containing the names of the fields and the other the values.
For example, the following script creates an array of fields that track a transaction
(transID, transDate, and transTime) and values for each field:

Dim fieldsArray(2)
Dim valuesArray(2)
fieldsArray(0) "trans ID"
fieldsArray(l) - "transDate"
fieldsArray(2) "transTime"
valuesArray(0) getTransactionCounter()
valuesArray(l) Date
valuesArray(3) =Time

3. Call the addlmmediate method of the Recordset object to add the record to, passing it
the two arrays you just created, as in the following example:

rsTransactionlog.addimmediate(fieldsArray, valuesArray

For more information about writing event handlers for design-time controls, see "Writing
Script for Script Objects" in Chapter 24, "Scripting with Design-Time Controls and Script
Objects."

250 Programmer's Guide

Chapter 20 Modifying Data

Deleting Records
To delete a record in a database, you can add a control such as a Delete button to the page.
The button calls the recordset's deleterecord method to delete the current record.

You might not always be able to delete records. You need the correct settings for your
recordset, adequate permissions in the database, and sufficient information to uniquely
identify records. For details, see the beginning of this chapter.

To delete records in script

1. Be sure there is a Recordset control on your page. For details, see "Getting Records"
in Chapter 19, "Viewing Data."

2. In script, call the recordset script object's deleterecord method, as in this example
handler for a button called btnDelete:

Sub btnDelete_onclick
rsEmployeelist.deleteRecord

End sub

By default, the script illustrated above causes the page to display the record immediately
following the one just deleted. If you prefer that the page display a different record, you
can insert a navigation method in front of the return statement. The following example
shows how you would move to the preceding record:

rsEmployeelist.deleteRecord;
rsEmployeelist.movePrevious;

For more information about writing event handlers for design-time controls, see "Writing
Script for Script Objects" in Chapter 24, "Scripting with Design-Time Controls and Script
Objects."

Programmer's Guide 251

CHAPTER 21

Accessing Databases Directly

Many database applications do not rely exclusively on controls bound to tables or views
in the database. Instead, they perform their data access via stored procedures or queries,
which provides several advantages.

Using stored procedures can limit the changes made by users and can enforce validation
and other requirements. If you work with queries, you can dynamically change the query
as required by your application.

In this section, you can learn about how to create Microsoft Visual InterDev applications
that work directly with stored procedures and queries.

Debugging Stored Procedures and Triggers
If you are working with the Enterprise edition of Microsoft Visual Studio, Microsoft
Visual InterDev includes a SQL debugger that you can use to debug Microsoft SQL Server
stored procedures and triggers in much the same way that you debug other kinds of scripts
or programs. However, there are some differences in how you set up SQL debugging and
how the debugger runs.

Setting Up SQL Debugging
SQL debugging requires the following:

• You must have the Enterprise edition of Visual Studio.

• You must be running SQL Server 6.5 with Service Pack 2.

• SQL Server must be running Microsoft Windows NT 4.0 or later.

• Your workstation must be running Windows 95 or Windows NT 4.0 or later.

To use SQL debugging, you must properly configure your server and workstation.
You should:

• Make sure that you have installed SQL Debugging components on your SQL server.

• Establish a Windows NT user who has administration privileges on the server
computer where SQL Server is running.

• Configure Distributed COM (DCOM) on the server for SQL debugging.

• Make sure that the DCOM configuration on the client supports SQL debugging
(Windows 95 workstations only).

Programmer's Guide 253

Part 4 Integrating Databases

Installing SQL Server Debugging Components
SQL debugging requires components that you install on your SQL Server. These
components are part of Visual Studio, Enterprise Edition.

To install SQL debugging components

1. On the computer where SQL Server is installed, start the Visual Studio Enterprise
Edition setup program.

2. The installation wizard presents slightly different choices, depending on whether you
have previously installed server components on the computer.

• If the server is already installed, under Add/Remove Options, choose Server
Applications and Tools.

• If no other components have been installed, proceed through the setup wizard until
you get to the page offering you Enterprise Setup Options. Choose Server
Applications.

3. Proceed through the setup wizard until you get to the page offering you Enterprise
Setup Options. Choose Server Applications.

4. On the next page, select Launch BackOffice Installation Wizard, and then choose
Install.

5. When the BackOffice Business Solutions wizard is displayed, choose Custom and then
choose Next.

6. Proceed until you see the page offering you a list of components to install. Uncheck all
components except the following:

• SQL Server Debugging

• MS Data Access Components

• Visual InterDev Server

7. Proceed with the installation.

Setting up a Debug User
To use SQL debugging, you must be able to provide the name and password of a Windows
NT user who has administration privileges on the server computer where SQL Server is
running.

254 Programmer's Guide

Chapter 21 Accessing Databases Directly

To set up a user for SQL debugging

1. In the Windows Control Panel on the server, choose Settings, and then choose
Services.

2. Select MSSQLServer, and then choose Startup.

3. Check the Log On As settings. If the option is set to System Account, change it to
This Account, enter the valid domain and user account (in the form domain\account)
of a user with administration privileges, and then enter the password.

4. If you have changed the setting, restart SQL Server.

Setting up DCOM for SQL Debugging
SQL debugging uses Distributed COM (DCOM) to communicate between your client
computer and the server. You must therefore configure DCOM to allow a remote user
to attach the debugger to a process there.

By default, the correct DCOM settings are in place when SQL Server is installed on the
server. However, because of security considerations for the computer running SQL Server,
you might want to restrict access to debugging. Use the following as a general procedure
for setting up DCOM for the SQL server computer.

To configure DCOM on the server for SQL debugging

1. From the Windows Start menu on the server, choose Run, and then in the Open box
type Dcomcnf g.exe at the prompt.

. 2. In the Distributed COM Configuration Properties window, choose the Default
Security tab. Under Default Access Permissions, choose Edit Default.

3. If the group Everyone does not already have permissions, choose Add, and then add
the domain and user account (in the form domain\account) of a user with
administration privileges.

4. After adding the account, check for SYSTEM. If it is not already in the list, add it
by choosing it from the list of users in the Add Names and Groups dialog box.

5. If you have changed any of the settings described in this procedure, restart SQL Server.

Note If you added your account to the remote server but the current account on the
remote server has not been added, then that account cannot debug even if a user with
that account name is running Visual InterDev on the server computer.

Programmer's Guide 255

Part 4 Integrating Databases

Running SQL Debugging
Unlike debugging other types of processes, you don't debug stored procedures or
triggers while they are running. Instead, you open the procedure in the editor and
debug it from there.

To debug a stored procedure

• In the Data View window, right-click the stored procedure to debug, and then
choose Debug.

The editor window opens with the stored procedure text in it and the debugging
commands enabled on the Debug menu.

After you've opened the editor window in Debug mode, you can use debugger commands
as usual. For example, you can set breakpoints and step through the procedure. You can
view the values of variables and passed parameters in the Locals window. You can also
drag expressions to the Watch window to track them as you step through or run the
procedure. The results of SQL PRINT statements are displayed in the Output window.

However, the SQL debugger has the following differences from the debugger used
for script:

• The Auto and Immediate windows are not functional while you are debugging stored
procedures. Although you can display them, the Auto window will be empty and the
Immediate window will not allow you to enter expressions.

• You cannot change the execution sequence using the Set Next Statement command.

If you are working with simple SELECT statements - ones that return only a single
value- the return value is in a variable that you can inspect in the Locals window.
However, if the SELECT statement returns a result set, it is not displayed in the
debugger. Instead, you can view the result set in the Output window.

Executing Parameterized Queries
In many applications, you want to work with data sets created using conditions supplied in
the application. For example, your application might display a report of all the employees
in a department. You can set up a form to prompt users for the name of the department,
and then execute a query based on the value they enter. This type of query is called a
parameterized query.

For parameterized queries, you use a Recordset design-time control as you would for a
table or other database object. The difference is that the Recordset control is bound to
a stored procedure or an SQL statement instead of a table.

You can bind the control directly to the procedure or statement, or you can bind it to a
data command that points to one of these types of object. For details about using data
commands, see "Getting Records" in Chapter 19, "Viewing Data."

256 Programmer's Guide

Chapter 21 Accessing Databases Directly

To create a parameterized query

1. Drag a Recordset design-time control onto the page. For details, see Chapter 19,
"Viewing Data."

2. Right-click the control and choose Properties. In the General tab, set the control's
name and connection.

3. Under Source of data, specify the binding:

• If you are binding to a data command, choose Database object, and then select
DE Commands. From the Object name list, choose the name of the data
command to use.

• If you are binding directly to a stored procedure, choose Database object, and then
select Stored Procedures. From the Object name list, choose the name of the
stored procedure to use.

• For SQL queries, choose SQL statement, and then enter the SQL text. Choose
SQL builder to launch the Query Designer. In the SQL statement, use a question
mark(?) to indicate parameters in your query. For example, the following SQL
statement creates a query in which the department name is a parameter:

SELECT * FROM employee WHERE department ?

Note Do not use named parameters.

4. Choose the Parameters tab. Under Values for parameters you will see a list of the
parameters specified for your query. For each parameter where the value of Type is In
(a parameter that is being passed into the stored procedure or query), specify a value to
be passed to the stored procedure. Values can be:

• Literals Enter character values in single quotation marks and numeric values
without quotation marks.

• Variables Enter the name of a variable defined in server code that will contain
the value you want to pass.

• Object references Enter an object reference and property value, such as
Textboxl. va 1 ue. The object must be one that is available in server script. Be
sure to use correct capitalization, because the expression will be evaluated as
a JavaScript expression.

• Expressions Enter any combination of literals, variables, object references,
and function calls. The expression is evaluated as a JavaScript expression, so
use JavaScript conventions, including single quotation marks for character
literals and a plus sign (+) for concatenation.

Programmer's Guide 257

Part 4 Integrating Databases

You must make sure that the value for the parameter can be evaluated successfully
when the query is run. By default, a Recordset design-time control will execute the
query when the page is first loaded. In that case, the parameter value cannot be a value
that is gathered or evaluated only after the page has been displayed. If you are passing
the value of a variable as a query parameter, you can use two events that are processed
before the recordset is opened:

• The onenter event for the page.

• The onbeforeopen event for the recordset.

Alternatively, you can also specify that the Recordset control does not automatically open
the recordset when the page opens. This strategy is useful if you are using the same page
for the data-entry form and the results.

To prevent the Recordset control from automatically opening a recordset

• Right-click the Recordset control and choose Properties. In the Implementation tab,
clear the Automatically open the Recordset option.

You can initially display the page without the recordset and prompt for a value using a
form. When the user fills in the form and clicks a button, you can open the recordset and
pass it the value of a variable or control.

To open the recordset

• Call the recordset script object's open method.

For example, you might create a form with a textbox design-time control and a button
design-time control. The user can fill in the text box with the value to search for, and
then click the button.

In the Parameters tab of the Recordset control's Property Pages window, specify the
textbox script object's value as the parameter using this expression, substituting the
name of the textbox for textboxl:

textboxl.value

The onclick event handler for the button then simply calls the recordset script object's open
method, as in this example:

Function Buttonl_onclick
Recordsetl.open()

End Function

258 Programmer's Guide

Chapter 21 Accessing Databases Directly

Executing Dynamic Queries
If the recordset script object is bound to an SQL query, you can change the query at
run time and re-execute it. This is particularly useful if you want to run a query that
is based on information provided by the user.

The current text of your SQL command is available by calling the recordset script object's
getSQLText method. You can set the SQL text by calling its setSQLText method. After
setting the SQL text, you re-execute the query by calling the recordset script object's
open method.

The following example shows how you can dynamically change the sort order of the
records in your recordset. It gets the SQL text, appends a new ORDER BY clause onto
the end of the command, updates the recordset again, and runs the query. After the
query has been run, the handler restores the original query text.

Sub btnByFName_onclick()
oldSQL- rsEmployeelist.getSQLText
newSQL ... oldSQL & "ORDER BY firstName"
rsEmployeelist.setSQLText(newSQL)
rsEmployeelist.Open ' Executes the new query
rsEmployeelist.moveFirst
' Restores the original query
rsEmployeelist.setSQLText(oldSQL)

End Sub

You can determine when the query has finished by writing a handler for the
ondatasetcomplete event. For example, you might wait until the query has finished
before you display data from it and before you enable the controls on the page.
A handler to do that might look like this:

Sub rsEmployeelist_ondatasetcomplete()
' Enables controls
btnNext.disabled = False
btnPrevious.disabled = False
btnSave.disabled = False
btnNew.disabled = False
' Refreshes the fields on the page
txtLastName.value = rsEmployeelist.fields.getValue("au_lname")
txtFirstName.value = rsEmployeelist.fields.getValue("au_fname")

End sub

Programmer's Guide 259

Part 4 Integrating Databases

Executing Database Commands
Using the Data Environment
The most convenient way to add database access to your Web pages is to use Recordset
controls and data-bound controls. These tools are easy to add to your pages, and they
expose a rich object model that provides powerful access to database functionality. For
details, see "Design-Time Controls" in your Visual InterDev online documentation.

In some cases, however, you might want to create script that executes database commands
more directly. Doing so offers a few advantages: your page is smaller than if you use a
Recordset control. You might also want to script database access directly if are creating
your own user interface and don't want to rely on the design-time controls.

You can script database access that goes through the server, or you can access databases
directly from client script. For a discussion of server and client access to data, see "Data
Binding" in Chapter 18, "Database Concepts."

To script server-based database access, you rely on the data environment for connection
information and database commands, as described later in this topic. For client-based
database access, you use Remote Data Service (RDS). For information about RDS, see
the Microsoft RDS Web site at http://www.microsoft.com/data/rds/.

Scripting the DE Object
To script server-based database access, you work with a special object - the DE
object - that exposes an object model for executing commands and managing their
results. The DE object model is an easier-to-use version of the ActiveX Data Objects
(ADO) model.

Before scripting database access, you must add a data connection to your project's data
environment. When you do, Microsoft Visual InterDev adds script to the Global.asa file
that creates a DE object incorporating the connection information. When you write data
access script in your pages, you can reference this DE object, and Visual InterDev will
automatically know how to connect to the database.

After adding a data connection, you add one or more data commands to the data
connection. Each data command provides you with access to a database object, which
can include a table or view, an SQL command, or a stored procedure.

260 Programmer's Guide

Chapter 21 Accessing Databases Directly

Executing a Command
You can execute database commands by referencing the corresponding command object
in your script.

To execute a database command

1. Be sure that the command you want to execute is defined as a data command in the
data environment. For details, see "Getting Records" in Chapter 19, "Viewing Data."

2. In your Web page, use server script to reference the DE object. If you have enabled
the scripting object model for the page, use this script:

<%
thisPage.createDE()

%>

If you are not using the scripting object mode, use the following script:

<%
Set DE = Server.CreateObject("DERuntime.DERuntime")
DE.Init(Application("DE"))
%>

3. In server script, execute the command you want to use by referencing its name, using
this syntax:

DE.commandObjectName

For example, to execute the SQL query associated with a command object called
Authors, use this script:

<%DE.Authors%>

4. If the command takes parameters (such as a command that references a stored
procedure or parameterized query), you can pass the parameters when you call
it, using this syntax:

DE.commandObjectName (parameterl, parameter2, [...])

You can pass parameters as variables, literals (character strings should be passed
using the correct quotation marks for the language you are scripting in), or any
other valid expression.

For example, to execute a stored procedure that takes two parameters, reference its
corresponding command object with script such as this:

<%DE.updateAuthors ("A101", txtAuthorlname, 100.00, "London")%>

5. If the command returns a value, you can assign it to a variable when you execute the
command, using script like this:

<%iRetValue - DE.updateAuthors ("Al01", txtlname, 100.00)%>

Programmer's Guide 261

Part 4 Integrating Databases

Working with Result Sets

All commands return a result set, although in some cases (as with update queries) the
result set is empty. But if your command returns a useful result set, you can navigate
in it and extract its contents to display on a page.

To provide access to the result set, the DE object dynamically creates a result set object
based on the command object, named using this syntax:

DE.rscommandObjectName

You can set a variable to this object, and then reference it in your scripts.

When a result set is generated, it includes a pointer indicating which record is the current
record. Any operations that you perform, such as displaying data, navigating, or updating,
are always performed with respect to the current record. To work with a different record,
you must first navigate to that record.

The procedures outlined below allow you to work with a result set that is used entirely on
one page. For example, you can use the procedures here to create a page that lists all the
records from a result set in a table in one page.

To extract the contents of a result set

1. After creating the result set, set a variable to point to the DE result set object. The
DE result set object is named after your command object, but has the "rs" prefix.
For example, the following two statements create the result set, and then set a
variable to point to it:

<%
DE.Authors
Set rs= DE.rsAuthors
%>

2. Extract individual values from the Fields collection of the result set object, using
syntax such as the following:

<%
DE. Authors
Set rs= DE.rsAuthors
lname = rs.Fields("au_lname")
%>

To move to a different record, you use navigation methods on the record set.

262 Programmer's Guide

Chapter 21 Accessing Databases Directly

To navigate in a result set

1. Call the moveNext, movePrevious, moveFirst, or moveLast methods of the result set
object.

2. To determine whether you are at the end or beginning of the result set, test the EOF or
BOF properties.

The following script shows a complete example of how to script the DE object to get
information from an Authors table. The script opens a recordset based on a data command
object called "Authors." It then navigates from the beginning to the end of the result set,
displaying for each record the contents of the au_ l name field.

<%
Set DE = Server.CreateObject("DERuntime.DERuntime")
DE.Init(ApplicationC"DE"))
DE.Authors
set rs= DE.rsAuthors
rs.moveFirst
Do While Not rs.EDF
%>

Next name <%=rs.Fields("au_lname")%>

<%
rs.moveNext

Loop
%>

Paging Records

If you want to display a single record from the result set on a page and then provide
navigation controls to page between records, the situation is more complex, as described
in "Data Binding" in Chapter 18, "Database Concepts."

If that is your goal, you will find it more convenient to use a combination of a Recordset
control, data-bound controls, and a RecordsetNavbar control.

For details, see "Displaying Records" in Chapter 3, "Database Basics."

For additional information about designing paging, see the Microsoft Visual Studio Web
site athttp://www.microsoft.com/vstudio/.

Programmer's Guide 263

CHAPTER 22

Managing Database Projects

If you're managing enterprise databases in Microsoft Visual lnterDev, database projects
give you a big advantage: complete control over your database, its structure, and its data.
Database projects make this possible through SQL scripts, files that you can use to build
the database and populate it with data. These files and the folders that contain them in the
database project can be put under source control for even greater control.

When you create a database project and add a data connection, the database is displayed
in the Data View window, and you can manipulate the objects in the database using the
Microsoft Visual Database Tools (the Database Designer and Query Designer).

You can use the same data connection in a Web project and a database project. This allows
you to maintain control over databases whose data you want to display on Web pages.

Using database projects in addition to Web projects gives you the following benefits:

• Data connections aren't required in a database project until you want to run a SQL script
against a database. In addition, you can rename data connections in a database project.

• You can use source control to ensure that the database and its structure are under the
administrator's control.

• You can easily deploy the database to other projects.

Populating a Database Project
A database project can contain one or more connections to databases. Each database
contains database objects such as tables, queries, views, relationships, and indexes,
in addition to the database's data.

You can create and modify the database objects and the data in three ways:

• Using SQL scripts you add to the database project.

• Editing the database objects directly in Data View.

• Using the Microsoft Visual Database Tools (Database Designer and Query Designer).

You use SQL scripts to give you complete control over the database, its objects, and its
data. SQL scripts are files containing SQL statements that create and modify databases
and database objects.

Programmer's Guide 265

Part 4 Integrating Databases

To populate a database project using SQL script files

1. Add SQL script files to your database project.

2. Execute the SQL script files against databases to which you've made a data connection.
For information on how to do this, and what SQL script files contain, see "Working
with SQL Scripts" in the Visual Database Tools online documentation included with
Visual Inter Dev.

Tips Microsoft Visual Inter Dev supplies a number of templates you can use to
add SQL script files to your database project. When you right-click on a database
project or one of its data connections and select the Add SQL Script command,
the following templates are available: New SQL Script, New Stored Procedure
Script, New Table Script, New Trigger Script, and New View Script.

The New SQL Script template adds a generic SQL script file to your database project,
which you can use to create or modify any type of database object. The other templates
create SQL scripts specific to SQL Server database objects.

You can also right-click a SQL Server database object in the Data View window and
choose the Copy SQL Script command. You can then paste this SQL script into the
SQL editor or directly into a database project. This creates an SQL script, which, when
run against the database, will create the database object you selected.

You can also select multiple database objects in the Data View window and use the
Copy SQL Script command to create an SQL script that you can add to a database
project and use to create all the selected database objects. In addition to SQL Server
database objects, the Copy SQL Script command also works with Oracle views,
triggers, stored procedures, and functions, but not with Oracle tables and synonyms.

When you add a data connection to a database project, the data connection and database
objects are displayed in Data View. You can edit the database objects directly. This is the
easiest way to create and modify database objects and data, but you don't have as much
control over the database as you do with SQL scripts.

To populate a database project using Data View

1. Select the database object you want to modify, or choose a command to create a
new object.

2. Edit the data in the object directly, or use the SQL editor to modify the SQL statements
in the object.

The Query Designer and Database Designer allow you to create and modify queries, tables,
and objects associated with tables such as indexes, constraints, and relationships.

266 Programmer's Guide

Chapter 22 Managing Database Projects

To populate a database project using the Database Designer

1. In Data View, select the data connection containing the database.

2. Select the database object (table or database diagram) you want to modify and choose
the Design command from the shortcut menu.

-or-

Create a new table or new database diagram from the shortcut menu.

3. Modify and save the database object.

To populate a database project using the Query Designer

1. In the Project Explorer, select the data connection containing the database.

2. Select the query you want to modify and choose the Design command from the
shortcut menu.

-or-

Choose the New Query command from the shortcut menu.

3. Modify and save the query.

Using Database Projects and
Web Projects Together

Database projects and Web projects appear in separate nodes in a solution because they
are different types of projects. Use Web projects to create dynamic Web pages and display
information (including data from databases). Use database projects to create, manage,
and deploy enterprise databases.

You can use a database project and a Web project together, however, if you want to
maintain control over and deploy a database whose data you also want to display on a
Web page. You can create a data connection in the Web project, then add this connection
to the database project. The SQL scripts in the database project control the structure and
data in the database.

To use a Web project data connection in a database project

1. Create a Web project. For details, see "Creating a Web Project" in Chapter 1, "Web
Project Management."

2. Add a data connection to the Web project. For details, see "Connecting to a Database"
in Chapter 3, "Database Basics."

3. Create a database project. For details, see "Creating a Database Project" in the Visual
Database Tools online documentation included with Visual InterDev.

4. Add the data connection from the Web project to the database project.

Programmer's Guide 267

Part 4 Integrating Databases

5. Create SQL scripts in the database project to manage the database and its objects.

6. If you want, deploy the database project to other solutions.

Note You can't drag and drop database objects between Web projects and database
projects.

Adding Source Control to a Database Project
You can maintain control over a database and its structure by adding your database project
files to source control. Database projects consist of folders and SQL script files. Once
you've placed these folders and files under source control, you can manage these folders
and files, just as you do with the folders and files in Web projects. For information on
how to use source control with folders and files, see Chapter 8, "Working with Multiple
Developers."

Note When you add folders and files to a database project, they are physically added
to your hard disk. In addition, when you put a database project under source control,
there is a one-to-one correspondence between the files and folders in the database
project and the files and folders in the source control project.

You can also rename a data connection in a database project. Because connections are
represented as folders on your hard disk and in the source control project, this will also
rename those folders.

To add a database project to source control

1. In Project Explorer, select the database project.

2. Right-click the database project name, and from the shortcut menu, choose Add to
Source Control.

The database project and its files are now under source control.

If you want to remove them from source control later, you can use the Remove from
Source Control command on the shortcut menu.

In the Data View window, you can put stored procedures under source control. This gives
you additional control over these database objects. In a database project, a stored procedure
might be contained in an SQL script; for Web projects they appear in Data View as stored
procedures. For more information, see "Adding a Stored Procedure to Source Control in
Data View" in the Visual Database Tools online documentation included with Visual
InterDev.

If you are working locally, databases on a Web server or database server are available.
However, if you are offline, you must have the database on your local computer. There's
no way to merge any changes you make to the data while you are offline in Microsoft
Visual Inter Dev.

268 Programmer's Guide

P A R T 5

Editing and Scripting

Part 5 provides information about editing pages, the programming model, and
debugging script.

Chapter 23 Scripting Concepts

This chapter covers the Visual InterDev editor and the concepts behind "Scripts in
Web Applications," the "Scripting Object Model," "Document Elements," and the
"Script Debugging Process."

Chapter 24 Scripting with Design-Time Controls and Script Objects

This chapter covers creating a user interface for your Web application using the
Visual InterDev design-time controls and extending the Visual InterDev scripting
object model.

Chapter 25 Scripting with HTML Elements

Even if you do not use design-time controls in your Web page, you can create fully
functional Web applications by creating and scripting HTML elements. This chapter
describes writing script to interact with native HTML elements.

Chapter 26 Debugging Your Pages

This chapter covers debugging both client and server script in Visual InterDev.

Chapter 27 Packaging Script as Objects

Microsoft Scripting Components (scriptlets) provide you with an easy way to create
powerful, reusable controls and COM components. This chapter discusses creating
and using scriptlets.

CHAPTER 23

Scripting Concepts

Editing Modes
The default Microsoft Visual InterDev HTML editor allows you to work with Web pages
in different modes:

• Design view The editor displays text with character and paragraph formatting, much
like a word processor.

• Source view The editor shows HTML tags, text, and script, and highlights the HTML
tags and text.

• Quick view The editor displays .htm files as they will appear in Microsoft
Internet Explorer.

Programmer's Guide 271

Part 5 Editing and Scripting

Navigating in the Editor
When you are using the HTML editor, Visual InterDev allows you to display various
document outlines that help you move quickly and easily through your document.

• In Design and Source view, the HTML Outline window shows a hierarchical view of
the HTML elements and objects in your page.

HTML Outline Window

HTML Outline Ei
§ <BODY>
j····E <MARQUEE>
l [0 Animation 1
~ ~~:~ <DIV>
! ~ EJ http: //vidue ... 4/bullet. gif
~ l· li http: //vidue ... 4/bullet. gif
1 L. ... [Jil T opO f Page
j (ttl <TABLE>
l ~ §3 <TR>
\ ! L..@© http://CustDetails.htm
~ L ... §3 <TR>
L...~ Navbar

L .. §3 <TR>
j m http: //vidue ... previous. gif
L ... rzi1 http: //vidue ... ct4/next. gif

ttT opOfPage

272 Programmer's Guide

Chapter 23 Scripting Concepts

• In Source view, the Script Outline window shows a tree view of all scriptable elements
on the page, and for each element, the events for which you can write scripts. Existing
scripts are indicated in bold.

Script Outline Window
r- ---

Script 0 utline El
1

I
I

I

l

~ .. t:J Client Objects & Events

! $.. -~ Animationl

! ! ~-···· fJ Click

I I 1····· P DblClick
! ! ! P MouseDown

! ! 1 P MouseMove

1 1 1····· P MouseUp

I I 1::::: ~ ~~~~~:~;~~Drag
1 1 !····· P OLEDr agOver
l l 1 P OLEGiveFeedback
l ~ ! fJ OLESetData
1 j L. ... fJ OLEStartDr ag

! ~-··G document

! ~-··G Navbar
! lE···G window

rE .. CJ Client Scripts
f~l·CJ Server Objects & Events
ffi .. @JJ Server Scripts

When you select an element in either outline window, you move to that element in
the page.

The Toolbox
When you work in the editor, you can add objects to your pages by dragging them from
the Toolbox and dropping them onto a page. You can use the Toolbox in Design view
or Source view. The Toolbox displays a preselected set of controls currently available
on your computer, including standard HTML controls (such as text boxes and buttons),
Visual InterDev design-time controls, ActiveX controls, and server objects.

The Toolbox is more than just an alternative means of adding objects, however. You can
use it to store any text from the editor, including scripts, HTML text, and so on. These bits
of text you store in the Toolbox are referred to as fragments. In addition, you can edit the
tabs in the Toolbox, adding, deleting, and reorganizing them to suit your development
requirements.

Programmer's Guide 273

Part 5 Editing and Scripting

Design View
Design view makes it easy to view and edit HTML text in a format similar to what it will look
like in a browser. You can add and work with HTML text, as well as elements such as images,
tables, design-time controls, HTML controls (forms, buttons, and so on), ActiveX controls,
and Java applets. Your page is displayed with all the character and paragraph formatting that
you've specified, much like in a browser. If you are using a cascading style sheet (CSS) or
have added style information to HTML tags, Design view reflects these as well.

As you work in Design view, you can set properties for elements on the page. If the Properties
window is displayed, it displays properties for the currently selected element on the page.
Some HTML elements such as tables allow you to set attributes using custom properties
dialog boxes as well.

Properties Window in Design View

Note In Design view, the Properties window displays style information that is not
displayed in Source view.

Although Design view is similar to how a page will look in a browser, it differs in the
following ways:

• Character and paragraph formatting might appear different, because each browser can
implement formatting differently.

• Client scripts do not run.

• Links are not live.

• Some elements, such as scripts, comments, and unrecognized HTML tags, can be
displayed as glyphs, so that you know they are in the page.

• You can display a border around elements that are invisible when displayed in the
browser so you can see where they are. For example, even if a table is defined with
no border, you can choose Visible Borders from the Design toolbar to have the editor
display a one-pixel border around the table so you can work with the table more easily.

274 Programmer's Guide

Chapter 23 Scripting Concepts

For more details about Design view, see "Design View, HTML Editor" and "Design
Toolbar" in the online documentation.

Source View
Source view allows you to see and edit the raw HTML of your page and work directly with
script. You can also work with either graphical or text representations of Visual InterDev
design-time controls, ActiveX controls, and Java applets. Text is colored so you can easily
distinguish script keywords, HTML tags, attributes, comments, and so on. These features
make it easy for you to develop a Web page while giving you complete control over its
contents.

To edit objects or HTML elements, you can select them, and then set their properties using
the Properties window or a custom Property Pages window. Changes you make in the
Properties window or in Property Pages dialog boxes are reflected in the HTML source
code for those objects.

If your page contains scripts, you can see the source code of the scripts in Source view.
While in Source view, you can use the Script Outline window to view scriptable elements
in your page and to see what scripts are already created.

The Script Outline Window
~------------·---·---www---------·-c--

• ~l· Client Objects & Events

j $···~ Animationl
j l l fJ Click
I I I fJ DblClick
i 1 1 fJ MouseDown
l j i fJ MouseMove
j ~ l fJ MouseUp
l j j fJ OLECompleteDrag
l j j fJ OLE Dr agDrop
l 1 j fJ OLEDr agOver
1 j j fJ OLEGiveFeedback
l l l fJ OLESetData
l l L. .. fJ OLEStartDr ag

1 $···!ti document
j $.. ·~ Navbar

, l rfl ... rn window
; rB··@J Client Scripts

I
'.·. $.. ~ Server Ob~ects & Events
r r±.l··@:l Server Scripts

J

As you are typing statements, IntelliSense helps you complete statements by displaying
a list of properties and methods for objects that you are using.

Programmer's Guide 275

Part 5 Editing and Scripting

lntelliSense Statement Completion

Function ChangeTitle()
currTitle=docurnent.

End Function
</SCRIPT>

~=·--~~rl~t~-------==.?::-~El·

. __ security I
I~ selection , ,

I~ styleSheets ' . ·

<======:;::.:::-i""·=·w·"')~ thisForm
riJ title ,

I:::.$ toString

1
1~ url
1~ vlinkColor
L write ' ,.,,$,.,,., .. , .. ,,, •···••·•··········

While you are editing a script in Source view, you can invoke a debugger that allows
you to set breakpoints, step through scripts, and perform other typical debugging tasks.
For more information, see Chapter 26, "Debugging Your Pages."

Quick View
To see a preview of what an .htm file will look like in Microsoft Internet Explorer, you can
use Quick view. Images and links work as if the document were in its location on the target
Web server.

Quick View

~x~ home. htm !llil 13

276 Programmer's Guide

Chapter 23 Scripting Concepts

Note Quick view does not process the page through the server, so it cannot provide
an accurate view of what ASP files will look like. If you want to preview a document
containing server elements, use the View in Browser command from the View menu.

Because Quick view shows you a page in a browser, you cannot edit or debug the page in
that view.

Scripts in Web Applications
To display text, images, or links in a page, you add text and format it with HTML tags.
However, to control the way a page behaves, you create script, or programs that you embed
in a Web page to perform specific functions, such as:

• Controlling what happens when a user clicks a button, enters text, or submits a form.

• Navigating to a specific page based on a condition such as user preference.

• Collecting and storing user information in order to customize Web applications
dynamically.

• Querying a database and displaying results.

You can create script in different ways:

• Use design-time controls, which allows you to set property values and enter values in
dialog boxes, and then generates script for you.

• Write your script in Source view of the HTML editor.

Microsoft Visual InterDev supports a complete scripting object model that allows you to
use standard object-oriented techniques for creating Web pages. For details, see "The
Scripting Object Model" later in this chapter.

Programmer's Guide 277

Part 5 Editing and Scripting

How Scripting Works
The script's source code appears in the page, as shown in this example.

Script Source Code

<HEAD>
<TITLE>Login</TITLE>

<SCRIPT LANGUAGE=VBScript>
Function btnSave_onclick()

If txtCustName.Value rrrr then
MsgBox("You must enter a name!")

Else
pageStart.DoLogin()

End if
btnSave onclick = false

End Function
</SCRIPT>

~/HEAD>
<BODY>

When the page is requested, the script is read along with all the other text on the page.
The server or browser reads the scripts and checks for errors, and then runs the script.

Because scripts are simply blocks of text, you can write a script in one page, and then
include it in multiple additional pages. For details, see "Writing Reusable Script" in
Chapter 25, "Scripting with HTML Elements."

278 Programmer's Guide

Chapter 23 Scripting Concepts

Scripting Languages
You can write scripts in any scripting language that you are comfortable with. Common
scripting languages include Microsoft Visual Basic, Scripting Edition (VBScript) and
ECMAScript, a standard scripting language. Popular implementations of ECMAScript
are Microsoft JScript and JavaScript.

Because scripting languages are interpreted, you must be sure that when the user requests a
page, the user's browser (and server, if you are writing server script) can use the language
in which you have scripted. For example, if you write all your scripts in VB Script, you
must be sure that the user's browser can interpret VBScript. Microsoft Internet Explorer
supports VBScript, but not all browsers do. For details on determining the capabilities of
a browser, refer to the documentation for your browser, and see "Creating Portable Script"
in Chapter 25, "Scripting with HTML Elements."

You can use different scripting languages on the same page if necessary. This might be the
case, for example, if you are adding your own scripts to scripts generated by a design-time
control. When you use design-time controls, you specify a target scripting platform
(client or server), which determines by default what language to script in. For details,
see "Creating Forms with Design-Time Controls" in Chapter 24, "Scripting with
Design-Time Controls and Scripting Objects."

If you are scripting outside of design-time controls, you often work in only one language,
so you can specify a default language for each new page that you create, and if you need
to, for individual scripts. For details, see "Choosing a Scripting Language" in Chapter 25,
"Scripting with HTML Elements."

Client and Server Scripts
If your server is Microsoft Internet Information Server (IIS), you can create ASP files that
contain both client and server scripts. Both types of scripts can appear in the same page.

Client scripts are part of a page, and are sent to and run by the browser when a user
requests the page.

Programmer's Guide 279

Part 5 Editing and Scripting

Server scripts are also part of a page, but are not sent to the browser. Instead, they are run
by IIS after the page is requested but before it is passed to the browser. When the page is
sent to the browser, the server has already run the server script and removed it from the
page.

Client and server script execution

x:nxx~~l
~)~~~~

:x::x::x::x:yyyyy
yy:x::x::x::x::x:

The ability to specify that a script runs on the client or on the server is an important feature
of Web scripting, which allows you to specify the right run-time environment for the task
you want to perform. For example, the following are tasks typically performed using client
scripts:

• Change the text or appearance of a page at the time it is loaded in the browser or in
response to an event such as a button click.

• Perform validation on data entered into an HTML form before it is sent to the server,
such as making sure that an employee ID number contains the correct number of digits.
In contrast, verifying data against a database is typically a server-side task.

• Display information in response to a user event such as a button click.

280 Programmer's Guide

Chapter 23 Scripting Concepts

In contrast, these are tasks that you would typically perform using server scripts:

• Query a database and feed the results to an HTML page. For details, see Chapter 19,
"Viewing Data."

• Redirect a user's request to a specific page based on a condition, such as password
lookup. For in-depth information about using scripts to move between pages, see
"Extending the Scripting Object Model Across Pages" in Chapter 24, "Scripting with
Design-Time Controls and Script Objects," and "Navigating Conditionally" in
Chapter 25, "Scripting with HTML Elements."

• Process the information entered by a user on an HTML form. For in-depth information
about how to create scripts for processing HTML forms, see "Writing Script for Script
Objects" in Chapter 24, "Scripting with Design-Time Controls and Script Objects," and
"Gathering Information with HTML Forms" in Chapter 25, "Scripting with HTML
Elements."

Although the tasks listed above are typical uses for client or server scripts, they are not
rigid rules. For example, you can use Visual InterDev design-time controls to create server
script that responds to a client event such as a button click. As another example, if your
users use Microsoft Internet Explorer 4.0 or another browser that supports Dynamic
HTML (DHTML), you can write an application that accesses a database from the client
browser.

The decision to use client or server script therefore depends not just on the task you are
accomplishing, but the environment in which your application runs, specific constraints
(such as performance), and so on.

Client Script Processing
Client scripts are processed by a browser such as Microsoft Internet Explorer, which calls
the appropriate run-time module to execute the script. Client scripts are enclosed between
<SCRIPT> and </SCRIPT> tags. The following simple example shows a script that prints
the current time on the page:

<SCRIPT LANGUAGE="VBScript">
Document.Write time

<!SCRIPT>

Your page can contain as many script blocks as you need. You can put multiple functions
and subroutines into a single script block, or put each in a separate script block.

Programmer's Guide 281

Part 5 Editing and Scripting

Client scripts are processed at different times, depending on how they are written:

• Statements can appear in a script block but not as part of a procedure (function or
subroutine). These are called global or inline scripts, and are processed in order when
the browser reads the page. For example, the following shows a global script:

<SCRIPT LANGUAGE-"VBScript">
Document.Write time

<ISCRI PT>

• Statements can appear as part of a procedure, such as a function or subroutine. These
are not executed immediately. Instead, they are parsed when the page is run and
checked for syntax errors. However, they are not run until the procedure is called.

• Event-handling procedures are not executed immediately. Instead, they are executed
when the user performs the event that triggers the script, such as clicking a button. For
example, the following script illustrates an event-handling subroutine that is executed
only when the user clicks the Submit button on a form:

<SCRIPT LANGUAGE="VBScript">
Function btnTest_onclick

If Len(Document.frmTest.txtName.value) < 1 then
Alert("You must enter a name!")

End If
End Function
<ISCRI PT>

Scripts for event-handling procedures, subroutines, or functions can appear anywhere in
a page, because they will be processed only when needed. However, it is common to put
these types of scripts in the header of a page.

When you write client scripts, you can access objects on the page to get their properties
or write event handlers for them. The exact list of objects available for you to work with
depends on the type of browser that your users will be using. For more information, see
"Document Elements" later in this chapter, and Chapter 24, "Scripting with Design-Time
Controls and Script Objects."

Client scripts can directly interact with the user by posting message boxes for output and
by using dialog boxes or forms for input. For example, if a user makes an error when
entering information in a form, a client script can display an error message (as shown in
the preceding example).

For more information about displaying information, see "Displaying Information to the
User" in Chapter 25, "Scripting with HTML Elements." For information about using forms
from both client and server scripts, see Chapter 24, "Scripting with Design-Time Controls
and Script Objects," and "Gathering Information with HTML Forms" in Chapter 25,
"Scripting with HTML Elements."

282 Programmer's Guide

Chapter 23 Scripting Concepts

Server Script Processing
In Visual InterDev, you put server script in Active Server Pages (ASP files). The ASP
extension on the file alerts IIS that the page can contain server script. When IIS reads the
page, it looks for server script and processes it. After the server script in an ASP file has
been processed, it is removed from the file, which is then sent to the browser (including
any client script that might be in the file). The browser treats the ASP file as it does an
ordinary .htm file.

Server script can modify any aspect of a page before sending it to the browser. Typically
this involves performing tasks and incorporating the output of the tasks into the HTML
text of the page. However, server script can just as easily create client script, because
client script is nothing more than additional text on the page.

A special case of ASP file processing is the Global.asa file. This file contains scripts
that respond to application-wide events: each time the ASP application is started or
closed, and each time a new user starts a session.

You can create server script in the Global.asa file for these events, which is useful
for tasks such as storing application settings (for example, the default scripting
language); initializing application-wide variables; maintaining counters; and so
on. For details about creating event handlers in the Global.asa file to store global
information, see "Sharing Dynamic Information" in Chapter 25, "Scripting with
HTML Elements."

When you write server script in an ASP file, you distinguish it from other text
(including client script) in one of two ways:

• Within the delimiters <% and %>. Any text between these two tags is processed
as inline server script by IIS. The<% %>delimiters are often used to enclose
expressions that are evaluated and inserted into the HTML text of a page. For
example, the following server script displays the current time on a page:

<% response.write time %>

• In a <SCRIPT> tag (as with client scripts), but with the RUNAT=SERVER
property, which is used to enclose stand-alone procedures such as functions
and subroutines. The following example shows the RUNAT property:

<SCRIPT RUNAT=SERVER>
Function GetDate

[some script lines here]
End Function

<!SCRIPT>

Programmer's Guide 283

Part 5 Editing and Scripting

In the Visual InterDev HTML editor, server script appears in yellow to distinguish it from
client script. The following illustration shows a page that includes both server script and
HTML text.

Editing server script

<TITLE>Display Narues</TITLE>
</HEAD>
<BODY>

<%rs.MoveFirst%>
<TABLE>
<%Do until rs.EOF%>

<TR>
<TD>Narue: <%=rs.Fields ("Narue") . Value % >
</TD>

</TR>
<%rs.MoveNext%>

<%Loop%>
</TABLE>
</BODY>

Server script is generally not event-driven. Exceptions are the event handlers in the
Global.asa file and server event handlers created by design-time controls. Instead, when
the ASP page is requested, the server reads the page and processes all server script from
top to bottom. The script performs whatever calculations and database access you write,
and evaluates all expressions and variables. Stand-alone procedures are called as needed.

Because the script is running on the server, it has access to the objects available on the
server. For example, a server script running on IIS can reference the ASP Application,
Session, Request, and Response objects. A server script could not, however, make use
of the objects available in the browser - for example, a server script could not use the
Internet Explorer document or window objects.

When you write server script, you must be careful to use only objects that are available in
the context of the server. For more information about objects that you can use in server
scripts, see "Document Elements" later in this chapter, and Chapter 24, "Scripting with
Design-Time Controls and Script Objects."

284 Programmer's Guide

Chapter 23 Scripting Concepts

If the server script produces some output - for example, if you want to display the value
of a variable, or display some records retrieved from a database - you can place the
output on the page using the Response. Write method (or using the abbreviated form, the
"="operator) in inline script. For example, the following simple page shows server script
that calculates the current time and puts it into a variable. Later in the page, the value of
the server script variables are integrated into some HTML text:

<%
vDate = date
vTime = time
%>

<HTML>
<BODY>
When the script ran, it was <%Response.Write vTime%> o'clock on <%=vDate%>.
<!BODY>
<!HTML>

When the page is processed, the server evaluates the expression following Response.Write
or "=", and its value is placed at that point in the HTML page stream. When the page is
displayed in the browser, it will look something like this:

When the script ran, it was 10:46:30 o'clock on 12/31/97.

If you look at the source of the page, it would look the same as the page output. You would
not see the expressions <%Response.Write vTime%> or <%=vDate%> in the source,
because those expressions would have been evaluated by the server before the page was
sent to the browser.

Server scripts can produce any type of output, including not just values for variables or
expressions, but HTML tags and text and even client scripts.

The Scripting Object Model
To make Web application development faster and easier, Microsoft Visual InterDev
provides the scripting object model, which simplifies Web application development
by introducing a familiar object-oriented programming model to HTML and script
programming. The model also greatly reduces the complexity and quantity of scripting
required to write applications involving interaction between client (browser) and server.

The Visual InterDev scripting object model defines a set of objects with events, properties,
and methods that you can use to create and script your application. You can create the
visual interface for your application using design-time controls, and then write script to
control the application using familiar object-oriented techniques.

The scripting object model allows you to create Web applications in much the same way you
create applications in environments such as Microsoft Visual Basic and Microsoft Access.

