
~:e:~;83ned for
' ",-",

:=::=
'''' -''' "" .

Microsoft·
WindowsNT"
Windows·98

The Quick and Easy Way to Learn Microsoft Visual C++ 6.0

Learn

Chuck Sphar

C++" 6.0
'. Now

ViSiial Now
Chuck Sphar

Aficl'OSott Press

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 1999 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or
by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Microsoft Visual C++ 6.0 Deluxe Learning Edition / Microsoft

Corporation.
p. cm.

ISBN 0-7356-0636-6
1. C++ (Computer program language) 2. Microsoft Visual C++.

I. Microsoft Corporation.
QA76.73.C153M4978 1999
005.26'8--dc21 99-13360

CIP

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QMQM 4 3 2 1 0 9

Distributed in Canada by ITP Nelson, a division of Thomson Canada Limited.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further informa
tion about international editions, contact your local Microsoft Corporation office or contact Microsoft
Press International directly at fax (425) 936-7329. Visit our Web site at mspress.microsoft.com.

Macintosh is a registered trademark of Apple Computer, Inc. Intel is a registered trademark of Intel Cor
poration. ActiveX, IntelliMouse, Microsoft, Microsoft Press, MSDN, MS-DOS, Visual Basic,
Visual C++, Visual FoxPro, Visual InterDev, Visual J++, Visual SourceSafe, Visual Studio, Win32, Win
dows, and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the
United States and/or other countries. Other product and company names mentioned herein may be the
trademarks of their respective owners.

The example companies, organizations, products, people, and events depicted herein are fictitious.
No association with any real company, organization, product, person, or event is intended or should
be inferred.

Acquisitions Editor: Eric Stroo
Project Editor: Holly Thomas
Technical Editor: Michael Hochberg

Part No. 097-0002203

For Pam, always.

PART 1
Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 1

Chapter 8

PART 2
Chapter 9

Chapter 10

Chapter 11

Chapter 12

Chapter 13

Chapter 14

PART 3
Chapter 15

Chapter 16

Chapter 11

Chapter 18

Chapter 19

Chapter 20

Chapter 21

Acknowledgments

Introduction

The Visual C++ Environment

C++ Basics

C++ Scope, Pointers, and References

C++ Classes

Object-Oriented Programming

Windows and the Win32 API

The MFC AppWizard: Code for Free

Inside MFC

On the Menu

Drawing Commands

Power to the User

Shapes in Color

Debugging Your Mistakes

Data, Documents, and Views

Scrolling

Storing Data in a File

Printing the Document

Toolbars and Selections

Dialog Boxes and Controls

Multiple Views

Stepping Out from Here

Appendix: The MFC Source Code

Index

xxi

xxiii

3

41

89

123

161

209

231

249

295

311

329

363

311

409

441

411

505

531

561

605

619

621

639

ABLE OF ONTENTS
Acknowledgments xxi

Introduction xxiii

What Visual c++ and MFC Are xxiii

Who This Book Is For xxiv

Charting Your Course xxiv

learning By Doing xxv

What This Book Covers xxvi

A Few Conventions xxviii

Using the Companion CD-ROM xxix

Installing the Samples on Your Computer xxix

Installing Visual C++ on Your Computer xxx

Viewing Documents in the Companion Code xxxi

What You'll Need to Use This Book xxxi

Support xxxii

PART 1 Getting to Know Visual c++
Chapter 1 The Visual C++ Environment 3

Running Visual C++ 4

Getting Help in Visual C++ 5

Help Fundamentals 7

Narrowing Your Searches 9

lost in the Woods 13

loose Ends 16

Projects and Workspaces 16

Projects 16

Works paces 17

Working with Your Project 17

Creating a Project 18

Using the Workspace Window 21

Adding and Removing Project Files 25

TABLE OF CONTENTS

Editing Source Code and Resources 27
Specifying the Project Configuration 29
Building Your Project 29
Correcting Build Errors 31
Running Your Program 32
Debugging Your Program 33
Profiling and Optimizing Programs 33

Using Wizards and Other Visual C++ Tools 34
Working with Your Workspace Windows 35

Document Windows 36
Docking Windows 37
Toolbars and Menus 39

Searching in Visual C++ 40
Search and Replace 41
The Find Drop-Down list Control 41
The Find In Files Command 42
Bookmarking in Source Code Files 42

Microsoft on the Web and MSDN Online 42
Tips and Tricks 43
Try It Yourself 45
What's Next? 45

Chapter 2 C++ Basics 47

Hello in C++ 49
Creating the Program 49
Building and Running the Program 52

The C++ in Hello 52
C++ Comments 53
Preprocessor Directives 54
C++ Constants 55
C++ Keywords 56

TABLE OF CONTENTS

Literals 56

Statements 57

Variables and Data Types 58

Allocating Memory for Variables 67

Functions and Parameters 71

Returning a Result from a Function 73

The ClC ++ Run-Time Library 74

The main Function 76

Expressions and Operators 78

C++ Control Statements 82

C++ Input/Output via lostreams 85

Try It Yourself 87

What's Next 88

Chapter 3 C++ Scope, Pointers, and References 89

Scope, Part 1 89

Pointers 94

Pointer Basics 95

Pointers and Arrays 99

Pointers and Strings 102

Pointers as Function Parameters and Function Results 103

References 108

Pass by Reference 110

Pointer and Reference Guidelines and Cautions 112

Guidelines for Passing Parameters and Returning Results 112

Returning Results: Caution Required 114

Header and Implementation Files 118

Preventing Multiple Inclusion 120

Precompiled Headers 121

Try It Yourself 121

What's Next? 122

TABLE OF CONTENTS

Chapter 4 C++ Classes 123

Objects and Classes 124

Creating a Class from Scratch 126

The Shape1 Program 127

The C++ in the Shape1 Program 133

The structs in the Shape1 Program 135

Run-Time Functions in the Shape1 Program 137

The main Function in the Shape1 Program 139

What's Wrong with the Shape1 Program? 140

The Shape2 Program 141

The C++ in the Shape2 Program 147

Static Variables 155

What's Still Wrong with the Shape2 Program? 156

The Friend Program 157

Try It Yourself 159

What's Next? 160

Chapter 5 Object-Oriented Programming 161

The Shape3 Program 162

The C++ in the Shape3 Program 169

Deriving One Class from Another 169

Designing Your Class Hierarchy 177

Access Specifiers in Class Hierarchies 181

Destructors 183

Static Class Members 185

More About Constructors and Destructors 186

Operator Overloading 196

Scope, Part 2 198

Object-Oriented Programming 200

How Much OOP? 201

What's Missing from Our C++ Coverage? 203

TABLE OF CONTENTS

Try It Yourself 204

Answers to Try It Yourself Exercises 206

What's Next? 207

Chapter 6 Windows and the Win32 API 209

The Flavors of Windows 209

The Windows API 210

Win32, the SDK, and Windows.h 210

Central Windows Concepts 211

Programming for Different Win32 Platforms 211

Multitasking and Multithreading 211

The Least You Need to Know About Windows 212

Events 213

Messages 213

Drawing 217

The Device Context 219

Coordinates 222

Life Cycle of an Application for Windows 227

Try It Yourself 229

What's Next? 229

Chapter 7 The MFC AppWizard: Code for Free 231

MFC, the Win32 API, and the Learning Curve 231

The Class Library 232

The Application Framework 233

AppWizard: Code for Free 235

Working Along with Me 235

Following the Build Process 239

Running MyDraw.exe 242

What AppWizard Gives You for Free 242

Let's Write Some Code 244

Try It Yourself 247

What's Next? 248

TABLE OF CONTENTS

Chapter 8 Inside MFC 249

Exploring MFC Through the AppWizard Files 249
Touring the Code 250

The Application Object 253
The Main Frame Window Object 263
The Document Object 271
DocumenWiew Architecture 272
The View Object 276

Where Is the Windows Stuff? 284
Life Cycle of an MFC Application 285
I've Run AppWizard-Now What? 287
MFC and Windows 288
Finding and Using the Hooks in MFC 290
Try It Yourself 291
What's Next? 292

PART 2 Fundamental MFC Skills
Chapter 9 On the Menu 295

Introducing MyDraw 295
Menus 297

Menu Resources 298
Windows Resources 299

Adding a Tools Menu to MyDraw 303
Adding the Top-Level Menu 304
Adding the Submenus 306
Adding the Accelerators for MyDraw 307

Menus and Commands 309
Try It Yourself 309
What's Next? 310

" T ABLE OF CONTENTS

Chapter 10 Drawing Commands 311

The MyDraw Application, Step 1, Continued 311

Adding the Command Handlers 312

Testing OnDraw's Menus and Shape Drawing 322

Disappearing Shapes 323

Redrawing Shapes on Update 323

Keeping Track of Shape Types 324

How Good Is It? 326

Future Versions of MyDraw 326

What Have You Learned? 327

Try It Yourself 328

What's Next? 328

Chapter 11 Power to the User 329

Drawing with the Mouse 330

Mouse-Related Messages 330

Mouse Message Handlers 332

Adding the Mouse Message Handlers 333

Testing the Handlers with AfxMessageBox 336

The MyDraw Application 338

Bringing MyDraw Up-To-Date 339

Drawing in the Mouse Message Handlers 347

Checkmarking the Selected Drawing Tool: Updating Menus 353

Making the Shapes Transparent 356

Try It Yourself 361

What's Next? 362

Chapter 12 Shapes in Color 363

The RGB Color System 363

Creating a Color with the RGB Macro 364

Working with Color 364

TABLE OF CONTENTS

Adding the Hierarchical Color Menu 365

Writing an Efficient Handler for the Color Menu Commands 367

Putting a Check Mark on the Color Menu 369

Drawing Shapes in Color 370

Managing the Currently Selected Color 370

Translating Color Command IDs to RGB Colors 371

Selecting a Pen of the Current Color 372

Setting the Color of a New Shape 375

Try It Yourself 376

What's Next? 376

Chapter 13 Debugging Your Mistakes 377

Visual C++ Debugger Overview 378

Debug Builds vs. Release Builds 380

Example: Using the Debugger 381

Finding the Bug 382

Analyzing the Bug 383

Examining Variables 386

Breakpoints 389

Stepping Through Code 392

Looking for Shape Eleven 396

Damage Report 404

Fixing the Bug 404

Display Bugs 407

MFC Diagnostic Facilities 407

Try It Yourself 408

What's Next? 408

Chapter 14 Data, Documents, and Views 409

Designing the Document 410

The DocumentlView Architecture Again 410

Choosing an Appropriate Data Structure 412

TABLE OF CONTENTS

MyDraw's Document Interface 414

Cleaning Up the Document 426

The CShape Class 427

Defining Class CShape 428

Deriving from CObject 430

CShape as a Base Class 433

A Derived Class: CShpRectangle 434

CShape Implementation 436

CShpRectangle and CShpEllipse Implementations 437

Fixing Up MyDraw's Header Structure 439

Summary of Data Class Design Considerations 440

Try It Yourself 441

What's Next? 443

PART 3 Rounding Out Your MFC Skills
Chapter 15 Scrolling 447

Why We Need Scroll Bars 447

Some Scrolling Theory 449

Scrolling: The Basic Technique 452

Scrolling Lines of Text 453

Drawing Text 455

Setting Scroll Sizes 460

Adding Scrolling to MyText 460

Back to MyDraw 464

Where to Call SetScrol/Sizes 464

Having the Document Compute Its Own Sizes 465

Adding Scrolling to MyDraw 466

Coordinate Conversion Rears Its Ugly Head 468

Parting Thoughts 473

Try It Yourself 475

What's Next 476

TABLE OF CONTENTS

Chapter 16 Storing Data in a File 477

Serialization and Deserialization 478

Implementing Serialization in MyDraw 480

Serialization Requirements in Data Classes 480

Serializing One Shape 482

Serializing All Shapes in the Document 483

CShape's Serialize Member Function 484

CMyDrawDoc's Serialize Member Function 488

Calling Serialize vs. Using CArchive Operators 490

Application Version Control with MFC Schemas 494

How Serialization Works 495

The DECLARE_SERIAL and IMPLEMENT_SERIAL Macros 495

Creating Objects from Thin Air 496

How Serialize Is Called 497

CArchive and CFile 499

Sidestepping Serialization 501

File 1/0 with DocumentlView 502

File 1/0 Without DocumentlView 503

Try It Yourself 503

What's Next? 504

Chapter 17 Printing the Document 505

Planning for Printing 506

The MFC Printing Architecture 506

Printing in Windows 507

Printing with MFC 508

Changing the Mapping Mode: The Size Problem 510

Consequences of Changing the Mapping Mode 511

Paginating the Document 516

Calculating the Printable Area 516

Telling MFC Where to Break the Pages 520

TABLE OF CONTENTS

The Portrait vs. Landscape Problem 526

Adding a Header and a Footer 528

Adding Calls to PrintHeader and PrintFooter Functions 530

Adding the Header 530

Adding the Footer 532

Wrapping Up 535

Printing Topics Not Covered 535

Try It Yourself 536

What's Next? 536

Chapter 18 Toolbars and Selections 537

Adding a Toolbar 537

The Toolbar Classes 537

Creating the New Toolbar Resource 538

Writing the Toolbar Code 541

Implementing Selection Mode 548

How Selection Mode Works 549

The Selection Button 550

Selection Code in the Shapes 553

Hit Testing 557

Drawing the Selection Handles 560

Try it Yourself 565

What's Next? 566

Chapter 19 Dialog Boxes and Controls 567

About Dialog Boxes and Controls 568

A Simple Modal Dialog Box 570

Creating and Editing the Dialog Resource 570

Creating the Dialog Class 573

Displaying the Dialog Box and Retrieving Its Contents 575

TABLE OF CONTENTS

A Windows Common Dialog Box 578

About the Common Dialog Boxes 579

Adding the Color Dialog Box to MyDraw 580

A More Complex Property Sheet Dialog Box 582

Property Sheets and Property Pages 583

Displaying the Settings Dialog Box 586

Creating Dialog Resources for the Settings Dialog Box 587

Creating Dialog Classes for the Settings Dialog Box 592

Adding Class Data Members Mapped to the Controls 593

Implementing the Shape Page 594

Implementing the Line Page 596

Controls as Windows 601

What's Missing? 602

Try It Yourself 603

What's Next? 603

Chapter' 20 Multiple Views 605

Splitter Windows 606

When to Use Dynamic and Static Splitter Windows 607

Combining Static and Dynamic Splitter Windows 608

Adding a Dynamic Splitter Window to MyDraw 608

Creating a Static Splitter Window 611

What Can You Do with Views? 613

Views for User Interaction 613

Views as Windows 613

MFC Views as Bases for Your Own Views 614

Combining Views 615

Communicating Among MFC Objects 616

Congratulations! 616

Try It Yourself 617

What's Next? 617

TABLE OF CONTENTS

Chapter 21 Stepping Out from Here 619

Books on C++, Visual C++, and MFC 619

What I Haven't Covered 621

Microsoft on the Web and MSDN Online 623

One Last MyDraw Feature 623

The Final Version of MyDraw 625

Appendix The MFC Source Code Files 627

Where to Find the MFC Source Code Files 628

The Include Subdirectory 628

The Lib Subdirectory 629

The Src Subdirectory 629

Finding What You Need in the MFC Source Code Files 630

Using the Visual C++ Find In Files Command 631

Using the Visual C++ Source Browser Command for MFC 633

Source Files Other than MFC 635

MFC Coding and Commenting Conventions 635

Reading the AppWizard Files 636

Index 639

Acknowledgments

This book has been fun to write, but I couldn't have done it alone. The
greatest thanks of all go to my wife, Pam, who backs me all the way. I
also had quite a bit of help from Buji-san, Striper, Tippy, and Sydney,
keyboard walkers extraordinaire who probably sneaked in a meow
here and there.

I want to thank some great folks at Microsoft Press: Eric Stroo, acquisi
tions editor; John Pierce, managing editor; Holly Thomas, project editor
and principal manuscript editor; Michael Hochberg, principal technical
editor; Linda Ebenstein, technical editor; Ina Chang, manuscript editor;
Cheryl Penner, principal proofreader; Karen Lenburg, proofreader, and
the whole host of proofreaders who worked on this project; Rob Nance,
interior graphic artist; Elizabeth Hansford, principal desktop publisher;
desktop publishers Dan Latimer, Dick Carter, Elizabeth Sanders, Gina
Cassill, and Stuart Greenman; Bill Teel, computer wizard; and Julie
Kawabata, indexer. Thanks also to many others I can't name here.

Thanks as well to my agent Claudette Moore, at Moore Literary Agency,
and her assistant, Debbie McKenna.

Although I spent six years documenting Visual C++ and MFC at Microsoft,
I needed someone looking over my shoulder to catch the worst mistakes.
My gratitude to Gonzalo Isaza, the MFC quality assurance lead, who care
fully read the entire manuscript in his spare time, and to Mike Blaszczak,
theMFC development lead, who answered many questions. Thanks also
to Walter Sullivan, Kathleen Thompson, Jocelyn Garner, and the members
of the Visual C++ documentation team. Any mistakes that remain are mine.

A final thanks to the designers of Visual C++ and MFC, especially Mark
Walsen, Scott Randell, and Dean McCrory, who spent a lot of time teach
ing me over the years. I hope I caught what they were pitching.

Introduction
Welcome to Learn Microsoft Visual c++ 6.0 Now. You're about to begin
learning the most powerful, flexible way to program for Microsoft Win
dows. This book is designed to help you climb three challenging learning
curves at once: Windows programming, the c++ programming language,
and the Microsoft Foundation Class Library.

Microsoft Press publishes an impressive line of books about Microsoft Vi
sual C++. However, most of them are aimed at experienced C++ program
mers who may already understand programming for Windows, and there
is a need for a book that begins with fewer assumptions about what you
already know. Consider Learn Microsoft Visual C++ 6.0 Now that book
your on-ramp to Visual C++ 6.0 and the Microsoft Foundation Class Li
brary 6.0 (hereafter simply MFC or the MFC library), as well as to more
advanced books about them. The bonus is that this book includes a full
working copy of Visual C++ 6.0.

What Visual C++ and MFC Are
Visual C++ is a visually oriented software development environment,
geared specifically to writing programs for the Windows operating system
in C++. With Visual C++, you can write any kind of program that it's

xxiii

Introduction

xxiv

possible to write in either the c++ language or the C language. c++ is a
superset of C. MFC is the preferred way to write Windows applications
in Visual c++. MFC is a set of c++ classes that comprise a functioning
generic Windows application that's ready for you to customize. You begin
with the MFC App Wizard, which generates a set of starter files. Then you
add code to implement the features that make your application unique.
This book teaches the MFC fundamentals that help make Visual c++ so
versatile.

Who This Book Is For
Learn Microsoft Visual C++ 6.0 Now makes the following assumptions
about your skill and knowledge levels:

• First of all, you know how to program in some language. Perhaps
it's C or even C++, but it might be Basic or Pascal or some other
programming language. By "know how to program," I mean that
you understand basic program flow, looping, branching, function or
subroutine calls, parameter passing, and compiling a program. If
you don't fit this description, I recommend that you find a good
course or book on programming fundamentals before you attempt
C++, Windows, or this book.

• Second, you want to program for Windows, and you want to do so
with C++, but you might have little or no Windows programming
experience.

• And third, even if you do have some Windows or C++ program
ming experience, you haven't programmed with Visual C++.

Charting Your Course
The following list suggests where and how you might concentrate within
this book, depending on your expertise and priorities.

• If you already know some Windows programming-perhaps you've
programmed in Microsoft Visual Basic or C-you'll most likely
read Chapter 1, carefully study Chapters 2 through 5 to learn C++

Introduction

fundamentals, skim Chapter 6, and then read the rest of the book,
which puts C++ to practical use for programming Windows. There
isn't room to cover the entire language in detail, but this will be a
good introduction.

• If you've heard about the MFC library and object-oriented program
ming (usually abbreviated OOP), consider skimming Chapters 1

through 4, and then read Chapter 5, skim Chapter 6, and read the
rest of the book closely. You'll learn the basics of OOP and quite a
bit ofMFC.

• If you know only basic programming techniques but want to grow
into a versatile modern language such as C++ and want to begin
learning Windows programming, take this book a step at a time and
pay particular attention to all the hands-on examples. The online
documentation for Visual C++ is a good supplement for C++ lan
guage and Windows details. I'll point out useful Help topics as we
go. Exercises with solutions will let you test your skills.

• If you have used some other C++ programming product and now
want to learn Visual C++, read Chapter 1, skim Chapters 2 through 5,

and dig into the remaining chapters.

Learning By Doing
Nearly all readers will find it valuable to work through the book's many
hands-on examples. Most of the examples are small enough that you can
painlessly type in the code and try them out. If you're a beginner you'll
discover that doing is learning, and more advanced readers will find that
fluency grows out of the fingers. The more you actually work with the
code, the more you'll carry away from this book.

You'll encounter the code for the examples in "Try it now" sections.
These detail the steps you should take if you're working through the ex
amples. It's important to do all of the "Try it now" sections in a chapter
if you do any of them. Occasionally, I'll also mention a technique in pass
ing and suggest that you go to Visual C++ on the spot and "try it." Then,

xxv

Introduction

at the end of each chapter, you'll find several exercises in a "Try It Your
self" section. Work through them. Answers are supplied either with the
exercises or as implementations in the companion code. I'll tell you
where to find this code for each exercise.

A(11 OTE In some cases, I'll show you code examples with the less pertinent
:)lfl comments and code omitted in order to clarify a point I'm trying to make.

The book's principal example is MyDraw, a simple vector drawing pro
gram with many interesting features. Along with many smaller examples,
we'll develop MyDraw step by step throughout most of the book. Table 10-2

in Chapter 10 describes the 11 steps in MyDraw's development.

':1IOTE If you decide to skip some steps in the MyDraw example and then
<:::1, jump in, you can begin with my code for the appropriate step. For each of

the 11 steps of MyDraw, you'll find a numbered version of the source code,
complete up to that point, in the companion code. For example, the code
for step 0 is in the MyDrawO directory (C++ programmers start counting
from 0, not 1), and code for step 1 is in the MyDraw1 directory. Each chap
ter announces which step it's for. The section "Installing the Samples on
Your Computer" later in this introduction will show you how to install the
sample programs onto your hard drive. To start with a particular step, look
in the appropriate directory for that step on your hard drive. Then follow
directions to add new code.

What This Book Covers

xxvi

Although Visual C++ lets you write any code that can be written in C or
C++, Learn Microsoft Visual c++ 6.0 Now focuses on the central purpose
of Visual C++: programming Windows in C++, using MFC. In the book's
three parts-"Getting to Know Visual C++," "Fundamental MFC Skills,"
and "Rounding Out Your MFC Skills"-I'll teach you how to do each of
the following:

• Work within the Visual C++ programming environment, using its
wizards to generate a set of starter files that get you going quickly,
its source code and resource editors to write your code, its build

Introduction

system to compile and link your code, and its Help system to answer
your questions. Chapter 1 walks you through the Visual C++ envi
ronment and gets you started with your first Visual C++ program.

• Use the most common elements of the C++ language, including
classes and object-oriented programming techniques. Chapters 2
through 5 cover C++ syntax, pointers and references, classes, and
object-oriented programming.

• Understand the Win32 Application Programming Interface (API)
and the fundamental concepts of Windows programming, including
windows, device contexts, coordinate systems, drawing with the
Windows Graphical Device Interface (GDI), scrolling, printing, dia
log boxes, and controls. Chapter 6 introduces the Win32 API and
Windows from a programmer's perspective.

• Build your program atop MFC, which provides the framework of a
working Windows application. You'll see in Chapter 7 that you can
run the MFC App Wizard to generate code for the foundation of
your program, compile that code, and immediately have a rather
impressive generic Windows program-although still with many
blanks to fill in before it becomes your program. This is where we
will begin the evolution of the MyDraw application. In Chapter 8,

we'll examine the AppWizard-generated code, relating it to the fun
damental Windows concepts from Chapter 6 and to the structure
and functionality of MFC. Then, following Chapter 8, we'll write
several MFC Windows applications and continue with MyDraw.

• Take advantage of additional AppWizard and MFC components that
help you develop sophisticated features in your program that you
might otherwise never even attempt. For example, Chapters 16

through 20 show you how to save your program's data to a file,
print the data on multiple pages with headers and footers, add
toolbars that can dock to a window edge or float free, add dialog
boxes full of powerful controls, and give the program a split per
sonality by supplying two ways to view your data in a splitter

xxvii

Introduction

window-such as viewing spreadsheet cells or a chart in Microsoft
Excel. Without MFC, a good number of these features are so diffi
cult that many small applications simply don't implement them.
MFC makes adding these features easy.

• Use a variety of Windows graphics techniques. Chapter 11 shows
how to let your users draw with the mouse. Chapter 12 introduces
drawing in color. Chapter 15 explains scrolling. Chapter 17 shows
you how to print a multipage document with headers and footers.
Chapter 18 teaches you to manage user selection of objects in a
window, including providing visual feedback by drawing selection
handles on the object. And Chapter 20 shows how to split your
program's window into multiple panes, each of which displays a
different view of your data.

Visual C++ is a large, complex product. In addition to writing Windows
applications with MFC, you can use Visual C++ for many other purposes.
Most of those purposes require advanced programming skills and knowl
edge of advanced technologies such as Object Linking and Embedding
(OLE), Microsoft ActiveX controls, database programming, and the
Internet. This is an introductory book aimed at a less seasoned audienr.e;
so I leave advanced topics to other books. I'll describe some of those ad
vanced topics and tell you where to go to learn them in Chapter 21.

A Few Conventions

xxviii

I use a few housekeeping conventions that will help you understand what
to do as you move through the book. Code lines that you are to type in or
modify appear in boldface type. In some cases, I'll show you code ex
amples with the less pertinent comments and code omitted in order to
clarify a point I'm trying to make. I'll also use the ellipsis character (...)
when I leave out part of a line of code, and the vertical ellipsis character
(:) when I leave out several lines of code. New terms appear in italics the
first time I use and define them. Many technical elements (class names,
functions, and so on) are italicized throughout. References to the sample
code take the form" ... can be found in the \learnvcn \ChapXX folder in
the companion code." When you see this, look in the appropriate folder

Introduction

on your hard drive, assuming you have already installed the files. (See the
section "Installing the Samples on Your Computer" later in this introduc
tion.) Boxed tips, warnings, notes, and sidebars set off information that
you might want to bookmark for future reference. And, as I've noted, the
"Try it now" sections take you through every step. Don't skip over them if
you really want to understand this material.

Each of the books I mention in the book is cited again in Chapter 21. And
finally, in the Appendix, you'll find valuable background material on un
derstanding the MFC source code files that accompany Visual C++ and
how to find classes and functions in them. The files can teach you a great
deal about how MFC works and, sometimes, about why your own code
fails to work.

Using the Companion CD-ROM
A CD-ROM is included in the back of this book. It includes all of the
sample code found in this book. The executable program files are not pro
vided, so you have to build them in order to run a project. You can use
the sample projects to help you learn about Visual C++. As you work
through the Try It Yourself exercises in the book, follow along in the pro
vided code.

Installing the Samples on Your Computer
The install program copies the sample project folders and files to a folder
named learnvcn on your hard disk. To install the samples, follow these
four steps (these steps are also in the file readme.txt on the companion CD):

1. Close any currently running programs.

2. With the Learn Microsoft Visual c++ 6.0 Now compact disc in your
CD-ROM drive, click Start on the Windows taskbar and then click
Run. The Run dialog box appears.

3. In the Open box, type D:\Examples\setup.exe. (If your CD-ROM
drive is associated with a different drive letter, such as E, type it
instead.)

4. Click OK and then follow the directions on the screen.

xxix

Introduction

xxx

1ft1 OTE The examples in the book are geared to Windows 95 or 98, but because
", they don't do anything exotic, they should work as well on Windows NT. If

you have Windows 3.1 or 3.11, you must upgrade to at least Windows 95
before attempting to use this book.

Installing Visual C++ on Your Computer
The Learn Microsoft Visual C++ 6.0 Now CD also includes the Introduc
tory Edition of Microsoft Visual C++ 6.0. You can create, build, run, de
bug, and edit your C++ programs with the included version of Visual C++.

WI! ARNING If you already have any of the Microsoft Visual Studio programming
-ft~r V products-such as Visual Basic, Visual J++, or an earlier version of Visual C++

than version 6.0-Setup warns you of possible conflicts. Proceed with instal
lation unless you have a version of Visual C++ already installed on your sys
tem. I recommend you uninstall any earlier version of Visual C++ before
installing the Introductory Edition. If you already have another version of
Visual C++ 6.0 installed, you do not need to install the Introductory Edition.

\TlI' IP One limitation of the Introductory Edition of Visual C++ 6.0 is that each
-~'~I time you run your program inside Visual C++ you must respond to a dialog

box that reminds you of the terms of your Visual C++ license agreement. After
you read the license agreeme'nt, just click OK in the dialog box and proceed.

Visual C++ requires Microsoft Internet Explorer 4.01 Service Pack 1a
(supplied on the companion CD). Microsoft Visual Studio 6.0 Service
Pack 1 is optional, and can be obtained at the following website:
http://msdn/microsoft.com/vstudio/sp/. Or you can contact Microsoft at
the address in the section "Support," at the end of the introduction.

Install Visual C++ (this will also install Internet Explorer if you do not
have the correct version on your system already, as well as a pile of Vi
sual C++ documentation and some development tools). Then install Vi
sual Studio 6.0 Service Pack 1.

To install Visual c++ 6.0, follow these steps (also in the readme.txt file on
the companion CD):

1. Close any currently running programs.

2. Insert the Learn Microsoft Visual C++ 6.0 Now compact disc into
your CD-ROM drive.

Introduction

3. On the taskbar, click the Start button and then click Run. The Run
dialog box appears.

4. In the Open box, type D:\ VClntEd\Diskl \setup.exe. (If your CD
ROM drive is associated with a different drive letter, such as E, type
it instead.)

5. Click OK, and then follow the directions on the screen.

Viewing Documents in the Companion Code
Sometimes I will refer you to a text document in the companion code.
These documents are in Microsoft Word format, but if you do not have
Microsoft Word, they can be opened in the WordPad accessory supplied
with Windows. WordPad can be found in the Accessories subfolder of the
Programs folder on the Start menu.

What You'll Need to Use This Book
Learn Microsoft Visual c++ 6.0 Now includes a complete copy of Microsoft
Visual C++ version 6.0, Introductory Edition, released in 1998. You can
install this version or buy the Standard Professional or Enterprise Edition.
The Standard Edition is similar to the Intoductory Edition, but does not
have the same license restrictions. The Professional Edition includes ev
erything in the Introductory Edition and more. The Enterprise Edition is
geared to advanced database programming in large corporations.

tJll MPORTANT The license agreement for Visual C++ 6.0 Introductory Edition
doesn't allow you to redistribute programs that you write with Visual C++.

Visual C++ 6.0 Introductory Edition requires the following hardware and
software:

Computer/Processor

Memory (RAM)

PC with a Pentium-class processor
Pentium 90 or higher recommended

24 MB for Windows 95 or later
32 MB for Windows NT 4.0 or later
48 MB recommended on all platforms

xxxi

Support

xxxii

Hard disk

Drive

Display

Operating system

Typical installation: 225 MB
Maximum installation: 305 MB
IE 4.01 Service Pack 1a: 43 MB (typical)
These installation figures include docu
mentation

CD-ROM drive

VGA or higher resolution
Super VGA recommended

Windows 95 or later, or Windows NT 4.0
with NT Service Pack 3 or later

Peripheral/Miscellaneous Microsoft Mouse or compatible pointing
device

Every effort has been made to ensure the accuracy of this book and the
contents of the companion disc. Microsoft Press provides corrections for
books through the World Wide Web at:

http://mspress.microsoft·com/mspress/supportl

If you have comments, questions, or ideas regarding this book or the
com panion disc, please send them to Microsoft Press using postal mail or
e-mail to:

Microsoft Press
Attn: Learn Microsoft Visual c++ 6.0 Now Editor
One Microsoft Way
Redmond, WA 98052-6399
msinput@microsoft·com

;

Getting to
KnowVisualC ++
Chapter

,1 The'Visual c++ Environment
·····/2 ;-' ':.:<"

" C++'Basics

3 c++ Pointers and References

.4, c++ Classes

5 Ohject~Oriented Programming
.~". ""<

6 Windows,andthe:,Wih32 API

7 The MFC AppWizard:'(ode for Free

8 Inside- MFC
"', ;~; '- '. 'Y..

3

47

89

123

161

2.09

231

249

> -'

Chapter

The Visual C++ Environment
You can use Microsoft Visual c++ 6.0 to write any sort of program that
can be written in either C or c++. The chances are, however, that you
bought Visual c++ to program Microsoft Windows applications in C++.
If so, you have the right tools: the C++ language, which is an object
oriented superset of C; the Microsoft Foundation Class Library 6.0

(MFC, or the MFC library, for short), which greatly amplifies your ability
to write for Windows and the Visual C++ development environment; and
last but by no means least, this book.

The Visual C++ integrated development environment (IDE) provides fa
cilities for managing every stage of your program, from creating source
code, to building (compiling and linking) the code, to testing, debugging,
and optimizing the code. In this chapter, I'll prepare you for the hands-on
work that comes in later chapters with a tour of the Visual C++ develop
ment environment, emphasizing prac;tical techniques that make your pro
gramming easier.

This chapter focuses on the following components of the Visual C++ IDE:

• The online Help system, which you use to find information about
the IDE, the C and C++ languages, and the classes and functions
available in code libraries, such as the MFC library

3

Getting to Know Visual C++

4

• Projects and workspaces, which help you manage large programs
that have multiple source code files

• The build system, with which you compile and link the appropri
ate files to create your executable program

• Wizards and other tools that simplify creating and editing your
source code files and resources

We'll cover a lot of ground quickly in this chapter, so keep two things in
mind: First, you'll see most of these topics again, in more detail. Second,
this is a hands-on book. I strongly urge you to try things out for yourself
as you read. Just as the best way to learn French ~s to live in France, the
best way to learn Visual c++ is to use it.

Running Visual c++
Once you've installed Visual c++ by following the instructions in the In
troduction of this book, you can run it from the Windows Start menu.

~ Try it now
Follow these steps to run Visual C++:

1. Click Start on the Windows taskbar.

2. On the Start menu, click Programs.

3. Click Microsoft Visual C++ 6.0. (If you install Visual C++ as a
standalone product, it will appear as Microsoft Visual C++ 6.0 on
the Programs menu. If you install it as part of Microsoft Visual Stu
dio, Visual C++ will be listed under Visual Studio 6.0 in the Pro
grams menu.)

4. Figure 1-1 shows the Visual C++ window open with a program be
ing displayed. Your window will not have a program in it yet, be
cause we have not specified a program, but I thought I'd show you
the Visual C++ window in all its glory.

1: The Visual C++ Environment

Figure 1-1.

~,TI' IP When Visual C++ opens, a Tip Of The Day window displays a handy tip.
"~~!I You can use the Next Tip button to view more tips, or you can click Close

and go to work. If you don't want to see the tips each time you start Visual
C++, clear the Show Tips At Startup check box before you close the Tip Of
The Day window. You can always view tips again by selecting Tip Of The
Day on the Visual C++ Help menu. It's useful to leave Tip Of The Day on
autopilot while you're new to Visual C++.

, '. Hello: M,crosoft V,sual C++ - [Hello cpp] 1IIJ(!!1 m _ A ~_ • _. ___________ w _____________ _

[~~,~~,~it>~~ j~~ff~j~~}~~' lio~(~~~,~~'-:~:~;-~r~-, 'I~:~~:,_~ '-':~:1~~~
,J;l~:l-,~>IiII" t;,~;,,~. ,':-," \;::,'-':'f[Q,iliL~t lFil\J" _ _, __ , :';tl"f<
r'" ' '" ,," , :" -r' >,-~~,_ r' _'!-'<>'A"::--:·'---"-·-)::":~"""-,=-_~-~ ~

;u ~G~~.als~ ,'_ '~_:, :illr~n~~ob~ ~e.~b,~r,s) __ , ,~_';:JL ._m~ __ ", __ "-"---,=,, ~ __ <~ 1-,2,~ ...
~i: ~ ~ ,~, ,r~r~...::, ~_: , , ,," " :;':d:"~'A '<- ~", , . - :,<' ,.' '
~~~=:~~J.;,r~.. :/ Hello cpp Deflneo; the entry pOlnt for 

" Workspace 'Hello' 1 plotectls) 
'J [3 ~ Hello Iiles 

8 '::i Source Files 
~ Hello,cpp 
l::J Stdl>.fx,cpp 

[fJ CJ Header Files 
CJ Resource Files 
~ ReadMe,txt 

#111clude "stdafx,h" 
#1nclude <iostream.h> 

// Function prototypes 
bool SayHello(char* szTo, int nCalc); 
vOLd SayGoodbye(); 

/ / Constants 
#def ine NUMERO_UNO 1 
const char* OLD_FRIEND = "old friend, for nc 

lnt main(int argc. char* argv[]) 
{ 

char* szCpp = "C++ I" , / Declare a V2Il':.zj 

ill ,r 

':~''': -i Ln22. Coi 13 7:'p;c., ~ " ", ;<;f. 

The Visual c++ environment with a program displayed. 

Once you've run Visual C++, you either need to create a new project or 
load an existing one. I'll discuss projects after a brief tour of the online 
Help system. 

Getting Help in Visual C++ 
It's customary to tack this section on at the end of a book's first chapter
or even to exile it to an appendix. But Visual C++ is a big product, and its 
Help system is positively huge-orders of magnitude larger than the 
Windows 95 Help system, for example. You will use Help all the time, so 
it is paramount that you learn how to narrow your searches, and how to 
leave a trail of breadcrumbs and locate your place on the map. (See 
"Lost in the Woods" later in this chapter.) 

5 



Getting to Know Visual C++ 

6 

First, let's see how to control which components of Help are installed on 
your hard disk and briefly look at how the Help system is organized. 
Then we'll zero in on how to use it effectively. 

Big Help, Little Help 

If you're using the Introductory Edition of Visual c++ that comes 
with this book, Help consists only of Visual c++ topics-as you 
would expect. But if you're using another version of Visual c++ (the 
version included in the Microsoft Visual Studio products, or the 
stand-alone Standard, Professional, or Enterprise editions), the Help 
system contains topics for all of the Visual Studio products, includ
ing Visual Basic, Visual InterDev, Visual J++, Visual FoxPro, Visual 
SourceSafe, the Windows Application Programming Interface (API), 
and more. All of this Help is tied together with one table of con
tents, one index, and one search system. This means that any given 
attempt to find information specific to Visual c++ can turn up topics 
that have nothing whatsoever to do with Visual c++. So, if you're us
ing one of these other versions of Visual C++, you'll need some Help 
strategies that go beyond what works for the Introductory Edition. 

First, when you install Visual C++, you can specify which Help com
ponents you want loaded onto your hard disk, for fastest access, and 
which ones you want left on the CD, for slower access but less con
sumption of precious hard disk space. For the Introductory Edition 
that accompanies this book, Help simply installs when you install 
Visual C++, but for other editions you have a choice: 

• The Typical option in Visual C++ Setup installs a minimal 
number of files on your hard disk, leaving the Microsoft Devel
oper Network (MSDN) library on the CD. You'll need to keep 
the CD in your drive while you're programming. 

• The Custom option in Setup lets you specify which portions of 
MSDN Help to install on your hard disk. You'll still see the 
full table of contents, and if you select a topic still on the CD, 
you'll be prompted to insert the CD. 



1: The Visual c++ Environment 

Second, you'll need to be able to spot an inapplicable topic, such as 
one for Visual Basic instead of Visual c++. You can usually tell the 
difference, but not always. Examine Help topics carefully for refer
ences to specific products, or for topic presentation styles that 
you've come to recognize. It's worth exploring Help just to get a feel
ing for this problem. 

Third. you'll want to weed out the parts of Help that vvon't help. You 
can focus your Help searches with documentation subsets. In the 
advanced versions of Visual C++, you can define a subset to contain 
designated portions of the documentation. When you select a subset, 
subsequent searches are confined to the documents in the subset. 
The subset applies to the Contents, Index, and Search tabs. To learn 
more about subsets, search Help (in the Professional or Enterprise 
Editions of Visual C++) for subset. Select the first topic in the list: 
"Creating and Using Subsets." 

Help Fundamentals 
There are four ways to get help while you're programming with 
Visual C++. Each of the following approaches (except Fl Help) is repre
sented in the Help window as a tab that you can click. 

• Fl Help. This is the quickest way is to obtain help. Simply click a 
word, highlight a phrase, or click an error message, and press Fl. If 
the keyword or phrase is in the Help index, this will open a topic 
for it in most cases. You can use Fl Help in a Source Code editor 
window, a Help window, or the Output window. 

• The Help index. Like a good book, Help has a large index. It's not 
perfect. Not everything you might look for is there, but a lot is. Use 
the Index tab in the Visual C++ Introductory Edition window (here
after known as the Help window) before you try other search ap
proaches-except for Fl Help. 

• The full-text search mechanism. Help is online, so you can search 
every nook and cranny of the text in the Help system. Whereas the 
index allows you to take careful aim, search is more like a shotgun. 

7 



Getting to Know Visual C++ 

8 

It may turn up 1000 irrelevant topics as well as the ones you need, 
but sometimes it's the only method that works, especially if the in
dex fails you. Fortunately, you can fine-tune your search in a vari
ety of ways, as we'll see later in the chapter. 

• The table of contents. Again like a book, Help has an elaborate 
table of contents. Use the Contents tab in the Help window when 
you want to read everything about a subject. It's like reading or 
skimming a book when the subject is new to you or you're really 
rusty. Finding where to start in the table of contents can be tricky, so 
sometimes you need a combination of the index, search, and con
tents mechanisms to get going. 

Opening the Help window 

Click Contents, Search, or Index on the Visual C++ Help menu. This 
opens the Help window with the selected tab open. 

~(11 OTE The Help window is no longer an integral window within the main 
11 Visual c++ window for version 6.0, as it was for the past several versions. 

Now Help runs as a separate program and uses its own window. 

Navigating in the Help window 

Microsoft uses Internet Explorer Web-browsing technology to display 
Help topics as Hypertext Markup Language (HTML) documents-giving 
Help the look of the World Wide Web. 

• Use the Contents, Index, and Search tabs in the navigation pane on 
the left side of the window to locate topics. 

• Click the hypertext links (also called hyperlinks, blue and under
lined by default) in the topic display pane on the right to explore 
related topics. Links you've followed turn purple (by default). 

II Use the row of hyperlinks that appears below the title in many top
ics: links to overviews, how-to topics, frequently asked questions, a 
local horne page for the subject area, and, possibly, code samples 
and other useful topics. 

• Use the Back and Forward arrows on the Help toolbar to retrace 
your path through a series of topics. 



1: The Visual C++ Environment 

• If you get lost, use the Home button on the toolbar to get to a known 
starting place: the home page for the Help system. From there you 
can get to various places within the Visual c++ documentation. 

• Click the Home button, then other links to trace the chain of docu
mentation down through Visual C++ Help. 

To connect to a site on the Web, do one of the following: 

• Click a URL (Web address). 

• Select URL on the Go menu, and type a URL in the URL dialog box 
that appears. 

• Go back to the Visual C++ window, select Microsoft On The Web on 
the Help menu, and select one of the options that appears on the 
submenu. Web topics are displayed in Internet Explorer. 

~ Try it now 
Explore Help. Click the Index, Search, and Contents tabs. Examine a few 
subjects by using these tabs. Follow some links. Go home. Climb down 
the hierarchy of start pages. Go online. 

\:TIIIP Visual c++ includes both the MFC and Active Template Library (ATL) 
~ll code libraries. You'll often get topics on one when you look for topics on 

the other. That's unfortunate, because the two libraries have many similarly 
named elements, and you normally don't use them together. Caution is re
quired. ATL class names don't begin with the letter C as MFC class names 
do. Don't worry if this does not make sense to you right now. It will. 

Narrowing Your Searches 
It's easy to be too general in Visual C++ Help, on both the Index tab and 
the Search tab. With a little patience, you can significantly narrow your 
search. 

Zeroing in with the index 

The Index tab is like the index in a book, and you search it the same way, 
using keywords and phrases. As with any book index, you can just scroll 
through the Index tab and hope to stumble over something useful. But 
the Visual C++ index is huge, with many thousands of entries, so you 

9 



Getting to Know Visual C++ 

10 

normally check the Help index by guessing keywords, typing them into 
the Type In The Keyword To Find box, and exploring the results. If your 
keyword is in the index, it appears at the top of the lower pane on the In
dex tab. The topic or topics it leads to may be relevant and useful, or 
not. Here are several ways to improve your chances of zeroing in on the 
relevant topics: 

• Use more specific keywords or phrases, for example, "creating 
ActiveX controls" (five topics found) instead of "ActiveX controls" 
(seven topics, two of them irrelevant). There's a movement in the 
Visual c++ documentation team toward indexing general topics 
with general keywords and more specific topics with specific key
words or longer phrases. This trend is gradually improving the 
index, and you can take advantage of it by tailoring your keywords 
appropriatel y. 

• If you're after more general information, think accordingly. Just as 
highly specific information isn't likely to reside in a general topic, 
specific topics don't offer the larger picture. For example, the topic 
"Using database classes in ActiveX Controls" does not give an 
overview of database classes. (Check the Help index for activex 
controls, scroll down, and double-click "database classes in.") You 
would have to look in the topic "Databases: Overview" for the more 
general information. (On the Contents tab, look up Overviews by 
double-clicking Visual C++ 6.0 Introductory Edition, and then Wel
come To The Visual C++ 6.0 Introductory Edition, and then Using 
Visual C++. Then double-click Visual C++ Programmer's Guide, and 
then Adding Program Functionality, and then Overviews, and fi
nally, Databases: Overview.) 

rt110TE Hereafter, if I instruct you to search the Help index for something, 
6ifl and something is in italics, that's what you should enter in the Type In The 

Keyword To Find box. ! put quotation marks around the titles of Help topics 
the keywords lead you to. Note that keywords in the topics index are case
sensitive. This means that topic keywords with identical wording but differ
ent capitalization may take you to two very different places in Help. Be 
sure to follow my wording and carefully check the way topics appear. If I 
say "check the Help index for x," use the Index tab in Help. If I say "search 
Help for x," use the Search tab. 



1: The Visual C++ Environment 

• When you get to the right neighborhood in the index, look around. 
There might be a dozen entries related to files, for example, some 
more relevant than others. It's no accident that the Index tab lets 
you see twenty or so entries at a time with the default Help window 
size. You can also maximize the Help window to see even more 
listings at once. 

• Try synonyms or other closely related words: serialization, files, 
storing data, storing objects, writing to a file, persistence. If one 
doesn't work, another might. Good indexers try to think of all the 
possible words you might use to find a topic, so most topics are in
dexed to five or ten different keywords. 

• Try variations of your search words: use, using, working with, 
work, creating, create. 

Nobody can create the perfect index, but with a little thought you can 
make better use of what's available. 

\: TI' IP The Index tab is your best bet for narrowing your search, so make it 
·~~I your first search strategy, before you resort to the Search tab or the Con

tents tab. 

Narrowing with the Search tab 

The Search tab in Help is designed to find, anywhere in the documenta
tion, every occurrence of the word or words you enter in the box labeled 
Type In The Words To Search For. Thus it's called a full-text search. 
Usually, the Search tab returns a large number of topics-often hundreds 
or thousands of topics-unless you work at narrowing your search. 

~J' IP The best way to narrow a search is to use the Search tab only after 
~'~I. you've tried the Index tab. 

When you do resort to the Search tab, try some of the following tech
niques to zero in on the desired topic: 

• Search the results of a previous search. To do this, you search 
once, then set the Search Previous Results option to limit the next 

11 



Getting to Know Visual C++ 

12 

search to those topics already found. You can continue narrowing 
the search this way for several rounds. 

• Search topic titles only. Instead of searching the entire text of all 
available topics, you search only within their titles by setting the 
Search Titles Only option. This approach tends to turn up more 
pertinent topics. 

• Formulate your search queries carefully. Use quotation marks to 
search for an exact phrase. A search for double quotes uncovers any 
topic that contains either word-double or quotes-whereas a 
search for "double quotes" (including the quotation marks) finds 
topics that contain those two words together in that order. Enclos
ing the phrase in quotation marks reduces the number of topics 
found from 59 to 39. (In this search, I did not have any of the three 
options at the bottom of the Search tab selected.) Try it. 

• Use wildcards. * matches any characters and? matches a single 
character, just as in MS-DOS. 

• Use the Boolean operators AND, OR, NOT, and NEAR. The query 
CFile NEAR close searches for the word CFile within eight words 
of the word close. Boolean operators let you construct very pre
cise search criteria. The query CFile AND (close OR open) NOT 
serialization, for example, looks for CFile in the same topic with 
either close or open as long as the topic doesn't include the word 
serialization. This query finds 42 topics. In this case, parentheses 
around the OR clause make your intentions absolutely clear. 

• Use a subset if you're using Help for Visual c++ 6.0 Professional or 
Enterprise Edition. Subsets aren't available in the Introductory 
edition. Subsets limit the search to a portion of the documenta
tion. (See the earlier sidebar "Big Help, Little Help" for more 
information.) 

You can combine many of these techniques. Detailed information on re
fining queries is available on the Contents tab in Help, under Welcome To 
The MSDN Viewer Help. Look under MSDN Library Help. 



1: The Visual C++ Environment 

!~ Try it now 
Try the following full-text search, using the Search tab. Type CFile AND 
(close OR open) NOT serialization. Then narrow the search further by 
checking the Search Previous Results box on the Search tab and searching 
for "close member function" (with the quotation marks). 

How many topics turn up? Start over with the first search and turn off 
Search Previous Results. From the initial search results, search for close 
member function again with Search Previous Results turned on, but 
without the quotation marks. How many topics show up this time? 

Lost in the Woods 
Because Help is so vast, covering thousands of pages of documentation 
(and many more if you have a version other than the Visual c++ 6.0 Intro
ductory Edition), you can get lost. Furthermore, you might find just the 
right topic today, yet be unable to find your way back to that topic tomor
row. Here are some strategies for coping with these problems. 

You are here: the Locate button 

Lost? Click the Locate button on the Help toolbar. This opens the Con
tents tab in the Help window and shows you where the currently dis
played topic is located within the whole documentation set. This is like 
seeing the phrase "You Are Here" on a shopping mall map. 

Going home 

I've already described the Home button on the toolbar and the page full of 
links it takes you to. You can use those links as another way to navigate 
the documentation set. Try it. 

Leaving a trail of bread crumbs: the Favorites tab 

When you've found a topic that you know you'll want to revisit, save it as 
a favorite-just as you would on the Web. When it's no longer a favorite, 
you can delete it from the Favorites tab in the Help window. 

• To add the current topic to the Favorites tab, click Add on the Fa
vorites tab. 

13 



Getting to Know Visual C++ 

Figure 1-2. 

14 

\ Ti' IP You can give the topic a more useful title before you click Add to add it 
','11 to your favorites. Just edit the title in the Current Topic box. You can use 

your own words to give the topic a handy title on the Favorites tab without 
altering its original title in the Help system. 

• To go to a favorite topic, click the Favorites tab and double-click 

the topic you want. 

Additional information about the Favorites tab is available on the Con

tents tab in Help, under Welcome To The MSDN Viewer Help. Look under 

MSDN Library Help. 

Studying the terrain 

The more you know about how Help is organized, the easier and more 

fruitful your searches will be. Spend time browsing through the Contents 
tab to see what's there and how it's arranged. 

The Visual C++ documentation is divided into the major sections and 

subsections shown in Figure 1-2. 

Ii? VISual C .. 6 U Introductory Ed,llon l!!tIiiiEi 
tUdif _$ ... .'.{tew __ ...Ide ... Help ... v--........:... ~ ~~)_~ ............... ~ _ ... "->-:..:::.......:.' ~ (. ~....:..........ML.............~'_. _,v ~ A' 

2i~ ._I,~~~< t~.- ~~, ;J~~~~I;~:_" ~" ill ,::~~ >~'_ '~,):_, 0 :':',.'\ -.~~ .~\' 
I :;,orrt'"flI'I~x !:iPnrrhIF.".ft'.,! I " ~ 

'-..-J ~l\~"""~+'" ;;.Ja.~y~un I 
f-I Q.2I Welcome to the Vr~ual C++ 6 0 Introductory Edition 11 I 

~ Visual c++ start Page I 

B Q) ~sual c++ Documentation Map 'I F?;:~~e ~~ap~~~rrate place to 
~VlsuaIC++Documental'onMap Visual C++ st.rtwrthVlSu.1 c++. 

&.1 • \l\lhat s New In Visual C++ 6 0 

!±l • Getting started with Visual C++ 60 VVelcome to What's New 

B ~ ~n~i:~:~~+~+;utoriaIS I Microsoft Visual ~~o~ features in Visual C++ 

..... C++ version 6,0! 
f:B : Visual C++ Programme. r's Guide I V,sual C++ ·,s 

El*:plore the Samples 
I±J Visual C++ User's Gu,de I available in three Sample programs for MFC 

ttl • Glossary I' ?ditions: ATL. the SDKs. and others 

~ : ~:~;:~rCe Standard~ Readr.1e 

,:tJ • Ac cesslbllrty Information and TechniCal 'Support ~~~:er~~:~~~11 and Jlistallatloli Issue">. 

1+, • Welcome to the MSDN Viewer Help Ii 
g1 • Data Access Tools and Technologies ~ee~~~:~o~a'::,~lrar with 

.', ~ Plalform SDK i, The· the Visua' c++ 
f documentation for documentation. 

Visual C++ 6.0 Oli the Web 

Major sections and subsections of the Visual C++ documentation. 

Here's a brief description of the main items: 

• The Visual C++ Tutorials teach key MFC programming techniques. 
The main tutorial, called Scribble, is like a shorter version of this 



1: The Visual C++ Environment 

book and doesn't cover nearly as many topics. It does, however, 
cover some advanced subjects that I don't, including Object Linking 
and Embedding (OLE) and databases. 

• The Visual c++ Programmer's Guide covers programming topics
primarily using MFC. It is mainly organized around the general 
phases of developing an application, so think about where you are 
in the development process as a guide to where to look for rel
evant information. Among the headings under the Visual c++ 
Programmer's Guide, you'll see things like Porting And Upgrading, 
Beginning Your Program, Compiling And Linking, and Debugging. 
Two sections of the Programmer's Guide entitled "Adding User In
terface Features" and "Adding Program Functionality" divide up 
the bulk of your programming tasks into those that implement vis
ible user-interface features such as toolbars, windows, and controls, 
and those that involve programming the engine of your application 
under the hood. 

• The Visual C++ User's Guide covers topics on using the develop
ment environment's editors, wizards, and other tools. 

• The Glossary defines hundreds of terms to help you understand all 
the jargon and special lingo of programming with Visual C++. 

• The Reference is really a collection of several separate references 
for MFC, ATL, the C and C++ languages, the iostream input/output 
facilities, and the Standard C++ Library. Each reference documents 
all of the classes, functions, macros, and other elements that make 
up the code libraries available with Visual C++. References for the 
C/C++ run-time library, the C/C++ preprocessor, and the Build 
Errors (error message reference) are all part of the Visual C++ 
Programmer's Guide rather than the Reference. 

• The Samples are a collection of programs that you can build and 
run. They illustrate a variety of basic and advanced programming 
techniques. You can locate an appropriate sample and load it onto 
your hard disk via Help. See the topic Retrieving Samples under 
MSDN Library Help, found under Welcome To The MSDN Library 
on the Contents tab. 

15 



Getting to Know Visual C++ 

16 

Loose Ends 
Additional information about using Visual c++ Help is available on the 

Contents tab in Help, under Welcome To The MSDN Viewer Help. Look 

under MSDN Library Help. Besides the topics we've already touched on, 

you'll also find guidance on: 

• Copying or printing Help topics 

• Customizing the Help viewer (the MSDN Library window) 

Projects and Workspaces 
At the heart of every Visual C++ program under development is a project, 
which is housed in a workspace. It's possible in Visual c++ to house mul

tiple projects in one workspace. For example, if you're writing a dynamic

link library (DLL), you might have a workspace with one project for the 

DLL and another project for the small program you write to test the DLL. 

We won't use multiple-project workspaces in this book, but if you'd like 

to know more about them, you can check the Help index for projects. 
Double click the first appearance of "projects" in the list of topics. In the 

Topics Found window that appears, double-click "Overview: Working 

with Projects." 

Projects 
When you begin a new program, the first thing you do is create a project 

for it by selecting the New command on the File menu. For example, a 

project might be for a game program you're writing, or a small utility pro

gram you have in mind. The name you specify for your project is used as 

the basis for naming a variety of other files in the project, starting with 

the project file, projname.dsp. (The .dsp extension means Developer Stu

dio project. Developer Studio is an old name for the integrated develop

ment environment, or IDE, used by Microsoft Visual Studio applications, 

including Visual C++.) 

The project file maintains information about which source code files and 

resource files your program uses and about any settings you have speci

fied for controlling how Visual C++ builds your program. The Visual C++ 

build system uses this information when it compiles and links your files 

to create an executable program. 



1: The Visual C++ Environment 

Throughout this book, you'll create just two kinds of projects, both using 
wizards available through the New dialog box. In Chapters 2 through 5, 

you'll use the wizard for Win32 Console Application projects. In later 
chapters, you'll use the MFC AppWizard (for .exe files). However, there 
are many other kinds of projects available through the New dialog box. As 
you gain some fluency with Visual C++, you may want to investigate 
these other options further. 

Workspaces 
When you create a project, you also by default create a workspace. Your 
workspace file, projname.dsw (dsw for Developer Studio workspace), 
maintains information about which Visual C++ windows are open and 
where they are located, as well as any settings you have specified for your 
workspace. 

When you create a project, Visual C++ uses default settings for the project 
and the workspace, but you can alter these as you work: 

• To change build settings for the project, select Settings on the 
Project menu. 

• To change workspace settings, select either Options or Customize 
on the Tools menu. 

The Workspace tab in the Options dialog box lets you specify various 
options for your windows, status bar, and other components of the 
workspace. The Editor tab in the Options dialog box lets you specify 
settings for the Source Code editor. The Customize dialog box lets you 
rearrange, add, or delete toolbar buttons, menu commands, keyboard 
shortcuts, and the tools on the Visual C++ Tools menu. For more informa
tion, check the Help index for customizing. 

Working with Your Project 
You will usually work through the following stages to develop your appli
cations. This section describes each stage in turn. 

• Create a project. This creates the initial files on which your work 
will be based. 

17 



Getting to Know Visual C++ 

18 

• Use the Workspace window and its ClassView, FileView, and 
ResourceView tabs to work with the c++ classes, files, and re
sources in your project. 

• Add files to the project, or remove files from the project. 

• Edit source code and resources in the project. 

• Specify a build configuration for the project (Debug or Release 
build). 

• Build the project (compile and link its code). 

• Correct any compiler or linker errors. 

• Execute and test the resulting executable file. 

• Debug the project. 

• Profile and optimize the code (optional). 

Creating a Project 
Projects come in some 16 varieties. I'll show you how to create a Win32 
Console Application, the simplest project type, which we'll be using in 
Chapters 2, through 5. After Chapter 5, we'll use another other project 
type, an MFC application. The sequence of steps involved in creating 
each of the 16 types is generally similar, although the wizards used to 
create some project types are more detailed than others. For some 
project types, Visual C++ creates many files to help you get started. For 
other project types, Visual C++ creates no starter files. For more informa
tion about each variety, check the Help index for project types. 

A console application uses a set of Console API functions to display its 
output in a character-mode window, like an MS-DOS window. Because 
writing console applications requires no more overhead than writing a 
main function, we'll use them t6 test simple C++ programs. To create a 
Win32 Console Application project, follow these steps, and refer to 
Figure 1-3 as needed: 

1. Click New on the File menu. 

2. In the New dialog box click the Projects tab. 

3. Click Win32 Console Application. 



Figure 1-3. 

1: The Visual c++ Environment 

4. In the Project Name box, type the project name. We'll name this 
first project First. 

5. Use the Location box to specify a location for the project's files. You 
can browse for the right directory by clicking the Browse button 
next to the Location box. 

6. Select the Create New Workspace option. 

7. Make sure Win32 is checked in the Platforms box. 

8. Click OK. 

That's just the first step in creating project First. Stay tuned. 

New DEt 

';~::~~";,~~?~i': 1'\Ai6r~sllaces' I Olili. D~c~Men~s I ' 
( '.;g';~~'~O~'~~P\\hZard' -,: ,', 

;1 CuslomAppWizard IFust 
, : fjI Database Project 
, " Del/Studio Add,in Wizard Ic \PROGRAM FILES\MICROS .!-i 

',! A 

The Projects tab in the New dialog box. 

The Browse 
button 

N ext, follow the instructions in the wizard dialog boxes that follow the 
New dialog box. For a Win32 Console Application there's only one such 
box: 

1. In the Step 1 Of 1 dialog box (see Figure 1-4 on the next page), 
select A "Hello, World!" Application. 

2. Click Finish. 

3. In the New Project Information dialog box, examine the information 
presented to make sure it's what you wanted. Then click OK. 

19 



Getting to Know Visual C++ 

Figure 1-4. 

20 

\II1n32 Console Application - Step 1 011 11E! 

: Wh~tJ.indofC~n~~~ebon~.Y~.-
w~nUQ';C't:ate?,' .: ," ',', ,< " ' 

':'t);~~~~~~c~'~:, -,.-
~, ,j-\ A§!fTlPle apPIroallOn. < '. >' , 

I: ,', 'r. ~::'H~;~(~~i~:;;;'Pi~~t~~". 1. Select this. 
, t:'; An a~at~:~,~~pOIt$'~FG_' 

J .0, 
" ' , 
~ '-..I _ ' .................. -~-~- 2. Click this_ 

The App Wizard dialog box for a Win32 Console Application. 

The directories and files created 

Visual c++ creates a project directory in the location you specified in the 
Location Edit box of the New dialog box. The directory contains one or 
more files. For a Win32 Console Application, the directory will contain 
three source code files (two .cpp files and one .h file), a project file (.dsp), 
a workspace file (.dsw), and a ReadMe file (.txt). Visual C++ also creates 
a few support files that it uses, but we don't need to worry about those. 
The ReadMe file explains the purposes of the other files in the directory. 
Other project types result in additional files. 

In addition to these files, your project directory contains one 
subdirectory-Debug. For projects that have Windows resources, there's 
also a Res subdirectory that contains resource-related files (see "Using 
ResourceView" later in this chapter). The Debug subdirectory contains 
intermediate files created by building your project. Later, when you create 
a Release build (see "Specifying the Project Configuration"), Visual C++ 
also creates a Release subdirectory for use in that build. 

This scheme neatly manages the two kinds of project builds (Debug and 
Release). The project's source code files are stored in the project directory. 
Intermediate files created by the builds are stored in subdirectories. 



1: The Visual C++ Environment 

!~ Try it now 

Figure 1-5. 

Follow the directions just presented to create a new Win32 Console Ap
plication project called First. We'll build the program shortly. 

Using the Workspace Window 
When you create a new project, it becomes the current project in 
Visual C++. You'll see the Workspace window (not titled) on the left side 
of the Visual C++ main window unless you have rearranged your win
dows. Figure 1-5 shows the Class View tab of the Workspace window with 
our application project First open. The Workspace window has several 
downward-facing tabs. For our console application, the tabs are labeled 
ClassView and FileView. For an application that has Windows resources, 
there's also a ResourceView tab. 

8 W1I, Filsl classes, , II 
ttl D Globals ----+-- Right-click an 

I 
: 1 item to see the 

'--____ ..... 1_ ~~i::e: :::~~. 
L--_____ +-_ Click to 

"1 
collapse. 

~~ '-::,:-dassv~ J J~l FlleVlew I 

,'------- Tab name 

The Class View tab of the Workspace window. 

Here's how you can control the Workspace window: 

• To open the Workspace window if it is not visible, click Workspace 
on the View menu. 

• To close the Workspace window and gain a little more space in the 
Visual C++ main window, click the close button (marked by an X) 
on the Workspace window. 

• There's also a Workspace button on the Visual C++ Standard 
toolbar-it shows a folder over a window. Use this button to toggle 
the visibility of the Workspace window. 

21 



Getting to Know Visual C++ 

22 

~ Tryitnow 
Get used to working with the Workspace window by hiding it, then dis
playing it. Use both the Workspace command on the View menu and the 
Workspace button on the toolbar. 

Using ClassView 

Click the ClassView tab in the Workspace window to see a list of any C++ 
classes in your project. I'll discuss classes in Chapters 4 and 5. The 
project we just created lists only a Globals folder, for global variables and 
functions; it has no classes yet. 

Although I'll explain many of the terms mentioned in the following 
guidelines in subsequent chapters, it's worth taking a few moments now 
just to learn your way around. 

• To view the members of a class in ClassView, click the plus sign in 
front of the class name. This expands the members listed under the 
class name, much as you expand a title in Help. 

• To open the header file (.h) for a class, double-click the class name. 
I'll talk about header and implementation files in Chapter 3. 

• To open the implementation file and scroll it to the definition of a 
class member function, expand the list of members for the class in 
Class View, then double-click the member function name. 

• To add a new class via Class View, right -click the topmost heading 
(click it with the right mouse button) in Class View. On the context 
menu that appears, select New Class. In the New Class dialog box, 
specify a class type and fill in the class information. Click OK. For 
more information, check the Help index for New Classes. If you 
need to delete a class, open the source code files that define it, then 
select and delete the code. 

• To add a new member to a class, right-click the class name and 
choose one of the Add commands on the context menu that pops 
up. I'll give examples of all of these operations later in this chapter. 



Figure 1-6. 

1: The Visual C++ Environment 

• To delete a class member, right-click it in ClassView. On the context 
menu that appears, click Delete. ClassView deletes the member's 
prototype but it only comments out the member's definition. (I'll 
make these terms clear in Chapters 2 through 5.) 

For more information, check the Help index for Class View. We'll practice 
these techniques in Chapters 2 through 5. 

~Jil 'IP Throughout Visual (++, it's worth right-clicking windows, toolbars, and 
't, ~-JI other objects, such as filenames or class names. Many of them have context 

menus with useful commands. Try it. 

Using FileView 

Click the FileView tab (see Figure 1-6) in the Workspace window to see 
a set of folders containing source files (with the .cpp extension), header 
files (with the .h extension), and resource files (with the .rc extension). In 
the MFC programming you'll do while reading this book, Class View will 
be a more natural and useful way to view and access your files. But while 
classes are the more natural entity for working in Visual C++, FileView 
has its uses too. Here are some common FileView tasks: 

• To open a file from File View, double-click the filename. 

• For other actions you can take on a file in FileView, right-click on a 
filename and choose from the context menu that pops up. 

For more information, check the Help index for FileView. 

-;.:..,.~:~.-' -: ~..J~' 
= Workspace 'Fllst' 1 prolect(s) 

B ;&i First hIes 
EI 1:.] Source Files 

t:l Flrst.cpp --t-- Double-click the 
l:J StdAfx.cpp f'l t 

EI (] Header Files I ename 0 open, 
@] StdAfx.h Right-click the 

::..J Resource Files filename to see 
:ID R eadM e. txt 

the context menu, 

The File View tab of the Workspace window. 

23 



Getting to Know Visual C++ 

24 

~ Tryitnow 

Figure 1-7. 

In your project First, open a file from the FileView tab. To close the file, 
click its close button (the X) or click Close on the Visual C++ File menu. 

Using ResourceView 

At this point you will not see a ResourceView tab (we'll talk about that in 
a moment), but if you did, it would look like Figure 1-7. The Resource View 
tab in the Workspace window shows a set of folders containing resources 
of various types. Windows uses compiled resources to store the text and 
images that make up the Windows user interface: menus, dialog boxes, 
toolbars, icons, and others. A resource specifies the appearance of such 
an object. Using Windows resources saves you from having to draw 
menus, buttons, and other visual objects yourself-the prefabricated im
ages available through Visual C++ save time and promote consistency 
among Windows programs. Since the wizard for a Win32 Console Appli
cation doesn't generate a resource file, you won't see a ResourceView tab 
in the Workspace window for the First project. (But you could add a re
source file to the First project. Win32 Console Applications can use Win
dows resources, such as dialog boxes, and they can also use MFC classes.) 
Because program First doesn't use resources, Figure 1-7 shows the 
Resource View tab for a generic MFC application. 

1::' ~ NyOrawO resources 
8:1 CJ Accelerator 
I±] Q Dialog 
I±l CJ Icon 
EJ '~Menu 

I---t--- Resource types 

~ IDR_MAINFRAME -+-- ID for a Menu 
(+1 L.J Strrng Table 
r±: U Toolbar resource 
I±l :.::JVersion 

Double-click the ID 
to open the 
Resource editor. 

Right~click an item 
to see the context 
menu. 

The Resource View tab of the Workspace window. 



1: The Visual C++ Environment 

You can use ResourceView not only to view existing resources but also 
to edit them. Use the Resource command on the Insert menu to create 
new ones. 

• To edit an existing resource, open the appropriate folder in 
Resource View, for example, Menus. Double-click the ID of the re
source you want to edit, such as IDR_MAINFRAME. In the Resource 
editor that opens up, edit the resource. For information on editing 
resources, check the Help index for resource editors and double
click "overview." 

• To create a new resource (in an application that uses resources), se
lect Resource on the Insert menu. In the Insert Resource dialog box, 
double-click the type of resource you want to create, such as a 
menu resource. Edit the new resource in the Resource editor win
dow that opens. If the application already uses resources, our 
newly added resource will be saved to the existing resource (.rc) 
file. If the application doesn't already have a resource file (meaning 
it does not use resources), you're prompted to save newly created 
resources in an .rc file. You need to supply a name for the .rc file, 
and then you need to add the .rc file to your project; at that point, 
the Resource View tab appears. For more information, check the Help 
index for resource editors, and double-click "creating new resources." 
I'll introduce you to ~ost of the resource editors as we proceed. 

• To delete a resource, select it in Resource View. Press the Delete key. 

For information on copying resources, check the Help index for Resources 
and double-click "copying." I'll cover more resource topics in later chap
ters. I'll also give you some practice with resource creation and deletion 
in the next section. 

Adding and Removing Project Files 
Projects typically contain the following kinds of source files: 

• Header flIes, also known as include files, with the .h file extension 

• Implementation, or source, flIes, with the .cpp extension for C++, 
or the .c extension for C 

25 



Getting to Know Visual C++ 

26 

• Resource files, with the .rcextension; also files with the extensions 
.bmp and .ico and other files that contain graphical elements such 
as toolbar button images or icons 

These are the files that the build system compiles for binary resources. 
such as menus, toolbars, dialog boxes, and icons, and for C or c++ code. 

From time to time, you'll need to add new header and implementation 
files to your project: 

• To create new .h, .cpp, or .c files and add them to your project, se
lect New on the File menu. In the New dialog box, click the Files 
tab. Click C/C++ Header File or C++ Source File. Make sure the 
Add To Project option is selected. Type a filename (using a .cpp ex
tension for C++, a .c extension for C, or a .h extension for a header 
file). Specify the location for the new file if it's different from the 
current project directory, and click OK. 

• To add an existing .cpp, .c, or .rc file,select Add To Project on the 
Project menu. On the submenu, click Files. In the Insert Files Into 
Project dialog box, click any files you want to add, then click OK. 

(To select multiple files, hold down the Shift or Ctrl key while 
selecting.) 

• To add an existing .h file to yourproject, just refer to the header 
filename in an #include statement in a .cpp or .h file that is already 
in the project. You don't need to manually add the file to the 
project. 

• To delete a file from the project, open FileView, select the filename, 
and press the Delete key. This removes the file from the project but 
does not delete the file from your hard disk. 

~ Tryitnow 
Create a new .h file and a new .cpp file in the First project. Then delete 
them from the project. (You can even delete these particular files, if you 
like, in Windows Explorer-we don't need them any more.) 



1: The Visual C++ Environment 

~ Try it now 

Figure 1-8. 

Let's practice creating a resource. We'll delete it from program First after
ward. With the First project open in Visual C++, use the Insert menu to 
create a new dialog resource. Save the dialog resource in a file called 
First.rc by clicking Save As on the File menu. Close the Dialog editor 
window by clicking Close on the File menu. Add the file First.rc to the 
project. To remove the practice resource from the project, click the new 
dialog resource (called IDD_DIALOGl by default) in ResourceView 
(which is now available), and press the Delete key. Now we're back where 
we started. 

Editing Source Code and Resources 
Now that you know how to create a Visual C++ project and manage its 
files, classes, and resources, let's turn to writing and editing the source 
code and resources that constitute your program. We'll look at the Source 
Code editor and the Resource editors, and then move on to compiling and 
linking what you've created. 

Editing (/(++ source code 

You'll use the Visual C++ Source Code editor, shown in Figure 1-8, to 
write and edit your code. To start the Source Code editor, either create a 
new .h or .cpp file or open an existing file. 

"., Fllst - Microsoft Visual C++ - [First.cpp] "~EJ 
- -

, HIi:l fae ~dll' YI~w' In;~rt fr'Jie,: -.flulld lools' :~bnd'JW Help '; ,\", ,- ;. ~: ":';- ,~" .:~ :::: J::.lm19 
, t:~: I ~ ;'111_ ~_l~~ _ ttl @ ]: ~jIJ_~ ~~~ I _ " _____ , ~ __ . '4b 
'JJ.(GIOb~IS): -, - , _. _. ~I (All ~1~b~1 memb:rsi - :9, r 0';' - - - ::oJ r5t .. 
'li~ ~~';~~'--!~ ijT~-~ ; '.~ ,7'.' ~ ,~,,~ -- "~'~:, ,,': 1_ ' ~ ~ -:- ,_ •• '~, ; 

~~~~~~:-=~::l~~:;-:,~·;~'.~:f~~ / FIrst cpp Detlnes the entry p01nt fell' :.. 
/

~ Workspace 'First' 1 prolect(s)
I,:) gJ First files

El J:j Source Files

~~
l.:J Flfstrc
~ Stdl>.fx.cpp

1+] D Header Files
U Resource Files
lID ReadMe.txt

#lnclude "stda£x.h"

lnt main(int argc. char* argv[])
{

print£ ("Hello World! '-n");
return 0;

) <

; Lr·l,Col1 rr.I(~:!.WH~,~

The Visual C++ Source Code editor with the file First.cpp open.

27

Getting to Know Visual C++

28

The Source Code editor automatically color codes various syntax elements
in the program, which makes the source files easier to read. Check the
Help index for syntax coloring. The editor can also emulate two popular
source code editors: Brief and Epsilon. Check the Help index for editor
emulation. Visual C++ provides various ways to locate classes, functions,
and other items in your source code files, including ClassView. We'll
meet others, including WizardBar and the Find commands, later. I'll get
you started with the Source Code editor in Chapter 2, but this is a good
place to talk briefly about indenting, or pretty-printing, your source
code files.

Most of us have our own preferences for the appearance of our source
code-what's indented, how much it's indented, and where the curly
braces go. For exampie, here are two commonly used ways to declare a
function:

void functionA()
II Lines of code

}

void functionB()
{

II Lines of code
}

II Opening brace here

II Opening brace here

Both of these coding styles are popular, and programmers sometimes de
fend their favorite with religious zeal. You can control the style of your
code in the Options dialog box (select Options on the Tools menu). Use
the Tabs tab in the dialog box to specify settings for different types of
files, such as C/C++ source code files, Visual Basic Scripting (VB Script)
macros, and so on. Select the file type in the drop-down list. Specify the
number of spaces each press of the Tab key represents, how much to in
dent, and whether to insert actual tab characters or spaces. You can also
specify several options for the behavior of indents, including whether to
indent the curly braces around a function body or not. If you use the
Smart Indent option, you can have Visual C++ imitate the style used in
the previous n lines of code (default is 100 lines). Check the Help index
for pretty-print code.

1: The Visual c++ Environment

Editing resources

Edit the menus, dialog boxes, and other resources in your program using
the Visual c++ resource editors. There's a different editor for each resource
type. I'll illustrate the use of most of these during the course of the book.
Go back to the section "Using ResourceView" for introductory informa
tion about opening, editing, and creating resources.

Specifying the Project Configuration
While you're developing your program, you'll usually work in a Debug
build configuration. In a Debug build, the compiler includes debugging
information that the Visual c++ debugger can use if you encounter logic
errors. When you're ready to release the program for general use (and oc
casionally during development for testing)' you switch to a Release build.
Debug and release are the two main types of project configurations. Ad
vanced programmers can add specialized configurations of their own.

In order to switch between Debug and Release builds, you'll need to change
the active configuration for your project. To do so, click Set Active Con
figuration on the Build menu. In the Set Active Project Configuration dia
log box, click either Win32 Debug (the default) or Win32 Release. Then
click OK.

Since developing a program always requires debugging, the default con
figuration is a Debug build. ~This is set for you initially, so you only have
to change the active configuration when you're ready to do a Release
build, or when you've finished a Release build and need to revert to Debug
build again.

Building Your Project
After you have edited the code and resources for your project, it's time to
build it. Visual C++ includes a build system that lets you compile and
link your program with a single command.

~~II OTE To build the project, click Build projname.exe on the Build menu, or
6ill press F7.

The build process invokes the appropriate resource and language com
pilers, the linker, and other tools. It produces intermediate files in the

29

Getting to Know Visual C++

30

appropriate subdirectory (based on the active configuration) and, if there
are no build errors (compiler or linker errors), generates the final execut
able (.exe) file.

During the build, you'll see messages in the Visual c++ Output window
marking the build's progress and listing any errors or problems found.
The Output window opens during a build if it wasn't open before. The
Output window has several tabs. Build output appears on the Build tab.
Figure 1-9 shows the Output window and the messages generated during
an error-free build.

Compiling ...
StdAfx.cpp
Compiling ...
First.cpp
Linking ...

First.exe - 0 error(s), 0 warning(s)

....;..:
\p.

B,-!ild_AJ?_~P~ Find in Files 1 \1l!0 in F:'~~~? .)\.J::t~~~I!sl'· .1I:tl] '~r:

Figure 1·9, The Visual C++ Output window during an error-free build.

!~ Try it now
Build the First program that we created earlier by following the steps I
just described. Take a look at the output in the Output window. What do
you see when the build finishes?

\ 1iI'IP The buiid system creates a Buiid Log that you can examine later. The
'~I Build Log is a handy record of past builds and the errors you made and cor

rected. The log is stored in your project directory in an HTML file named
Projname.plg, which you can examine in your Web browser. The file is not
visible in FileView, so open it outside Visual c++.

Figure 1-10.

1: The Visual C++ Environment

Correcting Build Errors
Build errors are errors of syntax, file problems, and the like, as opposed to
logic errors. To correct logic errors, use the debugger (see Chapter 13). To
correct build errors, follow these steps:

1. Double-click an error message in the Visual C++ Output window.
This opens the source code to where the error occurred and points
to the line that contains the error. (Sometimes the error has oc
curred somewhat before this line, so if you do not see the error in
the line being pointed to, examine the preceding few lines.) Fig
ure 1-10 shows the Output window and the messages generated
during a build in which errors have occurred.

2. Click on the error message number in the error message line in the
Output window and press the Fl key to get information about the
error.

3. Correct the code and rebuild.

--------------------Configuration: First - Win32 Debug---------.
Compiling ..
First .cpp
C:,Visual C++ Programs'First'First.cpp(8) : error C2001: newlln
C:'Visual C++ Programs'First'First.cpp(9) : error C2143: syntax
C: 'Visual C++ Programs'First'First. cpp(10) : warning C4508: . lila

Error executing cl.exe.

First.exe - 2 error(s). 1 warning(s)

.J
.... '

• 8u~d ,,(QIlF.~9); 'F~:::Fi!6JOj\ Find In "des 2 !\Jfu:ul!i/· . II ~ II. • r

The Visual C++ Output window during a build in which errors occurred.

Errors often occur in cascades-one or two legitimate errors result in ad
ditional (sometimes several) error messages in successive lines of code.
It's usually a good strategy to correct the first few errors listed, then build
again without examining the later errors. If there was an error cascade in
the first build, it often disappears in subsequent builds. For relatively
small programs, it's practical to fix a few errors, build again, fix more,
build again, and so on.

31

Getting to Know Visual C++

32

Correcting errors often requires a good bit of detective work and lots of
reading in the documentation. You can find the error message documenta
tion by checking the Help index for build errors. Double-click "fixing."
I'll supply an exercise to try the error mechanism after the next section.

Running Your Program
After a successful build with no build errors, you can run your program
within the Visual C++ environment.

A<110TE To run the program,select Execute projname.exe on the Build menu,
dlfl or press Ctrl+F5.

!~ Try it now

Figure 1-11.

Run the First program. Note that after it prints "Hello, World!" in the win
dow, Visual C++ prints the sentence "Press any key to continue." Only
the first line is part of program First's output. Figure 1-11 shows the out
put of the First program.

~~ First 1!Jl!l F3

The First program's output.

1i -t .ry I now
In program First, use FileView to open the file First.cpp. In that file, intro
duce an intentional error: in the print! line, delete the concluding double
quotation mark. The line should now look like this:

printf("Hello World!\n);

1: The Visual C++ Environment

Build the program. You'll get two errors and one warning. Double-click
the first error message in the Output window, the one that says "newline
in constant." A small blue arrow points to the offending line of code in
the Source Code editor window. In the Output window, click directly on
the error number, 2001, then press the Fl key. Visual C++ Help opens the
topic for that error number. The compiler apparently takes the erroneous
line to be an improperly formed constant. We know it's caused by a miss
ing double quotation mark. The second error and the warning apparently
occur as a cascade from the first error.

The warning shows up because the warning level is set to 3 (by default)
in the Project Settings dialog box. Select Settings on the Project menu,
click the C/C++ tab, make sure the Category drop-down list says "General,"
and examine the Warning Level box. A warning level set this high causes
the compiler to be picky in the potential problems it points out as warn
ings. This can be valuable, so it's good to leave the level set fairly high.

!~ Try it now
The trick to diagnosing the real problem with program First is to recog
nize that a character string was intended, which should lead you to note
the missing double quotation mark. Restore the double quotation mark
and build again. This time there should be no errors or warnings.

Debugging Your Program
If you encounter logic errors while the program is running, use the
debugger to find and fix them. Chapter 13 includes a tour of the debugger.

Profiling and Optimizing Programs
Profiling uses the profiler tool to help locate bottlenecks and inefficien
cies in your code. Optimizing increases the speed of your code or re
duces the amount of space the program requires. Since these relatively
advanced abilities are not supported in the Introductory Edition of
Visual C++, I won't cover them, but you can check the Help index for pro
filing and optimizing (double-click "code") to learn more about them.

33

Getting to Know Visual C++

34

Using Wi~ards and Other Visual C++ Tools
Visual c++ gives you lots of help with your programming, primarily
through its extensive set of wizards. A wizard is a tool that looks like a
sequence of dialog boxes. It guides you through a complicated process of
making choices. I'll very briefly summarize the key wizards and tools
here, but you'll meet them in more detail later in the book:

• Use AppWizard to create a set of starter files at the beginning of a
project. Most of the project types listed in the New dialog box in
voke AppWizard to create the projects and their files. You already
encountered App Wizard when you created the project for program
First.

• Use Class Wizard as you program to add C++ classes and class mem
bers' manipulate MFC message maps, work with automation prop
erties and methods, operate on ActiveX events, and perform many
other tasks.

• Use WizardBar as a shortcut to ClassWizard's functionality and as
a navigation tool for finding classes and functions in your source
code files. WizardBar is a toolbar. We'll use WizardBar extensively.

Besides the wizards, you can use the commands on the Tools menu. For
example:

• Use the Source Browser command to invoke the Visual C++
source browser. (See the Appendix for information about the
source browser.)

• The Error Lookup command helps you look up an error message
when you know the error number.

• The Spy++ tool lets you spy on Windows messages in real time.

• The MFC Tracer tool enables MFC's TRACE macro for printing di
agnostic output strings.

You can also add your own tools to the Tools menu: Select Customize. In
the Customize dialog box, click the Tools tab. For more information,
check the Help index for customizing, and double-click" Tools menu."

1: The Visual c++ Environment

Working with Your Workspace Windows
As you develop your program, you'll use a variety of different windows
in Visual c++: Source Code and Resource editor windows, the Workspace
and Output windows, and various debugger windows. You'll need a few
basic window-handling techniques. In the next two sections, I'll discuss
the two kinds of windows found in Visual C++, document windows and
docking windows. I'll offer practical guidelines that make your program
ming with Visual C++ easier and more productive, and that make the
most of the available work area.

-t!1 MPORTANT Keeping all of Visual (++'s windows where you want them as
I you move from task to task can be difficult. Sometimes the windows will

seem to misbehave, and you can have a frustrating time straightening them
out. It's worth the time it takes to read the next few pages and try the
techniques I describe.

To see the distinction between document windows and dockable win
dows, try the following experiment.

!~ Try it now
With the First project open, and the First.cpp file displayed in the code
editor window, close the Workspace window and the Output window.
You can close each of them by clicking the Close button. Any windows
left open-besides the menu bar and several toolbars-are document
windows. In this case, there's one document window, titled First.cpp. The
Workspace and Output windows (and the menu bar and toolbars) are
dockable windows.

Document windows contain and are used to edit your code and resources.
Dockable windows are part of the machinery of Visual C++. They display,
and often allow you to manipulate, information about your project and its
files and classes. Dockable windows also display output during builds,
searches, and debugging sessions, and information about the current state
of your computer's memory and the code you're running or debugging in
Visual C++.

35

Getting to Know Visual C++

36

Document Windows
Document windows are normal framed windows that contain documents,
such as Source Code editor documents (.h and .cpp files) or Resource edi
tor documents (for example, dialog editor and menu editor documents).
These windows have frames with Minimize, Maximize, and Close but
tons, system menus, and borders you can drag to resize the windows
just like the windows you've used in other Windows applications.

Managing document windows

Manage your document windows with the File and Window menus. File
menu commands open, close, save, and print document window con
tents. Window menu commands let you switch back and forth among
open document windows as well as arrange them. You can cascade, tile,
and split them.

To open recently-used source code files or workspaces, click a filename
in the list of most recently used files on the File menu. To expose open
document windows that are buried, use the list of open documents on the
Window menu.

Getting the most available work space

Use one or more of the following methods to gain maximum work space
in the Visual C++ main window:

• Close unneeded windows, especially docking windows, such as
the Output window. You might also close the Workspace window
while you're really writing code-you can always reopen the
Workspace or Output windows by clicking their toggle buttons on
the Standard toolbar. You can also pop open a list of all open win
dows from that toolbar. See Figure 1-13 for the button locations.

• Maximize the document window you're currently working in. This
hides all other document windows, but they remain available from
the Window menu. The Minimize, Maximize, and Close buttons
for a maximized document window appear just under those for
Visual C++ itself. See Figure 1-8 for the button locations.

• Use the Split command on the Window menu to work in more than
one part of the document at the same time.

Figure 1-12.

1: The Visual C++ Environment

• Consider using the Full Screen command on the View menu. This
removes menus, toolbars, and everything else but your current
document window and a tiny toolbar that lets you end the full
screen mode. (If the toolbar isn't there, press the Escape key.)

Using a document window's context menu

Right-click a document window to pop up a context menu (also known as
a shortcut menu). For document windows, the context menu includes
such commands as Cut, Copy, Paste, and Insert/Remove Breakpoint, as
well as commands for obtaining information about the C++ class or func
tion under the cursor. If the document is a Resource editor document, the
commands change to those appropriate for the resource type you're editing.

Docking Windows
A docking window can be attached to any edge of the main window in
Visual C++. This feature lets you position such windows most usefully
for the way you work. Docking windows can also be floated in the middle
of the main window rather than docked. Figure 1-12 shows one docked
window (Workspace) and one floating window (Output). Docking win
dows always stay on top of other windows, so Visual C++ adjusts docu
ment windows to make room for newly opened docking windows.

\TI'IP If your main Visual C++ window becomes too crowded, try closing some
~'!I windows and adjusting others with the Cascade and TiJe commands as well

as the Minimize, Restore, and Maximize commands.

'. Fllst - Microsoft Visual CH - [Fllst cpp) Il!!IIil EJ _._" _ _._N_ __ ¥

Docked Floating

A docked docking window and a floating docking window (with toolbars hidden),

37

Getting to Know Visual C++

38

Manipulating docking windows

To manipulate a docking window, click on the raised knurls (knobs) along
one edge of the window (Figure 1-12 shows these knurls). Drag the win
dow by its knurls to redock it to a different side of the main window.
Double-click the knurls to turn off docking and float the window.
(Double-click the title bar of a floating window to redock it to the last
docking position it occupied. Double-click a docked window to float it.)

~ Tryitnow

Figure 1=13.

Redock the Workspace window in turn to the top, right, and bottom edges
of the main window. Double-click the knurls on the window to float it.
Double-click the title bar to redock it. I prefer to keep the Workspace win
dow docked on the left and the Output window, when open, docked on
the bottom. Your preferences might differ from mine, so experiment.

Docking windows outside the debugger

Unless you count the menu bar and any open toolbars, which are also
docking windows, most of the time you'll see only two docking windows
in Visual c++: the Workspace and Output windows. I usually like to keep
the Workspace window open, but I sometimes close it to free up more
space. I prefer to hide the Output window most of the time. It reappears
automatically if you start a build, search, or some other action that sends
its output to that window. The Workspace and Output buttons on the
Standard toolbar (Figure 1-13) are handy for managing both windows.

Workspace window
toggle button

Window list toggle button

Output window toggle button

The Workspace, Output, and Window list buttons on the Standard toolbar.

Docking windows in the debugger

If you run your program in the debugger, you'll encounter several other
docking windows: Watch, Call Stack, Memory, Variables, Registers, and
Disassembly. I'll cover the use of those windows in Chapter 13. For now,

1: The Visual c++ Environment

just be aware that manipulating the windows themselves is very much
like manipulating the nondebug docking windows.

Context menus in docking windows

The context or shortcut menus you get by right-clicking in a window vary
widely from one docking window to another. The menus also vary based
on which object you click inside the window. For example, on the
ClassView tab in the Workspace window the menu changes as you click a
class name, a class member name, the topmost title of the class list, or
empty space within the window. Try it. You'll see differences in the other
windows too, so experiment.

Managing docking windows

Unlike document windows, you don't manage docking windows from the
Window menu or the File menu. Instead, you use the View menu's com
mands to open the Workspace or Output window or any of the docking
windows in the debugger. The debugger windows open from the Debug
Windows command on the View menu. Click a docking window's Close
button to close the window.

You can also open and close any of the docking windows from toolbars.
The Standard toolbar contains Workspace and Output buttons. The Debug
toolbar contains buttons for the debug windows.

Toolbars and Menus
Visual C++ also uses menus and toolbars extensively. Instead of describ
ing the menus or toolbars in detail here, I'll introduce them as they come
up in the chapters ahead. The following general comments will suffice
for now.

• To display a Visual C++ toolbar, right-click anywhere in the toolbar
area below the menu bar-but not in a toolbar that's already open.
On the context menu that pops up, click the toolbar whose visibility
you want to toggle on. Close toolbars in the same way. You'll prob
ably always want the Standard toolbar on display, along with
WizardBar. The Build toolbar is also handy. Many of the other
toolbars, such as the Debug toolbar, come and go as needed.

39

Getting to Know Visual C++

======----------

40

• You can customize toolbars and menus by adding, removing, and
moving command buttons. Click Customize on the Tools menu,
then click the Commands tab for menu commands, or the Toolbars
tab for toolbars. Try it. Check the Help index for customizing and
double-click "toolbar buttons" and "toolbars." You can also create
new toolbars of your own; these can contain existing commands or
buttons for commands that you create yourself by writing VBScript
macros or by recording sequences of actions in Visual C++. I'll say
just a bit more about macros near the end of the chapter, under
"Tips and Tricks."

• The menu bar and the toolbars are dockable windows, so you can
dock them to any side of the main Visual C++ window or float them
in the center. Try it.

Searching in Visual C++

Figure 1-14.

Visual C++ provides versatile search tools, both for searching the contents
of open files and for searching files on disk. In addition to commands on
the Edit menu, Visual C++ puts the following search-related controls on
the Standard toolbar (Figure 1-14):

• A Search button (binoculars with a question mark). This button
opens the Search tab in Visual C++ Help. It's for finding informa
tion rather than text strings in your files.

• A Find drop-down list. This is a shortcut for the Find command on
the Edit menu.

• A Find In Files button (binoculars and a folder). This is a powerful
disk-file search tool. See the Appendix for a description and an
example.

Standard

,rn ~?I' ,~Im." I i:l r I Find in files J ' 'searCh in Help

Find any text string

The Find controls on the Standard toolbar.

1: The Visual C++ Environment

Search and Replace
To do a standard search or replace operation in the current source code
file, select Find or Replace on the Edit menu. Use Find to search the file
for a particular text string. Use Replace to find occurrences of a string and
replace them with another string.

Both Find and Replace allow you to customize the search in various
ways:

• You can match only whole words-thin matches thin but not think.

• You can require that cases match-back matches back and backed
but not Back or BACK. Otherwise, back matches both Back and
BACK.

• You can use regular expressions like those used with Unix-style
Grep command. The Find and Replace dialog boxes give extensive
assistance in formulating regular expressions.

• You can limit searches to the selected text or search the whole file.

• You can use the Find command option, Mark All, to put a book
mark on each found instance in the file. This lets you examine each
find later by stepping through the bookmarks. I'll discuss book
marks shortly.

\TI 'IP Before you give either a Find or Replace command, you can click in a
-; '11 text string in your source code file. The string appears in the Find What box

when you open either the Find or Replace dialog box.

The Find Drop-Down List Control
The Find drop-down list on the Standard toolbar is a handy shortcut to
search the current file. Just click the control, type the string you'd like to
find in the drop-down box, and press the Enter key. Try it. Like the Find
What and Replace With boxes in the Find and Replace dialog boxes, the
drop-down list in the Find control stores all recent searches, even across
Visual c++ sessions. To search for a string you recently searched for, open
the drop-down list box and click the desired string.

41

Getting to Know Visual C++

42

The Find In Files Command
The Find In Files command, found either on the Standard toolbar or on
the Edit menu, is a powerful search facility that can search files on disk
as well as files that are currently open. This command is like the well
known Grep command available on Unix and MS-DOS-based systems. I
cover the Find In Files command in some detail in the Appendix.

Bookmarking in Source Code Files
Especially in large programs, you'll often find yourself working with code
in several files and in several locations within a file. It's sometimes handy
to bookmark these locations so you can find them later.

• To bookmark a spot in a source code file, click the spot you want to
bookmark. Click Bookmarks on the Edit menu. In the Bookmark
dialog box, type a name for the bookmark-make it something
you'll remember later. Then click Add and close the dialog.

• To find a bookmark later, click Go To on the Edit menu. In the Go
To dialog box, click Bookmark in the Go To What box. Then either
type a bookmark name in the Enter Bookmark Name box, or click
the drop-down list arrow to display all of the bookmarks. Click the
one you want, and then click Go To.

• To remove a bookmark, select it and click Delete in the Bookmark
dialog box.

Bookmarks in code files are similar to Favorites in Help, but the two are
completely separate systems.

Microsoft on the Web and MSDN Online
Visual C++ comes to you on a set of compact discs. However, in addition
to what's on those discs, you can use the Internet to access a wealth of in
formation, product news, answers to frequently asked questions (FAQs),
online support, Web information, and free downloads. In addition to the
MSDN library and Visual C++'s Help system, there's more at Microsoft's
Web site, reached by way of MSDN Online. Some of it is free, and some

1: The Visual C++ Environment

requires a subscription fee. I'll discuss these online services more in
Chapter 21, but here are your routes to them:

• In Visual C++, click the Microsoft On The Web command on the
Help menu.

• You can access Internet addresses from the URL command on the
Visual C++ Introductory Edition Go menu.

Microsoft On The Web lets you access additional extensive documenta~
tion, including numerous technical articles and a number of books, such
as The Windows Interface Guidelines for Software Design and Inside OLE.
On the Visual C++ Help menu, select Microsoft On The Web and then
MSDN Online. After your browser connects to the MSDN Online website,
follow the link in the left-hand pane to MSDN Library Online. On that
web page, you can explore the MSDN Library contents by expanding
topic headings, or you can search for specific text strings. Also note the
Advanced search button.

Tips and Tricks
To close out this chapter, I'll pass along a few tips for using Visual C++
that you should know about before we really get to work.

• Use the Advanced command on the Edit menu. This command
opens a hierarchical menu with several useful commands. To learn
more about these commands, check the Help index for untabify
command, which opens the topic "How Do I Replace Tabs With
Spaces?" Near the top of that topic, click the link to FAQ. Explore
the links in the topic "Frequently Asked Questions: Text Editor."

• Use the new IntelliSense options. As in applications like Microsoft
Word and Microsoft Excel, Visual C++ includes IntelliSense, or
autocomplete, technology that completes parameter lists, provides
type information, helps you select the right class member to invoke,
and more. You can either use IntelliSense in automatic mode
IntelliSense tries to anticipate where you're going as you type-or

43

Getting to Know Visual C++

44

you can control how IntelliSense works for you via the Editor tab in
the Options dialog box (Tools menu). If you choose to turn off the
automatic functioning of IntelliSense, you can still get its function
ality via the following commands on the Edit menu: List Members,
Type Info, Parameter Info, and Complete Word. Check the Help in
dex for IntelliSense and choose the" About Automatic Statement
Completion" topic.

• Use the Gallery to insert prefabricated components into your pro
gram. You can add Microsoft ActiveX controls (provided you've
selected the right option in the App Wizard tool) or other Visual C++
components. For example, you can add the Microsoft FlexGrid
(MSFlexGrid) ActiveX control and use it in one of your windows
or dialog boxes to manage tabular data. Or you can add system
information to your program's About dialog box-this option lets
your users examine information about their systems from the
About dialog box, all with minimal coding on your part. I'll illus
trate this using the Gallery later in the book. Meanwhile, you can
check the Help index for gallery, double-click "Gallery" (capital
ized), and choose the topic "Reusing Code: Overview."

• Customize your working environment in Visual C++ with your own
macros written in the VBScript macro language. Macros are small
routines that do useful things in the environment~ such as automat
ing complex or repetitive sequences of commands. There are two
ways to create them. First, you can simply record a sequence of
commands. The recorded commands form a named macro that you
can then associate with a menu command, toolbar button, or key
combination. When you give the command, you run the macro.
Second, you can create a macro file (via the New dialog box on the
File menu) and write your own code in the VBScript macro lan
guage. For information about macros, including recorded macros,
check the Help index for macro, double-click it, and choose the
topic "Overview: Macros." Several books are available about the
VBScript, or Visual Basic, Scripting Edition, language.

1: The Visual C++ Environment

Try It Yourself

Here are your first extra-credit exercises. See what you can do.

1. Spend some time trying things in the Visual C++ menus.

I haven't covered all of the menus, so it's well worth your while to see
what they do. Of course, some will require that special conditions exist
before they can be used. By the end of the book, we'll have used and dis
cussed nearly all of the menu commands.

2. Take the time to browse the Visual C++ documentation ..

Use the Contents tab in the Help window to become familiar with the
overall layout and contents of the Visual C++ documentation. The more
familiar it is, the easier it will be to locate the answers to your questions.
In particular, on the Contents tab, go to Welcome To The Visual c++ 6.0

Introductory Edition and check out the topics under Visual c++ Docu
mentation Map.

What's Next?
Now that you have a pretty good idea about using the features of the Vi
sual c++ environment, or IDE, it's time to start programming.

• If you don't know the c++ language yet, read Chapters 2 through 5.

Those chapters contain numerous C++ programming exercises.

• If you do know C++, you might want to skim Chapters 2 through 5,

then dig into Chapter 6 on Windows programming and Chapters 7

and Bon programming with the MFC library. If you're already a
Windows veteran, you can skim Chapter 6. Chapter 7 starts the
MFC sequence, which spans the rest of the book.

45

,::.,. Chapter

C++ Basics
This chapter covers the most commonly used elements of the c++
programming language. Chapter 3 continues the story by covering C++
pointers, references, header files, and scope. In Chapters 4 and 5, we get
into C++ classes and object-oriented programming. You'll need all of
this when you move on to programming for Microsoft Windows with the
Microsoft Foundation Class Library 6.0 (MFC) in Part 2.

I make an important assumption here: that you have done at least some
programming-preferably in C, but possibly in Basic, Pascal, or some
other procedural programming language. I don't expect a great deal-just
that you understand a few essential concepts, including the basic flow of
control in a program, looping and branching structures, functions (also
known as procedures or subroutines), parameters, basic data types, input
and output, and compiling a program. If you're puzzled by any of those
terms, I strongly recommend that you take a beginning programming
course or study a beginning programming text before you jump into
C++, Windows, MFC, and this book. The water really is too deep for non
swimmers.

C++ is a complex programming language, many of whose elements are ar
cane and abstract. It's also a big language, designed and intended for pro
fessional use, and that means I can't possibly present more than the
basics here. The emphasis in this book is on using Visual C++ for its

47

Getting to Know Visual C++

48

primary purpose, which is programming Windows, using MFC. I'll be as
clear and practical as possible, but I'm sure you'll want to supplement
this introductory course with deeper study of c++.

MFC is an application framework constructed out of the raw materials of
C++, primarily classes. MFC provides, in essence, a working Windows
application-a framework into which you can fit your own code to define
what,this application does. The framework supplies much of the look of
Windows-things such as menus, toolbars, dialog boxes, controls, and
scroll bars. It also supplies mechanisms that make things like saving your
data to a file or printing it relatively easy. The framework's parts are C++
classes that represent application components, such as the application's
main window, its dialog boxes, character strings, graphical objects like
rectangles and points, and even the application itself, as objects. So, in
order to use Visual C++ for its primary purpose, you need to know
enough C++ to work within MFC.

We're fortunate that the developers of MFC stuck with a solid core of C++
fundamentals-features that aren't prone to problems. For the good of all,
they have avoided some of the more challenging C++ features and tech
niques, such as multiple inheritance. Still, you need a good grasp of the
fundamentals if you're to understand how MFC is written and how it
works, and especially if you're going to program with MFC. One
resource that many of the MFC developers rely on is the c++ Primer,
3rd edition, by Stanley B. Lippman and Josee Lajoie, (Addison-Wesley
1998), but there are many other suitable books. If you become really seri
ous about .C++, you'll also want The Annotated c++ Reference Manual
(affectionately known as the "ARM") by Margaret A. Ellis and Bjarne
Stroustrup (Addison-Wesley 1990). Stroustrup is the original architect of
C++ and chairs the American National Standards Institute (ANSI) com
mittee on C++ language extensions.

The most important thing you'll get from this book is a good grasp of
C++ classes, along with the object-oriented design and programming
concepts that underlie classes. Along the way, though, we'll look at a
good many elements of C++ syntax and usage. Where there's more to the
story than I have room to tell, I'll point you to appropriate topics in the
Visual C++ documentation. And at the end of Chapter 5, I'll tell you

2: C++ Basics

which elements I'm intentionally excluding. You can do your postgradu
ate work on them later.

Hello in C++
Let's begin traditionally and practically, by writing a small C++ program-a
slightly souped-up version of the infamous "Hello, World!" program
that kicks off most efforts to learn a new programming language. This
will be a bit more complicated than the program First, which we created
in Chapter 1, because Hello is designed to illustrate a number of C++
fundamentals.

Creating the Program
Follow along as I take you on a tour through the basics of C++.

~ Try it now

Table 2-1.

First, in Visual C++, take the steps described in the next five sections to
write and save your code.

Creating a new project

Create a new Win32 Console Application named Hello. (The process is
much like the one you followed in Chapter 1.) On the File menu, open
the New dialog box. On the Projects tab, specify the options shown in
Table 2-1. Use the location box to choose a directory to place your applica
tion in. Then click OK, which opens AppWizard. The AppWizard dialog
title will be Win32 Console Application, because that is the type of appli
cation we are developing.

Option

Project Type

Project Name

Create New Workspace

Platforms

Setting

Win32 Console Application

Hello

Selected

Win32 checkmarked

Options to set on the Projects tab of the New dialog box.

49

Getting to Know Visual C++

Figure 2-1.

50

Using AppWizard to specify project options and generate files

1. In AppWizard, click the option A Simple Application. (Refer to Fig
ure 1-5.)

2. Click Finish to open the New Project Information dialog box. Exam
ine what the wizard is creating for you, then click OK.

The program's main function is in the file Hello.cpp. The project is also
set up for precompiled headers in the files Stdafx.h and Stdafx.cpp. (I'll
describe precompiled headers in Chapter 3.)

Opening the Hello.cpp file for editing

1. In the Workspace window, click the FileView tab. Figure 2-1

shows Visual C++ with the Workspace window open and the next
three steps already completed.

2. Click the plus sign (+) in front of Hello Files.

3. Click the pI us sign in front of the Source Files folder.

4. Double-click the Hello.cpp file icon to open the file. Figure 2-1

shows Hello.cpp open for editing in the Source Code editor win
dow at the right of the Workspace window.

'. Hello - hhcrosolt Visual C++ - [Hello cpp] !lOOEf ___ _ _ A_ _____ __ _

~Ii:l_b/e_f..o~t .~~ J~r~?~~et't~ Hu~id~~~ ~I~~~~"~~~~ ,:' -,_' -~'2;:~.:~:..: ~i'~1'
11 ~ t ~ Q"! ~ ~~'I ,. .,. !ril3I.iil:~~,: "'!ondraw

'J (G~oba~sJ ' ,--C'-- ~ 3f;AII"~ob;m~~b:;J '" ~"3{ lIe,:r, "?----

li~~ L~ ~ ""! !'l_~~r-:':- "--~-- '-,-: -' ~ ,- ..

R {:j Source Files
L:)lHelio,cppi
~ Std6.fx.cpp

1+) ~ Header Files
~ Resource Files -=-I

~.L._ 51 R""'riM~ tVI ! .!l,

/,' Hello cpp
,/

#lnclude "stda£x,h"

lnt. main(int argc, char* argv[])
{

return 0;

