
The Official Reference for
Microsoft Visual C++ 6.0

C++ 6.0
Language Reference

-

Microsoft Press

Microsoft®

Visual
C++® 6.0

Language
Reference

Microsoft Press
I

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 1998 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or
by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Microsoft Visual C++ 6.0 Reference Library / Microsoft Corporation.

p. cm.
Includes index.
ISBN 1-57231-865-1
1. C++ (Computer program language) 2. Microsoft Visual C++.

I. Microsoft Corporation.
QA76.73.CI53M4977 1998
005.26'8--dc21

Printed and bound in the United States of America.

2 3 4 5 6 7 8 9 WCWC _ 3 2 1 0 9

Distributed in Canada by Penguin Books Canada Limited.

A CIP catalogue record for this book is available from the British Library.

98-14785
CIP

Microsoft Press books are available through booksellers and distributors worldwide. For further
information about international editions, contact your local Microsoft Corporation office or contact
Microsoft Press International directly at fax (425) 936-7329. Visit our Web site at mspress.microsoft.com.

Power Macintosh is a registered trademark of Apple Computer, Inc. Microsoft, Microsoft Press, Visual
C++, Win32, Windows, and Windows NT are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries. Other product and company names mentioned
herein may be the trademarks of their respective owners.

Acquisitions Editor: Eric Stroo
Project Editor: Maureen Williams Zimmerman

Part No. 097-0001952

Microsoft®

Visual C®
6.0

Language
Reference

Contents

Introduction . .. xiii
Organization of the C Language Reference ; xiii

Scope of this Manual . xiii

ANSI Conformance. xiv

Chapter 1 Elements of C .. 1
Tokens ... 2

White-Space Characters. .. 2

Comments '" 2

Evaluation of Tokens .. 4

Keywords ... 4

Identifiers .. 6

Multibyte and Wide Characters .. 8

Trigraphs. .. 9

Constants .. 10

Floating-Point Constants. .. 10

Integer Constants ., 13

Character Constants .. 17

String Literals .. : 21

Type for String Literals. .. 21

Storage of String Literals .. 22

String Literal Concatenation .. 22

Maximum String Length. .. 23

Punctuation and Special Characters. .. 24

Language Reference v

Contents

Chapter 2 Program Structure. 25
Source Files and Source Programs. .. 25

The main Function and Program Execution .. 30

Using wmain .. 31

Argument Description. .. 31

Expanding Wildcard Arguments .. 32

Parsing Command-Line Arguments .. 33

Customizing Command-Line Processing ... 34

Lifetime, Scope, Visibility, and Li~age .. 35

Lifetime. .. 35

Scope and Visibility .. 36

Summary of Lifetime and Visibility. .. 37

Linkage ... 38

Name Spaces. .. 39

Chapter 3 Declarations and Types. 41
Overview of Declarations. .. 41

Storage Classes .. 44

Storage-Class Specifiers for External-Level Declarations 45

Storage-Class Specifiers for Internal-Level Declarations 47

Storage-Class Specifiers with Function Declarations .. 50

Specifiers .. 51

Data Type Specifiers and Equivalents .. 52

Type Qualifiers .. 53

Declarators and Variable Declarations. .. 55

, Simple Variable Declarations 57

Enumeration Declarations .. 58

Structure Declarations. .. 61

Union Declarations ... 67

Array Declarations .. 70

Pointer Declarations . " 72

Based Pointers .. 75

Abstract Declarators .. 76

Interpreting More Complex Declarators .. 77

vi Language Reference

Contents

Initialization. .. 79

Initializing Scalar Types .. 80

Initializing Aggregate Types. .. 82

Initializing Strings .. 85

Storage of Basic Types. .. 86

Incomplete Types .. 91

Typedef Declarations. .. 92

Extended Storage":Class Attributes .. 95

DLL Import and Export ... 95

Naked " .. " 96

Thread Local Storage .. 96

Chapter 4 Expressions and Assignments 99
Operands and Expressions ~ .. 99

Primary Expressions. " 100

L-Value and R-Value Expressions ... " 101

Constant Expressions .. 103

Expression Evaluation .. 104

Operators . " 106

Precedence and Order of Evaluation .. 107

Usual Arithmetic Conversions. .. 109

Postfix Operators .. 111

Unary Operators. .. " 116

Cast Operators ... " 121

Multiplicative Operators•............. " 121

Additive Operators .. " 123

Bitwise Shift Operators ... " 126

Relational and Equality Operators .. " 127

Bitwise Operators ... " 129

Logical Operators. " 131

Conditional-Expression Operator. ... " 132

Assignment Operators ... " 133

Sequential-Evaluation Operator. .. 136

Type Conversions ... " 137

Assignment Conversions. .. 137

Type-Cast Conversions. .. 144

Function-Call Conversions .. " 146

Language Reference vii

Contents

Chapter 5 Statements... 147
Overview of Statements . " 147

The break Statement. " 148

The CompouJ?d Statement. .. 149

The continue Statement. .. 150

The do-while Statement. .. 150

The Expression Statement. .. 151

The for Statement. .. 152

The goto and Labeled Statements. .. 153

The if Statement. .. 154

The Null Statement .. 156

The return Statement. .. 156

The switch Statement ... " 158

The try-except Statement•.. " 160

The try-finally Statement .. " 163

The while Statement. 164

Chapter 6 Functions'.. 165
Overview of Functions. .. 165

Obsolete Forms of Function Declarations and Definitions ". 166

Function Definitions. .. 167

Function Attributes. .. 169

DLL Import and Export Functions. .. 171

Naked Functions. .. 174

Storage Class " 177

Return Type. " 179

Parameters. '. .. 181

Function Body .. 182

Function Prototypes .. 183

Function Calls .. 185

Arguments. ~ " 187

Calls with a Variable Number of Arguments. .. 189

Recursive Functions .. 189

viii Language Reference

Contents

Appendix A C Language Syntax Summary , " 191
Definitions and Conventions. .. 191

Lexical Grammar. .. 192

Summary of Tokens ... " 192

Summary of Keywords ... " 193

Summary of Identifiers. .. 193

Summary of Constants . " 194

Summary of String Literals. .. 196

Operators. .. 196

Punctuators .. 196

Phrase Structure Grammar .. 197

Summary of Expressions. " 197

Summary of Declarations .. 200

Summary of Statements .. 203

External Definitions .. " 204

Appendix B Implementation-Defined Behavior, , , , , .. , , , , .. , , , , , , , , 205
Translation: Diagnostics. " 205

Environment ... " 205

Arguments to main. " 206

Interactive Devices. .. 206

Behavior of Identifiers . " 206

Significant Characters Without External Linkage . " 207

Significant Characters With External Linkage " 207

Uppercase and Lowercase. .. 207

Characters. .. 207

The ASCII Character Set . " 208

Multibyte Characters . " 208

Bits per Character ... " 208

Character Sets .. 208

Unrepresented Character Constants .. ". 209

Wide Characters .. " 209

Converting Multibyte Characters. .. 210

Range of char Values " 210

Language Reference ix

Contents

Integers. .. 210

Range of Integer Values .. 210

Demotion of Integers .. 211

Signed Bitwise Operations 211

Remainders . " 212

Right Shifts. .. 212

Floating-Point Math. .. 212

Values ... 212

Casting Integers to Floating-Point Values. .. 213

Truncation of Floating-Point Values. .. 213

Arrays and Pointers. .. 213

Largest Array Size. .. 213

Pointer Subtraction. .. 213

Registers: Availability of Registers ... 214

Structures, Unions, Enumerations, and Bit Fields. .. 214

Improper Access to a Union 214

Padding and Alignment of Structure Members 214

Sign of Bit Fields. 215

Storage of Bit Fields ... " 215

The enum type .. 216

Qualifiers: Access to Volatile Objects. .. 216

Declarators: Maximum Number ... 216

Statements: Limits on Switch Statements. .. 216

Preprocessing Directives. .. 216

Character Constants and Conditional Inclusion. .. 217

Including Bracketed Filenames . " 217

Including Quoted Filenames ... " 217

Character Sequences. .. 218

Pragmas. .. 218

Default Date and Time ... 218

x Language Reference

Contents

Library Functions .. 218

NULL Macro. .. 220

Diagnostic Printed by the assert Function. .. 220

Character Testing. ' 220

Domain Errors .. 221

Underflow of Floating-Point Values. .. 221

The fmod Function. .. 221

The signal Function. .. 221

Default Signals. .. 221

Terminating Newline Characters. .. 221

Blank Lines. .. 222

Null Characters .. 222

File Position in Append Mode. .. 222

Truncation of Text Files .. 222

File Buffering. .. 222

Zero-Length Files. .. 222

Filenames .. 223

File Access Limits .. 223

Deleting Open Files .. 223

Renaming With a Name That Exists. .. 223

Reading Pointer Values. .. 223

Reading Ranges .. 223

File Position Errors. .. 224

Messages Generated by the perror Function .. 224

Allocating Zero Memory. .. 225

The abort Function. .. 225

The atexit Function. .. 225

Environment Names. .. 225

The system Function. .. 226

The strerror Function .. 226

The Time Zone 227

The clock Function. .. 227

Index .. 229

Language Reference xi

Introduction

Organization of the
C Language Reference

• Elements of C

• Program Structure

• Declarations and Types

• Expressions and Assignments

• Statements

• Functions

• C Language Syntax Summary

• Implementation-Defined Behavior

Scope of this Manual
C is a flexible language that leaves many programming decisions up to you. In keeping
with this philosophy, C imposes few restrictions in matters such as type conversion.
Although this characteristic of the language can make your programming job easier,
you must know the language well to understand how programs will behave. This book
provides information on the C language components and the features of the Microsoft
implementation. The syntax for the C language is from ANSI X3.159-1989, American
National Standard for Information Systems - Programming Language - C (hereinafter
called the ANSI C standard), although it is not part of the ANSI C standard. Appendix A,
"C Language Syntax Summary," provides the syntax and a description of how to read and
use the syntax definitions.

This book does not discuss programming with C++. See the Microsoft Visual C++ 6.0
Language Reference volume of the Microsoft Visual C+ + 6.0 Reference Library for
information about the C++ language.

Language Reference xiii

C Language Reference

ANSI Conformance
Microsoft C conforms to the standard for the C language as set forth in the ANSI C
standard. Microsoft extensions to the ANSI C standard are noted in the text and syntax
of this book as well as in the online reference. Because the extensions are not a part of
the ANSI C standard, their use may restrict portability of programs between systems.
By default, the Microsoft extensions are enabled. To disable the extensions, specify
the /Za compiler option. With /Za, all non-ANSI code generates errors or warnings.

xiv Language Reference

C HAP T E R

Elements of C

This chapter describes the elements of the C programming language, including the names,
numbers, and characters used to construct a C program. The ANSI C syntax labels these
components "tokens." This chapter explains how to define tokens and how the compiler
evaluates them.

The following topics are discussed:

• Tokens

• Comments

• Keywords

• Identifiers

• Constants

• String literals

• Punctuation and special characters

The chapter also includes reference tables for trigraphs, floating -point constants,
integer constants, and escape sequences.

"Operators" are symbols (both single characters and character combinations) that
specify how values are to be manipulated. Each symbol is interpreted as a single unit,
called a token. For more information, see "Operators" in Chapter 4, "Expressions and
Assignments. "

Language Reference 1

C Language Reference

Tokens
In a C source program, the basic element recognized by the compiler is the "token."
A token is source-program text that the compiler does not break down into component
elements.

Syntax

token:
keyword
identifier
constant
string-literal
operator
punctuator

Note See the introduction to Appendix A, "C Language Syntax Summary," later in
this volume, for an explanation of the ANSI syntax conventions.

The keywords, identifiers, constants, string literals, and operators described in this chapter
are examples of tokens. Punctuation characters such as brackets ([]), braces ({ }),
parentheses (()), and commas (,) are also tokens.

White-Space Characters
Space, tab, linefeed, carriage-return, formfeed, vertical-tab, and newline characters are
called "white-space characters" because they serve the same purpose as the spaces
between words and lines on a printed page - they make reading easier. Tokens are
delimited (bounded) by white-space characters and by other tokens, such as operators and
punctuation. When parsing code, the C compiler ignores white-space characters unless
you use them as separators or as components of character constants or string literals. Use
white-space characters to make a program more readable. Note that the compiler also treats
comments as white space.

Comments
A "comment" is a sequence of characters beginning with a forward slash/asterisk
combination (/*) that is treated as a single white-space character by the compiler and
is otherwise ignored .. A comment can include any combination of characters from
the representable character set, including newline characters, but excluding the "end
comment" delimiter (*/). Comments can occupy more than one line but cannot be nested.

Comments can appear anywhere a white-space character is allowed. Since the compiler
treats a comment as a single White-space character, you cannot include comments within
tokens. The compiler ignores the characters in the comment.

2 Language Reference

Chapter 1 Elements of C

Use comments to document your code. This example is a comment accepted by the
compiler:

1* Comments can contain keywords such as
for and while without generating errors. *1

Comments can appear on the same line as a code statement:

pri ntf("Hell o\n"); 1* Comments can go here *1

You can choose to precede functions or program modules with a descriptive comment
block:

1* MATHERR.C illustrates writing an error routine
* for math functions.
*1

Since comments cannot contain nested comments, this example causes an error:

1* Comment out this routine for testing

1* Open fil e *1
f h = _0 pen ("my file. c" , 0 ROO N L Y);

*1

The error occurs because the compiler recognizes the first * I, after the words Open fi 1 e,
as the end of the comment. It tries to process the remaining text and produces an error
when it finds the * I outside a comment.

While you can use comments to render certain lines of code inactive for test purposes, the
preprocessor directives #if and #endif and conditional compilation are a useful alternative
for this task. For more information, see "Preprocessor Directives" in the Preprocessor
Reference, later in this volume.

Microsoft Specific ~

The Microsoft compiler also supports single-line comments preceded by two forward
slashes (/1). If you compile with /Za (ANSI standard), these comments generate errors.
These comments cannot extend to a second line.

II This is a valid comment

Language Reference 3

C Language Reference

Comments beginning with two forward slashes (If) are terminated by the next newline
character that is not preceded by an escape character. In the next example, the newline
character is preceded by a backslash (\), creating an "escape sequence." This escape
sequence causes the compiler to treat the next line as part of the previous line. (For
more information, see "Escape Sequences," later in this chapter.)

II my comment \
i++;

Therefore, the i ++; statement is commented out.

The default for Microsoft C is that the Microsoft extensions are enabled. Use /Za to disable
these extensions.

END Microsoft Specific

Evaluation of Tokens
When the compiler interprets tokens, it includes as many characters as possible in a single
token before moving on to the next token. Because of this behavior, the compiler may not
interpret tokens as you intended if they are not properly separated by white space. Consider
the following expression:

i+++j

In this example, the compiler first makes the longest possible operator (++) from the three
plus signs, .then processes the remaining plus sign as an addition operator (+). Thus, the
expression is interpreted as (i ++) + (j), not (i) + (++ j). In this and similar cases, use
white space and parentheses to avoid ambiguity and ensure proper expression evaluation.

Microsoft Specific ~

The C compiler treats a CTRL+Z character as an end-of-file indicator. It ignores any text
after CTRL+Z.

END Microsoft Specific

Keywords
"Keywords" are words that have special meaning to the C compiler. In translation
phases 7 and 8, an identifier cannot have the same spelling and case as a C keyword.
(See a description of translation phases in the Preprocessor Reference, later in this
volume; for information on identifiers, see the next section, "Identifiers.") The
C language uses the following keywords:

auto double int struct

break

case

4 Language Reference

else

enum

long

register

switch

typedef

Chapter 1 Elements of C

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

You cannot redefine keywords. However, you can specify text to be substituted for
keywords before compilation by using C preprocessor directives.

Microsoft Specific ~

The ANSI C standard allows identifiers with two leading underscores to be reserved for
compiler implementations. Therefore, the Microsoft convention is to precede Microsoft
specific keyword names with double underscores. These words cannot be used as identifier
names. For a description of the ANSI rules for naming identifiers, including the use of
double underscores, see the next section, "Identifiers."

The following keywords and special identifiers are recognized by the Microsoft C
compiler:

asm dllimport2 int8 naked2

based l __ except int16 stdcall

cdecl fastcall int32 thread2

__ declspec __ finally int64 __ try

dllexport2 inline leave

1. The __ based keyword has limited uses for 32-bit target compilations.

2. These are special identifiers when used with __ declspec; their use in other contexts is not restricted.

Microsoft extensions are enabled by default. To ensure that your programs are fully
portable, you can disable Microsoft extensions by specifying the /Za option (compile for
ANSI compatibility) during compilation. When you do this, Microsoft-specific keywords
are disabled.

When Microsoft extensions are enabled, you can use the keywords listed above in
your programs. For ANSI compliance, most of these keywords are prefaced by a double
underscore. The four exceptions, dllexport, dllimport, naked, and thread, are used only
with __ declspec and therefore do not require a leading double underscore. For backward
compatibility, single-underscore versions of the rest of the keywords are supported.

END Microsoft Specific

Language Reference 5

C Language Reference

Identifiers
"Identifiers" or "symbols" are the names-),ou supply for variables, types, functions,
and labels in your program. Identifier names must differ in spelling and case from any
keywords. You cannot use keywords (either C or Microsoft) as identifiers; they are
reserved for special use. You create an identifier by specifying it in the declaration of a
variable, type, or function. In this example, res u 1 t is an identifier for an integer variable,
and rna in and pri ntf are identifier names for functions.

void rnain()
{

i nt result;

if (result 1= 0)
pri ntf("Bad fi 1 e handl e\n");

}

Once declared, you can use the identifier in later program statements to refer to the
associated value.

A special kind of identifier, called a statement label, can be used in goto statements.
(Declarations are described in Chapter 3, "Declarations and Types." Statement labels
are described in "The goto and Labeled Statements" in Chapter 5, "Statements.")

Syntax

identifier:
nondigit
identifier nondigit
identifier digit

nondigit : one of
_ abc de fg h ij kim no p q r stu v w x y z
ABC D EF GHIJ K LMN OP Q RS TUVWX Y Z

digit: one of
0123456789

The first character of an identifier name must be a nondigit (that is, the first character
must be an underscore or an uppercase or lowercase letter). ANSI allows six significant
characters in an external identifier's name and 31 for names of internal (within a function)
identifiers. External identifiers (ones declared at global scope or declared with storage
class extern) may be subject to additional naming restrictions because these identifiers
have to be processed by other software such as linkers.

6 Language Reference

Chapter 1 Elements of C

Microsoft Specific ~

Although ANSI allows 6 significant characters in external identifier names and 31 for
names of internal (within a function) identifiers, the Microsoft C compiler allows 247
characters in an internal or external identifier name. If you aren't concerned with ANSI
compatibility, you can modify this default to a smaller or larger number using the /H
(restrict length of external names) option.

END Microsoft Specific

The C compiler considers uppercase and lowercase letters to be distinct characters. This
feature, called "case sensitivity," enables you to create distinct identifiers that have the
same spelling but different cases for one or more of the letters. For example, each of the
following identifiers is unique:

add
ADD
Add
aDD

Microsoft Specific ~

Do not select names for identifiers that begin with two underscores or with an underscore
followed by an uppercase letter. The ANSI C standard allows identifier names that begin
with these character combinations to be reserved for compiler use. Identifiers with file
level scope should also not be named with an underscore and a lowercase letter as the
first two letters. Identifier names that begin with these characters are also reserved. By
convention, Microsoft uses an underscore and an uppercase letter to begin macro names
and double underscores for Microsoft-specific keyword names. To avoid any naming
conflicts, always select identifier names that do not begin with one or two underscores,
or names that begin with an underscore followed by an uppercase letter.

END Microsoft Specific

The following are examples of valid identifiers that conform to either ANSI or Microsoft
naming restrictions:

j

count
tempI
top_of_page
skipI2
LastNum

Language Reference 7

C Language Reference

Microsoft Specific ~

Although identifiers in source files are case sensitive by default, symbols in object files
are not. Microsoft C treats identifiers within a compilation unit as case sensitive.

The Microsoft linker is case sensitive. You must specify all identifiers consistently
according to case.

The "source character set" is the set of legal characters that can appear in source files.
For Microsoft C, the source set is the standard ASCII character set. The source character
set and execution character set include the ASCII characters used as escape sequences.
See "Character Constants," later in this chapter, for information about the execution
character set.

END Microsoft Specific

An identifier has "scope," which is the region of the program in which it is known, and
"linkage," which determines whether the same name in another scope refers to the same
identifier. These topics are explained in "Lifetime, Scope, Visibility, and Linkage" in
Chapter 2, "Program Structure."

Multibyte and Wide Characters
A multibyte character is a character composed of sequences of one or more bytes. Each
byte sequence represents a single character in the extended character set. Multibyte
characters are used in character sets such as Kanji.

Wide characters are multilingual character codes that are always 16 bits wide. The type for
character constants is char; for wide characters, the type is wchar_t. Since wide characters
are always a fixed size, using wide characters simplifies programming with international
character sets.

The wide-character-string literal L" hell 0" becomes an array of six integers of type
wchar_t.

{L'h', L'e', L'l', L'l', L'a', 0}

The Unicode specification is the specification for wide characters. The run-time library
routines for translating between multibyte and wide characters include mbstowcs,
mbtowc, wcstombs, and wctomb.

8 Language Reference

Chapter 1 Elements of C

Trigraphs
The source character set of C source programs is contained within the 7 -bit ASCII
character set but is a superset of the ISO 646-1983 Invariant Code Set. Trigraph
sequences allow C programs to be written using only the ISO (International Standards
Organization) Invariant Code Set. Trigraphs are sequences of three characters (introduced
by two consecutive question marks) that the compiler replaces with their corresponding
punctuation characters. You can use trigraphs in C source files with a character set that
does not contain convenient graphic representations for some punctuation characters.

Table 1.1 shows the nine trigraph sequences. All occurrences in a source file of the
punctuation characters in the first column are replaced with the corresponding character
in the second column.

Table 1.1 Trigraph Sequences

Trigraph Punctuation Character

??= #

??(

??I \

??)

??' A

??< {

??!

??> }

??-

A trigraph is always treated as a single source character. The translation of trigraphs takes
place in the first translation phase, before the recognition of escape characters in string
literals and character constants. Only the nine trigraphs shown in Table 1.1 are recognized.
All other character sequences are left untranslated.

The character escape sequence, \?, prevents the misinterpretation of trigraph-like character
sequences. (For information about escape sequences, see "Escape Sequences," later in this
chapter.) For example, if you attempt to print the string W hat??! with this printf statement

printf("What??! \n");

Language Reference 9

C Language Reference

the string printed is W hat I because ?? ! is a trigraph sequence that is replaced with the
I character. Write the statement as follows to correctly print the string:

printf("What?\?!\n");

In this printf statement, a backslash escape character in front of the second question mark
prevents the misinterpretation of ?? ! as a trigraph.

Constants
A "constant" is a number, character, or character string that can be used as a value in
a program. Use constants to represent floating-point, integer, enumeration, or character
values that cannot be modified.

Syntax

constant:
floating-point-constant
integer-constant
enumeration-constant
character-constant

Constants are characterized by having a value and a type. Floating-point, integer, and
character constants are discussed in the next three sections. Enumeration constants are
described in "Enumeration Declarations" in Chapter 3, "Declarations and Types."

Floating -Point Constants
A "floating-point constant" is a decimal number that represents a signed real number.
The representation of a signed real number includes an integer portion, a fractional portion,
and an exponent. Use floating-point constants to represent floating-point values that cannot
be changed.

Syntax

floating-point-constant :
fractional-constant exponent-part optfloating-suffix opt

digit-sequence exponent-part floating-suffix opt

fractional-constant:
digit-sequence opt. digit-sequence
digit-sequence.

exponent-part:
e sign opt digit-sequence
E sign opt digit-sequence

10 Language Reference

sign: one of
+-

digit-sequence:
digit
digit-sequence digit

floating-suffix: one of
flFL

You can omit either the digits before the decimal point (the integer portion of the value)

Chapter 1 Elements of C

or the digits after the decimal point (the fractional portion), but not both. You can leave out
the decimal point only if you include an exponent. No white-space characters can separate
the digits or characters of the constant.

The following examples illustrate some forms of floating-point constants and expressions:

15.75
1.575E1
1575e-2

/* 15.75 */
/* 15.75 */

-2.5e-3 /*
25E-4 /*

-0.0025 */
0.0025 */

Floating-point constants are positive unless they are preceded by a minus sign (-). In this
case, the minus sign is treated as a unary arithmetic negation operator. Floating-point
constants have type float, double, long, or long double.

A floating -point constant without an f, F, I, or L suffix has type double. If the letter f or F
is the suffix, the constant has type float. If suffixed by the letter I or L, it has type long
double. For example:

100L /* Has type long double */
100F /* Has type float */
1000 /* Has type double */

Note that the Microsoft C compiler maps long double to type double. See "Storage of
Basic Types" in Chapter 3, "Declarations and Types," for information about type double,
float, and long.

You can omit the integer portion of the floating-point constant, as shown in the following
examples. The number .75 can be expressed in many ways, including the following:

.0075e2
0.075e1
.075e1
75e-2

Language Reference 11

C Language Reference

Limits on Floating-Point Constants
Microsoft Specific ~

Limits on the values of floating-point constants are given in Table 1.2. The header file
FLOAT.H contains this information.

Table 1.2 Limits on Floating-Point Constants

Constant

FLT_DIG
DBL_DIG
LDBL_DIG

FLT_EPSILON
DBL_EPSILON
LDBL_EPSILON

FLT_GUARD

FLT_MANT_DIG
DBL_MANT_DIG
LDBL_MANT_DIG

FLT_MAX
DBL_MAX
LDBL_MAX

FLT_MAX_IO_EXP
DBL_MAX_IO_EXP
LDBL_MAX_IO_EXP

FLT_MAX_EXP
DBL_MAX_EXP
LDBL_MAX_EXP

12 Language Reference

Meaning

Number of digits, q, such that
a floating-point number with
q decimal digits can be
rounded into a floating-point
representation and back without
loss of precision.

Smallest positive number x,
such that x + 1.0 is not equal
to 1.0

Number of digits in the radix
specified by FLT_RADIX in
the floating-point significand.
The radix is 2; hence these
values specify bits.

Maximum representable
floating-point number.

Maximum integer such that
10 raised to that number is a
representable floating-point
number.

Maximum integer such that
FLT_RADIX raised to that
number is a representable
floating-point number.

Value

6
15
15

1.192092896e-07F
2.2204460492503131e-016
2.2204460492503131e-016

o
24
53
53

3.402823466e+38F
1.797693134862315 8e+ 308
1.7976931348623158e+308

38
308
308

128
1024
1024

Chapter 1 Elements of C

Table 1.2 Limits on Floating-Point Constants (continued)

Constant Meaning Value

FLT_MIN
DBL_MIN
LDBL_MIN

Minimum positive value. 1.175494351e-38F
2.2250738585072014e-308
2.2250738585072014e-308

FLT_MIN_IO_EXP
DBL_MIN_IO_EXP
LDBL_MIN_IO_EXP

FLT_MIN_EXP
DBL_MIN_EXP
LDBL_MIN_EXP

FLT_NORMALIZE

FLT_RADIX
_DBL_RADIX
_LDBL_RADIX

FLT_ROUNDS
_DBL_ROUNDS
_LDBL_ROUNDS

Minimum negative integer such
that 10 raised to that number is
a representable floating-point
number.

-37
-307
-307

Minimum negative integer such -125
that FLT_RADIX raised to that -1021
number is a representable -1021
floating-point number.

Radix of exponent
representation.

Rounding mode for floating
point addition.

o
2
2
2

1 (near)
1 (near)
1 (near)

Note that the information in Table 1.2 may differ in future implementations.

END Microsoft Specific

Integer Constants
An "integer constant" is a decimal (base 10), octal.(base 8), or hexadecimal (base 16)
number that represents an integral value. Use integer constants to represent integer values
that cannot be changed.

Syntax

integer-constant:
decimal-constant integer-suffix opt

octal-constant integer-suffix opt

hexadecimal-constant integer-suffix opt

decimal-constant:
nonzero-digit
decimal-constant digit

Language Reference 13

C Language Reference

octal-constant:
o
octal-constant octal-digit

hexadecimal-constant:
Ox hexadecimal-digit
OX hexadecimal-digit
hexadecimal-constant hexadecimal-digit

nonzero-digit: one of
123456789

octal-digit: one of
01234567

hexadecimal-digit: one of
0123456789
abcdef
ABCDEF

integer-suffix:
unsigned-suffix long-suffix opt

long-suffix unsigned-suffix opt

unsigned-suffix: one of
uU

long-suffix: one of
lL

64-bit integer-suffix:
i64

Integer constants are positive unless they are preceded by a minus sign (-). The minus sign
is interpreted as the unary arithmetic negation operator. (See "Unary Arithmetic Operators"
in Chapter 4, "Expressions and Assignments," for information about this operator.)

If an integer constant begins with the letters Ox or OX, it is hexadecimal. If it begins with
the digit 0, it is octal. Otherwise, it is assumed to be decimal.

The following lines are equivalent:

0x1C /* = Hexadecimal representation for decimal 28 */
034 /* = Octal representation for decimal 28 */

No white-space characters can separate the digits of an integer constant. These examples
show valid decimal, octal, and hexadecimal constants.

/* Decimal Constants */
10
132
32179

14 Language Reference

/* Octal Constants */
012
0204
076663

/* Hexadecimal Constants */
0xa or 0xA
0x84
0x7dB3 or 0X7DB3

Integer Types
Every integer constant is given a type based on its value and the way it is expressed.
You can force any integer constant to type long by appending the letter I or L to the end
of the constant; you can force it to be type unsigned by appending u or U to the value.
The lowercase letter I can be confused with the digit 1 and should be avoided. Some
forms of long integer constants follow:

/* Long decimal constants */
10L
79L

/* Long octal constants */
012L
0115L

/* Long hexadecimal constants */
0xaL or 0xAL
0X4fL or 0x4FL

/* Unsigned long decimal constant */
776745UL
778866LU

The type you assign to a constant depends on the value the constant represents. A
constant's value must be in the range of representable values for its type. A constant's
type determines which conversions are performed when the constant is used in an
expression or when the minus sign (-) is applied. This list summarizes the conversion
rules for integer constants.

Chapter 1 Elements of C

• The type for a decimal constant without a suffix is either int, long int, or unsigned
long int. The first of these three types in which the constant's value can be represented
is the type assigned to the constant.

• The type assigned to octal and hexadecimal constants without suffixes is int,
unsigned int, long int, or unsigned long int depending on the size of the constant.

Language Reference 15

C Language Reference

• The type assigned to constants with a u or U suffix is unsigned int or unsigned long
int depending on their size.

• The type assigned to constants with an I or L suffix is long int or unsigned long int
depending on their size.

• The type assigned to constants with a u or U and an I or L suffix is unsigned long into

Integer Limits
Microsoft Specific ~

The limits for integer types are listed in Table 1.3. These limits are defined in the standard
header file LIMITS.H. Microsoft C also permits the declaration of sized integer variables,
which are integral types of size 8-, 16-, or 32-bits. For more information on sized integers,
see "Sized Integer Types" in Chapter 3, "Declarations and Types."

Table 1.3 Limits on Integer Constants

Constant Meaning Value

CHAR_BIT Number of bits in the smallest 8
variable that is not a bit field.

SCHAR_MIN Minimum value for a variable of -128
type signed char.

SCHAR_MAX Maximum value for a variable of 127
type signed char.

UCHAR_MAX Maximum value for a variable of 255 (Oxff)
type unsigned char.

CHAR_MIN Minimum value for a variable of -128; 0 if /J option used
type char.

CHAR_MAX Maximum value for a variable of 127; 255 if /J option used
type char.

MB_LEN_MAX Maximum number of bytes in a 2
multicharacter constant.

SHRT_MIN Minimum value for a variable of -32768
type short.

SHRT_MAX Maximum value for a variable of 32767
type short.

USHRT_MAX Maximum value for a variable of 65535 (Oxffff)
type unsigned short.

16 Language Reference

Chapter 1 Elements of C

Table 1.3 Limits on Integer Constants (continued)

Constant Meaning Value

INT_MIN Minimum value for a variable of type into -2147483647-1

INT_MAX Maximum value for a variable of type int. 2147483647

UINT_MAX Maximum value for a variable of type 4294967295 (OxfffffffD
unsigned int.

LONG_MIN Minimum value for a variable of type -2147483647-1
long.

LONG_MAX Maximum value for a variable of type 2147483647
long.

ULONG_MAX Maximum value for a variable of type 4294967295 (OxfffffffD
unsigned long.

If a value exceeds the largest integer representation, the Microsoft compiler generates an
error.

END Microsoft Specific

Character Constants
A "character constant" is formed by enclosing a single character from the representable
character set within single quotation marks (' '). Character constants are used to represent
characters in the execution character set.

Syntax

character-constant:
'c-char-sequence'
L' c-char-sequence'

c-char-sequence :
c-char
c-char-sequence c-char

c-char:
Any member of the source character set except the single quotation mark ('), backslash
(\), or newline character
escape-sequence

Language Reference 17

C Language Reference

escape-sequence :
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence

simple-escape-sequence : one of
\a \b \f\n \r \t \v
\' \" \\ \?

octal-escape-sequence :
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence :
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

Character Types
An integer character constant not preceded by the letter L has type into The value of
an integer character constant containing a single character is the numerical value of the
character interpreted as an integer. For example, the numerical value of the character a
is 97 in decimal and 61 in hexadecimal.

Syntactically, a "wide-character constant" is a character constant prefixed by the letter L.
A wide-character constant has type wchar_t, an integer type defined in the STDDEF.H
header file. For example:

char schar 'x' ; /* A character constant */
wchar_t wchar = L'x'; /* A wide-character constant for

the same character */

Wide-character constants are 16 bits wide and specify members of the extended execution
character set. They allow you to express characters in alphabets that are too large to be
represented by type char. See "Multibyte and Wide Characters," earlier in this chapter,
for more information about wide characters.

Execution Character Set
This book often refers to the "execution character set." The execution character set is
not necessarily the same as the source character set used for writing C programs. The
execution character set includes all characters in the source character set as well as'the
null character, newline character, backspace, horizontal tab, vertical tab, carriage return,
and escape sequences. The source and execution character sets may differ in other
implementations.

18 Language Reference

Chapter 1 Elements of C

Escape Sequences
Character combinations consisting of a backslash (\) followed by a letter or by a
combination of digits are called "escape sequences." To represent a newline character,
single quotation mark, or certain other characters in a character constant, you must use
escape sequences. An escape sequence is regarded as a single character and is therefore
valid as a character constant.
Escape sequences are typically used to specify actions such as carriage returns and tab
movements on terminals and printers. They are also used to provide literal representations
of nonprinting characters and characters that usually have special meanings, such as the
double quotation mark ("). Table 1.4 lists the ANSI escape sequences and what they
represent.

Note that the question mark preceded by a backslash (\?) specifies a literal question mark
in cases where the character sequence would be misinterpreted as a trigraph. See
"Trigraphs," earlier in this chapter, for more information.

Table 1.4 Escape Sequences

Escape Sequence

\a

\b

\f

\n

\r

\t

\v

\'

\"

\\

\?

\000

\xhhh

Microsoft Specific ~

Represents

Bell (alert)

Backspace

Formfeed

New line

Carriage return

Horizontal tab

Vertical tab

Single quotation mark

Double quotation mark

Backslash

Literal question mark

ASCII character in octal notation

ASCII character in hexadecimal notation

If a backslash precedes a character that does not appear in Table 1.4, the compiler handles
the undefined character as the character itself. For example, \x is treated as an x.

Language Reference 19

C Language Reference

END Microsoft Specific

Escape sequences allow you to send nongraphic control characters to a display device. For
example, the ESC character (\033) is often used as the first character of a control command
for a terminal or printer. Some escape sequences are device-specific. For instance, the
vertical-tab and formfeed escape sequences (\v and \f) do not affect screen output, but they
do perform appropriate printer operations.

You can also use the backslash (\) as a continuation character. When a newline character
(equivalent to pressing the RETURN key) immediately follows the backslash, the compiler
ignores the backslash and the new line character and treats the next line as part of the
previous line. This is useful primarily for preprocessor definitions longer than a single line.
For example:

#define assert(exp) \
((exp) ? (void) 0:_assed;(#exp. __ FILE __ • LI NE __))

Octal and Hexadecimal Character Specifications
The sequence \000 means you can specify any character in the ASCII character set as a
three-digit octal character code. The numerical value of th~ octal integer specifies the value
of the desired character or wide character.

Similarly, the sequence \xhhh allows you to specify any ASCII character as a hexadecimal
character code. For example, you can give the ASCII backspace character as the normal
C escape sequence (\b), or you can code it as \010 (octal) or \X008 (hexadecimal).

You can use only the digits 0 through 7 in an octal escape sequence. Octal escape
sequences can never be longer than three digits and are terminated by the first character
that is not an octal digit. Although you do not need to use all three digits, you must use at
least one. For example, the octal representation is \10 for the ASCII backspace character
and \101 for the letter A, as given in an ASCII chart.

Similarly, you must use at least one digit for a hexadecimal escape sequence, but you can
omit the second and third digits. Therefore you could specify the hexadecimal escape
sequence for the backspace character as either \x8, \x08, or \x008.

The value of the octal or hexadecimal escape sequence must be in the range of
representable values for type unsigned char for a character constant and type wchar_t for
a wide-character constant. See "Multibyte and Wide Characters," earlier in this chapter,
for information on wide-character constants.

Unlike octal escape constants, the number of hexadecimal digits in an escape sequence
is unlimited. A hexadecimal escape sequence terminates at the first character that is not
a hexadecimal digit. Because hexadecimal digits include the letters a through f, care must
be exercised to make sure the escape sequence terminates at the intended digit. To avoid
confusion, you can place octal or hexadecimal character definitions in a macro definition:

#defi ne Bell • \x07'

20 Language Reference

For hexadecimal values, you can break the string to show the correct value clearly:

"\xabc" 1* one character *1
"\xab" "c" 1* two characters *1

String Literals

Chapter 1 Elements of C

A "string literal" is a sequence of characters from the source character set enclosed in
double quotation marks (" tI). String literals are used to represent a sequence of characters
which, taken together, form a null-terminated string. You must always prefix wide-string
literals with the letter L.

Syntax

string-literal:
"s-char-sequence opt"

L" s-char-sequence opt"

s-char-sequence :
s-char
s-char-sequence s-char

s-char:
any member of the source character set except the double quotation mark ("), backslash
(\), or newline character
escape-sequence

The example below is a simple string literal:

char amessage = "This is a string literal.";

All escape codes listed in Table 1.4 are valid in string literals. To represent a double
quotation mark in a string literal, use the escape sequence \tI. The single quotation mark (')
can be represented without an escape sequence. The backslash (\) must be followed with a
second backslash (\\) when it appears within a string. When a backslash appears at the end
of a line, it is always interpreted as a line-continuation character.

Type for String Literals
String literals have type array of char (that is, char[D. (Wide-character strings have type
array of wchar_t (that is, wcbar_t[]).) This means that a string is an array with elements
of type char. The number of elements in the array is equal to the number of characters in
the string plus one for the terminating null character.

Language Reference 21

C Language Reference

Storage of String Literals
The characters of a literal string are stored in order at contiguous memory locations.
An escape sequence (such as \\ or \") within a string literal counts as a single character.
A null character (represented by the \0 escape sequence) is automatically appended to, and
marks the end of, each string literal. (This occurs during translation phase 7.) Note that the
compiler may not store two identical strings at two different addresses. The IOf (Eliminate
Duplicate Strings) compiler option forces the compiler to place a single copy of identical
strings into the executable file.

Microsoft Specific ~

Strings have static storage duration. See "Storage Classes" in Chapter 3, "Declarations and
Types," for information about storage duration.

END Microsoft Specific

String Literal Concatenation
To form string literals that take up more than one line, you can concatenate the two
strings. To do this, type a backslash, then press the RETURN key. The backslash causes
the compiler to ignore the following newline character. For example, the string literal

"long strings can be bro\
ken into two or more pieces."

is identical to the string

"Long strings can be broken into two or more pieces."

String concatenation can be used anywhere you might previously have used a backslash
followed by a newline character to enter strings longer than one line.

To force a new line within a string literal, enter the newline escape sequence (\0) at the
point in the string where you want the line broken, as follows:

"Enter a number between 1 and 100\nOr press Return"

Because strings can start in any column of the source code and long strings can be
continued in any column of a succeeding line, you can position strings to enhance source
code readability. In either case, their on-screen representation when output is unaffected.
For example:

printf ("This is the first half of the string, "
"this is the second half") ;

22 Language Reference

As long as each part of the string is enclosed in double quotation marks, the parts are
concatenated and output as a single string. This concatenation occurs according to the
sequence of events during compilation specified by translation phases.

"This is the first half of the string, this is the second half"

A string pointer, initialized as two distinct string literals separated only by white space,
is stored as a single string (pointers are discussed in "Pointer Declarations" in Chapter 3,
"Declarations and Types"). When properly referenced, as in the following example, the
result is identical to the previous example:

char *string = "This is the first half of the string, "
"this is the second half";

printf("Is" , string) ;

In translation phase 6, the multibyte-character sequences specified by any sequence
of adjacent string literals or adjacent wide-string literals are concatenated into a single
multibyte-character sequence. Therefore, do not design programs to allow modification
of string literals during execution. The ANSI C standard specifies that the result of
modifying a string is undefined.

Maximum String Length
Microsoft Specific ~

ANSI compatibility requires a compiler to accept up to 509 characters in a string literal
after concatenation. The maximum length of a string literal allowed in Microsoft C is
approximately 2,048 bytes. However, if the string literal consists of parts enclosed in
double quotation marks, the preprocessor concatenates the parts into a single string,
and for each line concatenated, it adds an extra byte to the total number of bytes.

Chapter 1 Elements of C

For example, suppose a string consists of 40 lines with 50 characters per line (2,000
characters), and one line with 7 characters, and each line is surrounded by double quotation
marks. This adds up to 2,007 bytes plus one byte for the terminating null character, for
a total of 2,008 bytes. On concatenation, an extra character is added for each of the first
40 lines. This makes a total of 2,048 bytes. Note, however, that if line continuations (\) are
used instead of double quotation marks, the preprocessor does not add an extra character
for each line.

END Microsoft Specific

Language Reference 23

C Language Reference

Punctuation and Special Characters
The punctuation and special characters in the C character set have various uses, from
organizing program text to defining the tasks that the compiler or the compiled program
carries out. They do not specify an operation to be performed. Some punctuation symbols
are also operators (see "Operators" in Chapter 4, "Expressions and Assignments"). The
compiler determines their use from context.

Syntax

punctuator: one of
[] () {} * , : = ; ... #

These characters have special meanings in C. Their uses are described throughout this
book. The pound sign (#) can occur only in preprocessing directives.

24 Language Reference

CHAPTER 2

Program Struct~re

This chapter gives an overview of C programs and program execution. Terms and
features important to understanding C programs and components are also introduced.
Topics discussed include:

• Source files and source programs

• The main function and program execution

• Parsing command-line arguments

• Lifetime, scope, visibility, and linkage

• N arne spaces

Because this chapter is an overview, the topics discussed contain introductory material
only. See the cross-referenced information for more detailed explanations.

Source Files and Source Programs
A source program can be divided into one or more "source files," or "translation units."
The input to the compiler is called a "translation unit."

Syntax

translation-unit:
external-declaration
translation-unit external-declaration

external-declaration:
function-definition
declaration

"Overview of Declarations" in Chapter 3, "Declarations and Types," gives the syntax for
the declaration nonterminal, and the Preprocessor Reference, later in this volume, explains
how the translation unit is processed.

Note See the introduction to Appendix A, "C Lapguage Syntax Summary," later in
this volume, for an explanation of the ANSI syntax conventions.

The components of a translation unit are external declarations mat include function
definitions and identifier declarations. These declarations and definitions can be in source
files, header files, libraries, and other files the program needs. You must compile each
translation unit and link the resulting object files to make a program.

Language Reference 25

C Language Reference

A C "source program" is a collection of directives , pragmas, declarations, definitions,
statement blocks, and functions. To be valid components of a Microsoft C program, each
must have the syntax described in this book, although they can appear in any order in the
program (subject to the rules outlined throughout this book). However, the location of
th'ese components in a program does affect how variables and functions can be used in a
program. (See "Lifetime, Scope, Visibility, and Linkage," later in this chapter, for more
information.)

Source files need not contain executable statements. For example, you may find it useful
to place definitions of variables in one source file and then declare references to these
variables in other source files that use them. This technique makes the definitions easy
to find and update when necessary. For the same reason, constants and macros are often
organized into separate files called "include files" or "header files" that can be referenced
in source files as required. See the Preprocessor Reference, later in this volume, for
information about macros and include files.

Directives to the Preprocessor
A "directive" instructs the C preprocessor to perform a specific action on the text of
the program before compilation. Preprocessor directives are fully described in the
Preprocessor Reference, later in this volume. This example uses the preprocessor
directive #define:

f/define MAX 100

This statement tells the compiler to replace each occurrence of MAX by 100 before
compilation. The C compiler preprocessor directives are:

#define

#elif

#else

Pragmas

#endif

#error

#if

Microsoft Specific ~

#ifdef

#ifndef

#include

#line

#pragma

#Undef

A "pragma" instructs the compiler to perform a particular action at compile time. Pragmas
vary from compiler to compiler. For example, you can use the optimize pragma to set the
optimizations to be performed on your program. The Microsoft C pragmas are:

alloc_text data_seg inline_recursion setlocale

auto_inline function intrinsic warning

check_stack hdrstop message

code_seg include_alias optimize

comment inline_depth pack

26 Language Reference

Chapter 2 Program Structure

See Chapter 2, "Pragma Directives," in the Preprocessor Reference, later in this volume,
for a description of the Microsoft C compiler pragmas.

END Microsoft Specific

Declarations and Definitions
A "declaration" establishes an association between a particular variable, function, or type
and its attributes. "Overview of Declarations',' in Chapter 3, "Declarations and Types,"
gives the ANSI syntax for the declaration nonterminal. A declaration also specifies where
and when an identifier can be accessed (the "linkage" of an identifier). See "Lifetime,
Scope, Visibility, and Linkage," later in this chapter, for information about linkage.

A "definition" of a variable establishes the same associations as a declaration but also
causes storage to be allocated for the variable.

For example, the rna in, fi nd, and count functions and the va r and va 1 variables are
defined in one source file, in this order:

void rnain()
{
}

int var = 0;
double val[MAXVAL];

char find(fileptr)
{
}

int count(double f)
{
}

The variables var and va 1 can be used in the fi nd and count functions; no further
declarations are needed. But these names are not visible (cannot be accessed) in rna in.

Function Declarations and Definitions
Function prototypes establish the name of the function, its return type, and the type and
number of its formal parameters. A function definition includes the function body.

Both function and variable declarations can appear inside or outside a function definition.
Any declaration within a function definition is said to appear at the "internal" or "local"
level. A declaration outside all function definitions is said to appear at the "external,"
"global," or "file scope" level. Variable definitions, like declarations, can appear at the
internal level (within a function definition) or at the external level (outside all function
definitions). Function definitions always occur at the external level. Function definitions
are discussed further in "Function Definitions" in Chapter 6, "Functions." Function
prototypes are covered in "Function Prototypes" in Chapter 6.

Language Reference 27

C Language Reference

Blocks.
A sequence of declarations, definitions, and statements enclosed within curly braces ({ })
is called a "block." There are two types of blocks in C. The "compound statement,"
a statement composed of one or more statements (see "The Compound Statement" in
Chapter 5, "Statements"), is one type of block. The other, the "function definition,"
consists of a compound statement (the body of the function) plus the function's associated
"header" (the function name, return type, and formal parameters). A block within other
blocks is said to be "nested."

Note that while all compound statements are enclosed within curly braces, not everything
enclosed within curly braces constitutes a compound statement. For example, although the
specifications of array, structure, or enumeration elements can appear within curly braces,
they are not compound statements.

Example Program
The following C source program consists of two source files. It gives an overview of some
of the various declarations and definitions possible in a C program. Later sections in this
book describe how to write these declarations, definitions, and initializations, and how to
use C keywords such as static and extern. The printf function is dec~ared in the C header
file STDIO.H.

The rna i n and max functions are assumed to be in separate files, and execution of the
program begins with the mai n function. No explicit user functions are executed
before mai n.

/***
FILEl.C - main function

***/

#define ONE 1
#define TWO 2
#define THREE 3
#include <stdio.h>

int a 1 ; /* Defining declarations */
int b 2; /* of external variables */

extern int max(int a, int b) ; /* Function prototype */

int maine) /* Function definition */
{ /* for main function */

int c; /* Definitions for */
int d; /* two uninitialized */

/* 1 oca 1 variables */

28 Language Reference

}

extern int u;

static int v;

/* Referencing declaration
/* of external variable
/* defined elsewhere
/* Definition of variable
/* with continuous lifetime

int w = ONE, x = TWO, y THREE;
int z = 0;
z = max(x, Y);
w = max(z, w);
printf("%d %d\n", z, w);
return 0;

/* Executable statements

*/
*/
*/
*/
*/

*/

/**
FILE2.C - definition of max function

**/

int max(int a, int b)

}

if(a > b)
return(a);

else
return(b);

/* Note formal parameters are */
/* included in function header */

Chapter 2 Program Structure

FILEl.C contains the prototype for the max function. This kind of declaration is sometimes
called a "forward declaration" because the function is declared before it is used. The
definition for the ma in function includes calls to max.

The lines beginning with t/defi ne are preprocessor directives. These directives tell the
preprocessor to replace the identifiers ONE, TWO, and THREE with the numbers 1, 2, and 3,
respectively, throughout FILEl.C. However, the directives do not apply to FILE2.C, which
is compiled separately and then linked with FILEl.C. The line beginning with iti ncl ude
tells the compiler to include the file STDIO.H, which contains the prototype for the printf
function. Preprocessor directives are explained in the Preprocessor Reference, later in this
volume.

FILEl.C uses defining declarations to initialize the global variables a and b. The local
variables c and d are declared but not initialized. Storage is allocated for all these variables.
The static and external variables, u and v, are automatically initialized to O. Therefore only
a, b, u, and v contain meaningful values when declared because they are initialized, either
explicitly or implicitly. FILE2.C contains the function definition for max. This definition
satisfies the calls to max in FILEl.C.

The lifetime and visibility of identifiers are discussed in "Lifetime, Scope, Visibility,
and Linkage" later in this chapter. For more information on functions, see Chapter 6,
"Functions. "

Language Reference 29

C Language Reference

The main Function and
Program Execution

Every C program has a primary (main) function that must be named main. If your code
adheres to the Unicode programming model, you can use the wide-character version of
main, wmain. The main function serves as the starting point for program execution. It
usually controls program execution by directing the calls to other functions in the program.
A program usually stops executing at the end of main, although it can terminate at other
points in the program for a variety of reasons. At times, perhaps when a certain error is
detected, you may want to force the termination of a program. To do so, use the exit
function. See the Microsoft Visual C++ 6.0 Run-Time Library Reference, a volume of the
Microsoft Visual C++ 6.0 Reference Library, for information on and an example using
the exit function.

Functions within the source program perform one or more specific tasks. The main
function can call these functions to perform their respective tasks. When main calls
another function, it passes execution control to the function, so that execution begins
at the first statement in the function. A function returns control to main when a return
statement is executed or when the end of the function is reached.

You can declare any function, including main, to have parameters. The term "parameter"
or "formal parameter" refers to the identifier that receives a value passed to a function.
See "Parameters" in Chapter 6, "Functions," for information on passing arguments to
parameters. When one function calls another, the called function receives values for its
parameters from the calling function. These values are called "arguments." You can
declare formal parameters to main so that it can receive arguments from the command line
using this format:

main(int argc, char *argv[], char *env.p[])

When you want to pass information to the main function, the parameters are traditionally
named argc and argv, although the C compiler does not require these names. The types for
argc and argv are defined by the C language. Traditionally, if a third parameter is passed to
main, that parameter is named envp. Examples later in this chapter show how to use these
three parameters to access command-line arguments. The following sections explain these
parameters.

See the next section, "Using wmain" for a description of the wide-character version
of main.

30 Language Reference

Chapter 2 Program Structure

Using wmain
Microsoft Specific ~

In the Unicode programming model, you can define a wide-character version of the main
function. Use wmain instead of main if you want to write portable code that adheres to the
Unicode programming model.

You declare formal parameters to wmain using a similar format to main. You can then
pass wide-character arguments and, optionally, a wide-character environment pointer to the
program. The argv and envp parameters to wmain are of type wchar_t*. For example:

wmain(int argc, wchar_t *argv[], wchar_t *envp[])

If your program uses a main function, the multibyte-character environment is created
by the run-time library at program startup. A wide-character copy of the environment is
created only when needed (for example, by a call to the _ wgetenv or _ wputenv functions).
On the first call to _wputenv, or on the first call to _wgetenv if an MBCS environment
already exists, a corresponding wide-character string environment is created and is then
pointed to by the _ wenviron global variable, which is a wide-character version of the
_environ global variable. At this point, two copies of the environment (MBCS and
Unicode) exist simultaneously and are maintained by the operating system throughout
the life of the program.

Similarly, if your program uses a wmain function, a wide-character environment is created
at program startup and is pointed to by the _ wenviron global variable. An MBCS (ASCII)
environment is created on the first call to _putenv or getenv, and is pointed to by the
_environ global variable.

For more information on the MBCS environment, see "Internationalization" in the
Microsoft Visual C++ 6.0 Run-Time Library Reference volume of the Microsoft
Visual C++ Reference Library.

END Microsoft Specific

Argument Description
The argc parameter in the main and wmain functions is an integer specifying how
many arguments are passed to the program from the command line. Since the program
name is considered an argument, the value of argc is at least one.

The argv parameter is an array of pointers to null-terminated strings representing the
program arguments. Each element of the array points to a string representation of an
argument passed to main (or wmain). (For information about arrays, see "Array
Declarations" in Chapter 3, "Declarations and Types.") The argv parameter can be
declared either as an array of pointers to type char (c h a r * a r 9 v []) or as a pointer to
pointers to type char (cha r **a rgv). For wmain, the argv parameter can be declared

Language Reference 31

C Language Reference

either as an array of pointers to type wchar_t (wcha r _t *a rgv [J) or as a pointer to
pointers to type wchar_t (wchar _t **argv). The first string (argv[0J) is the program
name. The last pointer (argv[argcJ) is NULL. (See "getenv" in the Microsoft
Visual C++ 6.0 Run-Time Library Reference for an alternative method for getting
environment variable information.)

Microsoft Specific ~

The envp parameter is a pointer to an array of null-terminated strings that represent the
values set in the user's environment variables. The envp parameter can be declared as
an array of pointers to char (c h a r *en v p [J) or as a pointer to pointers to char (c h a r

**envp). In a wmain function, the envp parameter can be declared as an array of pointers
to wchar_t (wcha r _t *envp[J) or as a pointer to pointers to wchar_t (wcha r _t **envp).

The end of the array is indicated by a NULL *pointer. Note that the environment
block passed to main or wmain is a "frozen" copy of the current environment. If you
subsequently change the environment via a call to _putenv or _ wputenv, the current
environment (as returned by getenv/_wgetenv and the _environ or _wenviron variables)
will change, but the block pointed to by envp will not change. The envp parameter is
ANSI compatible in C, but not in c++.

END Microsoft Specific

Expanding Wildcard Arguments
Microsoft Specific ~

When running a C program, you can use either of the two wildcards - the question mark
(?) and the asterisk (*) - to specify filename and path arguments on the command line.

Command-line arguments are handled by a routine called _setargv (or _wsetargv in the
wide-character environment), which by default does not expand wildcards into separate
strings in the argv string array. You can replace the normal_setargv routine with a more
powerful version of _setargv that does handle wildcards by linking with the Setargv.obj
file. If your program uses a wmain function, link with Wsetargv.obj.

To link with Setargv.obj or Wsetargv.obj, use the /link option. For example:

cl typeit.c /link setargv.obj

The wildcards are expanded in the same manner as operating system commands. (See
your operating system user's guide if you are unfamiliar with wildcards.) Enclosing an
argument in double quotation marks (" If) suppresses the wildcard expansion. Within
quoted arguments, you can represent quotation marks literally by preceding the double
quotation-mark character with a backslash (\). If no matches are found for the wildcard
argument, the argument is passed literally.

END Microsoft Specific

32 Language Reference

Chapter 2 Program Structure

Parsing Command-Line Arguments
Microsoft Specific ~

Microsoft C startup code uses the following rules when interpreting arguments given on
the operating system command line:

• Arguments are delimited by white space, which is either a space or a tab.

• A string surrounded by double quotation marks is interpreted as a single argument,
regardless of white space contained within. A quoted string can be embedded in an
argument. Note that the caret (I\.) is not recognized as an escape character or delimiter.

• A double quotation mark preceded by a backslash, \", is interpreted as a literal double
quotation mark (").

• Backslashes are interpreted literally, unless they immediately precede a double
quotation mark.

• If an even number of backslashes is followed by a double quotation mark, then one
backslash (\) is placed in the argv array for every pair of backslashes (\\), and the
double quotation mark (") is interpreted as a string delimiter.

• If an odd number of backslashes is followed by a double quotation mark, then one
backslash (\) is placed in the argv array for every pair of backslashes (\\) and the double
quotation mark is interpreted as an escape sequence by the remaining backslash,
causing a literal double quotation mark (") to be placed in argv.

This list illustrates the rules above by showing the interpreted result passed to a rgv for
several examples of command-line arguments. The output listed in the second, third, and
fourth columns is from the ARGS.C program that follows the list.

Command-Line Input argv[1] argv[2] argv[3]

"a b c" d e abc d e

"ab\"c" "\\" d ab"c \ d

a\\ \b d"e f"g h a\\ \b de fg h

a\\\"b c d a\"b c d

a\\\\"b c" d e a\\b c d e

1* ARGS.C illustrates the following variables used for accessing
* command-line arguments and environment variables:
* argc argv envp
*/

Language Reference 33

C Language Reference

#include <stdio.h>

void maine int argc,
char *argv[],
char **envp)

/* Number of strings in array argv */
/* Array of command-line argument strings */
/* Array of environment variable strings *(

{

}

int count;

/* Display each command-line argument. */
printf("\nCommand-line arguments:\n");
fore count = 0; count < argc; count++)

printf(" argv[%d] %s\n", count, argv[count]);

/* Display each environment variable. */
printf("\nEnvironment variables:\n");
while(*envp != NULL)

P r i n t f (" % s \ n", * (en v p++));

return;

One example of output from this program is:

Command-line arguments:
argv[0] C:\MSC\TEST.EXE

Environment variables:
COMSPEC=C:\NT\SYSTEM32\CMD.EXE

PATH=c:\nt;c:\binb;c:\binr;c:\nt\system32;c:\word;c:\help;c:\msc;c:\;
PROMPT=[$p]
TEMP=c:\tmp
TMP=c:\tmp
EDITORS=c:\binr
WINDIR=c:\nt

END Microsoft Specific

Customizing Command-Line Processing
If your program does not take command-line arguments, you can save a small amount of
space by suppressing use of the library routine that performs command-line processing.
This routine is called _setargv (or _wsetargv in the wide-character environment), as
described in "Expanding Wildcard Arguments," earlier in this chapter. To suppress its
use, define a routine that does nothing in the file containing the main function and name
it _setargv (or _ wsetargv in the wide-character environment). The call to _setargv or
_ wsetargv is then satisfied by your definition of _setargv or _ wsetargv , and the library
version is not loaded.

34 Language Reference

Chapter 2 Program Structure

Similarly, if you never access the environment table through the envp argument, you can
provide your own empty routine to be used in place of _setenvp (or _ wsetenvp), the
environment-processing routine.

If your program makes calls to the _spawn or _exec family of routines in the C run-time
library, you should not suppress the environment-processing routine, since this routine is
used to pass an environment from the spawning process to the new process.

Lifetime, Scope, Visibility,
and Linkage

To understand how a C program works, you must understand the rules that determine
how variables and functions can be used in the program. Several concepts are crucial
to understanding these rules:

• Lifetime

• Scope and visibility

• Linkage

Lifetime
"Lifetime" is the period during execution of a program in which a variable or function
exists. The storage duration of the identifier determines its lifetime.

An identifier declared with the storage-class-specifier static has static storage duration.
Identifiers with static storage duration (also called "global") have storage and a defined
value for the duration of a program. Storage is reserved and the identifier's stored value
is initialized only once, before program startup. An identifier declared with external or
intemallinkage also has static storage duration (see "Linkage," later in this chapter).

An identifier declared without the static storage-class specifier has automatic storage
duration if it is declared inside a function. An identifier with automatic storage duration
(a "local identifier") has storage and a defined value only within the block where the
identifier is defined or declared. An automatic identifier is allocated new storage each time
the program enters that block, and it loses its storage (and its value) when the program
exits the block. Identifiers declared in a function with no linkage also have automatic
storage duration.

Language Reference 35

C Language Reference

The following rules specify whether an identifier has global (static) or local (automatic)
lifetime:

• All functions have static lifetime. Therefore they exist at all times during program
execution. Identifiers declared at the external level (that is, outside all blocks in the
program at the same level of function definitions) always have global (static) lifetimes.

• If a local variable has an initializer, the variable is initialized each time it is created
(unless it is declared as static). Function parameters also have local lifetime. You
can specify global lifetime for an identifier within a block by including the static
storage-class specifier in its declaration. Once declared static, the variable retains
its value from one entry of the block to the next.

Although an identifier with a global lifetime exists throughout the execution of the source
program (for example, an externally declared variable or a local variable declared with
the static keyword), it may not be visible in all parts of the program. See "Scope and
Visibility" for information about visibility, and see "Storage Classes" in Chapter 3,
"Declarations and Types," for a discussion of the storage-class-specifier nonterminal.

Memory can be allocated as needed (dynamic) if created through the use of special library
routines such as malloc. Since dynamic memory allocation uses library routines, it is not
considered part of the language. See the malloc function in the Microsoft Visual C++ 6.0
Run-Time Library Reference.

Scope and Visibility
An identifier's "visibility" determines the portions of the program in which it can be
referenced - its "scope." An identifier is visible (i.e., can be used) only in portions of
a program encompassed by its "scope," which may be limited (in order of increasing
restrictiveness) to the file, function, block, or function prototype in which it appears.
The scope of an identifier is the part of the program in which the name can be used.
This is sometimes called "lexical scope." There are four kinds of scope: function, file,
block, and function prototype.

All identifiers except labels have their scope determined by the level at which the
declaration occurs. The following rules for each kind of scope govern the visibility of
identifiers within a program:

File scope
The declarator or type specifier for an identifier with file scope appears outside any
block or list of parameters and is accessible from any place in the translation unit after
its declaration. Identifier names with file scope are often called "global" or "external."
The scope of a global identifier begins at the point of its definition or declaration and
terminates at the end of the translation unit.

Function scope
A label is the only kind of identifier that has function scope. A label is declared
implicitly by its use in a statement. Label names must be unique within a function.
(For more information about labels and label names, see "The goto and Labeled
Statements" in Chapter 5, "Statements.")

36 Language Reference

Chapter 2 Program Structure

Block scope
The declarator or type specifier for an identifier with block scope appears inside
a block or within the list of formal parameter declarations in a function definition.
It is visible only from the point of its declaration or definition to the end of the block
containing its declaration or definition. Its scope is limited to that block and to any
blocks nested in that block and ends at the curly brace that closes the associated block.
Such identifiers are sometimes called "local variables."

Function-prototype scope
The declarator or type specifier for an identifier with function-prototype scope
appears within the list of parameter declarations in a function prototype (not part of
the function declaration). Its scope terminates at the end of the function declarator.

The appropriate declarations for making variables visible in other source files are described
in "Storage Classes" in Chapter 3, "Declarations and Types." However, variables and
functions declared at the external level with the static storage-class specifier are visible
only within the source file in which they are defined. All other functions are globally
visible.

Summary of Lifetime and Visibility
Table 2.1 is a summary of lifetime and visibility characteristics for most identifiers. The
first three columns give the attributes that define lifetime and visibility. An identifier with
the attributes given by the first three columns has the lifetime and visibility shown in.the
fourth and fifth columns. However, the table does not cover all possible cases. Refer to
"Storage Classes" in Chapter 3, "Declarations and Types," for more information.

Table 2.1 Summary of Lifetime and Visibility

Attributes:

Storage-Class
Level Item Specifier

File scope Variable definition static

Variable declaration extern

Function prototype or static
definition

Function prototype extern

Block scope Variable declaration extern

Variable definition static

Variable definition auto or register

Result:

Lifetime

Global

Global

Global

Global

Global

Global

Local

Visibility

Remainder of source file
in which it occurs

Remainder of source file
in which it occurs

Single source file

Remainder of source file

Block

Block

Block

Language Reference 37

C Language Reference

The following example illustrates blocks, nesting, and visibility of variables:

#include <stdio.h)

int i = 1 /* i defined at external level

int main() /* main function defined at external level
{

*/

*/

printf("%d\n", i); /* Prints 1 (val ue of external level i) */

}

{ /* Begin first nested block */

}

int i = 2, j = 3; /* i and j defined at internal level*/
printf("%d %d\n", i, j); /* Prints 2.3 */
{ /* Begin second nested block */

int i = 0;
pri ntf("%d %d\n", i,
}

printf("%d\n", i);

/* i is redefi ned
j); /* Prints 0, 3

/* End of second nested block
1* Prints 2 (outer definition
/* restored)

printf("%d\n".) ;

/* End of first nested block
/* Prints 1 (external level
/* definition restored)

*/
*/
*/
*/
*/
*/
*/
*/

return 0;

In this example, there are four levels of visibility: the external level and three block levels.
The values are printed to the screen as noted in the comments following each statement.

Linkage
Identifier names can refer to different identifiers in different scopes. An identifier declared
in different scopes or in the same scope more than once can be made to refer to the same
identifier or function by a process called "linkage." Linkage determines the portions of the
program in which an identifier can be referenced (its "visibility"). There are three kinds of
linkage: internal, external, and no linkage.

Internal Linkage
If the declaration of a file-scope identifier for an object or a function contains the
storage-class-specifier static, the identifier has internal linkage. Otherwise, the identifier
has external linkage. See "Storage Classes" in Chapter 3, "Declarations and Types," for a
discussion of the storage-class-specifier nonterminal.

Within one translation unit, each instance of an identifier with internal linkage denotes the
same identifier or function. Internally linked identifiers are unique to a translation unit.

38 Language Reference

Chapter 2 Program Structure

External Linkage
If the first declaration at file-scope level for an identifier does not use the static storage
class specifier, the object has external linkage.

If the declaration of an identifier for a function has no storage-class-specifier, its linkage
is determined exactly as if it were declared with the storage-class-specifier extern. If the
declaration of an identifier for an object has file scope and no storage-class-specifier, its
linkage is external.

An identifier's name with external linkage designates the same function or data object as
does any other declaration for the same name with external linkage. The two declarations
can be in the same translation unit or in different translation units. If the object or function
also has global lifetime, the object or function is shared by the entire program~

No Linkage
If a declaration for an identifier within a block does not include the extern storage-class
specifier, the identifier has no linkage and is unique to the function.

The following identifiers have no linkage:

• An identifier declared to be anything other than an object or a function

• An identifier declared to be a function parameter

• A block-scope identifier for an object declared without the extern storage-class
specifier

If an identifier has no linkage, declaring the same name again (in a declarator or type
specifier) in the same scope level generates a symbol redefinition error.

Name Spaces
The compiler sets up "name spaces" to distinguish between the identifiers used for
different kinds of items. The names within each name space must be unique to avoid
conflict, but an identical name can appear in more than one name space. This means that
you can use the same identifier for two or more different items, provided that the items are
in different name spaces. The compiler can resolve references based on the syntactic
context of the identifier in the program.

Note Do not confuse the limited C notion of a name space with the C++ "namespace"
feature. See "Namespaces," in Chapter 6, "Declarations," in the Microsoft Visual C+ + 6.0
Language Reference, later in this volume, for more information.

Language Reference 39

C Language Reference

This list describes the name spaces used in C.

Statement labels
Named statement labels are part of statements. Definitions of statement labels are
always followed by a colon but are not part of case labels. Uses of statement labels
always immediately follow the keyword goto. Statement labels do not have to be
distinct from other names or from label names in other functions.

Structure, union, and enumeration tags
These tags are part of structure, union, and enumeration type' specifiers and, if present,
always immediately follow the reserved words struct, union, or enum. The tag names
must be distinct from all other structure, enumeration, or union tags with the same
visibility.

Members of structures or unions
Member names are allocated in name spaces associated with each structure and union
type. That is, the same identifier can be a component name in any number of structures
or unions at the same time. Definitions of component names always occur within
structure or union type specifiers. Uses of component names always immediately
follow the member-selection operators (-> and .). The name of a member must be
unique within the structure or union, but it does not have to be distinct from other
names in the program, including the names of members of different structures and
unions, or the name of the structure itself.

Ordinary identifiers
All other names fall into a name space that includes variables, functions (including
formal parameters and local variables), and enumeration constants. Identifier names
have nested visibility, so you can redefine them within blocks.

Typedef names
Typedef names cannot be used as identifiers in the same scope.

For example, since structure tags, structure members, and variable names are in three
different name spaces, the three items named student in this example do not conflict.
The context of each item allows correct interpretation of each occurrence of student in
the program. (For information about structures, see "Structure Declarations" in Chapter 3,
"Declarations and Types.")

struct student {
char student[20];
int class;
int id;
} student;

When student appears after the struct keyword, the compiler recognizes it as a structure
tag. When student appears after a member-selection operator (-> or .), the name refers to
the structure member. In other contexts, student refers to the structure variable. However,
overloading the tag name space is not recommended since it obscures meaning.

40 Language Reference

CHAPTER 3

Declarations and Types

This chapter describes the declaration and initialization of variables, functions, and types.
The C language includes a standard set of basic data types. You can also add your own
data types, called "derived types," by declaring new ones based on types already defined.
The following topics are discussed:

• Overview of declarations

• Storage classes

• Specifiers

• Type qualifiers

• Declarators and variable declarations

• Interpreting more complex declarators

• Initialization

• Storage of basic types

• Incomplete types

• Typedef declarations

• Extended storage-class attributes

Overview of Declarations
A "declaration" specifies the interpretation and attributes of a set of identifiers.
A declaration that also causes storage to be reserved for the object or function named
by the identifier is called a "definition." C declarations for variables, functions, and
types have this syntax:

Syntax

declaration :
declaration-specifiers init-declarator-list opt;

declaration-specifiers :
storage-class-specifier attribute-seq opt declaration-specifiers opt

1* attribute-seq opt is Microsoft specific *1
type-specifier declaration-specifiers opt

type-qualifier declaration-specifiers opt

Language Reference 41

C Language Reference

init-declarator-list :
init-declarator
init-declarator-list , init-declarator

init-decldrator :
declarator
declarator = initializer

Note This syntax for declaration is not repeated in the following sections. Syntax
in the following sections usually begin with the declarator nonterminal.

The declarations in the init-declarator-list contain the identifiers being named; init is an
abbreviation for initializer. The init-declarator-list is a comma-separated sequence of
declarators, each of which can have additional type information, or an initializer, or both.
The declarator contains the identifiers, if any, being declared. The declaration-specifiers
non terminal consists of a sequence of type and storage-class specifiers that indicate the
linkage, storage duration, and at least part of the type of the entities that the declarators
denote. Therefore, declarations are made up of some combination of storage-class
specifiers, type specifiers, type qualifiers, declarators, and initializers.

Declarations can contain one or more of the optional attributes listed in attribute-seq;
seq is an abbreviation for sequence. These Microsoft-specific attributes perform a
variety of functions, which are discussed in detail throughout this book. For a list of
these attributes, see Appendix A, "e Language Syntax Summary," later in this volume.

In the general form of a variable decl;rration, type-specifier gives the data type of the
variable. The type-specifier can be a compound, as when the type is modified by const
or volatile. The declarator gives the name of the variable, possibly modified to declare
an array or a pointer type. For example,

int canst *fp;

declares a variable named fp as a pointer to a nonmodifiable (const) int value. You can
define more than one variable in a declaration by using mUltiple declarators, separated
by commas.

A declaration must have at least one declarator, or its type specifier must declare a
structure tag, union tag, or members of an enumeration. Declarators provide any remaining
information about an identifier. A declarator is an identifier that can be modified with
brackets ([]), asterisks (*), or parentheses (()) to declare an array, pointer, or function
type, respectively. When you declare simple variables (such as character, integer, and
floating-point items), or structures and unions of simple variables, the declarator is just
an identifier. For more information on declarators, see "Declarators and Variable
Declarations," later in this chapter.

42 Language Reference

Chapter 3 Declarations and Types

All definitions are implicitly declarations, but not all declarations are definitions.
For example, variable declarations that begin with the extern storage-class specifier
are "referencing," rather than "defining" declarations. If an external variable is to be
referred to before it is defined, or if it is defined in another source file from the one
where it is used, an extern declaration is necessary. Storage is not allocated by
"referencing" declarations, nor can variables be initialized in declarations.

A storage class or a type (or both) is required in variable declarations. Except for
__ declspec, only one storage-class specifier is allowed in a declaration and not all
storage-class specifiers are permitted in every context. The __ declspec storage class
is allowed with other storage-class specifiers, and it is allowed more than once. The
storage-class specifier of a declaration affects how the declared item is stored and
initialized, and which parts of a program can reference the item.

The storage-class-specifier terminals defined in C include auto, extern, register, static,
and typedef. In addition, Microsoft C includes the storage-class-specifier terminal
__ declspec. All storage-class-specifier terminals except typedef and __ declspec are
discussed in "Storage Classes." See "Typedef Declarations," later in this chapter, for
information about typedef. See "Extended Storage-Class Attributes" for information
about __ declspec.

The location of the declaration within the source program and the presence or absence
of other declarations of the variable are important factors in determining the lifetime
of variables. There can be multiple redeclarations but only one definition. However, a
definition can appear in more than one translation unit. For objects with intemallinkage,
this rule applies separately to each translation unit, because internally linked objects
are unique to a translation unit. For objects with external linkage, this rule applies to
the entire program. See "Lifetime, Scope, Visibility, and Linkage" in Chapter 2 for
more information about visibility.

Type specifiers provide some information about the data types of identifiers. The default
type specifier is int. For more information, see "Type Specifiers," later in this chapter.
Type specifiers can also define type tags, structure and union component names, and
enumeration constants. For more information see "Enumeration Declarations," "Structure
Declarations," and "Union Declarations," later in this chapter.

There are two type-qualifier terminals: const and volatile. These qualifiers specify
additional properties of types that are relevant only when accessing objects of that type
through I-values. For more information on const and volatile, see "Type Qualifiers," later
in this chapter. For a definition of I-values, see "L-Value and R-Value Expressions" in
Chapter 4, "Expressions and Assignments."

Language Reference 43

C Language Reference

Storage Classes
The "storage class" of a variable determines whether the item has a "global" or "local"
lifetime. C calls these two lifetimes "static" and "automatic." An item with a global
lifetime exists and has a value throughout the execution of the program. All functions
have global lifetimes.

Automatic variables, or variables with local lifetimes, are allocated new storage each time
execution control passes to the block in which they are defined. When execution returns,
the variables no longer have meaningful values.

C provides the following storage-class specifiers:

Syntax

storage-class-specifier :
auto
register
static
extern
typedef
__ declspec (extended-decl-modifier-seq) 1* Microsoft Specific */

Except for __ declspec, you can use only one storage-class-specifier in the declaration
specifier in a declaration. If no storage-class specification is made, declarations within a
block create automatic objects.

Items declared with the auto or register specifier have local lifetimes. Items declared
with the static or extern specifier have global lifetimes.

Since typedef and __ declspec are semantically different from the other four storage
class-specifier terminals, they are discussed separately. For specific information on
typedef, see "TypedefDeclarations." For specific information on __ declspec, see
"Extended Storage-Class Attributes."

The placement of variable and function declarations within source files also affects storage
class and visibility. Declarations outside all function definitions are said to appear at the
"extemallevel." Declarations within function definitions appear at the "internal level."

The exact meaning of each storage-class specifier depends on two factors:

• Whether the declaration appears at the external or internal level

• Whether the item being declared is a variable or a function

The following sections, "Storage-Class Specifiers for External-Level Declarations" and
"Storage-Class Specifiers for Internal-Level Declarations," describe the storage-class
specifier terminals in each kind of declaration and explain the default behavior when the
storage-class-specifier is omitted from a variable. "Storage-Class Specifiers with Function
Declarations" discusses storage-class specifiers used with functions.

44 Language Reference

Chapter 3 Declarations and Types

Storage-Class Specifiers for
Extemal-Level Declarations

External variables are variables at file scope. They are defined outside any function,
and they are potentially available to many functions. Functions can only be defined at
the external level and, therefore, cannot be nested. By default, all references to external
variables and functions of the same name are references to the same object, which means
they have "external linkage." (You can use the static keyword to override this. See
information later in this section for more details on static.)

V ariable declarations at the external level are either definitions of variables ("defining
declarations"), or references to variables defined elsewhere ("referencing declarations").

An external variable declaration that also initializes the variable (implicitly or explicitly)
is a defining declaration of the variable. A definition at the external level can take several
forms:

• A variable that you declare with the static storage-class specifier. You can explicitly
initialize the static variable with a constant expression, as described in "Initialization."
If you omit the initializer, the variable is·initialized to 0 by default. For example, these
two statements are both considered definitions of the variable k.

static int k = 16;
static int k;

• A variable that you explicitly initialize at the external level. For example, i nt j 3;

is a definition of the variable j.

In variable declarations at the external level (that is, outside all functions), you can use
the static or extern storage-class specifier or omit the storage-class specifier entirely.
You cannot use the auto and register storage-class-specifier terminals at the external
level.

Once a variable is defined at the external level, it is visible throughout the rest of the
translation unit. The variable is not visible prior to its declaration in the same source file.
Also, it is not visible in other source files of the program, unless a referencing declaration
makes it visible, as described below.

The rules relating to static include:

• Variables declared outside all blocks without the static keyword always retain their
values throughout the program. To restrict their access to a particular translation unit,
you must use the static keyword. This gives them "internal linkage." To make them
global to an entire program, omit the explicit storage class or use the keyword extern
(see the rules in the next list). This gives them "external linkage." Internal and external
linkage are also discussed in "Linkage" in Chapter 2, "Program Structure~"

Language Reference 45

C Language Reference

• You can define a variable at the external level only once within a program. You can
define another variable with the same name and the static storage-class specifier in
a different translation unit. Since each static definition is visible only within its own
translation unit, no conflict occurs. This provides a useful way to hide identifier names
that must be shared among functions of a single translation unit, but not visible to other
translation units.

• The static storage-class specifier can apply to functions as well. If you declare
a function static, its name is invisible outside of the file in which it is declared.

The rules for using extern are:

• The extern storage-class specifier declares a reference to a variable defined elsewhere.
You can use an extern declaration to make a definition in another source file visible,
or to make a variable visible prior to its definition in the same source file. Once you
have declared a reference to the variable at the external level, the variable is visible
throughout the remainder of the translation unit in which the declared reference occurs.

• For an extern reference to be valid, the variable it refers to must be defined once, and
only once, at the external level. This definition (without the extern storage class) can
be in any of the translation units that make up the program.

Example

The example below illustrates external declarations:

/**
SOURCE FILE ONE

***/

extern int i;
void next(void);

void main()
{

}

i++;
printf("%d\n",
next() ;

int i = 3;

void next(void)
{

}

i++;
pri ntf("%d\n",
other();

46 Language Reference

) ;

) ;

/* Reference to i, defined below */
/* Function prototype */

/* equals 4 */

/* Definition of */

/* equals 5 */

Chapter 3 Declarations and Types

/**
SOURCE FILE TWO

***/

extern int i;

void other(void
{

i++;
printf("%d\n".) :

/* Reference to i in */
/* first source file */

/* equals 6 */

The two source files in this example contain a total of three external declarations of
i. Only one declaration is a "defining declaration." That declaration,

int i = 3:

defines the global variable i and initializes it with initial value 3. The "referencing"
declaration of i at the top of the first source file using extern makes the global variable
visible prior to its defining declaration in the file. The referencing declaration of i in the
second source file also makes the variable visible in that source file. If a defining instance
for a variable is not provided in the translation unit, the compiler assumes there is an

extern int x;

referencing declaration and that a defining reference

int x = 0:

appears in another translation unit of the program.

All three functions, m a in, n ext, and 0 the r, perform the same task: they increase i and
print it. The values 4,5, and 6 are printed.

If the variable i had not been initialized, it would have been set to 0 automatically. In
this case, the values 1, 2, and 3 would have been printed. See "Initialization," later in
this chapter, for information about variable initialization.

Storage-Class Specifiers for
Internal-Level Declarations

You can use any of four storage-class-speciJier terminals for variable declarations at the
internal level. When you omit the storage-class-speciJier from such a declaration, the
default storage class is auto. Therefore, the keyword auto is rarely seen in a C program.

Language Reference 47

C Language Reference

The auto Storage-Class Specifier
The auto storage-class specifier declares an automatic variable, a variable with a local
lifetime. An auto variable is visible only in the block in which it is declared. Declarations
of auto variables can include initializers, as discussed in "Initialization." Since variables
with auto storage class are not initialized automatically, you should either explicitly
initialize them when you declare them, or assign them initial values in statements within
the block. The values of uninitialized auto variables are undefined. (A local variable of
auto or register storage class is initialized each time it comes in scope if an initializer
is given.)

An internal static variable (a static variable with local or block scope) can be initialized
with the address of any external or static item, but not with the address of another auto
item, because the address of an auto item is not a constant.

The register Storage-Class Specifier
Microsoft Specific ~

The Microsoft C/C++ compiler does not honor user requests for register variables.
However, for portability all other semantics associated with the register keyword are
honored by the compiler. For example, you cannot apply the unary address-of operator
(&) to a register object nor can the register keyword be used on arrays.

END Microsoft Specific

The static Storage-Class Specifier
A variable declared at the internal level with the static storage-class specifier has a
global lifetime but is visible only within the block in which it is declared. For constant
strings, using static is useful because it alleviates the overhead of frequent initialization
in often-called functions.

If you do not explicitly initialize a static variable, it is initialized to 0 by default. Inside
a function, static causes storage to be allocated and serves as a definition. Internal static
variables provide private, permanent storage visible to only a single function.

The extern Storage-Class Specifier
A variable declared with the extern storage-class specifier is a reference to a variable with
the same name defined at the external level in any of the source files of the program. The
internal extern declaration is used to make the external-level variable definition visible
within the block. Unless otherwise declared at the external level, a variable declared with
the extern keyword is visible only in the block in which it is declared.

48 Language Reference

Chapter 3 Declarations and Types

Example

This example illustrates internal- and external-level declarations:

#include <stdio.h>
int i = 1;
void other(void);

void maine)
{

}

1* Reference to i, defined above: *1
extern int i;

1* Initial value is zero; a is visible only within main: *1
static int a;

1* b is stored in a register, if possible: *1
register int b = 0;

1* Default storage class is auto: *1
int c = 0;

1* Values printed are 1, 0, 0, 0: *1
printf(n%d\n%d\n%d\n%d\n", i, a, b, c);
other();
return;

void other(void
{

}

1* Address of global
static int *external

assigned to pointer variable: *1
= &i;

1* i is redefined; global i no longer visible: *1
int i = 16;

1* This a is visible only within the other function: *1
static int a = 2;

a += 2;
1* Values printed are 16, 4, and 1: *1
pri ntf(n%d\n%d\n%d\nn, i, a, *external);

In this example, the variable i is defined at the external level with initial value 1. An
extern declaration in the rna in function is used to declare a reference to the external-level
i. The static variable a is initialized to ° by default, since the initializer is omitted. The
call to pri ntf prints the values 1,0,0, and 0.

Language Reference 49

C Language Reference

In the other function, the address of the global variable i is used to initialize the static
pointer variable external_i. This works because the global variable has static lifetime,
meaning its address does not change during program execution. Next, the variable i is
redefined as a local variable with initial value 16. This redefinition does not affect the
value of the external-level i, which is hidden by the use of its name for the local variable.
The value of the global i is now accessible only indirectly within this block, through the
pointer externa 1_ i . Attempting to assign the address of the auto variable i to a pointer
does not work, since it may be different each time the block is entered. The variable a is
declared as a static variable and initialized to 2. This a does not conflict with the a in
rna in, since static variables at the internal level are visible only within the block in which
they are declared.

The variable a is increased by 2, giving 4 as the result. If the other function were called
again in the same program, the initial value of a would be 4. Internal static variables keep
their values when the program exits and then reenters the block in which they are declared.

Storage-Class Specifiers with
Function Declarations

You can use either the static or the extern storage-class specifier in function declarations.
Functions always have global lifetimes.

Microsoft Specific -4

Function declarations at the internal level have the same meaning as function declarations
at the external level. This means that a function is visible from its point of declaration
throughout the rest of the translation unit even if it is declared at local scope.

END Microsoft Specific

The visibility rules for functions vary slightly from the rules for variables, as follows:

• A function declared to be static is visible only within the source file in which it is
defined. Functions in the same source file can call the static function, but functions
in other source files cannot access it directly by name. You can declare another
static function with the same name in a different source file without conflict.

• Functions declared as extern are visible throughout all source files in the program
(unless you later redeclare such a function as static). Any function can call an extern
function.

• Function declarations that omit the storage-class specifier are extern by default.

Microsoft Specific -4

Microsoft allows redefinition of an extern identifier as static.

END Microsoft Specific

50 Language Reference

Chapter 3 Declarations and Types

Specifiers
Type specifiers in declarations define the type of a variable or function declaration.

Syntax

type-specifier:
void
char
short
int
long
float
double
signed
unsigned
struct-or-union-specijier
enum-specifier
typedef-name

The signed char, signed int, signed short int, and signed long int types, together with
their unsigned counterparts and enum, are called "integral" types. The float, double, and
long double type specifiers are referred to as "floating" or "floating-point" types. You can
use any integral or floating-point type specifier in a variable or function declaration. If a
type-specifier is not provided in a declaration, it is taken to be int.

The optional keywords signed and unsigned can precede or follow any of the integral
types, except enum, and can also be used alone as type specifiers, in which case they are
understood as signed int and unsigned int, respectively. When used alone, the keyword
int is assumed to be signed. When used alone, the keywords long and short are
understood as long int and short int.

Enumeration types are considered basic types. Type specifiers for enumeration types are
discussed in "Enumeration Declarations," later in this chapter.

The keyword void has three uses: to specify a function return type, to specify an argument
type list for a function that takes no arguments, and to specify a pointer to an unspecified
type. You can use the void type to declare functions that return no value or to declare a
pointer to an unspecified type. See "Arguments" in Chapter 6, "Functions," for information
on void when it appears alone within parentheses following a function name.

Language Reference 51

C Language Reference

Microsoft Specific ~

Type checking is now ANSI -compliant, which means that type short and type int are
distinct types. For example, this is a redefinition in the Microsoft C compiler that was
accepted by previous versions of the compiler.

int myfunc();
short myfunc();

This next example also generates a warning about indirection to different types:

i nt *pi;
short *ps;

ps = pi; /* Now generates warning */

The Microsoft C compiler also generates warnings for differences in sign. For example:

signed int *pi;
unsigned int *pu

pi = pu; /* Now generates warning */

Type void expressions are evaluated for side effects. You cannot use the (nonexistent)
value of an expression that has type void in any way, nor can you convert a void
expression (by implicit or explicit conversion) to any type except void. If you do use
an expression of any other type in a context where a void expression is required, its
value is discarded.

To conform to the ANSI specification, void** cannot be used as int**. Only void* can
be used as a pointer to an unspecified type.

END Microsoft Specific

You can create additional type specifiers with typedef declarations, as described in
"Typedef Declarations," later in this chapter. See "Storage of Basic Types" for information
on the size of each type.

Data Type Specifiers and Equivalents
This book generally uses the forms of the type specifiers listed in Table 0.1 rather than the
long forms, and it assumes that the char type is signed by default. Therefore, throughout
this book, char is equivalent to signed char.

Table 3.1 Type Specifiers and Equivalents

Type Specifier Equivalent(s)

signed charI

signed int

52 Language Reference

char

signed, int

Chapter 3 Declarations and Types

Table 3.1 Type Specifiers and Equivalents (continued)

Type Specifier Equivalent(s)

signed short int

signed long int

unsigned char

unsigned int

unsigned short int

unsigned long int

float

long double2

short, signed short

long, signed long

unsigned

unsigned short

unsigned long

1 When you make the char type unsigned by default (by specifying the IJ compiler option), you cannot abbreviate signed char as char.

2 In 32-bit operating systems, the Microsoft C compiler maps long double to type double.

Microsoft Specific ~

You can specify the /J compiler option to change the default char type from signed to
unsigned. When this option is in effect, char means the same as unsigned char, and
you must use the signed keyword to declare a signed character value. If a char value is
explicitly declared signed, the /J option does not affect it, and the value is sign-extended
when widened to an int type. The char type is zero-extended when widened to int type.

END Microsoft Specific

Type Qualifiers
Type qualifiers give one of two properties to an identifier. The const type qualifier
declares an object to be nonmodifiable. The volatile type qualifier declares an item
whose value can legitimately be changed by something beyond the control of the
program in which it appears, such as a concurrently executing thread.

The two type qualifiers, const and volatile, can appear only once in a declaration. Type
qualifiers can appear with any type specifier; however, they cannot appear after the first
comma in a multiple item declaration. For example, the following declarations are legal:

typedef volatile int VI;
canst int ci;

These declarations are not legal:

typedef int *i. volatile *vi;
float f. canst cf;

Language Reference 53

C Language Reference

Type qualifiers are relevant only when accessing identifiers as I-values in expressions.
See "L-Value and R-Value Expressions" in Chapter 4, "Expressions and Assignments,"
for information about I-values and expressions.

Syntax

type-qualifier:
const
volatile

The following are legal const and volatile declarations:

int const *p_ci; /* Pointer to constant int */
int const (*p_ci); /* Pointer to constant int */
int *const cp_i; /* Constant pointer to int */
int (*const cp_i); /* Constant pointer to int */
int volatile vint; /* Volatile integer */

If the specification of an array type includes type qualifiers, the element is qualified, not
the array type. If the specification of the function type includes qualifiers, the behavior is
undefined. Neither volatile nor const affects the range of values or arithmetic properties
of the object.

This list describes how to use const and volatile.

• The const keyword can be used to modify any fundamental or aggregate type, or
a pointer to an object of any type, or a typedef. If an item is declared with only the
const type qualifier, its type is taken to be const int. A const variable can be initialized
or can be placed in a read-only region of storage. The const keyword is useful for
declaring pointers to const since this requires the function not to change the pointer
in any way.

• The compiler assumes that, at any point in the program, a volatile variable can be
accessed by an unknown process that uses or modifies its value. Therefore, regardless
of the optimizations specified on the command line, the code for each assignment to or
reference of a volatile variable must be generated even if it appears to have no effect.

If volatile is used alone, int is assumed. The volatile type specifier can be used to
provide reliable access to special memory locations. Use volatile with data objects that
may be accessed or altered by signal handlers, by concurrently executing programs, or
by special hardware such as memory-mapped 110 control registers. You can declare a
variable as volatile for its lifetime, or you can cast a single reference to be volatile.

• An item can be both const and volatile, in which case the item could not be
legitimately modified by its own program, but could be modified by some
asynchronous process.

54 Language Reference

Chapter 3 Declarations and Types

Declarators and
Variable Declarations

The rest of this chapter describes the form and meaning of declarations for variable types
summarized in this list. In particular, the remaining sections explain how to declare the
following:

Type of Variable

Simple variables

Arrays

Pointers

Enumeration variables

Structures

Unions

Description

Single-value variables with integral or floating-point type

Variables composed of a collection of elements with the same type

Variables that point to other variables and contain variable locations
(in the form of addresses) instead of values

Simple variables with integral type that hold one value from a
set of named integer constants

Variables composed of a collection of values that can have different types

Variables composed of several values of different types that occupy
the same storage space

A declarator is the part of a declaration that specifies the name that is to be introduced into
the program. It can include modifiers such as * (pointer-to) and any of the Microsoft
calling-convention keywords.

Microsoft Specific ~

In the declarator

__ declspec(thread) char *var;

cha r is the type specifier, __ decl spec(thread) and * are the modifiers, and va r is the
identifier's name.

END Microsoft Specific

You use declarators to declare arrays of values, pointers to values, and functions returning
values of a specified type. Declarators appear in the array and pointer declarations
described later in this chapter.

Language Reference 55

C Language Reference

Syntax

declarator:
pointer opt direct-declarator

direct-declarator:
identifier
(declarator)
direct-declarator [constant-expression opt]

direct-declarator (parameter-type-list)
direct-declarator (identifier-list opt)

pointer:
* type-qualifier-list opt

* type-qualifier-list opt pointer

type-qualifier-list :
type-qualifier
type-qualifier-list type-qualifier

Note See the syntax for declaration in "Overview of Declarations," at the beginning
of this chapter; or see Appendix A, "C Language Syntax Summary," later in this
volume, for the syntax that references a declarator.

When a declarator consists of an unmodified identifier, the item being declared has a base
type. If an asterisk (*) appears to the left of an identifier, the type is modified to a pointer
type. If the identifier is followed by brackets ([]), the type is modified to an array type.
If the identifier is followed by parentheses, the type is modified to a function type. For
more information about interpreting precedence within declarations, see "Interpreting
More Complex Declarators," later in this chapter.

Each declarator declares at least one identifier. A declarator must include a type specifier
to be a complete declaration. The type specifier gives the type of the elements of an array
type, the type of object addressed by a pointer type, or the return type of a function.

Array and pointer declarations are discussed in more detail later in this chapter. The
following examples illustrate a few simple forms of declarators:

int list[20]; /* Declares an array of 20 int values named list */
char *cp; /* Declares a pointer to a char value */
double func(void); /* Declares a function named func, with no

i nt *aptr[10]

Microsoft Specific ~

arguments, that returns a double value */
/* Declares an array of 10 pointers */

The Microsoft C compiler does not limit the number of declarators that can modify an
arithmetic, structure, or union type. The number is limited only by available memory.

END Microsoft Specific

56 Language Reference

Chapter 3 Declarations and Types

Simple Variable Declarations
The declaration of a simple variable, the simplest form of a direct declarator, specifies the
variable's name and type. It also specifies the variable's storage class and data type.

Storage classes or types (or both) are required on variable declarations. Untyped variables
(such as va r ;) generate warnings.

Syntax

declarator:
pointer opt direct-declarator

direct-declarator:
identifier

identifier:
nondigit
identifier nondigit
identifier digit

For arithmetic, structure, union, enumerations, and void types, and for types represented
by typedef names, simple declarators can be used in a declaration since the type specifier
supplies all the typing information. Pointer, array, and function types require more
complicated declarators.

You can use a list of identifiers separated by commas (,) to specify several variables in
the same declaration. All variables defined in the declaration have the same base type.
For example:

int x. y; /* Declares two simple variables of type int */
int canst z = 1; /* Declares a constant value of type int */

The variables x and y can hold any value in the set defined by the int type for a particular
implementation. The simple object z is initialized to the value 1 and is not modifiable.

If the declaration of z was for an uninitialized static variable or was at file scope, it would
receive an initial value of 0, and that value would be unmodifiable.

unsigned long reply. flag; /* Declares two variables
named reply and flag */

In this example, both the variables, rep 1 y and fl ag, have unsigned long type and hold
unsigned integral values.

Language Reference 57

C Language Reference

Enumeration Declarations
An enumeration consists of a set of named integer constants. An enumeration type
declaration gives the name of the (optional) enumeration tag and defines the set of named
integer identifiers (called the "enumeration set," "enumerator constants," "enumerators,"
or "members"). A variable with enumeration type stores one of the values of the
enumeration set defined by that type.

Variables of enum type can be used in indexing expressions and as operands of all
arithmetic and relational operators. Enumerations provide an alternative to the #define
preprocessor directive with the advantages that the values can be generated for you and
obey normal scoping rules.

In ANSI C, the expressions that define the value of an enumerator constant always have
int type; thus, the storage associated with an enumeration variable is the storage required
for 'a single int value. An enumeration constant or a value of enumerated type can be used
anywhere the C language permits an integer expression.

Syntax

enum-specifier :
enum identifier opt { enumerator-list}
enum identifier

The optional identifier names the enumeration type defined by enumerator-list. This
identifier is often called the "tag" of the enumeration specified by the list. A type specifier
of the form

enum identifier { enumerator-list}

declares identifier to be the tag of the enumeration specified by the enumerator-list
nonterminal. The enumerator-list defines the "enumerator content." The enumerator
list is described in detail below.

If the declaration of a tag is visible, subsequent declarations that use the tag but omit
enumerator-list specify the previously declared enumerated type. The tag must refer to
a defined enumeration type, and that enumeration type must be in current scope. Since
the enumeration type is defined elsewhere, the enumerator-list does not appear in this
declaration. Declarations of types derived from enumerations and typedef declarations
for enumeration types can use the enumeration tag before the enumeration type is defined.

58 Language Reference

Chapter 3 Declarations and Types

Syntax

enumerator-list:
enumerator
enumerator-list, enumerator

enumerator:
enumeration-constant
enumeration-constant = constant-expression

enumeration-constant:
identifier

Each enumeration-constant in an enumeration-list names a value of the enumeration
set. By default, the first enumeration-constant is associated with the value O. The next
enumeration-constant in the list is associated with the value of (constant-expression + 1),
unless you explicitly associate it with another value. The name of an enumeration-constant
is equivalent to its value.

You can use enumeration-constant = constant-expression to override the default sequence
of values. Thus, if enumeration-constant = constant-expression appears in the enumerator
list, the enumeration-constant is associated with the value given by constant-expression.
The constant-expression must have int type and can be negative.

The following rules apply to the members of an enumeration set:

• An enumeration set can contain duplicate constant values. For example, you could
associate the value 0 with two different identifiers, perhaps named null and zero,
in the same set.

• The identifiers in the enumeration list must be distinct from other identifiers in the
same scope with the same visibility, including ordinary variable names and identifiers
in other enumeration lists.

• Enumeration tags obey the normal scoping rules. They must be distinct from other
enumeration, structure, and union tags with the same visibility.

Examples

These examples illustrate enumeration declarations:

enum DAY /* Defines an enumeration type */
{

saturday, /* Names day and declares a */
sunday = 0, /* variable named workday with */
monday, /* that type */
tuesday,
wednesday, /* wednesday is associated with 3 */
thursday,
friday

} workday;

Language Reference 59

C Language Reference

The value 0 is associated with saturday by default. The identifier sunday is explicitly
set to O. The remaining identifiers are given the values I through 5 by default.

In this example, a value from the set DAY is assigned to the variable today.

enum DAY today = wednesday;

Note that the name of the enumeration constant is used to assign the value. Since the DAY
enumeration type was previously declared, only the enumeration tag DAY is necessary.

To explicitly assign an integer value to a variable of an enumerated data type, use a
type cast:

workday = (enum DAY) (day_value - 1);

This cast is recommended in C but is not required.

enum BOOLEAN /* Declares an enumeration data type called BOOLEAN */
{

false, /* false = 0, true = 1 */
true

} ;

enum BOOLEAN end_flag, match_flag; /* Two variables of type BOOLEAN */

This declaration can also be specified as

enum BOOLEAN { false, true} end_flag, match_flag;\

or as

enum BOOLEAN { false, true} end_flag;
enum BOOLEAN match_flag;

An example that uses these variables might look like this:

if (match_flag == false)
{

/* statement */

}

end_flag = true;

Unnamed enumerator data types can also be declared. The name of the data type
is omitted, but variables can be declared. The variable response is a variable of
the type defined:

enum { yes, no } response;

60 Language Reference

Chapter 3 Declarations and Types

Structure Declarations
A "structure declaration" names a type and specifies a sequence of variable values
(called "members" or "fields" of the structure) that can have different types. An
optional identifier, called a "tag," gives the name of the structure type and can be
used in subsequent references to the structure type. A variable of that structure type
holds the entire sequence defined by that type. Structures in C are similar to the types
known as "records" in other languages.

Syntax

struct-or-union-specifier :
struct-or-union identifier opt {struct-declaration-list}
struct-or-union identifier

struct-or-union :
struct
union

struct-declaration-list :
struct-declaration

. struct-declaration-list struct-declaration

The structure content is defined to be

struct-declaration :
specifier-qualifier-list struct-declarator-list ;

specifier-qualifier-list:
type-specifier specifier-qualifier-list opt

type-qualifier specifier-qualifier-list opt

struct-declarator-list :
struct-declarator
struct-declarator-list , struct-declarator

struct-declarator :
declarator

The declaration of a structure type does not set aside space for a structure. It is only
a template for later declarations of structure variables.

A previously defined identifier (tag) can be used to refer to a structure type defined
elsewhere. In this case, struct-declaration-list cannot be repeated as long as the definition
is visible. Declarations of pointers to structures and typedefs for structure types can use
the structure tag before the structure type is defined. However, the structure definition
must be encountered prior to any actual use of the size of the fields. This is an incomplete
definition of the type and the type tag. For this definition to be completed, a type definition
must appear later in the same scope.

Language Reference 61

C Language Reference

The struct-declaration-list specifies the types and names of the structure members. A
struct-declaration-list argument contains one or more variable or bit-field declarations.

Each variable declared in struct-declaration-list is defined as a member of the structure
type. Variable declarations within struct-declaration-list have the same form as other
variable declarations discussed in this chapter, except that the declarations cannot contain
storage-class specifiers or initializers. The structure members can have any variable types
except type void, an incomplete type, or a function type.

A member cannot be declared to have the type of the structure in which it appears.
However, a member can be declared as a pointer to the structure type in which it appears
as long as the structure type has a tag. This allows you to create linked lists of structures.

Structures follow the same scoping as other identifiers. Structure identifiers must be
distinct from other structure, union, and enumeration tags with the same visibility.