Programmer's Guide 285

Part 5 Editing and Scripting

The scripting object model is easiest to understand if you compare the scripting object
model with how Web applications are created using the combination of ASP and HTML.
To create a form, for example, you place HTML elements on a page, including text boxes,
list boxes, and buttons. One of the buttons is typically a Submit button, which causes the
form to be sent to the server, and which specifies an ASP page containing server script
to process the form. Scripts on the destination page must manually examine the state
submitted by the browser, and there is no association with the object that created the state.

Note In Dynamic HTML (DHTML), controls on a page (and the page itself) are part
of a document object model, but that model applies only to client scripts; it does not
include server-side processing. In addition, the DHTML document object model can be
used only with browsers that support DHTML.

In contrast, the scripting object model allows you to work with controls and with the page
using standard object-oriented techniques. For example, rather than use the complex form
submission process required by ASP and HTML, you can simply place a button on the
page and write a handler for its onclick method to process the form. The scripting object
model abstracts events such as onclick so that you can write handlers for them in either
client script or server script.

Advantages of the Script Object Model
The scripting object model provides these advantages:

• Rapid application development using a familiar object-oriented model You can
apply standard object-oriented techniques to developing Web applications. Because
you have to write less script and can use simpler script, you can create applications
more quickly and with fewer errors.

• Browser,and platform independence You can use the scripting object model no
matter what browsers will access your application. It works virtually the same whether
you design your applications for server script (for maximum reach) or client script
(for a better user experience, such as less flashing and fewer round trips to the server).

• Simplified forms You can create forms by dragging design-time controls onto a
page in the same way you do in environments such as Visual Basic, and change their
appearance and behavior using properties. You can process forms by writing standard
event handlers and by calling methods - the scripting object model handles the
complexities of posting the form and dispatching to the correct form-handling logic.

• Isolated application logic You can more easily isolate your application logic in
discrete procedures - including procedures on other pages - rather than mingling
it with user interface and navigation elements.

286 Programmer's Guide

Chapter 23 Scripting Concepts

• State maintenance The scripting object model provides a mechanism for retaining
the state of objects as control is transferred between the client and server. You do not
have to manually manage state in hidden fields or session variables.

• Data binding The scripting objects can be bound to database fields so you can use
them for data-entry and data-editing forms.

• Simplified page navigation The scripting object model provides a mechanism that
allows you to navigate to another page by name rather than specifying the URL of the
target page, and that can jump directly to any procedure on the page.

• Remote scripting You can execute server scripts from a page without navigating
off the page. As in traditional client/server applications, this allows browser scripts
to ask the server for a set of results, which can then be used in the browser for further
calculations or to alter the page through DHTML.

Components of the Scripting Object Model
When you use the scripting object model, you work with a variety of objects. You use the
same objects whether you are writing server-based applications (in ASP files) or pages
with script that will be executed on the client browser (.htm files).

Note The scripting object model is implemented using script stored in the Script
Library. Do not alter the contents of the library, or components in the scripting object
model will not work properly.

Enabling the Scripting Object Model
Before you can use the scripting object model, you must enable it, which constructs the
scripting object model framework for the page.

Note Visual InterDev design-time controls require the scripting object model. If you
add a design-time control to a page that does not already have the scripting object
model enabled, Visual InterDev prompts you to enable it.

To enable the scripting object model for a page

1. Right-click anywhere in the page away from an object or control, choose Properties,
and then choose the General tab.

2. Under ASP settings, choose Enable scripting object model.

The Visual InterDev editor adds the scripting object model framework to the page at
the top and bottom. You should not alter the content of these tags.

Programmer's Guide 287

Part 5 Editing and Scripting

Design-Time Controls and Script Objects
To create the user interface for your application, you can use the Visual InterDev design
time controls. A design-time control is a control used when you are working in the editor
to create Web application's functionality. Design-time controls generate HTML text,
script, and sometimes other components to implement at run time the functionality you
are designing.

The Visual InterDev design-time controls include standard user-interface elements - text
box, label, check box, list box, command button, and so on - that produce run-time text
based on the scripting object model. Using the design-time controls makes it easy to create
forms and bind to data by taking advantage of the features of the scripting object model.
For details about design-time controls, see the topic "Design-Time Controls" in the Visual
InterDev online documentation.

Design-time controls have two levels of interaction. At design time, they are like controls
that you might put on a form in an environment such as Visual Basic. You can interact
with them visually in the HTML editor and set their properties to specify their appearance
and behavior. Their actual purpose, however, is to generate script to be executed when the
page is running. Therefore, when you set properties of a design-time control, you are
actually changing the code that the design-time control generates.

When the generated code for a design-time control runs, it dynamically creates a script
object. The script object is the object you write script against, setting its properties,
calling its methods, and responding to its events.

The properties you set for a design-time control while working in the editor differ from
those available at run time in the corresponding script object. However, they are related.
For example, a design-time control's ID property is used to create the ID property of a
script object at run time.

While designing your user interface, you can set properties for design-time controls in the
Properties window or in custom property pages. Script object properties are not displayed
in the Properties window, because they are run-time properties. However, they do appear
in the IntelliSense statement completion drop-down list when you are scripting.

The design-time control also has no methods or events, because it never operates at run
time. Script objects have predefined methods and events. As with script object properties,
you can see a list of methods and events in the IntelliSense statement completion drop
down list. In addition, you can see the predefined events for a script object in the Script
Outline window.

In some instances, a design-time control has a visual appearance at design time, but the
corresponding script object has none. For example, the Recordset control, which controls
access to data, is visible at design time so you can set its properties. But when the page
runs, the script object created by the Recordset script object has no visible component,
even though it has properties, methods, and events just like any other script object.

288 Programmer's Guide

Chapter 23 Scripting Concepts

One of the advantages of design-time controls and script objects is that you can work with
them the same way whether you want them to run on the server or the client. For example,
if you want to target many different browsers, you can set the platform for the controls to
"server," and all the design-time controls' generated code will run on the server. If you
target the client as platform, the generated code will run on the client (though you must
make sure that the client is capable of running it). But your interaction with the script
objects, such as calling their methods, is virtually identical. The complex task of using
server script to respond to a client event, such as a button click, is built into the script
objects.

Tip An easy way to assemble a form is to use the FormManager. For details,
see "Simplifying Data Entry Pages" in Chapter 5, "Walkthroughs," and "Creating
Event-Driven Forms" in Chapter 3, "Database Basics."

Page Objects
The scripting object model allows you to use Web pages as objects that you can reference
in your scripts like any other object. By default, the current page is available as an object
called thi sPage.

Page objects can be referenced from other pages. This is useful for page navigation,
especially if your application requires you to process a specific script on another page.
For example, in your application you might process a form by navigating to another page
that contains scripts for validation, database updates, and so on. In the HTML model, you
post your form to the other page, and then write script on the destination page that would
need to determine how the page had been called and how to proceed. By using a page
object instead, you can call a method on that page object, and the scripting object model
performs all the navigation and dispatching for you.

For example, in a page object called Empl oyeel i st, write a function called DoOuery,
and then expose it as method. From another page, you can execute this function by
simply calling a method, as in the following:

Employeelist.navigate.DoQuery("Accounting")

Using page objects also provides the means for remote scripting. Remote scripting allows
you to call a script function process on an ASP page (to be run on the server) from client
script without leaving the page. (The usual model is that you would have to leave the
current page to execute a procedure at the server, even if the procedure is on the current
page.) The client page therefore preserves its state, including where the script was
executing before the call to the server was made.

Because remote scripts can also run asynchronously, you can provide a richer user
experience. For example, you can perform database lookups to validate a user entry
while the user is still working with a form. For more details, see "Executing Server
Script Remotely" in Chapter 24, "Scripting with Design-Time Controls and Script
Objects."

Programmer's Guide 289

Part 5 Editing and Scripting

Document Elements
When you write scripts, you can manipulate various objects to perform application tasks.
For example, in a client script you might:

• Test a check box, and then set the value of a text box.

• Navigate to another page.

• Display a specific graphic in a Java applet when a page is first displayed.

• Create multimedia effects by moving text across the screen, resizing text or graphics,
and so on.

In a server script you work with different objects, which you might manipulate in order to:

• Fetch the information that a user entered into a form.

• Establish a connection with a database, and then run a query against it.

• Determine whether the current browser supports specific features that your application
requires.

The objects that you can use in a script depend on the context in which the script will run.
If you are working in server script, you can use only the objects available on the server.
Conversely, if you are writing a client script, you can only use objects that are part of the
page, are available to the browser, or that you know exist on the client computer.

Note If you use the scripting object model and design-time controls, you can use
the same script objects whether you are working with client script or server script.
For details, see Chapter 24, "Scripting with Design-Time Controls and Script Objects."

Client Objects
In client scripts, you can get properties and call methods for objects on the page and write
event handlers for them. For example, the following small script displays the title of the
current document using the alert method of the window object and the title property of
the document object:

<SCRIPT LANGUAGE="VBScript">
alert(document.title)

<!SCRIPT>

Each object has its own methods and properties, which you can use as required. In client
scripts, most objects also support events for which you can write handlers. For example,
you can write a handler for a button's onclick event to control what happens when the
button is clicked.

290 Programmer's Guide

Chapter 23 Scripting Concepts

The exact objects and events that are available in a client script depend on the object model
available in the browser your users will be using. For example, in some browsers you can
write a script that changes the text on the page, but not all browsers support that feature.
In general, you can rely on the following:

• Most browsers, including Microsoft Internet Explorer 3.0, support at least HTML level
3.2. In the HTML 3.2 object model, you generally cannot alter the appearance of
objects already on the page. However, you can write event handlers for HTML controls
such as buttons, forms, Java applets, ActiveX controls, and for the document as a
whole. A list of scriptable objects in HTML 3.2 appears in the next table.

o Some browsers, including Microsoft Internet Explorer 4.0, support Dynamic HTML
(DHTML), which provides full complement of run-time properties, methods, and
events for any named object on the page. You can also write a handler for a timer event
to move or resize text or objects at specific intervals. DHTML gives you about the
same level of control over an HTML page as you have over forms in Visual Basic or
documents in Visual Basic for Applications (VBA).

• Visual InterDev supports a scripting object model and design-time controls that allow
you to script controls on the page using standard object-oriented techniques. For
details, see Chapter 24, "Scripting with Design-Time Controls and Script Objects."
You can use the scripting object model and design-time controls with any browser,
as long as you use Microsoft Internet Information Server as your server.

When you write script, it is a good idea to limit yourself to the object model supported
by your users' browsers. For example, if you know that most of your users will be using
Internet Explorer 3.0 (or another browser that supports HTML 3.2), you should not
make your application dependent on DHTML features. Alternatively, you can write
your application to test for a particular browser and then expose features based on what
browser the user has. For information about testing browser capabilities, see "Creating
Portable Script" in Chapter 25, "Scripting with HTML Elements."

The following table lists common client objects available in HTML 3.2.

Object Description

window Browser object that allows you to determine information about the browser, prompt the
user for information, and display messages. The two commonly used events onload and
onunload allow you to perform initialization tasks when a document is loaded.

document Browser object that allows you to set document colors, determine the URL of the current
and referring document, get the document's title, and write text into the page. For more
information about writing text, see "Displaying Information to the User" in Chapter 25,
"Scripting with HTML Elements."

(continued)

Programmer's Guide 291

Part 5 Editing and Scripting

(continued)

Object

form

element

Java Applets,
ActiveX
controls

Description

Browser object that allows you to determine information about a form's method and
action, and enumerate the elements in the form. You can write handlers for the form's
submit event in order to specify what happens when the user clicks the submit button.
For more information about using forms, see "Gathering Information with HTML Forms"
in Chapter 25, "Scripting with HTML Elements."

Tip Visual InterDev provides design-time controls and a FormManager control that
allow you to create forms easily without writing scripts for the HTML <form>
element. For details, see Chapter 24, "Scripting with Design-Time Controls and Script
Objects," and "Creating Event-Driven Forms" in Chapter 3, "Database Basics."

Individual form elements such as buttons, text boxes, and so on. You can write handlers
for element events such as being clicked, getting or losing focus, and changing. For more
information, see "Gathering Information with HTML Forms" in Chapter 25, "Scripting
with HTML Elements."

Tip You can use Visual InterDev design-time controls instead. For details, see
Chapter 24, "Scripting with Design-Time Controls and Script Objects."

Objects created externally and added to the page. Applets are placed onto a page in an
<APPLET> block, and objects in an <OBJECT> block. Applets and ActiveX controls
support their own set of properties, methods, and events for which you can write handlers.

Server Objects
If you are writing a script that will run on Microsoft Internet Information Server, you
can use objects that are intrinsic to the server, such as the server's Request and Response
objects. You can also use components that are bundled with the server, but not an inherent
part of it, such as the AdRotator component, the BrowserCapability component, and
ActiveX Data Objects (ADO). Finally, you can use any other object that is registered
on the server, including components that you create and register yourself.

Using server objects and components is a very powerful feature of Visual InterDev. When
you create Web applications, you usually cannot control what browser the user has or what
controls are registered on the user's computer. By installing controls on the server and
using them in server script, you make the features of those controls available to any user,
no matter what browser is in use.

When you are writing server script, you cannot directly manipulate client objects such as
the browser window, an HTML form, Java applets, or DHTML objects, because these
objects do not reside on the server.

If you are working with the server's intrinsic controls such as the Request or Response
objects, you can simply reference the objects in your script, as in this example:

<%Server("starttime") = time%>

292 Programmer's Guide

Chapter 23 Scripting Concepts

However, for all other objects, you create the object. You can do so by using an
<OBJECT> tag in which you specify the attribute RUNAT=SERVER. Creating an
<OBJECT> tag allows you to reference the object in any server script on the page, and
adds the object and its members to the IntelliSense statement completion drop-down list.
For example, the following creates an object reference to an ADO connection object:

<OBJECT RUNAT="Server" ID=cn PROGID=" ADO DB.Connection">
</OBJECT>

In your script, you can reference this object using the name you assigned in the ID
attribute. The following statements use the object defined in the <OBJECT> element:

en.Open ApplicationC"ConnectionString")
' other processing here
en.Close

Alternatively, you can create objects with the CreateObject method of the Server object to
create an instance of the object, as in the following statement:

<%
Set Ad = Server.CreateObject("MSWC.Adrotator")
Ad.GetAdvertisement("/ads/adrot.txt")

%>

The following table lists common server objects and components.

Object

Request

Response

Session, Application

Server

AdRotator,
BrowserCapability,
TextStream, and Nextlink

Description

Intrinsic IIS object that provides access to any information passed into
the script through an HTTP request, such as form information, search strings,
browser information, and information stored in cookies. For more
information and examples of using the Request object, see "Gathering
Information with HTML Forms," "Sharing Dynamic Information," and
"Creating Portable Script" in Chapter 25, "Scripting with HTML Elements."

Intrinsic IIS object that sends information to the user by writing information
into a Web page stream. For more information and examples of using the
Response object, see "Navigating Conditionally" and "Sharing Dynamic
Information" in Chapter 25, "Scripting with HTML Elements."

Intrinsic IIS objects that allow you to set and get values that persist between
pages in your Web application. For more details, see "Sharing Dynamic
Information" in Chapter 25, "Scripting with HTML Elements."

Intrinsic IIS object that allows you to create instances of objects that are
registered on the server, including bundled components and objects that you
create.

Components that are bundled with IIS, and allow you to display a changing
set of images, store and get information about specific browsers, read and
write to text files, and create an ordered path through pages.

Acti vex Data Objects CADO) Bundled components that allow you to connect to and query databases.

Programmer's Guide 293

Part 5 Editing and Scripting

The Script Debugging Process
You can use the Microsoft Visual Inter Dev debugger to test scripts written in Microsoft
Visual Basic Scripting Edition (VBScript) and Microsoft JScript. Debugging Web pages
can be different than debugging in traditional development environments in these ways:

• Most Web applications consist of scripts that run on the client (in .htm files) and on the
server (in ASP files, the Global.asa file, and .cdf files).

• Scripts can be in different languages.

• Scripts can be mixed with HTML text.

• Many Web applications include not just scripts, but Java components such as applets
and COM objects.

The Visual InterDev debugger allows you to debug in all of these scenarios. You can
debug client script running in your local version of Microsoft Internet Explorer.

Note It is highly recommended that you do not use Active Desktop mode of Microsoft
Internet Explorer 4.0 when you are debugging.

To debug script running in Microsoft Internet Information Server (IIS) 4.0, you can run the
debugger on your computer and attach it to a script running on the server. If the server is
running on another computer, you can use remote debugging to debug script running there.

Note For information about debugging Java components on your Web page, see the
Java documentation on debugging.

Types of Errors
Debugging is about finding errors. When you work with script, you might encounter the
following types of errors that require debugging:

• A syntax error occurs if you mistype a keyword, forget to close a multiline command
(such as DO ... LOOP), or introduce a similar syntax error. If a script includes a syntax
error, the script will not execute and an error message is displayed as soon as the
browser or server processes the page.

Note In some programming environments, syntax errors are referred to as
preprocessor, compilation, or compile-time errors.

• A run-time error occurs when a command attempts to perform an action that is invalid.
For example, a run-time error occurs if you try to perform a calculation using a variable
that has not been initialized. If a run-time error occurs, the script either stops or
performs an exception routine.

• A logic error occurs when a script executes without syntax or run-time errors, but the
results are not what you intended. For example, a script might prompt the user for a
password, but then allows access to the application even if the password is wrong.

294 Programmer's Guide

Chapter 23 Scripting Concepts

Working in the Debugger
The basic process of debugging scripts consists of these tasks:

• Start debugging by running the document you are currently working with in your
Web project, or by attaching the debugger to a document that is already running
in a browser or on a server. You can also launch the debugger in response to a
script error, which is called just-in-time debugging.

• Stop script execution by issuing a break command. You can also set a breakpoint
in the script where the debugger will stop automatically. When you stop a procedure,
its source is displayed.

• Inspect the state of the script by examining the values of variables or properties
and the list of running procedures (the call stack).

• Control the execution of individual statements or procedures (stepping) and
watch the effect both in your application and by watching the values of variables
or properties.

• Skip over (step over) or walk through (step into) procedures called by the current
procedure. If multiple procedures or threads are active, you can move to another
one and proceed from there.

Note You can't work with the debugger in Design view or Quick view of the
HTML editor. To debug, switch to Source view.

To allow you to perform these tasks, the debugger includes these commands and
windows:

• The Processes dialog box allows you to attach the debugger to a document that
is already running in a browser or on a server, which can include scripts in pages
that are not part of your Visual InterDev project. You can debug scripts running
locally on your computer or attach to processes running on remote computers,
such as an ASP file running on a server.

• The Running Documents window allows you to view a list of documents that
are available to the debugger.

• Source view in the HTML editor displays source code of the script or component
you are debugging. If the script or component you are debugging is part of your
current Visual InterDev project, you can fix errors, and then rerun the document
to test it again.

Programmer's Guide 295

Part 5 Editing and Scripting

• In the Visual InterDev HTML editor, you can set and clear breakpoints. After the
debugger has reached a breakpoint, you can use commands on the Debug menu to step
into individual lines in your script. If you reach a point in your script that calls another
procedure (a function, subroutine, or applet) you enter (step into) the procedure or run
(step over) it and stop at the next line. At any point, you can jump to the end (step out)
of the current procedure and proceed to the next breakpoint.

• In the Locals window you can see the values of variables within the scope of the
current procedure. You can also specify that you want the debugger to display the
values of specific expressions, such as properties, by setting up watch expressions in
the Watch window.

• To set and change values, you use the Immediate window. You can evaluate any
expression in the window and can enter script commands and see their effect. You can
also view and change values in the Watch window.

• Using the Call Stack window, you can move to any currently active procedure.

For details about using debugger commands and windows, refer to the Visual InterDev
online documentation.

Understanding Script Processing
Understanding how client scripts are processed and how errors are handled can help you
debug client scripts successfully.

Processing Client Script
Client script is processed by Microsoft Internet Explorer. The browser calls the appropriate
run-time module to process VBScript scripts or JScript scripts.

Client scripts are initially parsed when the Web document is loaded into the browser.
During this parsing phase, the browser reports any syntax errors that it finds.

After parsing a section of script, the browser executes it. Global or inline scripts, which
are scripts that are not part of an event-handling subroutine or function, are executed
immediately. Event-handling subroutines or functions, and procedures that are called by
other procedures, are parsed immediately but are not executed until triggered by an event
or called by another procedure.

296 Programmer's Guide

Chapter 23 Scripting Concepts

Client script processing

-<HTUL >
-<HEAD>

-<SCRIPT LAJ.J'GUAGE=XXXX> ------global script
document.write xxxx
document.write xxxx
-</SCRIPT>

.-<SCRIPT LAJ.J'GUAGE=XXX> ------'"""event-handling function
Function btn onclick ()'

xxx x xx x-xxx '
End Function
-</SCRIPT>.

-</HEAD>
-<BODY>
-<Hl>Heading-</Hl >

-<P>asldj asdlajs lf g lf aj asldkj
fh adksa lkjasd as.-</P>

-<IMPUT TYPE=" button" MAUE= "btn" >

-</BODY>
-</HTUL>

If a run-time error occurs when a client script is executed, an error message is displayed
and the script containing the error stops. Other client scripts in the document can still run
(unless you start the debugger). If the script containing the error is called again, the error
message is displayed again.

Depending on the language you are using, you might be able to include statements in
your scripts to trap run-time errors and run your own error procedures. For example, in
VBScript, you can use the ON ERROR statement to establish error trapping. For more
details, see the documentation for your scripting language.

Programmer's Guide 297

Part 5 Editing and Scripting

Processing Server Script
Most server script is not event-driven. Instead, when an ASP file is requested, the server
reads the page and processes all server script from top to bottom. This includes script that
is inline with HTML text, as shown in the following diagram.

Server script processing

<~@Language=xxxx~>

<HTML>
<HEAD>
<~

xxxx xxx xx xxx xxx xxx
xxxx x xx x x x xxxxx x x
xx x x xx xxxxx x xx
~>

I server script

------client script (executed by browser)
Function xxxx ()

xxx x xx x xxx
End Funct ior.1.

'.<J SCRIPT>'

</HEAD>
<BODY>
<Hl>Heading</Hl>

1.------.;-.-serv er script (inline)
<P>asldj jasd as <~=asdadaklj~>.</P>

<TABLE>
<~for ctr=l to nn~>
<TR><~=xxxx~></TR>

<~next~>

</TAB LE>

<INPUT TYPE="button" NAME="xxx">

</BODY>
</HTML>

Not all server script is executed immediately. As with client script, server script can
include functions and subroutines that are executed only when they are called from other
procedures.

Global.asa files are a special case. The Application_OnStart and Session_OnStart
procedures in these files are executed only once for an application and for a session.
Therefore, to debug these events easily, you must embed debugging statements in the file.
For details, see "Debugging a Global.asa File" in Chapter 26, "Debugging Your Pages."

298 Programmer's Guide

CHAPTER 24

Scripting with Design-Time
Controls and Script Objects

To create the user interface for your application, you can use the Microsoft
Visual InterDev scripting object model and Visual InterDev design-time
controls. The Visual InterDev design-time controls include standard user-interface
elements - text box, label, check box, list box, command button, and so on.

When your Web pages run, design-time controls create script objects based on the
scripting object model. You can add functionality for your application by writing
scripts that work with these script objects.

Creating Forms with Design-Time Controls
One of the primary advantages of using the scripting object model is that it simplifies
the script required to process the information in Web page forms. By using the scripting
object model and design-time controls, you can create the user interface for your
application in much the same way you create forms in Microsoft Visual Basic and
Microsoft Access.

You can create a user-interface using the design-time controls listed in the following table.

Button

Label

OptionGroup

Textbox

Grid

Recordset

Listbox

Checkbox

RecordsetN av Bar

Note Design-time controls are implemented using script stored in the Script Library.
Do not alter the contents of the library, or the controls might not work properly.

Programmer's Guide 299

Part 5 Editing and Scripting

Selecting a Target Platform
Before you add controls to your page, you must decide what platform you will be using
for your application: server or client. Your choice determines how the design-time
controls are created and where events occur. Use the following table as your guide.

Target platform

Server

Client

Result

• Your page is an .asp file.

• Script objects are created in server script.
Their properties, methods, and events are
available only in server script.

• Scripting object model events (such as onclick)
are processed in server script. For more
information, see "Writing Script for Script
Objects" later in this chapter.

• Data binding occurs on the server.

• Your page can be either an .asp or .htm file.

• Script objects are created using client script.
Their properties, methods, and events are
available only in server script.

• Events are processed in client script. For more
information, see "Writing Script for Script
Objects" later in this chapter.

• Data binding can occur on either the client or
the server.

Choose if

Your application will be used
by a variety of browsers.
Advantages include:

• The application will run the
same on all browsers.

• You want to be able to control
access to the application logic
and database connection string
information.

The application will be used only
by browsers that support Dynamic
HTML (DHTML) such as
Microsoft Internet Explorer 4.0.
The advantage is typically a better
user experience. In addition, your
application can use the DHTML
object model.

It is important to understand that the target platform not only determines where a script
object is created, but also how you can write script for it. For example, if the target
platform for a control is Server, its corresponding script object is created in server
script. You can only access the script object's properties, methods, and events in
server script - the script object is not available to client script. The reverse is also true:
if a control's target platform is Client, the properties, events, and methods of the
corresponding script object are not available in server script.

Choosing a target platform does not mean that all design-time controls generate script for
that platform. The scripting platform for an individual control, and for individual scripts,
will depend on how the control is used. For example, the target platform for a Save button
in a form might be Server so that the script can save information to a database. But another
script, even for the same button, might run on the client in order to validate the data before
it is saved.

300 Programmer's Guide

Chapter 24 Scripting with Design-Time Controls and Script Objects

You can choose a target platform for an individual page or as the default for your project.

To specify a target platform for a page

1. Switch to Source view.

2. Right-click the page and choose Properties.

3. In the Property Pages window, choose the General tab.

4. Under DTC scripting platform, choose Server or Client.

Note If you change target platforms, existing event-handling scripts are not
automatically changed to reflect the new setting, but you can do this manually.
For example, when changing the target from Server to Client, event handlers
in server <SCRIPT RUNAT="Server"> blocks need to be moved to client
<SCRIPT> blocks. For details, see "Writing Script for Script Objects" later
in this chapter.

If you know you want to use the same platform all the time, you can set the default
target for a project. All pages you create after that will reflect your default setting.

To specify a target platform for a project

1. In the Project Explorer, right-click the project, and then choose Properties.

2. In the Property Pages window, choose the Editor Defaults tab.

3. Under DTC scripting platform, choose Server or Client.

Note If you already have pages with the design-time controls on them, changing
the project default does not change the settings for those pages.

By default, all design-time controls on the page inherit the target platform from the
current page. However, you can change the target platform for an individual control.
For example, some of the design-time controls on your page might be bound to a
database and use the server as a target. Others might not be data-bound and use
the client as a target.

Note Data-bound design-time controls must use the same target platform as
the recordset object that they are bound to.

To specify a target platform for an individual control

1. Switch to Source view.

2. Right-click the control, and then choose Properties.

3. In the Property Pages window, choose the General tab.

4. Under Scripting Platform, select Client or Server.

Programmer's Guide 301

Part 5 Editing and Scripting

Adding Controls to a Page
You add design-time controls to the page by dragging them and then setting their
properties.

To add design-time controls

1. Make sure that you have set options to view controls graphically. From the View
menu, choose View Controls Graphically.

Note To set this option as default, use the HTML node of the Options dialog box.

2. Drag the design-time control from the Design-Time Controls tab of the Toolbox to
your page.

If the target platform for a page is Server and the scripting object model is not already
enabled for the page, you are prompted to enable it now. You must enable the scripting
object model for design-time controls to work properly.

Note Do not define forms using the HTML <FORM> tag. The scripting object
model framework creates a form for you.

3. Right-click the control, and then choose Properties. The custom Properties window
for that control appears.

4. Set options for the control as required.

Note When you print a page in the HTML editor, some design-time controls
might not be displayed with the values you set. If you put more than one instance
of a design-time control on a page - for example, if you put multiple Textbox
or Button controls on a page - the second and subsequent ones will display their
default values in the printout.

By default, design-time controls are displayed using their graphical representation
in both Design view and Source view. For example, the Button design-time control
appears as a button.

You can choose to view the controls as text. However, while the control is in text mode,
it cannot communicate with other controls on the page, which can cause the control not to
function properly.

Note ASP pages do not render properly in Quick view, because Quick view does not
run server script. Therefore, Quick view does not allow you to preview script objects
whose target platform is server.

You can cut, copy, and paste design-time controls as well. However, you can do this
successfully only if you copy the graphical version of a control, not the text version.

302 Programmer's Guide

Chapter 24 Scripting with Design-Time Controls and Script Objects

To make it easier for you to specify options for design-time controls, you can set their
properties using custom property pages.

To set properties for design-time controls

• Right-click the control, and then choose Properties.

-or-

In the Properties grid, move to (Custom) and then click the button in the value field
for that property.

Each design-time control supports different options. For details about the properties you
can set for each, press Fl in the Property Pages dialog box.

The design-time controls generate script in the page to implement the corresponding script
object. You can preview the generated text for a control.

To preview generated text

1. Switch to Source view.

2. Right-click the design-time control, and then choose Show Run-time Text.

You can permanently convert a design-time control to run-time text, which leaves the
script required to create the script object, but strips the information used to communicate
with other controls and to display the control graphically.

You might do this if you wanted to customize the generated text, but this is not the
recommended way to work with design-time controls.

To convert a design-time control permanently to text

• In Source view, right-click the design-time control, and then choose Convert to
Run-time Text.

Warning Converting to run-time text is a one-way operation. You cannot undo
the operation to return to a graphical view. You should make this conversion only
if you are comfortable customizing the control's run-time text.

Creating a Form with Design-Time Controls
When you use the scripting object model and design-time controls, you do not create forms
using the HTML <FORM> tag. Instead, you drag the design-time controls that you need
onto the page.

Tip An easy way to assemble a form with design-time controls is to use the
FormManager. For details, see "Simplifying Data Entry Pages" in Chapter 5,
"Walkthroughs," and "Creating Event-Driven Forms" in Chapter 3, "Database Basics."

Programmer's Guide 303

Part 5 Editing and Scripting

To define specific behavior for individual controls, you can write event handlers in script.
Rather than adding an HTML Submit button, you can add a Save button that calls a
forms-processing method, as in the following VBScript example:

Sub btnSave_onclick
ProcessForm()

End sub

The forms-handling procedure can be anywhere else on the page. It can extract values from
the form by requesting value of the controls on the page. The following example tests the
value of a text box called txtName:

Sub ProcessForm()
If txtName.value-= "" then

txtName.value - "Please enter a name!"
Else

' etc.
End if

End sub

Writing Script for Script Objects
One of the primary benefits of using the scripting object model and design-time
controls is the ease of writing scripts that define your application's behavior.
The scripting object model makes your Web pages work like forms in Microsoft
Visual Basic or Microsoft Access. After dragging design-time controls onto the
page, you can use familiar scripting techniques to set their properties and write
handlers for events.

However, there are some differences between working with the scripting object
model and working with other environments. In the sections that follow, you will
find information about how to write script for script objects, including information
about where you need to be aware of differences from other environments.

Writing Script Appropriate for the Target Platform
The target platform specifies where scripts run, and therefore dictates what your
scripts can do. When the target platform is server, you can use the scripting object
model and the ASP programming model, including Microsoft Internet Information
Server (IIS) objects. Conversely, if your target platform is client, the scripting
object model extends the document object model provided by Dynamic HTML (DHTML).

304 Programmer's Guide

Chapter 24 Scripting with Design-Time Controls and Script Objects

As you write script, you must be clear where it will run, so that you do not attempt
procedures that are not appropriate for the context. For example, if your target platform
is server, do not try to display messages directly to the user with functions like MsgBox
or with the alert method. Even if the functions would work properly (generally, they
result in an error), they would display the message on the server rather than to the user.

Changing Target Platforms
If the target platform is server, the RUN AT attribute of the script block will be set to
SERVER. If the target platform is client, there is no RUNAT attribute.

If you change target platforms for a page, you must manually add or remove the RUN AT
attribute of affected script blocks. For example, if you initially added design-time controls
to a page when the target platform was set to client, a script block might look like this:

<SCRIPT LANGUAGE-"VBScript">
If you then change the target platform to server, you must add a RUN AT attribute, as in
this example:

<SCRIPT LANGUAGE="VBScript" RUNAT=SERVER>
This might not be the only adjustment required. Other platform-specific features to be
aware of include:

• Client script can display messages to the user. If you switch platforms to server, you
must remove or replace MsgBox or alert calls.

• Client script can reference objects from the DHTML object model, including window,
document, and others. If your script uses these objects, you must alter it when changing
to the server platform.

• Server script must be written in the default page language (the language specified by
the @ LANGUAGE=attribute at the top of the page) or must include a LANGUAGE
attribute in the <SCRIPT> block.

• Server script cannot access return values for certain calls, such as the onkeyup event.

Testing Script Objects
Test your page in the right place. Quick View in the HTML editor runs locally, so it does
not process server script. Therefore, if your target platform is server, no script objects will
appear in Quick View. Instead, use the browser to view the page from the Web server.

To test using the browser

• In the Project Explorer, right-click the name of the file to test, and then choose
View in Browser.

Programmer's Guide 305

Part 5 Editing and Scripting

Referencing Script Objects and Properties
In your script, you can reference a script object using the name that you assigned to it
when you created the design-time control. You read and write most properties as usual,
by adding their name onto the object reference with a dot(.).

For example, if you have dragged a Textbox design-time control onto the page and
named it txtN ame, you can read its current contents by getting the value of its value
property, as in the following:

<SCRIPT LANGUAGE="JAVASCRIPT">
function getLName
{

fname = txtName.value;
}

<!SCRIPT>

Note Object and property names are case-sensitive in JScript and JavaScript.

By default, when you type in the name of a script object followed by a dot(.), the
IntelliSense popup will display all the properties and methods appropriate for the
script object you are working with.

When the scripting object model is enabled, you can reference the current page using the
object name thisPage, or if you have specified it as a page object, by its page object name.
For example, the following statement sets the value of the current page's cancelEvent
property:

thisPage.cancelEvent =True

Note The thisPage object does not appear in the Script Outline window or IntelliSense
drop-down unless you add a PageObject design-time control to the page. However, the
thisPage object is available at run time and you can write scripts against it even if you
have not used a PageObject control.

Some values are accessible as pairs of methods: a get method to get the property's
value, and a set method to write it. For example, you can check the state of a Checkbox
script object by calling its getChecked method, and set it using the setChecked method.
The following example illustrates this type of property:

Function toggleCheckBox
If checkboxl.getChecked() then

checkboxl.setChecked(0)
Else

checkboxl.setChecked(l)
End if

End Function

For a list of properties supported by each script object, see the topic "Script Objects" in the
Visual InterDev online documentation.

306 Programmer's Guide

Chapter 24 Scripting with Design-Time Controls and Script Objects

Calling Methods and Functions
You call methods for script objects the way you do with any object. For example, if you
have dragged a Listbox design-time control onto the page, you can populate it by calling
its addltem method, as in the following script:

<SCRIPT LANGUAGE-="VBSCRIPT">
Function LoadlistBox()

ListBoxl.additem "Paris"
Li stBoxl. add item "London"
ListBoxl.additem "Cairo"

End Function
<!SCRIPT>

Note Method names are case-sensitive in JScript and JavaScript.

Responding to Script Object Events
Each script object can generate a predetermined (or implicit) set of events. For example,
the script object for a Button design-time control can generate a click event, and the script
object for a Textbox design-time control can generate an onchange event.

Note You can also extend the set of events that an object can respond to so that it can
make use of any events that the browser generates. For details, see "Extending Events
for an Object" later in this chapter.

To write a handler for a script object, create a procedure using the object's name and the
event to handle. You can write event handlers in any scripting language supported by the
browsers used for your application.

For example, if you create a button called btnDisplay, you can write a handler for its
onclick event that might look like this in VBS~ript:

<SCRIPT LANGUAGE="VBSCRIPT">
Sub btnDisplay_onclick()

TextBoxl.value = "Button has been clicked"
End Sub
<!SCRIPT>

Tip Use the Script Outline window to create event handlers. In the Script Outline
window, expand the node for the object you are working with, and then double-click
the name of the event you want to write a handler for. For details, see the topic
"Script Outline Window" in the Visual InterDev online documentation.

Note Script object events occur only in response to a user action, not in response to
programmatic changes. For example, if a user selects an item in a Listbox script object,
the onchange event is fired. However, if you change the selection using a script
statement, no event is fired.

Programmer's Guide 307

Part 5 Editing and Scripting

An important feature of design-time controls is that you write event handlers for script
objects in either client or server script, according to the target scripting platform. When
a user clicks a button, the event actually occurs on the client. However, if your target
scripting platform is server, you write a handler in server script that responds to that
event as if it had occurred on the server.

In reality, if your scripting platform is server, the scripting object model wraps your page
in a form. To process events in server script, the scripting object model performs a round
trip to the server.

First, the event is captured and that, along with information such as other script object
values, is sent as part of the post. Then at the server, an additional scripting object model
procedure determines that it is processing an event and calls your event handler. When
the server script is finished, the refreshed page is sent back to the browser. A similar
round trip is performed for every event processed in server script.

For the most part, this process is invisible to the user and to your scripts, with these
exceptions:

• Processing events in server script is slower than doing so in client script, because it
involves a round trip to the server.

• You must be aware of where the event handler script is running, so that you do not
attempt procedures that do not work on the server or on the client.

Extending Events for an Object
Each scripting object has a predetermined, or implicit, set of events that it can respond to.
However, you might want to take advantage of other events that the browser generates and
use them with your script objects.

Most typically, if you are using design-time controls and your target scripting platform is
client, you might want to take advantage of the events available in the DHMTL document
object model.

For example, the textbox script object supports an implicit onchange event that you can
write handlers for. However, on the client you might also want to write events for the
onkeypress event and others.

You can extend the set of events available to an object by advising for an event, or
registering the object to be notified when the event occurs. After you have advised for
an event, you can write event handlers for that event (for that object) as you would
for any other event. You can cancel event notification by unadvising for the event.

308 Programmer's Guide

Chapter 24 Scripting with Design-Time Controls and Script Objects

Each object supports an advise method that allows you to register a specific event.
When you advise, you specify the name of the event and the name of a function that will
be called when the event occurs - in effect, the name of the event handler for the event.

Tip In general, advising for events is practical only when your scripting target
platform is client. If your platform is server and you advise for an event such as
onkeypress, you will cause a round trip to the server each time the event occurs
(in this case, with each keystroke).

You can advise and unadvise for an event at any time. A common time to do so is when
a page is loaded. For client scripting targets, you create a handler for the window object's
onload event and call the advise method there.

The following example shows how you would advise at page initialization time to have
a DHTML onkeypress event sent to the text box called Textboxl. When the onkeypress
event fires for Textboxl, it will call the function checkkeys. The result of the advise
method is an advise object called objAdviseTextboxl that you can use later if you need
to unadvise for the event.

<SCRIPT LANGUAGE="VBScript">
Function window_onload()

objAdviseTextboxl = Textboxl.advise("onkeypress", "checkkeys()")
End function
<!SCRIPT>

The function you specify in the advise method works like any event handler. If the event
passes parameters, you can get those using the DHTML window object's event method.
The following shows the handler for the onkeypress event in the previous example. It
examines each keystroke that occurs in the Textbox 1 object and copies only the numbers
to the object Textbox2.

Function checkkeys()
character= Chr(window.event.keycode)
If character >= "0" and character <= "9" then

Textbox2.value = Textbox2.value & character
End if

End function

When you no longer need notification of the event, cancel it by calling the object's
unadvise method. The unadvise method requires the advise object returned by the
advise method as well as the name of the event. The following shows an example
of calling unadvise:

Textboxl.unadvise("onkeypress", objAdviseTextboxl)

Programmer's Guide 309

Part 5 Editing and Scripting

Trapping Events on the Client
If the target platform for a page is server, event handlers are executed as server script.
In some instances, however, you might want to trap the event - handle the event first
in client script - before it is passed to the server. For example, you might want to trap
a Save button onclick event in client script in order to validate user information before
it is sent to the server.

Trapping events is useful only if the target platform is server. If events are being processed
on the client already, there is no need to trap the event, as it will not be passed to the
server.

To trap an event on the server

• Write a JavaScript handler for the current page's onbeforeserverevent event. This event
is fired just before the event is forwarded to the server. The syntax of the handler is as
follows:

function thisPage_onbeforeserverevent(objectName, eventName)

The objectName parameter contains the name of the object that fired the event, and the
eventName parameter contains the name of the event that is being forwarded to the
server.

In your handler, you can cancel the event (prevent if from being forwarded to the server).

To cancel an event on the server

• Set the cancelEvent property to true.

The following is an example of how to trap the button click event for a Delete button.
The script prompts the user to confirm the deletion before proceeding.

<SCRIPT LANGUAGE="Javascript">
function thisPage_onbeforeserverevent(obj, event){
if (obj=="btnDelete"){

if(evnt=="onclick"){

}

}

}

<!SCRIPT>

if (confirm("Are you sure you want to Delete?")){
alertC"Deleted per your request");

}

else {
alert("Delete cancelled");
thisPage.cancelEvent =true;

310 Programmer's Guide

Chapter 24 Scripting with Design-Time Controls and Script Objects

Converting Parameter Values
Some event handlers and methods receive parameters with the event call. If your target
scripting platform is server, and if a procedure call is the result of a round trip to the server,
parameter data types are converted to strings. A round trip occurs when:

• An action on the client (such as a button click) is processed in server script.

• Procedure in client script calls a method that is implemented in server script.

• You call a page object method on another page. For details, see "Extending the
Scripting Object Model Across Pages" in the next section.

• A client makes a remote scripting call to an ASP page. For details, see "Executing
Server Script Remotely" later in this chapter.

In any of these cases, the procedure that receives the parameter must convert it to the
appropriate data type as necessary. For example, Boolean values are converted to the
strings "true" or "false." If you write a procedure that receives a Boolean parameter,
you should test it using script such as the following:

Sub TestValue(boolFlag
dim flag
If boolFlag ="true" then

flag = True
Else

flag False
End If
If flag then

• processing here
End If

End Sub

A Script Object Example
The following example shows a complete script block that includes properties, methods,
and events. The page is a simple calculator with two text boxes, named txtNumberl
and txtNumber2, into which the user types numbers. The user selects an operator from
lstOperators. When the user clicks btnCalculate, the result of the calculation is shown
in lblResult as follows:

<SCRIPT RUNAT=SERVER LANGUAGE=VBSCRIPT>
Sub thisPage_onenter()

If thisPage.firstEntered then
txtNumberl.value = ""
txtNumber2.value = ""

lstOperators.additem "+", 10
lstOperators.additem "-" 20
lstOperators.additem "·" 30
lstOperators.additem "x", 40
lstOperators.selectByValue(10)

End if

Programmer's Guide 311

Part 5 Editing and Scripting

End Sub
Sub btnCalculate_onclick

Dim Result
Dim Value!, Value2
Value! = Cint(txtNumberl.value)
Value2 = Cint(txtNumber2.value)
Select Case Cint(lstOperators.getValue())
Case 10:

Result = Value! + Value2
Operation = " plus "

Case 20:
Result= Value! - Value2
Operation = " minus "

Case 30:
Result= Value! I Value2
Operation = " divided by "

Case 40:
Result= Value! * Value2
Operation = " times "

End Select
lblResult.setCaption(Valuel & Operation & Value2 & " is " & Result)

End Sub
<!SCRIPT>

Extending the Scripting Object
Model Across Pages

Using design-time controls and the scripting object model allows you to create and script
a Web page using standard object-oriented techniques. However, Web applications differ
from other development environments in an essential way: they are usually constructed
out of a collection of pages.

In a simple application, you can simply add links to other pages. When the user clicks
a link, the browser follows the link, reads the page, and displays it. More complex
applications, however, use more sophisticated linking techniques. For example, your
application might require links that:

• Jump conditionally to different pages.

• Process a specific script on another page when the user jumps to it.

• Navigate to pages that provide server processing (such as database lookups)
for your applications.

312 Programmer's Guide

Chapter 24 Scripting with Design-Time Controls and Script Objects

The scripting object model extends across pages to help you design applications with
these types of requirements. You can use the scripting object model to designate pages
as page objects.

A page object is an ASP page that contains server script that you use in your application.
The procedures - functions or subroutines - on the page can become methods for the
page object.

For example, you might have an ASP page in your application that you call from a
form to display a list of employees. Procedures on the target page construct different
queries for displaying the list - in different order, using different fields, or with
different selection criteria. When you convert the page to a page object, you can
specify each of these procedures as a method. You can then invoke the methods
from other pages in your application.

Page objects also allow you to create properties, which maintain state over multiple
round trips to the server.

Page objects give you:

• Simplified navigation. You can navigate to other pages in your application using
standard object references, without having to track the URL of the page.

• An easy way to execute specific script on another page. By exporting procedures as
methods, you can jump directly to a specific procedure on another page without writing
script to parse hidden form elements or query strings.

• A means of maintaining state information. You can define properties on a page object
that maintain their value for the duration that you specify - page lifetime, session,
or application.