~ .'~ CI.:lssVlewJ L~ FileView _ _ .!.LI
~--'--'-'-----

'.J
[I

II
~,~~~l?-~l:-,~n~'l£!Lb£~~I~e~!_~~_,

~~~Y ,l ), 

The file Hello.cpp open for editing. 

Source Code 
editor window 



2: ( ++ Basics 

Adding code to the Hello.cpp file 

Type the boldface lines shown in the following program listing into the 
Hello.cpp code-and don't forget the semicolon (;) at the end of most 
lines: 

II Hello.cpp Defines the entry point for the console application. 
/! 

41 inc 1 u de" s t d a f x . h " 
#include <iostream.h> 

// Function prototypes 
bool SayHello(char* szTo. int nCalc); 
void SayGoodbye(); 

// Constants 
#define NUMERO_UNO 1 
const char* OLD_FRIEND = "old friend. for now. "; 

int main(int argc. char* argy[]) 
{ 

} 

char* szCpp = "C++l"; // Declare a variable 

// Call a function with a Boolean result. 
if(SayHello(szCPP. 2» 
{ 

} 

// Call a function with no result. 
SayGoodbye ( ) : 

return 0; 

//////////////////////////////////////// 
// Global function definitions 

// SayHello takes two parameters and returns a result. 
bool SayHello(char* szTo. int nCalc) 
{ 

} 

// Use an iostream object for output. 
cout « "Hello. " « szTo « " You're Number" « NUMERO_UNO 

« ".\n"; 
return (nCalc + (nCalc * 2» < (24/nCalc); 

// SayGoodbye takes no parameters and returns no result. 
void SayGoodbye() 
{ 

cout « "Bye. " « OLD_FRIEND « endl; 
} 

51 



Getting to Know Visual C++ 

52 

Figure 2-2. 

Saving your work 

Click the Save command on the File menu to save your work. 

\11' IP Wh.en you build your program, Visual C++ automatically saves any un
"',, saved files. 

Building and Running the Program 
Next you need to compile or build the program, and run it. I described 
compiling and building in Chapter 1. Correct any build errors you en
counter. Figure 2-2 shows the output of the Hello program just after it 
has run. 

'::; Hello I!!lIil ES 
"~ w_ w_ _ _. __ ~ ~_.w~_" ~_ 

Output of the Hello application. 

The C++ in Hello 
The Hello application is very simple, but it introduces the following ele
ments of C++: 

• C++ comments 

• Preprocessor directives used to include header files and libraries 

• C++ constants 

• C++ keywords 



2: C++ Basics 

• Literals 

• Statements 

• Variables and data types 

• Strings 

• . Allocating memory for variables 

• Functions and parameters 

• Function prototypes 

• Returning a result from a function 

• The C/C++ run-time library 

• The main function 

• Expressions and operators 

• c++ control statements 

• c++ input/output via iostreams 

That's quite a bit of territory to describe, so let's get started. 

c++ Comments 
The Hello program contains several comments. c++ uses two forward 
slashes (II) to begin a comment line: 

II This is a comment in C++ 

Everything on the same line after the two slashes is part of the comment. 
If you want to extend a comment to more than one line, each line should 
begin with the comment slashes. You can also start a comment after a c++ 
statement, like this: 

char* szCpp = "C++!"; II Declare a variable 

You can also use C-style comment delimiters: 

1* comment 
on two lines *1 

Unlike the C++-style comments, these can extend over multiple lines. For 
an excellent guide to commenting styles and thousands of other things 

53 



Getting to Know Visual C++ 

54 

any programmer should know, I recommend Steve McConne'll, Code 
Complete: A Practical Handbook of Software Construction (Microsoft 
Press, 1993). 

Preprocessor Directives 
Following the comment at the beginning of program Hello is an #include 
directive. Like the C language, c++ uses a preprocessor. The preprocessor 
is a program that runs before the compiler. It looks for preprocessor direc
tives such as 

#include <iostream.h> 
#define NUMERO_UNO 1 

The preprocessor replaces an #include directive with the entire contents 
of the file named after the directive. In Hello, two files are included, 
Stdafx.h and·iostream.h. I'll say more about the contents of iostream.h 
shortly. The purpose of including a file is to allow you to use the func
tions, classes, variables, and other code elements defined there. The 
wizard adds an #include directive for Stdafx.h as a convenience-there is 
nothing of any importance in that file. It's provided in case you want to 
include any of the MFC code. 

\ Ti' IP I recommend that if you're going to use MFC you use the MFC 
'.\~I AppWizard (.exe) option in the New dialog box rather than create a con

sole application, which runs in an MS-DOS window. Some applications do 
make sense as console applications, even with MFC, but MFC is primarily for 
writing Windows applicati'ons, and that's the focus of this book. Leaving 
the #include in place for Stdafx.h hurts nothing, though, so we'll simply 
ignore it. 

The angle brackets around the filename iostream.h indicate that it's a file 
that comes with your Visual c++ system. The preprocessor knows where 
to look for such files. Hello also shows an #include directive that encloses 
a filename with double quotes. They tell the preprocessor that the file is 
part of your program. The preprocessor looks first in the current direc
tory, and then it looks in a path that you can define in Visual c++ using 
the Directories tab in the Options dialog box. You open the Options dia
log box with the Options command on the Tools menu. 



2: ( ++ Basics 

Each preprocessor directive always appears on a line by itself, starting at 
the far left margin, and unlike a c++ statements, it doesn't end with a 
semicolon. I'll explain #define directives in the next section. 

C++ Constants 
A #define directive tells the preprocessor to replace a symbol with its 
value everywhere in the program file. Here, the symbol is NUMERO_ 

UNO, and the value is 1: 

#define NUMERO_UNO 1 II#define symbol value 

A #define directive lets you define a meaningful name so that your code 
isn't full of cryptic numbers. This makes your code more readable. You 
can also define a constant in one place, so that if you must change it later, 
you don't have to search the whole pro~ram for multiple instances of that 
constant. 

But C++ also provides a better way to declare constants, the canst decla
ration. Here are some examples: 

canst int NUMERO_UNO = 1; 
canst char* OLD_FRIEND = "old friend, for now."; 

The canst approach is usually better than #define because it is type-safe. 
c++ checks to ensure that the data with which the symbol is initialized is 
consistent with the type declared after the canst keyword. You should 
normally use canst rather than #define unless you're creating a c++ pre
processor macro, an advanced topic that this book doesn't cover. (For an 
introduction to macros, check the Help index for preprocessor, and 
choose the subtopic "macros.") C/C++ language macros are not to be con
fused with the VBScript macros that you can write in Visual c++ to auto
mate common tasks. (Check the Help index for macro.) 

The canst keyword has many uses in C++. Besides declaring constants 
with it, you can cause function parameters and function results to be 
read-only values, thereby protecting them from unwanted alteration. 
I'll give you a few pointers about the canst keyword in "Passing a canst 
Pointer," in Chapter 3. You can also check the Help index for canst and 
choose the topic "canst" in the Visual C++ Programmer's Guide. 

55 



Getting to Know Visual C++ 

56 

You'll encounter other preprocessor directives later in the book. Mean
while, to learn more aboutthe preprocessor, check the Help index for pre
processor, and choose the subtopic "overview" and also the subtopic 
"directives. " 

.mIIOTE c++ is case sensitive-in other words, the identifier BIG, is not the 
(11 same as Big or big. Capitalizing constant names is just a convention that 

many programmers use. 

C++ Keywords 
c++ reserves a number of identifiers for its own use. For example, for, if, 
and int are keywords. You can't use the keywords as names for variables, 
functions, and so on. For a list of standard c++ keywords and a list of 
Microsoft-specific additional keywords, check the Help index for key
words and choose the subtopic "C and c++ list." 

Literals 
Literals are values in a program, some examples of which are shown in 
Table 2-2. Literals are constants, and although they're stored in memory, 
you can't access their addresses. Every literal is of some type, such as int, 
double, or char*. (The asterisk means "pointer to," so char* means 
"pointer to char.") Integer literals are treated as signed int values. You 
can specify literals of particular integer types using notations like the 
following (see the section "Variables and Data Types" for more about 
c++ types): 

• lL or 11 a long integer (read as "one-ell") 

• 1 U or lu an unsigned integer 

• 1 UL or luI an unsigned long integer 

• c where c is any literal character of type char 

You can also represent nonprintable characters in C++: 

• \n newline 

• \t horizontal tab 



Table 2-2. 

2: ( ++ Basics 

• \v vertical tab 

• \b backspace 

• \r carriage return 

• \\ backslash 

• \' single quote 

• \" double quote 

Literal 

1 

3.1415 

5E2 or 5e2 

Ox14 

077 

"Windows! 'Windows! Windows!" 

Common literal constants in C-H-. 

Statements 

Description 

Decimal number 

Decimal floating point number 

Decimal number in scientific notation 

Hexadecimal number, base 16 (= 20 
decimal) 

Octal number, base 8 (= 63 decimal) 

String literal 

A c++ statement is a single declaration, command, or computation end
ing with a semicolon. Preprocessor directives are not statements as 
such. Here are three examples of statements, all taken from the Hello 
application: 

const char* OLD_FRIEND = "old friend, for now. "; 

char* szCpp = "C++1"; 

if(SayHello(szCpp, 2» 
{ 

SayGoodbye( ) ; 
} 

The first statement declares and initializes a constant called OW_ 

FRIEND. The second statement declares and initializes a variable 
called szCpp. The final statement is an if statement, one of several c++ 

57 



Getting to Know Visual C++ 

58 

statements that control program flow; if the condition in parentheses 
evaluates to true, the next statement, a function call, is executed. 

A compound statement is a group of two or more statements combined in 
one larger statement. For example, the three statements contained 
within curly braces after the while statement here: 

while(bCond) 
{ 

} 

x = GetRecords(); 
y = ProcessData(); 
bCond = x < y; 

Variables and Data Types 
A variable is a named location in memory, a place for a program to store 
information. Given effective symbolic names, variables help you model 
the problem you're solving. Variable names-like any identifiers (names) 
in C++-can be of any length and can include any alphabetic or numeriC 
character and the underscore. 

Al/ OTe Global variables and local variables declared static are guaranteed to 
6111 be initialized to 0 (zero). Other c++ variables, including nonstatic local vari

ables and class data members, aren't automatically initialized. Until you ini
tialize such variables, their content is undefined (read "garbage"). 

Hello uses one variable, called szCpp. We declare and initialize szCpp at 
the same time, like this: 

char* szCpp = "C++!"; 

The most important thing about a variable is its type. The type of szCpp 
is char* (character string). In addition to the standard types described in 
Table 2-3, C++ gives you several ways to create types of your own, as 
shown in Table 2-4. This is a very powerful capability, and C++ takes it 
about as far as it can go. 

Check the Help index for integral types, and choose the subtopic "table 
of." Table 2-4 in that Help topic describes the sizes of these types as 
implemented in Visual C++. (You can also build and run the Sizes pro
gram in the \learnvcn \Chap02 folder in the companion code. The Sizes 
program lists common variable sizes using the sizeo! operator.) 



Table 2-3. 

2: ( ++ Basics 

Type 

int, long, short 
int n; 
70ng 7; 
short s; 

char 
char c; 
char* string; 

bool 
boo7 b; 

float, double, long double 
float f; 
double d; 
70ng doub7e 7d; 

Fundamental C++ data types. 

Description 

Integer data types. In Visual C++, int and long 
variables are 4 bytes, and short variables are 2 
bytes. 

Technically also a i-byte integer type, char 
holds character data. The contents of a char 
variable is a numeric ASCII code for the char
acter it represents. A char variable can hold 
negative and positive values ranging from 
-128 to +127. Check the Help index for ASCII 
character codes. 

Also an integer type, but acts as a Boolean 
value. Possible values: true or a nonzero 
value, false or 0 (zero). In MFC, you can also use 
TRUE and FALSE. 

Floating-point numbers-numbers with a frac
tional part. The floating-point variations have 
different precisions (numbers of significant 
digits after the decimal point). In Visual C++, 
float is 4 bytes, and double and long double 
are 8 bytes. 

The size of a type is measured in bytes and tells you the range of numbers 
or characters the type can hold. Types marked with the unsigned qualifier 
hold only 0 or positive values: 

unsigned int n; II Range: 0 through INT_MAX 

Types marked with the signed qualifier can hold negative numbers, 0, or 
positive numbers. (Because they represent negative as well as positive 
numbers, signed types represent a smaller range of positive numbers.) 
The integer types, including char, are signed by default and aren't neces
sarily marked by the signed qualifier. 

\T\' IP A portable program is one that can be adjusted or translated so it can 
>\~I run in another environment, such as a different operating system or ma

chine. If you want your code to be portable, it shouldn't rely on the size of 
these types. Instead, treat an int as an int, without basing anything in your 
code on whether int is 2 bytes, 4 bytes, or something else. 

59 



Getting to Know Visual C++ 

Type 

enum 
enum Color 
{ 

Red 
White 
Blue = 25 

} ; 

struct 
struct Student 
{ 

II 
II 
II 

char* szName; 

o by default 
1, etc. 
Can specify 

char* arcCourses[]; 
int nAge; 

} ; 

typedef 
typedef double salary; 
typedef char* string; 
salary mySalary; II Salary variable 
string szName; II String variable 

pointer 

reference 

class 

array 

character string 

Description 

Enumerated type. In C++, enums are 
real type specifiers. An enum such as 
Color, in the left column, gives you a 
way to specify sets of related constants, 
such as colors, days of the week, etc. 
In your code, you can use the enum's 
members by name: 

Color MyColor=Blue; 
SetColor(Red); 
if(MyColor == Blue) ... 

In C++, a struct, or structure, is a £Ull
fledged data type. Structures in C++ 
have much in common with classes
see the discussion in Chapter 4 under 
classes. Use type Student like this: 

Student currStudent; 
Student* GetStudent(int nlndex); 
int age = currStudent.nAge; 

Create your own names for existing 
types-a typedef declaration creates a 
synonym for an existing type. 
Typedefs make your code more 
readable. 

See "Pointers" in Chapter 3. 

See "References" in Chapter 3. 

See "The C++ in Program Shape2" in 
Chapter 4. 

See "Arrays" later in this chapter. 

See "Strings" in this chapter and 
"Pointers and Strings" in Chapter 3. 

Table 2-4. Additional types and type creation mechanisms in C++. 

60 



Table 2-5. 

2: ( ++ Basics 

Variable naming conventions 

Windows programmers have largely adopted the practice of naming vari
abIes using Hungarian notation (so named because its originator, 
Microsoft developer Charles Simonyi, is Hungarian). The idea behind 
Hungarian notation is to make the variable's data type part of its name, as 
you can see from the following examples: 

• pInt, a pointer to int 

• bDone, a Boolean value 

• nCount, an integer value 

Prefixing an abbreviated code for the data type might be a bit distracting 
at first, but it pays off in fewer errors and greater clarity, both for readers 
of the code and for the programmer. Table 2-5 shows some of the most 
common Hungarian prefixes. 

Hungarian Prefix Data Type 

b bool or BOOL (Boolean) 

by BYTE (unsigned char) 

cor ch char 

d or dbl double 

for fl float 

fn function 

Lor 1 long 

nor i int 

p pointer 

sz zero-delimited string (C or C++-style string with a Null 
character at the end) 

str MFC CString object 

ar array 

pt point (used in geometry) 

rect rectangle 

wnd window 

Common Hungarian prefixes for naming variables. 

61 



Getting to Know Visual C++ 

62 

Arrays 

You should-already be familiar with the concept of an array, a variable 
that can contain multiple elements of a stated type. Although c++ arrays 
are like those in C, with which you may be familiar, I'll briefly cover the 
rules and syntax of arrays here. 

Declare an array with this notation: 

int arlnts[10]; II Basetype Arrayname[dimension]; 

The type specified here is the base type of the array-the type of each of 
its elements. The array's name is arlnts (note the Hungarian name I've 
used), and it is dimensioned to contain 10 int elements. Note that C++ ar
ray indexes always start at 0 (zero). It's a common error to index an array 
in a for loop starting at 1. The result is that you begin with the second ele
ment in the array and then try to access a nonexistent array element be
yond the end of the array. This usually leads to erroneous performance; 
it's the programmer's responsibility to avoid this error. 

You can initialize an array like this: 

int arlnts[5] = {0, 1, 2, 3, 4}; 

Or like this: 

i'nt arlnts[5]; 
for(int i = 0; i < 5; i++) 
{ 

arlnts[i] = i'; 
} 

You can set or get individual elements of an array by using the array 
subscript operator []. The for-loop example just above shows how to set 
an element. Here's an example of getting an element: 

int arlnts[5]; 
int count = 3; 
int n = arlnts[count]; II Or int n = arlnts[3]; 

You can declare an array to contain any C++ data type except references. 
Thus you could have an array of char, an array of double, an array of 
float, an array of long, an array of struct, an array of some user-defined 
class type, an array of pointers, and so on. An array of char is also known 



2: C++ Basics 

as a character string. (See the next section.) As you'll see later, array 
notation and pointer notation are equivalent. 

You can create arrays of one or multiple dimensions to contain any data 
type (except a reference). Here are several illustrations of one and two
dimensional array declarations and array accesses: 

char arcGrades[25]; 
int ariChessBoard[8][8] 
arcGrades[3] = 'A'; 
ariChessBoard[3][4] = currPiece; 
currPiece = ariChessBoard[7][7]; 

The first two lines declare arrays of one and two dimensions, respec
tively. The first line represents a column of student grades. The second 
line represents the squares on a chessboard. To specify the dimensions of 
a two-dimensional array-such as the chessboard-enclose each dimen
sion in square brackets. Similarly, to access a given array element, specify 
both dimensions, each in a separate set of square brackets, as shown in 
the last two lines of code above. 

Strings 

In C++, as in C, a string is a variable of type char*-a pointer to char. But 
there are really two ways to look at strings: 

• As a pointer to char: 

char* sz = II Strings "; 

• As an array of char: 

char sz[] II Strings "; 
II or 
char sz[] {'S', 't', 'r', 'i', 'n', 'g', 's'}; 

Happily, the two views of a string, and the two notations-pointer and ar
ray-are entirely equivalent. You can declare a string either way. And you 
can use either notation to access characters in the string, regardless of 
how the string was declared. I'll illustrate this with examples in the sec
tion "Pointers and Strings" in Chapter 3. 

63 



Getting to Know Visual C++ 

Figure 2-3. 

64 

c++ strings, like C strings, are called zero-terminated, or null-terminated, 
strings. That is, if we declare the string 

char* szCpp = "C++I"; 

the string sz has four characters, and the strlen function (from the C/C++ 
run-time library-check the Help index for strlen) will return 4 for the 
string's length. But when storage for the string is allocated, not four but 
five characters are allocated. The last one is a marker for the end of the 
string, and is filled with the ASCII Null character, ASCII zero, symbol
ized in C++ by \0. Figure 2-3 shows this configuration. 

Base 
data type 

String variable 
name is pointer 
to first character 

Storage in memory ! 
char * 

! 
strCpp 

c- ',-:=1- -- II , l c ! + .' + ;1' \0 i.-Null character 
_t~IL ___ -'Cc -~'--t- --, "zeroterminates" 

the string. 

First character Last character 

Structure of a c++ string. 

Zero termination makes C++ strings a little easier to work with than they 
might otherwise be, but they're still pretty cumbersome. So when we get 
to MFC, you'll be happy to find class CString. (Most C++ class libraries, 
like MFC, contain a string class.) CString defines a string object, and using 
CString is about as easy as handling strings in Basic. The CString object 
does lots of the extra work for you, so you can do things like this (and 
much more): 

CString strl "Strings"; 
CString str2 = " are easy in "; 
CString str3 = "MFC."; 
CString str4 = strl + str2 + str3; II String concatenation 
cout « str4 « endl; 

II Prints "Strings are easy in MFC." 

You won't be able to use CString outside of MFC, however. It's too tightly 
interwoven with the rest of the MFC library. 



2: C++ Basics 

Type conversion and casting 

The Hello application doesn't illustrate type conversion, but the topic is 
related to types and variables, so this is a good place to describe it. 

C++ is a strongly typed language. The compiler does extensive type 
checking to ensure that correct types and numbers of parameters are 
passed to functions and that dangerous errors are avoided. If possible, the 
compiler automatically converts the value passed to the type expected. 
If that's not possible, the compiler reports a compile error. In this regard, 
C++ is much stricter than C, but this strictness helps you wdte more reli
able code. 

Sometimes a statement mixes values of more than one type, perhaps int 
and long, or int and char, as in the third statement below: 

int n = 3; 
cha r c = • b' ; 
int n2 = n + c; 

II ASCII code 66 
II Mixed arithmetic 

Or a function might require a parameter or return a result of a type other 
than what you need. Two things can occur in these situations: 

• Like C, C++ makes some type conversions for you automatically
but usually not without telling you. 

• You can also make type conversions explicitly, using a technique 
" called casting. 

When C++ makes automatic type conversions, it converts the narrower 
type (in bytes), such as a i-byte char, to match the wider type, such as a 
4-byte int. Then it carries out the operation using the widened type. 
(The conversion doesn't change the actual variable in memory.) Note 
that automatic type conversions are always promotions from a narrower 
type to a wider type. These result in no data loss. Converting from a 
wider type to a narrower type can cause loss of data or precision. 

There are two notations for making an explicit type conversion, or cast: 

• (int)value Changes value to an int. 

• int(value) Also changes value to an int. 

65 



Getting to Know Visual C++ 

66 

The first notation here is the older, C-style cast. In its effect it's equivalent 

to the second notation, the newer C++-style cast, but C++ can only type 
check the newer version, not the older. When you make an older C-style 

cast, you're overriding the automatic conversion mechanism. The ability 
to check types, therefore, makes the newer notation preferable. You're 

likely to see both notations in the MFC source code files and other C++ 
code you read. I'll use both as well. 

.1211 OTE Technically, the notation int(value) constructs an int object whose 
(5f[' value is set to value. This isn't really a cast, but it has the same effect as a 

cast . 

. J~I/ ARNING In making your own explicit type casts with either notation, 
A/VI there's a real danger of trying to perform a narrowing conversion-from a 

wider type to a narrower type. This kind of conversion can cause data loss. 
See the following discussion. 

Explicit type casts can be dangerous, so be careful. 

Here's an example of passing to a function an actual parameter that's 

wider than the what the formal parameter calls for: 

void func(float f) 
{ 

cout "f = " « f« endl; II Prints f = 1.98765 in call below 
} 

I I Call func: 
double d = 1.98765432 
func(d); II Pass a double value to a float parameter 

The function prints f = 1.98765. Several digits of the fractional part are 
lost in converting from the wider double type to the narrower float type. 
Unless this is what you intend, it's a problem. 

JMI OTE c++ assumes all floating point numbers are of type double unless you 
&if" specify otherwise. So 3., 3.95, and 3.0 are all double. You can force them to 

be float instead with notation like this: 3.f, 3.95f, and 3.0f. 

You can at least be alerted to such conversion problems by setting the 

warning level for your build to Level 2 or higher. On the Visual C++ 



2: t ++ Basics 

Project menu, select Settings. In the Settings dialog box, click the C/C++ 
tab. In the Category box, select General. In the Warning Level box, select 
Level 2, Level 3, or Level 4. When you build again, dangerous conver
sions will generate warning messages. The higher the warning level, the 
stricter the results-Level 4 is downright annoying. 

There will be times when you must use an explicit cast. Be cautious 
when you do, apply the newer C++ style of cast notation, and use the 
warning level mechanism to check yourself. 

C++ also provides four special cast operators: dynamic_cast, static_cast, 
const_cast, and reinterpret_cast. Although these are now the recom
mended way to cast, their usage is somewhat advanced, so I won't dis
cuss them here. Check the Help index for casting operators (some of the 
operators will make more sense by the time you've read Chapter 5). MFC 
defines additional casting operators; check the Help index for casting types. 

Allocating Memory for Variables 
Although Hello involves only a little memory allocation, I should say a 
bit about the two main ways to allocate memory for your variables in C++. 

Hello allocates memory for the string variable szCpp. To be specific, it 
allocates 5 bytes-one for each character in the string "C++!" and 1 ad
ditional byte for the terminating null character. Where is this chunk of 
storage? Each running program has two pools of memory availaqle for any 
storage it needs: the stack and the heap. 

On the stack 

The stack is a temporary storage area that the system uses-a scratch pad 
or short-term memory, really. The stack is like a stack of cafeteria trays. 
Each new tray you add (or push) goes on top, and if you take a tray off the 
stack (otherwise known as popping), you take it from the top. Stacks are 
last in, first out (LIFO) data structures. The last item pushed is the first 
item popped. 

C++ uses the stack mainly for function calls. As a function is called, 
various items are pushed onto the top of the stack: a return address for 
when the function ends, any parameters that were passed to the function, 

67 



Getting to Know Visual C++ 

68 

the result returned by the function-even local variables declared in the 
function go on the stack. So as function A calls function B, which calls 
function C, the stack grows. As each of the functions returns-C, and 
then B, and then A-the items on the stack belonging to that function are 
removed. The stack shrinks. 

To allocate memory on the stack, declare local variables as in these 
examples: 

void MyFunction() 
{ 

} 

char* szCpp = "C++1"; 
int nInt; 
double dSalary = 80000.0; 
MyClass arMyC[10]; 
MyClass* arMyC2[10]; 

II String 
II Integer 
II Double 
II Array of objects 
II Array of pointers 

Local variables are automatically cleared from the stack (in ancient C 
lingo, these are called automatic, or auto, variables). That is, when the 
function returns, these variables are said to go out of scope, meaning they 
no longer exist. 

The variable szCpp is a special case. It's a pointer variable (I'll cover 
pointers in detail in Chapter 3. For now, just be aware that a pointer is a 
variable that contains the memory address of another variable-it points 
to another location in memory, and you can use the pointer variable to 
examine or change the value it points to.) The pointer variable szCpp is 
indeed stored on the stack, but the data it points to~the characters of the 
literal string-are stored elsewhere, in a data segment of the program 
The variables arMyC and arMyC2 are arrays on the stack. The first, 
arMyC, contains objects created from the C++ class MyClass. (We'll cover 
classes in Chapter 4.) The second, arMyC2, contains pointers to MyClass 
objects. The array itself is on the stack, but the objects that the pointers 
stored in the array actually point to are on the heap . 

• 21I OTE The st~ck is often called the stack frame or just the frame in Visual c++ 
~ documentation. 



2: C++ Basics 

On the heap 

The heap is a more permanent storage area-sort of a long-term memory. 
The program allocates heap storage with the c++ new operator. A call to 
new allocates the storage requested and returns a pointer to it. You can 
keep the pointer around in a variable for as long as you need it. 

Unlike stack memory, you allocate heap memory explicitly-this means 
that you have to call new. You also have to delete the memory explicitly, 
with a call to the c++ delete operator. Every call to new must be bal
anced by a call to delete, because unlike the stack, the heap isn't auto
matically cleaned up. c++ has no garbage collection system-the process 
of automatically removing objects that are no longer in use. You must ex
plicitly delete the heap objects you create. 

To allocate memory on the heap, call new, as in these examples: 

int* pInt = new int; 
int* arInt = new int[10]; 
int** arpInt = new int*[10]; 

II Single integer on heap 
II Array of integers on heap 
II Array of painters to ints 

The new operator allocates enough memory for an object of the specified 
type and return~ a pointer to the allocated memory. In the second ex
ample, new allocates space for 10 integers on the heap-unlike the array 
example in the previous section on the stack, here the array itself is an 
object on the heap. In Chapter 4, I'll introduce C++ classes. We'll see 
there that new is also used to allocate memory for class objects. The third 
example uses fairly exotic syntax to allocate not an array of ints, but an 
array of pointers to ints. The array stores pointers. The program arPtrs, 
on the next page, illustrates deallocating such an array of pointers. You 
might want to dog-ear the page so you can return to it after you've read 
more about pointers in Chapter 3. 

A11 OTE Besides using new to allocate heap memory, you can still use C/C++ 
~ run-time library functions (described later in this chapter) likemal/oc.Using 

new is preferable in C++ programs, however, and it's a bad idea to mix new 
and mal/oc calls. 

69 



Getting to Know Visual C++ 

70 

Memory leaks 

What happens if you fail to call delete for a pointer to some heap memory? 
You have a memory leak. The chunk of storage you didn't free up is like 
an island in the heap, taking up space after its usefulness has ended
space that you could happily reuse. If a program has enough memory 
leaks, it can even run out of heap memory. Check the Help index for 
memory leaks, then choose the subtopic "detecting." 

To delete an array on the heap, such as the array example in the previous 
section, call delete with this notation: 

delete [] arlnt; II Deletes space the size of 10 integers 
II (the array itself) 

If the array contains pointers, you first need to loop through the array, 
calling delete on each element. Only then can you call delete with the ar
ray notation shown above, as the program arPtrs illustrates. 

~" Try it now 
Create and build program arPtrs, using the same techniques you em
ployed for program Hello (See Hello in C++, earlier in this chapter): 

II arPtrs.cpp : Defines the entry point for the console application. 
II 

#include "stdafx.h" 
#include <iostream.h> 

int main(int argc, char* argv[]) 
{ 

int** arInt = new int*[10]: 
II Fill it with pointers. 
for(int i = 0: i < 10: i++) 
{ 

} 

arInt[i] = new int: 
*arInt[i] = i: 

II Allocate array of pointers. 

II Allocate pointer element. 
II Initialize value pOinted to. 

II Print out the values of the pointers. 
II Syntax shown prints the values. 
II Remove the * to print the addresses stored in the array. 
for(int j = 0: j < 10: j++) 



2: ( ++ Basics 

} 

{ 

} 
cout « *arlnt[j] «" ": 

cout « end1: 

II Delete all pointers stored in array 
for(1nt k = 0: k < 10: k++) 
{ 

delete arlnt[k]: 
II Delete each pointer individually. 

} 

delete [] arlnt: II Delete array itself. 

return 0: 

The first line allocates-on the heap-a pointer to an array, which con
tains pointers to ints. The first for loop allocates a pointer to enough 
memory for an int. The loop then assigns an integer value to each of the 
ints pointed to. The loop repeats for each element in the array. After writ
ing out the array's contents by way of the second for loop, the code uses a 
third for loop to loop through the array, destroying each pointer individu
ally. Following that loop, the program deletes the array itself: 40 bytes al
located at the beginning to hold 10 pointers. 

~TI' IP If you run a program in the Visual c++ debugger, you can arrange for 
'>;~!I Visual C++ to write messages about any memory leaks in the Debug tab of 

the Output window when the application ends. It's good to check the Out
put window for messages fairly often, so you an catch memory leaks early. 

Functions and Parameters 
You should already be generally familiar with functions (or procedures or 
subroutines, as some languages call them). In C++ as in most languages, a 
function encapsulates some important action that the program takes. 
Functions are modular, independent chunks of code that you can call 
more than once from different places in the program. You can sometimes 
even reuse a function in other programs. The C/C++ run-time library, for 
example, is a collection of reusable functions, which we'll get to shortly. 

71 



Getting to Know Visual C++ 

72 

Functions come in several flavors: 

• Some functions take parameters, and some don't. Parameters are 
values that you pass to the function, on which it bases its work. 
They make a function more general purpose by enabling it to act on 
a variety of input data. 

• Some functions return a result, and some don't. In C++ they're all 
called functions regardless of whether they return a result. 

There are three functions in the Hello application: SayHello, SayGoa dbye , 
and main. SayHello takes two parameters and returns a result. SayGoodbye 
does not take any parameters or return a result. SayHello and SayGood
bye are global functions-declared at the global level rather than, say, 
inside a C++ class. I'll say more about this in the section on scope in 
Chapter 3. 

SayHello's parameter list contains two formal parameters. Formal param
eters are placeholders,.specifying for function callers the types of data to 
pass to the function. Each formal parameter has two parts: the parameter's 
type and its name-just like variable declarations: 

bool SayHello(char* szTo. int nCalc); 

The first parameter in Say Hello is of type char* (or "pointer to char"), 
and is called szTo. The second parameter to SayHello is of type int, and is 
called nCalc. When we call SayHello, we pass it the following actual 
parameters (often called the function's arguments): the value in szCpp, 
a char*, for the first parameter and the integer literal 2 for the second. 
The call looks like this: 

SayHello(szCPP. 2) 

There'll be a good deal more to say about parameters after we cover point
ers and references in Chapter 3. Notice that the function main takes two pa
rameters. I'll say more about main later in this chapter. 

Function prototypes 

The SayHello and SayGoodbye functions appear twice in Hello. The first 
appearance just specifies the functions' types, names, and parameter 
lists-this first appearance is called a function prototype. Here again are 
the function prototypes in Hello: 



2: C++ Basics 

bool SayHello(char* szTo. int nCalc); 
void SayGoodbye(); 

The second time these functions are used is in the main function. In this 
case, the function names have to be declared before main so that the com
piler can check actual parameter types against formal parameter types. 
The functions' bodies, or definitions, come after main. There's no require
ment to arrange declarations and definitions this way, however-we 
could just as easily put the full function definitions before main and skip 
the prototypes. I like to put main up front, so I use the prototypes. More 
typically, the prototypes would be in a header (include, or .h) file, and the 
function definitions would be in an implementation (.cpp) file. I'll illus
trate that kind of arrangement later under "Header and Implementation 
Files" in Chapter 3. 

"telloTE Declare and define are important terms. A declaration publicly de
di" c1ares a function's return type, name, and parameter list, or a variable's 

type, but it doesn't cause any memory to be allocated. A definition (or 
implementation) fills in the body of the functions and causes memory to be 
allocated. A statement is a definition if it causes any storage to be allo
cated. For example, the statement int i; allocates storage, so that's a defini
tion. A function prototype doesn't allocate storage, so that's a declaration. 
Actually, a definition can also be a declaration if it introduces a name for 
the first time in a particular scope. Check the Help index for declaration 
statements. 

Returning a Result from a Function 
SayHello's prototype shows it returning a result of type baal, or Boolean, 
whose possible values are true and false (or nonzero and 0). Boolean 
functions usually return one of these values, depending on some condi
tion in the function. In SayHello, the result is determined by the evalua
tion of an expression involving the input parameter neale. In general, a 
function can return a result of any data type. It can also return a pointer 
or a reference. I'll discuss those later in Chapter 3. I'll also discuss some 
cautions in returning these types. 

You return the result with the return keyword. In a function that returns a 
result, you must call return and specify a value of the right type as its result. 

73 



Getting to Know Visual C++ 

74 

int MyFunction() 
{ 

return 3; II Often this is a variable or expression. 
} 

You can also use return in functions that don't return results (functions 
with a void return type). In that case, you don't specify a return value. 
The purpose of this usage of return is to return early when something is 
wrong, or when you determine that the remainder of the function doesn't 
need to be executed. Here's an example that returns early when conditions 
aren't right: 

void MyFunction(int nParam) 
{ 

} 

if(nParam < 21) 
return; II Return now if conditions are not right. 

II Otherwise, do something useful and return after 
II completing the function. 

You probably noticed that the function main also returns a result-an into 
I'll say more about that when I discuss main later in this chapter. 

The (/(++ Run-Time Library 
When you need to accomplish a specific task, you may not have to rein
vent the wheel. Every C or C++ compiler supplies a library of useful func
tions, constants, variables, and types, called the run-time library. 
Technically, this library is not part of the language, but it is a standard 
requirement for any implementation of the language. In Visual C++, C 
and C++ use the same run-time library. Its items fall into the following 
categories: 

• Argument access (for functions with variable numbers of argu
ments). 

• Buffer manipulation. A buffer is a block of memory that you can ex
amine and manipulate through a pointer to the block. It's common, 
for example, to read a file into a large buffer in memory and work 
with the buffer rather than directly with the file. 

• Items used to work with multibyte character systems (such as 
Unicode). Multibyte character systems are used for languages such 



2: ( ++ Basics 

as Chinese and Japanese that have large numbers of characters and 
require more than 1 byte of storage to represent every possible char
acter. 

• Data conversion. 

• Debugging functions used with the debug version of the run-time 
library. 

• Directory control. 

• Error and exception handling. Exceptions provide a formal mecha
nism for responding to unexpected conditions, such as running out 
of heap memory or not finding a file. 

• File handling. 

• Floating-point support. 

• Input and output. 

• Functions used in making international versions of your program. 

• Memory allocation. 

• Environment control. 

• Searching and sorting. 

• String manipulation. 

• System calls. 

• Time management. 

To find a useful function in the run-time library when you aren't sure 
what functions are available for what you want to do, check the Help in
dex for FUNCTIONS (with the capitalization), then choose the subtopic 
"run-time by category." If you know the function name, check the Help 
index for the name. 

In addition to the run-time library, Visual C++ includes the Standard C++ 
library, a library of functions and classes based on C++ templates. You 
can use the library with MFC, but this book doesn't cover templates, so I 
won't discuss the Standard C++ library further. Check the Help index for 
standard C++ library overview. 

75 



Getting to Know Visual C++ 

76 

You might also find the c++ language reference in Visual c++ Help use
ful. Check the Help index for c++ language reference. There's also a C 
language reference. 

The main Function 
Following Hello's #include directive, the function prototypes, and the 
constant definitions, you see the body of the program. Every C++ program 
begins by executing a function called main. The main function in a C++ 
program is a special function that always has the name "main," but you 
write it. Here's main from Hello: 

int main(int argc, char* argv[]) 
{ 

char* szCpp = "C++l"; II Declare a variable. 

II Call a function with a Boolean result. 
if(SayHello(szCpp, 2)) 
{ 

} 

II Call a function with no result. 
SayGoodbye(); 

return 0; 
} 

To illustrate main '8 role as the program's "ringmaster," the sequence of 
events in Hello's execution goes like this: 

1. C++ does some preparatory set-up. 

2. main begins to execute. 

3. main declares and initializes the variable szCpp. This allocates 
storage for szCpp on the program's stack. The total amount of stor
age is determined by the length of the initialization string. See 
"Strings," earlier in this chapter. 

4. main calls the function SayHello. SayHello's parameters are placed 
on the stack, along with space for SayHello's returned result (a bool). 

5. Say Hello executes, first printing a message (the statement involving 
cout, which I'll explain a bit later), then evaluating an expression 
involving nCalc, and finally returning the result of that evaluation 
to main. 



2: C++ Basics 

6. Back in main, SayHello's result, a Boolean value, is used as the con

dition for an if statement. If SayHello returns true (it does, given 

these actual parameters), the statement inside the if statement's 

block executes.a call to function SayGoodbye. If SayHello returns 

false, the body of the if statement is skipped. 

7. In this case, SayGoodbye executes, printing a message. There are no 

parameters, local variables, or function results to place on the stack, 

but a return address is stored there so execution can jump back to 

main at a point just after SayGoodbye is called. 

8. Back in main, the if statement completes when SayGoodbye returns 

and the if statement's closing curly brace is encountered. 

9. When the main function reaches the statement return 0, the func

tion returns the value 0, indicating that all went well, and the pro

gram ends. The main function could return some other value if it 
encountered problems. 

Like other functions, main can have a result type (or it can specify void). 
If it does declare a result type, you must have a return statement in the 
function as follows: 

void main() 
{ 

II No return statement 
} 

-or-

int main() 
{ 

return 0; 
} 

II Return some meaningful int value 

The main function can also take parameters, as shown here: 

int main(int argc, char* argv[]) ... 

The parameters passed to main allow you to access any arguments specified 

on the command line when the program is run in an MS-DOS box. The arge 
parameter tells how many arguments were specified in running the program 

(plus one). The argv parameter is an array of C/C++ null-terminated strings 

containing the arguments. Given a command line like this: 

c:\)Testprogram argl arg2 arg3 

77 



Getting- to Know Visual C++ 

78 

the argc parameter to Testprogram's main function has the value 4. The 
name of the program is the first parameter, along with its full path. If 
Testprogram is stored in C: \Programs, the values stored in argv[O] 
through argv [3] are: 

argv[0] - C:\PROGRAMS\TESTPROGRAM.EXE 
argv[1] - argl 
argv[2] - arg2 
argv[3] - arg3 

I won't use command-line arguments in this book, but because 
AppWizard writes main that way, that's the way I'll leave it. 

Expressions and Operators 
A statement whose components evaluate to a single value is called an ex
pression. For example, the following is an arithmetic expression: 

x + 1 - y I sin(theta) 

and the following is a Boolean (logical) expression: 

x < y 

An operator defines a relationship between two operands. For example, 
the < operator, signifying less than, relates its operands, x and y, in the 
Boolean expression above. c++ has arithmetic, logic, and other operators, 
described in the following section. 

Expressions 

The result returned by Say Hello is determined by the following expression: 

(nCalc + (nCalc * 2» < (24/nCalc); 

This particular expression is a relational expression. It evaluates to 
either true or false, depending on whether the evaluation of the first 
subexpression, 

(nCalc + (nCalc * 2» 

is less than the evaluation of the second subexpression, 

(24/nCalc) 

Here's the comparison: 

(nCalc + (nCalc * 2» < (24/nCalc) 
II subexpressionl < subexpression2 



2: C++ Basics 

Each of the two subexpressions is an arithmetic expression that evaluates 
to a number. 

Operators 

The overall expression above illustrates several c++ operators: + (addi
tion), * (multiplication), < (less than), and / (division). Besides these rela
tional and arithmetic operators, c++ includes a good many others, as 
shown in Table 2-6. The items on either side of most operators are the op
erands. For additional information about operators in C++, check the Help 
index for operators and choose the topic "C++ Operators" 

~~~~U'.l;:11..~n~~'t,.1tl,t9'!·\H~.IL~~~~~~ 

Operator Category Operators Examples Comments

Arithmetic + Addition 2 + 3 Modulus gives the re-
Subtraction 3 - 2 mainder of dividing its

* Multiplication 3 * 4 operands. The example
/ Division 12 / 6 here reports a remainder
% Modulus 7 % 2 of 1.

Logical and < Less than < 10 Logical operators such as
relational > Greater than > 10 && and I I compare two

<= Less or equal <= 10 conditions for truth-
>= Greater or equal >= 10 both true (&&), and either

Equal 10 or both true (I I). Once
!= Not equal i 1= 10 the condition being
&& Logical AND cond1 && cond2 tested for is satisfied,
II Logical OR cond1 II cond2 further operators are not

Logical NOT ! bConditi on evaluated. For example,
if the first operand of the
I I operator is true, the
operator returns true
without evaluating the
second operand. Note
that !true = false and
!false = true. (The & and I
symbols are also used for
the bitwise operators.)

Increment and i++ Postfix increment The prefix form incre-
decrement ++i Prefix increment ments or decrements

i-- Postfix decrement the variable before
--i Prefix decrement evaluating It. Postfix

evaluates, then applies
the operator.

Table 2-6. c++ operators. (continued)

79

Getting to Know Visual C++

Table 2-6 continued

Operator Category

Bitwise

Assignment

sizeaf

Arithmetic if

Others

80

Operators

«
»
&

1

1\

+=

*=
1=
0/0=
«=
»=
&=
1=
1\=

1:

..
[]

0

->
new
delete
*
*
&

+

Bitwise not
Left bit shift
Right bit shift
Bitwise and
Bitwise or
Bitwise xor

Assignment
Compound assign
Add, then assign
Subtract, assign
Multiply, assign
Divide, assign
Modulus, assign
Shift left, assign
Shift right, assign
Bitwise &, assign
Bitwise I, assign
Bitwise xor, assign

Scope resolution
Array subscript
Function call
Member selection
Member selection
Allocate memory
Deallocate
Indirection
Dereference
Address
Unary negation
Unary positive
(type)target cast
type(target) cast

Examples

~my!nt

myInt « 2
myInt » 2
myInt & FLAG
myInt I FLAG
my! nt " FLAG

x = 24;
x = y = 17;
x += 1 ;
x -= 2 ;
x *= 3;
etc.

sizeof(float)

i)j?i:j

: :Gl obal Func();
myArray[3]
SayGoodbye();
myObj.m_nHeight
pMyObj-)m_nHeight
pMyObj = new Obj;
delete pMyObj;
int* pInt;
obj = *pMyObj:
pMyObj = &myObj;
-2

+3
int
int

(int)y;
int(y);

Comments

These allow you to test,
set, and otherwise ma
nipulate individual bits
in an integer-type value.
FLAG would contain
coded information in
several bit flags.

If x is 3, x += 1 is 4.

sizeaf returns the number
of bytes in a data type.

Arithmetic if chooses an
alternative based on a
condition-compactly,
inside an expression,
without using the
keyword if.

Call outside scope.
Access array element.
Call function.
myObj is non-pointer.
pMyObj is a pointer.
Allocate a pointer.
Deallocate a pointer.
Declare a pointer to int.
Get value at address.
Get address of variable.

Convert y to int, C style.
Convert y to int, C++
style.

2: (++ Basics

Operator Category Operators Examples Comments

Comma

Precedence

for(int i = 0;
i < 10;
i++, j++) ...

You can separate a
series of expressions
with commas, as in the
third expression in the
for statement. The ex
pressions are evaluated
left to right.

Some c++ operators have precedence over others during expression
evaluation. For example, multiplication and division are evaluated before
addition and subtraction in an expression like this:

6 + 3 * 4 / 2 + 5

With the precedence specified above-evaluating the multiplication, then
the division, then the first and second additions-the expression evalu
ates to 17, as if it contained parentheses:

6 + «3 * 4) / 2) + 5

Evaluating the innermost parentheses first, we arrive at 6 + (12/ 2) + 5.

And then, evaluating the remaining parentheses, we get 6 + 6 + 5 = 17.

Without the precedence rules (or the parentheses), working strictly from
left to right, the original expression would evaluate to 23. Adopting some
other evaluation ordering convention might lead to other answers. Opera
tors with the same precedence, such as + and -, are evaluated from left to
right. The C++ precedence rules prevent ambiguity, but you can make
your expressions much more readable and less error prone by liberally
using parentheses.

For more details on precedence and associativity-the order in which
particular operands are evaluated, left to right or right to left-check the
Help index for operator precedence.

The most common operator error

The most common error with operators is that of using the assignment op
erator (=) when you intend the equality operator (==).

81

Getting to Know Visual C++

82

For example:

if(c = 'a') ...

Instead of comparing the variable c and the character a for equality, this
expression assigns the value a to the variable c (and in this example, the
if condition is always true, which probably isn't what's intended). One
way to avoid this all-too-common error is to reverse such expressions as a
matter of standard practice:

if('a' = c) ...

This yields a compiler error because the assignment won't work in this
direction. The error instructs you to write the expression as:

i f (c == 'a')... 0 r i f (, a' == c) ...

which is what we meant in the first place.

c++ Control Statements
Because SayHello returns a bool, I call the function right in the if state
ment in Hello's main function, like this:

if(SayHello(szCpp, 2»
{

}

II Call a function with no result.
SayGoodbye();

I could instead do it in a wordier way, using an extra variable:

bool bResult = SayHello(szCpp, 2);
if(bResult)
{

}

II Call a function with no result.
SayGoodbye();

The result of SayHello is the condition on which the if statement hinges.
If Say Hello returns true, the if statement's body is executed-in this
case, the call to SayGo0 dbye. If Say Hello returned false, SayGoodbye
would not be executed. You should be familiar with if statements, al
though you might think the c++ syntax seems strange. Table 2-7 shows a
more complete if statement, along with other c++ control structures.

2: C++ Basics

You can nest control structures, one inside the other. The example for the
continue statement in Table 2-7 shows an if statement nested inside a
while loop. You can nest any of the structures within any of the others,
and there is no limit to the level of nesting.

By the way, I used curly braces for the body of main's if statement in
Hello. With only one statement to execute when the if condition is true,
the braces are not actually required:

if(SayHello(szCPP. 2))
SayGoodbye();

But using them consistently.helps prevent many errors.

Control Structure

if(conditionl)
{

II Statements if
II condition1 true

else if(condition2)
{

else
{

II Statements if
II condition2 true

II Statements if
II both 1 & 2 false

while(condition)
{

II Statements
}

Example

if(i != 0)
{

else
{

DoFunction();
AddNumbers();

DoOtherFunction();

i = 0;
while(i <= 100)
{

i = DoFunction();
AddNumbers();

Table 2-7. e++ control structures.

Comments

Branching control. Lets you do
different things under different
conditions. else if and else are
optional.

Looping control. Evaluates
condition before entering
loop, so might never execute
if condition is initially false.
The counter, i, is only one way
to set a terminating condition
for the loop. Any Boolean
expression will do.

(continued)

83

Getting to Know Visual C++

84

Table 2-7 continued

Control Structure

do
{

II Statements
while(condition);

for(init; term; inc)
{

II Statements

Switch(val ue)
{

case Cl: Action;
break;

case C2:
{

Action;
Action;

break;
default: Action;

break;

break

Example

do
{

b = DoFunction();
AddNumbers();

while(b);

for(int i = 0; i < n; i++)
{

DoFunction(i);
AddNumbers(myArray);

for(int i ; ...

for(int i ; ... II Illegal

i nt i;
fore; = 0;

switch (ch)
{

}

case 'a':

}

break;

DoA() ;
CallHome();

case 'b': DoB();
break;

case 'c': DoCO;
break;

default: DoDefault();
break;

See switch example above.

Comments

Looping control. Always
executes statements at least
once, then evaluates condition.
Uses a Boolean variable for the
condition.

Looping control. Executes state
ments as long as the term condi
tion is met. The loop index
is initialized through the init
condition, and is incremented
(or decremented) by the inc
condition.

Note: You can't use i again in a
following for loop unless the
first for loop has ended.

It's as if i were declared like this.

Multi-way branching control.
Useful when the alternative
is a deeply nested if statement.
Note the use of curly braces
to contain multiple instructions
for a case.

Terminates the smallest enclos
ing of while, do, for, or switch
statement.

2: (++ Basics

Control Structure Example Comments

continue

goto

while(x < 100)
{

if(bTest)
continue;

II Other statements

goto 1 abel;
II Statements

1 a be 1 :
II Label can't immediately
II precede a closing right
II brace, unless you use a
II null statement:

1 abel:
}

C++ Input/Output via lostreams

Jumps out of current iteration;
starts on next iteration of while,
do, or for loop.

Unconditional transfer of
control to some other place.
Advice: Don't use goto.

The iostream.h file in Hello defines the e++ way to do input and output.
An iostream is an object that treats input or output as a stream of data.
You send output by inserting it into an output stream, and you obtain in
put by extracting it from an input stream.

In Hello, I use iostream in Say Hello and SayGoodbye. Here's the example
from SayHello:

cout « "Hello, " « szTo « " You're Number" « NUMERO_UNO « ".\n";

This line inserts the string "Hello, e++! You're Number 1." into an output
stream object called couto The cout object (pronounced "see-out") is a
standard e++ iostream object that refers to the standard output (like
stdout in e), which usually corresponds to your screen, or to a window
on the screen. There's a corresponding input stream object called cin that
refers to the standard input (like stdin in e), which usually corresponds
to the keyboard. In Visual e++, inserting the string into cout using the in
sertion operator «<) causes the inserted string to be displayed in an MS
DOS window, as in Figure 2-2.

85

Getting to Know Visual C++

86

,The first insertion operator in SayHello inserts "Hello, " the literal string.
The additional insertion operators continue the stream by inserting,
successively, the value of SayHello's szTo parameter, another literal
string; the value of the constant NUMERO_UNO; a period; and finally, the
special character called a newline, symbolized by a \n. This character is
part of the string output, so it's placed within quotation marks. The
newline character tells Gout to end the present line and begin a new line.
H there were any more output in Hello, it would go on the next line. (The
output, as seen in Figure 2-2, is followed by the text "Press any key to
continue." This text is not part of Hello's output-Visual c++ adds it to
tell you how to close the MS-DOS window when you are finished.)

In the output stream in the SayGoodbye function, there's one difference.
Instead of using \n to terminate one line of output and start another, I use
an iostream manipulator, endl (end line). The endl manipulator serves
the same purpose as \n. It's only one of many manipulators available for
various purposes in input and output streams. Check the Help index for
output width in streams and double-click the topic "Using Insertion
Operators And Controlling Format" in the Topics Found dialog box.

Notice that the insertion operator for Gout works for a variety of data
types, including both character and numeric data. This is because of a
C++ technique called operator overloading. I'll say more about overload
ing later when I discuss C++ classes. Check the Help index for « opera

tor and choose the second topic in the Topics Found dialog box.

For completeness, here's a brief example of C++ input, using the iostream

object Gin:

int n;
cout « "Please enter an integer: \n";
cin » n;

The Gout object is used to display a prompt on the screen. Then the Gin

object waits for the user to type a number and press the Enter key. The
value typed is extracted from the input stream into the variable n. Here's
a simple loop that reads data via Gin:

char c;;
while(cin » c)

II Do something with the latest character.

2: (++ Basics

c++ also supplies a stream for error-message output, called cerro

The iostream facility includes a mechanism for connecting an input or
output stream to a file. For more information about connecting to files
and other aspects of using iostream in your C++ programs, check the Help
index for iostream and choose the topic "iostream Programming."

In C++, iostream objects take the place of functions like Print in Basic,
WriteLn in Pascal, and print! in C. (C run-time library functions like print!
are still available in C++ because C++ is a superset of C.) Using the
iostream objects is the normal way to perform input/output in C++. How
ever, the only places you'll use them in this book are in Chapters 3

through 5, where we write raw C++ code. Starting in Chapter 6, we'll
manage input and output very differently, using the facilities in MFC
and Windows.

And there you have Hello, although we're far from finished with C++. I'll
see you in Chapter 3, after you've experimented for a while.

Try It Yourself

The best way to learn C++ is to write code and see what happens. I do
recommend that you buy a good C++ book, but this chapter, the next
three chapters, and the Visual C++ documentation will provide most of
what you need.

If you haven't been working along with me through this chapter, I recom
mend that you go back now and type in each of the examples and build
them. They're short, and they'll give you a better feeling for the structure
and syntax of C++ programs and how to build them with Visual C++. You
can't accomplish that nearly as well just by reading.

If you have problems building the examples, you might want to look ahead
to Chapter 13 on debugging.

After you build an example, experiment with it. Remove, add, and rear
range things. Comment out lines of code by preceding them with double
slashes (II). Write your own variants and see what happens. You'll trip up
now and then, but you'll also learn quite a bit.

87

Getting to Know Visual C++

88

What's Next
In Chapter 3, I'll introduce you to C++ pointers and references. These are
powerful tools, but not without their dangers. Among other topics, I'll
cover:

• The pitfalls of using pointers and references, and how to avoid them

• Using C++ header files (also called include files) and implementa
tion files

• Understanding the scope (visibility) of a variable or function

When you finish, you'll be able to point and refer with the best of them,
and you'll know a lot more about the mechanics of managing programs
with multiple files and complicated scopes.

C++ Scope, Pointers,
and References

Chapter

This chapter continues where Chapter 2 left off-with more C++ funda
mentals. We'll cover the following topics:

• Scope: what's visible where in your program

• The pointer, a versatile but dangerous programming tool

• The reference, an alternative to the pointer

• Header and implementation files

Scope, Part 1
What parts of a C++ program have access to a given variable, type, con
stant, or function? This varies depending on what scope the item is de
clared in and used in. Consider the Scope1 program.

!~ Try it now
Create the Scope1 program as a Win32 Console Application. Follow the
same directions as in the "Hello in C++" section in Chapter 2, but name
the project Scope1. Edit the Scope1.cpp file, and make your file look like
the one on the next page by entering the boldface code.

89

Getting to Know Visual C++

90

II Scopel.cpp Defines the entry point for the console application.
II

11 inc 1 u de" s t d a f x . h"
#include <iostream.h>

int n1: II Global n1

II Two function prototypes (global functions)
void fl(int n):
void f2(int n):

int main(int argc, char* argv[])
{

}

II n2 not visible here: not declared yet
II Error if next line not commented
II cout « "n2 = " « n2 « " Error: n2 not visible here\n":
int n2 = 9:
cout « "In main. n2 = " « n2 « endl:

n1 = 1: II Initialize global n1
cout « "In main. n1 =" «n1« endl:

II Call the functions.
f1(2) :
f2(3):

return 0;

void fl(int n)
{

int n1 = 10: II Local n1. hides global n1
cout « "In fl. n1 = " « n1 «" n = " « n « endl:

}

void f2(int n)
{

II In f2. n1 is the global n1.
cout « "In f2. n1 = " « n1 «" n = " « n « endl:
for(int i = 0: i < 10: i++)
{

}

II In the for loop. n1 is the global n1.
if(i == 0)

cout « "In f2's for loop, nl = " « nl «
", n = " « n « ", i = " « i « endl:

3: (++ Scope, Pointers, and References

}

cout « "After the for loop. i = " « i « endl:

{ II Local block in f2 establishes a subordinate local scope.

}

II Inside this block. n1 is the global nl.
cout « "In f2's local block. n1 = " « n1 «

". n = " « n « endl:
int x = 7: II x is local to this block

II Error if next line is uncommented.
II cout « "Outside local block. x = " « x« endl:

Scope1 demonstrates the following kinds of scope:

• Global scope (now often called namespace scope). Items declared
at global scope are visible throughout the file they're declared in
and can be made visible in other parts of the program as well. (I'll
say more about this in a moment.) The variable n1 declared outside
main is global, so we can access it in main to examine or change its
contents. This n1 is visible inside the main, /1, and /2 functions. in
particular, it's visible anywhere in the Scope1.cpp file following its
declaration. (We can't access it preceding its declaration in the file.)
The variable n2 declared in main illustrates the same concept.
Above the declaration, n2 is unknown. Below it, n2 is visible.
Functions main, /1, and /2 are also global.

• Local scope. Each function or other block (code surrounded by
curly braces) defines its own local scope. A variable declared inside
main, /1, or /2 is not visible outside its function, so declaring a new
local variable n1 inside function /1 is fine. The name n1 can be re
used inside the function. However, function /1 's variable n1 is said
to hide the global variable n1 because both have the same name.
The output statement in /1 demonstrates this: the n1 that it outputs
is its own local n1 (value 10). In /2, however, there's no local n1

variable, so the output statement there outputs the global n1

(value 1). You can prefix the scope resolution operator (::) to n1
inside /1 to cause it to refer to the global n1 instead of the local n1

(try it in Scope1):

cout « "In fl, nl = " « ::nl « " and n = " « n « endl:

91

Getting to Know Visual C++

92

Also note that function parameters, such as n, are considered to be
within the function's local scope. In other words, they're visible in
side the function. And finally, just as main can't see items declared
in f1, f1 can't see items in main, although you might have expected
otherwise. The global scope is outside of main and all functions.

• Subordinate local scope (shown as a pair of curly braces inside a
function). Inside function f2, there are two subordinate local
scopes. The body of the for loop is one:

for(...)
{

II A local scope
}

and the freestanding pair of curly braces below it define the other:

{

II A second local scope
}

Let's look more closely at those two subordinate local scopes. Here's how
the scope rules work for the for loop and the freestanding pair of braces in
the Scopel program:

• Inside f2's for loop, the n1 printed out is the global n1, visible so
deep within the nested scopes because no local n1 hides it. We
could declare a new n1 inside the for loop, and it would hide the
global n1. Try it.

• The for loop's loop-control variable, i, is declared within the head
of the for statement, but it is not local to the loop, as it is in some
languages. You can still access i's value after the loop ends. The
Gout statement following the loop demonstrates this: it outputs" Af
ter the for loop, i = 10." It's as if the variable i were declared before
the for statement, like this:

int i;
for(i = 0; ...

• The other 'local scope, delineated by two curly braces after the body
of the for loop, is another block. If we declared an n1 within f2 but

3: C++ Scope, Pointers, and References

outside this block, and then declared another nl inside the block,
the inner nl would hide the outer one. (Such a block is sometimes
used to localize a variable's scope as much as possible, destroying
the variable immediately after its use rather than keeping it around
for the duration of a long function, as the variable x shows.)

~II ARNING Suppose f1 or f2 changed the global n1-just reset its value. This
~ VI is called a side effect. The caller of the function might not be aware of the

side effect, with potentially dangerous consequences. To avoid side effects,
use parameters and function results to change variables in the environment
outside your function. Doing so makes it clear that the change is intended.
If you pass a global variable as the actual value of a function parameter,
any change to the variable is more explicit. Similarly, if you assign a
function's return value to a global variable, the change is explicit and obvi
ous. The trouble with side effects is that they're subtle. Even if a side effect
is intentional, forgetfulness can later turn it into a mystery. So sometime in
the future, you'll find yourself wondering why your program isn't working
properly, and you'll have to spend hours debugging it. You might as well
do it right the first time.

There is one more kind of scope in C++, called class scope, which I'll
describe when we talk about classes in Chapter 5. The output of Scopel
is shown below. By looking at this output and referring to the program
code, you can see where the various nl variables are visible and where
they aren't.

In main. n2 = 9
In main. n1 = 1
In fl. n1 = 10. n = 2
In f2. n1 = 1. n = 3
In f2's for loop. n1 = 1. n = 3. 0
After the for loop. i = 10
In f2's local block. n1 = 1, n = 3

Here are two more special scope situations worth knowing about. They
deal with the visibility of global variables defined in different files.

• In the first situation, a global variable x is defined in file A.cpp
(that is, the storage for x is allocated in file A.cpp). Let's say you
also want to use x in file B.cpp. You can make the x in file A.cpp

93

Getting to Know Visual C++

Pointers

94

visible in file B.cpp by declaring x in B.cpp with the keyword ex
tern. (Check the Help index for extern.) The Scope2 program, in the
\learnvcn \Chap03 folder in the companion code, illustrates using
extern this way.

• In the second situation, files A.cpp and B.cpp each define a global
variable mylnt, but they are not intended to be the same mylnt.
Without further coding on your part, you'll get a linker error be
cause you've defined two global variables with the same name
(even though they're in different files). However, you can make the
two variables distinct without having to change the name of either
of them. Define either variable or both variables as static, which
makes a variable (or other item) invisible outside its file. (Check the
Help index for static. I'll also discuss other uses of the static key
word later in the book.) The Scope3 program, in the \learnvcn
\Chap03 folder in the companion code, illustrates using static as
described here.

One more thing about scope: local variables go out of scope at the end of
their function (unless they're defined as static). When a variable goes out
of scope, any pointer or reference to it has an undefined value. (We'll get
to pointers and references shortly.) The reason that local variables go out
of scope is that they are allocated on the stack, and when the function re
turns, all of the storage on the stack that was associated with the function
becomes undefined. Allocating a variable on the stack is like putting a
cafeteria tray on top of a stack of trays. When the function returns, it's as
if the tray is removed from the stack of trays-it's gone.

One of the most widely used features in C and C++ is the pointer. As we
saw in Chapter 2, a pointer is a variable that contains the address of some
location in memory. In most cases, it's the address of another variable.
Figure 3-1 shows the relationship between a pointer and the thing it
points to-its target. Pointers in C++ work the same way as in C.

3: C++ Scope, Pointers, and References

Figure 3-1.

nVarl

~:;~~; I oxoorDF4 Ox0064FDOO

1
Address of
the pointer
itself

Pointer contains
the address of the
variable it points to.

A pointer and its target.

Address of
pointer's target
in memory

This tour of pointers will necessarily be brief, but thorough enough to
show you that there's quite a bit to learn about them. I'll use a number of
small c++ programs to demonstrate the following:

• Declaring and initializing a pointer

• Accessing or changing the value of the object pointed to

• Naming pointers most effectively

• Manipulating arrays and strings through pointers, using pointer
arithmetic

• Using pointers in function parameters and function results

• Understanding that a pointer can point to a variety of things: vari
ables, arrays, strings, structs, classes, struct or class members,
Null, void*, functions, and other pointers

• Exercising caution in using pointers

Pointer Basics
The brief c++ program on the following page, named Pointer, shows how
to declare and initialize a pointer and how to access or change the value
of the object it points to.

~ Try it now
Create another Win32 Console Application called Pointer. You should be
getting pretty good at this by now.

95

Getting to Know Visual C++

96

II POinter.cpp Defines the entry point for the console application.
II

ffoinclude "stdafx.h"
'include <iostream.h)

int main(int argc. char* argv[])
{

}

II Declare and initialize an ordinary integer variable.
int nVar1 = 100;
II Declare a pointer to nVar1.
int* pInt = &nVar1;

II Show that the pointer does point to nVar1.
cout « "nVar1 = " « nVar1 « " *pInt = " « *pInt « endl;
II Show that the address of nVar1 == the value stored in pInt.
cout « "&nVar1 = " « &nVar1 « " pInt = " « pInt « endl;

II Get the value of nVar1 via the pointer.
int nVar2 = *pInt;
II Change the value of nVar1 via the pointer.
*pInt = 200;

II Show the value retrieved via the pOinter.
cout « "nVar2 = "« nVar2 «
II Also show nVar1's new value.

nVar1 now = "« nVar1 « endl;

return 9;

The Pointer program declares an int variable, n Varl. The following state
ment then creates a pointer that contains the memory address of nVarl
this is how pInt points to the variable:

int* pInt = &nVarl;

On the left side of the assignment operator, the variable pInt is declared
as a pointer to int. The indirection operator (*) tells us that pInt is a
pointer to an into On the right side of the assignment, the address operator
(&, the ampersand), obtains the address of variable n Varl. The address is
assigned to the pointer to initialize its value. That's what a pointer is: the
address of some memory location.

3: (++ Scope, Pointers, and References

JJrftI/ ARNING It's a convention of Microsoft Foundation Class Library program
~ VI mers to write pointers with the notation shown above: int* pInt, with the *

adjacent to the data type rather than the variable name. However, there's a
danger in this practice if you aren't careful. Consider these declarations:

int* pInt, pInt2;

Only the first variable is a pointer here. Although plnt2 is named like a
pointer, the * applies only to the first variable when several variables are
declared on the same line. Both of the following forms are correct, but
with different meanings:

int *pInt, *pInt2;
int *pInt, pInt2;

II Both pInt and pInt2 are pointers.
II pInt is a pointer, but not pInt2.

The MFC way is clearer in that the * is really part of the type name. But be
careful when declaring multiple pointers of the same type on one line.

Two output statements follow the pointer assignment int* pInt = &n Varl:

cout « "nVarl = " « nVarl « " *pInt = " « *pInt « endl;
cout « "&nVarl = "« &nVarl « " pInt = " « pInt « endl;

They show two facts about pointers:

• n Varl and the object pInt points to have the same value: pInt really
does point to n Varl.

• The address of n Varl is the same as the value stored in pInt: it's
this address that makes pInt a pointer to n Var1.

Next, the Pointer program shows the syntax for accessing the value of
n Varl through the pointer to n Varl:

int nVar2 = *pInt;

Here, the * is serving as the pointer-dereference operator. You can read
this line as "n Var2 is assigned the value stored at the address that pInt
points to." The * operator in this case means "value of." You're said to be
dereferencing the pointer-following it to its target so you can see what's
there. You can distinguish the dereference operator from the indirection
operator by position, even though both are represented by the * character.

97

Getting to Know Visual C++

98

The dereference operator precedes a pointer's name but is not part of a
variable declaration, as is the indirection operator. Here are the two op
erators on separate lines:

int* pInt &nVarl;
int nVar2 = *pInt;

II Indirection operator *
II Dereference operator *

"IOTE Many programmers use the following convention in naming pointers:
6If1 prefix the variable name with the letter p, as in pint. Where possible, I also

try to indicate the data type the pointer is for. This helps keep me from
mistaking a pointer for the object being pointed to. Here are more ex
amples: pWindow (pointer to a window), pPerson (pointer to a person ob
ject), pDblSalary (pointer to a double variable representing a salary). How
would you name a pointer to another pointer? pplnt.

Besides being able to access the value in n Varl through the pointer, you
can also change that value through the pointer:

*pInt = 200;

This time the dereference operator appears on the left side of the assign
ment statement. The meaning here is "store the value 200 at the address
pointed to by pInt."

The final output statement in the Pointer program shows the newly as
signed value of nVar2 and the new value of nVarl; nVarl began at 100
and has now been set to 200.

Under Microsoft Windows 95, Microsoft Windows 98, and Microsoft Win
dows NT, a pointer is stored as a 32-bit integer value. When run on my
computer, the second cout statement in the Pointer program results in
this output:

&nVarl = 0x0064FDF4 pInt = 0x0064FDF4

The memory address of n Varl and the address stored in pInt are shown
here in hexadecimal notation. (See the sidebar "Numerical Notation in
C++.") The actual addresses printed out might differ when you run the
Pointer program on your system, depending on such considerations as
which other programs are running and how much RAM you have. Notice
that the two addresses are the same-proof that what's stored in a pointer
is indeed an address.

3: C++ Scope, Pointers, arid References

Numerical Notation in c++

You can use three different numerical notations in C++: hexadeci
mal, octal, and decimal. Hexadecimal and decimal are the most
common.

• Hexadecimal, or "hex," values are marked by the prefix "Ox"
and contain numbers in the base 16 system, whose digits are
0-9, and then A, B, C, D, E, F-where A = 10, B = 11, ... F = 15.
For example, OxE = 14 decimal; Oxl0 = 16 decimal: lx16 +
Oxl. You can use uppercase or lowercase for the alphabetic
digits-B is the same as b.

• Octal values (base 8), whose digits are 0-7, are prefixed with a
zero. For example, 077 = 63 decimal: 7x8 + 7xl.

• Decimal values have no prefix. For example, 9; 300; -4400.34.

You can use the \Nindows Calculator accessory to convert bases.
Click Scientific on Calculator's View menu. Select a base: Hex, Dec,
Oct, or Bin. (Bin is binary.) Enter a number using the appropriate no
tation for its base, and select the base you want to convert the num
ber to (the target base, or radix).

You can also use scientific notation to express float, double, or long
double numbers-all are decimal numbers followed by the letter e
or E (for exponent, not Hex E), followed by a decimal power of 10.
For example, 2.0E4 = 2xl04, or 20,000; -3.334e-2 = -3.334xl0-2

,

or -0.0334.

Pointers and Arrays
You've encountered arrays before. Arrays in C and C++ have an interest
ing and useful relationship with pointers. In both languages, an array
name is a pointer to the first element of the array. This means that point
ers provide an alternative way to "walk" (loop, iterate, traverse) through
the elements of an array. The program Array, shown on the following
page, demonstrates using pointer arithmetic to walk through an array.

99

Getting to Know Visual C++

100

~ Tryitnow
Create the Array program as you created the Pointer program.

II Array.cpp : Defines the entry point for the console application.
II

1f inc 1 u de" s t d a f x . h"
#include <iostream.h>

int main(int argc, char* argv[])
{

}

cout « "-------1. Using Array Notation----------\n":
int arInt[] = {6. 5. 4. 3. 2}:
for(int i = 0: i < 5: i++)

cout « "arInt[" « i « "] = " « arInt[i] « end':

cout « "-------2. Using Pointer Arithmetic-------\n":
int* pArray = arInt:
for(int j = 0; j < 5: j++)
{

cout « "arInt[" « j «"] "« *pArray++« end':
}

return ~;

The Array program has two sections. The first section uses ordinary array
notation in a for loop to walk the array's elements. The key piece of C++
is this array-access notation in the middle of the output stream:

arInt[i]

That code applies the array subscript operator ([]) to the array to retrieve
the value stored at the ith element of the array. Here, the value is inserted
into the output stream.

The second section of the Array program introduces two changes. First, a
pointer to int is declared, named pArray, and initialized with only the ar
ray name:

int* pArray = arInt;

3: C++ Scope, Pointers, and References

Remember that an array name is a pointer. After the initialization, pArra:v
points to the first element of the array. Then, in the output stream, the
array-access notation is replaced by a curious-looking bit of code:

*pArray++

What's going on? Two C++ operators are being applied to pArray. The
dereference operator precedes the pointer name, so part of what we're do
ing is retrieving the value stored at the current location of pArray's first
element. Following the pointer name is the postfix increment operator (++).
The other thing we're doing, then, is incrementing the pointer. That's
commonly called pointer arithmetic. By adding 1 to the address stored in
the pointer, we're moving the pointer so that it points to the next element
of the array.

Questions might occur to you here: Which operator is applied first? And
isn't an int more than 1 byte wide? So how does incrementing by 1 move
the pointer to the next element? Let's take these questions one at a time.

For the first question, the dereference operator is applied first. It obtains
the value that is stored at the pointer's current location, for immediate
use. Then the increment operator moves the pointer to the next element,
which leads to the second question. It's true, an int is wider than 1 byte,
but the compiler is smart enough not to increment byte by byte. Instead, it
increments by the size of the array's base type, so the pointer moves ele
ment by element. Since 32-bit ints-the base type here-are 4 bytes wide,
each increment of 1 actually moves the pointer 4 bytes .

.. ~~I/ ARNING Neither C nor C++ checks for the end of the array. That's your re
AVI sponsibility. In the Array program, running either for loop from 1 through 5

rather than from 0 through 4 would let the pointer "run off the end" of
the array, because array indexes start at O. The pointer would end up point
ing to memory outside the array. If you used the array index or the pointer
to change what you thought was the last array element, you might clobber
memory that had been allocated to some other variable. This could lead to
disaster-or at least to a tricky bug.

101

Getting to Know Visual C++

102

Pointers and Strings
Like a string in C, a C++ string is an array of characters. The name of a
string variable is a pointer, like the name of any other array. The String
program demonstrates using pointer arithmetic on a char* variable.

4¥~ Try it now
Create the String program as you've created other C++ programs:

II string.cpp
II

#include <stdafx.h>
#include <iostream.h>

int main(int argc, char* argv[])
{

}

cout « "---Using Pointer Notation on an Array---\n":
char arStrl[] = "Programming":
char* pStrl = arStrl:
cout « arStrl « endl: II Show the full string first.
while(*pStrl)
{

cout « "*pStrl =" « *pStrl++ « endl:
}

return 0;

Program String uses a pointer to scan a string and print each character in
turn. Remember that the name of the array, arStrl, is simply a pointer to
the first character of the array. To walk the string, we declare a second
pointer, this one to char*, and initialize it with the string name. Using
this second pointer to walk leaves the string name still pointing to the·
first character. The alternative, moving the original string pointer itself,
arStrl, leaves the string name out of position at the end of the walk, so it's
much safer to walk the string with an auxiliary pointer.

~ Tryitnow
Let's try a little experiment with pointer notation and strings in
Microsoft Visual C++. Add these two lines to String.cpp just before
the return statement:

3: (++ Scope, Pointers, and References

char* sz = "Windows";
*sz = IV I;

The pointer sz points to the beginning of the string, so this should replace
the "w" in "Windows" with "V." Build and run it. The program fails with
an access violation. Why? There's an apparent bug in Visual C++ 6.0

when you dereference a string pointer this way while the / ZI compiler
option is set (which it is by default, to support the "edit and go" feature
in the debugger). To work around it, select Settings on the Project menu.
In the Settings dialog box, click the C/C++ tab and make sure the General
option is set in the Category box. In the Project Options box, edit the /ZI
option to /Zi (lowercase i). Click OK, rebuild, and run again. This work
around takes care of the access violation problem, a minor inconvenience
I thought you should know about.

Pointers as Function Parameters and Function Results
Recall the earlier discussion about formal and actual parameters. In the
Hello program's SayHello function, the first formal parameter was of type
char* -a pointer. What does it mean to pass a pointer to a function? And
what would it mean to return a pointer as the function's result?

Pass by value

The default way to pass a parameter to a function is called passing by

value. When you pass by value, the function doesn't get the actual piece
of data that you supply in the function call. Instead, a copy of that data is
made, and it's the copy that the function operates on. The function can
alter the copy all it wants, and the original piece of data remains un
changed. Just remember that passing by value passes a copy.

The default way to return a function result is to return it by value. Again,
a copy is made, and it is the copy that leaves the function and enters the
outside world.

Pass by address

Suppose you have a large 'piece of data that you want a function to work
on. In this case, let's say that you deliberately want the function to alter
the data you pass to it, but the default is pass by value, which lets the

103

Getting to Know Visual C++

Figure 3-2.

104

function work only on a copy. (Not only that, but if you pass by value,
copying that very large piece of data could be costly in time and memory.)

The solution, of course, is to pass a pointer to the data-using pass by
address. This way, no copy of the data is used. The function can use the
pointer to alter the original data regardless of where it actually is. (Tech
nically, a copy is made, but it's of the pointer itself, so the copy points to
the same place the original pointer does.)

Pass by address works just as well for returning a function result, only
here the main motive is efficiency-there's no large data copy to return.
Here's what the code for returning a pointer might look like:

Thing* MyFunction()
{

}

II Do something to create a Thing
return &Thing;

One other advantage of passing and returning pointers is that they en
able you to return more than one result. You can use pointer-type pa
rameters to return additional results. Figure 3-2 shows multiple returns
schematically.

Return Return

1 1
int AFunction(int nParaml. int* pnParam2)

{ \;pnparam2 = 3;~
return 4;

}

Using both the function return value and a function parameter to return results.

In an upcoming section, I'll caution you about unsafe things you could do
with returned pointers. The cautions won't usually apply to pointer-type
parameters, just to function return values.

I'll also soon show you a third parameter-passing strategy, known as pass
by reference, that is not available in C.

Table 3-1.

3: (++ Scope, Pointers, and References

Passing a const pointer

Note one other thing about pointers. Suppose your main reason for pass
ing by address rather than passing by value is to avoid the copying over
head, and you don't want the data itself to be modified in the function. In
that case, you can declare the parameter with a canst modifier, like this:

void MyFunction(const Thing* pThing)

Using canst this way causes the compiler to enforce your wishes. The
Thing pointed to by pThing can't be modified in the function. Passing
canst parameters is a good practice when you really don't intend to have
the function modify the data.

What pointers can point to

Besides pointing to ordinary variables and to arrays and strings, pointers
can point to a variety of other things. Table 3-1 summarizes what else a
pointer can point to.

Pointer Target

Null

struct

Some pointer targets.

Remarks

A pointer can point to nothing. My advice is to set any
pointer not pointing to a particular object to Null (a
null pointer is like a pointer to 0). If you inadvertently
try to dereference such a pointer, your application will
perform an access violation and crash, but that's prob
ably better than having it point to who knows where.

A struct, covered in more detail in Chapter 4, is a
named collection of variables, such as this:

struct MyStruct
{

} ;

int nlnt;
char ch;

We can declare a struct-type variable and treat it as we
do other variables, including the use of pointers:

MyStruct aStruct;
MyStruct* pStruct = &aStruct;

(continued)

105

Getting to Know Visual C++

106

Table 3-1 continued

Pointer Target

Class objects

Remarks

A class, also covered in Chapter 4, is a struct with
greater powers, such as:

class MyClass
{

int nlnt
void MemberFunction();

} ;

MyClass aClass;
MyClass* pclass = &aClass;

Functions A function pointer is handy when you need to pass a
function as a parameter. Doing so lets function A call
an arbitrary function B whose address is passed to A.
(Advanced topic)

Class member function You can obtain the address of a class member func
tion (member functions are covered in Chapter 4) and
use it somewhat as you would a pointer to a global
function. (Advanced topic)

void A pointer to void can be assigned the value of any
other pointer that was not declared canst. For example,
a variable of type void * can be assigned the value of a
variable of type char* or int*. A pointer to void is useful
when the object's type isn't known or might vary. You
can't dereference this kind of pointer without first con
verting it to another pointer type. (Advanced topic)
Hierarchies of class objects are a better mechanism to
use than pointers to void (see Chapter 5).

Another pointer Because you can define a pointer to any variable, you
can define a pointer to a pointer. This is called double
indirection, and it has its uses. (Advanced topic, but
see the discussion of an array of pointers below.)

Like any other variable type, pointers can be stored in an array. What good
is an array of pointers? Consider an array of strings:

char* arSzs[] = { "alpha", "beta", "gamma", "delta" };
for(int i = 0; i < 4; i++)
{

cout « "string" « i « fl. " « arSzs[i] «endl;
}

Figure 3-3.

3: C++ Scope, Pointers, and References

Since a char* is a pointer, an array of strings is really an array of pointers.
You can see this in Figure 3-3. The array name in this case is also an ex
ample of a pointer to a pointer. The array name is a pointer to the first ele
ment in the array-which in this case is another pointer. The array name,
then, is a pointer to a pointer to char. (Try it. Create a small program that
incorporates the code shown on the preceding page.)

~Jl\ll aTE c++ doesn't allow you to create an array of references. I'll cover refer
~I' ences later in the chapter.

r-----,.-- Uses both notations at once

char*

An array of strings is an array of pointers.

An array of pointers can be useful for all kinds of tasks. For example, if
you need to sort an array of large data objects, a good strategy is to use a
second array containing pointers to the objects. Then, instead of moving
the objects themselves around as you work through your sort algorithm,
you can move the smaller-sized pointers-a considerable gain in effi
ciency. By the way, storage allocated on the heap for an array has to be
deallocated properly. (It's more common to allocate arrays on the stack,
but sometimes you need a heap allocation.) You can allocate the array
storage on the heap by using new, like this:

int *arlnts = new int[4];

This allocates space for four int variables, which we can then access with
array notation, as shown in the code snippet on the next page.

107

Getting to Know Visual C++

108

arlnts[0] = 0;

cout « arlnts[0] « endl;

Because the array above was allocated with new, it must be deallocated
with delete. But it's not sufficient to do this:

delete arlnts;

Recall that an array's name is a pointer to its first element. So, the preced
ing delete statement deallocates only the first element of arInts. What we
really need to do is deallocate the whole array. The following notation
does that correctly, then sets the pointer to Null, signifying that it's not
currently in use:

delete [] arlnts;
arlnts = NULL;

We briefly discussed allocating and deallocating arrays on the heap
including.arrays of pointers-in Chapter 2. I strongly recommend that you
now return to that discussion to help round out what you've seen here.

A?lIOTE Calling delete for a pointer set to Null is harmless. But calling delete
,Jill for a pointer whose value is undefined (neither Null nor the address of a

legitimate object) causes problems. Trying to delete an undefined pointer is
much like trying to dereference one. Such "stray pointers" are often hard
to debug because the symptoms can be far removed from the action that
caused them, like a car hitting a tree a mile from where the tie rod broke.

References
C++ introduces a new kind of variable: a reference variable. The Referl
program gives a simple example.

~ Tryitnow
Create the Referl program as you have created other c++ programs:

II Referl.cpp : Defines the entry point for the console application.
II

l/include "stdafx.h"
'include <iostream.h>

3: (++ Scope, Pointers, and References

int main(int argc, char* argv[])
{

}

II Declare an int variable and a reference to it.
int mylnt = 3:
int& rMyRef = myInt:

II Show that rMyRef does refer to mylnt.
cout « rMyRef« endl: II Outputs 3

II Change rMyRef by changing mylnt.
mylnt += 1: II Now equals 4
cout « rMyRef« endl: II Outputs 4

II Change mylnt through rMyRef.
rMyRef += 1:
II Next line outputs "rMyRef = 5
cout « "rMyRef = " « rMyRef « "

return el;

mylnt = 5".
mylnt = " « mylnt « endl:

A reference is an alias for another variable-another name for the same
object. The reference is not a separate object by itself, the way a pointer
is. It's just a name. In the example above, rMyRefis said to refer to
mylnt-it's an alias for mylnt. Anything you can do to mylnt directly,
you can also do by way of the reference rMyRef.

While it looks and acts somewhat like a pointer, a reference must be ini
tialized to refer to a particular variable, and after that it can't be assigned
a different variable to refer to. Remember: a reference must refer to an
existing object-one that stays in existence for the life of the reference.
Pointer variables are more, well, variable.

You can use references as shown in the Referl program, but their best use
is as function parameters and results. They can really boost your effi
ciency as long as you abide by the few rules we've just covered.

~11 OTE Because references are just names, not real objects, it's an espe. dally
:.l11'1 good idea to give them distinctive names. In Refer1, I prefixed the name

MyRef with 'r' for reference: rMyRef. A more thoroughly Hungarian name,
adding the data type of the object referred to, would be something like
rlntMyRef.

109

Getting to Know Visual C++

110

Pass by Reference
We've covered two other parameter-passing mechanisms:

• Pass by value, in which a copy is passed and the original can't be
modified through the copy

• Pass by address, in which a pointer is passed and the original can
be modified through that pointer (unless the pointer parameter is
canst)

The third and final parameter-passing mechanism in C++ is called
pass by reference. The formal parameter specifies a reference type
BigObject& in this example:

void MyFunction(BigObject& rBo);

and the actual parameter that you pass-a nonreference variable (a real
object, not a pointer to one)-initializes the reference parameter:

BigObject myBo;
MyFunction(myBo);

II myBo really exists as an object on stack
II myBo used to initialize a reference parameter

MyFunctian can modify myBa, the original object, through the reference
to it (unless we precede the parameter declaration with the canst key
word). The following program, Refer2, illustrates how the object that a
reference parameter refers to can be changed .

• Tryitnow
'J

Create the Refer2 program as you have created other C++ programs:

II Refer2.cpp : Defines the entry point for the console application.
II

#include "stdafx.h"
#include (iostream.h>

struct BigObject
{

int Varl:
double arDbl[2000]:

}:
II Allocates space for 2,000 doubles

3: (++ Scope, Pointers, and References

void MyFunction(BigObject& bo):

int main(int argc, char* argv[])
{

}

BigObject myBo:
myBo.Var1 = 0:
cout « "Before MyFunction call. myBo.Var1 = " «

myBo.Var1 « end':

MyFunction(myBo):
cout « "After MyFunction call. myBo.Var1 now = " «

myBo.Var1 « end':

return 0:

void MyFunction(BigObject& bo)
{

}

cout « "Entering MyFunction. bo.Var1 = " « bo.Var1 « end':
bo.Var1 = 100:

The Refer2 program d,eclares a struct type called BigObject. BigObject
contains two member variables: an int and a large array of doubles. In
main, Refer2 creates a BigObject named myBo on the stack and initializes
its int member variable, Var1. (In real life, we'd also initialize the array
member variable, but just having the space allocated for 2,000 doubles is
all we need here to make the point that myBo is big.) Then main calls
MyFunction, passing it the BigObject by reference. Notice that in the func
tion call we just pass the object's name, with no & or other decorations
we're passing a real object as follows:

MyFunction(myBo):

MyFunction reaches out through the reference parameter to alter one of
myBo's member variables. The three output statements track the variable's
value before, during, and after the function call and demonstrate how the
reference works.

What good did the reference do us? Because we passed by reference
rather than by value, we eliminated the need to copy the BigObject as it
was being passed. With small objects like ints or chars-or anything less

111

Getting to Know Visual C++

112

than or equal to 32 bits-passing by value may be the better way to go,
unless you need to modify the original object from your function. But
with large data objects, passing by reference (or pointer) can be much
more efficient. I'll further discuss the pros and cons of references in the
next section.

The other side of passing by reference involves returning a function result
via a reference. This works much like returning a result via a pointer.
However, both of these methods of returning results demand caution, as
I'll explain in the next section.

Pointer and Reference Guidelines and Cautions
We've covered all three methods of passing parameters and returning
function results in c++: pass by value, pass by address (pointer), and pass
by reference. Which should you use in a given situation? Here are some
guidelines.

Guidelines for Passing Parameters and Returning Results
• For small data objects (those smaller than or equal to 32 bits), pass

by value.

• For large data objects, pass by address or by reference. If you need
to access individual elements of a long stretch of memory, for ex
ample, a pointer works well to walk the data. But, because of all the
pointer dereferencing needed to access the elements via pointer no
tation, it might be more efficient to pass a reference to an array and
use array notation. By the way, remember that arrays are always
passed by address-unless you specify pass by reference. That's be
cause an array name is a pointer.

• If you need to modify an original data object of any size, pass by ad
dress or by reference. The copy you get if you pass by value pre
vents such modifications.

• The guidelines given above also apply to returning function results,
but there are some special cautions that complicate the picture. I'll
get to those shortly.

3: (++ Scope, Pointers, and References

• If you must return a value that is created as a lacal variable in a
function, always return it by value, regardless of size. I'll explain
why in a moment.

• A reference must refer to an existing object. The easiest way to
guarantee that an object exists is to pass the original object yourself,
by reference. If the object exists outside a function, it's safe to create
a reference to it from inside the function.

• If you don't need to alter a large object that is passed to a function
or returned from one, declare a canst parameter (reference or
pointer) or a canst return type. This function prototype shows both:

canst BigObject& MyFunctian(canst BigObject& ba);

MyFunctian can't alter a BigObject passed to it via the canst param
eter ba. Likewise, MyFunctian returns an unalterable canst object
via the return mechanism.

Use canst liberally. It makes for more reliable programs. You can declare
a non-canst pointer to non-canst data, a canst pointer to non-canst data, a
non-canst pointer to canst data, or a canst pointer to canst data:

int* pInt = 10;
int* canst pInt = 10;
canst int* pInt = 10;
canst int* canst pInt 10;

II nan-canst painter ta nan-canst data
II canst painter ta nan-canst data
II nan-canst painter ta canst data
II canst painter ta canst data

\JiI'IP How to tell what's what: If the const keyword precedes the data type
"'\ll name, the data is const. If const precedes the pointer name, the pointer is

const.

These variations let you control precisely what can and can't be changed:
it's the non-canst part, if there is one, that can change-the pointer itself,
the data i~ points to, or both. You can and should use canst in the same
way for references. And you can also use these variations in function pa
rameters and function return types.

113

Getting to Know Visual C++

114

Returning Results: Caution Required
I promised earlier to explain the pitfalls of some ways of returning a func
tion result. We'll consider returning local objects from a function, return
ing a pointer or reference to an object that exists outside the function, and
making sure a returned pointer is properly deleted after use.

Returning a local object

Be careful how you return a local object. A local object is a local variable
(of any type) in a function. Always return such an object by value, regard
less of its size. Local variables are destroyed when they go out of scope at
the end of the function. Consequently, if you return a pointer or reference
to a local object, the pointer or reference has an undefined value after the
function returns. If you then use the pointer or reference to change what
you thought was the returned object, you instead write over memory in
another part of your program or get an access violation. As with "running
off the end" of an array, this mistake could make your program crash and
provide hours of debugging practice. The following function illustrates
the problem:

BigObject& MyFunction()
{

BigObject bo; II Local variable, created on stack
return bo; II By reference

} II bo goes out of scope when MyFunction returns

Using a reference as the return type here is bad news. Returning a pointer
to bo would be equally likely to result in a program failure.

The next function returns a local object correctly, by value, so that what is
returned is a copy of the object. The copy continues to exist even though
the original goes out of scope.

BigObject MyFunction()
{

}

BigObject bo;
return bo; II Return a copy

Returning a BigObject by value requires a costly copy, so here's an alter
native way to get a BigObject from MyFunction without a copy:

BigObject myBo;

3: (++ Scope, Pointers, and References

MyFunction (myBo);

void MyFunction(BigObject& bo)
{

II Alter bo in some useful way

In this case, you'd create the BigObject outside of MyFunction, pass it in
by reference, and let the function operate on the original via the reference
parameter. There's less overhead and no danger of trying to return a local
object the wrong way.

References and existing objects

References need to refer to an existing object. This is an absolute require
ment, because a reference is just an alias, another name for that object.
The simplest way to ensure that a reference refers to an existing object is
to create that object yourself and use a reference parameter to pass it to
functions. The last example in the previous section shows how to do this.

What kind of object can you return a reference to with the return key
word? It must be an object that you created yourself, or that some other
agency created outside of the function. You can safely return a reference
to an object that is global to the function, or to an object that, say, Win
dows created. In the first case, involving an object that is global, it's usu
ally better just to pass the object in and out via a reference parameter than
to use return. In the second case, if Windows or MFC is responsible for
both creating and destroying the object, a reference to it is fine, as long as
the object continues to exist for the life of your reference variable. For ex
ample, Windows allocates storage for a device context object (you'll learn
about those in Chapter 6) and you obtain a handle to the object. The
handle is really a pointer under the hood, but the object is on loan to you.
Windows created it and Windows will destroy it. You're free to use it in
the meantime, as long as you give it back to Windows when you're done.

What if you create the object inside the function with the C++ new opera
tor? Can you return a reference to that object? Well, the object is created
on the heap instead of the stack, so it continues to exist after the function
returns. Therefore, the answer is yes, you can return a reference to this
object. The Refer3 program on the next page illustrates how this is done.

115

Getting to Know Visual C++

116

!~ Try it now
Create the Refer3 program as you have created other C++ programs:

II Refer3.cpp : Defines the entry point for the console application.
II

1,1: inc 1 u de" s t d a f x . h"
#include <iostream.h>

struct Object
{

}:

int a:
int b:

Object& MyFunction():

int main(int argc, char* argv[])
{

Object& rMyObj = MyFunction():
cout « "rMyObj.a = " «.rMyObj.a « endl;

delete &rMyObj;
return 0;

II Delete object referred to

}

Object& MyFunction()
{

}

Object* 0 = new Object:
o->a = 20:
o->b = 25:
return *0:

II Create object on heap
II Set its value

II Return the object itself

The technique in the Refer3 program works-the reference variable
rMyObj in main is initialized to the value returned by MyFunction. Yet a
problem remains. Someone, sometime must delete the memory block sit
ting out there in the heap. How? We lost the pointer to that memory when
MyFunction returned. (The variable was a local variable that went out of
scope.) But we still have a reference to the object, rMyObj, and we can
take the address of that reference-it's the same as the address of the
memory in the heap, after all-and call delete on the resulting pointer:

delete &rMyObj;

3: (++ Scope, Pointers, and References

That takes care of that-the memory block is gone, although there's still
an issue of how we can count on whoever calls MyFunction to perform
this essential bit of cleanup. I'll soon say more about this under "Who de
letes the pointer?"

Pointers and existing objects

A pointer should either point to Null or to a legitimate existing object. If
it does neither-in other words, if the pointer is undefined-trying to
dereference it will yield unpredictable results and create an elusive bug.
Dereference a null pointer instead and you'll still get an access violation,
but you'll have a somewhat easier time determining where the problem
occurred. This is why I recommend always setting a pointer to Null as soon
as you delete what it points to.

What about returning a pointer from a function that used new to create
the object pointed to? The story is much the same as it was for references
to such objects. You can do it, but there's a risk because you have to rely
on someone, sometime, deleting the pointer. If it's not deleted, there'll be
a memory leak.

Who deletes the pointer?

I've raised an issue for both pointers and references: when your function
returns a pointer or reference to an object created on the heap with new,
who is responsible for calling delete for that pointer?

The function that created the pointer or reference can't be responsible
when the pointer or reference is returned, the function has finished run
ning. So it's the caller's responsibility to call delete. The awkwardness
here is that the function called new, but you (or someone else) have to re
member to call delete. Sometimes the caller will be someone else's pro
gram, and at other times it might be yours-maybe six months or a year
from now.

We're all human. We tend to overlook little loose ends like this, and an
undeleted pointer or reference is almost certain to result in memory leaks
sooner or later. This is why it's generally considered poor programming
practice to return a pointer that the caller must then delete. You can

117

Getting to Know Visual C++

118

document that it's the caller's job to call delete for the pointer or refer
ence, but who reads documentation? (Ask me-I write the stuff.) Some
times you'll take the risk, but the stakes can be high. It's usually better to
return an actual object by value or to work with a preexisting object that
you pass to your function by address or by reference. Consider yourself
warned.

Header and Implementation Files
So far, for the most part, we've put everything that's in the example pro
grams (both declarations and definitions) into a single .cpp file-a C++
implementation file. But the more usual way to program in C++ is to put
the declarations in a header file (with the .h extension) and the defini
tions in a .cpp file. Then the .cpp file includes the .h file, like this:

tfinclude "myHdr.h"

Header and implementation files in C++ are just like the ones in C. Let's'
create Refer4, a version of the Refer3 program that divides the code into a
header file and an implementation file. The implementation (.cpp) file
must include the header. Create these files with the wizard as usual, nam
ing the project Refer4:

!~ Try it now
Create two programs: Refer4.cpp and Refer4.h.

1. Create the Refer4.cpp program as you have created other C++ pro
grams. Edit Refer4.cpp to look like this:

II Refer4.cpp : Defines the entry point for the console ...
II

11 inc 1 u de" s t d a f x . h"
#include <iostream.h)
'include "Refer4.h"

int main(int argc. char* argv[])
{

Object& rMyObj = MyFunction();
cout « "rMyObj.a = " « rMyObj.a « endl;

3: C++ Scope, Pointers, and References

delete &rMyObj:
return 0;

II Delete object referred to

}

Object& MyFunction()
{

} .

Object* 0 = new Object:
o->a = 20:
o->b = 25:
return *0:

II Create object on heap
II Set its value

II Return the object itself

2. Create Refer4.h, a header file, add the following code, and add it to
the project. To create the header file, use the New command on the
File menu. In the New dialog box, click the Files tab. Click C/C++
Header File and give the file a name-Refer4.h-in the File Name
box. Confirm that the Add To Project option is checked and that the
project name is Refer4. Click OK to create the header file as part of
the Refer4 project.

II Refer4.h
II Declares a type and a function prototype.

struct Object
{

}:

int a:
int b:

Object& MyFunction():

Why divide things up this way? Suppose I develop a really useful data
type, such as the Object struct in Refer4.h. I might want to use that same
type again and again in other programs. If the type declaration is embed
ded in a .cpp file for program A, I have to make a copy of it and paste the
copy into program B's .cpp file to use the type there. But if the type decla
rations, function declarations, constants, and other reusable items are in
one or more header files, any program can reuse them simply by includ
ing the header files. Furthermore, many C++ programs are large enough to
divide their code into multiple .cpp files. Several of those .cpp files
might need to include the same declarations; so, again, separating those
elements into header files can be helpful.

119

Getting to Know Visual C++

Figure 3-4.

120

.~11 OTE The header doesn't have to be called Refer4.h. Object.h might be a
6111 more meaningful name because it contains a declaration of the Object type.

Follow this rule: Put all executable code-function body definitions and
anything else that allocates storage-in the .cpp files. Put only declara
tions in the .h files. This simple step will avoid linker errors due to mul
tiple definitions of the same object. These linker errors would occur if
several implementation files included the same header file.

Preventing Multiple Inclusion
A problem sometimes crops up in using header files. You can inadvert
ently include the same header file more than once in the same .cpp file.
This happens when header file B includes header file A (yes, a header
can include other headers), and implementation file C includes both A
and B. C gets two copies of A, and you get really scary error messages. To
prevent that, don't include A in C; include only B. Figure 3-4 illustrates
the problem and the solution. Drawing a diagram like this can be a big
help in keeping your headers straight.

You can also take formal coding steps to prevent multiple inclusion, us
ing conditional preprocessor directives. For more information and an
MFC example, see "Reading the AppWizard Files" in the Appendix.

Cut this connection.
C.cpp already includes A.h through B.h.

C.cpp

line/brie "A.ll II
#include "B.h"

S.h

#inc!ude "A.h /I

Correctly and incorrectly including header files.

3: (++ Scope, Pointers, and References

Precompiled Headers
I offer one last comment about using headers. In Visual C++, you can
precompile any code that is quite stable-:-that is, any code that you aren't
making frequent changes in. By precompiling, you cut down on the
amount of code that has to be recompiled each time you make a change
and build your program.

Header files are one kind of code that you can usefully precompile. Espe
cially when you're using a large code library like MFC, precompiling
headers can greatly reduce build time-a savings that gives you faster
turnaround and improves your productivity. In MFC projects, headers are
precompiled by default. For more information about how this happens,
search Help for precompiled headers and choose the subtopic "creating."
In MFC programs, the StdAfx.h file is the heart of the precompiled header
mechanism-although, in the simple console applications we're creating
in the book, StdAfx.h doesn't play much of a role. To set up a console
application that does use MFC and, therefore, does use the precompiled
header mechanism extensively, create your console application as usual,
but do not select" A Simple Application" in App Wizard. Instead, select
the fourth option, "An Application That Supports MFC." If you followed
the steps in Chapter 1 to create a new Win32 Console Application, you've
seen the four options I refer to.

Try It Yourself

Test yourself with the following extra-credit work.

1. Practice with pointers

Write a small program in which you do the following:

• Create an array of 26 char elements (not char*).

• Initialize the array with the 26 letters of the English alphabet.

• Walk the array backward with a pointer (not the array name itself
but a separate pointer), outputting the letters in reverse alphabetical
order.

See program Ch3exl in the \learnvcn \Chap03 folder in the companion
code for one solution.

121

Getting to Know Visual C++

122

2. More practice with pointers

Write another small program in which you try these exercises:

• Create a stack data structure using an array of 20 pointers to char
(not pointers to char*). You'll need a second pointer to char to rep
resent the top of the stack-the "stack pointer." As you add ele
ments to the stack (push them), always do so at the top, then
advance the pointer (watching for the end of the array). As you re
move elements from the stack (pop them), always move the pointer
back toward the beginning of the array, then get the element there.
Watch for element o.

• Push the string "purtsuorts" onto the stack.

• Pop the stack's complete contents, printing elements as you go. You
should end up with the word "purtsuorts" spelled backward
stroustrup.

See program Ch3ex2 in the \learnvcn \Chap03 folder in the companion
code for one solution.

What's Next?
In Chapter 4, we explore the central feature of C++, the C++ class.
Classes are essential for creating your own complex data types and for
doing object-oriented programming. The following are among the topics
we'll cover:

• Classes and objects

• Class member variables and functions

• Controlling outside access to class data

Chapter

(++ (lasses
This chapter and the next round out our coverage of the c++ language
with a series of programs that illustrate the use of c++ classes. Classes are
the principal way in C++ to create new programmer-defined data types.
They're also the basis for object-oriented programming (commonly
known as OOP). I'll approach the subject of OOP by stages in this chapter
and Chapter 5 by taking you through the following programs:

• The Shapel program introduces three new data types designed for
use in software that draws and manipulates geometric shapes such
as rectangles and ellipses. In Shapel, the C++ is much like C-not a
bad place to begin when classes and OOP are new to you.

• The Shape2 program gets serious about objects. This code asks,
"Why shouldn't an object be responsible for its own behaviors?" It
answers by introducing classes. Shape2 uses classes as the basis for
new versions of the three data types used in Shape1. The classes
contain functions as well as data, making them very powerful and
versatile programming constructs.

• The Shape3 program in Chapter 5 finally approaches the goal of
fully using the characteristics of OOP. By introducing the ability of
C++ to derive a new class from an existing one, it brings us to those
characteristics that most define OOP: encapsulation, inheritance,

123

Getting to Know Visual C++

124

and polymorphism. In Chapter 5, we'll first look at encapsulation
the ability of a class object to contain, and even hide, data. We'll
look at how you can derive one class from another and how the de
rived class inherits the characteristics of its base class. We'll see
what the resulting class hierarchies are like. We'll look at how to
override the characteristics of a base class in a class derived from
the base. And we'll take polymorphism-which translates roughly
as "many shapes"-pretty literally.

• Several other small programs in this chapter and the next will dem
onstrate other aspects of C++, including access specifiers, construc
tors and destructors, and static class members. In Chapter 5, I'll
also discuss class scope and briefly cover operator overloading.

Among the additional C++ topics this chapter covers are the following:

• Function overloading

• Class member functions

• The this pointer

• Information hiding and control of outside access to class members

• Microsoft Foundation Class Library 6.0 (MFC) source code
conventions

• Static variables

• Friend functions and classes

Objects and Classes
In the programming World, there are (at least) two definitions of the word
object. The most basic definition is "a region of storage that has a specific
data type." Strings, ints, and floats, for example, are considered objects.
The c++ and OOP definition of an object, however, is "a region of storage
plus a set of operations that can manipulate that storage." In this case, an
object is also referred to as a class object.

So what is a class a,nd what's its relationship to an object? One way of
looking at it is to say that a class is like a cookie cutter and objects are like

4: (++ Classes

cookies. In essence, a class is a data type, like int or float, but programmer
defined rather than built in. Another way to say it is that a class is a plan,

,like a blueprint, that you use to create real objects in your program. A
class defines the structure and behaviors of its objects by defining data
members and member functions. Within the class declaration, data mem
bers (also called member variables) look much like one or more ordinary
variable declarations, while member functions look much like function
prototypes.

Here's a very simple c++ class, in the form of a C-like struct:

struct Employee
{

} ;

II Member variables (data members)
string m_strName;
string m_strSocialSecurityNumber;
double m_dSalary;

II Member functions
void SetName(string name);
void SetSSN(string SSN);
void SetSalary(double salary);
string GetName();
string GetSSN();
double GetSalary();
void ComputeMonthlyPay();

If you have a background in C, this might look like a very strange struct to
you. If you're a Pascal programmer, it also looks strange-like a Pascal
record with function declarations thrown in. But in C++, this is both a le
gitimate struct and a class. In fact, there are three kinds of classes in C++:

• Classes declared with the struct keyword

• Classes declared with the union keyword

• Classes declared with the class keyword

I'll cover the struct and class variations iater in this chapter. Unions are
somewhat advanced (and, frankly, somewhat archaic), so I won't explain
them further. Check the Help index for union and read the first two
topics listed in the Topics Found dialog box.

125

Getting to Know Visual C++

126

Using the class Employee, you can write code like the following:

Employee empCu~rent;
empCurrent. SetName("Smi th, John");
empCurrent.m_strSocialSecurityNumber "555-55-5555";

cout « empCurrent.GetName() « endl;

The first line declares a variable of type Employee, named empCurrent
empCurrent is a class object. It contains the members (data members and

member functions) listed in the struct declaration. The second line shows
how to call a member function of the object. The third line demonstrates
accessing a data member directly. And the final line shows another mem

ber function call.

Notice how we declared the empCurrent variable-its data type, then the
variable name:

Employee empCurrent;

Creating a Class from Scratch
A class usually represents an abstraction, such as a point, a geometric
shape, a document, or an employee. MFC, for example, has classes to rep
resent documents, dialog boxes, and even the application as a whole.
Later in the book, we'll write a drawing program that lets you draw rect

angles and ellipses. Rectangles and ellipses have features in common,
such as location, size, color, and so on. Abstractly, each is a geometric

shape. So, we'll develop a shape class that can represent a rectangle, an
ellipse, or whatever other shape we care to specify. Working out the

shape class includes listing things you can do with a shape: create it,
draw it, move it, color it, rotate it, inflate it, destroy it. Notice how this
begins to treat a shape as a thing-an object-that we can manipulate.

As we move toward implementation, we'll concern ourselves with two

attributes that each two-dimensional shape has: a bounding rectangle,
within which the entire shape lies, and an ID of some sort to identify the
shape's type (rectangle, ellipse, and so on). (A more complete design

might include a color, an orientation, and other attributes.) Figure 4-1

shows the bounding rectangle of an ellipse.

Figure 4-1.

(10, 10) I"""" -,,., """" =-,,,,, r

a
I
I
I
~
~
I
i

A shape's bounding rectangle.

Here's a simple shape class:

struct Shape
{

} ;

Rect m_rectShape;
ShpType m_typeShape;

,~~ ..,., (50, 70)

II Bounding rectangle
II Shape: rectangle. ellipse ...

4: (++ (lasses

We're aiming toward a real drawing program, but since we are working in
a character-mode environment for the time being, we'll simply display a
string for each shape we'd draw if we could. The string will contain the
shape's type and the coordinates of its bounding rectangle. The x and y
coordinates of the top left corner will come first, followed by the x and y
coordinates of the bottom right corner. Examples of such strings are rect
angle at (0, 0, 20, 20) and ellipse at (30, 35, 127, 140).

Later in the book, we'll replace the above implementation of the drawing
operation with a Microsoft Win32 API function call that really draws a
rectangle or ellipse within the specified bounding rectangle.

The Shapel program begins to demonstrate how classes work.

The Shape1 Program
Shapel is a rather C-like program, but it illustrates the following aspects
of C++, among others:

• Using the struct keyword to define a class

• structs with member functions

127

Getting to Know Visual C++

128

• Declaring, initializing, using, and destroying objects on the stack
and the heap

• Creating and using an array of Shape objects

• A C-like approach to implementing what can be done with a shape

• Inline member function definitions

~ Tryitnow
Create the Shapel project as a Win32 Console Application. Create the
four code files listed below. You'll create the Shapel.cpp file when you
create the Shapel project. Then add the three .h files with the New com
mand. To add a .h file select C/C++ Header File on the Files tab in the
New dialog box.

• CPoint.h, a header file declaring the Point class. A rectangle is de
fined by points at two corners, top left and bottom right.

• CRect.h, a header file declaring the Reet class. Each shape is con
tained within a bounding rectangle.

• Shape.h, a header file declaring the Shape class.

• Shapel.cpp, the main file. This file contains the main function and
implementations for all three of the header files.

CPoint.h

II CPoint.h

struct Point
{

II Constructors
Point(){ x = 0; Y = 0; };
Point(int ix, int iy){ x = ix; Y = iy: };

II Attributes
int x;
int y;

}:

4: (++ (lasses

CRect.h

II CRect.h

'include "CPoint.h"

struct Rect
{

II Constructors
Rect() { m-ptTopLeft = Pointe); m-ptBotRight = POint(10.l0); };
Rect(Point tl. Point br) { m-ptTopLeft = tl; m-ptBotRight = br; };

II Attributes
Point m-ptTopLeft;
Point m-ptBotRight;

void SetRect(Point tl. Point br)
{ m-ptTopLeft = tl; m-ptBotRight = br; };

void SetRect(int xl. int yl. int x2. int y2)
{ m-ptTopLeft.x = xl; m-ptTopLeft.y = yl;

m-ptBotRight.x = x2; m-ptBotRight.y ='y2; };
};

Shape.h

II Shape.h

'include "CRect.h"

II Constant for use in generating random shape types
const int NUM_TYPES = 2;

II Possible shape types
enum ShpType
{

};

shpRectangle.
shpEllipse
II Could add others here

II The Shape class
struct Shape
{

};

Rect m-rectShape;
ShpType m-typeShape;

II Bounding rectangle of shape
II Rectangle, ellipse. and so on

(continued)

129

Getting to Know Visual C++

130

Shape1.cpp

II Shapel.cpp : Defines the entry point for the console application.
II

1finclude "Stdafx.h"
,include "Shape.h"
,include <Stdio.h>
'include <Assert.h>
'include <Stdlib.h>
'include <Time.h>
'include <String.h>

// For printf, sprintf
// For assert
// For rand, srand, abs
// For time
// For strcpy

// Global function prototypes
void DrawShape(Shape* pS):
void MoveShape(Shape* pS, Point p):
int RandomCoord(1:
ShpType RandomType():

const int COORD_MAX = 1000:

///////////////////////////////////
// main
int main(int argc, char* argv[])
{

// Create a shape on the stack.
Shape shp1:
shp1.m-rectShape = Rect(Point(20, 20), POint(50, 50»:
shp1.m-typeShape = shpRectangle:
DrawShape(&shp1):

// Move a shape in coordinate space.
MoveShape(&shp1, Point(25, 25»:
DrawShape(&shp1):

// Create a shape on the heap.
Shape* pShp2 = new Shape;
assert(pShp2 1= NULL);
pShp2->m-rectShape = Rect(Point(100, 100), Point(150, 150»:
pShp2->m-typeShape = shpEllipse;
DrawShape(pShp2);

delete pShp2:

// Create 20 random shapes in an array.
Poi nt ptl, pt2;

4: (++ (lasses

Shape* arShps[20]:
srand«unsigned)time(NULL»:
for(int i = 0: i < 20: i++)
{

// Seed random number generator

}

}

// Create next shape.
Shape* pShp = new Shape:
assert(pShp != NULL):
// Give it some coordinates.
ptl = Point(RandomCoord(), RandomCoord(»:
pt2 = Point(RandomCoord(), RandomCoord(»:
pShp->~rectShape = Rect(ptl, pt2):
// Specify whether it's a rectangle or an ellipse.
pShp->~typeShape = RandomType():
// Add it to the array.
arShps[i] = pShp:
// "Draw" the shape (as a string).
DrawShape(arShps[i]):

// Move a shape.
MoveShape(arShps[0], Point(20,20»:
DrawShape(arShps[0]):

// Delete all shapes.
for(int j = 0: j < 20: j++)
{

delete arShps[j]:
}

return 0;

////////////////////////////////////
// Global function definitions

// "Draw" the shape.
void DrawShape(Shape* pS)
{

Rect rect = pS->~rectShape:
int xl = rect.~ptTopLeft.x:
int yl = rect.~ptTopLeft.y:
int x2 = rect.~ptBotRight.x:
int y2 = rect.~ptBotRight.y:

(continued)

131

Getting to Know Visual C++

132

}

// Determine shape type, represented as a string.
char szType[20]:
switch(pS->~typeShape)
{

case shpRectangle: strcpy(szType, "rectangle"):
break:

case shpElli pse: spri ntf(szType, "%s", "elli pse"):
break:

default: strcpy(szType, "errorShapeType"):
}:

// "Draw" shape as a string.
// Example: "rectangle at (34, 76, 987, 800)"
printf("%s at (%d,%d.%d,%d)\n". szType. xl, y1, x2, y2):

// Shift shape to new position p.
void MoveShape(Shape* pS, Point p /* New ~ptTopLeft */)
{

}

Rect rect = pS->~rectShape:
int width = abs(rect.~ptBotRight.x - rect.~ptTopLeft.x):

int height = abs(rect.~ptBotRight.y - rect.~ptTopLeft.y):

// New ~ptTopLeft corner is p.
pS->~rectShape.~ptTopLeft = p:
// New ~ptBotRight corner calculated from p using size of shape.
pS->~rectShape.~ptBotRight = POint(p.x + width, p.y + height):

////////////////////////////////////
// Global Helper functions

// Generate a random positive coordin~te
// within a COORD_MAX by COORD_MAX drawing area.
int RandomCoord()
{

// Base new coordinate loosely on last coordinate.
static int nLastCoord: // Automatically initialized to 0,

// then altered on each call.

// Get a pseudorandom number between 0 and RAND-HAX (32,767).
int nNextCoord = rand():

4: (++ (lasses

}

int nFudge = rand() % 100: II Generate a fudge factor: 0 to 99
II Use (larger of new number and old number) + fudge factor.
nLastCoord = (nNextCoord > nLastCoord 1 nNextCoord :

nLastCoord) :
II Restrict the number to a value between
II 0 and COORD_MAX - 1 (inclusive).
nLastCoord = (nLastCoord + nFudge) % COORD_MAX:
return nLastCoord:

II Pseudorandomly generate a rectangle or ellipse shape type.
ShpType RandomType()
{

}

II 0 to 1 (= shpRectangle to shpEllipse)
return (ShpType)(rand() % NUM_TYPES):

The c++ in the Shape1 Program
The main function in the Shapel program is in the file Shapel.cpp.
Shapel.cpp uses the #include directive to include:

• The file Shape.h, a header file that declares Shape as a struct, along
with an enumeration (named ShpType) of the allowed shape types
(rectangles and ellipses)

• Several headers from the C/C++ run-time library that enable pro
gram Shapel to use a number of run-time functions

The file Shapel.cpp includes several other headers indirectly-the
header Shape.h includes CRect.h, and CRect.h includes CPoint.h. In
other words, by including Shape.h, we include the headers it includes
and the headers that each of those included files includes. By this indi
rect method, Shapel.cpp also includes CRect.h and CPoint.h, as illus
trated in Figure 4-2.

133

Getting to Know Visual (++

Figure 4-2.

134

Shape1.cpp Shape.h ~I CRect.h ~EJ

8
a
B
EJ
B
8 f

, ~'-- j

(/(++ run-time library

Key

--. = includes

(E.g., Shape.h
includes CRect.h.)

The header file structure of program Shape1.

CPoint.h and CRect.h declare two other struets: Point and Reet. Point de
fines a geometric point-an object with an x coordinate and a y coordi
nate-in a simple coordinate system, shown in Figure 4-3. Reet defines a
rectangle in that same space. Reet is defined by the coordinates (points) of
its top left and bottom right corners. These coordinates are specified in
Reet as data members of type Point.

Struct Shape, in turn, defines in coordinate space the rectangle that
bounds the shape-a box within which the shape is drawn. Shape also
contains a ShpType data member set to the type of shape that the Shape
object represents: a rectangle or an ellipse.

Figure 4-3.

4: (++ (lasses

(0,0) +x

Origin

(20,20)
+y

(30,30)

(15,35):0--'-------: · . · .
· '

: - - - - '. , 0 - - • -.: (30, 45)

The coordinate system for program Shapel.

1Mj OTE There's a reason for putting the coordinate system's origin at the top
6i11 left and extending positive y values downward. You'll see why when we get

to Microsoft Windows coordinate systems in Chapter 6.

The structs in the Shape1 Program
All three classes in program Shapel are declared using the struct key
word. The Shape class is a simple c++ struct with two data members. The
other classes, Point and Rect, contain member functions as well as data
members. The ability of the c++ struct to contain functions is further evi
dence that a struct is really a class.

Constructors

The Point class declares two special functions known as constructors. A
constructor always has the s~me name as its class, and its purpose is to
initialize that class. A constructor can take parameters, but it can't return
a result.

135

Getting to Know Visual C++

136

The following constructor, from the Reet class, shows one other useful
thing about constructors:

Rect() { m_ptTopLeft = Pointe); m_ptBotRight = Point(10;10); };

Notice that the m_ptTopLejt and m_ptBotRight data members are set to
the following expressions:

Pointe)
Point(10,10)

II Equivalent to Point(0,0)

The above expressions are explicit calls to the Point class constructors
the first one takes no parameters and the second one takes two parame
ters. Each call constructs (creates) and initializes a Point object that we
then assign to one of the Reet data members. Without the Point construc
tor, we'd have to write the Reet constructor's code more like this:

Rect()
{

} ;

Point ptl, pt2;
ptl.x = 0; ptl.Y = 0;
pt2.x = 10; pt2.y = 10;
m_ptTopLeft = ptl;
m_ptBotRight = pt2;

Having the Point constructor greatly simplifies the cod~.

You won't always call constructors explicitly. They're more likely to be
called implicitly by way of variable declarations and initializations. But
in the example above, calling the constructor explicitly is very handy. I'll
have ,more to say about constructors later, in Chapter 5.

Function overloading

Like the Point class, the Reet class has two constructors. Reet also has two
ordinary member functions that are both named SetReet. You might al
ready have noticed that the Point class has two member functions with
the same name and that the Reet class has two pairs of member functions
with the same name. In C++, using the same function name with a differ
ent set of parameters is called function overloading.

It's often useful to have multiple versions of a function that take different
parameters; you'll see that a lot in MFC. Both class member functions and

4: (++ (lasses

global functions can be overloaded. The parameter lists must be different.
(It's not enough for just the return type to be different.) You can overload
a function as many times as you like, either in its class or in a subclass.

Defining member functions inline

Take a closer look at the member functions of classes Point and Reet. Fol
lowing the function prototype-the function's return type, name, and pa
rameter list-is additional code enclosed by curly braces { }. When a
member function is very short and simple, as these member functions are,
we often define the functions inline. This means that the compiler can, if
it chooses, replace each call to such a function, wherever and however
often such calls occur, with the code between the curly braces. This elimi
nates the time it takes to make a function call during execution of the pro
gram. However, an increase in the amount of memory needed usually
offsets that gain if the function is more than a couple of lines long.

Also, programs that use a class containing an inline member function
have to be recompiled if the inline function changes. That's normally not
the case with noninline functions. Use inline member functions only
when they're small and rather stable, but do use them. Keep in mind,
though, that inline functions are really just a hint to the compiler, which
it might ignore. It's a chance to optimize your code, but not a guarantee
that it will be optimized.

You can also use the inline keyword to declare global functions:

inline void MyGlobalFunction()
{

}

Check the Help Index for inline.

Run-Time Functions in the Shape1 Program
Program Shapel employs several functions from the C/C++ run-timeli
brary, so it needs to include the appropriate header file for each. Among
the run-time functions it uses are these:

• printf and sprintJ, from the file Stdio.h. Notice that I didn't in
clude Iostream.h for this program. Instead, I chose to use printJ,

137

Getting to Know Visual C++

138

familiar to 'generations of C programmers, and its relative sprint!
The printf function prints formatted output to the standard output
device (usually the console). Sometimes printfis easier to use than
couto The sprintffunction formats a string just as printf does, but
the result is placed in a character buffer (string) that you supply. It's
a nice way to build up complex output strings, especially when you
need them for uses other than printing-such as displaying a for
matted string in a dialog box. For format specifications that these
functions use, such as %s and %d, check the Help index for format
specification fields and double-click the subtopic print!

• assert, from the file Assert.h. This is a brief introduction to asser
tions, useful for error checking and debugging. Each time I call new
to create an object on the heap-a call that could fail if there isn't
enough memory available for the allocation-I check the pointer
that new returns,' using the assert function, like this:

assert(pShp != NULL);

I assert, or claim, that the expression in parentheses is true. If it
isn't, assert aborts the program with an error message. In the
Shapel program, the assertion is false (it "fails") if new fails and
returns a Null pointer.

• rand and srand, from the file Stdlib.h. I use these functions to
generate some random data in main. In the helper functions
RandomCoord and RandomType, I call the rand function to gener
ate a random (actually pseudorandom, or "sort of" random) integer
that I then convert to a random coordinate or a random shape type.
Before calling rand for the first time, I call srand to seed, or initial
ize, the random number generator.

• time, from the file Time.h. A good way to seed the random number
generator is to base the seed on the current time, obtained through
the run-time function time. Suitably cast to an unsigned int, the re
sult of time makes a fine parameter for the srand call. Each time we
seed the generator this way and then repeatedly call rand, we get a
different sequence of pseudorandom numbers. Since the seed is de
pendent on the time, the chances of getting the same seed, and thus
the same pseudorandom sequence are extremely low.

4: (++ (lasses

• strcpy, from the file String.h. In the DrawShape function, I show
two ways to prepare strings for output. The first is a call to sprint!,
discussed earlier. The second uses the strepy (string copy) function
to copy the characters of one string into another string.

• ubs, from the file Stdlib.h. (It's also in Math.h.) The absolute value
function returns a positive value, given either a positive or a nega
tive value. I use it to cancel out negative numbers because I want
only positive drawing coordinates.

Restricting random numbers to a range by using the modulus operator

The two randomizing functions I wrote for the Shapel program also illus
trate how to restrict the random numbers you get so they fall into a range
you want. The rand function generates a pseudorandom integer in the
range 0 to RAND_MAX (32,767). But suppose I want only random Os and
ls-random shpReetangles and shpEllipses. That's what I want, for ex
ample, in the RandomType function. To obtain only these two small num
bers, I use the modulus operator (%) like this:

rand() % NUM_TYPES

The modul~ls operator yields the remainder after dividing the first oper
and by the second. The expression above equals either 0 or 1, every time.
For instance, if the rand call generates the number 1001, dividing 1001 by
2 results in 500 with a remainder of 1. The modulus operator returns that
1, which is the value defined for shpEllipse in the ShpType enumeration.

The main Function in the Shape1 Program
In main, the Shapel program creates, uses, and destroys a number of
Shape objects. It also fills an array with pointers to Shape objects. The
main function demonstrates constructing Shape objects on the stack (the
shpl object) and on the heap (the object pointed to by pShp2 and the 20

objects pointed to by the elements of the array arShps). Note that I'm care
ful to call delete for all of those pointers to heap objects when I finish
with them (but I don't use the delete [] arShps call because arShps itself
is declared on the stack as a local variable). Also notice the use of Reet
and Point constructors.

139

Getting to Know Visual C++

140

The most interesting code in main is the for loop in which I fill an array
with 20 pointers to Shape objects:

II Create 20 random shapes in an array.
Point ptl. pt2;
Shape* arShps[20];
srand«unsigned)time(NULL));
for(int i = 0; i < 20; i++)
{

II Declare array of Shape pOinters
II Seed random number generator

}

II Create next shape.
Shape* pShp = new Shape; II Create Shape. get pointer to it
assert(pShp != NULL);
II Give it some coordinates.
ptl = Point(RandomCoord(). RandomCoord());
pt2 = Point(RandomCoord(). RandomCoord());
pShp->m_rectShape = Rect(ptl. pt2);
II Specify whether it's a rectangle or an ellipse.
PShp->m_typeShape = RandomType();
II Add it to the array.
arShps[i] = pShp; II Assign pointer to array element
II "Draw" the shape (as a string).
DrawShape(arShps[i]);

The key points in this code are the array declaration, the creation of each
Shape, and the addition to the array of the pointer to each new Shape:

Shape* arShps[20];

Shape* pShp = new Shape;
arShps[i] = pShp;

II Declare array of Shape pointers

II Create Shape. get pointer to it
II Assign pointer to array element

A new pointer value is assigned to pShp on each pass through the for
loop. But the loop stores a copy of the pointer in the array beforehand, so
all of the pointers remain valid and we don't lose any of the heap objects.

What's Wrong with the Shape1 Program?
What's wrong with program Shapel? It's not nearly object-oriented
enough! Our first inclination was to do things with Shape objects. Still
thinking like C or Pascal programmers, we wrote global functions that
draw a shape and move a shape. In fact, most of the code in the Shapel
program is in those global functions. The Shape class itself is just a little
struct with two data members.

4: (++ (lasses

What we really want is to make the Shape object do the work. To do that,
the functions need to be inside the Shape object. They need to become
the Shape's behavior-what it does (on command) rather than what we
do to it with some global function. So that's the plan for the next version,
program Shape2. We'll move as much functionality as we can inside the
Shape class.

While we're at it, we'll start using the class keyword. Although a struct is
a class, my preference is to use the struct keyword, without member func
tions, for things that are still C-like, and the class keyword for objects that
have behavior.

The Shape2 Program
Program Shape2 is more object-oriented than program Shapel. The big
gest change is to convert the two global functions, DrawShape and
MoveShape, to member functions. of the Shape class. These ·are the two
global functions in Shapel that require a parameter that is a pointer to
Shape. Their names are now Draw and Move-because they're inside the
Shape object, the" Shape" portion of their names is no longer needed.

The class now uses the class keyword instead of struct and has a new
name, CShape, based on an MFC class-naming convention. The C prefix
means "class." All MFC classes (including a few MFC structs) follow this
convention. A related convention governs naming class data members,
such as CShape's member m_rectShape. Class data members' names be
gin with m_ (for "member variable"). The one place I haven't used the m
convention is in the names of the x and y members of the Point class. It
seems handier to keep them very simple. In the same vein, I've renamed
classes Point and Rect to CPoint and CRect.

Program Shape2 shows the following C++ features:

• Full-fledged class member functions

• Member functions not defined inline

• Member function access to other class members

141

Getting to Know Visual C++

142

• The this pointer, used to point to an object from inside the object's
own code

• The static keyword, used here inside a function

• Access specifiers, for controlling user access to certain class
members

~ Tryitnow
Here's the code for program Shape2.As you did in Shape1, create the
Shape2 project, and add the following code files:

• CPoint.h, a header file declaring the CPoint class.

• CRect.h, a header file declaring the CRect class.

• Shape.h, a header file declaring the CShape class.

• Shape2.cpp. This file contains the main function and implementa
tions for all three of the header files.

CPoint~h

II CPoint.h

class CPoint
{

public:
II Constructors

CPoint(){ x = 0: Y = 0: }:
CPoint(int ix, int iy){ x = ix: y = iy: }:

II Attributes
int x;
int y;

};

CRect.h

I I CRect. h

#include "CPoint.h"

4: (++ (lasses

class CRect
{

public:
II Constructors

CRectO
{ I1LptTopLeft = CPo1ntO: I1LptBotR1ght = CPo1nt(10,10): 1:

CRect(CPo1nt tl, CPo1nt br)
{ I1LptTopLeft = tl: I1LptBotR1ght = br: 1:

II Attributes

1:

CPo1nt I1LptTopLeft:
CPo1nt I1LptBotR1ght:

void SetRect(CPo1nt tl, CPo1nt br)
{ I1LptTopLeft = tl: I1LptBotR1ght = br: 1:

void SetRect(1nt xl, 1nt yl, 1nt x2, 1nt y2)
{ I1LptTopLeft.x = xl: I1LptTopLeft.y = yl:

I1LptBotR1ght.x = x2: I1LptBotR1ght.y = y2: 1:

Shape.h

II Shape.h

11nclude "CRect.h"

II Constant for use in generating random types
const 1nt NUM_TYPES = 2:

class CShape
{

public:
II Possible shape types
enum ShpType II Nested enum
{

1:

shpRectangle,
shpEll1pse

II Constructors
CShape() { I1LrectShape =CRect(CPo1nt(), CPo1nt(10,10»:

I1LtypeShape = shpRectangle: 1:
(continued)

143

Getting to Know Visual C++

144

CShape(CRect r. ShpType t) { ~rectShape = r: ~typeShape = t: }:

// Attributes
void SetRect(CRect r) { ~rectShape = r: }:
void SetType(ShpType t) { ~typeShape = t: }:

CRect GetRect() const { return ~rectShape: }:
ShpType GetType() const { return ~typeShape: }:

// Operations
voi d DrawO:
void Move(CPoint p):

// Implementation
private:

CRect ~rectShape:
ShpType ~typeShape:

// Bounding rectangle of shape
// Rectangle. ellipse. and so on

}:

Shape2.cpp

II Shape2.cpp : Defines the entry paint for the console application.
II

/Finclude "Stdafx.h"
'include "Shape.h"
'include <Stdio.h>
'include <Assert.h>
'include <Stdlib.h>
'include <Time.h>
'include <String.h>

// For printf. sprintf
// For assert
// For rand. srand. abs
// For time
// For strcpy

// Global function prototypes
int RandomCoord():
CShape::ShpType RandomType():

const int COORD_MAX = 1000:

///////////////////////////////////

// main
int main(int argc, char* argv[])

{

4: (++ (lasses

II Create a shape on the stack.
CShape shp1:
shp1.SetRect(CRect(CPo1nt(20, 20), CPo1nt(50, 50»):
shp1.SetType(CShape::shpRectangle):
shp1.Draw():

II Move a shape in coordinate space.
shp1.Move(CPo1nt(25, 25»:
shp1.Draw():

II Create a shape on the heap.
CShape* pShp2 = new CShape

(CRect(CPo1nt(100, 100), CPo1nt(150, 150»,
CShape::shpEll1pse):

assert(pShp2 1= NULL):
pShp2-)Draw():

delete pShp2:

II Create 20 random shapes in an array
CPo1nt pt1, pt2:
CRect rect:
CShape* arShps[20]:
srand«uns1gned)t1me(NULL»:
for(1nt 1 = 0: 1 < 20: 1++)
{

}

CShape* pShp = new CShape():
assert(pShp 1= NULL);
pt1 = CPo1nt(RandomCoord(), RandomCoord(»:
pt2 = CPoint(RandomCoord(), RandomCoord(»;
rect = CRect(pt1, pt2);
pShp-)SetRect(rect);
pShp-)SetType(RandomType(»:
arShps[i] = pShp:
arShps[1]-)Draw():

II Move a shape.
arShps[0]-)Move(CPoint(20,20»:
arShps[0]-)Draw():

II Delete all shapes.
for(int j = 0: j < 20: j++)

(continued)

145

Getting to Know Visual C++

146

{

}
delete arShps[j];

return 0;
}

////////////////////////////////////

// CShape definitions

void CShape::Draw()
{

}

int xl = ffi-rectShape.ffi-ptTopLeft.x:
int yl = ffi-rectShape.ffi-ptTopLeft.y:
int x2 = ffi-rectShape.ffi-ptBotRight.x;
int y2 = ffi-rectShape.ffi-ptBotRight.y;

// Determine shape type. represented as a string
char szType[20];
switch(ffi-typeShape)
{

case shpRectangle: strcpy(szType. "rectangle");
break;

case shpEllipse: sprintf(szType. "%s". "ellipse");
break;

default: strcpy(szType. "errorShapeType");
};

// "Draw" shape as a string.
// Example: "rectangle at (34. 76. 987. 800)"
printf("%s at (%d.%d.%d.%d)\n". szType. xl, yl. x2. y2);

// Shift shape to new position p.
void CShape::Move(CPoint p /* New ffi-ptTopLeft */)
{

}

int width = abs(ffi-rectShape.ffi-ptBotRight.x -
ffi-rectShape.ffi-ptTopLeft.x);

int height = abs(ffi-rectShape.ffi-ptBotRight.y -
ffi-rectShape.ffi-ptTopLeft.y);

ffi-rectShape.ffi-ptTopLeft = p;
ffi-rectShape.ffi-ptBotRight = CPoint(p.x + width. p.y + height);

4: (++ (lasses

////////////////////////////////////
// Global Helper functions

// Generate a random positive coordinate
// within a COORD_MAX by COORD_MAX drawing area.
int RandomCoord()
{

}

// Base new coordinate loosely on last coordinate.
static int nLastCoord; // Automatically initialized to 0.

// theri altered on each call.

// Get a pseudorandom number between 0 and RAND_MAX (32.767).
int nNextCoord = rand();
int nFudge = rand() % 100; // Generate a fudge factor: 0 to 99.
// Use (larger of new number and old number) + fudge factor.
// Restrict the number to a value between
// 0 and COORD_MAX - 1 (inclusive).
nLastCoord = abs«nNextCoord > nLastCoord 1 nNextCoord

(nLastCoord + nFudge» % COORD_MAX);
return nLastCoord;

// Pseudorandomly generate a rectangle or ellipse shape type
CShape::ShpType RandomType()
{

}

// 0 to 1 (= shpRectangle to shpEllipse)
return (CShape::ShpType)(rand() % NUM_TYPES);

The C++ in the Shape2 Program
Program Shape2 adds several more serious class member functions. These
do more than just set or get the value of a data member. I'll cover the es
sentials of member functions, introduce the mysterious this pointer, and
explain access specifiers-how to control access to class members using
the public and private keywords. This still isn't the definitive Shape pro
gram, but it's a big step closer.

Member functions

Class member functions can be defined inline or not. Program Shape2 in
cludes examples of both. To call a member function, use member selec
tion syntax, either a dot for an object allocated on the stack or the

147

Getting to Know Visual C++

148

pointer member access operator (-» for an object allocated on the heap.
This code, from the main function, illustrates the member selection syntax:

II Create a shape on the stack.
CShape shp1;
shp1.SetRect(CRect(CPoint(20, 20), CPoint(50, 50)));
shp1.SetType(CShape::shpRectangle);
shp1.0raw();

II Create a shape on the heap.
CShape* pShp2 = new CShape

(CRect(CPoint(100, 100), CPoint(150, 150)),
·CShape::shpEllipse);

assert(pShp2 != NULL);
pShp2->Oraw();

You can also use the pointer member access operator to access an object
on the stack through a pointer to the stack object:

II Create a shape on the stack
CShape shp3;
CShape* pShp4 = &shp3;
pShp4->SetType(CShape::shpEllipse);

II Shape on stack
II Pointer to shape
II Use -> to access shape

A member function is inside its class. As. such, it has full access to all
data members inside that class. This is true even if some of those mem
bers are declared as private or protected-we'll get to access specifiers
shortly. (The only time a member function doesn't have this access is
when the function is declared static. I'll say more about the static key
word later.) If you look in Shape2.cpp at the definitions for CShape::Draw
and CShape::Move, you'll see the following:

• The function name is qualified, or preceded by the class scope reso
lution operator, as in CShape::. Because the function definition is
textually separate from its prototype within the CShape class decla
ration (in Shape.h), you·must qualify the function name to tie the
definition to the prototype. Even though the definition and prototype
are textually separate, the definition lies within the class's scope. (I'll
say more about class scope in Chapter 5, but for now, all you need
to know is that more than one class can include a member function
named Draw, for example.) Forgetting to qualify member function

4: (++ (lasses

definitions is a common error to watch out for. Here's how the
member function declarations frOin Shape.h, are laid out:

class CShape
{

void Draw();
void Move(CPoint p);

} ;

And here's how a member function definition, from Shape2.cpp, is
laid out:

void CShape::Draw()
{

}

• Because the member function definitions are within the scope of
the CShape class, they can use the class's data member and member
function names freely without any qualification.

• Because the ShpType enum is declared within the CShape class,
CShape::Drawand CShape::Move can also use ShpType member
names, such as shpRectangle and shpEllipse, without having to
qualify them. By comparison, a global helper function, such as
RandomType, would have to qualify ShpType member names with
the class scope resolution operator in order to access them.

The this pointer

Although program Shape2 doesn't explicitly use it, now is a good time to
explain the this keyword. Inside a class member function (that isn't de
clared static), you can use the keyword this as a pointerto the function's
own object. For example, if you call CShape::Draw for a CShape object
named shpl, inside the Draw function this would point to the shpl ob
ject. Within Draw, you could access a CShape data member through the
this pointer, like this:

this-)m_rectShape = rect;

149

Getting to Know Visual C++

Figure 4-4.

150

However, it's unnecessary (and unconventional) to use this notation. All
you need is:

m_rectShape = rect; II Implies this-)m_rectShape = rect;

The this pointer does have its explicit uses, though. It is useful any time
you need the address of the current object.

When might you need that address? Here's an example. You can use this
to facilitate communication between two objects. Suppose object Client
needs to allow object Accountant to access Client's class members. One
way to do this (but not the easiest-see the friend keyword, described in
"The Friend Program" later in this chapter) is for Accountant to maintain
a pointer to Client. But how does Accountant get a pointer to Client? Ob
ject Client initially calls a member function of object Accountant in order
to authorize access by passing Accountant a pointer that points back to
Client. Then Accountant can use that pointer to access members of Client,
thus setting up two-way communication between the objects. Figure 4-4

shows the results.

Client object Accountant object

Clientcalls Accountant member function

Accountant::SetClient(this)
and passes a pointer to the Client object.

SetClient(* m_pC)
Accountant accesses Client member

DoAudit()
functions using the pointer that was passed. m_pC -> DoAudit() ...

.....

Objects that point to each other.

Here's how we might do this. Accountant's SetClient member function
might look like this:

void Accountant::SetClient(Client* pC)
{

II Assign Client pointer to Accountant data member.

}

In our example, the Client object creates the Accountant object, and as it
does so, stores a pointer to the Accountant in a Client data member (name

4: (++ (lasses

it m_pA). Next, the Client object uses that pointer to initialize the new
Accountant object by calling Accountant's SetClient member function:

m_pA->SetClient(this); II Pass Client pointer to Accountant object.

Then, in a member function of Accountant, you might see code like the
following, which uses Accountant's pointer to Client (name it m_pC) to
call Client's DoAudit member function:

m_pC->DoAudit(); II Call Client member function
II through Client pointer.

To summarize: First, Client calls Accountant::SetClient, passing a pointer
to the Client object itself in the form of the this keyword. Then, within
SetClient, Accountant stores the pointer. The Accountant object now con
tains a pointer to the Client object, and can use this pointer to access
Client's public member functions.

The this keyword isn't available outside class member functions, and it's
not available inside a static member function.

Access specifiers

Take a look at the CShape class, in the Shape.h file. Near the beginning of
the class declaration you see the keyword public. Later, just before the
data members are declared, you see the keyword private. The basic struc
ture of the class looks like this:

class CShape
{

public:
II Public members

private:
II Private members

} ;

The public and private keywords are access specifiers. The public speci
fier near the beginning tells us "the next members are public." Users of
the class can freely access the public members, as if they have the same
access privileges that one would have from inside the class member func
tions. All members of the class continue to be public until the next access

151

Getting to Know Visual C++

152

specifier-the private specifier here. That keyword means "the following
members are private." Users of the class have no access to these mem
bers, although one would still have access from inside the class member
functions. The private declaration remains in effect until either another ac
cess specifier is encountered or the end of the class declaration is reached.

You can change access specifiers as many times as you like. For example,
you might want two private sections, one up front and one near the end:

class CMyClass
{

private:

public:

private:

} ;

Default access specifiers

By default, the members of a class declared with the class keyword are
private. Even if there's no explicit private keyword at the beginning of the
class declaration, the declaration behaves as if there were.

II What you see.
class Name
{

} ;

II No access specifier here.
II member functions

II What you actually get.
class Name
{

private: II It's as if this were here.
II member functions

} ;

That's why you'll so often see the public specifier at the beginning of a
class declaration. You have to be explicit if you want to make members
public. In effect, when you add the public keyword, you're revealing class
members that would otherwise be hidden away in private.

4: (++ (lasses

The story is different if you declare your class with the struct keyword. In
that case, the class members are public by default. If you want to hide any
of them, you must explicitly supply the private keyword. One reason for
using the class keyword when we want a class to really act as a class and
not as "just a struct," is that the class keyword comes with the assump
tion that you'll want at least some members to be private. That's not a bad
default assumption.

Information hiding

Why would we declare the CShape data members private? Why limit out
side access? There's a valuable principle of software engineering that
says: Anything that outsiders don't have to know about should be hidden.
The idea is to make the class a black box, giving class users a specific
public interface through which they are to conduct all of their interac
tions with objects of the class. Implementation details are to be hidden
declared private. Of course, people with access to the source code can
simply look at the class and see what's being hidden, so what exactly do
we mean? Hidden means "access restricted." The private specifier en
forces our desire that the members it shields not be accessible to class
users. The compiler will not let users access them directly. However, if
users need some sort of indirect access, and they often do, it's up to the
class designer to provide public access functions. These are functions like
the ones in CShape that begin with "Set" or "Get." They let you access
the hidden implementation in a controlled way.

There are at least two good reasons for such strict control:

1. Suppose I need to do more than just assign a parameter to a private
data member. Let's say you call a member function, passing an int
value to be stored in the class. But under the hood, I need to create
an object of some sort and pass your int value to the new object. In
other words, there can be extra operations to perform behind the
scenes when you call a simple member function. As another ex
ample, I might need to increment or decrement a counter when you
call a member function. Performing these kinds of extra operations
by using private data members within the class ensures that those

153

Getting to Know Visual C++

154

things will happen. I probably can't count on users to remember to
do the extras, or to do them in the right sequence, but with defen
sive coding, I can enforce my wishes.

2. If my class implementation is hidden, I can freely change it to some
other implementation later, with as little impact on your program
(that uses my class) as possible. As long as I don't change the pub
lic interface to the class-the access functions-the most you'll
have to do is rebuild your code with my revised class. And you'll
only have to do that if you want to take advantage of my new and
improved implementation. For example, in its first version, my
class might store data in an ordinary file. Later, I might decide to
implement the class to store the data in a database instead. If I've
hidden my implementation, that change will be transparent to you
and other users of my class.

Should the data members always be private?

Hiding data members and some member functions makes sense in certain
situations, but it isn't an absolute rule. If you look at the CPoint and CRect
classes, you'll see that I haven't used the private specifier in them. Little
utility classes like those should probably be as open and simple as pos
sible. But some classes should hide their data. For example, a handle is
an object through which you can access a chunk of private data indi
rectly-to access the data at all, you must obtain the handle and then use
public access functions to work with the data the handle is for. If you
don't want anyone to be able to change or use the value of the handle,
you declare it as private. (The handle itself, as well as the object it con
nects you to, is private.) This is a common scenario, particularly in Win
dows programming.

Most classes in the MFC library are also quite open, with no private sec
tions. The library's designers were wise enough to know they couldn't
predict all possible ways programmers might use their classes, so the
designers avoided things that might hinder future innovative users. If you
eventually write classes that extend the MFC library, you'll want to adopt
a similar attitude.

4: (++ (lasses

MFC source code commenting conventions

You might have noticed special comments in the classes we've looked at
so far-comments like these:

II Constructors
II Attributes
II Operations
II Implementation

The comments follow an MFC convention that makes MFC source code
files easier to read and understand. Most of the comments are used to
group similar class members, such as constructors, in one easy-to-find
place. The Implementation comment is the most interesting. It tells read
ers that "everything from here to the end of the class is part of the
implementation, it isn't publicly documented, and you can't count on it
remaining the same in the next version of the class." Typically, MFC leaves
many of its class implementations open in the sense that they are public
rather than private. So you can use members declared after the II Imple
mentation line. But you do so at your own risk-:-your code may break if
you rebuild with the next version of the class. For more information
about MFC source code conventions, and about using the MFC source
code files, see the Appendix, "The MFC Source Code." I'll be using MFC
commenting and other MFC conventions throughout the book.

I'll have more to say about access specifiers, including a third specifier,
protected, after we run through the Shape3 program in Chapter 5.

Static Variables
The static keyword reduces the need for global variables. Using static,
you can declare a class data member that has the effect of agIo bal vari
able (it retains its value) but is still local to the class. I'll illustrate this use
of static in the Shape3 program in Chapter 5. You can also declare a local
variable inside a function as static. The Shape2 program illustrates this in
its global helper function RandomCoord (in the section "Shape2.cpp" ear
lier in this chapter), which generates the coordinates that define the
CPoints and CRects.

155

Getting to Know Visual C++

156

Let's take a closer look at the problem I was trying to solve in the
RandomCoord function. I wanted to base the next random coordinate
on the previous random coordinate (if any). Thus I had to store the pre
vious coordinate in a place where RandomCoord could access it. If
RandomCoord were a class member function, I could store the previous
coordinate in a class data member. But since RandomCoord is a global
function, the best solution might appear to be a global variable (with
file scope).