Each struct-declaration in a struct-declaration-list must be unique within the list.
However, identifier names in a struct-declaration-list do not have to be distinct from
ordinary variable names or from identifiers in other structure declaration lists.

Nested structures can also be accessed as though they were declared at the file-scope level.
For example, given this declaration:

struct a
{

int x;
struct b
{

int y;
} var2;

} varl;

these declarations are both legal:

struct a var3;
struct b var4;

Examples

These examples illustrate structure declarations:

struct employee
{

cha r name[20] ;
int id;
long class;

} temp;

62 Language Reference

/* Defines a structure variable named temp */

Chapter 3 Declarations and Types

The emp 1 oyee structure has three members: name, i d, and cl ass. The name member
is a 20-element array, and i d and cl ass are simple members with int and long type,
respectively. The identifier employee is the structure identifier.

struct employee student. faculty. staff;

This example defines three structure variables: student, facul ty, and staff. Each
structure has the same list of three members. The members are declared to have the
structure type emp 1 oyee, defined in the previous example.

struct
{

float x, y;
} complex;

/* Defines an anonymous struct and a */
/* structure variable named complex */

The comp 1 ex structure has two members with float type, x and y. The structure type has
no tag and is therefore unnamed or anonymous.

struct sample
{

char c;
float *pf;

/* Defines a structure named x */

struct sample *next;
} x;

The first two members of the structure are a char variable and a pointer to a float value.
The third member, next, is declared as a pointer to the structure type being defined
(sampl e).

Anonymous structures can be useful when the tag named is not needed. This is the case
when one declaration defines all structure instances. For example:

struct
{

int x;
i nt y;

} mystruct;

Embedded structures are often anonymous.

struct somestruct
{

struct
{

/* Anonymous structure */

int x. y;
point;

int type;
} w;

Language Reference 63

C Language Reference

Microsoft Specific ~

The compiler allows an unsized or zero-sized array as the last member of a structure.
This can be useful if the size of a constant array differs when used in various situations.
The declaration of such a structure looks like this:

struct identifier
{

};

set-oj-declarations
type array-name[];

Unsized arrays can appear only as the last member of a structure. Structures containing
un sized array declarations can be nested within other structures as long as no further
members are declared in any enclosing structures. Arrays of such structures are not
allowed. The sizeof operator, when applied to a variable of this type or to the type itself,
assumes 0 for the size of the array.

Structure declarations can also be specified without a declarator when they are members
of another structure or union. The field names are promoted into the enclosing structure.
For example, a nameless structure looks like this:

struct s
{

float y;
struct
{

int a, b, c;
} ;

char str[10];
} *p_s;

p_s->b = 100; /* A reference to a field in the s structure */

See "Structure and Union Members" in Chapter 4, "Expressions and Assignments,"
for information about structure references.

END Microsoft Specific

64 Language Reference

Chapter 3 Declarations and Types

Bit Fields
In addition to declarators for members of a structure or union, a structure declarator
can also be a specified number of bits, called a "bit field." Its length is set off from the
declarator for the field name by a colon. A bit field is interpreted as an integral type.

Syntax

struct-declarator:
declarator
type-specifier declarator opt: constant-expression

The constant-expression specifies the width of the field in bits. The type-specifier for the
declarator must be unsigned int, signed int, or int, and the constant-expression must
be a nonnegative integer value. If the value is zero, the declaration has no declarator.
Arrays of bit fields, pointers to bit fields, and functions returning bit fields are not allowed.
The optional declarator names the bit field. Bit fields can only be declared as part of a
structure. The address-of operator (&) cannot be applied to bit-field components.

Unnamed bit fields cannot be referenced, and their contents at run time are unpredictable.
They can be used as "dummy" fields, for alignment purposes. An unnamed bit field whose
width is specified as 0 guarantees that storage for the member following it in the struct
declaration-list begins on an int boundary.

Bit fields must also be long enough to contain the bit pattern. For example, these two
statements are not legal:

short a:17;
int long y:33;

/*Illegal!*/
/* Illegal! */

This example defines a two-dimensional array of structures named screen.

struct
{

unsigned short icon: 8;
unsigned short color: 4;
unsigned short underline: 1;
unsigned short blink: 1;

screen[25][80];

The array contains 2,000 elements. Each element is an individual structure containing
four bit-field members: i can, color, underl i ne, and bl ink. The size of each structure
is two bytes.

Bit fields have the same semantics as the integer type. This means a bit field is used in
expressions in exactly the same way as a variable of the same base type would be used,
regardless of how many bits are in the bit field.

Language Reference 65

C Language Reference

Microsoft Specific ~

Bit fields defined as int are treated as signed. A Microsoft extension to the ANSI C
standard allows char and long types (both signed and unsigned) for bit fields. Unnamed
bit fields with base type long, short, or char (signed or unsigned) force alignment to a
boundary appropriate to the base type.

Bit fields are allocated within an integer from least-significant to most-significant bit.
In the following code

struct mybitfields
{

unsigned short a 4;
unsigned short b 5;
unsigned short c 7;

} test;

void main(void) ;

{

test.a = 2 ;
test.b = 31;
test. c = 0;

}

the bits would be arranged as follows:

00000001 11110010
cccccccb bbbbaaaa

Since the 8086 family of processors stores the low byte of integer values before the high
byte, the integer 0x01 F2 above would be stored in physical memory as 0xF2 followed
by 0x01.

END Microsoft Specific

Storage and Alignment of Structures
Microsoft Specific ~

Structure members are stored sequentially in the order in which they are declared: the first
member has the lowest memory address and the last member the highest.

Every data object has an alignment-requirement. For structures, the requirement is the
largest of its members. Every object is allocated an offset so that

offset % alignment-requirement == 0

Adjacent bit fields are packed into the same 1-, 2-, or 4-byte allocation unit if the integral
types are the same size and if the next bit field fits into the current allocation unit without
crossing the boundary imposed by the common alignment requirements of the bit fields.

66 Language Reference

Chapter 3 Declarations and Types

To conserve space or to conform to existing data structures, you may want to store
structures more or less compactly. The /Zp[n] compiler option and the #pragma pack
control how structure data is "packed" into memory. When you use the /Zp[n] option,
where n is 1, 2, 4, 8, or 16, each structure member after the first is stored on byte
boundaries that are either the alignment requirement of the field or the packing size (n),
whichever is smaller. Expressed as a formula, the byte boundaries are the

mine n, sizeof(item))

where n is the packing size expressed with the /Zp[n] option and item is the structure
member. The default packing size is /Zp8.

To use the pack pragma to specify packing other than the packing specified on the
command line for a particular structure, give the pack pragma, where the packing size is
1,2,4,8, or 16, before the structure. To reinstate the packing given on the command line,
specify the pack pragma with no arguments.

Bit fields default to size long for the Microsoft C compiler. Structure members are aligned
on the size of the type or the /Zp[n] size, whichever is smaller. The default size is 4.

END Microsoft Specific

Union Declarations
A "union declaration" specifies a set of variable values and, optionally, a tag naming the
union. The variable values are called "members" of the union and can have different types.
Unions are similar to "variant records" in other languages.

Syntax

struct-or-union-specifier :
struct-or-union identifier opt {struct-declaration-list}
struct-or-union identifier

struct-or-union :
struct
union

struct-declaration-list :
struct-declaration
struct-declaration-list struct-declaration

The union content is defined to be

struct-declaration :
specifier-qualifier-list struct-declarator-list ;

Language Reference 67

C Language Reference

specifier-qualifier-list:
type-specifier specifier-qualifier-list opt

type-qualifier specifier-qualifier-list opt

struct-declarator-list :
struct -declarato r
struct-declarator-list , struct-declarator

A variable with union type stores one of the values defined by that type. The same rules
govern structure and union declarations. Unions can also have bit fields.

Members of unions cannot have an incomplete type, type void, or function type. Therefore
members cannot be an instance of the union but can be pointers to the union type being
declared.

A union type declaration is a template only. Memory is not reserved until the variable is
declared.

Note If a union of two types is declared and one value is stored, but the union is
accessed with the other type, the results are unreliable. For example, a union of float
and int is declared. A float value is stored, but the program later accesses the value
as an int. In such a situation, the value would depend on the internal storage of float
values. The integer value would not be reliable.

Examples

The following are examples of unions:

union sign
{

/* A definition and a declaration */

int svar;
unsigned uvar;

} number;

This example defines a union variable with s i g n type and declares a variable named
number that has two members: sva r, a signed integer, and uva r, an unsigned integer.
This declaration allows the current value of number to be stored as either a signed or
an unsigned value. The tag associated with this union type is sign.

union
{

struct
{

/* Defines a two-dimensional */
/* array named screen */

unsigned int icon: 8;
unsigned color: 4;

} windowl;
int screenval;

} screen[25][80];

68 Language Reference

Chapter 3 Declarations and Types

The screen array contains 2,000 elements. Each element of the array is an individual
union with two members: wi ndowl and screenva 1. The wi ndowl member is a structure
with two bit-field members, i con and color. The screenval member is an int. At any
given time, each union element holds either the int represented by screenval or the
structure represented by wi ndowl.

Microsoft Specific ~

Nested unions can be declared anonymously when they are members of another structure
or union. This is an example of a nameless union:

struct str
{

i nt a, b;
union
{

} ;

char c[4];
long 1;
float f;

char c_array[10];
my_str;

/ * Unnamed union */

my_str.l == 0L; /* A reference to a field in the my_str union */

Unions are often nested within a structure that includes a field giving the type of data
contained in the union at any particular time. This is an example of a declaration for such
a union:

struct x
{

}

int type_tag;
union
{

}

int x;
float y;

See "Structure and Union Members" in Chapter 4, "Expressions and Assignments,"
for information about referencing unions.

END Microsoft Specific

Language Reference 69

C Language Reference

Storage of Unions
The storage associated with a union variable is the storage required for the largest member
of the union. When a smaller member is stored, the union variable can contain unused
memory space. All members are stored in the same memory space and start at the same
address. The stored value is overwritten each time a value is assigned to a different
member. For example:

union
{

/* Defines a union named x */

char *a, b;
float f[20];

x;

The members of the x union are, in order of their declaration, a pointer to a char value, a
char value, and an array of float values. The storage allocated for x is the storage required
for the 20-element array f, since f is the longest member of the union. Because no tag is
associated with the union, its type is unnamed or "anonymous."

Array Declarations
An "array declaration" names the array and specifies the type of its elements. It can also
define the number of elements in the array. A variable with array type is considered a
pointer to the type of the array elements.

Syntax

declaration :
declaration-specifiers init-declarator-list opt;

init-declarator-list :
init-declarator
init-declarator-list , init-declarator

init-declarator :
declarator
declarator = initializer

declarator:
pointer opt direct-declarator

direct-declarator:
direct-declarator [constant-expression opt]

70 Language Reference

Chapter 3 Declarations and Types

Because constant-expression is optional, the syntax has two forms:

• The first form defines an array variable. The constant-expression argument within
the brackets specifies the number of elements in the array. The constant-expression,
if present,must have integral type, and a value larger than zero. Each element has the
type given by type-specifier, which can be any type except void. An array element
cannot be a function type.

• The second form declares a variable that has been defined elsewhere. It omits the
constant-expression argument in brackets, but not the brackets. You can use this form
only if you previously have initialized the array, declared it as a parameter, or declared
it as a reference to an array explicitly defined elsewhere in the program.

In both forms, direct-declarator names the variable and can modify the variable's type.
The brackets ([]) following direct-declarator modify the declarator to an array type.

Type qualifiers can appear in the declaration of an object of array type, but the qualifiers
apply to the elements rather than the array itself.

You can declare an array of arrays (a "multidimensional" array) by following the array
declarator with a list of bracketed constant expressions in this form:

type-specifier declarator [constant-expression] [constant-expression] ...

Each constant-expression in brackets defines the number of elements in a given dimension:
two-dimensional arrays have two bracketed expressions, three-dimensional arrays have
three, and so on. You can omit the first constant expression if you have initialized the
array, declared it as a parameter, or declared it as a reference to an array explicitly defined
elsewhere in the program.

You can define arrays of pointers to various types of objects by using complex declarators,
as described in "Interpreting More Complex Declarators," later in this chapter.

Arrays are stored by row. For example, the following array consists of two rows with three
columns each:

char A[2][3];

The three columns of the first row are stored first, followed by the three columns of the
second row. This means that the last subscript varies most quickly.

To refer to an individual element of an array, use a subscript expression, as described in
"Postfix Operators" in Chapter 4, "Expressions and Assignments."

Examples

These examples illustrate array declarations:

float matrix[10][15];

Language Reference 71

C Language Reference

The two-dimensional array named rna t r i x has 150 elements, each having float type.

struct {
float x, Y;

} complex[100];

This is a declaration of an array of structures. This array has 100 elements; each element
is a structure containing two members.

extern char *name[];

This statement declares the type and name of an array of pointers to char. The actual
definition of n a me occurs elsewhere.

Microsoft Specific ~

The type of integer required to hold the maximum size of an array is the size of size_t.
Defined in the header file STDDEF.H, size_t is an unsigned int with the range
OxOOOOOOOO to Ox7CFFFFFF.

END Microsoft Specific

Storage of Arrays
The storage associated with an array type is the storage required for all of its elements.
The elements of an array are stored in contiguous and increasing memory locations,
from the first element to the last.

Pointer Declarations
A "pointer declaration" names a pointer variable and specifies the type of the object to
which the variable points. A variable declared as a pointer holds a memory address.

Syntax

declarator:
pointer opt direct-declarator

direct-declarator:
identifier
(declarator)
direct-declarator [constant-expression opt]

direct-declarator (parameter-type-list)
direct-declarator (identifier-list opt)

72 Language Reference

Chapter 3 Declarations and Types

pointer:
* type-qualifier-list opt

* type-qualifier-list opt pointer

type-qualifier-list:
type-qualifier
type-qualifier-list type-qualifier

The type-specifier gives the type of the object, which can be any basic, structure, or
union type. Pointer variables can also point to functions, arrays, and other pointers.
(For information on declaring and interpreting more complex pointer types, refer to
"Interpreting More Complex Declarators," later in this chapter.)

By making the type-specifier void, you can delay specification of the type to which the
pointer refers. Such an item is referred to as a "pointer to void" and is written as voi d *.
A variable declared as a pointer to void can be used to point to an object of any type.
However, to perform most operations on the pointer or on the object to which it points, the
type to which it points must be explicitly specified for each operation. (Variables of type
char * and type void * are assignment-compatible without a type cast.) Such conversion
can be accomplished with a type cast (see "Type-Cast Conversions" in Chapter 4,
"Expressions and Assignments," for more information).

The type-qualifier can be either const or volatile, or both. These specify, respectively,
that the pointer cannot be modified by the program itself (const), or that the pointer can
legitimately be modified by some process beyond the control of the program (volatile).
(See "Type Qualifiers," earlier in this chapter, for more information on const and volatile.)

The declarator names the variable and can include a type modifier. For example, if
declarator represents an array, the type of the pointer is modified to be a pointer to
an array.

You can declare a pointer to a structure, union, or enumeration type before you define
the structure, union, or enumeration type. You declare the pointer by using the structure
or union tag as shown in the examples below. Such declarations are allowed because the
compiler does not need to know the size of the structure or union to allocate space for
the pointer variable.

Examples

The following examples illustrate pointer declarations.

char *message; /* Declar.es a pointer variable named message */

The message pointer points to a variable with char type.

int *pointers[10]; /* Declares an array of pointers */

The poi nters array has 10 elements; each element is a pointer to a variable with int type.

int C*pointer)[10]; /* Declares a pointer to an array of 10 elements */

Language Reference 73

C Language Reference

The pointer variable points to an array with 10 elements. Each element in this array has
int type.

int const *x; /* Declares a pointer variable. x.
to a constant value */

The pointer x can be modified to point to a: different int value, but the value to which it
points cannot be modified. .

const int some_object = 5 ;
int other_object = 37;
int *const y = &fixed_object;
const volatile *const z = &some_object;
int *const volatile w = &some_object;

The variable y in these declarations is declared as a constant pointer to an int value.
The value it points to can be modified, but the pointer itself must always point to the
same location: the address of fi xed_obj ect. Similarly, z is a constant pointer, but it
is also declared to point to an int whose value cannot be modified by the program. The
additional specifier vol at i 1 e indicates that although the value of the const int pointed to
by z cannot be modified by the program, it could legitimately be modified by a process
running concurrently with the program. The declaration of w specifies that the program
cannot change the value pointed to and that the program cannot modify the pointer.

struct list *next. *previous; /* Uses the tag for list */

This example declares two pointer variables, next and previ ous, that point to the structure
type 1 is t. This declaration can appear before the definition of the 1 i s t structure type
(see the next example), as long as the 1 i st type definition has the same visibility as the
declaration.

struct list
{

char *token;
int count;
struct list *next;

} 1 i ne;

The variable 1 i ne has the structure type named 1 i st.-The 1 i st structure type has three
members: the first member is a pointer to a char value, the second is an int value, and the
third is a pointer to another 1 i s t structure.

struct id
{

unsigned int id_no;
struct name *pname;

} record;

74 Language Reference

Chapter 3 Declarations and Types

The variable record has the structure type i d. Note that pname is declared as a pointer
to another structure type named name. This declaration can appear before the name type
is defined.

Storage of Addresses
The amount of storage required for an address and the meaning of the address depend on
the implementation of the compiler. Pointers to different types are not guaranteed to have
the same length. Therefore, sizeof(char *) is not necessarily equal to sizeof(int *).

Microsoft Specific ~

For the Microsoft C compiler, sizeof(char *) is equal to sizeof(int *).

END Microsoft Specific

Based Pointers
Microsoft Specific ~

For the Microsoft 32-bit C compiler, a based pointer is a 32-bit offset from a 32-bit pointer
base. Based addressing is useful for exercising control over sections where objects are
allocated, thereby decreasing the size of the executable file and increasing execution speed.
In general, the form for specifying a based pointer is

type __ based(base) declarator

The "based on pointer" variant of based addressing enables specification of a pointer as a
base. The based pointer, then, is an offset into the memory section starting at the beginning
of the pointer on which it is based. Pointers based on pointer addresses are the only form of
the __ based keyword valid in 32-bit compilations. In such compilations, they are 32-bit
displacements from a 32-bit base.

One use for pointers based on pointers is for persistent identifiers that contain pointers. A
linked list that consists of pointers based on a pointer can be saved to disk, then reloaded to
another place in memory, with the pointers remaining valid.

The following example shows a pointer based on a pointer.

void *vpBuffer;

struct llist_t
{

void __ based(vpBuffer) *vpData;
struct llist_t __ based(vpBuffer) *llNext;

} ;

The pointer vpBuffer is assigned the address of memory allocated at some later point in
the program. The linked list is relocated relative to the value of vpBuffer.

END Microsoft Specific

Language Reference 75

C Language Reference

Abstract Declarators
An abstract declarator is a declarator without an identifier, consisting of one or more
pointer, array, or function modifiers. The pointer modifier (*) always precedes the
identifier in a declarator; array ([]) and function (()) modifiers follow the identifier.
Knowing this, you can determine where the identifier would appear in an abstract
declarator and interpret the declarator accordingly. See the next section, "Interpreting More
Complex Declarators," for additional information and examples of complex declarators.
Generally typedef can be used to simplify dec1arators. See "Typedef Declarations," later
in this chapter.

Abstract declarators can be complex. Parentheses in a complex abstract declarator specify
a particular interpretation, just as they do for the complex declarators in declarations.

These examples illustrate abstract declarators:

int * /* The type name for a pointer to type int:

int *[3] /* An array of three pOinters to int

int (*) [5] /* A pointer to an array of five int

int *() /* A function with no parameter specification
/* returning a pointer to int

/* A pointer to a function taking no arguments and
* returning an int
*/

int (*) (void

/* An array of an unspecified number of constant pointers to

*/

*/

*/

*/
*/

* functions each with one parameter that has type unsigned int
* and an unspecified number of other parameters returning an int
*/

int (*const []) (unsigned into ...)

Note The abstract declarator consisting of a set of empty parentheses, (), is not
allowed because it is ambiguous. It is impossible to determine whether the implied
identifier belongs inside the parentheses (in which case it is an unmodified type) or
before the parentheses (in which case it is a function type).

76 Language Reference

Chapter 3 Declarations and Types

Interpreting More
Complex Declarators

You can enclose any declarator in parentheses to specify a particular interpretation of a
"complex declarator." A complex declarator is an identifier qualified by more than one
array, pointer, or function modifier. You can apply various combinations of array, pointer,
and function modifiers to a single identifier. Generally typedef may be used to simplify
declarations. See "Typedef Declarations," later in this chapter.

In interpreting complex declarators, brackets and parentheses (that is, modifiers to the
right of the identifier) take precedence over asterisks (that is, modifiers to the left of the
identifier). Brackets and parentheses have the same precedence and associate from left
to right. After the declarator has been fully interpreted, the type specifier is applied as the
last step. By using parentheses you can override the default association order and force a
particular interpretation. Never use parentheses, however, around an identifier name by
itself. This could be misinterpreted as a parameter list.

A simple way to interpret complex declarators is to read them "from the inside out,"
using the following four steps:

1. Start with the identifier and look directly to the right for brackets or parentheses
(if any).

2. Interpret these brackets or parentheses, then look to the left for asterisks.

3. If you encounter a right parenthesis at any stage, go back and apply rules I and 2 to
everything within the parentheses.

4. Apply the type specifier.

char *(*(*var)())[10];
A A A A

7 642 1 3 5

In this example, the steps are numbered in order and can be interpreted as follows:

1. The identifier va r is declared as

2. a pointer to

3. a function returning

4. a pointer to

5. an array of 10 elements, which are

6. pointers to

7. char values.

Language Reference 77

C Language Reference

Examples

The following examples illustrate other complex declarations and show how parentheses
can affect the meaning of a declaration.

int *var[5]; /* Array of pointers to int values */

The array modifier has higher priority than the pointer modifier, so va r is declared to be
an array. The pointer modifier applies to the type of the array elements; therefore, the array
elements are pointers to int values.

int (*var)[5]; /* Pointer to array of int values */

In this declaration for va r, parentheses give the pointer modifier higher priority than the
array modifier, and va r is declared to be a pointer to an array of five int values.

long *var(long, long); /* Function returning pointer to long */

Function modifiers also have higher priority than pointer modifiers, so this declaration
for va r declares va r to be a function returning a pointer to a long value. The function is
declared to take two long values as arguments.

long (*var)(long, long); /* Pointer to function returning long */

This example is similar to the previous one. Parentheses give the pointer modifier higher
priority than the function modifier, and va r is declared to be a pointer to a function that
returns a long value. Again, the function takes two long arguments.

struct both
{

int a;
char b;

/* Array of pointers to functions */
/* returning structures */

} (*var[5])(struct both, struct both);

The elements of an array cannot be functions, but this declaration demonstrates how to
declare an array of pointers to functions instead. In this example, va r is declared to be an
array of five pointers to functions that return structures with two members. The arguments
to the functions are declared to be two structures with the same structure type, both. Note
that the parentheses surrounding *va r [5] are required. Without them, the declaration is an
illegal attempt to declare an array of functions, as shown below:

/* ILLEGAL * /
struct both *var[5](struct both, struct both);

The following statement declares an array of pointers.

unsigned int *(* canst *name[5][10]) (void);

78 Language Reference

Chapter 3 Declarations and Types

The n a me array has 50 elements organized in a multidimensional array. The elements are
pointers to a pointer that is a constant. This constant pointer points to a function that has no
parameters and returns a pointer to an unsigned type.

This next example is a function returning a pointer to an array of three double values.

double (*var(double (*)[3]))[3];

In this declaration, a function returns a pointer to an array, since functions returning arrays
are illegal. Here va r is declared to be a function returning a pointer to an array of three
double values. The function va r takes one argument. The argument, like the return value,
is a pointer to an array of three double values. The argument type is given by a complex
abstract-declarator. The parentheses around the asterisk in the argument type are required;
without them, the argument type would be an array of three pointers to double values.
For a discussion and examples of abstract declarators, see "Abstract Declarators," earlier
in this chapter.

union sign
{

int x;
unsigned y;

} **var[5][5];

1* Array of arrays of pointers */
1* to pointers to unions */

As the above example shows, a pointer can point to another pointer, and an array can
contain arrays as elements. Here va r is an array of five elements. Each element is a
five-element array of pointers to pointers to unions with two members.

union sign *(*var[5])[5]; /* Array of pointers to arrays
of pointers to unions *1

This example shows how the placement of parentheses changes the meaning of the
declaration. In this example, va r is a five-element array of pointers to five-element arrays
of pointers to unions. For examples of how to use typedef to avoid complex declarations,
see "Typedef Declarations."

Initialization
An "initializer" is a value or a sequence of values to be assigned to the variable being
declared. You can set a variable to an initial value by applying an initializer to the
declarator in the variable declaration. The value or values of the initializer are assigned
to the variable.

The following sections describe how to initialize variables of scalar, aggregate, and string
types. "Scalar types" include all the arithmetic types, plus pointers. "Aggregate types"
include arrays, structures, and unions.

Language Reference 79

C Language Reference

Initializing Scalar Types
When initializing scalar types, the value of the assignment-expression is assigned to
the variable. The conversion rules for assignment apply. (See "Type Conversions" in
Chapter 4 for information on conversion rules.)

Syntax

declaration :
declaration-specifiers init-declarator-list opt;

declaration-specifiers:
storage-class-specifier declaration-specifiers opt

type-specifier declaration-specifiers opt

type-qualifier declaration-specifiers opt

init-declarator-list:
init-declarator
init-declarator-list , init-declarator

init-declarator:
declarator
declarator = initializer /* For scalar initialization */

initializer :
assignment-expression

You can initialize variables of any type, provided that you obey the following rules:

• Variables declared at the file-scope level can be initialized. If you do not explicitly
initialize a variable at the external level, it is initialized to 0 by default.

• A constant expression can be used to initialize any global variable declared with the
static storage-class-specifier. Variables declared to be static are initialized when
program execution begins. If you do not explicitly initialize a global static variable,
it is initialized to 0 by default, and every member that has pointer type is assigned
a null pointer.

• Variables declared with the auto or register storage-class specifier are initialized each
time execution control passes to the block in which they are declared. If you omit an
initializer from the declaration of an auto or register variable, the initial value of the
variable is undefined. For automatic and register values, the initializer is not restricted
to being a constant; it can be any expression involving previously defined values, even
function calls.

80 Language Reference

Chapter 3 Declarations and Types

• The initial values for external variable declarations and for all static variables,
whether external or internal, must be constant expressions. (For more information,
see "Constant Expressions" in Chapter 4.) Since the address of any externally declared
or static variable is constant, it can be used to initialize an internally declared static
pointer variable. However, the address of an auto variable cannot be used as a static
initializer because it may be different for each execution of the block. You can use
either constant or variable values to initialize auto and register variables.

• If the declaration of an identifier has block scope, and the identifier has external
linkage, the declaration cannot have an initialization.

Examples

The following examples illustrate initializations:

int x = 10;

The integer variable x is initialized to the constant expression 10.

register int *px = 0;

The pointer px is initialized to 0, producing a "null" pointer.

const int c = (3 * 1024);

This example uses a constant expression (3 * 1024) to initialize c to a constant value
that cannot be modified because of the const keyword.

int *b = &x;

This statement initializes the pointer b with the address of another variable, x.

int *const a = &z;

The pointer a is initialized with the address of a variable named z. However, since it is
specified to be a const, the variable a can only be initialized, never modified. It always
points to the same location.

int GLOBAL;

int function(void
{

}

i nt LOCAL
static int *lp = &LOCAL; 1* Illegal initialization */
static int *gp = &GLOBAL; /* Legal initialization */
register int *rp = &LOCAL; /* Legal initialization */

Language Reference 81

C Language Reference

The global variable GLOBAL is declared at the extemallevel, so it has global lifetime. The
local variable LOCAL has auto storage class and only has an address during the execution
of the function in which it is declared. Therefore, attempting to initialize the static pointer
variable 1 p with the address of LOCAL is not permitted. The static pointer variable gp can
be initialized to the address of GLOBAL because that address is always the same. Similarly,
*rp can be initialized because rp is a local variable and can have a nonconstant initializer.
Each time the block is entered, LOCAL has a new address, which is then assigned to rp.

Initializing Aggregate Types
An "aggregate" type is a structure, union, or array type. If an aggregate type contains
members of aggregate types, the initialization rules apply recursively.

Syntax

initializer :
{ initializer-list } /*For aggregate initialization */
{ initializer-list , }

initializer-list :
initializer
initializer-list , initializer

The initializer-list is a list of initializers separated by commas. Each initializer in the list
is either a constant expression or an initializer list. Therefore, initializer lists can be nested.
This form is useful for initializing aggregate members of an aggregate type, as shown
in the examples in this section. However, if the initializer for an automatic identifier is a
single expression, it need not be a constant expression; it merely needs to have appropriate
type for assignment to the identifier.

For each initializer list, the values of the constant expressions are assigned, in order,
to the corresponding members of the aggregate variable.

If initializer-list has fewer values than an aggregate type, the remaining members or
elements of the aggregate type are initialized to 0 for external and static variables.
The initial value of an automatic identifier not explicitly initialized is undefined. If
in,itializer-list has more values than an aggregate type, an error results. These rules
apply to each embedded initializer list, as well as to the aggregate as a whole.

A structure's initializer is either an expression of the same type, or a list of initializers for
its members enclosed in curly braces ({ }). Unnamed bit-field members are not initialized.

When a union is initialized, initializer-list must be a single constant expression. The value
of the constant expression is assigned to the first member of the union.

If an array has unknown size, the number of initializers determines the size of the array,
and its type becomes complete. There is no way to specify repetition of an initializer in C,
or to initialize an element in the middle of an array without providing all preceding values
as well. If you need this operation in your program, write the routine in assembly language.

82 Language Reference

Chapter 3 Declarations and Types

Note that the number of initializers can set the size of the array:

int x[] = { 0, 1, 2 }

If you specify the size and give the wrong number of initializers, however, the compiler
generates an error.

Microsoft Specific ~

The maximum size for an array is defined by size_t. Defined in the header file STDDEF.H,
size_t is an unsigned int with the range OxOOOOOOOO to Ox7CFFFFFF.

END Microsoft Specific

Examples

This example shows initializers for an array.

int P[4][3]
{

{ 1, 1, 1 },

{ 2, 2, 2 },

{ 3, 3, 3,} ,
{ 4, 4, 4,},

} ;

This statement declares P as a four-by-three array and initializes the elements of its first
row to 1, the elements of its second row to 2, and so on through the fourth row. Note that
the initializer list for the third and fourth rows contains commas after the last constant
expression. The last initializer list ({ 4, 4, 4,},) is also followed by a comma. These
extra commas are permitted but are not required; only commas that separate constant
expressions from one another, and those that separate one initializer list from another,
are required.

If an aggregate member has no embedded initializer list, values are simply assigned, in
order, to each member of the subaggregate. Therefore, the initialization in the previous
example is equivalent to the following:

int P[4][3]
{

1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4
} ;

Braces can also appear around individual initializers in the list and would help to clarify
the example above.

Language Reference 83

C Language Reference

When you initialize an aggregate variable, you must be careful to use braces and initializer
lists properly. The following example illustrates the compiler's interpretation of braces in
more detail:

typedef struct
{

int nl, n2, n3;
} triplet;

triplet nlist[2][3]
{

{ { 1, 2, 3 },

{ { 10,11,12 },

} ;

{ 4, 5, 6
{ 13,14,15

}, { 7, 8, 9 } }, /* Row 1 */
}, { 16,17,18 } } /* Row 2 */

In this example, n 1 is t is declared as a 2-by-3 array of structures, each structure having
three members. Row 1 of the initialization assigns values to the first row of n 1 i s t, as
follows:

1. The first left brace on row 1 signals the compiler that initialization of the first
aggregate member of nl i st (that is, nl i st[0]) is beginning.

2. The second left brace indicates that initialization of the first aggregate member of
nl i st[0] (that is, the structure at nl i st[0] [0]) is beginning.

3. The first right brace ends initialization of the structure n 1 i s t [0] [0]; the next left
brace starts initialization of n 1 i s t [0] [1] .

4. The process continues until the end of the line, where the closing right brace ends
initialization of n 1 i s t [0] .

Row 2 assigns values to the second row of n 1 i st in a similar way. Note that the outer
sets of braces enclosing the initializers on rows 1 and 2 are required. The following
construction, which omits the outer braces, would cause an error:

triplet nlist[2][3] /* THIS CAUSES AN ERROR */
{

{ 1, 2, 3 },{ 4, 5, 6 },{ 7, 8, 9 }, /* Li ne 1 */
{ 10,11,12 },{ 13,14,15 },{ 16,17,18 } /* Li ne 2 */

} ;

In this construction, the first left brace on line 1 starts the initialization of n 1 i s t [0] ,
which is an array of three structures. The values 1,2, and 3 are assigned to the three
members of the first structure. When the next right brace is encountered (after the value 3),
initialization of n 1 i s t [0] is complete, and the two remaining structures in the three
structure array are automatically initialized to O. Similarly, { 4,5,6 } initializes the first
structure in the second row of n 1 i st. The remaining two structures of n 1 is t [1] are set
to O. When the compiler encounters the next initializer list ({ 7,8,9 }), it tries to
initialize n 1 i s t [2]. Since n 1 i s t has only two rows, this attempt causes an error.

84 Language Reference

Chapter 3 Declarations and Types

In this next example, the three int members of x are initialized to 1,2, and 3, respectively.

struct list
{

i nt i. j. k;
float m[2][3];

} x = {

1.
2.
3.

{4.0. 4.0. 4.0}
} ;

In the 1 i st structure above, the three elements in the first row of m are initialized to 4.0;
the elements of the remaining row of m are initialized to 0.0 by default.

union
{

char x[2][3];
int i. j. k;

} y = { {

}

} ;

{' 1 '}.
{' 4'}

The union variable y, in this example, is initialized. The first element of the union is an
array, so the initializer is an aggregate initializer. The initializer list {' 1 '} assigns values
to the first row of the array. Since only one value appears in the list, the element in the
first column is initialized to the character 1, and the remaining two elements in the row
are initialized to the value 0 by default. Similarly, the first element of the second row of
x is initialized to the character 4, and the remaining two elements in the row are initialized
to the value o.

Initializing Strings
You can initialize an array of characters (or wide characters) with a string literal (or wide
string literal). For example:

char code[] = "abc";

initializes code as a four-element array of characters. The fourth element is the null
character, which terminates all string literals.

An identifier list can only be as long as the number of identifiers to be initialized. If you
specify an array size that is shorter than the string, the extra characters are ignored. For
example, the following declaration initializes code as a three-element character array:

char code[3] = "abcd";

Language Reference 85

C Language Reference

Only the first three characters of the initializer are assigned to code. The character d and
the string-terminating null character are discarded. Note that this creates an unterminated
string (that is, one without a 0 value to mark its end) and generates a diagnostic message
indicating this condition.

The declaration

char s[] = "abc", t[3] "abc";

is identical to

char s[] {'a', 'b', 'e', '\0'},
t[3] = {'a', 'b', 'e' };

If the string is shorter than the specified array size, the remaining elements of the array
are initialized to O.

Microsoft Specific ~

In Microsoft C, string literals can be up to 2048 bytes in length.

END Microsoft Specific

Storage of Basic Types
Table 3.2 summarizes the storage associated with each basic type.

Table 3.2 Sizes of Fundamental Types

Type Storage

char, unsigned char, signed char 1 byte

short,· unsigned short 2 bytes

int, unsigned int 4 bytes

long, unsigned long 4 bytes

float 4 bytes

double 8 bytes

long double 8 bytes

The C data types fall into general categories. The "integral types" include char, int,
short, long, signed, unsigned, and enum. The "floating types" include float, double,
and long double. The "arithmetic types" include all floating and integral types.

86 Language Reference

Chapter 3 Declarations and Types

Type char
The char type is used to store the integer value of a member of the representable character
set. That integer value is the ASCII code corresponding to the specified character.

Microsoft Specific ~

Character values of type unsigned char have a range from 0 to OxFF hexadecimal. A
signed char has range Ox80 to Ox7F. These ranges translate to 0 to 255 decimal, and -128
to +127 decimal, respectively. The /J compiler option changes the default from signed to
unsigned.

END Microsoft Specific

Type int
The size of a signed or unsigned int item is the standard size of an integer on a particular
machine. For example, in 16-bit operating systems, the int type is usually 16 bits, or
2 bytes. In 32-bit operating systems, the int type is usually 32 bits, or 4 bytes. Thus, the
int type is equivalent to either the short int or the long int type, and the unsigned int type
is equivalent to either the unsigned short or the unsigned long type, depending on the
target environment. The int types all represent signed values unless specified otherwise.

The type specifiers int and unsigned int (or simply unsigned) define certain features of
the C language (for instance, the enum type). In these cases, the definitions of int and
unsigned int for a particular implementation determine the actual storage.

Microsoft Specific ~

Signed integers are represented in two's-complement form. The most-significant bit holds
the sign: 1 for negative, 0 for positive and zero. The range of values is given in Table 1.3,
which is taken from the LIMITS.H header file.

END Microsoft Specific

Note The int and unsigned int type specifiers are widely used in C programs because
they allow a particular machine to handle integer values in the most efficient way for
that machine. However, since the sizes of the int and unsigned int types vary, programs
that depend on a specific int size may not be portable to other machines. To make
programs more portable, you can use expressions with the sizeof operator (as discussed
in "The sizeof Operator" in Chapter 4, "Expressions and Assignments") instead of
hard-coded data sizes.

Language Reference 87

C Language Reference

Sized Integer Types
Microsoft Specific ~

Microsoft C features support for sized integer types. You can declare 8-, 16-,32-, or 64-bit
integer variables by using the __ intn type specifier, where n is the size, in bits, of the
integer variable. The value of n can be 8, 16,32, or 64. The following example declares
one variable of each of the four types of sized integers:

__ i nt8 nSmall; II Declares 8-bit integer
int16 nMedium; II Declares 16-bit integer
i nt32 nLarge; II Declares 32-bit integer
int64 nHuge; II Declares 64-bit integer

The first three types of sized integers are synonyms for the ANSI types that have the
same size, and are useful for writing portable code that behaves identically across
multiple platforms. Note that the __ int8 data type is synonymous with type char,
__ int16 is synonymous with type short, and __ int32 is synonymous with type int.
The __ int64 type has no equivalent ANSI counterpart.

END Microsoft Specific

Type float
Floating-point numbers use the IEEE (Institute of Electrical and Electronics Engineers)
format. Single-precision values with float type have 4 bytes, consisting of a sign bit, an
8-bit excess-127 binary exponent, and a 23-bit mantissa. The mantissa represents a number
between 1.0 and 2.0. Since the high-order bit of the mantissa is always 1, it is not stored in
the number. This representation gives a range of approximately 3.4E-38 to 3.4E+38 for
type float.

You can declare variables as float or double, depending on the needs of your application.
The principal differences between the two types are the significance they can represent, the
storage they require, and their range. Table 3.3 shows the relationship between significance
and storage requirements.

Table 3.3 Floating-Point Types

Type

float

double

Significant digits

6-7

15-16

Number of bytes

4

8

Floating-point variables are represented by a mantissa, which contains the value of the
number, and an exponent, which contains the order of magnitude of the number.

88 Language Reference

Chapter 3 Declarations and Types

Table 3.4 shows the number of bits allocated to the mantissa and the exponent for each
floating-point type. The most significant bit of any float or double is always the sign bit.
If it is 1, the number is considered negative; otherwise, it is considered a positive number.

Table 3.4 Lengths of Exponents and Mantissas

Type Exponent length Mantissa length

float

double

8 bits

11 bits

23 bits

52 bits

Because exponents are stored in an unsigned form, the exponent is biased by half its
possible value. For type float, the bias is 127; for type double, it is 1023. You can
compute the actual exponent value by subtracting the bias value from the exponent value.

The mantissa is stored as a binary fraction greater than or equal to 1 and less than 2. For
types float and double, there is an implied leading 1 in the mantissa in the most-significant
bit position, so the mantissas are actually 24 and 53 bits long, respectively, even though the
most-significant bit is never stored in memory.

Instead of the storage method just described, the floating -point package can store binary
floating-point numbers as denormalized numbers. "Denormalized numbers" are nonzero
floating-point numbers with reserved exponent values in which the most-significant bit of
the mantissa is O. By using the denormalized format, the range of a floating-point number
can be extended at the cost of precision. You cannot control whether a floating-point
number is represented in normalized or denormalized form; the floating-point package
determines the representation. The floating-point package never uses a denormalized
form unless the exponent becomes less than the minimum that can be represented in a
normalized form.

Table 3.5 shows the minimum and maximum values you can store in variables of each
floating-point type. The values listed in this table apply only to normalized floating-point
numbers; denormalized floating-point numbers have a smaller minimum value. Note that
numbers retained in 80x87 registers are always represented in 80-bit normalized form;
numbers can only be represented in denormalized form when stored in 32-bit or 64-bit
floating-point variables (variables of type float and type long).

Table 3.5 Range of Floating-Point Types

Type

float

double

Minimum value

1.175494351 E-38

2.2250738585072014 E-308

Maximum value

3.402823466 E + 38

1.7976931348623158 E + 308

If precision is less of a concern than storage, consider using type float for floating-point
variables. Conversely, if precision is the most important criterion, use type double.

Language Reference 89

C Language Reference

Floating-point variables can be promoted to a type of greater significance (from type
float to type double). Promotion often occurs when you perform arithmetic on floating
point variables. This arithmetic is always done in as high a degree of precision as the
variable with the highest degree of precision. For example, consider the following type
declarations:

float f_short;
double f_long;
long double f_longer;

In the preceding example, the variable f _short is promoted to type double and multiplied
by f _long; then the result is rounded to type float before being assigned to f _short.

In the following example (which uses the declarations from the preceding example), the
arithmetic is done in float (32-bit) precision on the variables; the result is then promoted to
type double:

Type double
Double precision values with double type have 8 bytes. The format is similar to the float
format except that it has an II-bit excess-I 023 exponent and a 52-bit mantissa, plus
the implied high-order 1 bit. This format gives a range of approximately 1.7E-308 to
1.7E+308 for type double.

Microsoft Specific ~

The double type contains 64 bits: 1 for sign, 11 for the exponent, and 52 for the mantissa.
Its range is +/-1.7E308 with at least 15 digits of precision.

END Microsoft Specific

Type long double
The range of values for a variable is bounded by the minimum and maximum values
that can be represented internally in a given number of bits. However, because of C' s
conversion rules (discussed in detail in "Type Conversions" in Chapter 4, "Expressions
and Assignments") you cannot always use the maximum or minimum value for a constant
of a particular type in an expression.

For example, the constant expression -32768 consists of the arithmetic negation operator
(-) applied to the constant value 32,768. Since 32,768 is too large to represent as a short
int, it is given the long type. Consequently, the constant expression -32768 has long type.
You can only represent -32,768 as a short int by type-casting it to the short type. No
information is lost in the type cast, since -32,768 can be represented internally in 2 bytes.

90 Language Reference

Chapter 3 Declarations and Types

The value 65,000 in decimal notation is considered a signed constant. It is given the
long type because 65,000 does not fit into a short. A value such as 65,000 can only be
represented as an unsigned short by type-casting the value to unsigned short type, by
giving the value in octal or hexadecimal notation, or by specifying it as 65000U. You
can cast this long value to the unsigned short type without loss of information, since
65,000 can fit in 2 bytes when it is stored as an unsigned number.

Microsoft Specific ~

The long double contains 80 bits: 1 for sign, 15 for exponent, and 64 for mantissa.
Its range is +/-1.2E4932 with at least 19 digits of precision. Although long double
and double are separate types, the representation of long double and double is identical.

END Microsoft Specific

Incomplete Types
An incomplete type is a type that describes an identifier but lacks information needed
to determine the size of the identifier. An "incomplete type" can be:

• A structure type whose members you have not yet specified.

• A union type whose members you have not yet specified.

• An array type whose dimension you have not yet specified.

The void type is an incomplete type that cannot be completed. To complete an incomplete
type, specify the missing information. The following examples show how to create and
complete the incomplete types.

• To create an incomplete structure type, declare a structure type without specifying its
members. In this example, the ps pointer points to an incomplete structure type called
student.

struct student *ps;

• To complete an incomplete structure type, declare the same structure type later in the
same scope with its members specified, as in

struct student
{

int num;
/* student structure now completed */

Language Reference 91

C Language Reference

• To create an incomplete array type, declare an array type without specifying its
repetition count. For example:

char a[]; /* a has incomplete type */

• To complete an incomplete array type, declare the same name later in the same scope
with its repetition cO\lnt specified, as in

char a[25]; /* a now ha~ complete type */

Typedef'Declarations
A typedef declaration is a declaration with typedef as the storage class. The declarator
becomes a new type. You can use typedef declarations to construct shorter or more
meaningful names for types already defined by C or for types that you have declared.
Typedef names allow you to encapsulate implementation details that may change.

A typedef declaration is interpreted in the same way as a variable or function declaration,
but the identifier, instead of assuming the type specified by the declaration, becomes a
synonym for the type.

Syntax

declaration :
declaration-specifiers init-declarator-list opt;

declaration-specifiers :
storage-class-specifier declaration-specifiers opt

type-specifier declaration-specifiers opt

type-qualifier declaration-specifiers opt

storage-class-specifier :
typedef

type-specifier:
void
char
short
int
long
float
double
signed
unsigned
struct-or-union-speciJier
enum-specifier
typedef-name

typedef-name :
identifier

92 Language Reference

Chapter 3 Declarations and Types

Note that a typedef declaration does not create types. It creates synonyms for existing
types, or names for types that could be specified in other ways. When a typedef name
is used as a type specifier, it can be combined with certain type specifiers, but not other.s.
Acceptable modifiers include const and volatile.

Typedef names share the name space with ordinary identifiers (see "Name Spaces" in
Chapter 2, "Program Structure," for more information). Therefore, a program can have
a typedef name and a local-scope identifier by the same name. For example:

.~

typedef char FlagType;

int main()
{

}

int myproc(int)
{

int FlagType;

When declaring a local-scope identifier by the same name as a typedef, or when declaring
a member of a structure or union in the same scope or in an inner scope, the type specifier
must be specified. This example illustrates this constraint:

typedef char FlagType;
const FlagType x;

To reuse the Fl agType name for an identifier, a structure member, or a union member,
the type must be provided:

const int FlagType; /* Type specifier required */

It is not sufficient to say

const FlagType; /* Incomplete specification */

because the Fl agType is taken to be part of the type, not an identifier that is being
redeclared. This declaration is taken to be an illegal declaration like

int; /* Illegal declaration */

You can declare any type with typedef, including pointer, function, and array types. You
can declare a typedef name for a pointer to a structure or union type before you define the
structure or union type, as long as the definition has the same visibility as the declaration.

Language Reference 93

C Language Reference

Typedef names can be used to improve code readability. All three of the following
declarations of signa 1 specify exactly the same type, the first without making use of
any typedef names.

typedef void fv(int). (*pfv)(int); /* typedef declarations */

void (*signal(into void (*) (int))) (int);
fv *signal(into fv *); /* Uses typedef type */
pfv signal(int, pfv); /* Uses typedef type */

Examples

The following examples illustrate typedef declarations:

typedef int WHOLE; /* Declares WHOLE to be a synonym for int */

Note that WHOLE could now be used in a variable declaration such as WHOLE i; or const
WHOLE i;. However, the declaration long WHOLE i; would be illegal.

typedef struct club
{

char name[30];
int size, year;

} GROUP;

This statement declares GROUP as a structure type with three members. Since a structure
tag, cl ub, is also specified, either the typedef name (GROUP) or the structure tag can be
used in declarations. You must use the struct keyword with the tag, and you cannot use
the struct keyword with the typedef name.

typedef GROUP *PG; /* Uses the previous typedef name
to declare a pointer */

The type PG is declared as a pointer to the GROUP type, which in turn is defined as a
structure type.

typedef void DRAWF(int, int);

This· example provides the type DRAW F for a function returning no value and taking two
int arguments. This means, for example, that the declaration

DRAWF box;

is equivalent to the declaration

void box(int, int);

94 Language Reference

Chapter 3 Declarations and Types

Extended Storage-Class Attributes
Microsoft Specific ~

Extended attribute syntax. simplifies and standardizes the Microsoft-specific extensions
to the C language. The storage-class attributes that use extended attribute syntax include
thread, naked, dllimport, and dllexport.

The extended attribute syntax for specifying storage-class information uses the __ declspec
keyword, which specifies that an instance of a given type is to be stored with a Microsoft
specific storage-class attribute (thread, naked, dllimport, or dllexport). Examples of other
storage-class modifiers include the static and extern keywords. However, these keywords
are part of the ANSI C standard and as such are not covered by extended attribute syntax..

Syntax

storage-class-specifier :
__ declspec (extended-decl-modifier-seq) /* Microsoft Specific */

extended-decl-modifier-seq :
extended-dec I-modifier opt

extended-decl-modifier-seq extended-dec I-modifier

extended-decl-modifier :
thread
naked
dllimport
dllexport

White space separates the declaration modifiers. Note that extended-decl-modifier-seq
can be empty; in this case, __ declspec has no effect.

The thread, naked, dllimport, and dllexport storage-class attributes are a property only
of the declaration of the data or function to which they are applied; they do not redefine
the type attributes of the function itself. The thread attribute affects data only. The naked
attribute affects functions only. The dllimport and dllexport attributes affect functions
and data.

END Microsoft Specific

DLL Import and Export
Microsoft Specific ~

The dllimport and dllexport storage-class modifiers are Microsoft-specific extensions to
the C language. These modifiers define the DLL's interface to its client (the executable file
or another DLL). For specific information about using these modifiers, see "DLL Import
and Export Functions" in Chapter 6, "Functions."

END Microsoft Specific

Language Reference 95

C Language Reference

Naked
Microsoft Specific ~

The naked storage-class attribute is a Microsoft-specific extension to the C language.
The compiler generates code without prolog and epilog code for functions declared with
the naked storage-class attribute. Naked functions are useful when you need to write your
own prolog/epilog code sequences using inline assembler code. Naked functions are useful
for writing virtual device drivers.

For specific information about using the naked attribute, see "Naked Functions" in
Chapter 6, "Functions."

END Microsoft Specific

Thread Local Storage
Microsoft Specific ~

Thread Local Storage (TLS) is the mechanism by which each thread in a given
multithreaded process allocates storage for thread-specific data. In standard multithreaded
programs, data is shared among all threads of a given process, whereas thread local
storage is the mechanism for allocating per-thread data. For a complete discussion of
threads, see "Processes and Threads" in the Platform SDK online documentation.

The Microsoft C language includes the extended storage-class attribute, thread, which
is used with the __ declspec keyword to declare a thread local variable. For example, the
following code declares an integer thread local variable and initializes it with a value:

__ declspec(thread) int tls_i =.1;

These guidelines must be observed when you are declaring statically bound thread local
variables:

• The use of __ declspec(thread) may interfere with delay loading ofDLL imports.

• You can apply the thread attribute only to data declarations and definitions. It cannot
be used on function declarations or definitions. For example, the following code
generates a compiler error:

#define Thread __ declspec(thread)
Thread void func(); /* Error */

96 Language Reference

Chapter 3 Declarations and Types

• You can specify the thread attribute only on data items with static storage duration.
This includes global data (both static and extern) and local static data. You cannot
declare automatic data with the thread attribute. For example, the following code
generates compiler errors:

#define Thread __ declspec(thread)
voi d func1 ()
{

Thread int tls_i;

int func2(Thread int tls_i
{

}

/* Error */

/* Error */

• You must use the thread attribute for the declaration and the definition of thread local
data, regardless of whether the declaration and definition occur in the same file or
separate files. For example, the following code generates an error:

#define Thread __ declspec(thread)
extern int tls_i; /* This generates an error, because the */
int Thread tls_i; /* declaration and the definition differ. */

• You cannot use the thread attribute as a type modifier. For example, the following code
generates a compiler error:

char *ch __ declspec(thread); /* Error */

• The address of a thread local variable is not considered constant, and any expression
involving such an address is not considered a constant expression. This means that you
cannot use the address of a thread local variable as an initializer for a pointer. For
example, the compiler flags the following code as an error:

#define Thread __ declspec(thread
Thread int tls_i;
int *p = &tls_i; /* Error */

• C permits initialization of a variable with an expression involving a reference to itself,
but only for objects of nonstatic extent. For example:

#define Thread __ declspec(thread)

Thread int tls i t 1 s_ ~ ; /* Error */
int j = j; /* Error */
Thread int tls i sizeof(tls i) /* Okay */

Note that a sizeof expression that includes the variable being initialized does not
constitute a reference to itself and is allowed.

• The use of __ declspec(thread) may interfere with delay loading of DLL imports.

Language Reference 97

C Language Reference

For more information about using the thread attribute, see "Multithreading Topics" in the
Microsoft Visual C++ 6.0 Programmer's Guide online.

END Microsoft Specific

98 L~guage Reference

CHAPTER 4

Expressions and Assignments

This chapter describes how to form expressions and to assign values in the C language.
Constants, identifiers, strings, and function calls are all operands that are manipulated in
expressions. The C language has all the usual language operators. This chapter covers
those operators as well as operators that are unique to C or Microsoft C. The topics
discussed include:

• Operands and expressions

• Operators

• Type conversions

Operands and Expressions
An "operand" is an entity on which an operator acts. An "expression" is a sequence
of operators and operands that performs any combination of these actions:

• Computes a value

• Designates an object or function

• Generates side effects

Operands in C include constants, identifiers, strings, function calls, subscript expressions,
member-selection expressions, and complex expressions formed by combining operands
with operators or by enclosing operands in parentheses. The syntax for these operands is
given in the next section, "Primary Expressions."

Language Reference 99

C Language Reference

Primary Expressions
The operands in expressions are called "primary expressions."

Syntax

primary-expression:
identifier
constant
string-literal
(expression)

expression :
assignment-expression
expression, assignment-expression

Identifiers in Primary Expressions
Identifiers can have integral, float, enum, struct, union, array, pointer, or function type.
An identifier is a primary expression provided it has been declared as designating an object
(in which case it is an I-value) or as a function (in which case it is a function designator).
See "L-Value and R-Value Expressions" for a definition of I-value.

The pointer value represented by an array identifier is not a variable, so an array identifier
cannot form the left-hand operand of an assignment operation and therefore is not a
modifiable I-value.

An identifier declared as a function represents a pointer whose value is the address of
the function. The pointer addresses a function returning a value of a specified type.
Thus, function identifiers also cannot be I-values in assignment operations. For more
information, see "Identifiers" in Chapter 1, "Elements of C."

Constants in Primary Expressions
A constant operand has the value and type of the constant value it represents. A character
constant has int type. An integer constant has int, long, unsigned int, or unsigned long
type, depending on the integer's size and on the way the value is specified. See
"Constants" in Chapter 1, "Elements of C," for more information.

100 Language Reference

Chapter 4 Expressions and Assignments

String Literals in Primary Expressions
A "string literal" is a character, wide character, or sequence of adjacent characters enclosed
in double quotation marks. Since they are not variables, neither string literals nor any of
their elements can be the left-hand operand in an assignment operation. The type of a
string literal is an array of char (or an array of wchar_t for wide-string literals). Arrays
in expressions are converted to pointers. See "String Literals" in Chapter 1, "Elements
of C," for more information about strings.

Expressions in Parentheses
You can enclose any operand in parentheses without changing the type or value of the
enclosed expression. For example, in the expression:

(10 + 5) / 5

the parentheses around 10 + 5 mean that the value of 10 + 5 is evaluated first and it
becomes the left operand of the division (I) operator. The result of (10 + 5) / 5 is 3.
Without the parentheses, 10 + 5 / 5 would evaluate to 11.

Although parentheses affect the way operands are grouped in an expression, they cannot
guarantee a partiCUlar order of evaluation in all cases. For example, neither the parentheses
nor the left-to-right grouping of the following expression guarantees what the value of i
will be in either of the subexpressions:

(i++ +1) * (2 + i)

The compiler is free to evaluate the two sides of the multiplication in any order. If the
initial value of i is zero, the whole expression could be evaluated as either of these two
statements:

o + 1 + 1
(0 + 1 + 1

* (2 + 1
* (2 + 0

Exceptions resulting from side effects are discussed in "Side Effects," later in this chapter.

L-Value and.R-Value Expressions
Expressions that refer to memory locations are called "I-value" expressions. An I-value
represents a storage region's "locator" value, or a "left" value, implying that it can appear
on the left of the equal sign (=). L-values are often identifiers.

Expressions referring to modifiable locations are called "modifiable I-values." A
modifiable I-value cannot have an array type, an incomplete type, or a type with the const
attribute. For structures and unions to be modifiable I-values, they must not have any
members with the const attribute. The name of the identifier denotes a storage location,
while the value of the variable is the value stored at that location.

Language Reference 101

C Language Reference

An identifier is a modifiable I-value if it refers to a memory location and if its type is
arithmetic, structure, union, or pointer. For example, if pt r is a pointer to a storage region,
then *pt r is a modifiable I-value that designates the storage region to which pt r points.

Any of the following C expressions can be I-value expressions:

• An identifier of integral, floating, pointer, structure, or union type

• A SUbscript ([]) expression that does not evaluate to an array

• A member-selection expression (-> or .)

• A unary-indirection (*) expression that does not refer to an array

• An I-value expression in parentheses

• A const object (a nonmodifiable I-value)

The term "r-value" is sometimes used to describe the value of an expression and to
distinguish it from an I-value. AlII-values are r-values but not all r-valu~s are I-values.

Microsoft Specific ~

C includes an extension to the ANSI C standard that allows casts of I-values to be
used as I-values, as long as the size of the object is not lengthened through the cast.
(See "Type-Cast Conversions," at the end of this chapter, for more information.)
The following example illustrates this feature:

char *p ;
short i;
long l;

(long *) p = &l
(long) i = 1 ;

1* Legal cast *1
1* III egal cast */

The default for C is that the Microsoft extensions are enabled. Use the /Za compiler option
to disable these extensions.

END Microsoft Specific

102 Language Reference

Chapter 4 Expressions and Assignments

Constant Expressions
A constant expression is evaluated at compile time, not run time, and can be used in any
place that a constant can be used. The constant expression must evaluate to a constant that
is in the range of representable values for that type. The operands of a constant expression
can be integer constants, character constants, floating-point constants, enumeration
constants, type casts, sizeof expressions, and other constant expressions.

Syntax

constant-expression:
conditional-expression

conditional-expression :
logical-DR-expression
logical-DR-expression ? expression: conditional-expression

expression :
assignment-expression
expression, assignment-expression

assignment-expression :
conditional-expression
unary-expression assignment-operator assignment-expression

assignment-operator: one of
= *= 1= %= += -= «= »= &= A= 1=

The nonterminals for struct declarator, enumerator, direct declarator, direct-abstract
declarator, and labeled statement contain the constant-expression nonterminal.

An integral constant expression must be used to specify the size of a bit-field member of a
structure, the value of an enumeration constant, the size of an array, or the value of a case
constant.

Constant expressions used in preprocessor directives are subject to additional restrictions.
Consequently, they are known as "restricted constant expressions." A restricted constant
expression cannot contain sizeof expressions, enumeration constants, type casts to any
type, or floating-type constants. It can, however, contain the special constant expression
defined(identifier).

Language Reference 103

C Language Reference

Expression Evaluation
Expressions involving assignment, unary increment, unary decrement, or calling a function
may have consequences incidental to their evaluation (side effects). When a "sequence
point" is reached, everything preceding the sequence point, including any side effects, is
guaranteed to have been evaluated before evaluation begins on anything following the
sequence point.

"Side effects" are changes caused by the evaluation of an expression. Side effects occur
whenever the value of a variable is changed by an expression evaluation. All assignment
operations have side effects. Function calls can also have side effects if they change the
value of an externally visible item, either by direct assignment or by indirect assignment
through a pointer.

Side Effects
The order of evaluation of expressions is defined by the specific implementation, except
when the language guarantees a particular order of evaluation (as outlined in "Precedence
and Order of Evaluation," later in this chapter). For example, side effects occur in the
following function calls:

add(i + I, i = j + 2);
myproc(getc(), getc());

The arguments of a function call can be evaluated in any order. The expression i + 1

may be evaluated before i = j + 2, or i = j + 2 may be evaluated before i + 1. The
result is different in each case. Likewise, it is not possible to guarantee what characters
are actually passed to the myproc. Since unary increment and decrement operations involve
assignments, such operations can cause side effects, as shown in the following example:

xCi] = i++;

In this example, the value of x that is modified is unpredictable. The value of the subscript
could be either the new or the old value of i. The result can vary under different compilers
or different optimization levels.

Since C does not define the order of evaluation of side effects, both evaluation methods
discussed above are correct and either may be implemented. To make sure that your code
is portable and clear, avoid statements that depend on a particular order of evaluation for
side effects.

104 Language Reference

Chapter 4 Expressions and Assignments

Sequence Points
Between consecutive "sequence points" an object's value can be modified only once by
an expression. The C language defines the following sequence points:

• Left operand of the logical-AND operator (&&). The left operand of the logical-AND
operator is completely evaluated and all side effects complete before continuing. If the
left operand evaluates to false (0), the other operand is not evaluated.

• Left operand of the logical-OR operator (II). The left operand of the logical-OR
operator is completely evaluated and all side effects complete before continuing.
If the left operand evaluates to true (nonzero), the other operand is not evaluated.

• Left operand of the comma operator. The left operand of the comma operator is
completely evaluated and all side effects complete before continuing. Both operands
of the comma operator are always evaluated. Note that the comma operator in a
function call does not guarantee an order of evaluation.

• Function-call operator. All arguments to a function are evaluated and all side effects
complete before entry to the function. No order of evaluation among the arguments
is specified.

• First operand of the conditional operator. The first operand of the conditional operator
is completely evaluated and all side effects complete before continuing.

• The end of a full initialization expression (that is, an expression that is not part of
another expression such as the end of an initialization in a declaration statement).

• The expression in an expression statement. Expression statements consist of an
optional expression followed by a semicolon (;). The expression is evaluated for
its side effects and there is a sequence point following this evaluation.

• The controlling expression in a selection (if or switch) statement. The expression is
completely evaluated and all side effects complete before the code dependent on the
selection is executed.

• The controlling expression of a while or do statement. The expression is completely
evaluated and all side effects complete before any statements in the next iteration of
the while or do loop are executed.

• Each of the three expressions of a for statement. The expressions are completely
evaluated and all side effects complete before any statements in the next iteration of
the for loop are executed.

• The expression in a return statement. The expression is completely evaluated and all
side effects complete before control returns to the calling function.

Language Reference 105

C Language Reference

Operators
There are three types of operators. A unary expression consists of either a unary operator
prepended to an operand, or the sizeof keyword followed by an expression. The expression
can be either the name of a variable or a cast expression. If the expression is a cast
expression, it must be enclosed in parentheses. A binary expression consists of two
operands joined by a binary operator. A ternary expression consists of three operands
joined by the conditional-expression operator.

C includes the following unary operators:

Symbol Name

--!

* &

sizeof

+

++

Negation and complement operators

Indirection and address-of operators

Size operator

Unary plus operator

Unary increment and decrement operators

Binary operators associate from left to right. C provides the following binary operators:

Symbol Name

* I %

+ -

« »

< > <= >= -- !=

& I A

&& II

Multiplicative operators

Additive operators

Shift operators

Relational operators

Bitwise operators

Logical operators

Sequential-evaluation operator

The conditional-expression operator has lower precedence than binary expressions and
differs from them in being right associative

Expressions with operators also include assignment expressions, which use unary or
binary assignment operators. The unary assignment operators are the increment (++) and
decrement (--) operators; the binary assignment operators are the simple-assignment
operator (=) and the compound-assignment operators. Each compound-assignment
operator is a combination of another binary operator with the simple-assignment operator.

106 Language Reference

Chapter 4 Expressions and Assignments

Precedence and Order of Evaluation
The precedence and associativity of C operators affect the grouping and evaluation of
operands in expressions. An operator's precedence is meaningful only if other operators
with higher or lower precedence are present. Expressions with higher-precedence operators
are evaluated first. Precedence can also be described by the word "binding." Operators
with a higher precedence are said to have tighter binding.

Table 4.1 summarizes the precedence and associativity (the order in which the operands
are evaluated) of C operators, listing them in order of precedence from highest to lowest.
Where several operators appear together, they have equal precedence and are evaluated
according to their associativity. The operators in the table are described in the sections
beginning with "Postfix Operators." The rest of this section gives general information
about precedence and associativity.

Table 4.1 Precedence and Associativity of C Operators

Symbol1 Type of Operation Associativity

[] () . -> postfix ++ and postfix -- Expression Left to right

prefix ++ and prefix -- Unary Right to left
sizeof & * +--!
typecasts Unary Right to left

* 1 % Multiplicative Left to right

+ - Additive Left to right

« » Bitwise shift Left to right

< > <= >= Relational Left to right

-- != Equality Left to right

& Bitwise-AND Left to right
A Bitwise-exclusive-OR Left to right

I Bitwise-inclusive-OR Left to right

&& Logical-AND Left to right

II Logical-OR Left to right

? : Conditional-expression Right to left

= *= 1= %= Simple and compound Right to left
+= -= «= »= assignment2

&= A= 1=
Sequential evaluation Left to right

1. Operators are listed in descending order of precedence. If several operators appear on the same line or in a group,
they have equal precedence.

2. All simple and compound-assignment operators have equal precedence.

Language Reference 107

C Language Reference

An expression can contain several operators with equal precedence. When several such
operators appear at the same level in an expression, evaluation proceeds according to the
associativity of the operator, either from right to left or from left to right. The direction
of evaluation does not affect the results of expressions that include more than one
multiplication (*), addition (+), or binary-bitwise (& I A) operator at the same level.
Order of operations is not defined by the language. The compiler is free to evaluate
such expressions in any order, if the compiler can guarantee a consistent result.

Only the sequential-evaluation (,), logical-AND (&&), logical-OR (II),
conditional-expression (? :), and function-call operators constitute sequence
points and therefore guarantee a particular order of evaluation for their operands.
Thefunction-call operator is the set of parentheses following the function identifier.
The sequential-evaluation operator (,) is guaranteed to evaluate its operands from
left to right. (Note that the comma operator in a function call is not the same as the
sequential-evaluation operator and does not provide any such guarantee.) For more
information, see "Sequence Points," earlier in this chapter.

Logical operators also guarantee evaluation of their operands from left to right.
However, they evaluate the smallest number of operands needed to determine the
result of the expression. This is called "short-circuit" evaluation. Thus, some operands
of the expression may not be evaluated. For example, in the expression

x && y++

the second operand, y++, is evaluated only if x is true (nonzero). Thus, y is not incremented
if x is false (0).

Examples

The following list shows how the compiler automatically binds several sample
expressions:

Expression

a & b II c

a = b II c

q && r II s --

Automatic Binding

(a & b) I I c

a = (b I I c)

(q && r) I I s--

In the first expression, the bitwise-AND operator (&) has higher precedence than the
logical-OR operator (II), so a & b forms the first operand of the logical-OR operation.

In the second expression, the logical-OR operator (II) has higher precedence than the
simple-assignment operator (=), so b II c is grouped as the right-hand operand in the
assignment. Note that the value assigned to a is either 0 or 1.

108 Language Reference

Chapter 4 Expressions and Assignments

The third expression shows a correctly formed expression that may produce an unexpected
result. The logical-AND operator (&&) has higher precedence than the logical-OR operator
(II), so q && r is grouped as an operand. Since the logical operators guarantee evaluation
of operands from left to right, q && r is evaluated before s - -. However, if q && r
evaluates to a nonzero value, s - - is not evaluated, and s is not decremented. If not
decrementing s would cause a problem in your program, s - - should appear as the first
operand of the expression, or s should be decremented in a separate operation.

The following expression is illegal and produces a diagnostic message at compile time:

Illegal Expression Default Grouping

p == 0 ? P += 1: p += 2 (p == 0 ? P += 1 : p) += 2

In this expression, the equality operator (==) has the highest precedence, so p == 0 is
grouped as an operand. The conditional-expression operator (? :) has the next-highest
precedence. Its first operand is p == 0, and its second operand is p += 1. However, the
last operand of the conditional-expression operator is considered to be p rather than p +=

2, since this occurrence of p binds more closely to the conditional-expression operator than
it does to the compound-assignment operator. A syntax error occurs because += 2 does not
have a left-hand operand. You should use parentheses to prevent errors of this kind and
produce more readable code. For example, you could use parentheses as shown below to
correct and clarify the preceding example:

(p == 0) ? (p += 1) : (p += 2)

Usual Arithmetic Conversions
Most C operators perform type conversions to bring the operands of an expression to a
common type or to extend short values to the integer size used in machine operations. The
conversions performed by C operators depend on the specific operator and the type of the
operand or operands. However, many operators perform similar conversions on operands
of integral and floating types. These conversions are known as "arithmetic conversions."
Conversion of an operand value to a compatible type causes no change to its value.

The arithmetic conversions summarized below are called "usual arithmetic conversions."
These steps are applied only for binary operators that expect arithmetic type and only if
the two operands do not have the same type. The purpose is to yield a common type
which is also the type of the result. To determine which conversions actually take place,
the compiler applies the following algorithm to binary operations- in the expression. The
steps below are not a precedence order.

1. If either operand is of type long double, the other operand is converted to type
long double.

2. If the above condition is not met and either operand is of type double, the other
operand is converted to type double.

Language Reference 109

C Language Reference

3. If the above two conditions are not met and either operand is of type float, the other
operand is converted to type float.

4. If the above three conditions are not met (none of the operands are of floating types),
then integral conversions are performed on the operands as follows:

• If either operand is of type unsigned long, the other operand is converted to type
unsigned long.

• If the above condition is not met and either operand is of type long and the other
of type unsigned int, both operands are converted to type unsigned long.

• If the above two conditions are not met, and either operand is of type long, the
other operand is converted to type long.

• If the above three conditions are not met, and either operand is of type unsigned
int, the other operand is converted to type unsigned int.

• If none of the above conditions are met, both operands are converted to type int.

The following code illustrates these conversion rules:

float fVal;
double dVal;
int iVal;
unsigned long ulVal;

dVal = iVal * ulVal; 1* iVal converted to unsigned long
* Uses step 4.
* Result of multiplication converted to double
*1

dVa 1 ul Va 1 + fVa 1; 1* ul Va 1 converted to float

110 Language Reference

* Uses step 3.
* Result of addition converted to double
*/

Chapter 4 Expressions and Assignments

Postfix Operators
The postfix operators have the highest precedence (the tightest binding) in expression
evaluation.

Syntax

postfix-expression:
primary-expression
postfix-expression [expression]
postfix-expression (argument-expression-list opt)

postfix-expression. identifier
postfix-expression -> identifier
postfix-expression ++
postfix-expression --

Operators in this precedence level are the array subscripts, function calls, structure and
union members, and postfix increment and decrement operators.

One-Dimensional Arrays
A postfix expression followed by an expression in square brackets ([]) is a subscripted
representation of an element of an array object. A subscript expression represents the value
at the address that is expression positions beyond postfix-expression when expressed as

postfix-expression [expression]

Usually, the value represented by postfix-expression is a pointer value, such as an array
identifier, and expression is an integral value. However, all that is required syntactically
is that one of the expressions be of pointer type and the other be of integral type. Thus the
integral value could be in the postfix-expression position and the pointer value could be in
the brackets in the expression, or "subscript," position. For example, this code is legal:

int sum, *ptr, a[10];

int maine)
{

ptr = a;
sum = 4[ptr];

}

Language Reference 111

C Language Reference

Subscript expressions are generally used to refer to array elements, but you can apply a
subscript to any pointer. Whatever the order of values, expression must be enclosed in
brackets ([]).

The subscript expression is evaluated by adding the integral value to the pointer value,
then applying the indirection operator (*) to the result. (See "Indirection and Address-of
Operators," later in this chapter, for a discussion of the indirection operator.) In effect,
for a one-dimensional array, the following four expressions are equivalent, assuming that
a is a pointer and b is an integer:

arb]
*(a + b)

*(b + a)

bra]

According to the conversion rules for the addition operator (given in Additive Operators),
the integral value is converted to an address offset by multiplying it by the length of the
type addressed by the pointer.

For example, suppose the identifier 1 i ne refers to an array of int values. The following
procedure is used to evaluate the subscript expression 1 i n e [i] :

1. The integer value i is multiplied by the number of bytes defined as the length of an int
item. The converted value of i represents i int positions.

2. This converted value is added to the original pointer value (1 i ne) to yield an address
that is offset i int positions from 1 i ne.

3. The indirection operator is applied to the new address. The result is the value of the
array element at that position (intuitively, 1 i ne [i J).

The subscript expression 1 i n e [0] represents the value of the first element of line, since the
offset from the address represented by 1 i ne is O. Similarly, an expression such as 1 i ne [5]

refers to the element offset five positions from line, or the sixth element of the array.

Multidimensional Arrays
A subscript expression can also have mUltiple subscripts, as follows:

expression1 [expression2] [expression3] ...

Subscript expressions associate from left to right. The leftmost subscript expression,
expression1[expression2], is evaluated first. The address that results from adding
expression1 and expression2 forms a pointer expression; then expression3 is added to this
pointer expression to form a new pointer expression, and so on until the last subscript
expression has been added. The indirection operator (*) is applied after the last subscripted
expression is evaluated, unless the final pointer value addresses an array type (see
examples below).

112 Language Reference

Chapter 4 Expressions and Assignments

Expressions with multiple sUbscripts refer to elements of "multidimensional arrays." A
multidimensional array is an array whose elements are arrays. For example, the first
element of a three-dimensional array is an array with two dimensions.

Examples

For the following examples, an array named pro p is declared with three elements, each of
which is a 4-by-6 array of int values.

int prop[3][4][6];
int i. *ip. (*ipp)[6];

A reference to the prop array looks like this:

i = prop[0][0][1];

The example above shows how to refer to the second individual int element of prop.
Arrays are stored by row, so the last subscript varies most quickly; the expression
pro p [0] [0] [2] refers to the next (third) element of the array, and so on.

i = prop[2][1][3];

This statement is a more complex reference to an individual element of prop. The
expression is evaluated as follows:

1. The first subscript, 2, is multiplied by the size of a 4-by-6 int array and added to the
pointer value prop. The result points to the third 4-by-6 array of prop.

2. The second subscript, 1, is multiplied by the size of the 6-element int array and added
to the address represented by prop[2].

3. Each element of the 6-element array is an int value, so the final subscript, 3, is
multiplied by the size of an int before it is added to pro p [2] [1]. The resulting pointer
addresses the fourth element of the 6-element array.

4. The indirection operator is applied to the pointer value. The result is the int element at
that address.

These next two examples show cases where the indirection operator is not applied.

ip = prop[2][1];

ipp = prop[2];

In the first of these statements, the expression pro p [2] [1] is a valid reference to the three
dimensional array prop; it refers to a 6-element array (declared above). Since the pointer
value addresses an array, the indirection operator is not applied.

Similarly, the result of the expression prop[2] in the second statement i pp = prop[2];
is a pointer value addressing a two-dimensional array.

Language Reference 113

C Language Reference

Function Call
A "function call" is an expression that includes the name of the function being called or the
value of a function pointer and, optionally, the arguments being passed to the function.

Syntax

postfix-expression:
postfix-expression (argument-expression-list opt)

argument-expression-list :
assignment-expression
argument-expression-list , assignment-expression

The postfix-expression must evaluate to a function address (for example, a function
identifier or the value of a function pointer), and argument-expression-list is a list of
expressions (separated by commas) whose values (the "arguments") are passed to the
function. The argument-expression-list argument can be empty.

A function-call expression has the value and type of the function"s return value. A function
cannot return an object of array type. If the function's return type is void (that is, the
function has been declared never to return a value), the function-call expression also
has void type. (See "Function Calls" in Chapter 6, "Functions," for more information.)

Structure and Union Members
A "member-selection expression" refers to members of structures and unions. Such an
expression has the value and type of the selected member.

Syntax

postfix-expression. identifier
postfix-expression -> identifier

This list describes the two forms of the member-selection expressions:

1. In the first form, postfix-expression represents a value of struct or union type, and
identifier names a member of the specified structure or union. The value of the
operation is that of identifier and is an I-value if postfix-expression is an I-value.
See "L-Value and R-Value Expressions," earlier in this chapter, for more information.

2. In the second form, postfix-expression represents a pointer to a structure or union,
and identifier names a member of the specified structure or union. The value is that of
identifier and is an I-value.

The two forms of member-selection expressions have similar effects.

114 Language Reference

Chapter 4 Expressions and Assignments

In fact, an expression involving the member-selection operator (-» is a shorthand version
of an expression using the period (.) if the expression before the period consists of the
indirection operator (*) applied to a pointer value. Therefore,

expression -> identifier

is equivalent to

(*expression) . identifier

when expression is a pointer value.

Examples

The following examples refer to this structure declaration. For information about the
indirection operator (*) used in these examples, see "Indirection and Address-of
Operators," later in this chapter.

struct pair
{

int a;
int b;
struct pair *sp;

} item, list[10];

A member-selection expression for the item structure looks like this:

item.sp = &item;

In the example above, the address of the i tern structure is assigned to the s p member of
the structure. This means that i tern contains a pointer to itself.

(item.sp)->a = 24;

In this example, the pointer expression item. s p is used with the member-selection
operator (-» to assign a value to the member a.

list[8].b = 12;

This statement shows how to select an individual structure member from an array of
structures.

Language Reference 115

C Language Reference

Postfix Increment and Decrement Operators
Operands of the postfix increment and decrement operators are scalar types that are
modifiable I-values.

Syntax

postfix-expression :
postfix-expression ++
postfix-expression --

The result of the postfix increment or decrement operation is the value of the operand.
After the result is obtained, the value of the operand is incremented (or decremented).
The following code illustrates the postfix increment operator.

if (va r++ > 0)
*p++ = *q++;

In this example, the variable va r is compared to 0, then incremented. If va r was positive
before being incremented, the next statement is executed. First, the value of the object
pointed to by q is assigned to the object pointed to by p. Then, q and p are incremented.

Unary Operators
Unary operators appear before their operand and associate from right to left.

Syntax

unary-expression :
postfix-expression
++ unary-expression
- - unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-name)

unary-operator: one of

& * + - - !

116 Language Reference

Chapter 4 Expressions and Assignments

Prefix Increment and Decrement Operators
The unary operators (++ and --) are called "prefix" increment or decrement operators
when the increment or decrement operators appear before the operand. Postfix increment
and decrement has higher precedence than prefix increment and decrement. The operand
must have integral, floating, or pointer type and must be a modifiable I-value expression
(an expression without the const attribute). The result is an I-value.

When the operator appears before its operand, the operand is incremented or decremented
and its new value is the result of the expression.

An operand of integral or floating type is incremented or decremented by the integer value
1. The type of the result is the same as the operand type. An operand of pointer type is
incremented or decremented by the size of the object it addresses. An incremented pointer
points to the next object; a decremented pointer points to the previous object.

Example

This example illustrates the unary prefix decrement operator:

if(line[--iJ 1= '\n')
return;

In this example, the variable i is decremented before it is used as a subscript to 1 i ne.

Indirection and Address-of Operators
The indirection operator (*) accesses a value indirectly, through a pointer. The operand
must be a pointer value. The result of the operation is the value addressed by the operand;
that is, the value at the address to which its operand points. The type of the result is the
type that the operand addresses.

If the operand points to a function, the result is a function designator. If it points to a
storage location, the result is an I-value designating the storage location.

If the pointer value is invalid, the result is undefined. The following list includes some
of the most common conditions that invalidate a pointer value.

• The pointer is a null pointer.

• The pointer specifies the address of a local item that is not visible at the time of the
reference.

• The pointer specifies an address that is inappropriately aligned for the type of the
object pointed to.

• The pointer specifies an address not used by the executing program.

Language Reference 117

C Language Reference

The address-of operator (&) gives the address of its operand. The operand of the
address-of operator can be either a function designator or an I-value that designates an
object that is not a bit field and is not declared with the register storage-class specifier.

The result of the address operation is a pointer to the operand. The type addressed by the
pointer is the type of the operand.

The address-of operator can only be applied to variables with fundamental, structure,
or union types that are declared at the file-scope level, or to subscripted array references.
In these expressions, a constant expression that does not include the address-of operator
can be added to or subtracted from the address expression.

Examples

The following examples use these declarations:

int *pa, x;
int a[20];
double d;

This statement uses the address-of operator:

pa = &a[5];

The address-of operator (&) takes the address of the sixth element of the array a. The
result is stored in the pointer variable pa.

x = *pa;

The indirection operator (*) is used in this example to access the int value at the address
stored in pa. The value is assigned to the integer variable x.

if(x == *&x)
pri ntf("True\n");

This example prints the word True, demonstrating that the result of applying the
indirection operator to the address of x is the same as x.

int roundup(void); /* Function declaration */

int *proundup = roundup;
int *pround = &roundup;

Once the function r 0 u n d u p is declared, two pointers to r 0 u n d up are declared and
initialized. The first pointer, proundup, is initialized using only the name of the
function, while the second, pround, uses the address-of operator in the initialization.
The initializations are equivalent.

118 Language Reference

Chapter 4 Expressions and Assignments

Unary Arithmetic Operators
The C unary plus, arithmetic-negation, complement, and logical-negation operators are
discussed in the following list:

Operator

+

Description

The unary plus operator preceding an expression in parentheses forces the grouping of the
enclosed operations. It is used with expressions involving more than one associative or
commutative binary operator. The operand must have arithmetic type. The result is the
value of the operand. An integral operand undergoes integral promotion. The type of the
result is the type of the promoted operand.

The arithmetic-negation operator produces the negative (two's complement) of its
operand. The operand must be an integral or floating value. This operator performs the
usual arithmetic conversions.

The bitwise-complement (or bitwise-NOT) operator produces the bitwise complement of
its operand. The operand must be of integral type. This operator performs usual arithmetic
conversions; the result has the type of the operand after conversion.

The logical-negation (logical-NOT) operator produces the value 0 if its operand is true
(nonzero) and the value I if its operand is false (0). The result has int type. The operand
must be an integral, floating, or pointer value.

Unary arithmetic operations on pointers are illegal.

Examples

The following examples illustrate the unary arithmetic operators:

short x = 987;
x = -x;

In the example above, the new value of x is the negative of 987, or -987.

unsigned short y = 0xAAAA;
y = ~y;

In this example, the new value assigned to y is the one's complement of the unsigned value
OxAAAA, or Ox5555.

if(l(x < y))

If x is greater than or equal to y, the result of the expression is 1 (true). If x is less than y,

the result is 0 (false).

Language Reference 119

C Language Reference

The sizeof Operator
The sizeof operator gives the amount of storage, in bytes, required to store an object of the
type of the operand. This operator allows you to avoid specifying machine-dependent data
sizes in your programs.

Syntax

sizeof unary-expression
sizeof (type-name)

The operand is either an identifier that is a unary-expression, or a type-cast expression
(that is, a type specifier enclosed in parentheses). The unary-expression cannot represent
a bit-field object, an incomplete type, or a function designator. The result is an unsigned
integral constant. The standard header STDDEF.H defines this type as size_t.

When you apply the sizeof operator to an array identifier, the result is the size of the entire
array rather than the size of the pointer represented by the array identifier.

When you apply the sizeof operator to a structure or union type name, or to an identifier of
structure or union type, the result is the number of bytes in the structure or union, including
internal and trailing padding. This size may include internal and trailing padding used to
align the members of the structure or union on memory boundaries. Thus, the result may
not correspond to the size calculated by adding up the storage requirements of the
individual members.

If an unsized array is the last element of a structure, the sizeof operator returns the size of
the structure without the array.

buffer = calloc(100, sizeof (int));

This example uses the sizeof operator to pass the size of an int, which varies among
machines, as an argument to a run-time function namedcalloc. The value returned by
the function is stored in buffer.

static char *strings[] ={

"this is string one",
"this is string two",
"this is string three",

} ;

const i nt string_no = (sizeof strings) / (sizeof strings[0]);

In this example, s t r i n g s is an array of pointers to char. The number of pointers is the
number of elements in the array, but is not specified. It is easy to determine the number
of pointers by using the sizeof operator to calculate the number of elements in the array.
The const integer value stri ng_no is initialized to this number. Because it is a const
value, s t r i n g_n 0 cannot be modified.

120 Language Reference

Chapter 4 Expressions and Assignments

Cast Operators
A type cast provides a method for explicit conversion of the type of an object in a specific
situation.

Syntax

cast-expression:
unary-expres sion
(type-name) cast-expression

The compiler treats cast-expression as type type-name after a type cast has been made.
Casts can be used to convert objects of any scalar type to or from any other scalar type.
Explicit type casts are constrained by the same rules that determine the effects of implicit
conversions, discussed in "Assignment Conversions," later in this chapter. Additional
restraints on casts may result from the actual sizes or representation of specific types.
See "Storage of Basic Types" in Chapter 3, "Declarations and Types," for information
on actual sizes of integral types. For more information on type casts, see "Type-Cast
Conversions," later in this chapter.

Multiplicative Operators
The multiplicative operators perform multiplication (*), division (f), and remainder (%)
operations.

Syntax

multiplicative-expression:
cast-expression
multiplicative-expression * cast-expression
multiplicative-expression / cast-expression
multiplicative-expression % cast-expression

The operands of the remainder operator (%) must be integral. The multiplication (*) and
division (f) operators can take integral- or floating-type operands; the types of the operands
can be different.

The multiplicative operators perform the usual arithmetic conversions on the operands.
The type of the result is the type of the operands after conversion.

Note Since the conversions performed by the mUltiplicative operators do not
provide for overflow or underflow conditions, information may be lost if the result
of a multiplicative operation cannot be represented in the type of the operands after
conversion.

Language Reference 121

C Language Reference

The C multiplicative operators are described below:

Operator

*
I

%

Description

The multiplication operator causes its two operands to be multiplied.

The division operator causes the first operand to be divided by the second.
If two integer operands are divided and the result is not an integer, it is truncated
according to the following rules:

• The result of division by 0 is undefined according to the ANSI C standard.
The C compiler generates an error at compile time or run time.

• If both operands are positive or unsigned, the result is truncated toward O.

• If either operand is negative, whether the result of the operation is the
largest integer less than or equal to the algebraic quotient or is the smallest
integer greater than or equal to the algebraic quotient is implementation defined.
(See the Microsoft Specific section below.)

The result of the remainder operator is the remainder when the first operand is
divided by the second. When the division is inexact, the result is determined by
the following rules:

• If the right operand is zero, the result is undefined.

• If both operands are positive or unsigned, the result is positive.

• If either operand is negative and the result is inexact, the result is implementation
defined. (See the Microsoft Specific section below.)

Microsoft Specific ~

In division where either operand is negative, the direction of truncation is toward O.

If either operation is negative in division with the remainder operator, the result has the
same sign as the dividend (the first operand in the expression).

END Microsoft Specific

Examples

The declarations shown below are used for the following examples:

int i = 10, j = 3, n;
double ~ = 2.0, y;

This statement uses the multiplication operator:

y = x * i;

In this case, x is multiplied by i to give the value 20.0. The result has double type.

122 Language Reference

Chapter 4 Expressions and Assignments

n = ; / j;

In this example, 10 is divided by 3. The result is truncated toward 0, yielding the integer
value 3.

n = ; % j;

This statement assigns n the integer remainder, 1, when 10 is divided by 3.

Microsoft Specific ~

The sign of the remainder is the same as the sign of the dividend. For example:

50 % -6 2
-50 % 6 = -2

In each case, 50 and 2 have the same sign.

END Microsoft Specific

Additive Operators
The additive operators perform addition (+) and subtraction (-).

Syntax

additive-expression :
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

Note Although the syntax for additive;.expression includes multiplicative-expression,
this does not imply that expressions using multiplication are required. See the syntax
in Appendix A, "e Language Syntax Summary," later in this chapter, for
multiplicative-expression, cas(.. expression, and unary-expression.

The operands can be integral or floating values. Some additive operations can also be
performed on pointer values, as outlined under the discussion of each operator.

The additive operators perform the usual arithmetic conversions on integral and floating
operands. The type of the result is the type of the operands after conversion. Since the
conversions performed by the additive operators do not provide for overflow or underflow
conditions, information may be lost if the result of an additive operation cannot be
represented in the type of the operands after conversion.

Language Reference 123

C Language Reference

Addition (+)
The addition operator (+) causes its two operands to be added. Both operands can be
either integral or floating types, or one operand can be a pointer and the other an integer.

When an integer is added to a pointer, the integer value (i) is converted by multiplying
it by the size of the value that the pointer addresses. After conversion, the integer value
represents i memory positions, where each position has the length specified by the pointer
type. When the converted integer value is added to the pointer value, the result is a new
pointer value representing the address i positions from the original address. The new
pointer value addresses a value of the same type as the original pointer value and therefore
is the same as array indexing (see "One-Dimensional Arrays" and "Multidimensional
Arrays," earlier in this chapter). If the sum pointer points outside the array, except at the
first location beyond the high end, the result is undefined. For more information, see
"Pointer Arithmetic," later in this chapter.

Subtraction (-)
The subtraction operator (-) subtracts the second operand from the first. Both operands
can be either integral or floating types, or one operand can be a pointer and the other
an integer.

When two pointers are subtracted, the difference is converted to a signed integral value
by dividing the difference by the size of a value of the type that the pointers address.
The size of the integral value is defined by the type ptrdiff_t in the standard include file
STDDEF.H. The result represents the number of memory positions of that type between
the two addresses. The result is only guaranteed to be meaningful for two elements of the
same array, as discussed in "Pointer Arithmetic."

When an integer value is subtracted from a pointer value, the subtraction operator converts
the integer value (i) by multiplying it by the size of the value that the pointer addresses.
After conversion, the integer value represents i memory positions, where each position has
the length specified by the pointer type. When the converted integer value is subtracted
from the pointer value, the result is the memory address i positions before the original
address. The new pointer points to a value of the type addressed by the original pointer
value.

124 Language Reference

Chapter 4 Expressions and Assignments

Using the Additive Operators
The following examples, which illustrate the addition and subtraction operators, use these
declarations:

i nt i = 4. j;

float x[10];
float *px;

These statements are equivalent:

px = &x[4 + i];

px = &x[4] + i;

The value of i is multiplied by the length of a float and added to &x [4]. The resulting
pointer value is the address of x [8] .

j = &x[i] - &x[i-2];

In this example, the address of the third element of x (given by x [i - 2]) is subtracted from
the address of the fifth element of x (given by x [i]). The difference is divided by the
length of a float; the result is the integer value 2.

Pointer Arithmetic
Additive operations involving a pointer and an integer give meaningful results only if the
pointer operand addresses an array member and the integer value produces an offset within
the bounds of the same array. When the integer value is converted to an address offset, the
compiler assumes that only memory positions of the same size lie between the original
address and the address plus the offset.

This assumption is valid for array members. By definition, an array is a series of values
of the same type; its elements reside in contiguous memory locations. However, storage
for any types except array elements is not guaranteed to be filled by the same type of
identifiers. That is, blanks can appear between memory positions, even positions of
the same type. Therefore, the results of adding to or subtracting from the addresses of
any values but array elements are undefined.

Similarly, when two pointer values are subtracted, the conversion assumes that only values
of the same type, with no blanks, lie between the addresses given by the operands.

Language Reference 125

C Language Reference

Bitwise Shift Operators
The shift operators shift their first operand left «<) or right (») by the number of
positions the second operand specifies.

Syntax

shift-expression:
additive-expression
shift-expression «additive-expression
shift-expression »additive-expression

Both operands must be integral values. These operators perform the usual arithmetic
conversions; the type of the result is the type of the left operand after conversion.

For leftward shifts, the vacated right bits are set to O. For rightward shifts, the vacated
left bits are filled based on the type of the first operand after conversion. If the type is
unsigned, they are set to O. Oth~rwise, they are filled with copies of the sign bit. For
left-shift operators without overflow, the statement

exprl « expr2

is equivalent to multiplication by 2expr2. For right-shift operators,

exprl » expr2

is equivalent to division by 2expr2 if exprl is unsigned or has a nonnegative value.

The result of a shift operation is undefined if the second operand is negative; or if the
right operand is greater than or equal to the width in bits of the promoted left operand.

Since the conversions performed by the shift operators do not provide for overflow or
underflow conditions, information may be lost if the result of a shift operation cannot
be represented in the type of the first operand after conversion.

unsigned int x. y. z;

x = 0x00AA;
y = 0x5500;

z = (x « 8) + (y » 8);

In this example, x is shifted left eight positions and y is shifted right eight positions.
The shifted values are added, giving OxAA55, and assigned to z.

Shifting a negative value to the right yields half the absolute value, rounded down.
For example, -253 (binary 11111111 00000011) shifted right one bit produces -127
(binary 1111111110000001). A positive 253 shifts right to produce +126.

126 Language Reference

Chapter 4 Expressions and Assignments

Right shifts preserve the sign bit. When a signed integer shifts right, the most-significant
bit remains set. When an unsigned integer shifts right, the most-significant bit is cleared.

If OxFOOO is unsigned, the result is Ox7800. If OxFOOOOOOO is signed, a right shift produces
OxF8000000. Shifting a positive number right 32 times produces OxFOOOOOOO. Shifting a
negative number right 32 times produces OxFFFFFFFF.

Relational and Equality Operators
The binary relational and equality operators compare their first operand to their second
operand to test the validity of the specified relationship. The result of a relational
expression is 1 if the tested relationship is true and 0 if it is false. The type of the result
is int.

Syntax

relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression> shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

equality-expression :
relational-expression
equality-expression == relational-expression
equality-expression != relational-expression

The relational and equality operators test the following relationships:

Operator

<

>

<=

>=

!=

Relationship Tested

First operand less than second operand

First operand greater than second operand

First operand less than or equal to second operand

First operand greater than or equal to second operand

First operand equal to second operand

First operand not equal tb second operand

The first four operators in the list above have a higher precedence than the equality
operators (== and !=). See the precedence information in Table 4.1.

Language Reference 127

C Language Reference

The operands can have integral, floating, or pointer type. The types of the operands can be
different. Relational operators perform the usual arithmetic conversions on integral and
floating type operands. In addition, you can use the following combinations of operand
types with the relational and equality operators:

• Both operands of any relational or equality operator can be pointers to the same type.
For the equality (==) and inequality (!=) operators, the result of the comparison
indicates whether the two pointers address the same memory location. For the other
relational operators «, >, <=, and >=), the result of the comparison indicates the
relative position of the two memory addresses of the objects pointed to. Relational
operators compare only offsets.

Pointer comparison is defined only for parts of the same object. If the pointers refer to
members of an array, the comparison is equivalent to comparison of the corresponding
subscripts. The address of the first array element is "less than" the address of the last
element. In the case of structures, pointers to structure members declared later- are
"greater than" pointers to members declared earlier in the structure. Pointers to the
members of the same union are equal.

• A pointer value can be compared to the constant value 0 for equality (==) or inequality
(!=). A pointer with a value of 0 is called a "null" pointer; that is, it does not point to a
valid memory location.

• The equality operators follow the same rules as the relational operators, but permit
additional possibilities: a pointer can be compared to a constant integral expression
with value 0, or to a pointer to void. If two pointers are both null pointers, they
compare as equal. Equality operators compare both segment and offset.

Examples

The examples below illustrate relational and equality operators.

int x = 0, y = 0;
if (x < y)

Because x and y are equal, the expression in this example yields the value O.

char array[10];
char *p;

for (p = array; p < &array[10]; p++)
*p = '\0';

128 Language Reference

Chapter 4 Expressions and Assignments

The fragment in this example sets each element of a rray to a null character constant.

enum color { red. white. green} col;

if (col == red)

These statements declare an enumeration variable named col with the tag color. At any
time, the variable may contain an integer value of 0, 1, or 2, which represents one of the
elements of the enumeration set co lor: the color red, white, or green, respectively. If co 1
contains ° when the if statement is executed, any statements depending on the if will be
executed.

Bitwise Operators
The bitwise operators perform bitwise-AND (&), bitwise-exclusive-OR (A), and bitwise
inclusive-OR (I) operations.

Syntax

AND-expression :
equality-expression
AND-expression & equality-expression

exclusive-OR-expression:
AND-expression
exclusive-OR-expression A AND-expression

inclusive-OR-expression :
exclusive-OR-expression
inclusive-OR-expression I exclusive-OR-expression

The operands of bitwise operators must have integral types, but their types can be different.
These operators perform the usual arithmetic conversions; the type of the result is the type
of the operands after conversion.

Language Reference 129

C Language Reference

The C bitwise operators are described below:

Operator

&

1\

Examples

Description

The bitwise-AND operator compares each bit of its first operand to the corresponding
bit of its second operand. If both bits are 1, the corresponding result bit is set to 1.
Otherwise, the corresponding result bit is set to O.

The bitwise-exclusive-OR operator compares each bit of its first operand to the
corresponding bit of its second operand. If one bit is 0 and the other bit is 1, the
corresponding result bit is set to 1. Otherwise, the corresponding result bit is set to O.

The bitwise-inclusive-OR operator compares each bit of its first operand to the
corresponding bit of its second operand. If either bit is 1, the corresponding result bit
is set to 1. Otherwise, the corresponding result bit is set to O.

These declarations are used for the following three examples:

short; = 0xAB00;
short j = 0xABCD;
short n;

n = ; & j;

The result assigned to n in this first example is the same as ; (OxABOO hexadecimal).

n = j;

n = A j;

The bitwise-inclusive OR in the second example results in the value OxABCD
(hexadecimal), while the bitwise-exclusive OR in the third example produces Ox CD
(hexadecimal).

Microsoft Specific ~

The results of bitwise operation on signed integers is implementation-defined according to
the ANSI C standard. For the C compiler, bitwise operations on signed integers work the
same as bitwise operations on unsigned integers. For example, -16 & 99 can be expressed
in binary as

11111111 11110000
& 00000000 01100011

00000000 01100000

The result of the bitwise AND is 96 decimal.

END Microsoft Specific

130 Language Reference

Chapter 4 Expressions and Assignments

Logical Operators
The logical operators perform logical-AND (&&) and logical-OR (II) operations.

Syntax

logical-AND-expression:
inc lusive-D R -expression
logical-AND-expression && inclusive-DR-expression

logical-DR-expression :
logical-AND-expression
logical-DR-expression IIlogical-AND-expression

Logical operators do not perform the usual arithmetic conversions. Instead, they evaluate
each operand in terms of its equivalence to O. The result of a logical operation is either 0
or 1. The result's type is int.

The C logical operators are described below:

Operator

&&

II

Description

The logical-AND operator produces the value 1 if both operands have nonzero values.
If either operand is equal to 0, the result is O. If the first operand of a logical-AND
operation is equal to 0, the second operand is not evaluated.

The logical-OR operator performs an inclusive-OR operation on its operands. The result
is 0 if both operands have 0 values. If either operand has a nonzero value, the result is 1.
If the first operand of a logical-OR operation has a nonzero value, the second operand is
not evaluated.

The operands of logical-AND and logical-OR expressions are evaluated from left to right.
If the value of the first operand is sufficient to determine the result of the operation, the
second operand is not evaluated. This is called "short-circuit evaluation." There is a
sequence point after the first operand. See "Sequence Points," earlier in this chapter,
for more information.

Examples

The following examples illustrate the logical operators:

i nt w. x. Y. z;

if (x < y && y < z)
printf("x is less than z\n");

Language Reference 131

C Language Reference

In this example, the p r i n t f function is called to print a message if x is less than y and y is
less than z. If x is greater than y, the second operand (y < z) is not evaluated and nothing
is printed. Note that this could cause problems in cases where the second operand has side
effects that are being relied on for some other reason.

p r i n t f ("%d" , (x == w I I x == y I I x == z));

In this example, if x is equal to either w, y, or z, the second argument to the pri ntf
function evaluates to true and the value 1 is printed. Otherwise, it evaluates to false and
the value 0 is printed. As soon as one of the conditions evaluates to true, evaluation ceases.

Conditional-Expression Operator
C has one ternary operator: the conditional-expression operator (? :).

Syntax

conditional-expression:
logical-DR -expression
logical-DR-expression ? expression: conditional-expression

The logical-DR-expression must have integral, floating, or pointer type. It is evaluated
in terms of its equivalence to O. A sequence point follows logical-DR-expression.
Evaluation of the operands proceeds as follows:

• If logical-OR-expression is not equal to 0, expression is evaluated. The result of
evaluating the expression is given by the nonterminal expression. (This means
expression is evaluated only if logical-DR-expression is true.)

• If logical-OR-expression equals 0, conditional-expression is evaluated. The
result of the expression is the value of conditional-expression. (This means
conditional-expression is evaluated only if logical-DR-expression is false.)

Note that either expression or conditional-expression is evaluated, but not both.

The type of the result of a conditional operation depends on the type of the expression
or conditional-expression operand, as follows:

• If expression or conditional-expression has integral or floating type (their types can
be different), the operator performs the usual arithmetic conversions. The type of the
result is the type of the operands after conversion.

• If both expression and conditional-expression have the same structure, union, or
pointer type, the type of the result is the same structure, union, or pointer type.

132 Language Reference

Chapter 4 Expressions and Assignments

• If both operands have type void, the result has type void.

• If either operand is a pointer to an object of any type, and the other operand is a pointer
to void, the pointer to the object is converted to a pointer to void and the result is a
pointer to void.

• If either expression or conditional-expression is a pointer and the other operand is
a constant expression with the value 0, the type of the result is the pointer type.

In the type comparison for pointers, any type qualifiers (const or volatile) in the type to
which the pointer points are insignificant, but the result type inherits the qualifiers from
both components of the conditional.

Examples

The following examples show uses of the conditional operator:

j = (i < 0) ? (-i) : (i);

This example assigns the absolute value of i to j. If i is less than 0, - i is assigned to j .

If i is greater than or equal to 0, i is assigned to j.

voi d fl (voi d);
void f2(void);
int x;
int y;

(x == y) ? (fl ()) : (f2 ());

In this example, two functions, fl and f2, and two variables, x and y, are declared. Later in
the program, if the two variables have the same value, the function f 1 is called. Otherwise,
f 2 is called.