• A way to execute server script from a page displayed in the browser.

The basic steps in creating a page object are these:

• Specify a page as a page object.

• Export procedures on the page as methods.

• Define the properties that the page object will support.

• Reference any other page objects that you will use in your scripts, on that page and
in other pages.

Programmer's Guide 313

Part 5 Editing and Scripting

Specifying a Page as an Object
You can specify any ASP page as a page object. To do so, you use the Page Object
design-time control.

Note Page objects are implemented using script stored in the Script Library. Do not
alter the contents of the library, or page objects might not work properly.

To specify a page as an object

1. Create or open an .asp file in the HTML editor.

2. Enable the scripting object model for the page.

Make sure that you have set options to view controls graphically. From the View
menu, choose View Controls Graphically. To set this option as the default, use the
HTML node of the Options dialog box.

3. From the Design-Time Controls tab of the Toolbox, drag a PageObject control onto
your page. You can drag the control anywhere on the page, although it must be inside
the framework of the scripting object model blocks.

4. In the Name box on the PageObject control, type a name for the page object. This will
be the name that you can use to reference the object in script.

The name you give your page object is registered in your Microsoft Visual InterDev
project so that it is available to any other page. Even if you move the page to another
location, its page object name remains the same.

Exporting Procedures as Methods
One of the primary benefits of using page objects is that you can expose your application's
tasks as methods that you can easily call from script. Doing so greatly simplifies the
organization of your code and eliminates the time and effort required to transfer variables
between pages, dispatch to the correct routine, and so on.

Page objects support two types of methods:

• Navigate methods are called by a client page that wants to jump to the ASP page
and run a procedure there, and then perhaps jump somewhere else. A common use
for navigate methods is to process a form.

• Execute methods are called by a client page that wants to use remote scripting to
execute a script function. A common use for execute methods is to validate a
user-entered value by looking it up in a database, or to perform a database query
to populate a control on a page.

All page objects have a default method called show(), which displays the contents of
the page. This is the method that is called after any other methods on the page have been
processed.

314 Programmer's Guide

Chapter 24 Scripting with Design-Time Controls and Script Objects

To create a method for a page object

1. If the page does not already have one, add a PageObject control to the page and give
the PageObject control a name.

2. Write the procedures (functions or subroutines) in a script block that has the attribute
RUNAT=SERVER. The procedure can take any number of parameters, but all are
passed by value.

For example, the following function creates a query string:

<SCRIPT LANGUAGE="VBScript" RUNAT=="Server">
Sub ListEmployees(sortOrder)

sqlText = "SELECT lname, fname FROM Employees"
sqlText = sqlText & " ORDER BY " & sortOrder
DoQuery(sqlText)

End sub
<!SCRIPT>

Note Parameters are converted to strings when you call a page object method so
that they can be successfully passed across the Web. In your page object scripts,
you should convert parameter values to the appropriate data type as required.

3. Right-click the PageObject control, and then choose Properties to display the
Property Pages dialog box.

4. Determine whether the method will be available via navigation or execution. Then in
the list under either Navigate methods or Execute methods, find the first blank line.
From the drop-down list, select the procedure that you want to expose as a method.

Note It is possible to expose the same method as both a navigate and execute
method. However, the method's underlying procedure must be written to
accommodate both types of calls.

Defining Properties for a Page Object
Page objects allow you to expose properties, which are essentially global variables. You
can scope a property to three levels: page, session, and application.

• Page-scope properties make a property available to scripts anywhere on the page until
you navigate to another page.

• Session-scope properties are available to any page you navigate to in your project.
Session values use IIS session variables to store values.

• Application-scope properties are available to any user of your application.
Application values use IIS application variables to store values.

You also specify whether properties are available in client scripts, server scripts, or both.
If you specify a property as a client property, you can further specify that it be either
read/write or just read-only. Server properties are always read/write.

Programmer's Guide 315

Part 5 Editing and Scripting

To create a property for a page object

1. If the page does not already have one, add a PageObject control to the page and give
the PageObject control a name.

2. Right-click the PageObject control, choose Properties to display the Property Pages
dialog box, and then choose the Properties tab.

3. In the Name column, find the first blank line, and then enter the name of the property
you want to create.

4. Select the characteristics for the new property from the remaining columns:

• Lifetime Select whether the property will be available until the page is exited,
or as a session or application value.

• Client Select whether the property will be read-only or read/write in client script.
If you choose None, the property will not be available in client script.

• Server Select Read/Write to make the property available in server script,
or None if it will not be available.

To make properties accessible to your scripts, page objects implement get() and set()
methods for them. For example, if you define a property called Color, you can read its
value using the method getColor() and set it using the method setColor(). For more
details, see "Accessing Page Object Properties" later in this chapter.

Referencing Other Pages
You can call methods and use properties on the current page using the default page object
name of thisPage. However, if you want to access the methods or properties of another
page object, you must first create a reference to that page on the current page.

To reference another page object

1. If the page does not already have one, add a PageObject control to the page and give
the PageObject control a name. If your scripting target is Server, the scripting object
model must be enabled for the page.

2. Right-click the PageObject control, choose Properties to display the Property Pages
dialog box, and then choose the References tab.

3. In the Name column, click the three-dot button to display the Create URL dialog box.

4. Select the .asp file that you want to reference as a page object. Enter options for how
the page object should be called, and then click OK. For assistance with the options,
press Fl in the Create URL dialog box.

316 Programmer's Guide

Chapter 24 Scripting with Design-Time Controls and Script Objects

Calling Page Object Methods
You can call methods on page objects in two ways: by navigation and by execution. You
call a method by navigation when you are finished with one page and want to jump to
another page and process script there. This is similar in HTML scripting to navigating
to a URL: a one-way jump, except that using a page object saves the current page's state
before navigating. For example, you might collect query parameters from the user on one
page, and then jump to another page where you actually create and execute the query.

In contrast, calling methods by execution is similar to a familiar object-oriented method
call -you call script somewhere else that performs a task and then returns. However,
methods called by execution run asynchronously. The page that calls the method remains
in the browser and the user can continue to work with it.

You can call methods by execution only if you are running client script and the method
to be called is on a server page. For example, while the user is filling in the form, a client
script might call a method on a server page to perform a database lookup.

To call a page object method

1. Create a reference on the current page to the page object you want to use. For details,
see "Referencing Other Pages" earlier in this chapter.

2. In your script, call the page object method using one of these types of calls:

pageObject.navigate.methodName(parameters)
pageObject.execute.methodName(parameters)

Where:

• pageObject is a reference you created earlier to a page object.

o navigate and execute are child objects of the page object that determine how the
method call will be processed.

• methodName is the name of the method on pageObject that you want to call.

• parameters is a list of parameters you are passing to the method. All parameters are
passed by value.

Note Parameters are converted to strings when you call a page object method so
that they can be successfully passed across the Web. In your page object scripts,
you should convert parameter values to the appropriate data type as required.

The following script shows some simple form processing. When the user clicks a List Now
button on the client page, the onclick handler for the button extracts the values of a list box on
the page, and then calls a method on the page object poListEmployees for processing. In this
instance, the user information is passed as a parameter to the page object's CreateList method.

<SCRIPT LANGUAGE="VBScript">
Sub btnlistNow_onclick()

department= lstDept.gettext()
polistEmployees.navigate.Createlist(department)

End Sub
</SCRIPT>

Programmer's Guide 317

Part 5 Editing and Scripting

Accessing Page Object Properties
When you define a property for a page object, the scripting object model creates a
get() method and a set() method that you use to access the property. For example, if you
have defined a property called UserName, you can read the value of the property using the
method getUserName, and set it using setUserName, as shown in the following example:

newUser = PageObjl.Navigate.getUserName()
PageObjl.Navigate.setUserName(txtUserName.Value)

When working with properties, you need to be aware of their lifetime. If you have defined
the property's lifetime as "page," for example, you can get and set its value only until you
leave the page and display another one. (Calling the same page again to execute a method
retains property values scoped to the page.) However, after you navigate to another page,
the property is reset.

Executing Server Script Remotely
If you have created ASP pages as page objects, you can call methods on those pages
remotely- that is, you can execute a method on an ASP page while a client page is
loaded in a browser and without navigating away from the client page.

Because you do not leave the client page, its values are preserved and client scripts can
continue processing without complex strategies to save values between pages. In the
meantime, the server script can execute server-appropriate procedures, such as database
lookups. When a procedure is finished, the server can send just the results to the client,
rather than reformatting and resending an entire page. This reduces server load.

You can execute server script two ways:

• Synchronously Your script calls the remote procedure and waits for it to return.
This is useful if you need the results of the remote procedure before you proceed.

• Asynchronously Your script makes the call to a remote script, and then continues
processing. The page remains available for users to work with. Asynchronous calls
are useful in Web applications because a remote procedure can take a long time
while the request goes to the server and back.

Making Remote Procedure Calls Synchronously
Remote scripting uses the technology of ASP page objects. The page to be called is an
ASP page object on which you have exposed methods. The client page, which can be
either an .htm file or .asp file, contains client scripts that call the page object's methods.

To make remote scripting calls from a client page to a server page, you use the page
object's execute child object. The execute child object does not return a single value
from the method you call. Instead, it returns a call object, which is an object containing
return and status information about the called procedure.

318 Programmer's Guide

Chapter 24 Scripting with Design-Time Controls and Script Objects

The most commonly used property is the call object's return_ value property, which
contains the single value calculated or looked up by the remote procedure. Other
call object properties allow you to get more information about the state of the
remote procedure call.

To make a synchronous remote procedure call

1. Create a reference on the current page to the page object you want to use. For details,
see "Referencing Other Pages" in "Extending the Scripting Object Model Across
Pages" earlier in this chapter.

2. In your client script, call the procedure using syntax such as this:

pageObject.execute.methodName

Note Remote scripting is implemented using script stored in the Script Library. Do
not alter the contents of the library, or remote scripting might not work properly.

For example, the following function is called in client script to validate a credit card.
To perform the validation, it calls the method validate in the page object poSignln.
The value returned by the remote procedure is available in the return_ value property
of the call object valid.

<SCRIPT LANGUAGE="JAVASCRIPT">
function checkCreditCard(){

retObj = poSignln.execute.validate(txtCC.value);
if (retObj.return_value =="OK"){

alert("Accepted");
}

else{
alert("Rejected");

}

<!SCRIPT>

Calling Methods Asynchronously
When you call a remote scripting procedure asynchronously, you must include extra
processing in the calling script to determine when the remote call has finished. To do
this, you specify a callback procedure, which is a function that is called when the remote
procedure has finished.

To use a callback function, you create an additional function in the client page to process
the results of the remote script. You can optionally also create an error handling process
in client script that can be called if the remote script encounters an error condition.

Programmer's Guide 319

Part 5 Editing and Scripting

To make an asynchronous remote procedure call

• When calling a method using the execute object, include the name of a callback
function using syntax such as this:

co= PageObject.execute.Method(pl, p2, ca77Back)
where:

co A call object.

pl, p2 Any parameters required by the called procedure. You can pass as many
parameters as required.

callBack The name of a method that will be called when the remote procedure has
finished. When the remote method has finished, it jumps immediately to the process
you have specified.

For example, the following illustrates a button whose onclick attribute specifies that
it should call a remote procedure for validating a credit card. The call to the remote
procedure specifies the function displayResults as its callback.

<BUTTON
ID='"' btnVa 1 i date"
TYPE=" button"
LANGUAGE="JavaScript"
ONCLICK="poSignin.execute.validate(txtCC.value, displayResults) ">
"Validate Credit Card"

<!BUTTON>

The displayResults function accepts the remote procedure call object as a parameter
and tests it to determine whether the credit card was valid.

<SCRIPT LANGUAGE="JavaScript">
function displayResults(retObj)
{

if (retObj.return_value =="OK"){
alert ("Your order has been accepted. ");

}

else{
alert("Invalid credit card number, please re-enter. ");

<!SCRIPT>

Note You can also use remote scripting calls outside the scope of the page object's
execute method. For details, and for more information about remote scripting, see the
Microsoft Scripting Web site at http://www.microsoft.com/scripting/.

320 Programmer's Guide

CHAPTER 25

Scripting with HTML Elements

Even if you do not use design-time controls in your Web page, you can create
fully-functional Web applications by creating and scripting HTML elements. Doing
so is more involved than using design-time controls, but might be useful if you prefer
scripting HTML elements yourself or if you are working with pages that might be
shared with an application other than Microsoft Visual InterDev.

Creating script for specific tasks usually means that you must understand how different
elements of Web pages fit together, and how the browser (or client) and server interact.
It is also important to understand the capabilities of different scripting environments -
for example, knowing whether the script will run on certain browsers.

Choosing a Scripting Language
Microsoft Visual InterDev allows you to design Web applications using the scripting
language you are most comfortable with. Your application can contain a mix of files that
use VBScript and JScript. You can even use different languages on the same page, but the
script inside a single script block must contain a single scripting language.

To set the scripting language for script block

• In the <SCRIPT> block, set the LANGUAGE attribute to the language you want to use
for that script, as in the following example:

<SCRIPT LANGUAGE="VBSCript">
[some scripting statements here]

<!SCRIPT>

If you do not set a language for a script block, a default is assumed. The default for server
script run by Microsoft Internet Information Server (IIS) is established as a server setting
(usually VBScript). For client script, the default language is determined by the browser.
Most browsers use JavaScript as their default language. Microsoft Internet Explorer
assumes JavaScript as its default language, but will reset the default language for the
current page to the first LANGUAGE attribute it encounters in a <SCRIPT> block.
(It does not reset the default again after the first LANGUAGE attribute.)

Programmer's Guide 321

Part 5 Editing and Scripting

Choosing a Language for ASP Files
Because ASP pages can contain inline script that is not in a <SCRIPT> block, they provide
a means for resetting the default for the page as a whole. At the top of each ASP page, a
<%@LANGUAGE=%> directive specifies the default scripting language. You can
change this setting manually or by setting a property value.

To change the scripting language for an ASP file

1. With nothing selected in the editor, choose Property Pages from the View menu.

2. In the Property Pages dialog box, choose the General tab, and then under Default
scripting language, choose the language in the Server list.

Design-time controls also use the LANGUAGE directive to know what language they
should use to generate script. If you delete the<%@ LANGUAGE= %>directive in a
file, the Visual Interdev controls generate script using the language currently specified
in the Properties dialog box for the page. In addition, when these pages are run on the
Web server, they will be processed using the language set in the DefaultScriptLanguage
parameter under the ASP entry in the Web server registry.

Note If you have pages without the <% @ LANGUAGE= %> directive, make sure
your language setting in the Options dialog box is identical to the default language set
on your server; otherwise, the controls will generate code in the wrong language.

You can set the default for all new ASP pages you create.

To reset the default scripting language for new ASP pages

1. Right-click a project in the Project Explorer, and then choose Properties.

2. In the Property Pages dialog box, choose the Editor Defaults tab.

3. Under Default script language, select the language you want in the Server list.

If you change the default scripting language, new files you create will reflect the change,
but the specified scripting language in your existing files will not change.

Choosing a Language for the Global.asa file
When you create a new project, the default script language you specify in the Options
dialog box is used to define the events in the Global.asa file. You can change the language
used for those events.

To change the script language for the Global.asa file

1. In the editor, open the Global.asa file.

2. In each script block, change the LANGUAGE attribute.

322 Programmer's Guide

Chapter 25 Scripting with HTML Elements

Choosing a Language for Generated Scripts
If you write scripts by hand, you can set the scripting language yourself using the
procedures above. However, you can also set a default scripting language for script
that you generate using the Script Outline window.

To change the scripting language for generated scripts

1. With nothing selected in the editor, choose Property Pages from the View menu.

2. In the Property Pages dialog box, choose the General tab.

3. Under Default scripting language, choose the default language for client and server
scripts.

Note This change affects only new scripts, not existing ones.

You can also change the default language for script generation for your project as a whole.

To reset the default scripting language for new ASP pages

1. Right-click a project in the Project Explorer, and then choose Properties.

2. In the Property Pages dialog box, choose the Editor Defaults tab.

3. Under Default script language, select the default language for client and server
scripts.

Note This change affects only new pages, not existing ones.

Handling Events with HTML Elements
You can specify how HTML elements on a page behave by writing script that responds to
events. For example, you can write client script that initializes variables when a document
is loaded (the window object's onload event), when a user enters text into a text box (the
text box's onchange event), or when a user clicks a button (the button's onclick event).

Note The easiest way to add objects to your application and write script for them is to
use Microsoft Visual Interdev design-time controls. For details, see "Creating Forms
with Design-Time Controls" and "Writing Script for Script Objects" in Chapter 24,
"Scripting with Design-Time Controls and Script Objects."

Programmer's Guide 323

Part 5 Editing and Scripting

You write event handlers as procedures (functions or subroutines) that appear in
<SCRIPT> blocks in your page. To specify that the procedure is a handler for a specific
event, you can:

• Create an implicit handler by naming the procedure after the event that it is a handler
for.

• Explicitly relate the procedure to the event using object or script attributes.

If you are using Microsoft Visual Basic, Scripting Edition, you can create the procedure
as either a subroutine or function. You would use a function if you want to return or set a
value for the procedure, which you do in some instances to cancel the effect of the event.

Creating Implicit Handlers
An implicit handler uses a naming convention to link the handler to the object and event.

To create an implicit handler

1. In the Script Outline window, expand the node containing the object you want
to script.

Note Objects appear in the Script Outline window only if their ID or NAME
attribute is set. Objects inside a form appear only if the form's ID or NAME
attribute is set.

2. Expand the name of the object.

3. Double-click the name of the event you want to write a handler for.

The editor creates a skeleton handler for you in this format:

function objectName_event

For example, if your page contains a form that has a button called btnNext, the handler
will be created with the name btnNext_onclick. If you create a JavaScript handler, the
editor also adds an event attribute to the control you are scripting. For details, see the
next section, "Using Attributes to Create Handlers."

Handlers are created in one of the following <SCRIPT> blocks, depending on whether
you are creating handlers for client or server objects, and what the default language is
for the object:

• clientEventHandlersJS

• clientEventHandlersVBS

• serverEventHandlersJS

• serverEventHandlersVBS

For details about setting a default language for generated script, see "Choosing a
Scripting Language" earlier in this chapter.

324 Programmer's Guide

Chapter 25 Scripting with HTML Elements

After the skeleton has been created, you can fill it in. For example, the following client
script function for a text box named txtName is called when the user tabs or clicks away
from it.

Function txtName_onblur()
If frmMyForm.txtName.value = then

alert("Name is required!")
End if

End Function

If you are scripting in VB Script, you can cancel the effect of some events. For example,
you can write a handler for a form's onsubmit event, which occurs when the user clicks
the Submit button. Your script can check that the data is valid, and if it is not, cancel the
onsubmit event. For details about whether you can cancel an event, see the documentation
for the event you are working with.

To cancel the effect of an event

• Create the VBScript procedure as a function, and set the function's return value to
False, as shown in the following script:

<SCRIPT LANGUAGE="VBSCRIPT">
Function frmMyForm_onsubmit()

If frmMyForm.txtName.value = "" then
alert("You must enter a name.")
frmMyForm_onsubmit = false

End if
End function
<!SCRIPT>

Using Attributes to Create Handlers
Another way to link a procedure to an event is to set attributes of the object or of the script
that explicitly link the two.

Setting Object Attributes
When you create an object, you can set an attribute to assign a handler to it.

To use attributes to assign a handler to an event

• In the tag that creates the object, name the event and assign the procedure to it, using
this syntax:

<INPUT TYPE="ObjectType" LANGUAGE="7anguage" EventName="Procedure">

-or-

<FORM LANGUAGE="7anguage" NAME="FormName" EventName="Procedure">

Programmer's Guide 325

Part 5 Editing and Scripting

The language attribute is not required, but guarantees that the handler will work the way
you want. If no language is specified, the default language for the page is assumed.

For example, the following page contains a form with two buttons. Each button definition
explicitly links the onclick event to a procedure:

<FORM NAME="Forml">
<INPUT TYPE="button" NAME="btnVB" VALUE="VB" onClick="pressed"

LANGUAGE="VBScript">
<INPUT TYPE="button" NAME="btnJS" VALUE="JS" onClick="pressed2()"

LANGUAGE="JavaScript">
<!FORM>

<SCRIPT LANGUAGE-"VBSCRIPT">
Sub Pressed()

alert ("Pressed the VBScript button")
End Sub
<!SCRIPT>

<SCRIPT LANGUAGE="JavaScript">
function pressed2() {

alert("Pressed the JavaScript button."):
}

<!SCRIPT>

In client script, for an object such as the window object, which is not explicitly created
using a tag, use the <BODY> tag, as shown in the following example:

<HTML>
<HEAD>
<SCRIPT LANGUAGE="VBScript">
Sub newWindow

'script statements here
End Sub
<!SCRIPT>
<!HEAD>

<BODY LANGUAGE="VBScript" onLoad="newWindow">
[... J

<!BODY>
<!HTML>

326 Programmer's Guide

Chapter 25 Scripting with HTML Elements

·Setting Script Attributes
Another way to link objects and handlers is to set attributes of the script that assigns it to
an event.

To use script attributes to assign it to an event

• In the <SCRIPT> tag, use the FOR attribute to identify the object and the EVENT
attribute to identify the event, using this syntax:

<SCRIPT LANGUAGE="7anguage" FOR="object" EVENT="EventName">

You can use this method for any named elements and for any elements inserted using the
<OBJECT> tag. You do not need to create the script as a subroutine or function, because
the script attributes specify when the script will run.

The following example is similar to the previous script example, but it uses a different
syntax:

<SCRIPT LANGUAGE="VBScript" FOR="Buttonl" EVENT="onclick">
alertC"Button has been pressed")
document.Forml.Buttonl.value="Pressed"

<ISCRI PT>

<FORM NAME="Forml">
<INPUT TYPE="button" NAME="Buttonl" VALUE="Click">

<!FORM>

Gathering Information with HTML Forms
A common way to prompt users for information is to put a form on a page. Users can
enter information or select choices using text boxes, option buttons, drop-down lists,
and checkboxes. They then submit the form by clicking a button, and the information
becomes available to your application.

You can define forms in these ways:

• Use Microsoft Visual Interdev design-time controls and then write handlers for their
events. This method allows you to work visually with your form's controls and use
object-oriented techniques for scripting. It also makes it easy to bind form controls
to a database.

• Create an HTML form. This is the traditional HTML way of creating forms. You might
use this method if you thought that the page might be edited using tools outside of
Visual Interdev.

Programmer's Guide 327

Part 5 Editing and Scripting

Using design-time controls is easier and more powerful, because it allows you to use the
scripting object model for designing forms. For information about using design-time
controls and the scripting object model, see "Creating Forms with Design-Time Controls"
in Chapter 24, "Scripting with Design-Time Controls and Script Objects."

The sections below describe how to create and work with HTML forms in the traditional
HTML manner.

Defining HTML Forms
You create an HTML form on a page with the <FORM> tag.

Note Do not add an HTML form to a page that contains Visual lnterDev design-time
controls, because the page already contains a form used to manage the controls. For
details, see "Creating Forms with Design-Time Controls" in Chapter 24, "Scripting
with Design-Time Controls and Script Objects."

To create an HTML form

1. Select the text that you want to enclose in a form, and then from the HTML menu
choose Form.

The editor puts <FORM> and </FORM> tags around your selection. The form's ID and
NAME attributes are automatically assigned unique values, which you can change if
you want.

Note If you enclose existing HTML controls in a form, they appear inside the
form's node in the Script Outline window.

2. Specify the name of an .asp file that will be used to process the form by assigning it to
the ACTION attribute:

<FORM NAME=" FormName" ACTION="ASPFi 7 eName. asp">

3. Specify how the form information will be sent to the server using the METHOD
attribute:

<FORM NAME=" FormName" ACTION="ASPFi 7 eName. asp" METHOD=" method">

To send the information as part of the HTTP header (so it can be extracted using
the Forms collection of the server's Request object), set METHOD to "POST."

To send the information as a search string to the .asp file (so it can be extracted using
the Request object's QueryString collection), set METHOD to "GET."

After defining the form, you can define controls such as text boxes, buttons, and so on.

Note You can use design-time controls to create the user interface for your
application. For details, see "Creating Forms with Design-Time Controls" in
Chapter 24, "Scripting with Design-Time Controls and Script Objects."

328 Programmer's Guide

Chapter 25 Scripting with HTML Elements

To create controls in the form

• Drag controls from the HTML tab of the Toolbox onto the form.

The control's ID and NAME attributes are automatically assigned unique values.
You can change these values if you want.

Note When you drag HTML controls into an HTML form, they appear inside the
form's node in the Script Outline window.

For example, a form that contains a text box and a Submit button might look like this after
you dragged the controls from the Toolbox and edited them:

<FORM NAME="Forml" NAME="frmMyForm" ACTION="process.asp" METHOD="post">
Enter your name:
<INPUT TYPE=text NAME=textl ID=Textl>
<INPUT TYPE="submi t" VALUE=" Submit" ID=Submi tl NAME=Submi tl>

<I FORM>

Processing Form Information Before Submitting
In simple forms, no processing is required on the client: the user clicks the Submit button,
and the browser handles the tasks of gathering the data and sending it to the server.
However, you can process forms by writing client scripts to handle button clicks and so on.

A typical example is to write a script that validates user input before the form is posted.
But in client script you can have access to the events fired for all the form's controls, so
you can write handlers for any purpose you need, including replacing server processing
altogether.

Note The scripting object model allows you to script design-time controls easily.
For details, see "Writing Script for Script Objects" in Chapter 24, "Scripting with
Design-Time Controls and Script Objects."

To process forms in a client script

• Write an event handler for the form's onsubmit event or for the events associated with
individual controls, such as a button's onclick event or a text box's onblur event.

To determine the value of a specific control, you reference it using an object hierarchy that
goes from document to form to control to property.

The following illustrates a simple validation routine in a form's onsubmit event handler:

<SCRIPT LANGUAGE="VBScript">
Function forml_onsubmit()

If Len(document.forml.textl.value) < 1 then
MsgBox("You must enter a name!")
forml_onsubmit = False ' This cancels the submission

Else
' Information automatically sent to server

End If
End Function
<!SCRIPT>

Programmer's Guide 329

Part 5 Editing and Scripting

To write handlers for other events, you can use the Script Outline window. For more
information about writing scripts for the events associated with HTML form controls,
see "Handling Events with HTML Elements" earlier in this chapter.

Processing Forms on the Server
In Visual InterDev, forms are usually handled by an .asp file on the server.

To process a form in server script

• On the target ASP page, use the Forms collection of the server Request object to
extract values from the form.

The Forms collection is like an array that holds the values of all the controls in the
form. You can extract the values of individual controls by referencing them by name
in the Forms collection.

For example, the following script gets the values of several fields on the form using the
names assigned in the form to the <INPUT> tags, and puts them into Session object
variables to be used elsewhere in the application:

<%
Session("LastName") = Request.Form("LastName")
Session ("Bi rthDa te") = Request. Form("Bi rthdate")
%>

Creating Dynamic Information in a Hidden Field
If you want to pass information that is not directly entered by a user, you can use a hidden
field.

Note If you use the scripting object model and design-time controls, information
is automatically available in server scripts. For details, see "Creating Forms with
Design-Time Controls" in Chapter 24, "Scripting with Design-Time Controls
and Script Objects."

To create information in a hidden field

1. In a form, create an <INPUT> tag and set its TYPE attribute to HIDDEN, as in the
following example:

<FORM NAME=frmEmployee METHOD=POST ACTION=process.asp>
[...]
<INPUT TYPE="Hidden" NAME="Extralnfo">

<!FORM>

330 Programmer's Guide

Chapter 25 Scripting with HTML Elements

2. Put information into the hidden field using a client script.

For example, you can load the hidden field just before the form is submitted by
writing a handler for the form's onsubmit event. The following simple example
puts the current time into the hidden field:

<SCRIPT Language="VBScript">
Function frmEmployee_onsubmit

document.frmEmployee.Extrainfo =time
End Function
<!SCRIPT>

When the form is submitted, you can get the information out of the hidden field using
server script exactly the way you get information out of any other form element, as in the
following example:

<%Session("UpdateTime") = Request.Form("Extrainfo")%>

Posting Information to the Same File
Instead of always creating a separate .asp file to process the contents of a form on an .htm
file, you can put both on the same ASP page: the form and the script that processes the
form. This can simplify your application and make it easier for users.

For example, it is typical to have three or more pages associated with a form: the page with
the form, another with the script that processes the form, and a third with an error message.
However, if the form is posted to the file it appears on, you can send informational
messages along with the context of the form and you only have to create one page.

To post information to the same file

1. Create the form in an .asp file.

2. In the ACTION attribute of the form, specify the name of the file as the target URL.

3. In the server script at the top of the .asp file, use the Request object to check whether
information is being passed to the file. If so, the form has been submitted, and you
can process it. Otherwise, assume the form is being displayed for the first time.

The GetEmail.asp file below is an example of this. The script determines whether the
user has entered an e-mail address, and if so, whether it is valid. In each case, the script
produces an appropriate message, which then appears beneath the form as feedback to
the user.

<HTML>
<BODY>
<!-- GetEmail.asp -->

Programmer's Guide 331

Part 5 Editing and Scripting

<%

%>

If IsEmpty(Request("Email")) Then
Msg = "Pl ease enter your emai 1 address."

Elseif InStr(Request("Email"), "@") = 0 Then
Msg = "Pl ease enter an email address" &

in the form username@location."
Else

' In a real application, the following message
' would be replaced by actual processing.
Msg = "This script could process the " &
"valid Email address now."

End If

<FORM METHOD=" POST" ACTION=" Get Email . asp">
<PRE>
Emai 1: <INPUT TYPE="TEXT" NAME="Emai l" SIZE=30
.. VALUE="<%= Request("Email")%>">
<%= Msg %><P>
<INPUT TYPE-"Submit" VALUE="Submit">
<I PRE>
<!FORM>
<!BODY>
<!HTML>

Displaying Information to the User
Web pages are filled with information for users, but most of it is static. You can use scripts
to display dynamic information to the user.

Displaying Information from Client Scripts
Because client scripts run on the browser, they give you flexibility in how you want to
display information to the user. One way is to display message boxes, the way stand-alone
applications on a computer often do.

To display message boxes from client scripts

• In the client script, call the window object's alert method:

<SCRIPT LANGUAGE="VBScript">
window.alert("Hello, World.")

<!SCRIPT>

To reference the current window, you can omit the reference to the window object.

If you are writing in VB Script, you can use the MsgBox function, which allows you to
specify particular buttons.

You can also display information from client scripts directly on the page, intermingled
with the HTML text.

332 Programmer's Guide

Chapter 25 Scripting with HTML Elements

To display information in the page from client scripts

• Call the document. write method, which puts text at the location in the page where the
script is executing. For example:

<SCRIPT LANGUAGE-"VBScript">
document.write "The current time is " & time

</SCRIPT>

If your page contains an HTML text box or text area control, you can change the contents
of the box to display information.

To display information inside an HTML control

• Set the value property of the text box or text area control, as in the following example:

<SCRIPT LANGUAGE-"VBScript">
Function btnShowTime_onclick()

document.Forml.txtTime.value =time
End Function
<!SCRIPT>

If your application will be running in browsers that support Dynamic HTML (such as
Microsoft Internet Explorer 4.0), you can directly set the text of any tag that has a
name or ID.

To set the text of a tag using DHTML

• Set the tag's innertext property. The tag must have an ID or a name that you can
reference in the script. The following page illustrates a tag and how to set it.

<HEAD>
<SCRIPT LANGUAGE="VBScript">
Function btnChangeText_onclick()

paral.innerText ="The new time is: " & time
End Function
</SCRIPT>

<!HEAD>
<BODY>
<P ID=paral>This text will be replaced.<IP>
<P><INPUT TYPE="button" NAME="btnChangeText" VALUE="Change text"><IP>
<!BODY>

Programmer's Guide 333

Part 5 Editing and Scripting

To format the text you are displaying, you can include HTML tags, as in the following
example:

<SCRIPT LANGUAGE="VBScript">
document.write "<P>The current time is " & time & "<IB><IP>"
document.write "<P>The current date is " & date & "<IB><IP>"

<ISCRI PT>

If the information you want to display includes characters that are reserved in
HTML - such as < and > - you cannot directly include them in the string to display.

To display reserved characters

• Use the HTML syntax for ASCII characters, such as & 1 t ; or &/16 0 ; for the opening
angle bracket (<):

<SCRIPT LANGUAGE="VBSCRIPT">
document.write "<Click here>"

<!SCRIPT>

Displaying Information from Server Scripts
To display information to a user from a server script, you usually make it part of the page
that is sent to the browser.

To display information on a page from a server script

• Call the Response.Write method, passing it the information you want to display:

<% Response.Write "The current time on the server is " & Time %>

-or-

• Use the "=" operator, which is a shorter version of the same method:

<% = "The current time on the server is " & Time %>

-or-

• If the information is not in a variable or calculated in an expression, make it part of the
page. To display text, make sure it is outside the <% %> delimiters and is not part of a
<SCRIPT RUNAT="SERVER"> block. You can easily include HTML tags this way,
as in the following example:

<BODY>
<Hl>The Time Page</Hl>
<% t = time %>
<P>
The current time at the server is <%=t%><1B>
<IP>
<!BODY>

The server cannot directly display a message box, but a server script can create a client
script that displays one.

334 Programmer's Guide

Chapter 25 Scripting with HTML Elements

To display a message box in a server script

• Create a client script, and then enclose it in server script that shows it conditionally. In
the following example, the script block is sent to the browser only if the error flag on
the server is true.

<%if fError = True then%>
<SCRIPT Language="VBSCRIPT">

alert("An error occured on server.")
<!SCRIPT>

<%End If%>

If the information you want to display includes characters that are reserved in
HTML- such as< and >-you cannot include them in the string to display.

To display reserved characters

• Call the HTMLEncode method to convert the characters to HTML syntax for ASCII
characters:

<%= Server.HTMLEncode("The paragraph tag: <P>") %>

Navigating Conditionally
In static Web pages, you link pages together using the <A> tag, as in the following
example:

Click here<IA> to return to the home page.

However, by using scripts, you can navigate through the application dynamically,
specifying target pages based on conditions in the application. For example, a page in your
application might ask the user for a password. If the user provides a correct password, the
application displays a welcome page, otherwise it displays an error message.

Note You can use the scripting object model and page objects to design navigation for
your Web pages. For details, see "Extending the Scripting Object Model Across Pages"
in Chapter 24, "Scripting with Design-Time Controls and Script Objects."

Navigating from Client Script
If you are writing client script, you can control the page that the browser displays next by
calling a method or setting a property.

Programmer's Guide 335

Part 5 Editing and Scripting

To navigate to another page in client script

• In VB Script, call the navigate method of the browser's window object, passing it the
URL of the page to go to.

-or-

• In any scripting language, set the window object's location.href property to the URL of
the target page.

-or-

• In any scripting language, call the window object's open method, passing it the URL of
the page to go to, along with other parameters.

Calling this method allows you to specify an existing window or frame in which to
display a page, start a new instance of the browser, and control the appearance of the
browser.

For example, the following client script reads the value of a check box in a form, and
depending on the user's preference, navigates to one of two possible pages:

<SCRIPT LANGUAGE="VBScript">
Sub Nextpage()

' The following reads the value of a checkbox called Checkboxl
fReviewintro = document.frmNavBar.Checkboxl.checked
If fReviewintro then

window.navigate("http://MyServer/intro.htm")
Else

window.navigate("http://MyServer/page2.htm")
End If

End Sub
<!SCRIPT>

The following is a similar example, but sets the window object's href property to navigate:

If fReviewintro Then
window.location.href = "http://MyServer/intro.htm"

End If

Navigating from Server Script
You can also control the next page displayed in a browser from server script. You use
server script to navigate if the condition for moving to a specific page depends on
information only available to the server - for example, information from a database,
from a Session or Application object variable, and so on.

336 Programmer's Guide

Chapter 25 Scripting with HTML Elements

To navigate in server script

• Call the Response.Redirect method, passing the URL of the page to go to.

For example, you might want to make sure users log in to your application before viewing
pages. If they attempt to navigate to a page deeper in your application without logging in
first, you want to detect that and send them to the login page instead. In the following
example, a Session object variable contains a flag indicating whether the user has already
logged on:

<%
If Not Session("Been_to_Home_Page") Then

Response.Redirect "homepage.asp"
End If
%>

Buffering Response
By default, when the server sends a page to the browser, it streams the output as soon as it
is composed. However, you can have the server buffer the output. If you do, the page is
completely processed at the server before being sent. The advantage is that you can then
call a method such as Response.Redirect to send a different page instead. If the page is not
buffered, the server reports an error if you try to redirect a page after some of the current
page has already been sent.

To set buffering

• Set the Response object's Buffer property to True or False, as in this example:

<% Response.Buffer = True %>

Managing Sequential Page Navigation
If you are navigating in server code, you can use a bundled component that can manage
sequential navigation through a list of pages. Rather than maintaining URL references in
a number of ASP pages, you can specify the sequential organization of pages in a single,
easy-to-edit text file.

To create sequential page navigation

1. Create a text file that contains a list of pages, one per line.

2. Create a NextLink object.

3. Use the NextLink object's methods to move between pages in the list.

Programmer's Guide 337

Part 5 Editing and Scripting

The following example reads the link order from a text file and creates a table of
contents on a single page.

<% Set Nextlink=Server.CreateObject("MSWC.Nextlink") %>
<% count=NextLink.GetlistCount("/Nextlink.txt") %>
<% i-1 %>

<% For i = 1 to count %>

<A HREF="<%= Nextl ink. GetNthU rl("/next 1 ink. txt". i) %>">
<%= Nextlink.GetNthDescription("/nextlink.txt",i) %><IA>

<% Next %>
<!UL>

Sharing Dynamic Information
Many times in your Web applications you will need to use the same information on two
or more pages. For example, your application might:

• Prompt the user for a name, and then pass it to another page to be displayed there.

• Display the time and date when a user last visited your site.

• Require users to log on. When they do, the application assigns them a security level
that is checked throughout your application.

Note You can use the scripting object model and page objects to maintain state
information automatically. For details, see "The Scripting Object Model" in
Chapter 23, "Scripting Concepts."

, To share dynamic information

• Store information in global variables maintained in the Application and Session
objects. Information in Application and Session variables persists between pages.

-or-

• Pass a query string from one page directly to another as part of the URL in a link.

-or-

• Store information in a database, which allows you to store data permanently, share it
with other applications, and use database capabilities to filter and analyze application
data. For more information, see Chapter 20, "Modifying Data."

-or-

338 Programmer's Guide

Chapter 25 Scripting with HTML Elements

• Store information on the user's computer in a cookie. Because you can read and write
cookies, you can use them to maintain user-specific information.

-or-

• Store information in ASP objects.

Each method has different uses, depending on factors such as how many pages might need
the information, and whether you need to keep it permanently.

Storing Information Globally
You can define global variables with two Microsoft Internet Information Services (IIS)
objects:

• Application object The server maintains one Application object for each ASP-based
application. The object is initialized when the application is accessed by the first user
and persists until the application is shut down.

When you define variables in the server's Application object, their values are available
to all pages in the application. A typical example is an application hit counter that is
updated each time another user starts a session.

• Session object A Session object is initialized when a user first requests a page from
the server. The object persists until the session is abandoned, when the user closes and
reopens the browser, manually (by calling the Session.Abandon method), or when the
user's browser has not requested a page from the application for a specified period of
time.

Session objects are global for any one user. You might use a session object to maintain
a user's security level.

To get and set values in Application and Session object variables

• In a server script, use syntax such as this:

Application("Variab7eName") =value

Session("VariableName") = value

variable = Applicaton("VariableName")
variable= Session ("VariableName")

To initialize Application and Session object variables

• In the Global.asa file, write handlers for the Application_OnStart and Session_OnStart
events, setting the initial values for each variable you want to use.

For example, you can maintain a hit counter in an Application object variable. You can
initialize the counter in the Application_OnStart event using a script such as this:

Sub Application_OnStart()
Application("counter") = 0

End Sub

Programmer's Guide 339

Part 5 Editing and Scripting

Each time a user starts a new session, the counter is updated. You then also make a local
copy of the counter in a Session object variable for the user. The best place to do this is in
the Session_OnStart event of the Global.asa file, using script such as this:

Sub Session_OnStart()
iCount = Application("counter")
iCount = iCount + 1
Application("counter") = iCount' Global counter
Session("counter") = iCount 'User's copy of counter

End Sub

The opening page of your application could display the counter in this way:

<BODY>
<Hl>Welcome</Hl>
You are visitor number <%=Session("counter")%>
out of <%=Application("Counter")%>.
<!BODY>

When the user sees the opening page the first time, the two numbers are the same. If the
user revisits the page, the "out of' number (the Application object counter) might change
if other users have started sessions since the user first started a session.

Application and session object variables generally store dynamic information only. If you
want to keep the information permanently, you must devise a way to save the information
between applications and sessions. One way is to write out values in Application_OnEnd
or Session_ OnEnd handlers in the Global.asa file.

Adding Query Strings to Links
You can pass information directly to another page as part of a link (<A> tag). For example,
a page might display a list of employee names, each of which is a link. When the user
selects one of the names, the link calls a page and passes it the corresponding employee ID.

To add a query string to a link

• In a link definition (<A> tag), add a query string onto the end of the target URL, using
"?" as a delimiter between the URL and the search string. The syntax is:

<targetURL>? <parml>=<va7ue> & <parm2>=<va7ue> & ...

340 Programmer's Guide

Chapter 25 Scripting with HTML Elements

The following example shows a page that displays a list of employee names. Each name
is a link. All links go to the same page, but each one passes a different employee ID.

<BODY>
<Hl>List of employees</Hl>
<P>Click the name of an employee to see information about that employee.<IP>
Ann<IA>

John<IA>

Susan<IA>

Michael<IA>

<!BODY>

In the EmpllnputForm.asp file, you can use the QueryString collection of the server
Request object to determine what value was passed:

<% vEmpl ID = Request.QueryString("empid") %>

You can create more sophisticated dynamic links by using server script to supply values.
For example, the following is a single line in which both the employee ID and employee
name are supplied from a database query:

<A HREF=EmplinputForm.asp?empid= <%=RS.Fields("EmpID")%> >
<%=RS.Fields("EmpFName")%> <IA>

Storing Information on the User's Computer
A convenient way to maintain information about a user is to use a cookie. When a session
is first started, the server sends a cookie to the client browser. Each time the client browser
requests a page from that server, it sends the cookie back to the server, which can then read
the cookie and identify the client browser.

You can use cookies to store your own application information, such as user preferences.
Cookies are available until the date specified in the cookies' Expires attribute.

Note Because cookies can potentially write to the user's hard disk, most browsers
usually allow users to disable them or to display a warning before accepting a cookie.
For some applications - such as public applications that might be accessed by users
with a wide range of browsers and security settings - cookies can be impractical. If
you do use cookies, your application must provide an alternative way to maintain
dynamic information if the user's browser refuses a cookie.

Programmer's Guide 341

Part 5 Editing and Scripting

To store information in a cookie

• To put information into the cookie, use the Response.Cookies collection. To get
information out of a cookie, use the Request.Cookies collection. For example:

<% Response.Cookies ("FavoriteColor")="Red" %>

<% txtFavorite = Request.Cookies("FavoriteColor")%>

Cookies can store multiple values. Each value in the cookie is assigned a key by which you
identify it.

To store a value in a cookie, you use the Response object, specifying the name of the
cookie to update, the key to update, and the value. If the cookie does not already exist, the
Response object creates it. For example, the following updates a cookie setting the key
FavoriteColor to the value "Red":

<% Response.Cookies("Preferences")("FavoriteColor")="Red" %>

Note You must update cookies in the <HEAD> section of an .asp file, or an error will
result.

If an existing cookie has key values but the Response.Cookies method does not specify a
key name, then the existing key values are deleted. Similarly, if an existing cookie does
not have key values but the Response.Cookies method specifies key names and values,
the existing value of the cookie is deleted and new key-value pairs are created.

To retrieve the value from a cookie, you use the Request object with similar syntax:

<% vCol or = Request.Cookies ("Preferences")("FavoriteCol or") %>

To see how you can use cookies to store information, refer to the User Preferences sample
·in the Visual InterDev online documentation.

Reading from and Writing to Files
In server scripts, another way to maintain information is to store it in a text file on the
server.

To read and write text files

1. In a server script, create a TextStream object.

2. Use the object's CreateTextFile, WriteLine, and ReadLine methods to manage the
information in the file.

342 Programmer's Guide

Chapter 25 Scripting with HTML Elements

The following example creates a new file and writes a single line of text to the file:

<HTML>
<BODY>
<H3>Textstream test</H3>
<%

Set OutStream = Server.CreateObject("MS.TextStream")
OutStream. CreateTextFi 1 e "tsworks. txt", . True
OutStream.WriteLine '.'This line is written to the file."

%>
<!BODY>
<!HTML>

Writing Reusable Script
In most Web applications, you'll want to display blocks of HTML content on multiple
pages or process script in multiple files.