An even better solution is to use a static local variable inside Random
Coord. The first time RandomCoord is called, it finds the variable,
nLastCoord, already initialized to zero-just what we want. (C++ auto
matically initializes static local variables, l;>ut not their nonstatic counter
parts, to the appropriate form of zero: a for an int, say, or 0.0 for a double,
or Null for a pointer variable.)

During the first call to RandomCoord, the function generates a new ran
dom coordinate and uses the larger of nLastCoord and nNextCoord. (I

wanted next coordinates to be larger than previous ones.) The function
then stores the resulting value in nLastCoord, ready to be used the next
time the function is called.

Because nLastCoord is declared static, its value is retained between func
tion calls. That's what makes the variable similar to a global variable. This
property of static local variables is valuable any time you need this kind
of permanence.

Whatfs Still Wrong with the Shape2 Program?
We'v~ made some progress in our shape class design. The operations we
can perform on a CShape object are now part of the class itself. We have
eliminated the global functions.

But CShape is still a bit awkward. In particular, the Draw member func
tion still doesn't know what kind of object it's supposed to draw. It has to
use a switch statement to find out what shape to draw. Ideally, we'd like
CShape objects to contain that knowledge without the switch statement.
They should know what they are without having to test their own identity.

4: (++ (lasses

In Chapter 5, the Shape3 program will take the next step-and, in the pro
cess, introduce class derivation, class hierarchies, inheritance, overriding,
and polymorphism: all the ingredients of real OOP.

The Friend Program
Sometimes you'll want to skirt C++ access specifiers and get at hidden
information from outside a class object. Any time two classes, or a class
and a global function, are highly interdependent, you can use the friend
specifier to give an outsider complete access to the innards of a class,
including its private members. Think of it this way: you can use access
specifiers to restrict outside access to your class's members, but you can
use the friend mechanism to loosen the restrictions for selected outsiders.
C++ taketh away, but it also giveth back. The keyword friend should not
be overused-it's poor programming practice and sometimes dangerous to
open up your class to too many outsiders-but, used judiciously, it can
make life simpler.

The following are among the items that can be friends of a class (call it
. class A):

• A global function.

• A member function of another class (call it class B). Just the one
member function has access to all of A.

• A whole class (B). All of class B has access to all of class A.

A friend is granted access to even the private members of the class that
declares it a friend. Note that it's the class that bestows friendship; an out
side function or class can't seize friendship.

Here is a brief, albeit not very realistic, example of a class containing
friend declarations:

class A
{

int a;
friend void AGlobalFunction(int b, int c);
friend char* B::AMemberFunction(int d);

(continued)

157

Getting to Know Visual C++

158

friend class C;

} ;

The example shows how class A can declare each kind of item as a friend.
Each function or class that class A singles out as a friend is grante~ the
"key to the city." The Friend program in the next section provides a simple
example in which a class is declared a friend of another class.

~ Tryitnow
Create the Friend program:

II Friend.cpp : Defines the entry point for the console application.
II

iii n c 1 u de" S t d a f x . h"
#include <iostream.h>

class A
{

friend class B:

public:
II Constructor

II Can declare friends under any
II access specifier: here it
II happens to be private

A(int n, char* psz) { m-int = n: m-psz = psz: }:

private:

}:

int m-int:
char* m-psz:

class B
{

II friend of A

public:
II Constructor
B(A* pA) { m-pA = pA: }:

II Functions allowed to access A's private members
int GetAInt() { return m-pA->m-int: }:
char* GetAStr() { return m-pA->m-psz: }:

private:

4: C++ Classes

}:

II Pointer to A. declared private so users of B
II must use GetAlnt or GetAStr to access A
A* IILpA:

int main(int argc. char* argv[])
{

}

II Construct an A object
A a(4. "This is an A object."):

II Construct a B object initialized
II with a pointer to the A object
B bela):

II Demonstrate access to private member of A via a B object
cout « b.GetAlnt() «" "« b.GetAStr() « endl:

return 0;

In main, we create an A object and a B object. In constructing the B ob
ject, we pass it a pointer to the A object so it can communicate with the
A object. Then we show that the member functions of B, GetAlnt, and
GetAStr can access the private members of A. That's only possible be
cause of the friend declaration.

I
OTE Friendship is one-way. B is a friend of A and has access to all of A,
including its private members, but A is not a friend of B and has access to
only its public members.

Try It Yourself

As in previous chapters, I urge you to make the following effort. Type the
example programs we've just walked through; and then build and run
them. There is no substitute for hands-on experience.

Here are a few more things to try.

1. Add a constructor to the CRect class.

In the Shape2 program, CRect has two constructors, one that takes no pa
rameters, and one that takes two CPoint parameters. Add a third construc
tor that takes four int parameters. The first two ints specify the top left

159

Getting to Know Visual C++

160

corner, and the last two specify the bottom right corner. Test your new
constructor. Although no solution is provided, there are several examples
of code with multiple constructors in the companion code.

2. Study the CIC ++ run-time library.

Review the introduction to the run-time library in Chapter 2. That de
scription covers how to locate topics in the run-time library. The more
familiar you become with the library'S contents, the less you'll need to
"reinvent the wheel."

What's Next?
In Chapter 5, we'll finish up with C++ and object-oriented programming
by covering class derivation, class hierarchies, inheritance, and a few top
ics we haven't found a place for yet.

Chapter

Object-Oriented Programming
We got a good start on c++ classes in the previous chapter with Shapel
and Shape2, but there's more to say. This chapter presents several pro
grams, including Shape3, that finish up our exploration of classes. Then
we move to higher ground for an overview of object-oriented program
ming concepts and terminology.

Program Shape3 introduces the following c++ features:

• Deriving one class from another

• Inheritance

• Overriding and virtual functions

• Polymorphism-the ability to treat a base class and its derived
classes as one

• Abstract classes and class hierarchies

• The rest of the story on access specifiers

• Class destructors and static class members

• More about constructors and destructors, including default con
structors, copy constructors, member initialization lists, and opera
tor overloading

• Class scope

161

Getting to Know Visual C++

162

The Shape3 Program
What if each kind of shape had its own class? Then we could code that
class to "just know" what kind of shape it was. Shape3 shows you how
that's done. We revisit the CShape design and turn the class into a base
class, from which we derive two subclasses, CShpRectangle and
CShpEllipse.

This strategy-using a separate class for each shape type-works well as
long as there aren't too many types, and for our purposes it illustrates a
lot of c++. If there were 100 shape types, or even 30, however, you'd
probably prefer an approach more like that in program Shape2, in which
one class represents all shapes, and the class contains a data member that
indicates the shape type.

Here's program Shape3. I don't show the CPoint and CRect classes, which
haven't changed since program Shape2. You'll find their code listings in
Chapter 4 if you need to refer back to them.

~ Tryitnow
Create a Win32 Console Application called Shape3, containing the fol
lowing three files (and don't forget to go get CRect and CPoint). This exer
cise is long, but persevere-C++ is just starting to get good!

• Shape.h, a header file declaring the CShape classes.

• Shape.cpp, an implementation file for the CShape classes.

• Shape3.cpp, the file that contains the main function.'

Shape.h

////////////////////////////////////
// Shape.h

#include "crect.h"

// Constant for use in generating random types
const int HUM_TYPES = 3:

// Abstract base class: can't construct CShape objects,
// only objects of its derived classes

5: Object-Oriented Programming

class CShape
{

public:
II Possible shape types
enum ShpType

{

};

shpRectangle,
shpEll ipse

// Constructors

// Nested enum: qualify outside
// mentions with CShape::

CShape() { ~rectShape = CRect(CPoint(0,0), CPoint(10,10»;
~typeShape = shpRectangle; }:

// Attributes
void SetRect(CRect r) { ~rectShape = r; };

CRect GetRect() const { return ~rectShape; }:
ShpType GetType() const { return ~typeShape: };
// No SetType: type now determined by subclass

virtual void Draw() = 0:
void Move(CPoint p);

// Class is abstract: must override

// Implementation
protected:

CRect ~rectShape:
ShpType ~typeShape;

public:
virtual -CShape():

};

// Bounding rectangle of shape
// Rectangle, ellipse, ...

/1 Concrete subclass of abstract base class CShape
class CShpRectangle : public CShape
{
public:
// Constructors: initialize class, including instance counter

CShpRectangle() { ~rectShape = CRect(CPoint(0,0), CPoint(10,10»:
~typeShape = shpRectangle: nCountShpRects++: }:

CShpRectangle(CRect r)
{ ~rectShape = r: ~typeShape = shpRectangle:

nCountShpRects++: }:
(continued)

163

Getting to Know Visual C++

164

II Attributes inherited (SetType, GetRect, GetType)

II Operations (Move is inherited)

voi d Draw(); II Overrides CShape::Draw

II Implementation
public:

};

II The static data member must be public so we can access
II it from outside objects of the class. The destructor
II must be public so we can explicitly call delete on objects
II of the class from outside objects of the class.

II Data members inherited
II Add
static int nCountShpRects; II Initialized at file scope

II in shape3.cpp

-CShpRectangle(); 1/ Destructor: virtual because base
II class destructor is

II Concrete subclass of abstract base class CShape
class CShpEllipse : public CShape
{

public:
II Constructors

CShpEllipse() { ~rectShape = CRect(CPoint(0,0), CPoint(10,10»;
~typeShape = shpEllipse; nCountShpElls++; };

CShpEllipse(CRect r)
{ mLrectShape = r: mLtypeShape = shpEllipse; nCountShpElls++; };

II Attributes inherited

II Operations (Move is inherited)

void Draw(); II Overrides CShape::Draw

II Implementation
public:

};

1/ Data members inherited
II Add
static int nCountShpElls; II Initialized to zero automatically

-CShpEllipse(); II Destructor: virtual because base
II class destructor is

5: Object-Oriented Programming

Shape.cpp

// Shape.cpp

'include <stdafx.h>
'include "Shape.h"
'include <stdio.h>
'include <stdlib.h>

// For printf
// For abs

////////////////////////////////////
// CShape definitions

// Shift shape to new position.
void CShape::Move(CPoint p /* New topLeft */)
{

// Get shape's size.
int width = abs(~rectShape.botRight.x - ~rectShape.topLeft.x):

int height = abs(~rectShape.botRight.y - ~rectShape.topLeft.y):

}

// Set its new coordinates (move it).
~rectShape.topLeft = p:
~rectShape.botRight = CPoint(p.x + width, p.y + height):

// Empty destructor
CShape::-CShape()
{
}

////////////////////////////////
// CShpRectangle definitions

// Draw overrides base class version.
void CShpRectangle::Draw()
{

// Get coordinates in shortened forms for ease of use in printf.
int xl = ~rectShape.topLeft.x:

}

int yl = ~rectShape.topLeft.y:
int.x2 = ~rectShape.botRight.x:
inty2 = ~rectShape.botRight.y:

// "Draw" the shape as a string like
// "rectangle at (34, 76, 987, 800)".
printf("rectangle at (%d,%d,%d,%d)\n", xl, yl, x2, y2):

(continued)

165

Getting to Know Visual C++

166

II Virtual destructor: removes current rectangle object
II from total of such objects.
CShpRectangle::-CShpRectangle()
{

nCountShpRects--: II Decrement: we're destroying one.
}

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
II CShpEllipse definitions
void CShpEllipse::Draw()
{

int xl = ~rectShape.topLeft.x:
int yl = ~rectShape.topLeft.y;
int x2 = ~rectShape.botRight.x:
int y2 = ~rectShape.botRight.y:

II "Draw" the shape as a string like
II "ellipse at (34, 76, 987, 800)"
printf("ellipse at (%d,%d,%d,%d)\n", xl, yl, x2, y2):

}

II Virtual destructor: removes current ellipse object from
II total of such objects.
CShpEllipse::-CShpEllipse()
{

nCountShpElls--: II Decrement: we're destroying one.
}

Shape3.cpp

II Shape3.cpp Defines the entry point for the console application.
II

#include <stdafx.h>
'include "Shape.h"
'include <stdio.h>
'include <assert.h>
'include <stdlib.h>
'include <time.h>

II For printf
II For assert
II For rand, srand, abs
II For time

II Global function prototypes

int RandomCoord():
CShape::ShpType RandomType():

5: Object-Oriented Programming

II Initialize static class members at file scope.
int CShpRectangle::nCountShpRects = 0:
int CShpEllipse::nCountShpElls = 0:

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
II main
int main(int argc, char* argv[])
{

II Create a rectangle shape on the stack.
CShpRectangle shp1:
shp1.SetRect(CRect(CPoint(20, 20), CPoint(50, 50»):
shp1.Draw():

II Move a shape in coordinate space.
shp1.Move(CPoint(25, 25»:
shpl. Draw():

II Create an ellipse shape on the heap.
CShape* pShp2 = new CShpEllipse(CRect(CPoint(100, 100),

CPoint(150, 150»):
assert(pShp2 != NULL):
pShp2-)Draw():

delete pShp2:

II Create 10 random shapes in an array.
CPoint pt1, pt2: II Declare these outside

II the for loop!
CRect rect:
CShape* arShps[10]: II Array of CShape pOinters
'srand«unsigned)time(NULL»:
for(int i = 0: i < 10: i++)
{

/1 Prepare a randomly located bounding rectangle.
pt1 = CPoint(RandomCoord(), RandomCoord(»:
pt2 = CPoint(RandomCoord(), RandomCoord(»:
rect = CRect(pt1, pt2):

II Generate a random shape type.
if(CShape::shpRectangle == RandomType(»
{

II Construct a rectangle shape and add to array.
CShpRectangle* pShp = new CShpRectangle(rect):
assert(pShp != NULL): II Must check when

II pShp is in scope.
arShps[i] = pShp: II Must add to array when pShp is

II in scope.
(continued)

167

Getting to Know Visual C++

168

}

}

}

else
{

" Print new total of objects of this type.
printf("Number of rectangles: %d\n".

CShpRectangle::nCountShpRects);

" Construct an ellipse shape and add to array.
CShpEllipse* pShp = new CShpEllipse(rect);
assert(pShp != NULL);
arShps[i] = pShp;
" Print new total of objects of this type.
printf("Number of ellipses: %d\n".

CShpEllipse::nCountShpElls);
}

arShps[i]-)Draw(); " Polymorphic function call

" Move a shape.
arShps[0]-)Move(CPoint(20.20»;
arShps[0]-)Draw();

" Call inherited function.
" Polymorphic function call

" Delete all shapes.
for(int j = 0; j < 10; j++)
{

delete arShps[j]; " Invoke virtual destructors.
}

return 0;

"""""""""""""""""" " Global Helper functions

" Generate a random positive coordinate within a 1000-by
" 1000-unit drawing area.
int RandomCoord()
{

" Base new coordinate loosely on last coordinate.
static int nLastCoord; " Automatically initialized to 0.

" then altered on each call

'I Get a pseudorandom number between 0 and RAND_MAX (=32.767).
int nNextCoord = rand();
int nFudge = rand() % 100; "Generate a fudge factor between

" 0 and 99.
" Use the larger of new number and old number (+ fudge factor).
" Constrain the number to a value between 0 and 999 (inclusive).

5: Object-Oriented Programming

}

nLastCoord = abs«nNextCoord > nLastCoord ? nNextCoord
(nLastCoord + nFudge» % 1000):

return nLastCoord:

II Pseudorandomly generate a rectangle or ellipse shape type.
CShape::ShpType RandomType()
{

}

II 0 to 1 (= shpRectangle to shpEllipse)
return (CShape::ShpType)(rand() % NUM_TYPES):

The c++ in the Shape3 Program
The most important element of program Shape3 is the derivation of two
new subclasses from class CShape. This program introduces most of the
essential concepts of object-oriented programming (OOP). I'll also show
you how to use class destructors as well as the constructors you saw in
Chapter 4, and I'll introduce a static class data member.

ll'<?lIOTE In program Shape3, I've separated the function definitions for
Girl CShape and its derived classes (in the file Shape.cpp) from the main func

tion (in the file Shape3.cpp). This will make it easier to reuse the classes in
other CShape-based programs.

Deriving One Class from Another
In C++, you can create a new class based on an existing one. This is
called deriving a class, or subclassing. (See the sidebar titled "OOP Termi
nology" on page 202.) The original class is called the base class, or ances
tor. The new class is called the derived class, or subclass.

A class can actually be derived from multiple base classes. However, this
concept introduces the thorny subject of multiple inheritance, which is
material too advanced to cover in this book. Check the Help index for
multiple inheritance for more information.

Inheritance

When you derive class B from class A, B is said to inherit the characteris
tics of A. Here's what that means, given the schematic code on the fol
lowing page, which also illustrates how to derive one class from another.

169

Getting to Know Visual C++

170

class A
{

public:
int m_nMemberl;
void MemberFunctionl();

} ;

class B public A
{

public:
int m_nMember2;
void MemberFunction2();

} ;

Even though it doesn't name them, class B also has an int data member
called m_nMemberl and a member function called MemberFunctionl, in
addition to the new data member and member function that B does name.
B inherits these from A, and you can use them freely with B objects.
Does A have a data member m_nMember2 or a member function
MemberFunction2? No. The inheritance goes only one way, from the base
class to the derived class.

The derived class can add new data members and member functions, as
class B does. In this way, class B is said to extend class A. Can a derived
class like B get rid of members it inherits but doesn't want? No. It's stuck
with them. (In some cases you might be able to override unwanted mem
ber functions and leave them empty, or have them issue a warning or gen
erate a guaranteed run-time error if called. Also see the discussion of the
is-a and has-a relationships later in this chapter, "/s-a vs. Has-a.")

When you're working with a derived class, remember that it inherits from
its base class, from the base class of the base class (if any), and so on, all
the way to the root of the class hierarchy. When you look at a list of a
class's members, you often need to follow the chain of ancestors back up
the hierarchy to see everything that "belongs" to the class you started
with. In the Microsoft Foundation Class Library 6.0 (MFC), for example,
the documentation for a class doesn't list inherited members. But it does
list the base class, with a hyperlink that you can follow to the documenta
tion for that class. Always remember to look up the hierarchy.

5: Object-Oriented Programming

What good are derivation and inheritance?

What's the value of derivation and inheritance? First, they allow you to
customize a data type. With class derivation you can extend such a type,
for example, to make it more versatile, and still get plenty of mileage from
the base class through inheritance of its members.

Second, t.he derivation and inheritance mechanism is what drives class
libraries like MFC. To create a new MFC application, as you'll see in
Chapters 7 and 8, you derive new classes from several of MFC's library
classes. Your derived version of MFC's CWinApp class, for instance, cus
tomizes that class's basic functionality to suit the needs of your particular
application.

Beyond extending a base class by adding new members to a derived class,
you can also modify what the base class does by overriding some of its
member functions.

Overriding member functions

A derived class can override member functions (but not data or other
members) of its base class. The derived class provides a new implementa
tion of a function with the same prototype. Consider this schematic code:

class A
{

} ;

virtual void MemFuncl(int i, float f);
void MemFunc2();

class B : public A
{

II B overrides this.
II B inherits this.

void MemFuncl(int i, float f); II Override
} ;

If class B supplies a prototype that duplicates one from its base class A

(except for the virtual keyword, which is optional in B), the derived ver
sion overrides the base class version-at least when you're using an ob
ject of type B. If you're using an object of type A and call MemFuncl, the
A version executes.

171

Getting to Know Visual C++

172

How is this different from function overloading? An overloaded function
must have a different prototype. An overridden member function must
have the same prototype. Overloaded member functions let you have sev
eral functions of the same name that take different parameters, for con
venience. Overridden member functions in a derived class substitute
different behavior for that defined in the base class versions of the
functions. Thus an ellipse object draws itself differently from a rect
angle object.

Virtual functions

You can override any member function, but the behavior of overridden
nonvirtual functions and overridden virtual functions is different-and
can lead to confusion and errors if you aren't careful. The Virtual program
shown here illustrates the difference.

~ Tryitnow
Create the Virtual program.

II Virtual.cpp: Defines the entry point for the console application.
II

Iii n c 1 u de" s t d a f x • h"
linclude <iostream.h>

class Base
{

public:
void Dol() { cout « "Base::Dol\n": }:
virtual void Do2() { cout « "Base::Do2\n": }:

}:

class Derived public Base
{

public:

}:

II Override nonvirtual function from Base.
II Call is resolved at compile time.
void Dol() { cout « "Derived::Do2\n": }:

II Override virtual function from Base.
II Call is resolved at run time.
void Do2() { cout « "Derived::Do2\n": };

5: Object-Oriented Programming

int main(int argc. char* argv[])
{

}

Derived d:
Base* pBase;

II Point to a Derived object thro~gh a Base pointer.
pBase = &d;

cout « "Use derived object to call Dol and D02"
« "through a pointer to Base.\n";

pBase-)Do1(); II Calls Base::Do1, no polymorphism.
II Call based on pOinter type.

pBase-)D02(); II Calls Derived::D02 polymorphically.

cout« endl;

cout « "Call Dol
d.Do1():

d.D02() ;

return 0;

II Call based on underlying type.

and D02 through a Derived object.\n":
II Calls Derived::Do1, no polymorphism.
II Call based on pointer type.
II Calls Derived::D02 polymorphically.
II Call based on underlying type.

The Virtual program shows that you can override nonvirtual functions as
well as virtual ones, but the results might not be what you expect. The
call to a virtual override is resolved at run time, so the actual type of the
object determines which version of the function is called-the base class
version or the derived class version. The call to a nonvirtual override is
instead resolve~ at compile time, so the type of the pointer, not the type
of the underlying object, determines which version is called. In Program
Virtual, calling Dol through a pointer to Base calls Base::Dol, but calling
Dol through a Derived object calls Derived::Dol.

You'll usually declare base class functions with the virtual keyword if
you think derived classes are likely to override them. Whether to set up
the class for overriding is really a design decision. Derived classes that
override a virtual function provide the identical function prototype-with
or without the virtual keyword. (The virtual keyword appears only in the
class declaration, not in the function definition.) If class A declares func
tion F, derived class B can choose not to override F-but class C, derived

173

Getting to Know Visual C++

174

from B, can choose to override it. Class B simply inherits A's version,
while class C supplies its own version. In the example in the previous
section, B inherits MemFunc2 and doesn't override it.

For a more concrete example of overriding, consider classes CShape and
CShpRectangle. CShape declares a virtual member function called Draw.
CShpRectangle also supplies a Draw member function with the same pro
totype (minus the virtual keyword, and the = 0 notation at the end).
CShpRectangle::Drawoverrides CShape::Draw. Examine this code from
program Shape3:

CShape* arShps[10]; II Array of CShape pOinters

II Construct a rectangle shape and add to array.
CShpRectangle* pShp = new CShpRectangle(rect);
assert(pShp != NULL); II Must check if pShp in scope.
arShps[i] = pShp; II Add to array if pShp in scope.

arShps[i]-)Oraw(); II Polymorphic function call

Even though the type of arShps[i] is CShape *, C++ ensures that
CShpRectangle::Draw is what gets called. This is due to the virtual func
tion mechanism, which we'll take up in the next section.

Should you declare all or most member functions as virtual? No. Be spar
ing with virtual functions, because the underlying mechanism that makes
them work takes up quite a bit of storage. The designers of MFC faced this
overhead problem when they were creating class member functions to
handle Microsoft Windows messages. If they had made hundreds of these
functions virtual, the overhead would have been tremendous. So they
found an alternative mechanism for implementing message-handler func
tions that avoids the use of too many virtual member functions-the mes
sage map. The lesson is to use virtual functions judiciously. Have good
reasons for each one. And, unless you're writing a class library for others
to use, feel free in your own code to override nonvirtual functions-just
make sure you understand how they would behave in situations that
would be polymorphic if you were using virtuals. If you want polymor
phism, go virtual. (I'll explain polymorphism shortly.)

Some member functions are intended to be overridden. Others probably
will never be, and still others might be overridden only rarely.

5: Object-Oriented Programming

The virtual function mechanism

You've already observed that the array arShps holds pointers to CShape
the base class of CShpRectangle. But you create a new CShpRectangle
(not a CShape) and store a pointer to it in one of the CShape * elements of
the array. This point is crucial: you can store a pointer of a derived type
in a variable of its base type-here, a CShpRectangle pointer in the place
of a CShape pointer. That's very useful, because now you can store a
pointer to any type of shape derived from CShape in the array, all at
once-ellipses and rectangles mixed.

Next, notice that after storing a CShpRectangle pointer in element i of the
array, we call that element's Draw member function:

arShps[i]-)Oraw(); II Polymorphic function call

As you've already seen, the version of Draw called is CShpRectangle's.
How does this happen? Although arShps[i] has the type CShape*, it's the
type of the actual object stored in the array element that determines
which version of Draw is called. This is determined not at compile time
but at run time and is known as dynamic binding, or run-time binding.
The compiler manages dynamic binding in a way that's transparent to the
programmer.

Under the hood, dynamic binding is managed by the use of virtual func
tion tables. Each class in a derivation hierarchy (the base class and each
of its derived classes) has its own virtual function table in memory, cre
ated by the compiler. A virtual function table is an array that contains a
function pointer for each virtual function in the class. At run time, code
that the compiler created accesses the virtual function table for the class
of the actual object whose member function is being called. (A class ob
ject contains a pointer to the virtual function table for its class.) Then,
the correct virtual function is called through its pointer in the virtual func
tion table. The compiler just follows these pointers as it sets lip the
function calls.

Polymorphism

Here is a powerful idea: that a pointer of type CShape * can point to either
a CShpRectangle or CShpEllipse object and that you can call the correct

175

Getting to Know Visual C++

176

member function Draw through the base-class pointer without knowing
which actual object type it points to. As I noted in Chapter 4, this concept
is called polymorphism, derived from the Greek for "many forms."

Polymorphism is powerful for another reason as well. Later, when you
want to expand the program's capabilities, you can derive a new
CShpTriangle class from CShape and start storing CShpTriangle pointers
in the arShps array-and the same call to the Draw member function of
arShps[i] will work just as well for the new objects.

Is-a vs. has-a

If class B is derived from class A, we can say" B is an A" because of
inheritance. The term is-a has a special meaning in OOP, signifying the
relationship between a derived class and its base class.

There's another OOP relationship, called has-a. Suppose D is a class and
class C contains a complete embedded D object (or a pointer to a D object)
so that class C has a D inside it. An example of this is:

class C
{

} ;

o d;
0* pO;

II d is a member of C
II pO is a member of C

Sometimes using a has-a relationship makes more sense than using is-a.
For example, suppose we write class CArray, which contains a C++ array
to hold its data and member functions, such as GetAt, SetAt, and Length
with which to manage the data in the array.

Would CArray make a good base class for deriving a simple CStack class?
Stacks are often based on arrays, so this might seem like a good idea, but
what are the consequences? If you use is-a, CStack will inherit CArray's
data and member functions. Remember that to add an item to a stack, you
push it; to remove an item from a stack, you pop it. Both operations are
allowed only on the top item of the stack-you can't reach down into the
middle. (Generations of programmers are familiar with this stack abstrac
tion and its terminology.) Even if we add member functions Push and Pop
to CStack, using an is-a relationship causes a problem. Inherited CArray

Figure 5-1.

5: Object-Oriented Programming

members such as SetAt and GetAt allow careless programmers to access
the middle of the stack, violating the stack abstraction.

It makes more sense in this case to use a has-a relationship, embedding a
CArray object inside a CStack object, probably as a private member after
the IIImpiementation line:

class CStack
{

public:
void Push(int value);
int Pop() canst;

II Implementation
private:

} ;

CArray arStack;
int top;

You'd implement the Push and Pop member functions with calls to
CArray members.

Designing Your Class Hierarchy
Without polymorphism, programmers would have to write (and rewrite)
lots of switch statements to discriminate among the various types that
might be present. With polymorphism, you simply need to follow a few
rules when you design your c?ass hierarchy. Here's an introduction to
class hierarchies, followed by several guidelines for designing them.
Figure 5-1 illustrates the usual way to represent a class hierarchy, using
CShape as a model.

- - -- - - - - - - - - - - - - - - - - - Base class

- - - Derived classes

The CShape dass hierarchy.

177

Getting to Know Visual C++

178

Abstract classes

One tool for creating class hierarchies is the abstract class. Some classes
aren't meant to be used to create actual objects. Many base classes are in
complete in some way, so you must write derived classes to fill in the
missing details. Such incomplete base classes are called abstract classes.

Class CShape is abstract. Notice how the Draw member function is de
clared in that class:

virtual void Draw() = 0; II Class is abstract; must override.

This strange notation tells us and the compiler that "this function will not
be implemented in this class-derived classes must implement it." The
function prototype is called a pure virtual function. Notice that nowhere
in program Shape3 is CShape::Draw further defined. The compiler and
linker accept this because of the pure virtual prototype.

Any class that has one or more pure virtual functions is automatically an
abstract class. There's no way a hypothetical CShape object, for example,
could draw itself, because Draw is not defined.

A class might be incomplete in other, more conceptual ways, too, as we'll
see when we later adapt the CShape class we're developing in this chap
ter to work within the MFC class hierarchy. In that case, it would be the
responsibility of any programmer who use~ the class to avoid creating ob
jects of that class and to ensure that what's missing is filled in by any
derived classes. When possible, use the pure virtual function notation to
enforce your wishes in this regard.

Abstract classes are often used as base classes in class hierarchies. Usu
ally an abstract class in a hierarchy represents a general concept, such as
shape, and the derived classes implement the specific details of concrete
shapes such as rectangles and ellipses. You'd never create an actual
"shape" object; instead, you'd only create specific kinds of shapes, such
as rectangles.

Anatomy of a class hierarchy

The overall class hierarchy has these features:

5: Object-Oriented Programming

• At the top of the class hierarchy is a base class. It provides the func
tionality common to all classes in the hierarchy (such as common
data members and member functions). The base class might or
might not be an abstract class.

• Each derived class' inherits all members from the base class (al
though a derived class doesn't have access to private members of the
base class). Derived classes can also extend the base class by adding
new data members and member functions as needed.

• Each derived class can also override any or all of the base class's
member functions, especially virtual functions, to provide new be
havior at the derived class level.

• The hierarchy can have more than one level: the topmost base
class, one or more intermediate classes, and those classes at the bot
tom of the hierarchy. If we view the hierarchy as an upside-down
tree, the topmost base class is the tree's root or trunk. The interme
diate classes are branches (sometimes called interior nodes). And
the classes at the bottom of the hierarchy, most distant from the
root base class, are the leaves. In fact, this sort of tree analogy is of
ten used to describe class hierarchies: root classes, branch classes,
and leaf classes. Figure 5-2 on the following page illustrates class
hierarchy structure.

• If there are intermediate classes in the hierarchy, they are derived
from their own base classes and act as base classes themselves for
classes derived from them. Such intermediate classes might have
some characteristics of base classes and some characteristics of de
rived classes. For example, an intermediate class might be an ab
stract class, yet it might also override and extend members of its
own bas'e class.

• Classes at the same level in the hierarchy (derived from a common
base class but not from each other) are siblings. Or, if the base class
they have in common is more distant-further up the hierarchy,
they're considered cousins.

179

Getting to Know Visual C++

Fi~ure 5-2.

180

- - - • - - - - - - - - - - w w - - - - _. Root class

Cousins

(base class)

Branch classes
(intermediate classes)

. , Leaf classes

The structure and terminology of class hierarchies.

Hierarchy design guidelines

When you design a class hierarchy, try to design it all at once. Think
through questions like these:

• Should the base class (and possibly some interme~iate classes) be
abstract? In the CShape class hierarchy, it makes no sense to pro
vide an implementation for Draw at the CShape level, so we de
clare Draw there as a pure virtual function. That makes CShape
abstract, which makes sense conceptually-there's no such thing as
a generic shape. All real shapes have a particular type and shape.
Yet all actual shapes must draw themselves, so it's useful, for poly
morphism, to declare Draw at-the CShape level, even if you don't
implement it there.

• Which functions should be virtual? It's clear that every shape type
draws itself differently, so in the CShape class hierarchy, Draw is
virtual. On the other hand, moving any shape is like moving any
other, so Move can simply be inherited by derived classes. It
doesn't need to be virtual.

• How far is the hierarchy likely to be extended? Some hierarchies
never extend beyond two levels-for example, it's fairly unlikely
(though not impossible) that anyone would derive a class from
MFC's application class, CWinApp, and then derive another class
from that. Normally, you can contain all you need in one CWinApp
subclass, with no need to split the new members between two
classes. On the other hand, some hierarchies can be extended a
good deal more.

5: Object-Oriented Programming

• What functionality should reside in the base class? If there is func
tionality common to all classes in the hierarchy, it should go in the
base class, where as many derived classes as possible can inherit it.
Any functionality that is common to only some classes should be
placed somewhat lower in the hierarchy, so it governs only a part of
the tree. In the CShape hierarchy, all shape types have at least a
type ID and a bounding rectangle in common. All of them can set or
get certain data members. So those features should reside in the
base class, CShape. On the other hand, each derived class draws
itself in a different way, so each overrides CShape::Draw.

Access Specifiers in Class Hierarchies
Chapter 4 introduced the access specifiers public and private. The new
class CShape introduces our third access specifier: protected. Here's that
part of the class declaration:

II Implementation
protected:

eRect ~rectShape;
ShpType m_typeShape;

II Bounding rectangle of shape
II Rectangle, ellipse, ...

The protected access specifier

Protected access is a mixture of public and private-public to some and
private to others. Here are guidelines for interpreting access specifiers:

• Members declared under the public access specifier in class A are
publicly accessible. Outside users of the class can access them.
Member functions in derived classes B, C, and so on can also access
them. And, of course, member functions in class A can access them.
They're really public.

• Members declared under the private access specifier in class A are
not accessible except to A's own member functions. They are not
accessible at aU to outside users of the class. And they are not ac
cessible to members of derived classes B, C, and so on. They're re
ally private.

181

Getting to Know Visual C++

Table 5-1.

182

• Members declared under the protected access specifier in class A
are private to outside users of the class but public to class A itself
and to members of derived classes B, C, and so on. These members
are private to some and public to others.

Access specifiers that apply to a whole class

Access specifiers can also be used in the heading of a class declaration, as
shown in Table 5-1. These access specifiers apply to the class as a whole.

Specifier

public

private

protected

Example

class B : public A
{

}

class B private A
{

}

class B protected A
{

}

Access specifiers in class headings.

Remarks

. Public members of A are public to B.
Protected members of A are accessible
to B, and they remain protected in B.
Private members of A are not acces
sible to B. See the discussion after
this table.

Public and protected members of A
are accessible to B, and they remain
private in B. Private members of A are
not accessible to B.

Public and protected members of A
are accessible to B, and they remain
protected in B. Private members of A
are not accessible to B.

Using the protected keyword to label a base class locks out outsiders but
leaves access open to derived classes. The only alternatives, public and
private, can in some situations either open the base class up too much
(exposing hidden implementation details to the public) or close it too
much (hiding things even from derived classes-which is the effect of us
ing private in the base class). The protected keyword stakes out the
middle ground, with just the right levels of exposure-open to derived
classes but closed to the outside.

I've given you only the rudiments of access control, so keep in mind that
there is more to the story. My advice for starting out is to keep everything
public, then gradually experiment with the other variations. Check the
Help index for access specifiers.

5: Object-Oriented Programming

Destructors
A class destructor is the opposite of a class constructor. While the con
structor is a function that initializes the class, the destructor is for
"uninitializing" the class. One major use for a destructor is to deallocate
heap memory that was allocated by the class. Destructors are cleanup
functions. For example, a class with a data member that is a pointer might
allocate memory for the object pointed to, perhaps in the constructor, per
haps elsewhere. While it's possible that you'd want to deallocate the
memory earlier, your last chance to do so is in the class destructor. That's
because a destructor is the last function called for a class before the class
object is destroyed. (Similarly, a constructor is the first function called
when the class object has just been created.)

The Shape3 program illustrates a second use for the destructor. I've set up
a mechanism in the CShape derived classes that counts how many objects
of each type currently exist. At the beginning of the program, there are no
CShpRectangles and no CShpEllipses. As the program progresses and cre
ates objects, the objects' constructors increment the counter. As the pro
gram deletes objects, their destructors decrement the counter. By the end
of the program, when all objects have been destroyed, the counters are
back to O. To illustrate the counting, I have the object display a message
with the latest count. You could experiment and display the count in the
destructor and see it go to 0 as the objects are destroyed.

The counting is managed in the CShpRectangle and CShpEllipse con
structors and destructors. Each constructor increments the count for its
type of object. Each destructor decrements the count for its object type.
For example, here are the two CShpRectangle constructors and the de
structor. The boldface text shows the counting mechanism:

CShpRectangle() { m_rectShape = CRect(CPoint(0.0), CPoint(10,10));
m_typeShape = shpRectangle; nCountShpRects++; };

CShpRectangle(CRect r)
{ m_rectShape = r; m_typeShape = shpRectangle;

nCountShpRects++; };

CShpRectangle::~CShpRectangle()

{

nCountShpRects--; II Decrement: we're destroying one.
}

183

Getting to Know Visual C++

184

I'll explain the rest of the counting mechanism shortly, when I discuss
static data members. Meanwhile, here are a few things you need to know
about destructors:

• A destructor, like a constructor, has the same name as its class. In
the case of the destructor, however, the name is preceded by a
tilde (-), so the full name of the destructor' for CShpRectangle is
CShpRectangle: :-CShpRectangle.

• A class's destructor is called automatically when a class object (on
the stack) goes out of scope or when the c++ delete operator is
called for a class object on the heap.

• If a class has virtual functions, it should also have a virtual destruc
tor. A virtual destructor declaration, within a class declaration,
looks like this:

virtual -CShape();

Unlike constructors, destructors can be virtual. Defining a virtual
destructor ensures that the destructor for the proper object is called
in a polymorphic situation. If the base class has a virtual destructor,
so do its derived classes, even though the destructors have different
names. You don't need to use the virtual keyword for a derived
class destructor.

• Like constructors, destructors can be defined inline.

• When a reference to a class object goes out of scope, no destructor
is called. A reference, remember, is only an alias for an already
existing object.

• Like a constructor, a destructor can't return a result. Unlike a con
structor, a destructor can't take any parameters. You can do almost
anything you like in a destructor. It's common to print debugging
information in destructors, for example. You can also call another
cleanup function from your destructor.

5: Object-Oriented Programming

Static Class Members
In the previous section, I showed the roles of class CShpRectangle's
constructor and destructor in counting rectangle objects. Here's the rest of
the story.

Using a static class data member

The problem I'm trying to solve is how to maintain ongoing information,
such as a count of the CShpRectangle objects in ex:istence. The solution is
to declare a static data member in class CShpRectangle (and a similar one
in class CShpEllipse). Using the static keyword on a class data member
makes for a special data member. Instead of each CShpRectangle object
containing its own copy of the data member, there is only one copy and
all CShpRectangle objects use it. That's perfect for the kind of persistence
I'm seeking. After the static data member has been declared, we still need
a few more things:

• A way to initialize it. Unlike a static local variable declared in a
function (which c++ automatically initializes to 0), a static class
data member has to be initialized outside the class scope, at file
scope, using the class scope resolution operator, like this:

int CShpRectangle::nCountShpRects = 0;

• A way to increment and decrement the static class data member as
objects are created and destroyed. I showed earlier, in "Destruc
tors," how to do this with the classes' constructors and destructors.

• A way to output the static class data member's value from time to
time. I do this in the main function of program Shape3:

printf("Number of rectangles: %d\n", CShpRectangle::nCountShpRects);

This code shows an interesting property of static class data members.
Normally, to access a data member of a class, you must have an object of
the class to work through:

Object 0;
o.m_member = 3;

185

Getting to Know Visual C++

186

But you can access a static class data member without an object-one
doesn't even have to exist-by using the class scope resolution operator,
as in the print! statement on the preceeding page.

Your static class data members can be hidden in a private section to en
force information hiding, but they still behave like global variables with
respect to the class. This can be very handy. You can also use a static data
member as a default argument to a class member function. That's not al
lowed with ordinary data members.

Static class member functions

A class member function can also be declared static. Within the class,
such a function can access only other class members that are declared
static, and it doesn't have access to the this pointer for its object. As with
static data members, you can call a static member function without hav
ing an object. You do so outside of the class scope, using the class scope
resolution operator. It's even possible to create a class with nothing but
static members. The members are then available via the class scope reso
lution operator, as a sort of function library encapsulated in a class.

More About Constructors and Destructors
We're still not finished with even the rudiments of constructors and de
structors. The following sections will take you through constructor and
destructor overhead, sequence of constructor and destructor calls, mem
ber initialization lists, default constructors, copy constructors, and assign
ment operators. In the process of covering assignment operators, I'll also
say a bit about writing overloaded operators for a class.

Constructor and destructor overhead

One thing to keep in mind about both constructors and destructors is that
invoking one of them leads to a function call, and function calls take time
and resources-that is, they have a cost. Constructors and destructors
might be called in situations where you might not have expected them.
For example:

• If you don't define a constructor or a destructor for your class, c++
automatically supplies one. These constructors and destructors are

5: Object-Oriented Programming

do-nothing functions, but they are still called at the appropriate
times. You can't circumvent this.

• When you use pass by value to pass a class object to a function or
to return a class object from a function, a copy of the object is
made. When the copy is created, its constructor is called. When the
copy is later deleted, its destructor is called.

• In some situations, the c++ compiler creates temporary objects in
order to get its work done, and when it does, their constructors and
destructors are called. (Try using printed messages in constructors
and destructors to observe these objects.)

My point is that you need to be aware of these sources of overhead. Two
books by Scott Meyers address this issue in detail and describe ways to
reduce constructor and destructor overhead:

• Scott Meyers, Effective c++: 50 Specific Ways to Improve Your Pro
grams and Designs, 2nd edition (Addison-Wesley, 1997).

• Scott Meyers, More Effective c++: 35 New Ways to Improve Your
Programs and Designs (Addison-Wesley, 1995).

Sequence of constructor and destructor calls

The sequence in which constructors and destructors are called can be im
portant. The most common of these situations involves a class that con
tains an embedded class object, such as the Inner object ic, embedded in
class Outer, in program InitList.

~ Try it now
Create program InitList:

II InitList.cpp : Defines the entry point for the console' application.
II

Iii ncl ude "stdafx. h"
#include <iostream.h>

II An Inner object will be embedded in an Outer object.
class Inner

(con tin ued)

187

Getting to Know Visual C++

188

{

public:

};

II Default constructor
Inner() { i = 0; j = 0; cout « "Default Inner\n"; };

II Constructor
Inner(int n, int 0);

II Data members
int i;
i nt j;

II An Outer object will contain an Inner object.
class Outer
{

public:

};

II Constructor with parameters
Outer(int j, int 0, int k, int& m, char chr);

II Embedded object
Inner ic;

II Const member
const int c:

II Reference member
int& ri;

II Ordinary member
char ch;

int main(int argc, char* argv[])
{

}

II Create existing object to pass as reference parameter.
int nInt = 5;
II Construct Outer object with embedded Inner object.
II Initialize everything.
Outer out(3, 9, 4, nInt, 'a');

II Show that embedded Inner object as well as
II const. reference. and ordinary members were initialized.
cout « "out.ic.i = " « out.ic.i «" out.ic.j = " « out.ic.j

« endl;
cout « "out.c = " « out.c «" out.ri = " « out.ri « endl;
cout « "out.ch = " « out.ch « endl;

return 0;

5: Object-Oriented Programming

II Outer constructor with member initialization list
Outer::Outer(int j, int 0, int k, int& m, char chr)

{

}

iC(j, 0), c(k), ri(m), ch(chr) II Member initialization list

cout « "Outer constructor with parameters\n":

II Inner constructor, which initializes Inner::i and Inner::j
Inner::Inner(int n, int 0)
{

}

i = n:
j = 0:
cout « "Inner constructor with parameters\n":

In this example, a complete object of class Inner is constructed within the
structure of a class Outer object. Which constructor is called first? It's as if
the constructor for the member object ic is called before the constructor
for the containing object. The compiler does some things behind the
scenes, but this is the effect. If there are multiple embedded objects like
ic, their constructors are called in the order of their appearance inside the
containing class. The destructors are called in the reverse order.

Member initialization lists

A related issue sometimes arises: suppose you need to pass parameters to
the constructor of the embedded object? The technique to use is to ap
pend a member initialization list to the constructor call for the containing
class. The InitList program shows you how to use a member initialization
list to initialize each of the following parameters:

• The data members of an embedded object, such as object ic, of class
Inner.

• A canst data member, c, which must already be initialized before
the body of class Outer's constructor begins to execute. (Yes, you
can have canst members.)

• A data member of reference type, ri, which also must be initialized
before the Outer constructor begins to execute. (Yes-you can have
reference members, too.)

189

Getting to Know Visual C++

190

• An ordinary data member, ch. The InitList program shows that you
can use the initializer list mechanism to initialize ordinary data

members instead of assigning values to them in the constructor
body, in the usual way shown here:

Outer::Outer(int j, ,int 0, int k, intI m, char chr)
ic(j, 0), c(k), ri(m) II Member initialization list

{

ch = chr;
II Initialize ordinary data member by assignment.

}

The member initialization list for the Outer constructor begins with a
colon after Outer's parameter list. Following the colon is a comma-delimited

list of parameter associations like ic{j, 0), where j and 0 are being passed
to the nand 0 parameters of Inner's constructor. These items are called
initializers. The whole member initialization list precedes the body of
Outer's constructor-because some members, such as the embedded
Inner, the const member, and the reference member must be initialized
before Outer's constructor body begins to execute. Notice how the initializer

for Inner

: iC(j, 0) ... 11 Inner initializer in Outer constructor call.

has the same form as Inner's constructor, with two int parameters, j and o.

Because member initialization lists incur less overhead than assignments

inside the constructor, they can be more efficient. A more important point
is that member initialization lists are the oilly way to initialize class data
members that are declared const or that are reference types. They cannot
be given values by assignment.

Default constructors

A default constructor is one that has either no parameters or parameters
with default values only. The default constructor allows you to create an

object like this:

Object myObj;

Using this syntax results in a call to the default constructor, if one is
supplied. (Inside the body of the default constructor, you can do anything

you like, including initializing the object.) If you don't supply any
constructors at all, c++ creates a default constructor behind the scenes

5: Object-Oriented Programming

and calls it. (Of course, it does no work when called.) If you do supply
constructors but not a default constructor, the myObj syntax shown on
the preceeding page results in an error. In this case, you would need to
create the object with a parameter list that matches that of one of your
constructors.

You should almost always supply a default constructor. Here's one for
class CShpRectangle, for example (defined inline):

class CShpRectangle : public CShape
{

}

CShpRectangle() { m_rectShape = CRect(CPaint(0,0), CPaint(10,10»;
m_typeShape = shpRectangle; nCauntShpRects++; };

Classes CShpRectangle and CShpEllipse have default constructors, but if
it weren't for the object counts we increment in the constructors, these
classes could simply inherit CShape's constructors and not implement
any of their own. A derived class needs its own constructors if it adds
data members not supplied by its base class, or if the constructors are
needed for some special purpose such as our object counting. The ver
sions of CShpRectangle and CShpEllipse that we develop in Chapter 14

don't define any constructors of their own. By the way, you might en
counter the shorthand terms ctor and dtor for "constructor" and "destruc
tor" in the MFC source code files.

Copy constructors

A copy constructor is called to make a correct copy of its object. The
heading for a copy constructor looks like this:

Object(canst Object& a) ...

If you supply one for your class, a copy constructor is useful when an ob
ject must be copied but you can't accept the default way of copying. This
usually happens in one of the two following situations:

• When you initialize object A by assigning object B to it. B's contents
are copied memberwise into A's storage. Memberwise copying
means copying exactly what is in the data members. This can be a
problem, as we'll see.

191

Getting to Know Visual C++

Figure 5-3.

192

• When you pass an object to a function by valu~, or return an object
by value. In both cases, a copy is made of the object, and in both
cases, memberwise copying is used by default.

So when is memberwise copying a problem? When the copied object
contains a data member that is a pointer. Memberwise copying involves
copying the contents of the pointer variable itself, but not the object it
points to. You end up with object A and object B both containing pointers
to the same object-call it C. The result we'd usually prefer in this situa
tion is A's pointer member pointing to a copy of object C-call it D. Fig
ure 5-3 illustrates this situation.

Contains a Contains a
pointer to - ~ pointer to
object C object C

Object A Object B
, r

"
Object C

What we get

Contains a
pointerto -
object C

Contains a
~ pointerto

object C

Object A Object B ,,, "
Object D Object C

(a copy of
object C)

What we want

Imperfect results from a memberwise copy.

The solution in such a case is to supply a copy constructor for your class.
If one exists, it will be called whenever an object of the class is copied,
doing the copying your way rather than the memberwise way.

What does a copy constructor look like, and how does it work? Program
CopyProb illustrates the difference between memberwise copying and
copying with a copy constructor.

5: Object-Oriented Programming

~ Tryitnow
Create program CopyProb to see what a copy constructor does:

II CopyProb.cpp : Defines the entry point for the console application.
II

#include "Stdafx.h"
#include <iostream.h>

II Two classes, HasPtr1 and HasPtr2, with identical data members.

II Class HasPtr1 has no copy constructor;
II o~jects of the class will be copied memberwise.
class HasPtr1
{

public:
II Default constructor
HasPtr1() { cout « "In default constructor for HasPtr1.\n"; };
char ID--C; II Non-pointer member
int* ID--pInt; II Pointer member

};

II Class HasPtr2 has a copy constructor
II that will be called for copying.
class HasPtr2
{

public:
II Default constructor
HasPtr2() { cout « "In default constructor for HasPtr2.\n"; };
II Copy constructor
HasPtr2(const HasPtr2&);
char ID--C; II Non-pointer member
i nt* ID--pInt; I I Poi nter member

};

II Global function
void Function(HasPtr2 HP2);

int main(int argc, char* argv[])
{

II Memberwise copy.
HasPtr1 hp1;
hp1.ID--pInt = new int;
*hp1. ID--pInt = 0;
h P 1. ID--C = '0';
cout « "\n1. Now memberwise copy hp1 into copy1.\n";
Hasptr1 copy1 = hp1; II Memberwise copy~

(continued)

193

Getting to Know Visual C++

194

}

cout « "*copyl.lILpInt = " « *copy1.lILpInt
«" *hp1.lILpInt = " « *hp1.lILpInt « endl:

cout « "copy1.lILpInt = " « copy1.lILpInt
«" hpl.lILpInt = " « hp1.lILpInt « endl « endl:

II The two addresses are the same due to memberwise copy.

II Copy with copy constructor.
HasPtr2 hp2: II Invokes default constructor.
hp2.lILpInt = new int:
*hp2.lILpInt = 1:
hp2.lILc = '1':
cout « "\n2. Now copy hp2 into copy2 with copy constructor.\n":
HasPtr2 copy2 = hp2: II Invokes copy constructor.
cout « "*copy2.lILpInt = " « *copy2.lILpInt

«" *hp2.lILpInt = " « *hp2.lILpInt « endl:
cout « "copy2.lILpInt = " « copy2.lILpInt

«" hp2.lILpInt = " « hp2.lILpInt « endl:
II The two addresses are different: didn't memberwise copy.

cout « "\n3. Now show the difference between"
« "initialization and assignment.\n":

II Initialize a new HasPtr2 object: invokes copy constructor.
cout « "Initialization: HasPtr2 copy3 = copy2. ":
HasPtr2 copy3 = copy2:
II Use assignment: do not invoke copy constructor.
cout « "Assignment: copy4 = copy2. ":
HasPtr2 copy4:
copy4 = copy2:

II Copy during pass by value.
cout « "\n4. Now pass a HasPtr2 object by value.\n":
Function(hp2):

return 0;

HasPtr2::HasPtr2(const HasPtr2& HP2)
{

}

cout « "In copy constructor for HasPtr2.\n":
IILpInt = new int:
*lILpInt = *HP2.lILpInt:
IILC = HP2.lILc;

void Function(HasPtr2 HP2)
{

cout « "In Function, HP2.lILpInt = " « HP2.lILpInt « endl:
}

5: Object-Oriented Programming

Program CopyProb demonstrates what happens when a class member that
is a pointer is copied memberwise, as well as what happens if the class
has a copy constructor. CopyProb contains two almost identical classes,
HasPtri and HasPtr2. Each has two data members: a char and a pointer
to int.

In the first part of main, we construct a HasPtri object and initialize its
members. This involves using new to allocate space for the pointer to int,
then setting the value of the object pointed to. When we then assign the
HasPtri object, hpi, to another HasPtri variable, the contents of hpi are
copied memberwise into the new object, copyi. When the pointer mem
ber is copied, the pointer variable itself is copied but the object it points
to is not. You can see in the second cout statement that hpi.m_pInt and
copyi.m_pInt have the same value-on my machine, both are
Ox00770810, but it might be different on your machine. This tells us that
copyi and hpi now point to the same int object. That's a problem .

. The second part of main shows how class HasPtr2's copy constructor is
invoked to do the copying correctly. Here's the copy constructor:

HasPtr2::HasPtr2(const HasPtr2& HP2)
{

cout « "In copy constructor for HasPtr2.\n";
m_pInt = new int;
*m_pInt = *HP2.m_pInt;
m_c = HP2.m_c;

Memberwise copying gives incorrect results when there's a pointer mem
ber, so the copy constructor allocates space for a new int object and cop
ies the int pointed to from within hp2 into the int pointed to from within
copy2. This time the cout statement shows that the two pointer addresses
are different-they point to different int objects.

The third part of main makes an important distinction that affects copy
constructors: in C++, the act of initialization is distinct from the act of as
signment. Initialization occurs when you see syntax like this:

HasPtr2 copy3 = copy2;

195

Getting to Know Visual C++

196

The newly declared object copy3 is initialized with the contents of copy2,
an existing HasPtr2 object, in one statement. This invokes the copy con
structor. But the following code shows mere assignment instead:

HasPtr2 copy4;
copy4 = copy2;

The assignment invokes the default constructor, not the copy constructor.
If we had written those lines as one line,

HasPtr2 copy4 = copy2;

the line would be an initialization instead of an assignment. This is
subtle, but important. Because the copy constructor isn't called during
assignment, overcoming the limitations of memberwise copying requires
writing both an overloaded assignment operator, discussed in the next
section, and a copy constructor for classes whose objects are likely to be
assigned. CShape is certainly in that category.

\ Ti' IP If you define a copy constructor, always define an overloaded assign
': ~\~I ment operator as well-and vice versa.

The fourth part of main shows that the copy constructor is also invoked
when we pass a HasPtr2 object by value to a function. The int pointer in
side the function named Function has a different value than hp2's m_pInt
member has. The copy constructor has made a copy of the int data mem
ber, as the output from program CopyProb shows.

What is the upshot of all of this? Write a copy constructor any time your
class contains one or more pointer members.

'JI' IP You can use run-time functions such as memcpy and memmove to copy
, ~,~ nonstandard objects, such as CShapes. And the sizeof operator tells you

how many bytes to copy. Check the Help index for these functions.

Operator Overloading
One of the most powerful (although often misunderstood and misapplied)
features of C++ is the ability to overload not only function names but
C++'s own operators. The typical example is in a string class-a class that

5: Object-Oriented Programming

encapsulates a C/C++ null-terminated string in a class object, usually
allowing the string to grow and shrink dynamically and making it much
simpler to manipulate. A standard operation on strings is concatenation.
Here's an example of concatenation that uses the MFC class CString:

CString strl = "Learn Microsoft Visual C++ 6.0";
CString str2 = " Now";
CString strResult = strl + str2;
cout « strResult « endl;

II This code will output "Learn Microsoft Visual C++ 6.0 Now"

In the example, the plus sign operator (+) has been overloaded by the
CString class. It still has its old meaning in the old context: arithmetic ad
dition. But in the new context, with string-type operands, it means string
concatenation.

In Chapter 14, we'll use CShape and its derived classes in an MFC pro
gram (with suitable modifications). At that point, we'll derive class
CShape itself from the MFC class CObject, in order to use some of
CObject's handy facilities. When you derive a class from CObject, you
need to write a copy constructor and an overloaded assignment operator
(=). Otherwise, you can't assign a CShpRectangle object to another
CShpRectangle object. (For the rationale, check the Help index for com
piler errors with CObject-derived classes.) Here's an overloaded assign
ment operator, named operator=, for our future version of CShape:

CShape& operator=(const CShape& s)
{

}

II Handle the special case of assignment to self (shpl shpl)
if(this == &s)

return *this;
II Otherwise, assign the members of s to the members of this.
m_boxShape = s.m_boxShape;
m_typeShape = s.m_typeShape;
m_nColorShape = s.m_nColorShape;
return *this;

Notice that the operator= function returns a reference to a CShape and
takes a const reference to a CShape as parameter. That's standard syntax
for an overloaded assignment operator. Inside the function, we assign the
data members of the parameter s to those of this CShape object. Then we

197

Getting to Know Visual C++

198

return (by reference) the value denoted by the dereferenced this pointer. If
CShape contained any pointer data members, we'd have to take steps
similar to those in the copy constructor described in the previous section.
We'd want a duplicate of the object pointed to rather than a duplicate of
the pointer itself.

Also notice the special-case code for assignment of an object to itself. To
handle that gracefully, we return without doing any internal assignments
if the address of s is the same as the value of the this pointer.

Keep in mind that although we've just written a function named operator=,
we're really writing a special definition of the assignment operator (=) for
CShape objects, so we can write things like:

CShape shpl;
CShape shp2;

II Code to set shp2 members goes here.

shpl = shp2; II Using the assignment operator
II invokes our function.

Note that if CShape defines an overloaded assignment operator, a derived
class CShpRectangle must define its own version of the operator. That
version of the operator is needed if CShpRectangle members that aren't
defined in CShape are to be copied properly.

c++ lets you overload all but a tiny handful of its operators, with a few
restrictions. Operator overloading is an advanced topic that I won't cover
further in this book. Every C++ text warns of the semantic pitfalls of op
erator overloading. Assignment to self is just one of them. For more infor
mation, check the Help index for operator overloading and select the
subtopic "general rules." But I would also consult a good C++ textbook.
See Chapter 21 for a recommendation.

Scope, Part 2
In Chapter 3 and Chapter 4, I said I'd say more about class scope in Chap
ter 5, and here we are. A quick review of global scope and local scope
will help you understand how class scope works. (See "Scope, Part 1" in
Chapter 3 if your memory needs more of a jog.)

5: Object-Oriented Programming

The outermost scope in a program is called global scope, or file scope.
Things declared at this scope-global variables and functions, classes, the
main function, constants, and various types-are visible (accessible)
throughout the file, including inside main and other global functions and
inside classes.

Local scope is separate. Local scope prevails within a function, or within
a block (a pair of curly braces) inside a function, such as a for, while, or if
statement, or a freestanding block. Things declared at this scope-local
variables, constants, nested classes, and types-are visible only within
their block or in subordinate blocks. You can use the extern and static
keywords at file scope to make things visible or invisible in other files, as
described in "Scope, Part 1" in Chapter 3.

The remaining scope is class scope. Class scope prevails within a class
declaration and extends to class member function definitions. Things de
clared within a class-such as member functions, data members, types,
and nested classes-are visible within the class. They are also visible
within the bodies of the class's member function definitions. Unless de
clared public, they are invisible outside of the class. (Some items, such as
static members, types, and nested classes, can be made visible outside of
the class through the class scope resolution operator.)

Inline member function definitions declared outside the class body with
the inline keyword are also within the class scope. Each member function
(inline or not) also constitutes its own local scope, which is a subset of
the entire class scope. And finally, class scope extends to derived classes.
If class B is derived from class A, B's member functions can access non
private members declared in A.

~II OTE Items declared toward the end of a class declaration are visible at the
(11" beginning of the class declaration. Contrast that with local variables inside

a function, which are not visible before the variable declaration.

Users of a class have access to its public interface: members that are de
clared under the public access specifier. They do not have access to
members declared under the protected or private access specifiers (unless
they're friends of the class). Derived classes' access to base class members

199

Getting to Know Visual C++ -------
is also controlled both by the use of access specifiers within the base class
and by the use of access specifiers in the heading of the derived class.
For details, see "Access Specifiers in Class Hierarchies," earlier in this
chapter.

A class itself can be declared at global, class, or local scope. That is, you
can declare a class at global scope or nest it within another class or
within a function. Classes declared at class or local scope are not visible
outside the containing scope. For more information, check the Help index
for the following three items: scope, nested classes, and nested class
declarations.

Object-Oriented Programming

200

Object-oriented programming (OOP) can be thought of as an extension of
standard structured programming techniques. The class is a new element
of modularity, added to the file and the function. OOP is a style of pro
gramming in which you model real-world objects-shapes, stereos, win
dows, documents-with software objects. It's possible to do OOP even in
conventional programming languages like C, but C++ provides direct sup
port for OOP and makes it easier and much more natural to think and
code in terms of objects.

OOP languages like C++ are also highly extensible. In addition to the
built-in data types-ints, floats, chars-C++ makes it possible to extend
the type system indefinitely, especially when you consider the ability to
overload C++ operators. Each new class you create, whether it is a base
class or a derived class, is a new data type. A derived class inherits the
data and behaviors of its base class, yet it can override and extend the
functionality of its base class as well. This amounts to extending data
types by deriving new types from them.

The ability to store a pointer to class B in a variable of type A * (where A

is a base class of B) greatly simplifies working with collections of objects
in the same class hierarchy. You can, as we saw, store CShpRectangles
and CShpEllipses-and later CShpTriangles-in an array of CShapes.
And, using the virtual function mechanism, you can call the Draw mem
ber function of a CShape * array element and expect the Draw member

5: Object-Oriented Programming

function of the actual object stored there to be called. This polymorphism
lets objects work together while each behaves in i,ts own way.

You can use OOP to a greater or lesser extent. For example, you might use
it just to provide a single new data type in a program that otherwise
greatly resembles a C program. Or, you might use an object-oriented de
sign to model the entire problem you're trying to solve. MFC, for instance,
models a Windows application and uses class objects extensively to rep
resent windows, documents, dialog boxes, buttons, and even the applica
tion as a whole.

The object-oriented design process generally begins with careful specifi
cation of the problem. The next step is to study the problem for elements
that might make good objects. As design goes on, you gradually develop
the structure and behaviors of these objects. Eventually, you implement
the objects, often as c++ classes in a hierarchy.

How Much OOP?
When the Application Frameworks (AFX) team at Microsoft began its
work on an object-oriented application framework (a set of classes that
provide the framework of a program using OOP techniques), it was
highly object-oriented. Even simple data elements like ints and chars
were housed in objects.

The AFX developers soon realized, however, that they had gone over
board. Their second application framework-developed after they
scrapped a year's work on the first-became the MFC library. One of the
hallmarks of MFC was that it was just object-oriented enough, and not a
bit more. The AFX team could have written a completely new version of
Microsoft Windows in C++, using an object-oriented approach in which
every element of Windows would be represented by an object. They chose
instead-wisely-not to rewrite Windows from scratch, nor to overdo the
OOP. The MFC library that resulted represents a few primary Windows
concepts-windows, device contexts, and a few others-as objects, but
calls the original Windows API functions from within those objects. For
example, class CWnd represents a window. Its CWnd::ShowWindow
member function, for instance, calls the ShowWindow API function in the

201

Getting to Know Visual C++

202

Windows operating system. I'll have more to say about Windows and its
relationship to MFC in "MFC and Windows" in Chapter 8.

Meanwhile, the AFX developers took to calling themselves "reformed
OOPaholics." They had come back from excessive OOP to embrace a phi-
10sophy that puts object-oriented programming in its place as one of
many software tools.

This is a philosophy worth heeding. New OOP enthusiasts always go
overboard. But the smart ones end up like the AFX team, using OOP only
when it's the right tool for the task.

OOP Terminology

You'll encounter tvvo sets of OOP terms in the literature. Outside
C++, much of the terminology is based on the Smalltalk language,
'which pioneered OOP concepts in the 1970s. Table 5-2 compares the
two terminology systems.

Smalltalk Term

Instance (noun); instantiate (verb)
an object

Subclass (verb)

Subclass, descendant, child class
(nouns)

Superclass, ancestor, parent class

Property, instance variable

Class variable (one copy for all
instances of the class)

Method

Sending a mHssage

Equivalent C++ Term

Object (noun); create (verb)
an object

Deri ve (verb)

Derivtld class

Baso class

l.--fember variable, data member

Static data member

Member function

Calling a member function

Table 5-2. Competing systems of OOP terminology.

I'll genera lly use the C++ terms because C++ programmers tend to be
purists about this. Occasionally I'll use a Small talk term where I
think it clarifi f)S a point.

5: Object-Oriented Programming

What's Missing from Our C++ Coverage?
Here are the main elements of c++ that I haven't covered, some of
which I'll at least introduce later in the book. The others are left for your

own postgraduate efforts. I've included many Help citations that should

assist you.

• Bit fields. Check the Help index for bit fields and select the topic
"C++ Bit Fields" in the Topics Found dialog box.

• Exceptions. Check the Help index for exceptions and select the
topic "Exception Handling Topics (MFC)" in the Topics Found dia

log box. Also see "MFC Diagnostic Facilities" in Chapter 13.

• Multiple inheritance. Check the Help index for multiple
inheritance.

• Namespaces. Namespaces help you avoid collisions that might re

sult from the same identifier being used in different parts of a com

plex program. Check the Help index for namespaces.

• Operator overloading. I have described this very briefly. Check the
Help index for operator overloading and select the subtopic "gen

eral rules." I also advise you to consult a good C++ textbook. See
Chapter 21 for suggestions.

• Pointers to functions, including class member functions. To learn

about pointers to functions in general, consult a C or C++ textbook.

(See Chapter 21.) For pointers to class members, check the Help in

dex for Pointers and choose the subtopic "to members."

• Recursion, the ability of a function to call itself. Check the Help
index for recursive function calls. The topic you get is for C, but it

also applies to C++.

• Run-time type information (RTTI). Check the Help index for RTTI.
(Note that MFC has its own run-time type system and doesn't use
RTTI.)

• Templates. Check the Help index for templates and select the topic
"Template Topics" from the Topic Found dialog box. One use for

templates is in some of the MFC collection classes (lists, arrays, and

203

Getting to Know Visual C++

204

maps), but I'll use only the nontemplate collection classes in this
book. (See Chapter 14.)

• Unions. Check the Help index for union and choose the first two
topics in the Topics Found dialog box.

• User-defined conversions. For example, MFC's CString class de
fines a conversion between CStrings and char* variables. Check the
Help index for conversion functions. An example of converting
from class Money to type double is given.

• Virtual base classes. Check the Help index for virtual base classes
and choose the topic "Virtual Base Classes" in the Topics Found
dialog box.

• Volatile objects. Check the Help index for volatile and choose the
first topic in the Topics Found dialog box.

Try It Yourself

Here are this chapter's extra-credit exercises for the brave. The answers to
exercises 2 and 3 are at the end of this section

1. Implement simple CArrayand CQueue classes.

Use a has-a relationship to implement a CQueue class based on a CArray
class. (See the discussion about has-a relationships earlier in this chap
ter.) A queue is like a line at the ice cream vendor: a new element can
only join the queue at the back; an element can only receive ice cream at
the front. You can call these operations Add and Remove, or Put and
Take, for example. Include error checking in your CQueue member func
tions. Implement CArray with an array of int, 100 elements long, and
include error checking. Typical array operations are SetAt (set the value
of an element at a specified index), GetAt (return the value of an element
at a specified index), and GetCount (return the number of elements actu
ally assigned). I present one solution in program Ch5exl in the
\learnvcn \Chap05 folder in the companion code.

2. Take this quiz on access specifiers.

Answer the questions that follow this code, which is also in the
learnvcn \Chap05 folder in the companion code. You'll find the answers
at the end of this chapter.

5: Object-Oriented Programming

II ch5ex2.cpp : Defines the entry point for the console application.
II For Try It Yourself, exercise 2, Chapter 5

jinclude <stdafx.h>
#include <iostream.h>

II COne is a totally private class, inaccessible from outside.
class COne
{

II It's as if there's a private access specifier here.
Ilprotected:

} ;

COne() { m_one = 0; m_one_c = 'a'; };
int m_one;
char m_one_c;
void DoOne() { cout « m_one « " " « m_one_c « endl; };

class CTwo protected COne
{

II Note protected keyword here

public:

} ;

II Constructor and DoTwo member function
II try to access COne members, but they're private.
CTwo() { m_one = I; m_one_c = 'b'; };
int m_two;
void DoTwo() { cout « m_one « " " « m_two « endl; };

int main(int argc, char* argv[])
{

COne one;

CTwo two;

two.DoTwo();

return 0;
}

Question 1

II Can't call this constructor
II because it's private.
II Tries to access COne members,
II but they'~e private.
II Ditto

What errors will you see when you try to build this code? If in doubt, try it.

Question 2

If you add a protected specifier before the first member of class COne,

what errors do you get? Try it.

205

Getting to Know Visual c++

206

3. Explain whether our CShape classes need a copy constructor, and why or
why not?

Hint: Look at the data members. (But also see my remarks about class
CObject in the section "Operator Overloading" in this chapter.)

Answers to Try It Yourself Exercises
Test yourself on exercises 2 and 3 before you peek!

Exercise 2, question 1

For a very simple reason, the compiler will reject this code with five er
rors. Recall that the members of a class declared with the class keyword
are private by default. Since there is no public or protected specifier at
the beginning of the class declaration for class COne, all of its members
are private. The private members of a base class are inaccessible to mem
bers of a derived class, regardless of whether the overall derivation is
public, protected, or private. Omitting the public keyword at the begin
ning of a class-when you mean for it to have public members, such as
constructors-is a classic mistake. The first four errors occur in CTwo's

constructor and member function DoTwo. The fifth error occurs in main,
when we try to construct a COne object. COne's constructor isn't available
because it's private.

Exercise 2, question 2

When you specify that COne's members are protected, you get one error.
As with Question 1, the COne constructor is unavailable in main. It
would have to be public before we could construct a COne object there,
outside class COne. COne's members do become accessible in CTwo's'

member functions. With CTwo declared a protected derived class in the
class heading of CTwo, public members of COne (if there are any) are pro
tected in CTwo; protected members of COne are protected in CTwo; and
private members of COne are inaccessible to Ctwo. (Go back to Table 5-1

for a review of access specifiers in class headings.)

Exercise 3

In their current form, the CShape. classes don't require a copy constructor
because none of them has any data members that are pointers. Later,

5: Object-Oriented Programming

when we derive these classes from MFC class CObject, they'll require
both a copy constructor and an overloaded assignment operator because
of the way CObject is written. I'll discuss this further in Chapter 14.

What's Next?
With a good survey of C++ and object-oriented programming out of the
way, let's move on to programming for Microsoft Windows, especially
with MFC. Chapter 6 introduces the fundamental concepts of Windows
programming. In Chapter 7 we'll dive into MFC and stay there through
the rest of the book.

207

Chapter

Windows and the Win32 API
Microsoft Visual c++ 6.0 lets you create many kinds of programs. But the
principal kind, the one we'll focus on exclusively for the rest of this book,
is the c++ application for Microsoft Windows, written with the Microsoft
Foundation Class Library 6.0 (MFC).

In this chapter, we climb high for a bird's-eye view of what's involved in
programming in any language for Windows 95, Windows 98, and Microsoft
Windows NT. I'll take you through the fundamental concepts of the Win
dows operating system from the point of view of a programmer. In the next
chapter, we'll circle back and see how MFC does Windows .

.A>lIOTE For a glimpse of the many kinds of programs you can create with
6Ir1 Visual C++, select New from the Visual C++ File menu. The list includes at

least three types of projects that use MFC in C++, and at least four kinds
that use the Win32 API in C or C++. The type of project we'll work with in
this book is called"MFC AppWizard (exe)" in the project list.

The Flavors of Windows
Windows 95, Windows 98, and Windows NT are all 32-bit variations
of the Microsoft Windows operating system for personal computers.
Windows 3.1 and its successor, Windows 3.11, are 16-bit versions of the
operating system. Although many people still use these 16-bit versions,

209

Getting to Know Visual C++

210

the rest of the world has moved on. This book is exclusively about the 32-
bit world. (You can still use what you learn here to program for 16-bit
Windows, but you'll need older software, including much older versions
of Visual c++ and MFC-versions 2.5 and 1.5, respectively.)

Computer program data is fundamentally based on the size of a word of
storage. The size of a word determines how much memory the system can
address. Systems based on 32 bits have a 32-bit word size that is double
that of the 16-bit word used in Windows 3.1. This means that the 32-bit
systems can address a great deal more memory. In fact, in 32-bit systems,
the amount of addressable memory grows exponentially to more than 4

GB. Furthermore, unlike 16-bit systems, in which memory addresses are
divided into segments that result in complicated code, 32-bit memory is
flat. There are no segments, just one big address space. This not only
makes for easier programming, but also for more powerful programs.

The Windows API
Windows 95 and Windows 98 are quite different from Windows NT un
der the hood, but all of these 32-bit versions of Windows are written "in
the same language," so to speak. All are based on the Windows Applica
tion Programming Interface (API), popularly known as the Win API.
There's a 16-bit version of the Win API, but Windows 95, Windows 98,
and Windows NT all use the 32-bit version, called the Win32 API, or, sim
ply, Win32. (For clarity, the 16-bit version is now often called the Win16
API or just Win16.) This book focuses on the Win32 API.

Win32, the SDK, and Windows.h
What is the Win32 API? The API is a collection of several hundred func
tions, plus numerous constants, macros, structs, types, and other items.
These programming elements are written in the C programming language,
but nowadays you can call the functions and use the other items from
C++, Microsoft Visual Basic, assembly language, Fortran, Pascal, and
other programming languages.

Most of the API is defined in a file called Windows.h. This file comes with
most programming environments for Windows, including Visual C++.

6: Windows and the Win32 API

Although you can also get it with Microsoft's Windows Platform Software
Development Kit (SDK), Windows.h is included with this book as part of
Visual C++, so you don't need the separate SDK.

~I OlE The Platform SDK was formerly known as the Win32 SDK.

Central Windows Concepts
The Win32 API functions are built around a set of underlying concepts,
including a graphics environment, multiple overlapping windows,
menus, icons, messages, files, resources, multitasking, and using a mouse.
I'll introduce you to each of these concepts in this chapter.

The unifying concept, of course, is the idea of a window. Many functions
in the API operate on windows-creating them, sizing them, moving
them, and so on. Other API functions are for drawing in windows; open
ing, reading, writing, and closing files; communicating with the operating
system or other programs; and much more.

Programming for Different Win32 Platforms
Basing the different 32-bit operating systems on a single API means that
you can program all of the 32-bit Windows variants in much the same
way. While it's true that the API contains some functions you can use
only with Windows NT and others you can use only with Windows 95

and 98, the core of the API is identical across all of these platforms. So, if
you can program for Windows 95, you can also program for Windows 98

and Windows NT, especially if you use MFC.

Multitasking and Multithreading
Windows-particularly in its 32-bit flavors-is a multitasking system. A
multitasking operating system can rll.n multiple programs at the same
time. You already knew that, of course-no doubt, in your role as user,
you routinely run several applications simultaneously. As of Win-
dows 95, multitasking in Windows is preemptive. (Earlier versions of
Windows used a simpler and less effective nonpreemptive approach in
which programs had to cooperate explicitly to share the processor.) In a

211

Getting to Know Visual C++

212

preemptive multitasking environment, the operating system doles out
small slices of time to each running application (or process). Because the
slices are small enough, it appears to the user that several programs are
running simultaneously. In reality, each "sleeps" briefly until its turn
comes around again. We human beings operate on a slower time scale,
so the appearance of simultaneity is convincing.

The modern Windows systems also allow for multithreading within an
application, a concept related to multitasking. Most programs have a
single thread of execution. That is, there is one path through the code,
and each statement along the way is executed in turn. But a program can
split into two or more separate threads of execution that-as in multi
tasking-seem to run simultaneously. In this way, a program can spin off
worker threads that take care of some independent tasks, like printing in
the background, while the user continues to work in the main thread.

Multitasking and multithreading are topics too advanced for this book, so
I won't say much more about them. However, if you reach a point where
you want to try them, you'll find that the MFC library makes the process
somewhat easier.

The Least You Need to Know About Windows
You've already sat at a computer that runs the Microsoft Windows operat
ing system-Windows 95, Windows 98, or Windows NT-or you
wouldn't be reading this book and thinking of programming for Windows
yourself. You've seen the Windows desktop, the taskbar at the bottom of
the screen, the Start menu, and so on. You know what a window looks
like and how to work its controls with the mouse.

So picture yourself at your PC, perhaps using Microsoft Word, as I am to
write this book. Sit for a minute without touching the mouse or the key
board. Not much happens, right? The caret-the blinking cursor at the
insertion point in your text-blinks. If you're using Word 97 or later and
you have the assistant displayed, you might see a cartoon paper clip
wiggle or move its eyes from time to time. ~ut while you just sit there, not
much else is going on.

6: Windows and the Win32 API

Now start typing. The new text you type at the keyboard appears at the
caret position. Next, select some text with the mouse. The text is high
lighted. Click the Bold button on the toolbar. The selected text is redrawn
in boldface print. With each of these actions, also called events, some
thing happens while you, the user, control the pace and direction.

Events
Microsoft Windows is a user-driven system-meaning one that spends
much of its running time waiting for the user to do something so it can
respond. Such systems are also called event-driven. When the user
presses a key, moves the mouse, or clicks a mouse button, the computer
hardware lets Windows know that an event has occurred, what kind of
event it was, when it happened, and where it happened in relation to the
screen (at a particular set of coordinates inside a particular application's
window, for example).

Events are generated in one of three ways. The first is through input de
vices, such as the keyboard and mouse. The second is through visual ob
jects on the screen, such as menus, toolbar buttons, scroll bars, and the
controls in dialog boxes. (True, you generate visual events with a mouse
or keyboard too, but Windows ultimately sees them as coming from the
objects you activate with your hardware.) The third avenue is from inside
Windows itself, as, for example, when a window that was obscured by an
other window is suddenly uncovered.

How does Windows know where to display the typed character or how to
interpret a mouse click-and-drag across an area of the screen as a text se
lection? In other words, how does Windows tell Word about these events,
and how does Word translate events into visible manifestations in its
window? Through messages.

Messages
When Windows learns of an event like the ones I just described, it com
poses a message, bundles relevant information (such as location and
time) into a data structure to accompany the message, and sends the mes
sage to the appropriate program. Messages in Windows are constants

213

Getting to Know Visual C++

214

defined with macros in the Windows.h file (or in one of the files that
Windows.h includes). Message constant names have the form WM_XXX;
for example, WM_QUIT, WM_CHAR, WM_LBUTTONDOWN, WM_

COMMAND. The message gets routed to the right program based on the
following information:

• Which application is currently active

• Which window in that application is currently active

• Where the cursor was at the time of the event

Windows puts the message into the target application's message queue,
where it waits with any other pending messages until the application is
ready to retrieve and process it. Under 32-bit Windows systems, everyap-

. plication has a message queue of its own.

The message loop

Inside the application, there's a message loop. In code, this loop looks
something like the following:

while(GetMessage(&msg. NULL. 0. 0»
{

}

TranslateMessage(&msg);
DispatchMessage(&msg);

This little loop continues to operate as long as the message it retrieves
from the application's message queue is not WM_QUIT. That message
causes the loop to end because GetMessage returns false when it finds
WM_ QUIT, and the application terminates. But while the loop continues,
it calls the Win32 API function GetMessage to retrieve the next message.
If there are no messages in the queue, GetMessage sits there and waits for
one. (This just means that the user isn't doing anything that the program
needs to know about.)

When GetMessage does return a message , the loop hands it off to the
TranslateMessage function to see whether it is a message from the key
board that needs a little extra work. TranslateMessage converts raw
keyboard messages into WM_CHAR messages designed to convey easy-to
use information about the character that was typed. TranslateMessage

6: Windows and the Win32 API

separates commands delivered by keyboard, such as combinations like
Ctrl+X, from typed alphanumeric characters and printable symbols.
TranslateMessage does nothing with nonkeyboard messages.

Finally, the DispatchMessage function determines which window in the
application (if there's more than one) should get the message and sends
the message on. Then the loop goes around again.

Message handlers

What happens to an incoming message inside the receiving application
depends on what you, the application programmer, have done. There are

. two main possibilities:

• You wrote a handler-some code that handles a particular message.
If a handler for the message exists, the handler code executes to
process the message.

• You didn't write a handler for that message. Instead, you opted to
pass that message back to Windows for whatever default processing
Windows needs to do. In traditional Windows programming, you
do this with a call to the DefWindowProc ("default window proce
dure") function.

Either way, somebody does something with the message-either your ap
plication, in the handler you provided, or Windows.

What happens in the handler for a message depends on what you need to
accomplish. But there are many standard or typical things to do for par
ticular messages. For example, a handler for the WM_PAINT message
sent when your window needs to repaint its contents-takes steps to
reconstruct the image you're displaying in the window. You might need
to redraw the visible lines of text, or the rectangles and ellipses the user
has drawn, and so on. One message for which you'll frequently write han
dlers is WM_COMMAND, which is used to process commands from
menus and buttons. WM_COMMAND handlers, often called simply com
mand handlers, lie at the heart of your interactions with the user. A com
mand handler might display a dialog box, perform a calculation, select an
option, or initiate some other action.

215

Getting to Know Visual C++

216

Who calls whom?

You may have noticed that sometimes you seem to be in charge, and
sometimes Windows does. Inside the code you write for your message
handlers, you call various Win32 API functions (via MFC). But you don't
call your handlers-Windows does. There's a back-and-forth here. Most of
the time, your code just sits there waiting to be called, while Windows is
off doing all the millions of mysterious things it does without any help
from you.

Think of it this way. Windows is self-contained. If you don't write a han
dler for one of the several hundred Windows messages, does Windows
crash? No. If you don't provide a handler, Windows provides ohe-called
DefWindowProc. But if you do provide a handler, Windows calls yours
first. You get the chance to intercept the message and deal with it your
way instead of letting Windows use its default. (You might do something
with the message and still pass it on to DefWindowProc, so that both your
handler and Windows' handler ate called, but that's another story. You
still get the first chance.)

Inside your handler, you're in charge. Of course, you're mostly just taking
advantage of the many services that the Win32 API provides. In practice,
you'll seldom provide handlers for more than a few handfuls of the hun
dreds of possible Windows messages.

How does Windows know which functions to call? In Windows programs
written in C (or in C++ without MFC), you specify the name of your
windproc (window procedure) to the operating system at the beginning
of the program. Then you write a function with that name. In Windows
programming parlance, this function is known as a callback function,
since it gives Windows a way to call you back in order to call your han
dlers. In the window procedure, you use a C/C++ switch statement to pro
vide handler code for the Windows messages you expect to receive and
process. When it has a message for your window, Windows calls your
window procedure. In MFC programs, you don't write the window proce
dure. Instead, you write handler functions, which MFC calls via a mes
sage map every time it receives a message for your window for which
you've supplied a handler function.

6: Windows and the Win32 API

Drawing
Like the Apple Macintosh operating system and several similar systems,
Microsoft Windows has a graphical user interface (GUI). Instead of inter
acting with a program solely by typing text in response to prompts-the
old-fashioned approach, as in the console applications we've been writ
ing, for instance-the Windows user interacts with the program through a
visual display. The display includes elements such as menus, toolbars,
scroll bars, and buttons in dialog boxes. While it's possible to operate
most programs for Windows with the keyboard, most are designed to be
operated by moving and clicking a mouse. For example, the user clicks a
menu title, causing the menu to drop down. Then the user clicks a com
mand or choice on the menu.

All of the menus, buttons, and other controls that the user sees on the
screen are actually drawn there. A button in a dialog box, for instance, is
just a bitmap-a collection of pixels in which some are turned on and
some are turned off. It's just a picture, although it may look pretty three
dimensional. Hence it must be drawn, either by Windows or by code that
you write.

Child windows and owned windows

In Windows, each of these controls and other user-interface objects is also
itself a window. For example, a dialog box is a window, and each of the
buttons, edit boxes, and other controls inside the dialog box is- a win
dow-a child window of some parent window. The parent of a dialog box
control, for example, is the dialog box window. Child windows are con
tained by their parent windows-the child is entirely within the parent.

A window can also" own" other windows, even if the owned windows
don't fall entirely within the owner's space. For example, a dialog box
window is owned by some other window, such as the application's main
frame window or a child of that window.

How ~nd when drawing happens

How and when does drawing occur? That is, how does Windows know
when to draw a child window? Through messages. Windows handles
many of its own messages. And how does your code know when to draw

217

Getting to Know Visual C++

218

the items it's responsible for, such as the text inside a word processor
window? The drawing you do-also synonymously called painting
occurs at the following two points in relation to your program:

• First, when your program initially displays a window, it needs to
paint the window's interior, or client area, for the first time. The
client area is the space surrounded by the window's borders, title
bar, and other framing elements, as shown in Figure 6-1. The client
area is almost always your responsibility, while the frame around it
is Windows' responsibility.

• Second, any time part of the window becomes "damaged," or in
validated, you need to repaint it. This can occur, for instance, when
some other window covers your window, and then goes away so
your window is fully visible again. Windows doesn't save an image
of what was in the window, so it can't redraw the whole thing by
itself. It therefore notifies you that you need to repaint the window's
contents. (It's possible, that the data to be drawn might have
changed while the window was obscured. So it needs to be re
drawn, regardless.)

WM_PAINT messages

In either of the cases just described, Windows notifies you by sending you
a WM_PAINT message. You nearly always have to write a handler for
WM_PAINT. Sometimes Windows can pass along information that lets
you redraw just a portion of the window's contents. Otherwise, you need
to redraw the whole thing.

By the way, Windows prioritizes the messages that show up in your
application's message queue. And it so happens that WM_PAINT is nor
mally given a low priority. Thus, your window could go unpainted for a
while. Think back to your own role as a user of Windows. Aren't there
times when a window just hangs there with half its contents obliterated
while some time-consuming, high-priority operation is going on? The
high-priority operation temporarily hogs the processing time, and the re
painting has to wait its turn. Of course, Windows does it this way because
painting is less crucial than operations like recalculating a spreadsheet.

Figure 6-1.

6: Windows and the Win32 API

Such operations must be done first, and an unpainted window is just a

minor inconvenience that clears up soon enough.

System menu

Client area

The parts of a frame window.

The Device Context

Window border

Horizontal scroll bar

Minimize button
Maximize button

Close button

Scroll bar
thumb

Vertical
scroll bar

Scroll bar
shaft

Scroll bar
arrow

Now then. When asked to paint, how do you do it? Well, there you are
with a window. Windows is responsible for repainting the frame, while
you're responsible for repainting the interior-the client area. (You're the
client.) Corresponding to your client area, there's a Windows object
known as a device context (often abbreviated as "DC"). A device context
is really just a data structure maintained by Windows. It contains infor
mation about the area (window) it's for, the current background color or

pattern of the area, what parts of the area are currently invalid (in need of
repainting), and so on. In fact, the device context contains several smaller
objects-a brush, a pen, and a font-that you use to draw in the client
area. The most important object in the device context is its bitmap-this
is a logical surface onto which you draw, and it's the bitmap that Win
dows displays on a screen, a printer, or some other output device.

219

Getting to Know Visual C++

It might be more helpful to think of the device context as your painting
studio. It contains various painting and drawing tools as well as a canvas
to paint on (the bitmap).

You can change these tools and the other attributes of the device context
to suit your needs. For example, you can call a function that changes the
text color from the default black to, say, red. Or you can substitute a dif
ferent font for the default one. But you can't possibly draw without a de
vice context. That's important. In any of your handlers that draw, you'll
have to obtain a device context somehow. Sometimes you'll be handed a
device context, and away you go. But sometimes you'll have to take steps
yourself to obtain one. I'll show you how in Chapter 15.

ffillOTE Every time you get a device context, Windows sets it to the default
6~1" attributes. So you can't, say, change the text color to red in function A, and

then get a new device context in function B and expect the color still to be
red. You'll have to set any nondefault attributes each time you obtain a
fresh device context. (Don't worry-there are ways around this.)

Handles

The way you get access to a device context is through a handle that Win
dows returns to you. The variable type for a handle to a device context is
HDC (defined in Windef.h). The handle grants you certain rights and
abilities inside your window. Providing a handle to some object or re
source you need is a common Windows activity. In fact, Windows pro
vides handles to many types of objects: windows, brushes, fonts, and so
on. Each kind of object has an associated handle type: HWND, HBRUSH,

and HFONT, for example. Table 6-1 shows the more common Windows
objects for which handles can be retrieved.

Win32 API functions

With the HDC (handle for a device context) in your possession, you can
call well over a hundred Win32 API functions for drawing in your
window's client area. For example, Table 6-2 shows just a few of the most
common drawing functions:

6: Windows and the Win32 API

Windows Object Associated Handle

Accelerator table HACCEL

Bitmap HBITMAP

Brush HBRUSH

Cursor HCURSOR

Device context HDC

File HFILE

Font HFONT

Icon HICON

Menu HMENU

Palette HPALETTE

Pen HPEN

Region HRGN

Window HWND

Table 6-1. Some common Windows objects and their handle types.

Win32 Function What It Does

TextOut Draws a string of text at a specified location in the client area

Rectangle Draws a rectangle at specified coordinates

Ellipse Draws an ellipse at specified coordinates

GetBkColor Gets the current background color

SetBkColor Sets the background color

Move ToEx Moves the drawing position to a specified location
(MoveTo in MFC)

LineTo Draws a line from the current position (see MoveToEx) to a
specified position

Arc Draws an elliptical arc-a segment of an elliptical curve

Polygon Draws a polygon with two or more vertices

Pie Draws a pie-shaped wedge, like the wedge in a pie chart

Table 6-2. A small sampling of the many drawing functions associated with a device context.

221

Getting to Know Visual C++

222

In MFC, the functions just named, and many more, are member functions
of a class called CDG. CDC stands for "device context class." For more in
formation, check the Help index for CDC. You can also check the Help in
dex for device contexts and select the topic "Device Contexts" in the
Topics Found dialog box.

The part of Windows responsible for device contexts and drawing func
tions is known as the Graphics Device Interface (GDI). GDI is a complete
two-dimensional drawing system. It has the device context, drawing func
tions, and several coordinate systems for measuring and locating the im
ages you draw with it.

Coordinates
Many of the drawing functions listed in Table 6-2 require you to specify
location information when you call them: a point, a rectangle, two points,
an array of points, and so on.

To specify locations for drawing and other tasks, you need a coordinate
system. Figure 6-2 shows a couple of familiar coordinate systems that
you'll probably recall from high school algebra and geometry. A coordi
nate system consists of an origin (or starting point) and in a plane (like
the flat drawing surface in a window's client area) two axes, one horizon
tal and one verticaL Distances are measured along the x (or horizontal)
axis, and the y (or vertical) axis, from the origin-the point where the x
and yaxes come together. The origin's coordinates are (0, D)-that's (x, y).

In some coordinate systems, the x and y values can be negative to one
side of the origin and positive to the other side.

Windows is more than generous in supplying not one but eight coordi
nate systems, each for a different purpose. The default coordinate system,
shown in Figure 6-3, is simple and will meet the majority of your needs.
I'll describe other coordinate systems as the need for them comes up. The
default coordinate system looks a little strange-its origin is at the top left
corner of your window's client area. You might expect it at the bottom
left, with y values increasing upwards and x values increasing to the
right. But there's logic to this placement. You'll see why it makes sense to
start there when we get to scrolling the window's contents, in Chapter 15.

And think about this: on a page full of text (in most human languages),
what corner of the paper does the text start closest to? (See Figure 6-4.) In

Figure 6-2.

Figure 6-3.

6: Windows and the Win32 API

the default coordinate system, positive x values do indeed increase to the
right of the origin, but positive y values increase downward from the ori
gin. There are no negative coordinates in this system, but some of the
other systems do allow negative values. (On that page of text, is there any
where to put text above or to the left of the origin 1)

jl+

(-x, y) (x, y)

~~+ - Origin
(0,0) ;r ...+

-,
(-x, -y) (x, -y)

(x, y)
V <'.

_ , r

Origm ..
(0,0) j~ '+

Two typical coordinate systems.

x +

y

+ Client area

.(x,y)

Unit of measurement: pixels

The default coordinate system in Windows.

223

Getting to Know Visual C++

Figure 6-4.

224

x +
(0,0) -+

~

~

y
~

~

+t ~

Orientation of a page of text.

Logical coordinates and device coordinates

Of course, having made coordinates look fairly simple, I'm about to com
plicate matters, but I won't take you too far down that road in this chap
ter. Remember that the coordinate system is part of the device context.
And the device context you work with when you draw in your window is
associated only with the client area of that window. This means the origin
is at the top left corner of the client area portion of your window. There
are no coordinates in this system for points outside the part of the win
dow that belongs to you. Sometimes, however, Windows must pass you
location information that is relative not to your wi,ndow's coordinate sys
tem but to the entire screen. In cases such as mouse-related messages for a
window's nonclient area (its title bar, scroll bars, borders, and so forth),
Windows passes you a point in screen coordinates. (See Figure 6-5.) That
means the coordinates are relative to an origin at the top left corner of the
whole screen, not the top left corner of the client area.

A window can be viewed as a device as well-after all, it has a device
context associated with it. One kind of coordinate system in your win
dow, then, is called a device coordinate system. Device coordinates are
physical locations on the screen, relative to a window's origin (or some
times to the whole screen), measured in pixels. However, you usually
want to draw in your window's logical coordinate system, so you have to
translate the point passed to you into your own coordinates-see the
sidebar "Physical vs. Logical Coordinates." Logical coordinates can be in

Figure 6-5.

6: Windows and the Win32 API

pixels or other units, such as inches. Your window's device context de
fines the units used. Just keep in mind, for now, that there will be times
when you must convert from one coordinate system to the other.

(0,0) " x +
Device ~-----..,.-----.....
origin

y
, +

.. Window origin

+ •
(100, 1 OO)=Window coordinates

(600, 500)=Screen coordinates

Screen coordinates vs. window coordinates.

Physical vs. Logical Coordinates

Physical coordinates are measurements on a hardware device, while
logical coordinates are measurements on a conceptual surface such
as a text page or a drawing canvas.

In later chapters, we'll develop a drawing application that lets you
draw on a surface. That surface is a logical construct unrelated to the
layout of a monitor screen, a particular printer, or any other physical
device (although we will size the surface for convenient printing on
two pages).

(continued)

225

, Getting to Know Visual c++

226

Physical vs. Logical Coordinates continued

In solving real-world problems, we tend to think in logical terms
locations and directions on a canvas, say-not in conlputer terms.
Only when we implement the solution on a computer do we have to
think in terms of physical computer devices, as \",hen \lve convert
mouse rnovements on the screen to coordinates on a logical drawing
surface. The computer can tell us where the mouse "vas clicked, rela
tive to the screen (or to a window on the screen). But we usually
must translate that location into a location in our logical space.

Different logical spaces use different units of measurement. A logical
unit in one scheme might be a pixel, while another scheme might
use an inch or a millimeter.

Your window's default logical coordinate system is based on units that
correspond to pixels on the screen. Thus a point is so many pixels down
and so many pixels to the right of some other point, such as the origin.
Luckily, the device coordinate system is also measured in pixels. So de
vice coordinates and default logical coordinates are at least measured in
the same units, even if their origins are in entirely different places.

Mapping modes

The part of a device context that determines which of the eight logical co
ordinate systems it uses is called the mapping mode. This is just a code
that indicates which system the device context is using.

The default mapping mode is named MM_TEXT. That name doesn't mean
"this is the mode to use when you're drawing text." All it means is that,
like text on a page, its origin is at the top left corner and its x and y values
increase to the right and downward, respectively. It happens that
MM_TEXT is pretty convenient for drawing text in a window. But it may
not be so convenient when it comes to printing that text through a device
context that is associated not with a window but with a printer. You'll see
what I mean and how to deal with it in Chapter 17.

Table 6-3 describes the other mapping modes in brief.

Table 6-3.

6: Windows and the Win32 API

Mapping Mode Distance Corresponding Orientation of the
to One Logical Unit xand yAxes

MM_TEXT 1 pixel C+x +y
C+x

MM_LOMETRIC O.lmm -y
C+x

MM_HIMETRIC 0.01 mm -y
C+x

MM_LOENGLISH 0.01 in. -y
C+x

MM_HIENGLISH 0.001 in. -y
MM_TWIPS 1/1440 in. (0.0007 in.) C+x

-y

MM_ISOTROPIC User-defined User-defined
(x and y scale identically)

MM_ANISOTROPIC User-defined User-defined
(x and y scale independently)

An overview of the mapping modes (and logical coordinate systems) in
Windows. This table is from Programming Windows 95 with MFC, by Jeff
Prosise, (Microsoft Press, 1996).

,lell OTE Table 6-3 introduces several unusual terms, which I'll explain briefly
6ii~ here. One twip corresponds to 1/20 of a point, which in turn is about 1/12 of

an inch. So a twip is (1/20 * 1/12), or 1/1440 of an inch. Points are a traditional
measuring system for typographical locations and sizes. The MM_ISOTROPIC
and MM_ANISOTROP/c modes allow you, the programmer, to define your
own coordinate system. The difference between the two (although not
something we'll worry about in this book) is that the x and y axes scale
identically in the MM_ISOTROP/c mode but can be independent in the
MM_ANISOTROPIC mode.

Life Cycle of an Application for Windows
To wrap up the Windows fundamentals, let's take a look at the execution
of an application from start to finish. I'll focus on the big picture, not
every little detail.

227

Getting to Know Visual C++

228

1. The user starts the application, and Windows calls a function
called WinMain.

2. WinMain registers a "window class"-information that identifies
the type of window the application uses as its main window. (This
"window class" is not the same as a e++ window class, such as
CWnd. But you'll seldom need to think of the kind that WinMain
registers. Registering a window class means defining its characteris
tics so that Windows can use the class to create windows according
to your preferences.) It's at this point that you use WinMain to
specify the name of your window procedure function, which Win
dows then calls each time it needs to deliver a message to your
window.

3. WinMain calls the Create Win dow API function to create the
application's main window (using the window class information).

4. WinMain then calls the ShowWindow API function to display the
window.

5. WinMain calls the Update Win dow API function to cause the appli
cation to draw the contents of its client area.

6. WinMain enters a message loop and stays in that loop until a
WM_QUIT message appears. In the loop, it calls the GetMessage
API function to get a message from the application's message
queue, calls the TranslateMessage API function to do any transla
tion needed for keyboard-related messages, and calls the
DispatchMessage API function to dispatch the message to the ap
propriate window in the application (via its window procedure).

7. The appropriate window receives a Windows message by way of
DispatchMessage, determines which message it is, and executes the
appropriate message-handler code. If it has no handler for the mes
sage, it calls the DefWindowProc API function to provide default
processing.

8. When the application's message loop encounters a WM_QUIT mes
sage, the message loop exits, WinMain exits, and Windows termi
nates the application.

6: Windows and the Win32 API

That's a very high-level and fairly language-neutral description of the pro
cess. The description could be for an application written in C or one writ
ten with MFC. (That's why I haven't shown you any code here.) You'll
soon see how some of the steps described "disappear into the woodwork"
in MFC-and we'll look for the places they disappear to. This is one of
the many ways that MFC takes over tedious chores that'the programmer
formerly had to do for every new program. Where C-Ianguage program
mers for Windows have to write their own WinMain function and their
own code to call the right message handler, MFC programmers mostly just
write the handlers.

Try It Yourself

Start familiarizing yourself with the Win32 API. This won't be wasted
time because MFC uses the same API. Here is a suggestion: Check the
Help index for Win32, and select the topic "Win32 Topics" in the Topics
Found box. Explore the items you find there.

~Jil' IP You might want to add these topics to your Favorites list in Help so
~'~I that you can easily find them again. In the left-hand window of Visual c++

Help, click the Favorites tab. To add the current topic to your Favorites
list, click Add. To find the topic later, return to the Favorites tab and click
the topic you want, and then click Display. The topic appears in the right
hand window.

What's Next?
In Chapter 7, you'll get to look at some real MFC code. I'll have you run
the Visual C++ App Wizard to create a set of starter files for an MFC appli
cation. I'll show you what that starter application can already do. Then in
Chapter 8, we'll tour the MFC code to see how it's divided into classes,
and we'll look for the fundamental Windows elements I introduced in
this chapter. You'll also write your first small MFC application and start
on the book's main example application.

229

Chapter

The MFC AppWizard:
Code for Free

In this chapter, you'll begin to understand what Microsoft Foundation
Class Library 6.0· (MFC) is, why it's so important to Microsoft Visual C++,
and how it relates to programming for Microsoft's Windows 95, Windows
98, and Windows NT.

This chapter's focus is how to be productive with wizards. Visual C++
comes with a whole set of application wizards that help you get your
project off the ground fast. I'll introduce you to the Visual C++
AppWizard, which gets you going with a set of starter files, and we'll
write and build a very simple first MFC application. Then, in Chapter 8,

I'll use those starter files to take you on a tour of MFC.

We'll also take the first step in developing the main application for the
book, a drawing application called MyDraw.

MFC, the Win32 API, and the Learning Curve
Because the Microsoft Win32 API has hundreds of functions, it can be
daunting to learn. If you're working in C, you can count on a steep learn
ing curve over at least six months to a year. You can also count on estab
lishing a deep, meaningful relationship with Charles Petzold, the guru of
programming Windows in C, through his book Programming Windows, 5th

edition (Microsoft Press, 1999).

231

Getting to Know Visual C++

232

The C language has been the standard for programming Windows for years,
but more and more programmers are moving to C++, partly for the object
oriented benefits of the C++ language, and partly because of MFC. MFC
simplifies programming for Windows and makes you a more powerful
programmer, able to add features to your applications that you might not
otherwise even consider. You may, however, still develop a relationship
with Petzold, or perhaps with Jeff Prosise, whose book Programming
Windows 95 with MFC (Microsoft Press, 1996) is the MFC equivalent of
Petzold's bible. But even MFC isn't dead easy, and you still have to climb
the learning curves for Windows programming and C++ to use it. (See
Chapter 21 for more information about the Petzold and Prosise books and
other sources of information about programming for Windows, especially
in C++ with MFC.)

Although Windows itself is written in C, there's an undeniable object
orientation to it. The objects are things like windows, dialog boxes, device
contexts, controls, brushes, pens, fonts-the objects whose handles we
covered in Chapter 6. Each of these objects has some data associated with
it. And each object also has a set of operations you can perform on it.
Those are essential ingredients of object-oriented programming (although
full-fledged OOP is much more than that).

Because Windows is object-oriented, it makes sense to program it with an
object-oriented language. For this purpose, C++ is much better than C.
C++ includes classes, which as we've seen, are powerful tools for repre
senting objects, their attributes, and their behaviors.

The Class Library
You can program for Windows in straight C++. But a far more potent
approach is to use a class library. A class library, such as the MFC library,
supplies well-designed and thoroughly tested classes to represent the
fundamental Windows objects. There's class CWnd, for example, to
represent windows. And class CFrame Wnd to represent windows with
frames. And classes CDialog for dialog boxes, CButton for pushbutton
controls, CBrush for paintbrushes, CString for strings-over 200 classes
as of MFC version 6.0.

Figure 7-1.

7: The MFC AppWizard: Code for Free

Figure 7-1 shows what the MFC class hierarchy looks like with only a few
of the most important classes. You can check the Help index for hierarchy
chart to see the whole thing. These classes contain thousands of lines of
well-tested and time-tested code, written by some of the best programmers
in the world.

A portion of the MFC class hierarchy.

The Application Framework
MFC is more than just classes, though. Taken together, the classes repre
sent the framework of an application for Windows. What does that mean?
Think back on your own programming in Basic, Pascal, C, or some other
language. If you've had to write similar applications repeatedly, you
probably had some sort of program skeleton to make the job easier and to
make the resulting programs more alike. (We used a very simple program
skeleton in the early chapters, one the wizard created for us.) MFC is

233

Getting to Know Visual C++

234

something like that. But because MFC is written in C++, it's far easier to
create a set of classes that contain well-designed, prefabricated solutions to
many of the needs of programs for Windows.

MFC does just that. Its class CWinApp, for example, encapsulates the
essence of an application for Windows. The class houses code for the
following activities:

• Initializing the application

• Creating its main window

• Operating a message loop to obtain messages from the Windows
operating system and dispatch them to the program's windows

• Quitting the application

• Cleaning up after the application

Class CWinApp also provides numerous hooks-places where you can
insert your own code to affect what the application does. In fact, finding
and using such hooks in all of the MFC classes is much of what MFC
programming is all about. I'll say more about this along the way.

Other classes also contain plenty of code for things you'd otherwise need to
do yourself. Class CScrollView, for instance, manages scrolling the contents
of a window. Class CDocument contains code that greatly simplifies saving
your data to a file, in conjunction with class CArchive, which abstracts the
mechanics of writing and reading complex networks of objects to files or
other data storage media. Class CString makes it extremely easy to work with
string data-much easier than it is in C, or in C++ without MFC.

Throughout this book, I'll sometimes refer to MFC as the framework, the
application framework, or the class library. The MFC documentation uses
those terms as well.

By the end of the next chapter, you should understand the basics of using
MFC to program for Windows. The rest of the book will fill in the details,
at least those appropriate to an introductory book.

7: The MFC AppWizard: Code for Free

AppWizard: Code for Free
It's time to create some MFC code, and to do so we'll use the Visual C++
AppWizard for MFC executables. We used AppWizard earlier to create
Win32 Console Applications. That AppWizard had one "page" to fill out.
The MFC App Wizard has six pages.

Working Along with Me
As I've said several times already, the best way to really learn MFC and
c++ is to work along with me as I show you example programs. At each
stage, I'll tell you what you need to do. One important note about working
along: I'll be introducing new versions of the example programs that con
tinue where the previous version left off. For instance, we're about to cre
ate a simple example called MyDraw. This example is step 0 of a dozen or
so steps throughout the book (counted from 0, as befits a c++ programmer).
We'll be adding all sorts of features to this program.

When we get to step 1, I'll call my example MyDraw again, but it will be
located in a folder named \learnvcn \Chap09\MyDraw1. The step 2 ex
ample will be in a folder named \learnvcn \Chap11 \MyDraw2, and so on.
This will distinguish the examples for the various steps of MyDraw.

\ Ti' IP Instead of naming your programs MyDrawO, MyDraw1, and so forth,
"~I you should simply create one program named MyDraw. Then when we get

to step 1, step 2, and so on, add the necessary code to your MyDraw files.

By the way, sometimes I'll have you remove old code in your version to
replace it with something beUer. You can also find my step-by-step versions
of MyDraw in the appropriate chapter folder in the companion code, listed
there by step number. Use them for comparison if you have problems with
the code you've entered for a step. Or use them if you want to jump in at
step 2 or 3' instead of beginning with step O.

Follow these procedures to start working along with me. (Some parts of
this will look familiar from the programs we created earlier in the book.)

235

Getting to Know Visual C++

236

~ Try it now

Figure 7-2.

To begin the new MyDraw project, follow these steps:

1. Select New on the Visual c++ File menu.

2. In the New dialog box, click the Projects tab. Figure 7-2 shows the
New dialog box.

3. In the list of project types, click MFC AppWizard (exeJ. Up until now,
I've always had you click the Win32 Console Application option,
but with MFC we change gears.

4. In the Project Name box, type a project name. For this example,
type MyDraw.

5. In the Location box, click the small browse button (... J. In the Choose
Directory dialog box that appears, choose a directory where you want
the project created. Then click OK.

6. In the New dialog box, the following options should be set:

• Create New Workspace should be selected.

• The Platforms box should have Win32 selected.

7. Click OK.

Fde~ , Prol~CI?' I ,\~O;Kt~~~J Other Documents k: ,
. ~ATL COM AppWlzard
~ Custom AppWizard
d Ddtabase Project

D evStudio Add-in Wizard
• - Extended Stored Proc Wizard

ISAPI Extension Wizard
... _MdkefiJe

MFC ActiveX ControrWizard
, !:J MFC AppWizard (dill

't~ Utility Project
~ Win32 Application

- Win32 Console Application
~ Wln32 Dynamic-Link Library
L!J Wln32 Static Library

,!V(,"\'

,':1', .

,. Proje~t!!~~, ':)'~'I: ",
1 I~YDraW .

['Lo~ati6~ <- 11~! l' _ 1 '> v

l '2~ '_I:

: IE _~Learn MFC NO:\C~de\~d~ j"
J > A , ,v ,- , V, >) , ~ ~> v <

':"'" ,'!) "/

" F, Create neY>l worKspace '

. r:r~::;r:~io;;.P:'i·;D·
I, \ Platfor:ns:

:':-f~Wln32

The New dialog box: an MFC application.

Figure 7-3.

Table 7-1.

7: The MFC AppWizard: Code for Free

AppWizard proper-the MFC AppWizard for executables-appears as
shown in Figure 7-3. This time the AppWizard guides us through a se
quence of six numbered steps, or pages, each containing a group of related
options. When you finish choosing options for a page, click the Next but
ton to go to the next page. When you finish the last page, the Next button
will be unavailable. Click Finish. (You can use the Back button to return
to any page at any time before you finish.) For this exercise, fill out the
pages as described in Table 7-1 and shown in Figures 7-4 and 7-5.

~~m5ti~· !~~' ,·.what tVPe"of'''P~'Cd\l~n wouidl'o~ ;~e';o Clea;~)" file Edit View Yi.dow Hel ' _..>J ~v - > v l A I

:;;~ ~~~I~do§~eA" !.: ~:·'x,.' ,:.,' "I Select this.
':r'11uR1PledOl:uments' ",) .

'i(' 'Q~a'~'~f~f~/.i·:::·:,r;,:,:(~: :'t~:"'{ ",
< P' I D~c ... ~e~;1 ;,~w' ar(,h~~~t~,~ su~o;t;'

I ~~~c1',:7", --;--:---;-:---;-::---"."...,..,...,-l1lI ~ '" -- , ,
Leave checked.

App Wizard Step 1.

Step in AppWizard

Step 1

Step 2

Step 3

Step 4

Action

Select Single Document. (I'll discuss single document
interface applications shortly.) Make sure Document/
View Architecture Support is checked.

Leave the page as it is. We won't be doing any database
work.

Clear the ActiveX Controls box. We won't implement
any OLE functionality. Otherwise, leave page as it is.

Click Advanced and, in the File Extension box, type
drw. (See Figure 7-4 on the following page.) Otherwise,
leave the page as is. Click Close. (Eventually, the MyDraw
application will save files with a .drw extension.)

Options to choose as you create the MyDraw application
with App Wizard.

(continued)

237

Getting to Know Visual C++

Figure 7-4.

238

Table 7-1 continued

Step in AppWizard

Step 5

Step 6

New Project
Information

Action

Leave page as it is. I'll leave the Windows Explorer ap
plication style as an advanced exercise.

Select class CMyDrawDoc. In the Header File box, change
the name to DrawDoc.h. In the Implementation File box,
change the name to DrawDoc.cpp.
Select class CMyDrawView. In the Header File box, change
the name to DrawVw.h. In the Implementation File box,
change the name to DrawVw.cpp. (See Figure 7-5.)
Click Finish.

Take a look at the New Project Information dialog box,
then click OK.

':\ Til IP The wizard's proposals for filenames are usually fine, but making the
~,,:~~I changes in Step 6 in Table 7-1 will make your filenames more closely resemble

mine. That should keep things less confusing. (I use 8-character filenames
for technical reasons relating to the book's CD-ROM disc.)

MFC AppWlza.d ' Step" of 6 D EJ

'\ ~~f~~;~o.~q>YO~I~;t~:m~~_~,e? '

, - P"~DOckm toDt6ar.; :; ~> lV, ~~
r.f Initi~ !i~~ b~r' ~:'

:. p' f.lntmg.and-p.lrd ';;e.'..n~ ; :': ,

..
Edit V,e:. Vi.do. He'

";r,ConteHHen$ltIVeH~lp> __ --~--t-- Keep the
'~P';~ ~ont!Ols, ~ ~ , . I.,' - default settings.

Eoi. I

1!...l\=<,.~;::--.--~-~--4' ,r:MAPlfMestagongAPI) -, "
~~==i"'=====9iiiiI;~: ~cYiin~?~~_r?~k~~ ___ :J, ,-:>,-

How'doyou want YOU~ t(jol~!4 to look} :
; ,

AppWizard Step 4.

Open this to specify
file extension.

Figure 7-5.

7: The MFC AppWizard: Code for Free

MFC AppW'lzard Step 6 of 6

,: ~~:~::~~~~'~~ .~'~: :f~!!~~;~'>'
BoOte cia,s;, ,: ' : " ,lm~el'nentation hIe:: '

',iCV,ew 8' jorawvw cpp
<A/rJr'>T)/l~~"')-'«< :>. ,','-..:\'-, (-\ ~ f;:;": - 'AS:

App Wizard Step 6.

Edit filenames for
these classes.

Edit these names
to 8.3 filenames (8
characters with a 3-
character extension)
for use with this book.

For more information about App Wizard options, check the Help index for
MFC EXE program options in AppWizard. Also see the "Try It Yourself"
section at the end of this chapter.

We end up with a MyDraw directory-placed where we specified. It contains
two subdirectories, one called Debug (which is empty) and one called Res
(for resources, which initially contains four files), as well as 18 or so files
at the root of the MyDraw directory (given the options we chose). The most
important file extensions for you to recognize are summarized in the Help
topic "File Types Created for Visual C++ Projects." To see that topic, check
the Help index for file types, and select the subtopic "for C++ projects."
Also see the file ReadMe.txt in your newly created MyDraw project direc
tory. The wizard furnishes this file to explain some of the other files.

Following the Build Process
Consider this: So far, you've worked your way through one little wizard.
It generated a huge number of files for you. To find out what this step has
bought you, build your MyDraw project. Then run the finished application.

239

Getting to Know Visual C++

240

!~ Try it now
As a reminder, here's how to build the application: On the Build menu,
click Build MyDraw.exe. (Or just press F7.J

The Output window appears if it wasn't already visible. In it, you'll soon
see text much like this:

-------------------Configuration: MyDraw - Win32 Debug---------------
Compiling resources ...
Compiling ...
StdAfx.cpp
Compil i ng ...
MyDraw.cpp
MainFrm.cpp
DrawDoc.cpp
DrawVw.cpp
Generating Code ...
Linking ...

MyDraw.exe - 0 error(s), 0 warning(s)

There. We just completed the build process. Here are some details about
what Visual c++ does for us during a build:

1. Visual c++ runs the resource compiler to compile the resources in
MyDraw.rc and MyDraw.rc2 as well as the icon and bitmap files.
This results in a file called MyDraw.res, which contains the compiled
resources. These and other output files are stored in the Debug sub
directory of the MyDraw directory. Check the Help index for resource
files, and select the subtopic "working with."

2. Visual C++ runs the C++ preprocessor and the C++ compiler to com
pile all of the MFC header files. I covered the preprocessor in Chap
ter 2. Check the Help index for preprocessor and select the subtopic
"overview." The compiler runs after the preprocessor. The first stage
of compiling results in a precompiled head.er file called MyDraw. pch.
Precompiling the headers saves time on subsequent builds. Headers

7: The MFC AppWizard: Code for Free

only need to be built once unless you make changes in them. Check
the Help index for precompiled header files compiler option and
precompiling code.

3. Visual C++ runs the compiler to compile all of the C++ source files
(.cpp files) that constitute the heart of the MyDraw application. This
results in several file types in the Debug subdirectory, especially
.obj files, which are used as input to the linker. Check the Help index
for .GBl files, and select the subtopic "as linker input."

4. Visual C++ generates the program's code. However, at this stage, the
code has lots of unresolved function references and other references
in it. That's what the linker is for. Unresolved references are like
blanks to fill in. The linker locates all the pieces and fills in the blanks.

5. Visual C++ runs the linker after the compiler and ,resolves those ref
erences, resulting in the finished MyDraw.exe file-the executable
program file. Check the Help index for linking. If there were com
piler or linker errors, you'd see instead a listing of errors, file by file.
You need to correct those errors and build again before you can suc
cessfully complete the build process. I briefly explained how to cor
rect build errors in Chapter 1. Also, check the Help index for linker
errors, and select the subtopic "resolving."

\ TI 'IP In the build process, Visual c++ creates a lot of intermediate files: .obj
~~I files, .sbr files, .ilk files, .pdb files, the .pch file, an .idb file, and the .res file.

These can fill up your hard disk pretty quickly. It's good to click the Clean
command on the Build menu from time to time. Clean deletes all interme
diate files except the .pch (precompiled header) file. To re-create them, just
build the project again.

Wf ARNING Clean also deletes the .exe file, so in some cases you might want
,;f'! r V to copy it elsewhere before you use Clean. Of course, you can always build

again to re-create it.

241

Getting to Know Visual C++

242

Running MyDraw.exe
Once you have a successful build for MyDraw, execute the program.

~ Tryitnow

Figure 7-6.

Just click Execute MyDraw.exe on the Build menu (or press Ctrl+F5).
Figure 7-6 shows the running MyDraw application.

:-'::- Unlltled - MyDraw !ll!JE3

I
Reacy r~--INUM i· --:-:-_\>-~i Status bar

MyDraw, version 1.0, step O.

What AppWizard Gives You for Free
At this point, you've added no code of your own to MyDraw. Everything
is strictly AppWizard-generated code and resources. Yet when you run the
application, it already has an amazing amount of working functionality.

:("~ Try it now
'..,

Go through the menus, toolbar buttons, and window controls. Be system
atic. Try everything. The following sections describe what you'll see.

7: The MFC AppWizard: Code for Free

On the File menu

Nearly everything on the File menu works right out of the box. The New
command on the File menu creates a new (empty) document although you
won't see any visible change in the application. After you tryout the Save
command below, try the New command again. (You might not be able to
tell that anything has happened, but it has.) In a single document inter
face (SDI) application like MyDraw, the new document replaces the one
that was open. See the Notepad accessory in Windows for an example of
this behavior. The Open command is even more impressive: it displays
the standard Windows Open dialog box. Try the Save or Save As com
mand next. The Save As. dialog box opens, and you can actually save the
empty .drw file. Choose the Save As command several times, with differ
ent filenames. Then you can use the Open command to open any of the
existing (empty) files. Even the Print, Print Preview, and Print Setup com
mands work, displaying the correct dialog boxes and actually printing the
(empty) file on your printer. Try it! Documents you've recently had open
appear on the Recent Files list below the Print commands.

On the Edit menu

Nothing works on the Edit menu. We haven't implemented the Cut, Copy,
Paste, and Undo commands. Those commands are highly application spe
cific, and the only help MFC provides is several predefined commands
such as ID_EDIT_CUT. Regretfully, time and space preclude my doing all
I'd like. See Charles Petzold's book, described in Chapter 21.

On the View menu and the· Standard toolbar

The View menu works, though. You can toggle its two commands to show
or hide the application's toolbar and status bar. Speaking of the Standard
toolbar, try its buttons-unless they're for unavailable commands, like the
Edit menu commands, the buttons work. And try dragging the toolbar
(click inside its boundary but outside all buttons). You can float it in the
middle of the window, or you can dock it to any side of the window, like
many windows in Visual C++. (I described floating and docking windows

243

Getting to Know Visual C++

244

in Chapter 1.) Meanwhile, as you try the other commands, you see text
strings on the left side of the status bar giving information about each
command.

On the Help menu

The Help menu has only one command, About MyDraw. This command
displays an About dialog box. We can edit the dialog box to customize it.
(Wait until Chapter 19 for a tour of dialog box creation.)

The window controls

Even the window controls work. You can minimize the application, maxi
mize it, restore it, and close it. You can also do those things from the sys
tem menu. To display the menu, cli~k once on the small MFC icon at the
left side of the title bar.

Why should you use AppWizard? That should now be obvious. How is all
of that prefab functionality possible? In the next chapter, let's look at the
code and see. But for now, let's run AppWizard again-only this time
we'll write just a little bit of code to flesh out what the wizard gives us.

Let's Write Some Code
Let's write a very simple MFC application-the traditional "Hello,
World!" application that everybody writes when they start learning a new
language, as we did with the Hello program in Chapter 2. In this case, all
we'll do is draw the string "Hi, MFC!" in the application's view. Let's call
the application "MyHi." Don't worry too much when I mention classes
and functions that we haven't covered before. I'll say considerably more
about them in the next chapter, and by the end of the book they'll be old
friends. (You can see my code for MyHi in the \learnvcn \Chap07\MyHi
folder in the companion code.

!~ Try it now
Here's the procedure:

1. Select New from the File menu. Click the Projects tab. Click MFC
AppWizard (exe). Type MyHi for the Project name.

2. Fill out the steps of the AppWizard as shown in Table 7-2:

Table 7-2.

7: The MFC AppWizard: Code for Free

Step in AppWizard Action

Step 1 Select Single Document. Make sure Document/
View Architecture Support is checked.

Step 2 Leave the page as it is.

Step 3 Clear the ActiveX Controls box.

Step 4 Leave the page as it is, and don't bother with the
Advanced options button.

Step 5 Leave the page as it is.

Step 6 Click Finish.

Options to set in App Wizard for the MyHi application.

3. Use ClassView to open the document class, CMyHiDoc, in the source
code editor. Add the following boldface code under the public
attributes section of class CMyHiDoc (file MyHiDoc.h):

class CMyHiDoc : public CDocument
{

protected: II create from serialization only
CMyHiDoc();
DECLARE_DYNCREATE(CMyHiDoc)

II Attributes
public:

CString ~strText:

Recall that the ClassView window can be opened by clicking its
downward-facing tab in the Workspace window (which you can toggle
to show or hide with the Workspace command on the View menu).
ClassView shows the class structure of your application. In ClassView,
double-click the class whose class declaration you want to see. From
there, you can use WizardBar to move to a specific member function
definition in the source code editor. See Chapter 1 for a Class View
refresher.

4. Use WizardBarto select the document class, CMyHiDoc, and open its
implementation file at the document class constructor, CMyHiDoc::

CMyHiDoc. Add the initialization-the boldface line-to the func
tion on the following page.

245

Getting to Know Visual C++

Figure 7-7.

246

CMyHiOoc::CMyHiOoc()
{

II TODD: add one-time construction code here
IILstrText = "Hi, MFC!";

}

For a WizardBar refresher, see Chapter 1. You select the class in the
leftmost drop-down list on WizardBar. You select a particular func
tion definition in the class in the rightmost drop-down list.

5. Use WizardBar to select the view class, CMyHiView, and open its
implementation file at the OnDraw function. Add the following bold
face drawing code:

void CMyHiView::OnOraw(COC* pOC)
{

}

CMyHiOoc* pOoc = GetOocument();
ASSERT_VALIO(pOoc);
II TODD: add draw code for native data here
pOC->TextOut(100, 100, pDoc->lILstrText);

6. Save all files and click Build MyHLexe on the Build menu (or press
F7).

7. Execute MyHLexe (press CTRL+F5) and observe its behavior. (See
Figure 7-7.)

fl--. Untitled - MyHi I!!I~ E3

Hi. MFC!

, Ready'

The MyHi application.

7: The MFC AppWizard: Code for Free

You'll observe that the OnDraw function calls the TextOut function to
draw the string m_strText 100 pixels to the right (x-axis) and 100 pixels
down (y-axis) from the origin of the view (which is, effectively, the
window's client area). This will give you a feel for how large 100 pixels
are. (We're using the default coordinate system with mapping mode
MM_TEXT.) Before the string can be drawn, the string variable, declared
as a member variable of class CMyHiDoc, has to be initialized. I've initial
ized the string's value in the document's constructor.

\~r Try it now
Build and run the application. You're greeted by the message "Hi, MFC!"

Congratulations! If you're working along with me, you've just written your
first MFC program. That should at least familiarize you with the mechan
ics. It should also begin to answer the question that nags new MFC pro
grammers after they run AppWizard: Now what? For more on that story,
see the last part of Chapter 8.

Try It Yourself

Try your hand at the following extra-credit exercises.

1. Create a multiple document interface application.

In this chapter, I had you create an SDI version of the MyDraw applica
tion-one that has only one document window. Run AppWizard again to
create a multiple document interface (MDI) application-one that can
have multiple open document windows. Call the project MyMDI. Then
build and run the application. See what it can do. Try the New command
on the File menu. And pay particular attention to the Window menu.
That's something that MyDraw, as an SDI application, doesn't have. You
can see my solution to this exercise in the \learnvcn \Chap07\MyMDI
folder in the companion code.

2. Create a dialog-based application.

Run App Wizard again to create an application whose entire user interface
is a dialog box. Call the application MyDlg. What do you see at the end of
the creation process? Build and run the application. Does it have a menu?

247

Getting to Know Visual C++

248

What does the dialog box contain? How do you exit the application? See
the program MyDlg in the \learnvcn \Chap07\MyDlg folder in the com
panion code.

3. Create an application with a Windows Explorer-style user interface.

Run App Wizard to create a single-document application like MyDraw,
called Explore. But on AppWizard step 5, select the Windows Explorer
project type (at the top of the AppWizard page). What files and classes
does this generate? Take a close look in particular at the two view classes,
especially CLe!tView, which is derived from MFC class CTreeView.
Check the Help index for CTreeView. Notice the extra toolbar buttons
in this application. Spend some time with Windows Explorer, examin
ing its user interface and structure. See the Explore program in the
\learnvcn \Chap07\Explore folder in the companion code.