Assignment Operators
An assignment operation assigns the value of the right-hand operand to the storage location
named by the left-hand operand. Therefore, the left-hand operand of an assignment
operation must be a modifiable I-value. After the assignment, an assignment expression
has the value of the left operand but is not an I-value.

Language Reference 133

C Language Reference

Syntax

assignment-expression :
conditional-expression
unary-expression assignment-operator assignment-expression

assignment-operator: one of
= *= 1= %= += -= «= »= &= "= 1=

The assignment operators in C can both transform and assign values in a single operation.
C provides the following assignment operators:

Operator

=

*=

1=

%=

+=

-=

«=

»=

&=

1=

Operation Performed

Simple assignment

Multiplication assignment

Division assignment

Remainder assignment

Addition assignment

Subtraction assignment

Left-shift assignment

Right-shift assignment

Bitwise-AND assignment

Bitwise-exclusive-OR assignment

Bitwise-inclusive-OR assignment

In assignment, the type of the right-hand value is converted to the type of the left-hand
value, and the value is stored in the left operand after the assignment has taken place. The
left operand must not be an array, a function, or a constant. The specific conversion path,
which depends on the two types, is outlined in detail in "Type Conversions," later in this
chapter.

134 Language Reference

Chapter 4 Expressions and Assignments

Simple Assignment
The simple-assignment operator assigns its right operand to its left operand. The value
of the right operand is converted to the type of the assignment expression and replaces
the value stored in the object designated by the left operand. The conversion rules for
assignment apply (see "Assignment Conversions, later in this chapter").

double x;
int y;

x = y:

In this example, the value of y is converted to type double and assigned to x.

Compound Assignment
The compound-assignment operators combine the simple-assignment operator with
another binary operator. Compound-assignment operators perform the operation specified
by the additional operator, then assign the result to the left operand. For example, a
compound-assignment expression such as

expression1 + = expression2

can be understood as

expression1 = expression1 + expression2

However, the compound-assignment expression is not equivalent to the expanded version
because the compound-assignment expression evaluates expression1 only once, while the
expanded version evaluates expression1 twice: in the addition operation and in the
assignment operation.

Language Reference 135

C Language Reference

The operands of a compound-assignment operator must be of integral or floating type.
Each compound-assignment operator performs the conversions that the corresponding
binary operator performs and restricts the types of its operands accordingly. The addition
assignment (+=) and subtraction-assignment (-=) operators can also have a left operand of
pointer type, in which case the right-hand operand must be of integral type. The result of a
compound-assignment operation has the value and type of the left operand.

#define MASK 0xff00

n &= MASK;

In this example, a bitwise-inc1usive-AND operation is performed on n and MASK, and the
result is assigned to n. The manifest constant MAS K is defined with a #define preprocessor
directive.

Sequential-Evaluation Operator
The sequential-evaluation operator, also called the "comma operator," evaluates its two
operands sequentially from left to right.

Syntax

expression :

assignment-expression
expression, assignment-expression

The left operand of the sequential-evaluation operator is evaluated as a void expression.
The result of the operation has the same value and type as the right operand. Each operand
can be of any type. The sequential-evaluation operator does not perform type conversions
between its operands, and it does not yield an I-value. There is a sequence point after the
first operand, which means all side effects from the evaluation of the left operand are
completed before beginning evaluation of the right operand. See "Sequence Points,"
earlier in this chapter, for more information.

The sequential-evaluation operator is typically used to evaluate two or more expressions
in contexts where only one expression is allowed.

Commas can be used as separators in some contexts. However, you must be careful not to
confuse the use of the comma as a separator with its use as an operator; the two uses are
completely different.

Example

This example illustrates the sequential-evaluation operator:

for (i = j = 1; i + j < 20; i += i. j - -);

In this example, each operand of the for statement's third expression is evaluated
independently. The left operand i += i is evaluated first; then the right operand, j - -,

is evaluated.

136 Language Reference

Chapter 4 Expressions and Assignments

func_one(x, Y + 2, z);
func_two((x--, Y + 2), Z);

In the function call to func_one, three arguments, separated by commas, are passed: x, Y +

2, and z. In the function call to func_two, parentheses force the compiler to interpret the
first comma as the sequential-evaluation operator. This function call passes two arguments
to fun c_ t wo. The first argument is the result of the sequential-evaluation operation (x - - ,

Y + 2), which has the value and type of the expression y + 2; the second argument is z.

Type Conversions
Type conversions depend on the specified operator and the type of the operand or
operators. Type conversions are performed in the following cases:

• When a value of one type is assigned to a variable of a different type or an operator
converts the type of its operand or operands before performing an operation

• When a value of one type is explicitly cast to a different type

• When a value is passed as an argument to a function or when a type is returned from
a function

A character, a short integer, or an integer bit field, all either signed or not, or an object
of enumeration type, can be used in an expression wherever an integer can be used. If
an int can represent all the values of the original type, then the value is converted to int;
otherwise, it is converted to unsigned int. This process is called "integral promotion."
Integral promotions preserve value. That is, the value after promotion is guaranteed to be
the same as before the promotion. See "Usual Arithmetic Conversions," earlier in this
chapter, for more information.

Assignment Conversions
In assignment operations, the type of the value being assigned is converted to the type of
the variable that receives the assignment. C allows conversions by assignment between
integral and floating types, even if information is lost-'in the conversion. The conversion
method used depends on the types involved in the assignment, as described in "Usual
Arithmetic Conversions" and in the following sections:

• Conversions from Signed Integral Types

• Conversions from Unsigned Integral Types

• Conversions from Floating-Point Types

• Conversions to and from Pointer Types

• Conversions from Other Types

Type qualifiers do not affect the allowability of the conversion although a const I-value
cannot be used on the left side of the assignment.

Language Reference 137

C Language Reference

Conversions from Signed Integral Types
When a signed integer is converted to an unsigned integer with equal or greater size and
the value of the signed integer is not negative, the value is unchanged. The conversion
is made by sign-extending the signed integer. A signed integer is converted to a shorter
signed integer by truncating the high-order bits. The result is interpreted as an unsigned
value, as shown in this example.

int i = -3;
unsigned short u;

u = i;
printf("%hu\n", u); /* Prints 65533 */

No information is lost when a signed integer is converted to a floating value, except that
some precision may be lost when a long int or unsigned long int value is converted to a
float value.

Table 4.2 summarizes conversions from signed integral types. This table assumes that the
char type is signed by default. If you use a compile-time option to change the default for
the char type to unsigned, the conversions given in Table 4.3 for the unsigned char type
apply instead of the conversions in Table 4.2.

Table 4.2 Conversions from Signed Integral Types

From To Method

char

char

char

char

char

char

char

short

short

short

short

short

long

unsigned char

unsigned short

unsigned long

float

double

long double

char

long

unsigned char

unsigned short

138 Language Reference

Sign-extend

Sign-extend

Preserve pattern; high-order bit loses function as sign bit

Sign-extend to short; convert short to unsigned short

Sign-extend to long; convert long to unsigned long

Sign-extend to long; convert long to float

Sign-extend to long; convert long to double

Sign-extend to long; convert long to double

Preserve low-order byte

Sign-extend

Preserve low-order byte

Preserve bit pattern; high-order bit loses function as sign bit

Chapter 4 Expressions and Assignments

Table 4.2 Conversions from Signed Integral Types (continued)

From To Method

short unsigned long

short float

short double

short long double

long char

long short

long unsigned char

long unsigned short

long unsigned long

long float

long double

long long double

Sign-extend to long; convert long to unsigned long

Sign-extend to long; convert long to float

Sign-extend to long; convert long to double

Sign-extend to long; convert long to double

Preserve low-order byte

Preserve low-order word

Preserve low-order byte

Preserve low-order word

Preserve bit pattern; high-order bit loses function as sign bit

Represent as float. If long cannot be represented exactly,
some precision is lost.

Represent as double. If long cannot be represented exactly as a
double, some precision is lost.

Represent as double. If long cannot be represented exactly as a
double, some precision is lost.

1. All char entries assume that the char type is signed by default.

Microsoft Specific -)0

For the Microsoft 32-bit C compiler, an integer is equivalent to a long. Conversion of an
int value proceeds the same as for a long.

END Microsoft Specific

Conversions from Unsigned Integral Types
An unsigned integer is converted to a shorter unsigned or signed integer by truncating the
high-order bits, or to a longer unsigned or signed integer by zero-extending (see Table 4.3).

When the value with integral type is demoted to a signed integer with smaller size, or an
unsigned integer is converted to its corresponding signed integer, the value is unchanged if
it can be represented in the new type. However, the value it represents changes if the sign
bit is set, as in the following example.

int j;

unsigned short k = 65533;

j = k;
pri ntf("%hd\n", j); /* Prints -3 */

Language Reference 139

C Language Reference

If it cannot be represented, the result is implementation-defined. See "Type-Cast
Conversions," later in this chapter, for information on the C compiler's handling of
demotion of integers. The same behavior results from integer conversion or from type
casting the integer.

Unsigned values are converted in a way that preserves their value and is not representable
directly in C. The only exception is a conversion from unsigned long to float, which
loses at most the low-order bits. Otherwise, value is preserved, signed or unsigned.
When a value of integral type is converted to floating, and the value is outside the range
representable, the result is undefined. (See "Storage of Basic Types" in Chapter 3,
"Declarations and Types," for information about the range for integral and floating-point
types.)

Table 4.3 summarizes conversions from unsigned integral types.

Table 4.3 Conversions from Unsigned Integral Types

From

unsigned char

unsigned char

unsigned char

unsigned char

unsigned char

unsigned char

unsigned char

unsigned char

unsigned short

unsigned short

unsigned short

unsigned short

unsigned short

unsigned short

unsigned short

unsigned short

unsigned long

140 Language Reference

To

char

short

long

unsigned short

unsigned long

float

double

long double

char

short

long

unsigned char

unsigned long

float

double

long double

char

Method

Preserve bit pattern; high-order bit becomes sign bit

Zero-extend

Zero-extend

Zero-extend

Zero-extend

Convert to long; convert long to float

Convert to long; convert long to double

Convert to long; convert long to double

Preserve low-order byte

Preserve bit pattern; high-order bit becomes sign bit

Zero-extend

Preserve low-order byte

Zero-extend

Convert to long; convert long to float

Convert to long; convert long to double

Convert to long; convert long to double

Preserve low-order byte

Chapter 4 Expressions and Assignments

Table 4.3 Conversions from Unsigned Integral Types (continued)

From To Method

short Preserve low-order word unsigned long

unsigned long

unsigned long

unsigned long

unsigned long

unsigned long

unsigned long

long

unsigned char

unsigned short

float

Preserve bit pattern; high-order bit becomes sign bit

Preserve low-order byte

Preserve low-order word

double

Convert to long; convert long to float

Convert directly to double

long double Convert to long; convert long to double

Microsoft Specific ~

For the Microsoft 32-bit C compiler, the unsigned int type is equivalent to the unsigned
long type. Conversion of an unsigned int value proceeds in the same way as conversion of
an unsigned long. Conversions from unsigned long values to float are not accurate if the
value being converted is larger than the maximum positive signed long value.

END Microsoft Specific

Conversions from Floating-Point Types
A float value converted to a double or long double, or a double converted to a
long double, undergoes no change in value. A double value converted to a float
value is represented exactly, if possible. Precision may be lost if the value cannot
be represented exactly. If the result is out of range, the behavior is undefined. See
"Limits on Floating-Point Constants" in Chapter 1, "Elements of C," for the range
of floating-point types.

A floating value is converted to an integral value by first converting to a long, then from
the long value to the specific integral value, as described below in Table 4.4. The decimal
portion of the floating value is discarded in the conversion to a long. If the result is still
too large to fit into a long, the result of the conversion is undefined.

Microsoft Specific ~

When converting a double or long double floating-point number to a smaller floating
point number, the value of the floating-point variable is truncated toward zero when an
underflow occurs. An overflow causes a run-time error. Note that the C compiler maps
long double to type double.

END Microsoft Specific

Language Reference 141

C Language Reference

Table 4.4 summarizes conversions from floating-point types.

Table 4.4 Conversions from Floating-Point Types

From To Method

float char

float short

float long

float unsigned short

float unsigned long

float double

float long double

double char

double short

double long

double unsigned short

double unsigned long

double float

long double char

long double short

long double long

long double unsigned short

long double unsigned long

long double float

long double double

Convert to long; convert long to char

Convert to long; convert long to short

Truncate at decimal point. If result is too large to be
represented as long, result is undefined.

Convert to long; convert long to unsigned short

Convert to long; convert long to unsigned long

Change internal representation

Change internal representation

Convert to float; convert float to char

Convert to float; convert float to short

Truncate at decimal point. If result is too large to be
represented as long, result is undefined.

Convert to long; convert long to unsigned short

Convert to long; convert long to unsigned long

Represent as a float. If double value cannot be represented
exactly as float, loss of precision occurs. If value is too
large to be represented as float, the result is undefined.

Convert to float; convert float to char

Convert to float; convert float to short

Truncate at decimal point. If result is too large to be
represented as long, result is undefined.

Convert to long; convert long to unsigned short

Convert to long; convert long to unsigned long

Represent as a float. If double value cannot be represented
exactly as float, loss of precision occurs. If value is too
large to be represented as float, the result is undefined.

The long double value is treated as double.

Conversions from float, double, or long double values to unsigned long are not accurate
if the value being converted is larger than the maximum positive long value.

142 Language Reference

Chapter 4 Expressions and Assignments

Conversions to and from Pointer Types
A pointer to one type of value can be converted to a pointer to a different type. However,
the result may be undefined because of the alignment requirements and sizes of different
types in storage. A pointer to an object can be converted to a pointer to an object whose
type requires less or equally strict storage alignment, and back again without change.

A pointer to void can be converted to or from a pointer to any type, without restriction or
loss of information. If the result is converted back to the original type, the original pointer
is recovered.

If a pointer is converted to another pointer with the same type but having different or
additional qualifiers, the new pointer is the same as the old except for restrictions imposed
by the new qualifier.

A pointer value can also be converted to an integral value. The conversion path depends
on the size of the pointer and the size of the integral type, according to the following rules:

• If the size of the pointer is greater than or equal to the size of the integral type, the
pointer behaves like an unsigned value in the conversion, except that it cannot be
converted to a floating value.

• If the pointer is smaller than the integral type, the pointer is first converted to a pointer
with the same size as the integral type, then converted to the integral type.

Conversely, an integral type can be converted to a pointer type according to the following
rules:

• If the integral type is the same size as the pointer type, the conversion simply causes
the integral value to be treated as a pointer (an unsigned integer).

• If the size of the integral type is different from the size of the pointer type, the integral
type is first converted to the size of the pointer, using the conversion paths given in
Table 4.2 and Table 4.3. It is then treated as a pointer value.

An integral constant expression with value 0 or such an expression cast to type void * can
be converted by a type cast, by assignment, or by comparison to a pointer of any type. This
produces a null pointer that is equal to another null pointer of the same type, but this null
pointer is not equal to any pointer to a function or to an object. Integers other than the
constant 0 can be converted to pointer type, but the result is not portable.

Language Reference 143

C Language Reference

Conversions from Other Types
Since an enum value is an int value by definition, conversions to and from an enum value
are the same as those for the int type. For the C compiler, an integer is the same as a long.

Microsoft Specific ~

No conversions between structure or union types are allowed.

Any value can be converted to type void, but the result of such a conversion can be used
only in a context where an expression value is discarded, such as in an expression
statement.

The void type has no value, by definition. Therefore, it cannot be converted to any other
type, and other types cannot be converted to void by assignment. However, you can
explicitly cast a value to type void, as discussed in the next section, "Type-Cast
Conversions."

END Microsoft Specific

Type-Cast Conversions
You can use type casts to explicitly convert types.

Syntax

cast-expressIon :
unary expression
(type-name) cast-expression

type-name:
specifier-qualifier-list abstract-declarator opt

The type-name is a type and cast-expression is a value to be converted to that type. An
expression with a type cast is not an I-value. The cast-expression is converted as though it
had been assigned to a variable of type type-name. The conversion rules for assignments
(outlined earlier in "Assignment Conversions") apply to type casts as well.

144 Language Reference

Chapter 4 Expressions and Assignments

Table 4.5 shows the types that can be cast to any given type.

Table 4.5 Legal Type Casts

Destination Types

Integral types

Floating-point

A pointer to an object, or (void *)

Function pointer

A structure, union, or array

Void type

Potential Sources

Any integer type or floating-point type, or pointer to an object

Any arithmetic type

Any integer type, (void *), a pointer to an object, or a function
pointer

Any integral type, a pointer to an object, or a function pointer

None

Any type

Any identifier can be cast to void type. However, if the type specified in a type-cast
expression is not void, then the identifier being cast to that type cannot be a void
expression. Any expression can be cast to void, but an expression of type void cannot be
cast to any other type. For example, a function with void return type cannot have its return
cast to another type.

Note that a void * expression has a type pointer to void, not type void. If an object is cast
to void type, the resulting expression cannot be assigned to any item. Similarly, a type-cast
object is not an acceptable I-value, so no assignment can be made to a type-cast object.

Microsoft Specific ~

A type cast can be an I-value expression as long as the size of the identifier does not
change. For information on I-value expressions, see "L-Value and R-Value Expressions,"
at the beginning of this chapter.

END Microsoft Specific

You can convert an expression to type void with a cast, but the resulting expression can be
used only where a value is not required. An object pointer converted to void * and back to
the original type will return to its original value.

Language Reference 145

C Language Reference

Function-Call Conversions
The type of conversion performed on the arguments in a function call depends on the
presence of a function prototype (forward declaration) with declared argument types for
the called function.

If a function prototype is present and includes declared argument types, the compiler
performs type checking (see Chapter 6, "Functions").

If no function prototype is present, only the usual arithmetic conversions are performed
on the arguments in the function call. These conversions are performed independently on
each argument in the call. This means that a float value is converted to a double; a char or
short value is converted to an int; and an unsigned char or unsigned short is converted
to an unsigned int.

146 Language Reference

CHAPTER 5

Statements

The statements of a C program control the flow of program execution. In C, as in other
programming languages, several kinds of statements are available to perform loops, to
select other statements to be executed, and to transfer control. Following a brief overview
of statement syntax, this chapter describes the C statements in alphabetical order:

break statement

compound statement

continue statement

do-while statement

expression statement

for statement

goto and labeled statements

if statement

null statement

return statement

switch statement

try-except statement

try-finally statement'

while statement

Overview of Statements
C statements consist of tokens, expressions, and other statements. A statement that forms
a component of another statement is called the "body" of the enclosing statement. Each
statement type given by the following syntax is discussed in this chapter.

Syntax

statement:
labeled-statement
compound-statement
expression-statement
selection-statement
iteration-statement
jump-statement
try-except-statement /* Microsoft Specific */
try-finally-statement /* Microsoft Specific */

Frequently the statement body is a "compound statement." A compound statement consists
of other statements that can include keywords. The compound statement is delimited by
braces ({ }). All other C statements end with a semicolon (;). The semicolon is a statement
terminator.

Language Reference 147

C Language Reference

The expression statement contains a C expression that can contain the arithmetic or logical
operators introduced in Chapter 4, "Expressions and Assignments." The null statement is
an empty statement.

Any C statement can begin with an identifying label consisting of a name and a colon.
Since only the goto statement recognizes statement labels, statement labels are discussed
with goto. See "The goto and Labeled Statements," later in this chapter, for more
information.

The break Statement
The break statement terminates the execution of the nearest enclosing do, for, switch,
or while statement in which it appears. Control passes to the statement that follows the
terminated statement.

Syntax

jump-statement:
break;

The break statement is frequently used to terminate the processing of a particular case
within a switch statement. Lack of an enclosing iterative or switch statement generates
an error.

Within nested statements, the break statement terminates only the do, for, switch, or
while statement that immediately encloses it. You can use a return or goto statement
to transfer control elsewhere out of the nested structure.

This example illustrates the break statement:

for (i
{

for
{

}

= 0; i < LENGTH; i++)

j = 0; j < WIDTH; j++)

if (lines[i][j] == '\0'
{

lengths[i] = j;
break;

/*
/*

Execution returns here when */
break statement is executed */

The example processes an array of variable-length strings stored in 1 i nes. The break
statement causes an exit from the interior for loop after the terminating null character
(, \ 0 ') of each string is found and its position is stored in 1 eng t h s [i] .

The variable j is not incremented when break causes the exit from the interior loop.
Control then returns to the outer for loop. The variable i is incremented and the process
is repeated until i is greater than or equal to LENGTH.

148 Language Reference

The Compound Statement
A compound statement (also called a "block") typically appears as the body of another
statement, such as the if statement. Chapter 3, "Declarations and Types," describes the
form and meaning of the declarations that can appear at the head of a compound statement.

Syntax

compound-statement:
{ declaration-list opt statement-list opt}

declaration-list:
declaration
declaration-list declaration

statement-list:
statement
statement-list statement

If there are declarations, they must come before any statements. The scope of each
identifier declared at the beginning of a compound statement extends from its declaration
point to the end of the block. It is visible throughout the block unless a declaration of the
same identifier exists in an inner block.

Identifiers in a compound statement are presumed auto unless explicitly declared
otherwise with register, static, or extern, except functions, which can only be extern.
You can leave off the extern specifier in function declarations and the function will still
be extern.

Storage is not allocated and initialization is not permitted if a variable or function is
declared in a compound statement with storage class extern. The declaration refers to
an external variable or function defined elsewhere.

Variables declared in a block with the auto or register keyword are reallocated and,
if necessary, initialized each time the compound statement is entered. These variables
are not defined after the compound statement is exited. If a variable declared inside a
block has the static attribute, the variable is initialized when program execution begins
and keeps its value throughout the program. See "Storage Classes" in Chapter 3,
"Declarations and Types," for information about static.

This example illustrates a compound statement:

if (i > 0)

{

line[i] x;
x++;
; - - ;

}

In this example, if i is greater than 0, all statements inside the compound statement are
executed in order.

Chapter 5 Statements

Language Reference 149

C Language Reference

The continue Statement
The continue statement passes control to the next iteration of the do, for, or while
statement in which it appears, bypassing any remaining statements in the do, for, or
while statement body. A typical use of the continue statement is to return to the start
of a loop from within a deeply nested loop.

Syntax

jump-statement:
continue;

The next iteration of a do, for, or while statement is determined as follows:

• Within a do or a while statement, the next iteration starts by reevaluating the
expression of the do or while statement.

• A continue statement in a for statement causes the first expression of the for
statement to be evaluated. Then the compiler reevaluates the conditional expression
and, depending on the result, either terminates or iterates the statement body. See
"The for Statement" later in this chapter for more information on the for statement
and its nonterminals.

This is an example of the continue statement:

while (i-- > 0
{

x = f(i);
if (x == 1

continue;
y += x * x;

In this example, the statement body is executed while i is greater than O. First f (i) is
assigned to x; then, if x is equal to 1, the continue statement is executed. The rest of the
statements in the body are ignored, and execution resumes at the top of the loop with the
evaluation of the loop's test.

The do-while Statement
The do-while statement lets you repeat a statement or compound statement until a
specified expression becomes false.

Syntax

iteration-statement:
do statement while (expression) ;

The expression in a do-while statement is evaluated after the body of the loop is executed.
Therefore, the body of the loop is always executed at least once.

150 Language Reference

The expression must have arithmetic or pointer type. Execution proceeds as follows:

1. The statement body is executed.

2. Next, expression is evaluated. If expression is false, the do-while statement terminates
and control passes to the next statement in the program. If expression is true (nonzero),
the process is repeated, beginning with step 1.

The do-while statement can also terminate when a break, goto, or return statement is
executed within the statement body.

This is an example of the do-while statement:

do
{

y = f(x);
x - - ;

} while (x > 0);

In this do-while statement, the two statements y = f (x); and x - - ; are executed,
regardless of the initial value of x. Then x > 0 is evaluated. If x is greater than 0, the
statement body is executed again and x > 0 is reevaluated. The statement body is executed
repeatedly as long as x remains greater than O. Execution of the do-while statement
terminates when x becomes 0 or negative. The body of the loop is executed at least once.

The Expression Statement
When an expression statement is executed, the expression is evaluated according to the
rules outlined in Chapter 4, "Expressions and Assignments."

Syntax

expression-statement:
expression opt;

All side effects from the expression evaluation are completed before the next statement
is executed. An empty expression statement is called a null statement. See "The Null
Statement" later in this chapter for more information.

These examples demonstrate expression statements.

x = (y + 3) ; /* x is assigned the value of y + 3 */
x++; /* x is incremented */

x = y = 0; /* Both x and yare initialized to 0 */

proc(argl, arg2) ; /* Function call returning void */

y = z = (f(x) + 3) ; /* A function-call expression */

In the last statement, the function-call expression, the value of the expression, which
includes any value returned by the function, is increased by 3 and then assigned to both
the variables y and z.

Chapter 5 Statements

Language Reference 151

C Language Reference

The for Statement
The for statement lets you repeat a statement or compound statement a specified number
of times. The body of a for statement is executed zero or more times until an optional
condition becomes false. You can use optional expressions within the for statement to
initialize and change values during the for statement's execution.

Syntax

iteration-statement:
for (init-expression opt; cond-expression opt; loop-expression opt) statement

Execution of a for statement proceeds as follows:

1. The init-expression, if any, is evaluated. This specifies the initialization for the loop.
There is no restriction on the type of init-expression.

2. The cond-expression, if any, is evaluated. This expression must have arithmetic or
pointer type. It is evaluated before each iteration. Three results are possible:

• If cond-expression is true (nonzero), statement is executed; then loop-expression,
if any, is evaluated. The loop-expression is evaluated after each iteration. There is
no restriction on its type. Side effects will execute in order. The process then begins
again with the evaluation of cond-expression.

• If cond-expression is omitted, cond-expression is considered true, and execution
proceeds exactly as described in the previous paragraph. A for statement without
a cond-expression argument terminates only when a break or return statement
within the statement body is executed, or when a goto (to a labeled statement
outside the for statement body) is executed.

• If cond-expression is false (0), execution of the for statement terminates and
control passes to the next statement in the program.

A for statement also terminates when a break, goto, or return statement within the
statement body is executed. A continue statement in a for loop causes loop-expression
to be evaluated. When a break statement is executed inside a for loop, loop-expression
is not evaluated or executed. This statement

for(;;);

is the customary way to produce an infinite loop which can only be exited with a break,
goto, or return statement.

152 Language Reference

This example illustrates the for statement:

for (i = space = tab 0; i < MAX; i++)
{

if (line[i] , ,
)

space++;
if (line[i] '\ t')

{

tab++;
line[i] , , .

}

}

This example counts space (, ') and tab (' \ t ') characters in the array of characters
named 1 i ne and replaces each tab character with a space. First i, space, and tab are
initialized to O. Then i is compared with the constant MAX; if i is less than MAX, the
statement body is executed. Depending on the value of 1 i n e [i], the body of one or
neither of the if statements is executed. Then i is incremented and tested against MAX;
the statement body is executed repeatedly as long as i is less than MAX.

The goto and Labeled Statements
The goto statement transfers control to a label. The given label must reside in the same
function and can appear before only one statement in the same function.

Syntax

statement:
labeled-statement
jump-statement

jump-statement:
goto identifier;

labeled-statement:
identifier: statement

A statement label is meaningful only to a goto statement; in any other context, a labeled
statement is executed without regard to the label.

A jump-statement must reside in the same function and can appear before only one
statement in the same function. The set of identifier names following a goto has its
own name space so the names do not interfere with other identifiers. Labels cannot be
redeclared. See "Name Spaces" in Chapter 2, "Program Structure," for more information.

Chapter 5 Statements

Language Reference 153

C Language Reference

It is good programming style to use the break, continue, and return statement in
preference to goto whenever possible. Since the break statement only exits from one level
of the loop, a goto may be necessary for exiting a loop from within a deeply nested loop.

This example demonstrates the goto statement:

void main()
{

int i, j;

for (i = 0; i < 10; i++)
{

printf("Outer loop executing.
for (j = 0; j < 3; j++)
{

= %d\n",) ;

printf(" Inner loop executing. j
if(i==5)

%d\n", j);

goto stop;
}

1* This message does not print: */
printf("Loop exited. i = %d\n", i);
stop: printf("Jumped to stop. i = %d\n",);

In this example, a goto statement transfers control to the point labeled s to p when i
equals 5.

The if Statement
The if statement controls conditional branching. The body of an if statement is executed
if the value of the expression is nonzero. The syntax for the if statement has two forms.

Syntax

selection-statement:
if (expression) statement
if (expression) statement else statement

In both forms of the if statement, the expressions, which can have any value except a
structure, are evaluated, including all side effects.

154 Language Reference

In the first form of the syntax, if expression is true (nonzero), statement is executed. If
expression is false, statement is ignored. In the second form of syntax, which uses else,
the second statement is executed if expression is false. With both forms, control then
passes from the if statement to the next statement in the program unless one of the
statements contains a break, continue, or goto.

The following are examples of the if statement:

if (i > 0)

else
{

}

y = x / i;

x = i;
y = f(x);

In this example, the statement y = x / i ; is executed if i is greater than O. If i is less than
or equal to 0, i is assigned to x and f (x) is assigned to y. Note that the statement
forming the if clause ends with a semicolon.

When nesting if statements and else clauses, use braces to group the statements and clauses
into compound statements that clarify your intent. If no braces are present, the compiler
resolves ambiguities by associating each else with the closest if that lacks an else.

if (i > 0)
if(j>i

x = j;

else
x = i;

/* Without braces */

The else clause is associated with the inner if statement in this example. If i is less than or
equal to 0, no value is assigned to x.

if (i > 0
{

else

if (j >
x = j;

x = i;

/* With braces */

The braces surrounding the inner if statement in this example make the else clause part of
the outer if statement. If i is less than or equal to 0, i is assigned to x.

Chapter 5 Statements

Language Reference 155

C Language Reference

The Null Statement
A "null statement" is a statement containing only a semicolon; it can appear wherever a
statement is expected. Nothing happens when a null statement is executed. The correct way
to code a null statement is:

Syntax

Statements such as do, for, if, and while require that an executable statement appear as the
statement body. The null statement satisfies the syntax requirement in cases that do not
need a substantive statement body.

As with any other C statement, you can include a label before a null statement. To label
an item that is not a statement, such as the closing brace of a compound statement, you
can label a null statement and insert it immediately before the item to get the sallie effect.

This example illustrates the null statement:

for (i = 0; i < 10; line[i++] = 0)

In this example, the loop expression of the for statement 1 i n e [i ++] = 0 initializes the
first 10 elements of 1 i ne to O. The statement body is a null statement, since no further
statements are necessary.

The return Statement
The return statement terminates the execution of a function and returns control to the
calling function. Execution resumes in the calling function at the point immediately
following the call. A return statement can also return a value to the calling function.
See "Return Type" in Chapter 6, "Functions," for more information.

Syntax

jump-statement:
return expression opt;

The value of expression, if present, is returned to the calling function. If expression
is omitted, the return value of the function is undefined. The expression, if present, is
converted to the type returned by the function. If the function was declared with return
type void, a return statement containing an expression generates a warning and the
expression is not evaluated.

156 Language Reference

If no return statement appears in a function definition, control automatically
returns to the calling function after the last statement of the called function
is executed. In this case, the return value of the called function is undefined.
If a return value is not required, declare the function to have void return type;
otherwise, the default return type is int.

Many programmers use parentheses to enclose the expression argument of the
return statement. However, C does not require the parentheses.

This example demonstrates the return statement:

void draw(int I. long L);
long sq(int s);
int rnain()
{

}

long y;
int x;

y = sq(x);
draw(x. y);

return() ;

long sq(int s)
{

return(s * s);
}

void draw(int I. long L)
{

}

/* Statements defining the draw function here */
return;

In this example, the mai n function calls two functions: sq and draw. The sq function
returns the value of x * x to rna in, where the return value is assigned to y.

The d raw function is declared as a void function and does not return a value.
An attempt to assign the return value of draw would cause a diagnostic message
to be issued.

Chapter 5 Statements

Language Reference 157

C Language Reference

The switch Statement
The switch and case statements help control complex conditional and branching
operations. The switch statement transfers control to a statement within its body.

Syntax

selection-statement:
switch (expression) statement

labeled-statement:
case constant-expression: statement
default : statement

Control passes to the statement whose case constant-expression matches the value of
switch (expression). The switch statement can include any number of case instances,
but no two case constants within the same switch statement can have the same value.
Execution of the statement body begins at the selected statement and proceeds until the
end of the body or until a break statement transfers control out of the body.

Use of the switch statement usually looks something like this:

switch (expression)
{

}

declarations

case constant-expression:

statements executed if the expression equals the
value of this constant-expression

break;
default:

statements executed if expression does not equal
any case constant-expression

You can use the break statement to end processing of a particular case within the switch
statement and to branch to the end of the switch statement. Without break, the program
continues to the next case, executing the statements until a break or the end of the
statement is reached. In some situations, this continuation may be desirable.

158 Language Reference

The default statement is executed if no case constant-expression is equal to the value
of switch (expression). If the default statement is omitted, and no case match is found,
none of the statements in the switch body are executed. There can be at most one default
statement. The default statement need not come at the end; it can appear anywhere in the
body of the switch statement. In fact it is often more efficient if it appears at the beginning
of the switch statement. A case or default label can only appear inside a switch statement.

The type of switch expression and case constant-expression must be integral. The value of
each case constant-expression must be unique within the statement body.

The case and default labels of the switch statement body are significant only in the initial
test that determines where execution starts in the statement body. Switch statements can be
nested. Any static variables are initialized before executing into any switch statements.

Note Declarations can appear at the head of the compound statement forming the
switch body, but initializations included in the declarations are not performed. The
switch statement transfers control directly to an executable statement within the body,
bypassing the lines that contain initializations.

The following examples illustrate switch statements:

switch(c)
{

case 'A':
capa++;

case 'a':
lettera++;

default:
total++;

All three statements of the switch body in this example are executed if c is equal to 'A'

since a break statement does not appear before the following case. Execution control is
transferred to the first statement (c a p a ++ ;) and continues in order through the rest of the
body. If c is equal to 'a', 1 e t t era and tot a 1 are incremented. Only tot a 1 is incremented
if c is not equal to 'A' or 'a'.

switch(i)
{

}

case -1:
n++;
break;

case 0 :
z++;
break;

case 1 :
p++;
break;

Chapter 5 Statements

Language Reference 159

C Language Reference

In this example, a break statement follows each statement of the switch body. The break
statement forces an exit from the statement body after one statement is executed. If i
is equal to -1, only n is incremented. The break following the statement n++; causes
execution control to pass out of the statement body, bypassing the remaining statements.
Similarly, if i is equal to 0, only z is incremented; if i is equal to 1, only p is incremented.
The final break statement is not strictly necessary, since control passes out of the body at
the end of the compound statement, but it is included for consistency.

A single statement can carry multiple case labels, as the following example shows:

case 'a'
case ' b'
case 'c'
case 'd'
case ' e'
case ' f' hexcvt(c);

In this example, if constant-expression equals any letter between' a' and' f' , the hexcvt
function is called.

Microsoft Specific ~

Microsoft C does not limit the number of case values in a switch statement. The number is
limited only by the available memory. ANSI C requires at least 257 case labels be allowed
in a switch statement.

The default for Microsoft C is that the Microsoft extensions are enabled. Use the IZa
compiler option to disable these extensions.

END Microsoft Specific

The try-except Statement
Microsoft Specific ~

The try-except statement is a Microsoft extension to the C language that enables
applications to gain control of a program when events that normally terminate execution
occur. Such events are called exceptions, and the mechanism that deals with exceptions is
called structured exception handling.

Exceptions can be either hardware- or software-based. Even when applications cannot
completely recover from hardware or software exceptions, structured exception handling
makes it possible to display error information and trap the internal state of the application
to help diagnose the problem. This is especially useful for intermittent problems that
cannot be reproduced easily.

160 Language Reference

Syntax

try-except-statement :
__ try compound-statement
__ except (expression) compound-statement

The compound statement after the __ try clause is the guarded section. The compound
statement after the __ except clause is the exception handler. The handler specifies a set
of actions to be taken if an exception is raised during execution of the guarded section.
Execution proceeds as follows:

1. The guarded section is executed.

2. If no exception occurs during execution of the guarded section, execution continues
at the statement after the __ except clause.

3. If an exception occurs during execution of the guarded section or in any routine the
guarded section calls, the __ except expression is evaluated and the value returned
determines how the exception is handled. There are three values:

EXCEPTION_CONTINUE_SEARCH Exception is not recognized. Continue to
search up the stack for a handler, first for containing try-except statements, then for
handlers with the next highest precedence.

EXCEPTION_CONTINUE_EXECUTION Exception is recognized but dismissed.
Continue execution at the point where the exception occurred.

EXCEPTION_EXECUTE_HANDLER Exception is recognized. Transfer control
to the exception handler by executing the __ except compound statement, then
continue execution at the point the exception occurred.

Because the __ except expression is evaluated as a C expression, it is limited to a single
value, the conditional-expression operator, or the comma operator. If more extensive
processing is required, the expression can call a routine that returns one of the three values
listed above.

Note Structured exception handling works with C and C++ source files. However, it
is not specifically designed for C++. You can ensure that your code is more portable by
using C++ exception handling. Also, the C++ exception handling mechanism is much
more flexible, in that it can handle exceptions of any type.

For C++ programs, C++ exception handling should be used instead of structured
exception handling. For more information, see "Exception Handling" in Chapter 5,
"Statements," in the Microsoft Visual C++ 6.0 Language Reference, later in this
volume.

Each routine in an application can have its own exception handler. The __ except
expression executes in the scope of the __ try body. This means it has access to any local
variables declared there.

Chapter 5 Statements

Language Reference 161

C Language Reference

The __ leave keyword is valid within a try-except statement block. The effect of __ leave
is to jump to the end of the try-except block. Execution resumes after the end of the
exception handler. Although a goto statement can be used to accomplish the same result,
a goto statement causes stack unwinding. The __ leave statement is more efficient because
it does not involve stack unwinding.

Exiting a try-except statement using the longjrnp run-time function is considered
abnormal termination. It is illegal to jump into a __ try statement, but legal to jump out
of one. The exception handler is not called if a process is killed in the middle of executing
a try -except statement.

Example

Following is an example of an exception handler and a termination handler. See the next
section, "The try-finally Statement" for more information about termination handlers.

puts("hello");
__ try{

puts("in try");
__ try{

puts("in try");
RAISE_AN_EXCEPTION();

} __ fi nally{
puts("in finally");

} __ except(puts("in filter"), EXCEPTION_EXECUTE_HANDLER){
puts("in except");

}

puts("world");

This is the output from the example, with commentary added on the right:

hello
in try /* fall into try */
in try /* fall into nested try */
in filter /* execute filter; returns 1 so accept */
in finally /* unwind nested finally */
in except /* transfer control to selected handler */
world /* flow out of handler */

END Microsoft Specific

162 Language Reference

The try-finally Statement
Microsoft Specific ~

The try-finally statement is a Microsoft extension to the C language that enables
applications to guarantee execution of cleanup code when execution of a block of code
is interrupted. Cleanup consists of such tasks as deallocating memory, closing files, and
releasing file handles. The try-finally statement is especially useful for routines that have
several places where a check is made for an error that could cause premature return from
the routine.

Syntax

try-finally-statement :
__ try compound-statement
__ finally compound-statement

The compound statement after the __ try clause is the guarded section. The compound
statement after the __ finally clause is the termination handler. The handler specifies a set
of actions that execute when the guarded section is exited, whether the guarded section
is exited by an exception (abnormal termination) or by standard fall through (normal
termination).

Control reaches a __ try statement by simple sequential execution (fall through). When
control enters the __ try statement, its associated handler becomes active. Execution
proceeds as follows:

1. The guarded section is executed.

2. The termination handler is invoked.

3. When the termination handler completes, execution continues after the __ finally
statement. Regardless of how the guarded section ends (for example, via a goto
statement out of the guarded body or via a return statement), the termination handler
is executed before the flow of control moves out of the guarded section.

The __ leave keyword is valid within a try-finally statement block. The effect of __ leave
. is to jump to the end of the try-finally block. The termination handler is immediately
executed. Although a goto statement can be used to accomplish the same result, a goto
statement causes stack unwinding. The __ leave statement is more ~fficient because it does
not involve stack unwinding.

Exiting a try-finally statement using a return statement or the longjmp run-time function
is considered abnormal termination. It is illegal to jump into a __ try statement, but legal to
jump out of one. All __ finally statements that are active between the point of departure
and the destination must be run. This is called a "local unwind."

The termination handler is not called if a process is killed while executing a try-finally
statement.

Chapter 5 Statements

Language Reference 163

C Language Reference

Note Structured exception handling works with C and C++ source files. However,
it is not specifically designed for C++. You can ensure that your code is more portable
by using C++ exception handling. Also, the C++ exception handling mechanism is
much more flexible, in that it can handle exceptions of any type.

For C++ programs, C++ exception handling should be used instead of structured
exception handling. For more information, see "Exception Handling" in Chapter 5,
"Statements," in the Microsoft Visual C++· 6.0 Language Reference, later in this
volume.

See the example for the try-except statement to see how the try-finally statement works.

END Microsoft Specific

The while Statement
The while statement lets you repeat a st~tement until a specified expression becomes false.

Syntax

iteration-statement:
while (expression) statement

The expression must have arithmetic or pointer type. Execution proceeds as follows:

1. The expression is evaluated.

2. If expression is initially false, the body of the while statement is never executed,
and control passes from the while statement to the next statement in the program.

If expression is true (nonzero), the body of the statement is executed and the process
is repeated beginning at step 1.

The while statement can also terminate when a break, goto, or return within the
statement body is executed. Use the continue statement to terminate an iteration without
exiting the while loop. The continue statement passes control to the next iteration of the
while statement.

This is an example of the while statement:

wh i 1 e (i >= 0
{

stri ng1[i] string2[i];
i - - ;

}

This example copies characters from s t r i n 9 2 to s t r i n 9 1. If i is greater than or equal to 0,
s t r i n 9 2 [i] is assigned to s t r i n 9 1 [i] and i is decremented. When i reaches or falls
below 0, execution of the while statement terminates.

164 Language Reference

CHAPTER 6

Functions

The function is the fundamental modular unit in C. A function is usually designed
to perform a specific task, and its name often reflects that task. A function contains
declarations and statements. This chapter describes how to declare, define, and call
C functions. Other topics discussed are:

• Overview of functions

• Function definitions

• Function prototypes

• Function calls

Overview of Functions
Functions must have a definition and should have a declaration, although a definition can
serve as a declaration if the declaration appears before the function is called. The function
definition includes the function body - the code that executes when the function is called.

A function declaration establishes the name, return type, and attributes of a function that
is defined elsewhere in the program. A function declaration must precede the call to the
function. This is why the header files containing the declarations for the run-time functions
are included in your code before a call to a run-time function. If the declaration has
information about the types and number of parameters, the declaration is a prototype.
See "Function Prototypes" later in this chapter for more information.

The compiler uses the prototype to compare the types of arguments in subsequent calls to
the function with the function's parameters and to convert the types of the arguments to the
types of the parameters whenever necessary.

A function call passes execution control from the calling function to the called function.
The arguments, if any, are passed by value to the called function. Execution of a return
statement in the called function returns control and possibly a value to the calling function.

Language Reference 165

C Language Reference

Obsolete Forms of Function
Declarations and Definitions

The old-style function declarations and definitions use slightly different rules for declaring
parameters than the syntax recommended by the ANSI C standard. First, the old-style
declarations don't have a parameter list. Second, in the function definition, the parameters
are listed, but their types are not declared in the parameter list. The type declarations
precede the compound statement constituting the function body. The old-style syntax
is obsolete and should not be used in new code. Code using the old-style syntax is still
supported, however. This example illustrates the obsolete forms of declarations and
definitions:

double old_style(); /* Obsolete function declaration */

double alt_style(a , real) /* Obsolete function definition */
double *real;
int a;

{

return (*real + a)
}

Functions returning an integer or pointer with the same size as an iot are not required to
have a declaration although the declaration is recommended.

To comply with the ANSI C standard, old-style function declarations using an ellipsis
now generate an error when compiling with the /Za option and a level 4 warning when
compiling with /Ze. For example:

voi d functl (a, ...) /* Generates a wa rni ng under lZe or * /
int a; /* an error when compiling with /Za */
{

}

You should rewrite this declaration as a prototype:

void functl(int a, ...)
{

}

Old-style function declarations also generate warnings if you subsequently declare or
define the same function with either an ellipsis or a parameter with a type that is not the
same as its promoted type.

166 Language Reference

The next section, "Function Definitions," shows the syntax for function definitions,
including the old-style syntax. The nonterminal for the list of parameters in the old-style
syntax is identifier-list.

Function Definitions
A function definition specifies the name of the function, the types and number of
parameters it expects to receive, and its return type. A function definition also includes
a function body with the declarations of its local variables, and the statements that
determine what the function does.

Syntax

translation-unit:
external-declaration
translation-unit external-declaration

external-declaration : 1* Allowed only at external (file) scope *1
function-definition
declaration

function-definition: 1* Declarator here is the function declarator *1

Chapter 6 Functions

declaration-specifiersopt attribute-seqopt declarator declaration-listopt compound-statement
1* attribute-seq is Microsoft Specific */

Prototype parameters are:

declaration-specifiers :
storage-class-specifier declaration-specifiers opt type-specifier declaration-specifiers opt

type-qualifier declaration-specifiers opt

declaration-list:
declaration
declaration-list declaration

declarator:
pointeropt direct-declarator

direct-declarator: 1* A function declarator *1
direct-declarator (parameter-type-list) 1* New-style declarator *1
direct-declarator (identifier-list opt) 1* Obsolete-style declarator *1

Language Reference 167

C Language Reference

The parameter list in a definition uses this syntax:

parameter-type-list: /* The parameter list */
parameter-list
parameter-list, •••

parameter-list:
parameter-declaration
parameter-list, parameter-declaration

parameter-declaration :
declaration-specifiers declarator
declaration-specifiers abstract-declarator opt

The parameter list in an old-style function definition uses this syntax:

identifier-list: /* Used in obsolete-style function definitions and declarations */
identifier
identifier-list, identifier

The syntax for the function body is:

compound-statement: 1* The function body */
{ declaration-list opt statement-list opt}

The only storage-class specifiers that can modify a function declaration are extern and
static. The extern specifier signifies that the function can be referenced from other files;
that is, the function name is exported to the linker. The static specifier signifies that the
function cannot be referenced from other files; that is, the name is not exported by the
linker. If no storage class appears in a function definition, extern is assumed. In any case,
the function is always visible from the definition point to the end of the file.

The optional declaration-specifiers and mandatory declarator together specify the
function's return type and name. The declarator is a combination of the identifier that
names the function and the parentheses following the function name. The optional
attribute-seq nonterminal is a Microsoft-specific feature defined in "Function Attributes."

The direct-declarator (in the declarator syntax) specifies the name of the function being
defined and the identifiers of its parameters. If the direct-declarator includes a parameter
type-list, the list specifies the types of all the parameters. Such a declarator also serves as
a function prototype for later calls to the function.

A declaration in the declaration-list in function definitions cannot contain a storage-class
specifier other than register. The type-specifier in the declaration-specifiers syntax can be
omitted only if the register storage class is specified for a value of int type.

The compound-statement is the function body containing local variable declarations,
references to externally declared items, and statements.

The sections "Function Attributes," "Storage Class," "Return Type," "Parameters,"
and "Function Body" describe the components of the function definition in detail.

168 Language Reference

Function Attributes
Microsoft Specific ~

The optional attribute-seq nonterminal allows you to select a calling convention on a
per-function basis. You can also specify functions as __ fastcall or __ inline.

END Microsoft Specific

Specifying Calling Conventions
Microsoft Specific ~

For information on calling conventions, see "Calling Conventions Topics" in the
Microsoft Visual C++ 6.0 Programmer's Guide online.

END Microsoft Specific

Inline Functions
Microsoft Specific ~

The __ inline keyword tells the compiler to substitute the code within the function
definition for every instance of a function call. However, substitution occurs only at the
compiler's discretion. For example, the compiler does not inline a function if its address
is taken or if it is too large to inline.

For a function to be considered as a candidate for inlining, it must use the new-style
function definition.

Use this form to specify an inline function:

__ inline type optfunction-dejinition;

The use of inline functions generates faster code and can sometimes generate smaller code
than the equivalent function call generates for the following reasons:

• It saves the time required to execute function calls.

• Small inline functions, perhaps three lines or less, create less code than the equivalent
function call because the compiler doesn't generate code to handle arguments and a
return value.

• Functions generated inline are subject to code optimizations not available to normal
functions because the compiler does not perform interprocedural optimizations.

Functions using __ inline should not be confused with inline assembler code. See "Inline
Assembler" for more information.

END Microsoft Specific

Chapter 6 Functions

Language Reference 169

C Language Reference

The Inline Assembler
Microsoft Specific ~

The inline assembler lets you embed assembly-language instructions directly in your
C source programs without extra assembly and link steps. The inline assembler is built
into the compiler - you don't need a separate assembler such as the Microsoft Macro
Assembler (MASM).

Because the inline assembler doesn't require separate assembly and link steps, it is more
convenient than a separate assembler. Inline assembly code can use any C variable or
function nan;I.e that is in scope, so it is easy to integrate it with your program's C code.
And because the assembly code can be mixed with C statements, it can do tasks that are
cumbersome or impossible in C alone.

The __ 3sm keyword invokes the inline assembler and can appear wherever a C statement
is legal. It cannot appear by itself. It must be followed by an assembly instruction, a group
of instructions enclosed in braces, or, at the very least, an empty pair of braces. The term
" __ 3sm block" here refers to any instruction or group of instructions, whether or not in
braces.

The code below is a simple __ 3sm block enclosed in braces. (The code is a custom
function prolog sequence.)

asm

push ebp
mav ebp, esp
sub esp, LOCAL - SIZE

}

Alternatively, you can put __ 3sm in front of each assembly instruction:

asm push ebp
asm mav ebp, esp
asm sub esp, LOCAL SIZE

Since the _3sm keyword is a statement separator, you can also put assembly instructions
on the same line:

__ asm push ebp asm mav ebp, esp asm sub esp, __ LOCAL_SIZE

END Microsoft Specific

170 Language Reference

DLL Import and Export Functions
Microsoft Specific ~

The dllimport and dllexport storage-class modifiers are Microsoft-specific extensions
to the C language. These modifiers explicitly define the DLL's interface to its client
(the executable file or another DLL). Declaring functions as dllexport eliminates the
need for a module-definition (.DEF) file. You can also use the dllimport and dllexport
modifiers with data and objects.

The dllimport and dllexport storage-class modifiers must be used with the extended
attribute syntax keyword, __ declspec, as shown in this example:

#define DllImport __ declspec(dllimport
#define DllExport __ declspec(dllexport)

DllExport void func();
DllExport int i = 10;
DllExport int j;

DllExport int n;

For specific information about the syntax for extended storage-class modifiers, see
"Extended Storage-Class Attributes" in Chapter 3, "Declarations and Types."

END Microsoft Specific

Definitions and Declarations
Microsoft Specific ~

The DLL interface refers to all items (functions and data) that are known to be exported by
some program in the system; that is, all items that are declared as dllimport or dllexport.
All declarations included in the DLL interface must specify either the dllimport or
dllexport attribute. However, the definition can specify only the dllexport attribute.
For example, the following function definition generates a compiler error:

#define DllImport __ declspecC dllimport
#define DllExport __ declspecC dllexport)

DllImport int func()

{

return 1;
}

/* Error; dllimport prohibited in */
/* definition. */

Chapter 6 Functions

Language Reference 171

C Language Reference

This code also generates an error:

#define Dlllmport __ declspec(dllimport
#define DllExport __ declspec(dllexport

Dlllmport int i = 10; /* Error; this is a definition. */

However, this is correct syntax:

#define Dlllmport __ declspec(dllimport
#define DllExport __ declspec(dllexport

DllExport int i = 10; /* Okay: this is an export definition. */

The use of dllexport implies a definition, while dllimport implies a declaration. You
must use the extern keyword with dllexport to force a declaration; otherwise, a definition
is implied.

#define Dlllmport __ declspec(dllimport
#define DllExport __ declspec(dllexport

extern Dlllmport int k;
Dllimport int j;

END Microsoft Specific

/* These are correct and imply */
/* a declaration. */

Defining Inline Functions with
dllexport and dllimport
Microsoft Specific --+

You can define as inline a function with the dllexport attribute. In this case, the function is
always instantiated and exported, whether or not any module in the program references the
function. The function is presumed to be imported by another program.

You can also define as inline a function declared with the dllimport attribute. In this case,
the function can be expanded (subject to the lOb (inline) compiler option specification) but
never instantiated. In particular, if the address of an inline imported function is taken, the
address of the function residing in the DLL is returned. This behavior is the same as taking
the address of a non-in line imported function.

Static local data and strings in inline functions maintain the same identities between
the DLL and client as they would in a single program (that is, an executable file without
a DLL interface).

Exercise care when providing imported inline functions. For example, if you update the
DLL, don't assume that the client will use the changed version of the DLL. To ensure that
you are loading the proper version of the DLL, rebuild the DLL's client as well.

END Microsoft Specific

172 Language Reference

Rules and Limitations for dllimportldllexport
Microsoft Specific ~

• If you declare a function without the dllimport or dllexport attribute, the function
is not considered part of the DLL interface. Therefore, the definition of the function
must be present in that module or in another module of the same program. To make
the function part of the DLL interface, you must declare the definition of the function
in the other module as dllexport. Otherwise, a linker error is generated when the client
is built.

• If a single module in your program contains dllimport and dllexport declarations
for the same function, the dllexport attribute takes precedence over the dllimport
attribute. However, a compiler warning is generated. For example:

#define Dlllmport __ declspec(dllimport
#define DllExport __ declspec(dllexport

Dlllmport void funcl(void);
DllExport void funcl(void); 1* Warning; dllexport */

/* takes precedence. */

• You cannot initialize a static data pointer with the address of a data object declared
with the dllimport attribute. For example, the following code generates errors:

#define Dlllmport __ declspec(dllimport
#define DllExport __ declspec(dllexport)

Dlllmport int i;

int *pi = &i;

void func2()
{

static int *pi
}

/* Error *1

&i ; 1* Error */

• Initializing a static function pointer with the address of a function declared with
dllimport sets the pointer to the address of the DLL import thunk (a code stub
that transfers control to the function) rather than the address of the function. This
assignment does not generate an error message:

#define Dlllmport __ declspec(dllimport
#define DllExport __ declspec(dllexport

Chapter 6 Functions

Language Reference 173

C Language Reference

OllImport void funcl(void

static void (*pf)(void)

void func2()
{

&funcl ; 1* No Error */

static void (*pf)(void) &funcl; /* No Error */

• Because a program that includes the dllexport attribute in the declaration of an object
must provide the definition for that object, you can initialize a global or local static
function pointer with the address of a dllexport function. Similarly, you can initialize
a global or local static data pointer with the address of a dllexport data object. For
example:

#define OllImport __ dec1spec(d11import
#define OllExport __ dec1spec(d11export

OllImport void funcl(void);
011 Import i nt i;

OllExport void funcl(void);
OllExport int i;

int *pi = &i;
static void (*pf)(void)

void func2()
{

static int *pi = i;
static void (*pf)(void)

}

END Microsoft Specific

Naked Functions
Microsoft Specific ~

&funcl;

&funcl ;

/* Okay */
/* Okay */

/* Okay */
/* Okay */

The naked storage-class attribute is a Microsoft-specific extension to the C language.
For functions declared with the naked storage-class attribute, the compiler generates code
without prolog and epilog code. You can use this feature to write your own prolog/epilog
code sequences using inline assembler code. Naked functions are particularly useful in
writing virtual device drivers.

174 Language Reference

Because the naked attribute is only relevant to the definition of a function and is not a
type modifier, naked functions use the extended attribute syntax, described in "Extended
Storage-Class Attributes" in Chapter 3, "Declarations and Types."

The following example defines a function with the naked attribute:

__ declspec(naked) int func(formal_parameters)
{

/* Function body */
}

Or, alternatively:

#define Naked __ declspec(naked)

Naked int func(formal_parameters
{

/* Function body */

The naked attribute affects only the nature of the compiler's code generation for the
function's prolog and epilog sequences. It does not affect the code that is generated for
calling such functions. Thus, the naked attribute is not considered part of the function's
type, and function pointers cannot have the naked attribute. Furthermore, the naked
attribute cannot be applied to a data definition. For example, the following code generates
errors:

__ declspec(naked) int i; /* Error--naked attribute not */
/* permitted on data declarations. */

The naked attribute is relevant only to the definition of the function and cannot be
specified in the function's prototype. The following declaration generates a compiler error:

__ declspec(naked) int func(); /* Error--naked attribute not */

Chapter 6 Functions

/* permitted on function declarations. */ \

END Microsoft Specific

Rules and Limitations for Using Naked Functions
Microsoft Specific ~

• The return statement is not permitted in a naked function. However, you can return
an int by moving the return value into the EAX register before the RET instruction.

• Structured exception handling constructs are not permitted in a naked function,
because the constructs must unwind across the stack frame.

• The setjmp run-time function is not permitted in a naked function, because it too must
unwind across the stack frame. However, the iongjmp run-time function is permitted.

Language Reference 175

C Language Reference

• The _alloca function is not permitted in a naked function.

• To ensure that no initialization code for local variables appears before the prolog
sequence, initialized local variables are not permitted at function scope.

• Frame pointer optimization (the lOy compiler option) is not recommended, but it is
automatically suppressed for a naked function.

END Microsoft Specific

Considerations When Writing Prolog/Epilog Code
Microsoft Specific ~

Before writing your own prolog and epilog code sequences, it is important to understand
how the stack frame is laid out. It is also useful to know how to use the LOCAL_SIZE
predefined constant.

Stack-Frame Layout
This example shows the standard prolog code that might appear in a 32-bit function:

push
mov
sub
push

ebp
ebp, esp
esp, localbytes
<registers>

Save ebp
Set stack frame pointer
Allocate space for locals
Save registers

The 1 oca 1 bytes variable represents the number of bytes needed on the stack for local
variables, and the regi sters variable is a placeholder that represents the list of registers
to be saved on the stack. After pushing the registers, you can place any other appropriate
data on the stack. The following is the corresponding epilog code;

pop
mov
pop
ret

<regi sters>
esp, ebp
ebp

Restore registers
Restore stack pointer
Restore ebp
Return from function

The stack always grows down (from high to low memory addresses). The base pointer
(ebp) points to the pushed value of ebp. The local variables area begins at ebp -2. To access
local variables, calculate an offset from ebp by subtracting the appropriate value from ebp.

The LOCAL_SIZE Constant
The compiler provides a constant, __ LOCAL_SIZE, for use in the inline assembler block
of function prolog code. This constant is used to allocate space for local variables on the
stack frame in custom prolog code.

176 Language Reference

The compiler determines the value of __ LOCAL_SIZE. The value is the total number
of bytes of all user-defined local variables and compiler-generated temporary variables.
__ LOCAL_SIZE can be used only as an immediate operand; it cannot be used in an
expression. You must not change or redefine the value of this constant. For example:

may eax, LOCAL_SIZE
may eax, [ebp - __ LOCAL_SIZE]

;Immediate operand--Okay
;Error

The following example of a naked function containing custom prolog and epilog sequences
uses __ LOCAL_SIZE in the prolog sequence:

__ declspec (naked) func()
{

}

i nt i;
i nt j;

asm
{

push
mov

/* prolog */

ebp
ebp, esp

sub esp, LOCAL
}

/* Function body */

__ asm /* epilog */
{

mov esp, ebp
pop ebp
ret
}

END Microsoft Specific

Storage Class

SIZE

The storage-class specifier in a function definition gives the function either extern or
static storage class.

Syntax

function-definition :

Chapter 6 Functions

declaration-specifiers opt attribute-seq opt declarator declaration-list opt compound-statement
1* attribute-seq is Microsoft Specific *1

Language Reference 177

C Language Reference

declaration-specifiers :
storage-class-specifier declaration-specifiers opt

type-specifier declaration-specifiers opt

type-qualifier declaration-specifiers opt

storage-class-speciJier : 1* For function definitions *1
extern
static

If a function definition does not include a storage-class-specifier, the storage class
defaults to extern. You can explicitly declare a function as extern, but it is not required.

If the declaration of a function contains the storage-class-specifier extern, the identifier
has the same linkage as any visible declaration of the identifier with file scope. If there is
no visible declaration with file scope, the identifier has external linkage. If an identifier
has file scope and no storage-class-specifier, the identifier has external linkage. External
linkage means that each instance of the identifier denotes the same object or function. See
"Lifetime, Scope, Visibility, and Linkage" in Chapter 2, "Program Structure," for more
information about linkage and file scope.

Block-scope function declarations with a storage-class specifier other than extern
generate errors.

A function with static storage class is visible only in the source file in which it is defined.
All other functions, whether they are given extern storage class explicitly or implicitly,
are visible throughout all source files in the program. If static storage class is desired, it
must be declared on the first occurrence of a declaration (if any) of the function, and on
the definition of the function.

Microsoft Specific ~

When the Microsoft extensions are enabled, a function originally declared without a
storage class (or with extern storage class) is given static storage class if the function
definition is in the same source file and if the definition explicitly specifies static
storage class.

When compiling with the IZe compiler option, functions declared within a block using
the extern keyword have global visibility. This is not true when compiling with IZa.
This feature should not be relied upon if portability of source code is a consideration.

END Microsoft Specific

178 Language Reference

Return Type
The return type of a function establishes the size and type of the value returned
by the function and corresponds to the type-specifier in the syntax below:

Syntax

function-definition :

Chapter 6 Functions

declaration-specifiers opt attribute-seq opt declarator declaration-list opt compound-statement
1* attribute-seq is Microsoft Specific */

declaration-specifiers:
storage-class-specifier declaration-specifiers opt

type-specifier declaration-specifiers opt

type-qualifier declaration-specifiers opt

type-specifier:
void
char
short
int
long
float
double
signed
unsigned
struct-or-union-specifier
enum-specifier
typedef-name

The type-specifier can specify any fundamental, structure, or union type. If you do not
include type-specifier, the return type int is assumed.

The return type given in the function definition must match the return type in declarations
of the function elsewhere in the program. A function returns a value when a return
statement containing an expression is executed. The expression is evaluated, converted
to the return value type if necessary, and returned to the point at which the function was
called. If a function is declared with return type void, a return statement containing an
expression generates a warning and the expression is not evaluated.

The following examples illustrate function return values.

typedef struct
{

char name[20];
i nt i d;
long class;

} STUDENT;

Language Reference 179

C Language Reference

/* Return type is STUDENT: */

STUDENT sortstu(STUDENT a, STUDENT b
{

return ((a.id < b.id) ? a : b);
}

This example defines the STUDENT type with a typedef declaration and defines the function
sortstu to have STUDENT return type. The function selects and returns one of its two
structure arguments. In subsequent calls to the function, the compiler checks to make sure
the argument types are STUDENT.

Note Efficiency would be enhanced by passing pointers to the structure, rather than
the entire structure.

char *smallstr(char sl[], char s2[])
{

}

i nt i;

i 0;
while (sl[i] j= '\0' && s2[i] j= '\0')

i++;
if (sl[i] == '\0'

return (sl);
else

return s2);

This example defines a function returning a pointer to an array of characters. The function
takes two character arrays (strings) as arguments and returns a pointer to the shorter of the
two strings. A pointer to an array points to the first of the array elements and has its type;
thus, the return type of the function is a pointer to type char.

You need not declare functions with int return type before you call them, although
prototypes are recommended so that correct type checking for arguments and return
values is enabled.

180 Language Reference

Parameters
Arguments are names of values passed to a function by a function call. Parameters are the
values the function expects to receive. In a function prototype, the parentheses following
the function name contain a complete list .of the function's parameters and their types.
Parameter declarations specify the types, sizes, and identifiers of values stored in the
parameters.

Syntax

function-definition :

Chapter 6 Functions

declaration-specifiers opt attribute-seq opt declarator declaration-list opt compound-statement
1* attribute-seq is Microsoft Specific *1

declarator:
pointer opt direct-declarator

direct-declarator :/* A function declarator *1
direct-declarator (parameter-type-list) 1* New-style declarator *1

parameter-type-list: 1* A parameter list *1
parameter-list
parameter-list, •••

parameter-list:
parameter-declaration
parameter-list, parameter-declaration

parameter-declaration :
declaration-specifiers declarator
declaration-specifiers abstract-declarator opt

The parameter-type-list is a sequence of parameter declarations separated by commas.
The form of each parameter in a parameter list looks like this:

[register] type-specifier [declarator]

Function parameters declared with the auto attribute generate errors. The identifiers of the
parameters are used in the function body to refer to the values passed to the function. You
can name the parameters in a prototype, but the names go out of scope at the end of the
declaration. Therefore parameter names can be assigned the same way or differently in the
function definition. These identifiers cannot be redefined in the outermost block of the
function body, but they can be redefined in inner, nested blocks as though the parameter
list were an enclosing block.

Language Reference 181

C Language Reference

Each identifier in parameter-type-list must be preceded by its appropriate type specifier,
as shown in this example:

void new(double x. double y. double z)
{

/* Function body here */
}

If at least one parameter occurs in the parameter list, the list can end with a comma
followed by three periods (, •••). This construction, called the "ellipsis notation," indicates
a variable number of arguments to the function. (See "Calls with a Variable Number of '
Arguments," later in this chapter, for more information.) However, a call to the function
must have at least as many arguments as there are parameters before the last comma.

If no arguments are to be passed to the function, the list of parameters is replaced by the
keyword void. This use of void is distinct from its use as a type specifier.

The order and type of parameters, including any use of the ellipsis notation, must be the
same in all the function declarations (if any) and in the function definition. The types of
the arguments after usual arithmetic conversions must be assignment-compatible with the
types of the corresponding parameters. (See "Usual Arithmetic Conversions" in Chapter 4,
"Expressions and Assignments," for information on arithmetic conversions.) Arguments
following the ellipsis are not checked. A parameter can have any fundamental, structure,
union, pointer, or array type.

The compiler performs the usual arithmetic conversions independently on each parameter
and on each argument, if necessary. After conversion, no parameter is shorter than an int,
and no parameter has float type unless the parameter type is explicitly specified as float in
the prototype. This means, for example, that declaring a parameter as a char has the same
effect as declaring it as an into

Function Body
A "function body" is a compound statement containing the statements that specify what
the function does.

Syntax

function-definition :
declaration-specifiers opt attribute-seq opt declarator declaration-list opt compound-statement
/* attribute-seq is Microsoft Specific */

compound-statement: /* The function body */
{ declaration-list opt statement-list opt}

182 Language Reference

Variables declared in a function body, "local variables," have auto storage class unless
otherwise specified. When the function is called, storage is created for the local variables
and local initializations are performed. Execution control passes to the first statement in
compound-statement and continues until a return statement is executed or the end of
the function body is encountered. Control then returns to the point at which the function
was called.

A return statement containing an expression must be executed if the function is to return
a value. The return value of a function is undefined if no return statement is executed or
if the return statement does not include an expression.

Function Prototypes
A function declaration precedes the function definition and specifies the name, return type,
storage class, and other attributes of a function. To be a prototype, the function declaration
must also establish types and identifiers for the function's arguments.

Syntax

declaration :
declaration-specifiers attribute-seq opt init-declarator-list opt;

1* attribute-seqopt is Microsoft Specific *1

declaration-specifiers :
storage-class-specifier declaration-specifiers opt

type-specifier declaration-specifiers opt

type-qualifier declaration-specifiers opt

init-declarator-list :
init-declarator
init-declarator-list , init-declarator

init-declarator :
declarator
declarator = initializer

declarator:
pointer opt direct-declarator

direct-declarator: 1* A function declarator *1
direct-declarator (parameter-type-list) 1* New-style declarator *1
direct-declarator (identifier-list opt) 1* Obsolete-style declarator *1

The prototype has the same form as the function definition, except that it is terminated
by a semicolon immediately following the closing parenthesis and therefore has no body.
In either case, the return type must agree with the return type specified in the function
definition.

Chapter 6 Functions

Language Reference 183

C Language Reference

Function prototypes have the following important uses:

• They establish the return type for functions that return types other than int. Although
functions that return int values do not require prototypes, prototypes are recommended.

• Without complete prototypes, standard conversions are made, but no attempt is made
to check the type or number of arguments with the number of parameters.

• Prototypes are used to initialize pointers to functions before those functions are
defined.

• The parameter list is used for checking the correspondence of arguments in the
function call with the parameters in the function definition.

The converted type of each parameter determines the interpretation of the arguments
that the function call places on the stack. A type mismatch between an argument and a
parameter may cause the arguments on the stack to be misinterpreted. For example, on
a 16-bit computer, if a 16-bit pointer is passed as an argument, then declared as a long
parameter, the first 32 bits on the stack are interpreted as a long parameter. This error
creates problems not only with the long parameter, but with any parameters that follow
it. You can detect errors of this kind by declaring complete function prototypes for all
functions.

A prototype establishes the attributes of a function so that calls to the function that
precede its definition (or occur in other source files) can be checked for argument-type
and return-type mismatches. For example, if you specify the static storage-class specifier
in a prototype, you must also specify the static storage class in the function definition.

Complete parameter declarations (i n t a) can be mixed with abstract declarators (i n t)
in the same declaration. For example, the following declaration is legal:

int add(int a, int);

The prototype can include both the type of, and an identifier for, each expression that
is passed as an argument. However, such identifiers have scope only until the end of
the declaration. The prototype can also reflect the fact that the number of arguments
is variable, or that no arguments are passed. Without such a list, mismatches may not
be revealed, so the compiler cannot generate diagnostic messages concerning them.
See "Arguments," later in this chapter, for more information on type checking.

Prototype scope in the Microsoft C compiler is now ANSI -compliant when compiling
with the /Za compiler option. This means that if you declare a struct or union tag within
a prototype, the tag is entered at that scope rather than at global scope. For example, when
compiling with /Za for ANSI compliance, you can never call this function without getting
a type mismatch error:

void funcl(struct S *);

184· Language Reference

To correct your code, define or declare the struct or union at global scope before the
function prototype:

struct S;
void funcl(struct S *);

Under /Ze, the tag is still entered at global scope.

Function Calls
A function call is an expression that passes control and arguments (if any) to a function
and has the form

expression (expression-list opt)

where expression is a function name or evaluates to a function address and expression-list
is a list of expressions (separated by commas). The values of these latter expressions are
the arguments passed to the function. If the function does not return a value, then you
declare it to be a function that returns void.

If a declaration exists before the function call, but no information is given concerning the
parameters, any undeclared arguments simply undergo the usual arithmetic conversions.

Note The expressions in the function argument list can be evaluated in any order, so
arguments whose values may be changed by side effects from another argument have
undefined values. The sequence point defined by the function-call operator guarantees
only that all side effects in the argument list are evaluated before control passes to the
called function. (Note that the order in which arguments are pushed on the stack is a
separate matter.) See "Sequence Points" in Chapter 4, "Expressions and Assignments,"
for more information.

The only requirement in any function call is that the expression before the parentheses
must evaluate to a function address. This means that a function can be called through any
function-pointer expression.

Example

This example illustrates function calls called from a switch statement:

void main()
{

1* Function prototypes *1

long lift(int). step(int). drop(int);
void work(int number. long (*function)(int i));

Chapter 6 Functions

Language Reference 185

C Language Reference

}

int select. count;

select = I;
switch(sel ect
{

}

case 1: work(count. lift);
break;

case 2: work(count. step);
break;

case 3: work(count. drop);
/* Fall through to next case */

default :
break;

/* Function definition */

void work(int number. long (*function)(int i))
{

i nt i;
long j;

for (' i = j = 0; i < number; i++
j += (*function)(i);

In this example, the function call in rna in,

work(count. lift);

passes an integer variable, count, and the address of the function 1 i ft to the function
work. Note that the function address is passed simply by giving the function identifier,
since a function identifier evaluates to a pointer expression. To use a function identifier in
this way, the function must be declared or defined before the identifier is used; otherwise,
the identifier is not recognized. In this case, a prototype for work is given at the beginning
of the rna i n function.

The parameter fun c t ion in W 0 r k is declared to be a pointer to a function taking one int
argument and returning a long value. The parentheses around the parameter name are
required; without them, the declaration would specify a function returning a pointer to
a long value.

186 Language Reference

The function work calls the selected function from inside the for loop by using the
following function call:

(*function)(i);

One argument, ;, is passed to the called function.

Arguments
The arguments in a function call have this form:

expression (expression-list opt) /* Function call */

In a function call, expression-list is a list of expressions (separated by commas).
The values of these latter expressions are the arguments passed to the function. If
the function takes no arguments, expression-list should contain the keyword void.

An argument can be any value with fundamental, structure, union, or pointer type. All
arguments are passed by value. This means a copy of the argument is assigned to the
corresponding parameter. The function does not know the actual memory location of the
argument passed. The function uses this copy without affecting the variable from which
it was originally derived.

Although you cannot pass arrays or functions as arguments, you can pass pointers to these
items. Pointers provide a way for a function to access a value by reference. Since a pointer
to a variable holds the address of the variable, the function can use this address to access
the value of the variable. Pointer arguments allow a function to access arrays and
functions, even though arrays and functions cannot be passed as arguments.

The order in which arguments are evaluated can vary under different compilers and
different optimization levels. However, the arguments and any side effects are completely
evaluated before the function is entered. See "Side Effects" in Chapter 4, "Expressions and
Assignments," for information on side effects.

The expression-list in a function call is evaluated and the usual arithmetic conversions are
performed on each argument in the function call. If a prototype is available, the resulting
argument type is compared to the prototype's corresponding parameter. If they do not
match, either a conversion is performed, or a diagnostic message is issued. The parameters
also undergo the usual arithmetic conversions.

The number of expressions in expression-list must match the number of parameters, unless
the function's prototype or definition explicitly specifies a variable number of arguments.
In this case, the compiler checks as many arguments as there are type names in the list of
parameters and converts them, if necessary, as described above. See "Calls with a Variable
Number of Arguments," in the next section, for more information.

If the prototype's parameter list contains only the keyword void, the compiler expects zero
arguments in the function call and zero parameters in the definition. A diagnostic message
is issued if it finds any arguments.

Chapter 6 Functions

Language Reference 187

C Language Reference

Example

This example uses pointers as arguments:

void main()
{

/* Function prototype */

void swap(int *numl, int *num2);
int x, y;

swap(&x, &y); /* Function call */

/* Function definition */

void swap(int *numl, int *num2)
{

int t;

t = *numl;
*numl *num2;
*num2 = t;

}

In this example, the swap function is declared in rnai n to have two arguments, represented
respectively by identifiers numl and num2, both of which are pointers to int values. The
parameters numl and num2 in the prototype-style definition are also declared as pointers
to int type values.

In the function call

swap(&x, &y)

the address of x is stored in numl and the address of y is stored in num2. Now two names,
or "aliases," exist for the same location. References to *numl and *num2 in swap are
effectively references to x and yin mai n. The assignments within swap actually exchange
the contents of x and y. Therefore, no return statement is necessary.

The compiler performs type checking on the arguments to s wa p because the prototype of
swap includes argument types for each parameter. The identifiers within the parentheses
of the prototype and definition can be the same or different. What is important is that the
types of the arguments match those of the parameter lists in both the prototype and the
definition.

188 Language Reference

Calls with a Variable Number of Arguments
A partial parameter list can be terminated by the ellipsis notation, a comma followed by
three periods (, •••), to indicate that there may be more arguments passed to the function,
but no more information is given about them. Type checking is not performed on such
arguments. At least one parameter must precede the ellipsis notation and the ellipsis
notation must be the last token in the parameter list. Without the ellipsis notation, the
behavior of a function is undefined if it receives parameters in addition to those declared
in the parameter list.

To call a function with a variable number of arguments, simply specify any number of
arguments in the function call. An example is the printf function from the C run-time
library. The function call must include one argument for each type name declared in the
parameter list or the list of argument types.

All the arguments specified in the function call are placed on the stack unless the
__ fastcall calling convention is specified. The number of parameters declared for the
function determines how many of the arguments are taken from the stack and assigned to
the parameters. You are responsible for retrieving any additional arguments from the stack
and for determining how many arguments are present. The STDARGS.H file contains
ANSI-style macros for accessing arguments of functions which take a variable number
of arguments. Also, the XENIX-style macros in VARARGS.H are still supported.

This sample declaration is for a function that calls a variable number of arguments:

int average(int first, ...);

Microsoft Specific ~

To maintain compatibility with previous versions of Microsoft C, a Microsoft extension
to the ANSI C standard allows a comma without trailing periods (,) at the end of the list
of parameters to indicate a variable number of arguments. However, it is recommended
that code be changed to incorporate the ellipsis notation.

END Microsoft Specific

Recursive Functions
Any function in a C program can be called recursively; that is, it can call itself. The
number of recursive calls is limited to the size of the stack. See the "Stack Allocations"
(IS TACK) linker option in the Microsoft Visual C+ + 6.0 Programmer's Guide online
for information about linker options that set stack size. Each time the function is called,
new storage is allocated for the parameters and for the auto and register variables so that
their values in previous, unfinished calls are not overwritten. Parameters are only directly
accessible to the instance of the function in which they are created. Previous parameters
are not directly accessible to ensuing instances of the function.

Chapter 6 Functions

Language Reference 189

C Language Reference

Note that variables declared with static storage do not require new storage with each
recursive call. Their storage exists for the lifetime of the program. Each reference to
such a variable accesses the same storage area.

Example

This example illustrates recursive calls:

int factorial(int num):

void maine)
{

int result, number:

1* Function prototype *1

result factorial(number);

int factorial(int num)
{

1* Function definition *1

if ((num > 0) II (num <= 10))
return(num * factorial (num - 1));

}

190 Language Reference

APPENDIX A

C Language Syntax Summary

This appendix gives the full description of the C language and the Microsoft-specific
C language features. You can use the syntax notation in this appendix to determine the
exact syntax for any language component. The explanation for the syntax appears in the
section of this manual where a topic is discussed.

Note This syntax summary is not part of the ANSI C standard, but is included for
information only. Microsoft-specific syntax is noted in comments following the syntax.

Definitions and Conventions
Terminals are endpoints in a syntax definition. No other resolution is possible. Terminals
include the set of reserved words and user-defined identifiers.

Nonterminals are placeholders in the syntax and are defined elsewhere in this syntax
summary. Definitions can be recursive.

An optional component is indicated by the subscripted opt. For example,

{ expression opt}

indicates an optional expression enclosed in curly braces.

The syntax conventions'use different font attributes for different components of the syntax.
The symbols and fonts are as follows:

Attribute

nonterminal

const

opt

default typeface

Description

Italic type indicates non terminals.

Terminals in bold type are literal reserved words and symbols that must be
entered as shown. Characters in this context are always case sensitive.

Nonterminals followed by opt are always optional.

Characters in the set described or listed in this typeface can be used as
terminals in C statements.

A colon (:) following a nonterminal introduces its definition. Alternative definitions are
listed on separate lines, except when prefaced with the words "one of."

Language Reference 191

C Language Reference

Lexical Grammar
• Tokens

• Keywords

• Identifiers

• Constants

• String Literals

• Operators

• Punctuators

Summary of Tokens
token:

keyword
identifier
constant
string-literal
operator
punctuator

preprocessing-token:
header-name
identifier
pp-number
character-constant
string-literal
operator
punctuator
each nonwhite-space character that cannot be one of the above

header-name:
< path-spec>
"path spec"

path-spec:
Legal file path

192 Language Reference

pp-number:
digit
• digit
pp-number digit
pp-number nondigit
pp-number e sign
pp-number E sign
pp-number.

Summary of Keywords
keyword: one of

auto double

break else

case enum

char extern

const float

continue for

default goto

do if

Summary of Identifiers
identifier:

nondigit
identifier nondigit
identifier digit

nondigit: one of
_abcdefghijklm
nopqrstuvwxyz
ABCDEFGHIJKLM
NOPQRSTUVWXYZ

digit: one of
0123456789

int

long

register

return

short

signed

sizeof

static

Appendix A C Language Syntax Summary

struct

switch

typedef

union

unsigned

void

volatile

while

Language Reference 193

C Language Reference

Summary of Constants
constant:

floating-point-constant
integer-constant
enumeration-constant
character-constant

floating-point-constant:
fractional-constant exponent-part optfloating-suffix opt

digit-sequence exponent-part floating-suffix opt

fractional-constant:
digit-sequence opt • digit-sequence
digit-sequence •

exponent-part:
e sign opt digit-sequence
E sign opt digit-sequence

sign: one of
+ -

digit-sequence:
digit
digit-sequence digit

floating-suffix: one of
f IF L

integer-constant:
decimal-constant integer-suffix opt

octal-constant integer-suffix opt

hexadecimal-constant integer-suffix opt

decimal-constant:
nonzero-digit
decimal-constant digit

octal-constant:
o
octal-constant octal-digit

hexadecimal-constant:
. Ox hexadecimal-digit
OX hexadecimal-digit
hexadecimal-constant hexadecimal-digit

194 Language Reference

Appendix A C Language Syntax Summary

nonzero-digit: one of
123456789

octal-digit: one of
01234567

hexadecimal-digit: one of
0123456789
abcdef
ABCDEF

unsigned-suffix: one of
uU

long-suffix: one of
lL

character-constant:
, 'c-char-sequence'
L'c-char-sequence'

integer-suffix:
unsigned-suffix long-suffix opt

long-suffix unsigned-suffix opt

c-char-sequence :
c-char
c-char-sequence c-char

c-char:
Any member of the source character set except the single quotation mark C),
backslash (\), or newline character
escape-sequence

escape-sequence :
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence

simple-escape-sequence : one of
\a \b \f \n \r \t \v
\' \" \\ \?

octal-escape-sequence :
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence :
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

Language Reference 195

C Language Reference

Summary of String Literals
string-literal:

"s-char-sequence opt"

L" s-char-sequence opt"

s-char-sequence :
s-char
s-char-sequence s-char

s-char:
any member of the source character set except the double-quotation mark ("),
backslash (\), or newline character
escape-sequence

Operators
operator: one of

[] () . ->
++ - & * + - - ! sizeof
1 % « » < > <= >- -- != A 1 && !!
? :
= *= 1= %= += -= «= »= &= A= 1=
, # #II

assignment-operator: one of
= *= 1= o/£)= += -= «= »= &= A= 1=

Punctuators
punctuator: one of

[] () {} * , = ... #

196 Language Reference

Phrase Structure Grammar
• Expressions

• Declarations

• Statements

• External Definitions

Summary of Expressions
primary-expression:

identifier
constant
string-literal
(expression)

expression:
assignment-expression
expression, assignment-expression

constant-expression :
conditional-expression

conditional-expression :
logical-OR -expression
logical-DR-expression? expression: conditional-expression

assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression

Appendix A C Language Syntax Summary

Language Reference 197

C Language Reference

postfix-expression :
primary-expression
postfix-expression [expression]
postfix-expression (argument-expression-list opt)

postfix-expression. identifier
postfix-expression -> identifier
postfix-expression ++
postfix-expression -

argument-expression-list :
assignment-expression
argument-expression-list , assignment-expression

unary-expression :
postfix-expression
++ unary-expression
- unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-name)

unary-operator: one of
&*+--!

cast-expression:
unary-expression
(type-name) cast-expression

multiplicative-expression:
cast-expression
multiplicative-expression * cast-expression
multiplicative-expression / cast-expression
multiplicative-expression % cast-expression

additive-expression :
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

198 Language Reference

shift-expression:
additive-expression
shift-expression « additive-expression
shift-expression » additive-expression

relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression> shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

equality-expression :
relational-expression
equality-expression == relational-expression
equality-expression != relational-expression

AND-expression :
equality-expression
AND-expression & equality-expression

exclusive-DR -expression :
AND-expression
exclusive-DR-expression A AND-expression

inclusive-DR-expression :
exclusive-DR-expression
inclusive-DR-expression I exclusive-DR-expression

logical-AND-expression :
inclusive-DR -expression
logical-AND-expression && inclusive-DR-expression

logical-DR-expression:
logical-AND-expression
logical-DR-expression IIlogical-AND-expression

Appendix A C Language Syntax Summary

Language Reference 199'

C Language Reference

Summary of Declarations
declaration :

declaration-specifiers attribute-seq opt init-declarator-list opt;

1* attribute-seq is Microsoft Specific *1

declaration-specifiers:
storage-class-specifier declaration-specifiers opt

type-specifier declaration-specifiers opt

type-qualifier declaration-specifiers opt

attribute-seq: 1* attribute-seq is Microsoft Specific *1

attribute attribute-seq opt

attribute : one of 1* Microsoft Specific *1

asm

based

cdecl

init-declarator-list :
in it-declarator

fastcall

inline

stdcall

init-declarator-list , init-declarator

init-declarator :
declarator
declarator = initializer 1* For scalar initialization *1

storage-class-specifier :
auto
register
static
extern
typedef
__ declspec (extended-decl-modifier-seq) I*Microsoft Specific *1

type-specifier:
void
char
short
int

intS
int16
int32
int64

1* Microsoft Specific *1
1* Microsoft Specific *1
1* Microsoft Specific *1
1* Microsoft Specific *1

200 Language Reference

long
float
double
signed
unsigned
struct-or-union-specifier
enum-specifier
typedef-name

type-qualifier:
const
volatile

declarator:
pointer opt direct-declarator

direct-declarator:
identifier
(declarator)
direct-declarator [constant-expression opt]

direct-declarator (parameter-type-list) /* New-style declarator */

Appendix A C Language Syntax Summary

direct-declarator (identifier-list opt) /* Obsolete-style declarator */

pointer:
* type-qualifier-list opt

* type-qualifier-list opt pointer

parameter-type-list:
parameter-list
parameter-list, ••.

parameter-list:

/* The parameter list * /

parameter-declaration
parameter-list, parameter-declaration

type-qualifier-list:
type-qualifier
type-qualifier-list type-qualifier

enum-specifier :
enum identifier opt { enumerator-list}
enum identifier

enumerator-list:
enumerator
enumerator-list, enumerator

Language Reference 201

C Language Reference

enumerator:
enumeration-constant
enumeration-constant = constant-expression

enumeration-constant:
identifier

struct-or-union-specifier :
struct-or-union identifier opt { struct-declaration-list }
struct-or-union identifier

struct-or-union :
struct
union

struct-declaration-list :
struct-declaration
struct-declaration-list struct-declaration

struct-declaration :
specifier-qualifier-list struct-declarator-list ;

specifier-qualifier-list:
type-specifier specifier-qualifier-list opt

type-qualifier specifier-qualifier-list opt

struct-declarator-list:
struct-declarator
struct-declarator-list, struct-declarator

struct-declarator :
declarator
type-specifier declarator opt: constant-expression

parameter-declaration :
declaration-specifiers declarator /* Named declarator */
declaration-specifiers abstract-declarator opt 1* Anonymous declarator *1

identifier-list: /* For old-style declarator *1
identifier
identifier-list, identifier

abstract-declarator: 1* Used with anonymous declarators */
pointer
pointer opt direct-abstract-declarator

direct-abstract-declarator :
(abstract-declarator)
direct-abstract-declarator opt [constant-expression opt]

direct-abstract-declarator opt (parameter-type-list opt)

202 Language Reference

initializer :
assignment-expression
{ initializer-list} 1* For aggregate initialization *1
{ initializer-list , }

initializer-list :
initializer
initializer-list , initializer

type-name:
specifier-qualifier-list abstract-declarator opt

typedef-name :
identifier

extended-decl-modifier-seq:1 * Microsoft Specific */
extended-decl-modifier opt

extended-decl-modifier-seq extended-decl-modifier

extended-decl-modifier: I * Microsoft Specific */
thread
naked
dllimport
dllexport

Summary of Statements
statement:

labeled-statement
compound-statement
expression-statement
selection-statement
iteration-statement
jump-statement
try-except-statement /* Microsoft Specific *1
try-finally-statement 1* Microsoft Specific *1

jump-statement:
goto identifier;
continue;
break;
return expression opt;

compound-statement:
{ declaration-list opt statement-list opt}

declaration-list:
declaration
declaration-list declaration

Appendix A C Language Syntax Summary

Language Reference 203

C Language Reference

statement-list:
statement
statement-list statement

expression-statement:
expression opt;

iteration-statement:
while (expression) statement
do statement while (expression);
for (expression opt; expression opt; expression opt) statement

selection-statement:
if (expression) statement
if (expression) statement else statement
switch (expression) statement

labeled-statement:
identifier: statement
case constant-expression : statement
default : statement

try-except-statement: 1* Microsoft Specific *1
__ try compound-statement
__ except (expression) compound-statement

try-Jinally-statement: 1* Microsoft Specific *1
__ try compound-statement
__ finally compound-statement

External Definitions
translation-unit:

external-declaration
translation-unit external-declaration

external-declaration :
function-definition
declaration

1* Allowed only at external (file) scope *1

function-definition : 1* Declarator here is the function declarator *1
declaration-specifiers opt declarator declaration-list opt compound-statement

204 Language Reference

APPENDIX B

Implementation-Defined Behavior

ANSI X3.159-1989, American National Standardfor Information Systems
Programming Language - C, contains an appendix called "Portability Issues."
The ANSI appendix lists areas of the C language that ANSI leaves open to each
particular implementation. This appendix describes how Microsoft C handles these
implementation-defined areas of the C language.

This appendix follows the same order as the ANSI appendix. Each item covered includes
references to the ANSI chapter and section that explains the implementation-defined
behavior.

Note This appendix describes the U.S. English-language version of the C compiler
only. Implementations of Microsoft C for other languages may differ slightly.

Translation: Diagnostics
ANSI 2.1.1.3 How a diagnostic is identified

Microsoft C produces error messages in the form:

filename(line-number) : diagnostic Cnumber message

where filename is the name of the source file in which the error was encountered; line
number is the line number at which the compiler detected the error; diagnostic is either
"error" or "warning"; number is a unique four-digit number (preceded by a C, as noted
in the syntax) that identifies the error or warning; message is an explanatory message.

Environment
• Arguments to main

• Interactive Devices

Language Reference 205

C Language Reference

Arguments to main
ANSI 2.1.2.2.1 The semantics of the arguments to main

In Microsoft C, the function called at program startup is called main. There is no
prototype declared for main, and it can be defined with zero, two, or three parameters:

int main(void)
int main(int argc. char *argv[])
int main(int argc. char *argv[]. char *envp[])

The third line above, where main accepts three parameters, is a Microsoft extension to
the ANSI C standard. The third parameter, envp, is an array of pointers to environment
variables. The envp array is terminated by a null pointer. See "The main Function and
Program Execution" in Chapter 2, "Program Structure," for more information about
main and envp.

The variable argc never holds a negative value.

The array of strings ends with argv[argc], which contains a null pointer.

All elements of the argv array are pointers to strings.

A program invoked with no command-line arguments will receive a value of one for argc,
as the name of the executable file is placed in argv[O]. (In MS-DOS versions prior to 3.0,
the executable-file name is not available. The letter "C" is placed in argv[O].) Strings
pointed to by argv[1] through argv[argc-l] represent program parameters.

The parameters argc and argv are modifiable and retain their last-stored values between
program startup and program termination.

Interactive Devices
ANSI 2.1.2.3 What constitutes an interactive device

Microsoft C defines the keyboard and the display as interactive devices.

Behavior of Identifiers
• Significant Characters Without External Linkage

• Significant Characters with External Linkage

• Uppercase and Lowercase

206 Language Reference

Appendix B Implementation-Defined Behavior

Significant Characters Without
External Linkage

ANSI 3.1.2 The number of significant characters without external linkage

Identifiers are significant to 247 characters. The compiler does not restrict the number of
characters you can use in an identifier; it simply ignores any characters beyond the limit.

Significant Characters With External Linkage
ANSI 3.1.2 The number of significant characters with external linkage

Identifiers declared extern in programs compiled with Microsoft C are significant
to 247 characters. You can modify this default to a smaller number using the /H
(restrict length of external names) option.

Uppercase and Lowercase
ANSI 3.1.2 Whether case distinctions are significant

Microsoft C treats identifiers within a compilation unit as case sensitive.

The Microsoft linker is case sensitive. You must specify all identifiers consistently
according to case.

Characters
• The ASCII Character Set

• Multibyte Characters

• Bits per Character

• Character Sets

• Unrepresented Character Constants

• Wide Characters

• Converting Multibyte Characters

• Range of char Values

Language Reference 207

C Language Reference

The ASCII Character Set
ANSI 2.2.1 Members of source and execution character sets

The source character set is the set of legal characters that can appear in source files. For
Microsoft C, the source character set is the standard ASCII character set.

Warning Because keyboard and console drivers can remap the character set, programs
intended for international distribution should check the country code.

Multibyte Characters
ANSI 2.2.1.2 Shift states for multibyte characters

Multibyte characters are used by some implementations, including Microsoft C; to
represent foreign-language characters not represented in the base character set. However,
Microsoft C does not support any state-dependent encodings. Therefore, there are no shift
states. See "Multibyte and Wide Characters" in Chapter 1, "Elements of C," for more
information.

Bits per Character
ANSI 2.2.4.2.1 Number of bits in a character

The number of bits in a character is represented by the manifest constant CHAR_BIT.
The LIMITS.H file defines CHAR_BIT as 8.

Character Sets
ANSI 3.1.3.4 Mapping members of the source character set

The source character set and execution character set include the ASCII characters listed in
Table B .1. Escape sequences are also shown in the table.

Table B.1 Escape Sequences

Escape Sequence Character

\a Alertlbell

\b Backspace

\f Formfeed

\n Newline

\r Carriage return

208 Language Reference

ASCII Value

7

8

12

10

13

Appendix B Implementation-Defined Behavior

Table B.1 Escape Sequences (continued)

Escape Sequence Character ASCII Value

\t

\v

\"

\'

\\

Horizontal tab

Vertical tab

Double quotation

Single quotation

Backslash

9

11

34

39

92

Unrepresented Character Constants
ANSI 3.1.3.4 The value of an integer character constant that contains a character or
escape sequence not represented in the basic execution character set or the extended
character set for a wide character constant

All character constants or escape sequences can be represented in the extended
. character set.

Wide Characters
ANSI 3.1.3.4 The value of an integer character constant that contains more than one
character or a wide character constant that contains more than one multibyte character

The regular character constant, lab' has the integer value (int)Ox6162. When there is more
than one byte, previously read bytes are shifted left by the value of CHAR_BIT and the
next byte is compared using the bitwise-OR operator with the low CHAR_BIT bits. The
number of bytes in the multibyte character constant cannot exceed sizeof(int), which is 4
for 32-bit target code.

The multibyte character constant is read as above and this is converted to a wide-character
constant using the mbtowc run-time function. If the result is not a valid wide-character
constant, an error is issued. In any event, the number of bytes examined by the mbtowc
function is limited to the value ofMB_CUR_MAX.

Language Reference 209

C Language Reference

Converting Multibyte Characters
ANSI 3.1.3.4 The current locale used to convert multibyte characters into
corresponding wide characters (codes) for a wide character constant

The current locale is the "e" locale by default. It can be changed with the setlocale
library routine. The LC_CTYPE category of the current locale sets the current working
code page, which determines correspondence and conversion between the multibyte and
wide-character sets. The mbstowcs, wcstombs, mbtowc, and wctomb library routines
provide direct mappings between the multi byte and wide-character sets. Also, many of
the stream routines, such as the print, scan, get, and put families, automatically provide
mappings between these two character sets.

Range of char Values
ANSI 3.2.1.1 Whether a "plain" char has the same range of values as a signed char
or an unsigned char

All signed character values range from -128 to 127. All unsigned character values range
from 0 to 255.

The /J compiler option changes the default from signed to unsigned.

Integers
• Range of Integer Values

• Demotion of Integers

• Signed Bitwise Operations

• Remainders

• Right Shifts

Range of Integer Values
ANSI 3.1.2.5 The representations and sets of values of the various types of integers

Integers contain 32 bits (four bytes). Signed integers are represented in two's-complement
form. The most-significant bit holds the sign: 1 for negative, 0 for positive and zero. The
values are listed below:

Type

unsigned short

signed short

210 Language Reference

Minimum and Maximum

o to 65535

-32768 to 32767

Appendix B Implementation-Defined Behavior

(continued)

Type

unsigned long

signed long

Minimum and Maximum

o to 4294967295

-2147483648 to 2147483647

Demotion of Integers
ANSI 3.2.1.2 The result of converting an integer to a shorter signed integer, or the
result of converting an unsigned integer to a signed integer of equal length, if the
value cannot be represented

When a long integer is cast to a short, or a short is cast to a char, the least-significant
bytes are retained.

For example, this line

short x = (short)0x12345678L;

assigns the value Ox5678 to x, and this line

char y = (char)0x1234;

assigns the value Ox34 to y.

When signed variables are converted to unsigned and vice versa, the bit patterns remain the
same. For example, casting -2 (OxFE) to an unsigned value yields 254 (also OxFE).

Signed Bitwise Operations
ANSI 3.3 The results of bitwise operations on signed integers

Bitwise operations on signed integers work the same as bitwise operations on unsigned
integers. For example, -16 & 99 can be expressed in binary as

11111111 11110000
& 00000000 01100011

00000000 01100000

The result of the bitwise AND is 96.

Language Reference 211

C Language Reference

Remainders
ANSI3.3.5 The sign of the remainder on integer division

The sign of the remainder is the same as the sign of the dividend. For example,

50 / -6 -8
50 % -6 2

-50 / 6 -8
-50 % 6 -2

Right Shifts
ANSI3.3.7 The result of a right shift of a negative-value signed integral type

Shifting a negative value to the right yields half the absolute value, rounded down.
For example, -253 (binary 11111111 00000011) shifted right one bit produces -127
(binary 11111111 10000001). A positive 253 shifts right to produce + 126.

Right shifts preserve the sign bit. When a signed integer shifts right, the most-significant
bit remains set. When an unsigned integer shifts right, the most-significant bit is cleared.

If OxFOOO is unsigned, the result is Ox7800.

If OxFOOOOOOO is signed, a right shift produces OxF8000000. Shifting a positive number
right 32 times produces OxFOOOOOOO. Shifting a negative number right 32 times produces
OxFFFFFFFF.

Floating-Point Math
• Values

• Casting Integers to Floating-Point Values

• Truncation of Floating-Point Values

Values
ANSI 3.1.2.5 The representations and sets of values of the various types of
floating -point numbers

The float type contains 32 bits: 1 for the sign, 8 for the exponent, and 23 for the mantissa.
Its range is +/- 3.4E38 with at least 7 digits of precision.

212 Language Reference

Appendix B Implementation-Defined Behavior

The double type contains 64 bits: 1 for the sign, 11 for the exponent, and 52 for the
mantissa. Its range is +/- 1.7E308 with at least 15 digits of precision.

The long double type contains 80 bits: 1 for the sign, 15 for the exponent, and 64 for
the mantissa. Its range is +/- 1.2E4932 with at least 19 digits of precision. With the
Microsoft C compiler, the representation of type long double is identical to type double.

Casting Integers to Floating-Point Values
ANSI 3.2.1.3 The direction of truncation when an integral number is converted
to a floating-point number that cannot exactly represent the original value

When an integral number is cast to a floating-point value that cannot exactly represent
the value, the value is rounded (up or down) to the nearest suitable value.

For example, casting an unsigned long (with 32 bits of precision) to a float (whose
mantissa has 23 bits of precision) rounds the number to the nearest multiple of 256.
The long values 4,294,966,913 to 4,294,967,167 are all rounded to the float value
4,294,967,040.

Truncation of Floating-Point Values
ANSI 3.2.1.4 The direction of truncation or rounding when a floating-point number
is converted to a narrower floating-point number

When an underflow occurs, the value of a floating-point variable is rounded down to
zero. An overflow may cause a run-time error or it may produce an unpredictable value,
depending on the optimizations specified.

Arrays and Pointers
• Largest Array Size

• Pointer Subtraction

Largest Array Size
ANSI 3.3.3.4, 4.1.1 The type of integer required to hold the maximum size of an
array - that is, the size of size_t

The size_t typedef is an unsigned int with the range OxOOOOOOOO to Ox7CFFFFFF.

Pointer Subtraction
ANSI 3.3.6, 4.1.1 The type of integer required to hold the difference between two
pointers to elements of the same array, ptrdiff_t

A ptrdiff_t is a signed int in the range -4,294,967,296 to 4,294,967,295.

Language Reference 213

C Language Reference

Registers: Availability of Registers
ANSI 3.5.1 The extent to which objects can actually be placed in registers by use of the
register storage-class specifier

The 32-bit compiler does not honor user requests for register variables. Instead, it makes it
own choices when optimizing.

Structures, Unions,
Enumerations, and Bit Fields

• Improper Access to a Union

• Padding and Alignment of Structure Members

• Sign of Bit Fields

• Storage of Bit Fields

• The enum Type

Improper Access to a Union
ANSI 3.3.2.3 A member of a union object is accessed using a member of a different
type

If a union of two types is declared and one value is stored, but the union is accessed with
the other type, the results are unreliable.

For example, a union of float and int is declared. A float value is stored, but the program
later accesses the value as an int. In such a situation, the value would depend on the
internal storage of float values. The integer value would not be reliable.

Padding and Alignment of Structure Members
ANSI 3.5.2.1 The padding and alignment of members of structures and whether a bit
field can straddle a storage-unit boundary

Structure members are stored sequentially in the order in which they are declared: the first
member has the lowest memory address and the last member the highest.

214 Language Reference

Appendix B Implementation-Defined Behavior

Every data object has an alignment-requirement. The alignment-requirement for all data
except structures, unions, and arrays is either the size of the object or the current packing
size (specified with either /Zp or the pack pragma, whichever is less). For structures,
unions, and arrays, the alignment-requirement is the largest alignment-requirement of its
members. Every object is allocated an offset so that

offset % alignment-requirement == 0

Adjacent bit fields are packed into the same 1-, 2-, or 4-byte allocation unit if the integral
types are the same size and if the next bit field fits into the current allocation unit without
crossing the boundary imposed by the common alignment requirements of the bit fields.