To use content in multiple files

• Use the server-side #INCLUDE directive to dynamically insert the contents of other
files into your file.

You can use the #INCLUDE directive to:

o Share HTML content between pages.

• Share script libraries.

Note When you insert the contents of other files into your page, the Script Outline
window does not reflect their contents. Similarly, objects that are defined in the
included file do not appear in the IntelliSense statement completion drop-down list.

Sharing HTML Content
Your application might contain HTML elements that you want to use on multiple pages:
page navigation buttons (Next, Previous, Home), copyright information, a company logo,
and so on.

Instead of copying and pasting the text into multiple pages, you can place the information
into files, and then reference the files that contain the desired text at the appropriate places
in other your pages. Then if you need to update the text, you can change it in the file and
all the pages that include the file automatically display the updated text.

Programmer's Guide 343

Part 5 Editing and Scripting

To reference information that is in another file

• Use the server commands #INCLUDE FILE (for a path relative to the current file) or
#INCLUDE VIRTUAL (for a path relative to the virtual root).

For example, the following lines include a file named Header.inc at the top of a page and a
file named Footer.inc at the bottom of a page:

< ! - - #INCLUDE FILE="Header. inc" - ->

Normal HTML text and script goes here.

<!-- #INCLUDE FILE="Footer.inc" -->

When the file is processed by the Web server, the entire contents of the Header.inc and
Footer.inc files are inserted into the file at the location of the #INCLUDE directive. Any
script in Header.inc and Footer.inc is processed after all includes have been merged into
the main file. You can even nest included files by including a file that contains another
#INCLUDE directive.

You can update an included file on your production server without stopping the Web
server. However, you cannot include an #INCLUDE in a loop and you cannot recursively
include files. For example, file A.inc might have the following line:

<!--#INCLUDE FILE="B.inc" -->

In this case, you cannot include the following line in file B.inc

<!--#INCLUDE FILE="A.inc" -->

An attempt to do so will result in an error.

Sharing Script Libraries
In ASP pages, you can share script libraries using the #INCLUDE directive. This allows
you to share subroutines and functions between multiple pages. For example, the following
file contains a function that returns a string delimited with single quotation marks ('), and a
subroutine that takes an array argument and displays the array values in an HTML table:

<!-- shared.inc -->
<%
Function SQLString(cString)

SQLString = ""' & cString & ""'
End Function
%>

344 Programmer's Guide

Chapter 25 Scripting with HTML Elements

<%
Sub Array2Table(aArray)
If IsArray(aArray) Then %>

<TABLE>
<% For i = 0 to UBound(aArray,l) - 1%>

<TR>
<% For j = 0 to UBound(aArray,2) - 1 %>

<TD> <%= aArray(i ,j) %> <!TD>
<% Next %>
<!TR>

<% Next %>
<!TABLE>

<%End If
End Sub %>

Instead of repeating this script in many of your pages, you can use the following line to
make the subroutine and function available:

< ! - -I/INCLUDE FI LE="sha red.inc" - ->

Make sure that the #INCLUDE line comes before any calls to subroutines or functions in
the file.

Later, if you want to change some formatting options in the Array2Table subroutine (such
as giving the table a border of 1 or a width of 100%), you can make the change in the
subroutine in Shared.asp and all your pages will instantly display the table with the new
characteristics.

In client script, you can include references to other files in the <SCRIPT> block. Use the
SRC attribute to specify the name of a file that contains script you want to include. For
example, the following <SCRIPT> block includes a reference to a page containing error
message routines.

<SCRIPT SRC="Errmsg.htm"><ISCRIPT>

After you have included a reference to a file in this way, you can call script on the page as
if it were in the current page.

Programmer's Guide 345

Part 5 Editing and Scripting

Creating Portable Script
If you are writing a Web application for use on a corporate intranet or for another known
environment, you can usually rely on the features of a specific Web browser. However, if
your application will be accessible by users who can choose their own browser, you must
be careful to write an application that works well with as many browsers as possible.

When creating applications that are as browser-independent as possible, you must be
able to:

• Identify the browser that the user is using and what capabilities it has.

• Create scripts that run on different browsers. Alternatively, you can provide a graceful
way to accommodate browsers that cannot support all features in your application.

Note When you create a new Web page in Microsoft Visual Inter Dev, one of the
properties you can set for the page is the TargetBrowser property. This property does
not perform any checking or otherwise prevent you from creating scripts that are
incompatible with a specific browser.

The TargetBrowser property just alerts the editor to whether you are writing
scripts for Microsoft Internet Explorer 4.0, and if so, it tells the editor to
display Internet Explorer 4.0 objects when completing script statements.

Identifying Browsers and Browser Capabilities
You can use various properties and objects to get information about what browser the user
is currently using.

To get browser information in client script

• Query properties of the window's navigator object.

For example, the following client script displays the name of the current browser:

<SCRIPT LANGUAGE="VBScript">
Sub Buttonl_OnClick()

MsgBox "Current browser is " & window.navigator.appname
End Sub
<!SCRIPT>

In server script, you can get basic information about a browser from the HTTP header and
find details by using a bundled component.

346 Programmer's Guide

Chapter 25 Scripting with HTML Elements

To get basic browser information from the HTTP header in server script

• Use the ServerVariables collection of the server's Request object, and query the value
of HTTP _USER_AGENT.

The value of the HTTP_ USER_AGENT variable is a string that lists the compatibility,
name, and version of the browser. For example, this script displays the capability of the
browser that requested the page on which it appears:

<% browser= Request.ServerVariables("HTTP_USER_AGENT")%>
<Hl>Browser Identifieation</Hl>
<P>Your browser identifies itself as:<IP>
<%~browser%>

To get information about specific capabilities of a browser in server script

• Create an instance of the BrowserType object, and then query its properties.

For example, you can determine whether a browser supports frames, or whether it supports
VBScript. The following example uses the BrowserType object component to display the
current browser's capabilities.

<% Set be = Server.CreateObjeet("MSWC.BrowserType") %>
Browser: <%= be.browser %>

Version: <%= be.version %>

Supports frames?

<% If (be. frames = "true") then %>
Yes

<% Else%>
No< BR>

<% End If %>
Supports tables?

<% If (be.tables
Yes

<% Else %>
No< BR>

<% End If %>

"true") then %>

Supports background sounds?
. <% If (be. BackgroundSounds = "true") then %>

Yes

<% Else%>

No< BR>
<% End If %>

Programmer's Guide 347

Part 5 Editing and Scripting

Supports VBScript?
<% If (bc.vbscript = "true") then %>

Yes

<% Else%>

No

<% End If %>

Supports JavaScript?
<% If (bc.javascript "true") then %>

Yes

<% Else %>

No

<% End If %>

Information about specific browser types is maintained on the server in the Browscap.ini
file. The content of the Browscap.ini file determines what properties are available to the
BrowserType object.

Creating Browser-Independent Scripts
Unless you know what types of browsers your users will be using, you should anticipate
a wide variety of browsers and create scripts that run on as many browsers as possible.

To make your scripts browser-independent

• Avoid using features, such as specific objects, that are available on only certain
browsers.

-or-

• Allow users to specify what content they want to see.

-or-

• Test for specific browser capabilities and use branches around sections of script that a
specific browser might not support.

Tip A simple way to target specific browsers is to create two (or more) versions
of your Web pages. Based on querying the user's browser (or by asking the user
explicitly), you can provide separate pathways through your application, with each
pathway containing pages compatible with the user's browser.

348 Programmer's Guide

Chapter 25 Scripting with HTML Elements

Avoiding Browser-Specific Features
Specific browsers make different object models available, although there is often overlap
in the object models between browsers. For example, Microsoft Internet Explorer 4.0
supports Dynamic HTML (DHTML), which allows you to add animation and text effects
to your Web pages. However, DHTML features are not necessarily available in all
browsers, so if you use these features, you must ensure that users with different browsers
don't try to view pages with DHTML pages.

For details about what objects you can use with specific browsers, see the documentation
for your browser.

Allowing Users to Specify Content
You can ascertain the capabilities of a user's browser in your script, but you cannot
determine other factors, such as modem speed, that can affect a user's experience with
your Web site. Allowing users to specify the type of content they want to receive has the
advantage of putting control in the users' hands.

To allow users to specify content

1. Use a form or dynamic link to query the user's preferences. For details, see "Gathering
Information with HTML Forms" and "Sharing Dynamic Information" earlier in this
chapter.

2. Store the preferences in a server session variable or cookie. For more information, see
"Sharing Dynamic Information" earlier in this chapter.

3. Use branches to display or include user-specific information. For more information, see
"Writing Reusable Script" earlier in this chapter.

For example, the following two links allow a user to specify a display preference.

Basic Display<A>
Rich Display<A>

The script in Setpref.asp sets a Session object variable to the store the user's preference:

<% Session("type") = Request("type")
Response.Redirect "home.asp"%>

Script in your pages can check the setting of the Session object variable to determine how
to display your content:

<% If Session("type") = "rich" Then %>
Display Frames, Tables. and Images.

<% Else %>
Display text only

<% End If %>

Programmer's Guide 349

Part 5 Editing and Scripting

Testing for Browser Capabilities
You can also use logic within a script to make specific features available. For example, the
following script tests whether a browser supports JavaScript. If so, it inserts a small script
that jumps to the home page. Otherwise, it inserts HTML text that displays a jump for the
user to click.

<% Set be = Server.CreateObject("MSWC.BrowserType") %>
<% If be.JavaScript = true then %>

<SCRIPT LANGUAGE="JavaScript">
top.location.href ="home.asp"

<ISCRI PT>
<%Else%>

Click here<IA> to return to the home page.
<%End If%>

You can combine a test of the browser with a server #INCLUDE directive to display
entirely different pages to the user. The following script tests the browser. If the browser
is compatible with Microsoft Internet Explorer 3.0 or higher, it includes a page with
various color options. Otherwise, it includes a more generic page.

<%browser= Request.ServerVariables("HTTP_USER_AGENT")%>
<%If browser= "Mozilla/2.0 (compatible; MSIE 3.08; Windows NT)" Then%>

<!--#INCLUDE FILE="/myapp/ColoredTable.asp"-->
<%Else%>

< ! - -If I N C LU D E F I L E =" I my a pp I P 1 a i n Ta b 1 e . a s p " - ->
<%End If%>

350 Programmer's Guide

CHAPTER 26

Debugging Your Pages

As you write script for your Web application, you can test it to find errors. To help you,
Microsoft Visual InterDev includes a full-featured debugger you can use to trace errors in
client and server script.

Debugging Client Script
You can debug client script in any of these ways:

• Run a page containing the script to debug from within your Microsoft Visual InterDev
solution.

o Attach the Visual Inter Dev debugger to a process (page) already running in Microsoft
Internet Explorer.

• Respond to a syntax or run-time error in a script, called just-in-time debugging.

• Include a statement in script that starts the debugger.

Note To debug client script in Internet Explorer, you must be using Internet
Explorer 4.0. Debugging must also be enabled in Internet Explorer (this is the default).

It is also highly recommended that you do not use Active Desktop mode of Internet
Explorer when you are debugging, or set the option in Internet Explorer to launch each
new instance of the browser in a new process.

If a Web page contains a mixture of client and server script, you can use the Visual
InterDev debugger to debug both. For details, see "Debugging Mixed Client and Server
Script" later in this chapter.

Enabling Client Script Debugging for ASP Pages
Before you can debug client script in ASP pages, you must enable debugging. You
can manually enable debugging for your ASP application as described under "Enabling
ASP Debugging on the Server" in Appendix A, "Troubleshooting." Alternatively,
Visual InterDev can automatically enable debugging on the server as needed.

Note If you intend to work exclusively with client script in .htm files, you do not need
to enable server debugging or perform the following procedure.

Programml!r's Guicfo 351

Part 5 Editing and Scripting

To automatically enable client script debugging in ASP pages

1. In the Project Explorer, right-click the project and choose Properties to display
the Property Pages dialog box.

2. Choose the Launch tab.

3. Under Server script, make sure that Automatically enable ASP server-side
debugging on launch is checked.

Note To debug script in ASP pages, you must be running version 4.0 or later of
Microsoft Internet Information Server (IIS).

When this option is set, each time you start a debugging session Visual InterDev checks
that the server is configured for debugging. This includes:

• Setting the IIS application to run in its own memory space (in COM terms, it runs
"out of process").

• Enabling the IIS application's debugging options.

• Setting up a Microsoft Transaction Server (MTS) package to allow you to attach the
debugger to the Web application. The package's identify is set when you first start the
debugging session by asking you to provide your name and password.

When you quit your debugging session, Visual InterDev restores the server debugging
settings and out-of-process setting to their previous values.

Debugging Client Script within a Solution
If you are working in a Visual lnterDev solution, you can debug a file by launching the
debugger.

To debug a script from within a solution

1. In Visual InterDev, open the project containing the page you want to debug, and load
the page into the editor.

2. Make the page your project's start page. In the Project Explorer, right-click the page
and choose Set as Start Page.

3. Set a breakpoint in the script to debug. For details, see "Setting Breakpoints" in
Chapter 5, "Walkthroughs."

4. From the Debug menu, choose Start.

352 Programmer's Guide

Chapter 26 Debugging Your Pages

5. If debugging for client script in ASP pages has not been enabled as described above,
Visual InterDev displays a message. Your options are:

• If you are working with client script in an .htm file (not an .asp file) and you will
not be navigating to an ASP page during your debugging session, choose No to
proceed with debugging.

• If you are working in an .asp file, or if you will be navigating to an .asp file during
your debugging session, choose Yes to have Visual InterDev automatically enable
client-side ASP debugging.

6. If client debugging in ASP pages is enabled, and if this is the first time you have
launched a debugging session since opening the project, you are prompted to provide
user information that identifies the debugging process on the server. (You are prompted
even if you are currently working with an .htm file, in case you navigate to an ASP
page.) Enter your domain and name in the form domain'vzame and your password.

Note You might experience a delay the first time you launch a debugging session
for the current project while Visual InterDev establishes the proper debugging
configuration on the server.

Visual InterDev launches Internet Explorer and loads the page into it. When Internet
Explorer reaches the breakpoint, it stops and displays the source code in the editor
window. If the breakpoint is in an event handler script, you must trigger the event to
reach the breakpoint.

7. If you find an error, fix it, and then save the file. If you do not have a working copy of
the file, right-click the name of the file in the Project Explorer and choose Get Latest
Version before you make modifications.

8. From the Debug menu, choose Restart.

Note For details about using debugger commands, refer to the Visual InterDev online
documentation.

Debugging Client Script in a Running Document
If a client script is already running in Internet Explorer and you detect a problem, you can
stop the script and debug it on the spot. You can debug a running document from within
Visual InterDev or from within Internet Explorer.

Note If you are working with an ASP page, debugging must be enabled on the server.
For details, see "Enabling ASP Debugging on the Server" in Appendix A,
"Troubleshooting."

You can attach to a running document only if attaching is enabled.

Programmer's Guide 353

Part 5 Editing and Scripting

To enable just-in-time debugging

1. From the Tools menu, choose Options.

2. In the Options dialog box, choose Debugger.

3. Under Script, check Attach to programs running on this machine.

You can attach to a document directly in Visual InterDev.

To debug a running document in Visual lnterDev

• In Visual Inter Dev, choose Processes from the Debug menu. In the Processes dialog
box, choose Microsoft Internet Explorer, choose Attach, and then choose the script
you want to debug.

-or-

If you have already attached to a running document, in Visual InterDev, choose Break
from the Debug menu. The debugger will stop at the next script statement that is
executed.

If Visual InterDev is not already running, you can launch the debugger from
Internet Explorer.

To debug a running document from Internet Explorer

1. In Internet Explorer, choose Script Debugger from the View menu, and then choose
Break at Next Statement. In the browser, trigger the event that calls the script you
want to debug.

-or-

In Internet Explorer, choose Script Debugger from the View menu, and then choose
Open.

2. A new instance of Visual InterDev is launched and you are prompted to open a project.
If Visual InterDev is already running, a second instance is launched. Open the project
containing the file to debug.

3. If the project is already open in another instance of Visual InterDev, you cannot open it
again, so Visual InterDev creates a new solution and project instead.

4. The page to debug is loaded into the editor. If necessary, get a working copy of the
page. If the project was already open, the page is loaded as read-only file in the new
project.

If you make changes to the file, save it and re-deploy it to the server. Refresh the file in
Internet Explorer before running the script again.

Note For details about using debugger commands, refer to the Visual InterDev online
documentation.

354 Programmer's Guide

Chapter 26 Debugging Your Pages

Debugging Client Script in Response
to an Error or Debugger Statement
If Internet Explorer encounters a syntax or run-time error, you can use just-in-time
debugging to find and fix it. You can also include a statement in your script, such as a
Stop statement in Visual Basic, Scripting Edition (VBScript) or a debugger statement
in JScript, to launch the debugger from within a script.

You can launch the debugger in response to an error or debugger statement only if
just-in-time debugging is enabled.

To enable just-in-time debugging

1. From the Tools menu, choose Options.

2. In the Options dialog box, choose Debugger.

3. Under Script, check Just-In-Time debugging.

To debug in response to an error or debugger statement

1. When Internet Explorer encounters an error or a statement that starts the debugger, it
displays an error message prompting you to debug. Choose Yes.

2. A new instance of Visual Inter Dev is launched. If Visual InterDev is already running, a
second instance is launched.

3. Open the project containing the file to debug. If the project is already open in another
instance of Visual InterDev, you cannot open it again, so Visual InterDev creates a new
project instead.

The page to debug is loaded into the editor. If necessary, get a working copy of the
page. If the project was already open, the page is loaded as a read-only file in the new
project.

Note If you are debugging a client script generated by an .asp file, the line
numbers reported in error messages refer to lines in the HTML document currently
displayed in the browser. These usually do not correspond to line numbers in the
original .asp file, because server script does not appear in the HTML output of an
.asp file. For more information, see "Debugging Mixed Client and Server Script"
later in this chapter.

If you make changes to the file, save it and re-deploy it to the server. Refresh the file in
Internet Explorer before running the script again.

Note For details about using debugger commands, refer to the Visual InterDev online
documentation.

Programmer's Guide 355

Part 5 Editing and Scripting

Debugging Server Script
From Microsoft Visual InterDev you can debug server script that executes on Microsoft
Internet Information Server (IIS). If IIS is running on your computer, you can debug
server script in much the same way that you debug client script. If the server is on another
computer, you can use remote debugging from your computer to find errors in the server
script. For details, see "Debugging Remotely" in Chapter 29, "Integration Tasks."

You can debug server script in any of these ways:

• Run a page containing the script to debug from within your Microsoft Visual InterDev
solution.

• Attach the Visual InterDev debugger to a process (page) already running in Microsoft
Internet Explorer.

• Respond to a syntax or run-time error in a script, called just-in-time debugging.

• Include a statement in script that starts the debugger.

Note To debug script in ASP pages, you must be running version 4.0 or later of
Microsoft Internet Information Server (IIS).

If a Web page contains a mixture of client and server script, you can use the
Visual InterDev debugger to debug both. For details, see "Debugging Mixed Client and
Server Script" later in this chapter.

Enabling Server Script Debugging for ASP Pages
Before you can debug client script in ASP pages, you must enable debugging. You can
manually enable debugging for your ASP application as described under "Enabling ASP
Debugging on the Server" in Appendix A, "Troubleshooting." Alternatively,
Visual InterDev can automatically enable debugging on the server as needed.

To automatically enable script debugging in ASP pages

1. In the Project Explorer, right-click the project and choose Properties to display the
Property Pages dialog box.

2. Choose the Launch tab.

3. Under Server script, make sure Automatically enable ASP server-side debugging
on launch is checked.

When this option is set, each time you start a debugging session Visual InterDev checks
that the server is configured for debugging. This includes:

• Setting the IIS application to run in its own memory space (in COM terms, it runs
"out of process").

• Enabling the IIS application's debugging options.

356 Programmer's Guide

Chapter 26 Debugging Your Pages

• Setting up a Microsoft Transaction Server (MTS) package to allow you to attach the
debugger to the Web application. The package's identify is set when you first start the
debugging session by asking you to provide your name and password.

Note You can perform the first two steps manually on the server. For details, see
"Enabling ASP Debugging on the Server" in Appendix A, "Troubleshooting."

When you quit your debugging session, Visual InterDev restores the server debugging
settings and out-of-process setting to their previous values.

Debugging Server Script within a Solution
If you are working in a Visual InterDev solution, you can debug server script by launching
the debugger.

Note Before debugging server script, make sure debugging is enabled as described
above, or under "Enabling ASP Debugging on the Server" in Appendix A,
"Troubleshooting."

To debug server script from within a solution

1. In Visual Inter Dev, open the project containing the server script you want to debug.

2. Make the page your project's start page. In the Project Explorer, right-click the page
and choose Set as Start Page.

3. Set a breakpoint in the server script you want to debug.

4. From the Debug menu, choose Start to launch the project.

Visual InterDev attempts to attach the debugger to the document running on the server.

5. If this is the first time you have started the debugger since opening the current project,
you are prompted to provide user information used to identify the debugging process
on the server. Enter your domain and name (in the form domain\name) and password.

6. The browser opens, and you can proceed with debugging. When server script execution
reaches the line with the breakpoint, the debugger displays the page in the editor with
that line highlighted.

7. Fix any errors, save the file, and then from the Debug menu choose Restart. If you do
not have a working copy of the file, right-click the name of the file in the Project
Explorer and choose Get Latest Version before you make modifications.

Note For details about using debugger commands, refer to the Visual InterDev online
documentation.

Programmer's Guide 357

Part 5 Editing and Scripting

Debugging Server Script in a Running Document
If debugging has been enabled on the server for your project and you detect an errorwhile
the application is running, you can attach the debugger to it. For details about enabling
debugging on the server, see "Enabling ASP Debugging on the Server" in Appendix A,
"Troubleshooting."

You can attach to a running document only if attaching is enabled.

To enable just-in-time debugging

1. From the Tools menu, choose Options.

2. In the Options dialog box, choose Debugger.

3. Under Script, check Attach to programs running on this machine.

To debug a running script

1. In Visual InterDev, choose Processes from the Debug menu. In the Processes
dialog box, choose Active Server Pages, and choose Attach.

2. In the Running Documents window, select the script you want to debug.

3. Set breakpoints, and then choose Restart from the Debug menu, or refresh the
document in the browser.

Note For details about using debugger commands, refer to the Visual InterDev online
documentation.

Debugging Server Script in Response
to an Error or Debugger Statement
If debugging is enabled for an IIS application on the server and the server encounters a
syntax error or run-time error in a server script, you can use just-in-time debugging to find
and fix it. You can also include a statement in your script, such as a Stop statement in
VBScript or a debugger statement in JScript, to launch the debugger from within a script.
For details about enabling debugging on the server, see "Enabling ASP Debugging on the
Server" in Appendix A, "Troubleshooting."

Note If a debugger is installed on the server computer, the server does not pass error
information through to the client. Instead, it displays an error message on the server
computer's monitor. For more information, see "Just-in-Time Debugging of Server
Pages" in Appendix A, "Troubleshooting."

You can launch the debugger in response to an error or debugger statement only if
just-in-time debugging is enabled.

358 Programmer's Guide

Chapter 26 Debugging Your Pages

To enable just-in-time debugging

1. From the Tools menu, choose Options.

2. In the Options dialog box, choose Debugger.

3. Under Script, check Just-In-Time debugging.

To debug server script in response to an error or debugger statement

1. When an error message appears prompting you to start the debugger, choose Yes.

2. A new instance of Visual InterDev is launched and you are prompted to open a project.
If Visual InterDev is already running, a second instance is launched.

3. Open the project containing the file to debug. If the project is already open in another
instance of Visual InterDev, you cannot open it again, and Visual InterDev creates a
new solution and project instead.

The page to debug is loaded into the editor. If necessary, get a working copy of the
page. If the project is already open, the page is loaded as read-only file in the new
project.

Note For details about using debugger commands, refer to the Visual InterDev online
documentation.

If server debugging is not enabled for the application, errors are displayed in the browser
as text in the page. In that case, open the project containing the page in Visual InterDev
and start the debugger there, as described above.

Debugging Mixed Client and Server Script
Many ASP pages contain both client and server script. You can set breakpoints in both
client and server script, and as each script executes, it can call the debugger at breakpoints.

If the server is not running on your computer, you use remote debugging to debug the
server script in the page. For details about how to set up remote debugging, see
"Debugging Remotely" in Chapter 29, "Integration Tasks."

Note It is highly recommended that you do not use Active Desktop mode of
Microsoft Internet Explorer 4.0 when you are debugging.

Enabling Debugging for ASP Pages
Before you can debug script in ASP pages, you must enable debugging. You can manually
enable debugging for your ASP application as described under "Enabling ASP Debugging
on the Server" in Appendix A, "Troubleshooting." Alternatively, Microsoft Visual
InterDev can automatically enable debugging on the server as needed.

Note To debug script in ASP pages, you must be running version 4.0 or later of
Microsoft Internet Information Server (IIS).

Programmer's Guide 359

Part 5 Editing and Scripting

To enable script debugging in ASP pages

1. In the Project Explorer, right-click the project and choose Properties to display the
Property Pages dialog box.

2. Choose the Launch tab.

3. Under Server script, make sure Automatically enable ASP server-side debugging is
checked.

When these options are set, each time you start a debugging session Visual InterDev
checks that the server is configured for debugging. This includes:

• Setting the IIS application to run in its own memory space (in COM terms, it runs "out
of process").

• Enabling the IIS application's debugging options.

• Setting up a Microsoft Transaction Server (MTS) package to allow you to attach the
debugger to the Web application. The package's identify is set when you first start the
debugging session by asking you to provide your name and password.

When you quit your debugging session, Visual InterDev restores the server debugging
settings and out-of-process settings to their previous values.

Debugging Pages Containing
Client and Server Script
When you set a breakpoint in client script in a page that contains both server and client
script, the debugger tracks the breakpoint even though the position of the breakpoint can
change significantly in the file after server script has executed. If server script causes the
client script to be written several times into the page, the debugger tracks each breakpoint
separately.

You can set breakpoints in server script, client script, or both. If you set breakpoints in
both, the debugger will stop at the server script breakpoints first. When you continue to
run, the page is sent to the browser, and the debugger will then stop at breakpoints in
client script.

To debug pages containing both client and server script

1. In Visual InterDev, set breakpoints in the lines of client and server script that you want
to debug.

2. Make the page your project's start page. In the Project Explorer, right-click the page
and choose Set as Start Page.

3. From the Debug menu, choose Start.

Visual InterDev attempts to attach the debugger to the document running on the server.

360 Programmer's Guide

Chapter 26 Debugging Your Pages

4. If this is the first time you have started the debugger since opening the current project,
you are prompted to provide user information used to identify the debugging process
on the server. Enter your domain and name (in the form domain\name) and password.

5. Proceed with debugging. When server script execution reaches the line with the
breakpoint, the debugger displays the page in the editor with that line highlighted.

When you step out of server script, the page will continue executing until it gets to
another server script. When the debugger has finished with server script, the server
sends the page to the browser, which displays it.

6. If necessary, trigger the event (such as a button click) that will run the client script
you want to debug.

The debugger stops at the breakpoint and displays the version of the page that is
being processed by the browser.

Note For details about using debugger commands, refer to the Visual InterDev online
documentation.

When you are debugging pages that contain both server and client script, remember
that server script can potentially insert HTML text and client script into the page. For
example, a few lines of server script can dynamically create a large table out of database
information, or can write or rearrange client script on the page.

After processing the page, the server removes the server script. As a consequence, the page
being processed by the browser can look quite different than it does in the Visual InterDev
editor with both server and client script in it. For details about how server script is
processed, see "Understanding Script Processing" in Chapter 23, "Scripting Concepts."

Debugging Embedded Server Script
A special case occurs when you want to debug server script that appears inside a block
of client script. In the following, server script first extracts a value from a form and stores
it in a variable. Later, inside the block of client script, a block of embedded server script
dynamically inserts the value of the variable into a client statement:

<%loginName = = Request.Form("loginName")%>

<SCRIPT LANGUAGE="VBScript">
Sub ShowWelcome

txt = "<%=loginName%>"
MsgBox("Welcome, " & txt)

End sub
<!SCRIPT>

Note When you write server script inside of client script, the editor does not follow
color-coding convention for server script.

Programmer's Guide 361

Part 5 Editing and Scripting

If you set a breakpoint on the line with the embedded server script, it is not clear whether
you want the debugger to stop on the server script (<%=loginN ame%>) or later in the
client script (txt =).Visual InterDev therefore offers you two options:

• Client breakpoint only. The breakpoint is interpreted as a client breakpoint, and the
debugger does not stop when the server is processing the embedded server script.

• Server and client breakpoint. The debugger stops twice - the first time when it
processes the server script, and then again when it reaches the same line in client script.

The default is client breakpoint only. To stop both times, you enable a debugger option.

To enable breakpoints for embedded server script

1. From the Tools menu, choose Options, and then open the Debugger node.

2. Choose the option Insert breakpoints in Active Server Pages for breakpoints
in client script.

When you are running the debugger and it breaks on embedded server script, it does
not stop directly on the line containing the server script. Instead, it stops on the line
of client script or HTML that immediately follows the preceding line of server script.
In some cases, this can cause the breakpoint to appear many lines before the embedded
server script.

For example, if you set a breakpoint on the embedded server script (<%=loginName%>)
in the following example, the debugger will stop on the <HTML> tag.

<%loginName = Request.Form("loginName")%>
<HTML>
<HEAD>
<SCRIPT LANGUAGE="VBScript">
Sub ShowWelcome

txt = "<%=loginName%>"
MsgBox("Welcome, " & txt)

End sub
<!SCRIPT>
<!HEAD>

This behavior occurs because when the server is processing the page, it ignores anything
that isn't server script. The server doesn't "see" the lines of HTML and client script that
precede the embedded server script. To the server, the beginning of the line containing
the embedded server script is therefore the one immediately following the preceding line
of server script.

To move to the embedded server script, use the debugger's Step Into command.

362 Programmer's Guide

Chapter 26 Debugging Your Pages

Debugging a Global.asa File
Debugging a Global.asa file differs from debugging .asp files in these ways:

• The Global.asa file cannot be a start page. To debug the Global.asa, you must
request an ASP page. When the ASP page is requested, the server processes the
Global.asa page.

• Procedures in a Global.asa file are event-driven, unlike inline script in .asp files.

o Procedures in a Global.asa file usually run only once per application or once
per session:

• The Application_OnStart procedure executes the first time that any page in
an ASP-based application is accessed.

• The Application_OnEnd procedure executes only when the application is
shut down.

• The Session_OnStart procedure executes only once per user session.

• The Session_ OnEnd procedure executes only when a user's session times out
or when a script explicitly calls the Session object's Abandon method.

Enabling Debugging in the Global.asa File
Before you can debug script in the Global.asa file, you must enable debugging for
ASP pages. You can manually enable debugging for your ASP application as described
under "Enabling ASP Debugging on the Server" in Appendix A, "Troubleshooting."
Alternatively, Visual InterDev can automatically enable debugging on the server as
needed.

To automatically enable script debugging in ASP pages

1. In the Project Explorer, right-click the project and choose Properties to display the
Property Pages dialog box.

2. Choose the Launch tab.

3. Under Server script, make sure Automatically enable ASP server-side debugging
on launch is checked.

When this option is set, each time you start a debugging session Visual InterDev checks
that the server is configured for debugging. This includes:

• Setting the Microsoft Internet Information Server (IIS) application to run in its own
memory space (in COM terms, it runs "out of process").

• Enabling the IIS application's debugging options.

Programmer's Guide 363

Part 5 Editing and Scripting

• Setting up a Microsoft Transaction Server (MTS) package to allow you to attach the
debugger to the Web application. The package's identify is set when you first start the
debugging session by asking you to provide your name and password.

Note You can perform the first two steps manually on the server. For details, see
"Enabling ASP Debugging on the Server" in Appendix A, "Troubleshooting."

When you quit your debugging session, Visual InterDev restores the server debugging
settings and out-of-process settings to their previous values.

Debugging Scripts in the Global.asa File
To debug the Global.asa file, you set up a debugger call from script in the file, and then
start an ASP application.

To call the debugger from the Global.asa file

1. Open the Global.asa file in the editor, and then set a breakpoint in a script.

-or-

Include a statement that starts the debugger explicitly, such as Stop in VBScript or
debugger in JavaScript. Place the statement at the beginning of the procedure, before
any statements that you will want to step through.

2. Request an ASP page from the current project in the browser. This causes the IIS to run
the Global.asa file.

Debugging the Global.asa File
in Response to an Error
If there is an error in a Global.asa file (either a syntax error or run-time error), the server
stops the procedure containing the error. If debugging is enabled for that ASP application,
the server prompts you to start the debugger and displays an error message. If debugging
is not enabled for the ASP application, an error message is sent to the client browser.
In either case, the procedure containing the error stops.

Note If a debugger is installed on the server computer, the server does not pass error
information through to the client. Instead, it displays an error message on the server
computer's monitor. For more information, see "Just-In-Time Debugging of Server
Pages" in Appendix A, "Troubleshooting."

You can launch the debugger in response to an error or debugger statement only if
just-in-time debugging is enabled.

364 Programmer's Guide

Chapter 26 Debugging Your Pages

To enable just-in-time debugging

1. From the Tools menu, choose Options.

2. In the Options dialog box, choose Debugger.

3. Under Script, check Just-In· Time debugging.

To debug Global.asa script in response to an error

1. When an error message appears prompting you to start the debugger, choose Yes.

2. A new instance of Visual Inter Dev is launched and you are prompted to open a project.
If Visual InterDev is already running, a second instance is launched.

3. Open the project containing the Global.asa file to debug. If the project is already open
in another instance of Visual InterDev, you cannot open it again, and Visual InterDev
creates a new solution and project instead.

The Global.asa file is loaded into the editor. If necessary, get a working copy of the
page. If the project was already open, the Global.asa file is loaded as read-only file in
the new project.

Note For details about using debugger commands, refer to the Visual InterDev online
documentation.

If server debugging is not enabled for the application, errors are displayed in the browser
as text in the page. In that case, open the project containing the page in Visual InterDev
and start the debugger there, as described above.

Restarting the Global.asa File
You cannot stop and restart the script by refreshing a Global.asa file. To rerun
Application_OnStart or Session_OnStart procedures, you must refresh the file or trigger
the events again or otherwise restart the application.

To rerun all procedures in the Global.asa file

• In the editor, change the Global.asa file, and then deploy it to the server.

-or-

Stop and restart the Web server.

This restarts the application and session, which runs the procedures in the Global.asa
file again.

Programmer's Guide 365

CHAPTER 27

Packaging Script as Objects

Microsoft Scripting Components (scriptlets) provide you with an easy way to create
powerful, reusable controls. You create scriptlets using a Web scripting language such as
Microsoft Visual Basic Scripting Edition (VBScript) and ECMAScript (a standard
language based on JScript 2.0 and JavaScript 1.1). After creating your scriptlet, you can
register and use it the way you would any ActiveX control.

Scriptlets:

• Provide script authors the ability to create controls.

• Provide script authors with access to a broad range of system services.

• Are easy to create and maintain.

• Are small and efficient.

Types of Scriptlets
You can create two types of scriptlets:

• DHTML scriptlet A Web page based on Dynamic HTML (DHTML) that you can use as
a control in any application that supports controls, such as Microsoft Visual Basic or
Microsoft Internet Explorer 4.0.

• Server scriptlet A scriptlet that you can use as a COM component. Server scriptlets
contain only script (no HTML or other user interface elements). You can use server
scriptlets as COM components in applications such as Microsoft Internet Information
Server (IIS), Microsoft Windows Scripting Host, and any other application that can
support COM components.

Note Server scriptlets are not discussed in this documentation. For information
on building and using server scriptlets, visit the Microsoft Scripting Web site at
http://www.microsoft.com/scripting/.

DHMTL scriptlets are used as visual controls in an application, and are suitable for display
in client applications such as Internet Explorer and Visual Basic. With DHTML scriptlets,
you can use the graphical and hypertext capabilities of Web pages as a visually rich
interface for an application, such as a calendar control that you can display in a Web page,
in Visual Basic, or in another COM-based environment.

Programmer's Guide 367

Part 5 Editing and Scripting

How DHTML Scriptlets Work
If you are creating a DHTML scriptlet, there are two aspects to your scriptlet. The first
is the visual interface. You create this as you would for a Web page using DHTML.

The second aspect is the scriptlet' s control interface: the properties, methods, and events
that allow you to use the scriptlet as a control. You create these control elements using
script that follows certain conventions for how methods and properties are exposed, and
how events are trapped and forwarded to the host application.

For example, a DHTML scriptlet might define animation that moves and resizes text on the
page. You use DHTML to define the text and set its color, size, and location. You then use
scripts to define properties that another application can use to set the speed, and direction
of the animation text, and methods that allow another application to start, stop, and pause
the animation.

Note To learn more about using Dynamic HTML in your Web pages,
you can view the documentation for the Internet Client SDK located at
http://www.microsoft.com/msdn/sdk/inetsdk/help/default.htm/.

After creating a DHTML scriptlet, you can use it as you would any control. You can add it
to toolbars, draw it on a form, or add it to a Web page. In the host application, the DHTML
scriptlet is hosted by a script/et container object. The container object creates a window for
the DHTML scriptlet and provides a way for the host application to specify where the
scriptlet displays, at what size, and so on. The scriptlet container object also provides the
interface for you to set and get the DHTML scriptlet' s properties, call its methods, and
respond to its events.

Creating a DHTML Scriptlet
A DHTML scriptlet is an HTML file that contains ordinary DHTML to define the
scriptlet' s look and feel. The DHTML scriptlet also contains scripts to define how the
DHTML scriptlet exposes properties, methods, and events.

To create a DHTML scriptlet

1. Create a new file.

2. Use DHTML to define the visual interface for your scriptlet.

3. Define the properties, method, and events for your scriptlet. For details, see "Defining
Properties and Methods in DHTML Scriptlets" later in this chapter. You can also
define event handling for your scriptlet. For details, see "Exposing Events in DHTML
Scriptlets" later in this chapter.

After you have created the DHTML scriptlet, you can use it as you would any control.
Microsoft Visual InterDev includes a feature that allows you to add the scriptlet easily to
the Toolbox. For more details, see "Adding DHTML Scriptlets to Your Application" later
in this chapter.

368 Programmer's Guide

Chapter 27 Packaging Script as Objects

Defining Properties and Methods
in DHTML Scriptlets

DHTML scriptlets can expose any number of properties and methods. You can do so in
two ways:

• Create a JavaScript public_description object The object's constructor function
explicitly defines what properties and methods the scriptlet exposes.

• Use default interface descriptions You expose properties and methods by simply
creating functions that follow specific naming conventions.

In general, using a public_description object is associated with using JavaScript, and using
default interface descriptions with using VBScript. However, the only strict language
requirement is that if you use a public_description object, the public_description object
itself must be created in JavaScript. Any additional functions, such as those to define
properties and methods, can be written in any scripting language. Similarly, although
using default interface descriptions is associated with VBScript, you can actually write
the functions in any language.

Using a public_description object has several advantages. You can use any names for
variables and functions that you want to expose as properties and methods, because
you assign them public names in the public_description object. In addition, using the
public_description object provides you with a convenient way to summarize and document
the properties and methods that the scriptlet exposes.

Creating a public_description Object
A public_description object is a JavaScript object that provides run-time access to the
properties and methods defined by the object's constructor function. Any behavior that
is not explicitly declared in the constructor is not available.

Note You must use the name public_description in lowercase characters as shown,
or the scriptlet's properties and methods will not be exposed properly.

A skeleton public_description with its constructor function looks like this:

<SCRIPT LANGUAGE="JavaScript">
var public_description =new CreateScriptlet();
function CreateScriptlet(){

II statements here to define properties and methods

<!SCRIPT>

Note You do not use the constructor function to define events. For details,
see "Exposing Events in DHTML Scriptlets" later in this chapter.

Programmer's Guide 369

Part 5 Editing and Scripting

When you create the public_description object, the constructor function that you assign to
it can have any name, as long as the corresponding function appears somewhere in the
scriptlet. In the constructor, declare the properties and methods you want to expose using
the syntax listed in the following table.

Declaration in constructor Creates

this.PropertyName = expression;

this.get_PropertyName = fanction;

this.put_PropertyName = fanction;

this.method= methodFunction;

Property as an expression. When the user gets the property, the
value of expression is passed to the calling container. When the
user sets the property, the value of expression is updated.

Property as a function. The function called by the property
definition can be in any active scripting language. To make a
property read-only, do not provide the put_ function declaration;
to make it write-only, do not provide the get_ function
declaration.

Method.

For example, the following scriptlet includes a marquee that exposes properties and
methods for setting its text and color. The constructor defines two properties: version,
a simple value, and marqueetext, created as a set of functions that illustrate how to get
and set property values conditionally.

The constructor also defines the method togglecolor, which calls a function in the scriptlet
called setcolor:

<HTML>
<HEAD>
<TITLE>Scriptlets!</TITLE>
<SCRIPT LANGUAGE="JavaScript">
II public_description object used to declare scriplet
var public_description =new scriptletobject();

II general object description
function scriptletobject()
{

}

this.version = "1.0";
this.get_marqueetext = readtext;
this.put_marqueetext = writetext;
this.togglecolor = setcolor;

function readtext(){
if (mrql.innerText ""){

return "No text";}
else{

return mrql.innerText;}

370 Programmer's Guide

//property
//property (read)
//property (write)
//method

Chapter 27 Packaging Script as Objects

function writetext(newtext){
if (newt ext ! = ""){

mrql.innerText = newtext:}

function setcolor(){
if (fl.color== "#ff0000"){

II red, make it blue
fl.color= "#0000ff";}

else{
II not red, make it red
fl.color = "#ff0000";}

<!SCRIPT>
<!HEAD>

<BODY>
Sample scriptlet<IB>

<MARQUEE ID="mrql">Scriptlets are fun and easy!</MAROUEE>
<I FONT>
<!BODY>
<!HTML>

Creating Default Interface Descriptions
If there is no public_description object defined in the scriptlet, the scriptlet container object
exposes properties and methods using variables and functions in the scriptlet that follow
certain naming conventions.

To expose scriptlet properties and methods, use these conventions:

• To create a read/write property, declare a variable scoped at the page level (that is, not
defined inside a function) and give it a public_ prefix.

• To create a readable property as a function, define a function with the prefix
public_get_.

• To create a writable property as a function, define a function with the prefix
public_put_.

• To create a method, define a function with the prefix public_.

Note When a property is exposed, its name in the host application does not have the
pub 1 i c_ prefix. For example, if you define a property called public_MyTitle in the
scriptlet, its name in the host application is MyTitle.

The following table shows examples of variables and functions in a scriptlet, and the
resulting interface that they expose in the host application.

Programmer's Guide 371

Part 5 Editing and Scripting

Example

var public_Color ="red"

function public_get_C()

function public_put_C(param)

function public_look(param)

function look()

function get_C()

var Color= red:

var get_Color = red:

Exposed as

Property

Property (read)

Property (write)

Method

Not available (no public_ prefix)

Not available (no public_ prefix)

Not available (no public_ prefix)

Not available (no public_ prefix)

Used in container

vColor =SCI.Color

SCI.Color= "blue"

x = SCl.C

SCl.C = "test"

SCl.look(param)

The following example shows a simple scriptlet containing a paragraph named "pl." The
script block following the paragraph exposes a property called text and another called
color, which is defined using get and set functions that show how to set a property
conditionally. The scriptlet also exposes a method called settext.

<HTML><HEAD><IHEAD>
<BODY>

<P ID="pl">This is a paragraph of text.<IP>
<!FONT>

<SCRIPT LANGUAGE="JavaScript">
var public_text = pl.innerText:
function public_get_color(){

return fl.color:
}

function public_put_color(color){
fl.color= color;

}

function public_settext(newtext){
pl.innerText = newtext;

<!SCRIPT>
<IBODY><IHTML>

Note The scriptlet reserves the function name prefixes public_get_ and public_put_
to define properties. For example, if the scriptlet contains a function named
public_get_MyText, it will be treated as a property called MyText. If you attempt to
call the function public_get_MyText as a method using the syntax SCl.get_MyText(),
an error will result, because the function itself is exposed only as if it were a property
named MyText.

372 Programmer's Guide

Chapter 27 Packaging Script as Objects

Exposing Events in DHTML Scriptlets
When you use a DHTML scriptlet in your host application, the application can be notified
about events that occur in the scriptlet. A DHTML scriptlet can expose two types of events:

• Standard DHTML events, such as the onclick event and the onkeypress event.

• Custom events, which are events that you define or DHTML events not provided
as standard events. For example, the scriptlet can fire an event when a property
value changes.

Handling Standard Events
A DHTML scriptlet can expose these standard DHTML events:

onclick

ondblclick

onkeydown

onkeypress

onkeyup

onmousedown

onmousemove

onmouseup

Note For information about scriptlet events, properties, and methods, refer to the
Visual InterDev Reference in the online documentation.