What's Next?
This chapter gave you a little hands-on experience with MFC and
AppWizard. In Chapter 8, we'll dig into MFC, looking at the AppWizard
generated classes in some detail to see what makes MFC tick, how it's
implemented in C++, and how it works with Microsoft Windows.

Chapter

Inside MFC
In Chapter 7, we ran AppWizard, the easiest way to begin an MFC appli
cation. In this chapter, we'll take a fairly detailed tour of the main classes
that AppWizard writes for you up front. We'll figure out what the classes
do, and we'll look for the fundamental Microsoft Windows concepts de
scribed in Chapter 6. The theme for this chapter is understanding how
Microsoft Foundation Class Library 6.0 (MFC) is Windows.

Exploring MFC Through the AppWizard Files
We have three good reasons to take a close look at the App Wizard files:

• First, to look for those key features of Windows that I went over in
Chapter 6: the WinMain function, the message loop, the window
creation code, and the message handlers, especially handlers for
WM_PAINT and WM_COMMAND.

• Second, to puzzle out how clicking a few choices in a few wizard
steps enables all the features we can see in MyDraw.

• And third, to get an introductory overview of MFC, its main
classes, and the basic MFC techniques. We'll spend most of this
chapter examining these classes to get that overview.

249

Getting to Know Visual C++

250

The text-file listings of the AppWizard-generated files are about 25 pages
long, so I won't reproduce them here. Instead, you can easily see them
yourself by following the directions for creating the MyDraw project in the
previous chapter, under "Working Along with Me." Although they may ap
pear daunting at first sight, it's well worth your while to become familiar
with these files. They define classes derived from the five most frequently
used MFC classes: CWinApp, CFrameWnd, CDoGument, CView, and
CDialog. That's only five out of the more than 200 MFC classes, so we're
really starting gently. After generating the files, you might want to print
them out. Select Print on the Microsoft Visual c++ File menu, specify the
options you want, and click OK. You can first select Page Setup to specify
any desired header and footer text, such as date, filename, time, page num
ber, and so on. And you can specify page orientation and margins. Use
ClassView or FileView, covered in Chapter 1, to open a different file. (You
can also print Help topics by using the Print command in the Help window.)

Touring the Code
Let's tour this code, object by object, class by class, to see what's there. Then
we can worry aboutwhat (apparently) is not there. Table 8-1 lists the main
types of objects in a running MFC single document interface (SDI) applica
tion, along with the classes that the objects are instantiated (created) from
and the files where you can find the classes. Figure 8-1 shows the same
objects, illustrating how some of the objects create the others and then
interact with them. Note that for the multiple document interface (MDI)
case, the document template can point to more than one document.

Figure 8-2 on page 252 shows the general sequence of events as the MFC
objects are created. The lower part of the figure shows how the objects
exhange data and receive messages. This figure gives a bird's-eye view
of the details we'll see in the next sections, which describe each major
object in turn. During application initialization, the application object
creates the other major objects. Then it starts the message loop and dis
patches messages to the other objects for as long as the program runs. The
document and view objects, in particular, shuttle data back and forth. All
of the objects can respond to incoming messages.

Table 8-1.

Figure 8-1.

Object Class MFC Base Class

Application CMyDrawApp CWinApp

Document CSingleDoc Templa te CDocTemplate
template

Frame window CMainFrame CFrameWnd

Document CMyDrawDoc CDocument

View CMyDrawView CView

Dialog CAboutDlg CDialog

The objects that App Wizard creates for MyDraw.

Application
(SDI)

Frame window

Document
template

View

How the objects in an MFC application connect with each other.

8: Inside MFC

Files

MyDraw.h and
MyDraw.cpp

Hidden in the
MFC source files

MainFrm.h and
MainFrm.cpp

DrawDoc.h and
DrawDoc.cpp

DrawVw.h and
DrawVw.cpp

MyDraw.h and
MyDraw.cpp

251

Getting to Know Visual C++

Application
(SDI)

Creates
Document template

Creates view

Creates document

Document template

Initializes
document

Serialize ()

Saves
document

Cleans up after
document

Figure 8-2. Inside the application framework at run time.

252

Frame window

8: Inside MFC

The Application Object
The application object represents the application as a whole. Class
CMyDrawApp defines the characteristics of the application object.
At first glance, the class in the file MyDraw.h doesn't look like much:

class CMyDrawApp : public CWinApp
{

public:
CMyDrawApp();

II Overrides
II ClassWizard generated virtual function overrides
11{{AFX_VIRTUAl(CMyDrawApp)
public:
virtual BOOl InitInstance();
I/} }AFX_V I RTUAl

II Implementation
11{{AFX_MSG(CMyDrawApp)
afx_msg void OnAppAbout();
I/} }AFX_MSG
DEClARE_MESSAGE_MAP()

} ;

The first thing you might notice is that the class declares only three mem
ber functions: InitInstance, OnAppAbout, and CMyDrawApp. We can be
gin to figure out the functions by their names: InitInstance initializes
something called an instance, OnAppAbout must have something to do
with an About dialog box. You might also recall that the function with the
same name as its class is the class constructor.

The one-and-only application object

So where is the application object? The class is declared in the file
MyDraw.h, so let's look in MyDraw.cpp, the implementation file. Here it is,
a little way into the file:

II The one and only CMyDrawApp object

CMyDrawApp theApp;

AppWizard has even labeled the object for us with a comment. The object
is a C++ variable, called theApp. The variable's type is CMyDrawApp, the

253

Getting to Know Visual C++

254

class name. And together, we have a perfectly normal c++ variable decla
ration. Note that it's a global variable-at file scope.

In a later section of this chapter, "Lifecycle of an MFC Application," I'll
explain how and when theApp is created and how its member functions
are called.

The Initlnstance function

Now let's look inside the InitInstance member function, also in MyDraw.cpp:

BOOl CMyDrawApp::lnitlnstance()
{

#ifdef _AFXDll
Enable3dControls();

#else
Enable3dControlsStatic();

#endif

}

SetRegistryKey(_TC"local AppWizard-Generated Applications"));

LoadStdProfileSettings();

CSingleDocTemplate* pDocTemplate;
pDocTemplate = new CSingleDocTemplate(

IDR_MAINFRAME,
RUNTIME_ClASS(CMyDrawDoc),
RUNTIME_ClASS(CMainFrame),
RUNTIME_CLASS(CMyDrawView));

AddDocTemplate(pDocTemplate);

EnableShellOpen();
RegisterShellFileTypes(TRUE);

CCommandlinelnfo cmdlnfo;
ParseCommandline(cmdlnfo); .

if (!ProcessShellCommand(cmdlnfo))
return FALSE;

m_pMainWnd-)ShowWindow(SW_SHOW);
m_pMainWnd-)UpdateWindow();

m_pMainWnd-)DragAcceptFiles();

return TRUE;

Table 8-2.

8: Inside MFC

That's more like it-a function that appears to be doing a lot. Table 8-2

lists the calls in InitInstance and what they do.

Call in Initlnstance Description Comments

Enable3dControls, or Give program windows For information about
En able3dCon trolsSta tic and controls a 3D look. the #ifdef construct that

These calls are unneces- surrounds these calls,
sary except under see the Appendix.
Microsoft Windows NT
3.51. Under later Win-
dows NT and Windows
versions, you get 3D
controls whether you
call one one of these
functions or not.

SetRegistryKey Establishes a key for the The application can
application in the store its options there
Windows Registry. between program runs.

The "_ T" prefix on the
string parameter is a
macro that makes the
string portable for
Unicode applications as
well as for regular non-
Unicode applications.
Check the Help index
for Unicode.

LoadStdProfileSettings Loads any existing This call retrieves things
options from the like the names of re-
Windows Registry. cently opened files.

new Creates a document Document templates
CSingleDoc Templa te template on the heap. create and manage win-

dows, documents, and
views. See the next sec-
tion for more informa-
tion about this call.

AddDocTemplate Stores a pointer to the See the next section for
document template in more information.about
the application object. this call.

Summary of the actions taken in MyDraw's InitInstance function. (cantin ued)

255

Getting to Know Visual C++

256

Table 8-2 continued

Call in Initlnstance

EnableShellOpen and
RegisterShellFil e Types

ParseCommandLine

ProcessShellCommand

ShowWindowand
Update Window

DragAcceptFiles

Description

Lets the user open the
application's documents
from Windows Explorer
or File Manager. Also lets
the user drag files to a
printer icon to print them.

Analyzes command line
for arguments (if program
is run from an MS-DOS
prompt).

Carries out any command
actions that were on the
command line.

Displays the application's
main window and sends
its first WM_PAINT
message to cause drawing.

Enables the window to
open files dragged into it
and dropped.

Comments

Returns the command
line arguments in a
CCommandLinelnfo
object.

These include things
like Open, New, and
Print on the File menu.

For more detail about the functions called in InitInsfance, check the Help

index for the function names. I'll describe some of the most important
function calls in InitInstance next.

Creating the document template, frame window, document, and view

At the heart of the InitInstance function is the section in which we create
the application's window, as well as the document template, document,
and view objects. (Window creation is one of the Windows elements we're
looking for in the MFC code.) Here's that creation code again:

CSingleDocTemplate* pDocTemplate;
pDocTemplate = new CSingleDocTemplate(

IDR_MAINFRAME,
RUNTIME_CLASS(CMyDrawDoc),
RUNTIME_CLASS(CMainFrame) ,
RUNTIME_CLASS(CMyDrawView));

AddDocTemplate(pDocTemplate);

0: InSlae IVI t"L

This code consists of a variable declaration (pDocTemplate, a pointer to a
CSingleDocTemplate object) and two function calls. The first call, using
the c++ new operator, creates a document template object. MFC uses
document templates to create and manage the application's window,
document, and view objects. The one we create here is a single document
template, for our SDI application. This template manages one open docu
ment. If the user opens a new document, the new one replaces the old
one, which is closed.

Notice that the document template creation call takes up five lines in the
file, starting with the line that calls the new operator.

MI OTE This could have been done on one line, but breaking it up this way
0111 makes the action more readable. c++ lets you break lines up any way you

like without affecting how the code works. You can even split a quoted
string, after a fashion:

char str[100];
strcpy(str, "this is a split"
"string");

The compiler will concatenate strings if it doesn't find an operator or pa
renthesis, so "A" "8" is the same as "A8".

The first line in the document template creation code sets up the call to
new, which allocates memory for a CSingleDocTemplate object. The sec
ond line specifies IDR~AINFRAME, an ID for the application's resources.
You'll see this ID again later. The third, fourth, and fifth lines use the
RUNTIME_CLASS macro to specify the types of the application's docu
ment (CMyDrawDoc), frame window (CMainFrame), and view
(CMyDrawView). RUNTIME_CLASS can take, as its parameter, the name
of a class and return a pointer to a CRuntimeClass structure. The structure
contains information-including the class name-that MFC can use to
create the actual object specified as a parameter. Lines two through five of
the call are the four parameters to the document template's constructor
the item right after the new operator,

CSingleDocTemplate(...)

is a call to the CSingleDocTemplate constructor. (I've omitted the
constructor's four parameters here.)

257

Gettmg to Know Visual C++

258

The final line in this section of InitInstance, a call to the application
object's AddDocTemplate member function, stores a pointer to the new
document template object in the application object. Did you notice,
though, that class CMyDrawApp doesn't list an AddDocTemplate func
tion? For that matter, class CMyDrawApp doesn't explicitly list any of the
functions listed in Table 8-2, either. Yet it does in fact have these func
tions-because it inherits the functions from its base class, CWinApp.

\TI'IP Whenever you look at the Visual c++ documentation for an MFC class,
"~,~I look for a link to that class's base class. You can use such links to work your

way up the MFC hierarchy, through each class's base class. In that way, you
can see what other members and behavior a class inherits from its ancestors.

After those lines of code have executed (and they set off a large sequence
of actions when they do-check the Help index for creation of documents
and views and read the two topics listed in the Topics Found dialog box),
the application object contains a pointer to a document template object.
The document template object, in turn, contains pointers to the
application's main frame window object, its document object, and its
view object. Those objects now exist and can be used.

JellOTE Technically, the application object actually contains a pointer to a
Cil" CDocManager object, which in turn points to a CDocTemplate object. But

CDocManager is undocumented, and it stays behind the scenes anyway. It's
an implementation detail.

Displaying the window

So far, the application has worked behind the scenes. Its window has not
yet been made visible. The next lines of interest in InitInstance call the
ShowWindow function to make the application window visible and then
the Update Window function to cause the window's contents to be drawn
for the first time.

Other possibilities for Initlnstance

InitInstance does a lot-and we didn't have to write a line of it. Can we
do anything else with this function? Yes, we can. This is the primary

8: Inside M FC ----........ -------------------------------->"">~, ,."'"."->~$

place for any application-wide initialization. Therefore, it's a good place
to initialize global variables and generally set things up. We can also re
move some of the function calls here if we don't want their functionality.
The comments that AppWizard provides at the beginning of InitInstance
tell you what you can do:

II Standard initialization
II If you are not using these features and wish to reduce the size
II of your final executable, you should remove from the following
II the specific initialization routines you do not need.

Some programmers also do one more thing with InitInstance. If they don't
want MFC's default document/view architecture, they can replace the
document template creation code with code that creates a window but
not a document, view, or document template. From our point of view,
that's advanced stuff, but I'll address this topic briefly in the box titled
"Sidestepping Document/View" later in this chapter.

By the way, what is the "instance" that InitInstance initializes? It's an in
stance of the application. It's possible, in Windows, to run more than one
copy, or instance, of a program simultaneously. So InitInstance is for ini
tializing the current copy.

The OnAppAbout handler function

OnAppAbout is B: handler for a menu command: the About MyDraw com
mand on the Help menu in MyDraw. Since this is the first Windows mes
sage handler you've seen, let's dwell on it a bit.

First, here's the function:

void CMyDrawApp::OnAppAbout()
{

}

CAboutDlg aboutDlg;
aboutDlg.DoModal();

What does it do? It creates a dialog object-of class CAboutDlg-and calls
the dialog object's DoMbdal function (inherited from CDialog, the base
class). In English, OnAppAbout creates and displays MyDraw's About dia
log box. The DoModal function actually displays the dialog and responds
to user actions, such as clicking the dialog box's OK button to close it.

259

Getting to Know Visual C++

260

The CAboutDlg class is declared in file MyDraw.cpp, just after the appli
cation class. Here it is:

class CAboutDlg : public CDialog
{

public:
CAboutDlg();

II Dialog Data
11{{AFX_DATA(CAboutDlg)
enum { 100 = IDD_ABOUTBOX };
I/} }AFX_DATA

II ClassWizard generated virtual function overrides
11{{AFX_VIRTUAL(CAboutDlg)
protected:
virtual void DoDataExchange(CDataExchange* pOX); IIDDX ...
I/} }AFX_VIRTUAL

II Implementation
protected:

11{{AFX~MSG(CAboutDlg)

} ;

II No message handlers
I/} }AFX_MSG
DECLARE_MESSAGE_MAP()

The most important elements of CAboutDlg are the DoModal function it
inherits from CDialog and the DoDataExchange function that it overrides
from the same source. We'll deal with those, especially DoDataExchange,
in Chapter 19. CDialog derives from CWnd, CCmdTarget, and CObject.

For now, the interesting question is: how is OnAppAbout called? Who
calls it, and from where?

The message map and command routing

MFC calls the OnAppAbout function when the user selects the About
MyDraw command on the application's Help menu. That action causes
Windows to send a WM_COMMAND message that indicates which command
was selected, in this case the one with a command ID of ID _APP _ABOUT.
The message loop inside our application object retrieves the message and
dispatches it.

Figure 8-3.

IS: InSide MI-L

WM_COMMAND messages are special among all messages .. They alone
can be dispatched not only to windows but also to the application object
or the document object. MFC routes these command messages to the ap
plication object, to any of its windows, to its view, and to its document.

These objects are all known as command targets, meaning they can ac
cept WM_COMMAND messages. All command target objects are derived,
ultimately, from class CCmdTarget. Thus, CWinApp, CDocument, CWnd,
CView, and CDialog are all derived (sometimes with intermediate classes
intervening) from CCmdTarget.

Figure 8-3 shows the ancestry of these classes in the MFC class hierarchy.
Check the Help index for command routing and command targets for a
fuller description of the routing process and of what the objects do with
the command messages. Since command targets include all windows,
they also include all objects that can have message maps.

Various control classes, e.g., (Button

Command target objects in the MFC class hierarchy.

Here's how the actual routing works: A command target object, say
MyDraw's window or its document,receives a command message through
a call to its inherited OnCmdMsg handler. OnCmdMsg checks to see if its
object can handle the particular message. If not, it calls the OnCmdMsg
function of the next object in a chain of command targets to continue
routing the message. Check the Help index for command routing and
choose the topic "Command Routing."

261

Getting to Know Visual C++

262

How does OnCmdMsg check to see if its object can handle a command
message? It checks the object's message map. Message maps are an MFC
mechanism for routing Windows messages-all of them, including
WM_COMMAND-to objects in the application. A message map specifies
the connection between a message and its designated handler function.
MFC then uses this information to call the handler. Under the hood, a
message map is a lookup table associated with its class. MFC knows how
to check a message map to see if it contains information about a handler
for a particular message. The listing below is the MyDraw application
object's message map. (The application and docliment objects, not being
windows, can handle only WM_COMMAND messages.)

BEGIN_MESSAGE_MAP(CMyDrawApp, CWinApp)
11{{AFX_MSG_MAP(CMyDrawApp)
ON_COMMAND(ID_APP_ABOUT, OnAppAbout)

II NOTE - the ClassWizard will add and remove mapping macros .. .
II DO NOT EDIT what you see in these blocks of generated .. .

I/} }AFX_MSG_MAP
II Standard file based document commands
ON_COMMAND(ID_FILE_NEW, CWinApp::OnFileNew)
ON_COMMAND(ID_FILE_OPEN, CWinApp::OnFileOpen)
II Standard print setup command
ON_COMMAND(ID_FILE_PRINT_SETUP, CWinApp::OnFilePrintSetup)

END_MESSAGE_MAP()

This message map is one of the first items to appear in the file
MyDraw.cpp. The first line, BEGIN_MESSAGE_MAP, begins the message
map and identifies the class it's for as well as that class's base class. The
message map ends with the END_MESSAGE_MAP statement.

In the middle of the message map are the entries. Each entry specifies a
particular Windows message-here they're all WM_COMMAND messages,
as represented by the ON_COMMAND macro. Then the entry specifies
which handler in the class will process the message. For example, the line

ON_COMMAND(ID_APP_ABOUT, OnAppAbout)

makes an explicit connection between the command whose ID is
ID_APP _ABOUT and the OnAppAbout handler function. So the message

IS: InSloe M tL

map entry provides all of the necessary pieces of information to get the
message to its target, including the following elements:

• Which message it is: WM_COMMAND.

• The particular command: ID _APP _ABOUT. This ID is associated
with the About MyDraw command on the Help menu and with the
About toolbar button (the one with a question mark).

• The name of the handler function in the target object.

Notice that AppWizard does some "pre-wiring" in the message map, to
hook up the New, Open, and Print Setup commands from the File menu
the menu commands that the application object handles. (Other objects
handle the other menu commands.) That's why these commands already
work. Class CWinApp, the base class of CMyDrawApp, already has han
dlers for these commands. Putting in the message map entries for them
hooks them up so they work. You'll learn more about message maps later.
Meanwhile, you can check the Help index for mapping messages.

Why does MFC use this apparently clunky approach to routing messages,
involving all these C++ preprocessor macros? The alternative would be to
have every class that can handle messages contain a virtual function for
every message it might need to handle. Virtual functions require lots of
space to store their v-tables, so the MFC developers came up with the
message map scheme instead. It works very reliably and efficiently, and it
has stood the test of time, since MFC 1.0 appeared in 1991.

This wraps up our discussion of the application object, CMyDrawApp.
Notice one last thing. The file MyDraw.cpp has a group of #include state
ments at the top. These include the document, view, frame window, and
other code so the application class can refer to those classes.

The Main Frame Window Object
The main frame window class, CMainFrame, is less exciting in MyDraw
because we won't do much with the class in this book. But it's not with
out interest because of what it does with toolbars and status bars. This
class defines an object derived from class CFrame Wnd, MFC's base class
for framed windows. Let's look at the class declaration.

263

Getting to Know Visual C++

264

class CMainFrame : public CFrameWnd
{

protected: II create from serialization only
CMainFrame();
DEClARE_DYNCREATE(CMainFrame)

II Attributes
public:

II Operations
public:

II Overrides
II ClassWizard generated virtual function overrides
11{{AFX_VIRTUAl(CMainFrame)
virtual BOOl PreCreateWindow(CREATESTRUCT& cs);
I/} }AFX_VIRTUAl

II Implementation
public:

virtual ~CMainFrame();
#ifdef _DEBUG

virtual void AssertValid() const;
virtual void Dump(CDumpContext& dc) const;

#endif

protected: II control bar embedded members
CStatusBar m_wndStatusBar;
CToolBar m_wndToolBar;

II Generated message map functions
protected:

} ;

11{{AFX_MSG(CMainFrame)
afx_msg int OnCreate(lPCREATESTRUCT lpCreateStruct);

II NOTE - the ClassWizard will add and remove member ...
II DO NOT EDIT what you see in these blocks of ...

I/}} AFX_MSG
DEClARE_MESSAGE_MAP()

As you can see, the class is mostly air. Don't be fooled by that, though.
Remember inheritance. CMainFrame is derived from CFrameWnd, which
is derived from CWnd (and CWnd from CCmdTarget, and that from
CObject), so the class inherits a great many members. Check the Help in
dex for each of CMainFrame's base classes and scan the member lists.

Figure 8-4.

8: Inside MFC

(Try it. You'll be impressed.) All of those members can be called from
CMainFrame.

SDI and MDI applications

CFrame Wnd is used as a base class for the application window in SDI
applications. SDI applications can open only one document at a time. The
alternative to SDI applications is MDI applications. MDI applications can
open multiple documents at the same time. Microsoft Word, Microsoft
Excel, and Visual c++ are examples of MDI applications. MDI applica
tions base their main frame windows on class CMDIFrameWnd.

MDI applications are more complicated, of course, than SDI applications.
Figure 8-4 shows an MDI version of MyDraw with several documents open.

,..:-:MyDrawMDI - MyDraw1 1!!l1ill3

MyDraw as an MDI application.

Open
document
windows

The reason I've chosen to make MyDraw and most other examples in the
book SDI applications stems from the direction that Microsoft is taking
with its Windows operating systems. In the long run, Microsoft is aiming
for a document-centered environment. In such an environment, users
working with documents seldom think about which applications
they're using to create and edit those documents. Ultimately, the applica
tions will probably become increasingly generic, using standardized file

265

Getting to Know Visual C++

266

formats-or so say the industry visionaries. You'll be able to use any
word processor to edit text, any graphics editor to edit graphics, any
spreadsheet program to edit spreadsheet data, and so on-possibly in a
single document, if it contains those types of data. The document will be
the centerpiece, and how it was created will be less important. Micro
soft's OLE is a step in that direction. So is SDI.

In other words, in a document-centered environment, you open and work
on documents. If you want two documents of the same kind to be open, you
open them in two separate instances, or copies, of the appropriate program.
As you move from editing a text portion of the document to editing a table
or a graphic, different applications run, largely without your awareness.
You focus on the document more than on the tools you use to work on it.

MDI puts the focus more on the application than on the document. For
this reason, there are likely to be fewer and fewer MDI applications in
the future.

With MFC, MDI applications aren't much harder to write than SDI appli
cations. So even though we'll focus on SDI in this book, you'll be able to
write MDI applications as well, if you choose to.

The frame window's message map

Class CMainFrame has a message map with one entry, for the
WM_CREATE message. Windows sends WM_CREATE after a window has
been created but before it becomes visible. The message map maps
WM_CREATE to an OnCreate handler. Here's the message map, from the
file MainFrm.cpp:

BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd)
11{{AFX_MSG_MAP(CMainFrame)

II NOTE - the ClassWizard will add and remove mapping ...
II DO NOT EDIT what you see in these blocks of ...

ON_WM_CREATE()
/ /} }AFX_MSG_MAP

END_MESSAGE_MAP()

Notice that the message map entry for WM_CREATE looks a bit different
from the ones we've seen for WM_COMMAND. For all Windows messages
other than WM_COMMAND, the message map macro name mirrors the

8: Inside MFC

message name more precisely. A macro like ON_WM_CREATE automati
cally maps to a handler of similar name: On Create.

The OnCreate handler

The OnCreate handler, though, actually does a lot of interesting work for
CMainFrame. Here's the function:

int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)
{

}

if (CFrameWnd::OnCreate(lpCreateStruct) == -1)
return -1;

if (!m_wndToolBar.CreateEx(this, TBSTYLE_FLAT,

{

}

WS_CHILD I WS_VISIBLE I CBRS_TOP I CBRS_GRIPPER
I CBRS_TOOLTIPS I CBRS_FLYBY I CBRS_SIZE_DYNAMIC) I I

!m_wndToolBar.LoadToolBar(IDR_MAINFRAME))

TRACE0("Failed to create toolbar\n");
return -1; II fail to create

if (!m_wndStatusBar.Create(this) I I
!m_wndStatusBar.Setlndicators(indicators,

sizeof(indicators)/sizeof(UINT)))
{

T RA C E 0 (" Fail edt 0 c rea t est at usb a r \ n ") ;
return -1; II fail to create

}

II TODO: Delete these three lines if you don't want the toolbar to
II be dockable
m_wndToolBar.EnableDocking(CBRS_ALIGN_ANY);
EnableDocking(CBRS_ALIGN_ANY);
DockControlBar(&m_wndToolBar);

return 0;

The next several sections discuss what's going on in On Create. The
TRACED calls are an MFC diagnostic mechanism. TRACED is a special
form of the more general TRACE macro; TRACED takes no arguments
other than a message string. Hereafter, when I talk about TRACE, I mean
the general version as well as any of its specialized versions, TRACED,

TRACE1, and so on. TRACE statements are like print statements in a
Microsoft Visual Basic program. They allow you to print useful diagnostic

267

Getting to Know Visual C++

Figure 8-5.

268

messages, which appear on the Debug tab of the Visual c++ Output win
dow. For more information, check the Help index for TRACE.

The toolbar and status bar

Have you wondered where the nifty toolbar and status bar in MyDraw
came from? Here they are. The toolbar and status bar objects are declared
as members of class CMainFrame in the file MainFrm.h, like this:

protected: II control bar embedded members
CStatusBar m_wndStatusBar;
CToolBar m_wndToolBar;

The code in CMainFrame::OnCreate creates the toolbar and status bar
windows-yes, the toolbar and the status bar are windows, embedded in
the frame window, as shown in Figure 8-5. They share space in the win
dow with the view object, which I'll discuss shortly.

Frame window Toolbar

r~"i.i'g'\t~·~1rli. el'$~ .~ .-03 1m ~f~I;:_';,c.i.!5?-;~:'-:'- ' -- :il~
iv' , "I,.,'" v,' , ' ' , ;;;

...-",-'

THE QUICK BROVllN FOX JUMPED OVER THE LAZY DOG.

COME TO THE HEAD OF THE CLASS,

-----+oI--View
object

'-----------Status bar

How the toolbar, status bar, and view object fit into the frame window.

First, OnCreate creates the toolbar with a call to CToolBar: :CreateEx,

and loads the toolbar's button images into memory by calling

8: Inside MFC

CToolBar: :LoadToolBar. You'll learn to create those button images later.
The following code shows how the CToolBar object, m_wndToolBar, is
used to call CreateEx:

m_wndToolBar.CreateEx(... I I
!m_wndToolBar.LoadToolBar(IDR_MAINFRAME))

I've omitted most of the parameters to CreateEx to show how the
LoadToolBar member function of the m_wndToolBar object is called within
the CreateEx parameter list. The Boolean result of the LoadToolBar call is
passed to the final parameter of CreateEx. If either function call fails, the if
statement reports an error and the application terminates.

If the toolbar creation succeeds, OnCreate then creates the status bar win
dow with a call to CStatusBar::Create and calls CStatusBar::SetIndicators.
The indicators are the little boxes or panes that divide up the status bar. By
default, App Wizard provides indicators that display the current status of
the Caps Lock, Num Lock, and Scroll Lock keys. If any of these keys is
pressed, the corresponding display reads CAP, NUM, or SCRL in the right
most panes. With some work, you can add other indicators-for example,
one to contain the time of day. The leftmost pane is usually used to display
messages, including prompts about what a particular menu or toolbar com
mand is for. The indicators currently in effect are given in the following
lines just below the window's message map (in the file MainFrm.cpp):

static UINT indicators[] =
{

} ;

ID_SEPARATOR. II status line indicator
ID_INDICATOR-CAPS.
ID_INDICATOR_NUM.
ID_INDICATOR-SCRL.

The SetIndicators function uses this array of UINT (unsigned 32-bit inte
ger) values when it builds the status bar for display. MFC displays the
correct information in each indicator based on the ID given in the array.

Tool tips for the toolbar

Try another experiment with MyDraw. Run the application and use the
mouse to point to a toolbar button without clicking it. You may have no
ticed this behavior earlier, or maybe not. If you wait a second, a small

269

Getting to Know Visual C++

270

light yellow window appears near the toolbar button. It contains a tip
about what the button is for.

The OnCreate function sets up tool tips for MyDraw's toolbar during
toolbar creation:

if C!m_wndToolBar.CreateExCthis, TBSTYLE_FLAT,
WS_CHILD I WS_VISIBLE I CBRS_TOP I CBRS_GRIPPER
I CBRS_TOOLTIPS I CBRS_FLYBY I CBRS_DYNAMIC) I I

!m_wndToolBar.LoadToolBarCIDR_MAINFRAME))

These lines specify toolbar styles. The styles are added with the c++
bitwise OR operator, (I). Bitwise OR sets particular bits as "flags" in an
integer. (The I I character in the third line of this code is the logical OR
operator, not the bitwise operator. It separates two Boolean conditions.)
For information about the individual styles, search Help for SetBarStyle
and for Toolbar Button Styles.

Docking and floating tool bars

Finally, OnCreate adds the code that lets the toolbar float or dock to any
side of the window:

m_wndToolBar.EnableDockingCCBRS_ALIGN_ANY);
EnableDockingCCBRS_ALIGN_ANY);
DockControlBarC&m_wndToolBar);

These calls enable docking to any side of the window-that's what the
CBRS_ALIGN_ANY style signifies in the EnableDocking calls-and then
dock the window to its default spot at the top of the application's win
dow. The first call is to CTooIBar::EnableDocking-this enables the
toolbar for docking. The next call, to CFrameWnd::EnableDocking, en
ables the window for docking.

Other CMainFrame functions

By the way, what are the rest of those functions you see in the file
MainFrm.cpp? Table 8-3 describes them briefly. Although AppWizard
writes these functions for you, you don't necessarily have to use them; in
fact, you can delete them if you end up finding no use for them, as some
times occurs. App Wizard provides them because programmers often do
want them.

Table 8-3.

8: Inside MFC

Function

PreCreateWindow

-CMainFrame

AssertValid

Dump

Description

Provided in case you want to modify the styles of MyDraw's
frame window. For information on styles, check the Help
index for styles, and choose the subtopic "frame window."

This is the class destructor. You might need this function
for deleting any heap memory you allocate elsewhere in
the class.

This is a diagnostic function you can use to help warn of
problems when the window object is created. Check the
Help index for AssertValid member function, and choose
the subtopic "using."

This is another diagnostic function. You can implement
this function to "dump" the objects you create. Output
goes to the Debug tab in the Output window. Dump lists
information about the objects in the program, including
their sizes. Check the Help index for Dump member func
tion, and choose the subtopic "overriding (procedure)."
Also see Chapter 13.

Remaining member functions of MyDraw's CMainFrame class.

The Document Object
By default, App Wizard creates an application that uses MFC's document/
view architecture. That's a big name for a pretty simple concept, which
I'll discuss in a moment. Meanwhile, here's what the document class con
tained in the file DrawDoc.h looks like:

class CMyDrawDoc : public CDocument
{

protected: II create from serialization only
CMyDrawDoc();
DECLARE_DYNCREATE(CMyDrawDoc)

II Attributes
public:

II Operations
public:

(continued)

271

Getting to Know Visual C++

272

II Overrides
II ClassWizard generated virtual function overrides
11{{AFX_VIRTUAl(CMyDrawDoc) public:
virtual BOOl OnNewDocument();
virtual void Serialize(CArchive& ar);
I/} }AFX_V I RTUAl

II Implementation
public:

virtual ~CMyDrawDoc();
#ifdef _DEBUG

virtual void AssertValid() const;
virtual void Dump(CDumpContext& dc) const;

#endif

protected:

II Generated message map functions
protected:

} ;

11{{AFX_MSG(CMyDrawDoc)
II NOTE - the ClassWizard will add and remove member ...
II DO NOT EDIT what you see in these blocks of ...

I/}} AFX_MSG
DEClARE_MESSAGE_MAP()

Like the main frame window class, CMyDrawDoc is pretty skeletal. But it
also inherits considerable functionality from its base classes, CDocument,
CCmdTarget, and CObject. We'll also be adding quite a bit to it later in
the book.

Document/View Architecture
Other programming environments, such as Smalltalk, have used the concept
of separating the data itself from how it's viewed or "rendered." MFC imple
ments the same idea, separating data from view with two classes: CDocument,
for data-holding objects, and CView, for viewing the data. The view is where
your program draws the data. If the data is text, the view displays lines of
text. If it's graphics, t..h.e view displays pictures. If it's spreadsheet data, the
view displays a grid full of numbers and text. The text, graphics, or numbers
are stored in the document's member variables. Alternatively, the document
can serve as a conduit for data obtained elsewhere, such as a database or an
instrument of some kind. Figure 8-6 shows the document/view relationship.

Figure 8-6.

8: Inside MFC

View

...

....

...

I~ I
....

., "'.,;>"

Frame window

Document and view interactions.

Document

Updates .. UpdateAIIViews

:
:

..
Update

Data ... Setxxx
Getxxx

• \~< Document stores pointer to each of its views.

View stores pointer to its document
(uses GetDocument to obtain pointer).

One of the chief things that this document/view split facilitates is easier
implementation of applications. with more than one view of the data.
Microsoft Excel, for example, lets you view spreadsheet data in spread
sheet form, with columns and rows, or in chart form, as a bar chart, line
chart, or pie chart. Either way, it's the same data.

In MFC, it's the job of a document object to contain the application's data.
This works fine for applications with a clear notion of "document."
Spreadsheets, for example, store each spreadsheet document in a disk
file. You open a file to work with the spreadsheet document.

In the early days of MFC, the document/view architecture caused some
unintended anguish among programmers whose applications didn't have
that kind of document concept. Maybe they had an application that took a
direct digital feed from some instrument and worked with the data that
came in. Such programmers might not have seen the relevance of class
CDocument. But in fact, CDocument does usually work for even uncon
ventional applications such as this. You just need to think of "document"
as "data repository" or "data stream"-a place where the application
stores or obtains its data.

Having said that, let me also point out that it's not so hard to sidestep the
document/view architecture in MFC applications if you really need to.
See the following sidebar, "Sidestepping Document/View."

273

Getting to Know Visual C++

274

Sidestepping Document/View

You don't necessarily have to use MFC's document/view architec
ture. One approach to skipping it is to simply ignore the docunlent
and view classes that App ''\lizard creates. Their overhead isn't very
large, so you can treat them as unused "vestigial appendages." You
write any code that you might have written in those classes in class
GMainFrame instead.

A better way to sidestep document/view is to replace the code in the
application's InitInstance function that creates the docunlent tem
plate, window, document, and view with something like this:

m_pMainWnd = new CMainFrame;
m_pMainWnd-)ShowWindow(m_nCmdShow);
m_pMainWnd-)UpdateWindow();

These lines create a main frame window with the new operator and
store a pointer to the window in the application object's
m_pMain Wnd member variable. This variable always contains a
pointer to the main window object. After the one-line creation, the
code does what the AppWizard-generated code does. It calls
ShowWindow to display the window and UpdateWindow to cause
the window's contents to be repainted. (For an example of code that
does it this way, see Jeff Prosise's book, Programming ~Vindows 95

with MFG, Microsoft Press, 1996.) With no docunlent or view objects,
you write most of your code in the CMainFrame class.

A second approach is new in Visual c++ version 6. In AppWizard
step 1-for an MFC AppWizard (.exe) application-you can simply
clear the Document/View Support box. This generates an application
with no document class, although it does have a rudimentary view
class, called GGhildVien', whose role is similar to the view's role in a
document/view application: it covers the main window's client area,
and it's the view into which you druvv, not the 'window. GGhildView
is derived from class GWnd, not GView, so it lacks all of the GView
functionality that isn't generic to all window'S. This includes no ex
tra support for printing and print preview, no support for scrolling,

Table 8-4.

8: Inside MFC

and so on. You can still do those things t but you must write your
own code for them. In some cases this might be just what you want.
You can easily generate this kind of application with AppWizard to
study its code and see what it can do. Try writing MyHi using this
approach. (See the NoDV program in the \learnvcn \Chap08 folder
in the companion code.)

One situation in which you might want to omit the document (and
possibly the view) is in porting an application written in C to c++
and MFC. That task is simpler if you can map the C code to the
frame window object instead of to a document and view. If you ever
have to do such a port, see the MFC Migration Guide, available from
Microsoft with the MFC Migration Kit.

The document's message map

Class CMyDrawDoc has a message mapt but it's empty. Later, we might
use the Visual C++ WizardBar or Class Wizard to add some command mes
sage handlers to the message map.

Document member functions

Table 8-4 summarizes the handful of member functions in class CMyDrawDoc.
Keep in mind that CMyDrawDoc inherits members from its base class,
CDocument, and from other ancestor classes on up the hierarchy.

Function Description

CMyDrawDoc and The constructor and destructor, currently empty.
-CMyDrawDoc

OnNewDocument A place to add reinitialization code for the SDI document.
SDI applications reuse the document object rather than cre
ating a new one. (See DeleteContents.) Also check the Help
index for OnOpenDocument.

Document member functions that App Wizard creates for MyDraw. (continued)

275

Getting to Know Visual C++

276

Table 8-4 continued

Function

Serialize

Dele te Con ten ts

Dump and
AssertValid

Description

MFC calls Serialize to write the document's data to a file, or
to read the data from a file and re-create the document. We'll
cover Serialize thoroughly in Chapter 16.

App Wizard doesn't automatically supply an override of this
function. I list it here because it's one you'll need often. In
SDI applications, MFC reuses the CDocument-derived object
when the user clicks New on the File menu. MFC calls
DeleteContents to let you clean up-especially to delete heap
memory-without deleting the document object.

See Table 8-3 for a discussion of these functions.

We haven't defined any data yet for the document in MyDraw to hold, or
to serialize to a file, or to print. That will come in later chapters.

The View Object
Each document object in an MFC document/view application is associ
ated with one or more objects derived from class CView-or from one of
the other view classes that MFC provides.

A view is just a window, without a frame. It sits right over the top of the
main frame window's client area. We won't draw into the frame window's
client area at all. Instead, we'll draw into the view, which almost com
pletely covers up that client area, leaving room only for the toolbar and
status bar. (See Figure 8-6.)

It seems strange, of course, that we add an extra object and don't simply
draw into the frame window's client area-almost like extra work that
could easily be avoided just by drawing into the window as usual. But re
call the discussion of MFC's document/view architecture. The view object
exists to display the document's data. They're a team. More important,
as you'll see in Chapter 20, there might be two different views of the same
data. Figure 8-7 shows an application with two views set up as a splitter
window. You can see both views at once, and you can drag the splitter bar
between them to change their sizes relative to each other.

Figure 8-7.

8: Inside MFC

Hi.IvtFC! Two views! ---rl-- View 1

Hi.IvtFC! Two views! --+-View2

An application with two views of the same document.

The ability to provide such multi-view applications is the biggest single
reason to use the document/view architecture. When you do have mul
tiple views of the same document, MFC provides a clean mechanism for
updating the contents of other views when any single view changes. For
example, suppose the user edits the data in an Excel spreadsheet view.
Any other views, such as a chart created from the spreadsheet data,
should reflect those edits immediately. The spreadsheet view can call the
CDocument::UpdateAllViews member function to update all of its com
panion views at the same time.

Now let's look at some of the view class code for MyDraw. First, here's the
class declaration (contained in the file DrawVw.h):

class CMyDrawView : public CView
{

protected: II create from serialization only
CMyDrawView();
DECLARE_DYNCREATE(CMyDrawView)

II Attributes
public:

CMyDrawDoc* GetDocument();

II Operations
public:

(con tin ued)

277

Getting to Know Visual C++

278

II Overrides
II ClassWizard generated virtual function overrides
11{{AFX_VIRTUAl(CMyDrawView)
public:
virtual void OnDraw(CDC* pDC); II overridden to draw this view
virtual BOOl PreCreateWindow(CREATESTRUCT& cs);
protected:
virtual BOOl OnPreparePrinting(CPrintInfo* pInfo);
virtual void OnBeginPrinting(CDC* pDC, CPrintInfo* pInfo);
virtual void OnEndPrinting(CDC* pDC, CPrintInfo* pInfo);
I/} }AFX_VIRTUAl

II Implementation
public:

virtual -CMyDrawView();
Iii fdef _DEBUG

virtual void AssertValid() const;
virtual void Dump(CDumpContext& dc) const;

1Iendif

protected:

II Generated message map functions
protected:

11{{AFX_MSG(CMyDrawView)

} ;

II NOTE - the ClassWizard will add and remove member ...
II DO NOT EDIT what you see in these blocks of •..

I/}} AFX_MSG
DEClARE_MESSAGE_MAP()

1Iifndef _DEBUG II debug version in DrawVw.cpp
inline CMyDrawDoc* CMyDrawView::GetDocument()

{ return (CMyDrawDoc*)m_pDocument; }
Ilendif

This class appears to contain a little more functionality than most of the
MFCclasses we've seen so far. It provides some printing support, a func
tion to obtain a pointer to the document object, an override of the
PreCreateWindow function, and a function called OnDraw. We'll look at
all of that. CMyDrawView inherits members from CView, CWnd,
CCmdTarget, and CObject.

8: Inside MFC

The view class message map

Like the other objects discussed so far, the view class, CMyDrawView, has a
message map. Initially, it has three items related to printing-these account
for the printing ability we've seen in MyDraw. Here are the three entries,
extracted from the message map in file DrawVw.cpp:

ON_COMMAND(ID_FILE_PRINT. CView::OnFilePrint)
ON_COMMAND(ID_FILE_PRINT_DIRECT. CView::OnFilePrint)
ON_COMMAND(ID_FILE_PRINT_PREVIEW. CView::OnFilePrintPreview)

Notice that the three print commands are mapped to member functions of
CMyDrawView's base class, CView. CView already has the handlers for
them. You can actually see the code for these handlers in the MFC file
ViewPrnt.cpp. See the Appendix for guidance on locating the file.

The OnDraw function

The single most interesting function in the CMyDrawView class is called
OnDraw. OnDraw is an overridden virtual function. Despite its name,
which resembles the names for message handlers, OnDraw doesn't di
rectly handle a message and isn't mapped in the message map.

So what is OnDraw all about? It's where you do almost all drawing in an
MFC document/view-based application, rather than in an OnPaint han
dler. Here's what the function looks like in class CMyDrawView:

void CMyDrawView::OnDraw(CDC* pDC)
{

}

CMyDrawDoc* pDoc = GetDocument();
ASSERT_VALID(pDoc);
II TODO: add draw code for native data here

As shown here, OnDraw does only one thing. It obtains a pointer to the
view's document by calling the GetDocument function. I'll discuss
GetDocument next. The only remaining item in the function is an
AppWizard-supplied comment reminding us that this is where to draw
the document's data. In later versions of MyDraw, we'll draw geometric·
figures; we'll draw text in other examples. We already drew text in Chap:
ter 7 ,with the MyHi application.

279

Getting to Know Visual C++

280

At this point you may be wondering-do we really do all of the drawing
in this one function? That seems unusual, doesn't it? Well, maybe-but
it's the Windows way to draw. With only a very few exceptions, all draw
ing in Windows is done in response to a WM_PAINT message. As I said in
Chapter 6, you receive WM_PAINT messages in just two situations:

• The window has just been displayed, and it's time to paint its con
tents for the first time. A call to Update Window sends the window
its first WM_PAINT message.

• The window has become damaged-invalidated-perhaps by being
obscured by another window that goes away, leaving the original
window in an invalid state. This causes another WM_PAINT mes
sage to be sent.

But these two situations should cause MFC to call an OnPaint handler,
right? Yes, and that's just what happens. The view object (a window) does·
have an OnPaint handler, but it is prewritten for any CView-derived
class-so we don't usually write any code for it. The OnPaint handler
performs two key tasks:

• It creates a CPaintDC object, which is one way to obtain a handle to
the view's device context.

• It then calls OnDraw, passing along a pointer to the device context.

In OnDraw, you'll notice that there's a parameter, a pointer to an object of
type CDC:

void CMyDrawView::OnDraw(CDC* pDC)

Inside OnDraw, you use this pointer-already prepared for you-to call
drawing functions and set new attributes in the device context, such as a
new text color or a new font or pen. You'll see plenty of examples of this
later in the book.

8: Inside MFC

~I OTE Why does MFC need both OnPaint and OnDraw? OnDraw is called for
6([1 printing as well as for drawing in a window. For printing, the device context

is handled differently than for a window. OnPaint sets up the device con
text correctly for either case and then calls OnDraw for the drawing code.
This lets us write one drawing function to handle screen drawing, printing,
and even print preview.

By the way, this is a good time to point out some mechanics of the
CPaintDC object. In OnPaint, the CPaintDC object is created as a local
variable, on the stack:

CPaintDC dcCthis):
OnPrepareDCC&dc);
OnDrawC&dc):

II Note the use of this, by the way.

So the device context is obtained as a local variable in OnPaint, called dc,
and dc's memory allocation is destroyed when the variable goes out of scope.
That happens when the OnPaint function returns, after OnDraw returns.

During that activity, something interesting occurs behind the scenes. The
CPaintDC constructor anq destructor actually do some useful work. The
constructor calls the ::BeginPaint Win32 API function, and the destructor

. calls ::EndPaint. These functions are mandatory before and after drawing
into the view. BeginPaint prepares a PAINTSTRUCT structure with infor
mation needed for drawing. EndPaint does some required cleanup. In
OnDraw, we don't even notice this sleight of hand, but it makes painting
in OnDraw that much simpler. There's no extra overhead code that we
have to write, unlike the situation for a C-Ianguage programmer, who
must declare a PAINTS TR UCT variable and call BeginPaint and EndPaint.
I'll discuss the OnPrepareDC call in Chapter 15.

The GetDocument member function

Why does the view object need a pointer to the document object? Remem
ber that it's the view's job to display the document data. So the view has to
be able to obtain the data. One way to do that is through a pointer to the

281

Getting to Know Visual C++

282

document, as shown earlier in Figure 8-6. Such a pointer allows the view
to call document class member functions and directly access any public
document member variables. The following code obtains the document
pointer (in the OnDraw function) and tests it to ensure that it's valid:

CMyDrawDoc* pDoc'= GetDocumentC);
ASSERT_VALIDCpDoc);

Here's one use for the pointer: after the user edits data shown in one view,
that view usually needs to call the document's UpdateAllViews member
function to cause any other views to be updated to reflect the edits. (The
following code isn't in MyDraw yet, but we'll be adding something simi
lar to it later.)

pDoc-)UpdateAllViewsCthis);

Here's what the GetDocument member function looks like:

CMyDrawDoc* CMyDrawView::GetDocumentC)
{

}

ASSERTCm_pDocument-)IsKindOfCRUNTIME_CLASSCCMyDrawDoc)»;
return CCMyDrawDoc*)m_pDocument;

The key here is that the view already contains a pointer to the document,
obtained during document/view creation. It's stored in the view data
member m_pDocument, which holds a pointer to a CDocument.
GetDocument just tests the validity of the document pointer, then casts
the pointer to the correct type and returns it as the GetDocument function
result. Notice that CMyDrawView's GetDocument function returns a
pointer to a CMyDrawDoc object, not to a generic CDocument object. That
simplifies our coding, so we don't have to do a cast ourselves. For infor
mation about the ASSERT macro and the IsKindOj function, check the
Help index for ASSERT and IsKindOf

8: Inside MFC

1\1\ OTE As always, use casting with great care. Consider the following code:

III cl ass A
{

public:
int m_firstlnt;

} ;

A* GlobalFunc(); II Returns a pointer to A

class B : public A
{

public:
int m_secondlnt;

}

void SomeFunction()
{

}

B* pB = (B*)GlobalFunc();
pB->m_secondlnt = 7; II Crash!

Inside SomeFunction, we call GlobalFunc, which returns a pointer to A. We
cast this pointer to B*. The pointer really points only to enough memory for
an A, so we don't know what will happen when we assign a value to
m_secondlnt. That's a B member-but where is the space for that member
in the object that GlobalFunc returns? We overwrite some memory that
probably doesn't belong to us, with the result that sooner or later, some
thing will crash.

The usual suspects

CMyDrawView has the usual AssertValid and Dump member functions as
well as a constructor and a destructor. You'll typically use the constructor
to initialize view class member variables. And you'll use the destructor to
clean up-particularly to delete any pointer variables you may have cre
ated dynamically with the c++ new operator.

283

Getting to Know Visual C++

284

We also saw the Pre Crea te Window member function for class
CMainFrame. It works the same here in the view-giving you a place to
modify the view's window styles if you need to.

The print handler functions

We'll look into the three printing-related view functions in Chapter 17.

Those functions already enable printing, of a sort, but there will be much
to do to make real printing work.

Where Is the Windows Stuff?
It's time now to see whether we've located the following important ele
ments of an application for Windows in this MFC code:

• The WinMain function? No. There's no sign of it in the AppWizard
generated code. So where is it? It's actually buried deep inside
MFC. Where a C-Ianguage programmer would have to write his
own WinMain function, MFC does it for you. If you're curious, it's
in the MFC WinMain.cpp file. See the Appendix for guidance, on
locating that file.

• The code that creates the application's window? Yes. It's in the ap
plication class's InitInstance function, somewhat hidden in the
document template creation code.

• The message loop? It's not evident in the AppWizard-generated
code, but in fact the message loop resides in another member func
tion of the application class, called PumpMessage. PumpMessage is
called from the application class's Run member function. You'll see
how Run comes into play in the next section.

• Message handlers? Got those. They're the OnXXX functions in the
various classes (where OnXXX represents functions such as
On Create, OnAppAbout, etc.). MFC uses its message maps to map a
Windows message to its OnXXX handler function, and there's a
complicated routing mechanism to get messages, especially
WM_COMMAND messages, to the right MFC object.

8: Inside MFC

As you can see, all of Windows is actually here, either directly in the
AppWizard-generated code or tucked away inside one of MFC's classes.
I'll have just a bit more to say about the relationship between MFC and
Windows before the chapter ends.

By the way-this is C++, right? So where's the mandatory main function
that all C++ programs must have? It's hidden away too, somewhere inside
Windows. Just as Windows hides main in favor of its own required
WinMain, MFC hides WinMain in favor of its own CWinApp::lnitInstance
and CWinApp::Run. Think of it as an MFC layer on top of a Windows
layer on top of C/C++.

Life Cycle of an MFC Application
Here's what happens to an MFC application from birth to death. You can
compare this summary with "Life Cycle of an Application for Windows"
in Chapter 6.

1. The user starts the application. The very first step is construction of
the C++ application object, theApp. Because theApp is a global
variable, the compiler allocates space for it immediately, before
WinMain is called. The object's constructor is called at this time.

. ,.~II ARNING This is about the only time it's safe to use a global MFC object-a
ftdlv; class object (based on an MFC class) declared at global scope. MFC must be

properly initialized before you use any of its objects. But globals are de
fined before MFC initialization, so some code may not behave correctly
such as code in the global object's constructor, called before MFC
initialization. As a general rule, avoid using global MFC objects. (However,
you can have a global pointer to an MFC object, as long as you initialize
the pointer later, after MFC initialization.)

. 2. The application proper begins, and Windows calls WinMain, hidden
away inside MFC.

3. WinMain calls other initialization functions. Somewhere, it regis
ters not one but several window classes (not to be confused with
C++ classes like CWnd) for general use. That's just another thing
you don't have to do, although you can override the default win
dow styles in PreCreate Window if you wish.

285

Getting to Know Visual C++

286

4. WinMain calls the existing application object's InitInstance member
function to initialize the application and create the main window
(and the document and view). This InitInstance function is the one
you write. You're required to override InitInstance in your applica
tion class, so AppWizard automatically does it for you. But you can
add to or subtract from the contents of InitInstance as needed.

5. WinMain calls the application object's Run member function. Among
other things, Run starts the message loop and begins dispatching
messages to the application's objects, via their message maps.

6. When the message loop gets a WM_QUIT message, signifying that
the user has done one of several things to exit the application, the
message loop ends and the Run function calls the application
object's ExitInstance member function. (When the user clicks Exit
on the File menu, or clicks the window's close button, or clicks
Close on the System menu, the application's main window receives
a WM_DESTROY message. A handler inside MFC for WM_DESTROY
calls the PostQuitMessage API function, which posts a WM_QUIT
message to the application's message queue.)

7. ExitInstance does any cleanup work you need done for the applica
tion as a whole. It's up to you to override it in your application
class if you need to use it.

8. When ExitInstance returns, the Run function returns, MFC does
some cleanup of its own, and Windows terminates the application.

The process is actually more complex than this, but my description does
capture the essence. You can follow the whole sequence yourself if you
like. Begin by looking at MFC's WinMain function in the file WinMain.cpp.
See the Appendix for guidance on locating the file. From there, find the
functions that WinMain calls, then the functions they call, and so on. Try it.

For a quick simulation of an MFC application running, see the WinSim
program in the \learnvcn \Chap08 folder in the companion code. The
simulation is simplified but instructive-a straight C++ console applica
tion like those in earlier chapters.

IS: Inside Mt-l

I've Run AppWizard-Now What?
After running AppWizard, the answer to the question "Now what?" goes
something like this:

• Plan your document's data. Design and implement any necessary data
structures, such as data classes. Add the appropriate data variables to
your document class. You'll learn more about each of these steps as
we move ahead, so don't worry about unfamiliar terms at this point.

• Initialize member variables in all of your classes. For the document,
determine which variables you can initialize in the document con
structor and which you must initialize in OnNewDocument,
OnOpenDocument, or both. If you use the new operator to create
any data dynamically, be sure to delete that data. For most classes,
you should do this in the class destructor. For SDr documents, you
often need to override the DeleteContents member function and call
delete on your pointers there. See the MyHi application in Chapter 7.

• Plan how the document's data will be viewed. Do you want one view,
or more than one? Design the views, then add code to the OnDraw
member function in your view classes to draw each view.

• Write code in the document's Serialize member function to save your
data to a file and toread it back in. Or sidestep the serialization
mechanism as described in the sidebar "Sidestepping Serialization"
in Chapter 16.

• Use WizardBar or ClassWizard to create handler functions in your
classes for any Windows messages or commands you want to handle.
For example, you might need to handle the WM_LBUTTONDOWN
message if you want to detect mouse clicks in your view.

• Add necessary menus and toolbar buttons (or whole new toolbars).

• Create any dialog boxes you need, along with the code to display
them in response to a command.

• Add necessary scrolling code.

• Write code in your view classes to process the printing commands.

287

Getting to Know Visual C++

288

No doubt there will be other steps you must take in your real-world appli
cations, and you won't always take them in the order I've shown. But
these are fundamental to almost every MFC application. By the time
you've practiced each of them, as you will with the MyDraw application
through the rest of the book, you'll have a feeling for what to do.

MFC and Windows
Now that we've toured MFC and Windows, let's answer a fundamental
question: what's the relationship between MFC and the Win32 API? Here it
is in brief: MFC is the c++ API for Windows 95, Windows 98, and Win
dows NT. In other words, MFC is the c++ way to program Windows.

Did the MFC team at Microsoft rewrite the Win32 API in C++? Not at all.
In fact, they realized early on that it was fruitless to "reinvent Windows"
in c++. Instead, they saw that the way to provide access to the Win32 API
for c++ programmers was to wrap the API in c++. (They also added some
nice extras, such as documents and views, but the wrappers are the heart
of it.)

A wrapper is like a capsule that holds the original software entity but
bundles it up in new clothes. For example, a wrapper for a function is an
other function. Inside the wrapper function, you'll find a call to the origi
nal function that's being wrapped. Here's an example: an MFC function
that wraps a Win32 API function of the exact same name. (I've omitted a
few technical details that might obscure my point at this early stage.)

BOOl CDC::GetTextMetrics(lPTEXTMETRIC lpMetrics)
{

return ::GetTextMetrics(m_hAttribDC, lpMetrics);

The wrapper function belongs to the MFC class CDC. You'll notice a few
differences between the outer and inner functions. Those are due to MFC
simplifications, so it's a little easier to call the MFC function than to call
the underlying Win32 API function. Note, however, that you can indeed
call either. MFC lets you call any of the Win32 API functions directly if
you need to, but you'll seldom want to.

8: Inside MFC

A'YI\ OlE If you call a Win32 API function directly from your MFC program, pre-
6irl cede the function name with the scope resolution operator (::) as shown in

the wrapper example.

You might be asking yourself, isn't this kind of thing inefficient? If you
always have to go through an extra layer-two function calls, really,
where one might do-doesn't that make it much more attractive to pro
gram in C than C++?

The situation is much better than you might think, though. For one thing,
the vast majority of these wrapper functions are written using the c++
keyword inline. The keyword tells the c++ compiler to unwrap the
wrapper, so to speak. When it's compiled, the wrapper turns into a
straight call to the Win32 API function, so it's no less efficient. Yet the
programmer can write the simplified MFC function call without worrying
about these details. Overall, MFC loses no efficiency by calling the Win32
API in C. Besides, you'll gain a great deal in programming productivity
through MFC, where, for example, it's a lot easier to create fancy, com
plex, user-interface features such as toolbars and print preview.

There's also more to the wrapper story. MFC groups those hundreds of
wrapper functions using C++ classes. For example, most functions that
require a window handle (called an HWND) in the Win32 API are
grouped into the CWnd class-CWnd wraps the HWND. MFC uses the
CWnd class to represent any window. The functions grouped into CWnd
are member functions of the class. What's the advantage? This grouping
conceptually simplifies the vast Win32 API. Instead of working with sev
eral hundred functions that might seem only vaguely related, you work
with an object called a window. That object contains functions for ma
nipulating its own position, size, styles, and so forth. It really does make
your programming easier.

Another way MFC wraps the Win32 API is in its repackaging of Windows
messages, such as WM_LBUTTONDOWN, into message-mapped handler
functions like OnLButtonDown. MFC also repackages the information that
comes with those messages-known to C-language Windows programmers

289

Getting to Know Visual C++

290

as the message parameters IParam and wParam. You don't have to deal
with those.

Here's one more way MFC wraps the Win32 API rather than rewriting it.
Inside a class like CWnd that wraps a Windows handle, such as the
HWND, MFC doesn't duplicate a lot of information, that is already avail
able through the HWND. Instead, MFC supplies a member variable in the
class to store the HWND itself. In class CWnd, for example, there is a
member called m_h Wnd, of type HWND.

Finding and Using the Hooks in MFC
Early in the chapter, I claimed that much of MFC programming is finding
the hooks in MFC-the places MFC provides for you to augment or over
ride its default behaviors-and putting those hooks to good use.

A hook is a mechanism that MFC supplies that allows you to customize
some object's behavior. For example, MFC lets you create your own han
dler functions for Windows messages and commands. You don't have to
invent them; MFC provides them, and all you have to do is connect the
message to the handler in the message map. Then you write the code in
the handler to do what you need done for that message.

The many virtual functions in MFC classes ·are another example of hooks.
Such virtual functions as InitInstance in class CWinApp; OnUpdate,
OnlnitialUpdate, PreCreate Window, and OnDraw in class CView; and
OnNewDocument, OnOpenDocument, DeleteContents, and Serialize in
class CDocument provide places to intervene in MFC. These functions are
there for you to override if you need to.

~Yf11 OTE As with the message handlers, you'll often call the base class version
dlI1 of a virtual function to let the base class do what it needs. Sometimes you

call the base class first, then add your own behavior. Other times you do
your thing first, then call the base class. Usually the wizards will write the
function definition for you, with the base class call already in place and a
"TODD" comment to show you where to add your own code. When in
doubt about whether to call the base class version, use this bqok's Appen
dix to track down the base class's definition of the function in the MFC
source files. Sometimes the base class version of a function is empty; some
times it does a lot.

8: Inside MFC

Another kind of hook is the class itself. If an MFC class doesn't do what
you want, you can almost always derive a new class from it and adjust
the behavior as you see fit. That's essentially what you normally do with
CWinApp, CFrameWnd, CDocument, CView, and CDialog.

If the hooks analogy doesn't work for you, try this one: MFC is like the
human body, which has pressure points at various strategic locations. If
you need to stop the bleeding, you press on the appropriate pressure
point. MFC's pressure points are those same message handlers and virtual
functions that you can override, and classes that you can subclass. The
trick is to figure out how MFC does something you want to add to or alter,
and then apply pressure to the right places.

Whether you think of them as hooks or pressure points, you'll see plenty
of examples in this book.

Try It Yourself

See what you can do with the following extra-credit exercises.

1. Write an MDI version of MyHi.

In -Chapter 7, I showed you how to create a small program called MyHi.
That program was an SDI application like MyDraw. Now write the MDI
equivalent of MyHi-a program with more than one window that says
"Hi, MFC!" This will give you a sense of how the MDI version and the
SDI version are similar and different. What might you need to do differ
ently from the SDI version? Hint: one thing is the initialization we did in
OnNewDocument. That's no longer necessary with MDI. Initialize in the
document's constructor instead, because the document object isn't reused
in MDI. See the MdiHi program in the \learnvcn \Chap08 folder in the
companion code.

2. Study the MDI code.

In this chapter, you've seen the classes that AppWizard produces for an
SDI application. Now take a comparative look at the classes you just
created for exercise 1. How does each class differ from its counterpart in
the SDI application MyHi?

291

Getting to Know Visual C++

292

3. Study the code in the dialog-based application at the end of Chapter 7.

In Chapter 7, exercis.e 2, I suggested that you use AppWizard to create a
dialog-based application. Now compare the classes created for that appli
cation with the SDI and MDI applications you've also created. Are there
different classes? Where the class names are the same, how do the actual
classes differ? See the MyDlg program in the \learnvcn \Chap07 folder in
the companion code.

What's Next?
This chapter and Chapter 7 have given you a first look at MFC applications
and shown you how to create them with AppWizard. You now have some
idea of the architecture of an MFC application. This concludes Part 1,

"Getting to Know Visual C++." In Chapter 9, we'll get to work on the
MyDraw application in earnest, starting with menus and some simple but
instructive drawing.

, ,',

, : \ ~ v "

',' (- < '

" 1
.., ,v, 'v f ' _'. >

A 'A", ,V

"/":.C ... ;/"

295":-;/'

"' .. /

i~i9
", j

. ·;i63

,> / ~

409·(
'/-'

,,:i,'v···.'v :": ,"~ ,<

/

I ~I ,,<,

Chapter

On the Menu
In Chapter 7, we used AppWizard to generate the skeleton of the book's
primary example application, MyDraw. In this chapter, we'll take a look
at what's in store for MyDraw-what features it will have and how we'll
go about developing them.

We'll also cover Microsoft Windows resources, especially menus. Micro
soft Visual C++ 6.0 makes it easy to create menu resources visually and
then to hook them up to the code that carries out their commands. Thus
we'll literally see what's on the menu for MyDraw. This chapter and
Chapter 10 cover step 1 of MyDraw.

I'll round out the chapter by taking you through the process of using sev
eral Visual C++ tools in addition to the Source Code editor that you've
been using all along. I'll introduce you to the Menu editor and the Accel
erator editor.

Introducing MyOraw
MyDraw is an object-oriented or vector drawing application. There are
two kinds of drawing applications: those that draw and save a bitmap,
like the Windows Paint accessory, and those that draw discrete objects

295

Fundamental MFC Skills

296

that you can move and modify easily without editing pixels. MyDraw is
the second kind. It doesn't do very much, and it isn't fancy-it's limited
to a few commands and a few kinds of drawing objects. But it does illus
trate a lot about Microsoft Foundation Class Library 6.0 (MFC), program

ming for Windows, and C++.

\ Ti' IP You can run the finished version of MyDraw now. Copy the project for
'~I MyDraw10 (found in the \learnvcn\Chap20 folder in the companion code)

to your hard disk, then build and run it. There's also a bonus-a final ver
sion of MyDraw named MyDrawF (found in \learnvcn\Chap21), which adds
extra features this book doesn't cover.

When you run MyDraw step 10 in Chapter 20, you'll see a menu bar, two
toolbars, a status bar, and a blank canvas in the main window's client area.
You'll draw rectangles and circles by first clicking a tool on one of the toolbars,

and then dragging the mouse across the area you want the shape to occupy.

You'll be able to scroll in MyDraw so you can draw anywhere on a fairly

large drawing surface. After drawing several shapes, you'll be able to se
lect one, and it will give you visual feedback by displaying handles.

By default, shapes are drawn in black. But if you click the Color command

on the Tools menu, the Color dialog box appears, and you can select a new
color from it. From then on, until you change the color again, new shapes

are drawn in the selected color.

In Chapter 20, you'll learn to split MyDraw's window into multiple panes
and see different portions of the drawing surface in the panes. With My
Draw you'll find that among other things, you'll be able to print your draw
ing and save it to a file. You can create all the drawing files you like, and

open and close them at will.

MyDraw will use object-oriented programming (OOP) techniques for its
data, the shapes. Eventually, we'll resurrect class CShape and its sub

classes, which we developed in Chapter 5.

Figure 9-1 shows the finished MyDraw application in action. Table 10-2,

at the end of the next chapter, lays out the steps we'll take in developing

all of MyDraw's features and functionality. After an introduction to menus
in this chapter, Chapter 10 completes MyDraw step 1.

Figure 9-1.

Menus

9: On the Menu

Untitled - MyD raw !l1il 13
~Eae<' gd~-, ¥iew :1001$' ,tielp __ '~_-..:. __ ~ _______________ ._

:LD~ ~ 1iiI1,"~, - I ~ 't? I .-
~: ~------------------~ ;.,
10
{'O t~l

! '<f

~, ~ 1 I

Ready .. - fF-JLIM I --

The MyDraw application after step 10 has been completed.

A distinguishing feature of graphical user interfaces (GUIs) like that of
Windows is the use of menus as a way to present command choices to the

user without taking up too much screen real estate. When the user clicks
the mouse on a title in the menu bar, a menu of options drops down. The
rectangle containing the menu temporarily obscures anything beneath it.
(This is one of the few instances in which Windows itself saves the image
of the obscured bits so that, when the menu closes, Windows can redraw
what was there.) The menu closes when the user clicks a menu item-a
command or option-or when the user clicks outside the menu or presses
the Escape key. In some applications, menus are operable from the key

board, as you will see later in this Chapter. In other applications, scroll
bars can be controlled from the keyboard. (I'll get to that in one of the

exercises at the end of Chapter 15.)

When the user clicks a menu item, a command is issued, resulting in the

execution of some handler code. "Issuing a command" really means
sending the Windows message WM_COMMAND, with accompanying in
formation that identifies which menu item was involved-in the form of

297

Fundamental MFC Skills

298

a command ID, such as ID _FILE_PRINT. In simplified form, that's how
menus work. I'll say more about commands and writing command han
dlers after we add the new menus to MyDraw.

Menu Resources
How do you specify what menus you want? And how do you connect an
item on a menu with a specific command ID? To specify your application's
menus, you create a menu resource (or edit the one that AppWizard creates
for 'you); When you edit the resource, you can add, delete, modify, or move
menu items and whole menus. When you add a menu item, you specify an
associated command ID as one of the menu item's properties. Other prop
erties of a menu item include the item's caption (the text shown on the
menu), a prompt string (shown in the status bar when the user passes the
mouse pointer over the menu), and a set of styles. A menu item can be in
active, checked, bulleted, and so on, by default. You specify the defaults
you want when you edit the menu.

~II OTE Command IDs playa prominent role in MFC. You'll see them used in
v~I" other places too, including message maps and toolbars. We'll develop com

mands more fully in Chapter 10.

Menu mnemonics and accelerators

When you edit menus, you can a~so specify menu mnemonics and accel
erators. Both are keystroke combinations with which a user can choose a '
command.

• A mnemonic is an Alt+keystroke combination, such as Alt+F+O for
the Open command on the File menu. When a menu opens, the
mnemonics are the underscored letters you see in the menu items'
names.

!II Accelerators are similar, but they simply carry out the associated
command without involving the menu. Common accelerator key
combinations include Ctrl+keystroke and Ctrl+Shift+keystroke. For
example, the accelerator for the Open command on the File menu
is customarily Ctrl+O.

9: On the Menu

When you click a menu in most applications, you'll often see both a mne
monic and an accelerator listed as part of the menu text for many of the
menu items. Try it. The Open command on the File menu, for example,
usually has the 0 in Open underscored (that's the mnemonic), with the
text Ctrl+0 listed after the command name (that's the accelerator name).
The accelerator is listed beside its command in the menu as a convenient
place for the user to look it up quickly. Not all menu commands have
accelerators-they're optional-but all should have mnemonics. Accel
erators need not correspond to a menu item at all, but they usually do.

Windows Resources
Resources in Windows are the text and graphics that define much of the
user interface. They are stored with the application as part of its execut
able file. Resources include:

• Accelerators. MyDraw will include accelerators for some of the
new commands it defines, as described in this chapter under "Add
the Accelerators for MyDraw."

• Bitmaps, icons, and cursors. We'll eventually give MyDraw a dis
tinctive application icon, and we'll edit the bitmaps displayed on
toolbar buttons.

• Dialog boxes and the controls they contain. MyDraw will have
three dialog boxes for setting application options.

• Strings. These include error messages, common text, and menu
prompts. MyDraw will store some of its strings in string table resources.

• Toolbars. MyDraw will have two toolbars, one for ordinary file and
edit operations, and one for drawing tools.

• Version resources. These contain information about the program,
including its current version number. MyDraw will have a version
resource, but I won't add it until the final, bonus version, called
MyDrawF, located in the \learnvcn \Chap21 folder in the compan
ion code.

• Menus. Stay tuned-we'll get to menu resources shortly.

299

Fundamental MFC Skills

300

Windows loads an application's resources as needed, at run time. When
the application uses a resource for the first time, Win,dows reads it in. For
example, if the user opens a dialog box, the resource for the dialog box is
read into memory.

The virtues of resources

Resources go a long way toward standardizing the appearance and func
tionality of Windows applications. Although a dialog box or a menu con
tains application-specific items, the appearance and behavior of the items
is standard. This makes Windows applications more consistent and thus
easier to learn and to use. It also makes them easier to program. Imagine
how hard it would be if you had to write code to produce all of the dia
logs, buttons, and menus without resources.

Behind the scenes, as far as the user is concerned, there's often another
reason for using resources. If an application will be translated for foreign
markets (known as localizing), resources can help. If all of the visible
elements of the program are stored in the application as resources, you
can simply replace the program's resources with translated versions and
rebuild. It's even possible to manage resource translation in a manner
that doesn't require rebuilding the application's code, particularly if you
use MFC. For more information, check the Help index for localizing re
sources, which leads you to MFC Technical Note 57.

You might also need to revise your C++ code, however, to handle lan
guages that require multiple-byte characters, such as Unicode or Multi
byte Character Systems (MBCS). Character strings in most European
languages use single-byte characters, but some nonEuropean languages,
such as Chinese and Japanese, require at least 2 bytes to represent all pos
sible characters. For more information, check the Help index for localiz
ing code.

~(;:II OTE The Visual C++ documentation includes a set of technical notes on
~Il topics that are often too specialized or technical to be covered in the gen

eral documentation. I won't say much about them in this introductory book,
but you should know they are there. Check the Help index for technical
notes by category.

9: On the Menu

Resource files

When you run the MFC App Wizard, the wizard creates a set of standard
resources as well as the code files we toured in Chapter 8. Actually, it
creates a file named projectname.rc, where projectname is something
like MyDraw. This resource file contains items in a resource specification
language-this is the raw source code that the Windows resource com
piler, as part of the Visual C++ build process, turns into binary (compiled)
resources that are added to the program's .exe file. You can look at an
application's resource code by opening projectname.rc as text. (In the
Open dialog box, choose Text in the Open As box.)

.l\'?I\ OlE AppWizard also creates two icon files (which have the .ico extension)
'~Iil and a bitmap file containing images for toolbar buttons (which has the .bmp

extension). Some other AppWizard options generate additional resource
related files.

Resource editing

Originally, Windows programmers wrote much of the source code for their
resources by hand, but programs like Visual C++ now commonly provide a
set of resource editors that you can use to "draw" your resources-to lay
them out with visual tools. Visual C++ supplies a resource editor for each
resource type. We'll see many of those editors in this book, starting with
the Menu editor and the Accelerator editor.

ResourceView

You manage your application's resources in Visual C++ by using the
ResourceView pane in the Workspace window, shown in Figure 9-2 on the
following page. I described the ResourceView pane briefly in Chapter 1.

In the ResourceView pane, each resource type has its own folder. If you
double-click one of the folders (or click the plus sign in front of it), the
folder opens, revealing one or more actual resources. For example, if you
open your MyDraw project, click the ResourceView tab in the Workspace
window, and open the Menu folder, you see one menu resource, identi
fied as IDR_MAINFRAME. Try it. This resource ID is associated with the

301

Fundamental MFC Skills

Figure 9-2.

302

code in MyDraw.rc for the application's menu bar. There's nothing sacred
about the name IDR_MAINFRAME. You can change it, but if you have no
good reason to do so, I recommend that you just accept it.

'. MyDraw M,crosoft VISual C ••. IDr.wV .. hi f:IlIliil E.i

·l~t-?E~.t~.~~~ \""~'\.ft~~ ~~J~ ~~"t".'~ ; ~';h L::I ...• ~' '-"--.:~ ;!.; t.:~~

i~~:i"~:11'~;::~~~~~~:"~~ ~J33~;
_.::i.~.:~""':""'~.:..~:~~ ;~ Dr'3.~V"!l lr.t;)'(.j:;:C of the- CJf'7D1J' \11r>1..1 C!<:tS,3 ~

=-l '2:jMJDraw resources; l / ///////////////////,,/ ... // ... ////////////////////// ,

(+\ .2J Accelerator
ffi I.:.J DIalog

It I :J Icon

B ~Menu
ill IDR_MAlNFRAMl

ii'l ...J S [ling T .ble
.±J :.:J Toolb.,
r+l -.JVefsion

#If Idefined(AFX DRAI1VI1 H 24958326 5DDA 11D2 991,
Ide! ine AFX_DRA I1VI1_H_i49"S8 32 6_5DO£1102:: 9 9lB:: 0 OC •

#1£ _MSCVER) 1000
#pragma once
#end1f / IF' VER > 1000

! enuJ'Il ShpType
{

shpRectang Ie,
shpEll,ipse

_ class CMyDrdwView : public CView
{

The Resource View pane in MyDraw.

By the way, the principal icon, accelerator, and toolbar resources in My
Draw have the same name as the menus: IDR_MAINFRAME. Resources
of different types (for example, a menu resource and an accelerator re
source) can conveniently share an ID, but you must use different IDs for
multiple resources of the same type. Two menu resources, for example,
must have different IDs. The IDR_ prefix is an MFC naming convention
for most resource IDs-you can use it or not, as you like. The "MAIN

FRAME" part of the ID name stands for the frame window with which the
menu is associated.

The Resource.h file

AppWizard creates an addifional resource-related file, called Resource.h.
This header file contains #define directives for the resource IDs used in a
project. The Visual c++ documentation calls the constants defined this
way symbols. You can edit symbols or view them using the Resource
Symbols command on the Visual C++ View menu. For information on
editing resource symbols, check the Help index for Resource Symbols

9: On the Menu

Browser and choose the subtopic "managing." You may find that you sel
dom need to tinker with these symbols, but you can if you need to. (You
can also edit Resource.h directly, in the Source Code editor. If you do, an
swer "yes" when asked if you want to reload resources. Then select Re
build All on the Build menu. This gets everything back in sync.)

It's possible to use resources in multiple .rc files. The Resource Includes
command on the Visual c++ View menu lets you manage such files. For
more information, including reasons for putting resources in more than
one file, check the Help index for including resources from other files.
Besides an .rc file, AppWizard also supp'ues an .rcZ file. This file is in
tended for resources not created with the Visual c++ resource editors or
wizards.

Adding a Tools Menu to MyDraw
In order to complete step 1 for MyDraw, we need to create a Tools menu.
For now, this menu has two commands: Rectangle and Ellipse. These
commands cause MyDraw to draw the corresponding shapes at random
locations. (We'll add other ways to give drawing commands later, but for
now we're limited to menus.) Since App Wizard has already given us a
menu resource, IDR_MAINFRAME, that contains many standard com
mands, we don't need to create a new menu resource. Instead, we can
edit the existing menu resource.

To edit the IDR_MAINFRAME menu resource, open it in the Visual c++
Menu editor. Just double-click the IDR_MAINFRAME menu resource in
Resource View. The Menu editor is shown in Figure 9-3 on the follow
ing page ..

The IDR_MAINFRAME menu resource comes with File, Edit, View, and
Help menus, most of them with commands that already work, as we saw
in Chapter 7.

The Menu editor shows the ,new-item box-an empty box with a dotted
outline-to the right of the Help menu. This box is where you create a new
top-level menu, but you may need to move it from its default position.

303

Fundamental MFC Skills

Figure 9-3.

304

'. MyDraw' Microsoft Vrsual C++, [MyDraw rc' IDR_MAINFRAME (Menull I!!!I~Ei
- -- - -- --

1 ~ file [d,t !:(!V~~ !n-r'il t:oiect L:t.IIld lool~, ~Indow tielr:, . ' " , ' ,,', ",', ", , ";: ~~

r~~,fiiiEJ~:~ ~r~,,- _:~~-,~'~~, ~,~., ~_3J~

Menu editor

II'" ','i,"'" 311""'; ,.,ro,r",·J '::::Uif.fMI'DmwV,,;w ,- ' '8:-,,,:,,,
-- -'---1- ~ \...,.......... ~~--,-~,..~-<-~,-'-

J ~~.; t:j ~ ! I§L t ' '.~....--""""" ______ -":-__ ---' __ _
--=::" -:='" •• d ,~j Eile ,Edit. Ylew !::!I'lp ::,,~ :)

::: ':] MyDraw resources
1+1 .:.J Accelerator
1+; :::J Dialog L..-----------iit-- New-item box
1+1 ..:J Icon
l-:l :.::.J Menu

~ llQ.r.::.iD-=-R -MA-'N=FR-AM--"1E I Menus in the
i...-___________ -+-_ resource

I± :...J Stong Table
:±l :::.J Toolbar
Itl ..JVersion

'---++----------------~ Menu resource

Reauo

The Visual e++ Menu editor, with the IDR_MAINFRAME resource open.

Top-level menus occupy a position directly on the menu bar. They nor
mally have submenus (also called drop-down menus) that appear when
the top-level item is clicked. Items in a submenu can also have submenus,
resulting in hierarchical or cascading menus. And you can create pop-up,
or context, menus that pop up at the mouse location, usually in response
to a click of the right mouse button. I'll say more about these kinds of
menus in later chapters.

Adding the Top-Level Menu
Adding a new top-level menu is a matter of dragging the new-item box
from the right of the Help menu to where you want it. Then you type a
menu name, open the menu's Properties window, and specify desired
options. Because this is our first resource editor, I'll be a bit more explicit
here than I will for the other editorS'. Usually, I'll specify the characteris
tics of the resource you're editing and direct you to a Help topic about
using the editor.

9: On the Menu

Try it now
Create the top-level menu for My Draw as follows: Drag the new-item
box and drop it between View and Help. It's conventional to make the
Help menu the rightmost item on the menu bar, and it's typical that the
first three menus are File, Edit, and View. Make sure the new-item box
is selected (a fuzzy gray border surrounds it when selected). Then type
&Tools.

As you type, the Menu Item Properties window opens and your text ap
pears in the window's Caption box as well as on the menu bar. Top-level
menus don't need command IDs unless there won't be any submenus un
der them, which is not a common thing to do, so the ID box is unavail
able. Note that top-level menus have the style Pop-up checked.

\ Jil' IP The Properties window comes and goes. If you prefer, you can keep it
"11 in place while you work. Click the pushpin icon in the window to "pin" it in

place. To unpin the window, click the pushpin again. The window's con-
tents change as you select different items, such as different menus.

The ampersand (&) in the menu's caption identifies the character follow
ing the ampersand as the menu's mnemonic. Avoid duplicate mnemonics
at the same level in your menus. For example, if you had File and For
mat as top-level menus, you'd need to give them different mnemonics,
such as: &File (with F as the mnemonic) and F&ormat (with 0 as the
mnemonic). If the user invokes a duplicated mnemonic, Windows uses
the duplicate forms alternately, first exe'cuting one command, then ex
ecuting the other, then the first again, each time the mnemonic is in
voked. After creating the rest of the top-level Tools menu, you can check
for duplicate mnemonics. Right-click in the Menu editor window and
choose the Check Mnemonics command. If you find duplicates, use the
Menu editor to make them unique.

305

Fundamental MFC Skills

306

AlIOTE If you ever do use a top-level menu that invokes a command, it's con
~Il ventional to put an exclamation point after the name, like this: Exit! Such

one-item menus are seldom used any more.

Adding the Submenus
When you click a top-level menu item on the menu bar to select it, a sec
ond new-item box appears below it. Use that box for adding items to the
drop-down menu under the top-level menu. Adding the menu's textand
setting its properties is similar to what we did for the top-level menu.

Try it now
After you've added the Tools menu to MyDraw, add its submenu items.
Select the Tools menu item. Click in the lower new-item box and type the
string &Rectangle \tCtrl+R. The text \tCtrl+R specifies an accelerator key
for the Rectangle command: Ctrl+R. The tab character, \t, neatly aligns
this accelerator with any other accelerators in the Tools menu. As you
type, the Menu Item Properties window opens. Submenu items don't usu
ally need any styles checked, either on the General tab or the Extended
Styles tab of the Properties window. But there are two new items to fill
in-items we didn't have to add for the top-level menu:

• ID. Command IDs are usually named for the primary way to invoke
them. For example, the Print command on the File menu is identi
fied as ID_FlLE_PRINT (the pattern is ID_menu_command). So, for
the Rectangle command, specify ID_TOOL_RECTANGLE. This step
is how we connect the menu item to the command it generates.
(I've used the singular form "tool" here, but the plural, tools, would
be fine too.)

• Prompt. The prompt is a string that appears in the status bar as the
user moves the mouse across a menu item (or highlights the item
with an arrow key). This string describes what th!3 currently high
lighted command does. This is an MFC feature that helps users

9: On the Menu

understand the command by providing simple documentation right
in the user interface. For the Rectangle command, type the string
Draw a rectangle.

Try it now

After adding the Rectangle command, add the Ellipse command below it
in the same manner. Type ID_TOOL_ELLIPSE for the command ID and
Draw an ellipse for the prompt text. The full Caption string, with accel
erator text, is &Ellipse \tCtrl+E.

~Jil 'IP A command is often implemented by both a menu and a toolbar but-
'>,~I ton. When you specify the command's Caption string, you can also specify

the text to appear in a tooltip, the small yellow label that appears over
toolbar buttons when you move the mouse over the button without click
ing. I'll show you how to do this in Chapter 18, but here's a sample Caption
string with tooltip: & £l/ipse\tCtrl+E\n£l/ipse.

\TI' IP Suppose that while you're editing menus, you want to briefly return to
-"'YI your C++ source code files, and then return to the Menu editor. The Menu

editor window is a document window that shares space with the source
files (so it may cover them up). You can switch among them by clicking the
desired filename on the Visual C++ Window menu. The filename listed for
the Menu editor is "MyDraw.rc -lOR_MAINFRAME (Menu)." Try it.

I've only covered the basics, so there's a good deal more to learn about
menu editing. Check the Help index for menu editor. The topic that opens
takes you to topics on menu editing, copying, and moving.

Adding the Accelerators for MyDraw
You might have thought that adding text like \tCtrl+R to a menu caption
was enough to create an accelerator key. Unfortunately, that's not the case,
although perhaps it should be. The added text just adds text to the menu
so that users know what keys to press. We also need to add accelerator
keys in the Accelerator editor. .

307

Fundamental MFC Skills

Figure 9-4.

308

Try it now
Let's add the accelerators for the Rectangle and Ellipse commands. The
Accelerator resource window is shown in Figure 9-4. To open the accelera
tor resource, open the Accelerator folder in ResourceView and double-click
the resource, IDR_MAINFRAME. Like the Menu editor, the Accelerator edi
tor has a new-item box, located at the bottom of the table of accelerators.
Complete the following procedures:

• For the Rectangle command, type R in the new-item box. In the
Accel Properties window that opens (see Figure 9-5), verify that
Ctrl is selected in the Modifiers group and that Virtkey is selected
in the Type group. Type ID_TOOL_RECTANGLE in the ID box, press
Enter, and save your work.

• Do the same for the Ellipse command, specifying Ctrl+E for the ac
celerator and ID_TOOL_ELLIPSE for the command ID.

For more information on the Accelerator editor, check the Help index for
accelerator editor.

'. MyDraw - Microsoft Visual c - [MyDraw rc - IDR_MAINFRAME (Acceleralorll fIIIl!il t:i
-- - -- -------- . -- - ---- --- ._- - -- -

ITQB~FJffi~_t1rm_m_.rr_--~;r----.;.~,..-+-Accelerator
!±I U Dialog resource
&l CJ Icon
'II CJ Menu
r+l c.J String Table
1+1 LI T oolbar
:±I l.J Version

The Visual e++ accelerator editor.

VIRTKEY
VIRTKEY Accelerator

'--,i,!iSh!-t'ift.IA. V<--IKe,.li_DeEL E-TE--....:vofHIR~T*lKE?+Y--+- just added
VKJ6 VIRTKEY
Shift. VKJ6 VIRTKEY
etrl • VKJNSERT VIRTKEY
Shift. VKJNSERT VIRTKEY
etrl.x VIRTKEY
etrl. Z VIRTKEY

New-item box

9: On the Menu

Figure 9-5.