Sign of Bit Fields
ANSI 3.5.2.1 Whether a "plain" int field is treated as a signed int bit field or as an
unsigned int bit field

Bit fields can be signed or unsigned. Plain bit fields are treated as signed.

Storage of Bit Fields
ANSI 3.5.2.1 The order of allocation of bit fields within an int

Bit fields are allocated within an integer from least-significant to most-significant bit.
In the following code

struct mybitfields
{

unsigned a
unsigned b
unsigned c

} test;

void main(void
{

}

test. a = 2;
test.b = 31;
test. c = 0;

4;
5 ;
7 ;

the bits would be arranged as follows:

00000001 11110010
cccccccb bbbbaaaa

Since the 80x86 processors store the low byte of integer values before the high byte, the
integer Ox01F2 above would be stored in physical memory as OxF2 followed by OxOl.

Language Reference 215

C Language Reference

The enum type
ANSI 3.5.2.2 The integer type chosen to represent the values of an enumeration type

A variable declared as enum is an int.

Qualifiers: Access to
Volatile Objects

ANSI 3.5.5.3 What constitutes an access to an object that has volatile-qualified type

Any reference to a volatile-qualified type is an access.

Declarators: Maximum Number
ANSI 3.5.4 The maximum number of declarators that can modify an arithmetic,
structure, or union type

Microsoft C does not limit the number of declarators. The number is limited only by
available memory.

Statements: Limits on
Switch Statements

ANSI 3.6.4.2 The maximum number of case values in a switch statement

Microsoft C does not limit the number of case values in a switch statement. The number
is limited only by available memory.

Preprocessing Directives
• Character Constants and Conditional Inclusion

• Including Bracketed Filenames

• Including Quoted Filenames

• Character Sequences

• Pragmas

• Default Date and Time

216 Language Reference

Appendix B Implementation-Defined Behavior

Character Constants and Conditional Inclusion
ANSI 3.8.1 Whether the value of a single-character character constant in a constant
expression that controls conditional inclusion matches the value of the same character
constant in the execution character set. Whether such a character constant can have a
negative value

The character set used in preprocessor statements is the same as the execution character
set. The preprocessor recognizes negative character values.

Including Bracketed Filenames
ANSI 3.8.2 The method for locating includable source files

For file specifications enclosed in angle brackets, the preprocessor does not search
directories of the parent files. A "parent" file is the file that has the #include directive in
it. Instead, it begins by searching for the file in the directories specified on the compiler
command line following /I. If the /I option is not present or fails, the preprocessor uses
the INCLUDE environment variable to find any include files within angle brackets. The
INCLUDE environment variable can contain mUltiple paths separated by semicolons (;).
If more than one directory appears as part of the /I option or within the INCLUDE
environment variable, the preprocessor searches them in the order in which they appear.

Including Quoted Filenames
ANSI 3.8.2 The support for quoted names for includable source files

If you specify a complete, unambiguous path specification for the include file between two
sets of double quotation marks (" "), the preprocessor searches only that path specification
and ignores the standard directories.

For include files specified as #include "path-spec," directory searching begins with the
directories of the parent file, then proceeds through the directories of any grandparent
files. Thus, searching begins relative to the directory containing the source file currently
being processed. If there is no grandparent file and the file has not been found, the search
continues as if the filename were enclosed in angle brackets.

Language Reference 217

C Language Reference

Character Sequences
ANSI 3.8.2 The mapping of source file character sequences

Preprocessor statements use the same character set as source file statements with the
exception that escape sequences are not supported.

Thus, to specify a path for an include file, use only one backslash:

tfinclude "path1/path2/myfile"

Within source code, two backslashes are necessary:

fil = fopen("path1 \ \path2\ \myfi 1 e", "rt"):

Pragmas
ANSI 3.8.6 The behavior on each recognized #pragma directive

The following pragmas are defined for the Microsoft C compiler:

alloc_text data_seg include_alias

auto_inline function intrinsic

check_stack hdrstop message

code_seg inline_depth optimize

comment inline_recursion pack

Default Date and Time

setlocale

warning

ANSI3.8.8 The definitions for _DATE_ and _TIME_ when, respectively, the date and
time of translation are not available

When the operating system does not provide the date and time of translation, the default
values for _DATE_ and _TIME_ are May 03 1957 and 17: 00:00".

Library Functions
• NULL Macro

• Diagnostic Printed by the assert Function

• Character Testing

• Domain Errors

218 Language Reference

Appendix B Implementation-Defined Behavior

• Underflow of Fl~ating-Point Values

• The fmod Function

• The signal Function

• Default Signals

• Terminating Newline Characters

• Blank Lines

• Null Characters

• File Position in Append Mode

• Truncation of Text Files

• File Buffering

• Zero-Length Files

• Filenames

• File Access Limits

• Deleting Open Files

• Renaming with a Name That Exists

• Reading Pointer Values

• Reading Ranges

• File Position Errors

• Messages Generated by the perror Function

• Allocating Zero Memory

• The abort Function

• The atexit Function

• Environment Names

• The system Function

• The strerror Function

• The Time Zone

• The clock Function

Language Reference 219

C Language Reference

NULL Macro
ANSI 4.1.5 The null pointer constant to which the macro NULL expands

Several include files define the NULL macro as « v 0 i d *) 0) .

Diagnostic Printed by the assert Function
ANSI 4.2 The diagnostic printed by and the termination behavior of the assert function

The assert function prints a diagnostic message and calls the abort routine if the
expression is false (0). The diagnostic message has the form

Assertion failed: expression, file filename, line linenumber

where filename is the name of the source file and linen umber is the line number of the
assertion that failed in the source file. No action is taken if expression is true (nonzero).

Character Testing
ANSI 4.3.1 The sets of characters tested for by the isalnum, isalpha, iscntrl,
islower, isprint, and isupper functions

The following list describes these functions as they are implemented by the
Microsoft C compiler.

Function

isalnum

is alpha

iscntrl

islower

isprint

isupper

220 Language Reference

Tests For

Characters 0-9, A-Z, a-z
ASCII 48-57,65-90,97-122

Characters A-Z, a-z
ASCII 65-90,97-122

ASCII ° -31,127

Characters a-z
ASCII 97-122

Characters A-Z, a-z, 0-9, punctuation, space
ASCII 32-126

Characters A-Z
ASCII 65-90

Appendix B Implementation-Defined Behavior

Domain Errors
ANSI 4.5.1 The values returned by the mathematics functions on domain errors

The ERRNO.H file defines the domain error constant EDOM as 33.

Underflow of Floating-Point Values
ANSI 4.5.1 Whether the mathematics functions set the integer expression errno to
the value of the macro ERANGE on underflow range errors

A floating-point underflow does not set the expression errno to ERANGE. When a value
approaches zero and eventually underflows, the value is set to zero.

The fmod Function
ANSI 4.5.6.4 Whether a domain error occurs or zero is returned when the fmod
function has a second argument of zero

When the fmod function has a second argument of zero, the function returns zero.

The signal Function
ANSI 4.7.1.1 The set of signals for the signal function

The first argument passed to signal must be one of the symbolic constants described in
the Microsoft Visual C++ 6.0 Run-Time Library Reference, a volume of the Microsoft
Visual C++ 6.0 Reference Library, for the signal function. The information in the
Microsoft Visual C++ 6.0 Run-Time Library Reference also lists the operating mode
support for each signal. The constants are also defined in SIGNAL.H.

Default Signals
ANSI 4.7.1.1 If the equivalent of signal (sig, SIG_DFL) is not executed prior to the
call of a signal handler, the blocking of the signal that is performed

Signals are set to their default status when a program begins running.

Terminating Newline Characters
ANSI4.9.2 Whether the last line of a text stream requires a terminating newline
character

Stream functions recognize either new line or end of file as the terminating character for
a line.

Language Reference 221

C Language Reference

Blank Lines
ANSI 4.9.2 Whether space characters that are written out to a text stream immediately
before a newline character appear when read in

Space characters are preserved.

Null Characters
ANSI 4.9.2 The number of null characters that can be appended to data written to
a binary stream

Any number of null characters can be appended to a binary stream.

File Position in Append Mode
ANSI 4.9.3 Whether the file position indicator of an append mode stream is initially
positioned at the beginning or end of the file

When a file is opened in append mode, the file-position indicator initially points to the end
of the file.

Truncation of Text Files
ANSI 4.9.3 Whether a write on a text stream causes the associated file to be truncated
beyond that point

Writing to a text stream does not truncate the file beyond that point.

File Buffering
ANSI 4.9.3 The characteristics of file buffering

Disk files accessed through standard I/O functions are fully buffered. By default, the buffer
holds 512 bytes.

Zero-Length Files
ANSI4.9.3 Whether a zero-length file actually exists

Files with a length of zero are permitted.

222 Language Reference

Appendix B Implementation-Defined Behavior

Filenames
ANSI 4.9.3 The rules for composing valid file names

A file specification can include an optional drive letter (always followed by a colon),
a series of optional directory names (separated by backslashes), and a filename.

Filenames and directory names can contain up to eight characters followed by a period
and a three-character extension. Case is ignored. The wildcards * and? are not permitted
within the name or extension.

File Access Limits
ANSI 4.9.3 Whether the same file can be open multiple times

Opening a file that is already open is not permitted.

Deleting Open Files
ANSI 4.9.4.1 The effect of the remove function on an open file

The remove function deletes a file. If the file is open, this function fails and returns -1.

Renaming With a Name That Exists
ANSI 4.9.4.2 The effect if a file with the new name exists prior to a call to the
rename function

If you attempt to rename a file using a name that exists, the rename function fails and
returns an error code.

Reading Pointer Values
ANSI4.9.6.2 The input for %p conversion in the fscanf function

When the %p format character is specified, the fscanf function converts pointers from
hexadecimal ASCII values into the correct address.

Reading Ranges
ANSI 4.9.6.2 The interpretation of a dash (-) character that is neither the first nor
the last character in the scanlist for % [conversion in the fscanf function

The following line

fscanf(fileptr, "%[A-Z]", strptr);

reads any number of characters in the range A-Z into the string to which strptr points.

Language Reference 223

C Language Reference

File Position Errors
ANSI 4.9.9.1, 4.9.9.4 The value to which the macro errno is set by the fgetpos or ftell
function on failure

When fgetpos or ftell fails, errno is set to the manifest constant EINV AL if the position
is invalid or EBADF if the file number is bad. The constants are defined in ERRNO.H.

Messages Generated by the perror Function
ANSI 4.9.10.4 The messages generated by the perror function

The perror function generates these messages:

0 Error 0
1
2 No such file or directory
3
4
5
6
7 Arg list too long
8 Exec format error
9 Bad file number
10
11
12 Not enough core
13 Permission denied
14
15
16
17 File exists
18 Cross-device 1 ink
19
20
21
22 Invalid argument
23
24 Too many open files
25
26
27
28 No space left on device
29

224 Language Reference

Appendix B Implementation-Defined Behavior

30
31
32
33 Math argument
34 Result too large
35
36 Resource deadlock would occur

Allocating Zero Memory
ANSI 4.10.3 The behavior of the ealloe, malloe, or realloe function if the size
requested is zero

The ealloe, malloe, and realloe functions accept zero as an argument. No actual memory
is allocated, but a valid pointer is returned and the memory block can be modified later by
realloc.

The abort Function
ANSI 4.10.4.1 The behavior of the abort function with regard to open and temporary
files

The abort function does not close files that are open or temporary. It does not flush stream
buffers.

The atexit Function
ANSI 4.10.4.3 The status returned by the atexit function if the value of the argument
is other than zero, EXIT_SUCCESS, or EXIT_FAILURE

The atexit function returns zero if successful, or a nonzero value if unsuccessful.

Environment Names
ANSI 4.10.4.4 The set of environment names and the method for altering the
environment list used by the getenv function

The set of environment names is unlimited.

To change environment variables from within a C program, call the _putenv function. To
change environment variables from the command line in Windows 95 or Windows NT,
use the SET command (for example, SET LIB = D:\ LIBS).

Language Reference 225

C Language Reference

Environment variables set from within a C program exist only as long as their host copy
of the operating system command shell is running (CMD.EXE in Windows NT and
COMMAND.COM in Windows 95). For example, the line

system(SET LIB = O:\LIBS);

would run a copy of the Windows NT command shell (CMD.EXE), set the environment
variable LIB, and return to the C program, exiting the secondary copy of CMD.EXE.
Exiting that copy of CMD.EXE removes the temporary environment variable LIB.

This example also runs on the Windows 95 platform.

Likewise, changes made by the _putenv function last only until the program ends.

The system Function
ANSI 4.10.4.5 The contents and mode of execution of the string by the system function

The system function executes an internal operating system command, or an .EXE, .COM
(.CMD in Windows NT) or .BAT file from within a C program rather than from the
command line.

The system function finds the command interpreter, which is typically CMD.EXE in
the Windows NT operating system or COMMAND.COM in Windows 95. The system
function then passes the argument string to the command interpreter.

The strerror Function
ANSI 4.11.6.2 The contents of the error message strings returned by the strerror
function

The strerror function generates these messages:

o Error 0
1
2 No such file or directory
3
4
5
6
7 Arg list too long
8 Exec format error
9 Bad file number
10
11
12 Not enough core
13 Permission denied
14
15

226 Language Reference

)

16
17 File exists
18 Cross-device link
19
20
21
22 Invalid argument
23
24 Too many open files
25
26
27
28 No space left on device
29
30
31
32
33 Math argument
34 Result too large
35
36 Resource deadlock would occur

The Time Zone
ANSI 4.12.1 The local time zone and Daylight Saving Time

Appendix B Implementation-Defined Behavior

The local time zone is Pacific Standard Time. Microsoft C supports Daylight Saving Time.

The clock Function
ANSI 4.12.2.1 The era for the clock function

The clock function's era begins (with a value of 0) when the C program starts to execute. It
returns times measured in l/CLOCKS_PER_SEC (which equals 111000 for Microsoft C).

Language Reference 227

- (arithmetic negation operator) 119
-- (decrement operator) 116,117
, (escape sequence, single quotation mark) 19
- (subtraction operator) 123, 124
! (logical negation operator) 119
" " (double quotation marks),

usage in command-line arguments 33
" (escape sequence, double quotation mark) 19
(number sign), using in

preprocessor directives 24
% (remainder operator) 122
%= (remainder assignment operator) 134
& (address-of operator)

described 118
examples 118
register objects 48

& (bitwise-AND operator) 130
&& (logical-AND operator)

described 131
sequence points 108

&= (bitwise-AND assignment operator) 134
() (parentheses)

enclosing expression arguments 156
in complex abstract declarators 76
in declarations 56
in function declarations 76
specifying evaluation order 101

* (asterisk), in declarations 56
* (indirection operator)

described 117
example 118
I-value expressions 102
subscript expressions 112

* (multiplicative operator) 121, 122
* (wildcard) in filenames and paths 32
*= (multiplication assignment operator) 134
, (comma)

described See sequential evaluation operator
in constant expressions 83
in initializer lists 83
sequential evaluations

described 108
example 136

, (sequential evaluation operator) 136
. (period) member-selection operator 114
I (division operator) 122
1* *1 (comment delimiters) 2
II (comment delimiters) 4
1= (division assignment operator) 134
: (colon), in bit field declarations 65
; (semicolon)

null statements 156
statement terminator 147

? (conditional-expression operator)
defined 108
examples 133
syntax 132

? (escape sequence, literal question mark) 9
? (escape sequence, question mark) 19
? (wildcard) in filenames and paths 32
??' (trigraph) translates as A character 9
??- (trigraph) translates as ,.., character 9
??! (trigraph) translates as I character 9
??((trigraph) translates as [character 9
??) (trigraph) translates as] character 9
??I (trigraph) translates as \\ character 9
??< (trigraph) translates as { character 9
??= (trigraph) translates as # character 9
??> (trigraph) translates as } character 9
[] (brackets)

in arrays 111
in declarations 56, 71, 76

\ (escape sequence, backslash) 19
\ 32
A (bitwise-exclusive-OR operator) 129, 130
A= (bitwise-exclusive-OR

assignment operator) 134
__ (double underscore),

identifier name prefix 5,6
{ } (braces)

compound statement delimiters 28, 147
in initializer lists 85

I (bitwise-inclusive-OR operator) 129, 130
II (logical-OR operator)

described 131
sequence points 108

Index

Language Reference 229

Index

1= (bitwise-inclusive-OR
assignment operator) 134

'""' (bitwise-complement operator) 119
+ (addition operator) 123, 124
+ (unary plus operator) 119
++ (increment operator) 116, 117
+= (addition-assignment operator) 134
« (bitwise left-shift operator) 126
«= (left-shift assignment operator) 134
=-- (decrement operator) 117
= (simple assignment operator) 134, 135
-= (subtraction-assignment operator) 134
== (equality operator) 127, 128
-> (member-selection operator) 114
>= (greater-than-or-equal-to operator) 127
» (bitwise right-shift operator) 126
»= (right-shift assignment operator) 134

A
\a (escape sequence, bell) 19
abort function 225
abstract declarators

described 76
examples 76

accessing files, limits 223
addition operator (+) 123, 124, 125
addition-assignment operator (+=) 134
additive operators, syntax 123
addresses

access with address-of operator (&) 118
I-values 101
storing 75

address-of operator (&)
described 118
with register objects 48

aggregate types, initializing 82, 83, 85
alarm See bell character escape sequence
alignment

bit fields 65
structure members 67

allocating memory
dynamic 36
zero-sized 225

anonymous structures 63
ANSI C standard ix, 205
ANSI conformance x
apostrophe (') See escape sequences
append mode, files 222
argc parameter, passing information to main 31
arguments

ANSI compatibility 206
command-line 30,32,33,34

230 Language Reference

arguments (continued)
defined 30
to main 206

argv parameters, passing information to main 31
arithmetic conversions

See also usual arithmetic conversions
additive operators 123
binary operators, steps 109
examples 110
logical operators 131
multiplicative operators (list) 122
summary 109

arithmetic negation (-) operator 119
arithmetic operators, unary (table) 119
arithmetic types, defined 86
array declarations

brackets ([]) in 56, 71, 76
elements 70
examples 71-72
maximum size 72
multidimensional 71
specifying array size 71
syntax 70, 71

array types, incomplete 91
arrays

as last member of structure 64
character, initializing 85, 86
declaring 56, 71, 72
defined 55
determining size of 64,82
element types 21
errors 83
in expressions 101
in structures 120
initializing 82, 83, 85
maximum size 213
multidimensional 71, 112, 113
of pointers 71
one-dimensional 111
pointer arithmetic 124, 125
pointer comparison 128
postfix expressions 111, 112
size, maximum 72
storing 71, 72
subscript expressions 111

ASCII character sets 208
ASCII values,

escape sequences (table) 208-209
assert function 220
assignment conversions

See also type conversions
compound-assignment operator 135
described 137

assignment conversions (continued)
floating-point types (table) 142
operators 134
other types 144
pointer types 143
signed integral types

described 138
(table) 138-139

unsigned integral types 139
assignment operations, side effects 104·
assignment operators

compound 106
expression evaluation 134
syntax 133
(table) 134

associativity
C operators (table) 107
defined 107
operator, types C 106

asterisk (*)
in declarations 56
wildcard in filenames 32

atexit function 225
auto storage class

default 47
lifetime 37
local variables 48
visibility 37

automatic identifiers, storage allocation for 36
automatic variables

allocating 44
initializing 48, 80
visibility of 48

B
\b (escape sequence, backspace) 19
backslash escape sequence (\) 19
(backslash)

line-continuation character 20, 21
usage in command-line arguments 33

backspace character (\b) escape sequence 19
based addressing 75
__ based keyword 75
based pointers 75
bell character (\a) escape sequence 19
binary expressions 106
binary numbers, floating point 89,90
binary operators, defined 106
binding

See also precedence
defined 107
expressions examples 108

bit fields
colon (:) in declarations 65
declaring 65
defined 65
example 65
signed 215
storage allocation 215
storing 66

bitwise left-shift operator «<) 126
bitwise operators

described 126
examples 130
(list) 130
overflow conditions 126
signed integers 211
syntax 129
using 127

bitwise right-shift operator (») 126
bitwise shifts, integers 127
bitwise-AND assignment operator (&=) 134
bitwise-AND operator (&) 130
bitwise-complement operator (,..,) 119
bitwise-exclusive-OR assignment

operator (A=) 134
bitwise-exclusive-OR operator (A) 129, 130
bitwise-inclusive-OR assignment

operator (1=) 134
bitwise-inclusive-OR operator (I) 129, 130
block scope

identifiers 81
visibility 37

blocks
See also compound statements
defined 28
delimiters ({ }) 28
nesting 38

braces ({ })
block delimiters 28
compound statement delimiters 147
in initializer lists 85

brackets ([]) in array declarations 56, 71, 76
branching operations See if statements;

switch statements
break statements

See also continue statements
example 148
in switch statements 158
syntax 148
terminating for statements 152

buffering files 222

Index

Language Reference 231

Index

c
"c" locale 210
calling functions 114
carriage return escape sequence (\r) 19
case labels in switch statements' 158, 159
case sensitivity

defined 7
identifiers 207
specifying 8

case statements
labels in 158
maximum allowed 216

casting integers to enumerations 60
casts, type See type casts
char type

changing default 53
conversion 138
range of values 210
storing integer value 87

character arrays 85
character constants 17
character sets

compared 18
escape sequences (table) 208-209
mapping 210
multibyte 208
preprocessing 217
source files 8,218

characters
ASCII compatibility 208
backslash escape sequence (\) 19
backspace escape sequence (\b) 19
bell escape sequence (\a) 19
carriage return escape sequence (\r) 19
double quotation mark

escape sequence (\") 19
end-of-file indicator 4
escape sequences See escape sequences
formfeed escape sequence (\f) 19
function tests (lists) 220
hexadecimal 19,20
horizontal tab escape sequence (\t) 19
international 8
line-continuation (\) 20,21
multibyte 8,209,210
newline (\n) 19,221
nongraphic control 20
null 22,222
octal escape sequences 19,20
question mark escape sequence (\?) 19
range of values 210

232 Language Reference

characters (continued)
single quotation mark

escape sequence (\') 19
size in bits 208
spaces preserved 222
special 24
string literals 21
testing 220
types 18
vertical tab escape sequence (\v) 19
white-space 2, 19
wide 8,209

clock function 227
colon (:), used in bit field declarations 65
comma (,)

constant expressions 83
initializer lists 83
operator See sequential-evaluation operator (,)
sequential evaluations

described 108
example 136

command-line arguments
ANSI requirements 31
interpreting 33
main function 30
parsing 33,34
_setargv function 32
syntax 30

command-line processing, customizing 34,35
comments

delimiters (1* *1) 2
delimiters (II) 4
nesting 2,3

compiler options
IH (restrict length of external names) 7
II (search directory for include files) 217
IJ (change default character type) 53,87,210
1W4 (setting warning level 4) 7
IZa (enable Microsoft extensions) 3,5
IZp (pack structure members) 66, 215

compiling translation units 25
complex declarators

examples 78-79
interpreting 77-79

compound statements
See also blocks
defined 28, 147
example 149
repeating 152
syntax 149

compound-assignment expressions,
evaluation 135

compound:"assignment operator (+=) 135
conditional branching See if statements;

switch statements
conditional compilation, testing code 3
conditional expressions, sequence points 132
conditional-expression operator (?)

defined 108
described 132
examples 133

const type qualifier
identifiers, nonmodifiable I-values 101
pointers 54, 73
using 54
variables 53, 54

const variables, declaring pointers 54
constant expressions

defined 103
restricted 103
syntax 103

constants
character 17, 209
defined 10
described 18,19,20,21
enumerations 59
floating-point 10, 11, 12, 13
integer 13, 15
integer, conversion rules 15-16
syntax 194-195
types 100

continue statements
example 150
syntax 150

conventions, syntax 191
conversions

See also type conversions
arithmetic 109
assignment

described 139, 143, 144
(table) 142

char type 138
enumeration type 144
function call 146
integral types

described 141
(table) 142

pointer types 143, 144,223
rules

arithmetic 109, 110
floating-point types (table) 142
integer constants 15
type conversions 137
unsigned integral types 139

conversions (continued)
signed integral types

described 138, 139
(table) 138-139

type cast 144
creating types 93
CTRL+Z character (end-of-file indicator) 4
current locale See locale

D
data options, packing 215
data types See types
__ DATE __ predefined macro, default 218
decimal

constants See integer constants
defined 13

declarations
arrays 70, 71, 72
automatic variables 48
bit fields 65
defined 27,41,42
defining 43,45,47
enumerations 58, 59, 60
examples 49
external See external declarations
functions See function declarations
internal 44, 48
placement in source file 149
pointers 72, 73-75, 75
referencing 43, 45, 47
specifying types 51,52
structures 61,63,64,65,66,67
syntax 42, 200-203
type specifiers (table) 52-53
typedef See typedef declarations
union 67,68,69, 70
variables See variable declarations

declarators
See also identifiers
abstract 76
bit fields 65
complex

described 77-79
examples 78-79

enumerations 58
examples 56
functions 56
initializing 79, 80, 82, 83, 84, 85
interpreting 77-79
maximum allowed 216
restrictions on use 56
syntax 55-56

Index

Language Reference 233

Index

declaring
thread-local variables, guidelines 96
variables See variable declarations

__ declspec storage-class specifier 43,95
decrement operator, prefix (--) 117
default labels in switch statements 158, 159
defaults

bit fields 67
Microsoft C extensions enabled 102
type specifiers 43

#define preprocessor directive,
enumerations as an alternative 58

defining declarations 43, 45
definitions

See also function definitions
defined 27,41
external 45
used as declarators 43

deleting open files 223
denormalized numbers 89, 90
derived types, defined 41
diagnostic messages See error messages
displaying nongraphic control characters 20
division assignment operator (/=) 134
division operator (/) 122
divisor, integer remainder 212
dllexport storage-class attribute

overview 95
dllimport storage-class attribute

overview 95
DLLs

exporting 95
importing 95

documenting code, writing comments 2
domain errors, math functions 221
double quotation mark escape sequence (\") 19
double type

floating-point constants 11
format and precision 88
range 89,90

double underscore C-),
identifier name prefix 7

do-while statements
continue statements in 150
example 151
expression evaluation 151
syntax 150
terminating 148, 151

dynamic memory allocation 36
dynamic-link libraries See DLLs

E
else clauses, nesting 155

234· Language Reference

embedded structures 63
end-of-file indicator, CTRL Z 4
enumeration declarations

conversion 144
defined 58
examples 59
types 51

enumeration tags
names spaces 40
syntax 58

enumerations
assigning values to members 59, 60
casting 60
declarations See enumeration declarations
declaring pointers to 73
defined 55
naming members 59
overriding default values 59
storing 58
syntax 58
types 51,58,216
unnamed 60

environment variables
changing 225
COMSPEC 226

envp parameter 32,35
epilog code

writing 96
equality operator (==) 127
equality operators

examples 128-129
(list) 127
syntax 127

error messages
assert function 220
diagnostic Cnumber message 205
Microsoft C error format 205
strerror function 226

errors
arrays 83
file position 224
integer constants 17
math functions 221
symbol redefinition 39

escape sequences
ASCII values (table) 208-209
described 19
in string literals 21
(table) 19

evaluating expressions
See expression evaluation

evaluation order, effect of parentheses 101
example programs See sample programs
__ except statements 160

exception handling 160
_exec function 35
execution character set,

compared to source character set 18
exit function, terminating programs 30
expanding wildcard arguments 32
exponents, floating-point variables 88
exporting DLLs, dllexport 95
expression evaluation

assignment operators 134
compound-assignment expressions 136
conditional-expression operator 132
constants 103
examples 109
for statements 152
if statements examples 155
logical operators 108
order of operators 108
sequence points 104, 105, 132
sequential-evaluation operator (,) 136
short circuit 108, 131
side effects 104, 151, 152
statements 148
subscript expressions 112, 113
tokens 4

expression statements
examples 151
syntax 151

expressions
binary 106
binding examples 108
conditional, sequence points 132
constant

defined 103
restricted 103
syntax 53

defined 99
evaluating 4
floating-point 11
infinite loops 152
I-values 101, 102
member-selection

described 102, 114
syntax 114

operands 106
parentheses used in 10 1
primary 99
subscript 112
syntax 197-199
ternary 106
unary 106
void 52

extended attribute syntax,
__ declspec keyword 95

extended storage-class attributes
naked 96
thread 96

extensions, Microsoft -specific
See Microsoft-specific extensions

extern storage class
declarations 50
linkage 39
rules for using 46
syntax 45,46
visibility 37

external declarations
described 39,44,45,46,47
example 47, 46-47
functions 27, 50
lifetime 37
placement of 44
storage-class specifiers 45
using extern 46, 48
visibility 45

external definitions
defined 45
syntax 204

external linkage
described 39,43,45
significant characters 207

external variables

F

static 45
visibility 48

\f (escape sequence, formfeed) 19
file buffering 222
file scope 28, 36, 45, 80
filenames

valid 223
wildcards 32

files
access limits 223
append mode 222
buffering 222
deleting open 223
end-of-file indicator 4
file position errors 224
header See Header (.H) files
include 26
naming restrictions 223
object 25
renaming 223
source 25,218
truncation 222
zero-length 222

__ float type

Index

Language Reference 235

Index

files (continued)
floating-point constants 11
format and precision 88
range 89

FLOAT.H header file, content of 12
floating-point

constants
decimal point, using 11
IEEE format 88
naming 11
range limits 12, 13
representation of 10
syntax 10
types 11

mantissas 88-90
numbers, storing as denormalized 89,90
range errors 221
representation 212
truncation 213
types

conversions (table) 142
conversions 141
format and precision 88
listed 51
promoting 90
ranges 89,90
variables, declaring as 88,90

variables
described 88
promoting 90

fmod function 221
for statements

continue statements in 150
example 153
expression evaluation 152
syntax 152
terminating 148

formal parameters See parameters
formfeed escape sequence (\f) 19
fscanf function 223
function arguments

function calls 114
function calls

arguments 114
arithmetic conversions 146
conversions 146
postix expressions 114
side effects 104
syntax 114

function declarations
example 28, 29
extern 50
parentheses () in 56, 76

236 Language Reference

function declarations (continued)
placement 44
static 50
type specifiers 53,51
visibility 44

function definitions
compound statement block 28
contents 27
example 28, 29
file scope 28

function identifiers as addresses 100
function parameters

local lifetime 36
void 51,52

function prototypes
defined 27
scope 37
type conversions 146

function return types
matching function call types 114
specifying 52
void 51, 156

function scope 36
functions

abort 225
assert 220
atexit 225
clock 227
declaring 56
definitions See function definitions
_exec 35
exit 30
extern 50
external declarations 27, 50
fmod 221
fscanf 223
headers 28
inline 44
lifetime 35
main 30, 31, 206
malloc 36
naming 46
nesting 45
perror 224
prototypes See function prototypes
_putenv 225
_setargv 32, 34
_setenvp 35
signal 221
_spawn 35
static 46, 50
strerror 226
system 226
visibility 46,50

G
global

declarations 28
identifiers 35, 36
lifetime 36, 44
variables 50

goto statements
example 154
exiting loops with 153
syntax 153
terminating for statements 152
transferring control 148

greater-than-or-equal-to operator (>=) 127

H
!H compiler option 7
header (.H) files

defined 26
FLOAT.H 12
LIMITS.H 87

hexadecimal
constants See integer constants
defined 13
escape sequences 19, 20

horizontal tab escape sequence (\t) 19

II compiler option 217
identifiers

See also variables
arrays 100
attributes 37
behavior of 206
block scope 37,81
case sensitivity 7,8,207
const 53
declared as a function 100
defined 6
described 8
enumeration tags 58
enumerator lists 59
external 36, 39
floating-point constants 11
functions

prototype scope 37
scope 36

global 35, 36
hiding names of 45
in compound statements 149
initializing 35
internal linkage 38
lifetime 36

identifiers (continued)
linkage 8,27,38,39
local 35
I-values 101, 102
name spaces 39,40
names

in different scopes 38
nested visibility 40
requiring __ (double underscore)

prefix 7
naming

case sensitivity 8
functions 46
integer constants 14
leading underscores 5, 7
restrictions on 6, 7, 207
structure members 62

scope 8,36,149
statement labels 153
storage class 35
storage duration 35
structure members 62
structure tags 61
syntax 6, 193
types 100
using 6
visibility 36

IEEE format, floating-point numbers 88
if statements

described 155
else clauses 155
examples 155
nesting 155
syntax 154

implementation-defined behavior 205
importing DLLs, dllimport 95
include files

contents 26
search path 217

incomplete types 91
increment operator (++) 116
indirection operator (*)

described 117
example 118
I-values 102
subscript expressions 112

initializations, examples 81
initializer lists

nesting 82
initializers

aggregate types 82
braces ({ }) 85
defined 79

Index

Language Reference 237

Index

initializing
aggregate types 82,83,85
arrays 82,83,85
block scope identifiers 81
declarators 79,80,82,83,84,85
local variables 36
scalar types 80, 82
strings 85,86
structures 82
syntax 80
variables

aggregate 82
auto 80
example 83,84
external 81
file scope 80
global 82
internal static 48
register 80
rules for 80
scalar 79
static 48,80,81
string 85

Institute of Electrical and Electronics Engineers
See IEEE format

int type
signed 51
size of 87

integer constants 13, 14, 15
integer division, remainder 212
integers

conversions 138
converting 139
demotion 211
enumerations 58,216
limits 16
range of values (table) 210-211
shifting 212
size of 87
storing 66, 87
types 15-16
widening 53

integral promotion 137
integral types

conversions
described 138, 139, 141
(table) 138-139, 140-141

(list) 51
interactive devices 206
internal declarations 27, 44, 48
internal linkage 38, 43, 45
internal variables

static 48
visibility 50

238 Language Reference

international characters 8
interpreting command-line arguments 33
interpreting complex declarators 77-79
/J compiler option 53, 87, 210

K
keywords

L

(list) 4-5
redefining 5
syntax 193

labeled statements
described 153
syntax 153

labels
in case statements 158
names spaces 40
scope 36

leading underscores C_),
identifier name prefix 5

leave statements 162, 163
left-shift assignment operator «<=) 134
left-shift operator «<) 126
lexical grammar, syntax 192
lexical scope See scope
library functions, (list) 218-219
lifetime

automatic (local) 44
defined 35
determining 43
functions 44
global 36, 44, 48
local 36, 44, 48
static (global) 44, 50
(table) 37

limits
floating-point constants 11, 13
integers 16

LIMITS.H header file
limits for integer types 16
range of signed integer values 87

line-continuation character (\) 20
linkage

defined 8, 27
effect on storage duration 36
external 39,43,45
function identifiers 27
internal 38, 43, 45
significant characters 207
types 38

linked lists, creating 62

linking
object files 25
with Setargv.obj 32

local declarations 27
local scope 48
local variables

initializing 36
storage allocated for 36

locale 210
logical expressions, sequence points 131
logical negation operator (!) 119
logical operators

evaluation order 108
examples 131
syntax 131

logical-AND operator (&&)
described 131
sequence points 108

logical-OR operator (II)
described 131
sequence points 108

long double type
conversion (table) 142
floating-point constants 11

long type
conversion 138
described 51
floating-point constants 11
integer constants 15

loops, continue statements 150
I-values

M

accessing 54
assignment operations 133
casts of 102
defined 101
expressions 102
identifiers as 100
Microsoft C extension 102
modifiable 100, 101, 116, 133
prefix increment and

decrement operators 117
vs. r-values 102

macros
See also predefined macros
defining 20
null 220

main function
command-line arguments 31,206
described 30

malloc function 36
mantissas, floating-point variables 88,90

mapping character sets 210
math functions, domain errors 221
mblen function 8
mbstowcs function 8
mbtowc function 8
member-selection expressions

I-values 102
syntax 114

member-selection operator (.) 114
member-selection operator (-» 114
memory access, using volatile 54
memory allocation

dynamic 36
static variables 48
zero-sized 225

Microsoft -specific extensions
ANSI conformance xiv
casts of I-values 102
disabling with /Za option 102

modifiable I-values 102
multibyte characters

converting 210
described 8, 208
wide 209

multidimensional arrays
declaring 71
defined 113
postfix expressions 112, 113

mUltiplication assignment operator (*=) 134
multiplicative operator (*) 122
multiplicative operators

examples 122
syntax 121

multithreaded programs See thread local storage

N
\n (escape sequence, newline character) 19,221
naked, storage-class attributes 96
name spaces 39,40
names

files 223
typedef 40,93
union members 40

naming identifiers
case sensitivity 8
floating-point constants 11
functions 46
integer constants 14, 15
leading underscores L_) 5, 7
restrictions on 6, 7
structure members 62

negation, operators 119

Index

Language Reference 239

Index

nested
else clauses 155
if statements 155
initializer lists 82
structures 62
switch statements 159
unions 69

nesting comments 2, 3
newline character, escape sequence (\n) 19,221
nonterminals, definition 191
null characters 22, 222
null macro 220
null pointers

invalid pointers 117
produced by conversions 143

null statements
defined 151
described 156
empty 148
example 156

number sign (#), in preprocessor directives 24

o
object files, linking 25
octal

character specifications 20
constants See integer constants
defined 13
escape sequences 19

one-dimensional arrays,
postfix expressions 111, 112

open files, deleting 223
operands

defined 99
expressions 106

operators
addition (+) 123, 124
addition-assignment (+=) 134
additive 123, 124
address-of (&) 118
arithmetic

negation (-) 119
unary (list) 119

assignment 106, 134
assignment 133-134
associativity and precedence (table) 107
associativity 106
binary (list) 106
bitwise 129, 211
bitwise (list) 130
bitwise complement (,..,) 119
bitwise shift «<, ») 126, 127
bitwise-AND (&) 130

240 Language Reference

bitwise-AND assignment (&=) 134
bitwise-exclusive-OR (A) 130
bitwise-exclusive-OR assignment (A=) 134
bitwise-inclusive-OR (I) 130
bitwise-inclusive-OR assignment (1=) 134
compound-assignment (+=) 135
conditional-expression (?)

described 132
examples [begin] 133
examples [end] 133

division (I) 122
division assignment (/=) 134
equality (==)

described 127
examples 128

greater-than (» 127
greater-than-or-equal-to (>=) 127
increment (++) 116
indirection (*) 112
left-shift assignment « <=) 134
less-than «) 127
less-than-or-equal-to «=) 127
(lists) 106
logical evaluation order 108
logical negation (!) 119
logical 131
logical-AND operator (&&) 131
logical-OR operator (II) 131
member-selection operator (.) 114
member-selection operator (-» 114
multiplication assignment (*=) 134
multiplicative (*) 121, 122
negation 119
postfix decrement (--) 116
postfix increment (++) 116
postfix 111, 112, 113, 114, 115
precedence and associativity (table) 107
prefix decrement (--) 117
prefix increment (++) 117
relational

examples 128-129
(list) 127
precedence 127, 128

remainder (%) 122
remainder assignment (&=) 134
right-shift assignment (»=) 134
sequence points 1 08
sequential expression (,) 136
simple assignment (=) 134, 135
sizeof 90, 120
subtraction (-) 123, 124
subtraction-assignment (-=) 134
syntax 196

operators (continued)
unary

arithmetic (list) 119
(list) 106

unary arithmetic negation
floating-point constants 11
integer constants 14

unary plus (+) operator 119
order of evaluation See precedence

p

pack pragma 67,215
packing

data options 215
structures 67

parameters
argc 31
argv 31,32
defined 30
envp 31,32,35

parentheses ()
determining evaluation order 101
enclosing expression arguments 156, 157
in complex abstract declarators 76
in function declarations 56

parsing command-line arguments 33,34
period (.) member-selection operator 114
perror function 224
phases, translation

identifier names 5
trigraphs 9

plus operator (+) 119
pointers

argv parameter 31
arithmetic 124, 125, 213
based on pointers 76
based on void 75
const 54, 73
conversions 143,223
converting 143
declarations

described 72, 75
examples 73-75

declaring 56
defined 55
determining size of 75
envp parameter 32
invalid 117
null 32,117, 143
relational operators 128
storing 75
string, storing 23
subscript expressions 112

pointers (continued)
to structure types 62
to unspecified types 52
to void 73, 143, 145
types 73, 143, 144
void 51,52
volatile 73

portability
data size 87
ensuring 5
implementation-defined behavior 205
sizeof operator 87
type conversion issues 143

postfix expressions, function calls 114
postfix operators
, decrement (--) 116

described 116
example 111
expression evaluation 112
function calls 114
increment (++) 116
syntax 111, 116

pragmas
defined 26
(list) 218
pack 67,215

precedence
C operators

described 107
(table) 107

example 108
postfix operatots 111
prefix increment and

decrement operators 117
relational operators 127
sequence points 108

precision of floating-point types 88
predefined macros

DATE __ 218
TIME __ 218

prefix increment and decrement operators 117
preprocessing, character set 218
preprocessor directives

alternative to enumerations 58
character set 217, 218
defined 26
#endif 3
example 28-29
#if 3

primary expressions
defined 99
syntax 100

programs, terminating 30

Index

Language Reference 241

Index

prolog code
writing 96

promoting integers 137
promoting, floating-point types 90
punctuation, C character set 24
punctuators

described 24
syntax 196

_putenv function 225

Q
question mark escape sequence (\?) 19
question mark wildcard filenames (?) 32
quotation marks 21

R
. \r (escape sequence, carriage return) 19
ranges

floating-point types
conversions 141
limits 12, 16, 89

integers, limits 16
reading 223

read-only variables 54
records See structure declarations
redefining keywords 5
referencing

bit fields 65
declarations 45,47
structures 114

register storage class
lifetime 44
purpose of 48
registers used 214
specifier, described 48
visibility 37

register variables
address-of operator (&) 48
initializing 80
visibility 48

registers
availability 214
storage 48

relational operators
comparing addresses 128
examples 128-129
precedence 127
syntax 127
usual arithmetic conversions 128

remainder assignment operator (%=) 134
remainder operator (%) 122
renaming files 223
repeating statements 164

242 Language Reference

restricted constant expressions 103
return statements

controlling execution 30, 148
example 157
expression evaluation 156
syntax 156

return types
function 51,52, 156

right-shift (») 126
right-shift assignment operator (»=) 134
rules

conversions 109, 137
r-value expressions, defined 101, 102

s
sample programs

blocks 38
equality operators 128-129
initializations 81
initializers for array 83
nested structure declarations 62
nesting 38
unions 69
visibility of variables 38

scalar
initialization 80, 82
types, postfix operators 116

scope
See also visibility
block 37
defined 8, 36
determining 36
file 36,45
function 36
function-prototype 37
identifiers in compound statements 149
labels 36
local 48,50
structures 62

search paths 217
semicolon (;)

null statements 156
statement terminator 147

sequence points
conditional expressions 132
defined 104
in logical expression 131
(list) 105
operators 108
sequential-evaluation operator (,) 136

sequential-evaluation operator (,)
example 136

sequential-evaluation operator (,) (continued)
sequence points 108

. syntax 136
_setargv function 32, 34
Setargv.obj file, linking with 32
_setenvp function 35
shifting

integers 212
values 126

short type
conversion 138
using 51

short-circuit evaluation 108, 131
side effects

defined 104
expression evaluation 104, 151, 152
in function calls 104
void expressions 52

signal function 221
signals, defaults 221
signed integers

bitwise operations 211
conversions (table) 138-139
limits 16
range 87

signed types, declaring 51
sign-extending integral types 53
significance, floating-point types 88,90
significant characters,

with and without external linkage 207
simple assignment operator (=) 134, 135
single quotation mark

escape sequence (\') 19
forming character constants (') 17

size
arrays 82
floating-point types 88
signed int 87
types 86
unsigned int 87

size_t type 120
sized integer types 88
sizeof operator

data types, determining 120
example 120
portability issues 87
structure padding 120
with un sized arrays 64

source character set
compared to execution character set 18
defined 8

source files
character set 218
contents 26
defined 25
example 29
referencing external variables 48

source programs See source files
_spawn function 35
special characters, C character set 24
statements

body, defined 147
break 148
case 216
compound 28, 149
continue 150
do-while 150
__ except 160
expression 148, 151
__ finally 163
for 152
goto 153
if 154
labeled 40, 153
__ leave 162, 163
(list) 147
null 148, 151, 156
repeating 152
restrictions on 216
return 30, 156
switch 158
syntax 147,203-204
terminator 147
__ try 160, 163
using in goto statements 6, 148
while 164

static storage class
external declarations 45
function declarations 50
internal declarators 48
internal linkage 38
lifetime 37
overriding external linkage 45
rules for using 45-46
specifying 36
syntax 44
variables, initializing 48, 81
visibility 37

storage
enumerations variables 58
floating-point type requirements 88,90
integers 87

Index

Language Reference 243

Index

storage (continued)
registers 48
string literals 22
structures 67
types

described 87,90,91
(table) 86

unsigned int 87
storage classes

See also storage-class attributes
auto 44,48, 149
__ declspec 44, 95
defaults 48
defined 43
described 44,45,46,50
determing 44
example 47
extended attributes 95
extern 44
function declarations 50
identifiers 35
internal identifiers 47
internal variables 48
register See register storage class
required in declarators 57
restrictions on 44
specifiers list 44
static See static storage class
syntax 44
typedef 44,92,93,94

storage duration
automatic 35
determining 36
static 35, 36, 45

storage-class attributes
dllexport 95
dllimport 95
naked 96
thread 96

storing
addresses 75
arrays 71, 72
integers 66
pointers 75
string pointers 23
structures 66, 214
unions 68, 70
variables 27

strerror function 226
string literals

defined 101
described 21,22,23
maximum length 23

244 Language Reference

string literals (continued)
syntax 196
types 21

string pointers, storing 23
strings

initializing 85, 86
static storage duration 22

structure declarations
bit fields

alignment 65
memory allocation 66
unnamed 65

defined 61
examples 63
nested 63
packing 67
specifying members 62
tags 61
without declaration 64

structure members
arrays as last 64
defined 61
initializing 62
member-selection operators (.), (-» 114
name spaces 40
naming 62
selecting member from an array 115
types 62

structured exception handling 160, 163
structures

aggregate types 82, 83, 85
alignment

described 66,67,215
example 215

anonymous 63
arrays 64
bit fields 65,66
declaring pointers to 73
default packing size 67
defined 55
definition 61
fields 61
incomplete types 91
initializing 82
naming members 62
nested 64
pointers to structure type 62
referencing 114
scope 62
storing 66,214,215
syntax 61
tags 40, 61, 63

sUbscript expressions
applying to pointers 112
arrays 111
expression evaluation 112, 113
1-values 102
multiple subscripts 112-113

subtraction operator (-) 123, 124, 125
subtraction-assignment operator (-=) 134
switch statements

described 158
examples 158, 159
expression evaluation 158
labels 158
limits to case values 160
maximum case statements allowed 216
multiple case labels 160
nesting 159
terminating 148

symbols See identifiers
syntax

constants 194-195
declarations 200-203
documents conventions 191
eternal definitions 204
expressions 197-199
identifiers 193
keywords 193
lexical grammar 192
operators 196
punctuators 196
statements 203-204
string literals 196
tokens 192-193

system function 226

T
\t (escape sequence, horizontal tab) 19
tags

enumerations 58,59
name spaces 40
structures 61
union 67

terminating
for statements 152
program execution 30, 148

termination handling 163
ternary expressions 106
ternary operator

See conditional-expression operator
testing code 3
thread, storage-class attributes 96
thread local storage 96

thread-local variables,
guidelines for declaring 96

time zone 227
__ TIME __ predefined macro, default 218
tokens

comments within 2
defined 2
interpreting 4
syntax 192-193

translation phases
identifier names 5
trigraph translation 9

translation units
compiling 25
components 25
defined 25
syntax 25

trigraphs
defined 9
interpreting 9
(list) 9
using \? escape sequence 10

truncation, text files 222
__ try statements 160, 163
try-except statements

example 162
flow of control 161
return values 161
syntax 161

try-finally statements
example 162
flow of control 163
syntax 163

type casts
conversions

described 139, 143, 144
(table) 142

implementation 211
integers 140
legal (table) 145
I-values 102
restrictions 121
rounding of numbers 213
syntax 121, 144
type conversions 137

type checking
ANSI compliant 52
performed by compiler 146

type conversions
arithmetic conversions 109
assignment conversions 137
constants 15

Index

Language Reference 245

Index

type conversions (continued)
floating-point values 213
other types 144
overview 137
pointer types 143
signed integral types

described 138
(table) 138-139

simple assignment operators 135
type casts 121
unsigned integral types 139

type qualifiers
const 43
described 53
volatile 43,216

type specifiers
default 43
equivalents

described 52
(table) 52-53

function 51
(list) 51
overview 51
required in declarators 56

typedef declarations
creating 93
defined 92
described 93
examples 94
improving code readability with 94
name spaces 40
names 93
simplifying declarations 76
storage class 92, 93, 94
syntax 92

types
aggregate 79, 82, 83, 85
arithmetic 86
casting integers to enumerations 60
char 87,101,138,208
characters 18
checking 52
conversions 15, 109
creating 93
default 51
derived 41
double 11,51,90
enumerations 51
enumerations 58, 59, 60, 216
float 11,88,89,90
floating-point 51, 141,212
function return 114
in declarations 56, 57
incomplete 91

246 Language Reference

types (continued)
int 15,51

u

integer bit fields 65
integer constants 18
integer ranges (table) 210-211
integral conversions

described 138, 139, 141
floating-point (table) 142
unsigned (table) 140-141

integral 51
long double 11,51,90
long int 138
long 11,15,51,138
pointer conversions 143, 144
pointer 73
scalar 79, 116
short 51, 138
signed 51
size of 86
size_t 120
sized integers 88
specifiers (table) 52-53
specifying 51,52
storage

described 87,90,91
(table) 86

string literals 21
structure members 62
structures 61
typedef 92, 93, 94
union 68
unsigned 15
void

described 91
function-call expressions 114
pointers 145
type specifier, expressions 52
using with return statements 156

wchar_t 8, 101

unary arithmetic negation operator
floating-point constants, using with 11
integer constants, using with 14

unary operators
address-of (&) 118
arithmetic 119
defined 106
prefix increment and decrement 117
sizeof operator 120
syntax 116

underflow conditions, rounding of values 213
Unicode specification, wide characters 8

union declarations
accessing 214
aggregate types, initializing 82, 83, 85
defined 67
described 70
example 69
incomplete types 91
member types 68
members 114
tags 67

union members
name spaces 40
selecting 115

union tags, names spaces 40
unions

declaring pointers to 73
defined 55
examples 68
nested 69
referencing 114
storing 68, 70

unsigned char type
integer constants 15
limits 15
range 87

unsigned integers
limits 16, 17
shifting 127
size 87

unsigned integral types,
conversions (table) 140-141

unsigned keyword, with integral types 51
untyped variables 57
usual arithmetic conversions

binary operators, steps 109
bitwise shift operators 126
defined 109

v

examples 11 0
function prototype 146
(list) 122
multiplicative operators 123
relational operators 128

\v (escape sequence, vertical tab) 19
values

characters 18
converting to void 144
integers 18
referring to with identifiers 6
shifting 126

variable declarations
automatic 44
defined 27
examples 57
external 45
floating-point types 88,89,90
information in 57
lifetime 44
multiple 57
placement 44
storage classes, syntax 43
volatile variables 54

variable definitions, defined 27
variables

accessing 27
aggregate types, initializing 82,83,84,85
allocating storage for 27
array 70
automatic 44, 48, 149
constant 53
declarations, example 57
declaring floating-point types 88, 90
determining lifetime 43
environment See environment variables
external 45,46,47
file scope 45,80
floating-point described 88
global 35, 50
initializing 35,48, 79,81, 82, 84, 85
internal 47,48,50
lifetime 35,44,48
local 44
read-only 54
register 48, 149
scalar types 80,81,82
shared 45
simple declarations 57
static, initializing 45, 80
storage classes 44,45,46,47,48,50
storage in registers 48
storing 35
strings, initializing 85, 86
type declarations 55
type specifiers 51,51,53,54
untyped 57
values, undefined 48
visibility 38, 46, 48
volatile 54

variant records See union declarations
vertical tab escape sequence (\v) 19

Index

Language Reference 247

Index

visibility
See also scope
defined 36
detennining 36
example 38
external variables 45, 46, 48
function declarations 44
functions 46, 50
global 38
identifiers in compound statements 149
internal variables 50
register variables 48
static definitions 45
static identifiers 37
summary table 37
variables

declared with register storage class 48
detennined by placement 44
prior to defining declaration 47
static 48

void
expressions

sequential evaluations 136
side effects 52

types, incomplete 91
void keywords

type specifier, using with pointers 73
using 51

void pointers
converting 143
using 51,52

volatile type qualifier

w

accessing volatile types 216
pointers 73
using 54
variables 53

wcstombs function 8
wctomb function 8
while statements

continue statements in 150
example 164
expression evaluation 164
loop control 164
syntax 164
terminating 148

white-space characters, defined 2
wide-character constants 209
widening integers 53

248 Language Reference

wildcards
*, ? 32
in filenames and paths 32
_setargv function 32
suppressing expansion of 32

wmain function 30, 31

z
/Za compiler option 3,5, 102
/ZB compiler option 88
zero-extending, integers widening 53
zero:..length files 222
zero-sized allocation 225
/Zp compiler option 67,215

Microsoft®

Visual
C++® 6.0

Language
Reference

Contents

Introduction Organization of the C++ Language Reference xiii
Scope of This Manual . xiv

Special Terminology in This Manual. .. xv

Chapter 1 Lexical Conventions .. 1
Overview of File Translation 1

Tokens ... 2

Comments ... 3

Identifiers .. 4

Keywords ... 6

Punctuators .. 8

Operators .. 8

Literals .. 11

Integer Constants .. 11

Character Constants .. 13

Floating-Point Constants. 16

String Literals .. 17

Chapter 2 Basic Concepts .. 21
Terms ... 21

Declarations and Definitions. .. 23

Declarations. .. 23

Definitions. .. 24

Scope ... 24

Point of Declaration .. 25

Hiding Names .. 26

Scope of Formal Arguments to Functions. .. 28

Language Reference iii

Contents

Program and Linkage. 28

Types of Linkage .. 29

Linkage in Names with File Scope. : .. 29

Linkage in Names with Class Scope ... 30

Linkage in Names with Block Scope .. 30

Names with No Linkage ... 30

Linkage to Non-C++ Functions .. 32

Startup and Termination. .. 33

Program Startup: the main Function. .. 33

Program Termination ... 38

Additional Startup Considerations .. 39

Additional Termination Considerations .. 40

Storage Classes. .. 41

Automatic .. 42

Static ... ' 42

Register. .. 42

External '" .. 42

Initialization of Objects. .. 43

Types ... 45

Fundamental Types. .. 45

Sized Integer Types .. 47

Derived Types .. 48

Type Names .. 55

L-Values and R-Values ... 55

Numerical Limits. .. 56

Integer Limits. .. 56

Floating Limits. .. 57

Chapter 3 Standard Conversions. .. 59
Integral Promotions .. 60

Integral Conversions " 61

Converting Signed to Unsigned 61

Converting Unsigned to Signed. .. 62

Standard Conversion. .. 62

iv Language Reference

Contents

Floating Conversions. .. 62

Floating and Integral Conversions. .. 63

Floating to Integral. .. 63

Integral to Floating. .. 63

Arithmetic Conversions .. 63

Pointer Conversions. .. 65

Null Pointers .. 65

Pointers to Type void .. 65

Pointers to Objects. .. 65

Pointers to Functions .. 66

Pointers to Classes .. 66

Pointer Expressions .. 67

Pointers Modified by const or volatile .. 68

Reference Conversions. .. 68

Pointer-to-Member Conversions. .. 68

Integral Constant Expressions .. 69

Pointers to Base-Class Members '. .. 69

Chapter 4 Expressions.. 71
Types of Expressions. .. 71

Primary Expressions. .. 72

Postfix Expressions '. .. 74

Expressions with Unary Operators. .. 84

Expressions with Binary Operators .. 96

Expressions with the Conditional Operator ~ " 111

Constant Expressions . " 112

Expressions with Explicit Type Conversions .. 113

Expressions with Pointer-to-Member Operators " 117

Semantics of Expressions. " 120

Order of Evaluation ... " 120

Notation in Expressions ; " 123

Casting " 124

Casting Operators. " 125

Run-Time Type Information. .. 132

Language Reference v

Contents

Chapter 5 Statements... 135
Overview of Statements '.' .. 136

Labeled Statements 136

Using Labels with the goto Statement. .. 137

Using Labels in the case Statement. .. 137

Expression Statement. .. 138

The Null Statement .. 139

Compound Statements (Blocks) 139

Selection Statements. .. 140

The if Statement. " 140

The switch Statement .. 141

Iteration Statements .. 144

The while Statement. .. 145

The do Statement .. 146

The for Statement. .. 147

Jump Statements .. 148

The break Statement. .. 149

The continue Statement. .. 149

The return Statement. .. 150

The goto Statement. .. 150

Declaration Statements. .. 151

Declaration of Automatic Objects .. 151

Declaration of Static Objects. .. 153

Exception Handling. .. 156

The try, catch, and throw Statements. .. 156

Structured Exception Handling .. 162

Chapter 6 Declarations... 163
Specifiers '.' .. 164

Storage-Class Specifiers .. 165

Function Specifiers. .. 167

typedef Specifier .. 172

friend Specifier. .. 176

Type Specifiers 176

vi Language Reference

Contents

Enumeration Declarations " 181

Enumerator Names. .. 184

Definition of Enumerator Constants. .. 184

Conversions and Enumerated Types. .. 185

Linkage Specifications. " 186

Template Specifications. " 188

Referencing a Template .. 191

Function Templates ... " 191

Member Function Templates. " 192

Explicit Instantiation ... " 193

Differences from Other Implementations . " 194

N amespaces .. 194

namespace Declaration. " 195

namespace Definition. " 197

Defining namespace Members. " 198

N amespace Alias 199

using Declaration. " 199

using Directive ... " 204

Explicit Qualification " 208

Chapter 7 Declarators.. 209
Overview of Declarators ... " 210

Type Names ; 212

Abstract Declarators .. " 212

Ambiguity Resolution. .. 213

Pointers. " 214

References. " 217

Pointers to Members. " 223

Array .. 228

Function Declarations. .. 232

Default Arguments .. " 239

Function Definitions ... " 242

Functions with Variable Argument Lists " 242

Language Reference vii

Contents

Initializers '.. 245

Initializing Pointers to const Objects .. 246

Uninitialized Objects 246

Initializing Static Members 246

Initializing Aggregates .. 247

Initializing Character Arrays .. 250

Initializing References .. 251

Chapter 8 Classes.. 253
Overview of Classes. .. 254

Defining Class Types .. 254

Class-Type Objects. .. 257

Class Names. .. 259

Declaring and Accessing Class Names .. 260

typedef Statements and Classes .. 261

Class Members .. 261

Class-Member Declaration Syntax. .. 263

Declaring Unsized Arrays in Member Lists 264

Storage of Class-Member Data ... 265

Member Naming Restrictions .. 265

Member Functions. .. 266

Overview of Member Functions. .. 267

The this Pointer .. 269

Static Data Members .. 271

Unions ... 273

Member Functions in Unions ... 274

Unions as Class Types '. .. 274

Union Member Data. .. 274

Anonymous Unions ~ 274

Bit Fields. .. 276

Restrictions on Use of Bit Fields .. 278

Nested Class Declarations. .. 278

Access Privileges and Nested Classes. .. 279

Member Functions in Nested Classes ... 279

Friend Functions and Nested Classes. .. 280

Type Names in Class Scope .. 281

viii Language Reference

Contents

Chapter 9 Derived Classes, " 283
Overview of Derived Classes ... " 283

Single Inheritance ... " 284

Multiple Inheritance ... " 288

Virtual Base Class Hierarchies .. 289

Class Protocol Implementation . " 289

Base Classes. .. 290

Multiple Base Classes . " 291

Virtual Base Classes. .. 292

N arne Ambiguities . " 294

Virtual Functions .. " 298

Abstract Classes .. " 302

Restrictions on Using Abstract Classes. .. 302

Summary of Scope Rules .. 304

Ambiguity . " 304

Global Names . " 304

Names and Qualified Names ... " 304

Function Argument Names .. 305

Constructor Initializers .. 306

Chapter 10 Member-Access Control. , , .. , , , , , , , , , .. , , , , , , , .. , , , , , .. , , " 307
Controlling Access to Class Members " 307

Access Specifiers. .. 308

Access Specifiers for Base Classes ... " 309

Access Control and Static Members. " 311

Friends·. " 312

Friend Functions .. 312

Class Member Functions and Classes as Friends. " 314

Friend Declarations . " 315

Defining Friend Functions in Class Declarations. " 316

Protected Member Access ... " 316

Access to Virtual Functions. .. 316

Multiple Access. " 317

Language Reference ix

Contents

Chapter 11 Special Member Functions. .. 319
Constructors. .. 320

What a Constructor Does .. 321

Rules for Declaring Constructors .. " 321

Constructors and Arrays .. 324

Order of Construction. .. 324

Destructors. .. 325

Declaring Destructors .. 326

Using Destructors. .. 327

Order of Destruction. .. 328

Explicit Destructor Calls. .. 330

Temporary Objects ... 330

Conversions. .. 332

Conversion Constructors. .. 333

Conversion Functions. 335

The new and delete Operators. .. 337

The operator new Function .. 337

Handling Insufficient Memory Conditions. .. 339

The operator delete Function. .. 341

Initialization Using Special Member Functions. .. 344

Explicit Initialization .. 345

Initializing Arrays. .. 347

Initializing Static Objects .. 348

Initializing Bases and Members. .. 348

Copying Class Objects. .. 351

Compiler-Generated Copying .. 352

Memberwise AssigQl11ent and Initialization. .. 353

Chapter 12 Overloading .. " .. 357
Overview of Overloading. .. 357

Argument Type Differences ... 358

Restrictions on Overloaded Functions 359

Declaration Matching. .. 360

x Language Reference

Contents

Argument Matching. .. 362

Argument Matching and the this Pointer. " 363

Argument Matching and Conversions ; " 364

Address of Overloaded Functions .. " 369

Overloaded Operators .. 369

General Rules for Operator Overloading .. 372

Unary Operators. " 374

Binary Operators ... " 377

Assignment " 379

Function Call. .. 380

Subscripting ... " 381

Class-Member Access ... " 382

Appendix A Grammar Summary .. 383
Keywords " 384

Expressions .. " 384

Declarations ... " 390

Declarators .. " 394

Classes .. 395

Statements ... " 397

Microsoft Extensions ... " 398

Appendix B Microsoft-Specific Modifiers .. 399
Based Addressing ... " 399

Using __ based in 32-bit Compilations .. " 400

Calling and Naming Convention Modifiers " 401

Extended Storage-Class Attributes " 401

Extended Attribute Syntax .. " 401

The thread Attribute. .. 402

The naked Attribute . " 404

The dllexport and dllimport Attributes " 407

Using dllimport and dllexport in C++. .. 410

Inline Assembler .. 412

Language Reference xi

Contents

Appendix C Compiler COM Support Classes. .. 415
com_error ... 416

Member Functions 417

Operators ... 422

_com_ptr_t .. 422

Member Functions .. 424

Operators. .. 430

_bstr_t. .. 434

Member Functions .. 434

Operators. ... '. 436

_ variant_t .. 439

Member Functions .. 440

Operators. .. 445

Appendix D Charts... 449
ASCII Character Codes Chart 1 .. 450

ASCII Character Codes Chart 2. .. 451

ASCII Multilingual Codes Chart .. 452

ANSI Character Codes Chart. .. 453

Key Codes Chart 1 .. 454

Key Codes Chart 2 .. 455

Index .. 457

xii Language Reference

INTRODUCTION

Organization of the
C++ Language Reference

Chapter 1, "Lexical Conventions," introduces the fundamental elements of a C++ program
as they are meaningful to the compiler. These elements, called "lexical elements," are used
to construct statements, definitions, declarations, and so on, which are used to construct
complete programs.

Chapter 2, "Basic Concepts," explains concepts such as scope, linkage, program startup
and termination, storage classes, and types. These concepts are key to understanding C++.
Terminology used in this book is also introduced.

Chapter 3, "Standard Conversions," describes the type conversions the compiler performs
between built-in, or "fundamental," types. It also explains how the compiler performs
conversions among pointer, reference, and pointer-to-member types.

Chapter 4, "Expressions," describes C++ expressions - sequences of operators and
operands that are used for computing values, designating objects or functions, or
generating other side effects.

Chapter 5, "Statements," explains the C++ program elements that control how and in what
order programs are executed. Among the statements covered are expression statements,
null statements, compound statements, selection statements, iteration statements, jump
statements, and declaration statements.

Chapter 6, "Declarations," is one of three chapters devoted to how complete declarations
are used to form declaration statements. This chapter describes such topics as storage-class
specifiers, function definitions, initializations, enumerations, class, struct, and union
declarations, and typedef declarations. Related information can be found in Chapter 7,
"Declarators," and Appendix B, "Microsoft-Specific Modifiers."

Chapter 7, "Declarators," explains the portion of a declaration statement that names an
object, type, or function.

Chapter 8, "Classes," introduces C++ classes. C++ treats an object declared with the class,
struct, or union keyword as a class type. This chapter explains how to use these class
types.

Language Reference xiii

c++ Language Reference

Chapter 9, "Derived Classes," covers the details of inheritance - a process by which
you can define a new type as having all the attributes of an existing type, plus any new
attributes you add.

Chapter 10, "Member-Access Control," explains how you can control access to class
members. Use of access-control specifiers can help produce more robust code because
you can limit the number of ways an object's state can be changed.

Chapter 11, "Special Member Functions," describes special functions unique to class
types. These special functions perform initialization (constructor functions), cleanup
(destructor functions), and conversions. This chapter also describes the new and delete
operators, which are used for dynamic memory allocation.

Chapter 12, "Overloading," explains a C++ feature that enables you to define a group of
functions with the same name but different arguments. Which function in the group is
called depends on the argument list in the actual function call. In addition, this chapter
covers overloaded operators, a mechanism for defining your own behavior for C++
operators.

Appendix A, "Grammar Summary," is a summary of the C++ grammar with the
Microsoft extensions. Portions of this grammar are shown throughout this manual in
"Syntax" sections.

Appendix B, "Microsoft-Specific Modifiers," describes the modifiers specific to
Microsoft C++. These modifiers control memory addressing, calling conventions, and so on.

Appendix C, "Compiler COM Support Classes," is a reference to four Microsoft-specific
classes used to support some Component Object Model types.

Appendix D, "Charts," contains the following charts: ASCII Character Codes, ASCII
Multilingual Codes, ANSI Character Codes, and Key Codes.

Scope of This Manual
C++, like C, is a language that is heavily reliant on a rich set of library functions to provide
the following:

• Portable operating-system interface (file and screen I/O)

• String and buffer manipulation

• Floating-point math transformations

• Other supporting functionality

For information about the run-time library and the iostream classes, see the Microsoft
Visual C++ 6.0 Run-Time Library Reference. For information about the Microsoft
Foundation classes, see the two volumes of the Microsoft Visual C++ 6.0 MFC Library
Reference. All three volumes are part of the Microsoft Visual C++ 6.0 Reference Library.

xiv Language Reference

Introduction Organization of the C++ Language Reference

Special Terminology in This Manual
In this manual, the term "argument" refers to the entity that is passed to a function. In
some cases, it is modified by "actual" or "formal," which mean the argument expression
specified in the function call and the argument declaration specified in the function
definition, respectively.

The term "variable" refers to a simple C-type data object. The term "object" refers to both
C++ objects and variables; it is an inclusive term.

For more information on terminology, see "Terms" in Chapter 2, "Basic Concepts."

Language Reference xv

CHAPTER

Lexical Conventions

This chapter introduces the fundamental elements of a C++ program. You use these
elements, called "lexical elements" or "tokens" to construct statements, definitions,
declarations, and so on, which are used to construct complete programs. The following
lexical elements are discussed in this chapter:

• Tokens

• Comments

• Identifiers

• Keywords

• Punctuators

• Operators

• Literals

This chapter also includes Table 1.1, which shows the precedence and associativity
of C++ operators (from highest to lowest precedence). For a complete discussion of
operators, see Chapter 4, "Expressions."

Overview of File Translation
C++ programs, like C programs, consist of one or more files. Each of these files is
translated in the following conceptual order (the actual order follows the "as if' rule:
translation must occur as if these steps had been followed):

1. Lexical tokenizing. Character mapping and trigraph processing, line splicing, and
tokenizing are performed in this translation phase.

2. Preprocessing. This translation phase brings in ancillary source files referenced by
#include directives, handles "stringizing" and "charizing" directives, and performs
token pasting and macro expansion (see "Preprocessor Directives" in the Preprocessor
Reference later in this volume for more information). The result of the preprocessing
phase is a sequence of tokens that, taken together, define a "translation unit."

Language Reference 1

c++ Language Reference

Preprocessor directives always begin with the number-sign (#) character (that is,
the first nonwhite-space character on the line must be a number sign). Only one
preprocessor directive can appear on a given line. For example:

#include <iostream.h> II Include text of iostream.h in
II translation unit.

#define NDEBUG II Define NDEBUG (NDEBUG contains empty
II text string).

3. Code generation. This translation phase uses the tokens generated in the preprocessing
phase to generate object code.

During this phase, syntactic and semantic checking of the source code is performed.

See "Phases of Translation" in the Preprocessor Reference later in this volume for more
information.

The C++ preprocessor is a strict superset of the ANSI C preprocessor, but the C++
preprocessor differs in a few instances. The following list describes several differences
between the ANSI C and the C++ preprocessors:

• Single-line comments are supported. See "Comments" for more information.

• One predefined macro, __ cplusplus, is defined only for C++. See "Predefined
Macros" in the Preprocessor Reference later in this volume for more information.

• The C preprocessor does not recognize the C++ operators: .*, ->*, and ::.
See "Operators," later in this chapter, and Chapter 4, "Expressions," for more
information about operators.

Tokens
A token is the smallest element of a C++ program that is meaningful to the compiler.
The C++ parser recognizes these kinds of tokens: identifiers, keywords, literals, operators,
punctuators, and other separators. A stream of these tokens makes up a translation unit.

Tokens are usually separated by "white space." White space can be one or more:

• Blanks

• Horizontal or vertical tabs

• New lines

• Formfeeds

• Comments

2 Language Reference

Chapter I Lexical Conventions

Syntax

token:
keyword
identifier
constant
operator
punctuator

preprocessing-token:
header-name
identifier
pp-number
c haracte r-constant
string-literal
operator
punctuator
each nonwhite-space character that cannot be one of the above

The parser separates tokens from the input stream by creating the longest token possible
using the input characters in a left-to-right scan. Consider this code fragment:

a = i+++j;

The programmer who wrote the code might have intended either of these two statements:

a i + (++j)

a (i++)+j

Because the parser creates the longest token possible from the input stream, it chooses the
second interpretation, making the tokens i ++, +, and j.

Comments
A comment is text that the compiler ignores but that is useful for programmers. Comments
are normally used to annotate code for future reference. The compiler treats them as white
space. You can use comments in testing to make certain lines of code inactive; however,
#if/#endif preprocessor directives work better for this because you can surround code that
contains comments but you cannot nest comments.

A C++ comment is written in one of the following ways:

• The 1* (slash, asterisk) characters, followed by any sequence of characters (including
new lines), followed by the * I characters. This syntax is the same as ANSI C.

• The I I (two slashes) characters, followed by any sequence of characters. A new line
not immediately preceded by a backslash terminates this form of comment. Therefore,
it is commonly called a "single-line comment."

Language Reference 3

c++ Language Reference

The comment characters (I *, * I, and I J) have no special meaning within a character
constant, string literal, or comment. Comments using the first syntax, therefore, cannot
be nested. Consider this example:

1* Intent: Comment out this block of code.
Problem: Nested comments on each line of code are illegal.

FileName = String("hello.dat"); 1* Initialize file string *1
cout « "File: " « FileName « "\n"; 1* Print status message *1
*1

The preceding code will not compile because the compiler scans the input stream from the
first I * to the first * I and considers it a comment. In this case, the first * I occurs at the end
of the In i t i ali z e f i 1 est r i n g comment. The last * I, then, is no longer paired with an
opening 1*.

Note that the single-line form (I I) of a comment followed by the line~continuation token
(\) can have surprising effects. Consider this code:

#include <stdio.h>

void maine)
{

}

printf("This is a number %d", II \
5);

After preprocessing, the preceding code contains errors and appears as follows:

#include <stdio.h>

void main()
{

printf("This is a number %d",
}

Identifiers
An identifier is a sequence of characters used to denote one of the following:

• Object or variable name

• Class, structure, or union name

• Enumerated type name

• Member of a class, structure, union, or enumeration

• Function or class-member function

4 Language Reference

Chapter 1 Lexical Conventions

• typedef name

• Label name

• Macroname

• Macro parameter

Syntax

identifier:
nondigit
identifier nondigit
identifier digit

nondigit : one of
_abcdefghijklm
nopqrstuvwxyz
ABCDEFGHIJKLM
NOPQRSTUVWXYZ

digit: one of
0123456789

Microsoft Specific-+

Only the first 247 characters of Microsoft C++ identifiers are significant. This restriction is
complicated by the fact that names for user-defined types are "decorated" by the compiler
to preserve type information. The resultant name, including the type information, cannot
be longer than 247 characters. (See "Decorated Names" in the Microsoft Visual C+ + 6.0
Programmer's Guide online for more information.) Factors that can influence the length
of a decorated identifier are:

• Whether the identifier denotes an object of user-defined type or a type derived from a
user-defined type. -

• Whether the identifier denotes a function or a type derived from a function.

• The number of arguments to a function.

END Microsoft Specific

The first character of an identifier must be an alphabetic character, either uppercase or
lowercase, or an underscore (_). Because C++ identifiers are case sensitive, fi 1 eName is
different from Fi 1 eName.

Identifiers cannot be exactly the same spelling and case as keywords. Identifiers that
contain keywords are legal. For example, Pi nt is a legal identifier, even though it contains
int, which is a keyword.

Use of two sequential underscore characters (__) at the beginning of an identifier, or a
single leading underscore followed by _ a capital letter, is reserved for C++ implementations
in all scopes. You should avoid using one leading underscore followed by a lowercase
letter for names with file scope because of possible conflicts with current or future
reserved identifiers.

Language Reference 5

c++ Language Reference

Keywords
Keywords are predefined reserved identifiers that have special meanings. They cannot be
used as identifiers in your program. The following keywords are reserved for c++:

Syntax

keyword: one of

asm* auto bad_cast bad_typeid

bool break case catch

char class const const_cast

continue default delete do

double dynamic_cast else enum

except explicit extern false

finally float for friend

goto if inline int

long mutable namespace new

operator private protected public

register reinterpret_cast return short

signed sizeof static static_cast

struct switch template this

throw true try type_info

typedef typeid typename union

unsigned using virtual void

volatile while

* Reserved for compatibility with other C++ implementations, but not implemented. Use __ asm.

6 Language Reference

Chapter I Lexical Conventions

Microsoft Specific ~

In Microsoft C++, identifiers with two leading underscores are reserved for compiler
implementations. Therefore, the Microsoft Convention is to precede Microsoft-specific
keywords with double underscores. These words cannot be used as identifier names.

allocate3 inUne property3

asm! intS selectany3

based2 int16 __ single_inheritance

cdecl int32 stdcall

__ declspec int64 thread3

dllexport3 leave __ try

dllimpore __ multiple_inheritance uuid3

__ except naked3 uuidof

fastcall nothrow3 virtuaCinheritance

__ finally

1 Replaces C++ asm syntax.

2 The __ based keyword has limited uses for 32-bit target compilations.

3 These are special identifiers when used with __ declspec; their use in other contexts is not restricted.

Microsoft extensions are enabled by default. To ensure that your programs are fully
portable, you can disable Microsoft extensions by specifying the ANSI-compatible
/Za command-line option (compile for ANSI compatibility) during compilation. When
you do this, Microsoft-specific keywords are disabled.

When Microsoft extensions are enabled, you can use the previously-listed keywords
in your programs. For ANSI compliance, these keywords are prefaced by a double
underscore. For backward compatibility, single-underscore versions of all the keywords
except __ except, __ finally, __ leave, and __ try are supported. In addition, __ cdecl
is available with no leading underscore.

END Microsoft Specific

Language Reference 7

c++ Language Reference

Punctuators
Punctuators in C++ have syntactic and semantic meaning to the compiler but do not,
of themselves, specify an operation that yields a value. Some punctuators, either alone
or in combination, can also be C++ operators or be significant to the preprocessor.

Syntax

punctuator: one of
!%A&*()_+={}I_
[] \; ':" < >?,.I #

The punctuators [], (), and { } must appear in pairs after translation phase 4.

Operators
Operators specify an evaluation to be performed on one of the following:

• One operand (unary operator)

• Two operands (binary operator)

• Three operands (ternary operator)

The C++ language includes all C operators and adds several new operators. Table 1.1 lists
the operators available in Microsoft C++.

Operators follow a strict precedence which defines the evaluation order of expressions
containing these operators. Operators associate with either the expression on their left
or the expression on their right; this is called "associativity." Operators in the same group
have equal precedence and are evaluated left to right in an expression unless explicitly
forced by a pair of parentheses, (). Table 1.1 shows the precedence and associativity
of C++ operators (from highest to lowest precedence).

Table 1.1 C++ Operator Precedence and Associativity

Operator Name or Meaning Associativity

· . Scope resolution None

.. Global None

[] Array subscript Left to right

() Function call Left to right

() Conversion None

Member selection (object) Left to right

8 Language Reference

Table 1.1 C++ Operator Precedence and Associativity (continued)

Operator Name or Meaning Associativity

->

++

new

delete

delete[]

++

*
&

+

sizeof

sizeof ()

typeid()

(type)

const_cast

dynamic_cast

reinterpret_cast

static_cast

.*

->*

*
I

%

Member selection (pointer)

Postfix increment

Postfix decrement

Allocate object

J:?eallocate object

Deallocate object

Prefix increment

Prefix decrement

Dereference

Address-of

Unary plus

Arithmetic negation (unary)

Logical NOT

Bitwise complement

Size of object

Size of type

type name

Type cast (conversion)

Type cast (conversion)

Type cast (conversion)

Type cast (conversion)

Type cast (conversion)

Apply pointer to class member (objects)

Dereference pointer to class member

Multiplication

Division

Remainder (modulus)

Left to right

None

None

None

None

None

None

None

None

None

None

None

None

None

None

None

None

Right to left

None

None

None

None

Left to right

Left to right

Left to right

Left to right

Left to right

Chapter 1 Lexical Conventions

(continued)

Language Reference 9

c++ Language Reference

Table 1.1 C++ Operator Precedence and Associativity (continued)

Operator Name or Meaning Associativity

+ Addition Left to right

Subtraction Left to right

« Left shift Left to right

» Right shift Left to right

< Less than Left to right

> Greater than Left to right

<= Less than or equal to Left to right

>= Greater than or equal to Left to right

-- Equality Left to right

!= Inequality Left to right

& Bitwise AND Left to right

A Bitwise exclusive OR Left to right

Bitwise OR Left to right

&& Logical AND Left to right

" Logical OR Left to right

el?e2:e3 Conditional Right to left

= Assignment Right to left

*= Multiplication assignment Right to left

1= Division assignment Right to left

%= Modulus assignment Right to left

+= Addition assignment Right to left

- Subtraction assignment Right to left

«= Left-shift assignment Right to left

»= Right-shift assignment Right to left

&= Bitwise AND assignment Right to left

1= Bitwise inclusive OR assignment Right to left

A= Bitwise exclusive OR assignment Right to left

Comma Left to right

10 Language Reference

Chapter 1 Lexical Conventions

Literals
Invariant program elements are called "literals" or "constants." The terms "literal" and
"constant" are used interchangeably here. Literals fall into four major categories: integer,
character, floating-point, and string literals.

Syntax

literal:
integer-constant
c haracte r -constant
floating-constant
string-literal

Integer Constants
Integer constants are constant data elements that have no fractional parts or exponents.
They always begin with a digit. You can specify integer constants in decimal, octal, or
hexadecimal form. They can specify signed or unsigned types and long or short types.

Syntax

integer-constant:
decimal-constant integer-suffixopt
octal-constant inte ger-sujfixopt
hexadecimal-constant integer-sujfixopt
, c-char-sequence'

decimal-constant:
nonzero-digit
decimal-constant digit

octal-constant:
o
octal-constant octal-digit

hexadecimal-constant:
Ox hexadecimal-digit
OX hexadecimal-digit
hexadecimal-constant hexadecimal-digit

nonzero-digit: one of
123456789

octal-digit: one of
01234567

Language Reference 11

c++ Language Reference

hexadecimal-digit: one of
0123456789
abcdef
ABCDEF

integer-suffix:
unsigned-suffix long-sujfixopt
long-suffix unsigned-sujfixopt

unsigned-suffix: one of
uU

long-suffix: one of
IL

64-bit integer-sujfix :
i64

To specify integer constants using octal or hexadecimal notation, use a prefix that denotes
the base. To specify an integer constant of a given integral type, use a suffix that denotes
the type.

To specify a decimal constant, begin the specification with a nonzero digit. For example:

II Decimal constant int
int j
int k

157;
0198;
0365;

II Not a decimal humber; erroneous octal constant
II Leading zero specifies octal constant. not decimal

To specify an octal constant, begin the specification with 0, followed by a sequence of
digits in the range ° through 7. The digits 8 and 9 are errors in specifying an octal constant.
For example:

i nt i 0377; I I Octa 1 constant
int j = 0397; II Error: 9 is not an octal digit

To specify a hexadecimal constant, begin the specification with 0x or 0X (the case of the
"x" does not matter), followed by a sequence of digits in the range 0 through 9 and a (or A)
through f (or F). Hexadecimal digits a (or A) through f (or F) represent values in the range
10 through 15. For example:

int i 0x3fff;11 Hexadecimal constant
int j = 0X3FFF;IIEqual to i

To specify an unsigned type, use either the u or U suffix. To" specify a long type, use either
the I or L suffix. For example:

unsigned uVal = 328u;
long lVal = 0x7FFFFFL;

unsigned long ulVal = 0776745ul;"

12 Language Reference

II Unsigned value
II Long value specified
II as hex constant
II Unsigned long value

Chapter 1 Lexical Conventions

Character Constants
Character constants are one or more members of the "source character set," the character
set in which a program is written, surrounded by single quotation marks ('). They are used
to represent characters in the "execution character set," the character set on the machine
where the program executes.

Microsoft Specific ~

For Microsoft C++, the source and execution character sets are both ASCII.

END Microsoft Specific

There are three kinds of character constants:

• Normal character constants

• Multicharacter constants

• Wide-character constants

Note Use wide-character constants in place of multicharacter constants to ensure
portability.

Character constants are specified as one or more characters enclosed in single quotation
marks. For example:

char ch = 'x';
int mbch = 'ab';

wchar_t wcch = L'ab';

II Specify normal character constant.
II Specify system-dependent
II multicharacter constant.
II Specify wide-character constant.

Note that mbch is of type into If it were declared as type char, the second byte would not
be retained. A multicharacter constant has four meaningful characters; specifying more
than four generates an error message.

Syntax

character-constant:
, c-char-sequence'
L' c-char-sequence'

c-char-sequence :
c-char
c-char-sequence c-char

c-char:
any member of the source character set except the single quotation mark ('), backslash
(\), or newline character
escape-sequence

Language Reference 13

c++ Language Reference

escape-sequence :
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence

simple-escape-sequence : one of
\' \" \? \\
\a \b \f \n \r \t \v

octal-escape-sequence :
\octal-digit
\octal-digit octal-digit
\octal-digit octal-digit octal-digit

hexadecimal-escape-sequence :
\xhexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

Microsoft C++ supports normal, multicharacter, and wide-character constants. Use
wide-character constants to specify members of the extended execution character set
(for example, to support an international application). Normal character constants have
type char, multicharacter constants have type int, and wide-character constants have
type wchar_t. (The type wchar_t is defined in the standard include files STDDEF.H,
STDLIB.H, and STRING.H. The wide-character functions, however, are proto typed
only in STDLIB.H.)

The only difference in specification between normal and wide-character constants is
that wide-character constants are preceded by the letter L. For example:

char schar = 'x';
wchar_t wchar = L'\x81\x19';

II Normal character constant
II Wide-character constant

Table 1.2 shows reserved or nongraphic characters that are system dependent or not
allowed within character constants. These characters should be represented with escape
sequences.

Table 1.2 C++ Reserved or Nongraphic Characters

ASCII
Character Representation ASCII Value Escape Sequence

Newline NL (LF) 10 or OxOa \n

Horizontal tab HT 9 \t

Vertical tab VT 11 or OxOb \v

Backspace BS 8 \b

Carriage return CR 13 or OxOd \r

14 Language Reference

Chapter 1 Lexical Conventions

Table 1.2 C++ Reserved or Nongraphic Characters (continued)

ASCII
Character Representation ASCII Value Escape Sequence

Formfeed FF 12 or OxOc \f

Alert BEL 7 \a

Backslash \ 92 or Ox5c \\

Question mark ? 63 or Ox3f \?

Single quotation mark 39 or Ox27 \'

Double quotation mark 34 or Ox22 \"

Octal number 000 \000

Hexadecimal number hhh \xhhh

Null character NUL 0 \0

If the character following the backslash does not specify a legal escape sequence,
the result is implementation defined. In Microsoft C++, the character following the
backslash is taken literally, as though the escape were not present, and a level 1
warning ("unrecognized character escape sequence") is issued.

Octal escape sequences, specified in the form \000, consist of a backslash and one, two, or
three octal characters. Hexadecimal escape sequences, specified in the form \xhhh, consist
of the characters \x followed by a sequence of hexadecimal digits. Unlike octal escape
constants, there is no limit on the number of hexadecimal digits in an escape sequence.

Octal escape sequences are terminated by the first character that is not an octal digit, or
when three characters are seen. For example:

wchar_t och = L'\076a'; II Sequence terminates at a
char ch = '\233'; II Sequence terminates after 3 characters

Similarly, hexadecimal escape sequences terminate at the first character that is not a
hexadecimal digit. Because hexadecimal digits include the letters a through f (and A
through F), make sure the escape sequence terminates at the intended digit.

Because the single quotation mark (') encloses character constants, use the escape
sequence \' to represent enclosed single quotation marks. The double quotation mark (n)
can be represented without an escape sequence. The backslash character (\) is a
line-continuation character when placed at the end of a line. If you want a backslash
character to appear within a character constant, you must type two backslashes in a
row (\ \). (See "Phases of Translation" in the Preprocessor Reference later in this
volume for more information about line continuation.)

Language Reference 15

c++ Language Reference

Floating -Point Constants
Floating-point constants specify values that must have a fractional part. These values
contain decimal points C.) and can contain exponents.

Syntax

floating-constant:
fractional-constant exponent-partopt floating-suffixopt
digit-sequence exponent-part floating-suffixopt

fractional-constant:
digit-sequenceopt . digit-sequence
digit-sequence.

exponent-part:
e signopt digit-sequence
E signopt digit-sequence

sign: one of
+-

digit-sequence :
digit
digit-sequence digit

floating-suffix :one of
flFL

Floating-point constants have a "mantissa," which specifies the value of the number, an
"exponent," which specifies the magnitude of the number, and an optional suffix that
specifies the constant's type. The mantissa is specified as a sequence of digits followed
by a period, followed by an optional sequence of digits representing the fractional part
of the number. For example:

18.46
38.

The exponent, if present, specifies the magnitude of the number as a power of 10,
as shown in the following example:

18.46e0
18.46e1

II 18.46
II 184.6

If an exponent is present, the trailing decimal point is unnecessary in whole numbers
such as 18E0.

16 Language Reference

Chapter 1 Lexical Conventions

Floating-point constants default to type double. By using the suffixes f or I (or F
or L - the suffix is not case sensitive), the constant can be specified as float or
long double, respectively.

Although long double and double have the same representation, they are not the same
type. For example, you can have overloaded functions like

void func(double);

and

void func(long double);

String Literals
A string literal consists of zero or more characters from the source character set surrounded
by double quotation marks ("). A string literal represents a sequence of characters that,
taken together, form a null-terminated string.

Syntax

string-literal:
"s-char-sequenceopt' ,
L" s-char-sequenceopt II

s-char-sequence :
s-char
s-char-sequence s-char

s-char:
any member of the source character set except the double quotation mark (,,),
backslash (\), or newline character
escape-sequence

c++ strings have these types:

• Array of cbar[n], where n is the length of the string (in characters) plus 1 for the
te~minating '\0' that marks the end of the string

• Array of wcbar_t, for wide-character strings

The result of modifying a string constant is undefined. For example:

char *szStr = "1234";
szStr[2] = 'A'; II Results undefined

Language Reference 17

c++ Language Reference

Microsoft Specific -4

In some cases, identical string literals can be "pooled" to save space in the executable file.
In string-literal pooling, the compiler causes all references to a particular string literal
to point to the same location in memory, instead of having each reference point to a
separate instance of the string literal. The /Gf compiler option enables string pooling.

END Microsoft Specific

When specifying string literals, adjacent strings are concatenated. Therefore, this
declaration:

char szStr[] = "12" "34";

is identical to this declaration:

char szStr[] = "1234";

This concatenation of adjacent strings makes it easy to specify long strings across
multiple lines:

cout « "Four score and seven years "
"ago, our forefathers brought forth"
"upon this continent a new nation.";

In the preceding example, the entire string Four score and seven years ago, our
forefathers brought forth upon this continent a new nation. is spliced together.
This string can also be specified using line splicing as follows:

cout « "Four score and seven years \
ago, our forefathers brought forth \
upon this continent a new nation.";

After all adjacent strings in the constant have been concatenated, the NULL character,
'\0', is appended to provide an end-of-string marker for C string-handling functions.

When the first string contains an escape character, string concatenation can yield surprising
results. Consider the following two declarations:

char szStrl[] "\01" "23";
char szStr2[] = "\0123";

Although it is natural to assume that szStr1 and szStr2 contain the same values, the
values they actually contain are shown in Figure 1.1.

Figure 1.1 Escapes and String Concatenation

"\01" "23"

"\0123"

18 Language Reference

Chapter 1 Lexical Conventions

Microsoft Specific ~

The maximum length of a string literal is approximately 2,048 bytes. This limit applies to
strings of type char[] and wchar _t[]. If a string literal consists of parts enclosed in double
quotation marks, the preprocessor concatenates the parts into a single string, and for each
line concatenated, it adds an extra byte to the total number of bytes.

For example, suppose a string consists of 40 lines with 50 characters per line (2,000
characters), and one line with 7 characters, and each line is surrounded by double
quotation marks. This adds up to 2,007. bytes plus one byte for the terminating null
character, for a total of 2,008 bytes. On concatenation, an extra character is added to
the total number of bytes for each of the first 40 lines. This makes a total of 2,048 bytes.
(The extra characters are not actually written to the string.) Note, however, that if line
continuations (\) are used instead of double quotation marks, the preprocessor does not
add an extra character for each line.

END Microsoft Specific

Determine the size of string objects by counting the number of characters and adding 1 for
the terminating' \0' or 2 for type wchar_t.

Because the double quotation mark (") encloses strings, use the escape sequence (\ ")
to represent enclosed double quotation marks. The single quotation mark (') can be
represented without an escape sequence. The backslash character (\) is a line-continuation
character when placed at the end of a line. If you want a backslash character to appear
within a string, you must type two backslashes (\ \). (See "Phases of Translation" in the
Preprocessor Reference later in this volume for more information about line continuation.)

To specify a string of type wide-character (wchar_t[D, precede the opening double
quotation mark with the character L. For example:

wchar_t wszStr[] = L"lalg";

All normal escape codes listed in "Character Constants" are valid in string constants.
For example:

cout « "First line\nSecond line";
cout « "Error! Take corrective action\a";

Because the escape code terminates at the first character that is not a hexadecimal digit,
specification of string constants with embedded hexadecimal escape codes can cause
unexpected results. The following example is intended to create a string literal containing
ASCII 5, followed by the characters f i v e:

\x05five"

The actual result is a hexadecimal 5F, which is the ASCII code for an underscore, followed
by the characters i ve. The following example produces the desired results:

"\005fi ve" I I Use octa 1 constant.
"\x05" "five" II Use string splicing.

Language Reference 19

CHAPTER 2

Basic Concepts

This chapter explains concepts that are critical to understanding c++. C programmers
will be familiar with many of these concepts, but there are some subtle differences that
can cause unexpected program results. The following topics are included:

• Terms

• Declarations and definitions

• Scope

• Program and linkage

• Startup and termination

• Storage classes

• Types

Additional topics include I-values, r-values, and numerical limits.

Terms
c++ terms used in this book are defined in Table 2.1:

Table 2.1 C++ Terminology

Term

Declaration

Definition

Lifetime

Meaning

A declaration introduces names and their types into a program without necessarily
defining an associated object or function. However, many declarations serve as
definitions.

A definition provides information that allows the compiler to allocate memory
for objects or generate code for functions.

The lifetime of an object is the period during which an object exists, including
its creation and destruction.

(continued)

Language Reference 21

c++ Language Reference

Table 2.1 C++ Terminology (continued)

Term

Linkage

Name

Object

Scope

Storage class

Type

Variable

22 Language Reference

Meaning

Names can have external linkage, internal linkage, or no linkage. Within a program
(a set of translation units), only names with external linkage denote the same object
or function. Within a translation unit, names with either internal or external linkage
denote the same object or function (except when functions are overloaded).
(For more information on translation units, see "Phases of Translation," later in
this volume, in the Preprocessor Reference.) Names with no linkage denote
unique objects or functions.

A name denotes an object, function, set of overloaded functions, enumerator, type,
class member, template, value, or label. C++ programs use names to refer to their
associated language element. Names can be type names or identifiers.

An object is an instance (a data item) of a user-defined type (a class type). The
difference between an object and a variable is that variables retain state information,
whereas objects can also have behavior.

This manual draws a distinction between objects and variables: "object" means
instance of a user-defined type, whereas "variable" means instance of a
fundamental type.

In cases where either object or variable is applicable, the term "object" is used as the
inclusive term, meaning "object or variable."

Names can be used only within specific regions of program text. These regions are
called the scope of the name.

The storage class of a named object determines its lifetime, initialization, and, in
certain cases, its linkage.

N ames have associated types that determine the meaning of the value or values stored
in an object or returned by a function.

A variable is a data item of a fundamental type (for example, int, float, or double).
Variables store state information but define no behavior for how that information is
handled. See the preceding list item-"Object" for information about how the terms
"variable" and "object" are used in this documentation.

Chapter 2 Basic Concepts

Declarations and Definitions
Declarations tell the compiler that a program element or name exists. Definitions specify
what code or data the name describes. A name must be declared before it can be used.

Declarations
A declaration introduces one or more names into a program. Declarations can occur more
than once in a program. Therefore, classes, structures, enumerated types, and other user
defined types can be declared for each compilation unit. The constraint on this multiple
declaration is that all declarations must be identical. Declarations also serve as definitions,
except when the declaration:

• Is a function prototype (a function declaration with no function body).

• Contains the extern specifier but no initializer (objects and variables) or function body
(functions). This signifies that the definition is not necessarily in the current translation
unit and gives the name extemallinkage.

• Is of a static data member inside a class declaration.

Because static class data members are discrete variables shared by all objects of the
class, they must be defined and initialized outside the class declaration. (For more
information about classes and class members, see Chapter 8, "Classes.")

• Is a class name declaration with no following definition, such as c 1 ass T;.

• Is a typedef statement.

Examples of declarations that are also definitions are:

II Declare and define int variables i and j.
i nt i;
i nt j = 10;

II Declare enumeration suits.
enum suits { Spades = I, Clubs, Hearts, Diamonds };

II Declare class CheckBox.
class CheckBox public Control
{

public:
Boolean IsChecked();

virtual int ChangeState() 0;
} ;

Some declarations that are not definitions are:

extern int i;
char *strchr(const char *Str, const char Target);

Language Reference 23

c++ Language Reference

Definitions
A definition is a unique specification of an object or variable, function, class, or
enumerator. Because definitions must be unique, a program can contain only one
definition for a given program element.

There can be a many-to-one correspondence between declarations and definitions.
There are two cases in which a program element can be declared and not defined:

• A function is declared but never referenced with a function call or with an
expression that takes the function's address.

• A class is used only in a way that does not require its definition be known.
However, the class must be declared. The following code illustrates such a case:

class WindowCounter;

class Window
{

II Forward reference; no definition

static WindowCounter windowCounter; II Definition of
II WindowCounter
II not required.

} ;

Scope
c++ names can be used only in certain regions of a program. This area is called the
"scope" of the name. Scope determines the "lifetime" of a name that does not denote
an object of static extent. Scope also determines the visibility of a name, when class
constructors and destructors are called, and when variables local to the scope are
initialized. (For more information, see "Constructors" and "Destructors" in Chapter 11,
"Special Member Functions.") There are five kinds of scope:

• Local scope. A name declared within a block is accessible only within that block and
blocks enclosed by it, and only after the point of declaration. The names of formal
arguments to a function in the scope of the outermost block of the function have local
scope, as if they had been declared inside the block enclosing the function body.
Consider the following code fragment:

{

int i;
}

Because the declaration of i is in a block enclosed by curly braces, i has local scope
and is never accessible because no code accesses it before the closing curly brace.

• Function scope. Labels are the only names that have function scope. They can be used
anywhere within a function but are not accessible outside that function.

24 Language Reference

Chapter 2 Basic Concepts

• File scope. Any name declared outside all blocks or classes has file scope. It is
accessible anywhere in the translation unit after its declaration. Names with file scope
that do not declare static objects are often called "global" names.

• Class scope. Names of class members have class scope. Class member functions can be
accessed only by using the member-selection operators (. or -» or pointer-to-member
operators (. * or ->*) on an object or pointer to an object of that class; nonstatic class
member data is considered local to the object of that class. Consider the following class
declaration:

class Point
{

} ;

int x;
int y;

The class members x and y are considered to be in the scope of class Poi n t.

• Prototype scope. Names declared in a function prototype are visible only until the end
of the prototype. The following prototype declares two names (szDest, szSou rce);
these names go out of scope at the end of the prototype:

char *strcpy(char *szDest. const char *szSource);

Point of peclaration
A name is considered to be declared immediately after its declarator but before its
(optional) initializer. (For more information on declarators, see Chapter 7, "Declarators.")
An enumerator is considered to be declared immediately after the identifier that names it
but before its (optional) initializer.

Consider this example:

double dVar = 7.0;

void main()
{

double dVar dVar;
}

If the point of declaration were after the initialization, then the local d Va r would be
initialized to 7.0, the value of the global variable d V a r. However, since that is not the case,
d V a r is initialized to an undefined value.

Enumerators follow the same rule. However, enumerators are exported to the enclosing
scope of the enumeration. In the following example, the enumerators Spades, Cl ubs,
Hea rts, and Di amonds are declared. Because the enumerators are exported to the enclosing
scope, they are considered to have global scope. The identifiers in the example are already
defined in global scope.

Language Reference 25

c++ Language Reference

Consider the following code:

const int Spades = 1. Clubs 2. Hearts 3. Diamonds = 4;

enum Suits
{

} ;

Spades = Spades.
Clubs.
Hearts.
Diamonds

II error
II error
II error
II error

Because the identifiers in the preceding code are already defined in global scope, an error
message is generated.

Note U sing the same name to refer to more than one program element - for example,
an enumerator and an object - is considered poor programming practice and should be
avoided. In the preceding example, this practice causes an error.

Hiding Names
You can hide a name by declaring it in an enclosed block. In Figure 2.1,. i is redeclared within
the inner block, thereby hiding the variable associated with i in the outer block scope.

Figure 2.1 Block Scope and Name Hiding

Inner block contains local-scope
objects i and j.

Outer block contains
local-scope object i
and format parameter
szWhat.

The output from the program shown in Figure 2.1 is:

o
7

j 9
o

Note The argument sz What is considered to be in the scope of the function. Therefore,
it is treated as if it had been declared in the outermost block of the function.

26 Language Reference

Chapter 2 Basic Concepts

Hiding Names with File Scope
You can hide names with file scope by explicitly declaring the same name in block scope.
However, file-scope names can be accessed using the scope-resolution operator (::).
For example:

#inelude <iostream.h>

int i = 7; II i has file scope--deelared
II outside all blocks

void main(int arge, char *argv[])
{

int i = 5; II i has block scope--hides
II the i with file scope

cout « "Bloek-seoped i has the value: " « i « "\n";
eout « "File-scoped i has the value: " « ::i « "\n";

}

The result of the preceding code is:

Bloek-seoped i has the value: 5
File-scoped i has the value: 7

Hiding Class Names
You can hide class names by declaring a function, object or variable, or enumerator in
the same scope. However, the class name can still be accessed when prefixed by the
keyword class.

II Declare class Account at file scope.
class Account
{

publ i c:
Account(double InitialBalance

{ balance = InitialBalance;
double GetBalance()

{ return balance;
private:

double balance;
} ;

double Account 15.37; II Hides class name Account

Language Reference 27

c++ Language Reference

void main()
{

}

class Account Checking(Account); II Qualifies Account as
II class name

cout « "Opening account with balance of: "
« Checki ng. GetBal ance() « "\n";

Note that any place the class name (Account) is called for, the keyword class must be used
to differentiate it from the file-scoped variable Account. This rule does not apply when the
class name occurs on the left side of the scope-resolution operator (::). Names on the ~eft
side of the scope-resolution operator are always considered class names. The following
example demonstrates how to declare a pointer to an object of type Account using the class
keyword:

class Account *Checking = new class Account(Account);

The Account in the initializer (in parentheses) in the preceding statement has file scope; it
is of type double.

Note The reuse of identifier names as shown in this example is considered poor
programming style.

For more information about pointers, see "Derived Types," later in this chapter. For
information about declaration and initialization of class objects, see Chapter 8, "Classes."
For information about using the new and delete free-store operators, see Chapter 11,
"Special Member Functions."

Scope of Formal Arguments to Functions
Formal arguments (arguments specified in function definitions) to functions are
considered to be in the scope of the outermost block of the function body.