Events that occur in the scriptlet are not automatically sent to the host application.
To trap standard events in the host application, you must write handlers in two places:
one in the scriptlet to trap and forward the event, and another in the host application to
capture the event.

To pass an event from the scriptlet to the host application

1. Attach an event handler script to the event that you want to pass.

2. Within the event handler script, call the bubbleEvent method to forward the event to
the host application.

Note Before passing events to the container object, you can check the scriptlet's
frozen property to be sure that the container object is ready to handle events.

If the scriptlet does not include an event handler for a specific event, that event will not be
passed to the host application. Similarly, if the scriptlet includes a handler for the event but
does not call the bubbleEvent method, the event will not be visible to the host application.

Note The scriptlet container object exposes all standard events at design time, even if
the scriptlet does not contain a script that passes the standard event to the application.
For example, in Microsoft Visual Basic, the code window for the scriptlet container
lists all standard events, even if not all are available in a specific scriptlet.

Programmer's Guide 373

Part 5 Editing and Scripting

The following scriptlet script shows how you can pass a text box's onkeyup event to
the host application:

<INPUT TYPE=text ONKEYUP="passKeyUp()" NAME="tl" VALUE="">
<SCRIPT LANGUAGE="JavaScript">
function passKeyUp() {

II script statements here if required
window.external .bubbl eEvent();

II further script statements here if required
}

<!SCRIPT>

Note When a standard event occurs, the host application sees the corresponding event
triggered for the scriptlet container object as a whole. For example, the scriptlet might
contain several buttons. If a user clicks one of the buttons (and if the scriptlet is
forwarding the event), the host application receives only a general click event.

To pinpoint which control in the scriptlet triggered the event, you can create a custom
event in the scriptlet that contains additional information about the event. For details,
see "Creating and Handling Custom Events" below.

Additional information about a standard event, such as the location of the mouse pointer
or the state of keys at the time the event was triggered, is available in the script container
object's event property. For example, the following Visual Basic subroutine shows how
you would capture the scriptlet' s onkeypress event and display the key code of a character
typed in a scriptlet textbox:

Sub ScriptContainerl_onkeyup()
MsgBox "The character typed was " & ScriptContainerl.event.keyCode
MsgBox "The shift state was " & Seri ptConta i nerl. event. shiftKey

End Sub

In Microsoft Internet Explorer, the following script does the same thing:

<SCRIPT LANGUAGE=JavaScript FOR=document EVENT=onkeyup>
alert("Key code="+ window.event.keyCode)
alert("Shift status = " + window.event.shiftKey)

<!SCRIPT>

Creating and Handling Custom Events
You can expose custom events in either DHTML or automation scriptlets. Custom events
allow you to:

• Send more detail about a standard event that occurred - for example, which of several
buttons in the scriptlet was clicked.

• Notify the host application about non-standard changes in the scriptlet, such as when
the value of a property changes.

374 Programmer's Guide

Chapter 27 Packaging Script as Objects

• Notify the host application about DHTML events that are not among the standard
events handled by the bubbleEvent method.

As with standard events, you must send the event from the scriptlet and capture the event
in the host application.

To send a custom event in the scriptlet

• Call the scriptlet' s raiseEvent method.

Note Before passing events to the container object, you can check the scriptlet' s
frozen property to be sure that the container object is ready to handle events.

For example, the following shows how you can send a custom event called oncolorchange
whenever the scriptlet' s backgroundColor property is reset. The second parameter is an
object reference to the window.event object, which will allow the container handler to get
information about the object that fired the event.

<SCRIPT LANGUAGE="JavaScript">
function public_put_backgroundColor(value)
{

window.document.bgColor = value;
window.external .raiseEvent("event_onbgcolorchange",window.event);

<!SCRIPT>

To handle a custom event in the host application

• Create an event handler for the onscriptletevent event.

The following is an example in Visual Basic that shows how you can determine what
control triggered an event:

Sub ScriptletContainerl_onscriptletevent(ByVal txtTitle As String, _
ByVal eventData As Variant)
objName = eventData.srcElement.id
MsgBox "The event" & txtTitle & "occurred in" & objName

End Sub

If your host application is Internet Explorer, use a script such as the following to capture
the scriptlet event:

<SCRIPT LANGUAGE="JavaScript"
FOR="sl"
EVENT="onscri ptl etevent (event, obj)">

msg = "Event fired in the scriptlet was "+event
msg = msg + "\nand the ID of the object was"+ obj.srcElement.id
alert(msg);

<!SCRIPT>

You can use a Select Case structure in the onscriptletevent event to take different actions
based on different events.

Programmer's Guide 375

Part 5 Editing and Scripting

Adding DHTML Scriptlets to Your Application
After you have created a DHTML scriptlet, you can use it in your applications. You must
first create a scriptlet container object. This object creates a window for the scriptlet and
provides a way for the host application to specify where the scriptlet displays, at what size,
and so on.

To add a DHTML scriptlet to a host application

1. Create a scriptlet container object in your application and set its Name property.

2. Set the scriptlet container object's url property to the URL of the scriptlet you want
to use.

Important If you are adding the scriptlet to a Web page, do not set the url property to
the URL of the current page. Doing so causes a recursive call to the page and will
cause the browser to stop functioning.

If you are working with a Web page, you can use the <OBJECT> tag to reference the
scriptlet. You can add a scriptlet to the Microsoft Visual InterDev Toolbox.

To add a DHTML scriptlet to the Toolbox

• In the Project Explorer, right-click the scriptlet' s .htm file, and then choose Mark As
Scriptlet.

An <OBJECT> tag containing a pointer to that scriptlet is added to the Scriptlet tab of
the Toolbox. (If this is the first scriptlet on the Toolbar, the Scriptlet tab is created.)
You can then drag the scriptlet from the Toolbox onto another page and automatically
create the <OBJECT> tag necessary to implement the scriptlet.

Note When you add a scriptlet to the Toolbox, it includes the scriptlet' s absolute
URL. After you drag a scriptlet onto your page, you might need to modify the
<OBJECT> tag's URL property in the Properties window or in Source view to
make the link relative.

Alternatively, you can create an <OBJECT> tag yourself that references the scriptlet.

To refer to a DHTML scriptlet in an <OBJECT> tag

• Create an <OBJECT> tag with the following syntax, substituting the scriptlet' s URL
and name for url/scriptletName:

<OBJECT ID="MyScriptlet" TYPE="text/x-scriptlet" WIDTH=300 HEIGHT=200>
<PARAM NAME="url" VALUE="url/scriptletName">

<!OBJECT>

Working with the Scriptlet Container Object
In your application, the DHTML scriptlet appears within a scriptlet container object. This
object provides you with an interface to the scriptlet. For example, when an event occurs
in the scriptlet (and if the scriptlet is forwarding the event), your application sees the event
occurring in the container object.

376 Programmer's Guide

Chapter 27 Packaging Script as Objects

You can manage the appearance of the scriptlet by setting properties of the scriptlet
container object. In some cases, you can set properties within the scriptlet' s scripts to
manage its own appearance.

You can also resize the container object from within the scriptlet by using a script to set the
DHTML script object's pixelHeight and pixelWidth properties. For example, the following
example shows how you can resize the scriptlet container when the scriptlet is first loaded:

<HTML ID="MyPage">
<HEAD>
<SCRIPT LANGUAGE="VBScript">
Sub window_onload()

MyPage.style.pixelHeight = 300
MyPage.style.pixelWidth = 400

End Sub
<!SCRIPT>
<!HEAD>

If you change the .htm file after creating the control, the display in the control is not
updated until the next time the page is read. This occurs when the application is run or if
you change the url property of the control again.

Note After the scriptlet has been initialized, the F5 key, used to refresh a page in
Microsoft Internet Explorer, is not active in the scriptlet container object.

After creating an instance of the scriptlet, you can write scripts for it as you would for any
other control. The object you are using to work with properties and methods is the scriptlet
container object; the exact properties and methods you can use are defined by the scriptlet
identified in the container's url property. If you are working in an environment that can
display an object's properties and methods, such as Microsoft Visual Basic, you will not
see the properties, because these are not exposed to the development environment.

For example, the following code in a Visual Basic form sets a property and calls a method
in the page referenced by the ScriptContainerl control:

Sub cmdColor_Click()
ScriptContainerl.BackgroundColor="red"
ScriptContainerl.UpdateText (Textl.Text)

End Sub

Note In Visual Basic, you must pass a parameter to a scriptlet method even if the
method does not require one, or errors can occur. For example, the following statement
passes a placeholder parameter of zero to a scriptlet method that does not require
parameters:

ScriptContainerl.ToggleColor (0)

Before getting a scriptlet' s properties or calling its methods, you must be sure that the
scriptlet has been fully loaded by testing the container object's onreadystatechange event
and readyState property, and the scriptlet's frozen property.

Programmer's Guide 377

P A R T 6

Building Integrated Solutions

Part 6 provides information about remote debugging, deploying Web applications, and
using Microsoft FrontPage and Visual InterDev together to develop Web applications.

Chapter 28 Web Application Deployment

This chapter covers the issues involved with deploying an integrated Web application from
a development server to a production server.

Chapter 29 Integration Tasks

This chapter covers remote debugging and working with Visual InterDev and FrontPage
on the same project.

Chapter 30 Deploying and Maintaining Web Applications

This chapter discusses deploying new Web applications and maintaining and updating
existing Web applications.

CHAPTER 28

Web Application Deployment

When your Web application has been tested, you are ready to deploy the application
from the development server to the production server.

The production server is where your users see the live Web application. Deployment
ensures your end users have access to a properly functioning version of the Web
application. The figure below shows a Web application in a project that becomes the
deployed version of the application in a Web browser.

Moving from the Development to the Deployment Environment

Considerations for successful deployment include the following:

• Production Server Capabilities

• Deployment Activities and Results

• Tips for Easy Deployment

Programmer's Guide 381

Part 6 Building Integrated Solutions

Production Server Capabilities
Your production server and system capabilities determine how you deploy your Web
application. One typical system includes multiple servers handling a combination of
purposes. For example, one system dedicated to master Web application and database
development, one dedicated to live Web applications, and one dedicated to production
databases. You might need to determine if each has everything your Web application
requires to run properly.

To be ready for deployment, your production server requires Microsoft Internet
Information Server or another Web server installed. Depending on your Web application,
the server may also need the following:

• Microsoft FrontPage Server Extensions to use the Microsoft Visual InterDev
deployment features

• Microsoft Posting Acceptor 2.0 to use the Microsoft Visual Studio, Enterprise Edition
deployment features

• Microsoft Transaction Server to use transaction packages

These server components are available from the Visual InterDev installation CD.

Deployment Activities and Results
Deploying your Web application accomplishes the following tasks:

• Specifying an application root on the Web server.

• Making and saving a copy of each file used by the application.

• Registering components marked as server components.

• Creating transaction packages for use by Microsoft Transaction Server.

• Performing the copy using the Secured Socket Layer.

Visual InterDev makes deployment of your Web application as easy as a simple copy. To
do everything manually, you would need to copy files and folders and use the Web server
administrator, as well as set up the Web server's application root.

You can use a variety of methods to deploy your application, but the quickest, if your
production server has FrontPage Server Extensions, is copying to the production server
through Visual InterDev.

Visual InterDev uses the FrontPage Server Extensions to communicate with the
Web server. Your Web application is ready to run as soon as the operation is complete.
For more information, see Chapter 30, "Deploying and Maintaining Web Applications."

If your production server does not have FrontPage Server Extensions installed, you can
use the Posting Acceptor 2.0.

382 Programmer's Guide

Chapter 28 Web Application Deployment

Tips for Easy Deployment
Before deploying your application, you can ensure that your application runs smoothly
once deployed through proper preparation.

In preparing for deployment, you need to consider the following areas:

• Protect Links

• Ensure Data and Data Connection Portability

• Verify Production Web Server Capabilities

• Include All Web Items in the Web Project

• Mark Components for Server Registration and Microsoft Transaction Server Packages,
If Appropriate

Protect Links
• Use relative paths to specify links between application pages. Relative paths for

links between pages that reside on the same Web server are portable. You can move
your application to any Web server and the links do not break because the Internet
Host name or Web server is not specified in the link.

For example, you would specify links to other pages and to images using the path
relative to the current page as in the following: <a href ="mypagel. asp" and
.

• Use absolute paths to link to external sites. Absolute paths specify the protocol and
the Internet Host name or Web server name.

For example, if you link to the Visual InterDev site on Microsoft.com, you would use
<a h ref = "http: I /www. mi crosoft. com/vi nterdev I default. asp">.

Ensure Data and Data Connection Portability
• Make sure the production database is properly configured, deployed, and connected

to the production Web server.

• Make sure the current data connection points to the production database you want to
use during run time.

If using a file Data Source Name (DSN), make sure the Use Connection String option
was specified. If using a machine DSN, make sure a matching machine DSN has been
specified on the production Web server.

If you did not use the data environment to specify recordsets, you may need to update
the connection information for each page referencing data. For more information about
data connections, see Chapter 18, "Database Concepts."

Programmer's Guide 383

Part 6 Building Integrated Solutions

Verify Production Web Server Capabilities
• Check that the production Web server has all of the necessary software for the Web

application to run correctly, such as FrontPage Server Extensions and ODBC drivers.

• Verify that the security settings in the operating system and Web server are
appropriate for your Web application. For general Web security, see "Security"
in Chapter 6, "Web Project Concepts."

• If the Web server is Internet Information Server, you need to make sure the Identity is
set to one of the administrators and not the Interactive User.

• If your Web project includes components that are part of a package used by Microsoft
Transaction Server, you need to make sure that Microsoft Transaction Server is
installed on the production server.

• If your Web project includes server components that you want to register on the server,
you need to make sure you have permissions to register the components.

Include All Web Items in the Web Project
• Ensure that your Visual InterDev project contains all of the files the application needs

to run properly. For example, it's easy to remember the pages that bring the core
functionality, but you should also include any downloadable documents and other
items that are offered on the Web pages.

If you have files that are used by the Web application but not included in the
Web project, you need to deploy them manually.

Mark Components for Server Registration
and Microsoft Transaction Server
Packages, If Appropriate
• Verify that application components that need to run on the server are marked as server

components in the project. For more information, see "Deploying an Integrated Web
Solution" in Chapter 30, "Deploying and Maintaining Web Applications."

• Ensure that you have appropriate permissions on the production Web server to register
server components.

• Make sure any components requiring Microsoft Transaction Server have been added
to a package in the project. For more information, see "Deploying an Integrated
Web Solution" in Chapter 30, "Deploying and Maintaining Web Applications."

384 Programmer's Guide

CHAPTER 29

Integration Tasks

Once you have a working Microsoft Visual InterDev project, complete with database
access and scripting, you can take advantage of the integration features available to extend
your project even further as you see fit.

Visual InterDev works in conjunction with other products in the Microsoft Visual Studio
family and beyond to make your projects even more powerful.

Using FrontPage and Visual InterDev
to Create Web Sites

Developers, writers, and designers can all work on the same Web project by using
Microsoft FrontPage and Microsoft Visual InterDev in conjunction.

Visual Inter Dev provides developers with a robust set of tools for developing Web
applications, while FrontPage provides a WYSIWYG environment for editing pages that
doesn't require programming knowledge.

When you create a Web application in Visual Inter Dev, the same Web application files can
be opened in a FrontPage project to edit, view, and preview files. Visual InterDev users
can also open a FrontPage Web and work on the files using Visual InterDev tools.

The following sections contain issues to be aware of when using both FrontPage and
Visual Inter Dev on the same Web application:

Server Extensions

Adding Navigation Bars

Applying Themes

Using Source Control

To open a Visual lnterDev Web project in FrontPage

1. From the FrontPage File menu, choose Open FrontPage Web.

2. In the Getting Started dialog box, select Open an Existing FrontPage W eh
and choose the appropriate Web from the list.

-or-

From the File menu, choose Open FrontPage Web.

Programmer's Guide 385

Part 6 Building Integrated Solutions

3. In the Getting Started dialog box, select More Webs.

The Open FrontPage Web dialog box appears.

4. In the Select a Web server or disk location box, type the name of the master
Web server and select List Webs.

5. In the FrontPage Webs found at location list box, choose the name of the
Web project and select OK.

6. In the Getting Started dialog box, select OK.

When you work on Web project files in FrontPage, you are working in master mode.
Once you save a file, any changes you make are available to all users. Visual Inter Dev,
however, allows you to work in master mode or local mode.

Local mode allows you to make changes to Web project files on your local machine and
later update the master Web server with your changes. Visual Inter Dev also allows you to
work offline, which allows you to work on Web project files without being connected to a
Web server.

Visual InterDev also uses icons in the Project Explorer to indicate the current state of a file
in the Web project. For more information, see "Specifying a Project Mode" and "Working
Offline" in Chapter 7, "Working Locally."

You can also open a FrontPage Web as a Web project in Visual InterDev. You must,
however, specify in FrontPage that the Web project can run applications. Check the
"Allow programs to be run" option available from the General Tab of the Properties
dialog box.

To open a FrontPage Web in Visual lnterDev

1. From the Visual InterDev File menu, choose New Project.

2. In the New Project dialog box, select Visual InterDev Web Projects and then choose
New Web Project.

3. Select Open. The Open or Create Web Project dialog box appears.

4. In the Web Server URL text box, type the name of the FrontPage Web server.

5. In the Web Name text box, type the name of the FrontPage Web.

6. In the Options area, choose Open existing Web and select OK.

Warning Opening .asp files in FrontPage can change the .asp file contents.
Do not open .asp files in FrontPage.

386 Programmer's Guide

Chapter 29 Integration Tasks

Server Extensions
Visual InterDev and FrontPage use the same server extensions for Web projects.

Note Make sure you are using the same version of the FrontPage Server Extensions
for FrontPage Web servers and Visual InterDev Web servers in order to open, edit,
and save Web project files successfully.

To identify Web server extension versions in Visual lnterDev

1. In the Project Explorer, right-click the root of the Web project and select Properties.

2. Select the Master Web Server tab.

3. In the Server properties area, note the Extensions version information.

You can also easily find the FrontPage Server Extensions version information in
FrontPage.

To identify Web server extension versions in FrontPage

1. In the FrontPage Explorer, select Web Settings from the Tools menu.

2. Select the Configuration tab.

3. Note the FrontPage Server Extensions Version information.

Adding Navigation Bars
You can use both the FrontPage Navigation Bar Bot and the Visual InterDev PageNavbar
Design-Time Control to generate navigation links. Visual InterDev provides greater
flexibility for creating navigation bars. For more information, see Chapter 13, "Designing
Site Navigation."

Both Visual InterDev and FrontPage share the same navigation structure for a Web
application. In FrontPage, you create and maintain navigation bar links in Navigation
View. Each FrontPage Web has a single Navigation View and Navigation View can only
have a single tree.

In Visual InterDev, you create and maintain navigation bar links in a site diagram. Each
Visual InterDev Web project can have multiple site diagrams, and each site diagram can
have multiple trees.

Note In a single page, you should use only the FrontPage Navigation Bar Bot or the
Visual InterDev PageNavbar control. Do not use both types of navigation bar tools in
the same page.

Programmer's Guide 387

Part 6 Building Integrated Solutions

Applying Themes
Visual InterDev uses a slight variation of FrontPage themes. For example, Visual InterDev
themes do not use the active graphics and color options available in FrontPage.

Visual InterDev also applies themes differently than FrontPage. Visual InterDev uses
cascading style sheets (.css files).

When you open a page in FrontPage that has a Visual InterDev theme, FrontPage will not
recognize that a theme has been applied to the page. This can cause the page to appear
differently in FrontPage and in some browsers.

If you open a page with a FrontPage theme in Visual InterDev, Visual InterDev will
prompt you to replace the FrontPage theme with a Visual InterDev theme. For more
information, see Chapter 17, "Customizing Page Appearance."

Note For a consistent visual approach, use either the FrontPage themes or the
Visual InterDev themes for a Web project. Do not use both types of themes in the
same Web project.

Using Source Control
Visual InterDev and FrontPage allow you to use source control software with your
Web projects.

In FrontPage, you can only check out files exclusively. Another user cannot check out
and edit a file that you have already checked out. Visual InterDev, however, allows
multiple users to check out the same file. For more information, see "Working Under
Source Control" in Chapter 8, "Working with Multiple Developers."

Debugging Remotely
In addition to debugging scripts and processes that are running on your computer, you can
debug those that are running on another computer. This is referred to as remote debugging.
In Microsoft Visual Inter Dev, remote debugging is useful for debugging server scripts
running in ASP pages on Microsoft Internet Information Server (IIS).

Ordinarily, to debug a server script in an ASP page, you would have to install
Visual InterDev on the server and then debug scripts locally on that server. However,
with remote debugging, you can attach the debugger running on your computer to a
script running on the server and issue debugging commands across the network.

Note If IIS and Visual InterDev are running on the same computer, you can debug
server scripts using that copy of Visual Inter Dev, without remote debugging.

388 Programmer's Guide

Chapter 29 Integration Tasks

For the most part, remote debugging is similar to debugging locally, except for these
differences:

• You must perform some extra setup steps before you can use remote debugging.

• Only one user can use remote debugging on a server at a time.

The information below explains how to set up remote debugging, and then how to establish
a remote debugging session.

Setting Up Remote Debugging
To use remote debugging, you must perform several setup steps. The first step is to be sure
that the proper debugging components have been installed on the server. A full server
installation of the Visual InterDev will normally load the proper components. However, if
you did not perform a full server installation, or if you are not sure, you can follow the
procedure below.

To install debugging components on the server

1. On the server computer, start the Visual Studio Enterprise Edition setup program.

2. Under Add/Remove Options, choose Server Applications and Tools.

3. On the next page, select Launch BackOffice Installation Wizard, and then choose
Install.

4. When the BackOffice Business Solutions wizard is displayed, choose Custom and then
choose Next.

5. Proceed until you see the page offering you a list of components to install. Uncheck all
components except the following:

• Remote Machine Debugging

• Visual InterDev Server

6. Proceed with the installation.

To configure DCOM on the server for remote debugging

1. From the Windows Start menu on the server, choose Run, and then in the Open box
type Dcomcnfg.exe at the prompt.

2. In the Distributed COM Configuration Properties window, select Machine Debug
Manager, and then choose Properties to display the Machine Debug Manager
Properties dialog box.

3. In the Security tab, choose Use custom access permissions, and then choose Edit.

4. In the Registry Value Permissions dialog box, verify that Allow Access is selected in
the Type of Access list, then choose Add

Programmer's Guide 389

Part 6 Building Integrated Solutions

5. In the Add Users and Groups dialog box, select the server's name from the List
Names From list. The server name typically is in the form \\server and appears at the
top of the list.

6. Under Names, choose Administrators, choose Add, and then choose OK.

7. Return to the Security tab, choose Use custom launch permissions, and then choose
Edit. Verify that Allow Launch is selected in the Type of Access list, choose Add,
and then add administrators as you did in Steps 4 through 6.

Return to the Distributed COM Configuration Properties window, select MTS Client
Export, and then choose

8. Properties. Repeat Steps 4 through 7.

9. Return to the Distributed COM Configuration Properties window, select Catalog
Class, and then choose Properties. Repeat Steps 4 through 7.

Enabling Debugging for ASP Pages
Before you can debug remotely, you must enable ASP debugging. You can manually
enable debugging for your ASP application as described under "Enabling ASP Debugging
on the Server" in Appendix A, "Troubleshooting." Alternatively, Visual InterDev can
automatically enable debugging on the server as needed.

To automatically enable script debugging in ASP pages

1. In the Project Explorer, right-click the project and choose Properties to display the
Property Pages dialog box.

2. Choose the Launch tab.

3. Under Server script, make sure Automatically enable ASP server-side debugging
on launch is checked.

When this option is set for your project, each time you start a debugging session,
Visual InterDev checks that the server is appropriately configured for debugging.
This includes:

• Setting the IIS application to run in its own memory space (in COM terms,
it runs "out of process").

• Enabling the IIS application's debugging options.

• Setting up a Microsoft Transaction Server (MTS) package to allow you to attach the
debugger to the Web application. The package's identify is set when you first start
the debugging session by asking you to provide your name and password.

Note You can perform the first two steps manually on the server. For details, see
"Enabling ASP Debugging on the Server" in Appendix A, "Troubleshooting."

When you quit your debugging session, Visual InterDev restores the server debugging
settings and out-of-process setting to their previous values.

390 Programmer's Guide

Chapter 29 Integration Tasks

Running the Debugger Remotely
After the server has been configured for remote debugging, you can debug on the server in
much the same way you do locally.

Note It is highly recommended that you do not use Active Desktop mode of Microsoft
Internet Explorer 4.0 when you are debugging.

There are two ways to start remote debugging:

• Launch a project using the debugger This works just like debugging locally,
except that Visual InterDev automatically attaches the debugger to the server and
starts remote debugging.

• Attach to a process that is already running on the server This is useful if you become
aware of a server script problem while the application is running. You can detect an
error in server script if the server returns error text instead of your page, or if the
browser appears hung when you request an .asp file.

If you launch a project using the debugger, you can start debugging at the first line of
script. Otherwise, you will only be able to debug script that runs after you attach to the
process. In addition, if you launch a project, you will be able to edit the files you are
debugging. When you attach to a process, you can see the files you are debugging,
but cannot edit them there.

Note Because remote debugging ties up process threads on the server, it is
recommended that while a remote debugging session is in progress, other users
avoid using the server.

Launching Remote Debugging
You launch remote debugging from within Visual InterDev.

Note Before debugging server script, make sure you have enabled debugging as
described above.

To launch a project using the debugger

1. In Visual InterDev, open the file to debug, and if needed, set breakpoints.

2. Make the page your project's start page. In the Project Explorer, right-click the page
and choose Set as Start Page.

3. From the Debug menu in Visual InterDev, choose Start.

Note If another user is already debugging on the server, Visual InterDev displays
an error message and you will not be able to start the debugger.

Programmer's Guide 391

Part 6 Building Integrated Solutions

4. If this is the first time you have started the debugger since opening the current project,
you are prompted to provide user information used to identify the debugging process
on the server.

Enter the domain and name (in the form domain\name) and password of a user with
administrative privileges. For more details, see "Setting Up Remote Debugging" earlier
in this chapter.

5. After the debugger starts and attaches to the document, proceed with debugging
as normal.

Note For details about using debugger commands, refer to the Visual InterDev online
documentation.

Attaching to a Running Process
If debugging is already enabled on the server for your project and you detect an error while
the application is running, you can attach the debugger to it.

Note For information about setting server debugging options, see "Enabling ASP
Debugging on the Server" in Appendix A, "Troubleshooting."

To attach to a running process

1. If it is not already open, start Visual Inter Dev.

2. From the Debug menu, choose Processes.

3. In the Processes dialog box, type the name of the computer to attach to. If you don't
know the computer name, choose Machine and use the Browse for Computer dialog
box to locate the server where you want to debug.

4. In the machine processes list, select your project, and then choose Attach.

The process you selected appears in the Debugged Processes list.

5. Close the Processes dialog box and use the Running Documents window to select
the ASP page to debug.

You can step through scripts and test variables and expressions normally. However,
to run a page you must navigate to it in your browser. In addition, you cannot edit the
pages that you are debugging.

Note For details about using debugger commands, refer to the Visual InterDev online
documentation.

392 Programmer's Guide

CHAPTER 30

Deploying and Maintaining
Web Applications

When you are done developing and testing your Web application, you can make the tested
version of your application available to end users on the production server.

Deploying a New Web Application
You can choose from a variety of methods for making your Web application available to
your users. Your choice may depend on the software available on the production server.
The following three methods help you choose what might work best for you.

• Copy Project is the easiest method and is found on the Project menu of Microsoft
Visual InterDev. This method requires the Microsoft FrontPage Server Extensions on
the production Web server. For more information about this feature, see "Deploying
through FrontPage Server Extensions" later in this section.

• Web Post does not require the FrontPage Server Extensions.

• Manual Deployment is possible through the Windows Explorer and your Web server
administration software. However, if you have all your files included in your Web
project, Visual InterDev can set up everything for you.

For any method you use, you need to provide some basic information so that the
application is copied to the correct Web server with the correct application name. The
information you provide when you copy your Web application to the production server
includes the elements of the URL for the Web application.

Typically you can't specify a server unless it already exists, but you can rename your Web
application when you copy it to the server. For example, if you used a code name for your
application during development, you can rename the application when you copy it. When
deploying, you can use a new name for the application's URL that is easy for a user to
remember.

Programmer's Guide 393

Part 6 Building Integrated Solutions

Deploying through FrontPage Server Extensions
If your production server has FrontPage Server Extensions installed, you can quickly
deploy your application by copying the project. The extensions are provided with
Microsoft Internet Information Server.

To deploy through FrontPage Server Extensions

1. In the Project Explorer, select the project that points to the Web application you want
to deploy.

2. From the Project menu, choose Web Project, and then Copy Web Application.

3. In the Copy Project dialog box, choose the copy of the application you want to deploy.
Typically, you deploy the master version.

4. In the Server name box, enter the name of the destination Web server.

5. In the Web project box, enter the name you want the users to type for the URL.

6. Clear the Copy changed files only checkbox.

Note If you want to use secure transmissions while deploying to the production server,
select the Connect using Secured Socket Layer check box.

A new application root is created on the destination Web server and the files in the Web
application are copied to that new folder. The name you specified in the Copy Web dialog
box becomes part of the application's URL. You can now perform a final verification of
the application.

Deploying without FrontPage Server Extensions
If your production server does not have FrontPage Server Extensions or if your application
requires special deployment configurations, you can use the Web Post feature available
with the Visual InterDev Enterprise Edition.

Deploying Manually
You might prefer to manually deploy some of your files. Because the detailed steps depend
on the tools you actually use, they are not covered here. However, here is a list of tasks you
should consider.

• Specify an application root in the Web server administrator.

• Set Web folder permissions.

• Make and save a copy of each file used by the application.

• On the production server, register components marked as server components.

• Create transaction packages for use by Microsoft Transaction Server.

394 Programmer's Guide

Chapter 30 Deploying and Maintaining Web Applications

Maintaining Existing Applications
Once your Web application has been deployed, you can easily add or update individual
pieces of the application. You might want to update your Web application with new
pages, images, or other functionality. Or perhaps you made changes to files that are
already deployed. You can copy over the currently deployed files with new versions.

Typically, even while the application files are browsed by an end user, you can make
changes without affecting the user. Users are protected because a temporary copy of the
file was downloaded to the user when it was requested. The new version is available
when the user refreshes the file in the Web browser.

Note If your application includes server components and they are in use when
you make the upgrade, you might want to make the application unavailable through
the Web server, otherwise the changes may generate errors. For example, if a user is
browsing a page that used a .dll or .ocx files, the files for the .dll or .ocx can be locked
so you can't replace it while the page is in use.

If your application uses data connections, you need to disable the data connection
while you make changes to the page and then enable the connection after you are done.
For more information about data connections, see "Connecting to a Database" in
Chapter 3, "Database Basics."

To upgrade pages in an existing Web application

1. In the Project Explorer, select the project that points to the Web application you want
to deploy.

2. From the Project menu, choose Web Project, and then Copy Web Application.

3. In the Copy Project dialog box, choose either the copy of the application on the master
Web server or the local Web server.

4. In the Server name box, enter the name of the Web server you want to use.

5. In the Web project box, enter the name you want the users to type in for the URL.

6. Make sure the Copy changed files only option is selected.

Only those pages that have been added or modified since the last deployment of the
application are copied to the application root. You can then test the application on the
production server.

Programmer's Guide 395

Part 6 Building Integrated Solutions

Deploying an Integrated Web Solution
If your Web application uses components created using other Microsoft Visual Studio
tools, you can add their outputs to your Web project and deploy them along with your
Web files.

For example, a banking application may include a .dll, .ocx, or .class file created in another
type of project. You can include the project's output as part of your Web application by
adding the component to the Web project. If it is a server component, you need to mark it
as such. If you want the component to execute within the scope of a Microsoft Transaction
Server package, you can specify a package.

In deploying an integrated solution, you might perform the following tasks:

• Registering Server Components

• Packaging Components for Microsoft Transaction Server

• Deploying an Application with Components

Registering Server Components
If your component is designed to run on the server and not on the end user's computer,
you need to make sure it is registered on the production server. You also need to register
it on your master server during testing and design time.

You can manually register components or specify the component as a server component
within your Web project for registration when you copy them.

Note In order to register components through Visual Inter Dev on a remote Web
server, the Web server must have Microsoft Internet Information Server installed
with the Visual InterDev RAD Remote Deployment Support option selected during
custom installation.

To specify a server component

1. In the Project Explorer, add the component to your Web project.

2. Select the component you want to register on the server.

3. In the Properties Grid, select Custom.

4. In the Component Installation tab of the Custom property page, select Register on
server, and then choose OK.

Note If your Master Web server and local project are on the same computer the
registry for that machine only notes the component once - not twice for the master
and local version. If you remove the local copy, the registry entry for the component
is also removed even though the component is marked as a server component in the
project.

When you use the Copy Web Application feature, the component is automatically
registered on the server. If the registration fails, you need to check your permissions on
the server.

396 Programmer's Guide

Chapter 30 Deploying and Maintaining Web Applications

Packaging Components for Microsoft
Transaction Server
If your Web application uses components or business objects that you want to be
controlled using Microsoft Transaction Server, you can deploy them to the server using
Visual Inter Dev.

For example, in your banking application, three business objects work together to transfer
money from one account to another. The Transfer Object calls the Debit and the Credit
Objects to transfer the money. For the transfer component, you need something that makes
sure both of the other objects run successfully before either committing the changes or
rolling the entire transaction back in the case that one part of the transaction fails.

Microsoft Transaction Server can manage your components during transaction processing.
All you need to do in Visual InterDev is specify the components that make up a Microsoft
Transaction Server Package and deploy them on the server.

To package components for MTS

1. In the Project Explorer, right-click the component you want to add to the package.

2. Choose Properties from the short-cut menu.

3. In the Component Installation tab, choose Add to Microsoft Transaction Server
package.

4. In the Package name box, type the name of the package to add the component to.

5. Select the Transaction support option appropriate for your component.

Note Typically the component's objects inherit the transaction specified by
the client. You can set these options to specify otherwise.

To Select

Set the component's objects to execute within the scope of a Requires a transaction
transaction regardless of whether the client has a transaction

Create a new transaction for the component's objects to execute Requires a new transaction
within regardless of whether the client has a transaction

Set the component's objects to execute within the scope of the Supports transactions
client's transaction

Set the component's objects to run without a transaction Does not support transactions
regardless of whether the client has a transaction

When you deploy the application, the package is provided to Microsoft Transaction Server.

Programmer's Guide 397

Part 6 Building Integrated Solutions

Deploying an Application with Components
Once you have completed marking your components within the project, you can deploy
your Web application.

If your production server has FrontPage Server Extensions installed, you can perform the
following task.

To deploy a Web application with components

1. In the Project Explorer, select the project that points to the Web application you want
to deploy.

2. From the Project menu, choose Web Project, and then Copy Web Application.

3. In the Copy Project dialog box, choose the copy of the application you want to deploy.

Note If you work on a team, you typically deploy the master version because it
includes the updated files from the team members.

4. In the Server name box, enter the name of the Web server you want to use.

5. In the Web project box, enter the name you want the users to type for the URL.

6. Select Register Server Components.

7. Choose OK.

A new application root is added on the destination Web server and the files in the
Web application are copied to that new folder. The name you specified in the Copy Web
Application dialog box becomes part of the application's URL. You can now test the
application on the production server.

398 Programmer's Guide

APPENDIX A

Troubleshooting

While working in Microsoft Visual InterDev, you may encounter unexpected behavior or
results. You can use the following summary of common issues and concerns to understand
Visual InterDev' s features more fully and get the results you want. The major areas
covered are:

• Web Projects

• Databases

• Editing and Scripting

• Debugging

Web Projects
This section covers issues with files, diagrams, site navigation, builds, and Microsoft
Internet Information Server (IIS).

Working with Solutions and Projects
Typically, when you first create a project, you automatically create a solution with the
same name. After you have created a solution, you can add additional projects. If you do
not want the initial project and the solution to have the same name, you can rename the
solution after it is created.

To rename a solution

1. In the Project Explorer, select the solution.

2. From the File menu, choose Rename.

3. In the Project Explorer, enter the new name for the solution.

4. The solution file (.sin) has the new name and the Web project file (.vip) remains the
same.

Programmer's Guide 399

Appendix A Troubleshooting

Authentication Error Occurs During Creation
or Copying of a Web Application.
You may encounter an authentication error if you are entering the number for the IP
address instead of the computer name when you specify a server for a Web application.
If your computer uses a proxy server only for external addresses, this error occurs because
the system attempted to access the IP address through the proxy server even though it is
actually a local or an intranet address.

You can avoid this error by performing one of the following tasks:

• Use the computer name instead of the number for the IP address when creating a
project or copying a Web application.

• If your Web project is not using the system Internet settings, change the proxy options
for your Web project by including the number for the IP address in the List of hosts
without proxy in the Web Project option settings.

• Change the system Internet settings by including the number for the IP address in the
List of hosts without proxy in the Internet properties for the operating system.

For more information about specifying the list of hosts, see "Connecting to a Proxy
Server" in Chapter 9, "Adding Security."

Adding Personal Files to a Project
If your project has personal files in it, you can update the master Web application to
include those files. If you are trying to update the master by selecting multiple files in the
Project Explorer, select only the personal files. If you include other files that already exist
on the Master server, the Add to Master command is not available.

If someone removes master files using Microsoft Windows Explorer or some way other
than through the Visual InterDev project, the file will appear as a personal file in your
project. When you refresh your project, you will be prompted to delete the file from your
local Web application as well. If you want to recover the file, you need to choose "No."
Use the Add to Master command to include the file in the Web application.

For more information, see "Updating the Master Web Application" in Chapter 7,
"Working Locally."

Site Diagram Issues
• In local mode, if you add a new file to a site diagram and then save the site diagram,

Site Designer automatically adds the new pages to the master Web application on the
master Web server.

400 Programmer's Guide

Appendix A Troubleshooting

• In local mode, if you add a personal file to a site diagram and then save the site
diagram, Site Designer automatically adds the personal file to the master Web
application on the master Web server.

• Netscape Navigator and Netscape Communicator versions 4.0 through 4.03 implement
cascading style sheets (CSS) differently than Microsoft Internet Explorer. Navigator
and Communicator interpret relative URLs as relative to the document rather than to
the linked .css file. To fix this:

• Copy, but do not move, all of the images from the directory of the theme that you
are using to the directory that contains the document that references the .css file.

-or-

Change the relative URLs in your CSS files to the appropriate absolute URLs.

Navigation Bars, Layouts and Themes Issues
• The PageNavbar design-time control (DTC) allows you to use custom HTML to

generate navigation bar links for your Web pages. If you use custom HTML for
navigation bar links, you must set the Orientation property to horiwntal to specify
a custom orientation for the navigation bar on the page.

• The text [FrontPage VIN av bar Component] appears in place of navigation bar links
if you do not have the proper server components installed on both your local machine
and the master Web server. To use the PageNavbar control, you must have the
VINavbar component installed on your local machine and on the master Web server.
The VINavbar component is installed with the Microsoft FrontPage 98 server
extensions.

To verify that the VINavbar component is installed

• On yourlocal machine, search for the vi navba r folder. The vi navba r folder is
installed by default in drive:\Program Files\Microsoft FrontPage\version3.0\bots\.

If you cannot find the vi n av bar folder on your local machine, you must install the
FrontPage 98 Server Extensions. See the Visual InterDev Readme file, Readmevi.htm,
for installation instructions.

After you have installed the FrontPage 98 Server Extensions, you must recalculate
links on your Web project.

Programmer's Guide 401

Appendix A Troubleshooting

To recalculate links for a Web project.

1. In the Project Explorer, right-click the root of the project.

2. From the shortcut menu, choose Recalculate Links.

• The Layout design-time control (DTC) header and footer text indicates where you
should add content in a page that has a layout applied to it. In the actual layout
template file, Layout.htm, the Layout DTC header and footer text means the opposite.

• Changes made in site diagrams or the PageN av bar control may not immediately appear
on the navigation bars when you preview your pages. To fix this:

• From the Project menu, choose Web Project and then choose Recalculate Links.

The Recalculate Links command updates the navigation bar with the latest navigation
structure information.

Note Changes made in site diagrams or the PageNavbar control may also not
immediately appear on the navigation bars if you have unselected the Always
update navigation structure information on local Web server option on the
General Tab (Project Properties Dialog Box).

• If you customize a theme file, such as a .css file, and later apply a theme from
FrontPage, your customizations may be discarded. To prevent this:

1. Rename the theme folder containing the customized theme files in the _Themes
directory. For example, if you are using the Nature theme, rename the Nature folder
to MyTheme.

2. Rename the .inf file for the customized theme. For example, rename Nature . i n f
to My Theme.inf.

3. In the renamed .inf file, change the tit 1 e== text to the new theme folder name.
For example, change tit 1 e=N a tu re to tit 1 e=MyTh eme.

4. Reapply the theme to all the pages previously using the customized theme.

• If you specify a parameter or bookmark in the URL for an HTML page in a site
diagram, the PageNavbar control will not generate navigation bar links for the .htm
file. The PageNavbar control does not support parameters or bookmarks in the URL
for .htm files. To prevent this:

• If you have specified a parameter, create a new .asp file in the Project Explorer.
Remove the .htm file from the site diagram and add the new .asp file using the
Add Existing File command to specify the parameter for the .asp file.

For more information, see "Adding Pages to a Site Diagram" in Chapter 12,
"Designing a Web Site."

• If you have specified a bookmark, create an .asp file with a parameter that redirects
the browser to the bookmark in the .htm file. Remove the .htm file from the site
diagram and add the new .asp file.

402 Programmer's Guide

Appendix A Troubleshooting

Link Diagram Issues
• In local mode, Link View displays link information for your Web project as if you

have already updated the master Web server with your changes. The link diagram may
therefore display link status that conflicts with the actual status of the Web application.

Note In local mode, Link View may not immediately display changes to the link
information in your files if you have unselected the Always update navigation
structure information on local Web server option on the General Tab (Project
Properties Dialog Box).

• If you attempt to view links for items contained in directories that start with the
underscore character_, such as _myfiles, the items may appear broken, the items
may not display the proper in links and out links, or the items will not appear in the
diagram. To avoid this, do not create directories that use an underscore character_ as
the first character in its name.

Caution By default, Visual InterDev creates four directories that use an underscore
character as the first character in its name: _Layouts, _private, _ScriptLibrary, and
_Themes. Do not rename these directories.

o When you create a link diagram using the View Links command, you create a design
time view of your links. Dynamically generated links, such as links generated by ASP
script or from a database, do not appear. To view dynamically generated links, use the
View Links on WWW command and enter the full URL for the file. The View Links
on WWW command provides a run-time view of the links in a Web application.

For more information, see "Link Verification" in Chapter 11, "Site Design."

Broken Links Report Issues
• For best results, you should recalculate the links for the Web project before you run the

Broken Links Report. Recalculating links ensures that you have the most current link
information for the Broken Links Report. For more information, see "Repairing Links"
in Chapter 16, "Maintaining Links."

• If you have created a directory that starts with the underscore character_, such as
_myfiles, files contained in these directories may be excluded from the Broken Links
Report or may be listed as unused in the Broken Links Report. To fix this, rename the
directory so that it does not use an underscore character_ as the first character in its
name.

Programmer's Guide 403

Appendix A Troubleshooting

Unable to Connect Remotely to Windows 95 or
Windows 98 Web Server
Microsoft Windows 95 and Windows 98 support the Web servers installed with FrontPage
or the Windows NT Option Pack. These Web servers are intended for local development.
If you want to use a machine as a remote Web server, install Windows NT Server and the
Windows NT Option Pack which includes Microsoft Internet Information Server.

llS Administration Operations Fail with MTS
Installed
Attempts to perform Web administration operations, such as setting application roots,
when no user is logged on the Web server will fail under the following circumstances:

• If you are using Microsoft Transaction Server (MTS)

-and-

• If during installation of MTS, you accepted the default option, Interactive User,
as the option to run MTS sessions.

To set "allow Web administration operations" without someone logged onto the server

1. Open the Microsoft Master Console for the server.

Note To open the Microsoft Master Console: From the Start menu, choose
Windows NT 4.0 Option Pack, Microsoft Internet Information Server, and then
Internet Service Manager.

2. Expand Microsoft Transaction Server.

3. Expand Computers.

4. Expand My Computer.

5. Expand Packages Installed.

6. Right-click System and from the shortcut menu, choose Properties.

7. On the Identity tab, choose a user that has administration privileges on the server.

8. Close the Microsoft Master Console.

For more information, see the documentation for Internet Information Server or Microsoft
Transaction Server.

404 Programmer's Guide

Appendix A Troubleshooting

Build Order and Visual lnterDev Projects
If you include your Web project in the Build Order dialog box, the project is automatically
added to the end of the list so that it is built last. Visual Inter Dev projects must be built
last. If you manually move the Visual InterDev project up in the list, your build may fail.