Ctrl+R key combination

Key combination is a
-+-~ - command, not an ASCII

~~~",,-,,:-,----:--~~~,.:->. character. 

The Aeee} Properties window. 

Menus and Commands 
Windows sends command messages in response to menu selections, 
clicks on toolbar buttons or other controls, and so on. In MFC, a com
mand-including one issued by a menu item-is processed through a 
chain consisting of command target objects, including the frame window, 
document, and view objects, as well as the application object. Each com
mand target object checks its message map to see if the object has a han
dler for the command ID. If so, it calls the handler, in some cases passing 
it parameters that ~ome with the message. 

So far, we've defined two commands by their command IDs: ID_TOOL

_RECTANGLE and ID_TOOL_ELLIPSE. But we have yet to write the 
command handlers that carry out the user's wishes. That's coming in 
Chapter 10. 

Try It Yourself 

I've shown you the basic techniques for editing menu and accelerator re
sources, but there is more to learn. 

1. Explore the Menu and Accelerator editors. 

Explore the Menu and Accelerator editors more thoroughly. Try them out 
and read the Microsoft documentation on them. To read about the Menu 
editor, begin by checking the Help index for menu editor. To read about 
the Accelerator editor, check the Help index for accelerator editor. Take 
some of the other resource editors for a spin too-open them the same 

309 



Fundamental MFC Skills 

310 

way you open the menu and accelerator resources, using ResourceView. 
Read more about Resource View as well, by checking the Help index for 
Resource View. One especially valuable Resource View skill is copying 
resources from one resource file to another. Check the Help index for Re
sources and choose the subtopic "copying." 

2. Get some background on Windows resources. 

To begin learning about Windows resources in general, use the Contents 
tab in Help. Open the Platform SDK topic group, and then open User In
terface Services, and then read the topics under Resources. 

To learn about the standard resources in MFC, check the Help index for re
sources, choose the subtopic "MFC, " and read the "TN023: Standard MFC 
Resources" topic. To learn about the common resources, or clip-art re
sources supplied with Visual C++, check the Help index for Common.res. 
The file Common.res contains numerous cursors, icons, and toolbar bitmaps 
that you can use. 

What's Next? 
This chapter added menus to MyDraw, but they don"t work yet. In Chap
ter 10, we'll write command handler functions that implement the menu 
commands. We'll also start drawing real shapes. 



Chapter 

Drawing Commands 
Chapter 9 and t~is chapter cover MyDraw step 1. (We completed step 0 

in Chapter 7). In Chapter 9, we added menu and accelerator resources to 
MyDraw. In this chapter, we'll wire up the menus with functions that handle 
the commands they generate, and introduce simple drawing with the 
Microsoft Windows Graphical Device Interface (GDI). The results are a bit 
crude in this step, but in subsequent steps we'll refine MyDraw considerably. 

When I introduced the Windows drawing model in Chapter 6, I said that 
the bulk of an application's drawing occurs in the view class's OnDraw 

member function. This chapter begins a description of the drawing model 
that will span several chapters. You'll start to see why OnDraw is so impor
tant. Later you'll also see that you can do some drawing in other places as 
well. Just keep in mind that the drawing model will be an ongoing theme. 

The MyDraw Application, Step 1, Continued 
In step 1, the only files we alter are the header and implementation files for 
the view class, CMyDrawView, and the Windows resource file, MyDraw.rc. 
(We put the handlers for our drawing commands in the view class because 
they have to do with displaying the shapes. See the following Note.) 

311 



Fundamental MFC Skills 

312 

A1/0TE How do you decide which class to put a handler or other function in? 
6111 Base your decision on which object is most affected by the function. If it has 

something to do with maintaining the data, such as copying it, writing it to 
a file, refreshing it from a database, and so on, the document object is a 
good choice. If it has mostly to do with how data looks in the display, the 
view object is a good choice. Sometimes a function might belong to the ap
plication or frame window object instead. If you find yourself accessing other 
objects to make the function work, you might choose a better object to 
house the function. 

In this step, the rest of the files remain as they were when AppWizard cre
ated them. All of the code I show you will be in the two view class files, 
DrawVw.h and DrawVw.cpp. 

~I MPORTANT Keep in mind that I have developed this project in stages. Each 
I chapter of this book contains the latest MyDraw project placed in a folder 

that contains the step number-for example, MyDraw1. You don't need to 
use the number when you name your projects. I'm going to lead you through 
this code to demonstrate points about Windows programming, especially the 
Windows drawing model, so it's an especially good idea to work along with 
me in your own MyDraw project. Keep in mind that we added some menu 
and accelerator resource items in Chapter 9. Review "Working Along with 
Me" in Chapter 7 for details on how towork through the example programs 
as I do. 

Adding the Command Handlers 
It's time to add the command handlers for the Rectangle and Ellipse menu 
commands, along with some associated code. We'll use both WizardBar 
and ClassWizard-close relatives-to add the two command handler func
tions to the view class. ClassWizard is a Swiss Army knife, with lots of 
capabilities. WizardBar puts a few of the handiest ClassWizard abilities 
on a toolbar. We'll also need to declare a couple of view class data mem
bers, add two helper functions for generating randomized shape locations, 
add a few #include directives, and do a bit of initializing. 

Here's what we want to happen when a user clicks the Rectangle command 
on MyDraw's Tools menu. The OnToolRectangle handler function obtains a 
bounding rectangle, of type CRect, within which to draw'its shape. Then it 



10: Drawing Commands 

calls a member function of class CDC to do the drawing. (Figure 4-1 on 
page 127 illustrates the concept of drawing in a bounding rectangle.) 

For MyDraw step 1, the shapes' bounding rectangles are randomly cho
sen, much as they were in program Shape3 in Chapter 5. We'll add two 
view class member functions, RandomCoord and RandomRect, to gener
ate random bounding rectangles. RandomCoord is essentially the same as 
in program Shape3 in Chapter 5. RandomRect is new but very simple. 

The next section describes what you need to do to work along with me. 

Adding the OnToolRectangle and OnToolEllipse command handlers 

Add two command handler functions in the view class, called OnTool

Rectangle and On ToolEllipse. You can add both by using WizardBar, as 
described in the first procedure below, but I suggest you add the second 
with ClassWizard to get a taste of working with both tools. The ClassWizard 
procedure follows the WizardBar procedure. See the sidebars "WizardBar: 
Fast Class Actions" and "ClassWizard: AppWizard's Partner, WizardBar's 
Big Brother." 

~ Try it now 
WizardBar is the easiest way to add a command handler. On WizardBar, 
verify that class CMyDrawView is listed in the class box (on the far left end 
of WizardBar). Change the class boxlisting if necessary. 

1. On the WizardBar Action menu (the down arrow at the far right), 
click the Add Windows Message Handler command. Microsoft Vi
sual C++ 6.0 displays the New Windows Message And Event Han
dlers dialog box. (See F~gure 10-1 on the following page.) In the 
Class Or Object To Handle box, click ID_TOOL_RECTANGLE. That 
command is the "object" for which we need a handler. 

2. In the New Windows Messages/Events box, click COMMAND. 
That's the type of handler we're adding. 

3. Click the Add Handler button. In the Add Member Function dialog 
box (Figure 10-2), click OK to accept the suggested function name. 

313 



Fundamental MFC Skills 

Figure 10-1. 

Figure 10-2. 

314 

!!!!==~!I- 2. Click COMMAND here. 

~25.L 3. Click here. 

~"~~~--=:'r~--:--+-1. Click an ID here. 

i 1:., ';( ,..;2-':, ,,'I:: :.1,:,' ,,;,:;:::L' 
,('ClMMANI)7 Ha~dre' ~ comll'.<Iridifrom1Tlenu, acceJ. cmg Quftonj 

,,), , ,'" ",: ~'t'", ,- <,";;." ,,' 

The New Windows Message And Event Handlers dialog box. 

';, Mefl1ber fUhction name: 

:,~Jo;:iiil_ 
": v < A~ - ,A ,v'_ " ' '0,.-, 

, ,M~s~~gE!:, CDMI'4~NP" ," : ':. 
,Object ID: ,ID300L_RECTANGLE ~,' 

A ,- :" < , ~< >,A; <,' I 1 

The Add Member Function dialog box. 

\J _. IP If the Add Windovys Message Handler command and the Add Virtual 
-''\" Function commands ever disappear from the WizardBar Action menu, fol

low these steps to restore them: First make sure the Class box on the left 
displays a class name, not just "Globals." If that doesn't solve the problem, 
you may need to recreate a ClassWizard data file called, for MyDraw, 
MyDraw.clw. To do this, click ClassWizard on the Visual C++ View menu. A 
dialog box asks if you want to recreate the .clw file. Click Yes. In the Select 
Source Files dialog box, click Add All, then OK. In ClassWizard, click OK. The 
WizardBar commands should reappear. 



10: Drawing Commands 

Wizard Bar: Fast Class Actions 

WizardBar is a Visual c++ toolbar with an interface for managing and 
modifying classes and their members. It's also an excellent naviga
tional tool-you can use it to jump directly to the code for a particu
lar class or function. 

WizardBar contains three combo boxes and a button. The combo 
boxes show, from left to right, classes, filters, and class members. If 
you select a class in the Class box, the Members box is filled with 
the members of that class, assuming the Filters box reads "(All class 
members)." The Filters box lets you filter the items selected from the 
Members box. In some situations it lets you view command IDs as 
well as members. 

The VVizardBar Action button lists actions you can take on the cur
rently selected class or member, such as adding a new class member, 
going to a class or function definition, or creating a new class. The 
Action button has two parts: a small control (a down,vard pointing 
arrow) that displays a menu of actions, and a magic wand icon that 
simply carries out the current default action (shown in bold text on 
the Action menu). As you work in your code, WizardBar tracks 
where you are, changing the contents of the Class and Members 
boxes accordingly. I'll have you use WizardBar many times in this 
book. For more information, check the Help index for WizardBar. 

~ Try it now 
Repeat the process above to create a handler for the ID _ TOOL_ELLIPSE 

command. Or do it this way with Class Wizard instead of WizardBar: 

1. On the Visual C++ View menu, click ClassWizard (or press Ctrl+W). 
Figure 10-3 shows ClassWizard. In the MFC ClassWizard window, 
make sure the Project box says MyDraw and the Class Name box 
says CMyDrawView. Change them if necessary. 

2. In the Object IDs box, click ID_TOOL_ELLIPSE. That's the command 
we want to create a handler for. 

315 



Fundamental MFC Skills 

Figure 10-3. 

316 

3. In the Messages box, click COMMAND. That's the kind of handler we 
want to create. (I'll explain the other kind, VPDATE_ COMMAND_VI, 
in Chapter 12.) 

4. Click the Add Function button. In the Add Member Function dia
log box (see Figure 10-2), click OK to accept the proposed function 
name. The names proposed are based on the command ID, so they're 
a good match. 

For more information about the sequence of steps needed to create a mes
sage handler using ClassWizard, see the sidebar titled "ClassWizard: App
Wizard's Partner, WizardBar's Big Brother." 

MFC Class'Wlzard 0 EJ I 

M~isdge M,3p~ 1 'M.efilberv~i~!lles 1~!:~ut6m~ti~~J :~t~~~;i~l1~i~J ' ~~tt"ll1il ' ";" 
: ',er~l~c:' "'" :,,}' ':' '"-;'~>Cla~~'!l~~e:':'""~,:,,:-;-,, ':" -T ",- j.: Addcl~s~:'~ "q 
',,1MvDraw 3-,~ CMyDrawVlew I. ,\, ,1'- ;"'''' , -;, 
A v C.\ ".\Te~t\MylJra'Ii'\DrdwVwh. C \,:i\Test\MyO{aw1\()ravAlw c~'< ~ , A~l~t!g\.11A~"n~~Url 
,Ol:locqD<::~, , -, Me$s~s:_:-:: '~'~;")':'\',' 

1. Select class here. 

4. Click here. 

ID FILE SAVE AS COMMAND 
ID=NEXijANE /' UPDATE_COMMAND_UI 
ID PREY PANE t" , -.....;,.:..-'------;.;.;..;.;.+- 3. Select member 
:g-~~~-~i,fJ~~GB~~ '1,: ' or message. 
I D=VI EW=TO 0 LBAR :::J -, ':-
~Me~mb~ei~!,u~nc~lio~r,s"""";""':'-~========::===;-~~:7':"';'-:t12. Select ID here. 
v 0 nB eglnPrrntrng 
V OnDraw 
V OnEndPrinting 
V OnPreparePrrntrng 

'\iv' On,T oolElhose , 
{) e~cr:phor: ' 

'-~-~---

Class Wizard. 

--""'+---------H-- 5. See added 
message 
handlers here. 

After the WizardBar or ClassWizard steps, WizardBar leaves you,at the 
new function's definition, ready to add code. You can click the Edit Code 
button in ClassWizard to arrive at the same place. Either way opens file 
DrawVw.cpp in the Source Code editor at the latest of the two new func
tions, which are called OnToolRectangle and On ToolEllipse. 

The On prefix for Windows message handlers and command handlers is an 
MFC convention. Such handler names indicate what message or command 



10: Drawing Commands 

they're handling. Adding the handlers with WizardBar actually adds two 
other things besides the function bodies in DrawVw.cpp: 

• In DrawVw.h, WizardBar or ClassWizard adds two member func
tion prototypes to the CMyDrawView class, in the area reserved for 
message handler functions, as follows: 

II Generated message map functions 
protected: 

11{{AFX_MSG(CMyDrawView) 
afX-msg void OnToolRectangle(); 
afx-msg void OnToolEllipse(); 
I/} J AFX_MSG 
DECLARE_MESSAGE_MAP() 

A'II OTE WizardBar and ClassWizard write in your files only between specific 
ttl delimiter comments such as the AFX_MSG comments. This reduces the 

chance that the wizards might interfere with your own code. Avoid editing 
the contents of such blocks directly. Use the wizards to edit them instead. 

• In DrawVw.cpp, WizardBar adds two message map entries near the 
top of the file. Here's the whole message map-the new entries are 
in boldface: 

BEGIN_MESSAGE_MAP(CMyDrawView, CView) 
11{{AFX_MSG_MAP(CMyDrawView) 
ON_COMMAND(ID_TOOL-RECTANGLE. OnToolRectangle) 
ON_COMMAND(ID_TOOL-ELLIPSE. OnToolEllipse) 
I/} JAFX_MSG_MAP 
II Standard printing commands 
ON_COMMAND(ID_FILE_PRINT, CView::OnFilePrint) 
ON_COMMAND(ID_FILE_PRINT_DIRECT, CView::OnFilePrint) 
ON_COMMAND(ID_FILE_PRINT_PREVIEW, CView::OnFilePrintPreview) 

END_MESSAGE_MAP() 

When you add a member function of any kind with WizardBar, or its sib
ling, ClassWizard, you always get these three ingredients: function proto-

. type in the class declaration, message map entry, and function definition. 
WizardBar is the quick way to work on a class. Class Wizard is the more 
comprehensive way. 

I'll show you the handler function definitions later in this chapter when 
you're ready to add code to them. 

317 



Fundamental MFC Skills 

318 

ClassWizard: AppWizard's Partner, WizardBar's Big Brother 

AppWizard is a run-it-once tool, but ClassWizard is available any 
time you need to add members to a class, or create a class, or do 
quite a variety of things. Take a look at the tabs in the ClassWizard 
window. (See Figure 10-3.) Most of ClassWizard's most common 
functionality is available through WizardBar. Use ClassWizard for 
heavy lifting, WizardBar for quick work. 

ClassWizard's main purpose is to manipulate message maps. With it, 
you can add or delete handler functions for standard Windows mes
sages like l11M_ CREATE, and override virtual functions like 
OnlnitiaJUpdate. You can also use the Add Class button in 
ClassvVizard to add a class derived from an MFC class or a generic 
class of your own design. (You can instead use WizardBar or the 
New Class command on the Visual C++ Insert menu for this pur
pose.) ClassWizard can also delete class member functions, and can 
be used as a navigational tool. To do either, simply select the class 
and class member you want, and then click the appropriate button. 

One of ClassWizard's (and WizardBar's) chief advantages is that it 
never lets you forget to add one of the essential ingredients. If you 
add a lllelnber function to a class by hand, you might forget the mes
sage map entry or the function prototype in the class declaration. 

I'll use WizardBar more than Class Wizard in this book, but some 
things are best done in ClassWizard, so you'll meet the wizard again. 
For more information, check the Help index for Class l1'izard. 

\TI' IP If WizardBar is not visible, open it as you would any toolbar. Right-click in 
"JI the toolbar area of the screen. On the Toolbars context menu, click WizardBar. 

Adding the m_boxShape data member to the view class 

Now we need to store some information in the view, namely the bound
ing rectangle in which to draw the current shape-in effect, the shape's 
location on the drawing surface. 



10: Drawing Commands 

~ Tryitnow 
In the file DrawVw.h, add the m_boxShape data member in the public at
tributes section: 

II Attributes 
public: 

CMyDrawDoc* GetDocument(); 

eRect ~boxShape: II Bounding box for drawing current 
II shape 

The data member is of type GReet, an MFC class designed to represent 
rectangles. Rectangles are one of the most commonly used data types in 
Windows. 

"I OTE The CRect and CPoint classes you see mentioned in the MyOraw code 
6Ifl are the MFC classes, not the simple approximations for them that I created 

in Chapter 4, before we were working with MFC. But they serve the same 
purpose and function much the same. 

Adding the two helper functions,· RandomCoord and RandomRect 

RandomGoord is borrowed from the Shape3 program in Chapter 5. It uses 
the rand run-time function to generate a random number in the range a to 
GOORD_MAX, which at the moment equals 1000. RandomRect calls 
RandomGoord four times to generate the coordinates for the upper-left 
and lower-right points of a randomly located rectangle. 

In order to use the rand function, we need some supporting items in the files: 

• Two #include directives to include run-time files Stdlib.h and Time.h 

• A call to the companion srand function to seed the random number 
generator 

319 



Fundamental MFC Skills 

320 

~,. Try it now 

1. Near the top of file DrawVw.cpp, add the following #include direc
tives (anywhere in relation to the other #includedirectives there): 

#include <stdlib.h> 
#include <time.h> 

II For rand and srand and abs 
II For time function 

2. In file DrawVw.cpp, add code to the view class constructor to make 
it look like this: 

CMyDrawView::CMyDrawView() 
{ 

} 

II TODO: add construction code here 
II Initialize random number generator for random bounding rects 
srand«unsigned)time(NULL»: 

This call gets the current time, then uses that value to seed the random. 

number generator. Next we'll add the two randomizing helper functions. 

~~ Try it now 

Table 10-1. 

Add two ordinary member functions to the view class. (They aren't Win

dows message handlers, and they aren't virtual function overrides.) 

1. On the WizardBar Action menu, click the Add Member Function 

command. 

2. In the Add Member Function dialog box, add the information listed 

in Table 10-1 for the RandomCoord member function. Figure 10-4 

shows the sequence of steps needed to fill in the dialog box. 

3. Then use Add Member Function again to add the information listed 
in Table 10-1 for the RandomRect member function. 

Item in the Dialog Box 

Function Type 

Function Declaration 

Access 

For RandomCoord 

int 

Ran dom Coord{}; 

Public 

For RandomRect 

void 

RandomRect(CRect* pRect); 

Public 

Data to enter in the Add Member Function dialog box. 



Figure 10-4. 

10: Drawing Commands 

4. Finally, add code to the two functions so they look like this: 

For RandomCoord, 

const int COORD_MAX = 1000: 

II Generate a random positive coordinate within a COORD_MAX
II by COORD_MAX-unit drawing area. 
int CMyDrawView::RandomCoord() 
{ 

} 

static int nLastCoord: 

int nNextCoord = rand(): 
int nFudge = rand() % 100: 
nLastCoord = (nNextCoord ) nLastCoord ? nNextCoord nLastCoord): 
nLastCoord = (nLastCoord + nFudge) % COORD_MAX: 

return nLastCoord: 

For RandomRect, 

II Generate a random CRect. 
void CMyDrawView::RandomRect(CRect* pRect) 
{ 

} 

ASSERT(pRect 1= NULL): II Error if user passes a bad rect 
pRect-)top = RandomCoord(): 
pRect-)left = RandomCoord(): 
pRect-)bottom = RandomCoord(): 
pRect-)right = RandomCoord(): 

Notice the constant declaration for COORD_MAX above the RandomCoord 
function. You'll need to add that by hand while you're filling in the functions. 

Add Member Function D f3 
1. Type only the return type. 

5. Click here. 
-' 

-,- function rYpe:' " 
l. Int 

,...--:-----"""-1-- 2. Type the rest of the 
r--"'::;"'-~--""""'--"""""-""';--""';-+- function prototype, 

including semicolons. 

-------11-- 3. Click access type here. 
';~-~7~~~-.~-,-,-~---~'~~--~-,,-~~ 

__ "-"";O ____ ~_---,I-- 4. Click if applicable. 

The Add Member Function dialog box for a plain member function. 

321 



Fundamental MFC Skills 

322 

Writing code in the two command handlers 

With all of the supporting code now in place, fill in the bodies of the two 
command handler functions in the file DrawVw.cpp. 

~ Tryitnow 
Add code to the OnToolRectangle and OnToolEllipse handlers so they 
look like this: 

void CMyOrawView::OnToolRectangle() 
{ 

} 

II TOOO: Add your command handler code here 
CC11entDC dc(th1s); 
RandomRect(&~boxShape); 

dc.Rectangle(~boxShape); 

void CMyOrawView::OnToolEllipse() 
{ 

} 

II TOOO: Add your command handler code here 
CC11entDC dc(th1s); 
RandomRect(&~boxShape); 

dc.El11pse(m-boxShape); 

That completes our preliminary round of coding. We'll add a bit more af
ter some testing and experimenting. 

Testing OnDraw's Menus and Shape Drawing 
Try an experiment. Build and run MyDraw with the additions we made in 
the previous section. Use the menus to draw random shapes. Try it. (To 
build, click the Build MyDraw.exe command on the Build menu, or press 
F7. To run the program, click Execute MyDraw.exe on the Build menu, or 
press Ctrl+F5.) 

The shapes will vary considerably in size and location. In some cases, only 
part of a shape may be visible. In other cases, you may think nothing has 
happened in response to your command at all. That's because MyDraw 
uses a large drawing surface, much bigger than the MyDraw window usu
ally is. A particular random bounding rectangle might not lie within the 



10: Drawing Commands 

area visible through the view, or it might lie only partially inside the view. 
You can see more by maximizing the MyDraw window, but the problem 
persists: not all of the shapes are visible. Try it. We'll deal with this prob
lem in Chapter 15, when we cover scrolling. 

~I OTE Each shape also appears to have an opaque (white) center area, so 
dif'1 that you can't see any part of a shape that another shape partially or com

pletely covers. We'll tackle the problem of seeing shapes behind other shapes 
in Chapter 11. 

Disappearing Shapes 
What happens when you maximize the MyDraw window, and then re
store it? What happens if you click outside MyDraw's window, say in the 
Visual C++ window, and then make MyDraw visible again, perhaps by 
pressing Alt+ Tab? Try it. 

Any shapes you've drawn disappear. That's because the view has become 
invalid, due to resizing or covering and reexposing the window, and must 
be drawn again. The only way we can draw at the moment is by calling 
OnToolRectangle or OnToolEllipse again, but we're at the mercy of the user 
to call them, and they draw randomly anyway. We'll rectify this problem 
partly here in Chapter 10 and completely in Chapter 14. 

Redrawing Shapes on Update 
The biggest problem we face is called the update problem. When the view 
is invalidated, we have to redraw it-Windows sends us a WM_PAINT mes
sage, and MFC calls OnDraw. This happens often in the Windows environ
ment, with its multitasking and multiple overlapped windows. But 
redrawing requires information. At the moment, the only piece of informa
tion we store is the location of the last shape drawn-its bounding rect
angle, in m_boxShape. But we can't even redraw the last shape without 
-knowing the shape type as well-do we redraw a rectangle or an ellipse? 
And, of course, we can't redraw any shapes at all, other than the last one. 

Later in this chapter, we'll solve the problem of redrawing the last shape 
on update. It won't be a great solution, but it will do for now. 

323 



Fundamental MFC Skills 

324 

~I MPORTANT Pay attention to what this update problem says about the 
I Windows drawing model. It seems that if we do any drawing outside 

OnDraw, we must also do it a second time inside OnDraw. This may seem 
inefficient, but the nature of the Windows environment requires some such 
approach. Many applications do all of their drawing in OnDraw to avoid 
the double drawing penalty. 

Keeping Track of Shape Types 
So far, MyDraw is hardwired to draw each shape type, in the 
On ToolRectangle and On ToolEllipse member functions. To redraw on 
update, we need to write some code in OnDraw. MFC calls OnDraw in re
sponse to each WM_PAINT message. 

~. Try it now 
One thing is certain. OnDraw has to know which type of shape to redraw. 
Then it can use a switch statement, like the one shown here, to do the 
drawing. Add the boldface lines: 

void CMyDrawView::OnDraw(CDC* pDC) 
{ 

} 

CMyDrawDoc* pDoc = GetDocument(); 
ASSERT_VALID(pDoc); 

II TODO: add draw code for native data here 
switch(m-typeShape) 
{ 

case shpRectangle: pDC-)Rectangle(RLboxShape): 
break: 

case shpEll ipse: pDC- )Ell i pse(nLboxShape) : 
break: 

} 

To make this switch statement possible, the view class has to store not 
only the last shape's bounding rectangle but also its type. For that, we 
need a shape type and a view class data member of that type. We're back 
to our shape type from program Shape3 in Chapter 5. 

Try it now 
Let's add a new data member to class CMyDrawView (file DrawVw.h), 
called m_typeShape, of type ShpType: 



10: Drawing Commands 

II Attributes 
public: 

CMyDrawDoc* GetDocument(); 

CRect m_boxShape; II Bounding box for drawing current 
II shape 

ShpType ID-typeShape: II Currently: rectangle or ellipse 

We add the new data member as a public attribute. 

~ Try it now 
Just above the view class declaration in file DrawVw.h, we add another 
old friend, the ShpType enumeration from Chapter 5. Add these lines: 

enum ShpType 
{ 

}: 

shpRectangle, 
shpEll ipse 

class CMyDrawView public CView 

~ Try it now 
Just one more change. In the OnToolRectangle and OnToolEllipse member 
functions, we now need to store the shape type in the CShape object's 
m_typeShape data member. Here's OnToolRectangle (OnToolEllipse is 
similar): 

void CMyDrawView::OnToolRectangle() 
{ 

} 

II TODD: Add your command handler code here 
CClientDC dc(this); 
m_boxShape = RandomRect(); 
dc.Rectangle(m_boxShape); 
ID-typeShape = shpRectangle: 

Now go add the following line to OnToolEllipse: 

ID-typeShape = shpEllipse: 

The final line of the function assigns an enumeration value to 
m_typeShape. Now the switch statement in OnDraw works to determine 
which kind of shape to draw. Then it calls the same CDC functions to do 
the drawing. 

325 



Fundamental MFC Skills 

326 

~ Tryitnow 
Test the results by building and running the application. Draw a few shapes. 
Maximize the MyDraw window, then restore it. Draw more shapes. Do some
thing to cover all or part of the window, then reexpose it. In each case; you 
should see the last shape redrawn (unless it happens to lie outside the view), 
but not the others. 

How Good Is It? 
This update to MyDraw is hardly an elegant solution. But it does empha
size what's needed to solve the update problem in general: stored data, 
often called state data. MyDraw can't redraw any shapes without the nec
essary information-the shape's type and its bounding rectangle. After 
this partial solution, we store that data, but only for the last shape. Each 
new shape's data overwrites that of the previous shape. Stay tuned for a 
limited improvement in Chapter 11 and a complete, and much more ele
gant, solution in Chapter 14. 

Future Versions of MyDraw 

Table 10-2. 

At the beginning of Chapter 9, I took you through the features of the final 
MyDraw program, as it will be by the time we finish Chapter 20. Table 10-2 

summarizes the steps we'll take in developing MyDraw. 

MyDraw Step Chapter 

Step 0 7 

Step 1 9 and 10 

Step 2 11 

The steps to come in MyDraw. 

Description 

Step 0 is just the output of App Wizard, given a 
few specific options. We explored that output 
in Chapter B. 

In Chapters 9 and 10, we've covered menus, ac
celerators, and basic command handlers, along 
with editing menus, accelerators, and source 
code. We also used WizardBar and Class Wizard. 

Step 2 introduces drawing with the mouse 
and handling Windows messages other than 
WM_COMMAND. Step 2 also covers string 
resources. 



10: Drawing Commands 

MyDraw Step Chapter 

Step 3 12 

Step 4 14 

Step 5 15 

Step 6 16 

Step 7 17 

Step 8 18 

Step 9 19 

Step 10 20 

Description 

Step 3 covers adding color to the drawings via 
a hierarchical Color menu. 

In step 4, we'll revise class CShape and its sub
classes from Chapter 5 and put them to work in 
MyDraw as we discuss MFC documents and 
views. This will solve most of our redrawing 
problems. 

Step 5 solves another of the issues raised in 
Chapter 10-viewing shapes on the whole draw
ing surface. In Chapter 15, we'll add scrolling to 
MyDraw, with a short side trip through some 
text-handling topics. 

Once we're able to draw nice shapes, it's time 
to save them to a file. Step 6 adds MFC serial
ization code to do just that. 

It would also be good if we could print a draw
ing. That's what we'll do in step 7. 

Through step 7, we've been choosing a drawing 
tool from the Tools menu. In step 8, we'll put 
the tools on a second toolbar and cover toolbar 
lore, including the Toolbar editor. We'll also let 
the user select a shape, and we'll show the se
lection with a set of selection handles on the 
shape's bounding rectangle. 

We aren't communicating with our users much 
so far, so step 9 adds dialog boxes and introduces 
the Dialog editor. One of our dialog boxes will 
augment MyDraw's Color menu-a Windows 
common dialog box that lets users pick colors. 

The last step that we cover in MyDraw adds 
the ability to split the drawing into multiple 
panes so users can view several parts of the 
drawing surface at once. 

What Have You Learned? 

This chapter made an important point about the Windows drawing 
model. By illustrating the update problem, I showed you why you need to 
draw in OnDraweven if you've already drawn in some other function. 

327 



Fundamental MFC Skills 

328 

We'll continue that discussion through Chapter 15, as we pursue several 
loose ends. At this point the shape display is faulty in several ways: 

• The drawing surface is bigger than the viewport, so we can't reach 
all of it to see all possible random shapes. 

• So far we're only redrawing the last shape in OnDraw. The others 
disappear if the view is invalidated. 

• The shapes currently have opaque centers, which might be fine in 
some cases. But suppose we want transparent centers so we can see 
through to any shapes behind? 

Try It Yourself 

Here's your extra credit for this chapter. 

1. Learn more about MFC commands and command handlers. 

Check the Help index for commands and messages and choose the sub
topic "managing with ClassWizard." Also check the index for Commands 
and choose the subtopic "connecting to handler functions." And check 
the Help index for command routing and command IDs. 

2. Learn more about the Windows Graphical Device Interface. 

We've touched on a few CDI drawing commands in this chapter, but take 
a look at CDI overall. Check the Help index for device contexts. (Choose 
the first listing of "device contexts" in the Index.) From that overview 
topic, you can access bothMFC and Microsoft Win32 API topics on de
vice contexts and related CDI topics. (In the Win32 API topics, you may 
need to use the Up and Down arrows on the Help window's toolbar to 
move to the next or previous topic.) 

What's Next? 
Chapters 11 and 12 take up the theme of empowering users, who'll get to 
draw directly with the mouse (in color) instead of relying on menu com
mands. We'll fix most, but not all, of our drawing problems, create a hier

archical menu, and add color to the shape drawing. 



Chapter 

Power to the User 
Chapters 9 and 10 got tis started on the MyDraw application with step 1, 

but we have a long way to go. MyDraw does draw shapes, and it does 
use menu commands to determine which shapeto draw. But in step 1, 

other than choosing a tool from the menu, the user has no further control 
over the process. This deviates from the convention that, typically, in 
Microsoft Windows applications, the user, not the program, is in control. 
User control is our theme for this chapter. 

In this chapter and the next, we'll give the user more control in two ways: 

• We'll still let the user choose which type of shape to draw-using 
our menu commands. But in this chapter, in MyDraw step 2, we'll 
also let the user draw directly with the mouse. The user will be 
able to click anywhere in the view and drag the mouse to outline 
the shape. As the user drags with the mouse button still down, we'll 
show where the shape would go by drawing it each time the mouse 
moves. We'll continually erase the old shape outline and draw a 
new one until the mouse button is released, and then we'll draw 
the shape's final form. You've no doubt seen this done in some of 
the Windows programs you use. 

329 



Fundamental MFC Skills 

330 

• In the next chapter, we'll also let the user choose the color of the 
shape's outline. The user can select Color on the Tools menu and 
then select a color on a hierarchical menu. 

While we're at it, we'll solve two of the viewing issues raised in the last 
chapter-at least partially. We'll allow the user to make the interior of a 
shape transparent, so that any shapes "behind" the current shape (that 
is, shapes we drew earlier and that we're now drawing "on top of") can 
be seen. And we'll store all of the shapes drawn so we can redraw not 
only the most recently drawn shape, but all of them. These solutions are 
still not the last word on the subject-we'll improve them further in 
Chapter 14, after a brief pause in Chapter 13 to look at the Microsoft 
Visual C++ 6.0 debugger. 

~1iI' IP Be on the lookout for a logic bug intentionally planted in the code in 
'(~I this chapter. We'll debug it in Chapter 13. 

Drawing with the Mouse 
How do we go about letting the user draw with the mouse? The technique 
is to track the mouse, using handlers for several Windows messages that 
the mouse generates. Think about the act of drawing with the mouse. You 
press the left mouse button where you want to start the shape. With the 
mouse button still pressed, you drag out a box that will contain the shape 
you want to draw. The box is the shape's bounding rectangle. When you're 
finished, you release the mouse button and the shape is drawn within that 
bounding rectangle. 

Mouse-Related Messages 
During the drawing sequence, Windows generates the following messages, 
which we'll be working with in MyDraw throughout this book. 

• WM_LBUTTONDOWN, when the user presses the left mouse button 

• WM_MOUSEMOVE, as the user drags the mouse across the screen 

• WM_LBUTTONUP, when the user releases the left mouse button 



11 : Power to the User 

Windows sends fewer WM_MOUSEMOVE messages than you might ex
pect. It could send one every time the mouse moves at all, but that would 
overwhelm an application trying to process the messages. Instead, Win
dows generates an initial WM_MOUSEMOVE message, then sets a flag so 
further messages of that type are generated only periodically, as long as 
the mouse continues to move. The application receives a stream of 
WM_MOUSEMOVE messages, but not the flood it might. It can reason
ably process the messages, as we'll see. 

After a brief discussion of other aspects of mouse messages, we'll develop 
the mouse message handlers that mouse drawing requires. 

Windows can generate other mouse-related messages besides the three I've 
mentioned. The two most important kinds are double-click messages and 
nonclient mouse messages. We won't be working much with these mes
sages in the MyDraw application in this book, but they're still important 
for you to know about. 

Double-click messages 

Double-click messages tell you when the user has clicked the mouse twice 
in rapid succession-a double-click. Double-clicking is used to quickly 
initiate an action, such as opening a folder in Windows Explorer. That ap
plication interprets the first click as selecting the folder. On the second 
click, the application then carries out the most logical operation-in this 
case, opening the folder. When the user double-clicks, Windows sends the 
application a WM_LBUTTONDBLCLK message. If the user double-clicks 
the right mouse button instead of the left, the message is WM_RBUTTON

DBLCLK. (There are also messages for a middle mouse button. Nowadays, 
those are used primarily for the "wheel" on the Microsoft IntelliMouse, 
which makes long scrolls much easier. You can enable the wheel by creat
ing handlers for these messages.) 

Two other factors affect double-click handling. First, the user can specify 
how far apart the clicks must come, using the Mouse Properties dialog 
box available in the Windows Control Panel. Windows uses that value to 

331 



Fundamental MFC Skills 

332 

determine when to send double-click messages. Mostly, this doesn't affect, 
your code. The second factor affecting double-clicks is that the window 
in which the double-click occurs must be able to accept double-clicks. A 
window can accept double-clicks if the style CS_DBLCLKS is included in 
its window styles. Windows created with most of the Microsoft Founda
tion Class Library 6.0 (MFC) window and view classes include this 
style, so you'll seldom need to be concerned with this requirement. But if 
you ever derive a window class directly from class CWnd and you want it 
to accept double-clicks, you- must specify the style. 

A?11 OTE Users of multibutton mouse devices can change which button is the 
. Gilt primary button (usually the left button) and which is secondary (usually the 

right button). In this book, I use "left" when I mean the primary mouse 
button and "right" when I mean the secondary button. 

Nonclient mouse messages 

Windows sends out mouse-related messages not only for clicks and mouse 
movements inside a window's client area but also for mouse actions on the 
window's nonclient parts: the title bar; the Close, Minimize, and Maximize 
buttons; the scroll bars; the system menu icon; and the window borders. In 
most cases, you won't need to worry about nonclient mouse messages, but 
you should know that you can use them if you need them. For example, 
you might want to take some special action if the user double-clicks the 
title bar of your application. You can create a handler for a nonclient 
mouse message with WizardBar or ClassWizard, just as you would for any 
other message. Nonclient versions of the mouse messages listed earlier 
have the form WM_NCXXX. Examples are WM_NCLBUTTONDOWN and 
WM_NCRBUTTONDBLCLK. 

Mouse Message Handlers 
Windows keeps your application apprised of mouse actions, but you need 
to take advantage of those messages. To do so, you write handlers for the 
messages. The following sections summarize the process. 



11 : Power to the User 

Starting the drawing 

When the mouse button goes down, you want to start drawing. So you 
write an OnLButtonDown handler mapped to the WM_LBUTTONDOWN 

message. In the handler, you note where the mouse was when the button 
went down. (Windows gives you that information.) In MyDraw, we store 
that point as the coordinates of one corner of our shape's bounding 
rectangle. We won't be able to complete the shape, though, until the 
WM_LBUTTONUP message arrives, which lets us define a second corner. 

Ending the drawing 

On receiving a WM_LBUTTONUPmessage, handled with an OnLButtonUp 

handler, we note where the mouse is and store that point as the opposite 
corner of the shape's bounding rectangle. Now, if we know what type of 
shape to draw, we have enough information. At that point, we draw the 
final rectangle or ellipse. 

Supplying visual feedback during drawing 

There's one further complication, which we'll explore more as we de
velop the handler functions for the three key mouse messages. As the user 
drags the mouse while drawing, we want to display some visual feedback 
to guide the drawing. Without it, the user is just guessing what the shape 
will look like. So each time we receive a WM_MOUSEMOVE message, our 
OnMouseMove handler draws the outline of the shape-showing where 
the shape would be, and how big, if the user were to release the mouse 
button at that moment. On the next WM_MOUSEMOVE message, we erase 
the shape drawn for the previous message, note where the mouse is now, 
and draw a new outline there. As the user moves the mouse, the shape 
outline appears to stretch like a rubberband, hence the technique is called 
rubberbanding. 

Adding the Mouse Message Handlers 
Now let's add the. handlers to MyDraw. We'll test them in a simple way, 
then add the code that does the drawing and rubberbanding. 

333 



Fundamental MFC Skills 

334 

~". Try it now 
With your MyDraw project open, add handlers for the three main 
mouse-related messages: WM_LBUTTONDOWN, WM.:....MOUSEMOVE, 

and WM_LBUTTONUP. These handlers belong to the view class, so make 
sure class CMyDrawView is selected in WizardBar's (or ClassWizard's) 
Class box. These handlers are a little different from the command han
dlers we've added before, so read on for some guidance. 

In Chapter 10, you created handlers for the WM_COMMAND message. To 
do that in WizardBar, you clicked a command ID in the Class Or Object 
To Handle box. To do the same thing in ClassWizard, you clicked a com
mand ID in the Object IDs box. Adding a handler for any other Windows 
message besides WM_COMMAND is slightly different. Instead of clicking 
a command ID in WizardBar or Class Wizard, you click a Windows mes
sage name. In WizardBar, the messages are listed in the New Windows 
Messages/Events box. In Class Wizard, the messages are listed in the Mes
sages box. Otherwise, the procedure for adding a message handler is simi
lar to that for WM_COMMAND-see "Add the OnToolRectangle and 
OnToolEllipse command handlers" in Chapter 10. (For a Windows mes
sage other than WM_COMMAND, select the class name in the Class Or 
Object To Handle box, and then the message name in the New Windows 
Messages/Events box.) Rather than repeating the instructions for 
WM_COMMAND in detail, I'll just remind you that you're creating han
dlers for the following three Windows messages: 

• WM_LBUTTONDOWN 

• WM_MOUSEMOVE 

• WM_LBUTTONUP 

When you finish, you'll have three :function bodies in the file DrawVw.cpp, 
three member function prototypes in the CMyDrawView class declaration 
in the file DrawVw.h, and three messagemap entries near the top of the 
file DrawVw.cpp. Remember that the message map entries for WM_COM

MANDs will look different from those for other Windows messages. I'll 
say more about this later. 



11: Power to the User 

Here's what one of the three handlers looks like without any code added: 

void CMyOrawView::OnLButtonOown(UINT nFlags. CPoint point) 
{ 

II TOOO: Add your message handler code here and/or call default 

CView::OnLButtonOown(nFlags. point); 
} 

Calling the base class 

So far, the handlers are just stubs-almost-empty function bodies. They 
do nothing except call their base class counterparts in class CView, thus 
passing the message up the class hierarchy in search of a handler that will 
do more. Recall that class CView is the base class of our class CMyDraw
View. CViewor its base class, CWnd, has its own versions of these three 
handlers, which do default processing when they're called. Why does the 
wizard lead us to call them in our overriding versions in CMyDrawView? 
Because in most circumstances, we need to let MFC and Windows do cer
tain default actions either before or after we perform our own actions. The 
Visual c++ wizards are helpful enough to add these base class calls when 
we create the handlers, and the TODO comment helps you see where to 
place your code in relation to the base class call-before it or after it. 

There are cases in which you can omit the base class call, but you should 
carefully examine the base class functions (and any functions they call) in 
the MFC source code before you make that decision. Be sure you don't 
cut off some action that's essential to your program's functioning. (See the 
Appendix for guidance on finding what you're looking for in the MFC 
source code.) 

New message map macros 

Besides the three mouse message handler bodies, we get corresponding 
message map entries. Here's our view class message map, slightly abbrevi
ated, containing three new entries for the mouse message handlers: 

BEGIN_MESSAGE_MAP(CMyDrawView. CView) 
11{{AFX_MSG_MAP(CMyOrawView) 
ON_COMMANO(ID_TOOL_RECTANGLE. OnToolRectangle) 
ON_COMMAND(ID_TOOL_ELLIPSE. OnToolEllipse) 

(continued) 

335 



Fundamental MFC Skills 

336 

ON_WM_LBUTTONDOWN() 
ON_WM_MOUSEMOVE() 
ON_WM_LBUTTONUP() 
I/} }AFX_MSG_MAP 
II Standard printing commands 

We've gotten used to the ON_COMMAND macro in message map entries 
for our menu command handlers. Now, though, three new MFC macros 
are used instead: 

• ON_WM_LBUTTONDOWN 

• ON_WM_MOUSEMOVE 

• ON_WM_LBUTTONUP 

ON_COMMAND is a special case. It manages the WM_COMMAND mes
sage, which Windows sends for a variety of different commands. Each 
menu item issues a different command, with a unique command ID. The 
ON_COMMAND macro is set up to accept those command IDs. 

Nearly all other Windows messages, however, are processed in the mes
sage map with unique MFC macros, one per message. The macro name 
takes the form of the message name with ON_ attached to the front: 
ON_ WM_MOUSEMOVE. For a complete reference listing all of the mac
ros with all of their corresponding handler prototypes, check the Help in
dex for message maps and double-click the third topic listed in the Topics 
Found dialog box, titled "Message Maps." 

Testing the Handlers with AfxMessage80x 
Let's examine the behavior of the three mouse message handlers. 

-. Try it now 
-,' 

Test the three mouse message handlers, one at a time: 

1. In the OnMouseMove handler, add a call to the AfxMessageBox glo
bal function, as this example shows: 



11: Power to the User 

void CMouseView::OnMouseMove(UINT nFlags, CPoint point) 
{ 

} 

II TODO: Add your message handler code here ... 
AfxMessageBox("In OnMouseMove"); 
CView::OnMouseMove(nFlags, point); 

AfxMessageBox is a handy substitute for CWnd::MessageBox. 
Unlike MessageBox, you can call AfxMessageBox anywhere in 
your program. For more information, check the Help index for 
AfxMessageBox. 

2. To test the handler, build and run MyDraw. As soon as you move 
the mouse, the message box appears-and won't go away. To get out 
of this situation, press Ctrl+Alt+Delete. This displays the Close Pro
gram dialog box. Select "Untitled - MyDraw" and click End Task. 
When prompted, click End Task again to shut down MyDraw and 
return to Visual C++. I'll explain why the message box wouldn't go 
away in a moment. 

3. Test the other two handlers as follows: Remove the AfxMessageBox 
call from OnMouseMove and add AfxMessageBox calls to both 
OnLButtonDown and OnLButtonUp. In your AfxMessageBox calls, 
use the strings "In OnLButtonDown" and "In OnLButtonUp," re
spectively. Build and run MyDraw. Click in the client area. What 
happens? Comment out the AfxMessageBox call in OnLButton
Down, build, run, and click again. What happens this time? 

What have we learned about mouse message handlers? 

You can see that MFC calls OnMouseMove over and over as the mouse 
moves. The way we've written the OnMouseMove handler, MyDraw never 
gets a chance to process mouse click messages, because as it processes the 
first mouse move message, it displays a modal message box. We must re
spond to the message box before anything else can happen. Any other 
mouse move messages are lost. (Note that the mouse button doesn't need 
to be pressed for Windows to send mouse move messages as the mouse 
pointer moves around. They're sent whether the button is down or not.) 

337 



Fundamental MFC Skills 

338 

When we move the AfxMessageBox calls to the other two mouse mes
sage handlers, MyDraw can only handle the WM_LBUTTONDOWN mes
sage-the first mouse button message that is sent. Again, a modal message 
box prevents processing the WM_LBUTTONUP message. It's displayed 
in OnLButtonDown, and because we have to respond to it, the button-up 
message is lost. 

Once we remove the message box call from OnLButtonDown, we see the 
message box from OnLButton Up when we release the mouse button. 

While you're trying out OnLButton Up, drag the mouse out of the window 
altogether and release it there. What happens? That's just a hint of an
other issue we'll have to deal with in our mouse message handling 
code. When the mouse is released outside the window, there's no 
WM_LBUTTONUP message to match the previous WM_LBUTTONDOWN 
message. 

\J-I 'IP Instead of passing hard-coded strings to AfxMessageBox, or using them 
I :\_ elsewhere in your program, consider using string resources. Check the Help 

index for string editor. In AfxMessageBox calls, pass the string resource 10 
instead of a hard-coded string: AfxMessageBox(lDS_MYSTRING). Using string 
resources is good coding practice, and it makes applications easier to localize. 

The MyDraw Application 
By now you should be getting a feeling for how to work in Visual c++. 
You understand the layout of c++ classes, and MFC classes in particular. 
You know how to use WizardBar to locate a function's definition or its 
prototype, or to add new member functions to a class. You know how to 
use the Source Code editor. You can use at least two resource editors. And 
you know how to build and run your program. As we go along, I'll be giv
ing you less guidance on the details of these familiar activities. Instead, 
I'll present the code and explain the elements you need to add to your 
version of MyDraw to catch up with my latest version. 



11 : Power to the User 

Bringing MyDraw Up-To-Date 
The following sections describe what you need to do to your MyDraw 
files to bring them up to date for step 2. Add the boldface code lines, and 
remove the items listed in "Removing old code" on page 346. 

Creating the Shape data type 

Because we're now going to store ind~vidual shapes so we can redraw all 
shapes, not just the latest one, we need a data type to contain shape data. 
We'll use an array for the next couple of chapters, but there are better 
choices, such as one of MFC's collection classes. We'll use one of those 
classes starting in Chapter 14. 

~ Tryitnow 
Add the following Shape struct and the constant SHPS_MAX to the file 
DrawVw.h, just below the ShpType enumeration. 

enum ShpType 
{ 

} ; 

shpRectangle. 
shpEll ipse 

II A simple shape class 
struct Shape 
{ 

eRect m-boxShape: 
ShpType m-typeShape: 

1: 

II Bounding rectangle 
II Rectangle. ellipse. etc. 

II Number of shapes to store at a time 
const int SHPS_MAX = 1000: 

class CMyDrawView : public Cview 

339 



Fundamental MFC Skills 

340 

Replacing view class data members 

We'll also need a completely new group of view class data members to 
allow us to store the individual shapes. 

!~ Try it now 
Add and initialize the new view class data members: 

1. Add the following data members to the public attributes section of 
the view class declaration in DrawVw.h (replacing the old data 
members m_boxShape and m_typeShape): 

II Attributes 
public: 

CMyDrawDoc* GetDocument(); 
ShpType RLtypeNext: II Type of shape to draw next 
Shape RLshpTemp: II The current shape being drawn 
Shape RLarShps[SHPS-HAX]: II Array of drawn shapes 
int RLcountShapes: II Number of shapes drawn so far 
bool RLbCaptured; II True if mouse has been captured 
CBrush* RLpBrushOld: II Store brush for interior of shapes 

We'll use m_shpTemp to build up the attributes of a shape as it's be
ing drawn. When the shape is finished, we'll add it to the m_arShps 
array and increment the count of shapes created, m_countShapes. 
You'll see how the other data members are used as we go along. 

2. Initialize the data members in the view class constructor, CMyDraw
View::CMyDrawView, in the file DrawVw.cpp (replacing any previ
ous code): 

CMyDrawView::CMyDrawView() 
{ 

} 

II TODD: add construction code here 
RLtypeNext = shpRectangle; 
RLbCaptured = false: 
RLpBrushOld = NULL: 
ffi-countShapes = 0: 



11: Power to the User 

One thing we have replaced here is the call to the srand run-time func
tion, which we added in Chapter 10. We don't need any of the randomiz
ing code anymore. 

Rewriting the OnDraw function 

The view's OnDraw function looks a bit different. Instead of drawing one 
shape, it now drawsall shapes in the document's m_arShps array, using a 
for loop. 

~ Tryitnow 
Replace the old OnDraw with this one: 

void CMyDrawView::OnDraw(CDC* pDC) 
{ 

} 

CMyOrawOoc* pOoc = GetDocument(): 
ASSERT_VAlID(pDoc): 

" TODO: add draw code for native data here 
SetPenBrush(pDC): 
for(int nShp = 0: nShp < m-countShapes: nShp++) 
{ 

} 

" Draw 
ASSERT(m-arShps[nShp].m-typeShape == shpRectangle I I 

m-arShps[nShp].m-typeShape == shpEllipse): 

sWitch(m-arShps[nShp].m-typeShape) 
.{ 

case shpRectangle: 
pDC-)Rectangle(m-arShps[nShp].m-boxShape): 
break: 

case shpEllipse: 
pDC-)Ellipse(m-arShps[nShp].m-boxShape): 
break: 

" Add other shape tools here. 
defaul t: : 
} 

"'Restore DC's old attributes. 
ResetPenBrush(pDC): 

341 



Fundamental MFC Skills 

342 

----,'-, 
First we call a helper function, SetPenBrush, to make some changes in 
OnDraw's device context. At the end, we call a companion function, 
ResetPenBrush, to restore the old device context attributes. Notice that 
in each case, we pass a pointer to the device context. I'll introduce the 
helper functions shortly. 

To draw all of the shapes in the array, we loop from a through m_count 
Shapes - 1. Each titne through the loop, we use the following array-access 
expression in the switch statement to determine the type of the shape 
stored in the current array element (at index nShp): 

m_arShps[nShp].m_typeShape 

Then we switch on that ShpType value. Inside the switch statement, we 
draw either a rectangle or an ellipse. (Note that using pointer arithmetic 
in OnDraw would be more efficient. See Chapter 3 for a review of using 
pointer arithmetic to walk through an array.) 

To draw individual shapes, we call one of two class CDC member func
tions, Rectangle or Ellipse, both familiar from Chapter 10. We pass to this 
function the bounding rectangle of the shape to draw, obtained with this 
array-access expression: 

m_arShps[nShp].m_boxShape. 

Keep in mind that OnDraw is drawing all the shapes in response to a 
WM_PAINT message. You get this message when something has happened 
that could damage the shapes drawn previously with the mouse. We'll get 
to mouse drawing shortly. 

You'll notice that we're using lots of switch statements in MyDraw. That's 
something we worked hard to eliminate in Chapters 4 and 5 by designing 
successive versions of the CShape class. We'll return to CShape in Chap
ter 14 and streamline this code considerably. 

Adding handlers for mouse commands 

If you've been working along with me, you've already created the three 
mouse message handlers, but all you did in them was make calls to the 
AfxMessageBox function. 



11 : Power to the User 

~ Try it now 
Now it's time to add the real mouse drawing code. 

1. Add code to make your OnLButtonDown handler look like this: 

void CMyOrawView::OnLButtonOown(UINT nFlags, CPoint point) 
{ 

} 

II TOOO: Add your message handler code here ... 
SetCapture(): 
~bCaptured = true: 

ASSERT(~typeNext == shpRectangle I I ~typeNext == 
shpEllipse): 

~shpTemp.~typeShape = ~typeNext: 

II Store starting point - literally a pOint, initially 
II (topLeft == botRight). 
~shpTemp.~boxShape.left = 

~shpTemp.~boxShape.right = point.x: 
~shpTemp.~boxShape.top = 

~shpTemp.~boxShape.bottom = point.y: 

CView::OnLButtonOown(nFlags, point); 

2. Add code to make your OnMouseMove handler look like this: 

void CMyOrawView::OnMouseMove(UINT nFlags, CPoint point) 
{ 

} 

II TOOO: Add your message handler code here ... 
if(~bCaptured) 

{ 

} 

CClientDC dc(this): 

II Erase previous rectangle first. 
InvertShape(&dc, ~shpTemp): 

II Store new temporary corner as bottom right. 
~shpTemp.~boxShape.bottom = point.y: 
~shpTemp.~boxShape.right = point.x: 

II Draw new rectangle (latest rubberbanded rectangle). 
InvertShape(&dc, ~shpTemp): 

CView::OnMouseMove(nFlags, point); 

343 



Fundamental MFC Skills 

344 

3. Add code to make your OnLButtonUp handler look like this: 

void CMyDrawView::OnLButtonUp(UINT nFlags, CPoint point) 
{ 

} 

II TODO: Add your message handler code here ... 
if(RLbCaptured) 
{ 

} 

::ReleaseCapture(); 
RLbCaptured = false; 

CClientDC dc(this); 

II Erase previous rubberband rectangle. 
InvertShape(&dc. RLshpTemp); 

II Set the botRight corner's final values. 
RLshpTemp.RLboxShape.right = point.x; 
RLshpTemp.RLboxShape.bottom = point.y; 

II Draw final rectangle. 
InvertShape(&dc. RLshpTemp. false); II Draw 

II Put current Shape in array. 
RLarShps[RLcountShapes] = RLshpTemp; 
RLcountShapes++; 

CView::OnLButtonUp(nFlags, point); 

We'll look at what's going on in these handlers in a moment. 

Adding drawing helper functions 

We need to alter the device contexts that OnDraw and other drawing 
functions (including two of the mouse message handlers) use. We'll 
change the device context's default brush, and later the default pen. Add 
the following functions with the Add Member Function command on the 
WizardBar Action menu. (If you need a reminder for this procedure, see 
"Adding the OnToolRectangle and OnToolEllipse Command Handlers" in 
Chapter 10.) 



11 : Power to the User 

~ Try it now 
Since we need to make the same, or similar, device context alterations 
from several functions, we'll encapsulate the alterations in three helper 
functions: 

1. Add the SetPenBrush helper function to the DrawVw.cpp file: 

void CMyOrawV1ew::SetPenBrush(COC * pOC) 
{ 

} 

ASSERT(pOC 1= NULL): 
II Make shape's interior empty (transparent). 
ffi-pBrushOld = (CBrush*)pOC-)SelectStockObject(NULL-BRUSH): 

II Device context restored in companion function 
II ResetPenBrush 

2. Add the ResetPenBrush helper function: 

void CMyOrawV1ew::ResetPenBrush(COC * pOC) 
{ 

} 

ASSERT(pOC 1= NULL): 
II Restore previous pen and brush to device context after use. 
ASSERT(ffi-pBrushOld 1= NULL): 
pOC-)SelectObject(ffi-pBrushOld): 
ffi-pBrushOld = NULL: 

These functions will grow as we go along. I'll show you the third helper, 
InvertShape, a little later. 

Don't forget to add the function prototype as well-which you'll get auto
matically if you use the Add Member Function command on the Wizard
Bar Action me:qu. These aren't message handlers, so there are no message 
map entries. 

Rewriting the tool command handlers 

In Chapter 10, the handlers for the ID_TOOL_RECTANGLE and 
ID_TOOL_ELLIPSE commands actually drew the shapes. Now all they do 
is specify what type of shape is to be drawn the next time the user draws 
with the mouse. 

345 



Fundamental MFC Skills 

346 

~ Tryitnow 
Replace the code in your OnToolRectangle and OnToolEllipse handlers so 
they match the following code: 

void CMyDrawView::OnToolRectangle() 
{ 

} 

II TODO: Add your command handler code here 
~typeNext = shpRectangle: 

void CMyDrawView::OnToolEllipse() 
{ 

} 

II TODO: Add your command handler code here 
~typeNext = shpEllipse: 

The handlers just set a viewclass data member to the selected shape type. 
We'll consult that data member any time we draw a new shape. 

Adding update handlers for the tool commands 

We also want to give the user a way to remember which shape type is in 
force (after having been selected on the menu). I'll soon explain how MFC 
applications do things like adding a check mark to a menu item. 

Removing old code 

Several items need to be removed from your MyDraw code, in addition to 
those items we've already replaced. Recall that MyDraw now lets the user 
draw with the mouse instead of drawing shapes at random locations. 

!~ Try it now 
Remove the following items: 

• The two helper functions for generating random numbers: Random
Coord and RandomRect. Be sure to delete the function prototypes 
in file DrawVw.h as well as the function definitions in file Draw
Vw.cpp. There are no message map entries. 

• The COORD_MAX constant, from just above the random functions' 
definitions in DrawVw.cpp. 



11: Power to the User 

• The two #include statements at the top of the DrawVw.cpp file for 
StdLib.h and Time.h. 

Drawing in the Mouse Message Handlers 
Let's look in greater detail at what's happening in an three phases of mouse 
drawing: starting to draw (OnLButtonDown), tracking mouse movements 
(OnMouseMove), and finishing a shape (OnLButtonUp). 

Mouse button down: we start to draw 

In MyDraw, we interpret a WM_LBUTTONDOWN message as the begin
ning of drawing. (Later, we'll discriminate between drawing a new shape 
and selecting an existing shape for editing.) At this point, when we receive 
the message that the mouse button is down, we take these steps: 

• Capture the mouse (discussed below). 

• Set the starting corner of the new shape, and the shape's type, based 
on the currently selected tool on the Tools menu. 

• See if our view's base class wants to do anything more with the 
message. 

Capturing the mouse 

Earlier in this chapter, in "Testing the Handlers with AfxMessageBox," we 
experimented with releasing the mouse button outside the window after 
pressing it inside. Here's what happened: When we pressed the mouse but
ton inside the window, Windows sent the window a WM_LBUTTONDOWN 

message and MFC called our OnLButtonDown handler. As the mouse 
moved from that initial point, Windows sent us a stream of WM_MOUSE

MOVE messages and, for each, MFC called ourOnMouseMove handler. But 
then an odd thing happened. Although our window received a button 
down message, it never received a matching WM_LBUTTONUP message. 
That's because when we released the button, the mouse was no longer 
over our window. The message went to some other window, if it went 
anywhere. 

347 



Fundamental MFC Skills 

348 

How can we deal with this problem? The solution is to capture the mouse 
with a call to the CWnd: :SetCapture member function. This means that 
our window lays claim to a future WM_LBUTTONUP message, even if the 
mouse is no longer over our window. The mouse temporarily belongs to 
our window, until we release the capture with a call of the ReleaseCapture 
function. After that, another window can claim the mouse if it wants to. 
Of course, we don't want to keep the mouse captured for too long, and we 
can only capture it while the mouse button is being pressed anyway, so 
we maintain the capture only long enough to draw one shape. Then we 
recapture it the next time a new shape begins. 

So that we can tell in other functions that we own the mouse, we set a 
flag variable, a view class data member called m_bCaptured, to true. Each 
of the other mouse handlers can then check that variable to see if drawing 
is still in progress. 

Setting the starting corner of a shape 

The following code (in OnLButtonDown) stores the shape type. Then it 
takes note of where the mouse was at the time the button was pressed (in
formation that's available in the point parameter of OnLButtonDown), and 
stores that location. 

m_shpTemp.m_boxShape.left = 
m_shpTemp.m_boxShape.right = point.x; 

m_shpTemp.m_boxShape.top = 
m_shpTemp.m_boxShape.bottom = point.y; 

To build up the information needed for the current shape, we use m_shp
Temp, a Shape object whose data members store the shape's bounding 
rectangle and type. 

At the outset, before the user has dragged the mouse at all, the shape is 
literally a single point. So we store that point as both the top left and bot
tom right corners of the bounding rectangle for m_shpTemp. (By the way, 
notice the chained assignments in the second and third lines of code. c++ 
allows this kind of assignment statement, which is more compact than 
listing each separate assignment on its own line.) 



11 : Power to the User 

Mouse drag: tracking the mouse during drawing 

As explained earlier in "Supplying Visual Feedback During Drawing," 
we draw-or rubberband-a temporary outline of the shape for each 
WM_MOUSEMOVE message, to provide visual feedback as the user drags 
the mouse. We've already set the upper left corner of the shape in 
OnLButtonDown, so in OnMouseMove we note the new mouse location 
and use that point as our new bottom right corner: 

m_shpTemp.m_boxShape.bottom = pOint.y; 
m_shpTemp.m_boxShape.right = point.x; 

1~11 aTE If the user drags the mouse up and to the left, for example, the point 
diil we're storing as the "bottom right" corner is technically the top left corner. 

However, this discrepancy makes no difference in MyDraw, so we'll ignore 
it. MyDraw simply uses the two points stored in the eRect object to draw a 
rectangle, regardless of what we've named the points. The alternative 
would be to check our final rectangle for corners with oddball coordinates 
and swap them so they're correct. 

The tricky part of OnMouseMove is that we must first erase the old 
shape, drawn for the previous WM_MOUSEMOVE message, and then 
draw the new shape in its place. It's time to learn how to erase some
thing in Windows. 

Erasing lines: the R2_NOT drawing mode 

Normally, when we draw a line, rectangle, or other shape, we're setting 
the pixels of the shape from white to black (or sometimes to some other 
color). But Windows provides a variety of drawing modes that let you 
control exactly what drawing means. These modes specify a relationship 
between the destination pixels on t~e drawing surface and the source pix
els of a pen or brush. Some modes concentrate on the destination, others 
on the source, and still others on both at once, blending or adjusting them 
in some way. 

I'll give just one example of a drawing mode here-the one we'll use for 
erasing in MyDraw. For more information, check the Help index for 
SetROP2. That's the name of the class CDC member function that we'll 

349 



Fundamental MFC Skills 

350 

use to set the drawing mode for erasing. The. documentation for SetROP2 
lists the mode constants you can pass as parameters to SetROP2. "RaP" 
stands for raster operation and has to do with your computer's video hard
ware and display capabilities. 

The drawing mode we'll use is R2_NOT. As you might guess, this applies 
the logical NOT operation to our drawing's destination pixels. That is, if 
we draw a rectangle where there was none before, R2_NOT causes white 
pixels to turn black (or colored, if some other color is in effect)-just as in 
ordinary drawing. But if we then redraw the same rectangle, where now 
there are black pixels on the drawing surface, R2_NOT causes those black 
(or colored) pixels to flip to white (or to any other color being used for the 
background). That is, it erases the lines of our previous rectangle. R2_NOT 
flips pixels. 

The InvertShape helper function 

Since MyDraw needs to draw and erase in both the mouse message han
dlers and the OnDraw member function, we encapsulate the actual eras
ing and drawing actions in our third helper function, InvertShape, a 
private member function of class CMyDrawView. 

~ Tryitnow cr--
Use the Add Member Function command to add the InvertShape mem
ber function. You're adding its prototype as well, since you are using 
WizardBar. 

void CMyDrawView::InvertShape(CDC *pDC, Shape &s, bool bInvert) 
{ 

ASSERT(pDC 1= NULL): 
II Drawing mode is R2_NOT: black -> white, white -> black, 
II colors -> inverse color. 
II If shape already drawn, this erases: else draws it. 
int nModeOld: 
if(bInvert) 
{ 

nModeOld = pDC->SetROP2(R2_NOT): 
} 



11 : Power to the User 

} 

II Draw the shape (or erase it). 
SetPenBrush(pDC): 
sw1tch(s.~typeShape) 
{ 

case shpRectangle: pDC->Rectangle(s.~boxShape): 
break: 

case shpEll1pse: pDC->Ell1pse(s.~boxShape): 
break: 

} 

II Restore old values in DC. 
1f(bInvert) 
{ 

pDC->SetROP2(nModeOld): 
} 

ResetPenBrush(pDC): 

-<11 MPORTANT When you add InvertShape with the Add Member Function 
command, specify its function prototype this way: 

InvertShape(CDC* pDC, Shape& s, bool blnvert = true); 

The = true expression specifies a default value for the blnvert parameter. 
The default value shows up in the function's prototype, but not in the 
heading of its function definition. Take a look at your results in the file 
DrawVw.h. 

InvertShape sets the R2_NOT drawing mode with this line: 

nModeOld = pDC->SetROP2(R2_NOT); 

As usual when setting a new device context characteristic, we store the 
old characteristic, then restore it at the end of the function. With R2_NOT 
in effect, InvertShape uses a switch statement to draw the shape, or to 
erase it if it already exists. 

Successive calls to InvertShape for the same shape cause it to be drawn, 
erased, drawn, and so on. For rubberbanding, we use two calls to Invert
Shape in OnMouseMove to erase a previously drawn rubberband shape 
and then draw a new one. 

351 



Fundamental MFC Skills 

352 

Notice that the blnvert parameter lets us call InvertShape either with in

version or without (normal drawing). Passing false in blnvert causes Invert
Shape not to set the R2_ROP drawing mode for that call. Because blnvert 
has a default value of true, we'll usually call it without specifying a third 

parameter at all, thus using the default. 

Mouse button up: we finish drawing 

OnLButtonUp is more complicated than the other two mouse message 
handlers. It must perform the following functions: 

• Do nothing if the mouse is not currently captured. 

• Release the capture if the mouse is captured. 

• Erase the previous rubberbanded shape. 

• Set the final corner of the shape's bounding rectangle. 

• Draw the final shape. 

• Add the new shape to an array of shapes and increment the shape 
count. 

• Call the base class version of OnLButtonUp in case MFC needs to 
do some default processing. 

Releasing the capture 

If we captured the mouse earlier-as indicated by our Boolean flag vari
able, m_bCaptured-we need to release the capture after drawing a shape. 
Since MFC wraps the SetCapture function in class CWnd but doesn't wrap 
its counterpart, ReleaseCapture, we call the Win32 API version of the func
tion, using the global scope resolution operator. (It's really only a conven

tion to use ::, because there is no possible ambiguity between the Win32 
version and an MFC version in this case. Try taking the operator out to 
see what happens.) 

Drawing the final shape and adjusting its coordinates 

After releasing the capture, we call InvertShape to erase the previous 
shape outline-the last rubberbanded shape. Then we set the final shape 

corner to the mouse location that OnLButtonUp receives in its point 



11 : Power to the User 

parameter and draw the final shape, again with InvertShape. In this case, 
we pass false in InvertShape's final parameter, bIn vert, so the shape is not 
drawn with R2_NOT: 

InvertShapeC&dc, m_shpTemp, false); 

Storing the shape in an array 

The m_arShps array is an array of Shape objects, where Shape is our 
simple struct with a couple of data members and no member functions. 

struct Shape 
{ 

} ; 

eRect m_boxShape; 
ShpType m_typeShape; 

II Bounding rectangle 
II Rectangle, ellipse, etc. 

The array declaration looks like this: 

Shape m_arShps[SHPS_MAX]; II Array of drawn shapes 

where SHPS_MAX is initially set to 1,000. The array can thus store up to 
1,000 Shape objects. 

Using the array 

In declaring the array as I did in MyDraw, I've set the constant SHPS_MAX 
to 1,000. Each time the user draws a shape, we add it to the next array el
ement and increment m_countShapes. I'll have more to say about the 
limitations of the array in Chapter 13, and in Chapter 14 we'll replace it 
with a better data structure. We'll also start using pointers to shapes there. 

Checkmarking the Selected Drawing Tool: Updating Menus 
Clicking an item on the Tools menu now determines not only what the 
next shape will be, but also what all future shapes will be until the user 
changes tools again. Because of that, it would be helpful to put a check 
mark next to the current tool on the menu. That would let users open the 
Tools menu to see which tool is selected. 

Putting a check mark beside a particular menu item (and removing one 
from another item) turns out to be a specific example of a more general op
eration: keeping MyDraw's menus synchronized with program conditions. 

353 



Fundamental MFC Skills 

354 

Take a look at the menus in Visual C++, for instance. Some menu items 
are dimmed (disabled and unavailable) at any given time. As program 
conditions change, Visual C++ updates the menus accordingly. Some 
commands might be disabled or enabled. Menu items might be checked 
or unchecked, bulleted or unbulleted. Sometimes the text of a menu item 
will change. For example, the Undo command in Visual C++ changes its 
caption from "Undo x" to "Redo x," where x describes the command last 
done or undone. 

Update handlers 

MFC makes it ridiculously easy to update menu items in all of the ways I 
just described. Simply create an ON_UPDATE_COMMAND_UI handler for 
the menu item's command ID-just as you created the original command 
handler itself. Here's an example from MyDraw: an update handler that 
checkmarks the Rectangle command on the Tools menu if the current tool 
has been set to shpRectangle. I'll show you how to add the two update 
handlers in a moment, in "Adding an update handler." 

void CMyDrawView::OnUpdateToolRectangle(CCmdUI* pCmdUI) 
{ 

II TODO: Add your command update UI handler code here 
pCmdUI-)SetCheck(m_typeNext == shpRectangle); 

This function uses a pointer to an object of class CCmdUI to call its Set
Check member function. SetCheck puts a check mark beside the Rect
angle command on the Tools menu if a Boolean condition evaluates to 
true. The condition in this case tests whether the view class data member 
m_typeNext is equal to the enumeration constant shpRectangle. If the con
dition is not true, the call removes a check mark if one was already there. 

But when is OnUpdateToolRectangle called? Every time the user clicks 
the Tools menu, MFC calls the update handlers for any commands on the 
menu that have handlers. This occurs between the time the user clicks 
the Tools menu and the time the menu drops down. So by the time the 
menu opens, its items have been appropriately updated-provided we've 
supplied the update handlers. 



11: Power to the User 

Notice too that On UpdateToolRectangle and On Up dateTo olEllipse work 
together. The data member m_typeNext can have only one value at a time, 
so the condition for SetCheck is going to be true in one of the update han
dlers and false in the other. Thus we checkmark one menu command and 
uncheckmark the other. 

Class CCmdUI 

When MFC calls your update handler, it passes a pointer to an object of 
MFC class CCmdUI. This object is associated with a particular user inter
face obje8t, such as one of these items: 

• A menu command 

• A toolbar button 

• A status bar pane 

• A control on an MFC dialog bar (a toolbar that can contain any con
trol that a dialog box can contain, not just buttons) 

Class CCmdUI provides an abstraction that stands in for all of these differ
ent types of user interface (UI) objects. In fact, the same update handler 
can handle updating several user interface objects, provided they all have 
the same command ID. This means, for example, that you can write one 
update handler for a menu command and its counterpart button on a tool
bar. Both will be updated properly. (MFC updates toolbars during idle 
time, when nothing else is happening in the program, but it calls the 
same update handlers as those used for a corresponding menu command.) 

The CCmdUI class has several useful members, including SetCheck, En
able, SetRadio, and SetText. It also contains a pointer to the user interface 
object it represents, in case you need to access the object through the 
CCmdUlobject. For more information, check the Help index for CCmdUI, 
and examine the class data members. 

Adding an update handler 

You can use WizardBar or ClassWizard to add an update handler for a 
user interface object, such as one of the items in the bulleted list above. 
I'll give the WizardBar procedure here. 

355 



Fundamental MFC Skills 

356 

1. On the WizardBar Action menu, click Add Windows Message Han
dler. This opens the New Windows Message And Event Handlers 
dialog box. 

2. In the Class Or Object To Handle box, click the command ID for 
which you want an update handler-in this case either 
ON_TOOL_RECTANGLE or ON_TOOL_ELLIPSE. 

3. In the New Windows Messages/Events box, click UPDATE_COM
MAND_UI. 

4. Click Add And Edit. Add And Edit takes you to the handler so you 
can write code immediately. 

5. In the Add Member Function dialog box, click OK to accept the 
suggested handler function name. 

~ Tryitnow 
Use WizardBar to add the update handlers On Update ToolRectangle and 
On Update ToolEllipse to MyDraw. Your code should look like this: 

void CMyDrawView::OnUpdateToolRectangle(CCmdUI* pCmdUI) 
{ 

} 

II TODO: Add your command update UI handler code here 
pCmdUI-)SetCheck(m-typeNext == shpRectangle): 

void CMyDrawView::OnUpdateToolEllipse(CCmdUI* pCmdUI) 
{ 

} 

II TODO: Add your command update UI handler code here 
pCmdUI-)SetCheck(m-typeNext == shpEllipse); 

Making the Shapes Transparent 
Earlier we noted that by default our shapes have an opaque interior. Thus, 
if you draw a new shape over an old one, the old one is hidden. Try it. That 
might actually be your preference, but if you'd rather have shapes with 
transparent interiors, this section describes how to make them so. And in 
keeping with this chapter's theme, we'll let the user decide whether a 
given shape is transparent or not. 



11: Power to the User 

We haven't discussed the SetPenBrush helper function yet. That's where 
we'll take care of specifying whether the shape is transparent or opaque. 
We'll also use a companion function, ResetPenBrush, to restore the device 
context when we finish drawing the shape. You added SetPenBrush ear
lier in this chapter in the section "Adding drawing helper functions." 
Here it is again, and we'll add more to it in the next chapter. 

~ Try it now 
Now add the boldface lines shown here: 

void CMyDrawView::SetPenBrush(CDC * pDC) 
{ 

} 

ASSERT(pDC 1= NULL); 
II Make shape's interior empty (transparent) 
1f(m-bTransparent) 
{ 

} 

else 
{ 

} 

m_pBrushOld = (CBrush*)pDC-)SelectStockObject(NULL_BRUSH); 

m-pBrushOld = (CBrush*)pDC-)SelectStockObject(WHITE_BRUSH): 

ASSERT(m-pBrushOld 1= NULL): 

II Device context restored in companion function 
II ResetPenBrush 

SetPenBrush uses the CDC member function SelectStockObject to select 
a special brush into the device context, either NULL_BRUSH or 
WHITE_BRUSH. These brushes are among the "stock objects" that Win
dows keeps on hand for quick selection-objects that programmers use 
again and again. NULL_BRUSH specifies a brush that paints nothing-it 
paints a transparent background, in other words. SelectStockObject re
turns a pointer to an object of the CGdiObject class, the base class of 
CBrush, so we have to cast the returned pointer to the correct type. We 
store that pointer in a view class data member, m_pBrushOld, because 
we'll be restoring the device context in a separate helper function, Reset
PenBrush. (As with SetPenBrush, you added this code earlier in this chap
ter in the section titled "Adding drawing helper functions.") 

357 



Fundamental MFC Skills 

358 

Of course, we only select the null brush if the user has chosen to make 
shape interiors transparent, hence the if statement. I'll explain the Bool
ean data member m_bTransparent in a moment. 

We call SetPenBrush and ResetPenBrush from OnDraw as well as from 
In vertSh ape. That's why I've made them helper functions. 

We'll need a few more things to complete our transparency feature. 

~~ Try it now v 
Make the following changes: 

1. Add the m_bTransparent data member to the view class in the pub
lic attributes. 

bool ID-bTransparent; II True if Transparent selected 

2. Initialize m_bTransparent in the view class constructor. 

ID-bTransparent = true: 

3. Add a Transparent command to the Tools menu. Use the letter T for 
the menu's mnemonic and ID_TOOL_TRANSPARENT for the com
mand ID. Also add a separator line to separate the Transparent com
mand from the two shape tool commands. Then double-click the 
new-item box at the bottom of the Tools menu, click the Separator 
box in the Properties window that appears, and press Return. Add 
an accelerator for the Transparent command if you like. 

4. Add a command handler, OnToolTransparent, using the Add Win
dows Message Handler command. The function should look like this: 

void CMyDrawVlew::OnToolTransparent() 
{ 

} 

II TODD: Add your command handler code here 
ID-bTransparent = !ID-bTransparent; 

The command handler toggles m_bTransparent between true and 
false. If it was true, it's set to false (turned off). If it was false, it's set 
to true (turned on). 



11 : Power to the User 

5. Add a command update handler, OnUpdateToolTransparent. The 
function should look like this: 

void CMyDrawView::OnUpdateToolTransparent(CCmdUI* pCmdUI) 
{ 

II TODO: Add your command update UI handler code here 
pCmdUI->SetCheck(lILbTransparent): 

} 

The Transparent menu item gets a check mark if m_bTransparent is true. 
Otherwise, the check mark is removed. 

Fixing a final transparency problem 

There's still a problem with our transparency code. If you hide MyDraw's 
window and then redisplay it, the OnDraw function redraws the shapes 
using the current value of m_bTransparent in the view. That value might 
be the appropriate value for drawing some shapes but not others. Some 
transparent shapes could become opaque, or some opaque shapes could 
become transparent. The solution is to give each shape a data member, 
m_bTransparent, that stores the transparency state of that shape. Then we 
use each shape's transparency information when we redraw the shape. 

~~ Try it now 

Add individual transparency to the shapes. 

1. In the declaration of class Shape, in the file DrawVw.h, add a trans
parency data member as follows: 

struct Shape 
{ 

} ; 

CRect m_boxShape; 
ShpType m_typeShape; 
bool IILbTransparent; 

II Bounding rectangle 
II Rectangle. ellipse. etc. 

2. Add a transparency parameter to the SetPenBrush function. Be sure 
to add it in both the function prototype (in DrawVw.h) and the head
ing of the function definition (in DrawVw.cpp). 

void SetPenBrush(COC* pOC. bool bTransparent); 

359 



Fundamental MFC Skills 

360 

3. Inside SetPenBrush, in the if statement, change m_bTransparent to 
bTransparent. 

if(bTransparent) 

4. In the OnDraw function, move the calls to SetPenBrush and Reset
PenBrush inside the for loop. (Be sure to move the function, rather 
than simply adding another call.) 

for(int nShp = 0; nShp < m_countShapes; nShp++) 
{ 

} 

II Draw 
ASSERT(m_arShps[nShp].m_typeShape 

m_arShps[nShp].m_typeShape 
SetPenBrush(pDC); 

switch(m_arShps[nShp].m_typeShape) 

default: ; 
} 

II Restore DC's old attributes. 
ResetPenBrush(pDC); 

shpRectangl e II 
shpEllipse); 

5. Find all calls to SetPenBrush in DrawVw.cpp and add the appropri
ate transparency parameter. 

In OnDraw, 

SetPenBrush(pDC. ffi-arShps[nShp].ffi-bTransparent); 

In InvertShape, 

SetPenBrush(pDC. s.ffi-bTransparent); 

In OnDraw, you pass the transparency of the shape at the current 
array index, nShp. In InvertShape, you pass the transparency of the 
shape in the s parameter to In vertSh ape. The idea is to pass the 
transparency of an individual shape. 

6. In OnLButtonDown, add a line that initializes the newly created 
shape with its transparency. 



11: Power to the User 

ASSERT(m_typeNext == shpRectangle I I m_typeNext 
m_shpTemp.m_typeShape = m_typeNext; 
m-shpTemp.m-bTransparent = m-bTransparent; 

shpEllipse); 

Figure 11-1 shows MyDraw with several shapes drawn. Notice the mix
ture of transparent and opaque interiors. Remember that opaque interiors 
are painted with the default white background brush. With some extra 
work, we could allow users to fill shapes with any color they like. 

f: •. Untitled - MyDraw I!Il!lEf 
. fIle ·,I-dIt ~bew loo~ !:!elp, 

',rD~g-Cii~@·~ ,-<f?! 

r--------------+--Opaque 

-".'---------+-Transparent 

Figure 11-1. MyDraw with a transparent shape and several opaque shapes. 

Try It Yourself 

Try your hand at the following extra-credit exercises. My solutions are 
part of MyDrawF in the Ilearnvcn/Chap21 folder in the companion code. 

1. Erase the most recent shape. 

Add an Erase command to the Edit menu, with ID_EDIT_ERASE as its 
command ID. Write a handler for the command that erases the most re
cently drawn shape. For now, a simple way to erase the shape is to 

361 



Fundamental MFC Skills 

362 

decrement m_countShapes. The next time the user adds a shape, its data 
will overwrite the deleted shape in the array. Don't forget to force the 
view to repaint itself-call CWnd::lnvalidate in your handler. 

Don't forget an update handler. 

2. Erase all shapes with a double-click. 

Add a double-click handler to let the user delete all shapes previously 
drawn in the view. For now, one way to delete the shapes is to reset 
m_countShapes to o. Whatever was previously stored in the array won't 
matter then. Don't forget to force the view to redraw itself. 

Since it's considered bad form to have commands that the user can access 
only through some sleight-of-hand trick like a double-click, add an Erase 
All command to the Edit menu. 

~ Ti' IP Implement the menu command first. Then you can call the OnEdit
\C'<\~I EraseA/I handler from your double-click handler to do the dirty work. Don't 

forget an update handler for the menu command. When should the com
mand be enabled, and when not? 

What's Next? 
We'll add another feature to MyDraw in Chapter 12-the ability to draw 
shapes in a user-specified color. We'll add a Color menu with a choice 
of ten colors, and we'll select a pen of the current color into the device 
context. 



Chapter 

Shapes in Color 
Now that the user can draw rectangles and ellipses at will with the 
mouse, let's add color. This chapter covers MyDraw step 3. The ability to 
draw colored shapes requires two main elements: a way for the user to 
select a color, and code that selects a pen of the proper color into the device 
context. When we finish step 3, a user will be able to select a color that 
will remain in effect for all future shapes until the user selects a different 
color. The color is applied to the shape's outline, not its interior. We won't 
add a fill color for the shape's interior. To allow users to select an outline 
color, we'll add a hierarchical Color menu to the Tools menu. A hierarchi
cal menu cascades out of a higher-level menu, like the submenus on the 
Microsoft Windows 95 and Windows 98 Start menu. You'll also see how to 
handle a whole range of commands with a single command handler. 

In Chapter 19, we'll augment our simple Color menu with a more sophis
ticated way for users to select colors: the Windows Color common dialog 
box, represented in Microsoft Foundation Class Library 6.0 (MFC) by 
class CColorDialog. 

The KGB Color System 
We'll specify the colors of our shapes with the COLORREF data type. 
COLORREF uses the RGB color system, which requires three values to 
specify each color: the intensity (meaning the amount) of red, the intensity 
of green, and the intensity of blue. 

363 



Fundamental MFC Skills 

Table 12-1. 

364 

Creating a Color with the RGB Macro 
To build up a COLORREF value, you use the RGB macro, a c++ macro 
that the preprocessor evaluates and replaces with the equivalent value 
when you build your application. The RGB macro takes three parameters: 
the intensities of red, green, and blue. You express these values as numbers 
(unsigned byte values) from 0 through 255. Table 12-1 shows the RGB 
values for a selection of common colors. Other colors can be generated by 
varying the intensities of the three RGB colors. 

Color Red Value Green Value Blue Value 

Black 0 0 0 

Blue 0 0 255 

Green 0 255 0 

Cyan 0 255 255 

Red 255 0 0 

Magenta 255 0 255 

Yellow 255 255 0 

White 255 255 255 

Dark gray 128 128 128 

Light gray 192 192 192 

RGB color values for some common colors. 

Working with Color 
Besides setting the color of the device context's pen or brush, you can set 
the background color that the device context uses behind the things you 
draw, and you can set the color in which text is drawn. You use the class 
CDC member functions GetBkColor, SetBkColor, GetTextColor, and 
SetTextColor. 

You can also use predefined constants with these functions to tell Win
dows to use the current system colors-whatever the user has set them 
to-as shown here for the text color and the window's background color. 
This is really the preferred approach, as it puts the user in control: 



12: Shapes in Color 

CDC de; 
de.SetTextColor(COLOR_WINDOWTEXT); 
de.SetBkColor(COLOR_WINDOW); 

You won't often need to dissect a COLORREF value into its red, green, 
and blue components. More likely, you'll obtain it and use it as is for 
some other purpose. If you do need to dissect the color, check the Help 
index for GetRValue, GetGValue, and GetBValue. These are other macros 
that return the red, green, or blue component of a COLORREF. 

Adding the Hierarchical Color Menu 
Figure 12-1 shows what our hierarchical Color menu will look like in the 
menu editor. (Go back to "A~ding a Tools Menu to MyDraw" in Chapter 9 

if you need a menu editing refresher.) 

'. Mydlaw MIcrosoft VIsual C++ - [MyDlaw IC - IDR_MAINFRAME (Menu)] II!I~ E1' 

I;>$! tae ,tdil i~ l"t~ i~~iU'~N i~~, ~dow };I.EI~'-: ", , . '. ~ ~]j 
~;~ aj:J,';)~" ~'~ __ ;',:.:"v, '~(~"ift5~.~·:;~I~~~~!~~ ',~, ,.-" ,~-_~ili ~ 
r' , " 31'1ft CMy[)ri}wV,ew" J! , - ~ "q,:!]:~., 

,"''''' ,,7 _"-,,,><s.:7',' ""',;'",' V:1"",>-v....j , 

Figure 12-1. The hierarchical color menu in MyDraw. 

~ Try it now 
Add a top-level Color menu in MyDraw's IDR_MAINFRAME menu re
source, and then drag the menu onto the Tools menu. 

1. With your MyDraw project open, use ResourceView to open the 
IDR_MAINFRAME menu resource. 

365 



Fundamental MFC Skills 

Table 12-2. 

366 

2. Add a top-level menu named Color. Set the C in Color as the menu 
mnemonic. 

3. To the Color menu, add the submenus listed in Table 12-2, along 
with their mnemonics, IDs, and status bar prompt strings. Every
thing that appears in Table 12-2 is user input that you type in the 
Properties window . 

.JW~ ARNING It's easy to make mistakes while creating the Color menu items, 
AIr ~ so here are some tips for your menu editing: Pin the Properties window by 

clicking the pushpin icon in the window's upper left corner. Create the 
menu items in one pass. As you create each item, type its Caption in the 
menu and it will appear in the Properties window. Then use Shift+ Tab to 
tab backward from the Caption box to the ID box and type the ID. Tabbing 
forward to the ID box automatically creates an ID based on the menu 
names, but we want IDs of the form ID_COLOR_BLACK, not of the form 
ID_ TOOLS_COLOR_BLACK. It also helps to use the mouse to click the next 
box in the Properties window that you want to work in rather than tab
bing. If you get messages afterward about unknown IDs, see the file 
MenuEdit.doc in the \learnvcn\Chap12 folder in the companion code for 
guidance in fixing the problems. 

_l'_>/i>~ 

Menu Text Command ID Status Bar Prompt 

&Black ID_COLOR_BLACK Future shapes drawn in black (default) 

B&lue ID_COLOR_BLUE Future shapes drawn in blue 

& Green ID_COLOR_GREEN Future shapes drawn in green 

&Cyan ID_COLOR_CYAN Future shapes drawn in cyan (blue-
green) 

&Red ID _ COLOR_RED Future shapes drawn in red 

&Magenta ID_COLOR_MAGENTA Future shapes drawn in magenta 
(purple) 

& Yellow ID_COLOR_YELLOW Future shapes drawn in yellow 

& White ID_COLOR_WHITE Future shapes drawn in white (may not 
show) 

&Dark Gray ID_COLOR_DKGRAY Future shapes drawn in dark gray 

L&ight Gray ID_COLOR_LTGRAY Future shapes drawn in light gray 

Values to enter in the Properties window for the Color menu items. 



12: Shapes in Color 

4. Drag the finished Color menu onto the Tools menu. Place it below 
the separator under the Ellipse command and above the Transparent 
command . 

. For additional information about menu editing, check the Help index for 
men u editor. 

Writing an Efficient Handler 
for the Color Menu Commands 

Now that a Color menu exists, must we create ten separate command 
handlers for the ten colors on the menu? No, there's a more efficient 
way that uses a single handler for a range of commands. This works be
cause the color command IDs form an unbroken sequence from ID_ 

COLOR_BLACK (value 32795 on my machine) to ID.;..COLOR_LTGRAY 

(32804). (Remember that command IDs are simply constants that have as
signed values. In this case, the values are assigned by the Microsoft Visual 
C++ Menu editor, and are contained in the file Resource.h.) The com
mand ID is a way to capture the user's color choice, which we then trans
late into a color by using the ID to index an array of COLORREF values. 
Then we use the color from the array to create our pen. We'll get to all of 
that in "Translating color command IDs to RGB colors." 

Neither ClassWizard nor WizardBar supports adding command range 
handlers, so you'll have to add the necessary code by hand. MFC supplies 
the ON_COMMAND_RANGE macro for the message map and specifies the 
form the function prototype needs to take. I'll show you where and how 
to add the code. 

-~- Try it now 
Take the following steps to add a command range handler for the Color 
menu: 

1. Add the function prototype to the view class declaration in the file 
DrawVw.h. The prototype belongs in the "Generated message map 
functions" section of the view class declaration. Make sure you 
place the prototype outside the AFX_MSG comments that bracket 

367 



Fundamental MFC Skills 

368 

the message handlers you add with the wizards, and remember to 
place them that way anytime you edit the message handlers by 
hand rather than with a wizard. Here's the prototype to add, shown 
in relation to the bracketing comments: 

II Generated message map functions 
protected: 
I I { {AFX_MSG ... 

I/} }AFX_MSG ... 
afx-msg void OnToolColor(UINT nID): II ON_COMMAND_RANGE handler 
DECLARE_MESSAGE_MAP() 

~vll MPORTANT If you create a handler with a wizard, always use the wizard to 
edit or delete it. Don't directly edit the handler elements between the 
AFX_MSG comments. 

2. Add the message map entry near the beginning of file DrawVw.cpp, 
again outside the AFX_MSG_MAP comments that bracket entries 
made with the wizards. Here's the message map entry: 

BEGIN_MESSAGE_MAP(CMyDrawView, CView) 
11{{AFX_MSG_MAP(CMyDrawView) 

I/}} AFX_MSG_MAP 
ON_COMMAND_RANGE(ID_COLOR-BLACK. ID_COLOR-LTGRAY. OnToolColor) 
II Standard printing commands 
ON_COMMAND(ID_FILE_PRINT, CView::OnFilePrint) 
ON_COMMAND(ID_FILE_PRINT_DIRECT, CView::OnFilePrint) 
ON_COMMAND(ID_FILE_PRINT_PREVIEW, CView::OnFilePrintPreview) 

END_MESSAGE_MAP() 

3. Stin working by hand, add the command range handler definition, 
with other message handlers in file DrawVw.cpp: 

void CMyDrawView::OnToolColor(UINT nID) 
{ 

} 

II Set the color for future shape drawing. 
~nColorNext = nID: 



12: Shapes in Color 

The On ToolColor handler is easy to understand. The nID parameter con
tains the command ID of the menu command that caused the handler to 
be called. That's an ID from the range ID_COLOR_BLACKthrough 
ID_COLOR_LTGRAYthat we specified in the ON_COMMAND_RANGE 
message map entry. We assign the value to a view class data member, 
m_nColorNext, which stores the color to use in drawing the next shape. 
We'll add m_nColorNext to the code a bit later. 

Using the command range mechanism saves us writing ten separate han
dlers for the ten colors. That's efficiency, and we can do the same thing 
with the Color menu's update handler, as described in the next section. 

Putting a Check Mark on the Color Menu 
We checkmark the currently selected color on the Color menu just as we 
checkmarked the currently selected shape on the Tools menu, using an 
update handler. 

In this case, because we're dealing with a range of ten colors, we need the 
update handler equivalent of our ON_COMMAND_RANGE handler 
On ToolColor. MFC supplies the ON_COMMAND_UI_RANGE macro for 
the message map. 

Try it now 
Add the handler function prototype, the message map entry, and the 
update handler function for updating the Color menu. As with the 
ON_COMMAND_RANGE handler, you'll have to add this code by hand. 
Be sure to add the prototype and message map entry outside the 
AFX_MSG comment brackets. 

Here's the handler's prototype: 

afx-msg void OnUpdateToolColor(CCmdUI* pCmdUI): 

Here's the message map entry: 

ON_UPDATE_COMMAND_UI_RANGE(ID_COLOR-BLACK. ID_COLOR-LTGRAY. 
OnUpdateToolColor) 

369 



Fundamental MFC Skills 

370 

And here's the handler's function definition: 

void CMyDrawView::OnUpdateToolColor(CCmdUI* pCmdUI) 
{ 

} 

II Check or uncheck all color menu items. 
II Check item if it's the currently selected color. 
II Uncheck all other colors. 
pCmdUI->SetCheck(pCmdUI->~nID == ~nColorNext): 

The update handler for the Color menu works much like the update han
dler for the Tools menu. It calls the SetCheck member function, and 
SetCheck either checkmarks or uncheckmarks the appropriate items 
based on the Boolean expression passed as its parameter. In this case, we 
obtain the command ID for the selected color and compare it to the cur
rent color stored in m_nColorNext. Since the update handler passes a 
pointer to a CCmdUlobject, we have to learn the command ID indirectly, 
via pCmdUI's m_nID member. The result is that the newly selected color 
is checkmarked on the menu, and the check mark is removed from the 
old color. 

Drawing Shapes in Color 
Now that we have the Color menu set up, it's time to add a little drawing 
code to use the current color. The following sections discuss the changes 
and show you what to do in your own MyDraw project. 

Managing the Currently Selected Color 
You should track the currently selected color, so that new shapes will be 
drawn in that color. The Color menu handler, OnToolColor, sets a new 
m_nColorNext data member to the ID of the color the user selects on the 
menu. Later in this chapter we'll be using that color to create a pen before 
drawing each shape. 

!.~ Try it now 
Add and initialize three new data members. 

1. In the file DrawVw.h, add the following three new data members to 
the public Attributes section: 



12: Shapes in Color 

bool m_bTransparent; 
UINT m-nColorNext; 

CPen* m-pPenOld; 
CPen* m-pPenNew; 

II True if Transparent selected 
1/ Store ID for color to simplify 
// updating menus 
// Pen for drawing shape outlines 
// Store pens we create 

2. In the view constructor, CMyDrawView::CMyDrawView (in the file 
DrawVw.cpp.), initialize the new data members: 

m-nColorNext = ID_COLOR-BLACK; 
m-pPenOld = NULL; 
m-pPenNew = NULL; 

Translating Color Command IDs to RGB Colors 
Create a color table for translating color IDs like ID_COLOR_BLACK into 
the corresponding RGB color. We need to specify an RGB color value (of 
type COLORREF) when we create a pen for drawing, so we have to 
translate our color command ID into an RGB value. 

~ Tryitnow 
Add the following array code just above the declaration of class 
CMyDrawView in the file DrawVw.h: 

// Array of actual colors. indexed 
// by CMyDrawView::m-nColorNext 
static COLORREF arColors[10] = 
{ 

}; 

RGB ( 0. 0 • 0 ), 
RGB(0.0.255). 
RGB(0.255.0). 
RGB(0.255.255). 
RGB(255.0.0). 
RGB(255.0.255). 
RGB(255.255.0). 
RGB(255.255.255). 
RGB(128.128.128). 
RGB(192.192.192) 

// Black 
/1 Blue 
// Green 
// Cyan 
// Red 
// Magenta 
// Yell ow 
// White 
// Dark gray 
// L1 ght gray 

To specify a color for the pen, we index the arColors array with the 
color command ID. Remembering that command IDs are really constants, 

371 



Fundamental MFC Skills 

372 

suppose we have the color ID_COLOR_GREEN. The following expression 
evaluates to the third element of the array: 

arColors[ID_COLOR_GREEN - ID_COLOR_BLACK); II RGB(0,255,0), green 

This trick often beats the alternative of having to insert several identical 
switch statements in various parts of the program. It's called a table
driven solution. 

Selecting a Pen of the Current Color 
Select a pen of the current color into the device context, and reselect the 
old pen after drawing. 

~ Tryitnow 
You'll need to revise both SetPenBrush and ResetPenBrush, along with all 
calls to SetPenBrush. 

1. Change the SetPenBrush member function to look like the follow
ing (don't forget to add the new nColor parameter): 

void CMyDrawView::SetPenBrush(CDC *pDC,bool bTransparent. 

{ 
UINT nColor) 

ASSERT(pDC 1= NULL); 
II Make shape's interior empty (transparent) 

if(bTransparent) 
{ 

} 

else 
{ 

} 

m_pBrushOld = (CBrush*)pDC-)SelectStockObject(NULL_BRUSH); 

m_pBrushOld = (CBrush*)pDC-)SelectStockObject(WHITE_BRUSH); 

ASSERT(m_pBrushOld 1= NULL); 

1/ Set up the pen. 
ASSERT(nColor - ID_COLOR-BLACK >= 0 && 

nColor - ID_COLOR-BLACK <= 
(sizeof(arColors) /sizeof(arColors[0]»); 

// Construct pen object on heap so we can clean it up after USe 
m-pPenNew = new CPen(); 



12: Shapes in Color 

} 

II Create the GOI pen & select it into the device context. 
~pPenNew->CreatePen(PS_INSIOEFRAME. 0. 

arColors[nColor - IO_COLOR-BLACK]): 
~pPenOld = (CPen*)pOC->SelectObject(~pPenNew): 

II Device context restored in companion function 
II ResetPenBrush 

We create an MFC CPen object on the heap (storing a pointer to it 
so we can later clean up the GDI pen resource), and then call its 
member function CreatePen to create a pen with the color specified 
by indexing our color array: 

arColors[nColor - ID_COLOR_BLACKJ 

Note that we have to add the nColor parameter to the function, both 
in the SetPenBrush function definition (file DrawVw.cpp) and in 
the function prototype (file DrawVw.h). 

We subtract ID_COLOR_BLACK from nColor to obtain a value 
within the index range of our color array: 0-9. When we created 
the Color menu, the menu editor assigned arbitrary numeric 
values to our color command IDs-in my case, they began with 
ID_COLOR_BLACK = 32795 and ran through ID_COLOR_LTGRAY = 

32804. The numbers might be different on your machine. Just using 
the color ID to index the array won't work because the values aren't 
in the right range. But the subtraction corrects for that. 

The createPen function takes three parameters: a style (such as 
PS_INSIDEFRAME), a pen width (such as 0), and a COLORREF 

value. The PS_INSIDEFRAME style causes our shape to be drawn 
completely inside the specified bounding rectangle. The often-used 
style PS_SOLID, if used with pens wider than one pixel, can cause 
a shape to protrude slightly outside the bounding rectangle because 
the bounding rectangle corresponds to the center of the pen, not the 
outer edge. For more information about pen styles, check the Help 
index for CreatePen. We specify a width of 0, resulting in a pen 
width of 1 pixel regardless of the device context's mapping mode. 

373 



Fundamental MFC Skills 

374 

2. Add the nColor parameter to the SetPenBrush prototype (file 
DrawVw.h). Change the prototype to look like this: 

void SetPenBrush(CDC * pDC, bool bTransparent. UINT nColor); 

3. Insert the boldface lines into the ResetPenBrush member function 
so that it looks like this: 

void CMyDrawView::ResetPenBrush(CDC *pDC) 
{ 

} 

ASSERT(pDC != NULL); 
II Restore previous pen and brush to device context after use 
ASSERT(m_pBrushOld != NULL); 
pDC->SelectObject(m_pBrushOld); 
pDC->SelectObject(~pPenOld): 

II Our responsibility to delete the heap object 
delete ~pPenNew: 
~pPenNew = NULL: 
~pPenOld = NULL: 
m_pBrushOld = NULL; 

In this step, we use the m_pPenOld data member to restore the old 
pen to the device context after drawing with a new one. We also 
have to call delete on the m_pPenNew data member. This destroys 
the C++ CPen object on the heap and releases the GDI pen object 
associated with it. Without this step, we'd keep using pens without 
returning them to GDI, and eventually we'd run out of pens. Color 
drawing would stop at that point, and eventually the program 
would probably crash. Try commenting out the delete call and see 
what happens. 

4. In OnDraw, add the color parameter to the SetPenBrush call, as 
shown here: 

void CMyDrawView::OnDraw(CDC* pDC) 
{ 

CMyDrawDoc* pDoc = GetDocument(); 
ASSERT_VALID(pDoc); 
II TODO: add draw code for native data here 
for(int nShp = 0; nShp < m_countShapes; nShp++) 
{ 

II Draw 
ASSERT(m_arShps[nShp].m_typeShape shpRectangl e II 



12: Shapes in Color 

m_arShps[nShp].m_typeShape == shpEllipse); 
SetPenBrush(pOC, m_arShps[nShp].m_bTransparent, 

~arShps[nShp].~nColorShape): 

5. Add the new color parameter to the other call to SetPenBrush 
in InvertShape. Change the call to SetPenBrush to look like the 
following: 

SetPenBrush(pOC. s.m_bTransparent. s.~nColorShape); 

Setting the Color of a New Shape 
Each Shape object needs to store a new piece of information-the shape 
color-along with its bounding rectangle and shape type. We set the 
shape's color when we create it. 

~ Tryitnow 
Add a color data member to the Shape class and set the color of 
m_shpTemp, our Shape-in-progress, in OnLButtonDown. 

1. Make the change to class Shape so that it looks like this: 

II A simple Shape class 
struct Shape 
{ 

} ; 

CRect m_boxShape; 
ShpType m_typeShape; 
bool m_bTransparent; 
UINT ~nColorShape: 

2. Then add the following line to OnLButtonDown: 

void CMyOrawView::OnLButtonOown(UINT nFlags, CPoint point) 
{ 

II TOOO: Add your message handler code here and/or ... 
SetCapture(); 
m_bCaptured = true; 

ASSERT(m_typeNext == shpRectangle I I m_typeNext 
shpEllipse); 

m_shpTemp.m_typeShape = m_typeNext; 
m_shpTemp.m_bTransparent = m_bTransparent; 

(continued) 

375 



Fundamental MFC Skills 

376 

} 

~shpTemp.~nColorShape = ~nColorNext: 

II Store starting point - literally a pOint. initially 
II (topLeft == botRight) 
m_shpTemp.m_boxShape.left = 

m_shpTemp.m_boxShape.right = point.x; 
m_shpTemp.m_boxShape.top = 

m_shpTemp.m_boxShape.bottom = point.y; 

CView::OnLButtonDown(nFlags. paint); 

The m_nColorShape data member of m_shpTemp is set to the current 
color-the color most recently selected on the Color menu. 

Build and test the program. There you have it. You've successfully added 
color to MyDraw. You've also completed another step toward letting the 
user control the program through mouse drawing. 

Try It Yourself 
I'll give some exercises at the end of Chapter 13 that are also pertinent to 
this chapter. MyDraw needs to stay in its current state until we finish the 
debugging discussion in the next chapter. 

What's Next? 
MyDraw is beginning to look pretty good. But somewhere in that code 
there's an ugly bug. In Chapter 13, we'll explore the Visual C++ debugger 
and the techniques used to find, analyze, and fix the bug. 



Chapter 

Debugging Your Mistakes 
In this chapter, we'll chase down and fix a bug that I left in the code in 
Chapter 11. Then, in Chapter 14, we'll return to the main discussion of 
MyDraw. (This chapter doesn't count as a MyDraw step, because we aren't 
adding new functionality.) 

This chapter includes the following broad subject areas: 

• The Microsoft Visual C++ 6.0 debugger 

• Debug vs. Release builds 

• Finding a bug by using the debugger 

• Analyzing a bug by using the debugger 

• Fixing a bug 

Besides the debugger, Visual C++ offers additional diagnostic facilities as 
part of the Microsoft Founc:iation Class Library 6.0 (MFC). These facilities 
help you track down problems, handle errors and exceptional conditions, 
and deal with memory leaks. I'll give you some pointers to information 
about these facilities at the end of the chapter. 

377 



Fundamental MFC Skills 

378 

The Visual c++ debugger is versatile and easy to use, but you have to 
learn a bit before it becomes easy. I'll assume that you haven't used a vi
sual debugger like the one in Visual c++. Although my approach might 
seem like overkill, and you might understand the bug well before I finish 
describing it, this chapter is a debugger tutorial intended to cover as many 
key debugger features and techniques as possible. If debugging is familiar 
ground for you, skim the chapter. 

Visual C++ Debugger Overview 

Figure 13-1. 

When you run the Visual c++ debugger, the Build menu becomes the 
Debug menu, the Debug toolbar appears, and a list of debugger windows 
is enabled on the View menu (and on the Debug toolbar). One or more of 
the debugger's windows might be open already. Figure 13-1 shows the 
Debug menu and Figure 13-2 shows the toolbar. 

" MyDlaw - MIClosoft Visual c++ [bleak) - [DlawVw.cpp) I!!!I[!ijEi 
- -

'/////////// .. ' ////' 

/ CUyDra1{IVie~~ Step~v~ 

vo~d CMyDrawView: :OnI{~ StepOJ./1 -

C> { CMyDrawDoc* pDoc :,'1~ fltlnt~J;;ur$or' 
~SS~~;';::;VA:~~(~~~:\~.~(~', ' 

awV~ew OnDraw(CDC * '. 
, OnPa~nt () hne 182,' 

, _' ',' ':atu~ _~' _ '....:...~~ _-.~ OnWndMsg(unsigned ~ . 
OK006l ¢ Show~I' l<iSta-te~~t:":AIt.Nu~~' WindowProc(unsigned 
{CPau- ,ue , ) ,'llWndProc(CWnd * OKO : 
hWnd=c!6I:f Quicl<.Watch . , ' Sbift+F9 ': dProc(HWND_ * OKO~OO . 

r;--.....,.,~~::cCcccc:::;:::::;;';::;::::rll~FAW'rldProc8ase (HWND * 0" 

~~;,.;;;,:.;,.a..:~~:;,::;,:",,-=-=-=-,.....,..:..- -"".......,,,1.1,,.;':<;-,~:.~;, -- "';';;"''''"~ .,.~~~ 
'-, Ln 53. CoI2~»~> __ I ............ ~ ................... --' 

The Debug menu. 

If you set any breakpoints in your source code files before running the 
debugger, your program runs to the first breakpoint it encounters and 
then suspends execution. (I'll describe breakpoints soon.) If you don't set 
any breakpoints, the program runs as usual, but you can suspend it at any 



13: Debugging Your Mistakes 

time by choosing Break from the Debug menu. Then you can switch win
dows to view debugger information. You set breakpoints to control where 
the debugger pauses. Once the debugger pauses, you can do the following: 

• Examine variable values using the QuickWatch dialog box or the 
Watch or Variables windows. You can also use DataTips to examine 
variable values directly in the source code. 

• Trace the sequence of function calls in the Call Stack window. 

• Examine the contents of a particular memory address in the 
Memory window. 

• Examine machine register contents in the Registers window. 

• See your code translated to assembly language in the Disassembly 
window. 

Restart -----' 
Stop Debugging 
Break Execution ------' 
Apply Code Changes __ -oJ 

Show Next Statement ___ -oJ 

Step Into ----------' 
Step Over -----------' 
Step Out ------------' 

Figure 13-2. Buttons on the Debug toolbar. 

'---- Disassembly 
L--___ Call Stack 

L-_____ Memory 

L--_____ Registers 
L-______ Variables 

L---------Watch 
L-________ QuickWatch 

L-________ Run to Cursor 

I won't describe the Registers window or the Disassembly window, but 
Help can teach you more about them. Check the Help index for registers 
window and select the topic "using during debugging." Check also for 
disassembly window and select the topic "using." The Visual C++ docu
mentation covers special debugging situations, such as debugging MFC 
ASSERT statements and exceptions. Check the Help index for debugging 
and choose the subtopics "assertions" and "exceptions." From there, you 
can use the Locate button on the Help toolbar to see what else Help cov
ers in adjacent topics. 

379 



Fundamental MFC Skills 

380 

Debug Builds vs. Release Builds 

Figure 13-3. 

Before you run the debugger, you need to build a Debug version of your 
program. This adds symbolic debugging information to your compiled ob
ject files. You can run the debugger on a Release build, but you won't find 
that very useful. 

A Release build omits the debugging information (and can also optimize 
the code for greater speed or smaller size, at least in the Professional and 
Enterprise editions of Visual c++). You perform a Release build once the 
program has been debugged. It's also useful to do a Release build from 
time to time during development, and it's important to test the Release 
build as well as the Debug build. Some bugs don't show up until a Re
lease build is run. 

Debug builds are the default in Visual C++, but if you have previously 
performed a Release build (without the symbolic debugging information), 
you'll need to select the "debug target." To do so, choose Set Active Con
figuration from the Build menu. In the Set Active Project Configuration 
dialog box, double-click the line containing "Win32 Debug." (If "Win32 
Debug" is already selected in the dialog box, you're OK.) Use the Set Active 
Configuration menu option to switch between Debug and Release builds. 
You can also set the configuration using the Build toolbar, as shown in 
Figure 13-3. 

Build C 

!MyDraw 

Select Active Project 

Select Active Configuration 

Compile ------------' 

Build ----------------' 

Insert/Remove Breakpoint 

Go 
1..--__ Execute Program 

'------ Stop Build 

The Build toolbar. You set the active configuration in the second drop-down list 
box from the left. 

Visual C++ puts the intermediate files and the final executable file for De
bug builds in a Debug subdirectory under your project directory. It puts 
similar files for Release builds in a Release subdirectory. There are a few 



13: Debugging Your Mistakes 

other files that store option settings, ClassWizard information, and the 
like, but we won't discuss those files here. The source code files remain 
in the root project directory. (Advanced programmers can use the Settings 
dialog box to change the names of these subdirectories if they wish.) 

For Debug builds, program optimization should be turned off. Optimiza
tions make debugging more complicated. Setting the Win32 Debug target 
disables optimizations. (You can see this in the Optimizations box on the 
C/C++ tab of the Settings dialog box.) It also enables generation of debug 
information. (You can see this in the Link tab in the Settings dialog box.) 
Setting Win32 Release reverses those settings. (Optimization is not avail
able in the version of Visual c++ supplied with this book.) 

You might sometimes find that your application runs fine in a Debug 
build but crashes when you run a Release build. For useful information 
about debugging such problems, check the Help index for release builds 
and select the topic "difference from debug builds." 

Example: Using the Debugger 
Let's look at an extended example to see some of these features in action. 
In Chapter 11, I left a bug in MyDraw. You won't have encountered the 
bug unless you drew more than 1000 shapes in one sitting. We'll use the 
debugger to observe the behavior of this bug and then to fix it. First, we 
need to set things up. 

~ Try it now 
Open your MyDraw project and, in the file DrawVw.h, locate the declara
tion of the SHPS_MAX constant above the arColors array definition. 
Change the value of SHPS_MAX from 1000 to 10. (Earlier, I set 
SHPS_MAXto 1000 so that you'd be unlikely to encounter the bug until 
now. But with the constant set to 10, the bug shows its ugly face very 
quickly.) Then build MyDraw and run it. Don't forget that you must build 
a debug version in order to use the debugger. Draw shapes, counting them 
as you go. When you get to 10, draw one more shape and observe what 
happens. The 11th shape seems sticky, and instead of simply releasing the 
mouse button, you have to click the mouse to end the shape. The first 

381 



Fundamental MFC Skills 

382 

thing you see (after the mouse click) is a dialog box containing the mes
sage "Debug Assertion Failed!" This dialog box contains three buttons: 
Abort, Retry, and Ignore. Click Retry to debug the program. A second dia
log box appears, containing the message "This program has performed an 
illegal operation and will be shut down." This dialog box contains three 
buttons: Close, Debug, and Details. 

If you click Debug, the Visual C++ debugger runs and you see a third dia
log box containing a message something like this: "User breakpoint called 
from code at Ox403e94." (The address listed might be different on your 
machine.) Click OK in the dialog box. The debugger opens the source 
code file DrawVw.cpp and puts the cursor in the CMyDrawView::SetPen
Brush function. Depending on what you did in your last debugging ses
sion (if there was one), some of the debugger windows might also be open. 

Let's use some Visual C++ debugger tools to find the bug and figure out 
what caused it. 

Finding the Bug 
To debug MyDraw, let's first determine where the error occurred. The best 
way to find out is to use the Call Stack window, which shows the sequence 
of function calls that led up to the error. The most recent call is at the top 
of the window, which shows, as we'll see, that the error occurred in the 
CMyDrawView::SetPenBrush function. Here's how to use the Call Stack 
window. 

~ Tryitnow 
From the Visual C++ View menu, choose Debug Windows and then Call 
Stack. If the Call Stack window, shown in Figure 13-4, wasn't already 
open, it will appear now. You will see a small yellow arrow in the win
dow's left margin that points to CMyDrawView::SetPenBrush, which is 
the function name where the error occurred. The line below the function 
name lists CMyDrawView::lnvertShape, which MyDraw uses to draw rub
berband images of the current shape. InvertShape called SetPenBrush just 
before the failure. 



13: Debugging Your Mistakes 

Figure 13-4. 

Double-click the line containing the function InvertShape in the Call Stack 
window. (This switches the Source Code editor window to that function's 
"context.") In the code window's left margin, the triangular arrowhead is 
just past the offending line: 

SetPenBrush(pDC, s.m_bTransparent, s.m_nColorShape); 

The arrow points to the left brace immediately following the start of the 
switch statement. However, the last statement executed was the call to 
SetPenBrush. 

Newest "+1,,1 ~!MY!D!ra!w'v1~' e!w~: :'se!t'pe!n!B!ru!s!h !!!!!.!-Most recent function called 
CMyDrawView: : Inver\Shape(CDC * Ox0064f~ 

1 
CMyDrawView: : OnLBulltonUp(unsigned int ( Function that called SetPenBrush 
CWnd: : OnWndMsg(unsigned 1nt !::.14, uns1g1. 
CWnd: :WindowProc(unsigned int 514, uns: 
AfxCallWndProc(CWnd * Ox00771b90 {CMyDl' 
AfxWndProc(HWND_ * Ox00000844, unsigne: 
AfxWndProcBase(HWND __ * Ox00000844, un~ 

Oldest KERNEL 32 I bff73663() .!:.I 
~EL321 bff92894() __ .cl~ 

The sequence of function calls in the Call Stack window. 

The Call Stack window is useful for backtracking through all function 
calls that have not yet returned. You can see which function called which 
function, andthat helps you see how your program arrived at a particu
lar place. It's a bit like watching a car hit a tree, and then tracing back 
through time to see where the tie rod broke. 

Most bugs won't lead us neatly back to the moment of truth, of course. 
Some bugs don't result in immediate crashes. In such cases, you might 
need to halt the program in the debugger and step through it line by line 
to look for problems. The debugger supplies a versatile set of tools for 
analyzing a buggy program. 

Analyzing the Bug 
Now that we know that the problem occurred in the SetPenBrush func
tion, make sure you're looking at that function in the Source Code win
dow. (If necessary, double-click the line of code containing SetPenBrush 

383 



Fundamental MFC Skills 

384 

in the Call Stack window to select that function's context.) The Source 
Code window contains the DrawVw.cpp file with a portion of SetPen
Brush on display. Notice that a small yellow arrow in the left margin 
points to the ASSERT statement just before we set up the pen (actually to 
the last line of the ASSERT statement). That statement is the source of our 
error dialog boxes. A debug assertion failed (causing the first dialog box 
to appear), and then the buttons we clicked led to the other dialogs. 

rt?llOTE The ASSERT macro is MFC's version of the assert macro we used in 0f1, Chapters 4 and 5. If its Boolean condition is false, ASSERT halts the program 
with a message, as we've seen. ASSERT is used for detecting logic errors 
during development, so it works only in Debug builds; it's not compiled in 
Release builds. Check the Help index for ASSERT. 

But why did our assertion fail? Let's examine the Boolean conditions in
side the ASSERT statement. Both conditions must be true (because they're 
connected by the logical AND operator, &&) or the assertion will fail. The 
first condition, 

nColor - ID_COLOR_BLACK )= 0 

checks whether the color of the shape currently being drawn is within an 
acceptable range. (When we subtract ID_COLOR_BLACK from the color, 
the result must be greater than or equal to 0, the lower bound value for 
the arColors array.) The second condition, 

nColor - ID_COLOR_BLACK <= 
(s;zeof(arColors) / s;zeof(arColors[0])) 

checks whether the color is less than or equal to the upper bound value of 
the arColors array. (We use the C++ sizeo! operator to get the correct up
per bound value regardless of how many elements the array might have. 
To get the size of the array, I divide the total storage for the array by the 
storage required by one element.) Apparently, we have a color value that 
is not within the acceptable range-hence the assertion failure. We'll 
use the debugger to find out what's going on. We'll start by examining 
the color value, nColor, which is associated with the current shape. We 
can hypothesize that there's something wrong with the data contained 
in that shape. 



13: Debugging Your Mistakes 

\JiI'IP You can make the next steps easier by selecting the Hexadecimal Dis
",\11 play option. Choose Options from the Tools menu to display the Options 

dialog box, select the Debug tab, select the Hexadecimal Display option, 
and then click OK. 

!~ Try it now 
Examine the nColor value in SetPenBtush. In the Source Code window, 
rest the cursor on nColor, where it first occurs inside the ASSERT state
ment. A small light yellow window appears beside the variable, contain
ing the value OxOOOOOOOO, hexadecimal notation for the decimal value o. 
(You might see simply 0 if you don't have the Hexadecimal Display op
tion set on the Debug tab in the Options dialog box.) The small window is 
a DataTips window. Visual C++ lets you examine variable values right in 
the Source Code window when the program is halted in the debugger. 

So what's wrong with a value of 0 for nColor? Let's try subtracting 
ID_COLOR_BLACK from 0, as in the ASSERT statement. To find the value 
of ID _ COLOR_BLACK, select the Resource Symbols command on the Visual 
c++ View menu. Next to the name ID_COLOR_BLACK is a numeric value 
(32774 in my project-it could be different in yours). Close the Resource 
Symbols dialog box. Subtracting 32774 from 0 yields a large negative num
ber, which fails the first Boolean test in the ASSERT statenient. 

What range should nColor - ID_COLOR_BLACKbe in? The arColors array 
has 10 elements, so our value after the subtraction must fall between 0 

and 9 inclusive in order to index the array. Let's go on to backtrack how 
nColor might have gone wrong. We'll check how it gets its value. 

!~ Try it now 
The nColor variable is a parameter to SetPenBrush, which is called by 
In vertSh ape. In the Call Stack window, double-click the line of code 
containing InvertShape. Let's see what InvertShape passes for the color 
parameter. In InvertShape, the SetPenBrush call passes the value 
s.m_nColorShape. 

385 



Fundamental MFC Skills 

386 

The object s is a reference to a CShape object passed to InvertShape. 
What function called InvertShape? The Call Stack window shows it to 
be OnLButton Up. 

~I MPORTANT The Call Stack window could instead show OnMouseMove as 
I the function that called InvertShape-that could happen if you moved the 

mouse as you clicked to complete the sticky 11th shape. Both OnMouse
Move and OnLButtonUp call1nvertShape, so either could be implicated in 
the bug. You can substitute OnMouseMove for OnLButtonUp in the rest of 
this section. 

Double-click the line of code containing OnLButton Up (or OnMouseMove) 
in the Call Stack window. In the Source Code window, a green arrowhead 
points to the line just past the first InvertShape call in OnLButtonUp. That 
first InvertShape call passes the object m_shpTemp, so inside InvertShape, 
s refers to m_shpTemp. 

What is the color value now stored in the current shape, m_shpTemp? I'll 
show you how to determine that in the next section. 

Examining Variables 
At this point, there are several ways to see the value of a variable such as 
m_shpTemp. I'll describe each briefly. 

~ Try it now 
Try examining variables in the following ways-you'll probably develop 
your own favorites: 

• Use QuickWatch to see the variable's value. Right-click m_shpTemp 
in OnLButtonUp (or OnMouseMove) and choose the QuickWatch 
command. This opens the QuickWatch dialog box, which shows 
the value of each of m_shpTemp's members. The m_nColorShape 
member has the value OxOOOOOOOO. Try it. For more information, 
check the Help index for QuickWatch. Figure 13-5 shows Quick
Watch. Note that your values for the m_typeShape and m_bTrans
parent expressions might differ because of the type of drawing you 
were doing in MyDraw when the failure occurred. 



13: Debugging Your Mistakes 

QUlckWalch 0 CJ 

{top=O~00000071 bottom=O~OOOOOOe8 
J.e.n::Qx.QQQQQQp.4.,.~ight::Qx.QQQQQJ~!3.L" 
shpR ectangle 

,;j""""'"'' 

Calculate current 
value of Expression. 

Add this expression 
':--<-t-- to the Watch window. 

Show breakdown 
---,..,-If----.:....-......_.-..+-- of complex objects 

or arrays. 

Figure 13-5. The QuickWatch dialog box. 

Figure 13-6. 

• From QuickWatch, add m_shpTemp to the Watch window, one of 
the main debugger windows. With m_shpTemp in the Expression 
box in QuickWatch, click Add Watch. The Watch window opens (if 

it wasn't already open) and displays the variable name m_shpTemp. 
Click the plus sign before the variable name to see the value of 
m_shpTemp. Try it. Where QuickWatch gives you a temporary 
glance, Watch can remain available. Position the Watch window as 
you like. (For guidelines on positioning windows, see Chapter 1.) 

For more information about the Watch window, check the Help in
dex for watch window. Figure 13-6 shows the Watch window. 

:Name> > •. ' .. : ·/Value 

~,~"",~~pT",~j:l" {.. } 

I
lHI m_boxShape '.: {top=Ox00000071 

:bottom=OxOOOOOOe8 
, left=OxOOOOOOb4 

l~:f~~~~~t~~i~!~2~~1'= 
l±I";=,~~~~p~:"'"''''''''':-'(i~ij'fj'iii;;'b4''' " 
l±I m_shpTemp { } 

~~-tl-- Drag variables to window. 
~. 

-
m\ Watch1 tn "'-:":!a-:"'tc .... h2'">.r7""Wr.at•ch"3T"'T }..W'a~tch,-;4~jr---...,....,1 

I Use tabs to subdivide 
L--___________ items to watch. 

The Watch window. 

387 



Fundamental MFC Skills 

Figure 13-7. 

388 

• From any window, including the Source Code editor window, lo
cate and select a variable, such as m_arShps, and drag it into the 
open Watch window. Be sure to select the variable by double
clicking it before you attempt to drag it. The debugger supports 
many drag-and-drop operations from one of its components to an
other. Try some. 

• Open the Variables window. From the Visual C++ View menu, 
choose Variables on the Debug Windows submenu (or click the 
Variables button on the Debug toolbar). The Variables window au
tomatically adjusts its contents to show items from the present 
context-usually items visible within a function. It has three tabs: 
Auto, Locals, and This. The Auto tab displays variables used in the 
current statement and the previous statement or two. It also dis
plays return values when you step over or out of a function (tech
niques we'll explore soon). The Locals tab displays just the local 
variables declared in the current function context. The This tab dis
plays the value of the this pointer for the current object (the view 
object in our case). You can't add variables to the Variables window 
(use Watch instead), but you can examine in considerable detail the 
variables that are displayed by clicking the + and - buttons to ex
pand or collapse variable displays. When the latest instruction 
changes the value of a variable, the Variables window (and other 
debugger windows) shows the variable in red. You can also change 
variable values in the Variables window and then continue running 
with the new values in effect. Try it. Check the Help index for vari
ables window. Figure 13-7 shows the Variables window. 

Shows variables used in current 
r----.,...fftl~~~~---~- and previous statements. 

- .... " .. ~ .................. " ........................ . 

Shows contents of local 
~~~~----~-variables in current function. 

~~=~~ll~~=~===:E3f-ShOWS detailed structure of
.e the current object (this).

The Variables window.

Figure 13-8.

13: Debugging Your Mistakes

• When a variable is in scope, as nColor is in the SetPenBrush func
tion, you can display a ToolTip-style window containing the vari
able's value, as we've seen. You'll need to have executed the line
containing the variable before you can see its value. To see the
DataTip, simply rest the mouse pointer on the variable name in the
Source Code editor window. (If the variable is a member of a struc
ture or member of a class, select the qualifying class name and the
member-access operator as well.) A DataTip window appears near
the variable name, containing the variable's value if it has a value
in the current context. Check the Help index for datatips pop-up
information. Figure 13-8 shows a DataTips display.

,'-' CMyDra.~.;r Vie~.;r drawing

void CMyDrawView: :OnDraw(CDC* pDC)
{ I Rest cursor over this variable.

CMyDrawDoc* pDoc = GetDocument();

¢ ASSERT_VALID(pf;Do~=o~oon02aO{CMYDrawDoc} I This DataTip pops up.
// TODO: add dr.9,w code for natpJ'e dat.9, here

A DataTips display.

Now that you've explored ways to examine variables, exit the debugger.
On the Debug menu, select Stop Debugging.

\TI'IP To see the type of a variable in one of the debugger windows such as
~I the Watch or Variables windows, right-dick the variable and choose Proper

ties from the shortcut menu that appears.

\'JI' IP You can adjust the width of a column in a debugger window by drag
;,~ ging the column divider line one way or the other.

Breakpoints
The next question is how the shape in m_shpTemp got its faulty color
value. The color is assigned to the shape in OnLButtonDown, and we
know that MyDraw blows up while drawing the 11th shape. So let's
watch that assignment in action.

389

Fundamental MFC Skills

390

We begin our observation in OnLButtonDown just as we're drawing the
eleventh shape. To do that, we'll set a breakpoint at the beginning of
OnLButtonDown. A breakpoint tells the debugger to execute the program
up to that point and then stop so we can examine what's going on. It's
like taking a snapshot. And to keep from breaking on every shape, we'll
arrange to skip the first 10 shapes, breaking only on the 11th. Visual c++
lets you set quite a variety of breakpoint conditions.

Visual c++ lets you set a variety of breakpoint types too. The simplest
type, which is set as described in the next section, is a location break
point. A location breakpoint breaks at a specified location in the code.
You can modify a location breakpoint by supplying an additional condi
tion that you require to be true.

You can also set various kinds of data breakpoints. Data breakpoints break
at an appropriate place based on the value of a variable or on some other
condition that you specify. (Data breakpoints can affect program execu
tion speed; be prepared to wait.)

Among the conditional breakpoints you can set is a message breakpoint.
A message breakpoint breaks on receiving a given Windows message.
However, don't use message breakpoints in MFC unless you need to break
on a message for which you have no handler. (The debugger will stop
inside MFC source code.) Instead, you should usually set a location
breakpoint on the message handler associated with the desired message.
For example, to break on the WM_LBUTTONDOWN message, you set a
location breakpoint on your OnLButtonDown handler.

\"1' IP If you specify a data breakpoint by typing the name of a pointer, you
"~I must dereference the pointer: for example, specify m_arShps[Ol, not just

m_arShps; or *ptr, not just ptr. You can also specify how many array ele
ments or string characters you want to watch. If you specify only a pointer
or an array name, the debugger will break when the pointer changes, not
when the object pointed to changes.

\TI'IP If you edit code in the debugger, or outside of Visual c++ (using a third
.. '11 party editor), location breakpoints can become dislocated. Visual c++ dis

plays a message box warning that says "breakpoints not positioned on valid
lines." You have to remove and reset any dislocated breakpoints.

Figure 13-9.

13: Debugging Your Mistakes

Setting the breakpoint in MyDraw

Here are several ways to set the breakpoint we need in OnLButtonDown.

First, click in the source code at the line where you want to break. Then
set the breakpoint using one of these methods:

• Press F9 to set or remove a location breakpoint at the line contain
ing the blinking cursor. A red dot appears in the left margin before
the line, or the whole line appears in a red-shaded box if you haven't
selected the Selection Margin option on the Editor tab of the Op
tions dialog box in the Visual c++ Tools menu. (This method and
the next don't allow us to set conditions for our breakpoints, so we'll
end up using the final method below for the real thing.)

• Right-click a line in the source code. On the shortcut menu that
pops up, choose Insert/Remove Breakpoint.

• Choose the Breakpoints command from the Edit menu. In the
Breakpoints dialog box, click the small, right-facing arrow beside
the Break At box. Choose an option from the menu that pops up
for now, you want the option that lists a line number or a function
prototype. You can also specify conditions for when the debugger
should break at this breakpoint. That's what we'll do next. Fig
ure 13-9 shows the Breakpoints dialog box.

; jareakp'olrJl$' '
,y :,:,~t ~~~~'"ji< ,t ' 19:,:' ~ I 10 tlflle(I

~j}~eAJf
~;~" '::zZ£~ Breakpoints currently in effect

~' ".
~------~~-----'~'" <

The Breakpoints dialog box.

391

Fundamental MFC Skills

392

!". Try it now
Now let's set a conditional breakpoint at the opening curly brace of the
OnLButtonDown function:

1. Make sure you've exited the debugger. (Choose Stop Debugging
from. the Debug menu, or press Shifi+F5.)

2. In the Source Code editor, click the line where you want to insert a
break. (Remember that when run in the debugger, the program exe
cution will break just before this line.)

3. Choose Breakpoints from the Edit menu to open the Breakpoints
dialog box. Select the Location tab.

4. Click the small arrow beside the Break 1\t box and select the line
number option from the menu that pops up.

5. Click Condition.

6. In the Breakpoint Condition dialog box, type 10 in the box labeled
Enter The Number Of Times To Skip Before Stopping.

7. Click OK twice to close both dialog boxes.

\TI 'IP You can also set location breakpoints by typing a function name or la-
'11 bel in the Break At box. For a function name, the breakpoint is at the be

ginning of the function. For C++ class member functions, include the class
name and the scope resolution operator, as in CMyDrawView::OnLButtonUp.
Note that such a breakpoint is not marked in red in the source code because
the Source Code editor lacks a line number.

Stepping Through Code
Let's stop at our breakpoint, step through some code lines to execute them,
and then examine some variable values.

!(~,,. Try it now

Run MyDraw-but do so in the debugger this time. From the Visual C++
Build menu, choose Start pebug, and then Go (or press F5). The My
Draw window appears. Draw 10 shapes, and then start drawing the 11th

13: Debugging Your Mistakes

shape. The debugger stops the program at the opening curly brace of the
OnLButtonDown function body.

From there, follow these directions to step through the statements in
OnLButtonDown:

1. Start by choosing the Step Over command from the Debug menu
(or press FlO, or click the Step Over button on the Debug toolbar),
stopping when the yellow arrow in the source code window
points to the line

SetCapture();

The Step Over command causes function calls to execute, but the
debugger doesn't step inside those functions.

2. Next, choose the Step Into command from the Debug menu or press
Fll to step into the SetCapture call. This opens the Afxwin2.inl
file, a part of MFC's source code. Stepping further inside the Set
Capture function would execute its code statement by statement. If
you were to step over or into each of the statements in SetCapture
and then step past the closing curly brace, stepping would continue
in the calling function at the first line past the function you stepped
into. (Note that the debugger can only step into code for which the
source files are available. For example, it won't step into Win32 API
calls such as the call to ReleaseCapture in OnLButtonUp, but it will
step into the MFC wrappers for those calls.)

3. Instead of stepping on through SetCapture, let's use the Step Out
command (Shift+Fll) to jump back out of SetCapture and down to
the next line of OnLButtonDown. Step Out is handy when you in
advertently step into a function.

4. Now scroll down in the source code file and click the following line,
and then choose the Run To Cursor command (Ctrl+Fl0) to execute
up to that line:

5. Use Step Into one more time to execute the current line. We'll stop
there to examine some variables.

393

Fundamental MFC Skills

394

6. Use any of the techniques described earlier in this chapter in the
section on "Examining Variables" to observe the value of the view's
m_nColorNext data member. The current value is Ox00008006 (in my
project). You can use the Calculator accessory to convert that to deci
mal; the value is 32774, which is the value of ID_COLOR_BLACK. (If
you selected a different color before drawing, the numbers will dif
fer but should still translate to a valid color value as determined
from the Resource.h file.)

As a result of this search, we know the current shape, m_shpTemp, has a
valid value initially, when OnLButtonDown assigns it the current color
value for a new shape. Yet we know this value has gone bad by the time
we stop rubberbanding the shape in OnLButtonUp. That's when we call
InvertShape, passing the current shape, and InvertShape calls SetPen
Brush with a bad color value, tripping our ASSERT. Sometime during the
shape's creation sequence in the three mouse message handlers, some
thing changes the shape's color value. We're going to have to follow that
creation sequence.

~ Til' IP If you go hunting through source files and lose track of the next state
....,~I ment to execute, click Show Next Statement on the Debug menu (or on the

Debug toolbar).

~ Try it now
Let's start spying on the creation of the 11th m_shpTemp by looking at the
end of the process, in OnLButtonUp.

1. Stop debugging (press Shift+F5) and use the Breakpoints dialog
box to remove all existing breakpoints. (In the dialog box, click
Remove All.)

2. Set a nevv breakpoint at the opening curly brace of OnLButtonUp,
just as you set the breakpoint in OnLButtonDown in "Setting the
Breakpoint in MyDraw." Skip the first 10 times OnLButtonUp is
called-the first 10 shapes.

13: Debugging Your Mistakes

3. Run MyDraw in the debugger (press F5), draw 10 shapes, and then
start drawing shape 11. The program stops at the breakpoint.

4. Step over statements until the yellow arrow points to the first
InvertShape call. At this point, use any technique you like (such as
the Variables window) to examine the color value in m_shpTemp.
You'll see that before the call to InvertShape, the color value, black
(Ox00008006), is valid.

5. Step into InvertShape, and then step over statements in InvertShape
until the yellow arrow points to SetPenBrush. Examine the color
value, m_nColorShape, in the shape variable s. You'll see that it
hasn't changed.

6. Step into the SetPenBrush call and step over its statements. The
ASSERT doesn't fail on this call, and we step all the way through.
Examine the value of nColor-it's still valid.

7. Step on out of SetPenBrush, and then step out of InvertShape and
back into OnLButtonUp. Then step over statements until the yellow
arrow points to the following line:

m_arShps[m_countShapes] = m_shpTemp;

8. Examine the values stored in the members of the m_arShps array.
Use either the Locals tab or the This tab in the Variables window.
Expand the array by clicking the plus sign in front of m_arShps.
Scroll down to see the 10th shape (m_arShps[Ox9j). You can ex
pand that shape to see that its color is valid. But where is the 11th
shape?

9. Step over the current line and take a look around. Examine the
values of other variables, such as the view data member m_count
Shapes. Our shape counter, m_countShapes, should contain the
value OxOOOOOOOa (10 decimal) now that we've supposedly drawn
an 11th shape and stored it in the array (although we haven't yet
incremented the counter for that shape). But note that its value is
actually something else-in my project, it's Ox00000081 (129 deci
mal). We certainly haven't drawn 129 shapes!

395

Fundamental MFC Skills

396

Looking for Shape Eleven
So far, we've tried out several debugger features, but we still don't know
what's going wrong with our shape color. Let's look a little further, keep
ing in mind the phony m_countShapes value of 129 (or possibly some
thing equally bogus on your machine).

Our strongest clue so far is in the number of shapes we can draw before
things blow up. Recall that we set SHPS_MAXto 10, and that on our at
tempt to draw an 11th shape the program derails. What's SHPS_MAX

used for? For dimensioning our array, of course. We declare the array
m_arShps this way:

Shape m_arShps[SHPS_MAX];

Bells should be going off in our heads by now. Could this be a problem
with array bounds? That seems likely-but how exactly does the blowup
happen?

Two problems have the potential to damage the color value in shape 11-
either a bad pointer that somehow overwrites good data, or an array that
overshoots its bounds and writes its contents over good data. The array
problem is our most likely suspect.

Looking for the array problem

It's time to examine our data. The view stores the array as an embedded
object. (It could instead have stored a pointer to an array allocated on
the heap.) Here are the pertinent data member declarations in class
CMyDrawViewagain:

ShpType m_typeNext;
Shape m_shpTemp;
Shape m_arShps[SHPS_MAX];
int m_countShapes;
bool m_bCaptured;
CBrush* m_pBrushOld;
bool m_bTransparent;
UINT m_nColorNext;
CPen* m_pPenOld;
CPen* m_pPenNew;

II The array

II Current color

Given these declarations, the layout in memory from the beginning of
the class follows the same order. Picture these variables laid out end to

13: Debugging Your Mistakes

end, as in Figure 13-10. A Shape object contains a bounding rectangle
(m_boxShape) and three data members, so for each Shape object, we're
storing the following items:

• Four ints for the coordinates of the shape's bounding rectangle,
m_boxShape

• One int for its ShpType, m_typeShape

• One bool (same size as an int) for its transparency setting,
m_bTransparent

• One unsigned int, a UINT, for its color, m_nColorShape

The total storage for one Shape object is 28 bytes, at 4 bytes per integer.
(Note that a ShpType, a COLORREF, and a pointer are all the same size
as an int.)

CRect

ShpType boof UlNT

I m_typeNext left I top I right I bottom I m_typeShape I m_bTransparent I m_nCoforShape

) I---m_boxShape---f

I m_shpTemp I

C. -,
Shape: m_arShps [0]
Shape: [1]
Shape: [2]
Shape: [3]

ARRAY Shape: [4] m_arShps [10J
Shape: [5]
Shape: [6]
Shape: [7]

Shape: [8]
Shape: [9]

_L
I m_countShapes I m_bCaptured I m_pBrushOfd I m_bTransparent I m_nCoforNext I m_pPenOfd I m_pPenNew I

int boof CBrush* boof UfNT CPen* CPen*

Figure 13-10. Layout of data members in a CMyDrawView object.

397

Fundamental MFC Skills

398

Within our view object, then, we have the following:

• An int-sized object (m_typeNext, a ShpType enumeration value)

• A Shape object (m_shpTemp, 28 bytes)-our temporary shape-in-
progress

• An array dimensioned to hold 10 Shapes (m_arShps, 280 bytes)

• Another int (m_countShapes, 4 bytes)

• Another int-sized object (m_bCaptured, a bool)

• Another int-sized object (m_pBrushOld, a pointer)

• Another int-sized object (m_bTransparent, a bool)

• An unsigned int (m_nColorNext, a UINT)

• Another int-sized object (m_pPenOld, another pointer)

• A final int-sized object (m_pPenNew, another pointer)

Up to the end of the array, we have 312 bytes, adding up 4 bytes for
m_typeNext, 28 bytes for m_shpTemp, and 280 bytes (28 bytes per shape
x10 shapes) for m_arShps. If we then add the 4 bytes for m_countShapes,
4 bytes for m_bCaptured, 4 bytes for m_pBrushOld, 4 bytes for m_bTrans
parent, and 4 bytes for m_nColorNext (stopping there), we're up to 332

bytes. Figure 13-11 shows this arrangement.

280 I 4 I 4 I 4 I 4 I 4 I 4 I 4 ~ ~:~bers
1-------28 bytes-------1

!-------~~~-312 bytes ------------i

L11th _______________ 1 shape
Length of another shape

1-------28 bytes-------11

Figure 13-11. The array of shapes and what follows it.

13: Debugging Your Mistakes

Now for the crucial question: If we add an 11th Shape object beyond the
end of m_arShps, will it overwrite something-such as our color value,
m_nColorNext-thereby causing our error? That's most likely what's hap
pening. Recall that one Shape object is 28 bytes long. The end of the array
is at 312 bytes (from the start of the data members), and 312 + 28 = 340
bytes-well past the beginning of m_nColorNext at 332. Bingo again. The
11th shape has "clobbered" the color we use to set all new shapes-along
with other view class data members. Almost any of these overwritten data
members might have caused a similar crash. But the program ran into the
color problem first.

Using the Memory window

Let's use the debugger's Memory window to look in on this state of affairs.
We'll position the Memory window at the last Shape object in the array,
then see what lies beyond.

~ Tryitnow
The first stage of this operation is to bring the program to a point in the
middle of drawing the 11th shape by following these steps:

1. If MyDraw is running in the debugger, stop debugging. (Choose
Stop Debugging on the Debug menu.)

2. Start debugging (press F5) and draw 11 shapes. As you complete
the 11th shape, the debugger breaks in, stopping at the beginning of
OnLButton Up, as before.

3. Step through OnLButtonUp until the yellow arrow points to the
line that increments m_countShapes:

m_countShapes++;

Exploring memory

With everything correctly positioned, let's look at what's in memory
using the Memory window.

399

Fundamental MFC Skills

400

~~ Try it now
Set up the Memory and Variables windows to look at the 10th and 11th
shapes.

1. Open the Memory window. Choose Debug Windows and then
Memory from the Visual C++ View menu. Position the Memory
window so you can see the Source Code editor stopped in OnLBut

ton Up. (You might want to close other debugger windows, such as
the Watch and Call Stack windows.)

2. Open the Variables window as well. Choose Debug Windows and
then Variables from the Visual C++ View menu. Position the Vari
ables window so you can see a reasonable amount of its contents in
addition to the Memory window and the Source Code editor.

Interpreting what's in memory

Examine the code as described below. If you're unfamiliar with the
Memory window's display (most memory displays use a similar format),
see the sidebar "Reading the Memory Window" on page 405. The first 4
bytes of the memory display are highlighted in Figure 13-12.

,sddress: kth,s) m_arShps[9j

00771CFO 54 00 00 00 80 01 00 00 0 T
00771CFC
00771D08

iI00771DI4
i 00771D20

r~~;ng~~
, 00771D44

00771D50

72 00 00 00 00 00 00 00 01 CD CD CD r 111
06 80 00 00 8E 00 00 00 79 00 00 00 y ..
03 01 00 00 B6 00 00 00 00 00 00 00 ~

g6 gg gg gg g~ ~g gg gg ~g ~g ~g ~g 1~~~1111~~~~
D1 01 00 00 B1 00 00 00 00 00 00 00 R ... ±
00 00 00 00 00 00 00 00 BC BA DC FE ~QUp .1
7C 00 00 00 03 00 00 00 00 00 00 00 ~

First 4 bytes of
object pointed
to by this

Addresses- each
is address of first
byte in that line

Bytes of data-2
hex digits per byte

L...-___ ASCII character
display-1
character per byte

Figure 13-12. The Memory window.

We'll start by looking at the beginning of the 10th array element. At this
point, element 10 contains the 10th shape's data, so the first 28 bytes we
see should be that Shape object.

13: Debugging Your Mistakes

~ Tryitnow
In the Variables window, on the This tab, locate the following expression:

Click the plus sign in front of it. The array's 10 elements (0-9) appear be
low m_arShps. Click the line that says Ox9-that's the 10th element, the
last shape we drew. Click the plus sign in front of that line. Drag the Ox9
line to the upper left corner of the Memory window-the window's client
area, not the Address box. The cursor might become a circle with a diago
nalline through it, suggesting that this operation isn't allowed, but per
sist. After you drop the item in the window, you see the following
expression in the Address box: (*this).m_arShps[Ox9]. That's the 10th ele
ment of the array m_arShps, a member of the object that this points to
(the view). (Note that we're currently looking at valid data, not at the bug.
The bug doesn't come until shape 11.)

In the Variables window, the 10th shape's m_boxShape data member ap
pears on the line below Ox9. We don't particularly care what the bounding
rectangle's coordinates are, but we'll move through them in the Memory
window to get to what's past them. Let's look at the first four ints in
memory (the first 16 bytes, at 2 digits per byte in the display-see the
sidebar "Reading the Memory Window" for tips on interpreting the dis
play). The values you see will be different on your system, but you can
follow the same verification procedure that I use. On my system, the first
int in the Memory window (the first 2-digit column in the display, on the
top line, plus the next three columns following it) has the hexadecimal
value 4F 01 00 00 = OxOl 4F, which is 335 decimal. That's the left data
member of the shape's bounding rectangle. Figure 13-12 shows the
Memory window with the first int highlighted. You can compare our fig
ure for the left data member with the display in the Variables window to
check that this really is the left data member. Click the plus sign in front
of m_arShps[Ox9] in the Variables window (if you haven't already) to ex
pand its display. You can see the values for the shape's m_boxShape data
member, including the left data member of the GRect value stored in

401

Fundamental MFC Skills

402

m_boxShape. This value should match what you read in the Memory
window for that data member. The following are the next three ints:

• 54 00 00 00 = Ox54 = 84 decimal: the top data member of the
rectangle

• 80 01 00 00 = Ox0180 = 384 decimal: the right data member

• 72 00 00 00 = Ox72 = 114 decimal: the bottom data member

\ Ti' IP Recall that you can use the Windows Calculator accessory to convert
~-\JI between hexadecimal and decimal numbers. See "Numerical Notation in

C++" in Chapter 3 to review hex numbers and the calculator technique.

The values on your machine might be different, but you get the idea. The
first three variables in Table 13-1 show the remaining 12 bytes of the 10th
Shape object, followed by the 11th object's variables m_countShapes,
m_bCaptured, m_pBrushOld, m_bTransparent, and m_nColorNext.
(There's no reason to go beyond m_nColorNext.)

Variable Contents in Memory Remarks

m_typeShape 00 00 00 00 = Oxoo

m_bTransparent 01 CD CD CD = OxCDCDCD01

m_ncolorShape 06 80 00 00 = Ox8006
(To see why we read the num
ber in memory in this back
ward way, see the sidebar
"Reading the Memory
Window.")

shpRectangle has the value 0 in the
ShpType enumeration. If you drew an
ellipse, the value would be 01 00 00 00.

Only the least significant byte is used
for a bool. The rest of the int-sized value
is filled with a recognizable filler value,
CD. The variable's value is 1 (true) be
cause the Transparent menu is checked.

Ox8006 (32,774 decimal on my machine)
represents the color black: the value of
ID_COLOR_BLACK in the file Resource.h.
This would be different if you drew
with a different color.

Table 13-1. Values in memory for the class data members we're interested in.

13: Debugging Your Mistakes

~--Variable Contents in Memory

m_countShapes 8E 00 00 00 = Ox8E
(142 decimal)

m_bCaptured 79 00 00 00 = Ox79
(121 decimal)

m_pBrushOld 03 01 00 00 = OxOl03
(259 decimal)

m_bTransparent B6 00 00 00 = OxB6
(182 decimal)

m_nColorNext 00 00 00 00 = OxO
(0 decimal)

Remarks

We're on the 10th shape, counting from
0, so this should be Ox00000009 = 9
decimal. We're seeing instead the left
coordinate in the 11th shape's
m_boxShape: 142. It overwrites
m_countShapes. I'll show you after the
table how to verify that we're really
looking at the left coordinate.

The variable's value should be 0 (false)
because we've released the capture al
ready, but we're seeing the 11th shape's
top coordinate, 121.

This should be a pointer address, but
instead we're seeing the right coordi
nate, 259.

This should be Ox01CDCDCD, true, but
we're seeing the bottom coordinate, 182.

This should be a value between
ID_COLOR_BLACK (32,774) and
ID_COLOR_LTGRAY (32,783). We're see
ing the 11th shape's type, shpRectangle.

In the fourth row of Table 13-1, I said that we're looking at the left coordi
nate of the 11th shape's m_boxShape data member, which has overwrit
ten m_countShapes. You can verify that. In the Variables window, click
the plus sign in front of m_shpTemp to expand its values. Recall that
m_shpTemp contains shape 11. In the Variables window, you can see that
the left coordinate for that shape is the same as the value you see in your
Memory window at the location of m_countShapes (after you convert that
value to decimal).

If you examine the contents of the view class data members following
the array, a number of the values stand out as glaringly wrong. For ex
ample, as shown in Table 13-1, m_countShapes should be OxOOOOOOOa
(we haven't incremented for shape 11 yet), but with the left coordinate of
the 11th shape's bounding rectangle overlaying m_countShapes, we see
instead something like Ox0000008E (142). Similarly, m_nColorNext has

403

Fundamental MFC Skills

404

been obliterated, so its value now appears to be OxO, an out-of-range value
for colors. All of this provides the smoking gun that tells us the array is
really overwriting other class data members.

Damage Report
When does the color bug catch up to us? The car is damaged long before it
hits a tree: the color bug's effects show up well before the ASSERT state
ment in InvertShape finally notices them. As you start drawing the 11th
shape in OnLButtonDown, the value of m_nColorNext is still valid when
you assign it to the new shape's color member. You're still fine while rub
berbanding the shape, but recall how the 11th shape gets "sticky" during
rubberbanding. You can't just let the mouse button up to stop drawing the
shape. Instead, you have to click the mouse button again. That starts a
12th shape (which you can verify by setting a breakpoint in OnLButton
Down, skipping 11 shapes). The subsequent call to OnLButtonUp (for the
12th shape) trips the ASSERT because the 12th shape's color value is O.
OnLButtonDown sets it to that value during the creation of shape 12. So
shape 11 clobbers m_nColorShape and shape 12 sounds the alarm.

Fixing the Bug
We've found the bug, now, so it's time to fix it. The problem is that our
array can hold 10 shapes at a time but the user is perfectly free to go on
drawing more shapes until things blow up. A quick fix is to display a
message box when the user has drawn the maximum number of shapes
allowed and then allow no more shapes.

That's not a good real-world solution, of course, but it will patch up the
bug for now. In Chapter 14, we'll use a much more robust data structure
and solve the problem for good. !. Try it now

v
To fix the problem, add the following boldface lines near the end of
OnLButton Up, just before adding the new shape to the array:

II Put current shape in array
if(ffi-countShapes)= SHPS_MAX)

13: Debugging Your Mistakes

{

}

II Maximum number of shapes exceeded
II Must erase some shapes or start a new drawing
AfxMessageBox("Too many shapes"):
return:

m_arShps[m_countShapes] = m_shpTemp;
m_countShapes++;

Rebuild and test this solution. You'll now see a message box when you try
to draw an 11th shape. The AfxMessageBox call passes a hard-coded string
literal to display in the message box, but you could instead pass the ID of
a string resource that you create with the String editor. Check the Help
index for string editor. So how does this avoid the error? The return state
ment at the end of the if statement we just added ends the OnLButtonUp
function before the current shape can be added to the shape list.

Reading the Memory Window

The Memory window displays chunks of memory in rows (whose
size depends on the width of the window), beginning with a partic
ular starting address that you can set. You can see an Address box
at the top, with columns of numbers below it-look again at Fig-
ure 13-12. The leftmost column, 8 digits wide, lists addresses of suc
cessive memory chunks. The address in the upper left corner of the

, window is the lowest memory address on view in the window. If
the wi.ndow is sized so that each line currently displays 20 bytes,
each of the other addresses in the leftmost column is 20 byles (Ox14)
higher in memory. You set the first address by typing an 8-digit hex
address in the Address box or by dragging a pointer (or array) nanle
into the Memory window.

To the right of the address column are a number of 2-digit columns.
(The number depends on the 'window width.) Each pair of hex digits
(each column) represents 1 byte of luemory. Each single hex digit
represents 4 bits (a "nybble"), so 2 digits represent an 8-bit byte.

(cantin ued)

405

Fundamental MFC Skills

406

Reading the Memory Window continued

On the far right is an ASCII display. In each row of that display, one
character matches each byte in the row of byte columns to the left. A
character in the ASCII display usually has nothing to do with the ac
tual kind of data stored in that stretch of memory. It's just a way to
display a bit pattern thM probably represents an int or a bool in your
program, something the debugger doesn't know. However, sometimes
the ASCII display is useful because you can use it to look for strings
of actual characters.

There's an additional complication. On Intel machines, a word of
storage is stored in what's called Little-Endian order. This means
the most significant byte of a 32-bit word is on the right end of the
word, and the least significant byte is on the left. (The "little end"
comes first in the normalleft-to-right reading order of the English
language.) That's the opposite of the ordering of storage words on the
Macintosh computer and on many network machines. Figure 13-13
illustrates this situation.

The Little-Endian byte ordering explains why we interpret 10 01 in
memory as 0110 hex rather than as 1001 hex, and why we read out
pointer values backvvard.

Little end
I 32-bit word of storage-----1

Big end
Normal ordering
of a hex number
(MSB~LSB) is
reverse of Little
Endian order.

~ byte 0 I byte 1 I byte 2

Least significant byte (LSB)

\
Little-Endian ~
orderinq of

I number
(LSB~MSB)

Figure 13-13. Little-Endian byte ordering.

byte 3 ~

Most significant byte (MSB)

13: Debugging Your Mistakes

Display Bugs
Debugging display bugs-bugs that involve drawing in the view-can be
especially difficult. You can get locked into endless cycles of WM_PAINT

or WM_MOUSEMOVE messages. Debugging in such a situation calls for
ingenuity in setting breakpoints-that's one reason I set a condition on
the breakpoint in OnLButtonUp so that it would only break after 10 calls
to the function. To break out of a cycle like this, or out of an infinite loop,
choose Break from the Debug menu (or the Debug toolbar).

MFC Diagnostic Facilities
To supplement the debugger, you can use some of the diagnostic facilities
built into MFC. These include the following:

• The TRACE macro, which is used to print debug output in the Out
put window when your program runs in the debugger. Check the
Help index for TRACE and double-click the TRACE keyword. You
want the all-upper-case name.

til MPORTANT To use TRACE, you must first run the MFC Tracer tool from the
I Tools menu. In the MFC Trace Options dialog box, make sure Enable Trac

ing is selected, and then click OK. Then run your program in the debugger
to-see TRACE output in the Output window.

• A set of macros to help you test the validity of objects (for ex
ample, A SSERT_ VAUD) and test your assumptions about the valid
ity of function returns, object constructions, parameters, results of
calculations, and the like (for example, ASSERT and VERIFY).

Check the Help index for these macros and see the file Diagnost.doc
in the \learnvcn \Chap13 folder in the companion code.

• A mechanism to help you detect memory leaks. Check the Help
index for memory leaks, and see the file Diagnost.doc in the
\learnvcn \Chap13 folder in the companion code.

• A way to obtain a diagnostic dump of the contents of your objects.
Check the Help index for diagnostic dump and select the topic
"object contents." Check also for diagnostic dump and select the

407

Fundamental MFC Skills

408

topiC "all objects." Also see the file Diagnost.doc in the
\learnvcn \Chap13 folder in the companion code.

• A method for handling exceptional conditions, or "exceptions,"
such as a File Not Found or an I/O error. Check the Help index for
exceptions and see the file Diagnost.doc in the \learnvcn \Chap13
folder in the companion code.

Try It Yourself

You should be starting to feel more at ease with Visual C++ by now. Use
the following homework to reinforce and expand on what you just learned
about debugging.

1. Study the debugger documentation.

In Visual C++ Help, click the Contents tab, click Visual Studio 6.0 Intro
ductory Edition. Then click Welcome To The Visual Studio 6.0 Introduc
tory Edition. Click Using Visual C++. The debugger documentation is in
the Visual C++ User's Guide. Start with the topic "Home Page: Debugger,"
(under the topic Debugger) which focuses on the debugger and its user in
terface. Some of the material will be familiar from this chapter, but the
topics will also fill in some details I haven't mentioned.

2. Study debugging techniques.

The documentation on debugging techniques is in the Visual C++ Program
mer's Guide. On the Contents tab, click Visual Studio 6.0 Introductory Edi
tion, and then click Welcome To The Visual Studio 6.0 Introductory
Edition. Click Using Visual C++. Then Click Visual C++ Programmer's
Guide, and then click Debugging. Start with the topic "Debugging Your Pro
gram." This and adjacent topics focus on debugging techniques. They tend
to amplify and go beyond my discussion in this chapter.

''''h +'5 N -xt' .v. g, I ~ •

In Chapter 14, we'll adopt our final data structure for storing shapes, and
thereby really fix this chapter's hug and solve our drawing problems once
and for all. Well, most of them. The lions won't quite lie down with the
lambs yet, but things are looking up.

Chapter

Data, Documents, and Views
We've dealt with a good many design problems so far, most of them related
to how MyDraw's data is displayed. It's time now to change our focus to the
document and the data itself. We've been getting by with a loose definition
of what a shape is. Now that you understand some of the user interface
issues in Microsoft Windows programming, it's time to design a good
shape data type and choose a good data structure to house the shapes.
This chapter covers step 4 of MyDraw. We'll look at

• Designing data classes derived from the Microsoft Foundation
Class Library 6.0 (MFC) CObject class-in this case, CShape and
two classes derived from it

• MFC data structures: the "collection classes" used to store our
shape data

• How the data fits into MFC's document/view architecture

We'll proceed from the top down. First we'll look at the document/view
relationship and the document object's role in handling data. Then we'll
select the right data structure from among the many offered by MFC.
Finally, we'll discuss designing the CShape class and its subclasses
following up on the work we did in Chapter 5. And we'll explore some
issues that arise when we roll up our sleeves and try to fit our data classes
into MFC.

409

Fundamental MFC Skills

410

Designing the Document
Because we've decided to use the MFC document/view architecture, we'll
move our list of shape objects into class CMyDrawDoc, the document class.
In the document class, we'll build a user interface for our data around one
of MFC's collection classes. In the view class, therefore, we'll work with
the data strictly using that interface.

The Document/View Architecture Again
We discussed the MFC document/view architecture briefly in Chapter 8,

but it will probably make more sense as we put it into practice in this
chapter. Putting the shape data into the document object separates the
program's data from how we draw the data on the screen:

• The view class focuses on drawing the data, which it obtains as
needed from the document. In later chapters, we'll also look at the
view object as an interface for editing the data.

• The document class focuses on maintaining the data and does the
work of adding and manipulating shapes.

See Figure 8-6 for an illustration of the document/view relationship.

The document object also manages storing shape drawings in a file (cov
ered in Chapter 16); the view object not only draws the shapes on the
screen but also draws them on a printer or on a special Print Preview
screen. (It's also through the view object that users manipulate the
document's data by editing it.) This is a useful division of labor, especially
when we later split the display into multiple views of the data (in Chap
ter 20). This division of labor is the essence of the document/view archi
tecture. It simplifies file saving, printing, print preview, and displaying
multiple views of data, and a considerable amount of it comes for free.
You might want to quickly review the document/view discussion in
"Document/View Architecture" in Chapter 8.

How a view communicates with the document

Let's look for a moment at document/view collaboration. How do the two
classes communicate? The view object maintains a pointer to its associ
ated document object. You can obtain that pointer in any view member
function with these lines of code:

14: Data, Documents, and Views

CMyDrawDoc* pDoc = GetDocument();
ASSERT_VALID(pDoc);

AppWizard makes these lines part of the OnDraw function. But you can
copy the lines and paste them into any other view function. A call to the
view object's GetDocument member function returns a pointer to the
document object. The ASSERT_VALID macro causes the document object
to run a validity test on itself-a little insurance. For more information,
check the Help index for ASSERT_ VALID, and see the file Diagnost.doc in
the \learnvcn \Chap14 folder in the companion code.

Through the pDoc pointer, you can call any public document member
function or directly access any public document data member. You'll nor
mally use the pointer to add new data items, such as when the user draws
a new shape, and to get data items for display. OnDraw uses the pDoc
pointer extensively.

How the document communicates with a view

Meanwhile, over in the document object, you can always obtain a pointer
to any particular view object associated with the document object-not
that you'll need to very often. Keep in mind that some applications pro
vide multiple views of the same document-a feature we will add to
MyDraw later-so the document object stores a list of all views associated
with the document. You can use document-class member functions such
as GetFirstViewPosition and GetNextView to walk (meaning walk through)
the list of views until you find the one you need. It might be useful to
check the Help index for CDocument and review the class's member list.
Here's sample code to walk the view list:

POSITION pas = pDoc-)GetFirstViewPosition();
while(pos 1= NULL)
{

}

CMyDrawView* pView = (CMyDrawView*)GetNextView(pos);
II Do something with the view

The other major communication mechanism between the document ob
ject and its view objects is the document's UpdateAllViews member func
tion. Typically, if the user changes some data by editing it through view
A, view A uses the pDoc pointer to call Up da teAll Views. This causes the

411

Fundamental MFC Skills

412

document object to call each view object's OnUpdate member function,
which is equivalent to sending a WM_PAINT message to each view. (The
default version of OnlnitialUpdate also calls OnUpdate.) Each view's
On Update function invalidates all or part of the view, so each view up
dates its drawn image of the document object's data. An UpdateAllViews
call thus synchronizes all views of the document so each displays the
latest data.

Choosing an Appropriate Data Structure
We need a data structure that can store a large but indeterminate number
of shape objects. It also needs to be more robust and flexible than a c++
array. We saw in Chapter 13 how error-prone our shape array was. Fortu
nately, MFC supplies approximately 20 collection classes, some of
which will surely do the job. A collection class is designed to contain
multiple objects of some type or types-the simplest collection class re
sembles a c++ array except that it can grow to accommodate more data.
For detailed information about MFC's collection classes, a subject well
worth investigating, check the Help index for collection classes and select
the "Collections Topics" article in the Topics Found dialog box.

To choose a good data structure, we'll use the following decision process:

1. Choose between classes based on C++ templates and classes not
based on templates. Template-based classes are preferable in some
ways, especially in terms of type safety. A type-safe collection can
hold only one kind of data. But since we aren't covering C++ tem
plates in this book, we'll go with a nontemplate solution. MFC has
17 nontemplate collection classes designed to hold various kinds
of data.

2. Choose among three collection class shapes-broad categories
based on the semantics of arrays, linked lists, and maps. Maps, also
known as dictionaries, map a lookup key to an element stored in

. the map. Think of a dictionary, in which a word is the lookup key
and its definition is the stored data. There's no particular kind of
key for our shape data, so that leaves either an array or a linked list.
Either should work, and each has its strengths and weaknesses.

14: Data, Documents, and Views

3. Narrow the field of possibilities. For a variety of reasons, we're go
ing to derive class CShape from the MFC class CObject. Given that
requirement, two MFC classes will hold the appropriate kind of
data-pointers to CShape objects-CObArray and CObList. Class
CObArray encapsulates an array of pointers to CObject, so if we de
rive CShape from CObject~ we can store pointers to CShape in such
an array. Likewise, class CObList stores pointers to CObject in a
doubly linked list, one that allows traversal in both directions along
the list.

4. Choose between CObArray and CObList. Different data structure
types have different performance characteristics and offer different
capabilities. We want a data structure that OnDraw can iterate
quickly in order to draw all shapes. And eventually we'll want to
move shape objects around in the data structure to support com
mands such as Bring To Front, Send To Back, Bring Forward, and
Send Behind. Most object-oriented drawing applications support
such commands. Linked lists such as CObList make inserting, de
leting, and moving elements easier than arrays do. But arrays are
faster and easier to iterate. Figure 14-1 illustrates the structure of
CObList.

Head

(Objects

Figure 14-1. The abstract structure of a CObList.

I've chosen to implement the shape data structure with CObList, partly
because this class presents a more interesting interface and illustrates
more about the collection classes. If we find later that iteration is too slow
for OnDraw-which is likely only if users commonly draw very large
numbers of shapes in one drawing-it won't be hard to replace the

413

Fundamental MFC Skills

414

CObList implementation with a CObArray implementation. In any case,
I'll provide some tips about using CObArray in the Try It Yourself exer
cise at the end of the chapter.