Program and Linkage
A program consists of one or more translation units linked together. Execution
(conceptually) begins in the translation unit that contains the function main. (For more
information on translation units, see "Phases of Translation," in the Preprocessor
Reference, later in this volume. For more information about the main function, see
"Program Startup: the main Function," later in this chapter.)

28 Language Reference

Chapter 2 Basic Concepts

Types of Linkage
The way the names of objects and functions are shared between translation units is called
"linkage." These names can have:

• Internal linkage, in which case they refer only to program elements inside their own
translation units; they are not shared with other translation units.

The same name in another translation unit may refer to a different object or a different
class. Names with internal linkage are sometimes referred to as being "local" to their
translation units.

An example declaration of a name with internal linkage is:

static int i; II The static keyword ensures internal linkage.

• External linkage, in which case they can refer to program elements in any translation
unit in the program - the program element is shared among the translation units.

The same name in another translation unit is guaranteed to refer to the same object or
class. Names with external linkage are sometimes referred to as being "global."

An example declaration of a name with external linkage is:

extern int i;

• No linkage, in which case they refer to unique entities. The same name in another
scope may not refer to the same object. An example is an enumeration. (Note, however,
that you can pass a pointer to an object with no linkage. This makes the object
accessible in other translation units.)

Linkage in Names with File Scope
The following linkage rules apply to names (other than typedef and enumerator names)
with file scope:

• If a name is explicitly declared as static, it has intemallinkage and identifies a program
element inside its own translation unit.

• Enumerator names and typedef names have no linkage.

• All other names with file scope have external linkage.

Microsoft Specific ~

• If a function name with file scope is explicitly declared as inline, it has external
linkage if it is instantiated or its address is referenced. Therefore, it is possible for a
function with file scope to have either internal or external linkage.

END Microsoft Specific

Language Reference 29

c++ Language Reference

A class has internal linkage if it:

• Uses no C++ functionality (for example, member-access control, member functions,
constructors, destructors, and so on).

• Is not used in the declaration of another name that has external linkage. This constraint
means that objects of class type that are passed to functions with external linkage cause
the class to have external linkage.

Linkage in Names with Class Scope
The following linkage rules apply to names with class scope:

• Static class members have external linkage.

• Class member functions have external linkage.

• Enumerators and typedef names have no linkage.

Microsoft Specific ~

• Functions declared as friend functions must have external linkage. Declaring a static
function as a friend generates an error.

END Microsoft Specific

Linkage in Names with Block Scope
The following linkage rules apply to names with block scope (local names):

• Names declared as extern have external linkage unless they were previously declared
as static.

• All other names with block scope have no linkage.

Names with No Linkage
The only names that have no linkage are:

• Function parameters.

• Block -scoped names not declared as extern or static.

• Enumerators.

• Names declared in a typedef statement. An exception is when the typedef statement is
used to provide a name for an unnamed class type. The name may then have external
linkage if the class has extemallinkage. The following example shows a situation in
which a typedef name has external linkage:

30 Language Reference

Chapter 2 Basic Concepts

typedef struct
{

short x;
short y;

} POINT;
extern int MoveTo(POINT pt);

The typedef name, P a I NT, becomes the class name for the unnamed structure. It is then
used to declare a function with external linkage.

Because typedef names have no linkage, their definitions can differ between translation
units. Because the compilations take place discretely, there is no way for the compiler to
detect these differences. As a result, errors of this kind are not detected until link time.
Consider the following case:

II Translation unit 1
typedef int INT

INT myInt;

II Translation unit 2
typedef short INT

extern INT myInt;

The preceding code generates an "unresolved external" error at link time.

C++ functions can be defined only in file or class scope. The following example illustrates
how to define functions and shows an erroneous function definition:

#include <iostream.h>

void ShowChar(char ch

void ShowChar(char ch
{

cout « ch;
}

struct Char
{

char Show();
char Get() ;
char ch;

} ;

) ; II Declare function ShowChar.

II Define function ShowChar.
II Function has file scope.

II Define class Char.

II Declare Show function.
II Declare Get function.

Language Reference 31

c++ Language Reference

char Char::Show()
{

II Define Show function
II with class scope.

}

cout « ch;
return ch;

void GoodFuncDef(char
{

int BadFuncDef(int
L

return i * 7;
}

ch) II Define GoodFuncDef
II with file scope.

i) II Erroneous attempt
II nest functions.

for(int i = 0;
cout « ch;

cout « "\n";

< BadFuncDef(2); ++i)

}

Linkage to Non-C++ Functions

to

C functions and data can be accessed only if they are previously declared as having
C linkage. However, they must be defined in a separately compiled translation unit.

Syntax

linkage-specification :
extern string-literal{ declaration-listopt }

extern string-literal declaration

declaration-list:
declaration
declaration-list declaration

Microsoft C++ supports the strings "c" and "C++" in the string-literal field. The
following example shows alternative ways to declare names that have C linkage:

II Declare printf with C linkage.
extern "C" int printf(const char *fmt •...);

II Cause everything in the header file "cinclude.h"
II to have C linkage.
extern "C"
{

#include <cinclude.h>
}

II Declare the two functions ShowChar and GetChar
II with C linkage.

32 Language Reference

extern "C"

char ShowChar(char ch);
char GetChar(void);

II Define the two functions ShowChar and GetChar
II with C linkage.
extern "C" char ShowChar(char ch)
{

}

putchar(ch);
return ch;

extern "C" char GetChar(void)
{

}

char ch;

ch = getchar();
return ch;

II Declare a global variable, errno, with C linkage.
extern "C" int errno;

Startup and Termination
Program startup and termination is facilitated by using two functions: main and exit.
Other startup and termination code may be executed.

Program Startup: the main Function
A special function called main is the entry point to all C++ programs. This function is
not predefined by the compiler; rather, it must be supplied in the program text. If you
are writing code that adheres to the Unicode programming model, you can use the
wide-character version of main, wmain. The declaration syntax for main is:

int main();

or, optionally:

int maine int argc[, char *argv[] [, char *envp[]]]);

The declaration syntax for wmain is as follows:

int wmain();

or, optionally:

int wmain(int argc[, wchar_t *argv[] [, wchar_t *envp[]]]);

Chapter 2 Basic Concepts

Language Reference 33

c++ Language Reference

Alternatively, the main and wmain functions can be declared as returning void (no return
value). If you declare main or wmain as returning void, you cannot return an exit code to
the parent process or operating system using a return statement; to return an exit code
when main or wmain are declared as void, you must use the exit function.

Using wmain Instead of main
In the Unicode programming model, you can define a wide-character version of the main
function. Use wmain instead of main if you want to write portable code that adheres to the
Unicode specification.

You declare formal parameters to wmain using a similar format to main. You can then
pass wide-character arguments and, optionally, a wide-character environment pointer to the
program. The argv and envp parameters to wmain are of type wchar_t*.

If your program uses a main function, the multibyte-character environment is created
by the operating system at program startup. A wide-character copy of the environment is
created only when needed (for example, by a call to the _wgetenv or _wputenv functions).
On the first call to _wputenv, or on the first call to _wgetenv if an MBCS environment
already exists, a corresponding wide-character string environment is created and is then
pointed to by the _ wenviron global variable, which is a wide-character version of the
_environ global variable. At this point, two copies of the environment (MBCS and
Unicode) exist simultaneously and are maintained by the operating system throughout
the life of the program.

Similarly, if your program uses a wmain function, an MBCS (ASCII) environment is
created on the first call to _putenv or getenv, and is pointed to by the _environ global
variable.

For more information on the MBCS environment, see "Single-byte and Multibyte
Character Sets" in Chapter 2 of the Microsoft Visual C++ 6.0 Run-Time Library
Reference, a volume of the Microsoft Visual C++ 6.0 Reference Library.

Argument Definitions
The arguments in the prototype

int maine int argc[, char *argv[] [, char *envp[]]]);

or

int wmain(int argc[, wchar_t *argv[1[, wchar_t *envp[]]]);

allow convenient command-line parsing of arguments and, optionally, access to
environment variables. The argument definitions are as follows:

argc
An integer that contains the count of arguments that follow in argv. The argc
parameter is always greater than or equal to 1.

34 Language Reference

argv
An array of null-terminated strings representing command-line arguments entered
by the user of the program. By convention, argv[O] is the command with which
the program is invoked, argv[1] is the first command-line argument, and so on,
until argv[argc], which is always NULL. See "Customizing C++ Command Line
Processing," later in this chapter, for information on suppressing command-line
processing.

Chapter 2 Basic Concepts

The first command-line argument is always argv[l] and the last one is argv[argc - 1].

Microsoft Specific ---+

envp
The envp array, which is a common extension in many UNIX systems, is used in
Microsoft C++. It is an array of strings representing the variables set in the user's
environment. This array is terminated by a NULL entry. See "Customizing C++
Command Line Processing," later in this chapter, for information on suppressing
environment processing. This argument is ANSI compatible in C, but not in C++.

END Microsoft Specific

The following example shows how to use the argc, argv, and envp arguments to main:

#include <iostream.h>
#include <string.h>

void maine int argc, char *argv[], char *envp[])
{

}

int iNurnberLines = 0; II Default is no line numbers.

II If more than .EXE filename supplied, and if the
II In command-line option is specified, the listing
II of environment variables is line-numbered.

if(argc == 2 && stricmp(argv[1], "In") == 0
iNumberLines = 1;

II Walk through list of strings until a NULL is encountered.
fore int i = 0; envp[i] 1= NULL; ++i)
{

ifC iNumberLines)
cout « i « ". " « envp[i] « "\n";

Language Reference 35

c++ Language Reference

Wildcard Expansion
Microsoft Specific ~

You can use wildcards - the question mark (?) and asterisk (*) - to specify filename and
path arguments on the comman~ line.

Command-line arguments are handled by a routine called _setargv. By default, _setargv
expands wildcards into separate strings in the a rgv string array. If no matches are found for
the wildcard argument, the argument is passed literally.

END Microsoft Specific

Parsing C++ Command-Line Arguments
Microsoft Specific ~

Microsoft C/C++ startup code uses the following rules when interpreting arguments given
on the operating system command line:

• Arguments are delimited by white space, which is either a space or a tab.

• The caret character (A) is not recognized as an escape character or delimiter .. The
character is handled completely by the command-line parser in the operating system
before being passed to the a rgv array in the program.

• A string surrounded by double quotation marks ("string") is interpreted as a single
argument, regardless of white space contained within. A quoted string can be
embedded in an argument.

• A double quotation mark preceded by a backs lash (\") is interpreted as a literal double
quotation mark character (").

• Backslashes are interpreted literally, unless they immediately precede a double
quotation mark.

• If an even number of backslashes is followed by a double quotation mark, one
backslash is placed in the a rgv array for every pair of backslashes, and the double
quotation mark is interpreted as a string delimiter.

• If an odd number of backslashes is followed by a double quotation mark, one backslash
is placed in the a r 9 v array for every pair of backslashes, and the double quotation mark
is "escaped" by the remaining backslash, causing a literal double quotation mark (") to
be placed in a rgv.

36 Language Reference

Chapter 2 Basic Concepts

The following program demonstrates how command-line arguments are passed:

include <iostream.h>

void main(int argc,
char *argv[],
char *envp[])

II Number of strings in array argv
II Array of command-line argument strings
II Array of environment variable strings

int count;

II Display each command-line argument.
cout « "\nCommand-line arguments:\n";
for(count 0; count < argc; count++)

cout «" argv["« count « "]
« argv[count] « "\n";

Table 2.2 shows example input and expected output, demonstrating the rules in the
preceding list.

Table 2.2 Results of Parsing Command Lines

Command-Line Input argv[1] argv[2] argv[3]

"abc" d e abc d e
a\\\b d"e f"g h a\\ \b de fg h
a\\\"b c d a\"b c d
a\\\\"b e" d e a\\b e d e

END Microsoft Specific

Customizing C++ Command-Line Processing
Microsoft Specific ~

If your program does not take command-line arguments, you can save a small amount of
space by suppressing use of the library routine that performs command-line processing.
This routine is called _setargv and is described in Wildcard Expansion. To suppress its
use, define a routine that does nothing in the file containing the main function, and name
it _setargv. The call to _setargv is then satisfied by your definition of _setargv, and the
library version is not loaded.

Similarly, if you never access the environment table through the envp argument, you
can provide your own empty routine to be used in place of _setenvp, the environment
processing routine. Just as with the _setargv function, _setenvp must be declared as
extern "e".
Your program might make calls to the spawn or exec family of routines in the C run-time
library. If this is the case, you should not suppress the environment-processing routine, since
this routine is used to pass an environment from the parent process to the child process.

END Microsoft Specific

Language Reference 37

c++ Language Reference

main Function Restrictions
Several restrictions apply to the main function that do not apply to any other
C++ functions. The main function:

• Cannot be overloaded (see Chapter 12, "Overloading").

• Cannot be declared as inline.

• Cannot be declared as static.

• Cannot have its address taken.

• Cannot be called.

Program Termination
In C++, there are several ways to exit a program:

• Call the exit function.

• Call the abort function.

• Execute a return statement from main.

exit Function
The exit function, declared in the standard include file STDLIB.H, terminates a
C++ program.

The value supplied as an argument to exit is returned to the operating system as the
program's return code or exit code. By convention, a return code of zero means that the
program completed successfully.

Note You can use the constants EXIT_FAILURE and EXIT_SUCCESS, defined in
STDLIB.H, to indicate success or failure of your program.

Issuing a return statement from the main function is equivalent to calling the exit function
with the return value as its argument.

For more information, see "exit" in the Microsoft Visual C++ 6.0 Run-Time Library
Reference.

abort Function
The abort function, also declared in the standard include file STDLIB.H, terminates a
C++ program. The difference between exit and abort is that exit allows the C++ run-time
termination processing to take place (global object destructors will be called), whereas
abort terminates the program immediately. For more information, see "abort" in the
Microsoft Visual C++ 6.0 Run-Time Library Reference.

38 Language Reference

Chapter 2 Basic Concepts

return Statement
Issuing a return statement from main is functionally equivalent to calling the exit
function. Consider the following example:

int main()
{

}

exit(3);
return 3;

The exit and return statements in the preceding example are functionally identical.
However, C++ requires that functions that have return types other than void return a value.
The return statement allows you to return a value from main.

Additional Startup Considerations
In C++, object construction and destruction can involve executing user code. Therefore,
it is important to understand which initializations happen before entry to main and which
destructors are invoked after exit from main. (For detailed information about construction
and destruction of objects, see "Constructors" and "Destructors" in Chapter 11, "Special
Member Functions.")

The following initializations take place prior to entry to main:

• Default initialization of static data to zero. All static data without explicit initializers
are set to zero prior to executing any other code, including run-time initialization.
Static data members must still be explicitly defined.

• Initialization of global static objects in a translation unit. This may occur either before
entry to main or before the first use of any function or object in the object's translation
unit.

Microsoft Specific ~

In Microsoft C++, global static objects are initialized before entry to main.

END Microsoft Specific

Global static objects that are mutually interdependent but in different translation units
may cause incorrect behavior.

Language Reference 39

c++ Language Reference

Additional Termination Considerations
You can terminate a c++ program by using exit, return, or abort. You can add exit
processing using the atexit function. These are discussed in the following sections.

Using exit or return
When you call exit or execute a return statement from main, static objects are destroyed
in the reverse order of their initialization. This example shows how such initialization and
cleanup works:

#include <stdio.h>

class ShowData
{

public:
II Constructor opens a file.
ShowData(const char *szDev)
{

OutputDev = fopen(szDev. "w");

II Destructor closes the file.
~ShowData() { fclose(OutputDev);

II Disp function shows a string on the output device.
void Disp(char *szData)
{

fputs(szData. OutputDev);
}

private:
FILE *OutputDev;

} ;

II Define a static object of type ShowData. The output device
II selected is "CON" -- the standard output device.
ShowData sdl = "CON";
II Define another static object of type ShowData. The output
II is directed to a file called "HELLO.DAT"
ShowData sd2 = "hello.dat";

int maine)
{

}

sdl.Disp("hello to default device\n");
sd2.Disp("hello to file hello.dat\n");

return 0;

40 Language Reference

Chapter 2 Basic Concepts

In the preceding example, the static objects sdl and sd2 are created and initialized before
entry to mai n. After this program terminates using the return statement, first sd2 is
destroyed and then sdl. The destructor for the ShowData class closes the files associated
with these static objects. (For more information about initialization, constructors, and
destructors, see Chapter 11, "Special Member Functions.")

Another way to write this code is to declare the ShowData objects with block scope,
allowing them to be destroyed when they go out of scope:

int maine)
{

ShowData sdl, sd2("hello.dat");

sdl.Disp("hello to default device\n");
sd2.Disp("hello to file hello.dat\n");

return 0;

Using atexit
With the atexit function, you can specify an exit-processing function that executes prior to
program termination. No global static objects initialized prior to the call to atexit are
destroyed prior to execution of the exit-processing function.

Using abort
Calling the abort function causes immediate termination. It bypasses the normal
destruction process for initialized global static objects. It also bypasses any special
processing that was specified using the atexit function.

Storage Classes
Storage classes govern the lifetime, linkage, and treatment of objects and variables in C++.
A given object can have only one storage class. This section discusses the C++ storage
classes for data:

• Automatic

• Static

• Register

• External

Language Reference 41

c++ Language Reference

Automatic
Objects and variables with automatic storage are local to a given instance of a block.
In recursive or multithreaded code, automatic objects and variables are guaranteed to
have different storage in different instances of a block. Microsoft C++ stores automatic
objects and variables on the program's stack.

Objects and variables defined within a block have auto storage unless otherwise specified
using the extern or static keyword. Automatic objects and variables can be specified using
the auto keyword, but explicit use of auto is unnecessary. Automatic objects and variables
have no linkage.

Automatic objects and variables persist only until the end of the block in which they are
declared.

Static
Objects and variables declared as static retain their values for the duration of the
program's execution. In recursive code, a static object or variable is guaranteed to have
the same state in different instances of a block of code.

Objects and variables defined outside all blocks have static lifetime and external linkage by
default. A global object or variable that is explicitly declared as static has internal linkage.

Static objects and variables persist for the duration of the program's execution.

Register
Only function arguments and local variables can be declared with the register storage class.

Like automatic variables, register variables persist only until the end of the block in which
they are declared.

The compiler does not honor user requests for register variables; instead, it makes its own
register choices when global optimizations are on. However, all other semantics associated
with the register keyword are honored by the compiler.

External
Objects and variables declared as extern declare an object that is defined in another
translation unit or in an enclosing scope as having external linkage.

Declaration of const variables with the extern storage class forces the variable to have
extemallinkage. An initialization of an extern const variable is allowed in the defining
translation unit. Initializations in translation units other than the defining translation unit
produce undefined results.

42 Language Reference

Chapter 2 Basic Concepts

The following code shows two extern declarations, Defi nedEl sewhere (which refers to
a name defined in a different translation unit) and Defi nedHere (which refers to a name
defined in an enclosing scope):

extern int DefinedElsewhere;

void maine)
{

int DefinedHere;
{

extern int DefinedHere;

II Defined in another translation
II unit.

II Refers to DefinedHere in
II the enclosing scope.

Initialization of Objects
A local automatic object or variable is initialized every time the flow of control reaches its
definition. A local static object or variable is initialized the first time the flow of control
reaches its definition. Consider the following example, which defines a class that logs
initialization and destruction of objects and then defines three objects, 11, 12, and 13:

#include <iostream.h>
#include <string.h>

II Define a class that logs initializations and destructions.
cl ass InitDemo
{

public:
InitDemo(const char *szWhat);
~lnitDemo();

private:
char *szObjName;

} ;

II Constructor for class InitDemo
InitDemo::InitDemo(const char *szWhat
{

}

if(szWhat != 0 && strlen(szWhat) > 0)
{

II Allocate storage for szObjName, then copy
II initializer szWhat into szObjName.
szObjName = new char[strlen(szWhat) + 1];
strcpy(szObjName, szWhat);

}

else

cout « "Initializing: " « szObjName « "\n";

szObjName 0;

Language Reference 43

c++ Language Reference

II Destructor for InitDemo
InitDemo::~InitDemo()

{

if(szObjName !- 0
{

}

cout « "Destroying: " « szObjName « "\n";
delete szObjName;

II Enter main function
void main()
{

InitDemo 11("Auto 11");
{

}

cout « "In block.\n";
InitDemo I2("Auto 12");
static InitDemo I3("Static 13");

cout « "Exited block. \n";

The preceding code demonstrates how and when the objects 11, 12, and 13 are initialized
and when they are destroyed. The output from the program is:

Initializing: Auto II
In block.
Initializing: Auto 12
Initializing: Static 13
Destroying: Auto 12
Exited block.
Destroying: Auto II
Destroying: Static 13

There are several points to note about the program.

First, I 1 and 12 are automatically destroyed when the flow of control exits the block in
which they are defined.

Second, in C++, it is not necessary to declare objects or variables at the beginning of a
block. Furthermore, these objects are initialized only when the flow of control reaches their
definitions. (12 and 13 are examples of such definitions.) The output shows exactly when
they are initialized.

Finally, static local variables such as 13 retain their values for the duration of the program
but are destroyed as the program terminates.

44 Language Reference

Chapter 2 Basic Concepts

Types
c++ supports three kinds of object types:

• Fundamental types are built into the language (such as int, float, or double). Instances
of these fundamental types are often called "variables."

• Derived types are new types derived from built-in types.

• Class types are new types created by combining existing types. These are discussed in
Chapter 8, "Classes."

Fundamental Types
Fundamental types in C++ are divided into three categories: "integral," "floating," and
"void." Integral types are capable of handling whole numbers. Floating types are capable
of specifying values that may have fractional parts.

The void type describes an empty set of values. No variable of type void can be specified
- it is used primarily to declare functions that return no values or to declare "generic"
pointers to untyped or arbitrarily typed data. Any expression can be explicitly converted
or cast to type void. However, such expressions are restricted to the following uses:

• An expression statement. (See Chapter 4, "Expressions," for more information.)

• The left operand of the comma operator. (See "Comma Operator" in Chapter 4,
"Expressions," for more information.)

• The second or third operand of the conditional operator (? :). (See "Expressions with
the Conditional Operator" in Chapter 4, "Expressions," for more information.)

Table 2.3 explains the restrictions on type sizes. These restrictions are independent of the
Microsoft implementation.

Table 2.3 Fundamental Types of the C++ Language

Category Type Contents

Integral char Type char is an integral type that usually contains members of the
execution character set - in Microsoft C++, this is ASCII.

The C++ compiler treats variables of type char, signed char, and
unsigned char as having different types. Variables of type char
are promoted to int as if they are type signed char by default,
unless the IJ compilation option is used. In this case they are
treated as type unsigned char and are promoted to int without
sign extension.

(continued)

Language Reference 45

c++ Language Reference

Table 2.3 Fundamental Types of the C++ Language (continued)

Category Type Contents

Floating

short

int

intn

long

float

double

long double*

Type short int (or simply short) is an integral type that is larger
than or equal to the size of type char, and shorter than or equal to
the size of type int.

Objects of type short can be declared as signed short or
unsigned short. Signed short is a synonym for short.

Type int is an integral type that is larger than or equal to the size of
type short int, and shorter than or equal to the size of type long.

Objects of type int can be declared as signed int or unsigned into
Signed int is a synonym for into

Sized integer, where n is the size, in bits, of the integer variable.
The value of n can be 8, 16,32, or 64.

Type long (or long int) is an integral type that is larger than or
equal to the size of type int.

Objects of type long can be declared as signed long or
unsigned long. Signed long is a synonym for long.

Type float is .the smallest floating type.

Type double is a floating type that is larger than or equal to type
float, but shorter than or equal to the size of type long double. 1

Type long double is a floating type that is equal to type double.

* The representation of long double and double is identical. However, long double and double are separate types.

Microsoft Specific -+

Table 2.4 lists the amount of storage required for fundamental types in Microsoft C++.

Table 2.4 Sizes of Fundamental Types

Type Size

char, unsigned char, signed char

short, unsigned short

int, unsigned int

long, unsigned long

float

double

long double*

1 byte

2 bytes

4 bytes

4 bytes

4 bytes

8 bytes

8 bytes

* The representation of long double and double is iden(ical. However, long double and double are separate types.

For more information about type conversion, see Chapter 3, "Standard Conversions."

END Microsoft Specific

46 Language Reference

Sized Integer Types
Microsoft c++ also supports sized integer types. You can declare 8-, 16-,32-, or 64-bit
integer variables by using the __ intn type specifier, where n is the size, in bits, of the
integer variable. The value of n can be 8, 16,32, or 64. The following example declares
one variable for each of these types of sized integers:

__ intB nSmall; II Declares B-bit integer
int16 nMedium; II Declares 16-bit integer
int32 nLarge; II Declares 32-bit integer
int64 nHuge; II Declares 64-bit integer

Chapter 2 Basic Concepts

The types __ intS, __ int16, and __ int32, are synonyms for the ANSI types that have the
same size, and are useful for writing portable code that behaves identically across multiple
platforms. Note that the __ intSdata type is synonymous with type char, __ int16 is
synonymous with type short, and __ int32 is synonymous with type int. The __ int64 data
type has no ANSI equivalent.

Since __ intS, __ int16, and __ int32 are considered synonyms by the compiler, care
should be taken when using these types as arguments to overloaded function calls. For
example, the following C++ code will generate a compiler error:

void MyFunc(__ intB) {}
void MyFunc(char) {}

void main()
{

__ i ntB newVa 1 ;
char MyChar;
MyFunc(MyChar);
MyFunc(newVal);

II Ambiguous function calls;
II char is synonymous with intB.

Language Reference 47

c++ Language Reference

Derived Types
Derived types are new types that can be used in a program, and can include directly
derived types and composed derivative types.

Directly Derived Types
New types derived directly from existing types are types that point to, refer to, or (in the
case of functions) transform type data to return a new type.

• Arrays of Variables or Objects

• Functions

• Pointers of a Given Type

• References to Objects

• Constants

• Pointers to Class Members

Arrays of Variables or Objects
Arrays of variables or objects can contain a specified number of a particular type. For
example, an array derived from integers is an array of type int. The following code sample
declares and defines an array of 10 int variables and an array of 5 objects of class
Sampl eCl ass:

int ArrayOfInt[10];
SampleClass aSampleClass[5];

Functions
Functions take zero or more arguments of given types and return objects of a specified type
(or return nothing, if the function has a void return type).

Pointers of a Given Type
Pointers to variables or objects select an object in memory. The object can be global, local
(or stack-frame), or dynamically allocated. Pointers to functions of a given type allow a
program to defer selection of the function used on a particular object or objects until run
time. The following example shows a definition of a pointer to a variable of type char:

char *szPathStr;

48 Language Reference

Chapter 2 Basic Concepts

References to Objects
References to objects provide a convenient way to access objects by reference but use the
same syntax required to access objects by value. The following example demonstrates how
to use references as arguments to functions and as return types of functions:

BigClassType &func(BigClassType &objname
{

objname.DoSomething();

objname.SomeData = 7;

return objname;

II Note that member-of operator(.)
II is used.
II Data passed by non-const
II reference is modifiable.

The important points about passing objects to a function by reference are:

• The syntax for accessing members of class, struct, and union objects is the same as if
they were passed by value: the member-of operator (.).

• The objects are not copied prior to the function call; their addresses are passed. This
can reduce the overhead of the function call.

Additionally, functions that return a reference need only accept the address of the object
to which they refer, instead of a copy of the whole object.

Although the preceding example describes references only in the context of
communication with functions, references are not constrained to this use. Consider,
for example, a case where a function needs to be an I-value - a common requirement
for overloaded operators:

class Vector
{

public:
Point &operator[](int nSubscript); II Function returns a

II reference type

} ;

The preceding declaration specifies a user-defined subscript operator for class Vector.
In an assignment statement, two possible conditions occur:

Vector vI;
i nt i ;
Point p;
vl[7] = p;
p=vl[7];

II Vector used as an l-value
II Vector used as an r-value

Language Reference 49

c++ Language Reference

The latter case, where vI [7] is used as an r-value, can be implemented without use
of references. However, the former case, where vI [7] is used as an I-value, cannot be
implemented easily without functions that are of reference type. Conceptually, the last
two statements in the preceding example translate to the following code:

vl.operator[](7) 3;
i = vl.operator[](7);

II Vector used as an l-value
II Vector used as an r-value

When viewed in this way, it is easier to see that the first statement must be an I-value to
be semantically correct on the left side of the assignment statement.

For more information abo~t overloading, and about overloaded operators in particular,
see "Overloaded Operators" in Chapter 12, "Overloading."

You can also use references to declare a const reference to a variable or object. A
reference declared as const retains the efficiency of passing an argument by reference,
while preventing the called function from modifying the original object. Consider the
following code:

II IntValue is a const reference.
void PrintInt(const int &IntValue
{

printf("%d\n", IntValue);
}

Reference initialization is different from assignment to a variable of reference type.
Consider the following code:

i nt i 7 ;
int j = 5;

II Reference initialization
i nt &ri i ; II Initialize ri to refer to i.
int &rj = j; II Initialize rj to refer to j.

II Assignment
ri 3; II now equal to 3.
rj 12; II j now equal to 12.
ri rj; II now equals j (12) .

SO Language Reference

Chapter 2 Basic Concepts

Constants
See "Literals" in Chapter 1, "Lexical Conventions," for more information about the various
kinds of constants allowed in C++.

Pointers to Class Members
These pointers define a type that points to a class member of a particular type. Such a
pointer can be used by any object of the class type or any object of a type derived from the
class type.

Use of pointers to class members enhances the type safety of the C++ language. Three new
operators and constructs are used with pointers to members, as shown in Table 2.5.

Table 2.5 Operators and Constructs Used with Pointers to Members

Operator or
Construct

::*

.*

->*

Syntax

type:: *ptr-name

obj-name. *ptr-name

obj-ptr->*ptr-name

Use

Declaration of pointer to member. The type specifies the
class name, and ptr-name specifies the name of the
pointer to member. Pointers to members can be
initialized. For example:

MyType::*pMyType = &MyType::i;

Dereference a pointer to a member using an object or
object reference. For example:

int j = Object.*pMyType;

Dereference a pointer to a member using a pointer to an
object. For example:

int j = pObject->*pMyType;

Consider this example that defines a class ACl ass and the derived type pDAT, which points
to the member I 1 :

#include <iostream.h>

II Define class AClass.
class AClass
{

public:
i nt I1;
Show() { cout « I1 « n\nn; }

} ;

II Define a derived type pDAT that pOints to II members of
II objects of type AClass.
int AClass::*pDAT = &AClass: :11;

Language Reference 51

c++ Language Reference

void main()
{

AClass aClass;
AClass *paClass

II Define an object of type AClass.
&aClass; II Define a pointer to that object.

}

int i;

aClass.*pDAT 7777;
aClass.Show();

i = paClass->*pDAT;

cout « i « ~\n";

II Assign to aClass::I1 using * operator.

II Dereference a pointer
II using ->* operator.

The pointer to member pDAT is a new type derived from class ACl ass. It is more strongly
typed than a "plain" pointer to int because it points only to int members of class ACl ass
(in this case, 11). Pointers to static members are plain pointers rather than pointers to class
members. Consider the following example:

class HasStaticMember
{

public:
static int SMember;

} ;

int HasStaticMember::SMember = 0;

int *pSMember = &HasStaticMember::SMember;

Note that the type of the pointer is "pointer to int," not "pointer to
HasStaticMember: :int."

Pointers to members can refer to member functions as well as member data. Consider the
following code:

#include <stdio.h>

II Declare a base class. A. with a virtual function. Identify.
II (Note that in this context. struct is the same as class.)
struct A
{

virtual void Identify() 0; II No definition for class A.
} ;

II Declare a pointer to the Identify member function.
void (A::*pIdentify)() = &A::Identify;

II Declare class B derived from classA.
struct B : public A
{

void Identify();
} ;

52 Language Reference

Chapter 2 Basic Concepts

II Define Identify functions for classe B
void B::Identify()
{

printf("Identification is B::Identify\n");
}

void maine)
{

}

B BObject;
A *pA;

pA = &BObject;
(pA->*pIdentify)();

II Declare objects of type B
II Declare pOinter to type A.

II Make pA point to an object of type B.
II Call Identify function through pointer
II to member pIdentify.

The output from this program is:

Identification is B::Identify

The function is called through a pointer to type A. However, because the function is a
virtual function, the correct function for the object to which pA refers is called.

Composed Derivative Types
This section describes the following composed derivative types:

• Classes

• Structures

• Unions

Information about aggregate types and initialization of aggregate types can be found in
"Initializing Aggregates" in Chapter 7, "Declarators."

Classes
Classes are a composite group of member objects, functions to manipulate these members,
and (optionally) access-control specifications to member objects and functions.

By grouping composite groups of objects and functions in classes, C++ enables
programmers to create derivative types that define not only data but also the behavior of
objects.

Class members default to private access and private inheritance. Classes are covered in
Chapter 8, "Classes." Access control is covered in Chapter 10, "Member-Access Control."

Language Reference 53

c++ Language Reference

Structures
c++ structures are the same as classes, except that all member data and functions default
to public access, and inheritance defaults to public inheritance.

For more information about access control, see Chapter 10, "Member-Access Control."

Unions
Unions enable programmers to define types capable of containing different kinds of
variables in the same memory space. The following code shows how you can use a union
to store several different types of variables:

II Declare a union that can hold data of types char, int,
II or char *
union ToPrint
{

char chVar;
int iVar;
char *szVar;

} ;

II Declare an enumerated type that describes what type to print.
enum PrintType { CHAR_T, INT_T, STRING_T};

Void Print(ToPrint Var, PrintType Type)
{

}

switch(Type
{

case CHAR_T:
printf("%c", Var.chVar);
break;

case INT_T:
printf("%d", Var.iVar);
break;

case STRING_T:
printf("%s", Var.szVar);
break;

54 Language Reference

Chapter 2 Basic Concepts

Type Names
Synonyms for both fundamental and derived types can be defined using the typedef
keyword. The following code illustrates the use of typedef:

typedef unsigned char BYTE;
typedef BYTE * PBYTE;

BYTE Ch;
PBYTE pbCh;

II 8-bit unsigned entity.
II Pointer to BYTE.

II Declare a variable of type BYTE.
II Declare a pointer to a BYTE
II variable.

The preceding example shows uniform declaration syntax for the fundamental type
unsigned char and its derivative type unsigned char *. The typedef construct is also
helpful in simplifying declarations. A typedef declaration defines a synonym, not a new
independent type. The following example declares a type name (PVFN) representing a
pointer to a function that returns type void. The advantage of this declaration is that,
later in the program, an array of these pointers is declared very simply.

II Prototype two functions.
voi d func1 () ;
void func2();

II Define PVFN to represent a pointer to a function that
II returns type void.
typedef void (*PVFN)();

II Declare an array of pointers to functions.
PVFN pvfn[] = { funcl, func2 };

II Invoke one of the functions.
(*pvfn[1]) ();

L-Values and R -Values
Expressions in C++ can evaluate to "I-values" or "r-values." L-values are expressions that
evaluate to a type other than void and that designate a variable.

L-values appear on the left side of an assignment statement (hence the "I" in I-value).
Variables that would normally be I-values can be made nonmodifiable by using the const
keyword; these cannot appear on the left of an assignment statement. Reference types are
always I-values.

The term r-value is sometimes used to describe the value of an expression and to
distinguish it from an I-value. AlII-values are r-values but not all r-values are I-values.

Language Reference 55

c++ Language Reference

Some examples of correct and incorrect usages are:

i 7;
7 = i;
j * 4 = 7;
*p = i;
const i nt ci
ci = 9;

«i < 3) ?

II Correct. A variable name, i, is an l-value.
II Error. A constant, 7, is an r-value.
II Error. The expression j * 4 yields an r-value.
II Correct. A de referenced pointer is an l-value.

7; II Declare a const variable.
II ci is a nonmodifiable l-value, so the
II assignment causes an error message to
II be generated.

j) = 7; II Correct. Conditional operator (? :)
II returns an l-value.

Note The examples in this section illustrate correct and incorrect usage when
operators are not overloaded. By overloading operators, you can make an expression
such as j * 4 an I-value.

Numerical Limits
The two standard include files, LIMITS.H and FLOAT.H, define the "numerical limits," or
minimum and maximum values that a variable of a given type can hold. These minimums
and maximums are guaranteed to be portable to any c++ compiler that uses the same data
representation as ANSI C. The LIMITS.H include file defines the numerical limits for
integral types, and FLOAT.H defines the numerical limits for floating types.

Integer Limits
Microsoft Specific ~ ,

The limits for integer types are listed in Table 2.6. These limits are also defined in the
standard header file LIMITS .H.

Table 2.6 Limits on Integer Constants

Constant Meaning

CHAR_BIT Number of bits in the smallest variable that is not a bit
field.

SCHAR_MIN Minimum value for a variable of type signed char.

SCHAR_MAX Maximum value for a variable of type signed char.

UCHAR_MAX Maximum value for a variable of type unsigned char.

CHAR_MIN Minimum value for a variable of type char.

CHAR_MAX Maximum value for a variable of type char.

MB_LEN_MAX Maximum number of bytes in a multicharacter constant.

56 Language Reference

Value

8

-128

127

255 (Oxff)

-128; 0 if /J option used

127; 255 if /J option used

2

Table 2.6 Limits on Integer Constants (continued)

Constant Meaning

SHRT_MIN Minimum value for a variable of type short.

SHRT_MAX Maximum value for a variable of type short.

USHRT_MAX Maximum value for a variable of type unsigned short.

INT _MIN Minimum value for a variable of type into

INT _MAX Maximum value for a variable of type int.

UINT _MAX Maximum value for a variable of type unsigned int.

LONG_MIN Minimum value for a variable of type long.

LONG_MAX Maximum value for a variable of type long.

ULONG_MAX Maximum value for a variable of type unsigned long.

Chapter 2 Basic Concepts

Value

-32768

32767

65535 (Oxffff)

-2147483647-1

2147483647

4294967295 (Oxffffffff)

-2147483647-1

2147483647

4294967295 (Oxffffffff)

If a value exceeds the largest integer representation, the Microsoft compiler generates an error.

END Microsoft Specific

Floating Limits
Microsoft Specific ~

Table 2.7 lists the limits on the values of floating-point constants. These limits are also
defined in the standard header file FLOAT.H.

Table 2.7 Limits on Floating-Point Constants

Constant

FLT_DIG
DBL_DIG
LDBL_DIG

FLT _EPSILON
DBL_EPSILON
LDBL_EPSILON

FLT_GUARD

FLT_MANT_DIG
DBL_MANT_DIG
LDBL_MANT_DIG

Meaning Value

Number of digits, q, such that a floating-point 6
number with q decimal digits can be rounded 15
into a floating-point representation and back 15
without loss of precision.

Smallest positive number x, such that x + 1.0 is 1.192092896e-07F
not equal to 1.0. 2.2204460492503131e-016

Number of digits in the
radix specified by FLT_RADIX in the
floating-point significand. The radix is 2;
hence these values specify bits.

2.2204460492503131e-OI6

o
24
53
53

(continued)

Language Reference 57

c++ Language Reference

Table 2.7 Limits on Floating-Point Constants (continued)

Constant

FLT_MAX
DBL_MAX
LDBL_MAX

FLT_MAX_10_EXP
DBL_MAX_10_EXP
LDBL_MAX_10_EXP

FL T _MAX_EXP
DBL_MAX_EXP
LDBL_MAX_EXP

FLT_MIN
DBL_MIN
LDBL_MIN

FLT_MIN_10_EXP
DBL_MIN_10_EXP
LDBL_MIN_10_EXP

FLT_MIN_EXP
DBL_MIN_EXP
LDBL_MIN_EXP

FLT_NORMALIZE

FLT_RADIX
_DBL_RADIX
_LDBL...:..RADIX

FLT_ROUNDS
_DBL_ROUNDS
_LDBL_ROUNDS

Meaning

Maximum representable floating-point
number.

Maximum integer such that 10 raised to that
number is a representable floating-point
number.

Maximum integer such that FL T _RADIX
raised to that number is a representable
floating-point number.

Minimum positive value.

Minimum negative integer such that 10 raised
to that number is a representable floating
point number.

Minimum negative integer such that
FLT_RADIX raised to that number is
a representable floating-point number.

Radix of exponent representation.

Rounding mode for
floating-point addition.

Value

3.402823466e+38F
1.7976931348623158e+308
1.7976931348623158e+308

38
308
308

128
1024
1024

1.175494351e-38F
2.2250738585072014e-308
2.2250738585072014e-308

-37
-307
-307

-125
-1021
-1021

o
2
2
2

1 (near)
1 (near)
1 (near)

Note that the information in Table 2.7 may differ in future versions of the product.

END Microsoft Specific

58 Language Reference

CHAPTER 3

Standard Conversions

The C++ language defines conversions between its fundamental types. It also defines
conversions for pointer, reference, and pointer-to-member derived types. These
conversions are called "standard conversions." (For more information about types,
standard types, and derived types, see "Types" in Chapter 2, "Basic Concepts.")

This chapter discusses the following standard conversions:

•
•
•
•
•
•
•
•

Integral promotions

Integral conversions

Floating conversions

Floating and integral conversions

Arithmetic conversions

Pointer conversions

Reference conversions

Pointer-to-member conversions

Note User-defined types can specify their own conversions. Conversion of
user-defined types is covered in "Constructors" and "Conversions" in Chapter 11,
"Special Member Functions."

The following code causes conversions (in this example, integral promotions):

long lnuml, lnum2;
int inurn;

II inurn promoted to type long prior to assignment.
lnurnl = inurn;

II inurn promoted to type long prior to multiplication.
lnurn2 = inurn * lnum2;

Note The result of a conversion is an I-value only if it produces a reference type.
For example, a user-defined conversion declared as

operator i nt& ()

returns a reference and is an I-value. However, a conversion declared as

operator i nt()

returns an object and is not an I-value.

Language Reference 59

c++ Language Reference

Integral Promotions
Objects of an integral type can be converted to another wider integral type (that is,
a type that can represent a larger set of values). This widening type of conversion is
called "integral promotion." With integral promotion, you can use the following in
an expression wherever another integral type can be used:

• Objects, literals, and constants of type char and short int

• Enumeration types

• int bit fields

• Enumerators

c++ promotions are "value-preserving." That is, the value after the promotion is
guaranteed to be the same as the value before the promotion. In value-preserving
promotions, objects of shorter integral types (such as bit fields or objects of type char)
are promoted to type int if int can represent the full range of the original type. If int
cannot represent the full range of values, then the object is promoted to type unsigned into
Although this strategy is the same as that used by ANSI C, value-preserving conversions
do not preserve the "signedness" of the object.

Value-preserving promotions and promotions that preserve signedness normally produce
the same results. However, they can produce different results if the promoted object is one
of the following:

• An operand of I, %,1=, %=, <, <=, >, or >=

These operators rely on sign for determining the result. Therefore, value-preserving
and sign-preserving promotions produce different results when applied to these
operands.

• The left operand of »or »= ,

These operators treat signed and unsigned quantities differently when performing a
shift operation. For signed quantities, shifting a quantity right causes the sign bit to
be propagated into the vacated bit positions. For unsigned quantities, the vacated
bit positions are zero-filled.

• An argument to an overloaded function or operand of an overloaded operator
that depends on the signedness of the type of that operand for argument matching.
(See "Overloaded Operators" in Chapter 12, "Overloading," for more about
defining overloaded operators.)

60 Language Reference

Chapter 3 Standard Conversions

Integral Conversions
Integral conversions are performed between integral types. The integral types are char,
int, and long (and the short, signed, and unsigned versions of these types).

This section describes the following types of integral conversions:

• Converting signed to unsigned

• Converting unsigned to signed

• Standard conversion

Converting Signed to Unsigned
Objects of signed integral types can be converted to corresponding unsigned types. When
these conversions occur, the actual bit pattern does not change; however, the interpretation
of the data changes. Consider this code:

#include <iostream.h>

void maine)
{

}

short i = -3;
unsigned short u;

cout « (u = i) « "\n";

The following output results:

65533

In the preceding example, a signed short, i, is defined and initialized to a negative
number. The expression (u = i) causes i to be converted to an unsigned short prior
to the assignment to u.

Language Reference 61

c++ Language Reference

Converting Unsigned to Signed
Objects of unsigned integral types can be converted to corresponding signed types.
However, such a conversion can cause misinterpretation of data if the value of the
unsigned object is outside the range representable by the signed type, as demonstrated
in the following example:

#include <iostream~h>

void maine)
{

short i;
unsigned short u = 65533;

cout « (i = u) « "\n";
}

The following output results:

-3

In the preceding example, u is an unsigned short integral object that must be converted to
a signed quantity to evaluate the expression (i = u). Because its value cannot be properly
represented in a signed short, the data is misinterpreted as shown.

Standard Conversion
Objects of integral types can be converted to shorter signed or unsigned integral types.
Such a conversion is called "standard conversion." It can result in loss of data if the value
of the original object is outside the range representable by the shorter type.

Note The compiler issues a high-level warning when a conversion to a shorter type
takes place.

Floating Conversions
An object of a floating type can be safely converted to a more precise floating type - that
is, the conversion causes no loss of significance. For example, conversions from float to
double or from double to long double are safe, and the value is unchanged.

An object of a floating type can also be converted to a less precise type, if it is in a range
representable by that type. (See "Floating Limits" in Chapter 2, "Basic Concepts," for the
ranges of floating types.) If the original value cannot be represented precisely, it can be
converted to either the next higher or the next lower representable value. If no such value
exists, the result is undefined. Consider the following example:

cout « (float)lE300 « endl;

62 Language Reference

Chapter 3 Standard Conversions

The maximum value representable by type float is 3.402823466E38 - a much smaller
number than lE300. Therefore, the number is converted to infinity, and the result
is 1.#INF.

Floating and Integral Conversions
Certain expressions can cause objects of floating type to be converted to integral types,
or vice versa.

This section describes the following types of floating and integral conversions:

• Floating to integral

• Integral to floating

Floating to Integral
When an object of floating type is converted to an integral type, the fractional part is
truncated. No rounding takes place in the conversion process. Truncation means that
a number like 1.3 is converted to 1, and -1.3 is converted to -1.

Integral to Floating
When an object of integral type is converted to a floating type and the original value
cannot be represented exactly, the result is either the next higher or the next lower
representable value.

Arithmetic Conversions
Many binary operators (discussed in "Expressions with Binary Operators" in Chapter 4,
"Expressions") cause conversions of operands and yield results the same way. The way
these operators cause conversions is called "usual arithmetic conversions." Arithmetic
conversions of operands of different types are performed as shown in Table 3.1.

Table 3.1 Conditions for Type Conversion

Conditions Met

Either operand is of type long
double.

Preceding condition not met and
either operand is of type double.

Conversion

Other operand is converted to type long double.

Other operand is converted to type double.
(continued)

Language Reference 63

c++ Language Reference

Table 3.1 Conditions for Type Conversion (continued)

Conditions Met

Preceding conditions not met and
either operand is of type float.

Preceding conditions not met
(none of the operands are of
floating types).

Conversion

Other operand is converted to type float.

Integral promotions are performed on the operands as follows:

• If either operand is of type unsigned long, the other operand is
converted to type unsigned long.

• If preceding condition not met, and if either operand is of type
long and the other of type unsigned int, both operands are
converted to type unsigned long.

• If the preceding two conditions are not met, and if either operand
is of type long, the other operand is converted to type long.

• If the preceding three conditions are not met, and if either operand
is of type unsigned int, the other operand is converted to type
unsigned into

• If none of the preceding conditions ate met, both operands are
converted to type int.

The following code illustrates the conversion rules described in Table 3.1:

float fVal;
double dVal;
int iVal;
unsigned long ulVal;

dVal = iVal * ulVal; II iVal converted to unsigned long;
II result of multiplication converted to double.

dVal ulVal + fVal; II ulVal converted to float;
II result of addition converted to double.

The first statement in the preceding example shows multiplication of two integral types,
i Val and u 1 Val. The condition met is that neither operand is of floating type and one
operand is of type unsigned into Therefore, the other operand, ; Val, is converted to type
unsigned int. The result is assigned to d Val. The condition met is that one operand is of
type double; therefore, the unsigned int result of the multiplication is converted to type
double.

The second statement in the preceding example shows addition of a float and an integral
type, fVa 1 and u 1 Val. The u 1 Val variable is converted to type float (third condition in
Table 3.1). The result of the addition is converted to type double (second condition in
Table 3.1) and assigned to d Val.

64 Language Reference

Chapter 3 Standard Conversions

Pointer Conversions
Pointers can be converted during assignment, initialization, comparison, and other
expressions. This section describes the following pointer conversion:

• Null pointers

• Pointers to type void

• Pointers to objects

• Pointers to functions

• Pointers to classes

• Expressions

• Pointers modified by const or volatile

Null Pointers
An integral constant expression that evaluates to zero, or such an expression cast to type
void *, is converted to a pointer called the "null pointer." This pointer is guaranteed to
compare unequal to a pointer to any valid object or function (except for pointers to based
objects, which can have the same offset and still point to different objects).

Pointers to Type void
Pointers to type void can be converted to pointers to any other type, but only with an
explicit type cast (unlike in C). (See "Expressions with Explicit Type Conversions" in
Chapter 4, "Expressions," for more information about type casts.) A pointer to any type
can be converted implicitly to a pointer to type void.

A pointer to an incomplete object of a type can be converted to a pointer to void
(implicitly) and back (explicitly). The result of such a conversion is equal to the value
of the original pointer. An object is considered incomplete if it is declared, but there is
insufficient information available to determine its size or base class.

Pointers to Objects
A pointer to any object that is not const or volatile can be implicitly converted to a
pointer of type void *.

Language Reference 65

c++ Language Reference

Pointers to Functions
A pointer to a function can be converted to type void *, if type void * is large enough
to hold that pointer.

Pointers to Classes
There are two cases in which a pointer to a class can be converted to a pointer to a
base class.

The first case is when the specified base class is accessible and the conversion is
unambiguous. (See"Multiple Base Classes" in Chapter 9, "Derived Classes," for more
information about ambiguous base-class references.)

Whether a base class is accessible depends on the kind of inheritance used in derivation.
Consider the inheritance illustrated in Figure 3.1.

Figure 3.1 Inheritance Graph for Illustration of Base-Class Accessibility

Table 3.2 shows the base-class accessibility for the situation illustrated in Figure 3.1.

Table 3.2 Base-Class Accessibility

Type of Function Derivation Conversion from B* to A * Legal?

External (not class-scoped) function Private No

Protected No

Public Yes

B member function (in B scope) Private Yes

Protected Yes

Public Yes

C member function (in C scope) Private No

Protected Yes

Public Yes

66 Language Reference

Chapter 3 Standard Conversions

The second case in which a pointer to a class can be converted to a pointer to a base
class is when you use an explicit type conversion. (See "Expressions with Explicit Type
Conversions" in Chapter 4, "Expressions," for more information about explicit type
conversions.)

The result of such a conversion is a pointer to the "subobject," the portion of the object
that is completely described by the base class.

The following code defines two classes, A and B, where B is derived from A. (For more
information on inheritance, see Chapter 9, "Derived Classes.") It then defines bObj ect,
an object of type B, and two pointers (pA and pB) that point to the object.

class A
{

public:

} ;

int AComponent;
int AMemberFunc();

class B public A
{

public:

} ;

int BComponent;
int BMemberFunc();

B bObject;
A *pA &bObject;
B *pB = &bObject;

pA->AMemberFunc();
pB->AMemberFunc();
pA->BMemberFunc();

II OK in class A
II OK: inherited from class A
II Error: not in class A

The pointer pA is of type A *, which can be interpreted as meaning "pointer to an object of
type A." Members of bObject (such as BComponent and BMemberFunc) are unique to type B
and are therefore inaccessible through pA. The pA pointer allows access only to those
characteristics (member functions and data) of the object that are defined in class A.

Pointer Expressions
Any expression with an array type can be converted to a pointer of the same type. The
result of the conversion is a pointer to the first array element. The following example
demonstrates such a conversion:

char szPath[_MAX_PATH]; II Array of type char.
char *pszPath = sZPath; II Equals &szPath[0].

Language Reference 67

c++ Language Reference

An expression that results in a function returning a particular type is converted to a pointer
to a function returning that type, except when:

• The expression is used as an operand to the address-of operator (&).

• The expression is used as an operand to the function-call operator.

Pointers Modified by const or volatile
c++ does not supply aO standard conversion from a const or volatile type to a type that is
not const or volatile. However, any sort of conversion can be specified using explicit type
casts (including conversions that are unsafe).

Note c++ pointers to members, except pointers to static members, are different from
normal pointers and do not have the same standard conversions. Pointers to static
members are normal pointers and have the same conversions as normal pointers.
(See "Pointers to Class Members" in Chapter 2, "Basic Concepts," for more
information.)

Reference Conversions
A reference to a class can be converted to a reference to a base class in the following cases:

• The specified base class is accessible (as defined in "Pointers to Classes," earlier in
this chapter).

• The conversion is unambiguous. (See "Multiple Base Classes" in Chapter 9,
"Derived Classes," for more information about ambiguous base-class references.)

The result of the conversion is a pointer to the subobject that represents the base class.

For more information about references, see "References to Objects" in Chapter 2,
"Basic Concepts."

Pointer-to-Member Conversions
Pointers to class members can be converted during assignment, initialization, comparison,
and other expressions. This section describes the following pointer-to-member
conversions:

• Integral constant expressions

• Pointers to base-class members

68 Language Reference

Chapter 3 Standard Conversions

Integral Constant Expressions
An integral constant expression that evaluates to zero is converted to a pointer called the
"null pointer." This pointer is guaranteed to compare unequal to a pointer to any valid
object or function (except for pointers to based objects, which can have the same offset
and still point to different objects).

The following code illustrates the definition of a pointer to member i in class A.
The pointer, pa i, is initialized to 0, which is the null pointer.

class A
{

public:
i nt i;

} ;

int A::*pai 0;

Pointers to Base-Class Members
A pointer to a member of a base class can be converted to a pointer to a member of
a class derived from it, when the following conditions are met:

• The inverse conversion, from pointer to derived class to base-class pointer,
is accessible.

• The derived class does not inherit virtually from the base class.

When the left operand is a pointer to member, the right operand must be of pointer-to
member type or be a constant expression that evaluates to 0, This assignment is valid
only in the following cases:

• The right operand is a pointer to a member of the same class as the left operand.

• The left operand is a pointer to a member of a class derived publicly and
unambiguously from the class of the right operand.

Language Reference 69

CHAPTER 4

Expressions

This chapter describes c++ expressions. Expressions are sequences of operators and
operands that are used for one or more of these purposes:

• Computing a value from the operands.

• Designating objects or functions.

• Generating "side effects." (Side effects are any actions other than the evaluation of
the expression - for example, modifying the value of an object.)

In C++, operators can be overloaded and their meanings can be user-defined. However,
their precedence and the number of operands they take cannot be modified. This chapter
describes the syntax and semantics of operators as they are supplied with the language,
not overloaded. The following topics are included:

• Types of expressions

• Semantics of expressions

• Casting

(For more information about overloaded operators, see "Overloaded Operators," in
Chapter 12, "Overloading.")

Note Operators for built-in types cannot be overloaded; their behavior is predefined.

Types of Expressions
C++ expressions are divided into several categories:

• Primary expressions. These are the building blocks from which all other expressions
are formed.

• Postfix expressions. These are primary expressions followed by an operator - for
example, the array SUbscript or postfix increment operator.

• Expressions formed with unary operators. Unary operators act on only one operand
in an expression.

• Expressions formed with binary operators. Binary operators act on two operands in
an expression.

Language Reference 71

c++ Language Reference

• Expressions with the conditional operator. The conditional operator is a ternary
operator - the only such operator in the C++ language - and takes three operands.

• Constant expressions. Constant expressions are formed entirely of constant data.

• Expressions with explicit type conversions. Explicit type conversions, or "casts,"
can be used in expressions.

• Expressions with pointer-to-member operators.

• Casting. Type-safe "casts" can be used in expressions.

• Run-Time Type Information. Determine the type of an object during
program execution.

Primary Expressions
Primary expressions are the building blocks of more complex expressions. They are
literals, names, and names qualified by the scope-resolution operator (::).

Syntax

primary-expression:
literal
this
•• identifier
:: operator-Junction-name
:: qualified-name
(expression)
name

A literal is a constant primary expression. Its type depends on the form of its specification.
See "Literals" in Chapter 1, "Lexical Conventions," for complete information about
specifying literals.

The this keyword is a pointer to a class object. It is available within nonstatic member
functions and points to the instance of the class for which the function was invoked. The
this keyword cannot be used outside the body of a class-member function.

The type of the this pointer is type *const (where type is the class name) within functions
not specifically modifying the this pointer. The following example shows member
function declarations and the types of this:

class Example
{

public:

} ;

void Func(); I I
void Func() const; II
void Func() volatile; II

* const this
const * const this
volatile * const this

See "Type of this Pointer" in Chapter 8, "Classes," for more information about modifying
the type of the this pointer.

72 Language Reference

The scope-resolution operator (::) followed by an identifier, operator-Junction-name, or
qualified-name constitutes a primary expression. The type of this expression is determined
by the declaration of the identifier, operator-Junction-name, or name. It is an I-value if the
declaring name is an I-value. The scope-resolution operator allows a global name to be
referred to, even if that name is hidden in the current scope. See "Scope" in Chapter 2,
"Basic Concepts," for an example of how to use the scope-resolution operator.

An expression enclosed in parentheses is a primary expression whose type and value are
identical to those of the unparenthesized expression. It is an I-value if the unparenthesized
expression is an I-value.

Names
In the C++ syntax for primary-expression, a name is a primary expression that can appear
only after the member-selection operators (. or -», and names the member of a class.

Syntax

name:
identifier
operator-Junction-name
conversion-Junction-name
,.., class-name
qualified-name

Any identifier that has been declared is a name.

An operator-Junction-name is a name that is declared in the form

operator operator-name(argumentl [, argument2]);

See "Overloaded Operators" in Chapter 12, "Overloading," for more information about
declaration of operator-Junction-name.

A conversion-Junction-name is a name that is declared in the form

operator type-name()

Note You can supply a derivative type name such as char * in place of the type-name
when declaring a conversion function.

Conversion functions supply converSions to and from user-defined types. For more
information about user-supplied conversions, see "Conversion Functions" in Chapter 11,
"Special Member Functions."

Chapter 4 Expressions

A name declared as ..., class-name is taken as the "destructor" for objects of a class type.
Destructors typically perform cleanup operations at the end of an object's lifetime. For
information on destructors, see "Destructors" in Chapter 11, "Special Member Functions."

Language Reference 73

c++ Language Reference

Qualified Names
"Sy'nlax

qualified-name :
qualified-class-name :: name

If a qualified-class-name is followed by the scope-resolution operator (::) and then the
name of a member of either that class or a base of that class, then the scope-resolution
operator is considered a qualified-name. The type of a qualified-name is the same as the
type of the member, and the result of a qualified-name expression is the member. If the
member is an I-value, then the qualified-name is also an I-value. For information about
declaring qualified-class-name, see "Type Specifiers" in Chapter 6, "Declarations,"or
"Class Names" in Chapter 8, "Classes."

The class-name part of a qualified-class-name can be hidden by redeclaration of the same
name in the current or enclosing scope; the class-name is still found and used. See "Scope"
in Chapter 2, "Basic Concepts," for an example of how to use a qualified-class-name to
access a hidden class-name.

Note Class constructors and destructors of the form class-name :: class-name and
class-name :: - class-name, respectively, must refer to the same class-name.

A name with more than one qualification, such as the following, designates a member
of a nested class:

class-name :: class-name :: name

Postfix Expressions
Postfix expressions consist of primary expressions or expressions in which postfix
operators follow a primary expression. The postfix operators are listed in Table 4.1.

Table 4.1 Postfix Operators

Operator Name

Subscript operator

Function-call operator

Explicit type conversion operator

Member-selection operator

Postfix increment operator

Postfix decrement operator

74 Language Reference

Operator Notation

[]

()

type-name()

.or->

++

Syntax

postfix-expression:
primary-expression
postfix-expression [expression]
postfix-expression (expression-listopt)

simple-type-name (expression-listopt)

postfix-expression. name
postfix-expression -> name
postfix-expression ++
postfix-expression --

expression-list:
assignment-expression
expression-list, assignment-expression

Subscript Operator

Chapter 4 Expressions

A postfix-expression followed by the subscript operator, [], specifies array indexing. One
of the expressions must be of pointer or array type - that is, it must have been declared as
type* or type[]. The other expression must be of an integral type (including enumerated
types). In common usage, the expression enclosed in the brackets is the one of integral
type, but that is not strictly required. Consider the following example:

MyType m[10]; II Declare an array of a user-defined type.

MyType nl = m[2]; II Select third element of array.
MyType n2 = 2[m]; II Select third element of array.

In the preceding example, the expression m [2] is identical to 2 [m]. Although m is not of an
integral type, the effect is the same. The reason that m[2] is equivalent to 2[m] is that the
result of a subscript expression el[e2] is given by:

*((e2) + (el))

The address yielded by the expression is not e2 bytes from the address el. Rather, the
address is scaled to yield the next object in the array e2. For example:

double aDbl[2];

The addresses of aD b [0] and aD b [1] are 8 bytes apart-the size of an object of type
double. This scaling according to object type is done automatically by the C++ language
and is defined in "Additive Operators," later in this chapter, where addition and subtraction
of operands of pointer type is discussed.

Language Reference 75

c++ Language Reference

Positive and Negative Subscripts
The first element of an array is element O. The range of a C++ array is from array[O]
to array[size - 1]. However, C++ supports positive and negative subscripts. Negative
subscripts must fall within array boundaries or results are unpredictable. The following
code illustrates this concept:

#include <iostream.h>

void maine)
{

}

int iNumberArray[1024];
int *iNumberLine = &iNumberArray[512];"

cout « iNumberArray[-256] « "\n";
cout « iNumberLine[-256] « "\n";

II Unpredictable
II OK

The negative subscript in i NumberArray can produce a run-time error because it yields an
address 256 bytes lower in memory than the origin of the array. The object i NumberL i ne is
initialized to the middle of i NumberArray; it is therefore possible to use both positive and
negative array indexes on it. Array subscript errors do not generate compile-time errors,
but they yield unpredictable results.

The subscript operator is commutative. Therefore, the expressions array[index] and
index[array] are guaranteed to be equivalent as long as the subscript operator is not
overloaded (see "Overloaded Operators" in Chapter 12, "Overloading"). The first
form is the most common coding practice, but either works.

Function-Call Operator
A postfix-expression followed by the function-call operator, (), specifies a function call.
The arguments to the function-call operator are zero or more expressions separated by
commas-the actual arguments to the function.

The postfix-expression must be of one of these types:

• Function returning type T. An example declaration is

T func(int i)

• Pointer to a function returning type T. An example declaration is

T (*func)(int i)

76 Language Reference

• Reference to a function returning type T. An example declaration is

T (&func)(int i)

• Pointer-to-member function dereference returning type T. Example function calls are

(pObject->*pmf)();
(Object. *pmf) ();

Formal and Actual Arguments
Calling programs pass information to called functions in "actual arguments." The called
functions access the information using corresponding "formal arguments."

When a function is called, the following tasks are performed:

• All actual arguments (those supplied by the caller) are evaluated. There is no implied
order in which these arguments are evaluated, but all arguments are evaluated and all
side effects completed prior to entry to the function.

• Each formal argument is initialized with its corresponding actual argument in
the expression list. (A formal argument is an argument that is declared in the
function header and used in the body of a function.) Conversions are done as if
by initialization - both standard and user-defined conversions are performed in
converting an actual argument to the correct type. The initialization performed
is illustrated conceptually by the following code:

void Func(int i); II Function prototype

Func(7); II Execute function call

The conceptual initializations prior to the call are:

int Temp_i = 7;
Func (Temp_i);

Note that the initialization is performed as if using the equal-sign syntax instead of
the parentheses syntax. A copy of i is made prior to passing the value to the function.
(For more information, see "Initializers" in Chapter 7, "Declarators"; "Conversions,"
"Initialization Using Special Member Functions," and "Explicit Initialization," in
Chapter 11, "Special Member Functions.")

Therefore, if the function prototype (declaration) calls for an argument of type long,
and if the calling program supplies an actual argument of type int, the actual argument
is promoted using a standard type conversion to type long (see Chapter 3, "Standard
Conversions").

Chapter 4 Expressions

Language Reference 77

c++ Language Reference

It is an error to supply an actual argument for which there is no standard or user
defined conversion to the type of the formal argument.

For actual arguments of class type, the formal argument is initialized by calling the
class's constructor. (See "Constructors" in Chapter 11, "Special Member Functions,"
for more about these special class member functions.)

• The function call is executed.

The following program fragment demonstrates a function call:

void func(long paraml. double param2);

void maine)
{

int i. j;

II Call func with actual arguments
func(i. j);

and j.

}

II Define func with formal parameters paraml and param2.
void func(long paraml. double param2)
{

}

When func is called from main, the formal parameter pa ramI is initialized with the
value of i (i is converted to type long to correspond to the correct type using a standard
conversion), and the formal parameter pa ram2 is initialized with the value of j (j is
converted to type double using a standard conversion).

Treatment of Argument Types
Formal arguments declared as const types cannot be changed within the body of a function.
Functions can change any argument that is not of type const. However, the change is local
to the function and does not affect the actual argument's value unless the actual argument
was a reference to an object not of type const.

The following functions illustrate some of these concepts:

int funcl(canst int i. int j. char *c)
{

}

7 ;
j i ;

*c = 'a'

return i;

78 Language Reference

+ j;

II Error: i is const.
II OK. but value of j is
II lost at return.
II OK: changes value of c
II in calling function.

double& func2(double& d, const char *c
{

d = 14.387; II OK: changes value of
II in calling function.

*c = 'a' : II Error: c is a pointer
II a const object.

return d;

d

to

Ellipses and Default Arguments
Functions can be declared to accept fewer arguments than specified in the function
definition, using one of two methods: ellipsis (...) or default arguments.

Ellipses denote that arguments may be required but that the number and types are not
specified in the declaration. This is normally poor c++ programming practice because
it defeats one of the benefits of C++: type safety. Different conversions are applied to
functions declared with ellipses than to those functions for which the formal and actual
argument types are known:

• If the actual argument is of type float, it is promoted to type double prior to the
function call.

• Any signed or unsigned char, short, enumerated type, or bit field is converted to
either a signed or an unsigned int using integral promotion.

• Any argument of class type is passed by value as a data structure; the copy is created
by binary copying instead of by invoking the class's copy constructor (if one exists).

Chapter 4 Expressions

Ellipses, if used, must be declared last in the argument list. For more information about
passing a variable number of arguments, see the discussion of va_arg, va_start, and va_list
in the Microsoft Visual C++ 6.0 Run-Time Library Reference volume of the Microsoft
Visual C++ 6.0 Reference Library.

Default arguments enable you to specify the value an argument should assume if none is
supplied in the function call. The following code fragment shows how default arguments
work. For more information about restrictions on specifying default arguments, see
"Default Arguments" in Chapter 7.

#include <iostream.h>

II Declare the function print that prints a string,
II then a terminator.
void print(const char *str.ing,

const char *terminator "\n");

void maine)

Language Reference 79

c++ Language Reference

{

print("hello,");
print("world!");

print("good morning"," ");
print("sunshine.");

II Define print.
void print(char *string, char *terminator)
{

if(string != NULL)
cout « string;

if(terminator != NULL
cout « terminator;

The preceding program declares a function, pri nt, that takes two arguments. However,
the second argument, termi nator, has a default value, "\n". In main, the first two calls
to pri nt allow the default second argument to supply a new line to terminate the printed
string. The third call specifies an explicit value for the second argument. The output from
the program is

hell 0,

world!
good morning, sunshine.

Function-Call Results
A function call evaluates to an r-value unless the function is declared as a reference type.
Functions with reference return type evaluate to I-values, and can be used on the left side
of an assignment statement as follows:

#include <iostream.h>

class Point
{

public:
II Define "accessor" functions as
II reference types.
unsigned& xC) { return _x; }
unsigned& y() { return -y; }

private:
unsigned _x;
unsigned -y;

} ;

80 Language Reference

void maine)
{

Point ThePoint;

ThePoint.x() = 7;
unsigned y = ThePoint.y();

II Use xC) as an l-value.
II Use y() as an r-value.

II Use xC) and y() as r-values.
cout « "x = " « ThePoi nt. x() « "\n"

« "y = " « ThePoi nt.yC) « "\n";

000000

The preceding code defines a class called Poi nt, which contains private data objects
that represent x and y coordinates. These data objects must be modified and their values
retrieved. This program is only one of several designs for such a class; use of the GetX
and SetX or GetY and SetY functions is another possible design.

Functions that return class types, pointers to class types, or references to class types
can be used as the left operand to member-selection operators. Therefore, the following
code is legal:

class A
{

public:
int SetAe int) { return (I
int GetA() {return I; }

private:
int I;

} ;

/I Declare
/I funcl,
II func2,

three functions:
which returns type A
which returns a pOinter

i); }

to type A
II func3, which returns a reference to type
A func1();
A* func2();
A& func3();

int iResult = funcl().GetA();
func2()->SetA(3);
func3().SetA(7);

A

Functions can be called recursively. For more information about function declarations,
see "Function Specifiers" in Chapter 6, "Declarations," and "Member Functions,"
in Chapter 8, "Classes." Related material is in "Program and Linkage" in Chapter 2,
"Basic Concepts."

Chapter 4 Expressions

Language Reference 81

c++ Language Reference

J Member-Selection Operator
A postfix-expression followed by the member-selection operator (.) and a name is another
example of a postfix-expression. The first operand of the member-selection operator must
have class or «lass reference type, and the second operand must identify a member of that
class.

The result of the expression is the value of the member, and it is an I-value if the named
member is an I-value.

A postfix-expression followed by the member-selection operator (-» and a name is a
postfix-expression. The first operand of the member-selection operator must have type
pointer to a class object (an object declared as class, struct, or union type), and the
second operand must identify a member of that class.

The result of the expression is the value of the member, and it is an I-value if the named
member is an I-value. The -> operator dereferences the pointer. Therefore, the expressions
e->member and (*e).member (where e represents an expression) yield identical results
(except when the operators -> or * are overloaded).

When a value is stored through one member of a union but retrieved through another
member, no conversion is performed. The following program stores data into the
object U as int but retrieves the data as two separate bytes of type char:

#include <iostream.h>

void main()
{

}

struct ch
{

char bl;
char b2;

} ;

union u
{

} ;

u U;

struct ch uch;
short i;

U.i = 0x6361; II Bit pattern for Hac"
cout « U.uch.bl « U.uch.b2 « "\n";

82 Language Reference

Postfix Increment and Decrement Operators
c++ provides prefix and postfix increment and decrement operators; this section
describes only the postfix increment and decrement operators. (For more information,
see "Increment and Decrement" in Chapter 12, "Overloading.") The difference between
the two is that in the postfix notation, the operator appears after postfix-expression,
whereas in the prefix notation, the operator appears bef9re expression. The following
example shows a postfix-increment operator:

i++

The effect of applying the postfix increment, or "postincrement," operator (++) is that the
operand's value is increased by one unit of the appropriate type. Similarly, the effect of
applying the postfix decrement, or "postdecrement," operator (--) is that the operand's
value is decreased by one unit of the appropriate type.

For example, applying the postincrement operator to a pointer to an array of objects of
type long actually adds four to the internal representation of the pointer. This behavior
causes the pointer, which previously referred to the nth element of the array, to refer to
the (n+l)th element.

The operands to postincrement and postdecrement operators must be modifiable
(not const) I-values of arithmetic or pointer type. The result of the postincrement or
postdecrement expression is the value of the postfix-expression prior to application
of the increment operator. The type of the result is the same as that of the
postfix-expression, but it is no longer an I-value.

The following code illustrates the postfix increment operator.

i f (va r++ > 0)
*p++ = *q++;

In this example, the variable va r is compared to 0, then incremented. If va r was positive
before being incremented, the next statement is executed. First, the value of the object
pointed to by q is assigned to the object pointed to by p. Then, q and p are incremented.

Postincrement and postdecrement, when used on enumerated types, yield integral values.
Therefore, the following code is illegal:

enum Days {

} ;

Sunday = I,
Monday,
Tuesday,
Wednesday,
Thursday,
Fri day,
Saturday

Chapter 4 Expressions

Language Reference 83

c++ Language Reference

vo; d rna in ()
{

}

Days Today = Tuesday;
Days SaveToday;

SaveToday = Today++; II error

The intent of this code is to save today's day and then move to tomorrow. However, the
result is that the expression Today++ yields an iot-an error when assigned to an object of
the enumerated type Days.

Expressions with Unary Operators
Unary operators act on only one operand in an expression. The unary operators are:

• Indirection operator (*)

• Address-of operator (&)

• Unary plus operator (+)

• Unary negation operator (-)

• Logical NOT operator (!)

• One's complement operator (-)

• Prefix increment operator (++)

• Prefix decrement operator (--)

• sizeof operator

• new operator

• delete operator

These operators have right-to-Ieft associativity.

Syntax

unary-expression :
postfix-expression
++unary-expression
--unary-expression
unary-operator cast-expression
sizeof . unary-expression
sizeof (type-name)
allocation-expression
deallocation-expression

unary-operator: one of
*&+-!-

84 Language Reference

Indirection Operator (*)
The unary indirection operator (*) "dereferences" a pointer; that is, it converts a pointer
value to an I-value. The operand of the indirection operator must be a pointer to a type.
The result of the indirection expression is the type from which the pointer type is derived.
The use of the * operator in this context is different from its meaning as a binary operator,
which is multiplication.

If the operand points to a function, the result is a function designator. If it points to a
storage location, the result is an I-value designating the storage location.

If the pointer value is invalid, the result is undefined. The following list includes some
of the most common conditions that invalidate a pointer value.

• The pointer is a null pointer.

• The pointer specifies the address of a local item that is not visible at the time of
the reference.

• The pointer specifies an address that is inappropriately aligned for the type of the
object pointed to.

• The pointer specifies an address not used by the executing program.

Address-Of Operator (&)
The unary address-of operator (&) takes the address of its operand. The address-of
operator can be applied only to the following:

• Functions (although its use for taking the address of a function is unnecessary)

• L-values

• Qualified names

Chapter 4 Expressions

In the first two cases listed above, the result of the expression is a pointer type (an r-value)
derived from the type of the operand. For example, if the operand is of type char, the result
of the expression is of type pointer to char. The address-of operator, applied to const or
volatile objects, evaluates to const type * or volatile type *, where type is the type of the
original object.

The result produced by the third case, applying the address-of operator to a qualified-name,
depends on whether the qualified-name specifies a static member. If so, the result is a
pointer to the type specified in the declaration of the member. If the member is not static,
the result is a pointer to the member name of the class indicated by qualified-class-name.
(See "Primary Expressions," earlier in this chapter, for more about qualified-class-name.)
The following code fragment shows how the result differs, depending on whether the
member is static:

Language Reference 85

c++ Language Reference

class PTM
{

public:
int iValue;

static float fValue;
} ;

int PTM::*piValue
float PTM::*pfValue
float *spfValue

&PTM: :iValue;
&PTM::fValue;
&PTM::fValue;

II OK: non-static
II Error: static
II OK

In this example, the expression&PTM: : fVa 1 ue yields type fl oat * instead of type float
P TM: : * because f Val u e is a static member.

The address of an overloaded function can be taken only when it is clear which version
of the function is being referenced. See "Address of Overloaded Functions" in Chapter 12,
"Overloading," for information about how to obtain the address of a particular overloaded
function. .

Applying the address-of operator to a reference type gives the same result as applying
the operator to the object to which the reference is bound. The following program
demonstrates this concept:

#include <iostream.h>

void main()
{

double d; II Define an object of type double.
double& rd = d; II Define a reference to the object.

II Compare the address of the object to the address
II of the reference to the object.
if(&d == &rd)

cout « "&d equals &rd" « "\n";
else

cout « "&d is not equal to &rd" « "\n";
}

The output from the program is always &d equa 1 s &rd.

Unary Plus Operator (+)
The result of the unary plus operator (+) is the value of its operand. The operand to
the unary plus operator must be of an arithmetic type.

Integral promotion is performed on integral operands. The resultant type is the type
to which the operand is promoted. Thus, the expression +ch, where ch is of type char,
results in type int; the value is unmodified. See "Integral Promotions" in Chapter 3,
"Standard Conversions," for more information about how the promotion is done.

86 Language Reference

Unary Negation Operator (-)
The unary negation operator (-) produces the negative of its operand. The operand to
the unary negation operator must be an arithmetic type.

Integral promotion is performed on integral operands, and the resultant type is the type
to which the operand is promoted. See "Integral Promotions" in Chapter 3, "Standard
Conversions," for more information on how the promotion is done.

Microsoft Specific ~

Chapter 4 Expressions

Unary negation of unsigned quantities is performed by subtracting the value of the operand
from 2n

, where n is the number of bits in an object of the given unsigned type. (Microsoft
C++ runs on processors that utilize two' s-complement arithmetic. On other processors, the
algorithm for negation can differ.)

END Microsoft Specific

Logical NOT Operator (!)
The result of the logical NOT operator (!) is 0 if its operand evaluates to a nonzero value;
the result is 1 only if the operand is equal to O. The operand must be of arithmetic or
pointer type. The result is of type int.

For an expression e, the unary expression !e is equivalent to the expression
(e == 0), except where overloaded operators are involved.

The following example illustrates the logical NOT operator (!):

if(! (x < y))

If x is greater than or equal to y, the result of the expression is 1 (true). If x is less than y,

the result is 0 (false).

Unary arithmetic operations on pointers are illegal.

One's Complement Operator (~)
The one's complement operator (-), sometimes called the "bitwise complement" operator,
yields a bitwise one's complement of its operand. That is, every bit that is set in the
operand is 0 in the result. Conversely, every bit that is 0 in the operand is set in the result.
The operand to the one's complement operator must be an integral type.

unsigned short y = 0xAAAA;
y = ~y;

Language Reference 87

c++ Language Reference

In this example, the new value assigned to y is the one's complement of the unsigned
value OxAAAA, or Ox5555.

Integral promotion is performed on integral operands, and the resultant type is the
type to which the operand is promoted. See "Integral Promotions" in Chapter 3,
"Standard Conversions," for more information on how the promotion is done.

Increment and Decrement Operators (++, --)
The prefix increment operator (++), also called the "preincrement" operator, adds
one to its operand; this incremented value is the result of the expression. The
operand must be an I-value not of type const. The result is an I-value of the same
type as the operand.

The prefix decrement operator (- -), also called the "predecrement" operator, is
analogous to the preincrement operator, except that the operand is decremented by
one and the result is this decremented value.

Both the prefix and postfix increment and decrement operators affect their
operands. The key difference between them is when the increment or decrement
takes place in the evaluation of an expression. (For more information, see
"Postfix Increment and Decrement Operators" earlier in this chapter.) In the prefix
form, the increment or decrement takes place before the value is used in expression
evaluation, so the value of the expression is different from the value of the operand.
In the postfix form, the increment or decrement takes place after the value is used
in expression evaluation, so the value of the expression is the same as the value of
the operand.

An operand of integral or floating type is incremented or decremented by the integer
value 1. The type of the result is the same as the operand type. An operand of pointer
type is incremented or decremented by the size of the object it addresses. An
incremented pointer points to the next object; a decremented pointer points to the
previous object.

This example illustrates the unary decrement operator:

if(line[--iJ !- '\n')
return;

In this example, the variable i is decremented before it is used as a subscript to 1 i ne.

88 Language Reference

Because increment and decrement operators have side effects, using expressions with
increment or decrement operators in a macro can have undesirable results (see "Macros"
in the Preprocessor Reference, later in this volume, for more information about macros).
Consider this example:

#define max(a,b) «a)«b»?(b):(a)

i nt i, j, k;

k = max(++i, j);

The macro expands to:

k = « ++i) < (j))? (j) : (++i) ;

If i is greater than or equal to j, it will be incremented twice.

Note C++ inline functions are preferable to macros in many cases because they
eliminate side effects such as those described here, and allow the language to
perform more complete type checking.

sizeof Operator
The sizeof operator yields the size of its operand with respect to the size of type char.
The result of the sizeof operator is of type size_t, an integral type defined in the include
file STDDEF.H. The operand to sizeof can be one of the following:

• A type name. To use sizeofwith a type name, the name must be enclosed in
parentheses.

• An expression. When used with an expression, sizeof can be specified with or
without the parentheses. The expression is not evaluated.

When the sizeof operator is applied to an object of type char, it yields 1. When the
sizeof operator is applied to an array, it yields the total number of bytes in that array.
For example:

#include <iostream.h>

void maine)
{

}

char szHello[] = "Hello, world!";

cout« "The size of the type of " « szHello « " is:
« sizeof(char) « "\n";

cout « "The 1 ength of " « szHello « " is: "
« sizeof szHello « "\n";

Chapter 4 Expressions

Language Reference 89

c++ Language Reference

The program output is:

The size of the type of Hello, world! is: 1
The length of Hello, wor.ld! is: 14

When the sizeof operator is applied to a class, struct, or union type, the result is the
number of bytes in an object of that class, struct, or union type, plus any padding added
to align members on word boundaries. (The /Zp [pack structure members] compiler option
and the pack pragma affect alignment boundaries for members.) The sizeof operator never
yields 0, even for an empty class.

The sizeof operator cannot be used with the following operands:

• Functions. (However, sizeof can be applied to pointers to functions.)

• Bit fields.

• Undefined classes.

• The type void.

• Incomplete types.

• Parenthesized names of incomplete types.

When the sizeof operator is applied to a reference, the result is the same as if sizeof had
been applied to the object itself.

The sizeof operator is often used to calculate the number of elements in an array using an
expression of the form:

sizeof array / sizeof array[0]

new Operator
The new operator attempts to dynamically allocate (at run time) one or more objects of
type-name. The new operator cannot be used to allocate a function; however, it can be
used to allocate a pointer to a function.

Syntax

allocation-expression :
::opt new placementopt new-type-name new-initializeropt
::opt new placementopt (type-name) new-initializeropt

placement:
(expression-list)

new-type-name :
type-speciJier-list new-declarator opt

90 Language Reference

The new operator is used to allocate objects and arrays of objects. The new operator
allocates from a program memory area called the "free store." In C, the free store is often
referred to as the "heap."

When new is used to allocate a single object, it yields a pointer to that object; the
resultant type is new-type-name * or type-name *. When new is used to allocate a singly
dimensioned array of objects, it yields a pointer to the first element of the array, and
the resultant type is new-type-name * or type-name *. When new is used to allocate

Chapter 4 Expressions

a multidimensional array of objects, it yields a pointer to the first element of the array, and
the resultant type preserves the size of all but the leftmost array dimension. For example:

new float[10][25][10]

yields type flo a t (*) [25] [10]. Therefore, the following code will not work because it
attempts to assign a pointer to an array of float with the dimensions [25] [10] to a pointer
to type fl oat:

float *fp;
fp = new float[10][25][10];

The correct expression is:

float (*cp)[25][10];
cp = new float[10][25][10];

The definition of c p allocates a pointer to an array of type flo a t with dimensions
[25] [10] - it does not allocate an array of pointers.

All but the leftmost array dimensions must be constant expressions that evaluate to
positive values; the leftmost array dimension can be any expression that evaluates to
a positive value. When allocating an array using the new operator, the first dimension
can be zero-the new operator returns a unique pointer.

The type-specijier-list cannot contain const, volatile, class declarations, or enumeration
declarations. Therefore, the following expression is illegal:

volatile char *vch = new volatile char[20];

The new operator does not allocate reference types because they are not objects.

If there is insufficient memory for the allocation request, by default operator new returns
NULL. You can change this default behavior by writing a custom exception-handling
routine and calling the _set_new _handler run-time library function with your function
name as its argument. For more details on this recovery scheme, see "The operator new
Function" in Chapter 11, "Special Member Functions."

Language Reference 91

c++ Language Reference

Lifetime of Objects Allocated with new
Objects allocated with the new operator are not destroyed when the scope in which they
are defined is exited. Because the new operator returns a pointer to the objects it allocates,
the program must define a pointer with suitable scope to access those objects. For example:

void main()
{

}

II Use new operator to allocate an array of 20 characters.
char *AnArray = new char[20];

for(int i = 0; i < 20; ++i)
{

}

liOn the first iteration of the loop, allocate
II another array of 20 characters.
if(i == 0)
{

char *AnotherArray new char[20];
}

delete AnotherArray; II Error: pointer out of scope.
delete AnArray; II OK: pointer still in scope.

Once the pointer AnotherArray goes out of scope in the example, the object can no longer
be deleted.

Initializing Objects Allocated with new
An optional new-initializer field is included in the syntax for the new operator. This allows
new objects to be initialized with user-defined constructors. For more information about
how initialization is done, see "Initializers" in Chapter 7, "Declarators."

The following example illustrates how to use an initialization expression with the new
operator:

#include <iostream.h>

class Acct
{

public:
II Define default constructor and a constructor that accepts
II an initial balance.
Acct() { balance = 0.0; }
Acct(double init_balance) {balance init_balance;}

private:
double balance;

} ;

92 Language Reference

void main()
{

Acct *CheckingAcct = new Acct;
Acct *SavingsAcct = new Acct (34.98);
double *HowMuch = new double (43.0);

In this example, the object Checki ngAcct is allocated using the new operator, but
no default initialization is specified. Therefore, the default constructor for the class,
Acct(), is called. Then the object Savi ngsAcct is allocated the same way, except that
it is explicitly initialized to 34.98. Because 34.98 is of type double, the constructor
that takes an argument of that type is called to handle the initialization. Finally, the
nonclass type HowMuch is initialized to 43.0.

If an object is of a class type and that class has constructors (as in the preceding example),
the object can be initialized by the new operator only if one of these conditions is met:

• The arguments provided in the initializer agree with those of a constructor.

Chapter 4 Expressions

• The class has a default constructor (a constructor that can be called with no arguments).

Access control and ambiguity control are performed on operator new and on the
constructors according to the rules set forth in "Ambiguity" in Chapter 9, "Derived
Classes," and "Initialization Using Special Member Functions" in Chapter 11,
"Special Member Functions."

No explicit per-element initialization can be done when allocating arrays using the new
operator; only the default constructor, if present, is called. See "Default Arguments" in
Chapter 7, "Declarators," for more information.

If the memory allocation fails (operator new returns a value of 0), no initialization
is performed. This protects against attempts to initialize data that does not exist.

As with function calls, the order in which initialized expressions are evaluated is not
defined. Furthermore, you should not rely on these expressions being completely
evaluated before the memory allocation is performed. If the memory allocation fails
and the new operator returns zero, some expressions in the initializer may not be
completely evaluated.

Language Reference 93

c++ Language Reference

How new Works
The allocation-expression - the expression containing the new operator - does three
things:

• Locates and reserves storage for the object or objects to be allocated. When this stage
is complete, the correct amount of storage is allocated, but it is not yet an object.

• Initializes the object(s). Once initialization is complete, enough information is present
for the allocated storage to be an object.

• Returns a pointer to the object(s) of a pointer type derived from new-type-name or
type-name. The program uses this pointer to access the newly allocated object.

The new operator invokes the function operator new. For arrays of any type, and for
objects that are not of class, struct, or union types, a global function, : :operator new,
is called to allocate storage. Class-type objects can define their own operator new static
member function on a per-class basis.

When the compiler encounters the new operator to allocate an object of type type, it
issues a call to type::operator new(sizeof(type)) or, if no user-defined operator new
is defined, ::operator new(sizeof(type)). Therefore, the new operator can allocate the
correct amount of memory for the object.

Note The argument to operator new is of type size_t. This type is defined in
DIRECT.H, MALLOC.H, MEMORY.H, SEARCH.H, STDDEF.H, STDIO.H,
STDLIB.H, STRING.H, and TIME.H.

An option in the syntax allows specification of placement (see Syntax for new Operator).
The placement parameters can be used only for user-defined. implementations of operator
new; it allows extra information to be passed to operator new. An expression with a
placement field such as

T *TObject = new (0x0040) T;

is translated to

T *TObject = T::operator new(sizeof(T), 0x0040);

The original intention of the placement field was to allow hardware-dependent objects to
be allocated at user-specified addresses.

Note Although the preceding example shows only one argument in the placement
field, there is no restriction on how many extra arguments can be passed to operator
new this way.

94 Language Reference

Even when operator new has been defined for a class type, the global operatcir can be
used by using the form of this example:

T *TObject =::new TObject;

The scope-resolution operator (::) forces use of the global new operator.

delete Operator
The delete operator deallocates an object created with the new operator. The delete
operator has a result of type void and therefore does not return a value. The operand to
delete must be a pointer returned by the new operator.

U sing delete on a pointer to an object not allocated with new gives unpredictable results.
You can, however, use delete on a pointer with the value O. This provision means that,
because new always returns 0 on failure, deleting the result of a failed new operation is
harmless.

Syntax

deallocation-expression :
::opt delete cast-expression
::opt delete [] cast-expression

Chapter 4 Expressions

Using the delete operator on an object deallocates its memory. A program that dereferences
a pointer after the object is deleted can have unpredictable results or crash.

If the operand to the delete operator is a modifiable I-value, its value is undefined after the
object is deleted.

Pointers to const objects cannot be deallocated with the delete operator.

How delete Works
The delete operator invokes the function operator delete. For objects of class types
(class, struct, and union), the delete operator invokes the destructor for an object prior
to deallocating memory (if the pointer is not nUll). For objects not of class type, the
global delete operator is invoked. For objects of class type, the delete operator can be
defined on a per-class basis; if there is no such definition for a given class, the global
operator is invoked. .

Language Reference 95

c++ Language Reference

Using delete
There are two syntactic variants for the delete operator: one for single objects and the
other for arrays of objects. The following code fragment shows how these differ:

void main()
{

}

II Allocate a user-defined object. UDObject. and an object
II of type double on the free store using the
II new operator.
UDType *UDObject = new UDType;
double *dObject = new double;

II Delete the two objects.
delete UDObject;
delete dObject;

II Allocate an array of user-defined objects on the
II free store using the new operator.
UDType (*UDArr)[7] = new UDType[5][7];

II Use the array syntax to delete the array of objects.
delete [] UDArr;

These two cases produce undefined results: using the array form of delete (delete []) on an
object and using the non array form of delete on an array.

Expressions with Binary Operators
Binary operators act on two operands in an expression. The binary operators are:

• Multiplicative operators

• Multiplication (*)

• Division (/)

• Modulus (%)

• Additive operators

• Addition (+)

• Subtraction (-)

• Shift operators

• Right shift (> >)

• Left shift « <)

96 Language Reference

• Relational and equality operators

• Less than «)

• Greater than (»

• Less than or equal to «=)

• Greater than or equal to (>=)

• Equal to (==)

• Not equal to (!=)

• Bitwise operators

• Bitwise AND (&)

• Bitwise exclusive OR (")

• Bitwise inclusive OR (I)

• Logical AND (&&)

• Logical OR (II)

Multiplicative Operators
The mUltiplicative operators are:

• Multiplication (*)

• Divisio~ (I)

• Modulus or "remainder from division" (%)

These binary operators have left-to-right associativity.

Syntax

multiplicative-expression ,:
pm-expression
multiplicative-expression * pm-expression
multiplicative-expression / pm-expression
mUltiplicative-expression % pm-expression

Chapter 4 Expressions

The multiplicative operators take operands of arithmetic types. The modulus operator (%)
has a stricter requirement in that its operands must be of integral type. (To get the
remainder of a floating-point division, use the run-time function, fmod.) The conversions
covered in "Arithmetic Conversions" in Chapter 3, "Standard Conversions," are applied to
the operands, and the result is of the converted type.

The multiplication operator yields the result of multiplying the first operand by the second.

The division operator yields the result of dividing the first operand by the second.

Language Reference 97

c++ Language Reference

The modulus operator yields the remainder given by the following expression, where el is
the first operand and e2 is the second: el - (el / e2) * e2, where both operands are of
integral types.

Division by 0 in either a division or a modulus expression is undefined and causes a run
time error. Therefore, the following expressions generate undefined, erroneous results:

% 0
f / 0.0

If both operands to a multiplication, division, or modulus expression have the same sign,
the result is positive. Otherwise, the result is negative. The result of a modulus operation's
sign is implementation-defined.

Microsoft Specific ~

In Microsoft C++, the result of a modulus expression is always the same as the sign of the
first operand.

END Microsoft Specific

If the computed division of two integers is inexact and only one operand is negative, the
result is the largest integer (in magnitude, disregarding the sign) that is less than the exact
value the division operation would yield. For example, the computed value of -11 / 3 is
-3.666666666. The result of that integral division is -3.

The relationship between the multiplicative operators is given by the identity
(el / e2) * e2 + el % e2 == el.

Additive Operators
The additive operators are:

• Addition (+)

• Subtraction (-)

These binary operators have left-to-right associativity.

Syntax

additive-expression :
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

98 Language Reference

The additive operators take operands of arithmetic or pointer types. The result of the
addition (+) operator is the sum of the operands. The result of the subtraction (-) operator
is the difference between the operands. If one or both of the operands are pointers, they
must be pointers to objects, not to functions.

Additive operators take operands of arithmetic, integral, and scalar types. These are
defined in Table 4.2.

Table 4.2 Types Used with Additive Operators

Type Meaning

arithmetic Integral and floating types are collectively called "arithmetic" types.

Chapter 4 Expressions

integral

scalar

Types char and int of all sizes (long, short) and enumerations are "integral" types.

Scalar operands are operands of either arithmetic or pointer type.

The legal combinations for these operators are:

arithmetic + arithmetic
scalar + integral
integral + scalar
arithmetic - arithmetic
scalar - scalar

Note that addition and subtraction are not equivalent operations.

If both operands are of arithmetic type, the conversions covered in "Arithmetic
Conversions" in Chapter 3, "Standard Conversions," are applied to the operands, and
the result is of the converted type.

Addition of Pointer Types
If one of the operands in an addition operation is a pointer to an array of objects, the other
must be of integral type. The result is a pointer that is of the same type as the original
pointer and that points to another array element. The following code fragment illustrates
this concept:

short IntArray[10]; II Objects of type short occupy 2 bytes
short *plntArray = IntArray;

for (in t i = 0; i < 10; ++i)
{

*plntArray = ;;

cout « *pIntArray « "\n";
plntArray = plntArray + 1;

Language Reference 99

c++ Language Reference

Although the integral value 1 is added to pIn tA r ray, it does not mean "add 1 to the
address"; rather it means "adjust the pointer to point to the next object in the array"
that happens to be 2 bytes (or s i zeaf (i nt)) away.

Note Code of the form plntArray = plntArray + 1 is rarely found in C++
programs; to perform an increment, these forms are preferable: plntArray++ or
plntArray += 1.

Subtraction of Pointer Types
If both operands are pointers, the result of subtraction is the difference (in array elements)
between the operands. The subtraction expression yields a signed integral result of type
ptrdiff_t (defined in the standard include file STDDEF.H).

One of the operands can be of integral type, as long as it is the second operand. The result
of the subtraction is of the same type as the original pointer. The value of the subtraction is
a pointer to the (n - i)th array element, where n is the element pointed to by the original
pointer and i is the integral value of the second operand.

Shift Operators
The bitwise shift operators are:

• Right shift (»)

• Left shift (< <)

These binary operators have left-to-right associativity.

Syntax

shift-expression:
additive-expression
shift-expression « additive-expression
shift-expression » additive-expression

Both operands of the shift operators must be of integral types. Integral promotions
are performed according to the rules described in "Integral Promotions" in Chapter 3,
"Standard Conversions." The type of the result is the same as the type of the left operand.
The value of a right-shift expression el »e2 is el / 2e2

, and the value of a left-shift
expression el «e2 is el * 2e2

.

The results are undefined if the right operand of a shift expression is negative or if the right
operand is greater than or equal to the number of bits in the (promoted) left operand.

100 Language Reference

The left-shift operator causes the bit pattern in the first operand to be shifted left the
number of bits specified by the second operand. Bits vacated by the shift operation are
zero-filled. This is a logical shift, as opposed to a shift-and-rotate operation.

Chapter 4 Expressions

The right-shift operator causes the bit pattern in the first operand to be shifted right the
number of bits specified by the second operand. Bits vacated by the shift operation are
zero-filled for unsigned quantities. For signed quantities, the sign bit is propagated into the
vacated bit positions. The shift is a logical shift if the left operand is an unsigned quantity;
otherwise, it is an arithmetic shift.

Microsoft Specific ~

The result of a right shift of a signed negative quantity is implementation dependent.
Although Microsoft C++ propagates the most-significant bit to fill vacated bit positions,
there is no guarantee that other implementations will do likewise.

END Microsoft Specific

Relational and Equality Op.erators
The relational and equality operators determine equality, inequality, or relative values of
their operands. The relational operators are shown in Table 4.3.

Table 4.3 Relational and Equality Operators

Operator Meaning

-- Equal to

!= Not equal to

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

Relational Operators
The binary relational operators determine the following relationships:

• Less than

• Greater than

• Less than or equal to

• Greater than or equal to

Language Reference 101

c++ Language Reference

Syntax

relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression> shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

The relational operators haveleft-to-right associativity. Both operands of relational
operators must be of arithmetic or pointer type. They yield values of type into The
value returned is 0 if the relationship in the expression is false; otherwise, it is 1.
Consider the following code, which demonstrates several relational expressions:

#include <iostream.h>

void maine)
{

cout «
«

cout «
«

"The true expression 3 >
(3 > 2) « "\n";
"The false expression 20
(20 < 10) « "\n";

2 yields: "

< 10 yields:

cout « "The expression 10 < 20 < 5 yields: "
« (10 < 20 < 5) « "\n";

}

The output from this program is:

The true expression 3 > 2 yields
The false expression 20 < 10 yields 0
The expression 10 < 20 < 5 yields 1

"

The expressions in the preceding example must be enclosed in parentheses because the
insertion operator «<) has higher precedence than the relational operators. Therefore,
the first expression without the parentheses would be evaluated as:

(cout « "The true expression 3 > 2 yields: " « 3) < (2 « "\n");

Note that the third expression evaluates to I-because of the left-to-right associativity
of relational operators, the explicit grouping of the expression 10 < 20 < 5 is:

(10 < 20) < 5

Therefore, the test performed is:

1 < 5

and the result is 1 (or true).

The usual arithmetic conversions covered in "Arithmetic Conversions" in Chapter 3,
"Standard Conversions," are applied to operands of arithmetic types.

102 Language Reference

Comparing Pointers Using Relational Operators
When two pointers to objects of the same type are compared, the result is determined by
the location of the objects pointed to in the program's address space. Pointers can also be
compared to a constant expression that evaluates to ° or to a pointer of type void *. If a
pointer comparison is made against a pointer of type void *, the other pointer is implicitly
converted to type void *. Then the comparison is made.

Two pointers of different types cannot be compared unless:

• One type is a class type derived from the other type.

• At least one of the pointers is explicitly converted (cast) to type void *. (The other
pointer is implicitly converted to type void * for the conversion.)

Two pointers of the same type that point to the same object are guaranteed to compare
equal. If two pointers to nonstatic members of an object are compared, the following
rules apply:

• If the class type is not a union, and if the two members are not separated by an access
specifier, such as public, protected, or private, the pointer to the member declared last
will compare greater than the pointer to the member declared earlier. (For information
on access-specifier, see the Syntax section in "Access Specifiers" in Chapter 10,
"Member-Access ControL")

• If the two members are separated by an access-specifier, the results are undefined.

• If the class type is a union, pointers to different data members in that union compare
equal.

Chapter 4 Expressions

If two pointers point to elements of the same array or to the element one beyond the end of
the array, the pointer to the object with the higher subscript compares higher. Comparison
of pointers is guaranteed valid only when the pointers refer to objects in the same array or
to the location one past the end of the array.

Equality Operators
The binary equality operators compare their operands for strict equality or inequality.

Syntax

equality-expression :
relational-expression
equality-expression == relational-expression
equality-expression != relational-expression

The equality operators, equal to (==) and not equal to (!=), have lower precedence than
the relational operators, but they behave similarly.

Language Reference 103

c++ Language Reference

The equal-to operator (==) returns true if both operands have the same value; otherwise,
it returns false. The not-equal-to operator (!=) returns true if the operands do not have
the same value; otherwise, it returns false.

Equality operators can compare pointers to members of the same type. In such a
comparison, pointer-to-member conversions, as discussed in "Pointer-to-Member
Conversions" in Chapter 3, "Standard Conversions," are performed. Pointers to
members can also be compared to a constant expression that evaluates to O.

Bitwise Operators
The bitwise operators are:

• Bitwise AND (&)

• Bitwise exclusive OR (A)

• . Bitwise inclusive OR (I)

These operators return bitwise combinations of their operands.

Bitwise AND Operator
The bitwise AND operator (&) returns the bitwise AND of the two operands. All bits that
are on (1) in both the left and right operand are on in the result; bits that are off (0) in either
the left or the right operand are off in the result.

Syntax

and-expression :
relational-expression
and-expression & equality-expression

Both operands to the bitwise AND operator must be of integral types. The usual arithmetic
conversions covered in "Arithmetic Conversions" in Chapter 3, "Standard Conversions,"
are applied to the operands.

Bitwise Exclusive OR Operator
The bitwise exclusive OR operator (A) returns the bitwise exclusive OR of the two
operands. All bits that are on (1) in either the left or right operand, but not both, are on
in the result. Bits that are the same (either on or off) in both operands are off in the result.

104 Language Reference

Syntax

exclusive-or-expression :
and-expression
exclusive-or-expression A and-expression

Both operands to the bitwise exclusive OR operator must be of integral types. The usual
arithmetic conversions covered in "Arithmetic Conversions" in Chapter 3, "Standard
Conversions," are applied to the operands.

Bitwise Inclusive OR Operator

Chapter 4 Expressions

The bitwise inclusive OR operator (I) returns the bitwise inclusive OR of the two operands.
All bits that are on (1) in either the left or right operand are on in the result. Bits that are
off (0) in both operands are off in the result.