Visual SourceSafe Explorer and Visual lnterDev
When using Visual SourceSafe with Visual InterDev, use the Visual SourceSafe Explorer
only to view history or to rollback to a previous version. If you use the Visual SourceSafe
Explorer to set options for checking files in and out, you may get unexpected results.

For example, you can set an option in Visual SourceSafe Explorer to remove local copies
of a file on check in. If you choose that option, Visual SourceSafe considers the master
copy to be the local copy and will remove that file from the Web server.

If you want to remove local copies after checking them in, use the options available from
within Visual Inter Dev.

To remove local copies

1. From the Tools menu, choose Options.

2. In the Options dialog box, choose Projects and then Web Projects.

3. In the Project Options area, select Remove local copies when checking in files.

4. Choose OK.

Databases
This section covers issues with connecting to databases through ODBC, data binding and
Recordset controls.

Adding a Data Connection
You can use the Add Data Connection command to add a data connection to a project.
This command is available from within the Project Explorer when you select a project
or the data environment.

The Add Data Connection command allows you to create a data source name (DSN) and
define a data connection using this data source, as described in "Connecting to a Database"
in Chapter 3, "Database Basics."

You can also use the ODBC Data Source Administrator, available in the Control Panel, to
create DSNs. These DSNs will be available in the Select Data Source dialog box, and you
can use them to make data connections in Visual InterDev.

Programmer's Guide 405

Appendix A Troubleshooting

However, you must do this using the Add Data Connection command; the DSNs created
using the ODBC Data Source Administrator don't become data connections until you use
the Add Data Connection command to create the connection from the data source.

For more information about using data connections with Visual InterDev, see "Connecting
to a Database" in Chapter 3, "Database Basics," and Chapter 18, "Database Concepts."

Data Binding
If you want your Web page to display data from a database, you must place a Recordset
design-time control on the page, and set its properties to display a set of records from
a database to which you've made a data connection. For more information, see "Data
Binding" in Chapter 18, "Database Concepts."

Using Quoted Identifiers
There is a "Use quoted identifiers" check box in the Create New Data Source ODBC
dialog box, which is on by default. If you tum this option off and have database object
names containing quotes, problems will arise. If the identifiers you use for database objects
may contain quotes, make sure to leave this option on.

However, if you select this option, you could have unexpected results when dealing
directly with database objects, such as stored procedure or trigger code. If you select this
option, be careful how you use strings in your script. It might be a good idea to use single
quotes (') when possible.

Tooltips Show Errors for Recordset, PageObject,
and FormManager Design-Time Controls
If you have an error in a Recordset, PageObject, or FormManager design-time control
while you're designing it, you can use the mouse pointer to display a Tooltip describing
the error.

The Tooltip is displayed when you move the mouse pointer over the control in Design
view, over the fields in its property pages, or over the property fields displayed on the
face of the Recordset control.

For example, if you create a row in the Actions Performed Before Transition table on the
Action tab of the FormManager control's property pages, but don't fill in values for all the
fields in this row, you'll generate an error for the control. This error ("Errors were found in
the 'Action' property page of this DTC") will be displayed in a Tooltip if you move the
mouse pointer over the FormManager control in Design view.

406 Programmer's Guide

Appendix A Troubleshooting

Exclamation Point Appears on Recordset Control
When you see a red circle containing an exclamation point on a Recordset design-time
control (DTC), it means there is a data problem. Select the Recordset DTC so that it has
the focus, and then move the mouse over the red circle and Visual InterDev will display a
Tooltip that explains the problem.

Some typical causes are:

• The red circle appears in the Object Name list box when you change the Connection or
Database Object setting. If you change the connection or database object, select a new
object name.

• The red circle appears to the left of the Recordset name at the top left of the DTC when
there's a problem with the data connection. Areas to investigate include:

• Whether a connection can be made to the database server.

• The data connection in the DataEnvironment under the Global.asa file in the
Project Explorer.

o The connection on the General tab of the Recordset Design-Time Control Property
Pages dialog box.

Name of Recordset Appears as Red
on DTC's Property Page
You bind data to a data-bound design-time control by setting the DTC's Recordset
property to one of the Recordset DTCs that exists on the same page. If you set a data
bound DTC' s Recordset property to an existing Recordset DTC, and then delete that same
Recordset DTC from the page, the name of the deleted Recordset will appear in red on the
General property page of the data-bound DTC.

To fix the problem, you must either add a Recordset DTC to the page that uses the same
name as the deleted Recordset DTC, or change the setting of the data-bound DTC' s
Recordset property to an existing Recordset DTC.

Programmer's Guide 407

Appendix A Troubleshooting

Errors when Moving Quickly
Through Database Records
If you are working with an ASP page containing a data-bound form and try to navigate
quickly from one record to the next, you might see the following error:

Microsoft OLE DB Provider for ODBC Drivers error '80040e21'

This error results from an attempt to get the next record before the previous database
request has completed. You can avoid this error by buffering the page containing the form,
so that it does not display in the browser until the data has been completely fetched and the
page composed. To set buffering, add the following command to the top of the page:

<% Response.Buffering=true %>

Editing and Scripting
This section covers issues with using the HTML editor, using design-time controls, and
other controls.

Enabling the Scripting Object Model
Design-time controls function properly only if the scripting object model is enabled for
the page on which they appear. If you drag a design-time control onto a page that doesn't
already have the scripting object model enabled, a message box prompts you to add it.
However, if you choose "No" and proceed, the control will not communicate with other
controls on the page, and it will not display properly at run time. For details, see "The
Scripting Object Model" in Chapter 23, "Scripting Concepts."

Scripting with Design-Time
Controls and Script Objects
When writing script to interact with script objects created by design-time controls, keep the
following tips in mind:

• While scripting, press CTRL+J at any time to display the statement completion
drop-down list. If you are in the context of a particular object, that object's properties,
methods, and events are included in the list. If you are not in an object context (for
example, you are on a blank line), the drop-down list contains a complete list of objects
and their members.

• Treat the names of properties, methods, and events as case sensitive even if you are
scripting in VBScript. In many cases, the names you use are evaluated by the scripting
object model framework (which is largely in JavaScript), and are therefore case
sensitive.

Tip When you are working with JavaScript, statement completion will not
recognize an object unless you have used correct capitalization.

408 Programmer's Guide

Appendix A Troubleshooting

• When you are working on an ASP page with the scripting object model enabled, you
can refer to the current page using the object thisPage. If there is a PageObject
design-time control on the page, the object thisPage appears in the Script Outline
window and is available for statement completion. If there is no PageObject control on
the page, you can still use the thisPage object in your scripts, but it will not be visible
in the Script Outline window or available for statement completion.

In client script, the object thisPage is available only if you have a page object on the
page. But in client script, you use the thisPage object only for accessing the properties
and methods for page objects. For properties, methods, and events of the current page
in client script, you can use the DHTML document object.

• When working with the names of methods and functions, you must be careful to use
parentheses correctly. If you use statement completion to write method calls,
parentheses are not added to method calls.

If you are scripting in JavaScript, you must provide parentheses if the method is being
executed as a function, if the method call returns a value, or if the method returns an
object reference. The following two examples illustrate this use:

str ~ Textboxl.value() // returns a value
II In the following getPagingNavbar() returns an object,
II and hide() executes a function
Gridl.getPagingNavbar().hide()

If you do not include parentheses, the method call is treated as a function pointer,
which is used to pass the name of a function as a parameter. For example, if you call an
object's advise method, you pass the second parameter (the function name parameter)
as a function pointer without parentheses, as in the following example:

<SCRIPT LANGUAGE="JavaScript">
function setAdviseMethods(){

Btnl. advise ("onmouseover", changecapt ion); I /no (), function pt r

<!SCRIPT>

If you are working with VBScript, you must provide parentheses if the method call
returns a value; otherwise, they are optional. For example, in VBScript, both of the
following statements will work:

Textboxl. hi de ()
Textboxl.hide

Be careful to include parentheses when invoking a method that returns an object
reference, as in the following example:

Gridl.getPagingNavbar().hide

If you call an object's advise method in VB Script, you pass the name of the second
parameter (the function name parameter) as a string, including the parentheses:

Programmer's Guide 409

Appendix A Troubleshooting

<SCRIPT LANGUAGE="VBScript">
Function setAdviseMethods()

Btnl.advise("onmouseover", "changecaption()") ' note quotes and ()
End function
<!SCRIPT>

Tip Remember that because the scripting object model uses JavaScript, you should
treat method names as case sensitive, even in VBScript.

Using the Properties Window
The Properties window uses a grid to display all properties for the selected control or
object. The following lists some tips for using the Properties window:

• Check the selection The drop-down list at the top of the window displays the current
element's type. If you are not seeing the properties you expect, check this. In a few
cases (such as when you are working with HTML table elements), the list displays a
hierarchy of elements that you can use to select the correct one.

• Categorize properties Buttons at the top of the window allow you to display properties
alphabetically or by category. Grouping properties by category makes it easier to find
properties, such as inline style attributes.

• Use the Custom option Some elements, such as design-time controls, provide custom
property pages that make it easier to set property values. If a custom property page is
available, the (Custom) property appears first in the alphabetical list, and you can click
the button in the text box for that entry to display the window.

• Use Help Help is provided for most individual properties. To see Help, select the
property in the grid, and then press Fl.

Previewing with the Quick View Tab
The Quick view tab of the HTML editor processes only the client portions of a page:
HTML text and client scripts. Although you can preview .asp files in Quick view, the
editor does not perform a round trip to the server, therefore:

• No server script is executed.

• Design-time controls whose target platform is Server will not appear.

Cutting and Pasting HTML Text
When you cut or copy text to the Windows Clipboard from an HTML source - such as
Microsoft Internet Explorer, Design view of the Visual InterDev editor, or the Visual
InterDev Help system or sample applications - two versions of the text become available:
an HTML version and a text version.

The HTML version uses HTML escape sequences for reserved characters such as <, >, and
quotation marks. For example, if you copied "<MARQUEE>" to the Clipboard, the HTML
version would be "<MARQUEE>". The text version contains an exact copy of the
original text you cut or copied.

410 Programmer's Guide

Appendix A Troubleshooting

When you paste, you can choose either version. To paste the HTML version, choose Paste
from the View menu or the right-click menu. To paste the text version, choose Paste as
Text from the right-click menu. In general:

• In Design view, choose Paste if you want to see the actual text such as
"<MARQUEE>". Choose Paste As Text if you want to create the tag. Tags do not
appear in Design view, so the text you see might not appear to be the same as what you
cut from another source.

• In Source view, choose Paste as Text.

Cutting or Copying in Design
View of the HTML Editor
If you cut or copy an element from Design view to the Windows Clipboard, it contains
additional information used to manage that element. If you paste the element anywhere but
in Design view, it might be pasted with an extra <DESIGNTIMEP> tag in it. Always
check the results of a paste operation if the source was Design view.

Distinguishing Design-Time Controls
and HTML Controls
Be careful to distinguish design-time controls and HTML controls on the Toolbox. The
controls have similar names - for example, there are text boxes and buttons on both tabs.
It can be particularly difficult to distinguish the controls when working in Design view,
because HTML controls are displayed graphically there.

You will find it easier to distinguish them in Source view. There, HTML controls are
displayed as simple HTML tags such as <BUTTON> or <INPUT>. Design-time controls
are displayed either graphically or as <OBJECT> tags with additional information.

Working with Text View in Source View
You can view controls (design-time controls, Java applets, and other controls) in Source
view as text, which is useful when you want to see the exact contents of a page, and for
making changes quickly to a series of controls. The following tips will help you when
working with text view.

• Viewing a control as text applies only in Source view. Design view and Quick view
always render the graphical view of a control (if possible).

• You can set the default view for controls using the HTML tab in the Options
dialog box.

Programmer's Guide 411

Appendix A Troubleshooting

• You can select text view for an individual control by right-clicking it, and then
choosing Always View As Text. When you do, the VIEW ASTEXT attribute is added
to the control's <OBJECT> tag.

• You can choose also the View Controls As Text on the View menu to temporarily view
controls in text view. You can then use the View Controls Graphically command to
redisplay controls graphically (except those whose <OBJECT> tag contains the
VIEWASTEXT attribute).

• If you choose Refresh from the View menu, the editor displays all controls in the
current default view (as set in the Options dialog box) except those whose object tag
contains the VIEW ASTEXT attribute.

Using text view can affect how controls work on your page. Visual InterDev design-time
controls do not function properly if they are displayed as text, because they cannot
communicate with the scripting object model framework. Before you add a design-time
control to a page, make sure that you have set options to view controls graphically. If you
do inadvertently add a control to the page while the text view option is set, the HTML
editor cannot create an instance of the control. You will see only the HTML <OBJECT>
tag for the control, not the control itself.

Printing Pages Containing Design-Time Controls
When you print a page in the HTML editor, some design-time controls might not be
displayed with the values you set. If you put more than one instance of a design-time
control on a page - for example, if you put multiple Textbox or Button controls on a
page - the second and subsequent ones will display their default values in the printout.

Creating Controls Inside Script Blocks
Do not drag controls - design-time controls, ActiveX controls, or any other objects -
into a <SCRIPT> block in Source view. A <SCRIPT> block is always assumed to contain
only script, so the editor does not parse for controls, and therefore cannot create instances
of them inside the block.

If you do drop a control into a <SCRIPT> block, the editor creates an <OBJECT> block
containing information about the control such as its class ID. However, no additional
information is created, such as parameters or script, so the control cannot be instantiated
and will not function correctly.

412 Programmer's Guide

Appendix A Troubleshooting

Non-Functional ActiveX Controls on the Toolbox
In some instances, you might see controls listed on the Toolbox ActiveX Controls tab
that are not available. For example, you might see the options WalletAddress and
WalletPayment on the Toolbox, but when you try to drag them onto a page, an error is
displayed such as "can't show control graphically."

This can occur if you are working in Microsoft Windows NT and chose the "Browser
Only" option when installing Microsoft Internet Explorer 4.0. This minimal installation
does not copy the controls to your computer, so they are not available. However, a
Windows registry entry for the control is created, so it appears on the Toolbox.

Using Server Objects from the Toolbox
The Server tab of the Visual InterDev Toolbox lists a number of objects that are commonly
available on Microsoft Internet Information Server (IIS). These server objects are part of
IIS, but are used heavily in ASP pages as part of Web solutions built in Visual Inter Dev.
For example, Visual InterDev developers frequently create server-based database access
using ActiveX Data Objects (ADO).

The list on the Server Objects tab is predefined - it is not constructed based on objects
that are actually installed on a particular server. This allows the Toolbox to display the
same list no matter what server you are working with at the moment. However, it also
means that it is possible to add a control from the Toolbox to an ASP page that might not
be available on the server when the page is run. You should always test pages with server
objects on the production server.

To use server objects, drag them from the Toolbox onto your Web page. (Do not drag them
into <SCRIPT> blocks.) When you do, the editor creates an <OBJECT> block with the
correct RUN AT and PROGID attributes, and with an ID attribute. Some of the objects
created this way require additional information that you typically supply using
<PARAMETER> tags inside the <OBJECT> block.

When the page runs, the server creates an instance of the object in the <OBJECT> block.
You can reference the object in your script using the object's ID. For example, if you drag
a Browser Capabilities object onto your page, the editor creates an object tag that looks
like this:

<OBJECT RUNAT=server PROGID=MSWC.BrowserType id=OBJECTl><IOBJECT>

Tip Change the object's ID to something meaningful. For example, in this case you
might change it to oBType.

Programmer's Guide 413

Appendix A Troubleshooting

After the object has been instantiated with the <OBJECT> block, you can reference it in
your script using its ID. The following excerpt from a page shows how you might use the
object created above:

Your browser is <%=oBType.browser%>. version <%=oBType.version%>.
<p>
Your browser supports these programming languages:

<%If oBType.javascript Then%>

JavaScript
<% End If %>
<%If oBType.VBScript Then%>

VBScript
<% End If %>
<!UL>

Note If the object you are working with is available on the computer where Visual
InterDev is installed, you will get statement completion for the object's properties,
methods, and events when you are scripting. For example, if Visual InterDev is
running on the same computer as HS, Visual InterDev has access to the objects on the
Server Objects tab.

You can find information about using server objects and about individual objects in the
Microsoft Developer Network and elsewhere, as listed in the following table.

For information about

Using server objects

ADO Command
ADO Connection
ADO Recordset

Note Server ADO objects are not part
of the Visual Inter Dev data-binding
model. To bind Visual InterDev design
time controls to a database, use the
Recordset design-time control.

414 Programmer's Guide

See this location in MSDN and elsewhere

Tools and Technologies
Active Server Pages
Using Scripting Languages
Using Components and Objects

Database and Messaging Services
Microsoft Data Access SDK
Microsoft ActiveX Data Objects
ADO Programmer's Reference
Getting Started with ADO
Getting Started With ADO 2.0

(continued)

For information about

Ad Rotator
Browser Caps
Content Linking
My Info

Dictionary FileSystem

CDONTS NewMail
CDONTS Session

Index Server Utility
Index Server Query

MSMQ
MSMQMail

Appendix A Troubleshooting

See this location in MSDN and elsewhere

Platform SDK
Intemet/lntranet/Extranet Services
Active Server Pages
Installable Components for ASP

See also "Creating Portable Script" in Chapter 25, "Scripting with
HTML Elements." For an example using the Ad Rotator object,
see the Random Ad Sample in the Visual Interdev online
documentation.

Visual Studio Documentation
Reference
Language References
VBScript Language Reference
Objects

Platform SDK
Intemet/lntranet/Extranet Services
Active Server Pages
Installable Components for ASP
Collaboration Data Objects for NTS Component

These objects are described in the Index Server documentation.
To display the documentation, follow this path from the Windows
Start menu on the server where IIS is installed:

Programs
Windows NT 4.0 Option Pack
Product Documentation

In the documentation, follow this path:

Microsoft Index Server
Building Search Forms
Active Server Pages

Platform SDK
Networking and Distributed Services
Microsoft Message Queue Server (MSMQ)
MSMQ Reference
MSMQ ActiveX Components
MSMQ Mail ActiveX Components

Programmer's Guide 415

Appendix A Troubleshooting

Passing Parameters for Page Object Methods
When you pass parameters to method on page objects, and if the call results in a trip to or
from the server, the parameters are converted to strings. This is required in order for the
parameters to be passed via http protocol between pages.

If you write a method that takes parameters that require a particular data type, you should
always check the data type and convert it if necessary. For example, the following function
in a page object takes a parameter that must be treated as a number. The function therefore
converts it before using it.

Sub SubmitBid(BidAmount)
errorCode = 1111

iBidAmount = Cint(BidAmount
If iBidAmount < 0 then

errorCode = INVALIDBID
End if
' etc.

End Sub

For more details, see "Writing Script for Script Objects" in Chapter 24, "Scripting with
Design-Time Controls and Script Objects."

416 Programmer's Guide

Appendix A Troubleshooting

Specifying Timeline Events
After adding the Timelines control to a page, you need to add script that specifies the
events you named in the control's property pages. For example, the control in the figure
below has two timelines specified. TimeLinel has two events, ActionA and ActionB.
TimeLine2 has only ActionX. To simplify the example, the events cause an alert to appear.

i

I---...-~----~.;.;.;......-......--------~~---;.;;;;;.;;,;------~
I

I

I

<SCRIPT language="jscript">
<!--Specify details of each action--->
function TirneLinel_ActionA(){

alert (1 Action A of TirneLinel now playing. 1
);

function TirneLinel_ActionB(){
alert (1 Action B of TirneLinel now playing. 1

);

function TirneLine2_ActionX(){
alert (1 ActionX of TirneLine2 now playing. 1

);

}

</SCRIPT>I

For more information, see "Timelines Design-Time Control" in online Help.

Testing Page Transitions
Since a page transition plays when you move from one page to another, you can only view
the transitions in a Web browser. Quick View of the editor does not play transitions.

To view the results of enter transitions, use your Web browser to start with a page and then
open the page with the transition.

To view the results of exit transitions, open the page with the transition and then open
another page.

For more information, see "PageTransitions Design-Time Control" in online Help.

Programmer's Guide 417

Appendix A Troubleshooting

Debugging
This section includes information about debugging client and server script as well as notes
about SQL debugging.

Enabling ASP Debugging on the Server
You can debug script in an ASP page only if debugging is enabled for your application
(project) on the IIS server. If you start a debugger session by launching the page from
within your project, Visual InterDev can automatically enable debugging on the server
as described under "Enabling Server Script Debugging for ASP Pages" in Chapter 26,
"Debugging Your Pages."

However, setting these options might not allow you to debug in these situations:

• You want to attach to a document (process) already running on the server.

• You want to launch the debugger in response to an error detected at run time
(just-in-time debugging).

To debug in these situations, you must manually enable debugging for your application
your application on the server.

To manually enable debugging for an llS application

1. On the server, start Microsoft Management Console (MMC) using this path from the
Windows Start menu: Programs\ Windows NT 4.0 Option Pack\Microsoft Internet
Information Server\Internet Service Manager.

2. Open the node for your server.

Right-click your project (application) and then choose Properties.

In the Directory tab under Application Settings, check Run in separate memory space,
which causes your application to run out-of-process. Choose Apply. This might take a
short while.

3. Choose Configuration, and then in the Application Configuration dialog box, choose
the App Debugging tab.

4. Under Debugging Flags, check Enable ASP server-side debugging and Enable ASP
client-side debugging, and then close all dialog boxes.

Disabling debugging is the reverse of Steps 3 through 5.

Do not leave debugging options on permanently, because they can affect performance. For
details, see the section "Performance Issues while Debugging Server Script" later in this
appendix.

418 Programmer's Guide

Appendix A Troubleshooting

Browser Displays Wrong Page when Debugging
If you launch the debugger and the browser displays the wrong page - that is, not the
page you want to debug - return to Visual Inter Dev and make sure that the page you want
to debug is set as the project's start page.

Just-In-Time Debugging of Server Pages
If a debugger is installed on the server, the server will not pass server script syntax or
run-time errors through to the client. Instead, it will stop page processing and display a
message on its own computer's monitor prompting to launch the debugger. The server can
launch either the Script Debugger installed with Microsoft Internet Information Server
(IIS), or if it is installed, the Visual InterDev debugger.

If you can watch the monitor on the computer running the server, you can respond to the
message and debug locally on the server. However, if you cannot watch the server
computer's monitor, you might prefer that the server pass error information through to the
client so you can use remote debugging to find and fix the error.

To do so, you must remove all debuggers on the server. Uninstall the Script Debugger if
it is installed. Similarly, make sure that Visual InterDev and other Visual Studio tools are
not installed on the server. However, you must be sure that the Remote Debug Manager
remains installed, or you will not be able to debug on the server at all.

Evaluating Expressions in the Debugger
While debugging, you can evaluate any expression dynamically by selecting it in the editor
and then pointing the mouse cursor at it. The expression is evaluated and the results are
displayed in a Tooltip. Alternatively, you can right-click the expression and add it to the
Watch window.

However, you must be careful about evaluating expressions that can affect your debug
session or even your Visual InterDev session. For example, if you select the expression
Session.Abandon, the debugger will evaluate the expression and your current session will
be abandoned.

Resetting Debugger Options
After Abnormal Termination
If Visual InterDev is set to automatically enable server debugging, it reads the current
debugger settings on your Microsoft Internet Information Server (IIS) the first time
you debug an ASP page after opening a project. If required, Visual InterDev enables
debugging, including moving the IIS application out of process. When you finish your
debugging session, Visual InterDev restores the settings to what they were earlier.

Programmer's Guide 419

Appendix A Troubleshooting

However, if Visual InterDev quits while you are debugging - for example, if the
computer loses power suddenly - the original settings are lost. When you next start
Visual Inter Dev, it again reads the server debugging settings, but they might reflect the
settings that were left when Visual InterDev quit abnormally.

If this has occurred, and you want the settings to be different from how they were left, you
must manually reset them in IIS. In particular, if you want to disable ASP debugging and
reset the application to run in-process, you must change these options yourself. For details,
see "Enabling ASP Debugging on the Server" earlier in this appendix.

Performance Issues while Debugging Server Script
Enabling debugging on Microsoft Internet Information Server (IIS) can affect the
performance of your projects in several ways.

Visual InterDev offers options that automatically enable server debugging on your IIS
application (your Visual InterDev project). The first time you launch the debugger after
opening the project, Visual InterDev checks the IIS debugger options for your project,
and if they are not set, sets them. You can reduce this setup time slightly by using the IIS
Microsoft Management Console (MMC) application to manually enable debugging
for your application, as described in "Enabling ASP Debugging on the Server," earlier in
this appendix.

When debugging is enabled on the server, it can affect the server's performance. It is
recommended that you enable debugging only when you need it, and that you never
enable debugging on a live production server. For details about debugging server script,
see "Debugging Server Script" in Chapter 26, "Debugging Your Pages."

Do not use Active Desktop mode of Internet Explorer while you are debugging. Doing
so can have two effects. First, the debugger will monitor all applications running from
the Desktop, which can affect performance. Second, problems that might arise during
debugging that would ordinarily require you only to reboot Internet Explorer might
require you to reboot Windows.

Unable to Install SQL Debugging Component
If the BackOffice installation wizard reports that it cannot install SQL Debugging,
check that you have installed Service Pack 3 or higher for the SQL server.

420 Programmer's Guide

Appendix A Troubleshooting

Troubleshooting SQL Debugging
If an error occurs while you are trying to use SQL debugging, try one of the following tips:

• If SQL Server is configured to log on as System Account, you will not be able to use
SQL debugging.

• Errors on the server are written into an event log. To view the log, from the Windows
Start menu on the server, choose Programs, then Administrative Tools, and Event
Viewer. Open the Application log, and then look for SQLDebugging98 under Source.
It is sometimes also useful to check the System log.

o If you are unsure whether you have the correct setup on your server, look for the file
MSSDI98.DLL in the Bin folder of your SQL Server installation.

If you cannot get SQL debugging to work on a Windows 95 workstation, confirm that the
client DCOM settings are correct.

To check the DCOM configuration on a Windows 95 client computer

o Using Regedit.exe, check the following settings in the Windows Registry under the key
HKEY _LOCAL_MACHINE\SOFfW ARE\Microsoft\OLE:

o EnableDCOM should be set to Y.

• EnableRemoteConnet should be set to Y.

If they are not set correctly, change them, and then restart the computer.

Evaluating SQL Variables in the Debugger
If you are debugging stored procedures or triggers, and if you click a variable with an"@"
prefix, the debugger adds it to the Watch window without the @ prefix. Edit the name of
the variable in the window to add the @ prefix back in.

Migrating from Visual InterDev 1.0 to
Visual InterDev 6.0

You can easily migrate your Microsoft Visual InterDev 1.0 projects to Microsoft
Visual InterDev 6.0.

The Web applications you created with Visual InterDev 1.0 will continue to run in
Visual InterDev 6.0. In fact, if members of your Web development team are still using
Visual InterDev 1.0, they can view the application files even after you have upgraded to
the new version of Visual InterDev.

This cross-version compatibility is a key feature of Microsoft Visual Studio components.
However, Visual InterDev 6.0 offers a greatly enhanced HTML editor, a new toolbox of
design-time controls and integrated debugging that others will also want to use.

Programmer's Guide 421

Appendix A Troubleshooting

For information about important issues when migrating existing Web applications from
Visual InterDev 1.0, see the following sections:

• Server Upgrades in Visual InterDev 6.0

• Data Connection Differences between Visual InterDev 6.0 and Visual InterDev 1.0

• Differences between Visual InterDev 6.0 and Visual InterDev 1.0 Design-Time
Controls

Server Upgrades in Visual lnterDev 6.0
Visual InterDev 6.0 includes enhanced server software capability. All the software needed
to upgrade your server is contained on the Visual InterDev 6.0 installation compact disc.
Because the upgraded server software is designed to work with Visual InterDev 1.0, you
will still be able to open Visual InterDev 1.0 projects after installing the new server
extensions.

Note The server extensions upgrade is required to run Visual InterDev 6.0.

Enhanced Server Extensions
To take advantage of many of the new features in Visual Inter Dev 6.0, you need to run
the Visual InterDev 6.0 Server Setup to upgrade your server extensions. Many new and
improved features in version 6.0 are dependent upon the latest server extension software.
For example, the Visual InterDev 6.0 Scripts in Web Applications, Data Environment,
Design-Time Controls, and Data Commands all use the upgraded server capability to
simplify Web application development. These features are only supported after you run
the Visual InterDev 6.0 Server Setup program.

Note Only the server requires the new server extensions. You do not need to load the
server software on the client machine.

Microsoft Internet Information Server 4.0

In addition to the Visual InterDev 6.0 Server Setup, to run the Microsoft Visual InterDev
debugger you need to install Microsoft Internet Information Server 4.0. Internet
Information Server 4.0 is included with your Visual InterDev software and with
Microsoft Windows NT 5.0.

You can use the Visual Inter Dev debugger to test scripts written in Microsoft Visual Basic
Scripting Edition (VBScript) and Microsoft JScript, as well as applications written in Sun
Microsystems Java and run using the Microsoft Java Virtual Machine (VM). For more
information about the debugger, see Chapter 26, "Debugging Your Pages."

If you have installed an alternative scripting language that supports the Microsoft
debugging protocol, such as REXX or Perl, you can also debug scripts in that language.

422 Programmer's Guide

Appendix A Troubleshooting

Data Connection Differences between
Visual lnterDev 6.0 and Visual lnterDev 1.0
A data connection provides your Visual InterDev project with access to a particular
database. Once you are connected to a database, you can display or edit data on your Web
page in Visual Inter Dev.

In Visual InterDev, to connect to a database, you first create a data source name (DSN) for
the database or choose an existing one. Then, you use the DSN to create a data connection
and add it to your project. However, there has been a fundamental change in the way the
data connections are stored in the Visual InterDev project with this new release.

In Visual InterDev 1.0, established data connections are identified by session variables
within your project. You can see the session variables by opening your project's Global.asa
file.

In Visual InterDev 6.0, data connections are identified in application variables within your
project. You can see the application variables in your project's Global.asa file. You can
also use the new Data Environment to edit the application variables for each data
connection. For more information about using the new data environment, see "The Data
Environment" in Chapter 18, "Database Concepts."

When you first open a Visual InterDev 1.0 project in Visual InterDev 6.0, the data
connections are automatically converted from session to application variables. The
session variables that were defined in Visual InterDev 1.0 remain in the Global.asa file,
but they are only used with the DTC components that shipped in Visual InterDev 1.0.

Defining data connections as application variables is better, faster, and requires fewer
resources than the version 1.0 method. When you use the version 6.0 application variables,
each data connection can be shared between all the users accessing your application. This
is an improvement over the version 1.0 session variables where each user must recreate the
data connection variables.

There are, however, issues you should be aware of when working with Visual InterDev
projects in different versions.

• Opening Visual InterDev 1.0 Projects with Data Connections in Visual InterDev 6.0

o Opening Visual InterDev 6.0 Projects with Data Connections in Visual InterDev 1.0

Programmer's Guide 423

Appendix A Troubleshooting

Opening Visu~l lnterDev 1.0 Projects with
Data Connections in Visual lnterDev 6.0
When you open a Visual InterDev 1.0 project in Visual InterDev 6.0, all the project's data
connections are automatically converted from session variables to application variables.

The session variables created in Visual InterDev 1.0 remain visible in your Global.asa file
but are not used by Visual InterDev 6.0. Additionally, new application variables defining
your data connections are added to your project's Global.asa file.

Therefore, data connection information actually appears twice in the Global.asa file so that
both versions will continue to work properly.

In Visual InterDev 1.0, the data connection is defined by session variables in the
Global.asa file, as in the script below.

Sub Session_OnStart
'==Visual InterDev Generated - DataConnection startspan==
'-Project Data Connection
Session C"NorthWind_ConectionString")="DBQ=E:\NorthWind.mdb:

DefaultDir=E:\:Driver={Microsoft Access Driver (*.mdb)};
Driverid=25;FIL=MSAccess:ImplicitCommitSync=Yes:MaxBufferSize=512:

MaxScanRows-8:PageTimeout=5:SafeTransactions=0:Threads=3:UID=admin:UserCommitSync=Yes:"
SessionC"NorthWind_ConnectionTimeout") = 15
SessionC"NorthWind_CommandTimeout") = 30
SessionC"NorthWind_RuntimeUserName") = "admin"
SessionC"NorthWind_RuntimePassword") = ""
==Visual InterDev Generated - DataConnection endspan==
End Sub

When you open your Visual InterDev 1.0 project in Visual InterDev 6.0, the following
message informs you that data connections are being converted into application variables
in the Global.asa file.

Visual Studio . '.- , . , II 1.

I! ;::o~e6i~bredatacor1necticl~sJsingapfeSfou~for~~thaJebeenfoundandwill be eutbMatically:
I~ ·~6nv~re~J?rYO~.i:IM ?Id sc~ip)ing ~ill.pe pr~seiy~d sciYo.ufpages cufrently usinglhe dfite. ; .•..• . .. · ..• '
l~;;;;R9n~~~itjg~:~1.1. ~?~~irH.~.·~a,·~qr~ T9 p~•~.!r:el1eqa~~~ q17t;~iehyi~onme,n~Jefre~h t;i~ydata .comfllan9 ····::
i!f;'~.~9. qc:ta51:1nges m yburprOJl?ct i;md rt:ir,nove the .old .scnptmg fr9r,n·the Glob,,al.asa file; < · .. : ;- .• •..•..• L >

[J/ii~·;i .• ••, . : . : ·, 1!.1Efffu~r2l 2
.• ·. • '' ..

424 Programmer's Guide

Appendix A Troubleshooting

When you view your project's Global.asa file in Visual Inter Dev 6.0, your data connection
is now defined by application variables, as well as by the original session variables, as it is
in the example script below.

Sub Application_OnStart
'==Visual InterDev Generated - DataConnection startspan==
'-Project Data Connection
Application ("NorthWind_ConectionString")~"DBQ~E:\NorthWind.mdb:

~ DefaultDir=E:\:Driver={Microsoft Access Driver (*.mdb)}:Driverid=25:
~ FIL=MSAccess:ImplicitCommitSync=Yes;MaxBufferSize=512: MaxScanRows=8:
~ PageTimeout=5:SafeTransactions=0:Threads=3:UID=admin:UserCommitSync=Yes:"

Application ("NorthWind_ConnectionTimeout") = 15
Application ("NorthWind_CommandTimeout") = 30
Application ("NorthWind_RuntimeUserName") = "admin"
Application ("NorthWind_RuntimePassword") = ""
==Visual InterDev Generated - DataConnection endspan==
End Sub

Sub Session OnStart
'==Visual InterDev Generated - DataConnection startspan==
'-Project Data Connection
Session ("NorthWind_ConectionString")="DBO=E:\NorthWind.mdb:

~ DefaultDir=E:\:Driver={Microsoft Access Driver (*.mdb)}:Driverid=25:
~ FIL=MSAccess;ImplicitCommitSync=Yes;MaxBufferSize=512;MaxScanRows=8;
~ PageTimeout=5:SafeTransactions=0:Threads=3:UID=admin:UserCommitSync=Yes:"

Session("NorthWind_ConnectionTimeout") = 15
Session("NorthWind_CommandTimeout") = 30
Session("NorthWind_RuntimeUserName") = "admin"
Session("NorthWind_RuntimePassword") = ""
==Visual InterDev Generated - DataConnection endspan==
End Sub

If you open the Web application again in Visual InterDev 1.0, version 1.0 ignores the new
application variables and uses the original session variables whenever a data connection is
made.

Visual InterDev 6.0 ignores the existing session variables and uses the new application
variables whenever a data connection is made.

Programmer's Guide 425

Appendix A Troubleshooting

Opening Visual lnterDev 6.0 Projects with
Data Connections in Visual lnterDev 1.0
When you create data connections in Visual InterDev 6.0 projects, the data connections
are defined in application variables within the project's Global.asa file. These application
variables are the only place the data connections need to be defined if you are only going
to open the project in Visual InterDev 6.0.

Visual InterDev 1.0 will not automatically interpret the data connections defined in a
Visual InterDev 6.0 project.

If you create projects in Visual Inter Dev 6.0 that you want to open in Visual InterDev 1.0,
you must manually redefine your project's data connections so they are
Visual InterDev 1.0 compliant. To be Visual InterDev 1.0 compliant, your data
connections must be defined in session variables as well as in application variables.

Redefining your project's data connections so they are Visual InterDev 1.0 compliant is
easy and can be done in two ways:

• Adding Data Connections in Visual InterDev 1.0

• Copying Application-Defined Data Connections to Session-Defined Data Connections

Adding Data Connections in Visual lnterDev 1.0

The simplest way to redefine your Visual InterDev 6.0 data connections so they are
Visual InterDev 1.0 compliant is to open the project in Visual lnterDev 1.0, and add
the data connections as if they were new.

This procedure will automatically generate the session-defined data connections that
are required for Visual InterDev 1.0. It will not modify the application-defined data
connections that are required for Visual InterDev 6.0.

To add a data connection to your Web project in Visual lnterDev 1.0

1. Open your Visual InterDev 6.0 project in Visual InterDev 1.0.

2. Select the project in File View.

3. On the Project menu, click Add to Project, and then click Data Connection.

4. In the Select Data Source dialog box, choose the existing DSN that you connected to
in Visual InterDev 6.0.

5. Log on to the data server if required.

Your data connection is now available for use with Visual InterDev 1.0.

426 Programmer's Guide

Appendix A Troubleshooting

To verify your data connection properties in Visual lnterDev 1.0

1. Close the Global.asa file if it is open in the editor.

2. Expand the Global.asa icon in File View.

3. Right-click the name of the data connection, and click Properties.

4. Verify that the data connection properties are the same as the properties you set for the
data connection in Visual InterDev 6.0.

Your Visual InterDev 6.0 project now has data connections that will work properly in both
Visual InterDev 1.0 and Visual InterDev 6.0.

Copying Application-Defined Data Connections
to Session-Defined Data Connections

If you want to make your Visual InterDev 6.0 project work correctly in
Visual InterDev 1.0 without first opening the project in Visual InterDev 1.0, you
can manually copy the application-defined data connections to session-defined
data connections within the Visual InterDev 6.0 Global.asa file editor.

To copy the application-defined data connections to session-defined data-connections

1. Open your project's Global.asa file in the Visual InterDev 6.0 editor.

2. Find the Application_OnStart script command that defines the data connection.

The code will resemble the example below.

Sub Application_OnStart
'==Visual InterDev Generated - DataConnection startspan==
'-Project Data Connection
Application ("NorthWind_ConectionString")="DBO=E:\NorthWind.mdb;
DefaultDir=E:\;

~ Driver={Microsoft Access Driver (*.mdb)};Driverid=25;FIL=MSAccess;
~ ImplicitCommitSync=Yes;MaxBufferSize=512;MaxScanRows=8;PageTimeout=5;
~ Sa f eTransa ct i ons=0; Th reads=3; U ID=admi n; UserCommi tSync=Yes;"

Application ("NorthWind_ConnectionTimeout") = 15
Application ("NorthWind_CommandTimeout") = 30
Application ("NorthWind_RuntimeUserName") = "admin"
Application ("NorthWind_RuntimePassword") = ""
==Visual InterDev Generated - DataConnection endspan==
End Sub

3. Copy the entire application-defined data connection code and paste it back into your
Global.asa file, so that the code defining the data connection appears twice.

Programmer's Guide 427

Appendix A Troubleshooting

4. Manually change the highlighted lines in the second instance of the data connection
definition to create a session-defined data connection in your Global.asa file, as shown
in the example below.

Sub Application_OnStart
'==Visual InterDev Generated - DataConnection startspan==
'-Project Data Connection
Application("NorthWind_ConectionString")="DBO=E:\NorthWind.mdb;DefaultDir=E:\;

~ Driver={Microsoft Access Driver (*.mdb)};Driverid=25;FIL=MSAccess;
~ ImplicitCommitSync=Yes;MaxBufferSize=512;MaxScanRows=8;PageTimeout=5;
~ SafeTransactions=0;Threads=3;UID=admin;UserCommitSync=Yes;"

ApplicationC"NorthWind_ConnectionTimeout") = 15
Application("NorthWind_CommandTimeout") = 30
Application("NorthWind_RuntimeUserName") = "admin"
Application("NorthWind_RuntimePassword") = ""
==Visual InterDev Generated - DataConnection endspan==
End Sub
Sub Session_OnStart
'==Visual InterDev Generated - DataConnection startspan==
'-Project Data Connection
Session C"NorthWind_ConectionString")="DBO=E:\NorthWind.mdb;DefaultDir=E:\:

~ Driver={Microsoft Access Driver (*.mdb)};Driverid=25;FIL=MSAccess;
~ ImplicitCommitSync=Yes;MaxBufferSize=512;MaxScanRows=8;PageTimeout=5;
~ SafeTransactions=0;Threads=3;UID=admin;UserCommitSync=Yes;"

Session("NorthWind_ConnectionTimeout") = 15
SessionC"NorthWind_CommandTimeout") = 30
Session("NorthWind_RuntimeUserName") = "admin"
Session("NorthWind_RuntimePassword") = ""
==Visual InterDev Generated - DataConnection endspan==
End Sub

You have now successfully modified your Visual InterDev 6.0 project so that the data
connections are Visual InterDev 1.0 compliant.

Differences between Visual lnterDev 6.0 and
Visual lnterDev 1.0 Design-Time Controls.
In Visual InterDev 6.0, several product enhancements combine to create a richer, faster,
more robust environment for using design-time controls (DTCs). In Visual InterDev 6.0,
you'll find a new set of DTCs that include enhanced design-time user interfaces for run
time effects. In addition, the philosophy behind the DTCs is expanded to allow you to code
against the programming model as opposed to just coding script.

Your Visual InterDev 1.0 Legacy DTCs will continue to function when your
Visual InterDev 1.0 project is opened in Visual InterDev 6.0, but the approach to using
DTCs has changed since the previous version of Visual InterDev. For more information
about using DTCs, see "Scripts in Web Applications" in Chapter 23, "Scripting Concepts";
Chapter 24, "Scripting with Design-Time Controls and Script Objects"; and "Installing a
Script Library for Design-Time Controls," later in this appendix.

428 Programmer's Guide

Appendix A Troubleshooting

In general, the Visual InterDev 6.0 design-time controls offer you a richer, more visual
editing interface for creating data-enriched pages. Data-bound controls make it simple to
incorporate data in your ASP or HTML pages to interact with your database.

The controls included with this version of Visual InterDev allow you to target a wide range
of browsers, or to narrow your focus to the rich dynamic HTML available in Microsoft
Internet Explorer 4.0. For more information about the data-bound controls, see Chapter 24,
" Scripting with Design-Time Controls and Script Objects."

The Data Environment

In addition to the increased variety and functionality of DTCs in Visual InterDev 6.0,
creating and modifying data-related objects is now collected in one place: the graphical
data environment. The data environment will affect the way you use and think about
yourDTCs.

In the data environment, you can drag and drop objects onto ASP pages to automatically
create data-bound design-time controls. The data environment provides a standard
interface for creating reusable data-related objects and for placing them on Web pages.

Before creating new projects in Visual InterDev 6.0, and in order to take full advantage of
the Visual InterDev 6.0 DTCs, you should become acquainted with the data environment
and explore how it will affect your project plans.

Installing a Script Library for Design-Time Controls
The script library is a repository for code generated by Visual InterDev 6.0 design-time
controls. Although this library was not part of the Visual InterDev 1.0 release, it is required
by the Visual InterDev 6.0 Programming Model.

When using Design-Time Controls in Visual InterDev 6.0 projects, it is important that the
script library be present in order for your Visual InterDev 6.0 design-time controls to
function correctly.

When you first open a Visual InterDev 1.0 Web application in Visual InterDev 6.0, the
following message box will prompt you to install the script library.

. ·~ . ' .. : ... ~ .. ' ,

The Visual lnterDev Script Library is not installed on the existing web, The Script Li~rat){is·r~quired for'•
1
• • developers who work with Design Time Controls. It is recommended that this library be installed. Install •

i: the script library? .
I·
l·
h.

Click Yes to install the Script Library.

If you choose not to install the Script Library, your project's design-time controls will not
be able to find the code they are intended to generate and errors can occur.

Programmer's Guide 429

Appendix A Troubleshooting

If you choose No when asked to install the Script Library, then you later change your mind

1. Create a folder in your Web project folder called _ScriptLibrary.

2. Copy the contents of the Microsoft Visual Studio\VIntDev98\ScriptLibrary folder to
the _ScriptLibrary folder.

Note It is important that the new folder has the name _ScriptLibrary.

Once the new folder is created and the contents of the script library are copied into it, your
Visual InterDev 1.0 projects will be able to use design-time controls when opened in
Visual InterDev 6.0.

430 Programmer's Guide

APPENDIX B

Visual InterDev Glossary

A

absolute positioning

The ability to specify the location of an element on an HTML page using x and y
coordinates within the current window. In contrast, if an element is not positioned
absolutely, its vertical position on the page is determined by where it appears in
the HTML text, and its horizontal position is determined by properties such as the
<CENTER> tag or the ALIGNMENT attribute.