~~ Try it now
In the file DrawDoc.h, add the following boldface data members (note that
this is a private attributes section) below the / / Attributes comment:

II Attributes
public:
private:

CObList ffi-listShapes;
POSITION ffi-POS;

II Linked list of all shapes drawn so far
II Latest position accessed

I'll discuss m_pas in a moment-think of it as similar to a pointer vari
able that is used to walk the list using pointer arithmetic.

MyDraw's Document Interface
I've chosen to hide MyDraw's data in a private section of the document
class because I want the view classes to access the data only through a
controlled interface. This lets me insert some error checking in the pro
cess and simplify somewhat the CObList interface. My data interface con
sists of the following document member functions.

• CreateShape creates a new CShape object and stores a pointer to it
in our CObList. We return the same pointer so the mouse handlers
that build up a new CShape object can use the pointer to work on
the latest shape, in place in the list.

• DeieteLatestShape deletes the shape last drawn. We can use this in
the future to implement an Erase command.

• DeieteAllShapes deletes all shapes in the drawing, presumably to start
over. We'll use this later to clean up the document object for reuse.

14: Data, Documents, and Views

• SetToOldestShape starts a traversal of the list by pointing to its tail
end, where the oldest shape is located. The list holds objects in the
reverse of the order in which we added them. So the latest shape is
at the head of the list, and the oldest shape is at the tail. We add
new shapes at the head. Calling SetToOldestShape is like setting a
pointer to the last element of an array so you can walk the array
backward (although we aren't really using pointer arithmetic).
When OnDraw iterates the list, we want it to draw the oldest shapes
first so the newer ones come out "on top of" the older ones. By call
ing GetPrevShape repeatedly, we'll walk the list from oldest to new
est shape. We'll also add a SetToLatestShape function for walking
the list from latest to oldest shape. We'll use this function in
Chapter 18.

• GetPrevShape, moving along the list from tail to head, returns a
pointer to the "previous" shape-the next one closer to the head.
The pointer is a CShape*. To match SetToLatestShape, we'll also
add a GetNextShape function, which we'll use in Chapter 18.

• GetPos gets the "position" of our conceptual pointer, m_pos, as it
marks successive elements in the list.

• GetCount returns the number of objects stored in the list.

c For now, we only need to iterate the list in one direction, but I've added
corresponding functions to iterate it in the other direction as well. They'll
be there when we need them.

Initializing the list

By declaring the m_listShapes data member, we arranged for the CObList
to be constructed as part of the document object-it's constructed just be
fore the document object is constructed. It's initially an empty list, and
we don't need to initialize it further except to set the m_pos data member
to NULL in the document constructor. At this point, we aren't yet point
ing into the list.

415

Fundamental MFC Skills

416

!~ Try it now
Add the boldface line to the document constructor:

CMyDrawDoc::CMyDrawDoc()
{

}

II TODD: add one-time construction code here
ITLPOS = NULL:

Creating a new shape and adding it to the list

As before, we create a new shape object in the view's OnLButtonDown
mouse message handler. At that point, instead of calling new, we call
the document's CreateShape member function (which we'll add in a
moment). CreateShape constructs a new CShpRectangle or CShpEllipse
on the heap, depending on which shape type is currently selected on
the Tools menu. CreateShape is one case where we need a switch state
ment, so we create the right type of object. CreateShape stores the new
object in the list by calling CObList's AddHead member function. Then
CreateShape passes a pointer to the object back to OnLButtonDown, and
we use that pointer through the rest of the mouse drawing process. This
lets us eliminate the m_shpTemp data member in the view class. We no
longer need a dummy shape object to build up with data and then stash
in our data structure. Instead, we work on the new shape object in place,
through a pointer, after we've added it to the list.

! ~,'r Try it now
We'll take this in stages. As described below, create a new shape in
OnLButtonDown. Remove the old array data implementation that we're
replacing with a CObList implementation. Add the CreateShape member
function to the document class.

First, in the file DrawVw.cpp, change OnLButtonDown so it looks like the
following. (Note the boldface lines.)

void CMyDrawView::OnLButtonDown(UINT nFlags, CPoint point)
{

II TODD: Add your message handler code here and lor call default

14: Data, Documents, and Views

}

SetCapture();
m_bCaptured = true;

ASSERT(m_typeNext == shpRectangle I I m_typeNext
shpEllipse);

CMyDrawDoc* pDoc = GetDocument();
ASSERT_VALID(pDoc);
II Create shape and add it to our list; return a ptr to it.
m-pShpTemp = pDoc->CreateShape(m-typeNext);
II Mark the document as changed.
pDoc->SetModifiedFlag();

II Start setting properties of the new shape.
m-pShpTemp->m-bTransparent = m-bTransparent;
m-pShpTemp->m-nColorShape = m-nColorNext;

II Store starting point - literally a pOint. initially
II (topLeft == botRight).
m-pShpTemp->m-boxShape.left =

m-pShpTemp->m-boxShape.right= point.x;
m-pShpTemp->m-boxShape.top =

m-pShpTemp->m-boxShape.bottom = point.y;

CView::OnLButtonDown(nFlags. point);

The document's CreateShape member function stores the new shape ob
ject in its list and then returns a pointer to the shape, which we store in
m_pShpTemp. (The former m_shpTemp variable is now a pointer instead
of an object.) Then we tell the document that its data has changed. When
the user closes the document or exits the program, the document checks
its "modified flag." If the flag is true, the document displays a dialog box
asking if the user wants to save the changes. The modified flag mecha
nism is part of class CDocument-we don't have to code it; we just acti
vate it by calling SetModifiedFlag. SetModifiedFlag takes a Boolean
parameter. If the parameter is true, the document is marked as "dirty"
(modified)-this is the default. If the parameter is false, the document is
marked as no longer dirty. You might use the false parameter, for example,
if you applied an Undo command for an operation that had changed
some data.

417

Fundamental MFC Skills

418

Now get rid of the old array implementation.

1. In the file DrawVw.cpp, delete the following lines from the
OnLButton Up member function:

II Put current shape in array
m_arShps[m_countShapesJ = m_shpTemp;
m_countShapes++;

Also remove the initialization of the m_countShapes data member
from the CMyDrawView constructor.

2. In the file DrawVw.h, delete the m_arShpsU and m_countShapes
data members and the SHPS_MAX constant.

Those lines are part of the old array implementation that we've
now replaced with a CObList implementation.

3. In the files DrawVw.h and DrawVw.cpp, use Find/Replace to re
place m_shpTemp everywhere with m_pShpTemp. In all calls to
the InvertShape member function, change the second parameter to
*m_pShpTemp. The function expects an object, not a pointer. (It's a
reference to CShape, so you pass it an existing object.) Thus we
dereference m_pShpTemp.

4. In DrawVw.h and DrawVw.cpp, replace Shape everywhere with
CShape. Make sure you use the Match Whole Word option in the
Replace dialog box. Then you can use the Replace All button.

5. Change the type of the m_pShpTemp declaration from Shape to
CShape* (in the file DrawVw.hJ. You must also use the -> notation
when accessing members using the new pointer. In OnMouseMove,
change the following two lines:

m_pShpTemp.m_boxShape.bottom = point.y;
m_pShpTemp.m_boxShape.right = point.x;

to look like the following:

m_pShpTemp->m_boxShape.bottom = pOint.y;
m_pShpTemp->m_boxShape.right = point.x;

6. In OnLButtonUp, change the following two lines:

m_pShpTemp.m_boxShape.right = point.x;
m_pShpTemp.m_boxShape.bottom = point.y;

14: Data, Documents, and Views

to look like the following:

m_pShpTemp->m_boxShape.right = point.x;
m_pShpTemp->m_boxShape.bottom = point.y

Finally, use WizardBar's Add Member Function command to add a new
member function, CreateShape, to the file DrawDoc.cpp:

CShape* CMyDrawDoc::CreateShape(ShpType st)
{

}

ASSERT(st >= shpRectangle && st <= shpEllipse):
switch(st)
{

case shpRectangle:
{

}

CShpRectangle* pRectangle = new CShpRectangle:
ASSERT(pRectangle J= NULL):
~listShapes.AddHead(pRectangle):

break:
case shpEllipse:

{

}

CShpEllipse* pEllipse = new CShpEllipse:
ASSERT(pEllipse 1= NULL):
~listShapes.AddHead(pEllipse):

break:
default: II Nothing
}

II Return the object just created.
if(~listShapes.GetCount() > 0)

return (CShape*)~listShapes.GetHead():
else

return NULL:

In Chapter 3, we discussed the dangers of returning a pointer as a func
tion result. However, the CShape pointer returned by CreateShape is
perfectly safe. The object to which it points is stored in the list data
structure, and we already have a mechanism for deleting those objects
once we finish with them. It's not up to us to remember to call delete on
this pointer.

419

Fundamental MFC Skills

420

Redrawing all shapes in OnDraw

Our new version of OnDraw uses the document's SetToOldestShape mem
ber function to position its conceptual pointer to the end of the list. Then
OnDraw repeatedly calls GetPrevShape to move backward along the list,
drawing each shape as it goes. This draws the shapes in the same order in
which the user originally drew them.

~ Tryitnow
Replace the old OnDraw, in the file DrawVw.cpp, with the following. (Note
the boldface lines.)

void CMyOrawView::OnOrawCCOC* pOC)
{

}

CMyOrawOoc* pOoc = GetOocumentC);
ASSERT_VALIOCpOoc);
II TOOO: add draw code for native data here

II Iterate the shapes from oldest to newest.
II (Draw them in the same order as originally drawn.)
CShape* pShape;
pDoc->SetToOldestShape();
while(pDoc->GetPos() J= NULL)
{

}

II Get the shape and use it to set the pen and brush.
II Last shape sets position to NULL.
pShape = pDoc->GetPrevShape();
SetPenBrush(pDC, pShape->~bTransparent,

pShape->~nColorShape);

II Ask the shape to draw itself.
pShape->Draw(pDC);
1/ Clean up.
ResetPenBrush(pDC);

To control the while loop, we call the document's GetPos member func
tion. If GetPos returns NULL, the m_pos data member has been set to NULL,
either by SetToOldestShape or by GetPrevShape. This tells us we've
walked past the final element in the list-actually the first element, since
we're walking the list backward-so it's time to stop iterating. On each
pass through the loop, we obtain a pointer to the next shape, pShape. We
pass pShape's color and transparency data members as parameters in a

14: Data, Documents, and Views

call to SetPenBrush. This sets the brush to a NULL_BRUSH if the shape is
transparent and sets the pen to pShape's m_ILColorShape value. With the
pen and brush set, we call pShape's Draw member function to do the
drawing and then we reset the pen and brush. The call to Draw invokes
Draw for the correct data class, CShpRectangle or CShpEllipse, depending
on which class was used to create the current shape object.

Redrawing shapes in InverfShape

Changing our shape representation to a class hierarchy also requires
drawing differently in the view's InvertShape function.

~ Tryitnow
In the file DrawVw.cpp, change the InvertShape implementation to re
move the switch statement, replacing it as shown here.

void CMyDrawView::InvertShape(CDC *pDC. CShape &s. bool bInvert)
{

}

ASSERT(pDC 1= NULL):
II Drawing mode ;s R2_NOT: black -) white. white -) black.
II colors -) inverse color.
II If shape already drawn. this erases: else draws it.
int nModeOld:
if(bInvert)
{

nModeOld = pDC-)SetROP2(R2_NOT);
}

II Draw the shape (or erase it).
SetPenBrush(pDC. s.m_bTransparent. s.m_nColorShape):
s.Draw(pDC):

II Restore old values in DC.
if(bInvert)

{

pDC-)SetROP2(nModeOld);
}

ResetPenBrush(pDC):

We simply replace the switch statement with a call to the current shape's
Draw member function-exactly the kind of benefit we wanted from the
new implementation.

421

Fundamental MFC Skills

422

Inside the document's data interface

Let's add and examine SetToOldestShape, GetPrevShape, and the other
new document member functions. We'll implement these functions as
inline functions; we'll put the entire implementation for an inline func
tion in the header file, not the implementation file. This suggests to the
compiler that, everywhere it encounters the function name, it should
replace the function call with the body of the function, "in line," right on
the spot. It's a suggestion only; the compiler can ignore it. But in most
cases the compiler will make the function inline and improve MyDraw's
efficiency a bit. I introduced inline functions in "Defining member func
tions inline" in Chapter 4.

~ Tryitnow
In this section and the next, you'll add the SetToOldestShape,
Set ToLa testSh ape, GetPrevShape, GetNextShape, GetPos, GetCount,
DeleteLatestShape, and DeleteAllShapes functions to the document class.

First, add the SetToOldestShape and SetToLatestShape inline member
functions to the document class, in the public attributes section of the file
DrawDoc.h. You don't need the Add Member Function command for
inline functions, since all of the code is in the header file. Here's the
code. (Don't forget the semicolon at the end of the function body or the
semicolon following the line of code inside the function body.)

void SetToOldestShape() { ~pos = ~listShapes.GetTailPosition(): }:
void SetToLatestShape() { ~pos = ~listShapes.GetHeadPosition(): }:

Here you begin to see some of the interface to CObLisiitself. CObList has
GetHeadPosition and GetTailPosition member functions. These set an
internal position marker to the head or tail of the list, respectively, and
return that marker as an object of type POSITION. Most of the MFC
collection classes use the POSITION type. Check the Help index for
POSITION and CObList. We store the returned position in the document's

14: Data, Documents, and Views

m_pas data member so we can then pass it when we call GetPrevShape
(in conjunction with SetTaOldestShape) or GetNextShape (in conjunction
with SetTaLatestShape).

Next, add the inline member functions GetPrevShape and GetNextShape
to the document class, in the file DrawDoc.h:

CShape* GetPrevShape()
{

}:

// Sets ffi-POS to NULL if no shapes or if
// latest shape is last in list.
return (CShape*)ffi-l1stShapes.GetPrev(ffi-pos):

CShape* GetNextShape()
{

}:

// Sets ffi-POS to NULL if no shapes or if
1/ latest shape is last in list.
return (CShape*)ffi-l1stShapes.GetNext(ffi-pos):

GetPrevShape just calls the list object's GetPrev member function, passing
m_pas as a parameter. GetPrev returns a pointer to the next object toward
the head of the list. Notice that we have to cast the returned pointer from
CObject* to CShape*. This is because CObList is a linked list of CObject
pointers. Since CShape will be derived from CObject, the list can store
pointers to CShape (because it's derived from CObject), but inside the list
we can't readily tell what types the pointers point to because they all look
like nothing but pointers to CObject there-see Figure 14-2 on the fol
lowing page. Actually, they're pointers to CShpRectangle or CShpEllipse
objects, but we pretend they're all CShape pointers inside the list ele
ments. That works because CShape defines the full interface for access
ing objects of classes CShpRectangle and CShpEllipse: all of the data
members plus the Draw member function. GetNextShape works like
GetPrevShape except that it calls the list object's GetNext member function.

423

Fundamental MFC Skills

424

Figure 14-2.

Space of a single Space ofCShape Any remaining
CRuntimeC/ass object data members storage used

A CSh~~:~angle II..-l----l-I __ !_----'-_! ---...II
CObject.-D Through a CObject pointer,

this is all we can see. We
can only access CObject members.

cShape*~~1 I
Through a CShape pointer,
we see all of this. We can
access all CObject and
CShape members.

CShPRectan
g
le'1L...-_---'-_________ --'-___ ---'

Through a
CShpRectangle
pointer, we see
the whole object.
We can access all
public members.

How a CObject pointer conceals its actual content.

You'll notice that the document's data interface parallels COhList's inter
face pretty closely. SetToOldestShape calls GetTailPosition, GetPrevShape
calls GetPrev, and so on. This wrapper interface hides details such as the
CShape * cast and error checking (which you'll see in some of the member
functions in the companion code). Iteratingthe list in OnDraw is there
fore pretty clean.

~~r Try it now

Now add the inline member function GetPos to the document class (file
DrawDoc.h):

POSITION GetPos() const
{

};

II ~pos tells you where you are in a list of the shapes.
II Use GetPos with either iteration direction to test for end.
return ~pos; II Can be NULL

GetPos is a simple access function that returns the value of the private
m_pos data member. We use that value to control the while loop in
OnDraw.

14: Data, Documents, and Views

Next, add the inline member function GetCount to the document class
(file DrawDoc.h):

int GetCount() const
{

}:

II Return the number of stored shapes.
return M-listShapes.GetCount():

GetCount calls the list's GetCount member function. We use GetCount in
CreateShape to make sure there's a shape we can return a pointer to.

Finally, use the WizardBar Add Member Function command to add the
DeleteLatestShape and DeleteAllShapes member functions to the docu
ment class. (These functions are a bit larger, so we won't make them
inline.) Here's what you need in the file DrawDoc.cpp, in addition to
function prototypes in file DrawDoc.h. (Remember that WizardBar adds
the prototypes for you.)

void CMyDrawDoc::DeleteLatestShape()
{

}

ASSERT(!M-listShapes.IsEmpty(»:
CShape* pShape = (CShape*)M-listShapes.RemoveHead():
delete pShape:

void CMyDrawDoc::DeleteAllShapes()
{

}

POSITION pos = M-listShapes.GetHeadPosition(): II NULL if empty
while(pos 1= NULL)
{

delete M-listShapes.GetNext(pos):
}

M-listShapes.RemoveAll();
SetModifiedFlag(false); II Nothing to save now

DeleteLatestShape uses an ASSERT statement to test that the list isn't
empty, using the list's IsEmpty member function. In debug builds only,
the ASSERT statement halts the program with a message if we try to re
move an object that doesn't exist. When we have the program functioning
correctly, a release build removes the ASSERT (by not compiling it). After
the test for empty, DeleteLatestShape calls the list's RemoveHead member
function to extract the last shape drawn from the list. RemoveHead

425

Fundamental MFC Skills

426

returns a pointer to the removed object, and we call delete on that pointer.
Note the combination of steps we have to take to delete a list member: we
remove it from the list, like lifting it out of a basket, and then delete it.

DeleteAllShapes must iterate through the list, deleting all of the pointers
stored in it. Notice how similar this iteration loop is to the loop in OnDraw.
First, we position to one end of the list with GetHeadPosition. Then we
repeatedly call GetNext, deleting the returned pointers until GetNext
returns NULL. At the end of the loop, we finish by calling the list's
RemoveAll member function. As shown in Figure 14-3, RemoveAll gets
rid of the linked list nodes the list was using, thus cleaning up the space
used by CObList itself, as opposed to the space used by the shape pointers
we had stored there. For more information, check the Help index for
deleting all objects in CObject collections.

Node

8
Figure 14-3. Deleting objects in a CObList and deleting the list itself.

Cleaning Up the Document
Recall that MyDraw is a single document interface (SDI) application. SDI
applications reuse the document object when the user chooses New or
Open from the File menu. But before it reuses the object, MFC gives you
a chance to clean up after the previous document and then reinitialize
the document for reuse. For the cleanup, MFC calls the document's
DeleteContents member function, a virtual function that you can over
ride using WizardBar. In MyDraw, we use DeleteContents to deallocate
all memory associated with the shape objects and with the CObList.
That's exactly the kind of task that DeleteContents was designed for. (For
reinitializing the document, MFC calls. OnNewDocument for the New
command and OnOpenDocument for the Open command.)

14: Data, Documents, and Views

~ Try it now
Use WizardBar to override the DeleteContents virtual function in the docu
ment class. Select Add Virtual Function from the WizardBar Action menu,
select DeleteContents from the New Virtual Function list, and then click
Add And Edit. Add the boldface lines shown here:

void CMyDrawDoc::DeleteContents()
{

}

II TODO: Add your specialized code here and/or call the base class
DeleteAllShapes():
UpdateAllViews(NULL):

CDocument::DeleteContents();

We've already solved the problem of deleting all the shape and CObList
heap allocations, so we simply call our own DeleteAllShapes member
function to clean up the document. A call to CDocument::UpdateAllViews
removes drawn objects from the client area. We don't need to reinitialize
anything, so we don't do anything to OnNewDocument, even though App
Wizard has kindly provided an override. Now let's develop our real data
type, class CShape, and two subclasses to represent rectangles and ellipses.

The CShape Class
Class CShape contains basically the same data as our simpler Shape
struct. But it also has member functions, including a virtual Draw func
tion so that each shape object "knows" how to draw itself. CShape is also
now derived from an MFC class, CObject, thus gaining some impressive
and useful abilities.

I'll present the three classes-CShape and two subclasses, CShpRectangle
and CShpEllipse-but discuss only the base class and CShpRectangle. Be
cause CShpEllipse is very similar to CShpRectangle, I'll just present its
code for you to add to your project.

Why change our shape data type? Two reasons. First, we want the shape
object do more of the work, especially drawing. That will also simplify
some of the code in the view class. Second, in order to store the shapes in
a CObList, the shape classes must be derived from class CObject.

427

Fundamental MFC Skills

428

Defining Class CShape
Let's define CShape. We'll add CShpRectangle and CShpEllipse shortly.
First, we need to do some housecleaning.

~ Tryitnow
In the file DrawVw.h, remove the Shape declaration above the view class
declaration. Remember that we renamed Shape to CShape, and it is mov
ing to files of its own.

Next, create the CShape class:

1. Choose New Class from the WizardBar Action menu. This opens
the New Class dialog box.

2. In the Class Type box, select Generic Class.

3. In the Name box, type CShape.

4. In the Base Class(es) box, click the highlighted area under Derived
From and type CObject. Press Enter and click OK.

5. Ignore the message box that appears by clicking OK.

6. Add code to the file Shape.h so your new class looks like the
following:

// Shape.h: interface for the CShape class.
//
//

#if Idefined(AFX_SHAPE ...
#define AFX_SHAPE ...

#if _MSC_VER > Ieee
Ilpra gma once
#endif // _MSC_VER > Ieee

class CShape : public CObject
{

public:
DECLARE_SERIAL(CShape)

14: Data, Documents, and Views

II Constructors and operators
II Default constructor
CShape();

II Copy constructor
CShape(const CShape& s)
{

}

ffi-boxShape = s.ffi-boxShape:
ffi-bTransparent = s.ffi-bTransparent:
ffi-nColorShape = s.ffi-nColorShape:

II Overloaded assignment operator
CShape& operator=(const CShape& s)
{

}

ffi-boxShape = s.ffi-boxShape:
ffi-bTransparent = s.ffi-bTransparent:
ffi-nColorShape = s.ffi-nColorShape:
,return *thi s:

II Attributes - deliberately left public for easy access
II Note: no longer need an ffi-typeShape member.
CRect ffi-boxShape:
bool ffi-bTransparent:
UINT ffi-nColorShape:

II Overridables and operations
virtual void Draw(CDC* pDC)

{ TRACE("My Error: In CShape::Draw.\n"):

II Implementation
public:

virtual ~CShape();

} ;

/Iendif
II Idefined(AFX_SHAPE ...

ASSERT(FALSE): }:

Move the ShpType enumeration declaration from file DrawVw.h to
file Shape.h, just above class CShape.

(continued)

429

Fundamental MFC Skills

430

enum ShpType
{

}:

shpRectangle.
shpEl11pse

class CShape public CObject

Deriving from CObject
The vast majority of MFC library classes derive ultimately from CObject,

the root class of the MFC hierarchy. I discussed root classes in Chapter 5.

To see the whole MFC hierarchy tree and CObject's place in it, check the
Help index for hierarchy chart.

Benefits of deriving from CObject

CObject provides a number of useful services, including:

• Diagnostic support to aid debugging. This includes the Dump and
AssertValid member functions and the A SSERT_ VALID mechanism
for testing the validity of objects. I covered these topics in the file
Diagnost.doc in the \learnvcn \Chap13 folder in the companion
code. You can also check the Help index for the function names.

• Run-time type information for determining an object's class.
CObject provides the IsKindOf member function as well as the
RUNTIME_CLASS macro.

• Dynamic object creation and other support for serialization, MFC's
primary technique for writing and reading files. We will add seri
alization support to CShape by including the DECLARE_SERIAL

macro in its class declaration and the IMPLEMENT _SERIAL macro
in its implementation file, Shape.cpp. The preprocessor expands
these macros to add serialization support code to the class.

Taken together, these services often make it worthwhile to derive a new
class from CObject (unless it should instead derive from some other MFC
class-an important decision you should make in each case).

14: Data, Documents, and Views

Quirks of deriving from CObject

Along with the benefits come a few costs, although the overhead involved
is not high. Deriving a class from CObject entails the overhead of only
four virtual functions and one CRuntimeClass object. In other words, each
object of a class derived from CObject inherits those items, making the ob
ject somewhat larger so that creating many such objects uses more run
time memory. The amount involved in this case is minimal and not
enough to worry about in most programs.

Here are some of the limitations and quirks you'll face, illustrated by
CShape and its subclasses:

• We will at times want to assign a pointer to a CShape, CShp
Rectangle, or CShpEllipse object to a variable of type CShape* as
shown in the code below. We do just that when we create a new
shape and store it in the shape list. The second and fourth lines be
low illustrate such assignments. Because we expect to make such
assignments, we have to add two public items to CShape: a copy
constructor and an overloaded assignment operator. (I covered
these c++ elements in Chapter 5.)

CShpRectangle* pRectangle = new CShpRectangle;
CShape* pShape = pRectangle; II Initialize pShape
CShpRectangle* pRectangle2;
pRectangle2 = pRectangle; II Assign to pRectangle2

This is because CObject's copy constructor and assignment opera
tor overload are declared private, for MFC iniplementation reasons.
We can't use those functions because they're private, but at the
same time their presence prevents the compiler from generating a
public default copy constructor and assignment operator for us, as
it normally would when we don't supply them ourselves. So each
of our CObject-derived classes must provide these items if we want
to be able to assign objects of the class. That's why CShape has the
default constructor (with no parameters), the copy constructor, and
the overloaded assignment operator. Here are their prototypes, as
specified in the CShape declaration.

431

Fundamental MFC Skills

432

CShape();
CShape(const CShape& s);
CShape& operator=(const CShape& s);

II Default constructor
II Copy constructor
II Assignment operator

For more information about the need for these functions, check the
Help index for compiler errors with CObject-derived classes.

• Classes that provide MFC serialization support (for reading and
writing files)-by containing the DECLARE_SERIAL and IMPLE
MENT_SERIAL macros-can't be abstract classes. Recall from Chap
ter 5 that an abstract class is intended to be used only as a base
class. You'll never create an actual object from the class. The nor
mal way to ensure that a class is abstract is to declare at least one
pure virtual member function in the class, like this:

virtual void Draw() = 0;

However, as much as we'd like to, we can't make CShape's Draw
member function pure virtual because, as it turns out, MFC's imple
mentation of the IMPLEMENT _SERIAL macro creates a CShape ob
ject as part of its functioning. This means we must be able to
construct objects of class CShape, but that precludes making the
class abstract as we'd like to do. Thus we're forced to compromise
in this case and pretend that CShape is really abstract when techni
cally it's not. That's why CShape::Draw is not pure virtual, even
though it was in our original design, back in Chapter 5. I'll say a
bit more about the serialization macros shortly. By the way, notice
the TRACE and ASSERT calls I've added to the definition of
CShape::Draw for this chapter:

virtual void Draw(CDC* pDC)
{ T RA C E ("My Err 0 r: InC S hap e : : Dr a w. \ n ") ;

ASSERT(FALSE); };

Because we're pretending that CShape is abstract, we're never
meant to call this version of Draw, but if we somehow do, an error
message and an assertion failure-ASSERT(FALSE) always halts the
program-should alert us to the fact so we can see that we've some
how made a function call that should never be made. That's one
way to make up-a bit-for our inability to use a pure virtual
function.

14: Data, Documents, and Views

Other considerations in deriving from CObject

Because CShape contains a virtual function (Draw is virtual even if not
pure virtual), it also needs to have a virtual destructor (and so would its
subclasses if they needed destructors, which they don't, as we'll see).
CShape's virtual destructor declaration looks like this:

virtual ~CShape();

The destructors, if any, in all subclasses of a class with a virtual destruc
tor are also virtual, automatically-even though we don't customarily in
clude the virtual keyword in their declarations. (I discussed destructors
and virtual functions in Chapter 5.)

Why virtual destructors? In a polymorphic situation, we might not know
which kind of shape object is stored in a CShape variable. When that ob
ject is destroyed, we want the proper destructor invoked-the destructor
of the actual object in the variable (if it has one), not CShape's destructor.
This is an application of the virtual function mechanism I described in
Chapter 5. And it works even though virtual destructors, unlike other vir
tual functions, have different names-each class's constructor and de
structor are named after the class.

So far, the destructor isn't doing anything, but that might not always be
the case.

CShape as a Base Class
Besides deriving from CObject, CShape is designed to be a base class for
further derivation. That's why we would have preferred to make it a true
abstract class.

CShape also defines the interface-the data members and the Draw mem
ber function-through which all shape operations occur. That's why
CShape itself includes all of the key data members that its subclasses
need and why we declare the Draw member function at that level of the
hierarchy. We'll store actual CShpRectangle and CShpEllipse objects in
CShape variables-actually, in elements of a data structure that store
pointers to CShape. Those rectangle and ellipse objects will be anony
mous inside a CShape: we won't know at run time whether a particular
CShape pointer points to a CShpRectangle or a CShpEllipse. We can't use

433

Fundamental MFC Skills

434

a CShape pointer to access any members of the actual object pointed to
that aren't also members of CShape itself. Thus we have to rely on two
facts about CShape:

• It contains any public data members we might want to access
directly (and anonymously, through a CShape pointer), as in these
examples:

CShpRectangle* pRectangle = new CShpRectangle;
CShape* pShape = pRectangle;
pShape->m_boxShape = ... II Access a data member

• It allows us to call the correct Draw member function poly
morphically through a CShape pointer. Thus, if we have these
assignments:

CShpRectangle* pRectangle = new CShpRectangle;
CShape* pShape = pRectangle;

pShape->Oraw(pOC);

we can call Draw through the pointer and expect the CShpRectangle
version of Draw (overridden from CShape) to be called.

With those design features-plus the virtual destructor-CShape provides
everything its subclasses are likely to need.

A Derived Class: CShpRectangie
The CShpRectangle class and its sibling, the CShpEllipse class, are de
rived from CShape (and indirectly from CObject). CShpRectangle has the
following features:

• Like CShape, it adds serialization support by including the
DECLARE_SERIAL and IMPLEMENT _SERIAL macros. I'll cover
serialization (writing and reading a shape data file) in detail in
Chapter 16.

• Unlike CShape, CShpRectangle doesn't declare any data members.
It inherits three data members from CShape. Note that we no longer
need the m_typeShape data member in any of these classes. A
CShpRectangle can't be anything other than a shpRectangle-type

14: Data, Documents, and Views

object, so it's redundant (and costly) to store that information in a
data member. If we need to extract type information from a CShape *
pointer, we can use the RUNTIME_CLASS macro, like this:

if(pShape-)IsKindOf(RUNTIME_CLASS(CShpRectangle))) ...

The CObject::IsKindOf function returns true if pShape's run-time
class type is CShpRectangle.

• CShpRectangle can simply inherit CShape's copy constructor and
overloaded assignment operator. With no new data members in
CShpRectangle, the CShape versions can do what's needed.

• CShpRectangle overrides the virtual Draw member function
which, like the CShpRectangle destructor, is virtual because it was
so in CShape. If we had been able to declare CShape::Drawas a
pure virtual function, we would be forced to override Draw in
CShpRectangle. We did it anyway, requirement or not, since that
was the whole idea all along: we wanted each type of shape object
to be responsible for its own drawing. No outside object should
"know" how to draw a rectangle. It should only know that it can
tell a CShpRectangle object to draw itself and that it will do so.

Add the CShpRectangle and CShpEllipse class declarations to the file
Shape.h below the CShape declaration:

II Implementation
public:

virtual ~CShape();

} ;

II Concrete subclass of abstract base class CShape
class CShpRectangle : public CShape
{

public:
(continued)

435

Fundamental MFC Skills

436

OECLARE_SERIAL(CShpRectangle)

II Constructors are inherited from CShape.
II Attributes inherited include:
II ~boxShape. ~bTransparent. ~nColorShape

II Operations
void Oraw(COC* pOC); II Overrides CShape::Oraw

II Implementation
public:
};

II Concrete subclass of abstract base class CShape
class CShpEllipse : public CShape
{

public:
OECLARE_SERIAL(CShpEllipse)

II Constructors are inherited from CShape.
II Attributes inherited include:
II ~boxShape. ~bTransparent. ~nColorShape

II Operations
void Oraw(COC* pOC);

II Implementation
public:
} ;

II Overrides CShape::Oraw

#endif II defined(AFX_SHAPE ...

CShape Implementation
It's time to finish class CShape by writing its definitions.

~~ Try it now
In the file Shape.cpp, we provide the following definitions for CShape:

1. Include the Resource.h file at the top of Shape.cpp:

IIi nc 1 ude "StdAfx. h"
#include "MyOraw.h"
#include "Shape.h"
#include "Resource.h"

14: Data, Documents, and Views

The unusual step of including Resource.h is necessary because we
need to mention the ID_COLOR_BLACK symbol as part of CShape's
default constructor (step 3, below). Most AppWizard-created files
already include Resource.h indirectly, but the files Shape.h and
Shape.cpp don't have access to the symbol without this special
#inc1ude. We define the default constructor in Shape.cpp rather
than inline in Shape.h because we don't want the inclusion of
Resource.h to propagate throughout the project. (Many files ulti
mately include Shape.h, but most of those files already include
Resource.h indirectly.) That's why we define the default construc
tor here rather than inline, like the other constructors.

2. Add the IMPLEMENT_SERIAL macro for CShape (to the bottom of
Shape.cpp):

////////////////////////////////////
// Class CShape implementation

IMPLEMENT_SERIAL(CShape. CObject. 1)

As parameters, the macro names the class it's for (CShape), the base
class (CObject), and a number called a schema number. I'll explain
the schema number when we add serialization to MyDraw in Chap
ter 16.

3. Add the default constructor for CShape-the constructor was actu
ally added by WizardBar when you created the class, so just add
the boldface contents:

CShape::CShape()
{

}

ID-boxShape.SetRect(0. 0. 0. 0);
ID-bTransparent = true;
ID-nColorShape = ID_COLOR-BLACK;

CShpRectangle and CShpEllipse Implementations
In the file Shape.cpp, we provide the following definitions for class
CShpRectangle, following those for class CShape. We'll add definitions
for class CShpEllipse in a moment.

437

Fundamental MFC Skills

438

!~ Try it now
Add CShpRectangle's serialization support and its Draw function over
ride (in the file Shape.cpp).

1. Add the IMPLEMENT_SERIAL macro for this class:

/////////////////////////1//////////
// Class CShpRectangle implementation

IMPLEMENT_SERIAL(CShpRectangle, CShape, 1)

Like the IMPLEMENT_SERIAL call for CShape, this one names the
class, the base class, and the schema number.

2. Override the Draw member function from CShape.

void CShpRectangle::Oraw(COC* pOC) // Virtual override
{

pOC->Rectangle(~boxShape):
}

Since this code is strictly for a CShpRectangle object, Draw can call
the class CDC member function Rectangle without needing a switch
statement to determine the shape's type. The shape's type is a
given. Note that we pass Draw a pointer to a device context object,
already prepared with the proper brush and pen by an earlier call
to the view class member function SetPenBrush.

Now take the following steps to add definitions for class CShpEllipse (in
the Shape.cpp file):

1. Add the IMPLEMENT_SERIAL macro for this class:

////////////////////////////////////
// Class CShpEllipse implementation

IMPLEMENT_SERIAL(CShpEllipse, CShape, 1)

2. Override the Draw member function from CShape.

void CShpEllipse::Oraw(COC* pOC) // Virtual override
{

pDC->Ellipse(~boxShape):
}

This parallels the CShpRectangle version of Draw.

14: Data, Documents, and Views

Fixing Up MyDraw's Header Structure
With the addition of the files Shape.h and Shape.cpp to the project, the
header structure needs to change a bit. You already added an include
statement for Resource.h at the top of the file Shape.cpp. Now we need to
make a few more changes. Figure 14-4 illustrates the new header structure.

~ Tryitnow

Figure 14-4.

Make the following header changes:

• In the file DrawDoc.h, include Shape.h.

#include "Shape.h"

• In the file DrawVw.h, include DrawDoc.h (but not Shape.h-the
view gets CShape by including the document header file).

#include "DrawDoc.h"

• In the files MyDraw.cpp (the application class) and DrawVw.cpp·
(the view class), remove the #include directives for DrawDoc.h. The
view and application now include the document and CShape by
including DrawVw.h.

Key

----I... = Include

Remove
II • = unnecessary :

connection '

The new header structure for the program MyDraw4.

439

Fundamental MFC Skills

440

Having made all of those changes, you can build and run MyDraw. Its out
ward behavior doesn't change much, since the alterations we've made are
primarily infrastructure changes rather than user interface changes. The
one new thing you'll notice is that when you exit MyDraw after drawing
some shapes, the document displays a dialog box asking if you want to
save the drawing. This occurs because we called SetModifiedFlag in
OnLButtonDown. Click No for now, since we haven't implemented file
saving. (Actually, clicking Yes does display the Save As dialog box and
then saves a zero-length file with the name you specify. By default, the
filename is Untitled.drw.)

Summary of Data Class Design Considerations
The design of our CShape class hierarchy illustrates several points to
keep in mind. We can distinguish between classes that represent values
value classes-and classes that are real extensions to the MFC frame
work-framework classes. CShape and its subclasses are basically value
classes, somewhat like ints and chars. We expect to pass them as parame
ters, assign them to variables, and otherwise treat them as values.

Typically, value classes such as CString or CRect don't have virtual func
tions, aren't used as base classes, aren't designed to be derived from, and
do have an overloaded assignment operator and a copy constructor. Typi
cally, two objects of a value class can be compared. The CShape classes
follow some of these guidelines but not others: the shape classes do have
an assignment operator and a copy constructor. But they also do have vir
tual functions, and CShape is designed as a base class, from which we in
tended to derive other classes. (The derived classes are the real value
classes for us.) I also haven't implemented the ability to compare two
shapes; I haven't seen the need for that so far. (If we did need it, 1'd write
an overloaded equals operator (==) and possibly overloaded !=, <, and
other comparison operators. I discussed overloaded c++ operators in
Chapter 5.)

If it weren't for some special needs, though, I would have tried to adhere
to those typical principles. CShape used to be a true value class in most
respects, since it could represent any type of shape. I chose to create a
class hierarchy from it, though, to take advantage of polymorphism. I

14: Data, Documents, and Views

wanted shape objects to be able to draw themselves, and I needed to have
the proper shape drawn even if I didn't know what shape it was at run
time. The class hierarchy gave me those abilities.

The CShape classes also:

• Define virtual destructors. Well, CShape itself does, and the sub
classes would if they had any data members of their own. A virtual
destructor lets you destroy an object without knowing its type.

• Declare most of their members as public. Where we're changing
the data in a shape object frequently, it's more convenient to access
most shape data members directly than to use access functions.

• Use const where possible. The canst keyword is a guarantee to us
ers of the class that a particular function or parameter doesn't alter
the object declared canst. It's good public relations.

At rock bottom, a key consideration is my own convenience in using
these classes (and showing you some of the c++ possibilities). These are
really one-off classes, not written to be reused widely by many program
mers in their own programs. Your code might not fit that description,
though, so your design constraints might be stricter.

Try It Yourself

Here's the latest batch of do-it-yourself projects for extra credit. (By the
way, you have been getting your extra credit, haven't you 1)

1. Experiment with class CObArray.

Copy all of the files from MyDraw into a new directory and reimplement
the document's data structure using class CObArray rather than class
CObList. You might want to rewrite the OnDraw member function first,
using CObArray member functions (and assuming that m_listShapes is
now a CObArray). With an array, you'll want to store new shapes in
array fashion, starting with the oldest shape in element 0 and adding
new shapes beyond that. Adding each new shape at the "head" of the
array would be very costly because array insertions are time consuming.

441

Fundamental MFC Skills

Figure 14-5.

442

To access array elements, you can use CObArray's overloaded array ac
cess operator [] or its GetAt member function. Thus, you can write code
like this as if m_listShapes were an ordinary c++ array-but you don't
have to worry as much about overshooting the bounds:

m_listShapes[0] = m_pShape;
m_pShape = m_listShapes[nlndex];

Make sure you understand the difference between CObArray: :GetSize and
CObArray::GetUpperBound. GetSize tells you how many elements there
are (including element 0). GetUpperBound tells you, in a zero-based ar
ray, what the highest used array index is. This should be one greater than
the value from GetSize. You'll also need to call SetSize, perhaps in the
document constructor, to specify how the array can grow. Parameters of
30 and, say, 10 might be a good place to start. You can use Add to add
new shapes in Crea teSh ape. Don't forget to clean up the array as we did
the list. Check the Help index for CObArrayand see Figure 14-5. Also see
the program Ch14Ex1 and the program BBall in the \learnvcn \Chap14
folder in the companion code. Ch14ex1 is a version of MyDraw that uses
CObArrayas described here. BBall illustrates using a CStringArray, which
is very similar to a CObArray.

[0] [1]

~D~[1Jgdggg~
Q ~ ---Specify with SetSize

V CObArray

The abstract structure of a CObArray.

2. Experiment with AppWizard's option to eliminate document/view support.

Run AppWizard and select MFC AppWizard (exe) in the Projects tab. In
step 1, clear the Document/View Architecture Support box. Set the re
maining AppWizard options however you like, though I recommend
sticking with a single document application (SDI). Examine the resulting

14: Data, Documents, and Views

files. In particular, note that there's no document class, and that there is a
view class, called CChildView, which is derived from class CWnd, the
root class of all window classes, not from CView. The view class works
like the ordinary CView-derived class except that there are lots of things it
can't do, such as help you with scrolling, printing, and print preview. The
view overlies the frame window's client area, and you draw in an OnPaint
handler, not in OnDraw. Also note that the view's PreCreate Window
member function actually does some work. It calls the MFC global func
tion AfxRegisterWndClass to register a window class with certain styles.
This is how you would use Pre Create Window-if you needed to register
window styles-in any MFC application.

Write a simple Hello program using this model. It might help to review
our MyHi program in "Let's Write Some Code" in Chapter 7. Program
Ch14ex2 in the \learnvcn \Chap14 folder in the companion code dem
onstrates how to write such a non-document/view application. Why
wouldn't the non-document/view option be the best option to choose for
MyDraw?

What's Next?
In Chapter 15, we'll deal with one of our main viewing problems by add
ing scrolling to MyDraw. We'll also briefly look at drawing text instead of
geometric shapes.

443

, • ~ - t

'< > : < '~ ': ~',
I r "

Chapter

'f'

Scrolling
Recall that MyDraw step 4 doesn't let you see the entire drawing surface.
MyDraw step 5 does. Step 4 has no scroll bars, so although you can draw
shapes that lie partially outside MyDraw's window, you can't adjust the
window to see those shapes entirely. In this chapter, we'll solve that final
viewing problem for good. Along the way, I'll also explain a few things
about drawing text.

Why We Need Scroll Bars
If why we need scroll bars in MyDraw is not completely apparent to you,
try the experiments in this section.

~~ Try it now
Run MyDraw again and draw some shapes-including some for which
you release the mouse button outside the window. As shown in
Figure 15-1 on the following page, only part of such a shape is visible.
With the default window size, you can't see all of the shapes you drew.
Where are they? The program tried to draw all of the shapes, but any
whose y coordinates placed them below the bottom of the window or
whose x coordinates placed them to the right of the window's right bor
der got clipped. That is, Microsoft Windows limited the drawing to the
client area rectangle.

447

Rounding Out Your MFC Skills

448

Windows clips the drawing to keep programs from drawing over win
dows belonging to other programs, and possibly even across window bor
ders and title bars. The device context tracks which regions of the client
area need repainting, and it can constrain drawing to just those regions.
This feature can limit the amount of repainting that Windows does. You
can get the rectangle that OnDraw updates (the painting area) using the
GetUpdateRect function in class CWnd. You can then use this function in
your OnDraw or On Update function. GetUpdateRect can boost your
program's efficiency if there's a lot of data to redraw. Restricting drawing
to part of the client area can also give you some drawing advantages.

!- Untitled - MyDraw 1!I[iJ EJ

c

Figure 15-1. MyDraw with shapes that don't fit in the window.

How can you see the rest of those shapes-the parts that lie outside the
client area? Try the following experiment. !. Try it now

-)

With the shapes you drew for the last experiment still showing, click
MyDraw's Maximize button (located on the right side of the window's
title bar). This might reveal all of your shapes-as the client area enlarges
with the window-if you have a large monitor and use a high display
resolution. But on my laptop, for example, I can't enlarge the window
very much. If I were in VGA mode rather than 800 by 600, it would be

15: Scrolling

even worse. Furthermore, after maximizing the window, I can continue
drawing shapes that lie partially outside the window. Clearly, relying on
the ability to resize the window won't solve this problem.

The solution is to add scroll bars to the window so that MyDraw users
can scroll through all of the drawn shapes. Doing so is pretty easy with
Microsoft Foundation Class Library 6.0 (MFC).

If;tl OTE Even with scroll bars, you can still drag the mouse and release it out
~ side the window to draw shapes only partially visible in the window.

Some Scrolling Theory
The concept of scrolling is based on the idea of a drawing surface that is
larger than the window that you use to look at the surface. Visualize a
window moving over a larger surface or, alternatively, a long parchment
scroll being rolled and unrolled to reveal certain sections. The window is
a viewport or peephole through which you can see the graphical objects
drawn on the surface "below." (See Figure 15-2 on the following page.)

To move the viewport around, you drag or click its scroll bars. A horizon
tal scroll bar moves you from side to side, and a vertical scroll bar moves
you up and down. To see the end of a vertically oriented document such
as a text file, for instance, you drag the vertical scroll bar's thumb (the
small box or indicator that moves between the sides of the scroll bar
shaft) as far down as it goes. Figure 15-3 on the following page shows the
parts of a scroll bar.

Inside the program, scrolling is accomplished by translating scroll bar
movements into adjustments of the view's origin with respect to the draw
ing area's origin. The view's origin is initially the (0, 0) point in the de
vice context's device coordinate system. It's normally located at the upper
left corner of the view's window. Scrolling down and to the right by 100

units each actually moves the view origin to that point-called the scroll
position-on the drawing area. For example, when you scroll to (100,

100), the upper left corner of the view appears to move to that coordinate
on the drawing area. It's as if the upper left window corner jumps to the

449

Rounding Out Your MFC Skills

Figure 15-2.

Figure 15-3.

450

scroll position. MFC moves the origin by calling the CDC::SetViewportOrg
function or the CDC::SetWindowOrg function. You can call them too, but
if you let MFC handle scrolling, you won't normally need to think much
about the origin, let alone moving it. See the sidebar "SetViewportOrg and
SetWindowOrg" for a bit of information about these functions.

Drawing surface origin Scroll position Client area

t
(0,0) ,

(100,100)

C~

C)
.. Width of

drawing surface

D
•

Height of
drawing
surface

Scroll position after scrolling the window 100 units horizontally and 100 units
vertically.

Arrows ~

I Shafts--

L It-Thumbs

~~
Scroll bar parts.

15: Scrolling

Managing scrolling on your own is complex and somewhat counter
intuitive. It's much simpler with MFC's CScrollView class, though, and
that's what I'll show you here. However, be aware that CScrollView is not
suitable for files larger than about 32,000 characters-it slows down and
can't always accommodate them. Figure 15-4 on the following page
shows CScrollView's place in the MFC class hierarchy.

SetViewportOrg and SetWindowOrg

Using SetViewportOrg and SetWindowOrg is a bit advanced, but
here's a brief discussion of them. Device coordinate systems have
their origins (0, 0) at the upper left corner of the device context's dis
play area. The x and y axes increase to the right and down, respec
tively, and the unit of measurement is the pixel. In logical coordinate
systems, the orientation of the x and yaxes and the units of measure
ment are determined by the current mapping mode-but the origin
can be moved. By default, it's at the upper left corner, but you can
adjust its location with either SetViewportOrg or SetWindowOrg.

Set ViewportOrg works with device coordinates. You feed it a device
coordinate, and it resets the origin of the view window to that point.
It maps the logical point (0, 0) to the point you specify in device
coordinates.

SetWindowOrg works with logical coordinates. You feed it a logical
coordinate, and it moves the origin of the view window to that point.
It maps the supplied logical point to the device point (0, 0). Which
function you use depends on the coordinates of the location you
choose for your view's origin.

Why would you move the origin? You might, for example, wish to
represent mathematical curves in a Cartesian coordinate system that
allows negative coordinates. You could achieve that by moving the
origin to the center of your view. I won't illustrate this, but some of
the books listed in Chapter 21 do.

451

Rounding Out Your MFC Skills

452

A CScrollView is derived from a CView, which is derived from a CWnd,
which is derived from a CObject. CCtrlView is a sibling of CScrollView, so it
and its descendants lack scrolling ability. But CForm View and its descen
dants, the record-view classes for working with databases, are scrollable.

If your view class is derived from CScrollView instead of CView, you can
easily hook up its scrolling functionality to fit your needs. When Windows
sends your view window a WM_VSCROLL (or WM_HSCROLL) message,
CScrollView's OnVScroll (or OnHScroll) member function handles the
message. On VScroll determines from the message what part of the scroll
bar was clicked (up arrow, down arrow, scroll bar shaft, or scroll bar
thumb). It translates these into line up or down, page up or down, or
thumb-dragging actions. Then it adjusts the scroll position and uses
CWnd::ScrollWindow to do the scrolling (by adjusting the origin). The user
sees the text or graphics inside the window move up, down, right, or left.

Figure 15-4. MFC view class hierarchy, including CScrollView.

Scrolling: The Basic Technique
The main thing you have to do to implement scrolling with class
CScrollView is supply information about the size of the drawing surface
you want to scroll over and specify how much the view should scroll in

15: Scrolling

response to clicks in a scroll bar arrow or the scroll bar shaft. CScrollView
also takes care.of tracking the scroll bar thumb as the user drags it with the
mouse, sending appropriate WM_ VSCROLL or WM_HSCROLL messages.
Here's a summary of how to implement scrolling in your MFC program:

1. Change the derivation of your view class from CView to CScrollView.
If you know you'll need scrolling at the time you run App Wizard,
you can change it in the wizard. If you decide on it later, you can
simply search the .h and .cpp files for the view class for all occur
rences of "CView" and replace them with "CScrollView." You can
also base your view class on any MFC view classes that derive from
CScrollView. See the view hierarchy in Figure 15-4.

2. Set up any variables you'll need to keep as view class members, in
the view's .h file. A good place to initialize them is in an override
of the OnlnitialUpdate member function or the OnUpdate member
function. You'll need to add the override for that virtual function.

3. Plan the dimensions of your drawing surface, and define how the
view should respond to clicks in the up, down, right, or left scroll
arrows or in the scroll bar shafts. I'll give guidelines and examples.

4. In OnlnitialUpdate, or possibly in OnUpdate, initialize variables
and call the CScrollView::SetScrollSizes member function. Pass the
information you worked out in step 3 just above.

The following MFC sample programs use CScrollView or one of its sub
classes: Scribble, DrawCli, ChkBook, and ViewEx. Check the Help index
for the sample names if you want a closer look.

Scrolling Lines of Text
Regardless of what you're drawing in your view, you want the scroll bars
to scroll the contents by appropriate amounts depending on which part of
which scroll bar is clicked. Before we tackle scrolling the graphics in
MyDraw, Jet's look at a simple text-drawing example. Remember that ev
erything that appears in your window, including text, is drawn.

453

Rounding Out Your MFC Skills

454

~ Tryitnow
Create a new MFC AppWizard (.exe) project called MyText, with settings
the same as those in MyDraw (single document interface, no database or
ActiveX Controls, and so on).

1. Add the boldface code shown below to the application's OnDraw
member function: '

// ...
// CMyTextView drawing
const int MARGIN_LEFT = 5:
const int LINES = 30:

void CMyTextView::OnOraw(COC* pOC)
{

}

CMyTextOoc* pOoc = GetOocument();
ASSERT_VALIO(pOoc);
// TOOO: add draw code for native data here
ASSERT(~nHeightLine > 0):
CString strLines:
for(int nLines = 0: nLines < LINES: nLines++)
{

}

strL1nes.Format("%d: ". nL1nes):
if(nLines < 10)

strLi nes +=" ":
pDC->TextOut(MARGIN_LEFT. nL1nes * ~nHe1ghtLine.

strL1nes + ~strTextDraw):

Notice the two constant declarations just above OnDraw's definition.

2. In the view class declaration, add the following data members as
public attributes:

1nt ~nHeightLine:
CString ~strTextDraw:

3. Use WizardBar to create the OnlnitialUpdate virtual function over
ride shown here:

void CMyTextView::OnlnitialUpdate()
{

CView::OnlnitialUpdate();

// TOOO: Add your specialized code here ...
CClientDC dc(this):

15: Scrolling

}

II Declare a TEXTMETRIC variable.
TEXTMETRIC tm;

II Fill up the variable with information.
dc.GetTextMetrics(&tm);

II Compute various sizes needed for drawing.
Ilint ID-cxChar = tm.tmAveCharWidth; II Other useful values
Ilint ID-cyChar = tm.tmHeight;
ID-nHeightLine = tm.tmHeight + tm.tmExternalLeading;

ID-strTextDraw = "No matter where you go, there you are.";
ID-strTextDraw +=" -- Buckaroo Banzai, ";
ID-strTextDraw += "The Adventures of Buckaroo Banzai Across ";
ID-strTextDraw += "the Eighth Dimension";

Now build and run the application. You see a number of lines of text, but
you almost certainly don't see all 30 lines that the program draws.

Before we continue the scrolling discussion, let's briefly look at text
drawing in Windows with MFC. We focus on drawing graphical shapes in
this book, so consider this a short introduction to the other side.

Drawing Text
When you draw text, you specify where it starts in the view, and you
specify the text itself. Most of the rest of what you need comes from the
device context. The device context stores a current font-by default, it's a
font called SYSTEM_FONT, but you can select a different font into the de
vice context using class CFont. The font determines most of the visual
characteristics of your drawn text, including all of its typographical char
acteristics-its typographical style. Thus, the Times New Roman font
looks different from the Arial font. Besides the font, the device context
stores a current text color and a current text background color. Both col
ors are part of the device context, not part of the font, and you can change
them with CDC::SetTextColor and CDC::SetBkColor. You can also deter
mine their current values with CDC::GetTextColor and CDC::GetBkColor.

Check the Help index for these function names and for class CFont. The
color values are of type COLORREF, the type used in the RGB color sys
tem we looked at in Chapter 12.

455

Rounding Out Your MFC Skills

456

The text drawing in MyText consists of two phases:

1. We determine the important sizes associated with text drawn in the
device context's current font. This helps us position and space lines
correctly.

2. We draw the text in a loop, using CDC::TextOut, which you've seen
before. I'll briefly introduce several other text drawing functions
later in this chapter.

Obtaining text metrics

We'll want to query the device context for text measurements before MFC
calls OnDraw. The OnlnitialUpdate member function is called once, just
before OnDraw is called the first time, so it's a logical place for these que
ries. (Another place often used for this purpose is an overridden OnCreate
member function.)

The important size value for us is the overall line height based on the
height of the actual text (including risers like the upper line of the letter h
and descenders like the lower line in y), plus the amount of external lead
ing (vertical blank space) between two lines of text. For completeness, the
OnlnitialUpdate function shows two other values often used in handling
text: the height of a character in the current font (m_cyChar) and the aver
age width of a character in the current font (m_cxChar). We use average
width because most fonts are proportional-different characters have dif
ferent widths (so m is wider than i). Figure 15-5 shows the parts of a font,
with the font terminology used here. All of the descriptions of fonts in
this book refer to TrueType fonts, the most recent of the font technologies
for Windows.

To determine the text sizes, we call CDC::GetTextMetrics to obtain a
TEXTMETRIC object. TEXTMETRIC is a Windows data structure that con
tains a great deal of information about how the current font draws text.
Here's an abbreviated version of the structure. (You can check the Help
index for TEXTMETRIC to learn more.)

typedef struct tagTEXTMETRIC {
LONG tmHeight;
LONG tmAscent;
LONG tmOescent;
LONG tmlnternalLeading;

15: Scrolling
" ------
LONG tmExternalLeading;
LONG tmAveCharWidth;
LONG tmMaxCharWidth;
LONG tmWeight;

} TEXTMETRIC;

We use the text metrics information returned by GetTextMetrics to set the
view class member variable m_nHeightLine, as in this code from the
OnlnitialUpdate function:

II Declare a TEXTMETRIC variable
TEXTMETRIC tm;

II Fill up the variable with information
dc.GetTextMetrics(&tm);

II Compute various sizes needed for drawing
Ilint m_cxChar = tm.tmAveCharWidth; II Other useful values
Ilint m_cyChar = tm.tmHeight;
m_nHeightLine = tm.tmHeight + tm.tmExternalLeading;

tmExternalLeading
,------------------------------- Diacritic

tmlnternalLeading

tmHeight
1 Net
1- height

Descender

J
Figure 15-5. The parts of a font.

(From Programming Visual C++, 5 th edition, by David J. Kruglinski, Microsoft
Press, 1998.)

457

Rounding Out Your MFC Skills

458

You can set other variables as well, such as m_cxChar and m_cyChar, as
shown in the commented-out lines in OnlnitiaJUpdate.

Drawing the text

To draw the text, we use a for loop in OnDraw:

const int MARGIN_LEFT = 5;
const int LINES = 30;

for(int nLines = 0; nLines < LINES; nLines++)
{

}

pDC->TextOut(MARGIN_LEFT, nLines * m_nHeightLine,
m_strTextDraw) ;

The TextOut call takes three parameters: a horizontal starting coordinate,
x; a vertical starting coordinate, y; and the text to draw. These specify
where the upper left corner of the text will be placed. We specify the x
value as a left margin, five logical units to the right of the view's left edge.
We recalculate the y value each time through the loop to obtain the correct
line spacing so that lines are drawn successively down the page. If nlines
is the current line number, the current line begins at this y coordinate:

nLines * m_nHeightLine

The text is from the American film The Adventures of Buckaroo Banzai
Across the Eighth Dimension (Twentieth Century Fox, 1984)-a cult clas
sic directed by w.n. Richter. I've set this as the value of m_strTextDraw in
OnlnitiaJ Up date. Note the use of the += operator, which is overloaded for
class CString to mean "concatenate the string following this operator to
the CString variable on the left side of the operator." Here's the code from
OnlnitiaJUpdate:

m_strTextDraw = "No matter where you go, there you are.";
m_strTextDraw +=" -- Buckaroo Banzai, ";
m_strTextDraw += "The Adventures of Buckaroo Banzai Across ";
m_strTextDraw += "the Eighth Dimension";

Other text drawing member functions of class CDC include:

• DrawText. You specify a rectangle in which you want the text
drawn. You can also specify alignment: centered, right justified, or
left justified. Check the Help index for DrawText.

15: Scrolling

• ExtTextOut. This is a close relative of TextOut, which, like
DrawText, draws the text in a bounding rectangle that you supply.
Check the Help index for ExtTextOut.

• TabbedTextOut. This function draws text that contains tab charac
ters, replacing the tabs with the amount of space you specify. Check
the Help index for TabbedTextOut.

Some of these text-drawing functions are illustrated in Program Tabs in
the \learnvcn \Chap15 folder in the companion code.

~I OTE If you ever need to write code with strings that work under Unicode,
6ii'4 pass your literal strings to the _T macro, like this: _T("This is my string"}.

This creates strings whose characters are 2 bytes wide if Unicode is in effect,
or 1 byte wide if not. Unicode uses 2-byte characters. I haven't used _T in
this book, but for more information, check the Help index for Strings and
select the subtopic "Unicode support in MFC." Also check the index for
Unicode and take some time to study class CString .

. A little extra

To dramatize the need for scroll bars, I've added code to MyText to prefix
each line of text with a line number, as shown here in the boldface lines
from the OnDraw function:

CString strLines;
for(int nLines = 0; nLines < LINES; nLines++)
{

strLines.Format("%d: ". nLines);
if(nLines < 10)

strLi nes +=" ";
pDC->TextOut(MARGIN_LEFT, nLines * m_nHeightLine,

strLines + m_strTextDraw);

I use the strLines variable to store the current line number converted to a
string. Inside the loop, I convert the line number nLines to a string using
the CString::Format member function, which works a lot like the now fa
miliar printfrun-time function. If the line number is less than 10, I pad it
with extra space for better vertical alignment of the printed line numbers.
To attach the line number to the text to draw, I use class CString's concat
enation operator +, directly in the output statement.

459

Rounding Out Your MFC Skills

460

Now let's figure out how to scroll the text.

Setting Scroll Sizes
The scroll area is the extent of the text-the width and height through
which you can scroll, meaning the width of a line and the height of all
lines of text combined.

Clicks in the scroll bar arrows are interpreted, for text drawing, as line up
or line down commands, so you need to specify a suitable value, such as
the height of a line of your text (including external leading). You can get
the text width by calling CDC::GetTextExtent, which returns both the width
and the height of a string of text. For the text height, it's safer to use our
m_nHeightLine variable rather than the y value returned by the function
Get TextExten t. (If there's a horizontal scroll bar as well as a vertical one,
you also need to specify how much to move from side to side in response
to a horizontal scroll bar arrow click. That's usually some fraction of the
scroll area's width, such as 1/10 or 1/8, but you may need to experiment
to see what looks right. I use 1/10 in MyText.)

Clicks in the shaft of the scroll bar-not the arrows and not the thumb
are interpreted, for text drawing, as Page Up or Page Down commands,
like those often produced by the Page Up and Page Down keys. So you
need to specify a suitable page height. (This is an amount to scroll, not
the same thing as the height of a printable page of your document.) Values
commonly used for page height include a few multiples of the line height
(for text), or often the current height of the client area. If you're drawing
text instead of graphical shapes, you can get the line height as part of the
text metrics. You can get the client area height from CWnd::GetClientRect.
(If there's a horizontal scroll bar, you need to specify how much to move
from side to side in response to a click in a horizontal scroll bar shaft. For
text, this might be half or one-third of the overall text width, obtainable
from GetTextExtent.)

Adding Scrolling to MyText
Now it's a pretty simple matter to add scrolling to MyText.

15: Scrolling

~ Tryitnow
Make the following changes to MyText:

1. Use the Find/Replace command to replace all instances of the string
CView with CScrollView throughout the two view class files. In
other words, rederive your view class from CScrollView.

2. Add the boldface lines shown here to the OnlnitiaiUpdate member
function:

m_strTextDraw = "No matter where you go, there you are.";
m_strTextDraw +=" -- Buckaroo Banzai, ";
m_strTextDraw += "The Adventures of Buckaroo Banzai Across ";
m_strTextDraw += "the Eighth Dimension";
CString str = "999: " + I1LstrTextDraw: II Allow for line

II numbering.
CSize size = dc.GetTextExtent(str):

const int FUDGE_H = 60:
const int FUDGE_V = 30:

int nWidth = size.cx + FUDGE_H:
1nt nHeight = I1LnHeightLine * LINES + FUDGE_V:

CSize sizeTotal = CSize(nWidth. nHeight):
CSize sizePage = CSize(nWidth I 3. nHeight / 3):
CSize sizeLine = CSize(nWidth I 10. I1LnHeightLine):

SetScrollSizes(MM_TEXT. sizeTotal. sizePage. sizeLine):

That's all it takes to add scrolling.

Rederiving the view class

We could have rederived the view class from CScrollView instead of from
CView in AppWizard, but it's easy to make the change after the fact (and it
shows that you can usually add AppWizard features later, even if you fail
to select them when you run the wizard).

461

Rounding Out Your MFC Skills

462

\JI' IP To add an AppWizard feature after the fact, run the wizard again with
, \'i, that feature selected (and most other features not selected), then again

without the desired feature, and compare the two sets of files. You can use
a program like WinDiff to perform this comparison. (WinDiff is available
with the Microsoft Visual c++ 6.0 Introductory Edition. Click the Windows
Start button, look under Programs, Microsoft Visual C++, and then under
Microsoft Visual C++ Tools. WinDiff is second from the bottom on the menu
that pops up.) Then, to your ongoing project, add the lines of code that
show up as extras in the comparison, and test the updated project.

Computing scroll sizes

The code we wrote in OnlnitiaJUpdate computes some scroll size infor
mation and passes it to the CSerollView::SetSerollSizes member function.
Then CSerollView does the rest.

The code in OnlnitiaJUpdate uses several function calls to perform its com
putations. These functions warrant further description.

Call CDC::GetTextExtent to measure the width of the text to draw based
on the current font. This returns a CSize object. Class CSize contains ex
and ey members: ex contains a horizontal size value (the width of our line
of text in logical units), and ey contains a vertical size value (the height
of a line of text in logical units). For line height, we'll use the safer value
m_nHeightLine instead of the ey value from GetTextExtent.

Next I compute the total width and height of 30 lines of text-the docu
ment sizes. Note that I've added some small fudge factors to these
computations:

canst int FUDGE_H 60;
canst int FUDGE_V 30;

II Logical units

int nWidth = size.cx + FUDGE_H;
int nHeight = m_nHeightLine * LINES + FUDGE_V;

These fudge factors allow for a little white space at the end of a line of text
and below the last line. Seeing a little space there reassures users that
they're really seeing all of the text when they scroll.

Then I create more CSize objects to represent the following items:

15: Scrolling

• The total size: the width and height of our "document" or drawing.
T~ese are computed in the two lines below the fudge factors, as
shown in the last code snippet, and are placed into a CSize object:

CSize sizeTotal = CSize(nWidth, nHeight);

See Figure 15-6, which illustrates the meanings of the terms width
and height, as they pertain to a page of text.

• The widths and heights to scroll in response to clicks in a scroll. bar
shaft ("page") or arrow ("line"), respectively. They are computed
this way:

CSize sizePage = CSize(nWidth / 3, nHeight / 3);
CSize sizeLine = CSize(nWidth / 10, m_nHeightLine);

• The function SetScrollSizes, which specifies the mapping mode to
use (MM_TEX11 and the three size values we computed:

SetScrollSizes(MM_TEXT, sizeTotal, sizePage, sizeLine);

When you build and run MyText with these changes, you see both hori
zontal and vertical scroll bars. Windows adds these automatically when
the size information passed to SetS croll Sizes exceeds the width and
height of the client area. If a scroll bar isn't needed, it isn't added .

...... I-----Width-----~. I Page (1/3 height)

I r- Line (m_nHeightLine)

Height

Page ~T
(1/3 width) Line (111 a width)

Figure 15-6. Meanings of text page terms.

463

Rounding Out Your MFC Skills

464

Back to MyDraw
The task of implementing scrolling in MyDraw is just a bit different from
implementing it in MyText. In MyText, I had a fixed amount of text: 30
lines using the same text, which was a certain number of logical units wide
and high. If I had been writing a text editor program instead, of course, the
height of a document would vary as more text was added or deleted.

But in MyDraw, a document is conceived as a drawing surface with a cer
tain width and a certain height, and these dimensions never vary. So, the
question is how wide and how high to make that surface. Thinking ahead
to printing, I visualize a drawing surface that will print on two 8.5-by-11-
inch sheets of paper (standard business size in the United States). I want
to allow for a small margin all around, so that leaves an actual drawing
area of a little under 10 by 16 inches. See Figure 15-7.

For now, ignore the fact that those dimensions are in inches. I'll describe
how to manage such measurements-a matter important for printing
too-in Chapter 17.

~---Width, about 16 inches----1

r-------- - --------, T
I Height,

about
I 10 inches

: ____________________ : 1
Figure 15-7. Page dimensions in MyDraw.

Where to Call SetScrollSizes
Where should you call CScrollView::SetScrollSizes with these values? This
depends on whether your drawing area has a fixed size, as in MyDraw, or
adjusts in size as the data grows, as in a program such as Microsoft Word.

If your document tends to get longer, or wider, you'll ne~d to adjust the
scroll sizes periodically to fit its new dimensions. The width of a word

15: Scrolling

processing document, for example, might be constant except for adjust
ments to margins, while its length will change. If you set the sizes only
once, at the beginning of such a program, your scrolling logic will begin
to degrade as the document grows. You might even lose the ability to see
all of the document. You could reset the scroll sizes each time you draw,
in OnDraw, or in an OnUpdate function. Or you could reset them each
time the document grows. The document might recalculate scroll sizes
each time a line of text is added, storing the values where the view's
OnDraw function could get them when it's time to draw.

Having the Document Compute Its Own Sizes
Typically, you'll store (or compute) size information about your document
in your CDocument-derived class itself, as I do in MyDraw, rather than in
the view class (though for simplicity I have placed it in the view class in
MyText). It's easy to adjust the size figures in the document as it changes.
Here are a couple of approaches.

• When the view needs to call SetScrollSizes, it can obtain the scroll
information by calling a document member function, perhaps
named GetDocSizes. Then it can call SetScrollSizes itself, using the
information returned from GetDocSizes. MyDraw step 5 illustrates
this approach. (You will add this functionality in a moment.)

• Alternatively, the view can call a document member function (per
haps named SetDocSizes), passing a pointer to the view class with
this. The SetDocSizes function would calculate the sizes, using in
formation it has access to in the document. Then SetDocSizes could
call SetScrollSizes, back in the view, through the pointer you passed.

\-1' IP You may sometimes have to tinker with your scroll sizes. If your text is
'>" L absolutely regular-one font, one size, one style-you can calculate precise

measurements. But if your text mixes any fonts, sizes, and styles, you might
have to use averages and estimates. You might even need to add a fudge
factor as you tryout the scrolling code and see how it behaves on your tar
get text data. See the MyText sample program in the \Iearnvcn\Chap15
folder in the companion code. (Note that this example also includes the so
lutions to the extra credit exercises at the end of this chapter.)

465

Rounding Out Your MFC Skills

466

Adding Scrolling to MyDraw
Step 5 for MyDraw applies what I've covered on scrolling to the MyDraw
application we've been developing all along.

*-~ Try it now v
As you ·did with MyText, use the Visual C++ Find/Replace command to
change all instances of CView to CSerollView in the files DrawVw.h and
DrawVw.cpp. We are rederiving class CMyDrawView from CSeroll Vie w.
We could have derived CMyDrawView from CSerollViewat the outset
with AppWizard, but I wanted to save scrolling details until now.

Teaching the document to report its size

What part of your program should be better suited to providing informa
tion about document size than the document itself? That's what we'll do
next for MyDraw.

J:~ Try it now

Use WizardBar's Add Member Function command to create a document
class member function called GetDoeSizes. The view can call this func
tion when it needs the document size information for setting scroll sizes.

void CMyDrawDoc::GetDocSizes(int nMapMode, CSize& sizeTotal,

{

}

CSize& sizePage, CSize& sizeLine)

II Pass it 3 CSizes and get back sizeTotal, sizePage, sizeLine.
II (Could perform some sort of check of the mapping mode here.)

II For now, the size figures are in pixels
II This will change to inches (in 0.01" units) in Step 7.
sizeTotal = CSize(1000, 1600):

II sizePage and sizeLine are same as CScrollView defaults.
sizePage = CSize(sizeTotal.cx I 10, sizeTotal.cy I 10):
sizeLine = CSize(sizePage.cx I 10, sizePage.cy I 10):

The most important line is the definition of sizeTotal. It's a CSize object
whose ex member variable will hold the width of the document and
whose ey variable will hold the height of the document. For now, we

15: Scrolling

specify those in pixels. In Chapter 17, we'll revisit them and specify them
in inches instead, as part of setting up printing.

For convenience, we also have the document specify the following as frac
tions of the total document width and height:

• The number of units to scroll for a click in a scroll bar shaft,
sizePage.

• The number of units to scroll for a click in a scroll bar arrow,
sizeLine.

These values aren't very important here, b~cause all we did was specify
the same values that CScrollView would use by default. But if those val
ues don't look quite right in practice, we can always use this function as a
convenient way to tinker with them.

Setting the scroll sizes for MyDraw

For MyDraw, we override the virtual function OnlnitialUpdate. MFC calls
this function after the view has been created, but just before it calls
OnDraw for the first time. After that, a call to On Update precedes each
call to OnDraw. If we needed to get the latest document size for a growing
document, we'd probably do that from OnUpdate. But since the MyDraw
document never changes size, we can get the information just once, in
OnlnitialUpdate (file DrawVw.cpp).

~ Tryitnow
Add the following virtual function override to the view class:

void CMyDrawView::OnlnitialUpdate()
{

CScrollView::OnlnitialUpdate():

II TODO: Add your specialized code here and/or call the base class
CClientDC dc(this):

m-nMapMode = MM_TEXT:
CSize sizeTotal. sizePage. sizeLine:
sizeTotal = sizePage = sizeLine = CSize(0.0):

(continued)

467

Rounding Out Your MFC Skills

468

}

CMyOrawOoc* pOoc = GetOocument():
ASSERT_VALIO(pOoc):

pOoc-)GetOocSizes(ID-nMapMode, sizeTotal, sizePage, sizeLine);
SetScrollSizes(ID-nMapMode, sizeTotal, sizePage, sizeLine);

At the moment, we're still using the default mapping mode, MM_TEXT,
as shown by the following line of code that you just added to
OnlnitialUpdate:

m_nMapMode = MM_TEXT;

The next two lines in OnlntialUpdate construct three CSize objects and
initialize them to zero. That way, we can pass empty CSize objects to
GetDocSizes to fill them up:

CSize sizeTotal, sizePage, sizeLine;
sizeTotal = sizePage = sizeLine = CSize(0,0);

After declaring pDoc, a pointer to the document, and asserting that it is
valid, we finally get to the meat of the matter:

pDoc-)GetDocSizes(m_nMapMode, sizeTotal, sizePage, sizeLine);
SetScrollSizes(m_nMapMode, sizeTotal, sizePage, sizeLine);

The first line uses the document pointer to call the document's
GetDocSizes member function. We pass the mapping mode we want
(MM_TEXT) and the three empty CSize objects. When GetDocSizes re
turns, the three CSize objects have been filled up with the document's
size information. The last line is a call to CScrollView: :SetScrollSizes
with that same information.

Coordinate Conversion Rears Its Ugly Head
Back in Chapter 6, when I first introduced GDI coordinate systems, I said
we'd sometimes have to convert between device and logical coordinates.
So far, we haven't had to worry about that-but the time has come. Why
is conversion necessary? Try the following experiment.

~ Tryitnow
Build and run MyDraw as it is now. Scroll all the way to the right and all
the way down, which leaves the window viewing the farthest lower right

15: Scrolling

corner of the drawing surface. Draw a shape there, close to the lower right
corner of the window. Scroll all the way back to the left and top. OnDraw is
called, and what do you know? It redraws the shape in the lower right cor
ner of the window-but we know it's supposed to be far to the right and
down from that location and not even visible with the window in its cur
rent scroll position. What's happened? Figure 15-8 illustrates the situation.

-~- Untilled· ldyDraw '-I£ilE'J

1. Fully scroll MyDraw.

2. Draw a shape in lower
right corner.

3. Fully unscroll Mydraw.

D 4. The same shape
appears here,

-~
.)f,", . !{,: ' ,

, ,
~

but belongs here. D
Figure 15-8. Why we have to convert coordinates.

Adding the conversions

Now let's add code to the functions OnLButtonDown, OnMouseMove, and
OnLButtonUp to convert the mouse location received in those functions
in device coordinates-into logical coordinates.

469

Rounding Out Your MFC Skills

470

'-'" ,,"------------

i(~ Try it now
Convert device coordinates to logical coordinates in three places:

1. In MyDraw's OnLButtonDown handler, add the boldface lines
shown here:

II Start setting properties of the new shape.
m_pShpTemp->m_bTransparent = m_bTransparent;
m_pShpTemp->m_nColorShape = m_nColorNext;

II Convert point to logical coordinates.
CClientDC dc(this):
OnPrepareDC(&dc):
dc.DPtoLP(&point):

II Store starting pOint - literally a point, initially
II (topLeft == botRight).

2. In both OnMouseMove and OnLButtonUp, add the boldface lines
shown here:

CClientDC dc(this);
OnPrepareDC(&dc):
dc.DPtoLP(&point):

II Erase previous ...

OnMouseMove and OnLButton Up already create a device context. We
simply add code to adjust the device context for scrolling.

What coordinate conversion is all about

I've never yet seen an explanation of coordinate conversion that satisfied
me, so I'll try to be really clear here. The present situation in MyDraw il
lustrates the problem dramatically.

We have a problem of shifting frames of reference. Until we added scroll
ing, the drawing surface was limited to the visible client area within
MyDraw's window. Now we can draw on a much bigger canvas, and
when we scroll the window to view distant parts of the canvas, the view's

15: Scrolling

origin shifts to the right and down, as illustrated in Figure 15-8. As this
happens, the view's origin (the upper left corner of the client area) and
the "document's" origin (the upper left corner of the drawing surface)
move apart. That's exactly how scrolling is accomplished, remember?

The problem is this: When you click the mouse in the view (as when you
draw a shape in the MyDraw window), Windows reports the click location
in coordinates relative to the view window's upper left corner, not relative
to the logical origin of our drawing surface. MyDraw's device context is as
sociated with its view window-we obtain a device context into which we
draw, and that device context comes with its own device coordinate system,
always relative to the view window's upper left corner. Windows reports

. mouse coordinates to us in device coordinates, relative to the device's ori
gin. So far, we've stored those coordinates just as we received them, to de
fine the upper left and lower right corners of a shape's bounding rectangle.

But if the user has scrolled the view window, we're storing coordinates
relative to the wrong origin. Think of our drawing surface as fixed, and
the view window as a movable viewport onto the surface. A shape drawn
on the drawing surface should be at a fixed location on that surface, re
gardless of the view window's location over the surface. So when a user
presses a mouse button or scrolls the window, we want to store coordi
nates relative to the origin of the drawing surface-logical coordinates
not slippery device coordinates that change all the time as we scroll the
view window.

101 OTE Remember that the logical origin is the origin of the drawing surface,
til" which doesn't move when you scroll. The moving origin is the device origin,

which is the origin of the view.

Since Windows hands us mouse locations in device coordinates, we have
to convert those coordinates to logical coordinates to compensate for
scrolling (or for different mapping modes, which use different logical
units). Compensating for scrolling is a two-step process:

1. We pass our device context to the CScrollView::OnPrepareDC func
tion. OnPrepareDC adjusts the device context to compensate for
movement of the view's origin relative to the document's origin.

471

Rounding Out Your MFC Skills

472

2. Then we pass our mouse location to the CDC::DPtoLP function,
which replaces the x and y coordinates stored in a CPoint with val
ues adjusted for the shift due to scrolling.

After these two steps, everything is in sync, all in the same kind of coor
dinates, and we can store logical points in our shape objects rather than
device points that shift at the whim of a scroll bar.

When is conversion necessary?

Note that we did our device-to-Iogical coordinate conversion in the three
mouse handlers but not in OnDraw. We did it this way for a number of
reasons. First, OnDraw doesn't deal with a mouse location, so there's no
need to call DPtoLP. Second, OnDraw receives a pointer to a device con
text as its parameter. OnDraw is called by OnPaint, and before the call,
OnPaint calls OnPrepareDC to prepare the device context before passing
it. Thus OnDraw doesn't need to call OnPrepareDC either. But, other
functions in which we create our own device context with the CClientDC

constructor do need to call OnPrepareDC if there's any possibility of a
shift in the view's origin, as with scrolling. I'll say more about
OnPrepareDC in a moment. (Check the Help index for CClientDC.)

Here are some basic rules of thumb for when you must convert coordi
nates and when you can let them be.

• Most member functions of class CDC take logical coordinates, while
most CWnd member functions take device coordinates. This makes
sense-CWnd functions have nothing to do with device contexts, so
they don't know anything about the device context's logical coordi
nate system. It's at the interface between CDC and CWnd that you'll
most often have to perform a conversion, as when the CWnd func
tion OnLButtonDown receives mouse coordinates relative to the
view's origin (device coordinates) but you need to store and work
with logical coordinates.

• Generally, you'll perform operations such as testing for a mouse
hit on CRects and regions using device coordinates. (Regions,
nonrectangular areas, are beyond this book's scope. See the list of
suggested follow-up books in Chapter 21 for more information.)

15: Scrolling

The underlying Windows data structures take device coordinates,
and if you change mapping modes, the top of a rectangle can be
greater than the bottom due to the reorientation of the axes, which
isn't the case in the MM_TEXTmapping mode. You might need to
convert logical coordinates to device coordinates to adjust for this
reorientation. You can use CDC::LPtoDP for this.

• As in MyDraw, values you store need to be in logical coordinates
because, as we've seen, device coordinates don't remain valid dur
ing scrolling. That's why we convert the mouse locations in the
three mouse handlers.

You'll need to take the additional step of preparing the device context
with OnPrepareDC when scrolling or similar transformations are in
volved. CView::OnPrepareDC does nothing when called for screen dis
play. CScrollView overrides CView: :OnPrepareDC, adding a call to
CDC::SetViewportOrg. That call adjusts the view's origin to account for
scrolling. When the view's OnPaint function calls OnDraw, the origin has
thus already been adjusted before you draw. Also, wherever you obtain
your own device context with CClientDC in your CScrollView-based view
class, you need to make the same origin adjustment to that device con
text. This keeps the drawing synchronized with any scrolling that occurs.

Parting Thoughts
MyDraw now scrolls the width and height of its document. You can scroll
over or down, draw figures, and then scroll back. The new figures may be
partially or completely outside the client area, but they are still there and
you can get to them by scrolling. That's exactly what we wanted.

~al OTE By the way, if you start a figure toward one side of the client area
~ and drag the mouse outside the window before letting go, MyOraw draws

the figure, although you can't see all of it. But you can scroll to see it as
long as you have not drawn over the edge of the drawing surface. (Remem
ber that the drawing surface has a finite size-we set it.) Try it.

473

Rounding Out Your MFC Skills

474

I offer a couple of last comments about scrolling:

• Some applications are set up to scroll automatically if the user drags
the mouse below the bottom or to the right of the window. This is
often called autoscrolling. I haven't added such functionality to
MyText or MyDraw.

• Class CScrollView has its limits. With a large enough drawing sur
face, a CScrollView becomes slow if you take the default course and
simply redraw everything each time, as we've done in MyText and
MyDraw. There are ways to constrain drawing to just the visible area
in the window, but rest assured they complicate your OnDraw code.
Check the Help index for Scribble tutorial, and then choose the sub
topic "enhancing view." In that topic, click the link to "Updating
Multiple Views" and, on the Help toolbar, click Locate. In the Con
tents pane, click the next topic below "Updating multiple views."
In that topic, click the link to "Define a Hint for Scribble."

Here are a few additional pointers about text. MFC richly supports text
handling by providing classes for each of the following operations:

• Using two of the Windows text-oriented dialog controls, CEdit and
CRichEditCtrl. Use these controls in your dialog boxes for text en
try, in plain or formatted text.

• Basing views on those controls. Use CEdit Vie w and CRichEditView.
These views provide simple text editing. For example, you might
allow users to enter substantial amounts of text through a CEdit
control or, better, through a CEdit Vie w. CEditView has a large CEdit
control covering its client area. CEditView handles scrolling, cut
ting and pasting, saving to a text file, and other handy features. In
fact, using a CEditView, it's easy to write a simple text editor like
the Windows Notepad accessory. (For one example of such code,
see the CtlDemo1 program in Jeff Prosise's book, Programming Win
dows 95 with MFC. See Chapter 21 for more information about the
book.) CRichEditViews are even more powerful. They support dis
playing text in multiple fonts, colors, and styles within the same

15: Scrolling

text document. Of course, using a CRichEditView is more work, be
cause you have to provide font-'selection menus and other support
ing code. For an example of CRichEditView in action, check the
Help index for WordPad. This MFC sample program gives you the
source code for the Windows 95 WordPad accessory. Try WordPad
to see what's possible; with the WordPad sample, you can even
tinker with a copy of the code.

'-Ti' IP This is a popular learning style for MFC programmers. Find an MFC
'~~I sample that does something you're interested in. Copy the files to your hard

disk. Then use them to experiment. In Microsoft Visual C++ 6.0 Help, you
can browse the MFC samples under Samples in the Welcome to the Visual
C++ 6.0 Introductory Edition section on the Contents tab. You can use the
same approach with the examples in this book.

• Handling list-like data. Such data might be lists of database records
or the lists of filenames and other information you see in programs
like the Windows Explorer. Use CList Vie w. CListView even gives you
the "header controls" for name, size, type, and so on that you see
in Windows Explorer and other programs. For database records,
MFC also supplies classes CRecordView, CDaoRecordView, and
COleDBRecordView.

• Allowing users to select from lists of text strings in a dialog box. Use
CListBox and CComboBox.

I'll revisit some of the controls I've mentioned here in Chapter 19.

Try It Yourself

There's not a lot more to say about scrolling, so here are some extra-credit
projects based on working with text. Program MyText in the \learnvcn \
Chap15 folder in the companion code contains commented solutions.

1. Change the text color.

In MyText, add code to OnDraw to change the color of the text or the
background behind the text or both. You'll want to make this change just
before you draw. Try a variety of settings for both the text color and the
text background color. This will show you the range of possibilities.

475

Rounding Out Your MFC Skills

476

2. Change the font used to draw the text.

See the file Fonts.doc in the \learnvcn \Chap15 folder in the companion
code. If you're moving to a larger size, you might need to take the size
into account when calculating text dimensions. This means that you
might need to recalculate text dimensions after you change the font.

3. Add a keyboard interface to MyText.

See the file Keyboard.doc in the companion code. That file shows you
how to write an OnKeyDown handler function that translates keystrokes
such as the arrow keys into scrolling commands.

What's Next?
This chapter begins a sequence of chapters focused on user-interface
features that MFC makes vastly simpler to program. In the rest of Part 3,

we'll write shape data to a file, print it, add a second toolbar for working
with shapes, add dialog boxes for specifying user options, and add mul
tiple views of the shape data. We'll also add the ability to select drawn
shapes with the mouse. Chapter 16 takes up MFC's serialization mecha
nism for storing data in a file and reading it back in.

Chapter

Storing Data in a File
Now that we can draw shapes all over the drawing surface, it's time we
gained the ability to store a drawing in a file. When we ran App Wizard to
create the first version of MyDraw, we specified that MyDraw document
files have the extension .drw. All we have to do now is implement our
part of the Microsoft Foundation Class Library 6.0 (MFC) serialization
mechanism to write our shape objects to a file. The same mechanism
allows MyDraw to open and read an existing .drw file and display its
contents.

This chapter covers MyDraw step 6. We'll examine the following topics:

• An overview of MFC serialization.

• Serialization requirements in data classes such as CShape. We'll
review the small amount of serialization code we wrote in Chapter 14.

• The DECLARE_SERIAL and IMPLEMENT_SERIAL macros.

• CShape's Serialize member function-serializing the data for one
shape.

• Class CArchive's role in serialization.

• Using class CArchive's serialization operators «< and ») vs. calling
a data object's Serialize member function directly.

477

Fundamental MFC Skills

478

• Writing to a file (storing), which serializes the data for all the shapes.

• Reading from a file (loading).

• Dynamic object creation. When we read a file, its data objects don't
exist yet, so we have to arrange for their creation based on data
stored in the file.

• How MFC responds to the Save, Save As, and Open commands on
MyDraw's File menu.

• Class CFile and its derived classes. These playa role in serializa
tion but can also be used independently to support other file input/
output models, sidestepping serialization.

• Managing changing versions of MyDraw's files with MFC schemas.

Serialization and Deserialization
To serialize means to write out the data members of one CShape object
after another, serially-usually to a disk file. Classes derived from
CDocument can serialize their data, and the process is quite easy. Data
classes derived from CObject-such as CShape-can also serialize their
data members. Also, collection classes such as CObList know how to seri
alize the objects they contain.

To deserialize means to read the previously serialized objects from a file
and reconstitute the actual CShape objects whose data you've read in. To
make deserialization possible, MFC stores class information with the seri
alized data objects. When MFC deserializes a file, it uses that information
to create the CShape objects dynamically, automatically loading them
into the shape list data structure.

Serialization lets you make the objects in your program persistent. That
is, they persist, or continue to exist, between runs of the program. You
can serialize them, quit the program, run it again, and then deserialize the
same objects (that is, load the file) and continue working with them. Hence
serialization is one way to implement object persistence. Persistent data
is crucial to many applications.

16: Storing Data in a File

We've already added some of the necessary code to class CShape to allow
a newly created object derived from CShape to read its own data from a
file. That's one of the hallmarks of object-oriented programming-the
class object does its own work. Class CObList, which we're using to store
the drawn shapes in a MyDraw document, can tell each CShape object
that it stores to serialize itself. So when the user chooses a Save, Save As,
or Open command in MyDraw, MFC calls the document's Serialize mem
ber function. For Save and Save As, the Serialize function serializes the
document's data. For Open, Serialize deserializes the data, reconstituting
it in the document. Inside the document's Serialize function, we tell the
shape list to serialize or deserialize itself, and in turn the shape list's Seri
alize function calls the Serialize function of each stored CShape object,
telling it to serialize or deserialize itself.

To devise a file format for storing CShape objects on disk, you'd probably
write out each shape's data in turn, as a sequence of records. That's
essentially what MFC serialization does, except that the serialization
mechanism can deal with special situations that arise from using C++
class objects. For example, suppose we're going to write out objects A and
B, both of which point to the same object C. If we were to write out A,

then C via A, then B, and finally C via B, what would happen when the
objects are read back in from the file? Would we create an A, then a C,
then a B, and finally another C? That's not what we want-originally
there was only one C object. Figure 16-1 on the next page illustrates this
situation. MFC serialization is smart about such problems. It knows
which objects exist and it's able to write and read complex webs of ob
jects that point to other objects without committing the "extra C" error
just described.

Note that MFC serialized files are not compatible with other programs
that don't use MFC serialization. If your program needs to write or read a
commonly used file format, you'll need to use something besides serial
ization. I'll take up ways to sidestep MFC serialization later in the chapter.
Another alternative to serialization is storing your data in a database,
such as a Microsoft Access database. This book doesn't get into database
programming, but check the Help index for database topics. MFC and
Visual C++ provide extensive database programming support.

479

Fundamental MFC Skills

480

Figure 16-1.

Objects to serialize

o
&0
CD
&0

If we serialize the
objects like this,

MFC serialization

we get an extra C object
upon deserialization,

but MFC is smart enough to
give us this, which is correct.

Implementing Serialization in MyOraw
We already did some of the serialization work for MyDraw in Chapter 14

when we wrote the CShape classes. Those classes are already partially
outfitted for MFC serialization. All that's left to do is make one small
change in our document class and a few changes to class CShape.

Serialization Requirements in Data Classes
To serialize a CShape-derived object, you need to prepare classes CShape,
CShpRectangie, and CShpEllipse for the job.

1 MPORTANT We already took the three steps below, in Chapter 14, when
we created the CShape classes.

In any data classes whose objects you plan to store in a file via MFC seri
alization, take the following steps:

1. Derive your data class from CObject (or from a suitable CObject
subclass). We already did this with class CShape and its two sub
classes. Here's the heading of the CShape class declaration:

class CShape : public CObject

16: Storing Data in a File

2. Use the DECLARE_SERIAL macro in the class declaration. If you
look back at the CShape classes, you'll see that inside each class
declaration (in Shape.h) the macro looks like the one shown here.
Note that the macro takes one parameter-the name of the class to
be serialized-and is not followed by a semicolon.

class CShape : public CObject
{

public:
// Enable MFC serialization (file storage for class objects)
DECLARE_SERIAL(CShape)

3. Use the IMPLEMENT_SERIAL macro in the class implementation
file. We also did this for each of the shape classes, in the file
Shape.cpp. For CShape itself, the macro comes just above the
CShape constructor:

////////////////////////////////////

// Class CShape implementation

IMPLEMENT_SERIAL(CShape, CObject, 1)

CShape::CShape()
{

}

m_boxShape.SetRect(0, 0, 0, 0);
m_bTransparent = true;
~nColorShape = ID_COLOR_BLACK;

The macro takes three parameters: the name of the class it's for, the
name of that class's base class, and an integer, called the schema
number. I'll explain the schema number later in this chapter.

For the shape subclasses, the macro also comes at the beginning of
the class implementation. Here's the macro for class
CShpRectangle, just above that class's default constructor:

////////////////////////////////////

// Class CShpRectangle implementation

IMPLEMENT_SERIAL(CShpRectangle, CShape, 1)
(continued)

481

Fundamental MFC Skills

482

void CShpRectangle::Oraw(COC* pOC) II Virtual override
{

pOC-)Rectangle(m_boxShape);
}

For a derived data class such as CShpRectangle to be serializable,
its base class must also be serializable. That's why we'll make
CShape serializable when in reality we'll be serializing only
CShpRectangle and CShpEllipse objects.

If the constructor for your data class does some work, such as initializing
data members or allocating memory, a final step in serialization is to de
fine a default constructor for the class-one that takes no arguments. For
classes CShpRectangle and CShpEllipse, there's nothing to initialize (they
have no data members other than the ones they inherit from CShape) or
allocate, so we don't need default constructors for these classes. These
classes inherit constructors from CShape, and those constructors, includ
ing a default constructor, do the necessary initialization.

For more details about carrying out these steps, check the Help index for
serialization. Choose the topic "Serialization (Object Persistence)" from
the Topics Found dialog box.

Serializing One Shape
Class CShape needs one more thing in order to be serializable: an over
ride of the Serialize member function from its base class, CObject. First,
though, we need to decide what pieces of data to save for each shape.
Each CShape-derived object contains three data members. Which ones we
write to a file depends on which ones are needed to reconstitute the shape
object when we read it back in from the file later and draw it again on the
screen. It turns out that we need to write all three CShape data members:
m_boxShape, the bounding rectangle; m_bTransparent, the transparency
or opaqueness of the shape; and m_nColorShape, the shape's outline color.

~~ Try it now
Add an override of the virtual function Serialize in class CShape. You'll
have to do this by hand because the Add Virtual Function command isn't
available on the WizardBar Action menu for classes such as CShape that
weren't created by MFC.

16: Storing Data in a File

1. In the file Shap~.h, add the following function prototype in the
CShape class declaration:

II Overridables and operations
virtual void Draw(CDC* pDC)

{ T RA C E ("My Err 0 r: InC S hap e: : Dr a w . \ n ") ;
ASSERT(FALSE); };

virtual void Serialize(CArchive& ar):

2. In the file Shape.cpp, add the function's definition:

void CShape::Serialize(CArchive& ar)
{

}

BYTE byTransparent:

CObject::Serialize(ar);

if (ar.IsStoring(»
{

}

else
{

}

/1 TODO: add storing code here.
byTransparent = (BYTE)~bTransparent:
ar « ~boxShape « byTransparent « ~nColorShape:

II TODO: add loading code here.
ar » ~boxShape » byTransparent » ~nColorShape;

~bTransparent = (bool)byTransparent;

We'll look at the function in detail shortly.

What about Serialize in the CShape subclasses?

Since a CShpRectangle or a CShpEllipse doesn't add any new data mem
bers beyond those that both classes inherit from CShape, the derived shape
classes can simply inherit Serialize from CShape. They don't need to over
ride the function themselves. If the subclasses did add new data members
that we wanted to serialize, we'd need to override Serialize in them.

Serializing All Shapes in the Document
MyDraw's document class houses the m_listShapes data member, which
contains the shapes that we need to serialize.

483

Fundamental MFC Skills

484

~ Tryitnow
In class CMyDrawDoc (in the file DrawDoc.cpp), locate the Serialize
member function. App Wizard assumes that we'll want to add serializa
tion to the program, so it writes a skeleton override of the Serialize
member function. Add the boldface line to your Serialize function:

void CMyDrawDoc::Serialize(CArchive& ar)
{

}

~11stShapes.Ser1a11ze(ar):

if (ar.lsStoring(»
{

}

else
{

}

II TODO: add storing code here

II TODO: add loading code here

~ Tryitnow
After adding the one line of code to CMyDrawDoc::Serialize, build MyDraw
and run it. (For now, ignore the warning that the compiler issues during
the build.) Draw some shapes. Choose Save As from the File menu. In the
Save As dialog box, specify a directory and a filename, and then click
Save. Exit MyDraw, and then run it again. Choose Open from the File
menu. In the Open dialog box, specify the file you saved earlier and open
it. You should see the same shapes you drew earlier.

That finishes the serialization code for MyDraw, but let's explore the
mechanism a bit.

CShape's Serialize Member Function
Let's take a detailed look at CShape::Serialize. Here's the function again.
(You've already added it to MyDraw.)

void CShape::Serialize(CArchive& ar)
{

BYTE byTransparent;

CObject::Serialize(ar);

if (ar.lsStoring(»

16: Storing Data in a File

{

}

else
{

}

II TODO: add storing code here.
byTransparent = (BYTE)m_bTransparent;
ar « m_boxShape « byTransparent « m_nColorShape;

II TODO: add loading code here.
ar » m_boxShape » byTransparent » m_nColorShape;
m_bTransparent = (bool)byTransparent;

~'TI' IP Remember to deserialize data members in the same order that you
'1'~~1 serialized them.

Calling the base class version of Serialize in CShape

The first thing CShape::Serialize does is call CObject's version of Serialize. It
turns out that CObject::Serialize does nothing, but it's conventional to call
the base class version of overridden member functions (unless you're explic
itly replacing the entire base class implementation). Calling the base class
version of a member function lets MFC perform any necessary backstage
work. If you know the base class version does nothing, you can omit the calL

~ Tryitnow
You can confirm what CObject::Serialize does. Set a breakpoint at the be
ginning of CShape::Serialize, and then run the debugger (press F5). Draw
a couple of shapes and save the document. The debugger stops at your
breakpoint, and you can step into the CObject::Serialize call. (You can do
the same thing for CMyDrawDoc::Serialize-but first you'll need to add a
call to CDocument::Serialize.)

Storing or loading

After the base class call, CShape::Serialize enters an if statement:

if(ar.IsStoring())
{

II TODO: add storing code here.

}

(continued)

485

Fundamental MFC Skills

486

else
{

}

II TODO: add loading code here.

The condition for the if statement is the Boolean result of a call to some
thing called ar.IsStoring. The ar parameter to Serialize is a reference to a
CArchive object. I'll discuss archives later in the section" CArchive and
CFile." If the archive ar is storing (we're writing to disk instead of reading),
the first branch of the if executes. Otherwise, if we're loading (reading), the
second branch executes. Thus the Serialize function handles both writing
to a file and reading from a file. Of course, one call to Serialize does only
one of these things. It's either storing or loading, but not both in one call.

Writing to a file (storing)

In the CShape version of Serialize, here's how we write out the data for
one shape. (You've already added this code.)

II TODO: add storing code here.
byTransparent = (BYTE)m_bTransparent;
ar « m_boxShape « byTransparent « m_nColorShape;

The CArchive variable, ar, resembles the iostream objects we met back in
Chapter 2. We use an insertion operator «<), to send each piece of data to
the archive, which in turn writes the data to a file. (CArchive writes
binary data to a file rather than writing formatted text to a display, so
CArchive doesn't have the fancy formatting features of the iostream ob
jects.) Note that because the operator returns a reference to a CArchive,
we can chain these insertions to put them all compactly on one line of
code. (You've already added this code.)

ar « m_boxShape « byTransparent « m_nColorShape;

There's some sleight of hand going on here that I should mention. Class
CArchive's insertion and extraction operators «< and ») are overloaded
for a sizable number of data types, but boo1 is not one of them (although I
believe it will be added to a future version of MFC). Thus I have to con
vert the boo1 data in m_bTransparent to something that CArchive under
stands, such as BYTE (a data type that represents any byte value). I declare
a loqal variable called byTransparent, of type BYTE, and then use it in a
type cast. I pass the type cast BYTE value to the archive. I have to do

16: Storing Data in a File

something like that when I read the data back in as well. You can find out
about the data types supported by CArchive by checking the Help index
for serialization. In the Topics Found dialog box, choose the topic "Serial
ization (Object Persistence)," follow the link to "Serialization: Serializing
an Object," and scroll down to the heading "Using the CAre hive « and
» Operators."

By the way, if you do use a type cast between boo} and BYTE, as I did in
the version of Serialize above, you'll get a compiler warning (not an er
ror): "warning C4800: 'unsigned char': forcing value to boo} 'true' or
'false' (performance warning)." In other words, we're doing something in
efficient here, namely trying to convert between a Boolean value, which
isn't technically a number in C++, and a BYTE value, which is. C++ com
pilers have grown stricter in enforcing type rules-C compilers and even
early C++ compilers might not have complained about this small bending
of the rules.

!~ Try it now
The following code shows a safer way to accomplish our aims without
invoking the warning. Make your version of CShape::Serialize look like
this (removing code as necessary):

void CShape::Serialize(CArchive& ar)
{

}

BYTE byTransparent;

CObject::Serialize(ar);

if (ar.IsStoring(»
{

}

else
{

}

II TODD: add storing code here.
byTransparent = (m-bTransparent 1 1 : 0):
ar « m_boxShape « byTransparent « m_nColorShape;

II TODD: add loading code here.
ar » m_boxShape » byTransparent » m_nColorShape;
m-bTransparent = (byTransparent 1= 0):

487

Fundamental MFC Skills

488

The following line uses the c++ arithmetic if operator (1:) to assign the
numeric value 1 or 0 depending on the Boolean value of m_bTransparent.
If the Boolean value is true, assign 1; if false, assign O.

byTransparent = (m_bTransparent ? 1 : 0);

The following line uses the not equal operator (!=) to convert a numeric
value to a Boolean value.

m_bTransparent = (byTransparent != 0);

If byTransparent equals 1, the expression byTransparent != 0 is true, and
we set m_bTransparent to true. If byTransparent equals 0, the expression
is false, and we set m_bTransparent to false. These tricks avoid type cast
ing and thus avoid the warning by not violating any type rules.

Note that I'm not telling you never to cast. Using casts in Serialize be
tween legitimate numeric types is fine, and the compiler won't complain.
For example, suppose I use the following typedef statement:

typedef double salary;
sal a r y my Sal a r y ;

II Define a salary data type
II Declare a salary variable

CArchive knows nothing about the salary type, so we'd need to cast
mySalary back to double:

ar « (double)mySalary;

Reading from a file (loading)

The loading code in CShape::Serialize is similar to the storing code, but it
works in the other direction.

II TODD: add loading code here.
ar» m_boxShape » byTransparent » m_nColorShape;
m_bTransparent = (byTransparent != 0);

This code uses CArchive's extraction operator (»). CArchive can read a
BYTE value but not a baal, so we do the tricky conversion again.

CMyDrawDocs Serialize Member Function
Let's turn now to what the CMyDrawDoc::Serialize function does. Here's
the function again:

void CMyDrawDoc::Serialize(CArchive& ar)
{

16: Storing Data in a File

}

m_listShapes.Serialize(ar);
if (ar.IsStoring())
{

}

else
{

}

II TODO: add storing code here

II TODO: add loading code here

Serializing the shape list

This time something is radically different in the main part of Serialize for
CMyDrawDac. There's no code at all in the body of the if statement. In
stead, there's one line of new code, just above the if statement, and it
doesn't use the archive operators:

m_listShapes.Serialize(ar);

Recall that we stored our shapes in the document's m_listShapes data
member, a CObList object. When you examine the document's remaining
data member, m_pas, you realize that the only data we need to store ~n a
file is the contents of the shape list. The m_pas data member is just a
working variable that we use only while manipulating the shape list.

Why did we bypass the if statement? Because we'd do the same thing in
both branches-directly call CObList's Serialize function, which loads or
stores, depending on which direction the CArchive parameter specifies.
We can even delete the if statement this time.

To serialize the shapes, we could walk through the shape list, extracting a
pointer to each shape in turn, and pass that pointer to the archive via
the « operator. However, there are good reasons not to do it that way.
Doing so would be complex and troublesome-and just not necessary.
The CObList class happens to have its own Serialize member function.
Since m_listShapes is a CObList object, all we have to do is call
CObList::Serialize, passing it an archive object, and let it do the work.
CObList::Serialize knows how to walk the list and call each object's Seri
alize member function. That's exactly what we need.

489

Fundamental MFC Skills

490

Calling Serialize vs. Using CArchive Operators
When should you use the« and» operators of class CArchive? And
when should you instead call an object's Serialize member function di
rectly? Here are some guidelines.

First, let's establish exactly what it is that we're serializing-and what we
aren't. While I might speak loosely about "serializing the document," we
aren't actually writing the document object itself to a file. We're just writ
ing its contents, and not necessarily all of them. For instance, we won't
actually write the CObList data member, m_listShapes, to the file-just its
contents, the CShape objects.

When we write a CShape object, MFC writes some administrative infor
mation that will be needed later for de serializing the object. Then MFC
turns things over to each CShape object in turn, by calling the shape
object's Serialize function. The shape itself writes the values of its three
data members. Then MFC takes over again, writes a tag for its own use,
and calls Serialize for the next shape. What the data file ultimately con
tains is some header information about the number of shapes to be writ
ten, and then shape, shape, shape,. and so on. When we later read the
file, the CObList data member in the document already exists. We just
have to fill the list up from the file, and CObList::Serialize takes care of
that for us. We do recreate each shape object-we don't recreate the
document or CObList objects.

Therefore most of what I'm about to say applies primarily to data classes,
such as CShape, and their internal data members. The examples that follow
discuss hypothetical CThing data members and how to serialize them. You
can see how CThing is declared just after the next Note. We'll look at four
cases-summarized in Table 16-1 on page 493 and described below.

• Case 1: Primitive data type. For primitive data types, such as int,
char, double, and other types for v"hich CArchive has overloaded
« and » operators, use the operators. Cast or convert types if you
must, as I did in CShape::Serialize.

'6: Storing Data in a File

~I OTE MFC also overloads the (Archive operators for quite a few of its own
611'" classes. Check the Help index for (Archive operators and double-click the

index keyword "using." Then scroll down several screens, where you'll see a
table listing the types and classes for which the operators work.

• Case 2: Embedded class object derived from CObject. Suppose
class CThing has a data member that is an embedded class object,
something like this:

class CThing : public CObject
{

public:
CSomeClass m_Obj; II Embedded class object

Also suppose CSomeClass is derived from CObject, directly or indi
rectly. In such a case, call the embedded object's Serialize member
function from CThing::Serialize. When we read the CThing in ques
tion, MFC creates the CThing object and in the process creates the
CSomeClass object as well. We just need to fill up the object from se
rialization. Inside CThing::Serialize, we call m_Obj.Serialize(ar) to
serialize m_Obj's contents, not ar« m_Obj. CSomeClass must over
ride Serialize for this to work, of course. (For related information,
see "Sequence of Constructor and Destructor Calls" in Chapter 5.)

What if CSomeClass isn't derived from CObject? See case 4.

• Case 3: Pointer to object derived from CObject. Now suppose
CThing contains a data member that is a pointer to a CSomeClass
object (not an embedded CSomeClass object) and that CSomeClass
is derived from CObject, directly or indirectly:

class CThing : public CObject
{

public:
CSomeClass* m_pObj; II Pointer to a CSomeClass

In this case, ask yourself: Am I constructing the object pointed to by
m_pObj in the CThing constructor? If so, the CSomeClass object will
already exist when Serialize is called. Thus, inside the function

491

Fundamental MFC Skills

492

CThing::Serialize, call m_pObj's Serialize member function, if it
has one:

m_pObj-)Serialize(ar);

Because m_pObj is constructed when the CThing is constructed,.
you don't otherwise need to construct the object that m_pObj points
to as part of serialization. If you don't construct the object in
CThing's constructor, you can use« and », as long as CMyClass
is ultimately derived from CObject.

• Case 4: Embedded object or pointer to object not derived from
CObject. What if an object such as the ones discussed in case 2 or
case 3 doesn't have a Serialize member function? Or what if the ob
ject containing the embedded object or pointer isn't derived from
CObject? In such a situation, use « and »to serialize from and to
the object's data members. You'll need to work indirectly, using
member access operators, as shown below. (The m_ Obj or m_pObj
object itself will be constructed along with its containing class, if it
is embedded, or it should be constructed in the containing class's
constructor, if it is a pointer. In either case, the m_Obj or m_pObj
object will exist prior to serializing its contents.) Suppose the object
is declared like this:

class CSomeClass
{

public:

} ;

int m_int;
CString m_str;

and an object of this class is embedded in class CThing as follows:

class CThing : public CObject
{

public:
CSomeClass m_Obj;

In the function CThing::Serialize, you could handle the embedded
object this way:

Table 16-1.

'6: Storing Data in a File

if(ar.lsStoring(»
{

}

else
{

}

If instead you have a pointer to CSomeClass, replace the dot opera
tor (.) in the code just above with the arrow operator (-». In general,
though, if you mean to serialize a class, derive the class from CObject
(assuming you have control over the class).

Table 16-1 summarizes the four cases.

Data Type

Primitive data type, such as int, char,
or double (case 1)

Class object derived from CObject
either embedded or pointed to
(cases 2 and 3)

Class object not derived from CObject
(case 4)

How to Serialize

Use « and ».

Use the object's Serialize function,
if it has one.

Use « and » on the object's
members if the object is pointed to,
construct it in CThing's constructor.

Serialization techniques for various data types.

For more information, check the Help index for serialization and double
click the index keyword "details." From the topic "Serialization Topics"
that appears, follow the links to other topics on serialization.

A'IIOlE When serializing data, keep in mind that file operations sometimes
611'4 fail-perhaps a disk is full, for example. Thus it's wise to use MFC's excep

tion handling mechanism to deal with exceptional conditions such as a full
disk. For an introduction to exception handling, see the file Diagnost.doc in
the \learnvcn\Chap16 folder in the companion code. Also check the Help
index for exception classes. The BBall program in the \learnvcn\Chap16
folder in the companion code illustrates handling exceptions in file input!
output (1/0) code. By the way, if saving to a file fails, MFC ensures that the
previous version of the file you're saving to isn't corrupted. It keeps a mirror
·file to preserve that data. It's just one of the many ways MFC takes care of you.

493

Fundamental MFC Skills

494

Application Version Control with MFC Schemas
One problem you face while developing an application is successive ver
sions of the application that differ from one another. Suppose in version 1

you serialize three data members. Then, in version 2, you add another
data member and serialize it as well. At this point, neither version can
read files produced by the other. To obtain "backward compatibility" be
tween the versions, you need to endow version 2 with the ability to read
version 1 files as well as its own. MFC can help.

Recall the parameters to the IMPLEMENT _SERIAL macro: the name of the
class you want to serialize, the name of that class's base class, and an in
teger called the schema number:

IMPLEMENT_SERIAL(CShape, CObject, 1)

For purposes of serialization, the schema number functions as a version
number, so MFC can tell version 1 files from version 2 files. When you
write version 2 of an object such as CShape, change the schema number
to 2. For version 3, change it to 3, and so on. The schema number must be
an integer greater than or equal to O. If the schema number of the object
on disk doesn't match the schema number of the class in memory, MFC
throws a CArchiveException, which you can catch if you like. (For infor
mation about MFC exception handling, check the Help index for excep
tion classes.) If you don't catch the exception, MFC displays a dialog box
describing the version mismatch.

To make version 2 backward compatible with version 1, you can use the
VERSIONABLE_SCHEMA macro as part of the schema number itself, as
shown below. (Use the c++ bitwise OR operator (I) to combine the macro
and the schema number.)

IMPLEMENT_SERIAL(CShape, CObject, 1 I VERSIONABLE_SCHEMA)

This creates a version able object-an object whose Serialize member
function can read multiple versions. The Help topic for the
GetObjectSchema function shows how to set up a switch statement in
your Serialize function to read the various versions. Check the Help index
for GetObjectSchema.

16: Storing Data in a File

How Serialization Works
Now that serialization is working in MyDraw, let's discuss how it works.
I'll explain the serialization macros, dynamic object creation, how the Se

rialize function in the document is called, and the roles of the CArchive
and CFile classes. I'll also briefly address how you can sidestep the serial
ization mechanism if it doesn't meet your needs.

The DECLARE_SERIAL and IMPLEMENT_SERIAL Macros
What do these macros do? A macro is an item that the c++ preprocessor
expands at compile time into whatever the macro is defined to stand for.
For example, you've seen this #define directive before in MFC files:

#define new DEBUG_NEW

Everywhere in the file that the preprocessor finds the symbol new, it re
places it with the symbol DEBUG_NEW (to facilitate checking for memory
leaks and other memory problems). But instead of replacing a symbol
with another single symbol, you can replace a symbol or something that
looks like a function call, such as the following, with rather complex code.

IMPLEMENT_SERIAL(CShape. CObject. 1)

You can even pass parameters to be used in expanding the macro. That's
what the two macros do. DECLARE_SERIAL adds some new members to
the class in which you invoke it-members involved in serializing objects
of the class. IMPLEMENT_SERIAL adds the implementations for those
members. For more information about macros, check the Help index for
preprocessor and double-click the index keyword "macros." (Preprocessor
macros are not the same as VBScript macros, which I discussed briefly in
Chapter 1.)

~ Tryitnow

You can see for yourself how the two macros are defined in the MFC
source code files. See the Appendix for guidance in using the Find In
Files command to search the MFC source code files for each of the mac
ros. The macros are defined in the file Afx.h. It's worth looking at the two
#define directives.

495

Fundamental MFC Skills

496

Creating Objects from Thin Air
Reading from the file is actually more interesting than writing to it. When
you have an object write its data, the object is there already. You just have
to ask it to serialize itself. But when you read data for an object, the object
doesn't exist yet-somehow MFC has to turn that data into an object of
the appropriate type. In other words, MFC has to conjure a CShpRectangle
or CShpEllipse object out of nowhere.

How? When it writes the file in the first place, MFC includes information
in the file that later helps it recreate the objects when they're read. Un
der the hood, MFC writes some identifying information to the file just be
fore it writes the CShape data. First, it writes the number of such objects
that will be written out-the number of consecutive CShape objects to
be stored. Then there's a flag value, Oxifif, which signals that a new class
is about to be written out. Next, there's the class's schema number, then
the length, in bytes, of the class's name (CShpRectangle has 13 charac
ters), and finally the text of the class name (CShpRectangle). Then the ob
ject itself writes out its data members, after which MFC writes a tag for
the start of the next CShape object. (There's no need to repeat the class
name or schema number for each one.)

When Serialize deserializes from the file in the loading branch of the if
statement, it reads the tag information first. This gives it enough informa
tion to create an object of the correct type on the fly. (It uses the class
name to look up the appropriate RUNTIME_CLASS information in a table,
and it can compare the newly created object's schema number with the
one in the file.) Then it tells the new object to read its own data, which
follows the tag information.

If you step through the Serialize calls, as I suggested in the "Try it now"
exercise in "Calling the Base Class Version of Serialize in CShape" earlier
in this chapter, you'll probably wonder where MFC's part of this action
occurs. Recall the two serialization macros, DECLARE_SERIAL and
IMPLEMENT _SERIAL. The code that these two macros expand to is used
to manage most of the serialization mechanism. One thing that the code
does is create a linked list of CRuntimeClass objects-the table I men
tioned in the previous paragraph. MFC searches the list for the class name

16: Storing Data in a File

and can thus obtain a CRuntimeClass object that contains everything
needed to synthesize an appropriate object on. the spot. CRuntimeClass
has a CreateObject member function, which MFC calls to conjure the new
object. This process is called dynamic object creation. I won't delve into
the arcane depths of dynamic object creation in this book, but you can be
gin learning about it by checking the Help index for dynamic creation
support and studying the MFC source code for serialization.

How Serialize Is Called
So far, there's still something mysterious about Serialize. How and when
does MFC call the document's Serialize member function? Since serializa
tion is about writing and reading data, let's look at the Save, Save As, and
Open commands on MyDraw's File menu.

Saving a document

When the user chooses the Save or Save As command from MyDraw's
File menu, MFC calls the document object's OnFileSave or OnFileSaveAs
member function. This initiates a complex sequence of events in which
the following occurs:

1. With Save As, MFC calls CWinApp::DoPromptFileName, a member
function of the application object, to prompt the user to supply a
filename. MFC displays the Save As dialog box, one of the Microsoft
Windows common dialog boxes.

2. The document object obtains a CFile pointer to the currently open
file. Then the document creates a CArchive object attached to the
file.

3. The document object calls its own Serialize member function, pass
ing the new CArchive as the parameter to Serialize.

4. Serialize determines that the archive's IsStoring member function
returns true and executes the first branch of its if statement. This
uses the archive, which uses the CFile, to write out the document's
data.

497

Fundamental MFC Skills

498

!!(~ Try it now

I've left out a good many details, but that is the essence of saving a docu
ment. You can follow the sequence of calls yourself using the Find In
Files command. Start by searching the MFC source code files for the
string ::OnFileSave or ::OnFileSaveAs. Choose the first topic listed in the
Output window. Then search for the functions called by OnFileSave, the
functions called by those functions, and so on. It might help to make a
diagram of the calls as you go-I suggest a tree-like structure, something
like this:

CDocument::OnFileSave
CDocument::DoFileSave

CDocument::DoSave
CDocument::GetDocTemplate

CWinApp::DoPromptFileName

For information on using Find In Files this way, see the Appendix.

Opening a document

When the user chooses Open from MyDraw's File menu, MFC again ini
tiates a complex sequence of events:

1. MFC calls CWinApp::OnFileOpen. The document object is respon
sible for opening, saving, and closing its own file, and the applica
tion object is in charge of opening a new file. No document object
exists yet to manage and display the file.

2. CWinApp::OnFileOpen calls CDocManager::OnFileOpen. CWinApp
delegates opening files to a subordinate CDocManager object.
CDocManager::OnFileOpen calls CDocManager: :DoPromptFileName
to prompt the user for the name of the file to open, and then
DoPromptFileName displays the Open dialog box (another common
dialog box).

3. CDocManager::OnFileOpen next calls CWinApp::OpenDocumentFile,
which calls CDocManager::OpenDocumentFile. That function lo
cates the appropriate document template object and calls the
template's OpenDocumentFile member function. That function-in
this case belonging to class CSingleDocTemplate-goes through the

16: Storing Data in a File

very complex process of creating the document object and its
associated view object and frame window object. During this pro
cess, for an SDI application, MFC calls the new document object's
DeleteContents member function to let you clean up the document
object and calls its OnOpenDocument member function to let you
initialize the document's data members (at least those that aren't
serialized) .

mr OTE We discussed document templates briefly in Chapter 8. A document un, template is an object that creates and manages one or more CDocument
derived objects (one object if the application is SDI, or potentially a whole
list of them if it's MDI). The document template object is associated, in the
application's Initlnstance member function, with the document, view, and
frame window classes it will use to create new documents. Initlnstance is
where we create the document templates the application needs and add
them to the application object's list of document templates. (See "Creating
the document template, frame window, document, and ,view" in Chapter 8.)

4. The document template's OpenDocumentFile function then creates a
CFile object and a CArchive object attached to the CFile, and it calls
the new document object's Serialize function, passing the archive.

5. Serialize determines that the archive is for loading and executes the
second branch of its if statement. This code reads the data.

6. For MyDraw, deserialization repopulates the CObList in which we
store the shapes and forces the shapes to be drawn. This results in a
call to the view's OnDraw member function. The shapes appear on
the screen.

!-~ Try it now v
Follow the sequence of calls with the Find In Files command. (See the
Appendix for information on using this command to search the MFC
source code.) Start with CWinApp::OnOpenFile.

CArchive and CFile
At the heart of the MFC serialization mechanism is class CArchive. An
archive object abstracts serializing data to any place that can hold the
data in a serial form. An archive might be used to serialize to a file, to an
in-memory data structure, or even to the Windows Clipboard.

499

Fundamental MFC Skills

500

When a CArchive is used to serialize to a file, you attach the archive to an
object of class CFile to represent the actual file on disk. CFile wraps an
operating system file handle, through which you can perform general
purpose file I/O operations. CFile directly supports unbuffered binary
disk 110. The term unbuffered indicates that you must read groups of
bytes yourself, by making direct calls to CFile member functions such as
Read and Write. Buffered file I/O is more efficient, because reading a disk
is a slow operation. The idea is to read lots of data at once into a buffer-a
chunk of heap storage to which you have a pointer. One big read operation
is less costly than lots of small ones, and you can then do lots of small
reads from the buffer much more quickly. The term binary indicates that
the data stored is binary bytes rather than text characters; to store and
load text, you can use the CFile-derived class CStdioFile. (See the Note
below.)

~II OTE The companion code includes a sample program called BBall, which
':~I' uses CStdioFile to read lines of text from a .txt file and to write lines of text

to such a file. BBali also illustrates the CStringArray collection class, which is
similar to CObArray. I'll say more about BBali later in the chapter.

Combining CArchive with CFile is one way to get buffered file I/O.
CArchive contains an internal buffer whose size you can set when you
construct the archive. (Its default size is 4096 bytes.) It works like this:
Via serialization, you read x bytes from the archive (say, 4 bytes to fill an
integer data member). The archive has previously read a large number of
bytes from the file into its buffer. You keep reading from the archive, not
worrying at all about where those bytes are really corning from. If the
buffer runs out of data, the archive reads from the file again, and you can
keep on reading as long as there is data in the archive.

To create a CArchive, you must first create a file object derived from class
CFile. The CFile subclasses are shown in Figure 16-2. We've so far let
MFC create all of the CArchive and CFile objects we've needed, but you
can create these objects yourself, as you might need to do if you bypass
serialization and do your own file I/O. I'll discuss that option in the next
section.

16: Storing Data in a File

Figure 16-2. The file-related classes in MFG.

For more about archives and files, check the Help index for CArchive,
CFile, and files. For files, choose the first topic in the Topics Found dialog
box, "Files Topics."

Sidestepping Serialization
Serialization is ideal for some applications, but not for others. The main
situation in which you might want to sidestep serialization is when you
need to write to or read from a particular file format. For example, you
might need to write rich text (.rtf) files, plain text files, or some graphics
format, such as .bmp or .gif. In such cases, you'll need to write your own
file I/O (and understand the file format).

You can still use the CFile classes-there are subclasses for text files,
Internet files, in-memory files, shared files (such as a file used to write to
the Windows Clipboard), OLE-based files, and Windows Sockets files for
sending or receiving data across a network. See Figure 16-2 and check the
Help index for hierarchy chart. Class CDocument has a handy member
function for obtaining information about the file associated with the docu
ment: CDocument::GetFile.

501

Fundamental MFC Skills

502

____________ m ,.-, -._-"

Where should you put your I/O code? The key is to find the right "hook"
in the sequences of function calls I outlined earlier in this chapter in
"How Serialize Is Called."

File I/O with Document/View
For example, suppose you want to use the document/view architecture
but not serialization. The BBall program in the \learnvcn \Chap16 folder
of the companion code illustrates one approach to file I/O with docu
ment/view but without serialization. BBall has three View menu com
mands that accomplish the following tasks:

• Display a list of all present-day Major League Baseball teams

• Display a list of all World Series winners

• Display a list of all present-day teams that have never won a
World Series (at least in their modern form-for example, the San
Francisco Giants haven't won, but they did when they were in
New York)

BBall's I/O is limited to reading and writing preset files-the user can't
select files to open. All reading and writing occurs in two places:

• In the document's OnNewDocument member function, which MFC
calls as the document is being created and initialized. This reads
data from two text files that list, respectively, the modern teams
and the teams that have won the series.

• In the view's WriteNon Winners function, which is called by the
ListNeverWinners function, which in turn is called by the
On ViewNeverwon menu command handler. ListNeverWinners com
pares the team list with the World Series winners list and builds a
list of nonwinners. WriteNonWinners writes the results to a third
text file.

Serialize isn't used at all, yet the document/view architecture still plays
its normal role. The file I/O code shows you how to use a CFile object by
itscl£ .

16: Storing Data in a File

File 110 Without Document/View
Here's one more example. Suppose you're writing an application that
doesn't use document/view. In this case, there's no document class, so
there's no Serialize. The application might use the App Wizard project
that creates a rudimentary view class, derived from CWnd rather than
CView, or it might use just the application and frame window objects.
Here's the scheme:

1. To open a file, override CWinApp::OnFileOpen. Place your file open
ing and loading code in the override. You can display a CFileDialog
yourself to obtain the filename. And you can open the file and read
it using class CFile or one of its subclasses.

2. To save a file, add your own OnFileSave and OnFileSaveAs han
dlers to the application class. (Normally, these handlers are in the
document, not the application object, so you can't do them as over
rides.) In OnFileSaveAs, display a CFileDialog yourself to obtain a
filename. From both OnFileSave and OnFileSaveAs, call a helper
function, say, SaveFile. Put your file saving code in that function.
I'll discuss classes such as CFileDialog in Chapter 19.

Try It Yourself

It's time to test yourself with these extra-credit offerings.

1. Use this chapter to learn how to spelunk in MFC.

I presented a number of tasks for you to tryout. It's worth following
through on those tasks to get used to going underground in MFC. A seri-
0us Windows application is a complex warren of interconnecting parts,
and an MFC application is no less complex. The more you understand
how to explore its hidden depths, the more readily you'll be able to over-:
ride and specialize its behavior.

2. Write an application to play with Serialize, «, and ».

Write a small application with a variety of data types among its docu
ment class data members. Include the four cases discussed in the section
"Calling Serialize vs. Using CArchive Operators."

503

Fundamental MFC Skills

504

• Several different primitive types

• Embedded objects derived from CObject

• Pointers to objects derived from CObject

• Embedded objects or pointers to objects not derived from CObject

Serialize and deserialize these objects. This will get you used to writing se
rialization code for the range of data objects. See the Ch 16ex2 program for
one solution, and the file Ch16ex2.doc for an explanation of that solution.
Both are located in the \learnvcn \Chap16 folder in the companion code.