Syntax

inclusive-or-expression :
exclusive-or-expression
inclusive-or-expression 1 exclusive-or-expression

Both operands to the bitwise inclusive OR operator must be of integral types. The usual
arithmetic conversions covered in "Arithmetic Conversions" in Chapter 3, "Standard
Conversions," are applied to the operands.

Logical Operators
The logical operators, logical AND (&&) and logical OR (II), are used to combine multiple
conditions formed using relational or equality expressions.

Logical AND Operator
The logical AND operator (&&) returns the integral value 1 if both operands are nonzero;
otherwise, it returns O. Logical AND has left-to-right associativity.

Syntax

logical-and-expression :
inclusive-or-expression
logical-and-expression && inclusive-or-expression

The operands to the logical AND operator need not be of the same type, but they must be
of integral or pointer type. The operands are commonly relational or equality expressions.

The first operand is completely evaluated and all side effects are completed before
continuing evaluation of the logical AND expression.

Language Reference 105

c++ Language Reference

The second operand is evaluated only if the first operand evaluates to true (nonzero).
This evaluation eliminates needless evaluation of the second operand when the logical
AND expression is false. You can use this short-circuit evaluation to prevent null-pointer
dereferencing, as shown in the following example:

char *pch = 0;

(pch) && (*pch = 'a');

If pch is null (0), the right side of the expression is never evaluated. Therefore, the
assignment through a null pointer is impossible.

Logical OR Operator
The logical OR operator (II) returns the integral value 1 if either operand is nonzero~
otherwise, it returns O. Logical OR has left-to-right associativity.

Syntax

logical-or-expression:
10 gical-and-expression
logical-or-expression IIlogical-and-expression

The operands to the logical OR operator need not be of the same type, but they must be
of integral or pointer type. The operands are commonly relational or equality expressions.

The first operand is completely evaluated and all side effects are completed before
continuing evaluation of the logical OR expression.

The second operand is evaluated only if the first operand evaluates to false (0). This
eliminates needless evaluation of the second operand when the logical OR expression
is true.

printf("%d" • (x == w II x == y II x == z));

In this example, if x is equal to either w, y, or z, the second argument to the p r i n t f
function evaluates to true and the value 1 is printed. Otherwise, it evaluates to false and the
value 0 is printed. As soon as one of the conditions evaluates to true, evaluation ceases.

Assignment Operators
Assignment operators store a value in the object designated by the left operand. There are
two kinds of assignment operations: "simple assignment," in which the value of the second
operand is stored in the object specified by the first operand, and "compound assignment,"
in which an arithmetic, shift, or bitwise operation is performed prior to storing the result.
All assignment operators in Table 4.4 except the = operator are compound assignment
operators.

106 Language Reference

Chapter 4 Expressions

Table 4.4 Assignment Operators

Operator

*=

1=

%=

+=

«=

»=

&=

1=

Syntax

Meaning

Store the value of the second operand in the object specified by the first operand
("simple assignment").

Multiply the value of the first operand by the value of the second operand;
store the result in the object specified by the first operand.

Divide the value of the first operand by the value of the second operand;
store the result in the object specified by the first operand.

Take modulus of the first operand specified by the value of the second operand;
store the result in the object specified by the first operand.

Add the value of the second operand to the value of the first operand;
store the result in the object specified by the first operand.

Subtract the value of the second operand from the value of the first operand;
store the result in the object specified by the first operand.

Shift the value of the first operand left the number of bits specified by the value
of the second operand; store the result in the object specified by the first operand.

Shift the value of the first operand right the number of bits specified by the value
of the second operand; store the result in the object specified by the first operand.

Obtain the bitwise AND of the first and second operands;
store the result in the object specified by the first operand.

Obtain the bitwise exclusive OR of the first and second operands;
store the result in the object specified by the first operand.

Obtain the bitwise inclusive OR of the first and second operands;
store the result in the object specified by the first operand.

assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression

assignment-operator: one of
= *= 1= %= += -= «= »= &= A= 1=

Language Reference 107

c++ Language Reference

Result of Assignment Operators
The assignment operators return the value of the object specified by the left operand
after the assignment. The resultant type is the type of the left operand. The result of
an assignment expression is always an I-value. These operators have right-to-Ieft
associativity. The left operand must be a modifiable I-value.

Note In ANSI C, the result of an assignment expression is not an I-value. Therefore,
the legal C++ expression (a += b) += c is illegal in C.

Simple Assignment
The simple assignment operator (=) causes the value of the second operand to be stored in
the object specified by the first operand. If both objects are of arithmetic types, the right
operand is converted to the type of the left, prior to storing the value.

Objects of const and volatile types can be assigned to I-values of types that are just volatile
or that are neither const nor volatile.

Assignment to objects of class type (struct, union, and class types) is performed by a
function named operator=. The default behavior of this operator function is to perform
a bitwise copy; however, this behavior can be modified using overloaded operators.
(See "Overloaded Operators" in Chapter 12, "Overloading," for more information.)

An object of any unambiguously derived class from a given base class can be assigned to
an object of the base class. The reverse is not true because there is an implicit conversion
from derived class to base class but not from base class to derived class. For example:

#include <iostream.h>

class ABase
{

public:
ABase() { cout « "constructing ABase\n"; }

}; -+

class ADerived public ABase
{

public:
ADerived() { cout « "constructing ADerived\n"; }

} ;

void main()
{

}

ABase aBase;
ADerived aDerived;

aBase = aDerived; II OK
aDerived = aBase; II Error

108 Language Reference

Assignments to reference types behave as if the assignment were being made to the object
to which the reference points.

For class-type objects, assignment is different from initialization. To illustrate how
different assignment and initialization can be, consider the code

UserTypel A:
UserType2 B = A:

The preceding code shows an initializer; it calls the constructor for UserTypel that takes
an argument of type UserTypel. Given the code

UserTypel A;
UserType2 B:

B = A:

the assignment statement

B = A:

can have one of the following effects:

• Call the function operator= for UserType2, provided operator= is provided with a
UserTypel argument.

• Call the explicit conversion function UserTypel: : operator UserType2, if such
a function exists.

• Call a constructor UserType2: : UserType2, provided such a constructor exists,
that takes a UserTypel argument and copies the result.

Compound Assignment
The compound assignment operators, shown in Table 4.4, are specified in the form
el op= e2, where el is a modifiable I-value not of const type and e2 is one of the
following:

• An arithmetic type

• A pointer, if op is + or-

The el op= e2 form behaves as el = el op e2, but el is evaluated only once.

Compound assignment to an enumerated type generates an error message. If the left
operand is of a pointer type, the right operand must be of a pointer type or it must be
a constant expression that evaluates to O. If the left operand is of an integral type, the
right operand must not be of a pointer type.

Chapter 4 Expressions

Language Reference 109

c++ Language Reference

Comma Operator
The comma operator allows grouping two statements where one is expected.

Syntax

expression:
assignment-expression
expression, assignment-expression

The comma operator has left-to-right associativity. Two expressions separated by a comma
are evaluated left to right. The left operand is always evaluated, and all side effects are
completed before the right operand is evaluated.

Consider the expression

el ,e2

The type and value of the expression are the type and value of e2; the result of evaluating
el is discarded. The result is an I-value if the right operand is an I-value.

Where the comma has special meaning (for example in actual arguments to functions
or aggregate initializers), the comma operator and its operands must be enclosed in
parentheses. Therefore, the following function calls are not equivalent:

II Declare functions:
void Func(into int);
void Func(int);

Func(arg1. arg2);
Func((arg1, arg2));

II Call Func(int, int
II Call Func(int)

This example illustrates the comma operator:

for (i = j = 1; i + j < 20; i += i. j--);

In this example, each operand of the for statement's third expression is evaluated
independently. The left operand i += i is evaluated first; then the right operand, j - -,

is evaluated.

func_one(x, y + 2. z);
func_two((x--, Y + 2), Z);

In the function call to func_one, three arguments, separated by commas, are passed: x, y +
2, and z. In the function call to func_two, parentheses force the compiler to interpret the
first comma as the sequential-evaluation operator. This function call passes two arguments
to func_two. The first argument is the result of the sequential-evaluation operation (x - -,
y + 2), which has the value and type of the expression y + 2; the second argument is z.

110 Language Reference

Expressions with the Conditional Operator
The conditional operator (? :) is a ternary operator (it takes three operands). The
conditional operator works as follows:

• The first operand is evaluated and all side effects are completed before continuing.

Chapter 4 Expressions

• If the first operand evaluates to true (anonzero value), the second operand is evaluated.

• If the first operand evaluates to false (0), the third operand is evaluated.

The result of the conditional operator is the result of whichever operand is evaluated -
the second or the third. Only one of the last two operands is evaluated in a conditional
expression.

Syntax

conditional-expression :
10 gical-o r-expression
logical-or-expression ? expression: conditional-expression

Conditional expressions have no associativity. The first operand must be of integral
or pointer type. The following rules apply to the second and third expressions:

• If both expressions are of the same type, the result is of that type.

• If both expressions are of arithmetic types, usual arithmetic conversions (covered in
"Arithmetic Conversions" in Chapter 3, "Standard Conversions") are performed to
convert them to a common type.

• If both expressions are of pointer types or if one is a pointer type and the other is a
constant expression that evaluates to 0, pointer conversions are performed to convert
them to a common type.

• If both expressions are of reference types, reference conversions are performed to
convert them to a common type.

• If both expressions are of type void, the common type is type void.

• If both expressions are of a given class type, the common type is that class type.

Any combinations of second and third operands not in the preceding list are illegal. The
type of the result is the common type, and it is an I-value if both the second and third
operands are of the same type and both are I-values.

For example:

(val)- 0) ? val : -val

If the condition is true, the expression evaluates to val. If not, the expression equals - val.

Language Reference 111

c++ Language Reference

Constant Expressions
c++ requires constant expressions - expressions that evaluate to a constant - for
declarations of:

• Array bounds

• Selectors in case statements

• Bit-field length specification

• Enumeration initializers

Syntax

constant-expression:
conditional-expression

The only operands that are legal in constant expressions are:

• Literals

• Enumeration constants

• Values declared as const that are initialized with constant expressions

• sizeof expressions

Nonintegral constants must be converted (either explicitly or implicitly) to integral types
to be legal in a constant expression. Therefore, the following code is legal:

const double Size = 11.0;

char chArray[(int)Size];

Explicit conversions to integral types are legal in constant expressions; all other types and
derived types are illegal except when used as operands to the sizeof operator.

The comma operator and assignment operators cannot be used in constant expressions.

112 Language Reference

Chapter 4 Expressions

Expressions with Explicit Type Conversions
c++ provides implicit type conversion, as described in Chapter 3, "Standard Conversions."
You can also specify explicit type conversions when you need more precise control of the
conversions applied.

Explicit Type Conversion Operator
C++ allows explicit type conversion using a syntax similar to the function-call syntax.
A simple-type-name followed by an expression-list enclosed in parentheses constructs
an object of the specified type using the specified expressions. The following example
shows an explicit type conversion to type int:

i nt i = i nt (d);

The following example uses a modified version of the Poi n t class defined in
"Function-Call Results."

#include <iostream.h>

class Point
{

public:
II Define default constructor.
Point() { _x = _y = 0; }
II Define another constructor.
Poi nt (i nt X, i nt Y) { _x = X; 3 = Y; }

II Define "accessor" functions as
II reference types.
unsigned& x() { return _X; }
unsigned& y() { return 3; }
void Show() {cout« "x = " « _x « "

« "y = " « 3 « "\n";
private:

unsigned _x;
unsigned 3;

} ;

void main()
{

Point Point1, Point2;

II Assign Point1 the explicit conversion
II of (10, 10).
Point1 = Point(10, 10);

Language Reference 113

c++ Language Reference

}

I IUs e X () a san 1 - val ue bY ass i g n i n g a n ex p 1 i cit
II conversion of 20 to type unsigned.
Point1.x() = unsigned(20);
Point1.Show();

II Assign Point2 the default Point object.
Point2 = Pointe);
Point2.Show();

The output from this program is:

x 20. y = 10
x = 0. y = 0

Although the preceding example demonstrates explicit type conversion using constants,
the same technique works to perform these conversions on objects. The following code
fragment demonstrates this:

int i = 7;
float d;

d = float(i);

Explicit type conversions can also be specified using the "cast" syntax. The previous
example, rewritten using the cast syntax, is:

d = (fl oat)i;

Both cast and function-style conversions have the same results when converting from
single values. However, in the function-style syntax, you can specify more than one
argument for conversion. This difference is important for user-defined types. Consider
a Poi nt class and its conversions:

struct Point
{

Pointe short x. short y) {_x x; -Y = y; }

} ;

Point pt = Pointe 3. 10);

The preceding example, which uses function-style conversion, shows how to convert two
values (one for x and one for y) to the user-defined type Poi nt.

Important Use the explicit type conversions with care, since they override the C++
. compiler's built-in type checking.

114 Language Reference

Syntax

cast-expression:
unary-expression
(type-name) cast-expression

Chapter 4 Expressions

The cast notation must be used for conversions to types that do not have a simple-type
name (pointer or reference types, for example). Conversion to types that can be expressed
with a simple-type-name can be written in either form. See "Type Specifiers" in Chapter 6,
"Declarations," for more information about what constitutes a simple-type-name.

Type definition within casts is illegal.

Legal Conversions
You can do explicit conversions from a given type to another type if the conversion can be
done using standard conversions. The results are the same. The conversions described in
this section are legal; any other conversions not explicitly defined by the user (for a class
type) are illegal.

A value of integral type can be explicitly converted to a pointer if the pointer is large
enough to hold the integral value. A pointer that is converted to an integral value can be
converted back to a pointer; its value is the same. This identity is given by the following
(where p represents a pointer of any type):

p == (type *) integral-conversion(p)

With explicit conversions, the compiler does not check whether the converted value fits in
the new type except when converting from pointer to integral type or vice versa.

This section describes the following conversions:

• Converting pointer types

• Converting the null pointer

• Converting to a forward reference class type

• Converting to reference types

• Converting among pointer to member types

Converting Pointer Types
A pointer to one object type can be explicitly converted to a pointer of another object type.
A pointer declared as void * is considered a pointer to any object type.

A pointer to a base class can be explicitly converted to a pointer to a derived class as long
as these conditions are met:

• There is an unambiguous conversion.

• The base class is not declared as virtual at any point.

Language Reference 115

c++ Language Reference

Because conversion to type void * can change the representation of an object, there is no .
guarantee that the conversion typel* void * type2* is equivalent to the conversion typel*
type2* (which is a change in value only).

When such a conversion is performed, the result is a pointer to the subobject of the original
object representing the base class.

See Chapter 9, "Derived Classes," for more information about ambiguity and virtual base
classes.

C++ allows explicit conversions of pointers to obj ects or functions to type void *.

Pointers to object types can be explicitly converted to pointers to functions if the function
pointer type has enough bits to accommodate the pointer to object type.

A pointer to a const object can be explicitly converted to a pointer not of const type.
The result of this conversion points to the original object. An object of const type, or a
reference to an object of const type, can be cast to a reference to a type that is not const.
The result is a reference to the original object. The original object was probably declared
as const because it was to remain constant across the duration of the program. Therefore,
an explicit conversion defeats this safeguard, allowing modification of such objects. The
behavior in such cases is undefined.

A pointer to an object of volatile type can be cast to a pointer to a type that is not volatile.
The result of this conversion refers to the original object. Similarly, an object of volatile
type can be cast to a reference to a type that is not volatile.

Converting the Null Pointer
The null pointer (0) is converted into itself.

Converting to a Forward-Reference Class Type
A class that has been declared but not yet defined (a forward reference) can be used in
a pointer cast. In this case, the compiler returns a pointer to the original object, not to a
subobject as it might if the class's relationships were known.

Converting to Reference Types,
Any object whose address can be converted to a given pointer type can also be converted
to the analogous reference type. For example, any object whose address can be converted
to type char * can also be converted to type char &. No constructors or class conversion
functions are called to make a conversion to a reference type.

Objects or values can be converted to class-type objects only if a constructor or conversion
operator has been provided specifically for this purpose. For more information about these
user-defined functions, see "Conversion Constructors" in Chapter 11, "Special Member
Functions. "

116 Language Reference

Chapter 4 Expressions

Conversion of a reference to a base class, to a reference to a derived class (and vice versa)
is done the same way as for pointers.

A cast to a reference type results in an I-value. The results of casts to other types are
not I-values. Operations performed on the result of a pointer or reference cast are still
performed on the original object.

Converting Among Pointer-to-Member Types
A pointer to a member can be converted to a different pointer-to-member type subject
to these rules: Either the pointers must both be pointers to members in the same class or
they must be pointers to members of classes, one of which is derived unambiguously from
the other. When converting pointer-to-member functions, the return and argument types
must match.

Expressions with Pointer-to-Member Operators
The pointer-to-member operators, . * and ->*, return the value of a specific class member
for the object specified on the left side of the expression. The following example shows
how to use these operators:

#include <iostream.h>

class Window
{

public:

} ;

void Paint(); II Causes window to repaint.
int Windowld;

II Define derived types pmfnPaint and pmWindowId.
II These types are pointers to members Paint() and
II Windowld, respectively.
void (Window: :*pmfnPaint)() = &Window::Paint;
int Window::*pmWindowId = &Window::WindowId;

void maine)
{

Window AWindow;
Window *pWindow = new Window;

II Invoke the Paint function normally, then use pointer to member.
AWindow.Paint();
(AWindow.*pmfnPaint)();

Language Reference 117

c++ Language Reference

pWindow->Paint();
(pWindow->*pmfnPaint)(); II Parentheses required since * binds

II less tightly than the function call.

int Id;
II Retrieve window id.
Id AWindow.*pmWindowld;
Id = pWindow->*pmWindowld;

}

In the preceding example, a pointer to a member, pmfnPa i nt, is used to invoke the member
function Pai nt. Another pointer to a member, pmWi ndowld, is used to access the Wi ndowld
member.

Syntax

pm-expression :
cast-expression
pm-expression. * cast-expression
pm-expression ->* cast-expression

The binary operator. * combines its first operand, which must be an object of class type,
with its second operand, which must be a pointer-to-member type.

The binary operator ->* combines its first operand, which must be a pointer to an object
of class type, with its second operand, which must be a pointer-to-member type.

In an expression containing the. * operator, the first operand must be of the class type
of, and be accessible to, the pointer to member specified in the second operand or of
an accessible type unambiguously derived from and accessible to that class.

In an expression containing the ->* operator, the first operand must be of the type
"pointer to the class type" of the type specified in the second operand, or it must be
of a type unambiguously derived from that class.

Consider the following classes and program fragment:

class BaseClass
{

public:

} ;

BaseClass(); II Base class constructor.
voi d Funcl () ;

II Declare a pointer to member function Funcl.
void (BaseClass::*pmfnFuncl)() = &BaseClass::Funcl;

118 Language Reference

class Derived
{

public BaseClass

public:

} ;

Derived(); 11 Derived class constructor.
void Func2();

II Declare a pointer to member function Func2.
void (Derived::*pmfnFunc2)() &Derived::Func2;

void main()
{

}

BaseClass ABase;
Derived ADerived;

(ABase.*pmfnFuncl)();
(ABase.*pmfnFunc2)();

II OK: defined for BaseClass.
II Error: cannot use base class to
II access pointers to members of
II derived classes.

(ADeri ved. *pmfnFuncl) (); I I OK: Deri ved is unambi guous 1 y

II derived from BaseClass.
(ADerived.*pmfnFunc2)(); II OK: defined for Derived.

The result of the. * or ->* pointer-to-member operators is an object or function of the
type specified in the declaration of the pointer to member. So, in the preceding example,
the result of the expression ADeri ved. *pmfnFuncl () is a pointer to a function that returns
void. This result is an I-value if the second operand is an I-value.

Note If the result of one of the pointer-to-member operators is a function, then
the result can be used only as an operand to the function call operator.

Chapter 4 Expressions

Language Reference 119

c++ Language Reference

Semantics of Expressions
This section explains when, and in what order, expressions are evaluated.

The following topics are included:

• Order of evaluation

• Sequence points

• Ambiguous expressions

• Notation in expressions

Order of Evaluation
This section discusses the order in which expressions are evaluated but does not explain
the syntax or the semantics of the operators in these expressions. The earlier sections in
this chapter provide a complete reference for each of these operators.

Expressions are evaluated according to the precedence and grouping of their operators.
(Table 1.1 in Chapter 1, "Lexical Conventions," shows the relationships the C++ operators
impose on expressions.) Consider this example:

#include <iostream.h>

void main()
{

}

int a = 2, b = 4, c = 9;

cout « a + b * c « "\n";
cout « a + (b * c) « "\n";
cout « (a + b) * c « "\n";

The output from the preceding code is:

38
38
54

Figure 4.1 Expression-Evaluation Order

120 Language Reference

The order in which the expression shown in Figure 4.1 is evaluated is determined by
the precedence and associativity of the operators:

1. Multiplication (*) has the highest' precedence in this expression; hence the
subexpression b * c is evaluated first.

2. Addition (+) has the next highest precedence, so a is added to the product of band c.

3. Left shift «<) has the lowest precedence in the expression, but there are two
occurrences. Because the left-shift operator groups left-to-right, the left
subexpression is evaluated first and then the right one.

Chapter 4 Expressions

When parentheses are used to group the subexpressions, they alter the precedence and also
the order in which the expression is evaluated, as shown in Figure 4.2.

Figure 4.2 Expression-Evaluation Order with Parentheses

L...-__ < < __ ----'

Expressions such as those in Figure 4.2 are evaluated purely for their side effects - in this
case, to transfer information to the standard output device.

Note The left-shift operator is used to insert an object in an object of class ostream.
It is sometimes called the "insertion" operator when used with iostream. For more
about the iostream library, see the Microsoft Visual C++ 6.0 Run-Time Library
Reference volume of the Microsoft Visual C++ 6.0 Reference Library.

Sequence Points
An expression can modify an object's value only once between consecutive "sequence
points."

Microsoft Specific ~

The C++ language definition does not currently specify sequence points. Microsoft C++
uses the same sequence points as ANSI C for any expression involving C operators and
not involving overloaded operators. When operators are overloaded, the semantics change
from operator sequencing to function-call sequencing. Microsoft C++ uses the following
sequence points:

• Left operand of the logical AND operator (&&). The left operand of the logical
AND operator is completely evaluated and all side effects completed before
continuing. There is no guarantee that the right operand of the logical AND
operator will be evaluated.

Language Reference 121

c++ Language Reference

• Left operand of the logical OR operator (II). The left operand of the logical OR
operator is completely evaluated and all side effects completed before continuing.
There is no guarantee that the right operand of the logical OR operator will
be evaluated.

• Left operand of the comma operator. The left operand of the comma operato.r is
co.mpletely evaluated and all side effects completed before continuing. Both
operands of the co.mma operator are always evaluated.

• Functio.n-call operator. The function-call expression and all arguments to a functio.n,
including default arguments, are evaluated and all side effects completed prior to.
entry to the functio.n. There is no. specified order of evaluation amo.ng the arguments
or the functio.n-call expressio.n.

• First operand of the conditional operator. The first o.perand of the conditional o.perator
is co.mpletely evaluated and all side effects completed before continuing.

• The end o.f a full initialization expression, such as the end of an initializatio.n in a
declaratio.n statement.

• The expression in an expression statement. Expression statements consist o.f an
o.ptional expression fo.llo.wed by a semico.lon (;). The expression is completely
evaluated for its side effects.

• The controlling expression in a selection (if o.r switch) statement. The expressio.n is
co.mpletely evaluated and all side effects co.mpleted before the code dependent on
the selection is executed. .

• The controlling expression of a while or do statement. The expressio.n is co.mpletely
evaluated and all side effects completed befo.re any statements in the next iteratio.n o.f
the while or do loop are executed.

• Each of the three expressions of a for statement. Each expression is completely
evaluated and all side effects completed before moving to the next expression.

• The expressio.n in a return statement. The expression is completely evaluated
and all side effects completed before control returns to. the calling functio.n.

END Microsoft Specific

122 Language Reference

Ambiguous Expressions
Certain expressions are ambiguous in their meaning. These expressions occur most
frequently when an object's value is modified more than once in the same expression.
These expressions rely on a particular order of evaluation where the language does not
define one. Consider the following example:

int i = 7;

func (i. ++i);

The C++ language does not guarantee the order in which arguments to a function call are
evaluated. Therefore, in the preceding example, func could receive the values 7 and 8, or
8 and 8 for its parameters, depending on whether the parameters are evaluated from left to
right or from right to left.

Notation in Expressions
The C++ language specifies certain compatibilities when specifying operands. Table 4.5
shows the types of operands acceptable to operators that require operands of type type.

Table 4.5 Operand Types Acceptable to Operators

Type Expected

type

type *

const type

volatile type

Types Allowed

const type
volatile type
type&
const type&
volatile type&
volatile const type
volatile const type&

type* const
type* volatile
type* volatile const

type
const type
const type&

type
volatile type
volatile type&

Because the preceding rules can always be used in combination, a const pointer to a
volatile object can be supplied where a pointer is expected.

Chapter 4 Expressions

Language Reference 123

C+t Language Reference

Casting
The C++ language provides that if a class is derived from a base class containing virtual
functions, a pointer to that base class type can be used to call the implementations of the
virtual functions residing in the derived class object. A class containing virtual functions
is sometimes called a "polymorphic class."

Since a derived class completely contains the definitions of all the base classes from which
it is derived, it is safe to cast a pointer up the class hierarchy to any of these base classes.
Given a pointer to a base class, it might be safe to cast the pointer down the hierarchy. It is
safe if the object being pointed to is actually of a type derived from the base class. In this
case, the actual object is said to be the "complete object." The pointer to the base class
is said to point to a "subobject" of the complete object. For example, consider the class
hierarchy shown in Figure 4.3:

Figure 4.3 Class Hierarchy

An object of type C could be visualized as shown in Figure 4.4:

Figure 4.4 Class C with B Subobject and A Subobject

Given an instance of class C, there is a B subobject and an A subobject. The instance of c,
including the A and B subobjects, is the "complete object."

Using run-time type information, it is possible to check whether a pointer actually points
to a complete object and can be safely cast to point to another object in its hierarchy.
The dynamic_cast operator can be used to make these types of casts. It also performs
the run-time check necessary to make the operation safe.

124 Language Reference

Casting Operators
There are several casting operators specific to the C++ language. These operators are
intended to remove some of the ambiguity and danger inherent in old style C language
casts. These operators are:

• dynamic_cast Used for conversion of polymorphic types.

• static_cast Used for conversion of nonpolymorphic types.

• consCcast Used to remove the const, volatile, and __ unaligned attributes.

• reinterpreCcast Used for simple reinterpretation of bits.

Use consCcast and reinterpreCcast as a last resort, since these operators present the same
dangers as old style casts. However, they are still necessary in order to completely replace
old style casts.

dynamic_cast Operator

Chapter 4 Expressions

The expression dynamic_cast<type-id>(expression) converts the operand expression to an
object of type type-id. The type-id must be a pointer or a reference to a previously defined
class type or a "pointer to void." The type of expression must be a pointer if type-id is a
pointer, or an I-value if type-id is a reference.

Syntax

dynamic_cast < type-id > (expression)

If type-id is a pointer to an unambiguous accessible direct or indirect base class of
expression, a pointer to the unique subobject of type type-id is the result. For example:

class B { ... };
class C public B { };
class D public C { };

void f(D* pd)
{

}

C* pc = dynamic_cast<C*>(pd); II ok: C is a direct base class
II pc pOints to C subobject of pd

B* pb dynamic_cast<B*>(pd); II ok: B is an indirect base class
II pb pOints to Bsubobject of pd

This type of conversion is called an "upcast" because it moves a pointer up a class
hierarchy, from a derived class to a class it is derived from. An upcast is an implicit
conversion.

Language Reference 125

c++ Language Reference

If type-id is void*, a run-time check is made to determine the actual type of expression.
The result is a pointer to the complete object pointed to by expression. For example:

class A { };

class B { };

void fO
{

A* pa = new A;
B* pb = new B;
void* pv = dynamic_cast<void*>Cpa);
II pv now points to an object of type A

pv = dynamic_cast<void*>Cpb);
II pv now points to an object of type B

}

If type-id is not void*, a run-time check is made to see if the object pointed to by
expression can be converted to the type pointed to by type-id.

If the type of expression is a base class of the type of type-id, a run-time check is made to
see if expression actually points to a complete object of the type of type-id. If this is true,
the result is a pointer to a complete object of the type of type-id. For example:

class B ... };
class D : public B { ... };

void fO
{

}

B* pb = new D;
B* pb2 = new B;

D* pd = dynamic_cast<D*>Cpb);

D* pd2 = dynamic_cast<D*>Cpb2);

II unclear but ok

II ok: pb actually points to a D

Ilerror: pb2 points to a B. not a D
II pd2 == NULL

This type of conversion is called a "downcast" because it moves a pointer down a class
hierarchy, from a given class to a class derived from it.

In cases of multiple inheritance, possibilities for ambiguity are introduced. Consider the
class hierarchy shown in Figure 4.5:

126 Language Reference

Chapter 4 Expressions

Figure 4.5 Class Hierarchy Showing Multiple Inheritance

A pointer to an object of type 0 can be safely cast to B or C. However, if 0 is cast to point to
an A object, which instance of A would result? This would result in an ambiguous casting
error. To get around this problem, you can perform two unambiguous casts. For example:

void f()
{

0* pd new 0;
A* pa dynamic_cast<A*>Cpd); II error: ambiguous
B* pb dynamic_cast<B*>Cpd); II first cast to B
A* pa2 = dynami c_cast<A*> C pb); / / ok: unambi guous

Further ambiguities can be introduced when you use virtual base classes. Consider the
class hierarchy shown in Figure 4.6:

Figure 4.6 Class Hierarchy Showing Virtual Base Classes

In this hierarchy, A is a virtual base class. See "Virtual Base Classes" in Chapter 9,
"Derived Classes," for the definition of a virtual base class. Given an instance of class E
and a pointer to the A subobject, a dynamic_cast to a pointer to B will fail due to ambiguity.
You must first cast back to the complete E object, then work your way back up the
hierarchy, in an unambiguous manner, to reach the correct B object.

Language Reference 127

c++ Language Reference

Consider the class hierarchy shown in Figure 4.7:

Figure 4.7 Class Hierarchy Showing Duplicate Base Classes

Given an object of type E and a pointer to the 0 subobject, to navigate from the 0

subobject to the left-most A subobject, three conversions can be made. You can
perform a dynamic_cast conversion from the 0 pointer to an E pointer, then a
conversion (either dynamic_cast or an implicit conversion) from E to B, and
finally an implicit conversion from B to A. For example:

void f(D* pd)
{

E* pe = dynamic_cast<E*>(pd);
B* pb = pe; II upcast. implicit conversion
A* pa = pb; II upcast. implicit conversion

}

The dynamic_cast operator can also be used to perform a "cross cast." Using the same
class hierarchy, it is possible to cast a pointer, for example, from the B subobject to the
D subobject, as long as the complete object is of type E.

Considering cross casts, it is actually possible to do the conversion from a pointer to 0 to
a pointer to the left-most A subobject in just two steps. You can perform a cross cast from
D to B, then an implicit conversion from B to A. For example:

void f(D* pd)
{

}

B* pb
A* pa

dynamic_cast<B*>(pd);
pb;

II cross cast
II upcast. implicit conversion

A null pointer value is converted to the null pointer value of the destination type by
dynamic_cast.

When you use dynamic_cast < type-id > (expression), if expression cannot be safely
converted to type type-id, the run-time check causes the cast to fail. For example:

class A { };

class B { };

128 Language Reference

void f()
{

new A; A* pa
B* pb dynamic_cast<B*)(pa); II fails, not safe;

II B not derived from A

The value of a failed cast to pointer type is the null pointer. A failed cast to reference type
throws a bad_cast exception.

bad_cast Exception
The dynamic_cast operator throws a bad_cast exception as the result of a failed cast to a
reference type. The interface for bad_cast is:

class bad_cast: public logic {
public:

bad_cast(const __ exString& what_arg) : logic(what_arg) {}
void raise() { handle_raise(); throw *this; }
II virtual __ exString what() const; Ilinherited

} ;

static_cast Operator
The expression static_cast < type-id > (expression) converts expression to the type of
type-id based solely on the types present in the expression. No run-time type check is
made to ensure the safety of the conversion.

Syntax

static_cast < type-id > (expression)

The static_cast operator can be used for operations such as converting a pointer to a base
class to a pointer to a derived class. Such conversions are not always safe. For example:

class B { ... };

class D public B { ... };

void f(B* pb, D* pd)
{

D* pd2 = static_cast<D*)(pb);

B* pb2 static_cast<B*)(pd);

}

II not safe, pb may
II point to just B

II safe conversion

Chapter 4 Expressions

Language Reference 129

c++ Language Reference

In contrast to dynamic_cast, no run-time check is made on the static_cast conversion of pb.
The object pointed to by pb may not be an object of type D, in which case the use of *pd2
could be disastrous. For instance, calling a function that is a member of the D class, but not
the B class, could result in an access violation.

The dynamic_cast and static_cast operators move a pointer throughout a class hierarchy.
However, static_cast relies exclusively on the information provided in the cast statement
and can therefore be unsafe. For example:

class B { ... };
class D : public B { ... };

void f(B* pb)
{

}

D* pdl
D* pd2

dynamic_cast<D*>(pb);
static_cast<D*>Cpb);

If pb really points to an object of type D, then pdl and pd2 will get the same value. They
will also get the same value if pb == 0.

If pb points to an object of type B and not to· the complete D class, then dynamic_cast will
know enough to return zero. However, static_cast relies on the programmer's assertion
that pb points to an object of type D and simply returns a pointer to that supposed D object.

Consequently, static_cast can do the inverse of implicit conversions, in which case the
results are undefined. It is left to the programmer to ensure that the results of a static_cast
conversion are safe.

This behavior also applies to types other than class types. For instance, static_cast can be
used to convert from an int to a char. However, the resulting char may not have enough
bits to hold the entire int value. Again, it is left to the programmer to ensure that the results
of a static_cast conversion are safe.

The static_cast operator can also be used to perform any implicit conversion, including
standard conversions and user-defined conversions. For example:

typedef unsigned char BYTE

void fC)
{

}

char ch;
int i = 65;
float f = 2.5;
doubl e dbl;

ch = static_cast<char>(i);
dbl = static_cast<double>(f);

i = static_cast<BYTE>(ch);

130 Language Reference

II int to char
II float to double

The static_cast operator can explicitly convert an integral value to an enumeration type.
If the value of the integral type does not fall within the range of enumeration values,
the resulting enumeration value is undefined.

The static_cast operator converts a null pointer value to the null pointer value of the
destination type.

Any expression can be explicitly converted to type void by the static_cast operator. The
destination void type can optionally include the const, volatile, or __ unaligned attribute.

The static_cast operator cannot cast away the const, volatile, or __ unaligned attributes.
See "consCcast Operator" for information on removing these attributes.

const_cast Operator
The consCcast operator can be used to remove the const, volatile, and __ unaligned
attribute(s) from a class.

Syntax

consCcast < type-id > (expression)

Chapter 4 Expressions

A pointer to any object type or a pointer to a data member can be explicitly converted to a
type that is identical except for the const, volatile, and __ unaligned qualifiers. For pointers
and references, the result will refer to the original object. For pointers to data members,
the result will refer to the same member as the original (uncast) pointer to data member.
Depending on the type of the referenced object, a write operation through the resulting
pointer, reference, or pointer to data member might produce undefined behavior.

The consCcast operator converts a null pointer value to the null pointer value of the '
destination type.

reinterpret_cast Operator
The reinterpreCcast operator allows any pointer to be converted into any other pointer
type. It also allows any integral type to be converted into any pointer type and vice versa.
Misuse of the reinterpreCcast operator can easily be unsafe. Unless the desired conversion
is inherently low-level, you should use one of the other cast operators.

Syntax

reinterpreCcast < type-id > (expression)

The reinterpreCcast operator can be used for conversions such as char* to i nt*, or
One_cl ass* to Unrel ated_cl ass*, which are inherently unsafe.

The result of a reinterpreCcast cannot safely be used for anything other than being cast
back to its original type. Other uses are, at best, nonportable.

The teinterpreCcast operator cannot cast away the const, volatile, or __ unaligned
attributes. See consCcast Operator for information on removing these attributes.

The reinterpreCcast operator converts a null pointer value to the null pointer value of
the destination type.

Language Reference 131

c++ Language Reference

Run-Time Type Information
Run-time type information (RTTI) is a mechanism that allows the type of an object to be
determined during program execution. RTTI was added to the C++ language because many
vendors of class libraries were implementing this functionality themselves. This caused
incompatibilities between libraries. Thus, it became obvious that support for run-time type
information was needed at the language level.

For the sake of clarity, this discussion of RTTI is almost completely restricted to pointers.
However, the concepts discussed also apply to references.

There are three main C++ language elements to run-time type information:

• The dynamic_cast operator.
Used for conversion of polymorphic types. See "dynamic_cast Operator" earlier in this
chapter for more information.

• The typeid operator.
Used for identifying the exact type of an object.

• The type_info class.
Used to hold the type information returned by the typeid operator.

typeid Operator
The typeid operator allows the type of an object to be determined at run time.

Syntax

typeid(type-id)
typeid(expression)

The result of a typeid expression is a const type_info&. The value is a reference to a
type_info object that represents either the type-id or the type of the expression, depending
on which form of typeid is used. See "type_info Class," later in this chapter, for more
information.

The typeid operator does a run-time check when applied to an I-value of a polymorphic
class type, where the true type of the object cannot be determined by the static information
provided. Such cases are:

• A reference to a class

• A pointer, dereferenced with *
• A subscripted pointer (i.e. [D. (Note that it is generally not safe to use a subscript with

a pointer to a polymorphic type.)

132 Language Reference

If the expression points to a base class type, yet the object is actually of a type
derived from that base class, a type_info reference for the derived class is the result.
The expression must point to a polymorphic type, that is, a class with virtual functions.
Otherwise, the result is the type_info for the static class referred to in the expression.
Further, the pointer must be dereferenced so that the object it points to is used. Without
dereferencing the pointer, the result will be the type_info for the pointer, not what it
points to. For example:

class Base { ... };

class Derived: public Base { ... };

void fO
{

}

Derived* pd = new Derived;
Base* pb = pd;

const type_info& t = typeid(pb);
const type_info& tl = typeid(*pb);

II t holds pointer type_info
II tl holds Derived info

Chapter 4 Expressions

If the expression is dereferencing a pointer, and that pointer's value is zero, typeid throws a
bad_typeid exception. If the pointer does not point to a valid object, a __ non_rttLobject
exception is thrown.

If the expression is neither a pointer nor a reference to a base class of the object, the result
is a type_info reference representing the static type of the expression.

bad_typeid Exception
Under some circumstances, the typeid operator throws a bad_typeid exception. The
interface for bad_typeid is:

class bad_typeid : public logic {
public:

bad_typeid(const char * what_arg) : logic(what_arg) {}
void raise() {handle_raise(); throw *this; }
II virtual __ exString what() const; Ilinherited

} ;

See "typeid Operator" for more information.

Language Reference 133

c++ Language Reference

type_info Class
The type_info class describes type info~ation generated within the program by the
compiler. Objects of this class effectively store a pointer to a name for the type. The
type_info class also stores an encoded value suitable for comparing two types for equality
or collating order. The encoding rules and collating sequence for types are unspecified and
may differ between programs.

The typei nfo. h header file must be included in order to use the type_info class.

class type_info {
public:

virtual ~type_infa();
int aperator==(const type_info& rhs) const;
int operator!=(const type_info& rhs) canst;
int before(const type_info& rhs) const;
const char* name() const;
canst char* raw_name() canst;

private:

} ;

The operators == and ! = can be used to compare for equality and inequality with other
type_info objects, respectively.

There is no link between the collating order of types and inheritance relationships. Use the
type_info::before member function to determine the collating sequence of types. There is
no guarantee that type_info::before will yield the same result in different programs or even
different runs of the same program. In this manner, type_info::before is similar to the
address-of (&) operator.

The type_info::name member function returns a const char* to a null-terminated string
representing the human-readable name of the type. The memory pointed to is cached and
should never be directly deallocated.

The type_info::raw_name member function returns a const char* to a null-terminated
string representing the decorated name of the object type. The name is actually
stored in its decorated form to save space. Consequently, this function is faster than
type_info::name because it doesn't need to undecorate the name. The string returned
by the type_info: :raw _name function is useful in comparison operations but is not
readable. If you need a human-readable string, use the type_info::name function instead.

Type information is generated for polymorphic classes only if the /GR (Enable Run-Time
Type Information) compiler option is specified.

134 Language Reference

CHAPTER 5

Statements

c++ statements are the program elements that control how and in what order objects are
manipulated. This chapter includes:

• Overview

• Labeled Statements

• Expression statements. These statements evaluate an expression for its side effects or
for its return value.

• Null statements. These statements can be provided where a statement is required by the
C++ syntax but where no action is to be taken.

• Compound statements. These statements are groups of statements enclosed in curly
braces ({ }). They can be used wherever the grammar calls for a single statement.

• Selection statements. These statements perform a test; they then execute one section of
code if the test evaluates to true (nonzero). They may execute another section of code if
the test evaluates to false.

• Iteration statements. These statements provide for repeated execution of a block of
code until a specified termination criterion is met.

• Jump statements. These statements either transfer control immediately to another
location in the function or return control from the function.

• Declaration statements. Declarations introduce a name into a program. (Chapter 6,
"Declarations," provides more detailed information about declarations.)

• Exception handling statements, which include C++ exception handling (try, throw,
catch) and structured exception handling L_try/ __ except, __ trye_finally). The
try-except statement provides a method to gain control of a program when events that
normally terminate execution occur. The try-finally and leave statements provide a
method to guarantee execution of cleanup code when execution of a block of code is

. interrupted.

Language Reference 135

c++ Language Reference

Overview of Statements
c++ statements are executed sequentially, except when an expression statement, a
selection statement, an iteration statement, or a jump statement specifically modifies
that sequence.

Syntax

statement:
labeled-statement
expression-statement
compound-statement
selection-statement
iteration-statement
jump-statement
declaration-statement
try-throw-catch

In most cases, the C++ statement syntax is identical to that of ANSI C. The primary
difference between the two is that in C, declarations are allowed only at the start of a
block; C++ adds the declaration-statement, which effectively removes this restriction.
This enables you to introduce variables at a point in the program where a precomputed
initialization value can be calculated.

Declaring variables inside blocks also allows you to exercise precise control over the scope
and lifetime of those variables.

Labeled Statements
To transfer program control directly to a given statement, the statement must be labeled.
See the next sections, "Using Labels with the goto Statement" and "Using Labels in the
case Statement," on the next page.

Syntax

labeled-statement:
identifier : statement
case constant-expression statement
default : statement

136 Language Reference

U sing Labels with the goto Statement
The appearance of an identifier label in the source program declares a label. Only a goto
statement can transfer control to an identifier label. The following code fragment illustrates
use of the goto statement and an identifier label to escape a tightly nested loop:

for(p = 0; p < NUM_PATHS; ++p)
{

}

NumFiles FillArray(pFileArray, pszFNames)
for(i = 0; i < NumFil es; ++i)
{

if((pFileArray[i] = fopen(pszFNames[i], "r" »
goto FileOpenError;

II Process the files that were opened.

FileOpenError:

NULL)

cerr« "Fatal file open error. Processing interrupted.\n");

In the preceding example, the goto statement transfers control directly to the statement that
prints an error message if an unknown file-open error occurs.

A label cannot appear by itself but must always be attached to a statement. If a label is
needed by itself, place a null statement after the label.

The label has function scope and cannot be redeclared within the function. However, the
same name can be used as a label in different functions.

U sing Labels in the case Statement
Labels that appear after the case keyword cannot also appear outside a switch statement.
(This restriction also applies to the default keyword.) The following code fragment shows
the correct use of case labels:

II Sample Microsoft Windows message processing loop.
switch(msg)
{

case WM_TIMER: II Process timer event.
SetClassWord(hWnd, GCW_HICON, ahlcon[nlcon++]);
ShowWindow(hWnd, SW_SHOWNA);
nlcon %= 14;
Yield();
b rea k;

Chapter 5 Statements

Language Reference 137

c++ Language Reference

case WM_PAINT:
II Obtain a handle to the device context.
II BeginPaint will send WM_ERASEBKGND if appropriate.

memset(&ps. 0x00. sizeof(PAINTSTRUCT));
hOC = BeginPaint(hWnd. &ps);

II Inform Windows that painting is complete.

EndPaint(hWnd. &ps);
break;

case WM_CLOSE:
II Close this window and all child windows.

KillTimer(hWnd. TIMERl);
~estroyWindow(hWnd);
if(hWnd == hWndMain)

PostQuitMessage(0); II Quit the application.
break;

default :

}

II This choice is taken for all messages not specifically
II covered by a case statement.

return DefWindowProc(hWnd. Message. wParam. lParam);
break;

Expression Statement
Expression statements cause expressions to be evaluated. No transfer of control or iteration
takes place as a result of an expression statement.

Syntax

expression-statement:
expressionopt ;

All expressions in an expression statement are evaluated and all side effects are completed
before the next statement is executed. The most common expression statements are
assignments and function calls. c++ also provides a null statement.

138 Language Reference

The Null Statement
The "null statement" is an expression statement with the expression missing. It is useful
when the syntax of the language calls for a statement but no expression evaluation. It
consists of a semicolon.

Null statements are commonly used as placeholders in iteration statements or as statements
on which to place labels at the end of compound statements or functions.

The following code fragment shows how to copy one string to another and incorporates the
null statement:

char *strcpy(char *Dest. const char *Source)
{

char *DestStart = Dest;

II Assign value pOinted to by Source to
II Dest until the end-of-string 0 is
II encountered.
while(*Dest++ = *Source++)

II Null statement.

return DestStart;
}

Compound Statements (Blocks)
A compound statement consists of zero or more statements enclosed in curly braces ({ }).
A compound statement can be used anywhere a statement is expected. Compound
statements are commonly called "blocks."

Syntax

compound-statement:
{ statement-listopt }

statement-list:
statement
statement-list statement

Chapter 5 Statements

Language Reference 139

c++ Language Reference

The following example uses a compound statement as the statement part of the if statement
(see "The if Statement" for details about the syntax):

if(Amount> 100)
{

cout « "Amount was too large to handle\n";
Alert();

}

else
Balance -= Amount;

Note Because a declaration is a statement, a declaration can be one of the statements
in the statement-list. As a result, names declared inside a compound statement, but not
explicitly declared as static, have local scope and (for objects) lifetime. See "Scope" in
Chapter 2, "Basic Concepts," for details about treatment of names with local scope.

Selection Statements
The C++ selection statements, if and switch, provide a means to conditionally execute
sections of code.

Syntax

selection-statement:
if (expression) statement
if (expression) statement else statement
switch (expression) statement

The if Statement
The if statement evaluates the expression enclosed in parentheses. The expression must
be of arithmetic or pointer type, or it must be of a class type that defines an unambiguous
conversion to an arithmetic or pointer type. (For information about conversions, see
Chapter 3, "Standard Conversions.")

In both forms of the if syntax, if the expression evaluates to a nonzero value (true), the
statement dependent on the evaluation is executed; otherwise, it is skipped.

In the if •• ~else syntax, the second statement is executed if the result of evaluating the
expression is zero.

140 Language Reference

The else clause of an if ••• else statement is associated with the closest previous if statement
that does not have a corresponding else statement. The following code fragment
demonstrates how this works:

if(condition! == true)
if(condition2 == true

cout « "condition! true; condition2 true\n";
else

cout « "condition! true; condition2 false\n";
else

cout « "condition! false\n";

Many programmers use curly braces ({ }) to explicitly clarify the pairing of complicated
if and else clauses, such as in the following example:

if(condition! == true)
{

if(condition! == true
cout « "conditi on! true; conditi on2 true\n";

else
cout « "condition! true; condition2 false\n";

}

else
cout « "condition! false\n";

Although the braces are not strictly necessary, they clarify the pairing between if and else
statements.

The switch Statement
The C++ switch statement allows selection among multiple sections of code, depending
on the value of an expression. The expression enclosed in parentheses, the "controlling
expression," must be of an integral type or of a class type for which there is an
unambiguous conversion to integral type. Integral promotion is performed as described
in "Integral Promotions" in Chapter 3, "Standard Conversions."

The switch statement causes an unconditional jump to, into, or past the statement that is
the "switch body," depending on the value of the controlling expression, the values of the
case labels, and the presence or absence of a default label. The switch body is normally
a compound statement (although this is not a syntactic requirement). Usually, some of
the statements in the switch body are labeled with case labels or with the default label.
Labeled statements are not syntactic requirements, but the switch statement is meaningless
without them. The default label can appear only once.

Chapter 5 Statements

Language Reference 141

c++ Language Reference

Syntax

case constant-expression : statement
default : statement

The constant-expression in the case label is converted to the type of the controlling
expression and is then compared for equality. In a given switch statement, no two constant
expressions in case statements can evaluate to the same value. The behavior is shown in
Table 5.1.

Table 5.1 Switch Statement Behavior

Condition

Converted value matches that of the promoted
controlling expression.

None of the constants match the constants in the
case labels; default label is present.

None of the constants match the constants in the
case labels; default label is not present.

Action

Control is transferred to the statement
following that label.

Control is transferred to the default label.

Control is transferred to the statement after
the switch statement.

An inner block of a switch statement can contain definitions with initializations as long
as they are reachable - that is, not bypassed by all possible execution paths. Names
introduced using these declarations have local scope. The following code fragment shows
how the switch statement works: .

switch(tolower(*argv[l]))
{

II Error. Unreachable declaration.
char szChEntered[] = "Character entered was: ";

case 'a' :
{

II Declaration of szChEntered OK. Local scope.
char szChEntered[] = "Character entered was: ".
cout « szChEntered « "a\n";
}

b rea k;

case 'b' :
II Value of szChEntered undefined.
cout « szChEntered « "b\n";
break;

default:

}

II Value of szChEntered undefined.
cout « szChEntered « "neither a nor b\n";
break;

142 Language Reference

A switch statement can be nested. In such cases, case or default labels associate with
the most deeply nested switch statements that enclose them. For example:

switch(msg)
{

·case WM_COMMAND:
switch(wParam
{

case 1DM_F_NEW:
delete wfile;

II Windows command. Find out more.

II File New menu command.

wfile = new WinAppFile;
break;

case 1DM_F_OPEN: II File Open menu command.
wfile->FileOpenDlg();
brea k;

}

case WM CREATE:

break;
case WM_PA1NT:

break;
default:

II Create window.

II Window needs repainting.

return OefWindowProc(hWnd, Message, wParam, lParam);
}

The preceding code fragment from a Microsoft Windows message loop shows how
switch statements can be nested. The switch statement that selects on the value of
wPa ram is executed only if msg is WM_COMMAND. The case labels for menu
selections, I OM_F ~NEW and I OM_F _OPEN, associate with the inner switch statement.

Control is not impeded by case or default labels. To stop execution at the end of a
part of the compound statement, insert a break statement. This transfers control to
the statement after the switch statement. This example demonstrates how control
"drops through" unless a break statement is used:

BOOl fClosing = FALSE;

switch(wParam)
{

case 10M F CLOSE:
fClosing = TRUE;
I I fall through

II File close command.

Chapter 5 Statements

Language Reference 143

c++ Language Reference

case IDM_F_SAVE: II File save command.

}

if(document->IsDirty())
if(document->Name() "UNTITLED"

FileSaveAs(document);
else

FileSave(document);

if(fClosing)
document->Close();

break;

The preceding code shows how to take advantage of the fact that case labels do not impede
the flow of control. If the switch statement transfers control to IDM_F _SAVE, fCl osi ng is
FALSE. Therefore, after the file is saved, the document is not closed. However, if the switch
statement transfers control to IDM_F _CLOSE, fCl osi ng is set to TRUE, and the code to save a
file is executed.

Iteration Statements
Iteration statements cause statements (or compound statements) to be executed zero
or more times, subject to some loop-termination criteria. When these statements are
compound statements, they are executed in order, except when either the break statement
or the continue statement is encountered. (For a description of these statements, see
"The break Statement" and "The continue Statement," later in this chapter.)

C++ provides three iteration statements - while, do, and for. Each of these iterates until
its termination expression evaluates to zero (false), or until loop termination is forced
with a break statement. Table 5.2 summarizes these statements and their actions; each
is discussed in detail in the sections that follow.

Table 5.2 C++ Iteration Statements

Statement

while

do

for

144 Language Reference

Evaluated At

Top of loop

Bottom of loop

Top of loop

Initialization

No

No

Yes

Increment

No

No

Yes

Syntax

iteration-statement:
while (expression) statement
do statement while (expression) ;
for (Jor-init-statement expressionopt expressionopt) statement

for-init-statement :
expression-statement
declaration-statement

The statement part of an iteration statement cannot be a declaration. However, it can be
a compound statement containing a declaration.

The while Statement
The while statement executes a statement repeatedly until the termination condition
(the expression) specified evaluates to zero. The test of the termination condition takes
place before each execution of the loop; therefore, a while loop executes zero or more
times, depending on the value of the termination expression. The following code uses
a while loop to trim trailing spaces from a string:

char *trim(char *szSource)
{

}

char *pszEOS;

II Set pointer to end of string to point to the character just
II before the 0 at the end of the string.
pszEOS - szSource + strlen(szSource) - 1;

while(pszEOS)- szSource && *pszEOS
*pszEOS-- - '\0';

return szSource;

The termination condition is evaluated at the top of the loop. If there are no trailing spaces,
the loop never executes.

The expression must be of an integral type, a pointer type, or a class type with an
unambiguous conversion to an integral or pointer type.

Chapter 5 Statements

Language Reference 145

c++ Language Reference

The do Statement
The do statement executes a statement repeatedly until the specified termination condition
(the expression) evaluates to zero. The test of the termination condition is made after each
execution of the loop; therefore, a do loop executes one or more times, depending on the
value of the termination expression. The following function uses the do statement to wait
for the user to press a specific key:

void WaitKey(char ASCIICode)
{

}

char chTemp;

do
{

}

chTemp = _getch();

while(chTemp 1= ASCIICode);

A do loop rather than a while loop is used in the preceding code - with the do loop, the
_getch function is called to get a keystroke before the termination condition is evaluated.
This function can be written using a while loop, but not as concisely:

void WaitKey(char ASCIICode)
{

}

char chTemp;

chTemp = _getch();

while(chTemp 1= ASCIICode
{

chTemp = _getch();
}

The expression must be of an integral type, a pointer type, or a class type with an
unambiguous conversion to an integral or pointer type.

146 Language Reference

Chapter 5 Statements

The for Statement
The for statement can be divided into three separate parts, as shown in Table 5.3.

Table 5.3 for Loop Elements

Syntax Name

Jor-init-statement

expression1

expression2

When Executed

Before any other element of the for
statement or the sub statement.

Before execution of a given iteration of
the loop, including the first iteration.

At the end of each iteration of the loop;
expression1 is tested after expression2
is evaluated.

Contents

Often used to initialize loop indices.
It can contain expressions or
declarations.

An expression that evaluates to an
integral type or a class type that has
an unambiguous conversion to an
integral type.

Normally used to increment loop
indices.

The Jor-init-statement is commonly used to declare and initialize loop-index variables.
The expression1 is often used to test for loop-termination criteria. The expression2 is
commonly used to increment loop indices.

The for statement executes the statement repeatedly until expression1 evaluates to zero.
The Jor-init-statement, expression1, and expression2 fields are all optional.

The following for loop:

fore for-init-statement; expressionl; expression2)
{

II Statements
}

is equivalent to the following while loop:

for-init-statement;
while(expressionl)
{

II Statements
expression2;

A convenient way to specify an infinite loop using the for statement is:

fore ; ;)
{

II Statements to be executed.
}

Language Reference 147

c++ Language Reference

This is equivalent to:

whil e(1)
{

II Statements to be executed.
}

The initialization part of the for loop can be a declaration statement or an expression
statement, including the null statement. The initializations can include any sequence
of expressions and declarations, separated by commas. Any object declared inside a
Jor-init-statement has local scope, as if it had been declared immediately prior to the
for statement. Although the name of the object can be used in more than one for loop
in the same scope, the declaration can appear only once. For example:

#include <iostream.h>

void main()
{

fore int i 0; i < 100; ++i)
cout« «"\n";

II The loop index, i, cannot be declared in the
II for-init-statement here because it is still in scope.
fore i = 100; i >= 0; --i)

cout « i « "\n";
}

Although the three fields of the for statement are normally used for initialization, testing
for termination, and incrementing, they are not restricted to these uses. For example, the
following code prints the numbers 1 to 100. The sub statement is the null statement:

#include <iostream.h>

void maine)
{

fore int

}

0; < 100; cout « ++i « endl)

Jump Statements
The C++ jump statements perform an immediate local transfer of control.

Syntax

jump-statement:
break ;
continue ;
return expressionopt ;

goto identifier ;

148 Language Reference

The break Statement
The break statement is used to exit an iteration or switch statement. It transfers control
to the statement immediately following the iteration sub statement or switch statement.

The break statement terminates only the most tightly enclosing loop or switch statement.
In loops, break is used to terminate before the termination criteria evaluate to O. In the
switch statement, break is used to terminate sections of code - normally before a case
label. The following example illustrates the use of the break statement in a for loop:

fore ; ;) II No termination condition.
{

if(List->AtEnd()
break;

List->Next();

cout « "Control transfers to here.\n";

Note There are other simple ways to escape a loop. It is best to use the break
statement in more complex loops, where it can be difficult to tell whether the loop
should be terminated before several statements have been executed.

For an example of using the break statement within the body of a switch statement,
see "The switch Statement," earlier in this chapter.

The continue Statement
The continue statement forces immediate transfer of control to the loop-continuation
statement of the smallest enclosing loop. (The "loop-continuation" is the statement that
contains the controlling expression for the loop.) Therefore, the continue statement can
appear only in the dependent statement of an iteration statement (although it may be the
sole statement in that statement). In a for loop, execution of a continue statement causes
evaluation of expression2 and then expression3.

The following example shows how the continue statement can be used to bypass sections
of code and skip to the next iteration of a loop:

#include <conio.h>

II Get a character that is a member of the zero-terminated
II string, szLegalString. Return the index of the character
II entered.
int GetLegalChar(char *szLegalString
{

char *pch;

do
{

char ch = _getch();

Chapter 5 Statements

Language Reference 149

c++ Language Reference

}

II Use strchr library function to determine if the
II character read is in the string. If not, use the
II continue statement to bypass the rest of the
II statements in the loop.
if((pch = strchr(szLegalString, ch)) == NULL)

continue;

II A character that was in the string szLegalString
II was entered. Return its index.
return (pch - szLegalString);

II The continue statement transfers control to here.
wh i 1 e (1);

return 0;

The return Statement
The return statement allows a function to immediately transfer control back to the
calling function (or, in the case of the main function, transfer control back to the
operating system). The return statement accepts an expression, which is the value
passed back to the calling function. Functions of type void, constructors, and
destructors cannot specify expressions in the return statement; functions of all
other types must specify an expression in the return statement.

The expression, if specified, is converted to the type specified in the function declaration,
as if an initialization were being performed. Conversion from the type of the expression to
the return type of the function can cause temporary objects to be created. See "Temporary
Objects" in Chapter 11, "Special Member Functions," for more information about how and
when temporaries are created.

When the flow of control exits the block enclosing the function definition, the result is the
same as it would be if a return statement with no expression had been executed. This is
illegal for functions that are declared as returning a value.

A function can have any number of return statements.

The goto Statement
The goto statement performs an unconditional transfer of control to the named label.
The label must be in the current function.

For more information about labels and the goto statement, see "Labeled Statements"
and "Using Labels with the goto Statement," at the beginning of this chapter.

150 Language Reference

Declaration Statements
Declaration statements introduce new names into the current scope. These names can be:

• Type names (class, struct, union, enum, typedef, and pointer-to-member).

• Object names.

• Function names.

Syntax

declaration-statement:
declaration

If a declaration within a block introduces a name that is already declared outside the block,
the previous declaration is hidden for the duration of the block. After termination of the
block, the previous declaration is again visible.

Multiple declarations of the same name in the same block are illegal.

For more information about declarations and name hiding, see "Declarations and
Definitions" and "Scope" in Chapter 2, "Basic Concepts."

Declaration of Automatic Objects
In C++, objects can be declared with automatic storage class using the auto or register
keyword. If no storage-class keyword is used for a local object (an object declared inside
a function), auto is assumed. C++ initializes and declares these objects differently than
objects declared with static storage classes.

Initialization of Automatic Objects
Each time declaration statem~nts for objects of storage class auto or register are executed,
initialization takes place. The following example, from "The continue Statement," shows
initialization of the automatic object ch inside the do loop.

#include <conio.h>

II Get a character that is a member of the zero-terminated
II string, szLegalString. Return the index of the character
II entered.
int GetLegalChar(char *szLegalString

char *pch;

Chapter 5 Statements

Language Reference 151

c++ Language Reference

}

do
{

II This declaration statement is executed once for each
II execution of the loop.
char ch = _getch();

if((pch = strchr(szLegalString. ch))
continue;

NULL)

II A character that was in the string szLegalString
II was entered. Return its index.
return (pch - szLegalString);

} while(1);

For each iteration of the loop (each time the declaration is encountered), the macro _getch
is evaluated and chis initialized with the results. When control is transferred outside the
block using the return statement, ch is destroyed (in this case, the storage is deallocated).

See "Storage Classes" in Chapter 2, "Basic Concepts," for another example of
initialization.

Destruction of Automatic Objects
Objects defined in a loop are destroyed once per iteration of the loop, on exit from the
block, or when control transfers to a point prior to the declaration. Objects declared in a
block that is not a loop are destroyed on exit from the block or when control transfers to
a point prior to the declaration.

Note Destruction can mean simply deallocating the object or, for class-type objects,
invoking the object's destructor.

When a jump statement transfers control out of a loop or block, objects declared in the
block transferred from are destroyed; objects in the block transferred to are not destroyed.

When control is transferred to a point prior to a declaration, the object is destroyed.

Transfers of Control
You can use the goto statement or a case label in a switch statement to specify a program
that branches past an initializer. Such code is illegal unless the declaration that contains
the initializer is in a block enclosed by the block in which the jump statement occurs.

The following example shows a loop that declares and initializes the objects tota 1, ch,
and i. There is also an erroneous goto statement that transfers control past an initializer.

152 Language Reference

II Read input until a nonnumeric character is entered.
while(1)
{

int total = 0;

char ch = _getch();

if(ch >= '0' II ch <= '9')
{

goto Labell; II Error: transfers past initialization
II of i.

i nt i = ch - '0';

Labell :

}

total += i;
} II i would be destroyed here if the

II goto error were not present.
else

II Break statement transfers control out of loop,
II destroying total and ch.
break;

In the preceding example, the goto statement tries to transfer control past the initialization
of i . However, if i were declared but not initialized, the transfer would be legal.

The objects total and ch, declared in the block that serves as the statement of the whi 1 e
statement, are destroyed when that block is exited using the b rea k statement.

Declaration of Static Objects
An object can be declared with static storage class using the static or extern keyword.
Local objects must be explicitly declared as static or extern to have static storage class.
All global objects (objects declared outside all functions) have static storage class. You
cannot declare static instances in a tiny-model program.

Initialization of Static Objects
Global objects are initialized at program startup. (For more information about construction
and destruction of global objects, see "Additional Startup Considerations" and "Additional
Termination Considerations" in Chapter 2, "Basic Concepts.")

Chapter 5 Statements

Language Reference 153

c++ Language Reference

Local objects declared as static are initialized the first time their declarations are
encountered in the program flow. The following class, introduced in Chapter 2,
"Basic Concepts," shows how this works:

#include <iostream.h>
#include <string.h>

II Define a class that logs initializations and destructions.
cl ass InitDemo
{

public:
InitDemo(char *szWhat);
~InitDemo() ;

private:
char *szObjName;

} ;

II Constructor for class InitDemo.
InitDemo::InitDemo(char *szWhat)
{

}

if(szWhat 1= 0 && strlen(szWhat) > 0
{

szObjName = new char[strlen(szWhat + 1];
strcpy(szObjName, szWhat);

else
szObjName = 0;

clog « "Initializing: "« szObjName « "\n";

II Destructor for InitDemo.
InitDemo::~InitDemo()

{

}

if(szObjName 1= 0
{

}

clog « "Destroying: " « szObjName « "\n";
delete szObjName;

154 Language Reference

II Main function.
void main(int argc, char *argv[])
{

}

if (a rg c < 2)
{

}

cerr « "Supply a one-letter argument.\n";
return -I;

if(*argv[l] == 'a')
{

cout « "*argv[l] was an 'a'\n";

II Declare static local object.
static InitDemo 11("static 11");

else
cout « "*argv[1] was not an 'a' \n";

Chapter 5 Statements

If the command-line argument supplied to this program starts with the lowercase letter "a,"
the declaration of II is executed, the initialization takes place, and the result is:

*argv[l] was an 'a'
Initializing: static II
Destroying: static II

Otherwise, the flow of control bypasses the declaration of II and the result is:

*argv[l] was not an 'a'

When a static local object is declared with an initializer that does not evaluate to a constant
expression, the object is given the value 0 (converted to the appropriate type) at the point
before execution enters the block for the first time. However, the object is not visible and
no constructors are called until the actual point of declaration.

At the point of declaration, the object's constructor (if the object is of a class type) is called
as expected. (Static local objects are only initialized the first time they are seen.)

Destruction of Static Objects
Local static objects are destroyed during termination specified by atexit.

If a static object was not constructed because the program's flow of control bypassed
its declaration, no attempt is made to destroy that object.

Language Reference 155

c++ Language Reference

Exception Handling
Microsoft c++ supports two kinds of exception handling, c++ exception handling (try,
throw, catch) and structured exception handling C_try/ __ except, __ try/ __ finally). If
possible, you should use C++ exception handling rather than structured exception
handling.

Note In this section, the terms "structured exception handling" and "structured
exception" (or "C exception") refer exclusively to the structured exception handling
mechanism provided by Win32. All other references to exception handling (or "C++
exception") refer to the C++ exception handling mechanism.

Although structured exception handling works with C and C++ source files, it is not
specifically designed for C++. For C++ programs, you should use C++ exception handling.

The try, catch, and throw Statements
The C++ language provides built-in support for handling anomalous situations, known
as "exceptions," which may occur during the execution of your program. The try, throw,
and catch statements have been added to the C++ language to implement exception
handling. With C++ exception handling, your program can communicate unexpected
events to a higher execution context that is better able to recover from such abnormal
events. These exceptions are handled by code which is outside the normal flow of control.
The Microsoft C++ compiler implements the C++ exception handling model based on
the ISO WG2l/ANSI X3116 working papers towards the evolving standard for C++.

Syntax

try-block:
try compound-statement handler-list

handler-list:
handler handler-listopt

handler:
catch (exception-declaration) compound-statement

exception-declaration :
type-specifier-list declarator
fype-specifier-list abstract-declarator
type-specifier-list

throw-expression :
throw assignment-expressionopt

156 Language Reference

The compound-statement after the try clause is the guarded section of code. The
throw-expression "throws" (raises) an exception. The compound-statement after the
catch clause is the exception handler, and "catches" (handles) the exception thrown
by the throw-expression. The exception-declaration statement indicates the type of
exception the clause handles. The type can be any valid data type, including a C++ class.
If the exception-declaration statement is an ellipsis (••.), the catch clause handles any
type of exception, including a C exception. Such a handler must be the last handler for
its try block.

The operand of throw is syntactically similar to the operand of a return statement.

Note Microsoft C++ does not support the function throw signature mechanism, as
described in section 15.5 of the ANSI C++ draft. In addition, it does not support
function-try-block described in section 15 of the ANSI C++ draft.

Execution proceeds as follows:

i. Control reaches the try statement by normal sequential execution. The guarded section
(within the try block) is executed.

2. If no exception is thrown during execution of the guarded section, the catch clauses
that follow the try block are not executed. Execution continues at the statement after
the last catch clause following the try block in which the exception was thrown.

3. If an exception is thrown during execution of the guarded section or in any routine the
guarded section calls (either directly or indirectly), an exception object is created from
the object created by the throw operand. (This implies that a copy constructor may be
involved.) At this point, the compiler looks for a catch clause in a higher execution
context that can handle an exception of the type thrown (or a catch handler that can
handle any type of exception). The catch handlers are examined in order of their
appearance following the try block. If no appropriate handler is found, the next
dynamically enclosing try block is examined. This process continues until the
outermost enclosing try block is examined.

4. If a matching handler is still not found, or if an exception occurs while unwinding, but
before the handler gets control, the predefined run-time function termi nate is called.
If an exception occurs after throwing the exception, but before the unwind begins,
term; nate is called.

5. If a matching catch handler is found, and it catches by value, its formal parameter is
initialized by copying the exception object. If it catches by reference, the parameter is
initialized to refer to the exception object. After the formal parameter is initialized, the
process of "unwinding the stack" begins. This involves the destruction of all automatic
objects that were constructed (but not yet destructed) between the beginning of the
try block associated with the catch handler and the exception's throw site. Destruction
occurs in reverse order of construction. The catch handler is executed and the program
resumes execution following the last handler (that is, the first statement or construct
which is not a catch handler). Control can only enter a catch handler through a thrown
exception; never via a gata statement or a case label in a swi tch statement.

Chapter 5 Statements

Language Reference 157

c++ Language Reference

The following is a simple example of a try block and its associated catch handler.
This example detects failure of a memory allocation operation using the new operator.
If new is successful, the catch handler is never executed:

#include <iostream.h>

int main()
{

}

char *buf;
try
{

}

buf = new char[512];
if(buf == 0)

throw "Memory allocation failure!";

catch(char * str)
{

}

II

cout « "Exception raised: " « str « '\n';

return 0;

The operand of the throw expression specifies that an exception of type c h a r * is being
thrown. It is handled by a catch handler that expresses the ability to catch an exception
of type c h a r *. In the event of a memory allocation failure, this is the output from the
preceding example:

Exception raised: Memory allocation failure!

The real power of C++ exception handling lies not only in its ability to deal with
exceptions of varying types, but also in its ability to automatically call destructor functions
during stack unwinding, for all local objects constructed before the exception was thrown.

The following example demonstrates C++ exception handling using classes with destructor
semantics:

#include <iostream.h>

void MyFunc(void);

class CTest
{

public:

} ;

CTest(){};
~CTest() {};
const char *ShowReason() const { return "Exception in CTest class."; }

158 Language Reference

class CDtorDemo
{

public:

} ;

CDtorDemo();
..... CDtorDemo();

CDtorDemo::CDtorDemo()
{

cout « "Constructing CDtorDemo.\n";
}

CDtorDemo:: CDtorDemo()
{

cout « "Destructing CDtorDemo.\n";
}

v 0 i d My Fun c ()
{

CDtorDemo D;
cout« "In MyFunc(). Throwing CTest exception.\n";
throw CTest();

int maine)
{

cout « "In main.\n";
try
{

}

cout « "In try block. calling MyFunc().\n";
MyFunc () ;

catch(CTest E
{

}

cout « "In catch handler.\n";
cout « "Caught CTest exception type: ";
cout « E.ShowReason() « "\n";

catch(char *str)
{

cout « "Caught some other exception: " « str « "\n";

cout « "Back in main. Execution resumes here.\n";
return 0;

Chapter 5 Statements

Language Reference 159

c++ Language Reference

This is the output from the preceding example:

In main.
In try block. calling MyFunc().
Constructing CDtorDemo.
In MyFunc(). Throwing CTest exception.
Destructing CDtorDemo.
In catch handler.
Caught CTest exception type: Exception in CTest class.
Back in main. Execution resumes here.

Note that in this example, the exception parameter (the argument to the catch clause)
is declared in both catch handlers:

catch(CTest E)
I I ...
catch(char *str
I I ...

You do not need to declare this parameter; in many cases it may be sufficient to notify the
handler that a particular type of exception has occurred. However, if you do not declare
an exception object in the exception-declaration, you will not have access to that object
in the catch handler clause.

A throw-expression with no operand re-throws the exception currently being handled.
Such an expression should appear only in a catch handler or in a function called from
within a catch handler. The re-thrown exception object is the original exception object
(not a copy). For example:

try
{

throw CSomeOtherException();
}

catch(...)
{

II Handle all exceptions

}

II Respond (perhaps only partially) to exception
II

throw; II Pass exception to some other handler

160 Language Reference

Unhandled Exceptions
If a matching handler (or ellipsis catch handler) cannot be found for the current exception,
the predefined termi nate function is called. (You can also explicitly call termi nate in any
of your handlers.) The default action of termi nate is to call abort. If you want termi nate
to call some other function in your program before exiting the application, call the
s et_ te rmi nate function with the name of the function to be called as its single argument.
You can call set_termi nate at any point in your program. The termi nate routine always
calls the last function given as an argument to set_termi nate. For example:

#include <eh.h>
I I ...
void term_func()
int main()
{

try
{

II

II For function prototypes

II

set_terminate(term_func);
I I ...
throw "Out of memory!"; II No catch handler for this exception

catch (i nt
{

cout « "Integer exception raised.";
}

return 0;

The term_func function should terminate the program or current thread, ideally by calling
exi t. If it doesn't, and instead returns to its caller, abort is called.

For more information about C++ exception handling, see the Annotated C++ Reference
Manual by Margaret A. Ellis and Bjarne Stroustrup.

Chapter 5 Statements

Language Reference 161

c++ Language Reference

Structured Exception Handling
The __ try/ __ except and __ try/ __ finally statements are a Microsoft extension to the
C language that enables applications to gain control of a program after events that would
normally terminate execution.

Note Structured exception handling works with C and C++ source files. However,
it is not specifically designed for C++. Although destructors for local objects will
be called if you use structured exception handling in a C++ program (if you use the
/GX compiler option), you can ensure that your code is more portable byqsing C++
exception handling. The C++ exception handling mechanism is more flexible, in that
it can handle exceptions of any type.

For more information, see "The try-except Statement" and "The try-finally Statement"
in Chapter 5, "Statements," in the C Language Reference, earlier in this volume.

Syntax

try-except-statement :
__ try compound-statement
__ except (expression) compound-statement

try-finally-statement :
__ try compound-statement
__ finally compound-statement

If you have C modules that use structured exception handling, they can be mixed with
C++ modules that use C++ exception handling. When a C (structured) exception is raised,
it can be handled by the C handler, or it can be caught by a C++ catch handler, whichever
is dynamically closest to the exception context. One of the major differences between the
two models is that when a C exception is raised, it is always of type unsigned int, whereas
a C++ exception can be of any type. That is, C exceptions are identified by an unsigned
integer value, whereas C++ exceptions are identified by data type. However, while a C++
catch handler can catch a C exception (for example, via an "ellipsis" catch handler), a C
exception can also be handled as a typed exception by using a C exception wrapper class.
By deriving from this class, each C exception can be attributed a specific derived class.

To use a C exception wrapper class, you install a custom C exception translator function
which is called by the internal exception handling mechanism each time a C exception is
thrown. Within your translator function, you can throw any typed exception, which can
be caught by an appropriate matching C++ catch handler. To specify a custom translation
function, call the _set_se_trans 1 ator function with the name of your translation function
as its single argument.

162 Language Reference

CHAPTER 6

Declarations

Declarations introduce new names into a program. Topics covered in this chapter include:

• Specifiers

• Enumeration declarations

• Linkage specifications

• Template specifications

• Namespaces

In addition to introducing a new name, a declaration specifies how an identifier is to be
interpreted by the compiler. Declarations do not automatically reserve storage associated
with the identifier - reserving storage is done by definitions.

Note Most declarations are also definitions.

Syntax

declaration:
decl-specifiersopt declarator-listopt
function-definition
linkage-specification
template-specification

The declarators in declarator-list contain the names being declared. Although the
declarator-list is shown as optional, it can be omitted only in declarations or definitions
of a function.

Note The declaration of a function is often called a "prototype." This declaration
provides type information about arguments and the function's return type that allows
the compiler to perform correct conversions and to ensure type safety.

The decl-specifiers part of a declaration is also shown as optional; however, it can be
omitted only in declarations of class types or enumerations.

Language Reference 163

c++ Language Reference

Declarations occur in a scope. This controls the visibility of the name declared and the
duration of the object defined (if any). For more information about how scope rules
interact with declarations, see "Scope" in Chapter 2, "Basic Concepts."

An object declaration is also a definition unless it contains the extern storage-class
specifier described in "Storage-Class Specifiers," in the next section. A function
declaration is also a definition unless it is a prototype - a function header with no
defining function body. An object's definition causes allocation of storage and
appropriate initializations for that object.

Specifiers
This section explains the decl-specifiers portion of declarations. (The syntax for
declarations is given at the beginning of this chapter.)

Syntax

decl-specifiers :
decl-specifiersopt decl-specifier

decl-specifier :
storage-class-specifier
type-specifier
Jet-specifier
friend
typedef
__ declspec (extended-decl-modifier-seq)

The Microsoft-specific keyword, __ declspec, is discussed in "Extended Attribute Syntax"
in Appendix B, "Microsoft-Specific Modifiers."

The decl-specifiers portion of a declaration is the longest sequence of decl-specifiers that
can be construed to be a type name. The remainder of the declaration is the name or names
introduced. The examples in the following list illustrates this concept:

Declaration dec/-specifiers name

char *lpszAppName; char * lpszAppName

typedef char * LPSTR; char * LPSTR

LPSTR strcpy(LPSTR. LPSTR) ; LPSTR strcpy

volatile void *pvvObj; volatile void * pvvObj

164 Language Reference

Chapter 6 Declarations

Because signed, unsigned, long, and short all imply int, a typedef name following one of
these keywords is taken to be a member of declarator-list, not of decl-specifiers.

Note Because a name can be redeclared, its interpretation is subject to the most recent
declaration in the current scope. Redeclaration can affect how names are interpreted by
the compiler, particularly typedef names.

Storage-Class Specifiers
The c++ storage-class specifiers tell the compiler the duration and visibility of the object
or function they declare, as well as where an object should be stored.

Syntax

storage-cLass-specifier:
auto
register
static
extern

Automatic Storage-Class Specifiers
The auto and register storage-class specifiers can be used only to declare names used in
blocks or to declare formal arguments to functions. The term "auto" comes from the fact
that storage for these objects is automatically allocated at run time (normally on the
program's stack).

The auto Keyword
Few programmers use the auto keyword in declarations because all block-scoped objects
not explicitly declared with another storage class are implicitly automatic. Therefore, the
following two declarations are equivalent:

{

auto int i ; 'I I Explicitly declared as auto.
int j; II Implicitly auto.
}

The register Keyword
Microsoft Specific ~

The compiler does not accept user requests for register variables; instead, it makes its own
register choices when global register-allocation optimization (fOe option) is on. However,
all other semantics associated with the register keyword are honored.

END Microsoft Specific

Language Reference 165

c++ Language Reference

ANSI C does not allow for taking the address of a register object; this restriction does not
apply to C++. However, if the address-of operator (&) is used on an object, the compiler
must put the object in a location for which an address can be represented - in practice,
this means in memory instead of in a register.

Static Storage-Class Specifiers
The static storage-class specifiers, static and extern, can be applied to objects and
functions. Table 6.1 shows where the keywords static and extern can and cannot be used.

Table 6.1 Use of static and extern

Construct

Function declarations within a block

Formal arguments to a function

Objects in a block

Objects outside a block

Functions

Class member functions

Class member data

typedef names

Can static be Used? Can extern be Used?

No Yes

No No

Yes Yes

Yes Yes

Yes Yes

Yes No

Yes No

No No

A name specified using the static keyword has internal linkage except for the static
members of a class that have external linkage. That is, it is not visible outside the current
translation unit. A name specified using the extern keyword has external linkage unless
previously defined as having internal linkage. For more information about the visibility
of names, see "'Scope" and "Program and Linkage" in Chapter 2, "Basic Concepts."

Note Functions that are declared as inUne and that are not class member functions
are given the same linkage characteristics as functions declared as static.

A class name whose declaration has not yet been: encountered by the compiler can be used
in an extern declaration. The name introduced with such a declaration cannot be used until
the class declaration has been encountered.

Names Without Storage-Class Specifiers
File-scope names with no explicit storage-class specifiers have external linkage unless
they are:

• Declared using the const keyword.

• Previously declared with internal linkage.

166 Language Reference

Function Specifiers
You can use the inline and virtual keywords as specifiers in function declarations.
This use of virtual differs from its use in the base-class specifier of a class definition.

inline Specifier

Chapter 6 Declarations

The inline specifier instructs the compiler to replace function calls with the code of the
function body. This substitution is "inline expansion" (sometimes called "inlining"). Inline
expansion alleviates the function-call overhead at the potential cost of larger code size.

The inline keyword tells the compiler that inline expansion is preferred. However, the
compiler can create a separate instance of the function (instantiate) and create standard
calling linkages instead of inserting the code inline. Two cases where this can happen are:

• Recursive functions.

• . Functions that are referred to through a pointer elsewhere in the translation unit.

Note that for a function to be considered as a candidate for inlining, it must use the
new-style function definition. Functions that are declared as inline and that are not
class member functions have internal linkage unless otherwise specified.

Microsoft Specific ~

The __ inline keyword is equivalent to inline.

The __ forceinline keyword instructs the compiler to inline the function without
performing any costlbenefit analysis. The programmer must exercise good judgement in
using this keyword. Indiscriminate use of __ forceinline can result in larger, and
sometimes even slower, code.

Even with __ forceinline, the compiler cannot inline code in all circumstances. The
compiler cannot inline a function if:

• The function or its caller is compiled with lObO (the default option for debug builds).

• The function and the caller use different types of exception handling (C++ exception
handling in one, structured exception handling in the other).

• The function has a variable argument list.

• The function uses inline assembly, unless compiled with 109, lOx, 101, or 102.

• The function returns an unwindable object by value, when compiled with IGX, !ERs,
or !ERa.

Language Reference 167

c++ Language Reference

• The function receives a copy-constructed object passed by value, when compiled with
/-GX, !ERs, or !ERa.

• The function is recursive and not accompanied by #pragma(inline_recursion, on).
With the inline_recursion pragma, recursive functions can be inlined to a depth of
eight calls, or as determined by the inline_depth pragma (see below).

• The function is virtual.

• The program takes the address of the function.

If the compiler cannot inline a function declared with __ forceinline, it generates a
level I warning (4714).

END Microsoft Specific

As with nonhal functions, there is no defined order of evaluation of the arguments to an
inline function. In fact, it could be different from the order in which the arguments are
evaluated when passed using normal function call protocol.

Microsoft Specific ~

Recursive functions can be substituted inline to a depth specified by the inline_depth
pragma. After that depth, recursive function calls are treated as calls to an instance of the
function. The inline_recursion pragma controls the inline expansion of a function currently
under expansion. See the Inline-Function Expansion (lOb) compiler option for related
information.

END Microsoft Specific

Inline Class Member Functions
A function defined in the body of a class declaration is an inline function. Consider the
following class declaration:

class Account
{

public:
Account(double initial_balance) {balance initial_balance;}
double GetBalance();
double Deposit(double Amount);
double Withdraw(double Amount);

private:
double balance;

} ;

168 Language Reference

The Account constructor is an inline function. The member functions GetBa 1 ance,
Deposit, and Withdraw are not specified as inline but can be implemented as inline
functions using code such as the following:

inline double Account::GetBalanceC)
{

return balance;

inline double Account::DepositC double Amount)

return C balance += Amount);

inline double Account::WithdrawC double Amount)

return C balance -= Amount);

Chapter 6 Declarations

Note In the class declaration, the functions were declared without the inline keyword.
The inline keyword can be specified in the class declaration; the result is the same.

A given inline member function must be declared the same way in every compilation unit.
This constraint causes inline functions to behave as if they were instantiated functions.
Additionally, there must be exactly one definition of an in line function.

A class member function defaults to extemallinkage unless a definition for that function
contains the inline specifier. The preceding example shows that these functions need not
be explicitly declared with the inline specifier; using inline in the function definition
causes it to be an inline function. However, it is illegal to redeclare a function as inline
after a call to that function.

Inline Functions versus Macros
Although inline functions are similar to macros (because the function code is expanded at
the point of the call at compile time), inline functions are parsed by the compiler, whereas
macros are expanded by the preprocessor. As a result, there are several important
differences:

• Inline functions follow all the protocols of type safety enforced on normal functions.

• Inline functions are specified using the same syntax as any other function except that
they include the inline keyword in the function declaration.

Language Reference 169

c++ Language Reference

• Expressions passed as arguments to inline functions are evaluated once. In some cases,
expressions passed as arguments to macros can be evaluated more than once. The
following example shows a macro that converts lowercase letters to uppercase:

#include <stdio.h>
#include <conio.h>

Ildefine toupper(a) «a) >= 'a' && «a) <= 'z') ? «a)-('a'-'A')):(a))

void maine)
{

char ch toupper(_getch());
pri ntf("%c". ch);

The intent of the expression toupper (_getch ()) is that a character should be read
from the console device (stdin) and, if necessary, converted to uppercase.

Because of the implementation, _getch is executed once to determine whether the
character is greater than or equal to "a," and once to determine whether it is less than
or equal to "z." If it is in that range, _getch is executed again to convert the character
to uppercase. This means the program waits for two or three characters when, ideally,
it should wait for only one.

Inline functions remedy this problem:

#include <stdio.h>
#include <conio.h>

inline char toupper(char a)
{

return «a >= 'a' && a <= 'z') ? a-('a'-'A') a);

void maine)
{

char ch toupper(_getch());
printf("%c". ch);

When to Use Inline Functions
Inline functions are best used for small functions such as accessing private data members.
The main purpose of these one- or two-line "accessor" functions is to return state
information about objects; short functions are sensitive to the overhead of function calls.
Longer functions spend proportionately less time in the calling/returning sequence and
benefit less from inlining.

170 Language Reference

The Poi nt class, introduced in "Function-Call Results" in Chapter 4, "Expressions," can
be optimized as follows:

class Point

public:
II Define "accessor" functions as
II reference types.
unsigned& xC);
unsigned& y();

private:
unsigned _x;
unsigned 3;

} ;

inline unsigned& Point::x()

return _x;

inline unsigned& Point::y()
{

return 3;

Assuming coordinate manipulation is a relatively common operation in a client of such a
class, specifying the two accessor functions (x and y in the preceding example) as inUne
typically saves the overhead on:

• Function calls (including parameter passing and placing the object's address on the
stack)

• Preservation of caller's stack frame

• New stack-frame setup

• Return-value communication

• Old stack-frame restore

• Return

virtual Specifier
The virtual keyword can be applied only to nonstatic class member functions. It signifies
that binding of calls to the function is deferred until run time. For more information, see
"Virtual Functions" in Chapter 9, "Derived Classes."

Chapter 6 Declarations

Language Reference 171

c++ Language Reference

typedef Specifier
The typedef specifier defines a name that can be used as a synonym for a type or derived
type. You cannot use the typedef specifier inside a function definition.

Syntax

typedef-name:
identifier

A typedef declaration introduces a name that, within its scope, becomes a synonym for the
type given by the decl-specifiers portion of the declaration. In contrast to the class, struct,
union, and enum declarations, typedef declarations do not introduce new types - they
introduce new names for existing types.

One use of typedef declarations is to make declarations more uniform and compact.
For example:

typedef char CHAR;
typedef CHAR * PSTR;

II Character type.
II Pointer to a string (char *).

PSTR strchr(PSTR source, CHAR target);

The names introduced by the preceding declarations are synonyms for:

Name

CHAR

PSTR

Synonymous Type

char

char *

The preceding example code declares a type name, CHAR, which is then used to define the
derived type name PSTR (a pointer to a string). Finally, the names are used in declaring the
function strchr. To see how the typedef keyword can be used to clarify declarations,
contrast the preceding declaration of strchr with the following declaration:

char * strchr(char * source, char target);

To use typedef to specify fundamental and derived types in the same declaration, you can
separate declarators with commas. For example:

typedef char CHAR, *PSTR;

A particularly complicated use of typedef is to define a synonym for a "pointer to a
function that returns type T." For example, a typedef declaration that means "pointer to
a function that takes no arguments and returns type void" uses this code:

typedef void (*PVFN)();

172 Language Reference

The synonym can be handy in declaring arrays of functions that are to be invoked
through a pointer:

#include <iostream.h>
#include <stdlib.h>

extern void funcl();
extern void func2();
extern void func3();
extern void func4();

typedef void (*PVFN)();

II Declare 4 functions.
II These functions are assumed .to be
II defined elsewhere.

II Declare synonym for pointer to
II function that takes no arguments
II and returns type void.

void maine int argc. char * argv[]
{

II Declare an array of pointers to functions.
PVFN pvfnl[] = { funcl. func2. func3. func4 };

II Invoke the function specified on the command line.
if(argc > 0 && *argv[l] > '0' && *argv[l] <= '4')
(*pvfnl[atoi(argv[l]) - l])();

Redeclaration of typedef Names
The typedef declaration can be used to redeclare the same name to refer to the same type.
For example:

II FILE1.H
typedef char CHAR;

II FILE2.H
typedef char CHAR;

II PROG.CPP
#include "filel.h"
#include "file2.h" II OK

The program PROG.CPP in~ludes two header files, both of which contain typedef
declarations for the name CHAR. As long as both declarations refer to the same type,
such redeclaration is acceptable.

Chapter 6 Declarations

Language Reference 173

c++ Language Reference

A typedef cannot redefine a name that was previously declared as a different type.
Therefore, if FILE2.H contains

II FILE2.H
typedef int CHAR; II Error

the compiler issues an error because of the attempt to redeclare the name CHAR to refer to
a different type. This extends to constructs such as:

typedef char CHAR;
typedef CHAR CHAR;

typedef union REGS
{

struct wordregs x;
struct byteregs h;

} REGS;

II OK: redeclared as same type

II OK: name REGS redeclared
II by typedef name with the
II same meaning.

Use of typedef with Class Types
Use of the typedef specifier with class types is supported largely because of the ANSI C
practice of declaring unnamed structures in typedef declarations. For example, many C
programmers use the following:

typedef struct
{

unsigned x;
unsigned y;

} POINT;

II Declare an unnamed structure and give it the
II typedef name POINT.

The advantage of such a declaration is that it enables declarations like:

POINT ptOrigin;

instead of:

struct point_t ptOrigin;

In C++, the difference between typedef names and real types (declared with the class,
struct, union, and enum keywords) is more distinct. Although the C practice of declaring
a nameless structure in a typedef statement still works, it provides no notational benefits
as it does in C.

174 Language Reference

In the following code, the PO I NT function is not a type constructor. It is interpreted as a
function declarator with an int return type.

typedef struct
{

POINT<) ;
unsigned x;
unsigned y;

POINT;

II Not a constructor.

The preceding example declares a class named PO I NT using the unnamed class typedef
syntax. PO I NT is treated as a class name; however, the following restrictions apply to
names introduced this way:

• The name (the synonym) cannot appear after a class, struct, or union prefix.

Chapter 6 Declarations

• The name cannot be used as constructor or destructor names within a class declaration.

In summary, this syntax does not provide any mechanism for inheritance, construction,
or destruction.

Name Space of typedef Names
Names declared using typedef occupy the same name space as other identifiers
(except statement labels). Therefore, they cannot use the same identifier as a previously
declared name, except in a class-type declaration. Consider the following example:

typedef unsigned long UL;
int UL;

II Declare a typedef name, UL.
I I Error: redefi ned.

The name-hiding rules that pertain to other identifiers also govern the visibility of names
declared using typedef. Therefore, the following example is legal in C++:

typedef unsigned long UL;

long Beep
{

unsigned int UL;

}

II Declare a typedef name, UL.

II Redeclaration hides typedef name.

II typedef name "unhidden" here.

Language Reference 175

c++ Language Reference

friend Specifier
The friend specifier is used to designate functions or classes that have the same access
privileges as class member functions. Friend functions and classes are covered in detail
in "Friends" in Chapter 10, "Member-Access Control."

Type Specifiers
Type specifiers determine the type of the name being declared.

Syntax

type-specifier:
simple-type-name
class-specifier
enum-specifier
elaborated-type-specifier
:: class-name
const
volatile

The following sections discuss simple type names, elaborated type specifiers, and nested
type names.

Simple Type Names
A simple type name is the name of a complete type.

Syntax

simple-type-name:
complete-class-name
qualified-type-name
char
short
int
long
signed
unsigned
float
double
void.

176 Language Reference

Table 6.2 shows how the simple type names can be used together.

Table 6.2 Type Name Combinations

Type Can Appear With

int

long

short

signed

long or short, but not both

int or double

int

char, short, int, or long

Comments

Type int implies type long into

Type long implies type long int.

Type short implies type short int.

Type signed implies signed int.

Chapter 6 Declarations

The most-significant bit of objects of
type signed char and bit fields of signed
integral types is taken to be the sign bit.

unsigned char, short, int, or long Type unsigned implies unsigned int.
The most-significant bit of objects of type
unsigned char and bit fields of unsigned
integral types is not treated as the sign bit.

Elaborated Type Specifiers
Elaborated type specifiers are used to declare user-defined types. These can be either
class- or enumerated-types.

Syntax

elaborated-type-specifier :
class-key class-name
class-key identifier
enum enum-name

class-key:
class
struct
union

If identifier is specified, it is taken to be a class name. For example:

class Window;

This statement declares the Wi ndow identifier as a class name. This syntax is used
for forward declaration of classes. For more information about class names, see
"Class Names" in Chapter 8, "Classes."

Language Reference 177

c++ Language Reference

If a name is declared using the union keyword, it must also be defined using the union
keyword. Names that are defined using the class keyword can be declared using the
struct keyword (and vice versa). Therefore, the following code samples are legal:

II Leg~l example 1
struct A; II Forward declaration of A.

class A
{

public:

II Define A.

int i;
} ;

II Legal example 2
class A; II Forward declaration of A.

struct A
{

II Define A.

private:
int i;

} ;

II Legal example 3
union A; II Forward declaration of A.

union A II Define A.

} ;

i nt i;
char ch[2];

These examples, however, are illegal:

II Illegal example 1
union A; II Forward declaration of A.

struct A
{

int i;
} ;

II Define A.

II Illegal example 2
union A; II Forward declaration of A.

class A
{

public:
i nt i;

} ;

178 Language Reference

II Define A.

II Illegal example 3
struct A; II Forward declaration of A.

union A
{

II Define A.

int i . .
char ch[2];

} ;

Nested Type Names
Microsoft c++ supports declaration of nested types - both named and anonymous.

Syntax

qualified-type-name :
typedef-name
class-name :: qualified-type-name

complete-cLass-name :
qualified-cLass-name
:: qualified-cLass-name

qualified-cLass-name :
class-name
class-name :: qualified-cLass-name

Chapter 6 Declarations

In some programming situations, it makes sense to define nested types. These types are visible
only to member functions of the class type in which they are defined. They can also be made
visible by constructing a qualified type name using the scope-resolution operator (::)

Note One commonly used class hierarchy that employs nested types is iostream. In the
iostream header files, the definition of class ios includes a series of enumerated types,
which are packaged for use only with the iostream library.

The following example defines nested classes:

class WinSystem
{

public:
class Window
{

public:
Wi ndowC) ;
~WindowC);

int NumberOfC);
int CountC);

private:
static int CCount;

} ;

II Default constructor.
II Destructor.
II Number of objects of class.
II Count number of objects of class.

Language Reference 179

c++ Language Reference

} ;

class CommPort
{

public:
CommPort();
~CommPort();

int NumberOf();
i nt Count();

private:
static int CCount;

} ;

II Default constructor.
II Destructor.
II Number of objects of class.
II Count number of objects of class.

II Initialize WinSystem static members.
int WinSystem::Window::CCount = 0;
int WinSystem::CommPort::CCount = 0;

To access a name defined in a nested class, use the scope-resolution operator (::) to
construct a complete class name. Use of this operator is shown in the initializations of
the static members in the preceding example. To use a nested class in your program,
use code such as:

WinSystem: :Window Desktop;
WinSystem::Window AppWindow;

cout « "Number of active windows: " « Desktop.Count() « "\n";

Nested anonymous classes or structures can be defined as:

class Ledger
{

} ;

class
{

public:
double PayableAmt;
unsigned PayableDays;

} Payables;

class
{

public:
double RecvableAmt;
unsigned RecvableDays;

} Receivables;

An anonymous class must be an aggregate that has no member functions and no static
members.

Note Although an enumerated type can be defined inside a class declaration, the
reverse is not true; class types cannot be defined inside enumeration declarations.

180 Language Reference

Enumeration Declarations
An enumeration is a distinct integral type that defines named constants. Enumerations are
declared using the enum keyword.

Syntax

enum-name:
identifier

enum-specifier :
enum identifieropt { enum-listopt }

enum-list:
enumerator
enum-list, enumerator

enumerator:
identifier
identifier = constant-expression

Chapter 6 Declarations

Enumerated types are valuable when an object can assume a known and reasonably limited
set of values. Consider the example of the suits from a deck of cards:

class Card
{

public:
enum Suit
{

} ;

Diamonds.
Hearts.
Clubs.
Spades

II Declare two constructors: a default constructor.
II and a constructor that sets the cardinal and
II suit value of the new card .

. Card();
Card(int Cardlnit. Suit Suitlnit);

Language Reference 181

c++ Language Reference

II Get and Set functions.
int GetCardinal();
int SetCardinal();
Suit GetSuit();

II Get
II Set
II Get
II Set

cardinal value of card.
cardinal value of card.
suit of card.
suit of card. void SetSuit(Suit new_suit);

char *NameOf(); II Get string representation of card.
private:

Suit
int

} ;

suit ;
cardinalValue;

II Define a postfix increment operator for Suit.
inline Card::Suit operator++(Card::Suit &rs, int
{

return rs = (Card::Suit)(rs + 1);
}

The preceding example defines a class, Card, that contains a nested enumerated type, Sui t.
To create a pack of cards in a program, use code such as:

Card *Deck[52];
i nt j = 0;

fore Card::Suit curSuit = Card::Diamonds; curSuit <= Card::Spades;
curSuit++)

fore int i = 1; i <= 13; ++i)
Deck[j++] = new Card(i, curSuit);

In the preceding example, the type Sui t is nested; therefore, the class name (Ca rd) must
be used explicitly in public references. In member functions, however, the class name
can be omitted.

In the first segment of code, the postfix increment operator for Ca rd: : Sui t is defined.
Without a user-defined increment operator, curSui t could not be incremented. For more
information about user-defined operators, see "Overloaded Operators" in Chapter 12,
"Overloading. "

Consider the code for the NameOf member function (a better implementation is presented
later):

char* Card::NameOf() II Get the name of a card.
{

static char szName[20];
static char *Numbers[] =
{ "1", "2", "3", "4", "5", "6", "7", "8", "9",

"10", "Jack", "Queen", "Ki ng"
} ;

static char *Suits[] =
{"Diamonds", "Hearts", "Clubs", "Spades"};

182 Language Reference

if(GetCardinal() < 13)
strcpy(szName, Numbers[GetCardinal()]);

strcat(szName, " of ");

switch(GetSuit()
{

II Diamonds, Hearts, Clubs, and Spades do not need explicit
II class qualifier.
case Diamonds: strcat(szName, "Diamonds") ; break;
case Hearts: strcat(szName, "Hearts") ; break;
case Clubs: strcat(szName, "Clubs") ; break;
case Spades: strcat(szName, "Spades") ; break;

return szName;

An enumerated type is an integral type. The identifiers introduced with the enum
declaration can be used wherever constants appear. Normally, the first identifier's value
is a (Di amonds, in the preceding example), and the values increase by one for each
succeeding identifier. Therefore, the value of Spades is 3.

Any enumerator in the list, including the first one, can be initialized to a value other than
its default value. Suppose the declaration of Sui t had been the following:

enum Suit
{

} ;

Diamonds 5,
Hearts,
Clubs = 4,
Spades

Then the values of Di amonds, Hea rts, Cl ubs, and Spades would have been 5, 6, 4, and 5,
respectively. Note that 5 is used more than once.

The default values for these enumerators simplify implementation of the NameOf function:

char* Card: :NameOf() II Get the name of a card.
{

static char szName[20];
static char *Numbers[] =
{ "1", "2", "3", "4", "5", "6", "7", "8", "9",

"10", "Jack", "Queen", "King"
} ;

static char *Suits[] =
{ "Diamonds", "Hearts", "Cl ubs", "Spades"};

Chapter 6 Declarations

Language Reference 183

c++ Language Reference

if(GetCardinal () < 13)
strcpy(szName, Numbers[GetCardinal()]);

strcat(szName, " of ");

strcat(szName, Suits[GetSuit()]);

return szName;
}

The accessor function GetSui t returns type Sui t, an enumerated type. Because
enumerated types are integral types, they can be used as arguments to the array subscript
operator. (For more information, see "Subscript Operator" in Chapter 4, "Expressions.")

Enumerator Names
The names of enumerators must be different from any other enumerator or variable in the
same scope. However, the values can be duplicated.

Definition of Enumerator Constants
Enumerators are considered defined immediately after their initializers; therefore, they
can be used to initialize succeeding enumerators. The following example defines an
enumerated type that ensures that any two enumerators can be combined with the
OR operator:

enum FileOpenFlags
{

OpenReadOnly I,
OpenReadWrite OpenReadOnly «1,
OpenBinary OpenReadWrite « I,
OpenText = OpenBinary «1,
OpenShareable = OpenText « 1

} ;

In this example, the preceding enumerator initializes each succeeding enumerator.

184 Language Reference

Conversions and Enumerated Types
Because enumerated types are integral types, any enumerator can be converted to another
integral type by integral promotion. Consider this example:

enum Days
{

} ;

Sunday.
Monday.
Tuesday.
Wednesday.
Thursday,
Friday.
Saturday

i nt i;
Days d = Thursday;

i = d; II Converted by integral promotion.
cout « "i = " « i « "\n";

However, there is no implicit conversion from any integral type to an enumerated type.
Therefore (continuing with the preceding example), the following statement is in error:

d = 6; II Erroneous attempt to set d to Saturday.