ADO

ActiveX Data Objects. A cross-language technology for data access that exposes an
object model incorporating data connection objects, data command objects, Recordset
objects, and collections within these objects. The ADO object model provides an
easy-to-use set of objects, properties, and methods for creating script that accesses
data in databases.

alternate text

The text that is displayed as a substitute when certain HTML elements cannot be used.
For example, if a browser does not display graphics, it will display the alternate text
specified for a .gif file .

. asa file

Active Server page containing session global variables.

See .asp file and Global.asafile .

. asp file

An Active Server Page (ASP) file that includes server script to be executed by
Microsoft Internet Information Server (IIS). The .asp extension on the file alerts the
server that it should process the file before sending it to the browser. After the server
script in an .asp file has been processed by the server, the file is sent to the browser,
in the same manner as an .htm file.

Programmer's Guide 431

Appendix B Visual InterDev Glossary

8

broken link
A reference to an item that cannot be located because the URL is not valid, the item the
link points to doesn't exist, or the server containing the item is busy or having other
technical difficulties.

browser

c

Software that interprets the markup of HTML files posted on the World Wide Web,
formats them into Web pages, and displays them to the user. Some browsers can also
open special programs to play sound or video files in Web pages if you have the
necessary hardware.

child page
A page with a parent page in a site diagram.

client script
A script that is executed by the browser on a user's computer. Client scripts are part
of a page, and are sent to the browser when a user requests the page. Client scripts
typically run in response to an event, such as when the page loads or when the user
clicks a button, and are used to change the appearance of the page or to validate
information entered by the user.

collapsed item

An item whose in and out links do not appear in the link diagram.

Compare with expanded item.

compile-time error

See syntax error.

control

An item, such as a button, on an HTML page that can be manipulated by the user
to perform an action.

432 Programmer's Guide

Appendix B Visual InterDev Glossary

cookie

A small packet of information used to store persistent state information on the
user's computer .

. css file

D

A text file that contains cascading style sheet information.

See style sheet.

data command

An object in the data environment that contains information about accessing a
particular database object. For example, one command object might point to a table,
another to a stored procedure, and a third to an SQL command.

Command objects are accessible in script, which allows you to open or execute the
underlying data object in script. Data command objects are also reusable, so that
if the underlying database changes, you can make a change to the command object,
and all pages that reference the object will work properly.

For more information, see Chapter 18, "Database Concepts."

data connection

A collection of information required to access a specific database. The collection
includes a data source name (DSN) and logon information. Data connections are
stored in the data environment for a project and are activated when the user performs
an action that requires access to the database.

For example, a data connection for a Microsoft SQL Server database consists of
the name of the database, the location of the server on which it resides, network
information used to access that server, and a user ID and password.

For more information, see "Connecting to a Database" in Chapter 3, "Database
Basics," and Chapter 18, "Database Concepts."

data environment

A repository in your Microsoft Visual InterDev Web project that holds the information
required to access data in databases. The data environment contains one or more data
connections. Each data connection can reference one or more data commands that
represent a method for querying or modifying the database.

Programmer's Guide 433

Appendix B Visual InterDev Glossary

Because data connection and data command information can be shared by multiple
Web pages in your project, the data environment is managed as part of the project's
Global.asa file.

For more information, see "The Data Environment" in Chapter 18, "Database
Concepts."

database diagram

A graphical representation of any portion of a database schema. A schema is a
description of a database to the database management system (DBMS), generated using
the data definition language provided by the DBMS. A database diagram can be either
a whole or partial picture of the structure of a database; it includes objects for tables,
the columns they contain, and the relationships between them.

database object

A table, column, stored procedure, or other element of a database that you can work
with as a discrete item.

database project

A project you can add to your Microsoft Visual InterDev solution that provides you
with a live connection to a database and that includes tools for managing and querying
the database. You can use a database project to create and modify tables, columns,
views, indexes, queries, and other database objects.

A database project can exist in the same solution as a Web project, and you can be
working in both projects at the same time. However, the two types of projects are not
connected - to add database ~unctionality to your Web application, you make data
connections separately from the Web application's project.

dependent project

A Microsoft Visual Studio project with outputs that are specified as part of a Web
project. For example, Microsoft Visual J++ projects can be added to a Web project as a
dependent project and built while in Microsoft Visual InterDev.

deployment

The process completed by a developer to copy Web pages and associated files to a
publicly available server; publication, propagation, or distribution of Web content.
This process can be as simple as copying the files or may include building dependent
projects.

For more information, see Chapter 28, "Web Application Deployment."

434 Programmer's Guide

Appendix B Visual lnterDev Glossary

design-time control

A control in Microsoft Visual InterDev that presents a graphical interface at design
time (including properties you can set in the Properties window), but which at run time
generates HTML text, script objects, and sometimes other components to implement
the functionality you are designing.

Design-time controls include standard user-interface elements - text box, label, check
box, list box, command button, and so on, and controls that have no visual appearance
but generate a run-time object (such as a Recordset object). Design-time controls also
provide data binding capability.

For more information, see Chapter 24, "Scripting with Design-Time Controls and
Script Objects."

DHTML

Dynamic HTML. An extension of HTML supported in Microsoft Internet Explorer 4.0
that exposes a Web page and all the elements on it as scriptable objects. DHTML
allows you to dynamically change the appearance, content, and behavior of a Web page
directly in client script, without running server script.

DHTML is useful in Visual InterDev for creating Web applications that incorporate
multimedia effects and client access to databases.

document

E

A file associated with an application, such as Microsoft Word or Microsoft
PowerPoint.

executable file

Files representing programs, applications, batch files, scripts, and DLLs.

expanded item

An item whose in and out links appear in the link diagram.

Compare with collapsed item.

external icon

The graphical representation of an item in Link View that is not part of the current
project. An external icon shows an image of the item type superimposed over a globe
representing the World Wide Web.

Programmer's Guide 435

Appendix B Visual InterDev Glossary

external item

An item that is not part of the current project.

external page

A page that is not part of the current Web project. External pages cannot have child
pages in a site diagram.

extranet

An area of a Web site available only to a set of registered visitors.

F

filter

G

A means of excluding information that does not match a predefined set of
specifications.

Global.asa file

A file maintained on a Microsoft Internet Information Server (IIS) for each application.
This file is processed automatically by the server when:

• The IIS application starts and stops.

• Individual users start and stop browser sessions that access the application's
Web pages.

The Global.asa file typically contains scripts to initialize application or session
variables, connect to databases, send cookies, and perform other operations that pertain
to the application as a whole.

global navigation bar page

A page that will appear on the global navigation bar as a link. You must have the
PageNavbar design-time control (DTC) in the file or a layout applied to the site to
get full use of this option.

global script

Client script that is not part of an event-handling procedure or called function,
but instead is executed immediately when a page is processed.

436 Programmer's Guide

Appendix B Visual InterDev Glossary

H

horizontal layout
A link diagram that displays all in links to the left of the expanded item and displays
all out links to the right of the expanded item .

. htm file
A file containing HTML text and possibly client script. Microsoft Visual InterDev also
recognizes files with an .html extension.

See also .asp file.

HTML page
A Web page authored using HTML (Hypertext Markup Language) such as an .htm file
or an .asp file.

in link
A link that points into an expanded item, indicating that the item at the other end of the line
links to the expanded item.

independent page
A page with no parent pages or child pages in a site diagram.

inline script

Server script that is interspersed with HTML text or client script in order to feed
information from the server into a document.

When referring to client script, "inline" is a synonym for global script.

internal icon
The graphical representation of an item in Link View that is part of the current project.
An internal icon shows an image representing the item type such as HTML page,
multimedia file, and so on.

internal item

An item that is part of the current project.

Programmer's Guide 437

Appendix B Visual InterDev Glossary

item

J

A resource that makes up a Web site. Link View represents the following types of
items with graphical icons:

• HTML pages • Data range headers

• Stylesheets • Conditional range headers

• Active Server Pages (*.asp) • Generic designer controls

• Global.asa files • Microsoft Word documents

• Active layouts • Microsoft Excel spreadsheets

• Images • Microsoft PowerPoint files

• Image maps • Other applications

• Audio files • Other text files

• Video files • Mail to

• Virtual reality files • News

• Executable files • Telnet

• Data connections • Unknown

• Data commands

just-in-time debugging

L

The ability of Microsoft Visual Studio to automatically invoke the debugger when an
error is encountered in a script.

For more information, see "The Script Debugging Process" in Chapter 23, "Scripting
Concepts."

layout

A template for the way that information, navigation bars, and graphics are positioned
on a page.

438 Programmer's Guide

Appendix B Visual InterDev Glossary

link

The relationship between items in a Web site. Links can be hyperlinks between
pages or references to files that are included in a page, such as graphics. Link View
determines the links for an item based on the HTML tags and attributes in a page.

Links are represented by a line in a link diagram. The origin of the link is indicated by
a nub; the direction of the link is indicated by an arrow.

rNub Arrow 1
Q ~

link diagram

A graphical representation of the structure of a Web site. Link diagrams use icons to
represent items, such as HTML pages, in a Web site and lines to represent the links
between items.

For more information, see "Laying Out Pages" in Chapter 17, "Customizing Page
Appearance."

local file

A read-only copy of the master file, available on the local Web server. A local file is
noted in the Project Explorer by a light blue padlock icon as shown in the .htm file
example below:

If the file is under source control, it is noted by this icon:

For more information, see "Project Architecture" in Chapter 6, "Web Project
Concepts," and Chapter 7, "Working Locally."

local mode

The state of a project in which changes made to files are saved to the developer
workstation's copies of the file residing in the local Web application and not to the
master Web application. The master Web application must be updated explicitly by
releasing the working copy or synchronizing the project. Local mode is noted in the
Project Explorer by this icon:

Programmer's Guide 439

Appendix B Visual InterDev Glossary

If the project is under source control, you can update the master Web application by
checking files in. The project is noted by this icon:

See also master mode.

For more information, see "Project Architecture" in Chapter 6, "Web Project
Concepts," and Chapter 7, "Working Locally."

local Web application

The collection of Web pages that resides on the developer workstation. These pages are
used to create, modify, and test the pages before propagating them to the master Web
application located on the Web server accessible to the intranet or Internet.

See also master Web application.

For more information, see "Project Architecture" in Chapter 6, "Web Project
Concepts," and Chapter 7, "Working Locally."

local Web server

Service, such as Microsoft Internet Information Server, for processing Web pages.
Typically, this server is located on the developer workstation and provides the
functionality needed to test all types of Web elements before they are propagated to the
master Web application.

For more information, see "Project Architecture" in Chapter 6, "Web Project
Concepts," and Chapter 7, "Working Locally."

logic error

M

An error in a script that occurs when a script executes without syntax or run-time
errors, but the results are not what you intended. For example, a script might prompt
the user for a password, but then allow access to the application even if the password
is wrong.

See also run-time error, syntax error.

marquee

An HTML block that encloses text and other information and scrolls within a
defined area.

440 Programmer's Guide

Appendix B Visual InterDev Glossary

master file

The primary copy of a project file. Available on the master Web server for all members
of a development team. Noted in the Project Explorer as a gray file graphic as shown in
the .htm file example below:

If the file is under source control, it is noted by this icon:

~

For more information, see "Project Architecture" in Chapter 6, "Web Project
Concepts," and Chapter 7, "Working Locally."

master mode

The state of a project in which changes made to files are saved to both the local files
on the developer's workstation Web application and the master files on the master
Web server. Master mode is noted in the Project Explorer by this icon:

If the project is under source control, it is noted by this icon:

See also local mode.

For more information, see "Project Architecture" in Chapter 6, "Web Project
Concepts," and Chapter 7, "Working Locally."

master Web application

The collection of Web files are saved and stored on the Web server that is accessible to
multiple developers and authors or, depending on your system, available to the intranet
or Internet audience.

See also local Web application.

For more information, see "Project Architecture" in Chapter 6, "Web Project
Concepts," and Chapter 7, "Working Locally."

master Web server

Component of your Web development system that stores and processes the primary
copies of the Web pages. This server might reside on the developer workstation or on
a separate machine.

Programmer's Guide 441

Appendix B Visual InterDev Glossary

If you're using Microsoft Visual SourceSafe, you can verify the name and path for
your master Web server.

From the Visual SourceSafe Explorer, right-click a file that is checked out, choose
Properties, and then choose the Check Out Status tab. The Computer name is the
name of your master Web server, and the Folder name is the absolute path to that
machine.

See also local Web server.

multimedia file

N

An image, image map, audio, video, or virtual reality file.

For more information, see "Project Architecture" in Chapter 6, "Web Project
Concepts," and Chapter 7, "Working Locally."

navigation bars

A graphical or textual page element that incorporates navigation links to pages that
are part of a site's navigation structure. You can design and modify a site's navigation
structure in Site Designer.

navigation structure

0

The hierarchical relationship between pages in a Web site used to determine the links
in the navigation bars for a site.

ODBC

Open Database Connectivity. A standard protocol for accessing relational databases
based around SQL.

You install ODBC drivers for various databases that enable you to connect to the
databases and access their data.

offline

Disconnected from the network and the master Web server. Offline mode is noted in
the Project Explorer by this icon:

442 Programmer's Guide

Appendix B Visual InterDev Glossary

If the project is under source control, offline is noted by this icon:

For more information, see "Project Architecture" in Chapter 6, "Web Project
Concepts," and "Working Offline" in Chapter 7, "Working Locally."

OLE DB

A database architecture that provides universal data integration over an enterprise's
network, from mainframe to desktop, regardless of the data type.

OLE DB is a more generalized and more efficient strategy for data access than ODBC,
because it allows access to more types of data and is based around Microsoft COM
(Component Object Model).

out link

p

A link that points out of an expanded item, indicating that the expanded item links to
the items it points to.

PageNavbar Design-Time Control

A design-time control that automatically generates navigation bar links based on the
information stored in the site structure file for the Web project.

page transition

A DHTML special effect on a Web page that controls how one page replaces another
visually within the Web browser. The transition occurs when the page is entered or
exited.

parent page

A page with one or more child pages in the diagram.

pending item

An item that Link View is in the process of verifying. Link View has not finished
searching for the item the link points to on the World Wide Web.

Programmer's Guide 443

Appendix B Visual InterDev Glossary

personal file

A file that exists only in the local Web application. Typically, this file has not been
added to the master Web application. A personal file is noted in the Project Explorer by
a blue flag icon:

production server

The Web processing unit with a Web service installed, such as Internet Information
Server, that processes the live Web pages that are made accessible to the intranet or
Internet audience.

For more information, see "Project Architecture" in Chapter 6, "Web Project
Concepts."

protocol

A formal set of rules and formats that computers use to communicate with each other.
FTP and HTTP are two examples of protocols used to transfer files between computers
connected to the Internet.

proxy server

R

A Web server that acts as a security barrier between your internal network and the
Internet, which keeps Internet users from gaining access to information on your
internal network.

For more information, see "Security" in Chapter 6, "Web Project Concepts," and
"Connecting to a Proxy Server" in Chapter 9, "Adding Security."

radial layout

A link diagram that displays the in links or out links related to the expanded item in a
circle around the expanded item.

relationship

The type of link two or more pages have to one another in the site navigation structure.
Generally, you can have parent-child relationships and sibling relationships. You can
define the relationship between pages in a site diagram.

444 Programmer's Guide

Appendix B Visual InterDev Glossary

run-time error

s

An error in a script that occurs when a command attempts to perform an action that is
not valid. For example, a run-time error occurs if you try to perform a calculation using
a variable that has not been initialized. If a run-time error occurs, the script either stops
or performs an exception routine.

See also logic error and syntax error.

script

Programs that run when users display your Web page. Script can be executed by the
browser (client scripts) or the server (server scripts). The source code for script appears
in the Web page itself.

For more information, see "Scripts in Web Applications" in Chapter 23, "Scripting
Concepts."

script object

A run-time object created by the script generated with a design-time control. Setting
properties of a design-time control establishes values that are then used at run time
to create a corresponding dynamic script object. Script objects support properties,
methods, and events you can script against using the scripting object model.

For more information, see "The Scripting Object Model" in Chapter 23, "Scripting
Concepts."

scripting object model

A set of objects with events, properties, and methods that provides a standard
object-oriented programming model for working with Web pages. The scripting
object model consists of a document framework and individual design-time controls,
which together dynamically generate script objects at run time that you can script
against.

The scripting object model provides a consistent event-based model that
works transparently across the client and server and provides database-independent
data binding.

For more information, see "The Scripting Object Model" in Chapter 23, "Scripting
Concepts."

Programmer's Guide 445

Appendix B Visual InterDev Glossary

server script

A script in a Web page that is executed by the server before the page is sent to
the browser that requested the page. When the page is sent to the browser, the
server has already run the server script and removed it from the page. Server script
typically performs database lookups, navigates to another page in the Web, or
processes information entered by a user on an HTML form.

See also client script.

session

The course of a visit a user makes to a Web site.

For more information, see "Session Object" in the Active Server Pages documentation.

sibling page

A page that shares a parent page with another page in a tree.

site diagram

A graphical representation of the navigation structure of a Web site. Site diagrams
consist of one or more trees of related pages.

site structure file

The file on the Web server that stores the navigation-related information for pages in a
Web project. Use site diagrams to modify the site structure file for a Web project.

site transition

A DHTML special effect on a Web page that controls how one page replaces another
visually within the Web browser. Site transitions occur when the page entered or exited
from an external page.

solution

A collection of Web projects and dependent projects that organizes a Web application.

source page

The page you drag to create a child or parent relationship to another page in a site
diagram.

446 Programmer's Guide

Appendix B Visual InterDev Glossary

staging server

The Web processing unit within a Web development system used to test the full
functionality of all Web applications and Web elements before propagation to the
live production server.

For more information, see "Project Architecture" in Chapter 6, "Web Project
Concepts."

style sheet

A set of additional tags that describe the appearance of individual HTML tags. The
style sheet tags describe the font, color, paragraph alignment, and other attributes for
common HTML tags such as headings, paragraphs, and lists. These tags can exist
within your document or as a separate text file.

When the style sheet is included with a Web page, all the tags on the Web page that
have corresponding entries in the style sheet are automatically formatted according
to the style sheet description. If the set of tags exists as a separate text file, it can be
applied to one or more HTML documents.

Cascading style sheet (CSS) information is ignored by browsers that do not support
this feature.

·For more information, see "Site Consistency" in Chapter 11, "Site Design."

syntax error

T

An error in a script that occurs if you mistype a keyword, forget to close a multiline
command (such as DO ... LOOP), or introduce a similar mistake. If a script includes
a syntax error, the script will not execute and an error message is displayed as soon
as the browser or server processes the page.

See also logic error and run-time error.

target page

The page in the site diagram on which you drop the source page to create a child or
parent relationship.

template

An HTML or ASP page, or a collection of pages, that acts as a master copy. Templates
can be used to generate new pages, saving you the trouble of manually designing the
look of the page, and to give a series of pages a similar look and feel. You can also
switch templates for an existing page to quickly change its appearance.

Programmer's Guide 447

Appendix B Visual InterDev Glossary

When you create new files based on a template, the text in the template is replicated in
the new file. A template can also include replaceable parameters that query the user for
custom information when the new file is created. For information about creating your
own templates, see "Creating Custom Templates" in Chapter 17, "Customizing Page
Appearance."

A guide for Web pages in which elements such as heading locations, background
image, colors, have already been designed.

theme

A set of graphics, fonts, and other page elements that combine to create a consistent
visual design for a page.

For more information, see "Site Consistency" in Chapter 11, "Site Design."

transaction

A server operation that succeeds or fails as a whole, even if the operation involves
many steps (for example, ordering, checking inventory, or billing).

tree

A group of related pages in a site diagram.

u
unknown item

An item that Link View has not attempted to verify; the item may or may not exist.
Use the Verify command to have Link View determine if the link is valid or broken.

URL

v

The uniform resource locator, or address, used to identify a resource on the World
Wide Web.

valid item

An item that Link View has determined exists.

448 Programmer's Guide

Appendix B Visual InterDev Glossary

virtual root

w

A directory that appears to be a subfolder to the root of the server but may
actually exist in a subfolder that is any number of levels under the root or
elsewhere on the network.

The name of the virtual root can be the same as the actual subfolder or may be an alias
specified on the server. For example, in the URL http:/MyWebServer/MyWebApplication,
"MyWebApplication" specifies a virtual root on the Web Server, "MyWebServer." The
actual folder for MyWebApplication may be file:\\MyWebServer\Default Web
Site\MyWebApp.

Web

A home page and its associated pages, images, documents, multimedia, and other
items stored on a World Wide Web server or on a computer's hard disk.

Web application

A collection of elements that make up a Web site or distinct portion of a Web site
organized under a virtual root. In Visual InterDev, Web applications are built
from Web projects.

A Web project can reference a single Web application. For example, you can have
a Web site with two Web applications: one that defines an online catalog and one
that defines pages for administrating the database for the catalog.

See also master Web application and local Web application.

For more information, see "Project Architecture" in Chapter 6, "Web Project
Concepts."

Web element

Anything used in a Web application for displaying or controlling Web content.
Web elements can include pages, images, applications, forms, form elements,
controls, and script.

Web project

A collection of files that specifies elements of a Web application. You build a
Microsoft Visual InterDev Web project into a Web application.

Web project files are stored in two places, the server and the local machine.
A project is also part of a larger container, the solution.

For more information, see Part 2, "Creating Web Projects."

Programmer's Guide 449

Appendix B Visual InterDev Glossary

Web server

A computer, usually on the Internet, that acts as a host for http and related
Web-service software.

Web site

A collection of one or more Web applications organized under a single domain.
A Web project can reference a single Web application within a Web site.

working file

A read/write copy of the master file, available on the local Web server. Noted in the
Project Explorer by a pencil icon:

I..

Typically, the file is under source control and has been checked out. In this case,
it is represented by a red checkmark icon:

.,/

For more information, see "Web File Processing" in Chapter 6, "Web Project
Concepts," and Chapter 7, "Working Locally."

450 Programmer's Guide

_(underscore character) in directory
names 415

<%#,#%\>(parameter delimiters) 211
<%, %\> (inline server script delimiters) 283

A
<A\> (HTML tag) 24, 340-341
absolute paths, for external links 383
absolute positioning, defined 437
access control

Active Server Pages 107
at design time 106, 108-110
at run time 104-106, 107-108, 110-113
browsing permissions 111-113
database access 105-106
developer access to Web

applications 109-110, 139
Global.asa file 107
run time 105
Web administrators, specifying 109-110

ACLs (Access Control Lists)
design-time access control 106
run-time access control 107

ACTION attribute, <FORM> tag 328
Action tab, Property Pages dialog box

mode transitions, specifying 20
transition events, specifying 63-64
user-defined methods,

associating with modes 21
Active Desktop mode,

Internet Explorer, and debugger 426
Active Server pages See ASP pages
Acti veX controls

adding to pages 26
as client object 292
on Toolbox, nonfunctional 419

ActiveX Data Objects See ADO
(ActiveX Data Objects)

Add to an existing Web project option 147
addlmmediate method,

Recordset control 250
adding database records 250
addRecord method, Recordset control 249
Administer permission 106, 108
administration, specifying

Web administrators 109-110
ADO (ActiveX Data Objects)

defined 437
object model 227
server objecls 293

AdRotator object 293
advise method, script objects 309
All items (filter category) 190
alternate text, defined 437
anonymous user access,

Internet Information Server 105
Anonymous user account

adding permissions for 126-127
troubleshooting source control 134

Application object,
Internet Information Server 293, 339-340

application root 147, 77
Application_ OnStart procedure,

Global.asa files 298
application-scope properties,

page objects 315
Apply Theme and Layout dialog box

Layout tab 36
Theme tab 35

arrows, in link diagrams 154
.asa files 435, 436, 437, 438-440
.asp files

See also ASP pages
defined 443
in site diagrams 170
multiple pages, mapping to 172-173
testing 120

Index

Programmer's Guide 451

Index

ASP pages
See also .asp files
access control 107
client vs. server scripts 279-281
converting to HTM pages 173
creating 9-10
data-bound controls, adding to 17
debugging

client script 351-352
enabling 390,424
server script 356-357

displayed in HTML editor 25
Global.asa file 107
Recordset control, adding to 16
Recordset object, creating 240
remote method execution 318-320
script libraries, including 344-345
scripting languages 322
security pages,

adding to Web applications 135
server script, processing 283-285
templates 199, 211-212
troubleshooting

debugging 424
source control 134

Visual InterDev editor, default view 10
asynchronous remote

procedure calls 318, 319-320
attributes

See also HTML tags
ACTION attribute 328
assigning event handlers

using 325-326, 327
EVENT attribute 327
EventName attribute 325
FOR attribute 327
LANGUAGE attribute 325-326
METHOD attribute 328
VIEWASTEXT attribute 418

audience, impact on Web
application design 86

authentication errors, troubleshooting 406
Author permission 106, 108
Auto window 256
automatic link repair 196-197
automatic navigation updates, enabling 247

452 Programmer's Guide

8
<BODY> (HTML tag) 326
bookmark links, showing and hiding 191
bookmarks, PageNavbar control,

troubleshooting 408
breakpoints

overview 40, 295, 296
setting 41, 42, 43

Broken link state 158
broken links

defined 438
displaying information about 158
locating 198
preventing 196-197

Broken Links Report 159, 198, 409
Browse permission 106, 108
Browse With dialog box 12
browser objects 291-292
BrowserCapability object 293
browsers

adding to Browse With dialog box 12
browser-independent script 346, 348-350
capabilities, determining 347-348
cascading style sheets and 162
client-side database access 230-231
content, allowing user to specify 349
cookies and 341
default browser, selecting 12
defined 438
Design view vs. browser display 274
function in Web applications 78
identifying using scripts 346
impact on Web application design 86
object models and 291
previewing

link diagram items 187
pages 11-12, 180

selecting 180
server-side database access 228-230
testing

script objects 305
Web applications 81

bubbleEvent method, DHTML scriptlets 373
Buffer property, Response object 337
build order of Web projects,

troubleshooting 411

buttons
database navigation 18
rows of buttons, adding to pages 59

c
call object 318
Call Stack window 296
call stack 295
callback procedures 319
cancelEvent property, script objects 310
cascading style sheets

See also .css files
creating 200, 206
CSS editor 201-202
in Visual InterDev 162
overview 161-162
previewing 162, 202
primary vs. secondary style sheets 162
troubleshooting 407-408

case sensitivity
JavaScript 39
writing script 414, 416

centering items in link diagrams 192-193
changing permissions

for computers 139
for groups of users 138
for users 13 7

child pages, defined 438
child Webs, copying 147
classes, creating 201
client objects 290-292
client platform 300
client script

adding to HTM pages 39-40
client objects 290-292
conditional navigation 335-336
debugging

ASP pages 351-352
breakpoints 41
changing values of variables 44-45
in Microsoft Internet Explorer 41
in response to errors 355
overview 351
running documents 353-354
stepping 41-43
within solutions 352-353

defined 438
design-time controls 289
error trapping 297

client script (continued)
events, trapping 310
HTML forms, processing 329
in Design view 274
last-updated message,

adding to pages 36-37
message boxes, displaying 332
page object properties 315
processing 281-282, 296-297
script libraries, including 345
script objects 289
text, displaying 332-333
vs. server scripts 279-281

client-side database access
overview 218, 229-230
steps required to navigate 230-231

client-side script See client script
clipboard

HTML text, cutting and pasting 416-417
collapsed items, defined 438
collapsing links, in link diagrams 194
command objects See data commands
comments, in Visual SourceSafe 100
compile-time errors See syntax errors
components

See also system components
adding to pages 26
copying with Web applications 147
marking for Web application

deployment 384
packaging for MTS

(Microsoft Transaction Server) 397
registering on destination server 147, 396
required for source control 98

computers
adding to Web applications 138
changing permissions for 139

conditional navigation
overview 335
using client script 335-336
using server script 336-338

connection strings 200
connections See data connections
consistency in Web site design

cascading style sheets 161-162
layouts 163-165
overview 160
templates 162-163
themes 165-168

Index

Programmer's Guide 453

Index

constructor function,
public_description objects 369-370

content, impact on Web application
design 86-87

controls
defined 438
design-time controls

adding to pages 26, 302
converting to text 303
defined 441
displayed in HTML editor 302
distinguishing from

HTML controls 417
errors in, displaying information

in Tooltips 412
forms, creating 303-304
generated text, displaying 303
HTML forms and 328
list of 299
overview 13, 288-289
previewing pages containing 11
printing pages containing 418
properties, setting 303
Recordset control, adding to pages 16
target platform 300-301
troubleshooting 414
Visual InterDev 6.0 vs.

Visual lnterDev 1.0 434-436
enabling and disabling 62-63
HTML controls

adding to pages 26
creating in HTML forms 329
distinguishing from

design-time controls 417
information, displaying iriside 333

inside script blocks, troubleshooting 418
properties

initial properties, setting 66
mode settings, specifying 62-63

showing and hiding 62-63
text version, displaying 26
viewing graphically 16, 17

cookies
defined 439
overview 341
retrieving information 342
storing information in 342

Copy changed files only option 147

454 Programmer's Guide

Copy child Webs option 147
Copy SQL Script command 266
copying

files and folders 148
Web applications 52-53, 120, 146-147

CreateObject method, Server object 293
CSS editor

classes, creating 201
HTML tags 201
unique IDs, creating 202

.css files
See also cascading style sheets
customized, troubleshooting 413
defined 439

CTRL+J key combination 414
current record

deleting 251
displaying 246
updating 247-248

cursors (database cursors)
cursor types 245
data commands and 233

custom DHTML events 374-375
custom HTML with PageNavbar control,

troubleshooting 407-408
customizing permissions for

Web applications 136
cutting and pasting HTML text 416-417

D
data binding

data-bound controls 231
overview 228
Web applications,

adding database components 232-236
data commands

adding 239-240
associating Recordset

control with 240-241
defined 439
dragging and dropping

in Data Environment 227
executing using scripts 261
modifying 240
overview 225-226, 233
parameterized queries 257
result sets 262-263

data connections
adding to projects 15, 267, 411
components required 219-220
creating using data environment 238-240
defined 439
in deployed Web applications 52, 383
overview 219, 225, 232
security considerations 220
user profiles 220
Visual InterDev 6.0 vs.

Visual InterDev 1.0 429-434
data entry forms 57

See also FormManager control
data environment

See also data commands;
data connections

components of 225-226
data commands, adding 239-240
data connections, creating 238-240
defined 439
drag and drop functionality 227
object model 227
overview xv, 13, 216, 225
scripting database access 260-263

data source names See DSNs
(data source names)

data type of event parameters,
converting 311

Data View window
accessing databases 15
overview 215, 222
populating database projects 266
stored procedures,

placing under source control 268
database connectivity, adding to pages 27

See also data connections
Database Designer

overview 216, 223
populating database projects 267

database diagrams, defined 440
database objects

defined 440
dragging and dropping

in Data Environment 227
including in command objects 239
source control and 216

database projects
adding source control to 268
defined 440
overview 215,.265
populating 266-267
using with Web projects 267-268

database queries
determining when finished 259
dynamic queries 259
parameterized queries 256-258

database servers
client-side database access 230-231
connections to Web projects 79
function in Web applications 78
relation to Web servers 216-218
server-side database access 228-230

databases
See also data connections;Recordset

control
accessing records 228-231
allowing updates 245, 246-247
configuring for deployment 383
current record

deleting 251
displaying 246
updating 247-248

data source names, creating 14-15
database management tools

in Visual InterDev 221-224
data-bound controls, adding to pages 17
integrating into Web projects 91-92
navigating among records 17-18
navigating among records 414
new records, adding 248, 249-250
records, accessing 237
Recordset controls, adding to pages 16
sets of records, specifying 16
troubleshooting data display

on Web pages 412
user authentication 105-106

data-bound controls
displaying data 246
initializing database records 249
overview 216, 231, 235
Recordset control 231
Scripting Object Model and 231
updating records 247

Index

Programmer's Guide 455

Index

DataConnection (template parameter) 212
DataEnvironment folder 225-226
DCOM (Distributed COM), configuring

for remote debugging 389-390
for SQL debugging 255, 427

DE object
See also data environment
data commands, executing 261
overview 260
result sets 262-263

debugger
calling from Global.asa file 364
components of 295-296
launching 41

debugging
client script

ASP pages 351-352
breakpoints, setting 41
changing values of variables 44-45
in Microsoft Internet Explorer 41
in response to errors 355
in running documents 353-354
mixed client and server

script 359-362
overview 351
stepping 41-44
within solutions 352-353

errors, types of 294
expressions, evaluating 425
Global.asa file

enabling debugging 363-364
in response to errors 364-365
overview 363
restarting after debugging 365
scripts 364

Immediate window
changing values of variables 44-46
overview 296
stored procedures, debugging 256

in ASP pages, enabling 390
in US applications, enabling 424
just-in-time debugging,

enabling 354,365
line numbers in error messages 355
overview 294

456 Programmer's Guide

debugging (continued)
remote debugging

ASP debugging, enabling 390
attaching to running

processes 391, 392
configuring 389-390
launching 391, 392
overview 388-389

server script
ASP pages 356-357
in response to errors 358-359
just-in-time debugging,

troubleshooting 425
mixed client and

server script 359-362
performance concerns 426
running documents 358
within solutions 357

Session.Abandon statement 425
SQL debugging

components, installing 254
DCOM, configuring 255, 427
debug users, configuring 254-255
overview 253
stored procedures, debugging 256
troubleshooting 427

tasks included in 295-296
troubleshooting

Active Desktop mode, Internet
Explorer 426

ASP debugging 424
displaying correct page 425
just-in-time debugging,

server pages 425
resetting options 425-426

Web applications, debugging
while running 391, 392

default interface descriptions,
VBScript 371-372

deleteRecord method, Recordset control 251
deleting

current record 251
files and folders 148
local projects 7
master Web applications 7

deleting (continued)
pages

from navigation bars 178
from projects 178
from site diagrams 178
from Web applications 178

site diagrams 183
Web projects 7

delimiters
\<%#,#%\:>(parameter delimiters) 211
\<%, %\:> (inline server

script delimiters) 283
dependent projects, defined 440
deployment of Web applications

copying to Web server 52-53
data components,

ensuring portability 383
deployment systems 89
integrated Web solutions 396-398
links, protecting 383
manual deployment 394
Microsoft Transaction Server (MTS),

packaging components for 397
overview 51, 97, 382, 393-394,
preparation for 52, 383...:..384
production server capabilities 382, 384
server components

marking 384
registering 396, 147

using FrontPage Server Extensions 394
using Posting Acceptor 394
verifying 54

deployment, defined 440
design of Web pages

cascading style sheets 161-162
layouts 163-165
overview 160
templates 162-163
themes 34-35, 165-168, 174,203-205

Design tab, HTML editor 33-34
design time

design-time controls,
visual appearance of 288

interaction of system components 81, 82
security 108-110, 139

Design view, HTML editor
See also Toolbox
design-time controls, display of 302
differences from browser display 274
HTML Outline window 272
overview xiii, 25, 10, 271, 274

design-time authorization 220
design-time controls (DTCs)

adding to pages 26, 302
converting to text 303
defined 441
displayed in HTML editor 302
distinguishing from HTML controls 417
errors in, displaying information

in Tooltips 412
forms, creating 303-304
generated text, displaying 303
HTML forms and 328
list of 299
overview 13, 288-289
previewing pages containing 11
printing pages containing 418
properties, setting 303
Recordset control, adding to pages 16
target platform 300-301
troubleshooting 414
Visual lnterDev 6.0 vs.

Visual InterDev 1.0 434-436
developer workstation,

function in Web applications 78
developing Web applications

project modes, specifying 118-119
under source control 129-134
working locally 117-118
working offline 122-123

development resources, impact on web
application design 87-89

DHTML scriptlets
See also Dynamic HTML (DHTML)
adding to applications 376
bubbleEvent method 373
creating 368
default interface descriptions 371-372
events, exposing and handling

custom events 374-375
overview 373
standard events 373-374

Index

Programmer's Guide 457

Index

DHTML scriptlets (continued)
frozen property 373
functionality 368
methods, defining 369
overview 367
properties, defining 369
public_descriptor object 369-370
scriptlet container objects 376-377

directories
layouts directory, location of 165
theme directory 167, 205
Windows NT environment 77

directory names
link diagrams and, troubleshooting 409
underscore character in 409

disabled property, controls 63 .
disabling

controls 62, 63
source control 128

Distributed COM See DCOM
(Distributed COM)

document elements 290
document object model 286
documents

allowing downloading of 27
debugging during execution 353-354,

358,391,392
defined 441
document object 291
linking to pages 27

Documents (filter category) 190
DSN s (data source names)

creating 14-15
file DSN s vs. machine or system

DSNs 200-219
DTCs See design-time controls
duplicating Web applications 146-147
Dynamic HTML (DHTML)

See also DHTML scriptlets
defined 441
document object model 286
overview 95
setting text inside HTML tags 333-334

dynamic information
in hidden fields 330-331
sharing between pages

cookies 341-342
global variables 339-340
overview 338-339
query strings in links 340-341
text files stored on server 342-343

458 Programmer's Guide

dynamically generated links,
displaying in link diagrams 409

E
editors

See also HTML editor
CSS editor 201-202
launching on items

in link diagrams 187-188
selecting 29, 181
Visual InterDev editor 10, 25
Web page editors 23

element object 292
elements

document elements 290
editing in Source view 275, 417-418
HTML elements

editing in Source view 275, 417-418
event handlers 323-327
sharing between pages 343-344

invisible, displaying in design view 274
properties, setting 274
storing for reuse 27

embedded server script, debugging 361-362
enabling

automatic navigation updates 247
controls 62-63
debugging

Global.asa files 363-364
in ASP pages 390
in IIS applications 424
just-in-time debugging 354, 365
remote debugging 390

scripting object model 287, 414
source control 127, 128

encryption 113-114
enterprise applications 89
error messages,

line numbers reported by 355
error trapping, in client scripts 297
errors

See also run-time errors
authentication errors,

troubleshooting 406
in design-time controls,

displaying Tooltips for 412
types of 294

evaluating expressions in debugger 425
EVENT attribute 327

event handlers
See also events
assigning using attributes 325-327
creating in Script Outline window 307
implicit event handlers 324-325
overview 323-324
processing 282

event-driven forms 19
EventName attribute 325
events

See also event handlers
canceling effect of 325
data type of event parameters,

converting 311
DHTML scriptlet events

custom events 374-375
overview 373
standard events 373-374

passing from scriptlet
to host application 373-374

script object events
canceling 310
extending 308-309
responding to 307-308
target platform considerations 308
trapping 310
triggering 307

script objects 288
transition events, specifying 63-64

Exclusive checkout option 127
Executable files (filter category) 190
executable files, defined 441
execute child object, page object 318
execute methods, page objects 314, 317
expanded items, defined 441
expanding links, in link diagrams 194
expressions

evaluating in debugger 425
in parameterized queries 257

External files (filter category) 190
external icons 441
external items 186, 442
external pages 170, 442
extranets 442

F
F5 key 377
F9 key 41

FAT (File Allocation Table) file system
access control 105
changes, tracking in

Visual SourceSafe 127
field objects, dragging and dropping

in Data Environment 227
fields collection

getValue method 246
setValue method 247
updateRecord method 248

fields, displaying data
using data-bound controls 241-242

file DSNs
configuring for deployment 383
overview 219

file history 100
file names for home pages, default 33, 34
file systems

See also FAT (File Allocation Table)
file system

file access permissions 105
recommended for source control 98

file tracking, using Visual SourceSafe 99
Filename WithExtension

(template parameter) 212
Filename WithoutExtension

(template parameter) 212
files

See also source control
adding manually to source control 129
adding to site diagrams 406-407
adding to source control 129
checking in 132
checking out 99, 130-131
comments and file history 100
copying 147-148
deleting 148
discarding changes to 121, 145
file tracking using Visual SourceSafe 99
including for

Web application deployment 384
inserting into projects 6
latest versions, retrieving 146
linking to pages 26-27
links specified using relative paths 119
master and local copies, comparing 144
master application, updating 144-145
master versions, retrieving 131-132
merging 49, 99, 132-133

Index

Programmer's Guide 459

Index

files (continued)
moving 148
personal files, adding to projects 406
references to, adding to pages 26-27
removing from source control 130
renaming 148
saving 132
synchronizing with master versions 122
text files, storing dynamic information

on server 342-343
working copies, releasing 121
working in local mode 91
write-enabled copies, retrieving 119

filtering link diagrams
items, showing and hiding 190
links, showing and hiding 191-192
overview 159

filters, defined 442
folders

copying 148
deleting 148
moving 148
renaming 148

FOR attribute,
assigning event handlers using 327

Form Mode tab, Property Pages
dialog box 19-20, 21, 62-63

form modes
actions, specifying 64-65
adding modes 61
adding to forms 19
default modes, specifying 19
defining 19-20
method calls, specifying 62-63
overview 60
property settings, specifying 62-63
transition events, specifying 63-64
transitions, specifying 20
user-defined methods,

associating with 21
form object 292
<FORM\> (HTML tag) 24, 328
formatting text using HTML tags 23-24
FormManager control 19
Forms collections, Request object 330
fragments 273

460 Programmer's Guide

FrontPage
See also FrontPage Server Extensions
navigation bars, vs. Visual InterDev

navigation bars 387
opening FrontPage Webs

in Visual InterDev 386
themes

sharing with Visual InterDev 167,
207

Visual InterDev themes vs. 388
VINavbar control, troubleshooting 407
Visual InterDev projects,

opening 385-386
FrontPage Server Extensions

browsing permissions 111-112, 113
deployment of Web applications 382,

394
identifying 387
required installation 98
security 103, 112
troubleshooting source control 134
user authentication 106
Visual InterDev and

Visual SourceSafe interaction 100
frozen property, DHTML scriptlets 373

G
General tab, Property Pages dialog box 66
generated scripts,

setting scripting language 323
get method 306, 316, 318
GET method 328
get_ function, DHTML scriptlets 370
getSQLText method, Recordset object 259
getValue method, fields collection 246
.gif files, in site diagrams 170
global navigation bar pages 442
global navigation bars

adding pages to 176
overview 176
page labels, renaming 181
removing pages from 177
reordering 177

global scripts 282, 296, 442
global variables,

defining using IIS objects 339-340

Global.asa files
access control 107
changing scripting language 322
debugging

enabling debugging 363-364
in response to errors 364-365
overview 363
restarting after debugging 365
scripts 364

defined 442
global variables, defining 339-340
overview 77, 93
script processing 283, 298

graphics
adding to themes 168
adding to Web pages 33-34
alternate text, specifying 34

Grid control 13, 231
groups of users

H

See also users
adding to Web applications 137-138
permissions

changing 138
revoking 140

hardware components required for Web
applications 78

header and footer text, Layout design-time
control, troubleshooting 408

hidden fields, HTML forms 330-331
Hide() method 63
hit counter, using Application object

variable 339
home pages

adding to site diagrams 170, 171-172
creating 32-33
default file names 33, 34
graphics, adding to 33-34
last-updated message, adding to 36-37
viewing links 37-38

horizontal layout, link diagrams
changing layout 195-196
expanding links 194
overview 156, 443

.htm files
See also HTM pages
custom templates 211-212
defined 443
in site diagrams 170

HTMpages
See also .htm files
converting to Active Server pages 173

HTML (Hypertext Markup Language)
See also other headings

beginning with HTML
displayed in Visual lnterDev editor 25
HTML text, cutting and pasting 416-417

HTML controls
adding to pages 26
creating in HTML forms 329
distinguishing from

design-time controls 417
information, displaying inside 333

HTML editor
See also Toolbox
debugging script 295
Design view

differences from browser display 274
HTML Outline window 272
overview xiii, 271, 274

design-time controls, display of 302
HTML text, cutting and pasting 416-417
overview 29
Quick view

overview xiv, 271, 276-277
testing Web applications 81
troubleshooting 416

server script display 284
Source view

controls, viewing as text 417-418
debugging 295
HTML Outline window 272
IntelliSense 275
overview xiv, 271, 275-276
Script Outline window 273, 275

HTML elements
editing in Source view 275, 417-418
event handlers 323-327
sharing between pages 343-344

HTML forms
controls, adding to 329
creating 328
design-time controls and 328
hidden fields 330-331
overview 327-328
posting information to same file 331
processing 329, 330

HTML node, Options dialog box 16, 17

Index

Programmer's Guide 461

Index

HTML pages
See also HTML editor
based on templates, creating 199
creating 9-10
data-bound controls, adding to 17
defined 443
displayed in Visual InterDev editor 25
Recordset control, adding to 16
Recordset object, creating 240
Visual InterDev editor, default view 10