What's Next?
No drawing application is complete if it can't print out drawings. In
Chapter 17, we'll add printing support. Not only that, but we'll give
MyDraw the ability to allow users a print preview-a view of what the
drawing would look like if printed (but without printing it). Printing is
traditionally hard, but MFC makes it much easier.

Chapter

Printing the Document
Printing is traditionally one of the harder parts of writing a program. It's
so hard in fact that developers of many smaller programs don't add print
ing capability. But some applications, such as MyDraw, really require the
abilIty to print what the user has created. The Microsoft Foundation
Class Library 6.0 (MFC) helps us out by making printing much easier
than it would otherwise be.

MyDraw can already print, in a simple way, and it can even give the user
a print preview-a window showing what the document's pages will look
like when printed. In this chapter we're going to fine-tune the printing
process so that MyDraw can print attractive, useful documents. This
won't be a thorough tour of all that you can do in the printing code for a
Microsoft Windows application. But I'll cover the essential issues, giving
you a conceptual framework for later explorations.

This chapter constitutes step 7 of MyDraw. It covers the following funda
mentals of document printing:

• Planning the document's layout and appearance with printing in
mind

• Making the printing in MyDraw device-independent by changing
the mapping mode

505

Rounding Out Your MFC Skills

506

• Printing a multipage document

• Dealing with portrait and landscape printing modes

• Adding extras such as headers or footers

• Taking advantage of MFC's implementation of Print Preview

Planning for Printing
Before we write a line of printing code, let's look at some of the issues we
need to plan for as we add printing to MyDraw.

The chief issue deals with correctly setting the size of the document
(MyDraw's drawing surface) to allow for clean printing. We'll examine
three areas here: calculating how much of a sheet of paper is available to
us given the default printer established on a computer, matching that
printable area to the size of MyDraw's drawing surface, and allowing
room for things like headers and margins.

It's possible to obtain pretty reliable information about the printable area
of a sheet of paper. MFC provides the CDC::GetDeviceCaps function for
this purpose. GetDeviceCaps stands for "get device capabilities." Depend
ing on what parameter we pass to Ge tDevice Caps , we can obtain a wide
variety of information about the computer that MyDraw is running on and
about the peripherals attached to it or connected to it on a network.

With the printable area worked out, we'll make one more adjustment to
the drawing surface, to allow for things like headers, footers, or margins.
In MyDraw, I'll implement a header and a footer on each page. We'll get
down to details later in this chapter, in "Paginating the Document."

The MFC Printing Architecture
In programs written for MS-DOS, writing an application's printing code
was an arduous and thankless job. You had to write code designed to deal
with the vagaries of hundreds of printers and print drivers. It wasn't un
common to ship a whole disk full of printer drivers with an MS-DOS ap
plication. And the code had to reach down to a very low level, close to
the hardware.

17: Printing the Document

Printing in Windows
Printing in Windows applications written in C is much more device
independent than printing in MS-DOS applications. But it's still pretty
demanding. Here's a short synopsis of Windows printing without benefit
ofMFC:

1. The application obtains a device context for the printer. A printer
device context is set up to deal with a particular printer rather than
a display device such as a monitor. (There are various ways to
specify which printer: it might be the current default printer, or you
might supply a user interface to let the user select a printer from
those available.)

2. The application calls the StartDoc Win32 API function to begin the
print job.

3. The application calls the StartPage function to begin the first page
of the document.

4. The application calls whatever Graphical Device Interface (GDI)
functions it takes to draw the page. For example, MyDraw uses the
Rectangle and Ellipse functions.

5. The application calls the EndPage function. Then it loops back, for
a multipage document, and calls StartPage again to print page 2.
You call StartPage and EndPage even if there's only one page to
print. It helps considerably if you can specify up front the maxi
mum number of pages to print, but it's possible to do "print-time
pagination," keeping the print loop going as long as there are pages
to print.

6. When all pages have been printed, the application calls EndDoc to
finish up the print job. One catch is that EndDoc must be called
only if the print job was successful. Otherwise, you must call
AbortDoc. It's typical to manage this with a Boolean variable that
you set to true if the printing has been successful or false if the
printing has not been successful.

The main complication is that for a long print job you need to supply a
way for the user to interrupt the printing and cancel the job. In a Windows

507

Rounding Out Your MFC Skills

508

program written in C, you can supply an abort procedure and display an
abort dialog box.

There are, of course, additional complications to the above printing
scheme. However, because this is an MFC book, and MFC manages them
for you, I won't dwell on them.

Printing with MFC
MFC takes care of most of the details of printing for you. It creates a
printer device context and later destroys it; it calls the StartDoc, EndDoc,
StartPage, and EndPage functions for you; it handles the abort procedure;
and it supplies the necessary dialog boxes for the Print and Print Setup
commands. MFC also supplies an implementation of the nifty Print Pre
view functionality that users enjoy in many commercial applications.
Print Preview lets the user display, on screen, how the printed document
would look. MFC implements the Print Preview window and simulates
printing in it.

\ Til' IP Having Print Preview available is also a great help while you're working
'~I on your printing code. You can use it to work out positioning and alignment

details.

MFC printing, like drawing on the screen, is managed by CView-derived
class-another good reason to use the document/view architecture. The
view object obtains data to print just as it does for display, via the
GetDocument function and the pointer to the document object returned
by that function. Most MFC applications also draw on the printer just as
they draw on the screen-in the OnDraw member function. You use the
same code to draw in both places. (Yes, you draw on the printer just as
you do on the screen. Actually, you print in the background by drawing
into a file, which Windows spools to the hard disk, from which it's sent to
the printer when time permits.) Printing via OnDraw is not a requirement,
but it's a very useful default, one that we'll be sure to use in MyDraw.
The alternative is to draw in two separate places, OnDrawand OnPrint.
Sometimes the printed output is so different from the display output that
separating the two makes the best sense.

Table 17-1.

17: Printing the Document

The essence of MFC printing and Print Preview lies in customizing the
general print process for your particular documents. MFC provides sev
eral overridable member functions of the view class for this purpose,
listed in Table 17-1. These overridable functions let you intervene in the
printing process to tailor it. You can put almost all of your printing code
in these functions.

Function Description

OnPreparePrinting MFC calls this function at the beginning of the print job.
You can use it to insert values into the print dialog box be
fore the user sees the dialog. By default, OnPreparePrinting
calls DoPreparePrinting to do the real work, including the
dialog. Override OnPreparePrinting primarily to specify
the page count. Customize the CPrintInfo object to provide
information about the print job. The printer device context
doesn't exist yet.

OnBeginPrinting MFC calls this function just before printing starts. This is
the place to allocate fonts and other resources needed for
the print job. The printer device context now exists.

OnPrepareDC MFC calls this function both for printing and for screen
drawing. For printing, it's called before each page begins.
MyDraw overrides it to adjust which part of the drawing
surface to draw fof. the next page. This adjustment lets us
first print the left side of the drawing as page 1, and then
print the right side as page 2. A text document would use
it to mark the next set of lines to print as a new page.

OnPrint MFC calls this function to print (or preview) one page.
Normally, you actually draw the printed page by calling
OnDraw from OnPrint. Override to print headers and other
page elements not drawn by OnDraw or to do all printing
here instead of in OnDraw.

OnEndPrinting MFC calls this function when printing ends. Override it to
deallocate fonts or other resources you allocated in
OnBeginPrinting:

The view class functions you can override to customize printing.

509

Rounding Out Your MFC Skills

510

. In MyDraw, we override four of these functions to accomplish'printing

tasks as follows:

• We override OnPreparePrinting to specify the page count for the
print job and to customize Print Preview.

• We override OnBeginPrinting to calculate the printable area.

• We override OnPrepareDC to adjust which part of the drawing sur
face is to be drawn for the current page.

• We override OnPrint to print or preview the page header, call
OnDraw to draw the page, and print the footer. We print the header

and footer with our own helper functions, PrintHeader and

PrintFooter.

Note that we did not override OnEndPrinting. We override only those
functions we need to change. Thus our total printing code amounts to four

function overrides in the view class plus a couple of helper functions.

That's miniscule compared to what's required in a Windows program writ

ten in C. Note that Print Preview calls the same functions as Print does.

Changing the Mapping Mode: The Size Problem
One problem we need to solve has to do with the mapping mode. Recall
from Chapter 6 that the mapping mode is a characteristic of the device con

text. It specifies which coordinate system and which units of measure

ment to use.

The problem is that so far we're using the default mapping mode,

MM_TEXT, whose unit of measurement is the pixel. That has worked

fine for us so far, where all drawing has been to the screen. But printer

resolutions vary so much that a rectangle drawn with MM_TEXT appears

much smaller on many printers than it does on the screen. I call this the

size problem.

Try it now
If it's possible for you to print to more than one printer, try this exercise

on each of them. Even with only one printer, or none, you can do the

following experiment: Run MyDraw and draw several shapes. If you're

connected to a printer, select Print on the File menu and then click OK in

17: Printing the Document

the Print dialog box. Or if you're not connected to a printer, select Print
Preview on the File menu. Either way, compare the results to the drawing
on the screen. The shapes seem tiny. On some printers they may seem
infini tesimal.

By the way, you can also print by clicking the Printer icon on MyDraw's
toolbar. This displays the Print dialog box set to print to the default
printer. Try it.

~Jil' IP MyDraw's printing works best in portrait mode. (I'll discuss what happens
"\~I in landscape mode later.) If your printer doesn't default to portrait mode,

you can change the mode each time you print from MyDraw. (Choose Print
Setup on MyDraw's File menu, and then click Properties in the Print Setup
dialog box and click Portrait in the Orientation box.) Or you can change the
default for your printer. In Windows 98 Help (not Microsoft Visual C++ Help),
check the Index for printers, select the subtopic "settings" and select the
topic "To change the paper size or layout for printing" in the Topics Found
dialog box. In Windows 95 Help, check the Help index for printers and select
the topic "Changing the paper size or layout for printing."

Try it now
Now let's change the mapping mode. In CMyDrawView::OnlnitialUpdate,

change the mapping mode from MM_TEXT to MM_LOENGLISH by replac
ing the existing line that specifies the mapping mode:

void CMyOrawView::OnlnitialUpdate()
{

CScrollView::OnlnitialUpdate();

II TOOO: Add your specialized code here and/or call the base class
CClientOC dc(this);

~nMapMode = MM_LOENGLISH:

Consequences of Changing the Mapping Mode
Changing to the MM_LOENGLISH mapping mode has two major conse
quences, which may need to be reflected throughout MyDraw:

• The logical unit of measurement changes from a pixel to a hundredth

of an inch.

511

Rounding Out Your MFC Skills

512

• The coordinate system changes so that the yaxis now increases up
ward rather than downward. Positive y values are above the origin
rather than below it, and the y values within our client area are all
negative. This is important, as you $aw in Chapter 15.

The change in units is what we want for MyDraw-pixel sizes vary from
one device to another, especially from a monitor to a printer, so measur
ing in inches instead of pixels makes our shapes appear the same size on
both the screen and the printer. But to get that benefit, we have to reckon
with the altered coordinate system.

Think of the coordinate change in these terms. Suppose we have a rect
angle with coordinates (10, 10, 50, 50). The second and fourth coordinates
are y coordinates, so they're the ones affected by the new coordinate sys
tem. Figure 17-1 shows what happens to this rectangle with the mapping
mode change.

<~II OTEThe mapping mode is called "LOENGLISH" because it uses English units
u~I' (inches) and the units are lower resolution than "HIENGLlSH": 0.01 inch per

logical unit vs. 0.001 inch per unit with the MM_HIENGLISH mapping mode.

~;~ Try it now
,)

Follow these steps to create a quick demo application:

1. Use AppWizard to create a new MFC AppWizard (.exe) application
called YCoord.

2. Click the Next button in the wizard until you reach page 6 of 6.

On that page, select the view class name in the upper box
(CYCoordView). This results in a multiple document interface
(MDI) application, which is fine for our purposes.

3. In the Base Class box, select CScrollView. This derives the view
class CYCoordView from CScrollView instead of from CView. (This is
how you make your view a scrolling view from the start, rather than
change the class derivation after the fact, as we did in Chapter 15.)

4. Click Finish, and then click OK.

17: Printing the Document

(50,50)
p--------.., : .

-:-- Not visible

(10, 10) : :
.---------

(0,0) X! (0,0) x:

y
+H

....
(10, 10)

D-ViSible

(50,50)

MM._TEXT

(0,0)

y

-"

Xt -(10, -10)

D-ViSible

y
-,,.

(50, -50)

MM_LOENGLISH
with y-coordinate

signs reversed

Figure 17-1. The effect on a rectangle of changing mapping modes.

~~ Try it now

Now add some code to YCoord, as follows:

...

1. Add the highlighted code to YCoord's OnDraw function:

void CYCoordView::OnOraw(COC* pOC)
{

}

CYCoordDoc* pDoc = GetDocument();
ASSERT_VALIO(pDoc);
II TOOO: add draw code for native data here
CRect rect = CRect(10, 10, 110, 110):
pDC->Rectangle(rect):

513

Rounding Out Your MFC Skills

514

2. Build and run YCoord. You should see a rectangle, slightly offset
down and to the right of the origin-remember that we're still using
MM_ TEXT, the default mapping mode. Choose Print Preview on the
File menu to see how the rectangle would look if it were printed.
Notice how tiny the rectangle will look in print vs. onscreen.

3. In CYCoordView::OnlnitialUpdate, which AppWizard adds for you
when you derive the view class from CScrollView, change the map
ping mode passed to SetScrollSizes from the default MM_TEXT to
MM_LOENGLISH. Build, run, and observe the results. Where did
the rectangle go? See Figure 17-1.

4. Back in OnDraw, change the signs of the second and fourth coordi
nates in the CRect constructor call-these are the y coordinates of
the rectangle's upper left and lower right corners:

CRect rect = CRect(10. -10. 110. -110);

Build and run. The rectangle reappears. Choose Print Preview on
the File menu. The rectangle appears larger than it did in the
MM_TEXT mapping mode. If printed, it would appear on the paper
to be about I-inch square, much closer to the size of the rectangle
on the screen.

Changing the mapping mode to MM_LOENGLISH reversed the yaxis, so y
coordinates in our drawing area inside the client area are all negative. Ne
gating the y coordinates in the rectangle put the rectangle back into the
visible region. This corrected the drawing problem in YCoord. But what
about MyDraw?

To fix MyDraw after changing to MM_LOENGLISH, we have to reverse the
signs of y coordinates anywhere that we use y coordinates for drawing or
printing. Table 17-2 summarizes where we might have to make sign
changes in y coordinates.

Table 17-2.

17: Printing the Document

Function

OnDraw

OnlnitiaJ Up date

Printing functions

OnPrepareDC

OnLButtonDown,
OnMouseMove,
OnLButton Up

Negate y coordinates?

No. No coordinates are directly expressed here in MyDraw.
They might be in another application, as they were in
YCoord.

No.

Yes. We'll deal with OnPrint, PrintHeader, and PrintFooter
when we get there.

Yes. We'll specify a y coordinate when we tell MFC how to
break up the drawing surface into pages.

No, but see the discussion following this table.

Other functions in No.
the class

Do we need to change y-coordinate signs in view class member functions?

We only need to reverse some signs when we write the printing code.
Otherwise, there are no sign changes in MyDraw, although there might be
in other applications. We use y coordinates when we draw shapes in
OnLButtonDown, OnMouseMove, and OnLButtonUp, but we have another
way to correct the y coordinates in these functions. These functions receive
a CPoint parameter that we convert from device coordinates to logical
coordinates with the CDC::DPtoLP function before the point is used
and that correction also corrects its y-coordinate sign. We use the cor
rected points to construct the current shape's bounding rectangle, so the
rectangle is OK.

I'll bring up this topic again when we write the printing functions. For a
second example of dealing with the coordinate change, check the Help
index for Scribble tutorial and double-click the index keyword "print
ing." In the topic "Enhancing Printing," scroll down and select the link
to "Enhance Scribble's printing." Follow the first and second links from
that topic.

515

Rounding Out Your MFC Skills

516

Paginating the Document
Paginating means dividing into pages. MyDraw's drawing surface is larger
than what can be printed on a single standard sheet of paper. We have to
divide that drawing surface into page-sized chunks. And then we have to
convey the pagination information to MFC's printing code.

We've already taken printing into account in designing the drawing sur
face-the drawing surface is to be whatever size we can print on two stan
dard pages. (Once we've done it this way, it wouldn't be hard to increase
the surface to four pages or more using the same basic logic.) To settle on
that size, I calculated the printable area of a standard sheet on my Hewlett
Packard 600c inkjet printer. Then I specified a value close to that in set
ting the scroll sizes for MyDraw's document. Figure 17-2 shows how
MyDraw's drawing surface maps to two printed pages side by side. For a
second example of pagination, check the Help index for Scribble tutorial
and double-click the index keyword "printing." Then follow the links
"Enhance Scribble's printing" and then "Paginates a Scribble document."

m_nPageWidth (m_nPageWidth, 0)
,,,/'"

~--------------I · .
• I
• I · .

I ~~ - - - - - - - - - - - -

I ' "<0,0)
- --1-'-. -----. -+- Left half of

I

m_nPageHeight <
drawing surface

-r-+-- Right half of
drawing surface

:-~ Printable area of page
'-- -------------- 11. _____ --_._--_.

Page 1 Page 2

Figure 17-2. MyDraw's drawing surface mapped to two printed pages.

Calculating the Printable Area
The printable area is obtained via the GetDeviceCaps function. The exact
area available for printing on an 8.5-by-11-inch sheet of paper (the stan
dard size in the United States) depends on the printer and on the printer
driver being used. To determine that, MyDraw queries GetDeviceCaps for

Figure 17-3.

17: Printing the Document

each print job to learn the resolution of the printer-the printable area
expressed as a width and a height.

Passing HORZSIZE or VERTSIZE to GetDeviceCaps returns the width or
height of the printable area i~ millimeters. We can convert millimeters to
inches with the following formula:

dimension in millimeters d' ... h --------- = ImenSlOn In Inc es
25.4 millimeters/inch

Then we multiply the new dimension in inches by 100 to get the number
of logical units. (A logical unit is 0.01 inch.) If the width dimension, say,
is 7 inches, we use 700 logical units. For more information, check the
Help index for GetDeviceCaps. Where should we call GetDeviceCaps?

Calculating the printable area in OnBeginPrinting

Our first opportunity to use GetDeviceCaps to calculate the printable area
for the selected printer comes in the view's OnBeginPrinting member
function. By this point, the user has seen the Print dialog box and cho
sen a printer, and the device context has been set up. Figure 17-2 shows
the printable area of a page. Figure 17-3 shows how the printable area is
divided into header, footer, and drawing areas.

_Un_tit_led_d_ra_w--.;in9'----___ : Space for header

Printable area of page

__ i-+- Space for half of

CJ
I
I
I

• -:-~~-:-~t-:-~:d-:-•• -.-•• -.-•• -.-•• -.-•• -. -•• -'-~ .:

drawing surface

Space for footer

Sections oj the printable area of a page;

517

Rounding Out Your MFC Skills

518

!~ Try it now
AppWizard has anticipated that we might want to override the
OnBeginPrinting function, so it has added the override to our view class
(in the file DrawVw.cpp). Let's flesh it out.

1. Fill in the boldface code. (Note the changes to the OnBeginPrinting
parameters-they are no longer comments.)

void CMyOrawView::OnBeginPrinting(COC* pOC. CPrintlnfo* pInfo)
{

}

II TOOO: add extra initialization before printing
II Get the printer's resolution in millimeters
int nHorzSize = pOC-)GetDeviceCaps(HORZSIZE): II Millimeters
int nVertSize = pDC-)GetDeviceCaps(VERTSIZE):

II Compute page width and height in logical units (0.01 in).
II Accept double to int truncation (cuts off fractional units).
II TRACE statements let us see values for planning purposes.
ffi--nPageWidth = (double)nHorzSize I 25.4 * 100.0:
TRACE("ffi--nPageWidth = %d\n", ffi--nPageWidth):

ffi--nPageHeight = (double)nVertSize I 25.4 * 100.0:
TRACE("ffi--nPageHeight = %d\n", ffi--nPageHeight):

We calculate using double values for better accuracy. However, we
ultimately want int values, so we assign the double result of the cal
culation to an int variable. This truncates the double value, losing
any fractional units. (Fractional parts of pixels or of hundredths of
an inch aren't worth bothering over.) The truncation causes the
compiler to report two warnings, but we'll ignore those-they're
just warnings, not errors. I've added MFC TRACE statements so I
can visually capture the width and height (on my HP printer). I'll
use those numbers to validate my choice of dimensions for the
drawing surface, ensuring that the printer's printable area for the
chosen paper size is enough.

17: Printing the Document

.\ Ti' IP AppWizard generates OnBeginPrinting with the par~meter names com
"~~ mented out. You'll need to remove the comment notations around those

names, pDe and plnfo, so you can refer to them in the function.

2. Declare ill_nMapMode, ill_nPageWidth, and ill_nPageHeight as data
members of the view class. (See the file DrawVw.h.)

II Attributes
public:

CMyDrawDoc* GetDocument();
ShpType m_typeNext;

Cpen* m_pPenOld
Cpen* m_pPenNew
int IILnMapMode:
int IILnPageWidth:
int IILnPageHeight:

II Pen for drawing shape outlines
II Store pens we create
II Current mapping mode in use
II The width of a printed page
II The height of a printed page

Although we've done our calculations using doubles, we need int
values when we later use the data members in OnPrepareDC.

Specifying the drawing surface dimensions

Up until now, we've been using rough guesswork to set the size of our
drawing surface. In OnlnitialUpdate, we calculate scroll sizes, and it's
there that we set the drawing surface dimensions by specifying a horizontal
and a vertical scrolling range. Now we can use better figures for this.

!~ Try it now
Change the document's GetDocSizes function to reflect a drawing surface
size of 16 inches wide by 9.25 inches high.

Change the following line:

sizeTotal = CSize(1000, 1600);

to

sizeTotal CSize(1600. 925):

519

Rounding Out Your MFC Skills

520

Recall that the drawing surface covers the printable area of two 8.5-by
ll-inch sheets. We double the width of 850 logical units (8.5 x 100 units/
inch) to get a total paper width of1700 logical units (17 inches). Then we
subtract half an inch (50 units) on each side for margins, to get 1600 logi
cal units. Vertically, we'll use 925 units. After deducting an inch (100
units) for top and bottom margins (1100 - 100 = 1000), I've shortened the
vertical dimension of 1000 units (by deducting 75 units or 0.75 inches-a
rough choice) t9 allow plenty of space on the printed page for the header
and footer as well as the drawing surface. We'll come back to this later.
Meanwhile, you can confirm that these dimensions will work in the
printable area of an 8.5-by-ll-inch sheet.

~~ Try it now
Having added the code to calculate dimensions, choose MFC Tracer on
the Visual c++ Tools menu, and then click OK in the MFC Tracer dialog
box. Run MyDraw in the debugger. (Press F5.) Draw a shape or two, either
print the document or ask for a print preview, and then exit the program.
In the Output window, scroll until you can see the effect of our two
TRACE statements in the OnBeginPrinting function. For my printer, the
following figures appear:

m_nPageWidth = 799
m_nPageHeight = 1035

That's pretty close to the figures we arrived at above, taking into account
the extra deduction of 0.75 inches vertically, and should be ample room
for our printing.

Telling MFC Where to Break the Pages
Now we can impart precise information to MFC about how to print the
document. There will be exactly two pages to print. The first page begins
at logical coordinates (0, 0) relative to the drawing surface. On my printer~
the second page begins 800 units to the right of that, at coordinates
(m_nPageWidth, 0). Refer to Figure 17-2 on page 516 to see the layout
with these dimensions.

17: Printing the Document

We have to do two things:

• Tell MFC how many pages there are to print.

• Specify where the second page begins.

Specifying the maximinri number of pages

The best place to tell MFC the maximum number of pages is in the
OnPreparePrinting function. This function calls DoPreparePrinting to
display the Print dialog box. We can intervene to specify the pages before
that dialog displays so that the user will see the default page range.

::;:'7 Try it now
Add the following boldface line to CMyDrawView::OnPreparePrinting:

BOOl CMyDrawView::OnPreparePrinting(CPrintInfo* pInfo)
{

pInfo->SetMaxPage(2):
II default preparation
return DoPreparePrinting(pInfo);

}

MFC has already prepared a CPrintInfo object with information about the
default printer. By calling its SetMaxPage member function, we can put
a 2 into the To box in the Print Range section of the Print dialog box. Try
it by building and running MyDraw and selecting Print on the File menu.

Class CPrintInfo's data members include a pointer to the CPrintDiaiog ob
ject that displays the P:rint dialog box, a flag indicating whether we're in
Print Preview mode, a flag indicating whether we're still looping through
the pages, the current page number, the number of pages (one or two) to
display in Print Preview mode, and a rectangle representing the printable
area. It also has a number of member functions. Check the Help index for
CPrintInfo.

MFC passes a CPrintInfo pointer to nearly all of the view class printing
member functions. Consider it your medium of exchange with MFC for
printing information. It contains the values the user sees in the Print dia
log box, the values retrieved when the user closes the Print dialog box,

521

Rounding Out Your MFC Skills

22

and other values you can change along the way, such as the maximum
number of pages to print.

Setting coordinates for the next page to print

We tell MFC how to print the second page (and subsequent pages in ap
plications that print more than two pages) in the OnPrepareDC member
function. We've met OnPrepareDC before, in Chapter 15 on scrolling. The
view class's OnPaint member function calls OnPrepareDC to set up the
device context it hands to OnDraw, taking scrolling into account. We also
called OnPrepareDC in the mouse message handlers, OnLButtonDown,
OnMouseMove, and OnLButtonUp, when we converted points from de
vice coordinates to logical coordinates with DPtoLP.

Now we're going to override OnPrepareDC for its role in printing. The
OnPrepareDC override that AppWizard has created for us calls the base
class function CScrollView::OnPrepareDC. We'll add some printing code.

~ Tryitnow
Let's override the OnPrepareDC member function in the view class. (Note
that the y coordinate has been negated to adjust for MM_LOENGLISH.)

1. Use the Add virtual function command in WizardBar to add an
override of the OnPrepareDC virtual function.

2. In CMyDrawView::OnPrepareDC, add the boldface lines:

void CMyOrawView::OnPrepareOC(COC* pOC, CPrintInfo* pInfo)
{

}

II TODD: Add your specialized code here and/or call ...

CScrollView::OnPrepareOC(pOC, pInfo);
if(pDC->IsPrinting(»
{

}

int nPages = pInfo->ffi-nCurPage - 1:
int x = (nPages & 1) * ffi-nPageWidth:
int y = (nPages I 2) * -~nPageHeight:

pDC->SetWindowOrg(x, Y):

Page #

17: Printing the Document

We use the IsPrinting member function of class CDC to determine
whether OnPrepareDC has been called for printing or for screen drawing.
This keeps us from executing printing code when we're drawing on the
screen. Inside the if statement, we calculate the x coordinate for the u'pper
left corner of the current page, relative to the origin of the drawing sur
face and the printable area. Notice the use of the bitwise AND operator
(&) to calculate the x coordinate and division by 2 to calculate the y coor
dinate, and notice the negated y coordinate. Table 17-3 shows the x and y
coordinates thus calculated for several different page numbers.

(m_nCurPage) nPages nPages & 1 nPages/2 x y

1

2

3

4

Table 17-3.

0 0 0 0 0

1 1 0 page width 0

2 0 1 0 -page height

3 1 1 page width -page height

x and y coordinates for up to four pages.

Notice how the third column (nPages & 1) in Table 17-3 alternates be
tween 0 and 1-that's the effect of using bitwise &. As the table shows, if
m_nCurPage is 1, x and yare both o. The point (0, 0) specifies the upper
left corner of page 1. If m_nCurPage is 2, x is one times the page width, or
m_nPageWidth (800 units), and y is o. The point (m_nPageWidth, 0)

specifies the upper left corner of page 2. If m_nCurPage is 3, the point (0,

-m_nPageHeight) specifies the upper left corner of page 3, and so on.
This code will continue to work for an indefinite number of pages if you
choose to increase the number of pages possible. (That would require ad
ditional changes in other parts of the program.) Figure 17-4 on the next
page shows how these coordinates map to the drawing surface.

The call to CDC::SetWindowOrg sets a new window origin at the specified
point. Thus for page 1, the window origin is at (0, 0). For page 2, it's at
(m_nPageWidth, O)-halfway across the drawing surface horizontally.
When we draw in OnDraw, the drawing begins at the specified point,
drawing down and to the right from there. This is how a particular page

523

Rounding Out Your MFC Skills

524

gets printed. Check the Help index for SetWindowOrg. For printing pur
poses, page numbers begin at 1, not o.

(0, 0) (m_nPageWidth, 0)

_----. \-----.

1 2

(0, -m_nPageHeight) (m_nPageWidth, -m_nPageHeight)

\ ~ I

3 4 m_nPageHeight

Figure 17-4. Mapping printed pages to parts of the drawing surface.

Jell OTE The printable area, or rectangle, isn't the same on all printers. For ex-
0111 ample, a dot matrix printer might have a different print rectangle than a

laser printer. We've simplified the discussion in this chapter by assuming
that printers are the same, but in the real world, if you're likely to be print
ing on a variety of printers, you should make your code more flexible.
When MFC calls OnPrint, the CPrintlnfo object holds information about the
printing rectangle in plnfo->m_rectDraw. The dimensions of m_rectDraw
might be different from our m_nPageWidth value, so you should really
base calculations on m_rectDraw, obtained for the current printer. I won't
try to deal with this issue here, but be warned.

If we were printing a linear text document, we'd want to set a new y coor
dinate for each page instead of a new x coordinate. That's because text
document pages are laid out vertically, but MyDraw's two pages are side
by side, as shown in Figure 17-5. A spreadsheet application-or MyDraw

17: Printing the Document

with more than two pages-might define its pages as blocks of columns
and rows, and it might print them either as horizontal first, and then ver
tical, or as vertical first, and then horizontal.

[;3][[g-J , 1 __ 2 MyDraw:
o (~ two side-by-side pages

rii
~

: . -- Extrill I ~ A text application: riiilliiil workshe('1 -2 oneor more ti.iJ iJ - vertICal pages

Extent of _ _ .-:-:5- _ _ _. -6-:: mUltiple pages required to print
1 II : I A spreadsheet (or a larger MyDraw):

'Norbhret the whole worksheet area

Figure 17-5. Different ways to layout printed pages.

Adjusting the device context before drawing

We have one more change to make in relation to pagination. Just before
we call OnDraw to draw our shapes, we need to set the window origin
again, this time specifying coordinates derived from the CPrintInfo object
we've been passing around. (Note that the y coordinate has been negated
to adjust for MM_LOENGLISH.)

~('r Try it now
Override the OnPrint member function in the view class.

1. Use WizardBar to override the virtual function OnPrint.

2. In the OnPrint override, add the boldface lines shown on the next
page.

525

Rounding Out Your MFC Skills

526

void CMyOrawView::OnPrint(COC* pOC, CPrintInfo* pInfo)
{

}

II TOOO: Add your specialized code here and/or ...
ASSERT_VALID(pDC):
pDC-)SetWindowOrg(pInfo-)ffl-rectDraw.left.

-pInfo-)ffl-rectDraw.top):

CScrollView::OnPrint(pOC, pInfo);

The call to SetWindowOrg gets the upper left corner of the printable area,

pInfo-)m_rectOraw

and passes its coordinates as the new window origin for drawing. We've
already set this rectangle to correspond to the current page. The call to
SetWindowOrg makes sure we take account of the space needed for a page
header, which will already have been printed at that point. Our function
PrintHeader will adjust the page rectangle to make room for the header,
so this call to SetWindowOrg reflects that change. It prepares the way for
printing the shapes and then the footer. We'll set up the header shortly.
Try commenting out the SetWindowOrg call after adding the header
code in the upcoming "Add the header" section to see what happens
without the call.

~II MPORTANTThe SetWindowOrg call is one of those places where we have to
reverse the sign of the y coordinate, because of the MM_LOENGLISH map
ping mode. Note the minus sign before the second parameter:

pOC-)SetWindowOrg(pInfo-)m_rectOraw.left,
-pInfo->m_rectoraw.top);

The Portrait vs. Landscape Problem
One problem not addressed by MyDraw occurs if the user chooses to
print in landscape mode rather than in portrait mode. Figure 17-6 shows
the MyDraw Print Preview window for a document in both portrait and
landscape modes. Create your own document and try it.

Figure 17-6.

17: Printing the Document

,..: Untitled - ~Y~~~__ __ ___ ._ _._.. __ .__ _. _______ . __ . __ • l!!I~ l3

D D

o °0
CJO D D

Pages 1·2
--~

MyDraw Print Preview in portrait mode

r-:'" Untitled - ~yDlaw _ . _ __ I!!!lliI E3

o
Pages 1-2

D
°0

MyDraw Print Preview in landscape mode

-I
1

MyDraw Print Preview in both portrait and landscape modes.

MyDraw currently assumes that the user will choose to print in portrait
mode, so all the calculations are based on that mode. If the user chooses

landscape, either intentionally or inadvertently, the results are not pretty.

527

Rounding Out Your MFC Skills

528

The drawing is printed in landscape orientation, but the drawing itself is
not adjusted to fit on landscape-oriented pages. Much of the drawing sur
face is cut off at the bottom of the printed page, and the right side of the
drawing surface is nowhere near the right edge of the paper.

A really serious version of MyDraw would need logic that's capable of the
following tasks:

• Detecting when landscape mode has been selected

• Performing its page calculations differently if landscape orientation
is in effect

Unfortunately, both of these tasks are beyond the scope of this book.

For a discussion and a code sample that sets the orientation mode, see
Microsoft Knowledge Base article number Q126897. The article is titled
"How to Change Default Printer Settings in an MFC Application."

\'J, , IP The Knowledge Base (KB) is a part of the Visual C++ documentation we
~'" haven't discussed yet. K6 articles are written by Microsoft support engi

neers as they deal with customer questions. If you have a problem, some
one else has often already discussed the same problem with the support
team. For information on using the KB, use the MSON website to access
the KB. (Select Knowledge Base in the Contents list on the MSON Online
Library page.) One of the options on the KB website is to search by specific
article 10 number. Help for the Visual C++ Introductory Edition doesn't
include the KB, but you can access it on Microsoft's website. The website
address is http://support.microsoft.com. See "Microsoft on the Web and
MSON Online" in Chapter 1 for an easy way to get to the site.

Adding a Header and a Footer
Before we wrap up printing, let's go for a classier look by adding a header
and a footer. A header is a string of text across the top of each page in a
printed document. A footer is a string across the bottom of each page.

The header will contain the user's own title for the document or, if the
document hasn't been titled yet, the string "Untitled drawing." For now,
we'll default to "Untitled drawing." (We'll give the user the ability to
supply a drawing title in Chapter 19.)

17: Printing the Document

The footer will contain the file location of the drawing if it has been
saved, plus the current page number. If the document has been saved, the
footer contains the full path to the file unless the path is too long, in
which case we'll use just the filename returned by CDocument::GetTitle.
If the document hasn't been saved yet, we use the string Untitled in the
footer.

One horizontal line crosses the page below the header and another sits
above the footer. Both are drawn with the default pen in the device con
text. Figure 17-7 shows MyDraw's header and footer.

Unti tl ed dr awing

C:\My Documents\Example.drw

Figure 17-7. MyDraw's header and footer.

Positioning the header and footer requires some calculations or some trial
and error. The biggest issue we face is positioning these elements so they
don't interfere with the shapes the user has drawn. The header, for ex
ample, must be below the top of the printable area but above the top of
the drawing area. The footer must be above the bottom of the printable
area but below the bottom of the drawing area.

529

Rounding Out Your MFC Skills

)30

Let's look at the header and footer code. I'll discuss the calculations as we
go. For a second example of printing a header, check the Help index for
Scribble tutorial and double-click the index keyword "printing." Follow
the links to "Enhance Scribble's printing" and then to "Adds a page
header."

Adding Calls to PrintHeader and PrintFooter Functions
We'll call these functions from OnPrint. We call PrintHeader just before
we call OnDraw to draw the current page, and we call PrintFooter just after .

• Tryitnow ,J
Add calls to the header and footer functions in OnPrint.

void CMyDrawView::OnPrint(CDC* pDC, CPrintlnfo* plnfo)
{

}

II TODO: Add your specialized code here and/or call the base class
ASSERT_VALID(pDC);
PrintHeader(pDC. pInfo);
pDC->SetWindowOrg(plnfo->m_rectDraw.left,

-plnfo->m_rectDraw.top);

CScrollView::OnPrint(pDC, plnfo); II Calls OnDraw to draw shapes
PrintFooter(pDC. pInfo);

It's a good idea to validate the device context here. Then we print the
header, position the page so that drawing won't overlap the header or
footer, call OnDraw ~hrough OnPrint to draw the shapes, and print the
footer.

Adding the Header
A call to the helper function PrintHeader prints the header on each page.

~r~ Try it now

Add the PrintHeader function and a new view class data member.

1. Use the Add Member Function command in WizardBar to add the
following function to the view class:

17: Printing the Document

void CMyDrawView::PrintHeader(CDC* pDC. CPrintlnfo* plnfo)
{-

}

II Start header at left margin.
pDC->SetTextAlign(TA-LEFT);

II Print the header string.
pDC->TextOut(plnfo->~rectDraw.left. -25. ~strDrawing):

II Draw a line under the header and across the page.
TEXTMETRIC tm;
pDC->GetTextMetrics(&tm);
int y = -35 - tm.tmHeight;

pDC->MoveTo(0. y);
pDC->LineTo(plnfo->~rectDraw.right. y);

II Compensate for the header with the rest of the drawing.
II Subtract space used by header from drawing rectangle.
y -= 25:
plnfo->~rectDraw.top += y;

2. In the file DrawVw.h, add the following new data member to class
CMyDrawView:

II Attributes
public:

CMyOrawOoc* GetOocument();

int m_nPageHeight;
CString ~strDrawing;

II The height of a printed page
II User's title for the drawing

3. Initialize the m_strDrawing data member in the view class con
structor, CMyDrawView::CMyDrawView (file DrawVw.h).

CMyOrdwView::CMyOrawView()
{

II TODD: add construction code here

m_pPenNew = NULL;
~strDrawing = "Untitled drawing":

}

We'll store the drawing title in m_strDrawing. In Chapter 19, we'll pro
vide a Drawing Title dialog box so users can specify the value of
m strDrawing.

531

Rounding Out Your MFC Skills

532

Positioning the header involves two steps in the PrintHeader function.
First, we left-align the header text on the page by calling CDC::SetText

Align. Then we position the text in the x and y parameters to CDC::Text

Out. We start the text at the left edge of the printable area, given by

plnfo->m_rectDraw.left

and place it 25 logical units below the origin-that's the negative y coor
dinate in the TextOut call. It's negative, remember, because of the coordi
nate system imposed by the MM_LOENGLISH mapping mode.

To underscore the header, we use CDC::GetTextMetrics to get the height of
a character in the device context's default font. (We could create a new
font and select it into the device context first.) We place the underscore
35 logical units down from the origin, and also move down the character
height-this puts the line 10 units below the header text. Then we use
CDC::MoveTo to position the pen and CDC::LineTo to draw the under
score. We specify that it stops at the right edge of the printable area with

plnfo->m_rectDraw.right

Then comes the interesting step-adjusting the area we can print to by
adjusting pInto's m_rectDraw data member. We first come down an addi
tional 25 units below the underscore, and then we alter the drawing rect
angle in the CPrintInfo object. We've just limited drawing MyDraw's
shapes to a slightly smaller area.

Adding the Footer
The footer is a bit trickier than the header. It was easy to know where to
start the header. My footer strategy is two-fold:

• Allow for the footer by subtracting some of the drawing area.
Shrink the drawing area in the vertical dimension by about 75 logi
cal units-I know the printable area of a standard sheet of paper, on
my printer, is about 1000 units, but I use a figure of 925 units. That
leaves a sizable area below the drawing surface for the footer.

• Use the freed up space as a basis for calculating the footer's loca
tion. This is a matter of determining where to put the y coordinates

'7: Printing the Document

for the footer text and for the separator line above the footer in rela
tion to our free space.

Let's add the footer, test both header and footer, and then discuss the
footer code.

~ Tryitnow
Use Add Member Function to add the PrintFooter function to the view
class.

void CMyDrawView::PrintFooter(CDC *pDC. CPrintInfo *pInfo)
{

}

CMyDrawDoc* pDoc = GetDocument();
ASSERT_VALID(pDoc);

II Construct a footer string with document's pathname or title
II and current page number.
II If document's pathname is too long or doc hasn't been saved.
II use its title in footer instead of pathname.
const int LINE_WIDTH = 75;
CString strFooter = pDoc->GetPathName();
CString strTitle = pDoc->GetTitle():
int nLength = strFooter.GetLength();
if(nLength .> LINE_WIDTH II strTitle == "Untitled")

strFooter = strTitle:

II Add the page number to the footer.
CString strPage;
strPage.Format("%d". pInfo->LnCurPage);
strFooter = strFooter + " " + strPage;

pDC->SetTextAlign(T~LEFT);

pDC->TextOut(pInfo->LrectDraw.left.
pInfo->LrectDraw.bottom + 100. strFooter);

II Draw a line over the footer and across the page.
TEXTMETRIC tm;
pDC->GetTextMetrics(&tm);
int y = pInfo->LrectDraw.bottom + 90 + tm.tmHeight:

pDC->MoveTo(0. y);
pDC->LineTo(pInfo->LrectDraw.right. y);

533

Rounding Out Your MFC Skills

534

~-~,-- Try it now
Test the header and footer code. Build and run MyDraw. Draw a few
shapes. Click Print Preview on the File menu. You should see a header
and a footer on each page of the printout. Close Print Preview and click
Print on the File menu to see the actual printed results. Save the drawing
and print again. The footer should now reflect the path to the file in
which you stored the drawing. Exit MyDraw.

Most of the code in PrintFooter is used to construct the string to print.
First, we obtain a document pointer and use it to gather information from
the document. If the document has been saved, calling CDocument::Get
PathName returns the path to the file and calling CDocument::GetTitle
returns the filename (usually the name without the extension). If the
document hasn't been saved, GetPathName returns an empty string and
GetTitle returns the string Untitled. We take the length of the path using
CString::GetLength. If the length exceeds 75 characters (an approximate
line length that I found by printing the footer a few times, adjusting the
value as I went), or if the document has not yet been saved, we use the

title instead of the path.

Next, we obtain the page number from our CPrintInfo parameter and for
mat it as a string using CString::Format. Then we append a few spaces to
strFooter and append the page number. The strFooter variable now con
tains something like this: Title 1.

With all the calculation finished, we align the text on the left as we did
with the header and output the footer string with CDC::TextOut. The co
ordinates at which we begin printing the footer text are determined by the
printable area-but take into account our need for a little extra space for
the footer. The y coordinate is the interesting one. By adding 100 logical
units (one inch) to m_rectDraw.bottom, we really subtract that inch from
the space available for drawing shapes. It subtracts because we're deal
ing with ~egative-signed coordinates due to the mapping mode. (I settled
on 100 units through a little trial and error.)

Drawing a line across the page just above the footer is similar to what we
did for the header. We draw the line one character-height plus 10 units
above the footer text.

17: Printing the Document

Wrapping Up
We'll add one last touch to our printing code. Print Preview can display
either one or two pages at a time. Since we always have two pages, we'll
tell MFC to show both by default.

Try it now
Change the view's OnPreparePrinting function so that it looks like the fol
lowing code. Note that I've introduced an int variable to capture the re
turn value of the call to DoPreparePrinting-that's the value I want to
return from OnPreparePrinting, but I can't return it until I set the number
of preview pages.

BOOl CMyDrawView::OnPreparePrinting(CPrintInfo* pInfo)
{

}

pInfo-)SetMaxPage(2);
int nResult = DoPreparePrinting(pInfo);
pInfo->~nNumPreviewPages = 2:
return nResult:

In this case, we've already shown the Print dialog to the user. On return
ing from that, we use pInto to set the number of pages to show in Print
Preview.

~I/ ARNING One last word of caution about code for printing. Printers and
~f'd1V1 printer drivers vary so widely that you should always test your printing code

as thoroughly as possible on as wide a variety of printers as possible.

Printing Topics Not Covered
Among the printing topics I haven't covered are the following:

• Allowing the user to print just the current selection or arange of
pages rather than the whole document.

• Allowing the user to print multiple copies in collated or uncollated
order.

• Allowing the user to adjust margins and otherwise edit pages while
in Print Preview mode. This is advanced stuff.

535

Rounding Out Your MFC Skills

536

Some of these topics are covered in Jeff Prosise's Programming Windows 95

with MFC (Microsoft Press, 1996) or in Charles Petzold's Programming
Windows, 5th edition (Microsoft Press, 1999). Chapter 21 gives more infor
mation about these books.

Try It Yourself

Here's a little extra credit.

1. Tinker with my code.

Try changing some of the coordinate values in PrintHeader and
PrintFooter to see what happens. You'll get a more concrete sense of how
the elements of the printed page fit together.

2. Check out the Microsoft Knowledge Base online.

On the Visual C++ Help menu, select Microsoft On The Web and then
select the MSDN Online command. Once your browser connects to the
website, follow the link in the left-hand pane to MSDN Online Library.
Take a look at the MSDN page, and then scroll down and click Knowledge
Base in the Contents listing on the left side. This takes you to the Mi
crosoft Support Online site, where you can search the Knowledge Base.
This service is free, but you will have to register for it.

What's Next?
In Chapter 18, we'll make the drawing tools-rectangle and ellipse-more
visible and easier to use by putting them on a new drawing toolbar. We'll
also add a new Selection tool to the toolbar and use it to implement a se
lection mode that enables the user to select a shape and thereby display
selection handles. Selection handles are the nifty little black knobs you
see on selected graphics in commercial drawing programs.

Chapter

Toolbars and Selections
So far, the only way I've shown you to choose a drawing tool in MyDraw
is by way of the Tools menu. But most commercial drawing applications
place tools such as our Rectangle and Ellipse commands on a toolbar for
easier access. Step 8 of MyDraw adds a second toolbar that offers three
tools: the Rectangle and Ellipse commands and a Selection command.

Clicking the Rectangle or Ellipse toolbar button sets the type of shape to
draw next. Clicking the Selection button puts MyDraw into selection mode
instead of drawing mode.

Adding a Toolbar
MyDraw already has one toolbar, which App Wizard provided back in step 0

in Chapter 7. Adding a second toolbar requires three steps: creating a new
toolbar resource, drawing its buttons, and then adding the code to support
the toolbar.

The Toolbar Classes
Classes GToolBar, GStatusBar, and GDialogBar all derive from class
GGontrolBar in the Microsoft Foundation Class Library 6.0 (MFC). In ad
dition, there's a new kind of toolbar, GReBar. Like the toolbars in Microsoft
Internet Explorer, GReBar is a rebar control-a container for a child window,

537

Rounding Out Your MFC Skills ,~ ~~':o/.~~_*,, __________________ _

538

usually a common control. Rebars can consist of multiple bands. Each

band can have a gripper bar that the user grabs to drag the band to a dif
ferent position on the rebar, plus a bitmap, a text label, and a child win

dow. AppWizard supplies an option for using rebar-style toolbars. (You
can see what this looks like by running App Wizard and selecting the
Internet Explorer ReBars option in step 4 of 6. Try it.)

Except for CDialogBar, all of the MFC control bar classes are really wrap
pers for underlying Microsoft Windows common controls. For example,
CToolBar wraps class CToolBarCtrl, which wraps the Windows toolbar
common control. You can manage your toolbar with CToolBar members,
or you can use CToolBar: :GetToolBarCtrl to get a pointer to a CToolBarCtrl

and take additional actions through its members. (A CDialogBar is an
MFC concoction that provides a toolbar that can contain any control you
can put in a dialog box.)

For information about MFC's control bar support, check the Help index
for the individual classes named above. Also check the Help index for
control bar and follow the various links in the topic "Control Bar Topics."

Creating the New Toolbar Resource
A tool bar resource is similar to other resources. It has an ID, which is
used to load the resource at run time, and it has an appearance, which is

a bitmap for each button. We'll first create the new resource and define its
ID. Then we'll draw the button images using the Toolbar editor.

~~ Try it now
Use the Insert menu to create a new toolbar resource.

1. Choose Resource from the Insert menu.

2. In the Insert Resource dialog box, double-click Toolbar. The Toolbar

editor opens, showing one blank button image, as shown in Figure
18-1.

3. On the ResourceView tab in the Workspace window, right-click the

IDR_TOOLBARl resource ID in the Toolbar folder, and then choose

Properties from the context menu that pops up. (Alternatively, you

18: Toolbars and Selections

can select the resource ID using the left mouse button and choose
Properties from the View menu.)

4. In the Properties window for the toolbar, change the ID to
IDR_DRAWING. Press Enter to close the Properties window.

". MyDraw - Microsoft Visual C++ - [MyDraw rc - IDR_ TOOLBARl (Bitmap)] II!!!I~ EJ

Beady·

Figure 18-1. The Toolbar editor.

~ Try it now
Draw the button images in the Toolbar editor. The first button is already
selected, and the Pencil tool is selected on the Toolbar editor's Graphics
toolbar. Black is selected as the foreground drawing color on the Color In

dicator of the editor's Color Palette. The button's initial background is
light gray. For information about using the Toolbar editor, check the Help
index for toolbar editor. Double-click the index entry "Toolbar editor"
(Note the capital n to open the topic "Overview: Toolbar Editor."

1. To draw the first button, for our Selection command, use the pen
cil tool to draw an arrow pointing up and to the left, as shown in

Figure 18-2 on the next page. Then choose Properties from the View
menu. In the ID box, type ID_TOOL_SELECTION. In the Prompt box,

type Select a shape \nSelect.

539

Rounding Out Your MFC Skills

Figure 18-2.

540

2. To draw the second button, for our Rectangle command, click the
new second button that appears to the right of the first button in the
Toolbar editor. Use the Rectangle tool on the Graphics toolbar to
draw a rectangle on the button. Choose Properties from the View
menu. In the ID box, select the existing ID for the Rectangle com
mand, ID_TOOL_RECTANGLE. The Prompt box might already say
"Draw a rectangle" because we associated that prompt text with
the ID when we created the ID. If it doesn't, type in the prompt text.
At the end of the prompt, type \nRectangle. The final prompt string
is "Draw a rectangle \nRectangle."

3. To draw the third button, which we will use for our Ellipse com
mand, click the new third button to the right of the second button.
Use the Ellipse tool on the Graphics toolbar to draw an ellipse on
the button. Choose Properties from the View menu. In the ID box,
select ID~TOOL_ELLIP$E. The Prompt box might already say,
"Draw an ellipse." If not, type the following prompt text: Draw an
ellipse \nEllipse.

4. For a little fun, use the Paint Bucket tool on the Graphics toolbar to
fill areas of the new buttons with different colors. I've colored the
background of the Selection button yellow and the backgrounds of
the other buttons cyan (light blue).

5. Save your work and close the Toolbar editor by choosing Close
from the File menu.

The new toolbar in the Toolbar editor.

Toolbar command IDs

Notice that we gave our Rectangle and Ellipse buttons the same command
IDs that we gave to the menu items for those commands. The command
is its ID. We can associate that ID with any number of user interface
elements-menu items, toolbar buttons, or accelerators-to cause the
interface element to issue the command. As a result, the Rectangle and

18: Toolbars and Selections

Ellipse toolbar buttons now duplicate the Rectangle and Ellipse com
mands on the Tools menu.

Tooltips

Adding \nText to the prompt string for each command supplies a tooltip
for the button. While MyDraw is running, when we rest the mouse pointer
on the toolbar button, it displays a tooltip-a small yellow box containing
the text we supplied. In this case, the Selection button will say" Select,"
the Rectangle button will say "Rectangle," and the Ellipse button will say
"Ellipse." Adding tooltips for your toolbar buttons is that easy. You can
also add tooltip text at other points in the development process-when
you create the ID in the first place (for a menu item) and any time after
that (using the String editor).

Editing an existing tool bar

You can also edit the buttons on an existing toolbar. The Scribble tutorial
provided by Visual c++ describes how to add a button and draw the button's
bitmap. Check the Help index for Scribble tutorial and double-click the
subtopic "binding visual objects to code." Scroll down in the topic "Bind
ing Visual Objects to Code Using WizardBar" and follow the link to "Edit
Scribble's Toolbar."

Writing the Toolbar Code
The code to support our new toolbar consists of the following elements:

• Additions and changes to the OnCreate member function of class
CMainFrame, our frame window class. Because a toolbar is just a
child window of the application's main frame window, we put the
toolbar-related code there. (For a brief discussion of child windows,
see the sidebar on the next page, "Parent and Child Windows vs.
Owner and Owned Windows.")

• Slight modifications to the existing OnToolRectangle and OnTool
Ellipse handlers, which are in the view class.

Adding the second toolbar's code is mostly a matter of copying and then
modifying what App Wizard supplied for the first toolbar.

541

Rounding Out Your MFC Skills

542

Parent and Child Windows vs. Owner and Owned Windows

Except for "top-level windows" such as the main window of an ap
plication, every window is either the child of a parent window or a
window owned by an owner window. Windows such as our toolbars
and our view are children of the main application frame window.
Dialog box windows, on the other hand, are owned windows.
Owned windows can themselves be top-level windows, on a par
with the window that owns them. The owner is usually the window
that creates an owned window, such as when our view window cre
ates a dialog box. (We'll do this in Chapter 19.)

The view and the toolbars in an MFC application are child windows.
Child windows are embedded directly in a parent window and have
the style WS_CHILD. No part of a child window lies beyond the
parent's bounds. But a dialog box can lie partly or completely out
side its owner window. Dialog boxes and other owned windows usu
ally have the style WS_POPUP instead of WS_CHILD. You can use
the CWnd::GetParent function to obtain any child window's parent
or any owned window's owner.

Try the following experiment: Make the main window in Visual C++
less than maximized (but not minimized). Open a dialog box in the
program, and drag it completely outside the program's window. Now
let's try to drag a child window outside the program window. Restore
a maximized document window, such as the Source Code editor
window (not a dockable window) in Visual C++. (You'll find the Re
store button between the Close button and the Minimize button.) Then
try to drag the window outside the main program window. You can't
because it's a child window. (You can, however, drag Visual C++'s
dockable windows out, which suggests that they're implemented as
pop-up, or owned, windows.) I discussed Visual C++ dockable and
document windows in Chapter 1.

Check the Help index for parent window and child window. Also
check the Help index for owner window and owned window.

18: Toolbars and Selections

Naming the Standard and Drawing tool bars

To distinguish the toolbars, we'll call the toolbar created by App Wizard
the Standard toolbar and the new toolbar the Drawing toolbar. We need to
name data members of class CMainFrame accordingly.

!~ Try it now
In the class declaration for class CMainFrame (in the file MainFrm.h), there's
a protected section below the implementation comment where the first
toolbar, m_wndTooIBar, is declared. Change the name m_wndToolBar to
m_wndTooIBarStd. Also, add the second toolbar as m_wndTooIBarDraw:

protected: II control bar embedded members
CStatusBar m_wndStatusBar;
CToolBar ~wndToolBarStd:
CToolBar ffi-wndToolBarDraw:

II Generated message map functions

Notice the variable m_wndStatusBar, a CStatusBar object that defines the
program's status bar. The two toolbars are CToolBar objects.

Creating the toolbars at run time

CMainFrame::OnCreate is called when the main frame window for
MyDraw is created. At that time, we create the toolbars from our toolbar
resources, set the styles of the toolbar buttons, and specify docking infor
mation if the toolbars are to be dockable to a side of MyDraw's window. I
discussed the code for the default toolbar in "The OnCreate Handler" in
Chapter 8. The frame window manages displaying the toolbars, which
share space in the window with the view.

!~ Try it now
Let's start by cloning the creation code for the Standard toolbar to use for
the Drawing toolbar:

1. In CMainFrame::OnCreate (in the file MainFrm.cpp), change the name
m_wndToolBar to m_wndToolBarStd in two places: the CreateEx call
and the LoadToolBar call, as shown by the boldfaced items.

543

Rounding Out Your MFC Skills

544

II Changed window name when adding new tool bar
II Create the Standard toolbar
if (!m-wndToolBarStd.CreateEx(this, TBSTYLE_FLAT, WS_CHILD

I WS_VISIBLE I CBRS_TOP I CBRS_GRIPPER I CBRS_TOOLTIPS
I CBRS_FLYBY I CBRS_SIZE_DYNAMIC) I I

!m-wndToolBarStd.LoadToolBar(IDR_MAINFRAME))
{

TRACE0("Failed to create toolbar\n"):
return -1: II fail to create

}

2. Copy all of the code shown above-the CreateEx call, which in
cludes a call to LoadToolBar, plus the body of the if statement-and
paste it just below where you copied it. You end up with two cop
ies of the same code fragment.

3. In the second copy of the toolbar creation code, change the toolbar
name from m_wndToolBarStd to m_wndToolBarDraw in two places
and change the ID passed to LoadToolBar from IDR_MAINFRAME

to IDR_DRAWING. Make the second copy look like this:

II Added for new toolbar
II Create the Drawing toolbar
if (!m-wndToolBarDraw.CreateEx(this, TBSTYLE_FLAT, WS_CHILD

{

}

I WS_VISIBLE I CBRS_TOP I CBRS_GRIPPER I CBRS_TOOLTIPS
I CBRS_FLYBY I CBRS_SIZE_DYNAMIC) I I

!m-wndToolBarDraw. LoadTool Bar(IDR-DRAWING))

TRACE0("Failed to create toolbar\n"):
return -1: II fail to create

You might also want to customize the error message in each if statement
"-

to indicate which toolbar couldn't be created.

Setting styles for the Drawing tool bar
One thing that the CToolBar::CreateEx call does is specify a set of styles
for the toolbar. Styles are flags that tell Windows how to display and op
erate the toolbar. Some of the styles have the prefix WS_, for "window
style." These styles can be applied to any window. (Check the Help index
for window styles.) Others have the prefix CBRS_, for "control bar style."
These styles apply only to control bars (the generic name for toolbars,
status bars, and dialog bars in MFC).

18: Toolbars and Selections

For information about the control bar styles, check the Help index for
chrs and then find the specific style you want. Also check the Help index
for CreateEx and choose the "CToolBar::CreateEx" topic. CreateEx is an
extended version of the original Create function. Extending a function
is a typical way in which Microsoft adds new functionality to Windows
without breaking older code. Create is still supported; it just can't do as
much as CreateEx can.

!~ Try it now
Change the Drawing toolbar's style so that it docks by default on the left
edge of MyDraw's main window rather than on the top. In the long list of
toolbar styles for m_wndToolBarDraw, change CBRS_TOP to CBRS_LEFT:

if (!m_wndToolBarDraw.CreateEx(this. TBSTYLE_FLAT. WS_CHILD
I WS_VISIBLE I CBRS_LEFT I CBRS_GRIPPER I CBRS_TOOLTIPS
I CBRS_FLYBY I CBRS_SIZE_DYNAMIC) I I ...

Setting the behavior of the Drawing tool bar buttons

On the Standard toolbar in MyDraw, all of the buttons are independent
pushbuttons. When the user clicks a button, it appears to depress briefly,
then springs back to its original position. On the Drawing toolbar, we want
a different behavior because the buttons put the application into mutually
exclusive modes. The buttons should behave like a group of radio buttons
in a dialog box-clicking a button "turns it on" (causing it to appear de
pressed) and clicking another button "turns off" the previous button.
Only one button can be "on" at a time. By default, toolbar buttons have
the style TBBS_PUSHBUTTON, which provides the behavior we see on
the Standard toolbar. We want to set the buttons on the Drawing toolbar
to TBBS_CHECKGROUP, to switch to radio-button-like behavior.

!~ Try it now
Specify styles for the buttons on the Drawing toolbar. Just below the
CreateEx call for m_wndToolBarDraw, add the boldface code on the fol
lowing page to walk through the buttons on the toolbar and set the style
for each.

545

Rounding Out Your MFC Skills

546

return -I; II fail to create
}

II Set the style of Drawing toolbar buttons
const int NUM_DRAW_BUTTONS = 3:
for(int i = 0: i < NUM_DRAW_BUTTONS: i++)
{

}

ffi-wndToolBarDraw.SetButtonStyle(i.
ffi-wndToolBarDraw.GetButtonStyle(i) I TBBS_CHECKGROUP):

if (!m_wndStatusBar.Create(this) I I

The trick here is to call CTooIBar::SetButtonStyle with the index of a but
ton as its first parameter. !he second parameter is the result of a call to
GetButtonStyle combined with the TBBS_CHECKGROUP style using the
bitwise OR operator (I). This keeps the button's existing (default) styles
but adds the new style to them.

Assigning titles for floating toolbars

Both of MyDraw's toolbars can either dock or float. Right now, when they
float they have no window title. We'd like them to be better identified.
(Try floating a toolbar in Visual C++-it has a title.) We simply call the
CWnd::SetWindowText member function that class CToolBar inherits. A
toolbar is a window, so it has all of CWnd's capabilities as well as those
added by CControlBar and CToolBar.

~;t---- Try it now
Add the following boldface code to CMainFrame::OnCreate to specify
window titles for the toolbars when they float. (Put it just below the code
that sets the toolbar button styles.)

for(int i = 0; i < NUM_DRAW_BUTTONS; ;++)
{

m_wndToolBarDraw.SetButtonStyle(i.
m_wndToolBarDraw.GetButtonStyle(i) I TBBS_CHECKGROUP);

18: Toolbars and Selections

II Set window captions for when toolbars are floating.
IILwndToolBarStd.SetWindowText("Standard"):
IILwndToolBarDraw.SetWindowText("Drawing"):

if (!m_wndStatusBar.Create(this) I I

Making the toolbars dockable

The last thing we need to do in CMainFrame::OnCreate is make the Draw
ing toolbar dockable. This requires three steps:

1. Enabling docking for the toolbar object.

2. Enabling docking for the frame window to which the toolbar will
dock.

3. Docking the toolbar in its initial docking position.

We need to take one additional step for the Standard toolbar. It's already
set up for docking, but we need to change the toolbar name in that code.

~ Tryitnow
Make the boldfaced changes in CMainFrame::OnCreate:

II TODO: Delete these lines if you don't want the toolbars to
II be dockable
II Changed window name while adding new tool bar
IILwndToolBarStd.EnableDocking(CBRS_ALIGN_ANY);
IILwndToolBarDraw.EnableDocking(CBRS-ALIGN-ANY):
EnableDocking(CBRS_ALIGN_ANY);
II Changed name while adding new toolbar
DockControlBar(&lILwndToolBarStd);
DockControlBar(&lILwndToolBarDraw):

Return 0;

The flag CBRS_ALIGN_ANYallows the toolbars to dock at any edge of the
main frame window. Calling CFrameWnd::DockControlBar docks a toolbar
to the initial edge we specified when creating it: the top edge for the Stan
dard toolbar and the left edge for the Drawing toolbar.

547

Rounding Out Your MFC Skills

548

You can build MyDraw at this point and run it to see the new toolbar. The
Rectangle and Ellipse buttons already work because they're already wired
up to the appropriate command handlers. We have to write some code to
implement the Selection button. You can see at this point, though, that
MyDraw is starting to look more impressive.

Implementing Selection Mode
The Selection button turns on selection mode. In this mode, the user can
click inside the bounding rectangle of a shape to select it. The shape takes
on a special appearance to indicate that it is selected: selection handles
appear around its bounding rectangle, as shown in Figure 18-3. We'll al
low the selection of only one shape at a time. Selecting a new shape will

. turn off the selection handles on any previously selected shape. A more
sophisticated program might allow selecting multiple shapes at the same
time so that the user can apply a command to all of the selected shapes,
such as dragging them together to a new location.

~;. Untitled - MvDraw I!lllIil ~

1"19 __ :;~~'T,;{;I:~;;t ~~-~~ 'I-'~;::,",-<,~:-~' " :<~ , y ":'-~>l<' ,:-,,: ":',::"
r'::'-

II ,\
','p
,0

Figure 18-3. A shape with selection handles.

These things also occur in selection mode:

• The OnLButtonDown handler behaves differently. It distinguishes
between selection mode and drawing mode.

• Clicking the drawing surface cancels any previous selection and re
moves the selection handles-unless the click occurred inside the

18: Toolbars and Selections

bounding rectangle of an existing shape, in which case that shape
becomes the new selection. It also cancels selection mode (and re
stores the selected shape's state to what it was before selection mode
was invoked).

• The user can click shape after shape, moving the selection handles
from one shape to another. Selecting a drawing tool instead cancels
selection mode and any existing selection.

We should ultimately go further than just selection, of course, and allow
the user to edit the selected shape. Unfortunately, in this book we don't
have space to add code for (and discuss at length) such features as these:

• Dragging the selected shape to a new location

• Dragging the selection handles to resize the shape

• Choosing commands such as Bring Forward, Send Behind, Bring To
Front, and Send To Back, which reorder the list of shapes so that a
shape can be moved "in front of" or "behind" another shape

How Selection Mode Works
Selection begins when the user clicks the Selection button on the Draw
ing toolbar. This sets a variable that defines the current mode: selecting or
drawing. The next step occurs in OnLButtonDown, when the user clicks
the drawing surface with selection mode on. In selection mode,
OnLButtonDown skips its usual shape creation code and calls a function
to do hit testing-detecting where the mouse was clicked and relating that
to some object that might have been clicked. Our hit testing routine walks
the shape list, testing to see if the mouse location is inside the bounding
rectangle of any shape. The key to our hit testing is that we walk the list
from the most recently added shape back toward the shape that was first
added.

Picture the shapes as if each were drawn on its own layer of transparent
plastic. (See Figure 18-4 on the next page.) The bottom layer contains the
first shape. The top layer contains the most recently drawn shape. Look
ing down through the layers of plastic, we see all of the shapes. Some
might appear to overlap. The layers give us a way to determine which

549

Rounding Out Your MFC Skills

550

shape is intended when the user clicks on an area where two shapes over
lap. We walk the list of shapes in a consistent way-from newest to oldest
(top layer of plastic to bottom layer). When the mouse location falls within
a shape's bounding rectangle we stop walking. A "hit" occurs on the shape
in the layer closest to the top. Windows uses a similar top-to-bottom
mechanism for its overlapping windows, called Z order (named for the
third axis in a three-dimensional coordinate system).

-" -- , ,
, , 10n \a~e{
~t' , --

Head
--

- -'~ - - Dottom \a~e{
',..----0

Tail

Position in
shape list

Figure 18-4. Shapes drawn in layers.

Layers on

drawing surface

,

To track which shape, if any, has been selected, we add an m_bSelected
data member to each shape. This member is set to true when the shape is
selected and to false when it isn't.

We'll look at the code for selection in four parts:

• The code that sets or cancels selection mode

• The code that makes class CShape and its derived classes selectable

• The code that does the hit testing to see whether a shape has been
selected

• The code that draws the selection handles

The Selection Button
First, we need a convenient way to turn selection on and drawing off, and
vice versa. To keep the toolbar buttons in sync, we'll treat selection mode
as an extra shape type. When that type is active, selection mode is on and
drawing is off. We'll also set a Boolean variable when selection mode is
on and use that in our hit-testing code.

18: Toolbars and Selections

.~Y Try it now

To synchronize the toolbar buttons, we'll revise the ShpType enumera
tion above class CShape, adding a new shape type. We'll set ShpType to
ShpSelecting in the OnToolSelection handler that responds to a click on
the Selection button. We'll cancel selection mode in the OnToolRectangle
and OnToolEllipse handlers when other shape types are selected.

1. In the file Shape.h, change the ShpType enumeration to add the
new shape type:

enum ShpType
{

} ;

shpSelecting. II With selection tool in effect
shpRectangle.
shpEllipse

2. Use the Add Windows Message Handler command to add an
OnToolSelection handler in the view class, associated with com
mand ID_TOOL_SELECTION (the ID we assigned to the Selection
button). Add the boldface code to the code that WizardBar provides:

void CMyDrawView::OnToolSelection()
{

}

II TODO: Add your command handler code here
m-typeFormer = m-typeNext: II Save old tool for restoration
m-typeNext = shpSelecting: II For toolbar management
m-bSelectionMode = true:

The m_typeFormer data member remembers which shape tool was
in effect when we entered selection mode so we can return to that
tool when the mode ends. The m_bSelectionMode data member is
set to true if selection mode is on, and set to false if not.

3. Use the Add Windows Message Handler command to add an up
date handler for OnToolSelection:

void CMyDrawView::OnUpdateToolSelection(CCmdUI* pCmdUI)
{

}

II TODO: Add your command update UI handler code here
pCmdUI-)SetCheck(m-typeNext == shpSelecting):

551

Rounding Out Your MFC Skills

552

4. Add two new data members to the view class declaration in the
DrawVw.h file:

CString m_strDrawing;
bool ~bSelectionMode:

II User's title for the drawing
II True if selection mode in effect
II Save current tool while selecting ShpType ~typeFormer:

5. Initialize the new data members in the view class constructor:

m_strDrawing = "Untitled drawing";
~bSelectionMode = false: II Added for selection
~typeFormer = ~typeNext: II Added for selection

6. Cancel selection mode in the existing On ToolRectangle and
OnToolEllipse handlers (in the view class). Here are the two han
dlers with the revision:

void CMyDrawView::OnToolRectangle()
{

}

II TODO: Add your command handler code here
m_typeNext = CShape::shpRectangle;
CancelSelection():

void CMyDrawView::OnToolEllipse()
{

}

II TODO: Add your command handler code here
m_typeNext = CShape::shpEllipse;
CancelSelection():

7. Use the Add Member Function command to add the following
helper function, which is called from the tool command handlers:

void CMyDrawView::CancelSelection()
{

}

II End selection mode because another tool was chosen
II Other tool sets ~typeNext to other than shpSelecting
CMyDrawDoc* pDoc = GetDocument():
ASSERT_VALID(pDoc);
~bSelectionMode = false:
pDoc-)UpdateAllViews(NULL):

Canceling the selection has two effects: m_bSelectionMode is set to false,
and we force redrawing by calling Up da teAll Views.

18: Toolbars and Selections

III OTE The Rectangle and Ellipse commands are represented both on the
VIi'4 toolbar and on the menu. Should the Selection command also be on the

menu? Hint: the toolbar can be hidden.

Selection Code in the Shapes
Each shape has an m_bSelected data member that is set to true if the shape
is selected and set t9 false if not. We'll set a shape's selection value when
we create the shape and again during hit testing. When shapes are redrawn,
they can draw themselves with or without selection handles.

~ Tryitnow
Add selection code to the shape classes. We'll fill in the details of handle
drawing later in the chapter.

1. In class CShape (in the file Shape.h), add the m_bSelected data
member:

II Attributes - deliberately left public for easy access
II Note: no longer need an m_typeShape member
CRect m_boxShape;
bool m_bTransparent;
UINT m_nColorShape;
bool m-bSelected:

II Overridables and operations

2. Initialize m_bSelected in the CShape copy constructor and the over
loaded assignment operator function in Shape.h:

II Copy constructor
CShape(const CShape& s)
{

}

m_boxShape = s.m_boxShape;
m_bTransparent = s.m_bTransparent;
m_nColorShape = s.m_nColorShape;
m-bSelected = s.m-bSelected:

II Overloaded assignment operator
CShape& operator=(const CShape& s)

(continued)

553

Rounding Out Your MFC Skills

554

{

}

m_boxShape = s.m_boxShape;
m_bTransparent = s.m_bTransparent;
m_nColorShape = s.m_nColorShape;
mLbSelected = s.ffi-bSelected:
return *this;

3. Initialize m_bSelected in the CShape default constructor in the file
Shape.cpp:

CShape::CShape()
{

}

m_boxShape.SetRect(0. 0. 0. 0);
m_bTransparent = true;
m_nColorShape = IO_COLOR_BLACK;
ffi-bSelected = false:

4. Add a parameter to the Draw function declarations (in the file
Shape.h), classes CShape, CShpRectangle, and CShpEllipse-note
that the modifier virtual will only appear in class CShape:

virtual void Oraw(COC* pOC. bool bSelectionModeOn) ...

5. In classes CShpRectangle and CShpEllipse (but not CShape, be
cause it is virtual), revise the Draw function so it looks like this (in
the file Shape.cpp):

void CShpRectangle::Oraw(COC* pOC. bool bSelectionModeOn) ...
{

}

pOC->Rectangle(m_boxShape);
if(ffi-bSelected && bSelectionModeOn)

DrawHandles(pDC):

void CShpEllipse::Oraw(COC* pOC. bool bSelectionModeOn) ...
{

}

pOC->Ellipse(m_boxShape);
if(ffi-bSelected && bSelectionModeOn)

DrawHandles(pDC):

After drawing the shape, Draw adds selection handles to it if the
shape is marked as selected in m_bSelected and if the bSelection
ModeOn parameter indicates that selection mode is on. We don't
want to draw the handles if we aren't in selection mode.

18: Toolbars and Selections

6. Add an array of CRect objects just above the CShape declaration (in
the file Shape.h):

enum ShpType
{

} ;

shpSelecting. II With selection tool in effect
shpRectangle.
shpEllipse

static CRect arHandles[8]:

class CShape : public CObject

We'll use the array later when we calculate sizes and positions for a
shape's selection handles.

7 .. Use the Add Member Function command to add two helper mem
ber functions in class CShape (in the file Shape.cpp). Here are the
prototypes for the two functions:

II Helper functions for shape selection
void CreateHandleRects():
void DrawHandles(CDC *pDC):

We'll add code to the two functions in "Drawing the Selection
Handles" later in the chapter.

8. Update serialization code in the Serialize member function of class
CShape:

else
{

}

II TODD: add loading code here
ar » m_boxShape » byTransparent » m_nColorShape;
m_bTransparent = (byTransparent 1= 0);
~bSelected = false: II We don't store selection state

When writing shapes to a drawing file, we won't store their selec
tion state because when opening a file and reading its shapes in, we
don't care if any of them have been selected in the past. However,
when reading shapes in, we must initialize the new m_bSelected

555

Rounding Out Your MFC Skills

556

member so the shapes are complete. Since this doesn't change our
file structure, we don't need to increment the schema number for
the shape classes.

9. We also need to initialize a shape's m_bSelected member when the
shape is first created. Add the following boldfaced line of code to
OnLButtonDown in DrawVw.cpp:

II Start setting properties of the new shape.
m_pShpTemp-)m_bTransparent = m_bTransparent;
m_pShpTemp-)m_nColorShape = m_nColorNext;
~pShpTemp-)~bSelected = false:

II Convert point to logical coordinates.

10. One last change: we need to call CShape::Draw in two places in the
view, OnDraw and InvertShape. Add the second parameter to each
of those calls, first in OnDraw:

II Get the shape and use it to set the pen and brush.
II Last shape sets position to NULL.
pShape = pDoc-)GetPrevShapeC);
SetPenBrushCpDC, pShape-)m_bTransparent,

pShape-)m_nColorShape);
II Ask the shape to draw itself.
pShape-)Draw(pDC. ~bSelectionMode):
I I Cl ean .up.
ResetPenBrushCpDC);

and then in InvertShape:

int nModeOld;
ifCblnvert)
{

nModeOld pDC-)SetROP2CR2_NOT);
}

II Draw the shape Cor erase it).
Set Pen Brush (pDC., s. m_bTranspa rent, s. m_nCo 1 orShape) ;
s.Draw(pDC, ~bSelectionMode):

18: Toolbars and Selections

Hit Testing
When the user clicks on the drawing surface in selection mode, we don't
want to capture the mouse and create a new shape. Instead, we want to
observe that m_bSelectionMode is true and use the CPoint passed to the
OnLButtonDown handler to detect where the click occurred. Hit testing
determines whether that point is within one of our shapes. If it is, we
mark the shape as selected. Subsequent redrawing draws that shape
with selection handles. While we're at it, we mark all unselected shapes
as well.

~ Tryitnow
Make the following changes in the view class to manage hit testing in· se
lection mode:

1. Detect selection mode in OnLButtonDown and call a helper
function to do hit testing. Add and delete code to make CMyDraw
View::OnLButtonDown (in the file DrawVw.cpp) look like the fol
lowing code, including the closing right brace just before the call to
CScrollView: :OnLButtonDown:

void CMyDrawView::OnLButtonDown(UINT nFlags, CPoint point)
{

II TODD: Add your message handler code here ...
CMyDrawDoc* pDoc = GetDocument();
ASSERT_VALID(pDoc);

if(ffi-bSelectionMode)
{

II Selecting

}

else
{

II Find which shape was clicked. if any.
II Sets the selected shape. if there is one.
DoHitTesting(point);

SetCapture();
m_bCaptured = true;

II Drawing

ASSERT(m_typeNext == shpRectangle I I m_typeNext ==
shpEllipse);

II Create CShape and add it to our list ...
m_pShpTemp = pDoc-)CreateShape(m_typeNext);

(continued)

557

Rounding Out Your MFC Skills

558

}

m_pShpTemp->m_boxShape.left =
m_pShpTemp->m_boxShape.right = point.x;

m_pShpTemp->m_boxShape.top =
m_pShpTemp->m_boxShape.bottom = point.y;

} II Add this brace
CScrollView::OnLButtonDown(nFlags, pOint);

Because of the way OnMouseMove and OnLButton Up already work,
we don't need any code in those functions for selection. The code
in both is bypassed if the mouse hasn't been captured, and we skip
capturing it in OnLButtonDown if selection mode is on.

2. Use the Add Member Function command to add the DoHitTesting
function to the view class:

void CMyDrawView::DoHitTesting(CPoint point)
{

CMyDrawDoc* pDoc = GetDocument();
ASSERT_VALID(pDoc);

II C6nvert point to logical coordinates.
II Corrects y coordinate for mapping mode
CClientDC dc(this);
OnPrepareDC(&dc);
dc.DPtoLP(&point);

II Walk the shape list from newest to oldest
bool bSelectionMade = false:
CRect rect:
CShape* pShape:
pDoc-)SetToLatestShape():
while(pDoc-)GetPos() 1= NULL 1*&& IbSelectionMade */)
{

II Start with last shape in list.
pShape = pDoc-)GetNextShape();
II Normalize the shape's bounding rectangle
II to correct for mapping mode.
rect = pShape-)~boxShape:
rect.NormalizeRect();
II See if shape has been hit.
II But ignore a hit if there has already been one in a
II higher layer (higher shape overlaps current).

18: Toolbars and Selections

}

}

if(!bSelectionMade && rect.PtInRect(point»
{

}

else
{

}

II ~pSelectedShape = pShape;
II Tell shape it has been selected.
pShape->~bSelected = true;
II Once a selection has been made. no other
II is possible (but we still need to turn off
II selection in rest of shapes).
bSelectionMade = true;

II Only one selected shape at a time.
II so turn off selection in any other shapes.
pShape->~bSelected = false;

II Click was outside any shape: cancel selection.
if(!bSelectionMade)
{

}

~typeNext = ~typeFormer; II Restore previous tool.
CancelSelection();

else II Update any other views to show new selection.
{

}

pDoc->UpdateAllViews(NULL); II Moved out of while
II for selection

The function DoHitTesting first converts the mouse location in the point
parameter to logical coordinates. This is important because it corrects for
the y-axis reversal in MM_LOENGLISH mapping mode. Then it uses an
other document function to locate the most recent shape (the one in the
topmost drawing layer). From there, the function walks through the shape
list from newest to oldest. For each shape, DoHitTesting first calls
CRect::NormalizeRect to normalize the shape's bounding rectangle, which
also corrects for the mapping mode. NormalizeRect puts the rectangle
into the same coordinate framework as our hit point.

Actual hit testing works as follows: As we come to each shape in the list,
we test it for a hit, but only if we haven't already found the selected shape.

559

Rounding Out Your MFC Skills

560

If we've detected a hit in a higher layer of the drawing, there can't be a hit
in a subsequent lower layer. (We're walking from highest to lowest layer.)
However, we still keep walking the shape list, because we need to set
m_bSelected to false for all shapes except the one selected shape. Eventu
ally, all unselected shapes will contain false in m_bSelected.

DoHitTesting uses the CRect::PtInRect function to test whether the mouse
point (contained in the Cpoint object) falls within the shape's bounding
rectangle. If so, it sets the shape's m_bSelected member to true and sets
the Boolean variable bSelectionMade to indicate that the hit shape has
been found. This causes DoHitTesting to skip further hit testing and to ex
ecute the else branch of the if statement for each subsequent shape (set
ting the shape's m_bSelected to false).

When the while loop ends, we see if a selection was made. If not, we can
cel selection mode-there was a click, but it was outside of all shapes
and set the drawing tool back to what it was before selection mode was
turned on. If the user did select a shape, the document updates all of its
views. (There's only one for now, but we'll split the view into multiple
views in Chapter 20.) Check the Help index for NormalizeRect and
PtInRect.

Updating the views leads to redrawing, which is what we want, so the se
lected shape is redrawn with selection handles. Canceling selection mode
also causes redrawing, so the old selected shape, if any, is redrawn with
out handles.

Drawing the Selection Handles
Clicking the mouse in a shape to set a new selection causes the shape to
be redrawn with selection handles. Clicking outside all shapes to cancel
the current selection also causes redrawing .

• Tryitnow
'J

When shapes are redrawn, we want the selected shape to draw itself with
selection handles (if selection mode is on) and any previously selected
shape to draw itself without handle$.

18: Toolbars and Selections

1. Fill in the following boldfaced code in the DrawHandles helper
function that we created earlier in class CShape (in the file
Shape.cpp):

void CShape::DrawHandles(CDC *pDC)
{

}

II Put selection handles on a selected shape.

II Set up brush for painting selection handles.
CBrush* pBrush = new CBrush(COLOR-HIGHLIGHT):
CBrush* pBrushOld = (CBrush*)pDC-)SelectObject(pBrush);
II Calculate areas to paint for handles.
CreateHandleRects();
II Draw the handle rects with black interior brush.
for(int i = 0; i < 8; i++)
{

pDC-)Rectangle(arHandles[i]);
}

pDC-)SelectObject(pBrushOld);
II We created this brush, so we must dispose of it.
II We only borrowed pBrushOld, so Windows disposes of it.
delete pBrush;

Recall that we call DrawHandles from the Draw member function of
the selected shape. Most of the work is done by another helper
function, CreateHandleRects. It fills an array called arHandles
which we added to the file Shape.h earlier-with the rectangles
bounding the eight selection handles we plan to draw. With those
rectangles calculated, we loop through the arHandles array, draw
ing a rectangle for each element in the array. The rectangles are
filled with the system color for highlighted selections,
COLOR_HIGHLIGHT. (Check the Help index for GetSysColor.)

2. Fill in the following boldfaced code in the CreateHandleRects func
tion that we created earlier in class CShape:

void CShape::CreateHandleRects()
{

II Calculate the rectangles for a set of selection
II handles and store them in array of handle rects.

int nHandSize = GetSystemMetrics(SM_CXBORDER) * 7;
(continued)

561

Rounding Out Your MFC Skills

562

II Create an inflated rect around the shape's bounding
II rect, ~boxShape.
CRect ri = ~boxShape;
ri.InflateRect(nHandSize. -nHandSize);

II Calculate rects for corner handles.

II Left top corner selection handle
CRect rectLeftTop(ri.left. ri.top.

~boxShape.left. ~boxShape.top);

rectLeftTop.OffsetRect(4. -4);
arHandles[0] = rectLeftTop:

II Right top corner selection handle
CRect rectRightTop(~boxShape.right. ri.top.

ri.right. ~boxShape.top):
rectRightTop.OffsetRect(-4. -4):
arHandles[l] = rectRightTop:

II Right bottom corner selection handle
CRect rectRightBottom(~boxShape.right. ~boxShape.bottom.

ri.right. ri.bottom):
rectRightBottom.OffsetRect(-4. 4):
arHandles[2] = rectRightBottom:

II Left bottom corner selection handle
CRect rectLeftBottom(ri.left. ~boxShape.bottom,

~boxShape.left. ri.bottom):
rectLeftBottom.OffsetRect(4. 4):
arHandles[3] = rectLeftBottom:

II Calculate rects for handles in centers of sides.

II Calculate x values for top and bottom center
II selection handles.
int centerVert = ri.left + (ri.right - ri.left) I 2:
int leftVert = centerVert - (nHandSize I 2):
int rightVert = centerVert + (nHandSize I 2);

II Bottom center selection handle
CRect rectBottomCenter(leftVert. ri.top. rightVert.

~boxShape.top):

rectBottomCenter.OffsetRect(0. -4):
arHandles[4] = rectBottomCenter:

II Top center selection handle
CRect rectTopCenter(leftVert, ~boxShape.bottom,

rightVert, ri.bottom):
rectTopCenter.OffsetRect(0, 4):

18: Toolbars and Selections

}

arHandles[6] = rectTopCenter:

II Calculate y values for left and right center
II selection handles.
int centerHorz = ri.top + (ri.bottpm - ri.top) I 2:
int topHorz = centerHorz - (nHandSize I 2):
int bottomHorz = centerHorz + (nHandSize I 2):

II Right center selection handle
CRect rectRightCenter(m-boxShape.right. topHorz.

ri.right. bottomHorz):
rectRightCenter.OffsetRect(-4. 0):
arHandles[5] = rectRightCenter:

II Left center selection handle
CRect rectLeftCenter(ri.left. topHorz. m-boxShape.left.

bottomHorz):
rectLeftCenter.OffsetRect(4. 0):
arHandles[7] = rectLeftCenter:

CreateHandleRects is our workhorse. A lot of the work involved in graph
ics programming goes into such calculations. Following Microsoft's inter
face guidelines for Windows, we'll set the dimensions of each of the eight
selection handles based on a multiple of the size of a window border, ob
tained with a call to GetSystemMetrics. We use GetSystemMetrics to set a
variable, nHandSize. GetSystemMetrics is a handy Win32 API function
that returns all sorts of official system measurements. (Check the Help in
dex for GetSystemMetrics.)

Since the selection handles protrude slightly beyond the shape's bound
ing rectangle, we'll first use the CRect::lnflateRect function to create a
new bounding rectangle slightly larger than the original one-nHandSize
units larger in each dimension. This rectangle will be the outer boundary
for calculating the locations of our handles.

\~~"J' ,'IP To comply with Microsoft's standards for designing user interfaces in
" Windows applications, we'll inset the handles slightly, straddling the shape's

bounding rectangle. Technically, our handles should be hollow when they
indicate selection but aren't available for such things as dragging, and they
should be filled when they can be used to manipulate a shape. I've drawn
the handles filled, on the assumption that once a shape is selected, the user
might start dragging it. In Chapter 13 of the Windows Interface Guidelines
for Software Design (Microsoft Press, 1995), see the topic "Handles" under

563

Rounding Out Your MFC Skills

564

"Selection Appearance." You should develop an intimate acquaintance
with the Interface Guidelines, which you can find in the MSDN Online Li
brary at http://msdn.microsoft.com. (See Chapter 21 for details about the
library.)

Let's look at the calculation for one handle-the one at the shape's right
top corner, shown in Figure 18-5. For starters, we set the handle's top to
the top of the inflated rectangle, ri. The handle's left side is defined by the
right side of the original bounding rectangle, the shape's m_boxShape
data member. The handle's right side is defined by the right side of the
inflated rectangle, ri. And the handle's bottom is defined by the top of the
original bounding rectangle, m_boxShape. But once we set these initial
values, we use a call to CRect::OffsetRect to slide the whole handle rect
angle inward by a rough four logical units. This insets the handle across
the bounding rectangle for the desired look. The code for that calculation
looks like this in CreateHandleRects:

II Right top corner selection handle
CRect rectRightTop(m_boxShape.right, ri.top,

ri .right, m_boxShape.top);
rectRi ghtTop. OffsetRect (-4, -4);
arHandles[l] = rectRightTop;

We store each handle's rectangle in arHandles. From the left top handle
clockwise around the shape (corner handles only), we store each rect
angle in the next element of arHandles. Then we calculate and store the
four handles at the centers of the shape's sides. Calculating the rectangles
for the center handles is a bit more work-it requires locating the center
of each side and basing calculations on that. Again, after setting initial di
mensions, we inset the handle by calling OffsetRect, eyeballing a rough
four logical units. Here's the code for one center handle:

II Calculate x values for top and bottom center
II selection handles
int centerVert = ri.left + (ri.right - ri.left) I 2;
int leftVert = centerVert - (nHandSize I 2);
int rightVert = centerVert + (nHandSize I 2);

II Bottom center selection handle
CRect rectBottomCenter(leftVert, ri.top, rightVert,

m_boxShape.top);
rectBottomCenter.OffsetRect(0~ -4);
arHandles[4] = rectBottomCenter;

18: Toolbars and Selections

ri.top m_boxShape.right
I I

I
I

Corner handle- ".I <
,<

'I- -
"

/
Inset position

of handle

~
Center handle -

m_boxShape.right - - - -

Figure 18-5. Calculating a handle's rectangle.

.-

- - -

r--

. -- --

--- --

--

ri.right

m_boxShape. top

ri inflated rectangle

m_boxShape bounding
rectangle

centerVert - (nHandSizelZ)

center of side = centerVert

centerVert + (nHandSizelZ)

ri.right

This completes our implementation of the Selection button on the new
toolbar. You can build and test MyDraw with these additions. Run the
program, draw a few shapes, and click the Selection button. Then click a

\ shape, click outside all shapes, click another shape, and finally click the
Rectangle button or Ellipse button. Draw a new shape.

Try It Yourself

I promised some things for you to try, so here's your extra credit. Solutions
are provided in the final version of MyDraw, called MyDrawF, in the
\learnvcn \Chap21 folder in the companion code.

1. Add commands to the View menu to hide or show the toolbars.

AppWizard supplies toggle commands on the View menu for the initial
toolbar and status bar. Change the command for the toolbar to work as our
Standard toolbar, and add a new command for the Drawing toolbar. Also
add update handlers to checkmark the commands on the View menu when
the toolbars are visible. Since the toolbars share space with the view in

565

Rounding Out Your MFC Skills

566

----_-._",.

the frame window, the frame window class (CMainFrame) is the place to
implement these commands. In the command handlers, you can call the
, CFrame Wnd: :ShowControlBar member function.

2. Implement commands to reorder the shapes.

Create the following menu commands:

• Bring Forward. This command moves the selected shape "up" one
drawing layer (one place closer to the beginning of the list). The
newest shape is at the head of the shapelist.

• Send Behind. This command moves the selected shape "down" one
drawing layer.

• Bring To Front. This command moves the selected shape to the
head of the shape list.

• Send To Back. This command moves the selected shape to the tail
of the shape list.

Class CObList has members you can use to implement these operations.
Which MFC object should contain the handlers? Hint: Which are we ma
nipulating more, the data or its representation on the screen?

What's Next?
In Chapter 19, we'll explore dialog boxes, including common dialog boxes
such as the Color dialog box, which lets users select colors by double
clicking on colored boxes rather than from a list of color names, as we've
done in our Color menu. We'll look at modal dialog boxes, property sheets
(dialog boxes that contain tabs), and common dialog boxes. Along the
way, we'll also look at a selection of the Windows common' controls and
learn how to work with them.

Chapter

Dialog Boxes and Controls
As input methods, toolbars and menus can take you only so far. Often you
need specific information from the user-data for a calculation, say, or
preferences so you can do a task the user's way. At such times, you turn
to dialog boxes. This chapter adds code for MyDraw step 9, showing how
to create and use a variety of dialog boxes. We'll look at dialog editing,
dialog classes, and the following specific types of dialog boxes:

• A simple modal dialog box, one the user must respond to before
the program can continue. I won't cover the opposite, the modeless
dialog box, which can stay open while the user works in other win

dows.

• A Microsoft Windows common dialog box, one of several
"canned" dialog boxes supplied by Windows that you can invoke
from your programs. We'll use the Color dialog box to let users
pick a color for shapes, greatly extending our Color menu.

• A more complex property sheet dialog box, containing several
tabs, each tab in turn containing several Windows controls.

While we're at it, we'll examine the following three aspects of working
with controls in a dialog box:

567

Rounding Out Your MFC Skills

568

• How to initialize the controls just before the user sees them. This
includes tasks such as filling up a combo box control with strings.

• How to extract information that the user entered in the controls.

• How to respond to notification messages from a control and treat
controls as windows and as Microsoft Foundation Class Library 6.0

(MFC) class objects.

This chapter illustrates using static text controls, edit box controls, group
box controls, radio button controls, check box controls, combo box con
trols, and spin button controls.

About Dialog Boxes and Controls
A dialog box is a pop-up window, with the style WS_POPUP, whose pur
pose is to give information to the user, obtain information from the user,
or both. You can display a dialog box at any point in your program, with
or without user input. The typical approach is to provide a menu com
mand or toolbar button that opens the dialog box at the user's behest. The
handler for that command creates a dialog object, initializes it, and dis
plays it. When the user closes the dialog box, the command handler re
trieves any information that the user entered in the dialog box.

A control is a small window embedded in a dialog box or other parent
window, designed to display or obtain some kind of information. Edit box
controls collect text or numeric data. Check boxes collect Boolean data
yes/no or true/false options. Radio bl+ttons let the user select one of sev
eral mutually exclusive options. List boxes and combo boxes let the user
select one or more of several options presented as text strings or graphics.
Pushbuttons let the user open a secondary dialog box or perform a com
mand action. Scroll bar controls let the user specify a selection along a
continuous range.

There are several historical groups of controls in Microsoft Windows (not
considering new kinds of controls such as Microsoft ActiveX controls):
the original six controls just described, which are stored in the file
User.exe, a part of the Windows operating system; 15 additional "com
mon" controls introduced with Wtndows 95, stored in the file
ComCtl32.dll; and several controls added to support Microsoft Internet

Figure 19-1.

19: Dialog Boxes and Controls

Explorer 4.0 and later, which can be used in other Windows applications
as well. Figure 19-1 shows a dialog box containing a selection of controls
(not quite all of them). The term common controls is often used to de
scribe the Windows controls collectively.

II September 1998 Ii

yellow

II
red

r....-____________ Tree

'------------------List

'----------------Month calendar

Some of the Windows controls available.

Spin button

IP address

Date/Time picker

Slider

Scroll bar

Both dialog boxes and controls are windows (even a pushbutton is a
window). As windows, they can do all the things that we've seen other
windows do. You can write code to move them, display them, hide them,
change their attributes, access their device contexts, and so on. I'll say
more about this near the end of the chapter. The MFC library wraps dia
log boxes in class CDialog and each control in its own class: CButton,
CComboBox, CToolBarCtrl, CSliderCtrl, CTreeCtrl, and so on. (Class
CButton represents check boxes and radio buttons as well as pushbuttons.)
All of the classes mentioned in this paragraph are derived from class
CWnd (and from the ancestors of CWnd, such as CCmdTarget), so they
inherit the members and capabilities of those classes. For example, dialog
boxes and controls can have message maps and contain message handler
functions. Some of the controls, such as the toolbar control or the tree con
trol, are also used as the basis for other MFC classes, such as CToolBar
or CTree View.

569

Rounding Out Your MFC Skills

570

All of this means that you can exercise considerable control over the ap
pearance and behavior of dialog boxes and controls. I won't cover every
type of dialog box or control, or say everything there is to say about the
ones I do cover. But you should come away with a good introductory
grasp of how to work with dialog boxes and controls and a sense of what's
possible with them.

A Simple Modal Dialog Box
To start by presenting dialog boxes in the simplest way, we'll give
MyDraw a modal dialog box with just four controls. The dialog box
shown in Figure 19-2 lets the user type a title for the drawing. The title
shows up when we print the document or examine it with print preview.

Drawing Trtle 13

J:nter il totle for the dr':I"I'rng.

illmb!rJGd!fti

OK Cancel I

Figure 19-2. A simple modal dialog box that obtains a title for the drawing.

You'll see how to create the dialog resource used to display the dialog
box, edit the resource in the Microsoft Visual c++ Dialog editor, and cre
ate a dialog class with the New Class command. Then I'll show you how
to wire up the dialog box so users can display it with a command. You'll
also learn how to initialize the dialog box's controls before the user sees
them and how to extract the information the user enters in the controls.

Creating and Editing the Dialog Resource
Windows uses a dialog template to create and display a dialog box and its
controls. It's possible to write code that creates the template in memory,
using a data structure, but the normal approach is to create a dialog tem
plate resource using the Visual C++ Dialog editor. At run time, Windows
reads in the resource and displays the dialog box as you laid it out in the
Dialog editor.

19: Dia!og Boxes and Controls

\Jil' IP Become familiar with Chapter 8, "Secondary Windows," in the Windows
"i~1 Interface Guidelines for Software Design, listed under Books in the left-hand

pane at the MSDN Online website. You can reach this website through the
MSDN Online command on the Visual C++ Help menu. (Or go to http://
msdn.microsoft.comldeveloper.) At the website, click the link in the left
hand pane to MSDN Library Online. You will have to register, but it's free.
Then search the left-hand pane for the information you want. The chapter
on secondary windows offers design guidelines that apply to dialog boxes.

The next section shows Dialog editor basics, but for more information,
check the Help index for Dialog editor (capitalized as shown) to open the
topic "Overview: Dialog Editor." You can follow links from that topic to
learn more about using the Dialog editor. Save the topic as a favorite.

~ Tryitnow
Create a dialog template resource in MyDraw, assign it a meaningful ID
and a caption, and use the Dialog editor to add controls and set their
properties by following these steps:

1. Create a new dialog template resource (dialog resource, for short).
Select the Resource command on the Insert menu and, in the Insert
Resource dialog box, double-click Dialog. The new resource opens
in a Dialog editor window, appearing almost as it will when we dis
play it for the user in MyDraw. You see a dialog box with OK and
Cancel buttons, a Controls toolbar floating nearby, and a Dialog
toolbar docked at the bottom of the Visual C++ window. See Figure
19-3, which shows the Dialog editor open with the dialog resource
we are creating in this section.

\"'Iil' IP If the Controls and Dialog toolbars aren't visible, you can display them
~.;!I by right-clicking the toolbar area. On the context menu, select the toolbar

you want to display.

2. Right-click the dialog box in the Dialog editor, then click Properties
on the menu that pops up. In the Properties window, replace
IDD_DIALOGl with IDD_DRAWING_TITLE. The IDD prefix for a

571

Rounding Out Your MFC Skills

572

dialog resource is an MFG convention. Also change the Caption box
to read "Drawing Title." This is the text that will appear in the title
bar of the dialog window when displayed.

3. In the Dialog editor, make your dialog box look like the one in
Figure 1 9-3 by dragging controls from the Controls toolbar. See the
Note below for detailed instructrions on how to drag Controls into a
dialog box. Add the following Contrqls to your dialog box:

• A static text control with the caption &Enter a title for the
drawing: (Notice the mnemonic ampersand-any captions in a
dialog box can have mnemonics, which let the user operate
the controls from the keyboard. You can also add mnemonics
to the text on the OK and Cancel buttons, for example, &OK,
or &Cancel.)

• An edit box control for entering the drawing title.

A\1IOTE To add a control to the dialog box, click the control's icon on the Con
()lil trois toolbar, also shown in Figure 19-3, and drag it to where you want the

control. Tooltips identify each control type on the tool bar-we want a static
text control and an edit box control. Reposition and resize the controls us
ing the selection handles that appear when you click a control in the dialog
box. Use commands on the Layout menu (or on the corresponding Dialog
toolbar) to align, space, size, and otherwise adjust your controls. Press Shift
and click multiple controls to apply the same command, such as alignment,
to all of them. (Figure 19-3 shows the Controls toolbar reshaped from its
normal default appearance.)

4. Set the properties for the new controls. Right-click to select a con
trol, then click Properties on the menu that pops up.

For the static text control, simply accept the default properties.
For the edit box control, change the ID from IDC_EDITl to
IDC_DRAWING_ TITLE. IDC is the conventional MFC prefix for
control IDs.

Figure 19-3.

19: Dialog Boxes and Controls

The Dialog editor with two added controls.

~ Ti' IP You can open the Properties window for a selected control or for the
"\~I dialog box, by clicking the item and selecting Properties on the View menu

or by right-clicking the item and selecting Properties on the context menu.
Click the Pushpin icon in the Properties window if you want the window to
stay in place-though its contents will change as you select different con
trols in the dialog box.

5. To finish up the new dialog resource, click Save on the File menu.
Don't close the Dialog editor window yet. (To close it, you can click
Close on the File menu, just as for any other Visual C++ document
window.)

\TI'IP Tryout your dialog box's appearance and general behavior with the
'i\'JI Test command on the Layout menu. This displays your dialog box as it will

appear at run time in your program. The controls may not work exactly as
you intend in Test mode, but the dialog box is otherwise accurate.

Creating the Dialog Class
After creating the dialog resource, we need to associate it with a class de
rived from CDialog. We can then use an object of that class to display and
manipulate the dialog box. The new class also needs one data member.

573

Rounding Out Your MFC Skills

574

!~Try it now
Create an associated dialog class for our dialog resource by following
these steps:

1. With the new dialog resource still open in the Dialog editor, press
Ctrl while double-clicking in the dialog box (not on a control).

2. In the Adding A Class dialog box, click OK to create a new class.

3. In the New Class dialog box, type a name for the class: CTitleDialog.

4. Click the Change button and type these new names for the files the
dialog class will be stored in: Dialogs.h and Dialogs.cpp. Click OK.
In MyDraw, we'll put all of our dialogs, except for the About dialog
box, in one pair of files, although that's not the only way to do it.

5. Click OK in both the New Class dialog box, and the ClassWizard
dialog box to create the new class. You're accepting CDialog as the
base class for the new class and IDD_DRAWING_TITLE as the asso
ciated dialog resource ID. This is where the class and the resource
become associated.

~ Tryitnow
The new dialog class needs one more thing: a data member to hold the
data for the edit box control.

1. Back in the dialog editor, press Ctrl and double-click the edit box
control. (This only works if you have already added a class for the
dialog box.)

2. In the Add Member Variable dialog box, complete the data member
name as m_strDrawing. The dialog box conveniently begins the
name for you with the conventional m_ used to name data members
in MFC.

Note that the new member is in the Value category, meaning that
we're interested in the edit box's value, not in the box itself as an
object. You'll see a case shortly where we want the Control category
instead. The data type of the new data member is CString.

19: Dialog Boxes and Controls

3. Click OK to add the data member to the new dialog class.

You'll see in a moment how the new data member is used.

~ Try it now
Add the following include directive at the top of the file DrawVw.h:

1/i n c 1 u de" d i a log s . h"

Displaying the Dialog Box and Retrieving Its Contents
With a dialog class available, we can now write a menu command han
dler that creates a CTitleDialog object and displays the dialog box.

~~ Try it now
Create a new Drawing Title menu command at the bottom of MyDraw's
Edit menu, then create a handler for the command in the view class.

1. Use the Menu editor to add the new menu item. Type &Drawing
Title ... (with the ellipsis) as the caption; ID_EDIT_DRAWING_TITLE
as the command ID; and Supply a title for the drawing (up to 70

characters) as the prompt string. The ellipsis in the caption is a
Windows convention meaning that the command displays a dialog
box instead of executing a direct command.

2. Create a new handler in the view class called OnEditDrawingTitle
for the ID_EDIT_DRAWING_TITLE command ID. The ID is in the
Class Or Object To Handle box.

3. In the new OnEditDrawingTitle function, add the boldface code:

void CMyOrawView::OnEditOrawingTitle()
{

}

II TODD: Add your command handler code here
CTitleOialog dlg:
II Put current drawing title in dialog.
dlg.ffi-strOrawing = ffi-strOrawing:
if(dlg.OoModal() == lOOK)
{

}

II Retrieve value entered by user.
ffi-strOrawing = dlg.ffi-strOrawing:

575

Rounding Out Your MFC Skills

576

The first highlighted line of code creates a dialog object of class
CTitleDialog. The DoModal statement creates the dialog window,
displays it, and manages the dialog box until the user dismisses it
by clicking either OK or Cancel.

The most interesting feature of this function actually occurs in the
two assignment statements. The first one, before the DoModal call,
assigns the current value of m_strDrawing, a view class data mem
ber, to the dialog object's m_strDrawing data member-the one we
just added. MFC then transfers the contents of the dialog object's
data member to the edit box control. This is how MFC initializes
the contents of the edit box control when it appears on the screen.
By default, this value will be "Untitled drawing," a value set in the
view class constructor (added in Chapter 17).

The second assignment, following the DoModal call, does just the
opposite. When the user clicks OK, MFC extracts the data from the
edit box control and stores it in the dialog object's data member.
Then, after the DoModal call, we assign the value stored in the dia
log object's m_strDrawing data member to our view class data mem
ber, m_strDrawing. The mechanism we've just seen is called dialog
data exchange (DDX). See the sidebar "DDX and DDV" for details.

4. Limit the amount of text entered in the edit box to 70 characters, a
generous allowance that still ensures the drawing title will always
fit across a printed page. Open ClassWizard and click its Member
Variables tab. In the Class Name box, select class CTitleDialog. In
the Control IDs box, select IDC_DRAWING_TITLE. In the Maximum
Characters box that appears at the bottom, type 70. See the sidebar
"DDX and DDV" for details.

That finishes up our simple modal dialog box. Remember that modal
means the user can't do anything else in the program without first re
sponding to the dialog box. You can build MyDraw and test the dialog
box now.

19: Dialog Boxes and Controls

DDXand DDV

MFC simplifies initializing and retrieving information in dialog box
controls. The dialog data exchange (DDX) work is performed by
function CTitleDialog::DoDataExchange (in the file Dialogs.cpp), .
,,,,hich the \'Vizards write when you create the dialog class. You com
plete the function by adding DDX and dialog data validation (DDV)
function calls in the function's data map section. For MyDraw, that
code looks like this:

void CTitleDialog::DoDataExchange(CDataExchange* pDX)
{

CDialog::OoDataExchange(pDX);
/1{{AFX_DATA_MAP(CTitleDialog)
DDX_Text(pOX. IDC_DRAWING_TITLE. m_strDrawing);
DDV_MaxChars(pDX. m_strDrawing. 70);
I/}}AFX_DATA_MAP

DoDataExchange calls functions such as DDX_ Text to transfer data
between the dialog box's controls and the dialog class object's data
members. This transfer mechanism is called DDX. The pDX param
eter, a pointer to a CDataExchange object, contains information
about "\I\Thich way we're transferring the data: from dialog class data
members to controls (initialization) or from controls to dialog class
data nlembers (retrieval). The DDX_ Text function call works in both
directions. It passes the contents of CTitleDialog::ln_strDrawing to
the control identified as IDC_DRAWING_TITLE for initialization, or
from the control to the m_strDrawing data menlber for retrieval.

DoDataExchange also nlanages DDV. The DDV_A1axChars function
call1inlits the amount of text the user can enter into the data mem
ber CTitleDia]og::Ill_sirDrawing to 70 characters. You can also set
DDV limits on the range of values a numeric data melnber can ac
cept. If the user enters data outside the specified limits, MFC dis
plays a message box and waits for the user to try again. It's possible,
as well, to \vrite your ovvn custom DDX and DDV

{con tin ued)

577

Rounding Out Your MFC Skills

578

DDX and DDV continued

routines like DDX_Text and DDV_MaxChars for special kinds of
data, but that's an advanced topic. Check the Help index for DDX

and select the subtopic "custom."

How is CTitleDialog::DoDataExchange called? \Vhen the dialog box
is about to display, MFC calls its CDialog::OnlnitDialog function.
The default OnlnitDialog calls CWnd::UpdateData, with a parameter
of false, signaling a DDX transfer from the din log object to the con
trols. UpdateData calls DoDataExchange. When the user clicks OK
to dismiss the dialog box, the default OnOK handler calls UpdateDala
again, this time with a paranleter of true, signaling a DDX transfer
from the controls back to the dialog object.

N ate that most of the work of DDX and DDV is done for you by MFC
and ClassWizard , although you can certainly hand edit the
DoDataExchange code for any special needs. For more information
about DDX and DDV, check the Help index for DDX (look at any of
the first three topics in the Topics Found dialog box) and for DDV
(see any of the topics in the Topics Found dialog box). Also check
the Help index for the classes and functions mentioned here.

A Windows Common Dialog Box
Now that you know how to create and display a simple dialog box, we'll
borrow one of Windows' common dialog boxes, the Color dialog box
(shown in Figure 19-4, but not in color). This dialog box lets users pick
any color they wish instead of being limited to the ten colors on our Color
menu. This time we don't have to create the dialog resource-Windows
provides it. We just need to create a menu item and a handler to display
the dialog box and extract the color the user selects.

We'll actually end up displaying the Color dialog box from two places,
but one of them is in the third dialog box we'll add to MyDraw later in
the chapter. For now, we'll display the dialog box from the Color
submenu of the Tools menu.

Figure 19-4.

Table 19-1.

19: Dialog Boxes and Controls

Color matrix: move pointer
horizontally to change hue,
vertically to change saturation.

Slider: adjust luminosity.

"!""II-+-- Selected color

'-'-~~""""""~~..f-- Design HSL color
(hue-saturation-Iuminosity).

:r:-:"'"""Jo+.- Design RGB color.

,...........,....,..,.-,........,....."....-,~.......,..,..-.,..,~.,...... Click to add custom

color at left.

1.....-___________ Click to fully open dialog box.

The Windows Color common dialog box.

About the Common Dialog Boxes
To use any of the six Windows common dialog boxes in MFC, just create
an object of the appropriate MFC wrapper class for the dialog box you
want. Table 19-1 lists and describes the dialog boxes, which help stan
dardize common activities such as obtaining a filename from the user.
They're easy to use, yet you can also customize them in a variety of ways.
For more information, check the Help index for common dialog classes
and, in the Topics Found dialog box, select the topic "Common dialog
classes." Customizing the common dialog boxes is beyond the scope of
this book, but see any of the more advanced books described in Chapter
21 for more information.

MFC Common Dialog Class

CColorDialog

CFileDialog

CFindReplaceDialog

Description

Provides a standard Color dialog box that lets
the user select a color, including custom colors

Provides standard Open and Save As dialog
boxes

Provides a standard Find/Replace dialog box;
you still have to do the searching

The Windows common dialog boxes. (continued)

579

Rounding Out Your MFC Skills

580

Table 19-1 con.tinued

MFC Common Dialog Class

CFontDialog

CPageSetupDialog

CPrintDialog

Description

Provides a standard Font selection dialog box
(Try adding one of these to program MyText,
from Chapter 15.)

Provides a standard Page Setup dialog box for
adjusting margins, paper size, header and footer
layout, and the like

Provides a standard Print dialog box, with
printer selection, page ranges, number of cop
ies, and so on

Adding the Color Dialog Box to MyDraw
We'll need a Custom Color item at the bottom of our Color menu, plus a
handler for the menu item, and an update handler to checkmark the item
when it's the most recently chosen color.

~~ Try it now
Add the Custom Color menu command and several pieces of supporting
code, as follows:

1. Add a separator and the menu item at the bottom of the Color
menu. Use C&ustom Color ... with the ellipsis and the mnemonic
ampersand as shown. Use ID_TOOL_CUSTOM_COLOR as the com
mand ID and Display a dialog box that lets you pick any color as
the prompt.

2. Add a new last item to the arColors array in the file DrawVw.h.
(Don't forget to change the array dimension from 10 to 11, and to
add a comma after the RGB macro for Light Gray.)

II Array of actual colors, indexed
II by CMyDrawView::m_nColorNext
static COLORREF arColors[ll] = by
{

RGB(0,0,0), II Black

RGB(192,192,192), II Light gray
RGB(0,0,0) II Custom color

} ;

19: Dialog Boxes and Controls

3. Add the following highlighted definitions just under the arColors

array in the file DrawVw.h:

RGB(0,0,0)
} ;

1/ Custom color

const UINT CUSTOM_COLOILINDEX = 10;
const UINT CUSTO~COLOR = ID_COLOILBLACK + CUSTO~COLOILINDEX;

class CMyOrawView : public CScrollView

We'll use these to index the array.

~ Try it now
Now we can add the custom color handler and its corresponding update
handler.

1. Add a Windows message handler named On ToolCustomColor to
the view class for the object ID_TOOL_CUSTOM_COLOR, and add
the highlighted code to the handler (in the file DrawVw.cpp):

void CMyOrawView::OnToolCustomColor()
{

}

II TOOO: Add your command handler code here
CColorDialog dlg;
II Put current color in dialog.
COLORREF color = arColors[m-nColorNext - ID_COLOILBLACK]:
dlg.m-cc.rgbResult = color;
if(dlg.DoModal() == IDOK)
{

}

m-nColorNext = CUSTOM_COLOR:
arColors[CUSTOM_COLOR - I D_CO LOILB LACK]

dlg.GetColor();

This handler manages the Custom Color command, while the
OnToolColor handler manages the ten standard colors on our Color
menu. I've kept those old color items as a handy shortcut for when
you don't want some exotic color.

In the code above, we construct a CColorDialog object, initialize the
dialog box with the current color (obtained from the view), display

581

Rounding Out Your MFC Skills

582

the dialog box with DoModal, and finally retrieve the selected color
if DoModal returns IDOK. Most of this is much like what we did for
the Drawing Title dialog box.

To initialize the dialog box, we access a field in the dialog object's
m_cc data member, which is a CHOOSECOLOR structure. We as
sign our current color to the rgbResult member of that structure. To
retrieve the dialog box's data, we call the CColorDialog::GetColor

function, assigning the result to index 10 in our arColors array.
Note that until now we've used this array in a read-only fashion.
Now we're writing to the last element of it as a convenient place to
store the actual COLORREF value most recently selected with the
Custom Color command. The two lines within the if statement
update the view's data members with the latest color index and the
latest actual color.

2. Add the On Update ToolCustom Color update handler for
ID _ TOOL_ CUSTOM_ COLOR and fill in the boldface code shown
here:

void CMyDrawView::OnUpdateToolCustomColor(CCmdUI* pCmdUI)
{

}

II TODO: Add your command update UI handler code here
pCmdUI-)SetCheckCffi-nColorNext == CUSTOM_COLOR);

Checkmarking the value of the view's m_nColorNext data member
in this handler parallels the way we updated the 10 standard
color items on the Color menu. Now if the Custom Color com
mand is checkmarked on the menu, none of the other colors will
be, and vice versa.

That's it for the Color dialog box-for now. We'll provide another way to
access it from our next dialog box. You can build and test MyDraw now.

A More Compiex Property Sheet Dialog Box
To illustrate a greater variety of controls and some valuable dialog box
techniques, we'll give MyDraw a Settings dialog box. Like the Options
dialog box in Visual C++, the Settings dialog box contains several tabs

19: Dialog Boxes and Controls

that resemble the tabs on file folders. Clicking a tab displays the associ
ated page of controls. It's as if the dialog box contained several nested
dialog boxes.

Property Sheets and Property Pages
A property sheet dialog box consists of the containing property sheet and
the contained property pages. It's called a property sheet dialog box be
cause this "tabbed" dialog box style is frequently used in Windows 95,

Windows 98, and Microsoft Windows NT, and in applications written for
these operating systems, to present an object's properties to the user for ed
iting. For example, right-clicking a filename in the Visual C++ Workspace
window pops up a shortcut menu (also known to programmers as a context
menu) on which you can click a Properties command. This displays a
property sheet dialog box with one or more tabs. (Take a look-the property
sheet displays some useful information for programmers.) We'll use an or
dinary menu command to display our Settings dialog box, but the prin
ciple is the same. (For fun, I've added a context menu containing the
Settings command to the final version of MyDraw, named MyDrawF in
the companion code. See CMyDrawView::OnContextMenu in that version
for the code, and see the IDR_CONTEXTMENUresource it uses. I won't
discuss the menu here.)

Property sheets are most valuable when you have a large number of con
trols to display, and when those controls can be factored into severallogi
cal groups. In MyDraw, we'll present six functional controls on two
pages. The first page, the Line page, contains controls for setting at
tributes of the lines used to draw future shapes: line thickness and color.
Figure 19-5 shows the Line page with an edit box, a spin button control, a
combo box, and two static text controls (also referred to as labels). An
edit box accepts typed text, or numbers. A spin button control lets the
user click a small arrow to increase or decrease the value shown in its
buddy control, an adjacent edit box. Figure 19~5 shows both an edit box
and a spin button control.

583

Rounding Out Your MFC Skills

Figure 19-5.

584

r------ Edit box (buddy control for spin button control)

'~~~~~~~~~~~~~~~XLf Spin button control

- f---l -:', '; ',r---'----'---' -" --+-Combo box control
Ed" ±l''''f-r

I ' , ,,-? L~'1e ';;;oior

i., x"
! ~,]jJ An abl
o b"pc-tlf

m~8I81i1
:. IIill1l .0-. ~-r-I-- Controls toolbar

o r!= c:J 8
~~mB
~~

The Line page in MyDraw's Settings dialog box.

The second page of the Settings dialog box, the Shape page shown in Fig
ure 19-6, displays two radio buttons inside a group box, and a single check
box. The radio buttons duplicate MyDraw's Rectangle and Ellipse com
mands on the Tools menu and the Drawing toolbar. The check box dupli
cates the Transparent command-checked if the next shape will be
transparent, cleared if the next shape will be opaque. Radio buttons are
small circular buttons with labels; they usually occur as groups of mutu
ally exclusive buttons. Only one button in the group can be set (meaning
activated) at a time. The other buttons are cleared. Check boxes are small
boxes with labels; they usually represent options that can be checked
(turned on) or unchecked (turned off). Groups of related controls are often
contained within a group control-a box with a label. The group control
is not functional; it simply groups related items visually. Figure 19-6 shows
a check box as well as a group box with two radio buttons in it.

The property sheet is an object of class CPropertySheet, or of a class de
rived from CPropertySheet. We'll use CPropertySheet itself because we
don't need to modify it in any way. We might write a derived class instead
if we were, for example, going to implement the Apply button that MFC
places on a property sheet in addition to OK and Cancel buttons. The Ap
ply button puts current settings in the dialog box into effect without clos
ing the dialog box. Because our property sheet isn't modeless, there's little
incentive to implement Apply, although it can sometimes be useful in a
modal dialog box as well. A modeless property sheet would allow the
user to work in other windows while it remained open. In that case, it

19: Dialog Boxes and Controls

would be handy to be able to set some properties on one of the pages and
press Apply to apply the new settings immediately. For more information
about Apply, check the Help index for Property Sheets (capitalized) and
select the subtopic "handling Apply button."

---........ ----------+_ Check box

Figure 19-6. The Shape page in MyDraw's Settings dialog box.

Unlike the property sheet, the contained property pages have no OK or
Cancel buttons. Each property page is derived from class CPropertyPage,
which is itself derived from CDialog. Where the property sheet knows
how to contain property pages (and a few standard controls), a property
page knows how to contain controls and is based on a dialog template.
The property sheet needs no dialog resource.

Preparing our property sheet and property pages involves these steps:

1. Using the dialog editor to create a dialog resource for each of the
property pages and layout its controls.

2. Invoking ClassWizard to create a dialog class associated with each
property page.

3. Adding dialog class data members used for DDX and DDV and for
manipulating complex controls like the combo box as c++ objects.

4. Writing code to implement the controls. For example, the combo
box works by itself, but we have to load it up with strings, and then
detect when the user makes a new selection and extract the selec
tion so we can report the new color to the view.

Let's get an overview of the whole property sheet by looking at how to
display it.

585

Rounding Out Your MFC Skills

586

Displaying the Settings Dialog Box
We'll display the Settings dialog box just as we did our other dialog
boxes-with a menu commqnd on the Tools menu. We need to add the
menu command and a handler for it. The handler contains the code that
creates the property sheet and its pages, adds the pages to the property
sheet, initializes their controls, displays the dialog box, and retrieves any
new settings.

~~ Try it now
Add a Settings menu command and an OnToolSettings handler for it.

1. Add a separator and a Settings command to the bottom of
MyDraw's Tools menu. Use ID_TOOL_SETTINGS as the ID, &Set
tings ... as the caption (with the trailing ellipsis), and Change set
tings that control how shapes are drawn as the prompt string.

2. Add an OnToolSettings command handler to the view class, asso
ciated with ID_TOOL_SETTINGS. Add the boldface code shown
below:

void CMyOrawView::OnToolSettings()
{

II TOOO: Add your command handler code here
II Create property sheet and the 3 contained pages.
CPropertySheet settings("MyDraw Settings");
CLinePage dlgLine;
CShapePage dlgShape;

II Add the pages to the sheet. in desired order.
settings.AddPage(&dlgLine);
settings.AddPage(&dlgShape);

II Initialize members associated with controls.
dlgLine.m-nThickness = 1:
dlgLine.m-nColorIndex = m-nColorNext - ID_COLOR-BLACK;
dlgLine.m-colorRGB = arColors[m-nColorNext -

ID_COLOR-BLACK] ;
II Radio buttons: 0 = Rectangle. 1 = Ellipse
dlgShape.m-nShpRectangle =

(m-typeNext == shpRectangle ? 0 1):
II Check box

19: Dialog Boxes and Controls

}

dlgShape.m-bTransparent = m-bTransparent;

if(settings.DoModal() == IDOK)
{

}

II Retrieve values set by user: radio buttons.
m-typeNext = (dlgShape.m-nShpRectangle 1

shpEllipse : shpRectangle);
II Check box
m-bTransparent = (dlgShape.m-bTransparent == 1 1

true: false);
II Get selected color.
m-nColorNext = dlgLine.m-nColorlndex + ID_COLOR-BLACK;
II Store selected color in color array.
if(m-nColorNext == CUSTOM_COLOR)
{

arColors[CUSTOM_COLOR-INDEX] = dlgLine.m-colorRGB;
}

II Other values in view updated
during dialog operation

We'll discuss details of the code as we implement each control in the
property sheet. Generally, though, here's what we do in the handler:

1. Construct an object called settings, of class CPropertySheet, passing
"MyDraw Settings" as the caption that will appear in the title bar.

Z. Construct two CPropertyPage-derived objects, dlgLine and
dlgShape, of classes CLinePage and CShapePage. We'll write those
classes in the next section.

·3. Call the settings object's CPropertySheet::AddPage member func
tion to add each page to the sheet.

4. Initialize data members of the two property page objects before
DoModal and retrieve data after DoModal.

Creating Dialog Resources for the Settings Dialog Box
Creating these dialog resources is like creating the dialog resource for the
Drawing Title dialog box. Note that a considerable part of implementing
the Settings dialog box can be accomplished with the Dialog editor.

587

Rounding Out Your MFC Skills

588

I.~ Tryitnow
We'll create a dialog resource for the Line page of our property sheet, set
its properties, and add controls to it. Then we'll adjust the tab order of the
controls so they behave as we want when the user presses the Tab key.

1. Create a new dialog resource by selecting Resource on the Insert
menu and double-clicking Dialog in the Insert Resource dialog
box. To allow ample room in the dialog box for the controls we'll be
adding, drag the sides or corners of the dialog box to adjust the size
to 250 by 150 units. (To assure easy sizing, select Guide Settings on
the Layout menu and, in the Guide Settings dialog box, make sure
Layout Guides is set to None or to Rulers And Guides, not to Grid.)
The dialog box's dimensions appear near the right end of the Visual
C++ status bar during dialog editing. For a review of dialog editing,
see "Creating and Editing the Dialog Resource" earlier in the chap
ter.

2. In the Properties window for the new dialog resource, set the ID to
IDD_PS_LINE and the caption to &Line (use L as the mnemonic).
The caption is the label that appears on the tab; it has a mnemonic
like a menu command so users can select the tab from the keyboard.
(Note that the ampersand character appears on the title bar in the
Dialog editor, but when the property sheet is displayed, the caption
and mnemonic appear on the tab portion of the Line page). To set
properties for the property page as a whole, right-click the dialog
box and click Properties on the context menu.

~I MPORTANT For property page dialog resources, delete the OK and Cancel
I buttons. Simply select the buttons and press the Delete key. Property pages

on a property sheet don't have these buttons.

3. Add the controls listed in the following bullets to the dialog re
source, in the order shown, moving down and to the right in the
dialog box you're editing-see Figure 19-5 for placement. Then set
the properties for those controls. To set properties for the controls,
right-click the first control and select Properties from the context

19: Dialog Boxes and Controls

menu. In the Properties window, click the pushpin control to pin
the Properties window in place. (Selecting a new control puts its
properties in the window.) Then drag controls from the Controls
toolbar to the dialog box and edit their properties. For all of our
controls, use a default control ID; it's fine for different controls to
have the same ID, such as ID_STATIC, unless you need to distin
guish one control from others of the same type. If you plan to di
rectly access the controls from your code, make the IDs unique.
Add controls with the following properties:

• An edit box control. In the Properties dialog box, set the ID to
IDC_EDIT1. This box will display the width for drawn lines, in
pixels. We'll be setting a range of 0-5 for it later. The box will
also become the buddy control of the spin control next to it.
That is, the two will be linked so that clicking the spin control
changes the value in the edit box.