Assignments such as this, where no implicit conversion exists, must use a cast to perform
the conversion:

d
d

(Days)6;
Days(4);

II Explicit cast-style conversion to type Days.
II Explicit function-style conversion to type Days.

The preceding example shows conversions of values that coincide with the enumerators.
There is no mechanism that protects you from converting a value that does not coincide
with one of the enumerators. For example:

d = Days(967);

Some such conversions may work. However, there is no guarantee that the resultant value
will be one of the enumerators. Additionally, if the size of the enumerator is too small to
hold the value being converted, the value stored may not be what you expect.

Chapter 6 Declarations

Language Reference 185

c++ Language Reference

Linkage Specifications
The term "linkage specification" refers to the protocol for linking functions (or procedures)
written in different languages. The following calling conventions are affected:

• Case sensitivity of names.

• Decoration of names. In C, the compiler prefixes names with an underscore. This is
often called "decoration." In C++, name decoration is used to retain type information
through the linkage phase. (See "Decorated Names," in Microsoft Visual C++ 6.0
Programmer's Guide online.)

• Order in which arguments are expected on the stack.

• Responsibility for adjusting the stack on function return. Either the called function or
the calling function is responsible.

• Passing of hidden arguments (whether any hidden arguments are passed).

Syntax

linkage-specification :
extern string-literal { declaration-listopt }

extern string-literal declaration

declaration-list:
declaration
declaration-list

Linkage specification facilitates gradually porting C code to C++ by allowing the use of
existing code.

Microsoft Specific --+

The only linkage specifications currently supported by Microsoft C++ are "e" and "C++".

END Microsoft Specific

The following example declares the functions atoi and atol with C linkage:

extern "e"
{

int atoi(char *string) ;

long atol(char *string) ;

}

Calls to these functions are made using C linkage. The same result could be achieved with
these two declarations:

extern "c" int atoi(char *string);
extern "c" long atol(char *string);

186 Language Reference

Chapter 6 Declarations

Microsoft Specific ~

All Microsoft C standard include files use conditional compilation directives to detect C++
compilation. When a C++ compilation is detected, the prototypes are enclosed in an extern
"C" directive as follows:

1/ Sample.h
#if definedC __ cplusplus)
extern "C"
{

#endif

II Function declarations

#if definedC __ cplusplus)
}

flendi f

END Microsoft Specific

You do not need to declare the functions in the standard include files as extern "C".

If a function is overloaded, no more than one of the functions of the same name can have
a linkage specifier. (For more information, see "Function Overloading" in Chapter 7,
"Declarators. ")

Table 6.3 shows how various linkage specifications work.

Table 6.3 Effects of Linkage Specifications

Specification Effect

Affects linkage of that object only On an object

On a function

On a class

Affects linkage of that function and all functions or objects declared within it

Affects linkage of all nonmember functions and objects declared within the class

If a function has more than one linkage specification, they must agree; it is an error to
declare functions as having both C and C++ linkage. Furthermore, if two declarations for
a function occur in a program - one with a linkage specification and one without - the
declaration with the linkage specification must be first. Any redundant declarations of
functions that already have linkage specification are given the linkage specified in the first
declaration. For example:

extern "C" i nt CFuncl();

int CFuncl(); II Redeclaration is benign; C linkage is
II retained.

Language Reference 187

c++ Language Reference

int CFunc2();

extern "C" intCFunc2(); II Error: not the first declaration of
II CFunc2; cannot contain linkage
/I specifier.

Functions and objects explicitly declared as static within the body of a compound
linkage specifier ({ }) are treated as static functions or objects; the linkage specifier is
ignored. Other functions and objects behave as if declared using the extern keyword.
(See "Storage-Class Specifiers" for details about the extern keyword.)

Template Specifications
The template declaration specifies a set of parameterized classes or functions.

Note For more information, see "Template Topics" in Microsoft Visual C++ 6.0
Programmer's Guide online.

Syntax

template-declaration :
template < template-argument-list > declaration

template-argument-list :
template-argument
template-argument-list, template-argument

template-argument:
type-argument
argument-declaration

type-argument:
class identifier
typename identifier

The declaration declares a function or a class. With function templates, each template
argument must appear at least once in the template-argument-list of the function being
declared.

The template-argument-list is a list of arguments used by the template function that
specifies which p~s of the following code will vary. For example:

template< class T. int i > class MyStack ...

In this case the template can receive a type (c 1 ass T) and a constant parameter (i n t I).

The template will use type T and the constant integer i upon construction. Within the body
of the MyStack declaration, you must refer to the T identifier.

188 Language Reference

Chapter 6 Declarations

The typename keyword can be used in the template-argument-list. The following template
declarations are identical:

template< class T1, class T2 > class X ...
template< typename T1, typename T2 > class X ...

Template arguments of the following form are allowed:

template<typename Type> class allocator {};
template<typename Type,

typename Allocator allocator<Type> > class stack {
} ;

stack<int> MyStack;

Visual C++ supports the reuse of template parameters in the template parameter list.
For example, the following code is now legal:

class Y { ... };
template<class T, T* pT> class Xl { ... };
template<class T1, class T2 = T1> class X2 { ... };

YaY;

X1<Y, &aY> xl;
X2<int> x2;

A template declaration itself does not generate code; it specifies a family of classes or
functions, one or more of which will be generated when referenced by other code.

Template declarations have global or namespace scope.

Visual C++ performs syntax checking of template definitions. This version of Visual C++
can detect errors that previous versions cannot. The compiler can now detect syntax errors
of templates that are defined but never instantiated.

Here is a list of common errors which could compile with the Visual C++ 4.0 compiler,
but not the Visual C++ 5.0 or later compiler:

• A user-defined type is used in a template declaration before it is declared, but it is
declared before the first instantiation or use of the template. For example:

template<class T> class X {
I I ...
Data m_data; II Error Visual C++ 5.0 or later, Data not defined

} ;

class Data { ... };

void g() { X<int> xl; }

Move the declaration of Data before the class template X to fix this problem.

Language Reference 189

c++ Language Reference

• A member function is declared outside a class template, whereas it is never declared
inside the class. For example:

template<class T) class X {
II no mf declared here

} ;

II This definition did not cause an error with Visual
II C++ 4.0, but it will cause an error with Visual
II C++ 5.0 or later
II
template<class T) void X<T): :mf() { ... };

• A class identifier is considered to be a normal class unless declared to be a class
template. For example, the following code generates an error with Visual C++ 5.0
or later but not with Visual C++ 4.0:

template<class T) class
friend class Y<T>;

Z<T> mf();

} ;

X {
II Parsed as Y 'less-than'
II T 'greater-than':
II Parsed as Z 'less-than' T
II 'greater-than';

template<class T> class Y { ... };
template<class T> class Z { ... };
X<int> x;

To fix the problem, forward declare Y and Z before the definition of X.

template<class T> class Y { ... };

template<class T) class Z { ... };

template<class T) class X { ... };

190 Language Reference

Referencing a Template
To reference a template class or function use the following syntax:

Syntax

template-class-name :
template-name < template-arg-list >

template-arg-list :
template-arg
template-arg-list , template-arg

template-arg :
expression
type-name

All template-arg arguments must be constant expressions. The compiler creates a new
instance (called an instantiation) of the templated class or function if there is no exact
match to a previously generated template. For example:

MyStack< unsigned long, 5 > stack!; II creates a stack of
II unsigned longs

MyStack< DWORD, 5 > stack2; II uses code created above
MyStack< char, 6 > stack3; II generates new code

Chapter 6 Declarations

MyStack< MyClass, 6 > stack4; II generates stack of MyClass objects

Each generated template function creates its own static variables and members.

Function Templates
Class templates define a family of related classes that are based on the parameters passed
to the class upon instantiation. Function templates are similar to class templates, but define
a family of functions. Here is a function template that swaps two items:

template< class T > void MySwap(T& a, T& b)
{

T c;
c = a; a b; b c;

}

Language Reference 191

c++ Language Reference

Although this function could be performed by a nontemplated function, using void
pointers, the template version is type-safe. Consider the following calls:

int j = 10;
i nt k = 18;
CString Hello = "Hello, Windows!";
MySwap(j, k); IIOK
MySwap(j, Hello); Ilerror

The second MySwap call triggers a compile-time error, since the compile cannot generate
a MySwap function with parameters of different types. If void pointers were used, both
function calls would compile correctly, but the function would not work properly at
runtime.

Explicit specification of the template arguments for a function template is allowed.
For example:

template<class T> void f(T) { ... }
void g(char j) {

f<int>(j); II generate the specialization feint)

When the template argument is explicitly specified, normal implicit conversions are
done to convert the function argument to the type of the corresponding function template
parameters. In the above example, the compiler will convert (cha r j) to type i nt.

Member Function Templates
After declaring a templated class, define member functions as function templates.
For example:

template<class T, int i> class MyStack
{

T* pStack;
T StackBuffer[i];
int cltems = i * sizeof(T);

public:

} ;

MyStack(void);
void push(const T item);
T& pope void);

template< class T, int > MyStack< T,
{ ... } ;

i

template< class T, int > void MyStack<
{ ... } ;
template< class T, int > T& MyStack< T,
{ ... } ;

> : : My S t a c k (void)

T, i >::push(const T item

i >: :pop(void)

Note that the definition of the constructor function does not include the template
argument list twice.

192 Language Reference

)

Explicit Instantiation
Explicit instantiation lets you create an instantiation of a templated class or function
without actually using it in your code. Since this is useful when you are creating library
(.LIB) files that use templates for distribution, uninstantiated template definitions are
not put into object (.OBI) files.

The following explicitly instantiates MyStack for int variables and six items:

template class MyStack<int, 6>;

This statement creates an instantiation of MyStack without reserving any storage for an
object; code is generated for all members.

The following explicitly instantiates only the constructor member function:

template MyStack<int, 6>::MyStack(void);

Visual C++ 6.0 supports explicit instantiation of function templates. Versions prior to 5.0
supported the explicit instantiation of class templates only. For example, the following
code is now legal:

template<class T> void f(T) { ... }

II Instantiate f with the explicitly specified template
II argument 'int'
II
template void f<int> (int);

IIInstantiate f with the deduced template argument 'char'
II
template void f(char);

Microsoft Specific ~

You can use the extern keyword to prevent the automatic instantiation of members.
For example:

extern template class MyStack<int, 6>;

Similarly, you can mark specific members as being external and not instantiated as
follows:

extern template MyStack<int, 6>: :MyStack(void);

Note The extern keyword in the specialization only applies to member functions
defined outside of the body of the class. Functions defined inside the class declaration
are considered inline functions and are always instantiated.

END Microsoft Specific

Chapter 6 Declarations

Language Reference 193

c++ Language Reference

Differences from Other Implementations
Microsoft Specific ~

Templates are not officially standardized and, as a result, different C++ compiler vendors
have implemented them differently. The following list shows some differences between
this version of Visual C++ and other compilers. Note that this list will change in future
versions of the compiler.

• The compiler cannot instantiate a template outside of the module in which it is defined.

• Templates cannot be used with functions declared with __ declspec (dllimport) or
__ declspec (dllexport).

• All template arguments must be of an unambiguous type that exactly matches that of
the template parameter list. For example:

template< class T > T check(T);
template< class S > void watch(int (*)(S));
watch(check); Ilerror

The compiler should instantiate the check templated function in the form
i nt check(i nt), but the inference can not be followed.

• Friend functions must be declared before they are used in a templated class. You
cannot have a friend function defined within a class definition. This is because the
friend function could be a templated function, which would cause an illegal nested
template definition.

END Microsoft Specific

Namespaces
The C++ language provides a single global namespace. This can cause problems with
global name clashes. For instance, consider these two C++ header files:

II one.h
char func(char);
class String { ... };

II somelib.h
class String { ... };

With these definitions, it is impossible to use both header files in a single program;
the S t r i n g classes will clash.

194 Language Reference

Chapter 6 Declarations

A namespace is a declarative region that attaches an additional identifier to any names
declared inside it. The additional identifier makes it less likely that a name will conflict
with names declared elsewhere in the program. It is possible to use the same name in
separate namespaces without conflict even if the names appear in the same translation unit.
As long as they appear in separate namespaces, each name will be unique because of the
addition of the namespace identifier. For example:

II one.h
namespace one
{

char func(char);
class String { ... };

II somelib.h
namespace Somelib
{

class String { ... };
}

Now the class names will not clash because they become 0 n e: : S t r i n 9 and
Somel i b: : Stri ng, respectively.

Declarations in the file scope of a translation unit, outside all namespaces, are still
members of the global namespace.

namespace Declaration
A namespace declaration identifies and assigns a name to a declarative region.

Syntax

original-namespace-name :
identifier

namespace-definition :
original-namespace-definition
extension-namespace-definition
unnamed-namespace-definition

original-namespace-definition :
namespace identifier { namespace-body }

Language Reference 195

c++ Language Reference

extension-namespace-definition :
namespace original-names pace-name { namespace-body }

unnamed-namespace-definition :
namespace { names pace-body }

namespace-body :
declaration-seqopt

The identifier in an original-namespace-definition must be unique in the declarative
region in which it is used. The identifier is the name of the namespace and is used
to reference its members. Subsequently, in that declarative region, it is treated as an
original-namespace-name.

The declarative region of a namespace-definition is its namespace-body.

A namespace can contain data and function declarations. The declaration-seq is a
list of these declarations which are said to be members of the namespace.

Unnamed namespaces
An unnamed-namespace-definition behaves as if it were replaced by:

namespace unique { namespace-body }
using namespace unique;

Each unnamed namespace has an identifier, represented by unique, that differs from
all other identifiers in the entire program. For example:

namespace { int i; }
void f() { i++; }

namespace A {
namespace {

int I;
int j;

}

using namespace A;

void he)
{

}

1++;
A:: i++;
j++;

196 Language Reference

II unique::i
II unique::i++

II A: :unique::i
II A::unique::j

Ilerror: unique::i or A: :unique::i
II error: A::i undefined
II A::unique::j++

Unnamed namespaces are a superior replacement for the static declaration of variables.
They allow variables and functions to be visible within an entire translation unit, yet
not visible externally. Although entities in an unnamed namespace might have external
linkage, they are effectively qualified by a name unique to their translation unit and
therefore can never be seen from any other translation unit.

namespace Definition
A namespace-definition can be nested within another namespace-definition. Every
namespace-definition must appear either at file scope or immediately within another
namespace-definition.

For example:

namespace A
int j = 3;
int f(int k);

namespace Outer
int n = 6;
int func(int num);

namespace Inner {
float f = 9.993;

}

void main()

namespace local { ... } II error: not at global scope

Unlike other declarative regions, the definition of a namespace can be split over s.everal
parts of a single translation unit.

namespace A {

}

II declare namespace A variables
int i;
i nt j;

Chapter 6 Declarations

Language Reference 197

c++ Language Reference

namespace B {

}

names pace A {
II declare namespace A functions
void func(void);
int int_func(int i);

}

When a namespace is continued in this manner, after its initial definition, the continuation
is called an extension-namespace-definition.

Defining namespace Members
Members of a namespace may be defined within that namespace. For example:

namespace X { void f() { } }

Members of a named namespace can be defined outside the namespace in which they are
declared by explicit qualification of the name being defined. However, the entity being
defined must already be declared in the namespace. In addition, the definition must appear
after the point of declaration in a namespace that encloses the declaration's namespace.
For example:

namespace Q {

}

namespace V
void f();

}

void V::f() { }
void V::g() { }

namespace V
void g();

}

198 Language Reference

II ok
II error, g() is not yet a member of V

N amespace Alias
A namespace-alias is an alternative name for a namespace.

Syntax

namespace-alias :
identifier

namespace-alias-definition :
namespace identifier = qualified-namespace-specifier;

qualified-names pace-specifier :
: :opt nested-name-specifier opt class-or-namespace-name

A namespace-alias-definition declares an alternate name for a namespace. The identifier
is a synonym for the qualified-namespace-specifier and becomes a names pace-alias .
For example:

namespace a_very_lon9_namespace_name { ... }
namespace AVLNN = a_very_lon9_namespace_name;
II AVLNN is now a namespace-alias for a_very_lon9_namespace_name.

A namespace-name cannot be identical to any other entity in the same declarative region.
In addition, a global names pace-name cannot be the same as any other global entity name
in a given program.

using Declaration
The using declaration introduces a name into the declarative region in which the using
declaration appears. The name becomes a synonym for an entity declared elsewhere.
It allows an individual name from a specific namespace to be used without explicit
qualification. This is in contrast to the using directive, which allows all the names in
a namespace to be used without qualification. See the next section, "using Directive,"
for more information.

Chapter 6 Declarations

Language Reference 199

c++ Language Reference

Syntax

using-declaration:
using : : opt nested-name-speciJier unqualiJied-id
using :: unqualiJied-id

A using-declaration can be used in a class definition. For example:

class B
{

} ;

void f(char);
void g(char);

class 0 : B
{

using B::f;
void f(int) {f('c'); }
void g(int) {g('c'); }

II calls B::f(char)
II recursively calls O::g(int)
II only B::f is being used

} ;

When used to declare a member, a using-declaration must refer to a member of a base
class. For example:

class C
{

int gO;
} ;

class 02 : public B
{

} ;

using B::f;
using C: :g;

II ok: B is a base of 02
II error: C isn't a base of 02

Members declared with a using-declaration can be referenced using explicit qualification.
The :: prefix refers to the global namespace. For example:

void f();

namespace A
{

void g();
}

200 Language Reference

namespace X
{

}

using: :f;
using A: :g;

void h()

{

}

X: : f();
X: : 9 () ;

II global f
II A's 9

I I ca 11 s :: f
II calls A::g

Just as with any declaration, a using-declaration can be used repeatedly only where
mUltiple declarations are allowed. For example:

namespace A
{

i nt i;

void f()

{

}

us i ng A:: i ;
us i ng A:: i ;

class B
{

protected:
i nt i;

} ;

class X public B
{

public:

} ;

using B::i;
using B::i;

II ok: double declaration

II error: class members cannot be multiply declared

When a using-declaration is made, the synonym created by the declaration refers only to
defInitions that are valid at the point of the using-declaration. Definitions added to a
namespace after the using-declaration are not valid synonyms. For example:

namespace A
{

void f(int);
}

Chapter 6 Declarations

Language Reference 201

c++ Language Reference

using A: :f;

namespace A
{

void f(char);
}

void f()
{

f('a') ;

void b()
{

}

using A::f;
f('a') ;

II f is a synonym for A::f(int) only

II refers to A::f(int). even though A::f(char) exists

II refers to A::f(int) AND A::f(char)
II calls A::f(char);

A name defined by a using-declaration is an alias for its original name. It does not affect
the type, linkage or other attributes of the original declaration.

If a set of local declarations and using-declarations for a single name are given in a
declarative region, they must all refer to the same entity, or they must all refer to functions.
For example:

namespace B
{

}

i nt i;
void f(int);
void f(double);

void g()
{

}

i nt i;
using B::i;
void f(char);
using B::f;

II error: declared twice

II ok: each f is a function

In the example above, the us i n g B:: i statement causes a second i n t i to be declared in
the g () function. The us i n 9 B:: f statement does not conflict with the f (c h a r) functi<]n
because the function names introduced by B: : f have different parameter types.

202 Language Reference

A local function declaration cannot have the same name and type as a function introduced
by a using-declaration. For example:

namespace B
{

}

void f(int);
void f(double);

namespace C
{

}

void f(int);
void f(double);
void f(char);

void he)
{

}

using B::f;
using C: :f;
f('h') ;
f(1) ;

void f(int);

II introduces B: :f(int) and B::f(double)
II C::f(int). C::f(double). and C::f(char)
II calls C::f(char)
/I error: ambiguous: B::f(int) or C::f(int)?
II error: conflicts with B::f(int) and C::f(int)

When a using-declaration introduces a name from a base class into a derived class scope,
member functions in the derived class override virtual member functions with the same
name and argument types in the base class. For example:

struct B
{

} ;

virtual void f(int);
virtual void f(char);
void g(int);
void h(int);

struct 0 : B
{

} ;

using B: :f;
void f(int);

using B::g;
void g(char);

using B: :h;
void h(int);

II ok: D::f(int) overrides B::f(int)

II ok: there is no B::g(char)

II error: D::h(int) conflicts with B::h(int)
II B::h(int) is not virtual

Chapter 6 Declarations

Language Reference 203

c++ Language Reference

void f(D* pd)
{

pd-)f(1);
pd -) f (, a ') ;
pd-)g(1);
pd-)g('a');

II calls D::f(int)
II calls B::f(char)
II calls B::g(int)
II calls D::g(char)

All instances of a name mentioned in a using-declaration must be accessible. In particular,
if a derived class uses a using-declaration to access a member of a base class, the member
name must be accessible. If the name is that of an overloaded member function, then all
functions named must be accessible. For example:

class A
{

private:
void f(char);

public:
void f(int);

protected:
void g();

} ;

class B : public A
{

using A::f;
public:

using A: :g;
} ;

II error: A::f(char) is inaccessible

II B::g is a public synonym for A::g

See Chapter 10, "Member-Access Control," for more information on accessibility of
members.

using Directive
The using-directive allows the names in a namespace to be used without the namespace
name as an explicit qualifier. In contrast to a using declaration, which allows an individual
name to be used without qualification, the using directive allows all the names in a
namespace to be used without qualification. See "using Declaration," earlier in this
chapter, for more information.

204 Language Reference

Chapter 6 Declarations

Syntax

using-directive:
using namespace ::opt nested-name-speciJieropt names pace-name

The intent of the using-directive is to allow unique, descriptive names to be used when
declaring functions and variables, without requiring the complete name every time access
to the functions or variables is needed. Of course, the complete, qualified name can still be
used to retain clarity.

The unqualified names can be used from the point of the using directive on. If a
namespace is extended after a using-directive is given, the additional members of the
namespace can be used, without qualification, after the extended-namespace-definition.
For example:

namespace M
{

i nt i;

using namespace M;

namespace N
{

i nt j;

double f() { return M: :d; } II error: M::d does not yet exist

namespace M
{

double d;

II namespace extension

II now M::d can be used

It is possible for a using-directive to introduce conflicting names when used in another
namespace. For example:

namespace M
{

int i;
}

namespace N
{

int i;
using namespace M;

}

II no error here

Language Reference 205

c++ Language Reference

void fO
{

using namespace N;
i = 7; II error: ambiguous: M::i or N::i?

}

In this example, bringing M: : i into n a me spa c e N does not hide the declaration of N : : i ,
but instead creates an ambiguity when N: : i is used. In this manner, the using-directive
can easily introduce unintended ambiguities. Consider the following code fragment:

namespace D
{

}

int dl;
void f(int);
void f(char);

using namespace D;

int dl;

namespace E
{

int e;
void f(int);

}

namespace D
{

int d2;

II no conflict with D::dl

II namespace extension

using namespace E;
void f(int);

}

void fO
{

}

dl++;
: :dl++;
D::dl++;
d2++;
e++;
f(l) ;

f('a') ;

206 Language Reference

I I err 0 r: a mb i guo us: :: d lor D:: d 1 ?
II ok
II ok
II ok: D::d2
II ok: E::e
/I error: ambiguous: D::f(int) or E::f(int)?
II ok D::f(char)

When a variable is referenced after a using-directive, the local variable of the same name
takes precedence over the one declared in the specified namespace. For example:

namespace N {
int data = 4;

void f(bool flag) {
int data = 0;

if (flag) {
using namespace N;

prinf("data=%d\n", data);
}

void main()
f(true);

Chapter 6 Declarations

In the above code, the variable d a t a referenced in the printf statement is the local variable
initialized to 0, instead of the variable initialized in namespace N. The output is da ta=0
instead of data=4.

In the presence of namespace using-directives, the way qualified names are looked up is
shown in the following example:

namespace A {
int flag = 0;

}

namespace B {
using namespace A;

}

names pace C {

}

using namespace A;
using namespace B;

void main() {
printf("C::flag = %d\n", C::flag);

}

The qualified name (C: : fl ag) is resolved to (A: : fl ag) due to the namespace using
directives in namespace C.

Language Reference 207

c++ Language Reference

Explicit Qualification
A name in a class or namespace can be accessed using an explicit qualifier.

Syntax

id-expression :
unqualified-id
qualified-id

nested-name-specifier :
class-or-namespace-name
:: nested-name-speciJier opt

class-or-namespace-name :
class-name
names pace-name

names pace-name :
original-names pace-name
namespace-alias

This is very similar to using the scope operator to resolve access to a member of a class.
For more information, see "Qualified Names" in Chapter 4, "Expressions."

208 Language Reference

C HAP TE R 7

Declarators

A "declarator" is the part of a declaration that names an object, type, or function.
Declarators appear in a declaration as one or more names separated by commas;
each name can have an associated initializer.

Syntax

declarator -list:
init-declarator

declarator-list, init-declarator

init-declarator:
declarator initializeropt

This chapter includes the following topics:

• Overview of Declarators

• Type names

• Abstract declarators

• Function definitions

• Initializers

Language Reference 209

c++ Language Reference

Overview of Declarators
Declarators are the components of a declaration that specify names. Declarators can also
modify basic type information to cause names to be functions or pointers to objects or
functions. (Specifiers, discussed in Chapter 6, "Declarations," convey properties such
as type and storage class. Modifiers, discussed in this chapter and in Appendix B,
"Microsoft-Specific Modifiers," modify declarators.) Figure 7.1 shows a complete
declaration of two names, szBuf and strcpy, and calls out the components of the
declaration.

Figure 7.1 Specifiers, Modifiers, and Declarators

[declarator2

_ Jar, *, and 0 modifiers

Microsoft Specific -)

Most Microsoft extended keywords can be used as modifiers to form derived types; they
are not specifiers or declarators. (See Appendix B, "Microsoft-Specific Modifiers.")

END Microsoft Specific

Syntax

declarator:
dname
ptr-operator declarator
declarator (argument-declaration-list) cv-mod-list
declarator [constant-expressionopt]
(declarator)

ptr-operator :
* cv-qualijier-listopt
& cv-qualifier-listopt
complete-class-name :: * cv-qualifier-listopt

cv-qualifier-list :
cv-qualifier cv-qualifier-listopt

cv-qualifier :
const
volatile

210 Language Reference

cv-mod-list:
cv-qualifier cv-mod-listopt

pmodel cv-mod-listopt

dname:
name
class-name
,..., class-name
typedef-name
qualified-type-name

Declarators appear in the declaration syntax after an optional list of specifiers
(decl-specifiers). These specifiers are discussed in Chapter 6, "Declarations." A
declaration can contain more than one declarator, but each declarator declares only
one name. The following sample declaration shows how specifiers and declarators
are combined to form a complete declaration:

canst char *pch, ch;

In this preceding declaration, the keywords const and char make up the list of specifiers.
Two declarators are listed: *pch and ch. The simplified syntax of a declaration, then, is
the following, where canst cha r is the type and *pch and ch are the declarators:

type declaratorl[' declarator2[.•• ,declaratornl 1 ;

When the binding of elements in a declarator list does not yield the desired result, you
can use parentheses for clarification. A better technique, however, is to use a typedef or
a combination of parentheses and the typedef keyword. Consider declaring an array of
pointers to functions. Each function must obey the same protocol so that the arguments
and return values are known:

II Function returning type int that takes one
II argument of type char *.
typedef int (*PIFN)(char *);

II Declare an array of 7 painters to functions
II returning int and taking one argument of type
II char *.
PIFN pifnDispatchArray[7];

The equivalent declaration can be written without the typedef declaration, but it is so
complicated that the potential for error exceeds any benefits:

int (*pifnDispatchArray[7])(char *);

Chapter 7 Declarators

Language Reference 211

c++ Language Reference

Type Names
Type names are used in some declarators in the following ways:

• In explicit conversions

• As arguments to the sizeof operator

• As arguments to the new operator

• In function prototypes

• In typedef statements

A type name consists of type specifiers, as described in Chapter 6, "Declarations," and
"Abstract Declarators," discussed in the next section.

In the following example, the arguments to the function strcpy are supplied using their
type names. In the case of the sou r c e argument, con s t c h a r is the specifier and * is the
abstract declarator:

static char *szBuf, *strcpy(char *dest, const char *source);

Syntax

type-name:
type-specijier-list abstract-declarator opt

type-speciJier-list :
type-specifier type-specijier-listopt

abstract-declarator:
ptr-operator abstract-declaratoropt
abstract-declaratoropt (argument-declaration-list) cv-qualifier-listopt·
abstract-declaratoropt [constant-expressionopt]
(abstract-declarator)

Abstract Declarators
An abstract declarator is a declarator in which the identifier is omitted. (For related
information, see the previous section, "Type Names.")

The following abstract declarators are discussed in this section:

• Pointers

• References

• Pointers to members

212 Language Reference

• Arrays

• Functions

• Default arguments

An abstract declarator is a declarator that does not declare a name - the identifier is left
out. For example,

char *

declares the type "pointer to type char." This abstract declarator can be used in a function
prototype as follows:

char *strcmp(char *, char *);

In this prototype (declaration), the function's arguments are specified as abstract
declarators. The following is a more complicated abstract declarator that declares the
type "pointer to a function that takes two arguments, both of type char * ," and returns
type char *:

char * (*)(char *, char *)

Since abstract declarators completely declare a type, it is legal to form expressions
of the form:

II Get the size of array of 10 pointers to type char.
size_t nSize = sizeof(char *[10]);

II Allocate a pOinter to a function that has no
II return value and takes no arguments.
typedef void (PVFN *)();
PVFN *pvfn = new PVFN;

II Allocate an array of pointers to functions that
II return type WinStatus, and take one argument of
II type WinHandle.
typedef WinStatus (PWSWHFN *)(WinHandle);
PWSWHFN pwswhfnArray[] = new PWSWHFN[10];

Ambiguity Resolution
To perform explicit conversions from one type to another, you must use casts, specifying
the desired type name. Some type casts result in syntactic ambiguity. The following
function-style type cast is ambiguous:

char *aName(String(s));

Chapter 7 Dec1arators

Language Reference 213

c++ Language Reference

It is unclear whether it is a function declaration or an object declaration with a function
style cast as the initializer: It could declare a function returning type char * that takes one
argument of type Stri ng, or it could declare the object aName and initialize it with the
value of s cast to type Stri ng.

If a declaration can be considered a valid function declaration, it is treated as such. Only if
it cannot possibly be a function declaration - that is, if it would be syntactically incorrect
- is a statement examined to see if it is a function-style type cast. Therefore, the compiler
considers the statement to be a declaration of a function and ignores the parentheses around
the identifier s. On the other hand, the statements:

char *aName((String)s);

and

char *aName = String(s);

are clearly declarations of objects, and a user-defined conversion from type S t r in 9 to type
char * is invoked to perform the initialization of aName.

Pointers
Pointers are declared using the declarator syntax:

* cv-qualijier-listopt dname

A pointer holds the address of an object. The full declaration, then, is:

decl-specijiers * cv-qualijier-lisfopt dname ;

A simple example of such a declaration is:

char *pch;

The preceding declaration specifies that pch points to an object of type char.

const and volatile Pointers
The const and volatile keywords change how pointers are treated. The const keyword
specifies that the pointer cannot be modified after initialization; the pointer is protected
from modification thereafter.

The volatile keyword specifies that the value associated with the name that follows can
be modified by actions other than those in the user application. Therefore, the volatile
keyword is useful for declaring objects in shared memory that can be accessed by multiple
processes or global data areas used for communication with interrupt service routines.

214 Language Reference

Chapter 7 Declarators

When a name is declared as volatile, the compiler reloads the value from memory each
time it is accessed by the program. This dramatically reduces the possible optimizations.
However, when the state of an object can change unexpectedly, it is the only way to ensure
predictable program performance.

To declare the object pointed to by the pointer as const or volatile, use a declaration of the
form:

const char *cpch;
volatile char *vpch;

To declare the value of the pointer - that is, the actual address stored in the pointer -
as const or volatile, use a declaration of the form:

char * const pchc;
char * volatile pchv;

The C++ language prevents assignments that would allow modification of an object or
pointer declared as const. Such assignments would remove the information that the object
or pointer was declared with, thereby violating the intent of the original declaration.
Consider the following declarations:

const char cch 'A';
char ch = 'B';

Given the preceding declarations of two objects (cch, of type const char, and ch, of type
char), the following declarationlinitializations are valid:

const char *pchl = &cch;
const char *const pch4 = &cch;
canst char *pch5 &ch;
char *pch6 &ch;
char *const pch7 &ch;
const char *const pchB &ch;

The following declarationlinitializations are erroneous.

char *pch2 = &cch;
char *canst pch3 = &cch;

II Error
II Error

The declaration of pch2 declares a pointer through which a constant object might be
modified and is therefore disallowed. The declaration of pch3 specifies that the pointer
is constant, not the object; the declaration is disallowed for the same reason the pc h 2
declaration is disallowed.

Language Reference 215

c++ Language Reference

The following eight assignments show assigning through pointer and changing of pointer
value for the preceding declarations; for now, assume that the initialization was correct for
pchl through pch8.

*pchl = 'A';)1 Error: object declared canst
pchl = &ch; II OK: pointer not declared canst
*pch2 = 'A'; II OK: normal pointer
pch2 = &ch; II OK: normal pointer
*pch3 = 'A'; II OK: object not declared canst
pch3 = &ch; II Error: pointer declared canst
*pch4 = 'A'; II Error: object declared canst
pch4 = &ch; II Error: pointer declared canst

Pointers declared as volatile or as a mixture of const and volatile obey the same rules.

Pointers to const objects are often used in function declarations as follows:

char *strcpy(char *szTarget. canst char *szSource);

The preceding statement declares a function, strcpy, that takes two arguments of type
"pointer to char" and returns a pointer to type char. Because the arguments are passed
by reference and not by value, the function would be free to modify both szTa rget and
s z Sou r c e if s z Sou r c e were not declared as const. The declaration of s z Sou r c e as const
assures the caller that szSource cannot be changed by the called function.

Note Because there is a standard conversion from typename * to colist typename *, it
is legal to pass an argument of type char * to strcpy. However, the reverse is not true;
no implicit conversion exists to remove the const attribute from an object or pointer.

A const pointer of a given type can be assigned to a pointer of the same type. However, a
pointer that is not const cannot be assigned to a const pointer. The following code shows
correct and incorrect assignments:

int *const cpObject = 0;
int *pObject;

void main()
{

}

pObject = cpObject; II OK
cpObject = pObject; II Error

216 Language Reference

References
References are declared using the declarator syntax:

Syntax

& cv-qualifier-listopt dname

A reference holds the address of an object but behaves syntactically like an object. A
reference declaration consists of an (optional) list of specifiers followed by a reference
declarator.

Syntax

decl-specifiers & cv-qualifier-listopt dname ;

Consider the user-defined type Date:

struct Date
{

} ;

short DayOfWeek;
short Month;
short Day;
short Year;

The following statements declare an object of type Date and a reference to that object:

Date Today; II Declare the object.
Date& TodayRef = Today; II Declare the reference.

The name of the object, Today, and the reference to the object, TodayRef, can be used
identically in programs:

Today.DayOfWeek = 3;
TodayRef.Month = 7;

II Tuesday
II July

Reference-Type Function Arguments
It is often more efficient to pass references, rather than functions, to large objects. This
allows the compiler to pass the address of the object while maintaining the syntax that
would have been used to access the object. Consider the following example that uses the
Date structure:

II Create a Julian date of the form DDDYYYY
II from a Gregorian date.
long JulianFromGregorian(Date& GDate
{

static int cDayslnMonth[] = {
31, 28. 31. 30. 31, 30, 31, 31, 30. 31. 30. 31
} ;

long JDate;

Chapter 7 Declarators

Language Reference 217

c++ Language Reference

}

II Add in days for months already elapsed.
for(int i = 0; i < GDate.Month - 1; ++i)

JDate += cDaysInMonth[i];

II Add in days for this month.
JDate += GDate.Day;

II Check for leap year.
if(GDate.Year % 100 != 0 && GDate.Year % 4 0)

JDate++;

II Add in year.
JDate *= 10000;
JDate += GDate.Year;

return JDate;

The preceding code shows that members of a structure passed by reference are accessed
using the member-selection operator (.) instead of the pointer member-selection
operator (-».

Although arguments passed as reference types observe the syntax of nonpointer types, they
retain one important characteristic of pointer types: they are modifiable unless declared as
const. Because the intent of the preceding code is not to modify the object GDate, a more
appropriate function prototype is:

long JulianFromGregorian(const Date& GDate);

This prototype guarantees that the function Jul i anFromGregori an will not change its
argument.

Any function prototyped as taking a reference type can accept an object of the same type
in its place because there is a standard conversion from typename to typename&.

Reference-Type Function Returns
Functions can be declared to return a reference type. There are two reasons to make such
a declaration:

• The information being returned is a large enough object that returning a reference is
more efficient than returning a copy.

• The type of the function must be an I-value.

Just as it can be more efficient to pass large objects to functions by reference, it also can
be more efficient to return large objectsfrom functions by reference. Reference-return
protocol eliminates the necessity of copying the object to a temporary location prior to
returning.

218 Language Reference

Reference-return types can also be useful when the function must evaluate to an I-value.
Most overloaded operators fall into this category, particularly the assignment operator.
Overloaded operators are covered in "Overloaded Operators" in Chapter 12,
"Overloading." Consider the Poi nt example from Chapter 4, "Expressions":

class Point
{

public:
II Define "accessor" functions as
II reference types.
unsigned& xC);
unsigned& y();

private:
unsigned obj_x;
unsigned obj_y;

} ;

unsigned& Point .. x()
{

return obj_x;

unsigned& Point .. y()
{

return obj--y;

void maine)
{

Point ThePoint;

II Use xC) and y() as l-values.
ThePoint.x() 7;
ThePoint.y() = 9;

II Use xC) and y() as r-values.
cout «"x "« ThePoint.x() « "\n"

« "y = " « ThePoint.y() « "\n";

Notice that the functions x and y are declared as returning reference types. These functions
can be used on either side of an assignment statement.

Declarations of reference types must contain initializers except in the following cases:

• Explicit extern declaration

• Declaration of a class member

• Declaration within a class

• Declaration of an argument to a function or the return type for a function

Chapter 7 Declarators

Language Reference 219

c++ Language Reference

References to Pointers
References to pointers can be declared in much the same way as references to objects.
Declaring a reference to a pointer yields a modifiable value that is used like a normal
pointer. The following code samples illustrate the difference between using a pointer
to a pointer and a reference to a pointer:

#include <iostream.h>
#include <string.h>

II Define a binary tree structure.
struct BTree
{

} ;

char *szText;
BTree *Left;
BTree *Right;

II Define a pointer to the root of the tree.
BTree *btRoot = 0;

int Add1(BTree **Root, char *szToAdd);
int Add2(BTree*& Root, char *szToAdd);
void PrintTree(BTree* btRoot);

int maine int argc, char *argv[]
{

if (a rgc < 2)
{

cerr « "Usage: Refptr [1 I 2]" « "\n";
cerr « "\n\twhere:\n";
cerr « "\t1 uses double indirection\n";
cerr « "\t2 uses a reference to a pOinter.\n";
cerr « "\n\tInput is from stdin.\n";
return 1;

char *szBuf = new char[132];

II Read a text file from the standard input device and
II build a binary tree.
while(!cin.eof())
{

cin.get(szBuf, 132, '\n');
cin.get();
if(strlen(szBuf)

switch(*argv[1]

220 Language Reference

{

II Method 1: Use double indirection.
case '1':

Add1(&btRoot. szBuf);
break;

II Method 2: Use reference to a pointer.
case '2':

Add2(btRoot. szBuf);
break;

default:
c err < < "I 11 ega 1 val u e '" < < * a r g v [1]

« '" supplied for add method.\n"
« "Choose 1 or 2.\n";

return -1;

II Display the sorted list.
PrintTree(btRoot);
return 0;

II PrintTree: Display the binary tree in order.
void PrintTree(BTree* btRoot)
{

}

II Traverse the left branch of the tree recursively.
if(btRoot->Left)

PrintTree(btRoot->Left);

. II Print the current node.
cout « btRoot->szText « "\n";

II Traverse the right branch of the tree recursively.
if(btRoot->Right)

PrintTree(btRoot->Right);

II Add1: Add a node to the binary tree.
II Uses double indirection.
int Add1(BTree **Root. char *szToAdd)
{

if((*Root) == 0)

Chapter 7 Declarators

Language Reference 221

c++ Language Reference

}

{

}

(*Root) = new BTree:
(*Root)->Left = 0:
(*Root)->Right = 0:
(*Root)->szText = new char[strlen(szToAdd) + 1]:
strcpy((*Root)->szText. szToAdd):
return 1:

else if(strcmp((*Root)->szText. szToAdd) > 0)
return Add1(&«*Root)->Left). szToAdd):

else
return Add1(&«*Root)->Right). szToAdd):

II Add2: Add a node to the binary tree.
II Uses reference to pointer
int Add2(BTree*& Root. char *szToAdd)
{

}

i f(Root == 0
{

}

Root = new BTree:
Root->Left = 0:
Root->Right = 0:
Root->szText = new char[strlen(szToAdd) + 1]:
strcpy(Root->szText. szToAdd);
return 1;

else if(strcmp(Root->szText. szToAdd) > 0)
return Add2(Root->Left. szToAdd):

else
return Add2(Root->Right. szToAdd);

In the preceding program, functions Add1 and Add2 are functionally equivalent (although
they are not called the same way). The difference is that Add! uses double indirection
whereas Add2 uses the convenience of a reference to a pointer.

222 Language Reference

Pointers to Members
Declarations of pointers to members are special cases of pointer declarations.

Syntax

decl-specifiers class-name :: * cv-qualifier-listopt dname ;

A pointer to a member of a class differs from a normal pointer because it has type
information for the type of the member and for the class to which the member belongs.
A normal pointer identifies (has the address of) only a single object in memory. A pointer
to a member of a class identifies that member in any instance of the class. The following
example declares a class, Wi ndow, and some pointers to member data.

class Window
{

public:

} ;

Window();
Window(int xl, int y1,

int x2, int y2);
BOOl SetCaption(const char
const char *GetCaption();
char *szWinCaption;

II Default constructor.
II Constructor specifying

II window size.
*szTitle); II Set window caption.

II Get window caption.
II Window caption.

II Declare a pOinter to the data member szWinCaption.
char * Window::* pWCaption = &Window::szWinCaption;

Chapter 7 Declarators

In the preceding example, pWCapti on is a pointer to any member of class Wi ndow that has
type char*. The type of pwCapt i on is cha r * Wi ndow: : *. The next code fragment declares
pointers to the SetCapti on and GetCapti on member functions.

const char * (Window: :*pfnwGC)() = &Window::GetCaption;
BOOl (Window::*pfnwSC)(const char *) = &Window: :SetCaption;

The pointers pfnwGC and pfnwSC point to GetCapt i on and SetCapt i on of the Wi ndow class,
respectively. The code copies information to the window caption directly using the pointer
to member pWCapti on:

Window wMainWindow;
Window *pwChildWindow = new Window;
char *szUntitled "Untitled - ".
int cUntitledlen strlen(szUntitled);

strcpy(wMainWindow.*pwCaption, szUntitled)~

(wMainWindow.*pwCaption)[cUntitledlen - 1] = '1'; Iisame as
IlwMainWindow.SzWinCaption [] = '1';
strcpy(pwChildWindow->*pwCaption, szUntitled);
(pwChildWindow-)*pwCaption)[szUntitledlen - 1] = '2'; Iisame as
IlpwChildWindow-)szWinCaption[] = '2';

Language Reference 223

c++ Language Reference

The difference between the.* and ->* operators (the pointer-to-member operators) is that
the. * operator selects members given an object or object reference, while the ->* operator
selects members through a pointer. (For more about these operators, see "Expressions with
Pointer-to-Member Operators" in Chapter 4, "Expressions.")

The result of the pointer-to-member operators is the type of the member - in this case,
char *.
The following code fragment invokes the member functions GetCa pt i on and SetCa pt ion
using pointers to members:

II Allocate a buffer.
char szCaptionBase[100];

II Copy the main window caption into the buffer
II and append" [View 1]".
strcpy(szCaptionBase, (wMainWindow.*pfnwGC)());
strcat(szCaptionBase, " [View 1]");

II Set the child window's caption.
(pwChildWindow->*pfnwSC)(szCaptionBase);

Restrictions on Pointers to Members
The address of a static member is not a pointer to member. It is a regular pointer to the
one instance of the static member. Because only one instance of a static member exists
for all objects of a given class, the ordinary address-of (&) and dereference (*) operators
can be used.

Pointers to Members and Virtual Functions
Invoking a virtual function'through a pointer-to-member function works as if the function
had been called directly: the correct function is looked up in the v-table and invoked.
The following code shows how this is done:

class Base
{

public:
virtual void Print();

} ;

void (Base ::* bfnPrint)() = &Base .. Print;

void Base :: Print()
{

cout « "Pri nt functi on for cl ass 'Base,' \n";
}

224 Language Reference

class Derived public Base
{

public:
void Print(); II Print is still a virtual function.

} ;

void Derived :: Print()
{

cout « "Print function for class 'Derived'\n";

void main()
{

Base *bPtr;
Base bObject;
Derived dObject;

bPtr = &bObject; II Set pointer to address of bObject.
(bPtr->*bfnPrint)();

bPtr = &dObject; II Set pointer to address of dObject.
(bPtr->*bfnPrint)();

The output from this program is:

Print function for class 'Base'
Print function for class 'Derived'

The key to virtual functions working, as always, is invoking them through a pointer to a
base class. (For more information about virtual functions, see "Virtual Functions" in
Chapter 9, "Derived Classes.")

Representing Pointers to Members of Classes
Using Inheritance
Declaring a pointer to a member of a class prior to the class definition impacts the size and
speed of the resulting executable file; The number of bytes required to represent a pointer
to a member of a class and the code required to interpret the representation may depend on
whether the class is defined with no, single, multiple, or virtual inheritance.

In general, the more complex the inheritance used by a class, the greater the number of
bytes required to represent a pointer to a member of the class and the larger the code
required to interpret the pointer.

Chapter 7 Declarators

Language Reference 225

c++ Language Reference

If you need to declare a pointer to a member of a class prior to defining the class, you
must use either the /vmg command-line option or the related pointers_to_members
pragma. Or you can specify the inheritance used in the class declaration using the
__ single_inheritance, __ multiple_inheritance, or __ virtuaCinheritance keywords,
thus allowing control of the code generated on a per-class basis. These options are
explained in the following.

Note If you always declare a pointer to a member of a class after defining the class,
you don't need to use any of these options.

Microsoft attempts to optimize the representation and code generated for pointers to
members by selecting the most compact representation possible. This requires defining
the class the pointer to member is based upon at the point where the pointer to member
is declared. The pointers_to_members pragma allows you to relax this restriction and
to control the pointer size and the code required to interpret the pointer.

Syntax

#pragma pointers_to_members(pointer-declaration, [most-general-representation])

The pointer-declaration argument specifies whether you have declared a pointer to a
member before or after the associated function definition. The pointer-declaration
argument can be either full_generality or besCcase.

The most-general-representation argument specifies the smallest pointer representation
that the compiler can safely use to reference any pointer to a member of a class in a
translation unit. This argument can be single_inheritance, multiple_inheritance, or
virtuaCinheritance.

The pointers_to_members pragma with the best_case argument is the compiler
default. You can use this default if you always define a class before declaring a pointer
to a member of the class. When the compiler encounters the declaration of a pointer to a
member of a class, it already has knowledge of the kind of inheritance used by the class.
Thus, the compiler can use the smallest possible representation of a pointer and generate
the smallest amount of code required to operate on the pointer for each kind of inheritance.
This is equivalent to using Ivmb on the command-line to specify best-case representation
for all classes in the compilation unit.

Use the pointers_to_members pragma with the full_generality argument if you'need to
declare a pointer to a member of a class before defining the class. (This need can arise if
you define members in two different classes that reference each other using pointers to
members. For such mutually referencing classes, one class must be referenced before it is
defined.) The compiler uses the most general representation for the pointer to the member.
This is equivalent to the Ivmg compiler option. If you specify full-generality, you must
also specify single-inheritance, multiple-inheritance, or virtual-inheritance. This is
equivalent to using the Ivmg compiler option with the /vms, /vmm, or /vmv option.

226 Language Reference

The pointers_to_members pragma with the full_generality, single_inheritance
arguments (lvms option with the /vmg option) specifies that the most general
representation of a pointer to a member of a class is one that uses no inheritance or single
inheritance. This is the smallest possible representation of a pointer to a member of a class.
The compiler generates an error if the inheritance model of a class definition for which a
pointer to a member is declared is multiple or virtual. For example, placing this statement

#pragma pointers_to_members(full_generality, single_inheritance)

before a class definition declares that all class definitions that follow use only single
inheritance. Once specified, the option specified with the pointers_to_members pragma
cannot be changed.

The pointers_to_members pragma with the fulCgenerality, multiple_inheritance
arguments (lvrnm option with the /vmg option) specifies that the most general
representation of a pointer to a member of a class is one that uses multiple inheritance.
This representation is larger than that required for single inheritance. The compiler
generates an error if the inheritance model of a class definition for which a pointer to
a member is declared is virtual.

The pointers_to_members pragma with the fulCgenerality, virtual_inheritance
arguments (lvmv option with the /vmg option) specifies that the most general
representation of a pointer to a member of a class is one that uses virtual inheritance.
In terms of pointer size and the code required to interpret the pointer, this is the most
expensive option. However, this option never causes an error and ~~ the default when
the full~enerality argument to the pointers_to_members pragma is specified or
when the /vmg command-line option is used.

Syntax

The equivalent language construction uses this syntax:

class-declaration :
class inheritance-typeopt class-name;

inheritance-type:
__ single_inheritance
__ multiple_inheritance

virtual_inheritance

As shown in this example,

class __ single_inheritance S;
i nt S:: p;

regardless of compiler options or pragmas, pointers to members of class S will use the
smallest possible representation.

Chapter 7 Declarators

Language Reference 227

c++ Language Reference

You can also explicitly give a forward declaration to the pointer-to-member representation
of a class that has a forward declaration.

Note The same forward declaration of a class pointer-to-member representation
should occur in every translation unit that declares pointers to members of that class,
and the declaration should occur before the pointers to members are declared.

Array
An array is a collection of like objects. The simplest case of an array is a vector.
C++ provides a convenient syntax for declaration of fixed-size arrays:

Syntax

decl-specifiers dname [constant-expressionopt] ;

The number of elements in the array is given by the constant-expression. The first element
in the array is the Oth element, and the last element is the (n-l th) element, where n is the
size of the array. The constant-expression must be of an integral type and must be greater
than O. A zero-sized array is legal only when the array is the last field in a struct or union
and when the Microsoft extensions (lZe) are enabled.

Arrays are derived types and can therefore be constructed from any other derived or
fundamental type except functions, references, and void.

Arrays constructed from other arrays we multidimensional arrays. These multidimensional
arrays are specified by placing multiple [constant-expression] specifications in sequence.
For example, consider this declaration:

int i2[5][7];

It specifies an array of type int, conceptually arranged in a two-dimensional matrix of
five rows and seven columns, as shown in Figure 7.2.

Figure 7.2 Conceptual Layout of Multidimensional Array

228 Language Reference

In declarations of multidimensioned arrays that have an initializer-list (as described in
Initializers), the constant-expression that specifies the bounds for the first dimension
can be omitted. For example:

const int cMarkets = 4;

II Declare a float that represents the transportation costs.
double TransportCosts[][cMarkets]
{ { 32.19, 47.29, 31.99, 19.11 },

{ 11.29, 22.49, 33.47, 17.29 },
{ 41.97, 22.09, 9.76, 22.55} };

The preceding declaration defines an array that is three rows by four columns. The rows
represent factories and the columns represent markets to which the factories ship. The
values are the transportation costs from the factories to the markets. The first dimension
of the array is left out, but the compiler fills it in by examining the initializer.

The technique of omitting the bounds specification for the first dimension of a
multidimensioned array can also be used in function declarations as follows:

#include <float.h>
#include <iostream.h>

II Includes DBL_MAX.

const int cMkts = 4;

II Declare a float that represents the transportation costs.
double TransportCosts[][cMkts]
{ { 32.19, 47.29, 31.99, 19.11 },

{ 11.29, 22.49, 33.47, 17.29 },
{ 41.97, 22.09, 9.76, 22.55} };

II Calculate size of unspecified dimension.
const int cFactories = sizeof TransportCosts I

sizeof(double[cMkts]);

double FindMinToMkt(int Mkt, double TransportCosts[][cMkts],
int cFacts);

void main(int argc, char *argv[])
{

}

double MinCost;
MinCost = FindMinToMkt(*argv[l] - '0', TransportCosts,

cFacts);
cout « "The minimum cost to Market" « argv[1] « " is: "

« MinCost « "\n";

Chapter 7 Declarators

Language Reference 229

c++ Language Reference

double FindMinToMkt(int Mkt. double TransportCosts[J[cMktsJ.
int cFacts)

{

double MinCost = DBL_MAX;
fore int i 0; i < cFacts; ++i)

MinCost = (MinCost < TransportCosts[iJ[MktJ) ?
MinCost : TransportCosts[iJ[MktJ;

return MinCost;
}

The function Fi ndMi nToMkt is written such that adding new factories does not require
any code changes, ju~t a recompilation.

Using Arrays
Individual elements of arrays are accessed using the array subscript operator ([]). If a
singly dimensioned array is used in an expression with no subscript, the array name
evaluates to a pointer to the first element in the array. For example:

char chArray[10J;

char *pch = chArray;
char ch = chArray[0];

ch = chArray[3J;

II Pointer to first element.
II Value of first element.
II Value of fourth element.

When using multidimensioned arrays, various combinations are acceptable in expressions.
The following example illustrates this:

double multi[4J[4J[3J; II Declare the array.

double (*p2mul ti)[3J;
double (*plmul ti);

cout « multi[3J[2J[3J
p2multi = multi[3J;

plmulti = multi[3J[2J;

« "\n"; II Use three subscripts.
II Make p2multi point to
II fourth "plane" of multi.
II Make plmulti point to
II fourth plane. second row
II of multi.

In the preceding code, mu 1 t i is a three-dimensional array of type double. The I p2mu 1 t i
pointer points to an array of type double of size three. The array is used with one, two, and
three subscripts in this example. Although it is more common to specify all the subscripts,
as in the cout statement, it is sometimes useful to select a specific subset of array elements
as shown in the succeeding statements.

230 Language Reference

Arrays in Expressions
When an identifier of an array type appears in an expression other than sizeof, address-of
(&), or initialization of a reference, it is converted to a pointer to the first array element.
For example:

char szErrorl[] = "Error: Disk drive not ready.";
char *psz = sZErrorl;

The pointer psz points to the first element of the array szErrorl. Note that arrays, unlike
pointers, are not modifiable I-values. Therefore, the following assignment is illegal:

szErrorl = psz;

Interpretation of Subscript Operator
Like other operators, the subscript operator ([]) can be redefined by the user. The default
behavior of the subscript operator, if not overloaded, is to combine the array name and the
subscript using the following method:

*((array-name) + (subscript»

As in all addition that involves pointer types, scaling is performed automatically to adjust
for the size of the type. Therefore, the resultant value is not subscript bytes from the origin
of array-name; rather, it is the subscriptth element of the array. (For more information
about this conversion, see "Additive Operators" in Chapter 4, "Expressions.")

Similarly, for multidimensional arrays, the address is derived using the following method:

((array-name) + (subscriptl maX2 * max3 ... maxn)
+ subscript2 * max3 ... maXn)

... + subscriptn»

Indirection on Array Types
Use of the indirection operator (*) on an n-dimensional array type yields an n-1
dimensional array. If n is 1, a scalar (or array element) is yielded.

Ordering of Arrays
C++ arrays are stored in row-major order. Row-major order means the last subscript varies
the fastest.

Chapter 7 Declarators

Language Reference 231

c++ Language Reference

Function Declarations
This section includes the following topics:

• Function declaration syntax

• Variable argument lists

• Declaring functions that take no arguments

• Function overloading

• Restrictions on functions

• The argument declaration list

• Argument lists in function prototypes (nondefining declaration)

• Argument lists in function definitions

• Default arguments

• Default argument expressions

• Other considerations

Function definition is covered in Function Definitions.

Function Declaration Syntax
Syntax

decl-specifiers dname(argument-declaration-list) cv-mod-listopt

argument-declaration-list :
arg-declaration-list , •••

arg-declaration-list :
argument-declaration
arg-declaration-list , argument-declaration

argument-declaration :
decl-specifiers declarator
decl-specifiers declarator = expression
decl-specifiers abstract-declarator opt

decl-specifiers abstract-declaratoropt = expression

The identifier given by dname has the type "cv-mod-list function, taking argument
declaration-list, and returning type decl-specifiers."

232 Language Reference

Note that const, volatile, and many of the Microsoft-specific keywords can appear
in cv-mod-list and in the declaration of the name. The following example shows two
simple function declarations:

char *strchr(char *dest, char *src);
static int atai(canst char *ascnum) canst;

The following syntax explains the details of a function declaration:

Syntax

argument-declaration-list :
arg -dec laration-listopt "'opt

arg-declaration-list , •••

arg-declaration-list :
argument-declaration
arg-declaration-list , argument-declaration

argument-declaration :
decl-specifiers declarator
decl-specifiers declarator , expression
decl-specifiers abstract-declaratoropt

decl-specifiers abstract-declaratoropt , expression

Variable Argument Lists
Function declarations in which the last member of argument-declaration-list is the ellipsis
(...) can take a variable number of arguments. In these cases, C++ provides type checking
only for the explicitly declared arguments. You can use variable argument lists when you
need to make a function so general that even the number and types of arguments can vary.
The printf family of functions is an example of functions that use variable argument lists.

To access arguments after those declared, use the macros contained in the standard include
file STDARG.H as described in "Functions with Variable Argument Lists," later in this
chapter.

Microsoft Specific ~

Microsoft C++ allows the ellipsis to be specified as an argument if the ellipsis is the
first argument and the ellipsis is preceded by a comma. Therefore, the declaration
int Func(int i, ...);islegal,butint Func(int i ...);isnot.

END Microsoft Specific

Declaration of a function that takes a variable number of arguments requires at least
one "placeholder" argument, even if it is not used. If this place-holder argument is
not supplied, there is no way to access the remaining arguments.

Chapter 7 Dec1arators

Language Reference 233

c++ Language Reference

When arguments of type char are passed as variable arguments, they are converted to
type int. Similarly, when arguments of type float are passed as variable arguments, they
are converted to type double. Arguments of other types are subject to the usual integral
and floating-point promotions. See "Integral Promotions" in Chapter 3, "Standard
Conversions," for more information.

Declaring Functions That Take No Arguments
A function declared with the single keyword void in argument-declaration-list
takes no arguments, as long as the keyword void is the first and only member
of argument-declaration-list. Arguments of type void elsewhere in
argument-declaration-list produce errors. For example:

long GetTickCount(void); II OK
long GetTickCount(int Reset, void); II Error
long GetTickCount(void, int Reset); II Error

In C++, explicitly specifying that a function requires no arguments is the same as
declaring a function with no argument-declaration-list. Therefore, the following two
statements are identical:

long GetTickCount();
long GetTickCount(void);

Note that, while it is illegal to specify a void argument except as outlined here, types
derived from type void (such as pointers to void and arrays of void) can appear
anywhere in argument-declaration-list.

Function Overloading
C++ allows specification of more than one function of the same name in the same scope.
These are called "overloaded functions" and are described in detail in Chapter 12,
"Overloading." Overloaded functions enable programmers to supply different
semantics for a function, depending on the types and number of arguments.

234 Language Reference

For example, a print function that takes a string (or char *) argument performs very
different tasks than one that takes an argument of type double. Overloading permits
uniform naming and prevents programmers from having to invent names such as pri nt_sz
or pri nt_d. Table 7.1 shows what parts of a function declaration c++ uses to differentiate
between groups of functions with the same name in the same scope.

Table 7.1 Overloading Considerations

Function Declaration Element Used for Overloading?

Function return type No

Number of arguments Yes

Type of arguments Yes

Presence or absence of ellipsis Yes

Use of typedef names No

Unspecified array bounds No

const or volatile (in cv-mod-list) Yes

Although functions can be distinguished on the basis of return type, they cannot be
overloaded on this basis.

The following example illustrates how overloading can be used. Another way to solve
the same problem is presented in "Default Arguments," later in this chapter.

#include <iostream.h>
#include <math.h>
#include <stdlib.h>

II Prototype three print functions.
int print(char *s) ;

int print(double dvalue) ;

int print(double dvalue. int prec

void main(int argc. char *argv[]
{

const double d = 893094.2987;

if(argc < 2
{

II
II

) ; II
II

Print a string.
Print a double.
Print a double with a
given precision.

II These calls to print invoke print(char *s).
print("This program requires one argument.");
print("The· argument specifies the number of");
print("digits precision for the second number");
print("printed.");

}

Chapter 7 Dec1arators

Language Reference 235

c++ Language Reference

II Invoke print(double dvalue).
print(d);

}

II Invoke print(double dvalue, int prec).
print(d, atoi(argv[1]));

II Print a string.
int print(char *s
{

cout « s « endl;
return CQut.good();

II Print a double in default precision.
int print(double dvalue)
{

cout « dvalue « endl;
return CQut.good();

II Print a double in specified preclslon.
II Positive numbers for precision indicate how many digits'
II precision after the decimal point to show. Negative
II numbers for precision indicate where to round the number
II to the left of the decimal point.
int print(double dvalue, int prec)
{

}

II Use table-lookup for rounding/truncation.
static const double rgPow10[] = {

} ;

10E-7, 10E-6, 10E-5, 10E-4, 10E-3, 10E-2, 10E-1, 10E0,
10E1, 10E2, 10E3, 10E4, 10E5, 10E6

const int iPowZero = 6;

II If precision out of range, just print the number.
if(prec < -6 II prec > 7)

return print(dvalue);

II Scale, truncate, then rescale.
dvalue = floor(dvalue / rgPow10[iPowZero - prec]) *

rgPow10[iPowZero - prec];

cout « dvalue « endl;
return cout.good();

236 Language Reference

The preceding code shows overloading of the p r i n t function in file scope.

For restrictions on overloading and information on how overloading affects other elements
of C++, see Chapter 12, "Overloading."

Restrictions on Functions
Functions cannot return arrays or functions. They can, however, return references or
pointers to arrays or functions. Another way to return an array is to declare a structure with
only that array as a member:

struct Address
{ char szAddress[31]; };

Address GetAddress();

It is illegal to define a type in either the return-type portion of a function declaration or in
the declaration of any argument to a function. The following legal C code is illegal in C++:

enum Weather { Cloudy. Rainy. Sunny} GetWeather(Date Today)

The preceding code is disallowed because the type Weather has function scope local to
GetWeather and the return value cannot be properly used. Because arguments to functions
have function scope, declarations made within the argument list would have the same
problem if not allowed.

C++ does not support arrays of functions. However, arrays of pointers to functions can be
useful. In parsing a Pascal-like language, the code is often separated into a lexical analyzer
that parses tokens and a parser that attaches semantics to the tokens. If the analyzer returns
a particular ordinal value for each token, code can be written to perform appropriate
processing as shown in this example:

int ProcessFORToken(char *szText);
int ProcessWHILEToken(char *szText);
int ProcessBEGINToken(char *szText);
int ProcessENDToken(char *szText);
int ProcessIFToken(char *szText);
int ProcessTHENToken(char *szText);
int ProcessELSEToken(char *szText);
int (*ProcessToken[])(char *) = {

ProcessFORToken. ProcessWHILEToken. ProcessBEGINToken.
ProcessENDToken. ProcessIFToken. ProcessTHENToken.
ProcessELSEToken };

const int MaxTokenID = sizeof ProcessToken / sizeof(int (*)());

Chapter 7 Dec1arators

Language Reference 237

c++ Language Reference

int DoProcessToken(int TokenID, char *szText)
{

}

if(TokenID < MaxTokenID)
return (*ProcessToken[TokenID])(szText);

else
return Error(szText);

The Argument Declaration List
The argument-declaration-list portion of a function declaration:

• Allows the compiler to check type consistency among the arguments the
function requires and the arguments supplied in the call.

• Enables conversions, either implicit or user-defined, to be performed from the
supplied argument type to the required argument type.

• Checks initializations of, or assignments to, pointers to functions.

• Checks initializations of, or assignments to, references to functions.

Argument Lists in Function Prototypes
(Nondefining Declaration)
The form argument-declaration-list is a list of the type names of the arguments. Consider
an argument-declaration-list for a function, func, that takes these three arguments: pointer
to type char, char, and int.

The code for such an argument-:declaration-list can be written:

char *, char, int

The function declaration (the prototype) might therefore be written:

void func(char *, char, int);

Although the preceding declaration contains enough information for the compiler to
perform type checking and conversions, it does not provide much information about what
the arguments are. A good way to document function declarations is to include identifiers
as they would appear in the function definition, as in the following:

void func(char *szTarget, char chSearchChar, int nStartAt);

These identifiers in prototypes are useful only for default arguments, because they go out
of scope immediately. However, they provide meaningful program documentation.

238 Language Reference

Argument Lists in Function Definitions
The argument list in a function definition differs from that of a prototype only in that the
identifiers, if present, represent formal arguments to the function. The identifier names
need not match those in the prototype (if there are any).

Note It is possible to define functions with unnamed arguments. However, these
arguments are inaccessible to the functions for which they are defined.

Default Arguments
In many cases, functions have arguments that are used so infrequently that a default value
would suffice. To address this, the default-argument facility allows for specifying only
those arguments to a function that are meaningful in a given call. To illustrate this concept,
consider the example presented in "Function Overloading," earlier in this chapter.

II Prototype three print functions.
int print(char *s) ; II Print a string.
int print(double dvalue) ; II Print a double.
int print(double dvalue. int prec) ; II Print a doubl e with a

II given precision.

In many applications, a reasonable default can be supplied for prec, eliminating the need
for two functions:

II Prototype two print functions.
int print(char *s);
int print(double dvalue. int prec=2);

II Print a string.
II Print a double with a
II given precision.

The implementation of the pri nt function is changed slightly to reflect the fact that only
one such function exists for type double:

/1 Print a double in specified precision.
/1 Positive numbers for precision indicate how many digits'
/1 precision after the decimal point to show. Negative
/1 numbers for precision indicate where to round the number
/1 to the left of the decimal point.
int print(double dvalue. int prec)
{

II Use table-lookup for rounding/truncation.
static const double rgPow10[] = {

} ;

10E-7. 10E-6. 10E-5. 10E-4. 10E-3. 10E-2. 10E-1. 10E0.
10E1. 10E2. 10E3. 10E4. 10E5. 10E6

Chapter 7 Declarators

Language Reference 239

c++ Language Reference

canst int iPowZero = 6;
II If precision out of range. just print the number.,

if(prec >= -6 II prec <=]
II Scale. truncate. then rescale.
dvalue = floor(dvalue I rgPow10[iPowZero - prec]) *

rgPow10[iPowZero - prec];

cout « dvalue « endl;

return cout.good();

To invoke the new pri nt function, use code such as the following:

print(d); II Precision of 2 supplied by default argument.
print(d. 0); II Override default argument to achieve other

II results.

Note these points when using default arguments:

• Default arguments are used only in function calls where trailing arguments are
omitted - they must be the last argument(s). Therefore, the following code is illegal:

int print(double dvalue = 0.0. int prec);

• A default argument cannot be redefined in later declarations even if the redefinition is
identical to the original. Therefore, the following code produces an error:

II Prototype for print function.
int print(double dvalue. int prec = 2);

II Definition for print function.
int print(double dvalue. int prec 2)
{

The problem with this code is that the function declaration in the definition redefines
the default argument for prec.

• Additional default arguments can be added by later declarations.

• Default arguments can be provided for pointers to functions. For example:

int (*pShowIntVal)(int i = 0);

240 Language Reference

Default Argument Expressions
The expressions used for default arguments are often constant expressions, but this is not
a requirement. The expression can combine functions that are visible in the current scope,
constant expressions, and global variables. The expression cannot contain local variables
or nonstatic class-member variables. The following code illustrates this:

BOOl CreateVScrollBar(HWND hWnd, short nWidth =
GetSystemMetrics(SM_CXVSCROll));

The preceding declaration specifies a function that creates a vertical scroll bar of a given
width for a window. If no width argument is supplied, the Windows API function,
GetSystemMetrics, is called to find the default width for a scroll bar.

The default expression is evaluated after the function call, but the evaluation is completed
before the function call actually takes place.

Because formal arguments to a function are in function scope, and because the evaluation
of default arguments takes place prior to entry to this scope, you cannot use formal
arguments, or local variables in default argument expressions.

Note that any formal argument declared before a default argument expression can hide a
global name in the function scope, which can cause errors. The following code is illegal:

const int Categories = 9;

void EnumCategories(char *Categories[], int n = Categories);

Chapter 7 Declarators

In the preceding code, the global name Categori es is hidden at function scope, making the
default argument expression invalid.

Other Considerations
The default argument is not considered part of the function type. Therefore, it is not used
in selecting overloaded functions. Two functions that differ only in their default arguments
are considered multiple definitions rather than overloaded functions.

Default arguments cannot be supplied for overloaded operators.

Language Reference 241

c++ Language Reference

Function Definitions
Function definitions differ from function declarations in that they supply function bodies
- the code that makes up the function.

Syntax

Junction-definition :
decl-specijiersopt declarator ctor-initializeropt Jet-body

Jet-body:
compound-statement

As discussed in "Functions," the form of the declarator in the syntax is:

dname (argument-declaration-list) cv-mod-listopt

The formal arguments declared in argument-declaration-list are in the scope of the
function body.

Figure 7.3 shows the parts of a function definition. The shaded area is the function body.

Figure 7.3 Parts of a Function Definition

The cv-mod-list element of the declarator syntax specifies how the this pointer is to be
treated; it is only for use with class member functions.

The ctor-initializer element of the syntax is used only in constructors. Its purpose is to
allow initialization of base classes and contained objects. (For more information about
use of ctor-initializer, see "Initializing Bases and Members" in Chapter 11, "Special
Member Functions.")

Functions with Variable Argument Lists
Functions that require variable lists are declared using the ellipsis C ...) in the argument list,
as described in "Variable Argument Lists," earlier in this chapter. To access arguments
passed to functions using this method, use the types and macros described in the
STDARG.H standard include file.

242 Language Reference

The following example shows how the va_start, va_arg, and va_end macros, along with
the va_list type (declared in STDARG.H), work together:

#include <stdio.h>
#include <stdarg.h>

II Declaration, but not definition, of ShowVar.
i nt ShowVa r (cha r *szTypes, ...);

void main()
{

ShowVar("fcsi", 32.4f, 'a', "Test string", 4);
}

II ShowVar takes a format string of the form
II "ifcs", where each character specifies the
II type of the argument in that position.
II
II
II f
II c
II s
II

int
fl oat
char
string (char *)

II Following the format specification is a list
II of n arguments, where n == strlen(szTypes).
void ShowVar(char *szTypes, ...)
{

va_l i st vl;
int i;

II szTypes is the last argument specified; all
II others must be accessed using the variable
II argument macros.
va_start(vl, szTypes);

II Step through the list.
for(i = 0; szTypes[i] != '\0'; ++i)
{

union Printable_t
{

int i;
float f;
char c;
char *s;

} Printable;

Chapter 7 Declarators

Language Reference 243

c++ Language Reference

switch(szTypes[i]
{

II Type to expect.

}

case 'i':
Printable.i = va_arg(vl, int);
printf("%i\n", Printable.i);
break;

case 'f':
Printable.f = va_arg(vl, float);
printf("%f\n", Printable.f);
break;

case 'c':
Printable.c = va_arg(vl, char);
printf("%c\n", Printable.c);
break;

case's' :
Printable.s = va_arg(vl, char *);
printf("%s\n", Printable.s);
break;

defa ult:
break;

The preceding example illustrates these important concepts:

• A list marker must be established as a variable of type va_list before any variable
arguments are accessed .. In the preceding example, the marker is called v 1 .

• The individual arguments are accessed using the va_arg macro. The va_arg macro
needs to be told the type of argument to retrieve so it can transfer the correct number
of bytes from the stack. If an incorrect type of a size different than that supplied by
the calling program is specified to va_arg, the results are unpredictable.

• The result obtained using the va_arg macro should be explicitly cast to the desired
type.

• The va_end macro must be called to terminate variable-argument processing.

244 Language Reference

Ini tializers
Declarators can specify the initial value for objects. The only way to specify a value for
objects of const type is in the declarator. The part of the declarator that specifies this
initial value is called the "initializer."

Syntax

initializer :
= assignment-expression
= { initializer-list ,opt}

(expression-list)

initializer-list :
expression
initializer-list , expression
{ initializer-list ,opt }

There are two fundamental types of initializers:

• The initializer invoked using the equal-sign syntax

• The initializer invoked using function-style syntax

Only objects of classes with constructors can be initialized with the function-style syntax.
The two syntax forms also differ in access control and in the potential use of temporary
objects. Consider the following code, which illustrates some declarators with initializers:

int i = 7; II Uses equal-sign syntax.
Customer Cust("Taxpayer, Joe", II Uses function-style

"14 Cherry Lane", II syntax. Requires presence
"Manteca",
"CA");

II of a constructor.

Declarations of automatic, register, static, and external variables can contain initializers.
However, declarations of external variables can contain initializers only if the variables
are not declared as extern.

These initializers can contain expressions involving constants and variables in the current
scope. The initializer expression is evaluated at the point the declaration is encountered
in program flow, or, for global static objects and variables, at program startup. (For more
information about initialization of global static objects, see "Additional Startup
Considerations" in Chapter 2, "Basic Concepts. ")

Chapter 7 Dec1arators

Language Reference 245

c++ Language Reference

Initializing Pointers to const Objects
A pointer to a const object can be initialized with a pointer to an object that is not const,
but not vice versa. For example, the following initialization is legal:

Window StandardWindow;
const Window* pStandardWindow(&StandardWindow);

In the preceding code, the pointer pStanda rdWi ndow is declared as a pointer to a const
object. Although StandardWi ndow is not declared as const, the declaration is acceptable
because it does not allow an object not declared as const access to a const object. The
reverse of this is as follows:

const Window StandardWindow;
Window* pStandardWindow(&StandardWindow);

The preceding code explicitly declares Standa rdWi ndow as a const object. Initializing the
nonconstant pointer pStanda rdWi ndow with the address of Sta'nda rdWi ndow generates an
error because it allows access to the const object through the pointer. That is, it allows
removal of the const attribute from the object.

Uninitialized Objects
Objects and simple variables of storage class static that are declared with no initializer are
guaranteed to be initialized to a bit pattern of zeros. No such special processing takes place
for uninitialized objects of automatic or register storage classes. They have undefined
values.

Initializing Static Members
Static member initialization occurs in class scope. Therefore, they can access other
member data or functions. For example:

class DialogWindow
{

public:
static short GetTextHeight();

private:
static short nTextHeight;

} ;

short DialogWindow :: nTextHeight = GetTextHeight();

Note that in the preceding definition of the static member nTextHei ght, GetTextHei ght is
implicitly known to be Di a 1 ogWi ndow :: GetTextHei ght.

246 Language Reference

Initializing Aggregates
An aggregate type is an array, class, or structure type which:

• Has no constructors

• Has no nonpublic members

• Has no base classes

• Has no virtual functions

Initializers for aggregates can be specified as a comma-separated list of values enclosed
in curly braces. For example, this code declares an int array of 10 and initializes it:

int rgiArray[10] = { 9, 8, 4, 6, 5, 6, 3, 5, 6, 11 };

The initializers are stored in the array elements in increasing subscript order. Therefore,
rgi Ar ray [0] is 9, rgi Ar ray [1] is 8, and so on, until rgi Ar ray [9], which is 11. To
initialize a structure, use code such as:

struct RCPrompt
{

} ;

short nRow;
short nCol;
char *szPrompt;

RCPrompt rcContinueYN = { 24, 0, "Continue (YIN?)" };

Length of Aggregate-Initializer Lists
If an aggregate initializer list is shorter than the array or class type that is being initialized,
zeros are stored in the elements for which no initializer is specified. Therefore, the
following two declarations are equivalent:

II Explicitly initialize all elements.
int rgiArray[5] = { 3, 2, 0, 0, 0 };

II Allow remaining elements to be zero-initialized.
int rgiArray[5] = { 3, 2 };

As this shows, initializer lists can be truncated but supplying too many initializers
generates an error.

Chapter 7 Declarators

Language Reference 247

c++ Language Reference

Initializing Aggregates That Contain Aggregates
Some aggregates contain other aggregates - for example, arrays of arrays, arrays of
structures, or structures that are composed of other structures. Initializers can be supplied
for such constructs by initializing each one in the order it occurs with a brace-enclosed list.
For example:

II Declare an array of type RCPrompt.
RCPrompt rgRCPrompt[4] =
{ {4, 7, "Options Are:" },

{6, 7, "1. Main Menu" },
{8, 7, "2. Print Menu" },
{ 10, 7, "3. Fil e Menu" }} ;

Note that rgRCPrompt is initialized with a brace-enclosed list of brace-enclosed lists.
The enclosecl braces are not syntactically required, but they lend clarity to the declaration.
The following example program shows how a two-dimensional array is filled by such an
initializer:

#include <iostream.h>

void maine)
{

int rgI[2][4] { 1, 2, 3, 4, 5, 6, 7, 8 };

fore int i = 0; i < 2; ++i
fore int j = 0; j < 4; ++j

cout « "rgI[" « i « "][" « j « "]
« rgI[i][j] « endl;

The output from this program is:

rgI[0][0] = 1
rgI[0][1] = 2
rgI[0][2] = 3
rgI[0][3] = 4
rgI[1][0] = 5
rgI[1][1] = 6
rgI[1][2] = 7
rgI[1][3] = 8

248 Language Reference

Short initialization lists can be used only with explicit subaggregate initializers and
enclosed in braces. If rgI had been declared as:

int rgI[2][4] = { { 1, 2 }, { 3, 4 } };

the program output would have been:

rgI[0][0] = 1
rgI[0][1] = 2
rgI[0][2] = 0
rgI[0][3] = 0
rgI[1][0] = 3
rg I[1] [1] = 4
rgI[1][2] = 0
rgI[1][3] = 0

Initializing Incomplete Types
Incomplete types, such as unbounded array types, can be initialized as follows:

char HomeRow[] = { 'a', 's', 'd', 'f', 'g', 'h', 'j', 'k', '1' };

The compiler computes the size of the array from the number of initializers provided.

Incomplete types, such as pointers to class types that are declared but not defined,
are declared as follows:

class DefinedElsewhere;
class DefinedHere
{

II Class definition elsewhere.

friend class DefinedElsewhere;
} ;

Initializing USing Constructors
Objects of class type are initialized by calling the appropriate constructor for the class.
For complete information about initializing class types, see "Explicit Initialization" in
Chapter 11, "Special Member Functions."

Chapter 7 Dec1arators

Language Reference 249

c++ Language Reference

Initializers and Unions
Objects of union type are initialized with a single value (if the union does not have a
constructor). This is done in one of two ways:

• Initialize the union with another object of the same union type. For example:

struct Point
{

} ;

unsigned x;
unsigned y;

union PtLong
{

} ;

long 1;
Point pt;

PtLong ptOrigin;
PtLong ptCurrent = ptOrigin;

In the preceding code, ptCurrent is initialized with the value of ptOri gin - an object
of the same type.

• Initialize the union with a brace-enclosed initializer for the first member. For example:

PtLong ptCurrent = { 0x0a000aL };

Initializing Character Arrays
Character arrays can be initialized in one of two ways:

• Individually, as follows:

char chABCD[4] = { 'a'. 'b'. 'c'. 'd' };

• With a string, as follows:

char chABCD[5] = "abcd";

In the second case, where the character array is initialized with a string, the compiler
appends a trailing' \0' (end-of-string character). Therefore, the array must be at least one
larger than the number of characters in the string.

Because most string handling uses the standard library functions or relies on the presence
of the trailing end-of-string character, it is common to see unbounded array declarations
initialized with strings:

char chABCD[] = "ABCD";

250 Language Reference

Initializing References
Variables of reference type must be initialized with an object of the type from which the
reference type is derived, or with an object of a type that can be converted to the type
from which the reference type is derived. For example:

int iVar;
long lVar;

long& LongRefl = lVar;
long& LongRef2 = iVar;
const long& LongRef3

LongRefl
LongRef2
LongRef3

23L;
llL;
llL;

II No conversion required.
II Error.

iVar II OK

II Change lVar through a reference.
II Change iVar through a reference.
II Error.

The only way to initialize a reference with a temporary object is to initialize a constant
temporary object. Once initialized, a reference-type variable always points to the same
object; it cannot be modified to point to another object.

Although the syntax can be the same, initialization of reference-type variables and
assignment to reference-type variables are semantically different. In the preceding
example, the assignments that change i Va rand 1 Va r look similar to the initializations but
have different effects. The initialization specifies the object to which the reference-type
variable points; the assignment assigns to the referred-to object through the reference.

Because both passing an argument of reference type to a function and returning a value of
reference type from a function are initializations, the formal arguments to a function are
initialized correctly, as are the references returned.

Reference-type variables can be declared without initializers only in the following:

• Function declarations (prototypes). For example:

int func(int&);

• Function-return type declarations. For example:

int& func(int&);

• Declaration of a reference-type class member. For example:

class c
{

public:
i nt& i;

} ;

• Declaration of a variable explicitly specified as extern. For example:

extern int& iVal;

Chapter 7 Declarators

Language Reference 251

c++ Language Reference

When initializing a reference-type variable, the compiler uses the decision graph shown in
Figure 7.4 to select between creating a reference to an object or creating a temporary object
to which the reference points.

References to volatile types (declared as volatile typename& identifier) can be initialized
with volatile objects of the same type or with objects that have not been declared as
volatile. They cannot, however, be initialized with const objects of that type. Similarly,
references to const types (declared as const typename& identifier) can be initialized
with const objects of the same type (or anything that has a conversion to that type or
with objects that have not been declared as const). They cannot, however, be initialized
with volatile objects of that type.

References that are not qualified with either the const or volatile keyword can be
initialized only with objects declared as neither const nor volatile.

Figure 7.4 Decision Graph for Initialization of Reference Types

252 Language Reference

This chapter introduces C++ classes. Classes, which can contain data and functions,
introduce user-defined types into a program. User-defined types in traditional
programming languages are collections of data which, taken together, describe
an object's attributes and state. Class types in C++ enable you to describe
attributes and state, and to define behavior.

The following topics are included:

• Overview of classes

• Class names

• Class members

• Member functions

• Static data members

• Unions

• Bit fields

• Nested class declarations

• Type names in class scope

CHAPTER 8

Classes

Language Reference 253

c++ Language Reference

Overview of Classes
Class types are defined using the class, struct, and union keywords. For simplicity,
types defined with these keywords are called class declarations, except in discussions
of language elements that behave differently depending on which keyword is used.

N ames of classes defined within another class ("nested") have class scope of the
enclosing class.

Syntax

class-name:
identifier

The variables and functions of a class are called members. When defining a class, it is
common practice to supply the following members (although all are optional):

• Class data members, which define the state and attributes of an object of the class type.

• One or more "constructor" functions, which initialize an object of the class type.
Constructors are described in "Constructors" in Chapter 11, "Special Member
Functions."

• One or more "destructor" functions, which perform cleanup functions such as
deallocating dynamically allocated memory or closing files. Destructors are
described in "Destructors" in Chapter 11, "Special Member Functions."

• One or more member functions that define. the object's behavior.

Defining Class Types
Class types are defined using class-specifiers. Class types can be declared using
elaborated-type-specifiers as shown in "Type Specifiers" in Chapter 6, "Declarations."

Syntax

class-specifier:
class-head { member-listopt }

class-head:
class-key imodelopt identifieropt base-specopt
class-key imodelopt class-nameopt base-specopt

class-key:
class
struct
union

imodel:
__ declspec

254 Language Reference

Class names are introduced as identifiers immediately after the compiler processes
them (before entry into the class body); they can be used to declare class members.
This allows declaration of self-referential data structures, such as the following:

class Tree
{

public:

} ;

void *Data;
Tree *Left;
Tree *Right;

Structures, Classes, and Unions
The three class types are structure, class, and union. They are declared using the
struct, class, and union keywords (see class-key syntax). Table 8.1 shows the
differences among the three class types.

Table 8.1 Access Control and Constraints of Structures, Classes, and Unions

Structures

class-key is struct

Default access is public

No usage constraints

Classes

class-key is class

Default access is private

No usage constraints

Anonymous Class Types

Unions

class-key is union

Default access is public

Use only one member at a time

Classes can be anonymous-that is, they can be declared without an identifier. This
is useful when you replace a class name with a typedef name, as in the following:

typedef struct
{

unsigned x;
unsigned y;

} POINT;

Note The use of anonymous classes shown in the previous example is useful for
preserving compatibility with existing C code. In some C code, the use of typedef
in conjunction with anonymous structures is prevalent.

Chapter 8 Classes

Language Reference 255

c++ Language Reference

Anonymous classes are also useful when you want a reference to a class member to
appear as though it were not contained in a separate class, as in the following:

struct PTValue
{

} ;

POINT ptLoc;
union
{

} ;

int iValue;
long lValue;

PTValue ptv;

In the preceding code, iVa 1 ue can be accessed using the object member-selection
operator (.) as follows:

int i = ptv.iValue;

Anonymous classes are subject to certain restrictions. (For more information about
anonymous unions, see "Unions," later in this chapter.) Anonymous classes:

• Cannot have a constructor or, destructor.

• Cannot be passed as arguments to functions (unless type checking is defeated
using ellipses).

• Cannot be returned as return values from functions.

Point of Class Definition
A class is defined at the end of its class-specifier. Member functions need not be
defined in order for the class to be considered defined. Consider the following:

class Point
{

public:
Pointe)

{ cx = cy = 0; }

Pointe int x. int y
{ cx = x. cy = y; }

unsigned &x(unsigned);
unsigned &y(unsigned);

private:
unsigned cx. cy;

} ;

256 Language Reference

II Point class
II considered defined.

II Constructor defined.

II Constructor defined.
II Accessor declared.
II Accessor declared.

Even though the two accessor functions (x and y) are not defined, the class Poi nt is
considered defined. (Accessor functions are functions provided to give safe access to
member data.)

Class-Type Objects
An object is a typed region of storage in the execution environment; in addition to
retaining state information, it also defines behavior. Class-type objects are defined
using class-name. Consider the following code fragment:

class Account
{

public:
AccountC);

II Class name is Account.

II Default constructor.
II Construct from double. AccountC double);

double& DepositC double);
double& WithdrawC double, int);

} :

Account CheckingAccount; II Define object of class type.

The preceding code declares a class (a new type) called A c c 0 u n t. It then uses this new
type to define an object called Checki ngAccount.

The following operations are defined by C++ for objects of class type:

• Assignment. One object can be assigned to another. The default behav:ior for this
operation is a memberwise copy. This behavior can be modified by supplying a
user-defined assignment operator.

• Initialization using copy constructors.

The following are examples of initialization using user-defined copy constructors:

• Explicit initialization of an object. For example:

Point myPoint = thatPoint;

Chapter 8 Classes

declares my Poi n t as an object of type Poi n t and initializes it to the value of t hat Poi n t.

Language Reference 257

c++ Language Reference

• Initialization caused by passing as an argument. Objects can be passed to functions
by value or by reference. If they are passed by value, a copy of each object is passed
to the function. The default method for creating the copy is memberwise copy; this
can be modified by supplying a user-defined copy constructor (a constructor that takes
a single argument of the type "reference to class").

• Initialization caused by the initialization of return values from functions. Objects can
be returned from functions by value or by reference. The default method for returning
an object by value is a memberwise copy; this can be modified by supplying a user
defined copy constructor. An object returned by reference (using pointer or reference
types) should not be both automatic and local to the called function. If it is, the object
referred to by the return value will have gone out of scope before it can be used.

"Overloaded Operators" in Chapter 12, "Overloading," explains how to redefine other
operators on a class-by-class basis.

I

Empty Classes
You can declare empty classes, but objects of such types still have nonzero size.
The following example illustrates this:

#include <iostream.h>

class NoMembers
{

} ;

void maine)
{

NoMembers n; II Object of type NoMembers.

cout « "The size of an object of empty class is:
« sizeof n « endl;

This is the output of the preceding program:

The size of an object of empty class is: 1.

The memory allocated for such objects is of nonzero size; therefore, the objects have
different addresses. Having different addresses makes it possible to compare pointers to
objects for identity. Also, in arrays, each member array must have a distinct address.

Microsoft Specific ~

An empty base class typically contributes zero bytes to the size of a derived class.

END Microsoft Specific

258 Language Reference

Class Names
Class declarations introduce new types, called class names, into programs. These class
declarations also act as definitions of the class for a given translation unit. There may
be only one definition for a given class type per translation unit. Using these new class
types, you can declare objects, and the compiler can perform type checking to verify
that no operations incompatible with the types are performed on the objects.

An example of such type checking is:

class Point
{

public:
unsigned x, y;

} ;

class Rect
{

public:
unsigned xl, yl, x2, y2;

} ;

II Prototype a function that takes two arguments, one of type
II Point and the other of type pointer to Rect.
int PtInRect(Point, Rect &);

Point pt;
Rect rect;

rect = pt; II Error. Types are incompatible.
pt = rect; II Error. Types are incompatible.

II Error. Arguments to PtInRect are reversed.
cout « "Point is " « PtInRect(rect, pt) ?

« " in rectangle" « endl;
"not"

As the preceding code illustrates, operations (such as assignment and argument passing)
on class-type objects are subject to the same type checking as objects of built-in types.

Because the compiler distinguishes between class types, functions can be overloaded on
the basis of class-type arguments as well as built-in type arguments. For more information
about overloaded functions, see "Function Overloading" in Chapter 7, "Declarators," and
Chapter 12, "Overloading."

Chapter 8 Classes

Language Reference 259

c++ Language Reference

Declaring and Accessing Class Names
Class names can be declared in global or class scope. If they are declared in class scope,
they are referred to as "nested" classes.

Microsoft Specific ~

Function definitions are not permitted in local class declarations in Microsoft C++.

END Microsoft Specific

Any class name introduced in class scope hides other elements of the same name in an
enclosing scope. Names hidden by such a declaration can then be referred to only by
using an elaborated-type-speciJier. The following example shows an example of using
an elaborated-type-speciJier to refer to a hidden name:

struct A
{

int a;
} ;

void maine)
{

II Global scope definition of A.

char A = 'a'; II Redefine the name A as an object.

struct A AObject;

}

Because the name A that refers to the structure is hidden by the A that refers to the
char object, struct (a class-key) must be used to declare AObject as type A.

You can use the class-key to declare a class without providing a definition. This
nondefining declaration of a class introduces a class name for forward reference.
This technique is useful when designing classes that refer to one another in friend
declarations. It is also useful when class names must be present in header files but
the definition is not required. For example:

II RECT.H
class Point;
class Line

public:

II Nondefining declaration of class Point.

int Draw(Point &ptFrom, Point &ptTo);

} ;

In the preceding sample, the name Poi nt must be present, but it need not be a defining
declaration that introduces the name.

260 Language Reference

typedef Statements and Classes
U sing the typedef statement to name a class type causes the typedef name to become a
class-name. For more information, see "typedef Specifier" in Chapter 6, "Declarations."

Class Members
Classes can have these kinds of members:

• Member functions.

• Data members.

• Classes, which include classes, structures, and unions. (See Nested Class Declarations
and Unions.)

• Enumerations.

• Bit fields.

• Friends.

• Type names.

Note Friends are included in the preceding list because they are contained in the class
declaration. However, they are not true class members, because they are not in the
scope of the class.

Syntax

member-list:
member-declaration member-listopt
access-specifier: member-listopt

member-declaration :
decl-specifiersopt member-declarator-listopt ;
junction-definitionopt ;
qualified-name;

member-declarator-list :
member-declarator
member-declarator-list , member-declarator

member-declarator:
declarator pure-specifier opt

identifieropt : constant-expression

pure-specifier:
=0

Chapter 8 Classes

Language Reference 261

c++ Language Reference

The purpose of the member-list is to:

• Declare the complete set of members for a given class.

• Specify the access (public, private, or protected) associated with various class
members.

In the declaration of a member list, you can declare members only once; redeclaration
of members produces an error message. Because a member list is a complete set of the
members, you cannot add members to a given class with subsequent class declarations.

Member declarators cannot contain initializers. Supplying an initializer produces an error
message as illustrated in the following code:

class Cantlnit
{

public:
long = 7; II Error: attempt to in it i ali ze

II class member.
static int i 9 ; II Error: must be defined and initialized

outside of class declaration.
} ;

Because a separate instance of nonstatic member data is created for each object of a given
class type, the correct way to initialize member data is to use the class's constructor.
(Constructors are covered in "Constructors," in Chapter 11, "Special Member Functions.")
There is only one shared copy of static data members for all objects of a given class type.
Static data members must be defined and can be initialized at file scope. (For more
information about static data members, see "Static Data Members," later in this chapter.)
The following example shows how to perform these initializations:

class Canlnit
{

public:

} ;

Canlnit() { 1

long 1 ;
static int i;
static int j;

int Canlnit::i

int Canlnit::j

7; } II Initializes 1 when new objects of type
II Canlnit are created.

15; II 1 lS defined at file scope and

i ;

II initialized to 15. The initializer
II
II
II
II

is evaluated in the scope of Canlnit.
The right side of the initializer
is in the scope of the object being
initialized.

Note The class name, Can In it, . must precede i to specify that the i being defined
is a member of class Can I nit.

262 Language Reference

Class-Member Declaration Syntax
Member data cannot be declared as auto, extern, or register storage class. They can,
however, be declared as having static storage class.

The decl-specifiers specifiers can be omitted in member-function declarations.
(For information on decl-specifiers, see "Specifiers" in Chapter 6, "Declarations,"
and "Member Functions," later in this chapter; see also "Functions" in Chapter 7,
"Declarators. ") The following code is therefore legal and declares a function that
returns type int:

class NoDeclSpec
{

public:
NoSpecifiers();

} ;

When you declare a friend class in a member list, you can omit the member-declarator
list. For more information on friends, see "friend Specifier" in Chapter 6, "Declarations,"
and "Friends" in Chapter 10, "Member-Access Control." Even if a class name has not been
introduced, it can be used in a friend declaration. This friend declaration introduces the
name. However, in member declarations for such classes, the elaborated-type-specifier
syntax must be used, as shown in the following example:

class HasFriends
{

public:
friend class NotDeclaredYet;

} ;

In the preceding example, there is no member-declarator-list after the class
declaration. Because the declaration for NotDecl aredYet has not yet been processed,
the elaborated-type-specifier form is used: cl ass NotDecl a redYet. A type that has been
declared can be specified in a friend member declaration using a normal type specifier:

class AlreadyDeclared
{

} ;

class HasFriends
{

public:
friend AlreadyDeclared;

} :

Chapter 8 Classes

Language Reference 263

c++ Language Reference

The pure-specifier (shown in the following example) indicates that no implementation
is supplied for the virtual function being declared. Therefore, the pure-specifier can
be specified only on virtual functions. Consider this example:

class StrBase II Base class for strings.
{

public:

} ;

virtual int IsLessThan(StrBase&) = 0;
virtual int IsEqualTo(StrBase&) = 0;
virtual StrBase& CopyOf(StrBase&) = 0;

The preceding code declares an abstract base class-that is, a class designed to be used
only as the base class for more specific classes. Such base classes can enforce a particular
protocol, or set of functionality, by declaring one or more virtual functions as "pure"
virtual functions, using the pure-specifier.

Classes that inherit from the StrBase class must provide implementations for the pure
virtual functions; otherwise, they, too, are considered abstract base classes.

Abstract base classes cannot be used to declare objects. For example, before an object of a
type inherited from StrBase can be declared, the functions Is LessThan, Is Equa 1 To, and
CopyOf must be implemented. (For more information about abstract base classes, see
"Abstract Classes" in Chapter 9, "Derived Classes.")

Declaring Unsized Arrays in Member Lists
Microsoft Specific ~

Un sized arrays, can be declared as the last data member in class member lists if the
program is not compiled with the ANSI-compatibility option (lZa). Because this is a
Microsoft extension, using un sized arrays in this way can make your code less portable.
To declare an un sized array, omit the first dimension. For example:

class Symbol
{

public:

} ;

int Symbol Type;
char SymbolText[];

END Microsoft Specific

264 Language Reference

Restrictions
If a class contains an unsized array, it cannot be used as the base class for another class. In
addition, a class containing an unsized array cannot be used to declare any member except
the last member of another class. A class containing an unsized array cannot have a direct
or indirect virtual base class.

The sizeof operator, when applied to a class containing an unsized array, returns the
amount of storage required for all members except the unsized array. Implementors of
classes that contain un sized arrays should provide alternate methods for obtaining the
correct size of the class.

You cannot declare arrays of objects that have unsized array components. Also, performing
pointer arithmetic on pointers to such objects generates an error message.

Storage of Class-Member Data
Nonstatic class-member data is stored in such a way that items falling between access
specifiers are stored at successively higher memory addresses. No ordering across access
specifiers is guaranteed.

Microsoft Specific ~

Depending on the /Zp compiler option or the pack pragma, intervening space can be
introduced to align member data on word or doubleword boundaries.

In Microsoft C++, class-member data is stored at successively higher memory addresses,
even though the C++ language does not require it. Basing assumptions on this ordering
can lead to nonportable code.

END Microsoft Specific

Member Naming Restrictions
A function with the same name as the class in which it is declared is a constructor. A
constructor is implicitly called when an object of this class type is created. (For more
information about constructors, see "Constructors" in Chapter 11, "Special Member
Functions. ")

The following items cannot have the same name as the classes in whose scope they are
declared: data members (both static and nonstatic), enclosed enumerators, members of
anonymous unions, and nested class types.

Chapter 8 Classes

Language Reference 265

c++ Language Reference

Member Functions

266

Classes can contain data and functions. These functions are referred to as "member
functions." Any nonstatic function declared inside a class declaration is considered a
member function and is called using the member-selection operators (. and -». When
calling member functions from other member functions of the same class, the object
and member-selection operator can be omitted. For example:

class Point
{

public:
short xC) { return _x; }
shorty() {returnJ;}
voi d Show() { cout « x() «" "« y() « "\n"; }

private:
short _x. J;

} ;

void main()
{

Point pt;

pt. Show() ;
}

Note that in the member function, Show, calls to the other member functions, x and y,
are made without member-selection operators. These calls implicitly mean t his -> x ()
and thi s - >y (). However, in main, the member function, Show, must be selected using
the object pt and the member-selection operator (.)

Static functions declared inside a class can be called using the member-selection operators
or by specifying the fully qualified ,function name (including the class name).

Note A function declared using the friend keyword is not considered a member of the
class in which it is declared a friend (although it can be a member of another class).
A friend declaration controls the access a nonmember function has to class data.

The following class declaration shows how member functions are declared:

class Point
{

public:
unsigned GetX();
unsigned GetY() ;
unsigned SetX(unsigned x) ;

unsigned SetY(unsigned y) ;

private:
unsigned ptX. ptY;

} ;

Language Reference

In the preceding class declaration, four functions are declared: GetX, GetY, SetX, and SetY.
The next example shows how such functions are called in a program:

void main()
{

II Declare a new object of type Point.
Point ptOrigin;

II Member function calls use the. member-selection operator.
ptOrigin.SetX(0);
ptOrigin.SetY(0);

II Declare a pointer to an object of type Point.
Point *pptCurrent = new Point;

II Member function calls use the -> member-selection operator.
pptCurrent->SetX(ptOrigin.GetX() + 10);
pptCurrent->SetY(ptOrigin.GetY() + 10);

In the preceding code, the member functions of the object ptOri gi n are called using the
member-selection operator C.). However, the member functions of the object pointed to
by pptCurrent are called using the -> member-selection operator.

Overview of Member Functions
Member functions are either static or nonstatic. The behavior of static member functions
differs from other member functions because static member functions have no implicit this
argument. Nonstatic member functions have a this pointer. Member functions, whether
static or nonstatic, can be defined either in or outside the class declaration.

If a member function is defined inside a class declaration, it is treated as an inline function,
and there is no need to qualify the function name with its class name. Although functions
defined inside class declarations are already treated as inline functions, you can use the .
inUne keyword to document code.

An example of declaring a. function within a class declaration follows:

class Account
{

public:
II Declare the member function Deposit within the declaration
II of class Account.
double Deposit(double HowMuch
{

}

balance += HowMuch;
return balance;

private:
double balance;

} ;

Chapter 8 Classes

Language Reference 267

c++ Language Reference

If a member function's definition is outside the class declaration, it is treated as an inline
function only if it is explicitly declared as inline. In addition, the function name in the
definition must be qualified with its class name using the scope-resolution operator (::).

The following example is identical to the previous declaration of class Account, except
that the Deposi t function is defined outside the class declaration:

class Account
{

public:
II Declare the member function Deposit but do not define it.
double Deposit(double HowMuch);

private:
double balance;

} ;

inline double Account::Deposit(double HowMuch)
{

}

balance += HowMuch;
return balance;

Note Although member functions can be defined either inside a class declaration or
separately, no member functions can be added to a class after the class is defined.

Classes containing member functions can have many declarations, but the member
functions themselves must have only one definition in a program. Multiple definitions
cause an error message at link time. If a class contains inline function definitions, the
function definitions must be identical to observe this "one definition" rule.

Nonstatic Member Functions
Nonstatic member functions have an implied argument, this, that points to the object
through which the function is invoked. The type of this is type * const. These functions are
considered to have class scope and can use class data and other member functions in the
same class scope directly. In the preceding example, the expression bal ance += HowMuch
adds the value of H owM u c h to the class member b a 1 an c e. Consider the following
statements:

Account Checking;

Checking.Deposit(57.00);

268 Language Reference

The preceding code declares an object of type Account and then invokes the member
function Oepos it to add $57.00 to it. In the function Account: : Oepas it, balance is
taken to mean Check; ng. bal ance (the balance member for this object).

N on static member functions are intended to operate on objects of their class type. Calling
such a function on objects of different types (using explicit type conversions) causes
undefined behavior.