HTML pages (filter category) 190
HTML tags

See also attributes
\<A\> tag 24
\<A\> tag 340-341
adding, in CSS editor 201
\<BODY> tag 326
displayed in Visual InterDev editor 25
<FORM> tag 24
<FORM> tag 328
\<IMG\> tag 24
innertext property 333-334
\<INPUT\> tag 24
\<OBJECT\> tag 293, 376, 418
overview 23-24
\<P> tag 24
\<SCRIPT\> tag 301, 281, 283, 39
\<SCRIPT\> tag 321-322
setting text using DHTML 333-334
style properties, setting in CSS editor 201
\<TABLE\> tag 24
\<TD\> tag 24
\<TR\> tag 24

HTML text, cutting and pasting 416-417
HTMLEncode method 335
HTTP (Hypertext Transport Protocol)

Web server connections 79

US (Internet Information Server)
anonymous user access 105
Application object 339-340
debugging, enabling manually 424
default root 77
MTS interference with operations,

troubleshooting 410
objects bundled with 293
server objects 292-293
Session object 339-340

462 Programmer's Guide

US (Internet Information Server) (continued)
version requirements for

Visual lnterDev 6.0 428
virtual master servers 100

image tag, HTML 24
images

adding to theme directory 206
alternate text, specifying 34
linking to pages 27

<IMG\> (HTML tag) 24
Immediate window

changing values of variables 44-46
overview 296
stored procedures, debugging 256

implicit event handlers 324-325
in links

defined 443
showing and hiding 192

INCLUDE directives
HTML elements, sharing 343-344
script libraries 344-345

#INCLUDE directives
HTML elements, sharing 343-344
script libraries 344-345

independentpages 443
individuals, permissions

for Web applications, setting 137
information

displaying to user 332-335
dynamic

in hidden fields 330-331
sharing between pages 338-343

gathering using HTML forms 327-328
information pages, creating 94
initializing database records 249-250
inline scripts 282, 296, 443
inline server script delimiters

(\<%, %\>) 283
innertext property, HTML tags 333-334
<INPUT\> (HTML tag) 24
integrated security,

Microsoft SQL Server 106
integrated solutions, deploying 396-398
IntelliSense feature 28, 275
interactive sites,

prompting for user input 211-212
interactive templates 163
interfaces, DHTML scriptlets

default interface descriptions,
VBScript 371-372

interfaces, DHTML scriptlets (continued)
overview 368
public_description objects,

JavaScript 369-370
scriptlet container objects 376-377

internal icons 443
internal items 443
Internet Explorer See Microsoft

Internet Explorer
Internet Information Server See IIS

(Internet Information Server)
invisible elements,

displaying in Design view 274
items

J

defined 444
in link diagrams 154

centering 192-193
editing 187-188
filtering 190
previewing in browser 187
selecting 194-195
viewing links for 185, 159
viewing URLs of 195

verifying links to 157-158

Java Applets, as client object 292
JavaScript

case sensitivity 39
DHTML scriptlets 369
parentheses, correct use of 415
public_description objects 369-370

just-in-time debugging 295, 354, 365, 444

L

LAN connections,
troubleshooting source control 134

LANGUAGE attribute 325-326
last-updated message, adding to pages 36-37
Layout design-time control,

troubleshooting header and footer text 408
Layout Footer section 164
Layout Header section 164
Layout tab, Apply Theme and

Layout dialog box 36
Layout.htm file 210
Layout.htm file 210

layouts
changing layouts 164, 210-211
custom, creating 210-211
default layout

changing 207
setting 207

defined 444
directory, location of 165
HTML code for 164
installed with Visual InterDev 164-165
Layout.htm file 210
(name).inf file 210
navigation structure, specifying 35
overview xi, 163
pages

applying layouts to 174, 208
removing layouts from 208

Preview.htm file 210-211
previewing 209
removing 208
Web projects, applying layouts to 35-36

layouts for link diagrams 195-196, 156-157
lifetime of page object properties 316
line numbers reported by error messages 355
link diagrams

See also links
centering items in 192-193
collapsing links 159, 194
components of 154
creating for Web items 159
defined 445
dynamically generated links,

displaying 409
expanding links 159, 194
filtering 190, 191-192, 159
for items in link diagrams 185
for items in projects 185
for items on the WWW 186
horizontal layout 156
items in

editing 187-188
filtering 190
previewing in browser 187
selecting 194-195
viewing URLs of 195

layouts 156-157, 195-196
link information used in 186
printing 188
refreshing 186

Index

Programmer's Guide 463

Index

link diagrams (continued)
troubleshooting 409
vertical layout 157
zooming 193

link lines, in site diagrams 152
link repair, automatic, controlling 196-197
Link View

filtering links 190, 191-192
items represented with icons 444
layoutsforlinkdiagrams 156-157, 195
overview 154
verifying items in link diagrams 157-158
verifying links 96
viewing links 37-38

links
See also link diagrams
absolute paths 383
adding query strings to 340-341
adding to pages 26-27
affected by project reorganization 148
automatic link repair 196-197
bookmark links, showing and hiding 191
broken links

displaying information about 158
locating 198
preventing 196-197
repairing 96

defined 445
for items in projects, viewing 185
in links, showing and hiding 192
link states 158
out links, showing and hiding 192
protecting for deployment 383
recalculating 197, 408
relative paths 119, 383
repeated links, showing and hiding 191
to locations inside pages 191
unreferenced files, locating 198
updating under source control 197
verifying 96
viewing from home page 37-38

literals, in parameterized queries 257
local diagrams 445
local files

comparing to master copies 144
discarding changes 145

464 Programmer's Guide

local mode
defined 445
design-time interaction

of system components 81
entire Web application, retrieving 120
file check out and checking 101
integrating FrontPage

with Visual InterDev 386
Link View, troubleshooting 409
master file versions, retrieving 119
overview 47, 76
previewing pages 12
recalculating links 197
saving pages 11
testing Web applications 119
test-time interaction

of system components 81
working locally 90-91, 117-118

local Web applications
See also Web applications
defined 446
discarding changes to 121
previewing 121
synchronizing 146
updating 122
working offline 122-123

local Web projects
See also Web projects
creating 48
deleting 7
files created 76
synchronizing 49

local Web server, defined 446
Locals window 45, 296
lock types 245
logic errors 294, 446

M
machine DSNs 219-220
magnification of site diagrams,

changing 179
manual deployment of Web applications 394
marquee, defined 446
master files 144, 447

master mode
defined 447
design-time interaction

of system components 82
file check out and check in 101
integrating FrontPage

with Visual lnterDev 386
master and local files, comparing 144
overview 76
recalculating links 197
saving pages 11
specifying 119
test-time interaction

of system components 83
master Web applications

See also local Web applications
creating 46-48
defined 447
deleting 7
files created 77
layouts 165
previewing 121
propagating changes to local projects 122
synchronizing with local projects 49
updating 121, 144-145

master Web servers 80, 447
Merge dialog box 132-133, 144-145
merge resolution 88
message boxes, displaying

from client script 332
from server script 334-335

METHOD attribute, <FORM> tag 328
methods

associating with form modes 20, 21,
62-63

DHTML scriptlets methods 369-372
page object methods

calling 317
creating 314-315
parameters, passing 422

script object methods 288, 307
Microsoft Internet Explorer

Active Desktop mode and debugger 426
client scripts, debugging 40-41
database access 230
running script, debugging 354
scriptlet container objects and 377

Microsoft Internet Information Server See
IIS (Internet Information Server)

Microsoft SQL Server
database objects 266
logon security 105-106

Microsoft Transaction Server See MTS
(Microsoft Transaction Server)

modes
form modes

actions, specifying 64-65
adding to forms 19, 61
default modes, specifying 19
defining 19-20
method calls, specifying 62-63
overview 60
property settings, specifying 62-63
transition events, specifying 63-64
transitions, specifying 20
user-defined methods, associating

with 21
local mode

defined 445
design-time interaction

of system components 81
entire Web application, retrieving 120
file check out and check ing 101
integrating FrontPage with

Visual InterDev 386
Link View, troubleshooting 409
master file versions, retrieving 119
overview 47, 76
previewing pages 12
recalculating links 197
saving pages 11
specifying 118
testing Web applications 119
test-time interaction

of system components 81
working in 90-91
working locally 90-91, 117-118

master mode
defined 447
design-time interaction of system

components 82
file check out and check in 101
integrating FrontPage with

Visual lnterDev 386
master and local files, comparing 144

Index

Programmer's Guide 465

Index

modes (continued)
master mode (continued)

overview 76
recalculating links 197
saving pages 11
specifying 119
test-time interaction

of system components 83
moving files and folders 148
MTS (Microsoft Transaction Server)

components, packaging for 397
configuring components

for deployment 384
interference with IIS operations,

troubleshooting 410
Multimedia files (filter category) 190
multimedia files, defined 448
Multiple Checkout option 127, 128
multiple checkouts 88
multiple items, selecting in link

diagrams 195
multiple pages,

mapping to .asp files 172-173

N
(name).inf file 210
navigate methods, page objects 314, 317
navigating conditionally

overview 335
using client script 335-336
using server script 336-338

navigating database records 17-18, 242-243
navigating database records 414
navigation

sequential page navigation 337-338
navigation bars

defined 448
deleting pages from 178
generating using layouts 35-36
Visual InterDev vs. FrontPage 387

navigation structure, defined 448
navigation updates, enabling 247
Netscape Communicator,

cascading style sheets and 407
Netscape Navigator,

cascading style sheets and 407
New Project dialog box 32

466 Programmer's Guide

NextLink object 293
NTFS (Windows NT File System) 105, 106

0
object attributes,

assigning event handlers using 325-327
object models

client objects 290-292
Data Environment object model 227
Dynamic HTML object model 291
HTML 3.2 object model 291
scripting object model

advantages of 286-287
data-bound controls and 231
defined 451
design-time control functionality,

troubleshooting 414
design-time controls 288-289
enabling 287,414
overview 285-286
page objects 289
Script Library 287
script objects 288-289

server objects 292-293
Visual InterDev object model 291

object references,
in parameterized queries 257

<OBJECT\> (HTML tag) 293, 376, 418
objects

adding to pages 26
assigning event handlers

using attributes 325-326
available to server script 284
client objects 290-292
editing in Source view 275, 417-418
server objects 292-293

ODBC Data Source Administrator
data connections, adding 411
data sources,

creating and naming \<????\> 15
ODBC, defined 448
offline mode

overview 84
saving pages 11
testing Web applications 91
working offline 122-123

offline, defined 448

OLE DB, defined 449
onafterupdate event, Recordset control 248
onbeforeopen event, page object 258
onbeforeserverevent event, page object 310
onbeforeupdate event,

Recordset control 247, 248
ondatasetcomplete event,

Recordset control 259
onenter event, page object 258
online mode, saving pages 11
onrowenter event,

Recordset control 243, 246
onrowexit event, Recordset control 243
onsubmit event, form object 329
operating systems

same proxy server, specifying 140
user authentication 104-105

Options dialog box, HTML node 16, 17
Other protocols (filter category) 190
out links

defined 449
showing and hiding 192

output of server script, displaying 285

p

<P> (HTML tag) 24
page breaks, printing site diagrams 174
page labels, renaming 181
page objects

See also pages
execute child object 318
execute methods 314, 317
methods

calling 317
creating 314-315
parameters, passing 422

navigate methods 314, 317
other page objects, referencing 316
overview 289, 312-313
properties

accessing 318
defining 316

server script,
executing remotely 318-320

show method 314
specifying pages as 314

page transitions
defined 449
testing 423

PageNavbar design-time control
defined 449
troubleshooting

pages

custom HTML 407-408
troubleshooting 408
viewing changes 408
VINavbar component 407

See also ASP pages;HTML editor;
HTML pages

adding to global navigation bars 176
adding to site diagrams 170-171
client-side script, adding 39-40
containing design-time controls,

printing 418
controlling as Web applications 93
controls, adding 16, 17-18, 26
creating 9-10, 176, 199
database connectivity, adding 27
data-bound controls, adding 17
deleting

from navigation bars 178
from projects 178
from site diagrams 178
from Web applications 178

dynamic information,
sharing between pages 338-343

elements, storing for reuse 27-27
expanding and collapsing

in site diagrams 179
file name, specifying 181
FormManager control, adding 19
full path, viewing in site diagrams 180
groups of, creating 176
information pages, creating 94
interactive, scripting 94
last-updated message, adding to 36--37
layouts 174, 208
linking files to 26--27
multiple, mapping to .asp files 172-173
navigation bars, removing from 177
parent-child relationships, creating 176
previewing 11-12, 180, 202
prototyping Web applications 153
prototyping Web applications 92
Recordset control, adding 16
RecordsetNavbar control, adding 17-18
references to files, adding 26--27
saving 11

Index

Programmer's Guide 467

Index

scripts, adding 28
security pages,

adding to Web applications 135
shared between site diagrams 153
sibling relationships 176
site diagrams, removing from 177
source code, editing 181
specifying as page objects 314
target platform, specifying 301
templates 199
themes

applying to pages 174, 203
previewing 204-205
referencing 166
removing from single pages 203-204
using project's default theme 204

viewing links 37-38
paragraph tag, HTML 24
parameter delimiters (\<%#, #%\>) 211
parameterized queries

creating 256
interacting with Recordset control 258
overview 256

parameters
for page object methods 422
in templates 211
of events, converting data types 311
PageNavbar control, troubleshooting 408

parent pages, defined 449
parent-child relationship between pages, 176
parentheses, correct use of in scripts 415
passwords,

data connection authorization 220
pasting HTML text 416-417
paths

absolute paths for external links 383
relative paths for internal links 119
viewing for pages in site diagrams 180

pending items, defined 449
Pending link state 158
performance

server script, debugging 426
permissions

See also security
browsing permissions 111-113
changing

for computers 139
for groups of users 138
for users 137

customizing for Web applications 136

468 Programmer's Guide

permissions (continued)
FrontPage server extensions security 108
managing 115
overview 107
revoking 140
setting for individuals 137
troubleshooting source control 134
using ACLs 107
Visual SourceSafe permissions

for Anonymous user account 126-127
granting to users 126

personal files
adding to projects 406
defined 450

POST method 328
Posting Acceptor 394
Preview.htm file 210-211
previewing

cascading style sheets 162, 202
items in link diagrams 187
layouts 209
local Web applications 121
master Web applications 121
pages

containing design-time controls 11
containing server script 11
in browsers 11-12, 180
in local mode 12
in Quick view 276-277, 416
with style sheet applied 202

themes 204-205
printing

link diagrams 188
pages containing

design-time controls 418
site diagrams 174

Processes dialog box 41, 295
processing

event handlers 282
HTML forms 329, 330
scripts

client scripts 282, 296-297
on other pages 289
processing by browser 278
server script 283-285, 298

production Web servers
configuring for Web application

deployment 384
defined 450
vs. master Web servers 80

Project Explorer
files and folders

copying 148
deleting 148
moving 148
renaming 148

overview 74
refreshing 146
site diagrams, opening 182
updating changes to

master Web applications 122
project modes See local mode;master mode
project structure, reorganizing 148
projects See Web projects
properties

See also Properties window
design-time control properties 288
design-time control properties 303
DHTML scriptlet properties 369-372
get method 306
initial properties for controls, setting 66
page object properties 315-316, 318
script object properties 288, 306
set method 306
setting with form modes 20, 21
Web page element properties 274

Properties window
displayed in Design view 274
tips for using 416

Property Pages dialog box
Action tab

mode transitions, specifying 20
transition events, specifying 63-64
user-defined methods,

associating with modes 21
Form Mode tab

default mode, specifying 19
method calls, specifying 62-63
modes 19, 20
property settings, specifying 62-63
user-defined methods,

associating with modes 21
General tab, initial properties,

setting for controls 66
PropertyNalue pairs, form modes 62
protocols, defined 450
prototypes of Web applications,

developing xi, 92-93, 153

proxy servers
connecting to 140-141
defined 450
Visual SourceSafe, interaction with 99

public_description objects,
JavaScript 369-370

public_get prefixes,
DHTML scriptlets 371, 372

public_put prefixes,
DHTML scriptlets 371, 372

put_ function, DHTML scriptlets 370

Q

queries
determining when finished 259
dynamic queries 259
parameterized queries 256-258

Query Designer
overview xxi, 216, 224
populating database projects 267

query strings, adding to links 340-341
Quick view, HTML editor

overview xiv, 25, 271, 276-277
script objects, displaying in 302
testing Web applications 81
troubleshooting 416

quoted identifiers, troubleshooting 412

R
radial layout 157, 450
read-only files

master versions, retrieving 131-132
specifying checkout option 131

recalculating links 197, 408
records

See also Recordset control
accessing 237
current record

deleting 251
displaying 246
updating 247-248

navigating 17-18, 242
new records

adding immediately 248, 249-250
initializing and updating 248-250

Recordset control
addlmmediate method 250
adding to pages 16, 57

Index

Programmer's Guide 469

Index

Recordset control (continued)
addRecord method 249
associating with command

object 240-241
creating 240
deleteRecord method 251
dynamic queries 259
getSQL Text method 259
new records, adding 250
onafterupdate event 248
onbeforeupdate event 248
opening in response to user data 258
overview 13, 231, 234
parameterized queries 256-258
preventing automatic

opening of recordset 258
recordsets,

selecting using SQL statements 240
sets of records, specifying 16
setSQL Text method 259
specifying as updatable 57
troubleshooting

name displayed in red 413
red circle displayed with exclamation

point 413
RecordsetNavbar control

adding to pages 17-18
default buttons 18, 242
navigating among records 242
overview 13, 231

recordsets, allowing updates to
databases 245, 246-247

red circle, displayed on Recordset
control 413

re-enabling source control 128
references to files, adding to pages 26-27
referencing

other page objects 316
script object properties 306
themes, in pages 166

refreshing
link diagrams,

with current project information 186
link information 197

regions, utilized in layouts 163
Register server components option 147
relationships, defined 450
relative paths, for internal links 383

470 Programmer's Guide

remote debugging
ASP debugging, enabling 390
attaching to running processes 391, 392
configuring 389-390
launching 391-392
overview 388-389

remote scripting
asynchronous execution 319-320
overview 318, 289
synchronous execution 318-319

renaming
files and folders 148
site diagrams 182
solutions 399

repeated links, showing and hiding 191
Request object 293

HTML forms,
processing in server script 330

retrieving values from cookies 342
reserved characters, displaying 334, 335
Response object 293

Buffer property 337
storing information in cookies 342

restricted browsing permission 111, 113
result set object 262-263
return_ value property, call object 318
reuse of page elements 27
revoking permissions 140
roots

application root 77
default root, Internet Information

Server 77
virtual root 76

rotating trees in site diagrams 180
run time

access control 105, 107
dynamic database queries 259
interaction of system components 80
security 110-113, 114
security 95

RUNAT property
\<OBJECT\> tag 293
\<SCRIPT\> tag 283
\<SCRIPT\> tag 305

Running Documents window
(debugger) 295

run-time authorization for data
connections 220

run-time errors

s

client script, debugging 355
defined 451
Global.asa files, debugging 364-365
overview 294
server script, debugging 358-359

scaling link diagrams for printing 188
scope of page object properties 315
script attributes,

assigning event handlers 327
script blocks,

troubleshooting controls inside 418
Script editor 224
script libraries

including in ASP pages 344-345
installing for Visual lnterDev 1.0

Web applications 435-436
script objects

cancelEvent property 31 O
defined 451
displaying in Quick view,

HTML editor 302
events

extending 308-309
responding to 307-308
trapping 310

example of 311
functions and methods, calling 307
overview 288-289
parameter values, converting 311
properties 306
referencing objects 306
target platform 300, 304-305
testing 305
thisPage object 306, 414-415
writing script for 304-305

Script Outline window, Source view
event handlers, creating 307
overview 28, 275

script See scripts
<SCRIPT\> (HTML tag) 39, 281, 283,

301,321-322
scripting languages

ASP files 322
generated scripts 323
Global.asa files 322
overview 279
script blocks 321-322

scripting object model
See also page objects
advantages of 286-287
data-bound controls and 231
defined 451
design-time controls 288-289, 414
enabling 287,414
overview 285-286
Script Library 287

scr~pting platform See target platform
scnptlet container objects

overview 376-377
standard events, handling 374

scriptlets, DHTML
adding to applications 376
creating 368
default interface descriptions 371-372
events, exposing and handling

custom events 374-375
overview 373
standard events 373-374

functionality 368
methods, defining 369
overview 367
properties, defining 369
public_descriptor object 369-370
scriptlet container objects 376-377

scripts
See also scripting languages
adding to pages 28
assigning event handlers to

using attributes 327
browser processing of 278
browser-independent scripts 346-350
case sensitivity 414, 416, 39
client script

adding to HTM pages 39-40
client objects 290-292
conditional navigation 335-336
debugging 40-45,351-355
defined 438
design-time controls 289
error trapping 297
events, trapping 310
HTML forms, processing 329
in Design view 274
last-updated message,

adding to pages 36-37
message boxes, displaying 332
output, displaying 332-334
page object properties 315

Index

Programmer's Guide 471

Index

scripts (continued)
client script (continued)

processing 281-282, 296-297
script libraries, including 345
script objects 289
text, displaying 332-333
vs. server scripts 279-281

client script vs. server script 86, 279-281
content, allowing user to specify 349
database records, updating 248, 249
DE object

data commands, executing 261
overview 260
result sets 262-263

debugging 49
client script 40-45, 351-355
in Global.asa file 363-364
mixed client and server script 359-362
server script 356-359, 361-362

defined 451
for database access 235
HTML elements, reusing 343-344
interactive pages 94
navigating database records 242-243
overview 277
parentheses, correct use of 415
processing scripts on other pages 289
remote scripting 289
reusable script 343-345
script libraries 344-345
scripting languages 279, 321-322
server script

conditional navigation 336-338
debugging 356-359,361-362
design-time controls 289
embedded server script,

debugging 361-362
events, trapping 310
executing remotely 320
HTML forms, processing 330
information, displaying 334-335
message boxes, displaying 334-335
objects available to 284
output, displaying 285
page object properties 315
processing 283-285, 298
remote scripting 289
response, buffering 337
script objects 289
server objects 292-293
vs. client scripts 279-281

472 Programmer's Guide

scripts (continued)
SQL script files

adding to database projects 266
populating database projects 266

statement completion feature 414-415
target platform and 300
writing for target platforms 304-305

security
See also permissions
access types 103
audience considerations 86
browsing permissions 111-113
data connections 220
design-time security 108-110, 139
file access permissions 105
HTTP transmissions 113-114
locations for setting options 102-103
Microsoft SQL Server,

logon security 105-106
multiple Web applications 115
proxy server, connecting to 140-141
run-time security 95, 110-113, 114
security pages,

adding to Web applications 135
source control 110
SSL (Secure Sockets Layer) 113-114
user authentication

database level 105-106
FrontPage server extensions 106
Global.asa file 107
operating system level 104-105
overview 104
Web application level 106-107
Web serverlevel 105

using Windows NT User Manager 139
security pages, adding to

Web applications 135
SELECT (SQL statement), debugging 256
sequential page navigation 337-338
server commands (#INCLUDE

directives) 343-344, 344-345
server components

adding to pages 26
registering 396

server extensions
identifying 387
Visual InterDev 6.0 enhancements 428

Server object 293
server objects

commonly available objects 293
including in scripts 292-293

server objects (continued)
overview 292
using from Toolbox 419-421

server platform 300
server script

conditional navigation 336-338
debugging

ASP pages 356-357
in response to errors 358-359
just-in-time debugging,

troubleshooting 425
performance concerns 426
running documents 358
within solutions 357

defined 452
design-time controls 289
embedded server script,

debugging 361-362
events, trapping 310
HTML forms, processing 330
message boxes, displaying 334-335
objects available to 284
output, displaying 285
page object properties 315
previewing pages containing 11
processing 283-285, 298
remote scripting 289, 318-320
response, buffering 337
script objects 289
server objects 292-293
vs. client scripts 279-281

Server tab, Toolbox 419-421
servers

debugging components, installing 389
directory locations of themes 167
storing dynamic information

in text files 342-343
upgrades in Visual lnterDev 6.0 428
Web servers, relation to

database servers 216-218
server-side database access

overview 218
steps required to navigate

records 228-230
Session object,

Internet Information Server 293, 339-340
session, defined 452
Session.Abandon statement 425
Session_ OnStart procedure,

Global.asa files 298

session-scope properties, page objects 315
set method 306, 316, 318
sets of records, specifying 16
setSQLText method, Recordset object 259
Settings tab, Web Permissions

dialog box 136
setValue method, fields collection 247
Show in and out links (filter category) 192
Show in links (filter category) 192
Show Links Inside Pages button 191
show method, page objects 314
Show out links (filter category) 192
Show Repeated Links button 191
Show() method 63
sibling pages, defined 452
sibling relationship between pages,

creating 176
site diagrams

adding files to 406-407
.asp files in 170
collapsing groups of pages 179
creating 169-170
defined 452
deleting 183
expanding groups of pages 179
full page path, viewing 180
home pages

adding to 171-172
creating 32-33

opening 182
organizing 153
overview xi, 152
page labels, renaming 181
pages

adding to 170, 171
deleting from 178
removing from 177
shared between diagrams 153

printing 17 4
renaming 182
saving 183
site navigation,

designing 95, 153, 175-177
trees, rotating 180
troubleshooting display of changes 408
zooming 179

site navigation
designing 95, 153, 175
global navigation bars

adding pages to 176
overview 176

Index

Programmer's Guide 473

Index

site navigation (continued)
global navigation bars (continued)

removing pages from 177
reordering 177

pages
groups of, creating 176
parent-child relationships,

creating 176
sibling relationships, creating 176

site structure files
defined 452
updating 183

site transitions, defined 452
.sin files 75
software components,

required for Web applications 78
solutions

client script debugging 352-353
creating 4-6
defined 452
deploying 396-398
Microsoft Transaction Server (MTS),

packaging components for 397
overview 89-90
relation to projects 75
removing projects from 7
renaming 399
server components, registering 396
server script, debugging 357

source code, editing 181
source control

See also Visual SourceSafe
adding stored procedures to 268
adding to database projects 268
comments and file history 100
components required 98
database objects and 216
Exclusive checkout option 127
file operations 101
file tracking 99
integrating Visual InterDev and

FrontPage 388
links, updating 197
merging file versions 99
Multiple Checkout option 127, 128
options 100
overview 97
Project Explorer, refreshing 146
setting up on Web server 125
simultaneous checkout 99

474 Programmer's Guide

source control (continued)
tasks, typical 98-99
using Visual InterDev

conflicts between files,
resolving 49-50

overview 46, 49, 88
synchronizing local projects with

master Web applications 49
source pages, defined 452
Source view, HTML editor

See also Toolbox
controls, viewing as text 417-418
debugging 295
design-time controls, display of 302
HTML Outline window 272
IntelliSense 275
overview xiv, 10, 25, 271, 275-276
Script Outline window 273, 275
scripts, creating 28
stepping into script code 42-43
stepping over script code 43-44

SQL debugging
components, installing 254
DCOM, configuring 255, 427
debug users, configuring 254-255
overview 253
stored procedures, debugging 256
troubleshooting 427

SQL script files
adding to database projects 266
populating database projects 266

SQL Server See Microsoft SQL Server,
SQL statements

parameterized queries 257
recordsets, selecting 240
retrieving current text of 259

square nodes, in site diagrams 152
SSL (Secure Sockets Layer) 113-114, 147
staging servers, defined 453
standard DHTML events 373-374
startup page 77
state information, maintaining 313

See also dynamic information,
sharing between pages

state information, maintaining 318
statement compl'etion feature,

troubleshooting 414-415
stepping into code 41-43, 295
stepping over code 43-44, 295
Stored Procedure editor 224

stored procedures
adding to source control 268
debugging 256
parameterized queries 257

style sheet editor 29
sty le sheets

creating for themes 206
creating 200
CSS editor 201-202
defined 453
in Visual lnterDev 162
linking to pages 27
overview 161-162
previewing 162, 202
primary vs. secondary style sheets 162

synchronizing files
discarding changes 145
latest versions, retrieving 146
master and local copies, comparing 144
master application, updating 144-145
synchronizing master applications

with local projects 49
synchronizing with

master versions 122, 144-145
synchronous remote

procedure calls 318-319
syntax errors

client script, debugging 355
defined 453
Global.asa files, debugging 364-365
overview 294
server script, debugging 358-359

system components
See also components
database servers 78, 79
design-time interaction 81, 82
impact on Web application testing 88
required for Web applications 78
run-time interaction 80
test-time interaction 81, 83
Web servers 79

system DSNs 219-220

T
<TABLE\> (HTML tag) 24
tables

invisible borders, displaying in
Design view 274

tags, HTML
See also attributes
\<A\> tag 24, 340-341
adding, in CSS editor 201
\<BODY> tag 326
displayed in Visual lnterDev editor 25
<FORM> tag 24, 328
\<IMG\> tag 24
innertext property 333-334
\<INPUT\> tag 24
\<OBJECT\> tag 293, 376, 418
overview 23-24
\<P> tag 24
\<SCRIPT\> tag 39, 281, 283,

301,321-322
setting text using DHTML 333-334
style properties, setting in CSS editor 201
\<TABLE\> tag 24
\<TD\> tag 24
\<TR\> tag 24

target pages, defined 453
target platforms

changing 305
client platform 300
for controls, specifying 301
for pages, specifying 301
for projects, specifying 301
overview 300-301
script, writing for 304-305
server platform 300

<TD\> (HTML tag) 24
templates

creating pages using 199
custom, creating 211
defined 453-454
SQL script files 266
user input, prompting for 211-212

templates 162-163
testing page transitions 423
testing script objects 305
testing Web applications

interaction of system components 81, 83
previewing 120-121
system components, impact on testing 88
testing systems 88
working locally 119
working offline 91

text
alternate text for images, specifying 34
converting design-time controls to 303

Index

Programmer's Guide 475

Index

text (continued)
displaying

from client script 332-333
from server script 334

formatting using HTML tags 23-24
generated by design-time controls,

displaying 303
introductory text for Web applications 92

text editor 29
text files, storing dynamic information

on server 342-343
text view 417-418
TextStream object 293
Theme tab, Apply Theme and Layout

dialog box 35
ThemeName (template parameter) 212
themes

adding graphics to 168
applying to pages 174
applying to single pages 203
applying to Web projects 34-35,

202-203
cascading style sheets,

creating for themes 206
custom themes, creating 205
default themes 165, 202-203
defined 454
directory locations of 167
images, adding to theme directory 206
installed with Visual InterDev 167
overview xi, 165, 202
previewing 204-205
referencing in pages 166
removing from projects 203
removing from single pages 203-204
sharing between FrontPage and

Visual Inter Dev 167, 207
theme directory, creating 205
theme files, customized,

troubleshooting 408
Visual InterDev vs. FrontPage 388

_Themes directory 206, 414
thisPage object 306, 415
Timelines control 423
Toolbox

ActiveX controls, nonfunctional 419
design-time controls vs. HTML

controls 417
DHTML scriptlets, adding 376
elements, storing for reuse 27
overview 273
server objects 419-421

476 Programmer's Guide

Tooltips
broken links, displaying information

about 158
errors in design-time controls,

displaying information about 412
expressions, evaluating in debugger 425
viewing full page paths in

site diagrams 180
viewing URLs of items

in link diagrams 195
<TR\> (HTML tag) 24
transactions, defined 454

See also MTS (Microsoft Transaction
Server)

transition events
actions required, specifying 64-65
specifying for form modes 63-64

transitions
page transitions, testing 423
specifying for form modes 20

trees
defined 454
rotating in site diagrams 180

Trigger editor 224
troubleshooting

ActiveX controls on Toolbox 419
authentication errors when creating

or copying Web applications 406
Broken Links Report 409
build order of Web projects 411
cascading style sheets 407
controls inside script blocks 418
.css files, customized 408
custom HTML with PageNavbar

control 407-408
data display on Web pages 412
debugging

Active Desktop mode, Internet
Explorer 426

ASP debugging 424
displaying correct page 425
just-in-time debugging, server

pages 425
resetting options 425-426

design-time controls
errors in 412
scripting object model, enabling 414

Layout control 408
link diagrams 409
MTS, interference with IIS

operations 410

troubleshooting (continued)
navigating quickly through

database records 414
PageNavbar control

u

parameters and bookmarks 408
viewing changes 408

quoted identifiers 412
Recordset control

name displayed in red 413
red circle displayed with

exclamation point 413
scripts, correct use of parentheses 415
site diagrams, viewing changes 408
SQL debugging 427
statement completion feature 41~15
theme files, customized 408
thisPage object 415
VINavbar component with

PageNavbar control 407
Visual SourceSafe 411, 134
Web server connections 410

unadvise method, script objects 309
underscore character (_) in directory names,

troubleshooting 409
unique IDs, creating 202
unique permissions,

setting for Web applications 136
unknown items 454
Unknown link state 158
unreferenced files, locating 198
unrestricted browsing permission 111, 112
updateRecord method, fields collection 248
updates

automatic navigation updates,
enabling 247

updating link information 197
URLs (Uniform Resource Locators)

defined 454
of items in link diagrams, viewing 195
of linked elements 27

Use quoted identifiers option,
troubleshooting 412

user authentication
database level 105-106
FrontPage server extensions 106
Global.asa file 107
operating system level 104-105
overview 104
restricting access to registered users 113

user authentication (continued)
troubleshooting source control 134
Web application level 106-107
Web server level 105

User Manager, Windows NT 139
user profiles, for data connections 220
user-defined methods,

associating with form modes 21
users

See also groups of users
adding to Web applications 137
changing permissions for 137
permissions, revoking 140

v
valid items, defined 454
Valid link state 158
Value field, Actions Performed for

Mode table 20
variables

changing values in Immediate
window 4~6

in parameterized queries 257
viewing values in Locals window 45

VB Script
default interface descriptions 371-372
DHTML scriptlets 369
events, canceling effect of 325
parentheses, correct use of 415

verifying links
outside of Web applications 158
within Web applications 158

version 1.0, Visual InterDev
See Visual lnterDev, version 6.0 vs.
version 1.0

version 6.0, Visual InterDev
See Visual InterDev, version 6.0 vs.
version 1.0

vertical layout, link diagrams 157, 195-196
View Designer 216, 224
VIEW ASTEXT attribute,

\<OBJECT\> tag 418
viewing links, outside of

Web applications 186
views

See also Design view;Quick view;
Source view

default view, specifying 25
switching between 25

VINavbar control, troubleshooting 407

Index

Programmer's Guide 477

Index

virtual roots
creating 76
defined 455

visual consistency 34-35
Visual Database Tools 216
Visual InterDev

build order of Web projects,
troubleshooting 411

FrontPage Webs, opening 386
interaction with Visual SourceSafe 100
navigation bars, vs. FrontPage

navigation bars 387
server extensions, identifying 387
themes

sharing with FrontPage 167, 207
vs. FrontPage themes 388

version 6.0 vs. version 1.0
data connection differences 429
data environment differences 435
design-time controls

differences 434-435
overview 427-428
version 1.0 projects 430, 431,

435,436
version 6.0 projects 432, 433, 434
version 6.0 server upgrades 427

Web projects,
opening in FrontPage 385-386

Visual lnterDev 1.0 See Visual InterDev,
version 6.0 vs. version 1.0

Visual InterDev 6.0 See Visual InterDev,
version 6.0 vs. version 1.0

Visual InterDev editor
default view, specifying 25
overview 25
views, switching between 25

Visual SourceSafe
Anonymous user account,

adding permissions for 126-127
changes, tracking 127
comments and file history 100
determining status of 128
disabling 128
enabling 127-128
file checkout options 127, 131
file history 132
file operations 101
file tracking 99

478 Programmer's Guide

Visual SourceSafe (continued)
files

added outside of Visual SourceSafe
project 129

adding manually 129
checking in 132
checking out 130-131
discarding 132
master versions, retrieving 131-132
removing from source control 130

installing 125-126
interaction with Visual Inter Dev 100
merge conflicts, resolving 132-133
merging file versions 99
multiple checkouts, allowing 131
options, overview 100
permissions, granting 126
projects, removing 128
proxy servers, interaction with 99
re-enabling 128
required installation 98
simultaneous checkout 99
tasks, typical 98-99
troubleshooting 134, 411

_ vti_bin directory 106

w
. wdm files 182
Web administrators, specifying 109-110
Web applications

See also master Web applications;scripts
access control 107-108
adding to existing Web applications 147
adding users to 137
audience considerations 86
authentication errors,

troubleshooting 400
browser considerations 86
computers, adding to 138
content considerations 86-87
copying 52, 120, 146-147
database access, incorporating 232-236
databases, integrating into projects 91-92
debugging during execution 391, 392
defined 455
deploying 51-54, 89

Web applications (continued)
deploying 97

integrated solutions 396-398
integrated Web solutions 396-398
manual deployment 394
Microsoft Transaction Server (MTS),

packaging components for 397
overview 393-394
server components, registering 396
using FrontPage Server

Extensions 394
using Posting Acceptor 394

design and planning 85-89
development resource

considerations 87-89
DHTML scriptlets, adding to 376
dynamic data publishing 94
enterprise applications 89
files and folders, manipulating 148
groups of users, adding 137-138
information pages 94
interactivity 94, 211-212
introductory text 92
links, testing 96
local applications, synchronizing 146
maintaining 97, 395
master Web application,

updating 144-145
merging into destination

Web applications 147
previewing 120-121
prototypes, developing 92-93, 153
proxy server, specifying 141
relation to Web projects 73, 74
security

access types 103
browsing permissions 111-113
developer access, controlling 109-110
permissions 136, 140
run-time security 95
security administration 114-115
user authentication 106-107

site consistency 160-168
site diagrams 170
site navigation 95, 153
site structure file, updating 183
solutions

building 89-93
deploying 396-398

Web applications (continued)
source control 127-128
system components 78-83
target Web server, specifying 141
testing 81, 88, 96
traditional applications vs 84
unreferenced files, locating 198
upgrading pages 395
verifying links 157-158
visual design 95
Web items, creating 93-95
working offline 84, 91

Web browsers See browsers
Web elements, defined 455
Web pages

See also HTML (Hypertext Markup
Language)

alternate editors, selecting 29
last-updated message, adding to 36-37
linking to pages 27
page objects 289
site consistency 160-168
viewing links 37-38
Web page editors 23

Web Permissions dialog box, Settings tab,
unique permissions, setting 136

Web project definition files 76
Web projects

See also Web applications
adding files to 6
build order, troubleshooting 411
creating 4-6, 31-32, 90
data connections, adding 15, 411
database projects 265, 267-268
default directory,

Windows NT environment 77
default themes 165
defined 455
deleting pages from 178
deleting 7
files, resolving conflicts between 49-50
home pages, creating 32-33
integrating FrontPage and

Visual lnterDev 385
items in, viewing links for 185
layouts 35-36, 207-208
local mode 47, 90-91
local projects 48, 76

Index

Programmer's Guide 479

Index

Web projects (continued)
master Web applications 46-48, 77
multiple developers,

support for 74, 88
overview 3
personal files, adding to 406
Project Explorer 74, 146
project structure, reorganizing 148
recalculating links 408
refreshing 91
relation to solutions 75
relation to Web applications 73, 74
removing from solutions 7
source control 46, 49, 50
synchronizing master applications

with local projects 49
target platform, specifying 301
themes 34-35,202-205
working offline 91
working outside of 91

Web servers
connections 410
connections 79
defined 456
function in Web applications 78
in client-side database access 230-231
in server-side database access 228-230
master vs. production servers 80
relation to database servers 216-218
source control, setting up 125
target, specifying 141
user authentication 105

Web sites, defined 456
Web, defined 455
window object 291
Windows 95, tracking changes

in Visual SourceSafe 127
Windows NT

SQL Server security 106
User Manager,

and design-time security 139
Web project directory, default 77

working files, defined 456
working offline

file check out and check in 101
overview 122-123
overview 84, 91

480 Programmer's Guide

workstations
directory locations of themes 167

write-enabled files
retrieving 119
specifying checkout option 131

z
zooming link diagrams 193

· ft m

Microsoft Press Online is your road map to the best

available print and multimedia materials-resources that will

help you maximize the effectiveness of Microsoft® software

products. Our goal is making it easy and convenient for you to find exactly

the Microsoft Press® book or interactive product you need, as well as bringing

you the latest in training and certification materials from Microsoft Press.

ine

Where do you want to go today?® Microsoft® Press

Microsoft Press has titles
to help everyon e

from new users
to seasoned developers!llall-

Step by Step Serles
Self-paced tutorials for
classroom instruction or
individualized study Starts Here™ Serles

Interactive instruction
on CD-ROM that helps
students learn by doing

Quick Course" Serles
Fast, to-the-point
instruction for new users

Fleld Gulde Serles
Concise, task-oriented
A-Z references for
quick, easy answers
anywhere

Running Serles

Offlclal Serles
Timely books on a wide
variety of Internet topics
geared for advanced
users

At a Glance Serles
Quick visual guides for
task-oriented instruction

A comprehensive
curriculum alternative to
standard documentation
books

Microsoft Press® products are available worldwide wherever quality
computer books are sold. For more information, contact your book
or computer retailer, software reseller, or local Microsoft Sales Office,
or visit our Web site at msQress.microsoft.com. To locate your nearest
source for Microsoft Press products, or to order directly, call 1-800-
MSPRESS in the U.S. (in Canada, call 1-800-268-2222).

Prices and availability dates are subject to change.

!l
start faster ~: L"'""'I ...

and go farther!
The wide selection of books and CD-ROMs published by Microsoft Press contain

something for every level of user and every area of interest, from just-in-time

online training tools to development tools for professional programmers. Look

for them at your bookstore or computer store today!

(>

~1
· Server

Professlonal Select
Editions Serles
Advanced titles geared
for the system
administrator or technical
support career path

~Bil tf
""'''\~~ff
~:1:

'~~~ lij

~
Microsoft® Certified
Professional Training
The Microsoft Official
Curriculum for
certification exams

Strategic Technology
Serles

Best Practices Serles
Candid accounts of
the new movement in
software development

Microsoft
Programming Serles
The foundations of
software developmel')t

Microsoft Press•
Interactive
Integrated multimedia
courseware for all levels

Easy-to-read overviews
for decision makers

Microsoft
Professional Editions
Technical information
straight from the source

Solution Developer
Serles
Comprehensive titles
for intermediate
to advanced developers

Nlicrosott®Press
mspress.microsoft.com

Develop
integrated

eb
applications!

. Inside

L ~nteractlve
Web

Development

on the

Cutting Edge

U.S.A. $39.99
U.K. £37.49 [V.A.T. included]
Canada $53.99
ISBN 1-57231-583-0

If you want to build high-performance Web

sites or create intranets, Microsoft® Visual

lnterDev™ is the answer. With Visual lnterDev,

you get sophisticated database connectivity

options; tight integration with other Microsoft

tools such as Microsoft Visual Basic~ Microsoft

Visual C++~ and Microsoft Visual J++™; and site

management capabilities. In short, it's the

software that lets you create and manage

advanced, database-driven Web applications.

INSIDE MICROSOFT VISUAL INTERDEV gives you an

insider's perspective on this powerful develop

ment tool.

Microsoft Press® products are available worldwide wherever quality computer
books are sold. For more information, contact your book or computer retailer,
software reseller, or local Microsoft Sales Office, or visit our Web site at
mspress.microsoft.com. To locate your nearest source for Microsoft Press
products, or to order directly, call 1-800-MSPRESS in the U.S. (in Canada, call
1-800-268-2222). Microsoft® Press Prices and availability dates are subject to change.

nterDev~6.0
Programmer's Guide

The complete picture of database-driven
Web development.
Microsoft Visual lnterDev 6.0 provides a one-stop solution for building dynamic Web
applications. The MICROSOFT VISUAL INTERDEV 6.0 PROGRAMMER'S GUIDE shows you
how to use that solution to your best advantage. The content is taken from the on line
product documentation and is provided here in print for convenience and portability.

This comprehensive resource introduces you to the Microsoft Visual lnterDev 6.0 environment and guides
you in creating Web projects and utilizing databases. Topics covered include:
• Basics-Web, database, and editing fundamentals; .walkthroughs
• Creating Web Projects-project concepts, working locally and with multiple developers, adding security,

managing Web projects
• Designing Sites-Web concepts, designing site navigation, managing a site diagram, viewing and

maintaining links, customizing page appearance, adding multimedia
• Integrating Databases-database concepts; viewing, modifying, and filtering data; working with stored

procedures; managing database projects
• Editing and Scripting-scripting concepts, editing scripts, adding objects, debugging pages, making

HTML dynamic, using Active Server Pages as objects, integration tasks and concepts, distributing
Web applications

Microsoft Visual lnterDev 6.0 is the leader in Web tools and technology, and the MICROSOFT VISUAL
INTERDEV 6.0 PROGRAMMER'S GUIDE is the thorough, from-the-source resource that will enable you
to unlock its full power.

Get the indispensable reference for building dynamic Web applications!

A must-have reference for building dynamic Web applications, the Microsoft Visual lnterDev 6.0
Web Technologies Reference collects five invaluable guides to scripting languages in a single
volume: Dynamic HTML Reference, JScript Reference, VBScript Reference, Active Data Objects
(ADO) Reference, and Visual lnterDev Web Reference.

mspress.microsoft.com

Part No. 097-0001982

Internet Development/
Microsoft Visual lnterDev