• A spin button control. Set the ID to IDC_SPIN1, and use the fol
lowing styles: set the Visible and Tab Stop styles on the Gen
eral tab; and on the Styles tab, set Vertical Orientation, Right
Alignment, Auto Buddy, Set Buddy Integer, Wrap, and Arrow
Keys. The Right Alignment style puts- the spin button control
just inside the right edge of its buddy, the edit box. The Auto
Buddy style causes the spin button control to associate with the
edit box just before it in the tab order. The Set Buddy Integer
style causes clicks on the spin button control to increase or de
crease the integer in the buddy control. The Wrap style causes
the values in the buddy control to wrap around to the mini
mum value when the maximum value is passed and vice versa.
The Arrow Keys style enables operating the spin button control
from the keyboard. Most of our controls' functionality is already
taken care of through these styles, but we still must set the ranges
for both the edit box and the spin control.

• A static text control. Set the ID to IDC_STATIC and type the
caption Line &Thickness. This labels the combined edit box
and spin button control below.

589

Rounding Out Your MFC Skills

590

• A combo box. Set the ID to IDC_COMB01, and on the Styles
tab, set the Type box to Drop List and clear the Sort box. This
combo box will display the name of one of our 10 standard col
ors or the string "Custom Color." One more thing: in the Dialog
editor, point to the downward arrow portion of the combo box,
and handles will appear. You can drag the handles down to en
large the box. This sets how far the list portion of the combo
box opens and thus how many strings it can display without
scrolling. (Windows adds a scroll bar if needed.) Drag the
handles far enough to display three or four strings. You can
adjust the box later.

• A static text control. Set the ID to IDC_STATIC, and type the
caption Line & Color. This labels the combo box.

~II OTE I'll discuss each control type in more detail when we implement the
(':~'J controls' behavior. For more information on each type, check the Help in

dex for controls. In the Topics Found dialog box, choose the topic "Control
Topics" and in that topic scroll down to the table under "Finding Informa
tion About Windows Common Controls." Links in the table take you to
more information.

4. Adjust the tab order for the controls just added to the Line page. To
see the current tab order, click Tab Order on the Layout menu. A
small numbered box appears near each control to show the order
used when the user presses the Tab key to move from control to
control. (Only controls with the Tab Stop style are really in the tab
order.)

Since only three of our Line page controls really do any work, we
want them first in the tab order for the user's convenience. To change
the tab order, click Tab Order on the Layout menu, then click each
control in sequence: first the edit box at the top, then the spin but
ton control, then the combo box control at the bottom, and finally
the two static text controls from top to bottom. For more informa
tion, check the Help index for Dialog Boxes (capitalized) and select
the subtopic "changing tab order."

19: Dialog Boxes and Controls

~ Tryitnow

1. Cre~te another new dialog resource (select Resource on the Insert
menu, and double-click Dialog). As with the Line dialog resource,
adjust the size to 250 by 150 units.

2. In the Properties dialog box for the new resource, set the ID to
IDD_PS_SHAPE and type the caption &Shape. Delete the OK and
Cancel buttons.

3. Add the controls in the list below to the Shape dialog resource, in
the order shown, moving down and to the right-see Figure 19-6 for
placement.

• A group box. Set the ID to IDC_STATIC, and type the caption
&Next shape will be. Group boxes visually group the controls
inside them. Otherwise, they have no effect on the controls and
don't, for instance, cause the radio buttons we'll put inside our
group box to be mutually exclusive just because they're visually
grouped. We have to code that behavior by setting the styles of
the buttons. Tip: To select the group box so you can edit its
properties, click on the box's outline or its caption.

• Two radio buttons. Place them inside the group box, and set
the IDs to IDC_RADIOl and IDC_RADI02, with captions &Rect

angle and &Ellipse, respectively. Make sure the Rectangle radio
button has the styles Visible, Group, and Tab Stop set on the
General tab. The Ellipse radio button should have only Visible
and Tab Stop set-not Group. I'll explain why shortly. (The
Group style has nothing to do with the group box control.) On
the Styles tab, check Auto for both controls. These controls are
mutually exclusive. They act just like our Rectangle and Ellipse
commands, allowing the user to change the next shape type
here as well as on the Tools menu or the Drawing toolbar.

591

Rounding Out Your MFC Skills

592

• A check box control. Set the ID to IDC_ CHECK1, and type the
caption Shape will be &transparent. (Note placement of the
mnemonic ampersand.) Set the Visible, Group, and Tab Stop
styles on the General tab and the Auto style on the Styles tab.
This box is equivalent to the Transparent command on the Tools
menu. If checkmarked, the next shape will be transparent; oth
erwise, it will be opaque. Notice that check boxes and radio
buttons come with attached text labels (their captions).

The check box control has the Group style to tell Windows that
all subsequent controls, in tab order, are grouped together. The
group runs from the first control with the Group style (the first
radio button) up to, but not including, the present control (the
check box). Thus the group includes only the two radio buttons.

4. Set the tab order for the Shape page in the following sequence: the
Rectangle radio button, the Ellipse radio button, the check box, and
finally the group box.

5. Save your work in both dialog resources. Keep both dialog resources
open in the Dialog editor for the next step.

Creating Dialog Classes for the Settings Dialog Box
With both of the new dialog resources still open in the Dialog editor, cre
ate corresponding classes. The classes will allow us to create the pages in
the property sheet and manipulate them through class members.

~ Tryitnow -rcr
First, to create class CLinePage for the Line tab, display the dialog resource
for the Line tab in the Dialog editor. Then follow these instructions:

1. Press the Ctrl key as you double-click the Line dialog box. This
opens Class \'Vizard's machinery for adding classes.

2. In the Adding A Class dialog box, click OK to create a new class.

3. In the New Class dialog box, type the class name CLinePage. Click
Change and type Dialogs.h and Dialogs.cpp as the filenames in
which to store the class declaration and implementation. Click OK.

19: Dialog Boxes and Controls

Then, back in the New Class dialog box, change the Base Class box
to CPropertyPage. The Dialog ID should be IDD_PS_LINE. This con
nects the class to the dialog resource.

4. Click OK, and then click OK again to finish creating the clas~.

5. Add the following boldface line to the top of Dialogs.h so that
CLinePage and CShapePage will have access to the view class
functions:

II Dialogs.h : header file
1/
#include "DrawVw.h"

6. Now create the CShapePage class in the same way you created the
CLinePage class (steps 1-4). Display the dialog resource, press Ctrl
while you double-click the dialog box, and specify information for
the new class. Put the new class in the same files: Dialogs.h and
Dialogs.cpp. Be sure to derive the class from CPropertyPage. The
Dialog ID should be IDD_PS_SHAPE.

You can examine the classes in files Dialogs.h and Dialogs.cpp, and we'll
be adding members to some of them.

Adding Class Data Members Mapped to the Controls
To finish up the dialog classes for the Settings dialog box, we need to create
class data members mapped to several of the controls for DDX purposes.

~ Tryitnow
Open ClassWizard from the View menu, click its Member Variables tab,
and take the following steps-we'll add two data members for class
CShapePage and three for CLinePage, all for use with DDX and DDV.

1. Select CShapePage in the Class box. In the Control IDs box, select
IDC_CHECK1, for the check box, and click Add Variable. In the Add
Member Variable dialog box, type the name m_hTransparent, and
specify the category Value and variable type BOOL. Click OK. This
data member will hold the value of the check box for DDX purposes.

593

Rounding Out Your MFC Skills

594

2. In ClassWizard, select IDC_RADIOl and click Add Variable. Type
the name m_nShpRectangle, and specify the category Value and
variable type into For DDX purposes, this data member will hold
the value 0 if the Rectangle radio button is set or 1 if the Ellipse
button is set. The numbers are the zero-based indexes of the con
trols in the radio button group. We don't need a data member for
each radio button, just the group. Click OK.

3. Back in ClassWizard, select CLinePage in the Class box. (Click Yes
to save CShapePage if prompted.) In the Control IDs box, select
IDC_EDIT1, and click Add Variable. Type the name m_nThickness,
and specify the category Value and variable type UINT. Click OK.
At the bottom of ClassWizard, set a range of values that can appear
in the edit box: type 0 in the Minimum Value box and type 5 in the
Maximum Value box.

4. In Class Wizard, select IDC_SPINl and click Add Variable. Type the
name m_spinThickness, and specify the category Control and vari
able type CSpinButtonCtrl. Notice that we're using the Control cate
gory this time and our data member is a CSpinButtonCtrl object.
We'll use that object to manipulate the spin button control. We'll
have to specify a range for this control in code, to match the range
we set for the edit box that serves as the spin button control's buddy.
Click OK.

5. In Class Wizard, select IDC_COMBOl and click Add Variable. Type
the name m_comboColor, and specify the category Control and
variable type CComboBox. Click OK twice to close ClassWizard.

6. Add two public data members to class CLinePage (in the file Dialogs.h):

CLinePage();
~CLinePage();

UINT ffi-nColorIndex:
COLORREF ffi-colorRGB:

Implementing the Shape Page
Although the Line page will appear first in the property sheet, we'll
implement the controls on the Shape page first. All of the implementation
for the radio buttons and the check box is in the following three places:

19: Dialog Boxes and Controls

• The data members we just added to the CShapePage class.

• The styles we set for the controls in the Dialog editor.

• A few lines in the OnToolSettings handler we already presented in
"Displaying the Settings Dialog Box." Let's take a quick look at
those lines.

The radio buttons

The following code fragment from CMyDrawView::OnTooISettings, which
you've already added, initializes the radio buttons and the check box and
retrieves their values after the dialog box closes:

II Radio buttons: 0 = Rectangle, 1 = Ellipse
dlgShape.m_nShpRectangle =

(m_typeNext == shpRectangle ? 0 1);
II Check box
dlgShape.m_bTransparent = m_bTransparent;

if(settings.OoModal() == lOOK)
{

II Retrieve values set by user: radio buttons.
m_typeNext = (dlgShape.m_nShpRectangle ?

shpEllipse : shpRectangle);
II Check box
m_bTransparent (dlgShape.m_bTransparent == 1 ?

true: false);

The first two lines assign an initial value to the Shape page's m_nShp
Rectangle data member. We assign 0 if the view's m_typeNext data mem
ber equals shpRectangle, or 1 if it's shpEllipse. The values 0 and 1 are the
zero-based indexes of the two radio button controls. From there, DDX
transfers the data into the corresponding controls. The first two lines of
code after the DoModal call retrieve the current value of the Shape page's
m_nShpRectangle member. If it's 1, we set the view's m_typeNext mem
ber to shpEllipse; otherwise, we set it to shpRectangle. (This is the same
sort of conversion between types that we used in the serialization code in
Chapter 16.) DDX transfers data from the controls to these Shape page
data members when the user closes the dialog box by clicking OK.

595

Rounding Out Your MFC Skills

596

The check box

In the same code fragment above, the third line of code assigns the view's
m_bTransparent data member to the Shape page's m_bTransparent data
member. DDX puts that into the check box on the Shape page. The box is
checkmarked if the data member is set to true, or cleared if set to false.
The last two lines after the DoModal call set the view's m_bTransparent
member to true if the Shape page's m_bTransparent member equals 1, or
to false if CShapePage::m_bTransparent is O. After DoModal, DDX trans
fers data from the check box back to the Shape page data member, where
we can pass it on to the view.

For a review of DDX and DDV, see the sidebar "DDX and DDV" earlier in
the chapter.

Implementing the Line Page
To get the Line page completely up and running, we need to take two steps:

1. Initialize and manage the combo box for setting colors. This will be
the most complex code for the Settings dialog box.

2. Initialize and manage the spin button control and its buddy control.

A(tIOTE Although I'm setting up a way for the user to enter a line thickness
(5;(fl value, I haven't written any line thickness code in the view class for this

step of MyDraw because I want to focus on the controls here.

The combo box

The Line page's combo box duplicates MyDraw's color menu in a conve
nient way. Clicking the downward-facing arrow beside the combo box
drops down a list of colors. Clicking a color puts its name into the edit box
portion of the combo box. We then·pass the selected color back to the view.

To implement the combo box, we need to complete these tasks:

19: Dialog Boxes and Controls

• Initialize the combo box by adding the color names to it and setting
it to the current color, which is passed to the Line page from the
view in CMyDrawView::OnToolSettings.

• Handle a CBN_SELCHANGE notification message sent to the Line
page when the user selects a new color.

• Display the Color common dialog box if the user selects Custom
Color in the combo box.

C. Try it now
(J

If the combo box were in an ordinary dialog box, we'd initialize it in the
dialog object's OnlnitDialog handler. Called just before the dialog box is
displayed, OnlnitDialog is the perfect place to initialize controls that can't
be initialized using DDX. But the combo box is in a property page embed
ded in a property sheet dialog box, so there's an extra level of indirection.
We need to initialize the combo box not when the containing property
sheet opens but when the contained Line page displays.

1. To do that, use the Add Virtual Function command to add an over
ride of the OnSetActive handler in class CLinePage. The handler
processes the WM_SETACTIVE message. Click Edit Existing and
add the boldface lines:

BOOl ClinePage::OnSetActive()
{

}

II TODO: Add your specialized code here and/or ...

II Initialize combo box just before
II Line tab becomes active.
II Load color names into combo box.
for(1nt i = 0: 1 < 11: i++)
{

IILcomboColor.AddStr1ng(arColorNames[i]):
}

II Set the combo box to the current color.
IILcomboColor.SetCurSel(lILnColorIndex):

return CPropertyPage::OnSetActive();

597

Rounding Out Your MFC Skills

598

In the for loop, we load the names of our 10 standard colors, plus
the string "Custom Color." To add a string, we use the CComboBox
object we created earlier as the CLinePage::m_comboColor data
member and call its CComboBox::AddString function. We get the
strings from an array called arColorNames, which we need to add.
To set the combo box's initial value, we set its current selection
with the CComboBox::SetCurSel member, which uses the value of
CLinePage::m_nColorlndex (set in OnToolSettings) as a zero-based
index into the combo box's list of strings.

2. Next, add the arColorNames array at the top of the file Shape.h,
just above class CShape (that's a convenient location for other
uses I plan to make of the array later):

static CRect arHandles[8];

static CString arColorNames[ll]
{

};

"Black",
"Blue",
"Green",
"Cyan",
"Red",
"Magenta",
"Yellow",
"White",
"Dark Gray",
"Li ght Gray",
"Custom Color"

class CShape : public CObject

This static array, declared at global scope, is visible to the dialog
classes.

~-~ Try it now (J
To respond when the user makes a new selection in the combo box, we need
a handler for the CBN_SELCHANGE notification message. When some inter
esting event occurs in a control, the control sends a notification message

19: Dialog Boxes and Controls

(sometimes called, simply, a "notification") to its parent window. In the
case of a control in a dialog box, the dialog window is the parent window.

1. Add an OnSelchangeComboColor handler for the CBN_SELCHANGE

notification message associated with IDC_COMB01. Using Wizard
bar, select Add Windows Message Handler. In the New Windows
Message And Event Handlers dialog box, select IDC_COMBO in the
Class Or Object To Handle box, click CBN_SELCHANGE in the New
Windows Messages/Events box, click Add Handler, and modify the
name to OnSelChangeComboColor. Then add the boldface code:

void CLinePage::OnSelchangeComboColor()
{

}

II TODO: Add your control notification handler code here
ffi-nColorlndex = ffi-comboColor.GetCurSel():
ffi-colorRGB = arColors[ffi-nColorlndex]:
II Respond if user chose "Custom Color" in the combo box.
if(ffi-nColorIndex == CUSTOM_COLOR-INDEX)
{

GetCustomColor(): II Display the Color dialog.
}

When the user invokes this handler by selecting a new color, we
first retrieve the selection (an index into the combo box) by calling
the combo box's GetCurSel function. We assign that to CLine

Page::m_nColorIndex, so DDX can pass it back to the view even
tually. We also use it to index the arColors array in DrawVw.h,
returning a COLORREF value in m_colorRGB.

Recall that in the section" A Windows Common Dialog Box" we
added an extra element to the arColors array to hold the most re
cent custom color. We also added two constants below the array to
the view class: CUSTOM_COLOR_INDEX (which equals 10) and
CUSTOM_COLOR. The first constant is an index into the arColors

array with a value between 0 and 10. The second constant is equal
to ID_COLOR_BLACK + CUSTOM_COLOR_INDEX, or, in my version
of MyDraw, 32,774 + 10. Each has its uses in the view class and
Line page class code.

Next, we compare m_nColorIndex, the index of the combo box item
selected, with the ID for the Custom Color selection, in the form of

599

Rounding Out Your MFC Skills

600

CUSTOM_COLOR_INDEX. In other words, if m_nColorIndex equals
10, the user has selected Custom Color in the combo box. In that
case, we want to display the Color dialog box so that the user can
pick a custom color. To do that, we call GetCustomColor, which
we'll add in a moment.

2. Using WizardBar's Add Member Function option, add the
GetCustomColor helper function called from OnSelchange
CustomColor:

void CLinePage::GetCustomColor()
{

}

II Display the Color dialog box.
CColorDialog dlg;
dlg.~cc.rgbResult = ~colorRGB;
if(dlg.DoModal() == IDOK)
{

}

~colorRGB = dlg.GetColor();
~nColorlndex = CUSTOM_COLOR-INDEX;

This code is a near duplicate of the code we wrote earlier in the
chapter to display the Windows common Color dialog box. (Fortu
nately, it's brief, or we'd want. to find a way for the view class and
the CLinePage class to share the code-but that's a bit advanced for
this book.) After retrieving the selected color, we set m_nColor
Index to CUSTOM_COLOR_INDEX, indicating that the user has
selected some custom color. The color itself is in m_colorRGB.
Keep in mind that we call this function when the user has selected

, Custom Color in the combo box.

The spin button control

Given the styles we set for it, and the buddy we arranged for it, the spin
button control takes care of itself completely-except that we need to ini
tialize its range to 0-5. If the spin control were in an ordinary dialog box,
we'd use an OnInitDialog handler, called just before the dialog box was
displayed. In our property pages, however, we'll need to initialize our
spin button control in the CLinePage: :OnSetActive handler we used to
initialize the combo box.

19: Dialog Boxes and Controls

~ Try it now
Add the boldface lines to CLinePage::OnSetActive:

BOOl ClinePage::OnSetActive()
{

II TOOO: Add your specialized code here andlor ca1l the base class

II Initialize combo box just before line tab becomes active
II Initialize spin button control.
~spinThickness.SetRange(0. 5);

II load color names into combo box
for(int i = 0; i < 11; i++)

Recall that we created a data member in class CLinePage, of type CSpin
B.uttonCtrl, called m_spinThickness. Since it's a C++ class object, we can
call any of its member functions. We only need to call CSpinButton
Ctrl::SetRange, passing the minimum and maximum values for the range.
We pass 0 and 5 to match the range we set for line thickness values in the
buddy control.

~ Ti' IP Using a pushbutton in your dialog box, you can display a secondary dia
r. '~11 log box. To do so, write a handler for the BN_CLlCKED notification message

associated with the pushbutton's control ID. For an example, check the Help
index for message handling and select the subtopic "in dialog boxes." Then
select the second topic in the Topics Found dialog box.

Controls as Windows
Recall that I pointed out early in the chapter that dialog boxes and con
trols are windows. I want to remind you of that fact, because the impli
cation is that you can treat them as window objects. Which means that
you can perform the following manipulations, among others:

• Obtain a CWnd* pointer to a control, using CWnd::GetDlgltem in
one of your dialog class member functions, like this:

CWnd* pWnd = (CWnd*)GetOlgItem(IOC_MY_STATIC);

601

Rounding Out Your MFC Skills

602

• Use that pointer to obtain a CDC* pointer to the control window's
device context, like this:

COC* pOC = pWnd->GetOC();

• Use those pointers to call any CWnd or CDC member function. For
example, to change the color of the text in a static text control, you
could call CDC::SetTextColor:

pOC->SetTextColor(m_nColorNext);

As another example, to change the text itself in a static text control,
you could call CWnd::SetWindowText:

pWnd->SetWindowText("Now the control says this");

• Redraw the containing dialog box to reflect the updated text color,
like this:

Invalidate(); II From within a dialog-class member function

These kinds of manipulations are something that MFC makes pretty easy,
and they're quite powerful. Using similar approaches, you have a great
deal of control over the attributes and actions of your dialog boxes and
controls.

\ Til 'IP Here's something handy about control notification messages: Normally
'11 they're sent to the control's parent window, but in MFC you can reflect con

trol notifications from the parent so they come back to the control. This lets
you write self-contained controls, a neat bit of object-oriented modularization.
You need a class derived from the control's class so you can add a handler
for the reflected message. Check the Help index for message reflection.

What's Missing?
Even with the addition of the dialog boxes, MyDraw is still lacking a
few things:

• A way to let the user know which custom color is currently selected.
(See the discussion in "Controls as Windows" for some ideas.)

• Code to implement the line thickness option.

19: Dialog Boxes and Controls

I won't cover those topics here, but MyDrawF, the final version of
MyDraw, provides a solution to the first one. And see the exercise that
follows.

Try It Yourself
Want more extra credit? Try this exercise.

Show the user which custom color is currently selected.

One approach to this problem is to add a static text control to the Line
page, perhaps with the caption This is the color the next shape will use.
Then you could use the fact that a control is a window to access its de
vice context and call CDC::SetTextColor, setting the color to our current
color. You'll need to update the color on demand, so I recommend an
UpdateStaticColor function in CLinePage. Have that function obtain
CWnd * and CDC* pointers for the static text control, then directly call a
CLinePage::OnCtlColor handler (you'll need to add one), passing those
pointers. Change the text color in that handler. OnCtlColor handles the
WM_CTLCOLOR message, and handling it as I've described changes the
text color either in response to an actual WM_ CTL COL OR message or by
calling OnCtlColor directly. Here's a tip: after the change, invalidate the
dialog window in UpdateStaticColor. For one solution, see the final ver
sion of MyDraw, called MyDrawF, in the \learnvcn \Chap21 folder in the
companion code.

What's Next?
In Chapter 20, we wrap up development of MyDraw by adding multiple
views of MyDraw's document. Users will be able to split the drawing sur
face to see different parts of it at the same time. The views will be set up
using an MFC splitter window.

603

Chapter

Multiple Views
As with many programs, MyDraw's drawing area is too large to fit on a
computer screen. We've added scrolling to let users access all of the
drawing area. But suppose a user wants to see and possibly work in two
different parts of the drawing area simultaneously. To meet this need we
supply an additional aid: a splitter window. A splitter window can be di
vided into two or more panes, horizontally, vertically, or both. Splitter
windows are derived from class CSplitterWnd in the Microsoft Founda
tion Class Library 6.0 (MFC). In this chapter, in MyDraw step 10, we'll add
a splitter window to MyDraw and expand our discussion of MFC views.
(We'll complete MyDraw step 10 in Chapter 21 by giving the program its
own application icon.)

1~11 OTE If MyOraw were a multiple document interface (MOl) application, an-
{~, other way to let users work in distant parts of the document would be

through the New Window command. New Window is a standard command
already implemented in MFC for MOl applications (such as Microsoft Word~
for example). When you choose this command, MFC creates a new docu
ment frame window within the MOl frame window. The new window con
tains the same kind of view object as the active document window, so the
user sees two windows containing the same document. You can scroll to a
remote location in one window while leaving the other window in place.
The new window has the same caption as the old one, but with :2 ap
pended. The NWnd program in the \learnvcn\Chap20 folder in the compan
ion code illustrates this behavior. Take a look.

605

Rounding Out Your MFC Skills

606

Splitter Windows
MFC provides two kinds of splitter windows: dynamic and static. Figure
20-1 shows MyDraw with a dynamic splitter window dividing the view
into four panes. We'll add the code for this feature in a moment. A dy
namic splitter window lets the user control how many rows and columns
of panes to use, while a static splitter window requires these values to be
set at the outset, when the splitter window is created.

,..ft,.. Untitled - MyDraw 1l!!l1il13
file f.dlt y'le'N' lo~~ .. l:!elp . ____ ~_ ,

D ~ W' '-I ctJ ~'~ I ~ ~. ,
o
o

Ready

Figure 20-1. MyDraw's window split into two rows and two columns of panes.

Let's examine the behavior of splitter windows. In Microsoft Visual c++
6.0, with a source code document open, choose the Split command on the
Window menu. Move the mouse around in the document window with
out clicking it. The intersection of two split bars follows the mouse.
When you click in the window, the split bars lock into place. Try double
clicking a split bar to make it disappear. Try dragging a split bar all the
way to a window edge and letting it go. With both split bars gone, click
on the small split box above the document window's vertical scroll bar

20: Multiple Views
---------------------,---------------------=

(see Figure 20-2) and drag it down. A horizontal split bar again divides
the window. Try the same thing with the split box to the left of the hori
zontal scroll bar. Try scrolling the exposed panes to different parts of the
document.

In both dynamic and static splitter windows, the user can drag the split
bars that divide up the window to resize the panes with respect to each
other. For example, in a static splitter window with two panes, the user
can drag the split bar all the way to the right or left so one view disap
pears (except for the split bar). In a dynamic splitter window, the user can
also remove the split bars, as you saw in the last "Try it now." Removing
split bars reduces the number of rows or columns of panes. Double-click
ing a split bar or dragging it all the way to a window edge removes it from
the window. However, a small split box remains, tucked in above the ver
tical scroll bar (as in Figure 20-2) or to the left of the horizontal scroll bar.

<!":~ Unlllled - MyDlaw f!I!Il!1f3

Split box

I, • ~
Ready" ,- r ,,%
~~""'_""_.", ______________;......._.........;.._.......;.;.J

Figure 20-2. MyDraw with split boxes.

When to Use Dynamic and Static Splitter Windows
Use a dynamic splitter window to display multiple panes based on the
same view class. This enables the ability we discussed earlier-it lets the
user view different parts of the same document in multiple panes.

607

Rounding Out Your MFC Skills

608

Use a static splitter window when you want to display different view
classes in the p-anes. For example, the left pane might hold a form view
a dialog-like view with controls-while the right pane might hold a draw
ing surface as in MyDraw. The Stat program in the \learnvcn \Chap20
folder in the companion code illustrates a static splitter window with two
panes: a form view in the left pane and a graphics view in the right pane.

Static splitter windows are useful for creating complex windows whose
panes contain highly diverse work areas. For example, suppose you need
a main window with a control panel on one side and another control
panel along the bottom. You could partly accomplish this with toolbars,
but as an alternative, a static splitter window might offer exactly what
you need.

Combining Static and Dynamic Splitter Windows
Dynamic splitter windows are limited to a maximum of 2 rows and 2 col
umns, but the user can dynamically add or remove panes by manipulat
ing the split bars. You can design static splitter windows with up to 16
rows and 16 columns. It's even possible to combine static and dynamic
splitter window panes. For example, the left pane of a static splitter win
dow could contain a form view, while the right pane contained several
embedded dynamic splitter window panes. Another possibility is to de
rive your own class from CSplitterWnd and override member functions so
you can embed different view types in the panes of a dynamic splitter
window. I won't illustrate these more advanced techniques, but Jeff
Prosise explains them in his book Programming Windows 95 with MFC
(Microsoft Press, 1996). (See Chapter 21 for information about this and
other more advanced Visual C++ and MFC books.)

Adding a Dynamic Splitter Window to MyDraw
Let's add the few lines of code needed to give MyDraw a dynamic splitter
window. Each pane of the splitter window will be based on MyDraw's
one view class, CMyDrawView.

20: Multiple Views

Try it now
Adding a dynamic splitter window requires one data member and one
single-line function. Take these three steps:

1. In class CMainFrame (in the file MainFrm.h), add a data member
of type CSplitterWnd. Put it in the first protected section under the
/ / Implementation comment:

II Implementation
public:

protected: II control bar embedded members
CStatusBar m_wndStatusBar;
CToolBar m_wndToolBarStd;
CToolBar m_wndToolBarDraw;
CSplitterWnd ~wndSplitter:

2. Use the Add Virtual Function command to add an override of the
OnCreateClient virtual function to class CMainFrame and fill in the
boldface line of code below (replacing the existing return statement):

BOOl CMainFrame::OnCreateClient(lPCREATESTRUCT lpcs,
CCreateContext* pContext)

{

}

II TODO: Add your specialized code here and/or ...
return ~wndSplitter.Create(this. 2. 2. CSize(l.l).

pContext):

3. In the OnLButtonUp member function (in the file DrawVw.cpp),
add the following boldface lines just before the closing brace of the
if statement:

if(m_bCaptured)
{

}

II Draw final rectangle.
InvertShape(&dc, *m_pShpTemp, false); II Draw

II Update extra views with the new shape.
CMyDrawDoc* pDoc = GetDocument():
ASSERT_VALID(pDoc):
pDoc-)UpdateAllViews(NULL):

Now that the user can split the window, we need to make sure all views
are updated with anything drawn in one of them.

609

Rounding Out Your MFC Skills

610

The data member embeds a splitter window within the application's main
frame window, just as the m_wndToolBarX and m_wndStatusBar data
members embed toolbars in the window. The visible manifestation of em

bedding the splitter window is the two split boxes nestled next to the
scroll bars.

MFC calls the CMainFrame::OnCreateClient member function when the
frame window is being created, thereby allowing us to embed our toolbars
and splitter windows. Our highlighted code calls CSplitterWnd::Create to
create and initialize the splitter window. Create takes five parameters.

The first, this, identifies the splitter window's parent window. The next
two parameters specify the maximum number of rows and columns (in

that order)-these values must not exceed 2. The fourth parameter sets
the minimum size of a pane to 1 pixel. The final parameter passes along
the CCreateContext pointer received as a parameter to OnCreateClient.
This object contains information that MFC uses to create the view objects

to display in the panes. For additional parameters with acceptable default
values, check the Help index for Create and choose the "CSplitter
Wnd::Create" topic in the Topics Found dialog box.

That's all it takes to create a dynamic splitter window. Build and run

MyDraw to try it out. (But first see the Warning below.)

\J'IP If you want to allow dynamic splitting into two side-by-side panes only,
,~" pass 1 and 2 for the row and column values. For one pane above the other,

pass 2 and 1. Note that passing 1 and 1 results in an error. Either the num
ber of rows or the number of columns (or both) must be 2. You can test
these variations in MyDraw.

~I/ ARNING Introducing the splitter window is simple, but it creates some side
/'~'f/lVi effects. I won't follow up on those here in the text, but see the final version

of MyDraw, MyDrawF, for a solution. If you split MyDraw's view now, you
find that the panes are not synchronized. The problem is that splitting cre
ates multiple copies of the view object, each containing its own data mem
bers for color, transparency, selection, and so forth. If you click in one pane
to make it active and then change color, transparency, or selection mode,
the data members in the other views don't change to match these selec
tions. Experiment with MyDraw to see the problems. How would you solve
them? The document MyDrawF.doc in the \learnvcn\Chap21 folder in the
companion code describes my strategy for coordinating the panes.

20: Multiple Views

Creating a Static Splitter Window

Figure 20-3.

We won't use a static splitter window in MyDraw, but the Stat program in
the companion code shows how to set one up. That example displays two
side-by-side panes. The left pane is a form view with some (unimple
mented) controls, and the right pane is a view that draws an ellipse near
its upper left corner. Figure 20-3 shows the Stat program.

-J=-.~ __ ~ EchtL

" 'r' Check1
~, ' !

, <-"V

),1-->

A program whose static splitter window contains a form view and a drawing
surface.

To create a static splitter window in some hypothetical application, such
as Stat, follow these steps:

1. As with the dynamic splitter window, embed a CSplitterWnd object
in the main frame window class, CMainFrame, by adding a CSplitter
Wnd data member.

2. Add an override of the OnCreateClient member function to the main
frame window class. In it, write code something like the following:

BOOl CMainFrame::OnCreateClient(lPCREATESTRUCT lpcs,
CCreateContext* pContext)

{

II TODO: Add your specialized code here ...
(continued)

611

Rounding Out Your MFC Skills

612

}

if(!~wndSplitter.CreateStatic(this, I, 2) I I
!~wndSplitter.CreateView(0,0,

RUNTIME_CLASS(CStatForm),

{

}

CSize(165, 0), pContext) II
!~wndSplitter.CreateView(0,I,

RUNTIME_CLASS(CStatView),
CSize(0, 0), pContext»

return false:

return true:

We make three function calls here, one to CSplitterWnd::CreateStatic,
then two to CSplitterWn d::Create View, one call per static pane. If any of
the calls fail, we return false, and the application terminates.

The CreateStatic member function is the static counterpart to the Create
function that is used for dynamic splitter windows. CreateStatic takes a
parameter identifying the parent window and two parameters specifying
the number of rows and columns (one row, two columns in the example
above). This creates and initializes the static splitter window, but for a
static splitter window we still must specify the view classes to use in the
panes. That's what the two calls to Create View do. The first two parameters
to Create View specify the zero-based row and column number of the pane
the call is for: passing 0, ° for our splitter window with one row and two
columns (two panes, side by side) specifies the left pane. In the second
CreateView call, we pass 0,1 for the right pane. Each CreateView call then
passes a CRuntimeClass object, obtained with the RUNTIME_CLASS
macro. Passing this object identifies the view class in a way that lets MFC
create the view object as needed. In the example, we specify view classes
CStatForm and CStatView for the right and left panes, respectively.

The two Create View calls also pass a CSize value to specify the widths of
the two panes. In our example, passing CSize(165, 0) in the first Create
View call specifies that the left pane is initially to be 165 pixels vvide, a
value I determined by experiment-wide enough to expose all of the text
and controls in the form view used in the Stat example on the CD. Pass
ing CSize(O, 0) in the second Create View call specifies that the right pane
is to use all the horizontal space left after its companion pane is placed.

Finally, the Create View calls pass along the CCreateContext pointer that
OnCreateClient receives from MFC.

20: Multiple Views

~~TI' IP To create a form view like the one in the Stat program, create a dialog
~11 template resource containing the controls you want. Give the dialog re

source the following styles: do not enter a caption on the General tab i~
the Properties window. On the Styles tab, select Child style and None for
Border, and on the More Styles tab, make sure the Visible box is not checked.
Next, hold down the Ctrl key and double-click the dialog resource to create
a class. In the New Class dialog box, name the class, specify the files it's to
be stored in, derive the class from the base class CFormView, and confirm
that the dialog resource ID supplied in the Dialog ID box is correct. Write
code in your resulting form view class to manage the controls. Form views
are described further below.

What Can You Do With Views?
In Chapter 14, we looked at the notion of an MFC document as a data re
pository or a data manager. A document is just a receptacle that you can
tailor to manage some particular kind of data. (The document doesn't
necessarily have to correspond to a disk file.) Class CMyDrawDoc, for ex
ample, has an interface designed for containing and manipulating shapes.
Now it's time to pay more attention to views, the other half of MFC's docu
ment/view architecture.

Views for User Interaction
Views have a twofold nature. On one hand, they display data, with each
view specialized for some particular kind of data. In this aspect, they're
the visual side of a related document. On the other hand, views often not
only display data but also provide ways for users to interact with the
data and edit it. For instance, in MyDrawwe designed class
CMyDrawView, which allows direct drawing with the mouse and even be
gins to add the rudiments of direct editing with the mouse: actions such
as selecting, dragging, and resizing the shapes drawn in drawing mode~

Views as Windows
Views are windows, so they inherit a huge amount of functionality, not
only from CView but also from CWnd and all of its base classes. Here's a
partial list of what views can do:

• Handle Windows messages, including WM_COMMAND messages.

613

Rounding Out Your MFC Skills

614

• Communicate with their parent window. They can also obtain a
pointer to the parent with the CWnd::GetParent member function.

• Communicate with a document object, via CView::GetDocument,
CDocument::UpdateAllViews, and CDocument::SetModifiedFlag,
among other functions.

• Contain child windows of their own, which can include controls
and custom-designed child windows derived from CWnd.

Both documents and views can have message maps. Both, therefore, can
handle WM_COMMAND messages from menus, toolbars, and controls. It's
common to map some commands to the document, some to the view,
some to the frame window, and some to the application object. For ex
ample, you typically map the Open and New commands on the File menu
to the application object, while you map the Save, Save As, and Close
commands to the document, and you map commands related to drawing
to the view.

Unlike documents, views are windows, so they can also handle a great
many Windows messages besides WM_COMMAND. As we've seen, views
often handle mouse and keyboard messages, messages related to window
creation and destruction, scrolling messages, messages related to window
visibility and activation, and so on.

Finally, both CDocument and CView supply sets of virtual member func
tions that you can override, such as OnBeginPrinting and OnPrepareDC
for the view and OnNewDocument and DeleteContents for the document.

MFC Views as Bases for Your Own Views
With all of the functionality I just described, the MFC view classes are
versatile design templates-starters for any sort of view you might need.
All view classes are based on CView, of course. Classes based on CScroll
View, such as our CMyDrawView, build in scrolling ability. Classes based
on CForm View present a dialog-like interface that can also be scrolled (be
cause CForm View is derived from CScrollView). Classes based on CCtrl
View build a view around a single Windows control, such as an edit box,
a tree control, or a list control. Class CEditView, for example, supplies
fairly sophisticated display and editing of plain text. The view is com-

20: Multiple Views
1 __ ,:W&<_= _______ """

pletely covered by a CEdit control. You can easily use a CEditView to
write a simple text editor like the Windows Notepad accessory. Other view
classes are specialized for displaying and manipulating database data.

The point is that you can design any sort of view you need, either starting
with one of the more specialized MFC view classes or starting from scratch,
more or less, by deriving from class CView. The possibilities are limitless.

Combining Views
Not only can you base your view on one of the MFC view classes, but you
can combine views in various ways. You can, for example, install views in
a dynamic or static splitter window, as we've seen. One promising ap
proach for many applications is a Windows Explorer-style interface, with a
CTreeView in one pane and some other view, typically a CListView, in a
second pane. AppWizard even supports generating an Explorer-style inter
face instead of a standard document/view interface. (Look at App Wizard
steps 5 and 6 in Chapter 7, and also see Exercise 3 at the end of Chapter 7.)

With a bit more work, you can design switchable views, so that the
view changes to suit a change of mode. For example, in Microsoft Excel,
you can examine the same set of data either in spreadsheet view or in
chart view.

It's also possible to design applications with multiple views (and even
multiple document types) based on different document templates. For ex
ample, your application might provide two commands, each of which
opens a window using a different view (and perhaps a different kind of
document). You'd create two different document templates in your appli
cation class's InitInstance member function and use the appropriate docu
ment template to create a document/view pair and their enclosing frame
window. Visual C++ works this way: different commands create source
code documents, resource script documents, bitmap documents, icon
documents, and so on. All of these possibilities allow you to design very
complex user interfaces for your programs.

For more information, check the Help index for samples and choose the
"Views Samples" topic in the Topics Found dialog box. That topic de
scribes several MFC sample applications that use views in interesting

615

Rounding Out Your MFC Skills

616

ways. You can access the samples from there, and Help lets you copy the
sample files to your hard drive. Don't forget that examining, running, and
modifying the samples is a popular and effective way to learn new MFC
techniques.

Communicating Among MFC Objects
Back in Chapter 8 I discussed the objects that make up a running MFC ap
plication. In that discussion, I stressed treating the objects as individual
entities. At this point, 1'd like to stress the objects' cooperation and point
you toward useful information about how they communicate among them
selves. The Help topic "Relationships Among MFC Objects" details inter
object communication. Check the Help index for accessing. Double-click
the subtopic "MFC objects." The table in that topic describes the func
tions you can use to access one kind of object from another-for example,
how to use the global function AfxGetApp to obtain a pointer to the appli
cation object. Many of the MFC sample applications use the functions de
scribed in that table .

. Congratulations!
Think back for a moment about what you've accomplished. Besides learn
ing to find your way around in the Visual C++ environment, you've not
only covered the essentials of the C++ language but also gone on to apply
many of them in a pretty good practice application. You have by now
mastered the fundamentals of MFC programming, which is to say Win
dows programming in C++. Think also of the specific techniques you've
learned: working with Windows resources; using the document/view ar
chitecture; drawing in a window; working with the mouse; using color;
deriving your own classes from MFC classes; handling Windows mes
sages and overriding virtual functions; scrolling; writing and reading
files; printing; and adding sophisticated features like toolbars, property
sheets, and splitter windows; and last but not least, debugging.

More important than those accomplishments, you've also learned to think
as an MFC programmer. You can select the right class to handle a mes
sage. You can find the hooks in MFC that let you accomplish your goals.

20: Multiple Views

You can work with objects such as dialog boxes and Windows controls in
MFC terms. And you can apply object-oriented programming to practical
projects.

Is there more to learn? You bet. But you deserve my hearty congratula
tions for climbing three diffIcult learning curves at once: C++, Windows,
and MFC. That's quite an accomplishment.

Try It Yourself
Here are your final exercises. I hope you've found these small projects
worthwhile. Remember that answers and sample solutions are provided
in the text in some chapters, or in small sample applications or the final
version of MyDraw, MyDrawF, in the companion code.

1. Try your hand at a static splitter window.

Study the Stat program in the companion code and develop your own
similar application. You might try more panes or different kinds of views.
In particular, try creating your own form view.

2. Create an MOl application and experiment with its New Window command.

Test the New Window command and study the code to see how it's
implemented. You can find the implementation in the CMDIFrame
Wnd::On WindowNew function in the file WinMdLcpp. See the Appendix
for guidance on finding the file.

3. Study the MFC view samples.

Check the Help index for samples and choose the "Views Samples" topic
in the Topics Found dialog box. That topic takes you to a variety of MFC
sample applications that do interesting things with views. Copy those
samples to your hard disk, build them, and start learning what makes
them tick.

What's Next?
Chapter 21 directs your attention to books and World Wide Web sites that
can help you go on from here. And to round out our MFC tour, we'll also
finish MyDraw step 10 by adding one last feature to MyDraw. Think of it
as a graduation gift.

617

Chapter

Stepping Out from Here
In the Introduction, I described this book as an on-ramp, a way to get up
to speed with Microsoft Visual c++. You've accomplished quite a bit in
the last 20 chapters, but you've also gotten a glimpse of how much more
there is to Visual c++ than an introductory book like this can cover. I'll use
this chapter to suggest where you might go from here. And, as a parting
gift, I'll show you how to give MyDraw its own custom application icon.

Books on C++, Visual C++, and MFC
The following books are the ones I consulted most frequently while writing
Learn Microsoft Visual C++ 6.0 Now, in the order of probable usefulness
to introductory readers:

• Jeff Prosise, Programming Windows 95 with MFC (Microsoft Press,
1996). Excellent Microsoft Foundation Class Library 6.0 (MFC) pro
gramming information and examples. Jeff Prosise is the Charles
Petzold of MFC.

• Beck Zaratian, Microsoft Visual C++ 6.0 Programmer's Guide, 2nd

edition (Microsoft Press, 1998). Zaratian focuses on using the Visual
C++ product, with special emphasis on the Visual C++ environment.

619

Rounding Out Your MFC Skills

620

• Stanley B. Lippman and Josee Lajoie, C++ Primer, 3rd edition
(Addison-Wesley, 1998). This one's a favorite of many members of
the MFC development team.

• Mike Blaszczak, Professional MFC with Visual C++ 5 (Wrox Press,
1997). This book is more advanced than Prosise and quite compre
hensive at over 1,000 pages. It was written by the current MFC de
velopment team leader. It's fun, too, especially if you like hockey.

• David J. Kruglinski, George Shepherd, and Scot Wingo, Program
ming Microsoft Visual C++, 5th edition (Microsoft Press, 1998). This
one's more advanced than Prosise, and more oriented to the Visual
c++ product than Blaszczak, who focuses on MFC.

• Charles Petzold, Programming Windows, 5th edition (Microsoft Press,
1999). This is the bible for thousands of C-Ianguage Microsoft
Windows programmers, which, in its newest incarnation, adds
Windows 98 to its comprehensive coverage.

• Frank Crockett with Jocelyn Garner, MFC Developer's Workshop
(Microsoft Press, 1997). This collection of often-requested MFC
techniques and tasks that are somewhat advanced or off the beaten
track includes database programming.

• The Windows Interface Guidelines for Software Design (Microsoft
Press, 1995) and its online version, updated through 1998. Here
you'll find Microsoft's guidelines for the design of your program's
user interface. Later in this chapter, I'll tell you how to find this
book on the Web.

• Jeffrey Richter, Advanced Windows, 3rd edition (Microsoft Press,
1997). Richter's advanced Windows programming topics include
many not covered in Petzold.

• Scott Meyers, Effective C++: 50 Specific Ways to Improve Your Pro
grams and Designs, 2nd edition (Addison-Wesley, 1997). Meyers'
books dwell on C++ pitfalls and ways to avoid them.

• Scott Meyers, More Effective C++: 35 New Ways to Improve Your
Programs and Designs (Addison-Wesley, 1996). This book extends
Meyers' previous offering.

21: Stepping Out trom Here

• Margaret A. Ellis and Bjarne Stroustrup, The Annotated c++ Refer
ence Manual (Addison-Wesley, 1990). Stroustrup was the original
designer of C++, and this is his definitive guide for implementers of
C++ compilers and for C++ programmers.

• Steve McConnell, Code Complete (Microsoft Press, 1993). This book
contains lots of indispensable programming lore and techniques.

One of the best places to look for books on Visual c++ and MFC is the
Microsoft Press website: http://mspress.microsoft.com. Other publishers
of technical books also offer many such titles.

What I Haven't Covered
Here are some of the topics that I'll leave to your postgraduate training.
Most of them are fairly advanced. Each bullet includes pointers to good
sources to get you started.

• Programming with certain new or advanced features of C++, in
cluding templates, namespaces, and multiple inheritance. At the
end of Chapter 5 there's a list of C++ features that are beyond the
scope of this book. To learn about these items, consult a compre
hensive text on the C++ language, such as Lippman and Lajoie. See
the book list in the previous section.

• Programming with Microsoft's Active Template Library (ATL). Using
ATL requires that you understand the Component Object Model
(COM) and C++ templates, both of which are too advanced for this
book. Get started on ATL and COM with Kruglinski, Shepherd, and
Wingo.

• Using certain more advanced graphics techniques, including
bitmaps, regions, and paths. It would take a book twice this size, at
least, to cover everything there is to know about Windows graphics.
Aside from Petzold, a good place to start is Prosise, who is your best
bet for MFC. For more advanced MFC information, try Blaszczak.
Also see Kruglinski, Shepherd, and Wingo.

621

Rounding Out Your MFC Skills

622

• Writing multithreaded applications and using a host of other ad
vanced Windows programming techniques. Multithreaded appli
cations spread processing among multiple concurrently running
threads of execution. For example, you might use a thread to per
form lengthy operations such as printing in the background. See
Prosise. You might also consult Richter.

• Writing forms of Windows-based code besides the kind of graphi
cal .exe programs we've done through most of this book. These
might include dynamic-link libraries (DLLs), device drivers,
Microsoft ActiveX controls, Automation clients, OLE-enabled ap
plications (OLE stands for object linking and embedding), Web serv
ers and clients for the Internet, ActiveX Document servers, and
programs for the Microsoft Windows CE operating system. All of
these are too advanced if you don't already know c++ and at least
intermediate-level Windows programming. A good place to start is
Richter, and several specialist books are also available, such as
Adam Denning, ActiveX Controls Inside Out, 2nd edition (Microsoft
Press, 1997). Kruglinski, Shepherd, and Wingo cover many of these
topics in an introductory way, and see also Crockett and Garner.

• Writing database programs, especially using the Microsoft Trans
action Server (MTS). Unfortunately, I lack the space to do justice
to any of the database programming environments available with
Visual C++: Open Database Connectivity (ODBC), Data Access Ob
jects (DAO), or OLE DB. Kruglinski offers a good start, and you can
also consult specialist books such as the Microsoft ODBC 3.0 Soft
ware Development Kit and Programmer's Reference (Microsoft Press,
1997) and Dan Haught and Jim Ferguson's book, Microsoft Jet Data
base Engine Programmer's Guide, 2nd edition (Microsoft Press,
1997). Kruglinski, Shepherd, and Wingo introduce database pro
gramming. Also see Crockett and Garner.

• Programming in the C language instead of in C++. This represents
a different direction from postgraduate training, but if you want to
program in C, you can do so with Visual C++.

21: Stepping Out from Here

Microsoft on the Web and MSDN Online
If you can connect to the Internet on your computer, you can access
Microsoft on the Web, via the Microsoft On The Web command on the Help
menu in Visual c++. You can also click any of the other commands, wait
while your machine connects, and explore the various Web sites. All of
this is free except for any online charges imposed by your Internet service
provider: Microsoft's web site is at http://www.microsoft.com.

For more information, help, and tools, join the Microsoft Developer Net
work (MSDN) at the MSDN Web site at http://msdn.microsoft.com. Sign
up for a free program called MSDN Online Membership, which offers
the MSDN Library online, free downloads, and other benefits. Beyond
that are three levels of paid subscriptions, each offering additional tools,
information, and assistance. (You can also visit the MSDN Web page by
clicking MSDN Online on the Visual c++ Help menu.) One especially
valuable feature of MSDN Online is access to all of Microsoft's documen
tation, including articles and books, such as The Windows Interface
Guidelines for Software Design, mentioned earlier in the book list. On
the MSDN Online page, follow the link to MSDN Library Online. The
library's contents are listed in the left-hand pane.

A growing number of sites on the World Wide Web offer information,
guidance, and example programs for the c++ language, Visual C++, and
MFC. Categorized Web search engines such as Yahoo and HotBot are a
good way to locate such sites.

One Last MyDraw Feature
Every Windows application should have its own icon. This is the icon
that will appear in Windows Explorer. We'll finish off our work on
MyDraw step 10 by changing the default icon used for the application.

It's ea~y to do.

~ ,~~~-- Try it now
Use ResourceView in the Workspace window to view MyDraw's resources.
We'll design a new icon and use it to replace the default application icon.

623

Rounding Out Your MFC Skills

624

1. Create a new icon resource. On the Insert menu, click Resource,
and in the New Resource dialog box, double-click Icon.

2. Edit the icon using the Graphics toolbar and the Color Palette. Fig
ure 21-1 shows the icon I designed (colors aren't shown). You can
either imitate it or just have fun. Save your work. For information
about icon editing, check the Help index for Graphics editor and
select the subtopic "icons and cursors."

3. In Resource View, open the Icon folder and locate the icon resource
IDR_MAINFRAME. That's the default icon used for the application.
You can open it first to see that it's an MFC logo. Delete that icon
resource.

4. In ResourceView, right-click the IDI_ICONl resource. On the con
text menu, select Properties.

5. In the Properties window, change the ID name IDI_ICONl to
IDR_MAINFRAME. Save and build MyDraw.

To see the icon, use Windows Explorer to open the project folder for
MyDraw. Open the Debug subfolder and locate the file MyDraw.exe. Its
icon should be the one you designed. The icon should also appear in the
title bar when you run MyDraw.

ldll:'-Flilw.mli1h#i'M _In' xl
, Oe<II£l1: IS_tandard (32x32l _3 .!dl

•

~ l

Figure 21-1. My design for MyDraw's application icon.

21: Stepping Out from Here

While you're at it, tryout the Visual c++ components and controls gal
lery, which lets you add sophisticated features to your programs with pre
fabricated c++ components and ActiveX controls. The file Gallery.doc in
the \learnvcn \Chap21 folder in the companion code shows how to add
system information (available memory and disk space) to your program's
About dialog box. The final version of MyDraw, described below, includes
the system information component.

The Final Version of MyDraw
Because this book could not possibly cover everything about Visual c++
or MFC, I've written one final version of MyDraw, called MyDrawF, in the
companion code. MyDrawF implements additional features, including
many of those I suggested that you add in the book's "Try It Yourself" sec
tions. As my farewell to you, I urge you to examine the code in MyDrawF.
I've commented it thoroughly, and there are documentation files for some
features that you can read with the WordPad accessory. The file
MyDrawF.doc, located in the \learnvcn \Chap21 folder in the companion
code, describes what I've done with MyDrawF. Enjoy!

625

Appendix

The MFC Source Code Files
One potential problem with using Microsoft Foundation Class Library 6.0

(MFC) is that you can easily treat MFC's classes as black boxes. In many
cases, you can get by without knowing a lot about what they're doing be
hind the scenes-in fact that's the idea. But viewing the classes as black
boxes can be frustrating when your code does something out of step with
the MFC code and you get an error, assertion failure, or exception. Then
the more you know about the insides of those black boxes, the easier it is
to deal with your problem. There's also a lot of potential in those classes
that you might never discover through the documentation alone.

It's no accident that the MFC development team ships the source code
files for MFC with the product. Those files are there to be used, for sev
eral reasons:

• You sometimes need to delve inside MFC to find out how your
code is out of step with MFC's code.

• You can learn a lot about C++ and object-oriented programming
from browsing in the files.

• You can see those things, like the WinMain function, that MFC
hides away.

• You can find the "hooks" for customizing MFC's behavior: the func
tions to override or the classes to subclass.

627

Appendix

This appendix is here to introduce you to the MFC source files. I'll be
showing you these tricks of the trade:

• Where to find the files and how to track down a particular file.

• What tools can help you find a particular function, variable, or
class in the source files.

• How to read the source files-that is, how to understand the coding
and commenting conventions that the MFC developers use in the
files.

• How to understand the cryptic extras that AppWizard and
Class Wizard add to your starter files.

lWII ARNING I strongly advise you not to make any changes in the MFC source
j-;>~' ~ code files. You can accomplish what you need without such a drastic step.

Only MFC gurus ever even contemplate such a thing, and they know it's
risky. Besides, in order for your changes to take effect, you have to rebuild
the appropriate MFC libraries, a task that itself is not for the faint of heart.
The great virtue of c++ classes and of MFC is that if something doesn't
work the way you want it to, you can usually derive a class of your own to
change the behavior. Often you can bypass or override MFC features that
you feel are in your way.

Where to Find the MFC Source Code Files

628

When you install Microsoft Visual C++ 6.0, Introductory Edition, the
installation directory is: [Drive]: \Program Files \Microsoft Visual
Studio \ Vc98 unless you have specified otherwise during installation.
(Visual Studio includes Microsoft Visual Basic, Microsoft Visual J++, and
other programming products as well as Visual C++.) The drive depends on
where you installed Visual C++. The Mfc directory under Vc98 contains
three subdirectories: Include, Lib, and Src.

The Include Subdirectory
The three most important file types in MFC's Include subdirectory are
the following:

• Headers (.h files). These files contain declarations for the MFC
classes, global variables and functions, macros, and constants. Of

Appendix: The MFC Source Code Files

particular interest are the files Afx.h and Afxwin.h. Afx.h contains
declarations for the parts of MFC that don't relate directly to
Microsoft Windows. Afxwin.h contains declarations for the Win
dows-related classes.

• Inline files (.inl files). These files contain inline function defini
tions, primarily of the MFC wrapper functions for the Win32 API. If
you can't find what you're looking for in the header files (.h files)
or the implementation files (.cpp files), look in the .inl files, espe
cially if what you're looking for is part of the Win32 API. See Chap
ter 4 for information about inline functions in C++.

• Resource files (.rc files). The .rc files contain resources that MFC
uses for the features it implements for you: icons, bitmaps, string
tables, and the like.

,:\:liI'IP Visual c++ comes with some c1ipart files. Among them is a file called
". ~"I Common.res (also available in uncompiled form as Common.rc), which

contains many icons, bitmaps, and cursors. The path to these files in the
Visual C++ 6.0, Introductory Edition CD is VClntEd\Disk1\Msdn_vcb\Samples
\Vc98\Mfc\General\Clipart\Common.res. Copy this file to your hard disk.

The Lib Subdirectory
MFC's Lib subdirectory contains the MFC library files (.lib files). These
are object-code libraries for various flavors of applications. There are
Release and Debug versions for ANSI compliance, Unicode, and so on.
For a description of these files and their naming conventions, check the
Help index for MFC libraries.

The Src Subdirectory
MFC's Src subdirectory contains the .cpp files that implement the MFC
classes and global functions. This is where to look for the actual function
bodies for most functions-except the Win32 API wrappers, which are
usually in the .inl files in the Include subdirectory.

Table A-l on the next page gives a few examples of how the .cpp files are
related to the .h files. Afx.h and AfxWin.h are large files full of declarations.

629

Appendix

Table A-1.

These two header files (along with some others) map to a large number

of categorized .cpp files whose names usually reveal their content. The
filenames are usually prefixed with an abbreviated class name.

Windows-Related Classes
that AfxWin.h Declares

Class CWinApp

Class CDocument

Sampling of Files
that Implement the Class

App3d.cpp (3D aspects of user interface)
AppCore.cpp (core functions)
AppDlg.cpp (dialog-related functions)
AppHelp.cpp (help-related functions)
AppHelpX.cpp (more help functions)
AppInit.cpp (application initialization)

DocCore.cpp (core functions)
DocMultLcpp (MDI document)
DocSingl.cpp (SDI document)

The many-to-one relationship between .cpp files and a .h file.

Finding What You Need in the MFC Source Code Files

630

I recommend two kinds of tools for locating files and their contents easily:

• The Visual c++ Find In Files command, which is quite powerful,
much like the familiar Grep tool. With Find In Files you can search
the source code in files on disk as well as in open files, including

whole directories and their subdirectories. It's the perfect way to
search the MFC source code files.

• The Visual c++ Source Browser command, which uses the Browse
Information file for searching by class and function rather than by

file. The difference between using Source Browser and using Find
In Files is like the distinction between Class View and File View. The

class browser shows class derivation relationships and members

rather than raw source code. You can prepare a file containing code
browsing information for just your project, and you can also obtain

a pre-built browse information file that contains information about
all of the classes and functions in MFC.

Appendix: The MFC Source Code Files

Using the Visual C++ Find In FiI~s Command
Among the most useful features of Find In Files are the following:

• Support for regular expressions, as in the UNIX command Grep,
in addition to ordinary searching. A regular expression is a search
string that uses special characters to match a text pattern in a file
much like using wildcard characters with MS-DOS files. The Find
InFiles dialog box even has a button (the small right-facing arrow
next to the Find What box) that helps you construct regular ex- .

pressions. Be sure also to select the Regular Expression box in the
dialog box if you are using regular expressions.

• Two output panes in the Visual c++ Output window. You can con
duct one search in the Find In Files 1 pane. When you open Find In
Files again, click the Output To Pane 2 box and conduct your sec
ond search. The output from the second search appears in the Find
In Files 2 pane.

• The Advanced button in the Find In Files dialog box. This opens a
Look In Additional Folders pane in which you can list additional
directories to search. The$e paths remain listed in the Find In Files
dialog box for future invocations of the dialog. I find this a handy
place to list the two most important MFC subdirectories, Include
and Src, which contain.the MFC source files.

A sample search using Find In Files

Here's a sample search. Suppose I want to locate the source code for the
constructor in class CView. That's an MFC class, and I know it's not in the
files in my project, so I want to look at the MFC source files.

1. On the Visual c++ Edit menu, select Find In Files. (Or click the
Find In Files button on the Standard toolbar. The icon shows a
folder with a pair of binoculars.)

2. In the Find In Files dialog box, click the Advanced button (if the
advanced Find options are not visible already). Then specify the
information shown in table A-2 on the following page.

631

Appendix

Table A-2.

632

3. Click the dotted rectangle under Look In Additional Folders, click
the browse button next to that row (its icon is an ellipsis (... J), and
locate the folder you want to list in the pane. In this case, locate the
MFC Src subdirectory, since you're looking for a function defini
tion. These paths are relative to where you installed Visual C++.

4. Click Find. After a pause, the search results appear in the Find In
Files 1 pane of the Visual C++ Output window. Here's sample out
put based on the sample search data listed in Table A-2:

Searching for '::CView' ...
D:\Program Files\VC98\MFC\SRC\VIEWCORE.CPP(49):CView::CView()
1 occurrence(s) have been found.

5. Double-click on the output line that lists the path to the function
CView::CView. This opens the file ViewCore.cpp at that function.
Try it.

For more information about Find In Files, check the Help index for Find
In Files command.

Box in Find In Files

Find ""hat

In Files/File Types

In Folder

Look In Subfolders

Contents to Fill In

*.c; . *.cpp; *.cxx;
*.tIi

Doesn't matter

Checked

Look In Folders For Unchecked
Project Source Files

Look In Folders For Unchecked
Project Include Files

Remarks

T-yping the l:icupe resoluiion opera
tor (::) as well as the text narrows
the search from just" CView."

We want * .cpp.

We know we're looking for an
MFC file.

We know it's not in our project.

We know it's not in our project.

Data to enter for the Find In Files search example above.

Appendix: The MFC Source Code Files
""""""'...........,_.~ .. """"""-""""""' _"'""""' _~>"T-"'-r.Y'n"~,-'.'.~r',H~'''c'

Using the Visual c++ Source Browser Command for MFC
Here's an even better solution than Grep or Find In Files for most
searching. Visual c++ lets you browse your c++ classes, functions, and
variables. You can use this ability to answer questions and find your way
around either just in your own current project or in your project files plus
all of MFC. For example, given a class name, what's the base class? Or
what classes are derived from the class? The Source Browser lets you lo
cate the symbol you need and open the MFC source files at the appropri
ate place so you can look directly at the code. You must enable source
browsing bafore you can use it-I'll explain this below.

Source browsing helps you easily find the following information in the
MFC source files:

• Information about all the symbols in any source file

• The source code line in which a symbol is defined

• Each source code line where there is a reference to a symbol

• The relationships between base classes and derived classes

• The relationships between calling functions and called functions

To learn about source browsing, check the Help index for browse informa
tion and for browsing symbols from Class View.

To enable source browsing for your current project, create a browse infor
mation file (extension .bsc). Check the Help index for browse information.
If you choose the Source Browser command without already having en
abled source browsing, Visual C++ asks if you want to enable it. If you say
yas, Visual C++ rebuilds your project with source browsing on.

Once you have built your project with browse information turned on, the
easiest way to browse for a particular symbol-such as a class name-is
to select the name in a file you have open and click the Source Browser
command on the Tools menu (or press Alt-F12). A dialog box lets you
select the kind of browsing you want: Definitions And References, File
Outline, Base Classes And Members, Derived Classes And Members, Call
Graph, or Callers Graph. Select what you want and click OK. A browse
dialog box opens. You can click the pushpin icon on the dialog to make it
stay on screen if you like.

633

Appendix

634

The File Outline browse dialog box is particularly interesting. It lets you

see just the data members, just the functions, just the classes, just the
macros, just the types, or any combination by pressing the appropriate
buttons on the toolbar. From any of the browse dialog boxes, you can
double-click an item to go to that item in the source files. The appropri-

· ate source code file opens in the Visual c++ Source Code editor and
scrolls to the symbol. .

Here's a way to make your work even easier: you can also use a pre-built

browse file for all of MFC. The file Mfc.bsc is available on the Visual C++
installation disc at \VClntEd\Diskl \Vc98\Mfc\Src. It isn't installed auto

matically when you install Visual C++, so you must manually copy this
file to \Vc98\Bin on your hard drive. Then follow the directions in the

previous paragraph to enable source browsing for your project. This in
cludes building your project with source browsing turned on. You can
then browse through MFC's code as well as your own.

Take advantage of source browsing. Besides answering questions about
a symbol, it's a very handy way to navigate through your code (and MFC's).

You can use source browsing for navigation in much the same way you
can navigate using the Visual C++WizardBar or Class View. (The differ
ence between source browsing and Class View is that Class View shows
only the classes in your project,while source browsing can potentially
show you all of MFC as well.)

Keep in mind that you must explicitly turn on source browsing as de
scribed above. Visual C++ doesn't build a browse file by default, so you
must turn on source browsing and then rebuild your program, even if you
only want to use the MFC browse information file. You don't get a browse
file by default because building it adds noticeably to the overall build
time for your program. It's best to build with browsing on, and then turn
it off until you've made a substantial number of changes and turn it back

on just long enough to build again. That way you get a refreshed browse
· file periodically.

For more information, check the Help index for browse information,
· double-click it, and choose the first topic in the Topics Found dialog box.
One useful link in that topic is "Class Browsing Tasks."

Appendix: The MFC Source Code Files

Source Files Other than MFC
In addition to the MFC source files, you can also use the source code for
the C/C++ run-time library. You'll find the run-time library's functions
used liberally in MFC code (and in this book), and it can be useful to step
into a run-time function during debugging. Check the Help index for
source code, then double-click the subtopic "C run-time library func
tions." You have the option to install these source files on your hard disk
during Setup, using the Custom installation option. Select Custom, and
then VC++ Runtime Libraries. Click Change Option, select the CRT
Source Code check box, click OK, and then click Continue to go on with
the installation. You can also install the source code later. (The MFC
source files are installed by default.) If you don't do that, you can still
step into the source files as long as the Visual C+~ installation disc is
in your CD-ROM drive. You can also do a Custom reinstallation of
Visual C++ and add the run-time sources.

Unlike the C/C++ run-time library functions, the Win32 API functions are
not available in source code. You'll need to rely on the documentation
and on third-party books like this one for information about the API.

Don't forget about Help for the MFC classes, the C/C++ run-time functions,
and the Win32 API, either. You can always put the cursor on a symbol
and press Fl for help. Sometimes a combination of looking at the function
or class code and reading its documentation will clear things up for you.

MFC Coding and Commenting Conventions
One key to understanding the MFC source code files is understanding
how they're coded and commented. MFC code uses some special conven
tions for the few comments that are left in its sparsely commented files.
In particular, class declarations are divided into categories of member
functions and variables, such as attributes, operations, and overridables.
The most interesting and valuable comment is the implementation com
ment. Check the Help index for commenting conventions for MFC classes,
double-click it, and follow the link to the topic "MFC: Using the MFC
Source Files." Reading that topic will clarify a lot about the source code. I
also briefly discussed these conventions in Chapter 4.

635

Appendix

As a general rule,· I try to follow the same coding and commenting con
ventions as the MFC team (except that I comment more liberally). This
makes my code consistent with theirs and, I think, improves understand
ing. You can do as you like, but I recommend you do the same.

Reading the AppWizard Files

636

The files that A pp Wizard generates have some pretty cryptic lines in
them. When you start adding handlers with Class Wizard or WizardBar,
you'll see more weird-looking stuff. Among the oddities you'll see are
the following:

• Conditional compilation directives: #if ... #endif. These directives
cause the code lines that they bracket to be compiled or not, de
pending on the if statement's condition. One use for conditionals is
to prevent us from inadvertently including the same header file
multiple times. As an example, here is some AppWizard generated
code from a view class header file (I've omitted portions to make
the lines fit these pages):

#if !defined(AFX_TEXTVW_H __ 8DEF9A50_0858_11D2_ ...)
#define AFX_TEXTVW_H __ 8DEF9A50_0858_11U2_ ...

#if _MSC_VER >= 1000
1/pragma once
#endif II _MSC_VER >= 1000

II Code in the header file is here, and then ...
#endif II !defined(AFX_TEXTVW_H __ 8DEF9A50_0858_11D2_ ...)

In effect, this says, "If this long, ugly symbol hasn't yet been de
fined in the program, define it now. Then compile the rest of the
file; otherwise, skip it." The directive ends with the second #endif
statement at the end of the file. The #pragma once directive re
quires the compiler to compile this code only once if the MFC ver
sion number in use is 1.0 or later.

• MFC macros such as DECLARE_DYNCREATE, IMPLEMENT_

DYNCREATE, DECLARE_MESSAGE_MAP, and DECLARE_

SERIAL. The preprocessor expands these to code that implements
MFC features such as dynamic object creation, message maps, and

Appendix: The MFC Source Code Files

serialization. This is MFC's way of adding implementation code to
your files only if you want it added. I discussed many of these mac
ros in the book. See the index at the back of the book and look up
the names in the Help index.

• Special bracket comments-such as AFX_ VIRTUAL and AFX_

MSG-that tell AppWizard, ClassWizard, and WizardBar where to
put declarations for overridden virtual functions and for message
handler functions. The wizards write only between these brackets,
which provides assurance that the wizards won't damage your files.
Look up these items in the Help index for more information.

",\?II OTE The afx_msg qualifier on message handler function declarations is an
6~11 MFC convention that identifies them as message handler functions. When

the code is built, the qualifier IS replaced by white space.

• The StdAfx.h file include. By including the file StdAfx.h in your
AppWizard-generated files, the wizard sets up inclusion of the nec
essary MFC components in your program. You don't usually need
to do anything else. StdAfx.h lists the header files that are to be
used to build a precompiled header file (projectname. pch) and a
standard types file (StdAfx.obj). Search Help for "stdafx.h" (with
the quotes, and with none of the checkboxes at the bottom of the
search tab checked) and read article number 9 in the Rank column
of the results list. That article illustrates using StdAfx.h to add
header files to the list of files for precompilation. You can do the
same in Win32 Console Applications, too. Also check the Help
index for precompiled header files and double-click the subtopic
"creating. "

With these things in mind, you can begin to master the art of reading MFC
source code. If you find a mysterious item in your wizard-generated code
or in the MFC code, you can often look it up in Help.

h~7

Page numbers in italics refer to figures or tables.

,~~,~,~ial C~~r~~l~,r~,,",W'_"~""W
+ (addition operator), 79

[] (array subscript operator), 62, 80, 100

& (bitwise AND operator), 80

~ (bitwise NOT operator), 80

I (bitwise OR operator), 80

, (comma operator), 81

+ (concatenation operator), 197

{} (curly braces)' 83

/ (division operator), 79

== (equal-to operator), 79, 81

» (extraction operator), 486, 490-93

> (greater-than operator), 79
>= (greater-than-or-equal-to operator), 79

« (insertion operator), 486, 490-93

< (less-than operator), 79

<= (less-than-or-equal-to operator), 79
&& (logical AND operator), 79

! (logical NOT operator), 79

I I (logical OR operator), 79

% (modulus operator), 79, 139

* (multiplication operator), 79

!= (not-equal-to operator), 79

o (parentheses), 81
i-- (postfix decrement operator), 79

i++ (postfix increment operator), 79
--i (prefix decrement operator), 79

++i (prefix increment operator), 79

; (semicolon), 57

- (subtraction operator), 79
16-bit vs. 32-bit versions of Windows, 210

About dialog box, 259
abs function, 139

abstract classes, 178,432,433

Accelerator editor, 307-9, 308, 309

NDEX
accelerators, menu, 298, 299, 307-9

accelerator tables, 221

access specifiers
in class hierarchies, 181-82

and class scope, 199-200

default, 152-53
and information hiding, 153-54

overview, 151-52

protected, 181-82

public vs. private data members, 151-53

quiz, 204-6
Active Template Library (ATL), g, 15

ActiveX controls, 44

AddDocTemplate function, 258

addition operator (+), 79
Add Member Function dialog box, 313, 314, 320,

320, 321

addresses, passing pointers by, 103-4, 110

AfxMessageBox function, 336-38

allocating memory, 67-69

ampersand (&)

as bitwise AND operator, 80

in designating menu mnemonics, 305

as logical AND operator, 79
ancestor classes. See base classes

AND operators, 79, 80

Application Frameworks (AFX) team, 201

application life cycle. See Microsoft
Foundation Class Library 6.0 (MFC)

application object, 251, 252, 253-54

applications. See programs

AppWizard
adding features later, 461, 462
application object, 251, 252, 253-54

vs. ClassWizard, 318

defined,34

dialog object, 251, 259-60
document object, 251, 252, 271-72, 273

document template, 251, 251, 252,

256-58,273

639

Index

640

AppWizard, continued
eliminating document/view architecture

support, 442

file oddities, 636-37

frame window, 251, 252, 263-71

MyDraw program list of objects, 251

and MyHi program, 244, 245

simple example, 50

using, 235-44

view object, 251, 252, 276-84

AppWizard dialog box, 19, 20

Arc function, 221

arithmetic expressions, 78

arithmetic operators, 79, 80

ArPtrs program, 69, 70-71

array notation, 63

Array program, 100-101

arrays. See also CObArray class; strings

allocating and deallocating, 107-8

and classes, 176-77

vs. collection classes, 412

debugging problems, 396-400

declaring, 62-63

initializing, 62
vs. linked lists, 413, 414

naming, 62, 99, 108

overview, 62-63

and pointers, 99-101, 106-8

Shape objects, 353, 398-99, 398

array subscript operator ([]), 62, 80, 100

assert function, 138

ASSERT macro, 384, 407

AssertValid function, 271, 276, 283
ASSERT_ VALID macro, 411

assignment operators, 80, 198, 431

asterisk (*), as multiplication operator 79

auto complete feature, 43-44
autoscrolling, 473

B
base classes

calling, 335

changing, 453,512

and class hierarchy, 179

CShape as, 433-34
and inheritance, 169-70

overview, 169, 179

relationship to derived classes, 176-77

binding, dynamic, 175

bitmaps, 217, 219, 221

bitwise operators, 80

bookmarking, 42

bool data type, 59, 486, 488

Boolean expressions, 78

bounding rectangles

defined, 126, 127

and mouse, 330

in MyDraw program, 312-13, 318-22

random, 318, 319-21

and selection mode, 548~49
and shapes, 126, 127, 134

branching, 83, 84

breakpoints, 378, 379, 389-92

break statements, 84

Browse Information File, 630, 633-34

brushes, 221

buffers, 74

bugs. See debugging

build errors
correcting, 31-32

defined,31
and error cascades, 31

vs. logic errors, 31

building projects
correcting errors, 31-32

MyHi program, 246-47
overview, 29-30, 240

role of Visual C++, 240-41

Build Log, 30

Build toolbar, 380

buttons, toolbar, specifying styles, 545-46

BYTE data type, 486, 488

c
.c files, 25, 26

C programming language, 232

C++ programming language. See also Visual C++
elements of, 52-87

and Microsoft Windows, 232

numerical notation, 99

and object-oriented programming, 200-202

run-time library, 69, 71, 74-76, 635

Calculator accessory, 99

callback functions, 216

Call Stack window, 382-83, 383, 386

CArchive class
and CDocument class, 234

overview, 499-500, 501

reading from files, 488

vs. Serialize member function, 490-93

writing to files, 486-87, 488

case, 56

casting, type, 65-67, 282-83,487,488

cast operators, 67

CBrush class, 232

CButton class, 232

CCmdUI class, 354, 355, 370

CColorDialog class, 579, 581-82

CControlBar class, 537

CDC class, 222, 364

CDialogBar class, 538

CDialog class, 232, 569, 574

CDocTemplate class, 251

CDocument class, 234, 272, 501

CD-ROM, using, xxix-xxxi
CEdit class, 474

CEditView class, 474, 614-15

CFile class, 500, 501

CFileDialog class, 579

CFindReplaceDialog class, 579

CFont class, 455

CFontDialog class, 580
CFrameWnd class, 232, 263-65

character strings, 63-64, 102

char data type, 59

check boxes, 568, 592, 596

check marks, on menus, 353-56, 369-70

child windows, 217, 542

classes. See also names of specific classes
abstract, 178,432,433

and access specifiers, 151-53, 182

adding data members to, 574-75

adding using ClassView, 22

C++ template-based, 412

collections, 412-14

for controls, 569

creating from scratch, 126-27

creating using WizardBar, 428-30

defined, 124-25

deleting usingClassView, 22

deriving one from another, 169-77

destructors, 183-84

and friend specifier, 157-59

as hooks, 291

and inheritance, 169-70

OOP relationships, 176-77

opening header file using ClassView, 22

as pointer targets, 106

public vs. private members, 151-53

relationship to objects, 124-26

restricting access, 153-54

Shapel program, 128, 133, 134, 135-37

simple examples, 125, 126

and stacks, 176-77

static data members, 185-86

static member functions, 186

Index

641

Index

642

classes, continued
for toolbars, 537-38

types of, 125

value-type vs. framework-type, 440

class hierarchies

access specifiers in, 181-82

design guidelines, 180-81
designing, 177-81

features of, 178-79

Microsoft Foundation Class Library 6.0,

233,233

overview, 178-80

and polymorphism, 177-81

structure, illustrated, 180

class keyword, 141, 152, 153

class scope, 93, 198-200
ClassView tab, Workspace window, 21,

22-23,245

Class Wizard

vs. AppWizard, 318
basic use, 315-18

creating dialog classes, 592-93

creating handlers, 315-18

defined,34,312

illustrated, 316
overview, 316, 318

CListView class, 475, 615

CMainFrame class

AssertValid member function, 271
destructor, 271

Dump member function, 271

member functions overview, 270, 271

message map, 266-67
OnCreateClient member function, 610,

611-12

OnCreate member function, 267-68, 541,

543,546

overview, 263-65

PreCreateWindow member function, 271

CMainFrame class, continued
splitter window objects, 609-10, 611

toolbar and status bar objects, 268-69, 543

CMyDrawApp class, 253. See also application

object

CMyDrawDoc class, 271-72, 275, 275-76, 410.

See also document object
CMyDrawView class, 277-84, 335. See also

view object
CObArray class, 413, 414, 441-42,442

CObject class
considerations in deriving classes from,

430-33

deriving CShape class from, 197, 413,

427,430-33

hierarchy, 452
as MFC root class, 430

CObList class

as data structure for shapes in MyDraw

program, 413-14
GetHeadPosition member function, 422

GetTailPosition member function, 422

initializing, 415

as linked list of CObject pointers, 423-24, 424

Serialize member function, 489

structure illustrated, 413, 413

code libraries, 9, 15, 74-75. See also Microsoft

Foundation Class Library 6.0 (MFC)

collection classes, 412-14

color

adding to MyDraw program, 363-76

applying to shapes, 363-76

custom, 600, 603

for syntax in Source Code editor, 28

color bug, 381-405

color command IDs

adding command range handler for, 367-69
list of, 366

translating to RGB colors, 371-72

Color dialog box, 578-82, 579

COLOREF data type, 363-65

combo boxes, 568, 590, 596-600
ComCtl32.dll file,568

command handlers

adding manually, 367-69

adding with Class Wizard and
WizardBar, 312-22

adding with Menu editor, 575, 586-87

for command ranges, 367-69

command IDs, 306, 309, 366, 367, 371,540-41
command routing, 261

command targets, 261, 261, 309

comma operator (,), 81

comments

in Hello program, 53-54

MFC coding conventions, 155

common controls, 568

common dialog boxes, 578-82

compound assignment operators, 80
compound statements, 58

concatenation, 197

conditional breakpoints, 390

console applications, 18-21
constants, 55, 56-57, 213-14

constkeyword,55,105,113,441

constructors

copy, 191-96,431-32

default, 190-91
vs. destructors, 183-84

and member initialization lists, 189-90

overhead, 186-87

sequence of calls, 187
in Shape1 program, 135-36

context menus, 37, 39

continue statements, 85

controls
classes for, 569

common, 568

controls, continued
in dialog boxes, 568, 569

implementing, 594-601

notification messages, 602
overview, 568

types of, 568

as windows, 601-2

control structures, 82-83, 83-85

coordinate systems

converting between device and logical

coordinates, 468-73

device coordinates, 224-26

logical coordinates, 224-26

and mapping modes, 226-27

overview, 222-23, 223

and printing, 522-25
screen coordinates, 224, 225

and Shape1 program, 134, 135, 135

Windows default, 222, 223

copy constructors, 191-96,431-32

CopyProb program, 192-96

CPageSetupDialog class, 580
CPen class, 373

CPoint.h file, 128, 142

.cpp files

adding to projects, 26

creating, 26
defined, 25

editing in Source Code editor, 28
CPrintDialog class, 521, 580
CPrintInfo class, 521

CPropertyPage class, 593
CPropertySheet class, 584
CreateEx function, 543

CreateHandleRects function, 561-64

CreatePen function, 373

CreateShape function, 414, 416, 417, 419

CreateWindow function, 228

CRect bounding rectangle, 312, 319

Index

643

Index

644

CRect class, 319

CRect.h file, 128, 129, 142-43

CRichEditView class, 474-75

CScrollView class, 234, 451-52, 452, 453,

466,474

CShape class
as abstract class, 432, 433

assignment operator, 197-98,431-32

as base class, 433-34

copy constructor, 431-32

creating, 197, 428-30

CShpEllipse subclass, 421, 427, 433, 434,

435-36,438,480-82,483

CShpRectangle subclass, 421, 427, 433,

434-36,437-38,480-82,483

declaring in Shape.h, 428-30

defining in Shape.cpp, 436-37

deriving from CObject class, 197, 413,

427,430-33

hierarchy, 177, 440-41

overview, 427

and serialization, 430, 432, 480-82, 483,

484-88, 555-56

as value class, 440

CShpEllipse class, 421, 423, 427, 433, 434,

435-36,438,480-82,483

CShpRectangle class, 421, 423, 427, 433, 434-36,

437-38,480-82,483

CSize class, 462-63

CSplitterWnd class, 605, 608, 611

CString class, 64, 197, 232, 234

CToolBar class, 537, 538

CToolBarCtrl class, 538

curly braces (OJ, 83

cursors, 221

customizing
colors, 600, 603

Tools menu, 34

workspace, 17

CView class

as base class, 276, 335

vs. CScrollView class, 452, 453, 466

deriving classes from, 614

role in document/view architecture, 272, 276

CWinApp class, 234, 258, 497, 498

CWnd class

D

as MFC class, 232, 335

and relationship between MFC and Windows
API, 201

relationship to dialog box and control
classes, 569

data breakpoints, 390

data members
adding to classes, 340, 574-75, 593-94

defined, 125

in derived classes, 170

initialization lists, 189-90

initializing, 340-41

mapping to controls, 593-94

!liiming, 141

Point class, 134, 135

public vs. private, 151-53

Rect class, 134, 135

restricting access, 153-54

Shape class, 134, 135

simple example, 126

static, 185-86

view class, 340-41

data structures, choosing, 412-14

DataTips window, 389

data types
bool, 59, 486, 488

casting, 65-67

char, 59

conversions, 65-67

creating, 60, 339

data types, continued
double, 59, 66

enumerated, 60

float, 59, 66

integer, 59

lists of, 59, 60

long double, 59

overview, 58-59, 59

serializing data, 493

Debug builds, 29, 380-81

debugging
analyzing bugs, 383-404

color bug in MyDraw program, 381-405

display-type bugs, 407

finding bugs, 382-83

fixing bugs, 404-7

and memory leaks, 71

overview, 378-79

use of breakpoints, 378,379

use of MFC diagnostic tools, 407-8

Debug menu, 378, 378

Debug toolbar, 378, 379

Debug Windows submenu, 388

decimal notation, 99

declarations
defined, 73

vs. definitions, 73

in header files, 118, 119, :120

DECLARE_SERIAL macro, 481, 495, 496

decrement operators, 79

default constructors, 190-91

#define directives, 55

definitions vs. declarations, 73

DeleteAllShapes function, 414, 425, 426

DeleteContents function, 276, 426-27

delete keyword, 108

DeleteLatestShape function, 414, 425

delete operator, 69

dereference operator, 97-98, 101

derived classes
and class hierarchy, 179

defined, 169

and inheritance, 169-70

and member functions, 170, 171-72

relationship to base classes, 176-77

deserialization, 478-79

destructors
examples, 271, 283

overhead, 186-87

overview, 183-84

sequence of calls, 187

virtual, 433, 441

device context, 219-22, 221

device coordinates, 224-26, 468-73

dialog boxes. See also controls; dialog resources
adding controls, 572-73

adding menu items for, 575-76

Apply button, 584

as basis for application, 247-48

common, 578-82

displaying, 575-78

modal, 570-78

naming, 571-72

overview, 568

tabbed, 583-85

tab order, 590

types of, 567

dialog class, 574, 592-93

dialog data exchange (DDX) , 576, 577-78

dialog data validation (DDV), 576, 577-78

Dialog editor, 571-73, 573, 588-93

dialog object, 251, 259-60

dialog resources
creating for Drawing Title dialog box, 570-73

creating for Settings dialog box, 587-92

dictionaries, as collection class category, 412

directives

#endif, 636

#if, 636

#include, 54

Index

645

Index

646

directories, project, 20
DispatchMessage function, 215, 228

display bugs, 407
division operator (I), 79
dockable toolbars, 547-48

dockable windows. See docking windows
DockControlBar function, 547
docking windows

context menus, 39
defined,35
docked vs. floating, 37
menu bar as, 35, 40
moving, 38
Output window as, 38
overview, 37
toolbars as, 35, 39-40, 270
Workspace window as, 38

document class, 410, 414-26

document object
MyDraw program, 251, 252, 271-72, 273
opening files, 498-99
overview, 251, 252, 271-72, 273

paginating documents, 516-26
pointer to view object, 411-12
printing documents, 505-35
saving files, 497-98

document template, 251, 252, 256-58, 273
document/view architecture

eliminating support as option in
App Wizard, 442

overview, 272-76

relationship between document and view,
272-73,273,410-12

sidestepping, 274-75
using in MyDraw program, 410-27

using without serialization, 502-3
document windows

context menus, 37
defined,35

document windows, continued
overview, 36-37

right-clicking in, 37
splitting, 37

DoDataExchange function, 577, 578

DoHitTesting function, 558-59
DoModal function, 259-60, 576, 582
DoPromptFileName function, 497, 498

do statements, 84
double-clicking mouse, 331-32
double data type, 59, 66
DPtoLP function, 472, 473, 515
Draw function, 421, 432, 433, 561

DrawHandles function, 561

drawing
controlling, 349-50
list of Windows functions, 221
text, 455-60
and Windows interface, 217-19

drawing modes, 349-50
Drawing toolbar

creating at run time, 543-44
setting button behavior, 545-46
setting styles, 544-45

DrawText function, 458
.dsp files, 16, 20
.dsw files, 17, 20
Dump function, 271, 276,283
dynamic binding, 175
dynamic splitter windows, 606, 607, 608-10

edit boxes, 568, 572, 589
Edit menu (MyDraw program), 243
editors. See Accelerator editor; Dialog editor;

Menu editor; Toolbar editor

Ellipse function, 221
Ellipse menu command (MyDraw program)

adding command handlers, 312-22

creating, 306-7

else if statements, 83

else statements, 83

#endif directives, 636

enum data type, 60

enumerated data types, 60

equal sign (=), 79, 81

erasing shapes, 361-62
error cascades, 31

error messages, looking up, 34. See also
build errors

errors. See also debugging
build errors, 31-32

event-driven systems, 213

events, 213-16

exceptions, 408
exclamation point (I), 79

ExitInstance function, 286

expressions, 78-79

ExTextOut function, 459

extraction operator (»), 486, 490-93

F
Fl Help, 7

Favorites tab, online Help, 13-14

File menu (MyDraw program), 243

files

adding to projects, 26

creating for projects, 26
deleting from projects, 26

finding,40,42,628-30

handle type, 221

opening, 23,498-99
saving, 497-98

types for Visual C++ projects, 20
viewing using FileView, 23

file scope. See global scope

FileView tab, Workspace window, 23, 23

Find In Files command, 630, 631-32

finding

files on disk, 40, 42, 628-30

information in online Help, 7-15,40
text strings in source files, 40, 41, 630-34

Find/Replace dialog box, 579

First program

building, 29-30
creating, 18-21

fixing error, 32-33

running, 32

float data type, 59, 66
floating-point numbers, 59

floating toolbars, 546-47

floating windows, 37, 37

Font dialog box, 580

fonts
changing, 475

and drawn text, 456, 457

handle type, 221

footers, adding, 528, 529, 530, 532-34
form views, 613

for statements, 84

frame. See stack

frame window, 251, 252, 257, 263-71

framework. See Microsoft Foundation Class

Library 6.0 (MFC)

friend keyword, 157-59

Friend program, 158-59

full screen mode, 37
function overloading, 136-37

function prototypes, 72-73

functions. See also member functions; names
of specific functions

and C/C++ run-time library, 74-75

deciding where to put, 312

overview, 71-72

passing parameters, 103-4, 110-13
as pointer targets, 106

Index

647

Index

648

functions, continued
prototypes, 72-73

returning results, 73-74, 77, 103-4, 112-18
virtual, 172-75, 290

Gallery, 44
GetBkColor function, 221, 364,455

GetButtonStyle function, 546
GetCount function, 415, 425
GetCustomColor function, 600
GetDeviceCaps function, 506, 516-17
GetDocSizes function, 465, 466-67, 468,519
GetDocument function, 281-83, 411

GetFirstViewPosition function, 411
GetHeadPosition function, 422
GetMessage function, 214, 228

GetNextShape function, 423-24
GetNextView function, 411
GetObjectSchema function, 494
GetPos function, 415, 420, 424
GetPrevShape function, 415, 420, 423-24
GetSystemMetrics function, 563

GetTailPosition function, 422
GetTextColor function, 364, 455
GetTextExtent (CDC class), 460, 462-63

GetTextMetrics function, 456, 457
GetToolBarCtrl function, 538
global scope, 91, 199

global variables, 58, 93-94, 155-56
goto statements, 85
goto structure, 85

graphical user interface, 217, 563
Graphics Device Interface (GDI), 222
greater-than operator (», 79

greater-than-or-equal-to-operator (>=), 79
group boxes, 591

.h files. See header (.h) files
handlers

command (see command handlers)
message, 215, 216, 332-38

update, 354-56
handles, 220, 221

hardware requirements, xxxi-xxxii
header (.h) files

adding to projects, 26
CPoint.h file, 128
creating, 26, 54
CRect.h file, 128, 129
defined, 22, 25

editing in Source Code editor, 28
vs. implementation files, 118
Iostream.h file, 85-87

for MFC components, 628-29
multiple inclusions, 120
in MyDraw program, 439-40, 439
precompiled, 121-22

Refer4.h file, 118, 119
Resource:h tIle, 302-3
Shape.h file, 128, 129, 142, 143-44, 162-64,

428-30,435-36

headers, adding, 528, 529, 530-32, 534

heap
allocating and deallocating arrays, 107-8
overview, 69
vs. stack, 69, 107, 115, 147-48

Hello program
building, 52
comments in, 53-54
constants in, 55

creating project,49
editing .cpp file, 51
function prototypes in, 72-73
main function, 76-78

Hello program, continued
opening .cpp file, 50
preprocessor directives in, 54-55
saving .cpp file, 52

Help menu (MyDraw program), 244
hexadecimal notation, 99, 385
hit testing, 557-60
hooks, MFC, 290-92

I
icon, changing default, 623-24
icon files, 301
icon handle type, 221

IDR_MAINFRAME menu resource, 303, 304
#if directives, 636
if statements, 82, 83, 83
implementation (.cpp) files, 25, 73, 118-20
IMPLEMENT_SERIAL macro, 481, 495,496
#inc1ude directives, 54, 133, 263. See also

header (.h) files
Include subdirectory, 628-29
increment operators, 79, 101
indenting source code, 28
Index tab, online Help, 7,9-11
InflateRect function, 563
inheritance, 169-70
InitInstance function, 254-56, 255-56, 286
InitList program, 187-90
.inlfiles, 629
inline functions, 137, 147, 199,422-24,629
insertion operator «<), 486, 490-93
installing

CD-ROM sample programs, xxix-xxx
Internet Explorer, xxx
Visual C++, Introductory Edition, xxx-xxxi

integer data types, 59
integer literals, 56
IntelliMouse, 331

IntelliSense, 43-44
Internet. See Microsoft On The Web;

MSDN Online
Internet Explorer

controls for, 568-69
installing, xxx

InvertShape function, 350-53, 385-86, 421, 556
Iostream.h file, 85-87
IsPrinting function, 523

K
keyboard, translating keystrokes into scrolling

commands, 476
keywords, C++, 56
Knowledge Base, Microsoft, 528

L
landscape mode, printing in, 526-28
leaks, memory, 70
less-than operator «), 79
less-than-or-equal-to operator «=), 79
.lib files, 629
libraries. See Microsoft Foundation Class

Library 6.0 (MFC); run-time library, C++
Lib subdirectory, 629
line numbers, adding to source code, 459
LineTo function, 221

linked lists
vs. arrays, 413, 414
as collection class category, 412, 413
structure of, 413, 413

list boxes, 568
literals, C++, 56-57, 57

local objects. See local variables
localscope,91-93,199
local variables, 58, 68, 92, 94, 114-15
location breakpoints, 390
logical AND operator (&&), 79

Index

649

Index

650

logical coordinates, 224-26,468-73

logical expressions, 78

logical NOT operator (!), 79

logical OR operator (I I), 79

logic errors. See debugging

long double data type, 59

looping, 83-84, 85

L, ___ = ___ ",, ___ ~,,~_~ ___ • _____ ~~ __

macros, 44, 407. See also names of specific
macros.

main function

MyDraw program, 285

overview, 76-78

in Shapel program, 133, 139-40
malloc function, 69

mapping mode

changing for printing, 510-15

list of modes, 227

overview, 226-27

maps, as collection class category, 412

m_bCaptured data member, 340, 403

m_hnxShape data member, 318-19, 403

m_bSelected data member, 550, 553-54, 556
m_bTransparent data member, 402, 403, 486, 488

m_colorShape data member, 402

m_countShapes data member, 340,403,403

MDI applications, 247, 265-66, 605

member functions

adding using Add Member Function dialog

box,419,425-26

Add Member Function dialog box, 313, 314,

320,320,321

calling, 147-48

and class scope, 199

CMyDrawDoc class, 275, 275-76

defined, 125

in derived classes, 170, 171-72

member functions, continued
function overloading, 136-37

inline, 137, 147, 199,422-24,629
overriding, 171-72

Point class, 135, 136

as pointer targets, 106

qualifying, 148-49
Rect class, 135, 136

in Shape2, 147-49

simple example, 126

static, 186
using this pointer, 149-51

view class printing functions, 509, 509

virtual, 172-75, 290

virtual vs. nonvirtual, 172-75

member initialization lists, 189-90

members. See data members; member functions

member variables, 125, 287

memberwise copying, 191-92, 195, 196

memory allocation
deallocating, 183-84

overview, 67

using heap, 69

using stack, 67-68

memory leaks, 70, 71

Memory window, 399-400, 400, 401, 405-6

menu bar

as dockable window, 35,40

top-level menus, 303-6
Menu editor, 303, 304, 305-6

menu resources, 298-99

menus

accelerators for, 298, 299, 307-9

adding color to MyDraw program, 363-76

adding command handlers, 312-22, 367-69,

575, 586-87

adding dialog box menu items, 575-76, 586
adding submenus to MyDraw program, 306-7

menus, continued

adding Tools menu to MyDraw
program, 303-9

adding top-level menus to MyDraw
program, 305-6

checkmarking selected items, 353-56, 369-70
command IDs, 306, 309, 366, 367,

371,540-41

context, 37, 39
Debug menu, 378, 378

handle type, 221

mnemonics for, 298-99, 305
overview, 297-98

right -click, 37

role of resources, 298-99
shortcu t, 37

status bar prompts, 306
testing MyDraw program, 322-26

top-level, 303-6
updating items, 354-55

message breakpoints, 390
message handlers

mouse-related, 332-38, 342-44

for MyDraw program, 284, 342-44
overview, 215

testing, 336-38
and Windows, 216

message loops, 214-15,284, 286
message maps

CMyDrawDoc class, 275
CMyDrawView class, 279
defined, 262
frame window, 266-67
view class entries for mouse handlers, 335-36

messages

mouse-related, 330-38
routing, 260-63
in Windows, 213-16

MFC. See Microsoft Foundation Class
Library 6.0 (MFC)

MFC Tracer, 34

Microsoft Application Frame~orks (AFX)
team, 201

Microsoft Foundation Class Library 6.0 (MFC)

application life cycle, 285-86

and C++, 48
class hierarchy, 233, 233

code commenting conventions, 155

code library, 9, 15, 232-33
coding and commenting conventions, 635-36
collection classes, 412-14
diagnostic tools, 407-8
dialog boxes and controls in, 570

document/view architecture, 271, 272-76,
410-27

finding files, 628-30
Include subdirectory, 628-29

Lib subdirectory, 629
naming convention, 141

origins of, 201
overview, 232-33

and pointers, 97
and precompiled headers, 121

printing architecture, 506-10
relationship to Win32 API, 288-90

routing messages, 260-63
schemas for application version control, 494

searching file contents, 630-34
serialization and deserialization, 478-80, 480

source code files, 627-37

splitter windows, 605, 606-13
Src subdirectory, 629-30
text drawing, 455-60
text handling support, 474-75
use of hooks, 290-92

using sample programs, 475, 476
view classes as basis, 614-15
writing MyHi program, 244-48

Microsoft On The Web, 9, 42, 43, 623

Index

651

Index

652

m_listShapes data member, 415, 483-84, 489

MM_ANISOTROPIC mapping mode, 227

MM_HIENGLISHmapping mode, 227

MM_HIMETRIC mapping mode, 227

MM_ISOTROPIC mapping mode, 227

MM_LOENGLISHmapping mode, 227, 511,

512, 513, 514, 559

MM_LOMETRICmapping mode, 227

MM_TEXT mapping mode, 227, 510

MM_TWIPS mapping mode, 227

mnemonics, menu, 298-99, 305

modal dialog boxes, 570-78

modulus operator (%), 79, 139

mouse, double-clicking, 331-32

mouse message handlers

adding to MyDraw program, 333-36, 342-44

testing, 336-38

writing, 332-33

mouse messages, 330-32

MoveToEx function, 221

MoveTo function, 221

m_pBrushOld data member, 403

m_pos data member, 414, 415, 489

MSDN Online, 42, 43, 623

MS-DOS, applications printing, 506

m_shpTemp data member, 340

m_typeShape data member, 324-25, 402,434

multibyte character systems, 74-75

multiple document interface (MDI) applications,
247, 265-66, 605

multiplication operator (*), 79

multitasking, preemptive, 211-12

multithreading, 212

MyDraw program
About dialog box, 259

adding color, 363-76

adding dialog box, 571-78

adding mouse handlers to, 332-38

adding scrolling, 466-68

MyDraw program, continued
adding Settings dialog box, 582-601

adding splitter window, 608-10

adding status bar, 268-69

adding SUbmenus, 306-7

adding toolbars, 268-70, 537-48

adding Tools menu, 303-9

adding top-level menu, 305-6

adding Windows Color dialog box, 580-82

application object, 251, 252, 253-54

AppWizard-created objects, 251

AppWizard elements, 242-44

building, 240-41

changing default icon, 623-24

changing mapping mode to MM_LOENGLISH,

514-15

color bug, 381-405

creating code using AppWizard, 235-44

debugging, 381-405

dialog object, 251, 259-60

document interface, 414-26

document object, 251, 252, 271-72,273

document template, 251, 252, 256-58, 273

document/view architecture, 410-27

frame window, 251, 252, 263-71

implementing serialization, 480-94

list of steps in creating, 326-27

need for scroll bars, 447-49

overview, 295-96, 297

paginating documents, 516-26

running after initial build, 242

setting source code breakpoint, 391-92

testing menus, 322-26

testing shape drawing, 322-26

using view class printing functions, 509-10

view object, 251, 252, 276-84

MyHi program, 244-48

MyText program, 454-63

N
namespaces, defined, 203

namespace scope, 91

naming

projects, 19

toolbars, 543

variables, 61, 61

navigating online Help, 8-9

nesting control structures, 83

New dialog box, 18-19, 19

new operator, 69, 115

New Windows Message And Event Handlers

dialog box, 313, 314

not-equal-to operator (!=), 79

NOT operator (!), 79

null pointers, 105

null-terminated strings, 64, 197

o
object-oriented programming (OOP), 200-202

objects

application object, 251, 252, 253-54

and classes, 124-26

command targets, 261, 261

defined, 124

dialog object, 251, 259-60

document object, 251, 252, 271-72, 273
document template, 251, 252, 256-58, 273

frame window, 251, 252, 263-71

list with handle types, 221

MyDraw program list, 251

reading data for, 496-97
view object, 251, 252, 276-84

octal notation, 99

OffsetRect function, 564

OnAppAbout function, 259-60
OnBeginPrinting function, 509, 510,517-19,520

OnCmdMsg function, 261-62

ON_COMMAND_RANGE macro, 367, 369

OnCreateClient function, 610, 611-12

OnCreate function, 267-68, 541, 543, 546
OnDraw function

in MyText program, 454, 456, 458

overview, 279-81

rewriting, 341-42, 420-21

use of switch statement, 324

and y coordinates, 515

OnEndPrinting function, 509, 510

OnFileOpen function, 498-99

OnFileSaveAs function, 497-98

OnFileSave function, 497-98

OnlnitialUpdate function

creating,454-55,456,457-58

overriding, 467-68
in printing process, 515, 519

rewriting, 461

OnLButtonDown function, 515, 515, 549, 557-58

OnLButtonDown handler, 333, 338, 343, 347,
348,389-95,416-17,418-19,469,470

OnLButtonUp function, 515, 515, 609

OnLButtonUp handler, 333, 338, 344, 352, 386,

417,418-19,469,470

online Help

Boolean operators in, 12

connecting to Web, 9

Contents tab, 8, 14-15

Fl Help, 7
Favorites tab, 13-14

full-text searching, 7-8, 11-12

Home button, 13

Index tab, 7,9-11
installing, 6-7

Locate button, 13

narrowing searches, 9-13

navigating, 8-9
opening window, 8

overview, 5-6

Index

653

Index

654

online Help, continued
Search tab, 7-8, 11-12

table of contents, 8, 14-15

in Visual c++ editions, 6

OnMouseMove function, 515, 515

OnMouseMove handler, 333, 337, 343, 347-48,

469,470
OnNewDocument function, 275

OnOpenDocument function, 499

OnPaint handler, 280

OnPrepareDC function, 471, 472, 473, 509, 510,
515,522,523

OnPreparePrinting function, 509, 510, 521,

522, 535

OnPrint function, 509, 510, 525

On ToolColor handler, 369, 370
OnToolEllipse function, 313-18, 322, 345-46,

541,551,552

OnToolRectangle function, 312, 313-18, 322,

345-46,541,551,552
OnToolSelection handler, 551

ON_UPDATE_COMMAND_UI handler, 354

On Update function, 412

OnUpdateToolEllipse update handler, 355, 356

On Update ToolRectangle update handler, 354,

355, 356

OnUpdateToolTransparent update handler, 359

Open dialog box, 579

OpenDocumentFile function, 498, 499

opening

files, 498-99

Workspace window, 21

operators

vs. expressions, 78
list of, 79-80

overloading, 196-98, 440

overview, 79

precedence, 81
optimizing, 33, 381

order of precedence, 81

OR operator (I I), 79

Output window, 30, 35, 39

overloaded operators, 196-98,440

overriding functions, 171-72

owned windows, 542

owner windows, 542

p
Page Setup dialog box, 580

paginating documents, 516-26

palettes, 221

parameters, 72, 77-78

parentheses (), 81

parent windows, 217, 542

pens, 221

physical coordinates. See device coordinates

Pie function, 221

plus sign (+), as addition operator, 79, 197. See
also c++ programming language

Point class (Shapel program), 128, 134,

135-36, 141

puinter arithmetic, 99-1U1

pointer notation, 63
Pointer program, 95-98

pointer variables

and arrays, 99-101, 106-8

declaring, 95-98
defined,68,94,96

and delete keyword, 108

deleting, 139

dereferencing, 97-98

and existing objects, 117

as function parameters, 103-8

as function results, 103-8

guidelines for passing parameters, 112-13

incrementing, 101
initializing, 95-98

pointer variables, continued
list of targets, 105-6

and local objects, 114-15
and memberwise copying, 192, 195, 196

and MFC library, 97
overview, 94-95
as pointer targets, 106

vs. references, 109
responsibility for deleting, 117-18
returning as function results, 103-4, 112-13,

117-18,419
stray, 108
and strings, 102-3
this, 149-51

undefined, 108
Polygon function, 221

polymorphism, 175-81
portrait mode, printing in, 526, 527
postfix decrement operator (i--), 79
postfix increment operator (i++), 79
precedence, operator, 81
precompiled header files, 121-22
PreCreateWindow function, 271

preemptive multitasking, 211-12
prefix decrement operator (--i), 79

prefix increment operator (++i), 79
preprocessor directives, 54-55
pressure points. See hooks, MFC

. pretty-print code, 28

Print dialog box, 580

print! function, 137-38
PrintFooter function, 530, 533-34

PrintHeader function, 530-32
printing

changing mapping mode, 510-15

and coordinates, 522-25
documents, 505-35
headers and footers, 528-34

impact of change in mapping mode, 515

printing, continued
list of view class functions, 509, 509

MFC architecture, 506-10
MFC overview, 508-10

MS-DOS applications, 506
overview, 505-6

portrait vs. landscape, 526-28
in Windows, 507-8

private keyword, 151-53, 154

procedures. See functions
profiler tool, 33
Programmer's Guide, online Help, 15

programs. See also First program; MyDraw
program; MyHi program; MyText program;
Shapel program; Shape2 program; Shape3

program; source code
building, 29-32
creating, 18-21
"Hello, World!", 49-52

running, 32
sample, 15
stages in development, 17-18

version control, 494
project files, 16-17, 20
projects

build process, 29-32
creating, 18-21, 49
Debug build configuration, 29

directories and files, 20
naming, 19
overview, 16-17

Release build configuration, 29
running programs, 32
types of, 18
types of configurations, 29
types of source files, 25-26
Win32 Console Applications, 18-21

property pages
creating dialog resource, 588-92
implementing, 594-601

overview, 583-84, 585

Index

655

Index

656

property sheets

displaying, 586-87

modal vs. modeless, 584-85
overview, 583-85

protected access specifier, 181-82

public keyword, 151-53

pushbutton controls, 568

Q
QuickWatch, 386-87, 387

R
radio buttons, 568, 591, 595

rand function, 138, 139

RandomCoord function, 313, 319-21, 346
random numbers, 138, 139

RandomRect function, 313, 319-21, 346
.rc files, 25, 26, 301, 629

rebar controls, 537-38
Rectangle function, 221

Rectangle menu command (My Draw program)

adding command handlers, 312-22

creating, 306-7

Rect class (Shapel program), 128, 134, 135,
136,141

redrawing shapes, 323-26,420-22

Referl program, 108-9

Refer2 program, 110-12

Refer3 program, 115-16

Refer4 program, 118-20

references

defined, 109

and existing objects, 115-17

as function parameters and results, 109-12

guidelines for passing parameters, 112-13

guidelines for returning results, 112-13

and local objects, 114-15
naming, 109

references, continued
vs. pointers, 109

Referl program, 108-9

Refer2 program, 110-12

Refer3 program, 115-16

Refer4 program, 118-20

responsibility for deleting, 117-18
returning to objects, 115-17

regions, 221

relational operators, 79

Release builds vs. Debug builds, 29, 380-81

ReleaseCapture function, 348, 352

replacing text strings in source code files, 41

ResetPenBrush function, 345, 357-58, 372, 374

Resource.h file, 302-3

resources
benefits of, 300

creating using ResourceView, 25

deleting using ResourceView, 25

dialog template, 570-73

editing, 301

editing using resource editors, 29

editing using ResourceView, 25

for menus, 289-99

overview, 24

toolbar, creating, 538-41

Windows overview, 299-303

ResourceView tab, Workspace window, 24-25,

24, 301-2
return keyword, 73-74, 77

RGB color system, 363-65

RGB Visual c++ macro, 364

running

MyDraw program, 242

programs, 32

Visual C++, 4-5
run-time binding, 175

run-time library, C++, 69, 71, 74-76, 635

s
Save As dialog box, 579
saving

files, 497-98

source code, 52

scientific notation, 99

scope
class, 93, 198-200

global, 91, 199

local, 91-93, 199

namespace, 91

Scopel program example, 89-93

side effects, 93

special situations, 93-94

screen coordinates, 224, 225
scroll bars

adding to MyDraw program, 466-68

adding to MyText program, 460-63

demonstrating need in MyDraw program,
447-49

how they work, 449-52

implementing, 452-53

MFC sample programs, 453

overview, 449-52

parts of, 449, 450

setting scroll size, 460, 462-63, 464-65

for text, 453-63

as type of control, 568

scrolling, overview, 449-52. See also scroll bars
SDlapplications, 265-66,426

searching in Visual C++, 40-42

Search tab, online Help, 7-8, 11-12

Selection button, 550-53

selection handles, drawing, 560-66

selection mode
hit testing, 557-60

how it works, 549-50

overview, 548-49

selection mode, continued
Selection button, 550-53

source code for, 550-66

turning on and off, 550-53

semicolon (;), 57

serialization. See also Serialize function
and CShape,430,432,480-82,483,484-88,

555-56

how it works, 495-501

implementing in MyDraw program, 480-94

overview, 478-80, 480

and shape list, 489

using document/view architecture without,
502-3

Serialize function
basics of reading and writing data, 496-98

calling base class version, 485

vs. CArchive operators, 490-93

CMyDrawDoc class, 276, 488-89

CObList class, 489

CShape class, 484-88, 555-56

defined,276
derived from CObject class, 480-88, 485

overriding, 482-84

SetBkColor function, 221, 364, 455

SetButtonStyle function, 546

SetCapture function, 348,352

SetCheck function, 354, 355, 370

SetDocSizes function, 465

SetModifiedFlag function, 417

SetPenBrush function, 345, 357-58, 372-75,

383-84,385

SetScrollSizes function, 463, 464-65

SetTextColor function, 364, 455

SetToLatestShape function, 422-23

SetToOldestShape function, 415, 420, 422-23

SetViewportOrg function, 450, 451

SetWindowOrg function, 450, 451, 523-24, 526

SetWindowText function, 546

maex

657

Inaex

658

Shape1 program

C++ in, 133-35
constructors in, 135-36

coordinate system, 134, 135, 135

CPoint.h file, 128

CRect.h file, 128, 129

defined, 123

header files in, 133-34, 134
main function, 133, 139-40

overview, 127-28

run-time functions, 137-39

Shape1.cpp file, 128, 130-33

Shape.h file, 128, 129

struct keyword in, 135-37

Shape2 program

C++ in, 147-55
defined, 123

vs. Shape1 program, 141

Shape2.cpp file, 144-47

Shape.h file, 142, 143-44

Shape3 program

C++ in, 169-98

defined, 123-24
file::; in, 162-69

Shape3.cpp file, 166-69

Shape.cpp file, 165-66

Shape.h file, 162-64

Shape class. See also CShape class

adding color data member, 375-76
creating, 126-27

vs. CShape class, 141

Shape1 program, 128, 133, 134

simple syntax, 127

Shape.cpp file, 165-66, 436-37

Shape.h file, 128, 129, 142, 143-44, 162-64,

428-30,435-36

shape object, 353, 397, 398-99, 398, 410

shapes. See also CShape class

bounding rectangle attribute, 126

creating CShape class, 197, 428-30

shapes, continued
creating data type for, 339

creating Shape class, 126-27

erasing, 36.1-62

ID attribute, 126

making transparent, 356-61

redrawing using InvertShape, 421

redrawing using OnDraw, 323-26, 420-21

reordering, 566

selecting in bounding rectangles, 548-49

serializing, 430, 432, 480-82, 483, 484-88,
489,555-56

setting color, 375-76

testing drawing in MyDraw program, 322-26

shortcut menus, 37

ShowWindow function, 228, 258

side effects, 93

single document interface (SDI) applications,

265-66,426

sizeof operator, 80

Sizes program, 58

slash (I), as division operator, 79

Smalltalk, 202

source browser, 34

source code. See also Microsoft Foundation

Class Library 6.0 (MFC); run-time

library, C++

adding line numbers, 459

bookmarking locations, 42
debugging, 381-408

editing, 27-28

files for Visual C++ projects, 25

finding and replacing text strings, 41, 630-34

indenting, 28

pretty-print, 28

programming styles, 28

saving, 52
syntax coloring, 28

source code window, 383-84, 385

spin button controls, 589, 600-601

splitter windows
adding to MyDraw program, 608-10

coordinating panes, 610

dynamic, 606, 607, 608-10

dynamic vs. static, 606, 607-8

overview, 605

static, 606, 607-8, 611-13

when to use, 607-8

sprint! function, 137-38

Spy++ tool, 34

square brackets ([]), as array subscript operator,
62,80,100

srand function, 138

Src subdirectory, 629-30

stack
allocating memory, 67-68

and classes, 176-77

vs. heap, 69, 107, 115, 147-48

stack frame. See stack
starting Visual C++, 4-5

statements, C++, 57-58

static data members, 185-86

static functions, 186

static splitter windows, 606, 607-8, 611-13

static text controls, 572, 589, 590

static variables, 94, 155.;,...56

status bar
creating for MyDraw program, 268-69

menu prompts, 306-7

stray pointers, 108

strcpy function, 139

string classes, 196-97

String program, 102-3

strings. See also CString class

arrays of, 107-8, 107

overview, 63-64, 102

pointer variables and, 102-3

for shapes in Shape class, 127

str1en function, 64

struct data type
and access specifiers, 153

vs. class keyword, 135, 141, 153

defined, 60

as pointer target, 105

in Shapel program, 135-37

styles, toolbar, 544-45

subclasses. See derived classes
submenus, adding to MyDraw program, 306-7

subordinate local scopes, 92-93

subroutines. See functions
subtraction operator (-), 79

switch statements, 84, 177, 216, 324,421

system requirements, xxxi-xxxii

T
tabbed dialog boxes, 583-85

TabbedTextOut function, 459

tables, virtual function, 175

. tabs, dialog box, 583-85

text
changing color, 364,455, 475

drawing, 455-60

MFC handling support, 474-75

scrolling lines, 453-63

TEXTMETRIC object, 456-57

TextOut function, 221, 456

text pages, terminology, 463

thispointer, 149-51

threads· of execution, 212

tilde (~), as bitwise NOT operator, 184

time function; 138

Tip Of The Day, 5

toolbar buttons

adding, 539-41

specifying styles, 545-46

Toolbar editor, 538-41, 539, 540

Index

659

Index

660

toolbars

adding to MyDraw program, 537-48

Build toolbar, 380

classes, 537-38

creating at run time, 543-44

creating for MyDraw program, 268-70

creating resources, 538-41

Debug toolbar, 378, 379

as dockable windows, 35, 39-40, 270

floating, 546-47

hiding and showing, 565-66

making dockable, 547-48

MyDraw program, 243-44

naming, 543

setting button behavior, 545-46

setting styles, 544-45

source code for, 541-42

tooltips for, 269-70, 541

WizardBar, 34

Tools menu (MyDraw program), 303-9

Tools menu (Visual C++), 34

tooltips, 269-70, 541

top-level menus

adding submenuitems, 306-7

adding to MyDraw program, 305-6

adding to programs, 304

overview, 303-4

TRACE macro, 34, 407

TranslateMessage function, 214-15, 228

transparency, shape, 356-61

type casts, 65-67, 282-83, 487, 488

type conversions, 65-67

typedef declarations, 60

u
Unicode, 74-75

union keyword, 125

UpdateAllViews function, 411-12

update handlers, 354-56, 369-70

Update Win dow function, 228, 258

User.exe file, 568

User's Guide, online Help, 15

v
value classes, 440

variables. See also arrays; pointer variables;

references; strings

examining in debugging process, 386-89

global, 58, 93-94, 155-56

Hungarian prefixes for naming, 61

local, 58, 68,92, 94, 114-15

naming conventions, 61

overview, 58-67

as pointers, 94-108

reference, 108-12

and scope, 91-94

static, 94, 155-56

static vs. global, 155-56

Variables window, 388, 388, 400,401-2

VBScript language, 44

VERI.l.lly macro, 407

VERSIONABLE_SCHEMA macro, 494

version control, 494

view class, 340-41,410, 509, 509

View menu (MyDraw program), 243-44

view object
array problem, 396-99, 397, 398

combining views, 615-16

GetDocument member function, 281-83

message maps for, 614

overview, 251, 252, 276-84, 613

pointer to document object, 410-11

for user interaction, 613

as windows, 613-14

virtual destructors, 184, 433, 441

virtual functions, 172-75, 290

Virtual program, 172-74

Visual C++
Browse Information File, 630, 633-34
debugger overview, 378-79
editing code, 27-28

examining splitter windows, 606-7
Find In Files command, 630, 631-32
installing Introductory Edition, xxx-xxxi

Knowledge Base, 528
language reference, 76
Menu editor, 303, 304, 305-6

and MFC, 48
open window with program displayed, 5

Output window, 30
project directories and files, 20
running, 4-5
run-time library, 69, 71, 74-76, 635

sample programs, 15
searching, 40-42
windows in, 35-40

Visual Studio, 6

void as pointer target, 106

w
Watch window, 387, 387, 388

Web. See Microsoft On The Web
while statements, 83
Win32 API

functions for printing, 507
functions overview, 220-22, 221

and multitasking, 211-12

and multithreading, 212
overview, 210-12

programming for various platforms, 211
relationship to MFC, 288-90

underlying concepts, 211
wrapping functions, 288-90

Win32 Console Applications, 18-21

window procedures, 216
windows. See also controls; dialog boxes

client areas vs. framing elements, 218, 219,
219

document vs. dockable, 35
drawing, 217-18
full screen mode, 37
handle type, 221

maximizing work space, 36-37

owner and owned, 542
parent and child, 542
views as, 613-14

Visual C++ overview, 35-40
Windows 3.1, 210

Windows 3.11, 210
Windows API

functions, 201-2, 214-15, 220, 221, 228

overview, 210-12
Windows Calculator, 99
Windows common dialog boxes, 578-82, 579-80

Windows environment. See also Win32 API
16-bit vs. 32-bit versions of, 210
default coordinate system, 222, 223

device context, 219-22
graphical user interface, 217, 563

list of drawing functions, 221

list of objects and handle types, 221

list of resources, 299

printing in, 507-8
sample application, 227-29
as user-driven, 213

variations of, 209-10
Windows Explorer project type, 248
Windows.h file, 211
WinMain function, 228, 284, 285-86

WizardB ar
overview, 34, 245-46, 315
using to add command handlers, 312, 313-15

using to add update handlers, 355-56

Index

661

Index

662

wizards, defined, 34. See also AppWizard;
ClassWizard

WM_COMMAND message, 260-61, 614

WM_CREATE message, 266-67

WM_HSCROLL message, 452

WM_LBUTTONCLICK message, 331

WM_LBUTTONDBLCLICK message, 331

WM_LBUTTONDOWN message, 330, 334, 390

WM_LBUTTONUP message, 330, 334

WM_MOUSEMOVE message, 330, 331, 334

WM_PAINT message, 218-19

WM_ VSCROLL message, 452

workspaces
customizing, 17

.dsw files, 17, 20

project overview, 16-17

using window, 21-25

Workspace window
ClassView tab, 21, 22-23

closing, 21

as dockable window, 35, 39

FileView tab, 23,23

opening, 21

overview, 21

ResourceView pane, 301-2

ResourceView tab, 24-25, 24

World Wide Web. See Microsoft On The Web

wrapper functions, 288-90

y
YCoord sample application, 512-15

z
zero-terminated strings, 64

About the Author

Chuck Sphar spent six
years at Microsoft as a se
nior technical writer on
the MFC documentation
team, starting with MFC
version 1.0. His work
there included writing the
original Scribble tutorial,
designing the MFC ency
clopedia format, helping
redesign Visual c++
documentation to be
more task oriented, and
engaging in some colossal
water fights.

In his previous lives, Chuck taught technical writing and composition
at the college level, worked in information systems shops for NASA's
Apollo and Shuttle programs, and wrote a Macintosh programming
book, published in 1991 by Microsoft Press. These days, Chuck does
technical writing on his own from a mountainside in Colorado with his
wife, Pam, four cats-Buji-San, Striper, Sydney, and Tippy-and
assorted bears, cougars, foxes, and deer.

The manuscript for this book
was prepared and submitted to

Microsoft Press in electronic form. Text
files were prepared using Microsoft
Word 97 for Windows 95. Pages were
composed by Microsoft Press using
Adobe PageMaker 6.52 for Windows,
with text in Melior and display type in
Frutiger Condensed. Composed pages
were delivered to the printer as elec
tronic prepress files.

Cover Designer

The Leonhardt Group

Interior Graphic Artist

Rob Nance

Principal Compositor

Elizabeth Hansford

Principal Proofreader/Copy Editor

Cheryl Penner

Indexer

Julie Kawabata

The Industry bible
for

Visual C++
development

It:iIfo , -

,:."::= '
:' 6dIIIoI\$.

•. 1II1IfInII
l s, ,0>

Programming
ft

U.S.A. $49.99

I C++
Fifth Edition

L
rtOtt<irnmJl'h
~nhJocc.met ts

• fh.'t.lfltCOM
U'''lplh~"Wllh

David J. Krugllnskl,
George Shepherd
and Scott Wingo

U.K. £42.99 [VAT. Included]
Canada $71.99
ISBN 1-57231-857-0

PROGRAMMING MICROSOFT VISUAL C++,@ FIFTH EDITION is

the newest edition of the book that has become

the industry's most trusted text (previously

published as Inside Visual C++). Newly expanded

and updated for Microsoft Visual C++ 6.0, it
offers even more of the detailed, comprehensive

coverage that's consistently made this title the

best overall explanation of the capabilities of this

powerful and complex development tool. You'll

find a full discussion of control development with

ATL, the latest database programming enhance

ments, recent COM improvements, C++ program

ming for the Internet, and loads more.

~icrosoft Press® products are available worldwide wherever quality computer books are
old. For more information, contact your book or computer retailer, software reseller, or
)cal Microsoft Sales Office, or visit our Web site at msoress.microsoft.com. To locate your
earest source for Microsoft Press products, or to order directly, call 1-800-MSPRESS in
ne U.S. (in Canada, call 1-800-268-2222).

'rices and availability dates are subject to change.

Unlockthe
Mi ttPOWerof

lSual Studio

U.S.A. $129.99
U.K. £121.99 [V.A.T. included]

Canada $188.99
ISBN 1-57231-884-8

Microsoft Press® products are available worldwide wherever quality computer
books are sold. For more information, contact your book or computer retailer,
software reseller, or local Microsoft Sales Office, or visit our Web site at
mspress.microsoft.com. To locate your nearest source for Microsoft Press
products, or to order directly, call 1-800-MSPRESS in the U.S. (in Canada, call
1-800-268-2222).

Prices and availability dates are subject to change.

The MICROSOF~ VISUAL STUDIO® CORE REFERENCE SET

contains the programmer's guide for each product in

Microsoft Visual Studio 6.0:

• Microsoft Visual 8asic® 6.0 Programmer's Guide

• Microsoft Visual C++® 6.0 Programmer's Guide

• Microsoft Visual FoxPro® 6.0 Programmer's Guide

• Microsoft VisuallnterDev™ 6.0 Programmer's Guide

• Microsoft Visual J++® 6.0 Programmer's Guide

The answers that professionals need are close at hand

in easy-to-use book form. And because they're from

Microsoft's own Developer User Education groups, these

volumes provide authoritative and complete information

straight from the source. As a bonus, the Microsoft

Visual C++ 6.0 Programmer's Guide contains a CD-ROM

with helpful tools and samples for Visual C++ 6.0 pro

grammers. Get this valuable set working for you today.

Here's your /ow-cost,
one-stop solution for

leaming VISual J++ 6.0!

The Quick and Easy Way to
Learn Visual J++ 6.0

U.S.A. $49.99

Includo$
a fl,lll.fe3tured

ver$lon~fMlCrosott
V~t. ,1)++ € 0
on ... D-POM·

U.K. £46.99 [V.A.T. included]
Canada $71.99
ISBN 1-57231-923-2

LEARN MICROSOFT® VISUAL J++® 6.0 Now is a

tutorial introduction to the latest version of

Microsoft Visual J++ for people with prior

programming experience. You'll get a thor

ough overview of Java and how Microsoft

implements it. You will learn how to write an

application from scratch and discover what

goes on in the process. You'll learn the many

reasons why Visual J++ is the leading Java

programming tool!

Microsoft Press® products are available worldwide wherever quality computer books are
sold. For more information, contact your book or computer retailer, software reseller, or
local Microsoft Sales Office, or visit our Web site at mspress.microsoft.com. To locate your
nearest source for Microsoft Press products, or to order directly, call 1-800-MSPRESS in
the U.S. (in Canada, call 1-800-268-2222).

Prices and availability dates are subject to change.

mUltiple-computer
processing!

U.S.A. $44.99

lnd~d.~

_~COM

Mlc.R1toJ4lot
W • ..w..,. ,~

Guy Eddon
Henry Eddon
ror0lll"rrlhy Jf'ffr'i"t Rir::Ner

U.K. £41.99 [V.A.T. Included]

Canada $64.99
ISBN 1-57231-849-X

With Microsoft's Distributed Component Object
Model (DCOM), developers can create powerful
new business solutions based on multi-tier and
even true distributed applications. INSIDE DISTRIB
UTED COM presents the information you need to
get a coherent picture of DCOM and to tap its full
power. Inside you'll find a strong conceptual
blueprint of DCOM and related technologies,
combined with extremely valuable cross-lan
guage coding samples.

Microsoft Press® products are available worldwide wherever quality computer books are
sold. For more information, contact your book or computer retailer, software reseller, or
local Microsoft Sales Office, or visit our Web site at mspress.microsoft.com. To locate your
nearest source for Microsoft Press products, or to order directly, call 1-800-MSPRESS in
the U.S. (in Canada, call 1-800-268-2222).

Prices and availability dates are subject to change.

Learn

Part No. 097-0002203

v_il C++o6.0
Now

This programming tutorial is one of the self-paced learning tools
that make up MICROSOFT VISUAL C++ 6.0 DELUXE LEARNING EDITION. If
you have previous programming experience, you can quickly move
your skills to the Visual C++ development system with this
comprehensive introduction to version 6.0. LEARN MICROSOFT VISUAL
C++ 6.0 Now covers:

• Working in the Visual C++ environment-introduction to tools
and capabilities

• Understanding C++ basics-pointers, references, classes, and
~ .objects

• Investigating the Win32$ API-concepts for Windows development
• Generating code with the MFC AppWizard
• Developing fundamental MFC skills-menus, drawing, dialogs,

and views
• Adding sophisticated program features with MFC and graphics

techniques

mspress.microsoft.com