The this Pointer
All nonstatic member functions can use the this keyword, which is a const
(nonmodifiable) pointer to the object for which the function was called. Member
data is addressed by evaluating the expression this->member-name (although this
technique is seldom used). In member functions, using a member name in an expression
implicitly uses this->member-name to select the correct function or data member.

Note Because the this pointer is nonmodifiable, assignments to this are not allowed.
Earlier implementations of C++ allowed assignments to this.

Occasionally, the this pointer is used directly - for example, to manipulate self-referential
data structures, where the address of the current object is required.

Type of this Pointer
The this pointer's type can be modified in the function declaration by the const and
volatile keywords. To declare a function as having the attributes of one or more of
these keywords, use the cv-mod-list grammar.

Syntax

cv-mod-list:
cv-qualifier cv-mod-listopt

cv-qualifier :
const
volatile

Consider this example:

class Paint
{

unsigned X() canst;
} ;

The preceding code declares a member function, x, in which the this pointer is treated as
a const pointer to a const object. Combinations of cv-mod-list options can be used, but
they always modify the object pointed to by this, not the this pointer itself. Therefore,

Chapter 8 Classes

Language Reference 269

c++ Language Reference

the following declaration declares function x; the this pointer is a const pointer to a
const object:

class Point
{

unsigned X() __ far const:
} :

The type of this is described by the following syntax, where cv-qualijier-list can be const
or volatile, class-type is the name of the class:

cv-qualijier-listopt class-type * const this

Table 8.2 explains more about how these modifiers work.

Table 8.2 Semantics of this Modifiers

Modifier

const

volatile

Meaning

Cannot change member data; cannot invoke member functions that are not const.

Member data is loaded from memory each time it is accessed; disables certain
optimizations.

It is an error to pass a const object to a member function that is not const. Similarly,
it is an error to pass a volatile object to a member function that is not volatile.

Member functions declared as const cannot change member data - in such functions,
the this pointer is a pointer to a const object.

Note Constructors and destructors cannot be declared as const or volatile. They can,
however, be invoked on const or volatile objects.

Static Member Functions
Static member functions are considered to have class scope. In contrast to nonstatic
member functions, these functions have no implicit this argument; therefore, they can use
only static data members, enumerators, or nested types directly. Static member functions
can be accessed without using an object of the corresponding class type. Consider this
example:

class WindowManager
{

public:
static int CountOf(); II Return count of open windows.

void Minimize(): II Minimize current window.
WindowManager SideEffects(): II Function with side effects.

private:
static int wmWindowCount:

} ;

270 Language Reference

int WindowManager::wmWindowCount 0;

II Minimize (show iconic) all windows
for(int i = 0; i < WindowManager::CountOf(); ++i)

rgwmWin[i].Minimize();

In the preceding code, the class Wi ndowManager contains the static member function
CountOf. This function returns the number of windows open but is not necessarily
associated with a given object of type Wi ndowManager. This concept is demonstrated
in the loop where the CountOf function is used in the controlling expression; because
CountOf is a static member function, it can be called without reference to an object.

Static member functions have extemallinkage. These functions do not have this pointers
(covered in the next section). As a result, the following restrictions apply to such functions:

• They cannot access nonstatic class member data using the member-selection operators
(. or -».

• They cannot be declared as virtual.

• They cannot have the same name as a nonstatic function that has the same argument
types.

Note The left side of a member-selection operator (. or -» that selects a static
member function is not evaluated. This can be important if the function is used for
its side effects. For example, the expression Si deEffects (). CountOf() does not
call the function Si deEffects.

Static Data Members
Classes can contain static member data and member functions. When a data member is
declared as static, only one copy of the data is maintained for all objects of the class.
(For more information, see the preceding section, "Static Member Functions.")

Static data members are not part of objects of a given class type; they are separate objects.
As a result, the declaration of a static data member is not considered a definition. The data
member is declared in class scope, but definition is performed at file scope. These static
members have external linkage. The following example illustrates this:

class BufferedOutput
{

public:
II Return number of bytes written by any object of this class.
short BytesWritten() { return bytecount; }

II Reset the counter.
static void ResetCount() {bytecount 0;}

Chapter 8 Classes

Language Reference 271

c++ Language Reference

} ;

II Static member declaration.
static long bytecount;

II Define bytecount in file scope.
long BufferedOutput::bytecount;

In the preceding code, the member bytecount is declared in class BufferedOutput, but it
must be defined outside the class declaration.

Static data members can be referred to without referring to an object of class type. The
number of bytes written using BufferedOutput objects can be obtained as follows:

long nBytes = BufferedOutput::bytecount;

For the static member to exist, it is not necessary that any objects of the class type exist.
Static members can also be accessed using the member-selection (. and -» operators.
For example:

BufferedOutput Console;

long nBytes = Console.bytecount;

In the preceding case, the reference to the object (C 0 n sol e) is not evaluated; the value
returned is that of the static object bytecount.

Static data members are subject to class-member access rules, so private access to static
data members is allowed only for class-member functions and friends. These rules are
described in Chapter 10, "Member-Access Control." The exception is that static data
members must be defined in file scope regardless of their access restrictions. If the data
member is to be explicitly initialized, aninitializer must be provided with the definition.

The type of a static member is not qualified by its class name. Therefore, the type of
BufferedOutput: : bytecount is long.

272 Language Reference

Unions
Unions are class types that can contain only one data element at a time (although the data
element can be an array or a class type). The members of a union represent the kinds of
data the union can contain. An object of union type requires enough storage to hold the
largest member in its member-list. Consider the following example:

#include <stdlib.h>
#include <string.h>
#include <limits.h>

union NumericType
{

II Declare a union that can hold the following:

} ;

int
long
double

iValue;
lValue;
dValue;

II int value
II long value
II double value

void main(int argc, char *argv[])
{

NumericType *Values = new NumericType[argc - 1J;

for(int i = 1; i < argc; ++i)
if(strchr(argv[i], '.') 1= 0)

II Floating type. Use dValue member for assignment.
Values[i].dValue = atof(argv[i]);

else

}

II Not a floating type.

II If data is bigger than largest int, store it in
II lValue member.

if(atol(argv[i]) > INT_MAX)
Values[i]. lValue = atol(argv[i]);

else
II Otherwise, store it in iValue member.
Values[i].iValue = atoi(argv[i]);

Chapter 8 Classes

Language Reference 273

c++ Language Reference

The Numer; cType union is arranged in memory (conceptually) as shown in Figure 8.l.

Figure 8.1 Storage of Data in NumericType Union

iValue
IValue

dValue

o 4

Member Functions in Unions

8

In addition to member data, unions can have member functions, as described in
Member Functions. Although unions can have special functions such as constructors
and destructors, unions cannot contain virtual functions. (For more information,
see "Constructors" and "Destructors" in Chapter 11, "Special Member Functions.")

Unions as Class Types
Unions cannot have base classes; that is, they cannot inherit the attributes of other unions,
structures, or classes. Unions also cannot be used as base classes for further inheritance.

Inheritance is covered in detail in Chapter 9, "Derived Classes."

Union Member Data
Unions can contain most types in their member lists, except for the following:

• Class types that have constructors or destructors

• Class types that have user-defined assignment operators

• Static data members

Anonymous Unions
Anonymous unions are unions that are declared without a class-name or declarator-list.

Syntax

union { member-list } ;

Such union declarations do not declare types-they declare objects. The names declared
in an anonymous union cannot conflict with other names declared in the same scope.

274 Language Reference

Names declared in an anonymous union are used directly, like nonmember variables.
The following example illustrates this:

#include <iostream.h>

struct DataForm
{

enum DataType CharData
DataType type;

I, IntData, StringData };

II Declare an anonymous union.
union

} ;

} ;

char chCharMem;
char *szStrMem;
int ilntMem;

void printC);

void DataForm::printC)
{

}

II Based on the type of the data, print the
II appropriate data type.
sw;tchC type)
{

case CharData:
cout « chCharMem;
break;

case IntData:
cout « szStrMem;
break;

case StringData:
cout « ilntMem;
break;

}

In the function Data Form: : pri nt, the three members (chCha rMem, szSt rMem, and i IntMem)
are accessed as though they were declared as members (without the union declaration).
However, the three union members share the same memory.

Chapter 8 Classes

Language Reference 275

c++ Language Reference

In addition to the restrictions listed above in "Union Member Data," anonymous unions
are subject to additional restrictions:

• They must also be declared as static if declared in file scope.

• They can have only public members; private and protected members in anonymous
unions generate errors.

• They cannot have function members.

Note Simply omitting the class-name portion of the syntax does not make a union an
anonymous union. For a union to qualify as an anonymous union, the declaration must
not declare an object.

Bit Fields
Classes and structures can contain members that occupy less storage than an integral type.
These members are specified as bit fields. The syntax for bit-field member-declarator
specification follows:

Syntax

declaratoropt : constant-expression

The declarator is the name by which the member is accessed in the program. It must be an
integral type (including enumerated types). The constant-expression specifies the number
of bits the member occupies in the structure. Anonymous bit fields-that is, bit-field
members with no identifier-can be used for padding.

Note An unnamed bit field of width 0 forces alignment of the next bit field to the next
type boundm:y, where type is the type of the member.

The following example declares a structure that contains bit fields:

struct Date
{

unsigned nWeekDay 3 ; II 0 .. 7 (3 bits)
unsigned nMonthDay 6 ; II 0 .. 31 (6 bits)
unsigned nMonth 5 ; II 0 .. 12 (5 bits)
unsigned nYear 8; II 0 .. 100 (8 bits)

} ;

276 Language Reference

The conceptual memory layout of an object of type Date is shown in Figure 8.2.

Figure 8.2 Memory Layout of Date Object

Note that n Yea r is 8 bits long and would overflow the word boundary of the declared type,
unsigned int. Therefore, it is begun at the beginning of a new unsigned int. It is not
necessary that all bit fields fit in one object of the underlying type; new units of storage
are allocated, according to the number of bits requested in the declaration.

Microsoft Specific ~

The ordering of data declared as bit fields is from low to high bit, as shown in Figure 8.2.

END Microsoft Specific

If the declaration of a structure includes an unnamed field of length 0, as shown in the
following example,

struct Date
{

unsigned nWeekDay 3 ; II 0 .. 7 (3 bits)
unsigned nMonthDay 6; II 0 .. 31 (6 bits)
unsigned 0; II Force alignment to next boundary.
unsigned nMonth 5 ; II 0 .. 12 (5 bits)
unsigned nYear 8 ; II 0 .. 100 (8 bits)

} ;

the memory layout is as shown in Figure 8.3.

Figure 8.3 Layout of Date Object with Zero-Length Bit Field

The underlying type of a bit field must be an integral type, as described in "Fundamental
Types" in Chapter 2, "Basic Concepts."

Chapter 8 Classes

Language Reference 277

c++ Language Reference

Restrictions on Use of Bit Fields
The following list details erroneous operations on bit fields:

• Taking the address of a bit field

• Initializing a reference with a bit field

Nested Class Declarations
A class can be declared within the scope of another class. Such a class is called a "nested
class." Nested classes are considered to be within the scope of the enclosing class and are
available for use within that scope. To refer to a nested class from a scope other than its
immediate enclosing scope, you must use a fully qualified name.

The following example shows how to declare nested classes:

class BufferedIO
{

public:

} ;

enum 10Error { None, Access, General };

II Declare nested class BufferedInput.
class Bufferedlnput
{

public:
int read();
int goode) { return _inputerror

private:
IOError _inputerror;

} ;

None; }

II Declare nested class BufferedOutput.
class BufferedOutput
{

II Member list
} ;

Buffered I 0: : BufferedInput and BufferedI 0: : BufferedOutput are declared within
Buffered I o. These class names are not visible outside the scope of class Buffered 10.
However, an object of type BufferedlO does not contain any objects of types
Buffered I nput or Buffe redOut put.

278 Language Reference

Nested classes can directly use names, type names, names of static members, and
enumerators only from the enclosing class. To use names of other class members,
you must use pointers, references, or object names.

In the preceding BufferedIO example, the enumeration IOError can be accessed
directly by member functions in the nested classes, BufferedIO: : Bufferedlnput
or BufferedIO: : BufferedOutput, as shown in function good.

Note Nested classes declare only types within class scope. They do not cause
contained objects of the nested class to be created. The preceding example declares
two nested classes but does not declare any objects of these class types.

Access Privileges and Nested Classes
Nesting a class within another class does not give special access privileges to member
functions of the nested class. Similarly, member functions of the enclosing class have
no special access to members of the nested class.

Chapter 8 Classes

For more information about access privileges, see Chapter 10, "Member-Access Control."

Member Functions in Nested Classes
Member functions declared in nested classes can be defined in file scope. The preceding
example could have been written:

class BufferedIO
{

public:

} ;

enum IOError { None. Access. General };
class Bufferedlnput
{

public:
int read(); II Declare but do not define member
int goode); II functions read and good.

private:
IOError _inputerror;

} ;

class BufferedOutput

II Member list.
} ;

Language Reference 279

c++ Language Reference

II Define member functions read and good in
I I fil e scope.
int BufferedIO::BufferedInput::read()
{

}

int BufferedIO::BufferedInput::good()
{

return _inputerror == None;

In the preceding example, the qualified-type-name syntax is used to declare the function
name. The declaration:

BufferedIO::BufferedInput::read()

means "the read function that is a member of the BufferedInput class that is in the scope
of the BufferedIO class." Because this declaration uses the qualified-type-name syntax,
constructs of the following form are possible:

typedef BufferedIO::BufferedInput BIO_INPUT;

int BIO_INPUT::read()

The preceding declaration is equivalent to the previous one, but it uses a typedef name in
place of the class names.

Friend Functions and Nested Classes
Friend functions declared in a nested class are considered to be in the scope of the
nested class, not the enclosing class. Therefore, the friend functions gain no special
access privileges to members or member functions of the enclosing class. If you want
to use a name that is declared in a nested class in a friend function and the friend
function is defined in file scope, use qualified type names as follows:

extern char *rgszMessage[];

class BufferedIO
{

public:

280 Language Reference

class Bufferedlnput
{

public:
friend int GetExtendedErrorStatus();

static char *message;
int iMsgNo;

} ;

} ;

char *BufferedIO::Bufferedlnput::message;

int GetExtendedErrorStatus()
{

}

strcpy(BufferedIO::Bufferedlnput::message,
rgszMessage[iMsgNo]);

return iMsgNo;

The preceding code shows the function GetExtendedErrorStatus declared as a friend
function. In the function, which is defined in file scope, a message is copied from a static
array into a class member. Note that a better implementation of GetExtendedErrorStatus
is to declare it as:

int GetExtendedErrorStatus(char *message)

With the preceding interface, several classes can use the services of this function by
passing a memory location where they want the error message copied.

Type Names in Class Scope
Type names defined within class scope are considered local to their class. They cannot
be used outside that class. The following example demonstrates this concept:

class Tree
{

public:

} ;

typedef Tree * PTREE;
PTREE Left;
PTREE Ri ght;
void *vData;

PTREE pTree; II Error: not in class scope.

Chapter 8 Classes

Language Reference 281

CHAPTER 9

Derived Classes

This chapter explains how to use derived classes to produce extensible programs.

The following topics are included:

• Overview of derived classes

• Multiple base classes

• Virtual functions

• Abstract classes

• Summary of scope rules

Overview of Derived Classes
New classes can be derived from existing classes using a mechanism called "inheritance"
(see the information beginning in "Single Inheritance," in the next section). Classes that
are used for derivation are called "base classes" of a particular derived class. A derived
class is declared using the following syntax:

Syntax

base-spec:
: base-list

base-list:
base-specifier
base-list, base-specifier

base-specifier:
complete-class-name
virtual access-specifieropt complete-class-name
access-specifier virtualopt complete-class-name

access-specifier:
private
protected
public

Language Reference 283

c++ Language Reference

Single Inheritance
In "single inheritance," a common form of inheritance, classes have only one base class.
Consider the relationship illustrated in Figure 9.1.

Figure 9.1 Simple Single-Inheritance Graph

Note the progression from general to specific in Figure 9.1. Another common attribute
found in the design of most class hierarchies is that the derived class has a "kind of'
relationship with the base class. In Figure 9.1, a Book is a kind of a Pri ntedDocument,
and a PaperbackBook is a kind of a book.

One other item of note in Figure 9.1: Book is both a derived class (from Pri ntedDocument)
and a base class (PaperbackBook is derived from Book). A skeletal declaration of such a
class hierarchy is shown in the following example:

class PrintedDocument
{

II Member list.
} ;

II Book is derived from PrintedDocument.
class Book public PrintedDocument
{

II Member list.
} ;

II PaperbackBook is derived from Book.
class PaperbackBook : public Book
{

II Member list.
} ;

Pri ntedDocument is considered a "direct base" class to Book; it is an "indirect base" class
to PaperbackBook.'The difference is that a direct base class appears in the base list of a
class declaration and an indirect base does not.

284 Language Reference

Chapter 9 Derived Classes

The base class from which each class is derived is declared before the declaration of the
derived class. It is not sufficient to provide a forward-referencing declaration for a base
class; it must be a complete declaration.

In the preceding example, the access specifier public is used. The meaning of public,
protected, and private inheritance is described in Chapter 10, "Member-Access Control."

A class can serve as the base class for many specific classes, as illustrated in Figure 9.2.

Figure 9.2 Sample of Directed Acyclic Graph

In the diagram in Figure 9.2, called a "directed acyclic graph" (or "DAG"), some of the
classes are base classes for more than one derived class. However, the reverse is not true:
there is only one direct base class for any given derived class. The graph in Figure 9.2
depicts a "single inheritance" structure.

Note Directed acyclic graphs are not unique to single inheritance. They are also
used to depict multiple-inheritance graphs. This topic is covered in the next section,
"Multiple Inheritance."

In inheritance, the derived class contains the members of the base class plus any new
members you add. As a result, a derived class can refer to members of the base class
(unless those members are redefined in the derived class). The scope-resolution operator
(::) can be used to refer to members of direct or indirect base classes when those members
have been redefined in the derived class. Consider this example:

class Document
{

public:
char *Name;
void PrintNameOf();

} ;

II Document name.
II Print name.

II Implementation of PrintNameOf function from class Document.
void Document::PrintNameOf()
{

cout « Name « endl;
}

Language Reference 285

c++ Language Reference

class Book: public Document
{

public:
Book(char *name, long pagecount);

private:
long PageCount;

} ;

II Constructor from class Book.
Book::Book(char *name, long pagecount
{

} ;

Name = new char[strlen(name) + 1];
strcpy(Name. name);
PageCount = pagecount;

Note that the constructor for Book, (Book: : Book), has access to the data member, Name.
In a program, an object of type Book can be created and used as follows:

II Create a new object of type Book. This invokes the
II constructor Book::Book.
Book LibraryBook("Programming Windows, 2nd Ed", 944);

II Use PrintNameOf function inherited from class Document.
LibraryBook.PrintNameOf();

As the preceding example demonstrates, class-member and inherited data and functions
are used identically. If the implementation for class Boo k calls for a reimplementation of
the Pri ntNameOf function, the function that belongs to the Document class can be called
only by using the scope-resolution (::) operator:

class Book: public Document
{

} ;

Book(char *name, long pagecount);
void PrintNameOf();
long PageCount;

void Book::PrintNameOf()
{

cout « "Name of book: ";
Document::PrintNameOf();

286 Language Reference

Pointers and references to derived classes can be implicitly converted to pointers and
references to their base classes if there is an accessible, unambiguous base class. The
following code demonstrates this concept using pointers (the same principle applies
to references):

#include <iostream.h>

void main()
{

Document *DocLib[10]; II Library of ten documents.

for(int = 0; i < 10; ++i)
{

}

cout « "Type of document: "
« "P)aperback. M)agazine. H)elp File. C)BT"
« endl;

char cDocType;
cin » cDocType;

switch(tolower(cDocType))
{

case 'p':
DocLib[i]
break;

case 'm':
DocLib[i]
break;

case 'h':
DocLib[i]
break;

case 'e':
DocLib[i]
break;

default:
- - i ;

break;
}

new PaperbackBook;

new Magazine;

new HelpFile;

new ComputerBasedTraining;

for(i = 0; i < 10; ++i)
DocLib[i]->PrintNameOf();

Chapter 9 Derived Classes

Language Reference 287

c++ Language Reference

In the SW ITCH statement in the preceding example, objects of different types are created,
depending on what the user specified for cDocType. However, because these types are
all derived from the Document class, there is an implicit conversion to Document *. As
a result, Doc Lib is a "heterogeneous list" (a list in which not all objects are of the same
type) containing different kinds of objects.

Because the Document class has a Pri ntNameOf function, it can print the name of each
book in the library, although it may omit some of the information specific to the type
of document (page count for Book, number of bytes for Hel pFi 1 e, and so on).

Note Forcing the base class to implement a function such as Pri ntNameOf is often
not the best design. "Virtual Functions," later in this chapter, offers other design
alternatives.

Multiple Inheritance
Later versions of C++ introduced a "multiple inheritance" model for inheritance. In a
multiple-inheritance graph, the derived classes may have a number of direct base classes.
Consider the graph in Figure 9.3.

Figure 9.3 Simple Multiple-Inheritance Graph

The diagram in Figure 9.3 shows a class, Co II ect i bleSt ring. It is like a Co II ect i b 1 e
(something that can be contained in a collection), and it is like a Stri ng. Multiple
inheritance is a good solution to this kind of problem (where a derived class has
attributes of more than one base class) because it is easy to form a Co II ect i bl eCustomer,
Co II ect i b 1 eWi ndow, and so on.

If the properties of either class are not required for a particular application, either class can
be used alone or in combination with other classes. Therefore, given the hierarchy depicted
in Figure 9.3 as a basis, you can form noncollectible strings and collectibles that are not
strings. This flexibility is not possible using single inheritance.

288 Language Reference

Chapter 9 Derived Classes

Virtual Base Class Hierarchies
Some class hierarchies are broad but have many things in common. The common code is
implemented in a base class, whereas the specific code is in the derived classes.

It is important for the base classes to establish a protocol through which the derived classes
can attain maximum functionality. These protocols are commonly implemented using
virtual functions. Sometimes the base class provides a default implementation for such
functions. In a class hierarchy such as the Document hierarchy in Figure 9.2, two useful
functions are Identify and Wherels.

When called, the I dent i fy function returns a correct identification, appropriate to the kind
of document: For a Book, a function call such as doc->Identi fy() must return the ISBN
number; however, for a Hel pFi 1 e, a product name and revision number are probably
more appropriate. Similarly, Where I s should return a row and shelf for a Book, but for
a He 1 p F i 1 e it should return a disk location - perhaps a directory and filename.

It is important that all implementations of the Ide n t i f y and W her e I s functions return the
same kind of information. In this case, a character string is appropriate.

These functions are implemented as virtual functions and then invoked using a pointer
to a base class. The binding to the actual code occurs at run time, selecting the correct
Identify or Wherels function.

Class Protocol Implementation
Classes can be implemented to enforce a protocol. These classes are called "abstract
classes" because no object of the class type can be created. They exist solely for derivation.

Classes are abstract classes if they contain pure virtual functions or if they inherit pure
virtual functions and do not provide an implementation for them. Pure virtual functions are
virtual functions declared with the pure-specifier (= 0), as follows:

virtual char *Identify() = 0;

The base class, Document, might impose the following protocol on all derived classes:

• An appropriate Ide n t i f y function must be implemented.

• An appropriate Wherels function must be implemented.

Language Reference 289

c++ Language Reference

By specifying such a protocol when designing the Document class, the class
designer can be assured that no nonabstract class can be implemented without
! dent i fy and Where! s functions. The Document class, therefore, contains these
declarations:

class Document
{

public:

} ;

II Requirements for derived classes: They must implement
II these functions.
virtual char *!dentify() = 0;
virtual char *Where!s() = 0;

Base Classes
As discussed previously, the inheritance process creates a new derived class that is made
up of the members of the base class(es) plus any new members added by the derived class.
In a multiple-inheritance, it is possibl~ to construct an inheritance graph where the same
base class is part of more than one of the derived classes. Figure 9.4 shows such a graph.

In Figure 9.4, pictorial representations of the components of Co 11 e c t i b 1 eSt r i n 9

and Coll ecti bl eSortabl e are shown. However, the base class, Coll ecti bl e, is
in Coll ecti bl eSortabl eStri ng through the Coll ecti bl eStri ng path and the
Coll ecti bl eSortabl e path. To eliminate this redundancy, such classes can be
declared as virtual base classes when they are inherited.

For information about declaring virtual base classes and how objects with virtual base
classes are composed, see "Virtual Base Classes," later in this chapter.

Figure 9.4 Multiple Instances of a Single Base Class

ColiectibleString ColiectibleSortable

290 Language Reference

Chapter 9 Derived Classes

Multiple Base Classes
As described in Multiple Inheritance, a class can be derived from more than one base
class. In a multiple-inheritance model (where classes are derived from more than
one base class), the base classes are specified using the base-list grammar element
(see Syntax in "Overview," at the beginning of this chapter). For example, the class
declaration for Coll ecti onOfBook, derived from Coll ecti on and Book, can be specified:

class CollectionOfBook : public Book. public Collection
{

II New members
} ;

The order in which base classes are specified is not significant except in certain cases
where constructors and destructors are invoked. In these cases, the order in which base
classes are specified affects the following:

• The order in which initialization by constructor takes place. If your code relies on the
Book portion of Coll ect i onOfBook to be initialized before the Coll ect i on part, the
order of specification is significant. Initialization takes place in the order the classes
are specified in the base-list.

• The order in which destructors are invoked to clean up. Again, if a particular "part"
of the class must be present when the other part is being destroyed, the order is
significant. Destructors are called in the reverse order of the classes specified in the
base-list.

Note The order of specification of base classes can affect the memory layout of the
class. Do not make any programming decisions based on the order of base members
in memory.

When specifying the base-list, you cannot specify the same class name more than once.
However, it is possible for a class to be an indirect base to a derived class more than once.

Language Reference 291

c++ Language Reference

Virtual Base Classes
Because a class can be an indirect base class to a derived class more than once, c++
provides a way to optimize the way such base classes work. Consider the class hierarchy
in Figure 9.5, which illustrates a simulated lunch line.

Figure 9.5 Simulated Lunch-Line Graph

In Figure 9.5, Queue is the base class for both Cashi erQueue and LunchQueue. However,
when both classes are combined to form LunchCashi erQueue, the following problem
arises: the new class contains two subobjects of type Queue, one from Cashi erQueue and
the other from LunchQueue. Figure 9.6 shows the conceptual memory layout (the actual
memory layout might be optimized).

Figure 9.6 Simulated Lunch-Line Object

Note that there are two Queue subobjects in the LunchCashi erQueue object. The following
code declares Queue to be a virtual base class:

class Queue
{

II Member list
} ;

class CashierQueue virtual public Queue
{

II Member list
} ;

292 Language Reference

class LunchOueue : virtual public Oueue
{

II Member list
} ;

class LunchCashierOueue public LunchOueue, public CashierOueue
{

II Member list
} ;

The vi rtual keyword ensures that only one copy of the subobject Oueue is included
(see Figure 9.7).

Figure 9.7 Simulated Lunch-Line Object with Virtual Base Classes

A class can have both a virtual component and a nonvirtual component of a given type.
This happens in the conditions illustrated in Figure 9.8.

Figure 9.8 Virtual and Nonvirtual Components of the Same Class

In Figure 9.8, Cashi erQueue and LunchOueue use Oueue as a virtual base class.

Chapter 9 Derived Classes

However, Ta keoutOueue specifies Oueue as a base class, not a virtual base class. Therefore,
LunchTa keoutCashi erOueue has two subobjects of type Oueue: one from the inheritance
path that includes LunchCashi erOueue and one from the path that includes TakeoutOueue.

This is illustrated in Figure 9.9.

Figure 9.9 Object Layout with Virtual and Nonvirtuallnheritance

Language Reference 293

c++ Language Reference

Note Virtual inheritance provides significant size benefits when compared with
nonvirtual inheritance. However, it can introduce extra processing overhead.

If a derived class overrides a virtual function that it inherits from a virtual base class, and
if a constructor or a destructor for the derived base class calls that function using a pointer
to the virtual base class, the compiler may introduce additional hidden "vtordisp" fields
into the classes with virtual bases. The /vdO compiler option suppresses the addition of the
hidden vtordisp constructor/destructor displacement member. The /vdl compiler option,
the default, enables them where they are necessary. Turn off vtordisps only if you are sure
that all class constructors and destructors call virtual functions virtually.

The /vd compiler option affects an entire compilation module. Use the vtordisp pragma
to suppress and then reenable vtordisp fields on a class-by-class basis:

#pragma vtordisp(off)
class GetReal : virtual public { ... };
#pragma vtordisp(on)

N arne Ambiguities
Multiple inheritance introduces the possibility for names to be inherited along more
than one path. The class-member names along these paths are not necessarily unique.
These name conflicts are called "ambiguities."

Any expression that refers to a class member must make an unambiguous reference.
The following example shows how ambiguities develop:

II Declare two base classes, A and B.
class A
{

public:

} ;

unsigned a;
unsigned b();

class B
{

public:
unsigned a(); II Note that class A also has a member "a"
int b(); II and a member "b".
char c;

} ;

II Define class C as derived from A and B.
class C : public A. public B
{

} ;

294 Language Reference

Chapter 9 Derived Classes

Given the preceding class declarations, code such as the following is ambiguous because
it is unclear whether b refers to the b in A or in B: .

c *pc = new C;

pc->b();

Consider the preceding example. Because the name a is a member of both class A and class
B, the compiler cannot discern which a designates the function to be called. Access to a
member is ambiguous if it can refer to more than one function, object, type, or enumerator.

The compiler detects ambiguities by performing tests in this order:

1. If access to the name is ambiguous (as just described), an error message is generated.

2. If overloaded functions are unambiguous, they are resolved. (For more information
about function overloading ambiguity, see "Argument Matching" in Chapter 12,
"Overloading.")

3. If access to the name violates member-access permission, an error message is
generated. (For more information, see Chapter 10, "Member-Access Control.")

When an expression produces an ambiguity through inheritance, you can manually resolve
it by qualifying the name in question with its class name. To make the preceding example
compile properly with no ambiguities, use code such as:

C *pc = new C;

pc-)B::a();

Note When C is declared, it has the potential to cause errors when B is referenced
in the scope of C. No error is issued, however, until an unqualified reference to B is
actually made in c's scope.

Language Reference 295

c++ Language Reference

Ambiguities and Virtual Base Classes
If virtual base classes are used, functions, objects, types, and enumerators can be reached
through multiple-inheritance paths. Because there is only one instance of the base class,
there is no ambiguity when accessing these names.

Figure 9.10 shows how objects are composed using virtual and nonvirtual inheritance.

Figure 9.10 Virtual vs. Nonvirtual Derivation

'~ ______________ .-____________ -J/

[Virtual

In Figure 9.10, accessing any member of class A through nonvirtual base classes causes
an ambiguity; the compiler has no information that explains whether to use the subobject
associated with B or the subobject associated with C. However, when A is specified as a
virtual base class, there is no question which subobject is being accessed.

Dominance
It is possible for more than one name (function, object, or enumerator) to be reached
through an inheritance graph. Such cases are considered ambiguous with non virtual
base classes. They are also ambiguous with virtual base classes, unless one of the names
"dominates" the others.

A name dominates another name if it is defined in both classes and one class is derived
from the other. The dominant name is the name in the derived class; this name is used
when an ambiguity would otherwise have arisen, as shown in the following example:

class A
{

public:
int a;

} ;

class B public virtual A
{

public:
int a();

} ;

296 Language Reference

Chapter 9 Derived Classes

class C public virtual A
{

} ;

class D public B, public C
{

public:
D() {a(); } II Not ambiguous. B::a() dominates A::a.

} ;

Ambiguous Conversions
Explicit and implicit conversions from pointers or references to class types can cause
ambiguities. Figure 9.11 shows the following:

• The declaration of an object of type D.

• The effect of applying the address-of operator (&) to that object. Note that the
address-of operator always supplies the base address of the object.

• The effect of explicitly converting the pointer obtained using the address-of operator
to the base-class type A. Note that coercing the address of the object to type A* does
not always provide the compiler with enough information as to which subobject of
type A to select; in this case, two subobjects exist.

The conversion to type A * (pointer to A) is ambiguous because there is no way to discern
which subobject of type A is the correct one. Note that you can avoid the ambiguity by
explicitly specifying which subobject you mean to use, as follows:

(A *)(B *)&d
(A *)(C *)&d

II Use B subobject.
II Use C subobject.

Figure 9.11 Ambiguous Conversion of Pointers to Base Classes

D d;

&d

(A*)&d

Language Reference 297

c++ Language Reference

Virtual Functions
"Virtual functions" are functions that ensure that the correct function is called for an
object, regardless of the expression used to make the function call.

Suppose a base class contains a function declared as virtual and a derived class
defines the same function. The function from the derived class is invoked for objects
of the derived class, even if it is called using a pointer or reference to the base class.
The following example shows a base class that provides an implementation of the
Pri ntBal ance function:

class Account
{

public:
Account(double d);

virtual double GetBalance();
virtual void PrintBalance();

private:
double _balance;

} ;

II Constructor.
II Obtain balance.
II Default implementation.

II Implementation of constructor for Account.
double Account::Account(double d)
{

_balance = d;
}

II Implementation of GetBalance for Account.
double Account::GetBalance()
{

return _balance~
}

II Default implementation of PrintBalance.
void Account::PrintBalance()
{

}

cerr « "Error. Balance not available for base type."
« endl;

Two derived classes, Checki ngAccount and Savi ngsAccount, can be created as follows:

class CheckingAccount : public Account
{

public:
void PrintBalance();

} ;

298 Language Reference

II Implementation of PrintBalance for CheckingAccount.
void CheckingAccount::PrintBalance()
{

cout « "Checking account balance: " « GetBalance();

class SavingsAccount
{

public:
void PrintBalance();

} ;

public Account

II Implementation of PrintBalance for SavingsAccount.
void SavingsAccount::PrintBalance()
{

cout « "Savings account balance: " « GetBalance();

Chapter 9 Derived Classes

The Pri ntBal ance function in the derived classes is virtual because it is declared as virtual
in the base class, Account. To call virtual functions such as Pri ntBa 1 ance, code such as
the following can be used:

II Create objects of type CheckingAccount and SavingsAccount.
CheckingAccount *pChecking new CheckingAccount(100.00);
SavingsAccount *pSavings new SavingsAccount(1000.00);

II Call PrintBalance using a pointer to Account.
Account *pAccount = pChecking;
pAccount-)PrintBalance();

II Call' PrintBalance using a pointer to Account.
pAccount = pSavings;
pAccount-)PrintBalance();

In the preceding code, the calls to P r i n t B a 1 an c e are identical, except for the object
pAccount points to. Because Pri ntBa 1 ance is virtual, the version of the function
defined for each object is called. The Pri ntBa 1 ance function in the derived classes
Checki ngAccount and Savi ngsAccount "override" the function in the base class Account.

If a class is declared that does not provide an overriding implementation of the
Pri ntBa 1 ance function, the default implementation from the base class Account is used.

Functions in derived classes override virtual functions in base classes only if their type is
the same. A function in a derived class cannot differ from a virtual function in a base class
in its return type only; the argument list must differ as well.

Language Reference 299

c++ Language Reference

When calling a function using pointers or references, the following rules apply:

• A call to a virtual function is resolved according to the underlying type of object for
which it is called.

• A call to a nonvirtual function is resolved according to the type of the pointer or
reference.

The following example shows how virtual and nonvirtual functions behave when called
through pointers:

#include <iostream.h>

II Declare a base class.
class Base
{

public:
virtual void NameOf();

void InvokingClass();
} :

II Implement the two functions.
void Base::NameOf()
{

cout « "Base::NameOf\n";

voi d Base:: Invoki ngCl ass ()
{

cout « "Invoked by Base\n";

II Declare a derived class.
class Derived: public Base
{

public:

II Virtual function.
II Nonvirtual function.

void NameOf(); II Virtual function.
void InvokingClass(); II Nonvirtual function.

} ;

II Implement the two functions.
void Derived::NameOf()
{

cout « "Derived::NameOf\n";
}

void Derived::InvokingClass()
{

cout « "Invoked by Derived\n";
}

300 Language Reference

Chapter 9 Derived Classes

void main()
{

II Declare an object of type Derived.
Derived aDerived;
II Declare two pointers, one of type Derived * and the other
II of type Base *, and initialize them to point to aDerived.
Derived *pDerived = &aDerived;
Base *pBase = &aDerived;
II Call the functions.
pBase->NameOf();
pBase->InvokingClass();
pDerived->NameOf();

I I Call vi rtual functi on.
II Call nonvirtual function.
II Call virtual function.

pDerived->InvokingClass(); II Call nonvirtual function.

The output from this program is:

Derived::NameOf
Invoked by Base
Derived::NameOf
Invoked by Derived

Note that regardless of whether the NameOf function is invoked through a pointer to Base
or a pointer to Deri ved, it calls the function for Deri ved. It calls the function for Deri ved
because NameOf is a virtual function, and both pBase and pDeri ved point to an object of
type De r i v e d.

Because virtual functions are called only for objects of class types, you cannot declare
global or static functions as virtual.

The virtual keyword can be used when declaring overriding functions in a derived class,
but it is unnecessary; overrides of virtual functions are always virtual.

Virtual functions in a base class must be defined unless they are declared using the
pure-specifier. (For more information about pure virtual functions, see the next section,
"Abstract Classes.")

The virtual function-call mechanism can be suppressed by explicitly qualifying the
function name using the scope-resolution operator (::). Consider the preceding
example. To call Pri ntBa 1 ance in the base class, use code such as the following:

CheckingAccount *pChecking = new CheckingAccount(100.00);

pChecking->Account: :PrintBalance(); II Explicit qualification.

Account *pAccount = pChecking; II Call Account::PrintBalance

pAccount->Account::PrintBalance(); II Explicit qualification.

Both calls to Pri ntBal ance in the preceding example suppress the virtual function-call
mechanism.

Language Reference 301

c++ Language Reference

Abstract Classes
Abstract classes act as expressions of general concepts from which more specific classes
can be derived. You cannot create an object of an abstract class type; however, you can
use pointers and references to abstract class types.

A class that contains at least one pure virtual function is considered an abstract class.
Classes derived from the abstract class must implement the pure virtual function or
they, too, are abstract classes.

A virtual function is declared as "pure" by using the pure-specifier syntax (described in
"Class Protocol Implementation," earlier in this chapter). Consider the example presented
in "Virtual Functions," earlier in this chapter. The intent of class Account is to provide
general functionality, but objects of type Account are too general to be useful. Therefore,
Account is a good candidate for an abstract class:

class Account
{

public:
Account(double d); II Constructor.

virtual double GetBalance(); II Obtain balance.
virtual void PrintBalance() = 0; II Pure virtual function.

private:
double _balance;

} ;

The only difference between this declaration and the previous one is that P r i n t B a 1 an c e is
declared with the pure specifier (= 0).

Restrictions on Using Abstract Classes
Abstract classes cannot be used for:

• Variables or member data

• Argument types

• Function return types

• Types of explicit conversions

Another restriction is that if the constructor for an abstract class calls a pure virtual
function, either directly or indirectly, the result is undefined. However, constructors
and destructors for abstract classes can call other member functions.

302 Language Reference

Chapter 9 Derived Classes

Pure virtual functions can be defined for abstract classes, but they can be called directly
only by using the syntax:

abstract-class-name :: function-name()

This helps when designing class hierarchies whose base class(es) include pure virtual
destructors, because base class destructors are always called in the process of destroying
an object. Consider the following example:

#include <iostream.h>

II Declare an abstract base class with a pure virtual destructor.
class base
{

public:
base() {}
virtual ~base()=0;

} ;

II Provide a definition for destructor.
base: :~bas~()
{

}

class derived:public base

public:

} ;

deri ved () {}
~derived(){}

void main()
{

derived *pDerived new derived;

delete pDerived;

When the object pointed to by pDeri ved is deleted, the destructor for class deri ved is
called and then the destructor for class bas e is called. The empty implementation for the
pure virtual function ensures that at least some implementation exists for the function.

Note In the preceding example, the pure virtual function base: : ~base is called
implicitly from deri ved: :~deri ved. It is also possible to call pure virtual functions
explicitly using a fully qualified member-function name.

Language Reference 303

c++ Language Reference

Summary of Scope Rules
This section supplements "Scope" by adding the concepts pertaining to classes.
The following topics are included:

• Ambiguity

• Global names

• Names and qualified names

• Function argument names

• Constructor initializers

Ambiguity
The use of a name must be unambiguous within its scope (up to the point where
overloading is determined). If the name denotes a function, the function must be
unambiguous with respect to number and type of arguments. If the name remains
unambiguous, member-access rules are applied.

Global Names
A name of an object, function, or enumerator is global if it is introduced outside any
function or class or prefixed by the global unary scope operator (::), and if it is not
used in conjunction with any of these binary operators:

• Scope-resolution (::)

• Member-selection for objects and references (.)

• Member-selection for pointers (-»

Names and Qualified Names
Names used with the binary scope-resolution operator (::) are called "qualified names."
The name specified after the binary scope-resolution operator must be a member of the
class specified on the left of the operator or a member of its base class(es).

Names specified after the member-selection operator (. or -» must be members of
the class type of the object specified on the left of the operator or members of its base
class(es). Names specified on the right of the member-selection operator (-» can also
be objects of another class type, provided that the left-hand side of -> is a class object
and that the class defines an overloaded member-selection operator (-» that evaluates
to a pointer to some other class type. (This provision is discussed in more detail in
"Class Member Access" in Chapter 12, "Overloading.")

304 Language Reference

Chapter 9 Derived Classes

The compiler searches for names in the following order, stopping when the name is found:

1. Current block scope if name is used inside a function; otherwise, global scope.

2. Outward through each enclosing block scope, including the outermost function scope
(which includes function arguments).

3. If the name is used inside a member function, the class's scope is searched for the
name.

4. The class's base classes are searched for the name.

5. The enclosing nested class scope (if any) and its bases are searched. The search
continues until the outermost enclosing class scope is searched.

6. Global scope is searched.

However, you can make modifications to this search order as follows:

7. N ames preceded by :: force the search to begin at global scope.

8. Names preceded by the class, struct, and union keywords force the compiler to search
only for class, struct, or union names.

9. Names on the left side of the scope-resolution operator (::) can be only class, struct,
or union names.

If the name refers to a nonstatic member but is used in a static member function, an error
message is generated. Similarly, if the name refers to any nonstatic member in an enclosing
class, an error message is generated because enclosed classes do not have enclosing-class
this pointers.

Function Argument Names
Function argument names in function definitions are considered to be in the scope of the
outermost block of the function. Therefore, they are local names and go out of scope when
the function is exited.

Function argument names in function declarations (prototypes) are in local scope of the
declaration and go out of scope at the end of the declaration.

Default arguments are in the scope of the argument for which they are the default, as
described in the preceding two paragraphs. However, they cannot access local variables
or nonstatic class members. Default arguments are evaluated at the point of the function
call, but they are evaluated in the function declaration's original scope. Therefore, the
default arguments for member functions are always evaluated in class scope.

Language Reference 305

c++ Language Reference

Constructor Initializers
Constructor initializers (described in "Initializing Bases and Members" in Chapter 11,
"Special Member Functions") are evaluated in the scope of the outermost block of the
constructor for which they are specified. Therefore, they can use the constructor's
argument names.

306 Language Reference

C HAP T E R 1 0

Member-Access Control

With C++, you can specify the level of access to member data and functions. There are
three levels of access: public, protected, and private. This chapter explains how access
control applies to objects of class type and to derived classes. This chapter includes the
following topics:

• Controlling access to class members

• Access specifiers

• Access specifiers for base classes

• Friends

• Protected member access

• Access to virtual functions

• Multiple access

Controlling Access to
Class Members

You can increase the integrity of software built with C++ by controlling access to class
member data and functions. Class members can be declared as having private, protected,
or public access, as shown in Table 10.1.

Table 10.1 Member-Access Control

Type of Access Meaning

private Class members declared as private can be used only by member functions
and friends (classes or functions) of the class.

protected

public

Class members declared as protected can be used by member functions
and friends (classes or functions) of the class. Additionally, they can be
used by classes derived from the class.

Class members declared as public can be used by any function.

Language Reference 307

c++ Language Reference

Access control prevents you from using objects in ways they were not intended to be used.
This protection is lost when explicit type conversions (casts) are performed.

Note Access control is equally applicable to all names: member functions, member
data, nested classes, and enumerators.

The default access to class members (members of a class type declared using the class
keyword) is private; the default access to struct and union members is public. For either
case, the current access level can be changed using the public, private, or protected
keyword.

Access Specifiers

308

In class declarations, members can have access specifiers.

Syntax

access-specifier : member-listopt

The access-specifier determines the access to the names that follow it, up to the next
access-specifier or the end of the class declaration. Figure 10.1 illustrates this concept.

Figure 10.1 Access Control in Classes

This public access specifier affects all
members until the next access specifier.

This private access specifier affects all members
until the class end. (If more access specifiers
followed, private would affect all the members
until the next access specifier.)

Although only two access specifiers are shown in Figure 10.1, there is no limit to the
number of access specifiers in a given class declaration. For example, the Point class in
Figure 10.1 could just as easily be declared using multiple access specifiers as follows:

class Point
{

public: II Declare public constructor.
PointC int, int) ;

private: II Declare private state variable.
int _x;

public: II Declare public constructor.
PointC);

public: II Declare public accessor.
int &x(int) ;

Language Reference

Chapter 10 Member-Access Control

private:
int _y;

public:
i n t &y (i n t);

} ;

II Declare private state variable.

II Declare public accessor.

Note that there is no specific order required for member access, as shown in the preceding
example. The allocation of storage for objects of class types is implementation dependent,
but members are guaranteed to be assigned successively higher memory addresses between
access specifiers.

Access Specifiers for Base Classes
Two factors control which members of a base class are accessible in a derived class; these
same factors control access to the inherited members in the derived class:

• Whether the derived class declares the base class using the public access specifier
in the class-head (class-head is described in Syntax in "Defining Class Types" in
Chapter 8, "Classes").

• What the access to the member is in the base class.

Table 10.2 shows the interaction between these factors and how to determine base-class
member access.

Table 10.2 Member Access in Base Class

private

Always inaccessible
regardless of derivation
access

protected

Private in derived class if
you use private derivation

public

Private in derived class if
you use private derivation

Protected in derived class if
you use protected derivation

Protected in derived class if
you use protected derivation

Protected in derived class if
you use public derivation

The following example illustrates this:

class BaseClass
{

public:
int PublicFunc();

protected:
II Declare a public member.

Public in derived class if
you use public derivation

int ProtectedFunc(); II Declare a protected member.
private:

int PrivateFunc(); II Declare a private member.
} ;

Language Reference 309

c++ Language Reference

II Declare two classes derived from BaseClass.
class DerivedClassl : public BaseClass
{ };

class DerivedClass2
{ };

private BaseClass

In Deri vedCl assl, the member function Publ i cFunc is a public member and
ProtectedFunc is a protected member because BaseCl ass is a public base class.
Pri vateFunc is private to BaseCl ass, and it is inaccessible to any derived classes.

In Deri vedCl ass2, the functions Publ i c Func and ProtectedFunc are considered private
members because BaseCl ass is a private base class. Again, Pri vateFunc is private to
BaseCl ass, and it is inaccessible to any derived classes.

You can declare a derived class without a base-class access specifier. In such a case, the
derivation is considered private if the derived class declaration uses the class keyword.
The derivation is considered public if the derived class declaration uses the struct
keyword. For example, the following code:

class Derived: Base

is equivalent to:

class Derived private Base

Similarly, the following code:

struct Derived : Base

is equivalent to:

struct Derived public Base

Note that members declared as having private access are not accessible to functions or
derived classes unless those functions or classes are declared using the friend declaration
in the base class.

A union type cannot have a base class.

Note When specifying a private base class, it is advisable to explicitly use the private
keyword so users of the derived class understand the member access.

310 Language Reference

Chapter 10 Member-Access Control

Access Control and Static Members
When you specify a base class as private, it affects only non static members. Public static
members are still accessible in the derived classes. However, accessing members of the
base class using pointers, references, or objects can require a conversion, at which time
access control is again applied. Consider the following example:

class Base
{

public:
i nt Pri nt();
static int CountOf();

} ;

II Nonstatic member.
II Static member.

II Derived! declares Base as a private base class.
class Derived! : private Base
{

} ;

II Derived2 declares Derived! as a public base class.
class Derived2 : public Derived!
{

int ShowCount(); II Nonstatic member.
} ;

II Define ShowCount function for Derived2.
int Derived2::ShowCountC)
{

}

II Call static member function CountOf explicitly.
int cCount = Base::CountOf(); II OK."

II Call static member function CountOf using pointer.
cCount = this->CountOf(); II Error. Conversion of

return cCount;

II Derived2 * to Base * not
II permitted.

In the preceding code, access control prohibits conversion from a pointer to Deri ved2 to a
pointer to Base. The this pointer is implicitly of type Deri ved2 *. To select the CountOf
function, this must be converted to type Bas e *. Such a conversion is not permitted
because Base is a private indirect base class to Deri ved2. Conversion to a private base
class type is acceptable only for pointers to immediate derived classes. Therefore,
pointers of type Deri ved! * can be converted to type Base *.

Note that calling the CountOf function explicitly, without using a pointer, reference,
or object to select it, implies no conversion. Therefore, the call is allowed.

Members and friends of a derived class, T, can convert a pointer to T to a pointer to
a private direct base class of T.

Language Reference 311

c++ Language Reference

Friends
In some circumstances, it is more convenient to grant member-level access to functions
that are not members of a class or to all functions in a separate class. With the friend
keyword, programmers can designate either the specific functions or the classes whose
functions can access not only public members but also protected and private members.

Friend Functions
Friend functions are not considered class members; they are normal external functions
that are given special access privileges. Friends are not in the class's scope, and they are
not called using the member-selection operators (. and -» unless they are members of
another class. The following example shows a Poi nt class and an overloaded operator,
operator+. (This example primarily illustrates friends, not overloaded operators. For
more information about overloaded operators, see "Overloaded Operators" in Chapter 12,
"Overloading.")

#include <iostream.h>

II Declare class Point.
class Point
{

public:
II Constructors
Point() { _x = _y = 0; }
Point(unsigned x, unsigned y) {_x x; -Y y;}

II Accessors
unsigned x() { return _x; }
unsigned y() { return -y; }
void Print() { cout « "Point("« x«" "« -y « ")"

« endl; }

II Friend function declarations
fri end Poi nt operator+(Poi nt& pt, i nt nOffset);
friend Point operator+(int nOffset, Point& pt);

private:
unsigned _x;
unsigned -y;

} ;

II Friend-function definitions
II
II Handle Point + int expression.
Point operator+(Point& pt, int nOffset

312 Language Reference

Chapter 10 Member-Access Control

Point ptTemp = pt;
II Change private members _x and _y directly.
ptTemp._x += nOffset;
ptTemp.-y += nOffset;

return ptTemp;

II Handle int + Point expression.
Point operator+(int nOffset. Point& pt)
{

}

Point ptTemp = pt;
II Change private members x and _y directly.
ptTemp._x += nOffset;
ptTemp.-y += nOffset;

return ptTemp;

II Test overloaded operator.
void maine)
{

}

Point pte 10. 20);
pt. Print();

pt = pt + 3;
pt.Print();

pt = 3 + pt;
pt.Print();

II Point + int

II ;nt + Point

When the expression pt + 3 is encountered in the rna; n function, the compiler
determines whether an appropriate user-defined operator+ exists. In this case, the
function operator+(Po; nt pt. i nt nOffset) matches the operands, and a call
to the function is issued. In the second case (the expression 3 + pt), the function
operator+(Poi nt pt. i nt nOffset) matches the supplied operands. Therefore,
supplying these two forms of operator+ preserves the commutative properties of
the + operator.

A user-defined operator+ can be written as a member function, but it takes only one
explicit argument: the value to be added to the object. As a result, the commutative
properties of addition cannot be correctly implemented with member functions; they
must use friend functions instead.

Language Reference 313

c++ Language Reference

Notice that both versions of the overloaded 0 per a t 0 r+ function are declared as friends in
class Poi nt. Both declarations are necessary - when friend dech~rations name overloaded
functions or operators, only the particular functions specified by the argument types
become friends. Suppose a third operator+ function were declared as follows:

Point &operator+(Point &pt, Point &pt);

The operator+ function in the preceding example is not a friend of class Poi nt, simply
because it has the same name as two other functions that are declared as friends.

Because friend declarations are unaffected by access specifiers, they can be declared
in any section of the class declaration.

Class Member Functions and
Classes as Friends

Class member functions can be declared as friends in other classes. Consider the
following example:

class B;
class A
{

} ;

int Funcl(B& b
int Func2(B& b

class B
{

private:
int _b;
friend int A::Funcl(B&); II Grant friend access to one

II function in class B.
} ;

int A::Funcl(B& b
int A::Func2(B& b

{ return b._b; } II OK: this is a friend.
{ return b._b; } II Error: _b is a private member.

In the preceding example, only the function A: : Func1 (B&) is granted friend access to
class B. Therefore, access to the private member _b is correct in Func1 of class A but not
in Func2.

Suppose the friend declaration in class B had been:

friend class A;

In that case, all member functions in class A would have been granted friend access to class
B. Note that "friendship" cannot be inherited, nor is there any "friend of a friend" access.
Figure 10.2 shows four class declarations: Base, Deri ved, a Fri end, and anotherFri end.
Only class aFri end has direct access to the private members of Base (and to any members
Base might have inherited).

314 Language Reference

Chapter 10 Member-Access Control

Figure 10.2 Implications of friend Relationship

No friend of friend
relationship

Friend Declarations

Inheritance does not imply
the same friends

If you declare a friend function that was not previously declared, that function is exported
to the enclosing nonclass scope.

Functions declared in a friend declaration are treated as if they had been declared using
the extern keyword. (For more information about extern, see "Static Storage-Class
Specifiers" in Chapter 6, "Declarations.")

Although functions with global scope can be declared as friends prior to their prototypes,
member functions cannot be declared as friends before the appearance of their complete
class declaration. The following code shows why this fails:

class ForwardDeclared;

class HasFriends
{

II Class name is known.

friend int ForwardDeclared::lsAFriend(); I I Error.
} ;

The preceding example enters the class name F 0 rwa rdDec 1 a red into scope, but the
complete declaration - specifically, the portion that declares the function I sAFri end
is not known. Therefore, the friend declaration in class Has Fri ends generates an error.

To declare two classes that are friends of one another, the entire second class must be
specified as a friend of the first class. The reason for this restriction is that the compiler
has enough information to declare individual friend functions only at the point where the
second class is declared. 1

Note Although the entire second class must be a friend to the first class, you can select
which functions in the first class will be friends of the second class.

Language Reference 315

c++ Language Reference

Defining Friend Functions in
Class Declarations

Friend functions can be defined inside class declarations. These functions are inline
functions, and like member inline functions they behave as though they were defined
immediately after all class members have been seen but before the class scope is closed
(the end of the class declaration).

Friend functions defined inside class declarations are not considered in the scope of the
enclosing class; they are in file scope.

Protected Member Access
Class members declared as protected can be used only by the following:

• Member functions of the class that originally declared these members.

• Friends of the class that originally declared these members.

• Classes derived with public or protected access from the class that originally declared
these members.

• Direct privately derived classes that also have private access to protected members.

Protected members are not as private as private members, which are accessible only to
members of the class in which they are declared, but they are not as public as public
members, which are accessible in any function.

Protected members that are also declared as static are accessible to any friend or member
function of a derived class. Protected members that are not declared as static are accessible
to friends and member functions in a derived class only through a pointer to, reference to,
or object of the derived class.

Access to Virtual Functions
The access control applied to virtual functions is determined by the type used to make the
function call. Overriding declarations of the function do not affect the access control for a
given type. For example:

class VFuncBase
{

public:
virtual int GetState() { return _state; }

protected:
int _state;

} ;

316 Language Reference

class VFuncDerived
{

private:

public VFuncBase

int GetState() { return _state; }
} ;

VFuncDerived vfd;
VFuncBase *pvfb = &vfd;
VFuncDerived *pvfd = &vfd;
int State;

State
State

pvfb-)GetState();
pvfd-)GetState();

II Object of derived type.
II Pointer to base type.
II Pointer to derived type.

II GetState is public.
II GetState is private; error.

Chapter 10 Member-Access Control

In the preceding example, calling the virtual function GetState using a pointer to type
VFuncBase calls VFuncDeri ved: : GetState, and GetState is treated as public. However,
calling GetState using a pointer to type VFuncDeri ved is an access-control violation
because GetState is declared private in class VFuncDeri ved.

Warning The virtual function GetState can be called using a pointer to the base class
VFuncBase. This does not mean that the function called is the base-class version of
that function.

Multiple Access
In multiple-inheritance lattices involving virtual base classes, a given name can be reached
through more than one path. Because different access control can be applied along these
different paths, the compiler chooses the path that gives the most access. See Figure 10.3.

Figure 10.3 Access Along Paths of an Inheritance Graph

In Figure 10.3, a name declared in class VBase is always reached through class Ri ghtPath.
The right path is more accessible because Ri ghtPath declares VBase as a public base class,
whereas LeftPath declares VBase as private.

Language Reference 317

•

C HAP T E R 1 1

Special Member Functions

c++ defines several kinds of functions that can be declared only as class members -
these are called "special member functions." These functions affect the way objects of
a given class are created, destroyed, copied, and converted into objects of other types.
Another important property of many of these functions is that they can be called implicitly
(by the compiler).

The special member functions are described briefly in the following list:

• Constructors

• Destructors

• Temporary objects

• Conversions

• The new and delete operators

• Initialization using special member functions

• Copying class objects

All of the items in the preceding list can be user-defined for each class.

Special member functions obey the same access rules as other member functions.
The access rules are described in Chapter 10, "Member-Access Control." Table 11.1
summarizes how member and friend functions behave.

Table 11.1 Summary of Function Behavior

Is Function Can Function Is Function a
Inherited from Can Function Return a Member or

Function Type Base Class? Be Virtual? Value? Friend?

Constructor No No No Member

Copy No No No Member
Constructor

Destructor No Yes No Member

Will Compiler
Generate Function
If User Does Not?

Yes

Yes

Yes

(continued)

Language Reference 319

c++ Language Reference

Table 11.1 Summary of Function Behavior (continued)

Is Function Can Function Is Function a Will Compiler
Inherited from Can Function Return a Member or Generate Function

Function Type Base Class? Be Virtual? Value? Friend? If User Does Not?

Conversion Yes Yes No Member No

Assignment No Yes Yes Member Yes
(operator=)

new Yes No void* Static member No

delete Yes No void Static member No

Other member Yes Yes Yes Member No
functions

Friend No No Yes Friend No
functions

Constructors
A member function with the same name as its class is a constructor function. Constructors
cannot return values, even if they have return statements. Specifying a constructor with a
return type is an error, as is taking the address of a constructor.

If a class has a constructor, each object of that type is initialized with the constructor prior
to use in a program. (For more information about initialization, see "Initialization Using
Special Member Functions," later in this chapter.)

Constructors are called at the point an object is created. Objects are created as:

• Global (file-scoped or externally linked) objects.

• Local objects, within a function or smaller enclosing block.

• Dynamic objects, using the new operator. The new operator allocates an object on the
program heap or "free store."

• Temporary objects created by explicitly calling a constructor. (For more information,
see "Temporary Objects," later in this chapter.)

• Temporary objects created implicitly by the compiler. (For more information, see
"Temporary Objects," later in this chapter.)

• Data members of another class. Creating objects of class type, where the class type is
composed of other class-type variables, causes each object in the class to be created.

• Base class subobject of a class. Creating objects of derived class type causes the base
class components to be created.

320 Language Reference

Chapter 11 Special Member Functions

What a Constructor Does
A constructor performs various tasks that are not visible to you as the programmer, even
if you write no code for the constructor. These tasks are all associated with building a
complete and correct instance of class type.

In Microsoft C++ (and some other implementations of C++), a constructor:

• Initializes the object's virtual base pointer(s) (vbptr). This step is performed if the
class is derived from virtual base classes.

• Calls base class and member constructors in the order of declaration.

• Initializes the object's virtual function pointers (vfptr). This step is performed if
the class has or inherits virtual functions. Virtual function pointers point to the
class's virtual function table (v -table) and allow correct binding of virtual function
calls to code.

• Executes optional code in the body of the constructor function.

When the constructor is finished, the allocated memory is an object of a given class
type. Because of the steps the constructor performs, "late binding" in the form of virtual
functions can be resolved at the point of a virtual function call. The constructor has also
constructed base classes and has constructed composed objects (objects included as data
members). Late binding is the mechanism by which C++ implements polymorphic
behavior for objects.

Rules for Declaring Constructors
A constructor has the same name as its class. Any number of constructors can be
declared, subject to the rules of overloaded functions. (For more information, see
Chapter 12, "Overloading.")

Syntax

class-name (argument-declaration-listopt) cv-mod-listopt

C++ defines two special kinds of constructors, default and copy constructors, described
in Table 11.1.

Table 11.1 Default and Copy Constructors

Kind of Construction Arguments Purpose

Default constructor Can be called with no arguments Construct a default object of
the class type

Copy constructor Can accept a single argument of
reference to same class type

Copy objects of the class type

Language Reference 321

c++ Language Reference

Default constructors can be called with no arguments. However, you can declare a default
constructor with an argument list, provided all arguments have defaults. Similarly, copy
constructors must accept a single argument of reference to the same class type. More
arguments can be supplied, provided all subsequent arguments have defaults.

If you do not supply any constructors, the compiler attempts to generate a default
constructor. If you do not supply a copy constructor, the compiler attempts to generate
one. These compiler-generated constructors are considered public member functions.
An error is generated if you specify a copy constructor with a first argument that is an
object and not a reference.

A compiler-generated default constructor sets up the object (initializes vftables and
vbtables, as described previously), and it calls the default constructors for base classes
and members, but it takes no other action. Base class and member constructors are called
only if they exist, are accessible, and are unambiguous.

A compiler-generated copy constructor sets up a new object and performs a memberwise
copy of the contents of the object to be copied. If base class or member constructors exist,
they are called; otherwise, bitwise copying is performed.

If all base and member classes of a class type have copy constructors that accept a const
argument, the compiler-generated copy constructor accepts a single argument of type" const
type&. Otherwise, the compiler-generated copy constructor accepts a single argument of
type type&.

You can use a constructor to initialize a const or volatile object, but the constructor itself
cannot be declared as const or volatile. The only legal storage class for a constructor is
inline; use of any other storage-class modifier, including the __ declspec keyword, with a
constructor causes a compiler error. Constructors and destructors cannot specify a calling
convention other than stdcall. '

Constructors of base classes are not inherited by derived classes. When an object of
derived class type is created, it is constructed starting with the base class components;
then it moves to the derived class components. The compiler uses each base class's
constructor as that part of the complete object is initialized (except in cases of virtual
derivation, as described in "Initializing Base Classes," later in this chapter).

Explicitly Called Constructors
Constructors can be explicitly called in a program to create objects of a given type.
For example, to create two Poi nt objects that describe the ends of a line, the following
code can be written:

Drawline(Point(13.22). Point(87.91));

Two objects of type Po; nt are created, passed to the function Drawl i ne, and destroyed
at the end of the expression (the function call).

322 Language Reference

Chapter 11 Special Member Functions

Another context in which a constructor is explicitly called is in an initialization:

Point pt = Pointe 7, 11);

An object of type Poi nt is created and initialized using the constructor that accepts two
arguments of type int.

Objects that are created by calling constructors explicitly, as in the preceding two
examples, are unnamed and have a lifetime of the expression in which they are created.
This is discussed in greater detail in "Temporary Objects," later in this chapter.

Calling Member Functions and Virtual
Functions from Within Constructors
It is usually safe to call any member function from within a constructor because the
object has been completely set up (virtual tables have been initialized and so on) prior
to the execution of the first line of user code. However, it is potentially unsafe for a
member function to call a virtual member function for an abstract base class during
construction or destruction.

Constructors can call virtual functions. When virtual functions are called, the function
invoked is the function defined for the constructor's own class (or inherited from its bases).
The following example shows what happens when a virtual function is called from within
a constructor:

#include <iostream.h>

class Base
{

public:
Base();
virtual void f();

} ;

Base::Base()
{

II Default constructor.
II Virtual member function.

cout « "Constructing Base sub-object\n";
f(); II Call virtual member function

II from inside constructor.

void Base: :f()
{

cout « "Called Base::f()\n";
}

Language Reference 323

c++ Language Reference

class Derived
{

public Base

public:

} ;

Derived();
void f();

Derived::Derived()
{

II Default constructor.
II Implementation of virtual
II function f for this class.

cout « "Constructing Derived object\n";
}

void Derived::f()
{

cout « "Called Derived::f()\n";

void maine)
{

Derived d;

When the preceding program is run, the declaration Deri ved d causes the following
sequence of events:

1. The constructor for class Deri ved (Deri ved: : Deri ved) is called.

2. Prior to entering the body of the Deri ved class's constructor, the constructor for class
Base (Base: :Base) is called.

3. Base:: Base calls the function f, which is a virtual function. Ordinarily, Deri ved: : f
would be called because the object d is of type Deri ved. Because the Base: : Base
function is a constructor, the object is not yet of the Deri ved type, and Base: : f
is called.

Constructors and Arrays
Arrays are constructed only using the default constructor. Default constructors are
constructors that either accept no arguments or for which all arguments have a default.
Arrays are always constructed in ascending order. The initialization for each member
of the array is done using the same constructor.

Order of Construction
For derived classes and classes that have class-type member data, the order in which
construction occurs helps you understand what portions of the object you can use in
any given constructor.

324 Language Reference

Chapter 11 Special Member Functions

Construction and Inheritance
An object of derived type is constructed from the base class to the derived class by calling
the constructors for each class in order. Each class's constructor can rely on its base classes
being completely constructed.

For a complete description of initialization, including the order of initialization, see
"Initializing Bases and Members," later in this chapter.

Construction and Composed Classes
Classes that contain class-type data members are called "composed classes." When an
object of a composed class type is created, the constructors for the contained classes are
called before the class's own constructor.

For more information about this kind of initialization, see "Initializing Bases and
Members," later in this chapter.

Destructors
"Destructor" functions are the inverse of constructor functions. Th~y are called when
objects are destroyed (deallocated). Designate a function as a class's destructor by
preceding the class name with a tilde (-). For example, the destructor for class S t r in 9
is declared: ~S t r i n 9 ().

The destructor is commonly used to "clean up" when an object is no longer necessary.
Consider the following declaration of a Stri ng class:

#include <string.h>

class String
{

public:
String(char *ch);
~String();

private:
char *_text;

} ;

II Declare constructor
II and destructor.

Language Reference 325

c++ Language Reference

II Define the constructor.
String::String(char *ch)
{

}

II Dynamically allocate the correct amount of memory.
_text = new char[strlen(ch) + 1];

II If the allocation succeeds. copy the initialization string.
if(_text)

strcpy(_text. ch);

II Define the destructor.
String::~String()

{

}

II Deallocate the memory that was previously reserved
II for this string.
delete[] _text;

In the preceding example, the destructor S t r i n 9 : : ~S t r i n 9 uses the delete operator to
deallocate the space dynamically allocated for text storage.

Declaring Destructors
Destructors are functions with the same name as the class but preceded by a tilde (-).

Syntax

--class-nameO

-or-

class-name :: --class-nameO

The first form of the syntax is used for destructors declared or defined inside a class
declaration; the second form is used for destructors defined outside a class declaration.

Several rules govern the declaration of destructors. Destructors:

• Do not accept arguments.

• Cannot specify any return type (including void).

• Cannot return a value using the return statement.

• Cannot be declared as const, volatile, or static. However, they can be invoked for the
destruction of objects declared as const, volatile, or static.

• Can be declared as virtual. Using virtual destructors, you can destroy objects without
knowing their type - the correct destructor for the object is invoked using the virtual
function mechanism. Note that destructors can also be declared as pure virtual
functions for abstract classes.

326 Language Reference

Chapter 11 Special Member Functions

U sing Destructors
Destructors are called when one of the following events occurs:

• An object allocated using the new operator is explicitly deallocated using the delete
operator. When objects are deallocated using the delete operator, memory is freed for
the "most derived object," or the object that is a complete object and not a subobject
representing a base class. This "most-derived object" deallocation is guaranteed to
work only with virtual destructors. Deallocation may fail in multiple-inheritance
situations where the type information does not correspond to the underlying type
of the actual object.

• A local (automatic) object with block scope goes out of scope.

• The lifetime of a temporary object ends.

• A program ends and global or static obj ects exist.

• The destructor is explicitly called using the destructor function's fully qualified name.
(For more information, see "Explicit Destructor Calls," later in this chapter.)

The cases described in the preceding list ensure that all objects can be destroyed with
user-defined methods.

If a base class or data member has an accessible destructor, and if a derived class does
not declare a destructor, the compiler generates one. This compiler-generated destructor
calls the base class destructor and the destructors for members of the derived type .. Default
destructors are pUblic. (For more information about accessibility, see "Access Specifiers
for Base Classes" in Chapter 10, "Member-Access Control.")

Destructors can freely call class member functions and access class member data. When
a virtual function is called from a destructor, the function called is the function for the
class currently being destroyed. (For more information, see the next section, "Order of
Destruction. ")

There are two restrictions on the use of destructors. The first restriction is that you cannot
take the address of a destructor. The second is that derived classes do not inherit their base
class's destructors. Instead, as previously explained, they always override the base class's
destructors.

Language Reference 327

c++ Language Reference

Order of Destruction
When an object goes out of scope or is deleted, the sequence of events in its complete
destruction is as follows:

1. The class's destructor is called, and the body of the destructor function is executed.

2. Destructors for non static member objects are called in the reverse order in which
they appear in the class declaration. The optional member initialization list used in
construction of these members does not affect the order of construction or destruction.
(For more information about initializing members, see "Initializing Bases and
Members," later in this chapter.)

3. Destructors for nonvirtual base classes are called in the reverse order of declaration.

4. Destructors for virtual base classes are called in the reverse order of declaration.

Destructors for Nonvirtual Base Classes
The destructors for nonvirtual base classes are called in the reverse order in which the
base class names are declared. Consider the following class declaration:

class Multlnherit : public Basel, public Base2

In the preceding example, the destructor for Base2 is called before the destructor for Basel.

Destructors for Virtual Base Classes
Destructors for virtual base classes are called in the reverse order of their appearance in a
directed acyclic graph (depth-first, left-to-right, postorder traversal). Figure 11.1 depicts
an inheritance graph.

Figure 11.1 Inheritance Graph Showing Virtual Base Classes

The following lists the class heads for the classes shown in Figure 11.1.

class A
class B
class C virtual public A, virtual public B
class D virtual public A, virtual public B
class E public C, public D, virtual public B

328 Language Reference

Chapter 11 Special Member Functions

To determine the order of destruction of the virtual base classes of an object of type E,
the compiler builds a list by applying the following algorithm:

1. Traverse the graph left, starting at the deepest point in the graph (in this case, E).

2. Perform leftward traversals until all nodes have been visited. Note the name of the
current node.

3. Revisit the previous node (down and to the right) to find out whether the node being
remembered is a virtual base class.

4. If the remembered node is a virtual base class, scan the list to see whether it has
already been entered. If it is not a virtual base class, ignore it.

5. If the remembered node is not yet in the list, add it to the bottom of the list.

6. Traverse the graph up and along the next path to the right.

7. Go to step 2.

8. When the last upward path is exhausted, note the name of the current node.

9. Go to step 3.

10. Continue this process until the bottom node is again the current node.

Therefore, for class E, the order of destruction is:

1. The non virtual base class E.

2. The nonvirtual base class D.

3. The nonvirtual base class C.

4. The virtual base class B.

5. The virtual base class A.

This process produces an ordered list of unique entries. No class name appears twice.
Once the list is constructed, it is walked in reverse order, and the destructor for each
of the classes in the list from the last to the first is called.

The order of construction or destruction is primarily important when constructors or
destructors in one class rely on the other component being created first or persisting
longer - for example, if the destructor for A (in the graph in Figure 11.1) relied on
B still being present when its code executed, or vice versa.

Such interdependencies between classes in an inheritance graph are inherently dangerous
because classes derived later can alter which is the leftmost path, thereby changing the
order of construction and destruction.

Language Reference 329

c++ Language Reference

Explicit Destructor Calls
Calling a destructor explicitly is seldom necessary. However, it can be useful to perform
cleanup of objects placed at absolute addresses. These objects are commonly allocated
using a user-defined new operator that takes a placement argument. The delete operator
cannot deallocate this memory because it is not allocated from the free store (for more
information, see "The new and delete Operators," later in this chapter). A call to the
destructor, however, can perform appropriate cleanup. To explicitly call the destructor
for an object, s, of class S t r in g, use one of the following statements:

s.String: :~String();
ps->String::~String();

II Nonvirtual call
II Nonvirtual call

s.~String();

ps->~String();

I I Vi rtual call
II Virtual call

The notation for explicit calls to destructors, shown in the preceding, can be used
regardless of whether the type defines a destructor. This allows you to make such
explicit calls without knowing if a destructor is defined for the type. An explicit call
to a destructor where none is defined has no effect.

Temporary Objects
In some cases, it is necessary for the compiler to create temporary objects. These
temporary objects can be created for the following reasons:

• To initialize a const reference with an initializer of a type different from that of the
underlying type of the reference being initialized.

• To store the return value of a function that returns a user-defined type. These
temporaries are created only if your program does not copy the return value to
an object. For example:

UDT Funcl();

Func1();

330 Language Reference

II Declare a function that returns a user-defined
II type.

II Call Funcl. but discard return value.
II A temporary object is created to store the return
II value.

Chapter 11 Special Member Functions

Because the return value is not copied to another object, a temporary object is created.
A more common case where temporaries are created is during the evaluation of an
expression where overloaded operator functions must be called. These overloaded
operator functions return a user-defined type that often is not copied to another object.

Consider the expression Campl exResul t = Campl ex! + Campl ex2 + Campl ex3. The
expression Cam p 1 ex! + Cam p 1 ex 2 is evaluated, and the result is stored in a temporary
object. Next, the expression temporary + Camp 1 ex3 is evaluated, and the result is
copied to Campl exResul t (assuming the assignment operator is·not overloaded).

• To store the result of a cast to a user-defined type. When an object of a given type
is explicitly converted to a user-defined type, that new object is constructed as a
temporary object.

Temporary objects have a lifetime that is defined by their point of creation and the point
at which they are destroyed. Any expression that creates more than one temporary object
eventually destroys them in the reverse order in which they were created. The points at
which destruction occurs are shown in Table 11.2.

Table 11.2 Destruction Points for Temporary Objects

Reason Temporary Created Destruction Point

Result of expression evaluation

Result of expressions using the built-in
(not overloaded) logical operators
(II and &&)

Initializing const references

All temporaries created as a result of expression evaluation
are destroyed at the end of the expression statement
(that is, at the semicolon), or at the end of the controlling
expressions for for, if, while, do, and switch statements.

Immediately after the right operand. At this destruction
point, all temporary objects created by evaluation of the
right operand are destroyed.

If an initializer is not an I-value of the same type as the
reference being initialized, a temporary of the underlying
object type is created and initialized with the initialization
expression. This temporary object is destroyed immediately
after the reference object to which it is bound is destroyed.

Language Reference 331

c++ Language Reference

Conversions
Objects of a given class type can be converted to objects of another type. This is
done by constructing an object of the target class type from the source class type
and copying the result to the target object. This process is called conversion by
constructor. Objects can also be converted by user-supplied conversion functions.

When standard conversions (described in Chapter 3, "Standard Conversions")
cannot completely convert from a given type to a class type, the compiler can
select user-defined conversions to help complete the job. In addition to explicit
type conversions, conversions take place when:

• An initializer expression is not the same type as the object being initialized.

• The type of argument used in a function call does not match the type of argument
specified in the function declaration.

• The type of the object being returned from a function does not match the return
type specified in the function declaration.

• Two expression operands must be of the same type.

• An expression controlling an iteration or selection statement requires a different
type from the one supplied. .

A user-defined conversion is applied only if it is unambiguous; otherwise, an error
message is generated. Ambiguity is checked at the point of usage. Hence, if the features
that cause ambiguity are not used, a class can be designated with potential ambiguities
and not generate any errors. Although there are many situations in which ambiguities
arise, these are two leading causes of ambiguities:

• A class type is derived using multiple inheritance, and it is unclear from which base
class to select the conversion (see "Ambiguity" in Chapter 9, "Derived Classes").

• An explicit type-conversion operator and a constructor for the same conversion exist
(see "Conversion Functions," later in this chapter).

Both conversion by constructor and conversion by conversion functions obey access
control rules, as described in Chapter 10, "Member-Access Control." Access control
is tested only after the conversion is found to be unambiguous.

332 Language Reference

Chapter 11 Special Member Functions

Conversion Constructors
A constructor that can be called with a single argument is used for conversions from
the type of the argument to the class type. Such a constructor is called a conversion
constructor. Consider the following example:

class Point
{

public:
Point() ;
Poi nt (i nt);

} ;

Sometimes a conversion is required but no conversion constructor exists in the class.
These conversions cannot be performed by constructors. The compiler does not look for
intermediate types through which to perform the conversion. For example, suppose a
conversion exists from type Poi nt to type Rect and a conversion exists from type int to
type Poi nt. The compiler does not supply a conversion from type int to type Rect by
constructing an intermediate object of type Poi nt.

Conversions and Constants
Although constants for built-in types such as int, long, and double can appear in
expressions, no constants of class types are allowed (this is partly because classes usually
describe an object complicated enough to make notation inconvenient). However, if
conversion constructors from built-in types are supplied, constants of these built-in types
can be used in expressions, and the conversions cause correct behavior. For example,
a Money class can have conversions from types long and double:

class Money
{

public:

} ;

Money(long);
Money(double);

Money operator+(canst Money&); II Overloaded addition operator.

Therefore, expressions such as the following can specify constant values:

Money AccountBalance = 37.89;
Money NewBalance = AccountBalance + 14L;

The second example involves the use of an overloaded addition operator, which is covered
in the next chapter. Both examples cause the compiler to convert the constants to type
Money before using them in the expressions.

Language Reference 333

c++ Language Reference

Drawbacks of Conversion Constructors
Because the compiler can select a conversion constructor implicitly, you relinquish control
over what functions are called when. If it is essential to retain full control, do not declare
any constructors that take a single argument; instead, define "helper" functions to perform
conversions, as in the following example:

#include <stdio.h>
#include <stdlib.h>

II Declare Money class.
class Money
{

public:
Money() ;

II Define conversion functions that can only be called explicitly.
static Money Convert(char * ch) { return Money(ch); }
static Money Convert(double d) {return Money(d); };
void Print() { printf("\n%f", _amount); }.

private:

} ;

Money(char *ch
Money(double d
double _amount;

{ amount
{ amount

atof(ch);}
d; }

void maine)
{

II Perform a conversion from type char * to type Money.
Money Acct Money::Convert("57.29");
Acct. Pri nt();
II Perform a conversion from type double to type Money.
Acct = Money::Convert(33.29);
Acct.Print();

In the preceding code, the conversion constructors are private and cannot be used in type
conversions. However, they can be invoked explicitly by calling the Convert functions.
Because the Convert functions are static, they are accessible without referencing a
particular object.

334 Language Reference

Chapter 11 Special Member Functions

Conversion Functions
In conversion by constructors, described in the previous section, objects of one type can be
implicitly converted to a particular class type. This section describes a means by which you
can provide explicit conversions from a given class type to another type. Conversion from
a class type is often accomplished using conversion functions. Conversion functions use
the following syntax:

Syntax

conversion-Junction-name :
operator conversion-type-name 0

conversion-type-name :
type-specijier-list ptr-operatoropt

The following example specifies a conversion function that converts type Money to
type doub 1 e:

class Money
{

public:
Money() ;
operator double() { return _amount; }

private:
double _amount;

} ;

Given the preceding class declaration, the following code can be written:

Money Account;

double CashOnHand = Account;

The initialization of CashOnHand with Account causes a conversion from type Account
to type doub 1 e.

Conversion functions are often called "cast operators" because they (along with
constructors) are the functions called when a cast is used. The following example uses
a cast, or explicit conversion, to print the current value of an object of type Money:

cout « (double)Account « endl;

Conversion functions are inherited in derived classes. Conversion operators hide
only base-class conversion operators that convert to exactly the same type. Therefore,
a user-defined operator int function does not hide a user-defined operator short
function in a base class.

Language Reference 335

c++ Language Reference

Only one user-defined conversion function is applied when performing implicit
conversions. If there is no explicitly defined conversion function, the compiler does
not look for intermediate types into which an object can be converted.

If a conversion is required that causes an ambiguity, an error is generated. Ambiguities
arise when more than one user-defined conversion is available or when a user-defined
conversion and a built-in conversion exist.

The following example illustrates a class declaration with a potential ambiguity:

#include <string.h>

class String
{

public:
II Define constructor that converts from type char *
String(char *s) { strcpy(_text, s); }
II Define conversion to type char *
operator char *() { return _text; }
int operator==(const String &s)
{ return !strcmp(_text, s._text);

private:
char _text[80];

} ;

int maine)
{

}

String s("abcd");
char *ch = "efgh";

II Cause the compiler to select a conversion.
return s == ch;

In the expression s == ch, the compiler has two choices and no way of determining which
is correct. It can convert ch to an object of type Stri ng using the constructor and then
perform the comparison using the user-defined operator==. Or it can convert s to a
pointer of type char * using the conversion function and then perform a comparison
of the pointers.

Because neither choice is "more correct" than the other, the compiler cannot determine
the meaning of the comparison expression, and it generates an error.

336 Language Reference

Chapter 11 Special Member Functions

Rules for Declaring Conversion Functions
The following four rules are used when declaring conversion functions (see "Conversion
Functions" for syntax):

• Classes, enumerations, and typedef names cannot be declared in the type-specifier-list.
Therefore, the following code generates an error:

operator struct String{ char string_storage; }();

Instead, declare the S t r i n g structure prior to the conversion function.

• Conversion functions take no arguments. Specifying arguments generates an error.

• Conversion functions have the return type specified by the conversion-type-name;
specifying any return type for a conversion function generates an error.

• Conversion functions can be declared as virtual.

The new and delete Operators
C++ supports dynamic allocation and deallocation of objects using the new and delete
operators. These operators allocate memory for objects from a pool called the "free store."
The new operator calls the special function operator new, and the delete operator calls
the special function operator delete.

The operator new Function
When a statement such as the following is encountered in a program, it translates into a
call to the function operator new: .

char *pch = new char[BUFFER_SIZE];

If the request is for zero bytes of storage, operator new returns a pointer to a distinct
object (that is, repeated calls to operator new return different pointers). If there is
insufficient memory for the allocation request, by default operator new returns NULL.
You can change this default behavior by writing a custom exception-handling routine
and calling the _seLnew _handler run-time library function with your function name
as its argument. For more details on the recovery scheme, see the following section,
"Handling Insufficient Memory Conditions."

Language Reference 337

c++ Language Reference

The two scopes for operator new functions are described in Table 11.3.

Table 11.3 Scope for operator new Functions

Operator Scope

: : operator new

class-name: : operator new

Global

Class

The first argument to operator new must be of type size_t (a type defined in STDDEF.H),
and the return type is always void *.

The global operator new function is called when the new operator is used to allocate
objects of built-in types, objects of class type that do not contain user-defined operator
new functions, and arrays of any type. When the new operator is used to allocate objects
of a class type where an operator new is defined, that class's operator new is called.

An operator new function defined for a class is a static member function (which cannot,
therefore, be virtual) that hides the global operator new function for objects of that class
type. Consider the case where new is used to allocate and set memory to a given value:

#include <malloc.h>
#include <memory.h>

class Blanks
{

public:
Blanks(){}
void *operator new(size_t stAllocateBlock. char chInit);

} ;

void *Blanks::operator new(size_t stAllocateBlock. char chInit
{

}

void *pvTemp = malloc(stAllocateBlock);
i f(pvTemp 1= 0)

memset(pvTemp. chInit. stAllocateBlock);
return pvTemp;

For discrete objects of type Bl anks, the global operator new function is hidden.
Therefore, the following code allocates an object of type Bl anks and initializes it to 0xa5:

int maine)
{

Blanks *a5 new(0xa5) Blanks;

return a5 1= 0;
}

338 Language Reference

Chapter 11 Special Member Functions

The argument supplied in parentheses to new is passed to Bl anks: : operator new as the
chI nit argument. However, the global operator new function is hidden, causing code
such as the following to generate an error:

Blanks *SomeBlanks = new Blanks;

For previous versions of the compiler, nonclass types and all arrays (regardless of whether
they were of class type) allocated using the new operator always used the global operator
new function.

Beginning with Visual C++ 5.0, the compiler supports member array new and delete
operators in a class declaration. For example:

class X {
public:

void* operator new[] (size_t);
void operator delete[] (void*);

} ;

void f() {

}

X *pX = new X[5];
delete [] pX;

Handling Insufficient Memory Conditions
Testing for failed memory allocation can be done with code such as the following:

int *pi = new int[BIG_NUMBER];

if(pi == 0)
{

}

cerr « "Insufficient memory" « endl;
return -1;

There is an other ways to handle failed memory allocation requests: write a
custom recovery routine to handle such a failure, then register your function by
calling the _seCnew _handler run-time function. This method is described in the
following section.

Language Reference 339

c++ Language Reference

In some circumstances, corrective action can be taken during memory allocation and
the request can be fulfilled. To gain control when the global operator new function
fails, use the _set_new_handler function (defined in NEW.H) as follows:

#include <stdio.h>
#include <new.h>

II Define a function to be called if new fails to allocate memory.
int MyNewHandler(size_t size)
{

}

clog « "Allocation failed. Coalescing heap." « endl;

II Call a fictitious function to recover some heap space.
return CoalesceHeap();

void maine)
{

}

II Set the failure handler for new to be MyNewHandler.
_set_new_handler(MyNewHandler);

int *pi = new int[BIG_NUMBER];

In the preceding example, the first statement in main sets the new handler to
My N ewH and 1 e r. The second statement tries to allocate a large block of memory using
the new operator. When the allocation fails, control is transferred to My N ewH and 1 e r.
The argument passed to MyNewHandl er is the number of bytes requested. The value
returned from MyNewHandl er is a flag indicating whether allocation should be retried:
a nonzero value indicates that allocation should be retried, and a zero value indicates
that allocation has failed.

MyNewHandl er prints a warning message and takes corrective action. If MyNewHandl er
returns a nonzero value, the new operator retries the allocation. When MyNewHandl er
returns a 0 the new operator stops trying and returns a zero value to the program.

340 Language Reference

Chapter 11 Special Member Functions

The _set_new_handler function returns the address of the previous new handler.
Therefore, if a new handler needs to be installed for a short time, the previous new
handler can be reinstalled using code such as the following:

#include <new.h>

PNH old_handler = _set_new_handler< MyNewHandler);

II Code that requires MyNewHandler.

II Reinstall previous new handler.
_set_new_handler< old_handler);

A call to _set_new _handler with an argument of 0 causes the new handler to be removed.
There is no default new handler.

The new handler you specify can have any name, but it must be a function returning type
int (nonzero indicates the new handler succeeded, and zero indicates that it failed).

If a user-defined operator new is provided, the new handler functions are not
automatically called on failure.

The prototype for _set_new_handler and the type _PNH is defined in NEW.H:

_PNH _set_new_handler< _PNH);

The type _PNH is a pointer to a function that returns type int and takes a single argument
of type size_to

The operator delete Function
Memory that is dynamically allocated using the new operator can be freed using the delete
operator. The delete operator calls the operator delete function, which frees memory back
to the available pool. Using the delete operator also causes the class destructor (if there is
one) to be called.

There are global and class-scoped operator delete functions. Only one operator delete
function can be defined for a given class; if defined, it hides the global operator delete
function. The global operator delete function is always called for arrays of any type.

Language Reference 341

c++ Language Reference

The global operator delete function, if declared, takes a single argument of type void *,
which contains a pointer to the object to deallocate. The return type is void (operator
delete cannot return a value). Two forms exist for class-member operator delete
functions:

void operator delete(void *);
void operator delete(void *. size_t);

Only one of the preceding two variants can be present for a given class. The first form
works as described for global operator delete. The second form takes two arguments,
the first of which is a pointer to the memory block to deallocate and the second of which
is the number of bytes to deallocate. The second form is particularly useful when an
operator delete function from a base class is used to delete an object of a derived class.

The operator delete function is static; therefore, it cannot be virtual. The operator delete
function obeys access control, as described in Chapter 10, "Member-Access Control."

The following example shows user-defined operator new and operator delete functions
designed to log allocations and deallocations of memory:

#include <iostream.h)
#include <stdlib.h)

int fLogMemory = 0; II Perform logging (0=no; nonzero=yes)?
int cBlocksAllocated = 0; II Count of blocks allocated.
II User-defined operator new.
void *operator new(size_t stAllocateBlock
{

}

static fInOpNew = 0; II Guard flag.

if(fLogMemory && !fInOpNew)
{

}

fInOpNew = 1;
clog « "Memory block" «++cBlocksAllocated

« " allocated for" « stAllocateBlock
« " bytes\n";

fInOpNew = 0;

return malloc(stAllocateBlock);

342 Language Reference

Chapter 11 Special Member Functions

II User-defined operator delete.
void operator delete(void *pvMem
{

static flnOpDelete = 0; II Guard flag.
if(fLogMemory && !flnOpDelete)
{

fInOpDelete = 1;
clog « "Memory block" « --cBlocksAllocated

« " deallocated\n";
fInOpDelete = 0;

free(pvMem);
}

int maine int argc, char *argv[])

{

fLogMemory 1 ; II Turn logging on.
i f(argc > 1)

fore int i 0; i < atoi(argv[1]) ; ++;)

{

char *pMem = new char[10] ;
delete[] pMem;

return cBlocksAllocated;
}

The preceding code can be used to detect "memory leakage" - that is, memory that is
allocated on the free store but never freed. To perform this detection, the global new and
delete operators are redefined to count allocation and deallocation of memory.

Beginning with Visual C++ 5.0, the compiler supports member array new and delete
operators in a class declaration. For example:

class X {
public:

void* operator new[] (size_t);
void operator delete[] (void*);

} ;

void f() {

}

X *pX = new X[5];
delete [] pX;

Language Reference 343

c++ Language Reference

Initialization Using Special
Member Functions

This section describes initialization using special member functions. It expands on the
following discussions of initialization:

• "Initializing Aggregates" in Chapter 7, "Declarators," which describes how to initialize
arrays of nonclass types and objects of simple class types. These simple class types
cannot have private or protected members, and they cannot have base classes.

• Constructors, which explains how to initialize class-type objects using special
constructor functions.

The default method of initialization is to perform a bit-for-bit copy from the initializer
into the object to be initialized. This technique is applicable only to:

• Objects of built-in types. For example:

int i = 100;

• Pointers. For example:

i nt i;
int *pi = &i;

• References. For example:

String sFileName("FILE.OAT");
String &rs = sFileName;

• Objects of class type, where the class has no private or protected members, no virtual
functions, and no base classes. For example:

struct Point
{

int x, y;
} ;

Point pt = { 10, 20 }; II Static storage class only

Classes can specify more refined initialization by defining constructor functions. (For more
information about declaring such functions, see "Constructors," at the beginning of this
chapter.) If an object is of a class type that has a constructor, the object must be initialized,
or there must be a default constructor. Objects that are not specifically initialized invoke
the class's default constructor.

344 Language Reference

Chapter 11 Special Member Functions

Explicit Initialization
C+ + sup p 0 r t s two forms of explicit initialization.

• Supplying an initializer list in parentheses:

String sFileName("FILE.DAT");

The items in the parenthesized list are considered arguments to the class constructor.
This form of initialization enables initialization of an object with more than one value
and can also be used in conjunction with the new operator. For example:

Rect *pRect = new Rect(10, 15, 24, 97);

• Supplying a single initializer using the equal-sign initialization syntax. For example:

String sFileName = "FILE. OAT";

Although the preceding example works the same way as the example shown for S t r i n g

in the first list item, the syntax is not adaptable to use with objects allocated on the free
store.

The single expression on the right of the equal sign is taken as the argument to the
class's copy constructor; therefore, it must be a type that can be converted to the
class type.

Note that because the equal sign (=) in the context of initialization is different from an
assignment operator, overloading operator= has no effect on initialization.

The equal-sign initialization syntax is different from the function-style syntax, even though
the generated code is identical in most cases. The difference is that when the equal-sign
syntax is used, the compiler has to behave as if the following sequence of events were
taking place:

• Creating a temporary object of the same type as the object being initialized.

• Copying the temporary object to the object.

Language Reference 345

c++ Language Reference

The constructor must be accessible before the compiler can perform these steps. Even
though the compiler can eliminate the temporary creation and copy steps in most cases,
an inaccessible copy constructor causes equal-sign initialization to fail. Consider the
following example:

class anInt
{

anInt(const anInt&);
public:

anInt(int);
} ;

anInt myInt = 7;

anInt myInt(7);

II Private copy constructor.

II Public int constructor.

II Access-control violation. Attempt to
II reference private copy constructor.
II Correct; no copy constructor called.

When a function is called, class-type arguments passed by value and objects returned by
value are conceptually initialized using the form:

type-name name = value

For example:

String s = "C++";

Therefore, it follows that the argument type must be a type that can be converted to the
class type being passed as an argument. The class's copy constructor, as well as user
defined conversion operators or constructors that accept the type of the actual argument,
must be public.

In expressions that use the new operator, the objects allocated on the free store are
conceptually initialized using the form:

type-name name(initializerh initializer2, ... initializern)

For example:

String *ps = new String("C++");

Initializers for base-class components and member objects of a class are also conceptually
initialized this way. (For more information, see "Initializing Bases and Members," later in
this chapter.)

346 Language Reference

Chapter 11 Special Member Functions

Initializing Arrays
If a class has a constructor, arrays of that class are initialized by a constructor. If there are
fewer items in the initializer list than elements in the array, the default constructor is used
for the remaining elements. If no default constructor is defined for the class, the initializer
list must be complete - that is, there must be one initializer for each element in the array.

Consider the Poi nt class that defines two constructors:

class Point
{

pub 1 i c:
Point(); II Default constructor.
Point(int, int); II Construct from two ints.

} ;

An array of Poi nt objects can be declared as follows:

Point aPoint[3] =
Point(3, 3) II Use int, int constructor.

} ;

The first element of a Poi ntis constructed using the constructor Poi n t (i nt, i n t) ;
the remaining two elements are constructed using the default constructor.

Static member arrays (whether const or not) can be initialized in their definitions
(outside the class declaration). For example:

class WindowColors
{

public:
static canst char *rgszWindowPartList[7];

} ;

const char *WindowColors::rgszWindowPartList[7] = {
"Active Title Bar", "Inactive Title Bar", "Title Bar Text",
"Menu B"ar", "Menu Bar Text", "Window Background", "Frame" };

Language Reference 347

c++ Language Reference

Initializing Static Objects
Global static objects are initialized in the order they occur in the source. They are
destroyed in the reverse order. Across translation units, however, the order of
initialization is dependent on how the object files are arranged by the linker; the
order of destruction still takes place in the reverse of that in which objects were
constructed.

Local static objects are initialized when they are first encountered in the program flow, and
they are destroyed in the reverse order at program termination. Destruction of local static
objects occurs only if the object was encountered and initialized in the progr~m flow.

Initializing Bases and Members
An object of a derived class is made up of a component that represents each base class
and a component that is unique to the particular class. Objects of classes that have member
objects may also contain instances of other classes. This section describes how these
component objects are initialized when an object of the class type is created.

To perform the initialization, the constructor-initializer, or ctor-initializer, syntax is used.

Syntax

ctor-initializer :
mem-initializer-list

mem-initializer-list :
mem-initializer
mem-initializer , mem-initializer-list

mem-initializer :
complete-class-name (expression-listopt)

identifier (expression-listopt)

This syntax, used in constructors, is described more fully in the next section, "Initializing
Member Objects," and in "Initializing Base Classes."

Initializing Member Objects
Classes can contain member objects of class type, but to ensure that initialization
requirements for the member objects are met, one of the following conditions must be met:

• The contained object's class requires no constructor.

• The contained object's class has an accessible default constructor.

• The containing class's constructors all explicitly initialize the contained object.

348 Language Reference

Chapter 11 Special Member Functions

The following example shows how to perform such an initialization:

II Declare a class Point.
class Point
{

public:
Poi n t (i n t x. i n t y) {_x x; 3 y;}

private:
int _x. 3;

} ;

II Declare a rectangle class that contains objects of type Point.
class Rect
{

public:
Rect(int xl. int yl. int x2. int y2);

private:
Point _topleft. _bottomright;

} ;

II Define the constructor for class Rect. This constructor
II explicitly initializes the objects of type Point.
Rect::Rect(int xl. int yl. int x2. int y2) :
_topleft(xl. yl). _bottomright(x2. y2)
{

}

The Rect class, shown in the preceding example, contains two member objects of class
Poi nt. Its constructor explicitly initializes the objects _topl eft and _bottomri ght. Note
that a colon follows the closing parenthesis of the constructor (in the definition). The colon
is followed by the member names and arguments with which to initialize the objects of
type Poi nt.

Warning The order in which the member initializers are specified in the constructor
does not affect the order in which the members are constructed; the members are
constructed in the order in which they are declared in the class.

Reference and const member objects must be initialized using the member initialization
syntax shown in Syntax in "Initializing Bases and Members." There is no other way to
initialize these objects.

Language Reference 349

c++ Language Reference

Initializing Base Classes
Direct base classes are initialized in much the same way as member objects. Consider
the following example:

II Declare class Window.
class Window
{

public:
Window(Rect rSize);

} ;

II Declare class DialogBox. derived from class Window.
class DialogBox public Window
{

public:
DialogBox(Rect rSize);

} ;

II Define the constructor for DialogBox. This constructor
II explicitly initializes the Window subobject.
DialogBox: :DialogBox(Rect rSize) : Window(rSize)
{

}

Note that in the constructor for Di a 1 ogBox, the Wi ndow base class is initialized using the
argument r S i z e. This initialization consists of the name of the base class to initialize,
followed by a parenthesized list of arguments to the class's constructor.

In initialization of base classes, the object that is not the subobject representing a base
class's component is considered a "complete object." The complete object's class is
considered the "most derived" class for the object.

The subobjects representing virtual base classes are initialized by the constructor for the
most derived class. That means that where virtual derivation is specified, the most derived
class must explicitly initialize the virtual base class, or the virtual base class must have a
default constructor. Initializations for virtual base classes that appear in constructors for
classes other than the most derived class are ignored. .

Although initialization of base classes is usually restricted to direct base classes, a class
constructor can initialize an indirect virtual base class.

350 Language Reference

Chapter 11 Special Member Functions

Initialization Order of Bases and Members
Base classes and member objects are initialized in the following order:

1. Virtual base classes are initialized in the order in which they appear in the directed
acyclic graph. For information about using the directed acyclic graph to construct a
list of unique subobjects, see "Virtual Base Classes" in Chapter 9, "Derived Classes."
(Note that these subobjects are destroyed by walking the same list in reverse.) For
more information about how the directed acyclic graph is traversed, see "Order of
Destruction," earlier in this chapter.

2. Nonvirtual base classes are initialized in the order in which they are declared in the
class declaration.

3. Member objects are initialized in the order in which the objects are declared in the
class.

The order in which base classes and member objects are initialized is not affected by
the order in which the member initializers or base-class initializers appear in the
member-initializer-list of the constructor.

Scope of Initializers
Initializers for base classes and member objects are evaluated in the scope of the
constructor with which they are declared. Therefore, they can refer implicitly to
class-member data.

Copying Class Objects
Two operations cause objects to be copied:

• Assignment. When one object's value is assigned to another object, the first object is
copied to the second object. Therefore:

Point a, b;

a = b;

causes the value of b to be copied to a.

• Initialization. Initialization occurs at the point of declaration of a new object, when
arguments are passed to functions by value, and when values are returned from
functions by value.

Language Reference 351

c++ Language Reference

The programmer can define the semantics of "copy" for objects of class type. For example,
consider the following code:

TextFile a. b;
a.Open("FILEl.DAT");
b.Open("FILE2.DAT");
b = a;

The preceding code could mean "copy the contents ofFILEl.DAT to FILE2.DAT," or
it could mean "ignore FILE2.DAT and make b a second handle to FILEl.DAT." The
programmer is responsible for attaching appropriate copying semantics to each class.

Copying is done in one of two ways:

• Assignment (using the assignment operator, operator=).

• Initialization (using the copy constructor). (For more information about the copy
constructor, see "Rules for Declaring Constructors," at the beginning of this chapter.)

Any given class can implement one or both copy methods. If neither method is
implemented, assignment is handled as a member-by-member ("memberwise")
assignment, and initialization is handled as a member-by-member initialization.
Memberwise assignment is covered in more detail in "Memberwise Assignment
and Initialization," later in this chapter.

The copy constructor takes a single argument of type class-name&, where class:..name
is the name of the class for which the constructor is defined. For example:

class Window
{

public:

} ;

Window(canst Window&); II Declare copy constructor.

Note The type of the copy constructor's argument should be const class-name&
whenever possible. This prevents the copy constructor from accidentally changing
the object from which it is copying. It also allows copying from const objects.

Compiler-Generated Copying
Compiler-generated copy constructors, like user-defined copy constructors, have a single
argument of type "reference to class-name." An exception is when all base classes and
member classes have copy constructors declared as taking a single argument of type
const class-name&. In such a case, the compiler-generated copy constructor's argument
is also const.

When the argument type to the copy constructor is not const, initialization by copying
a const object generates an error. The reverse is not true: If the argument is const,
initialization by copying an object that is not const.

352 Language Reference

Chapter 11 Special Member Functions

Compiler-generated assignment operators follow the same pattern with regard to const.
They take a single argument of type class-name& unless the assignment operators in all
base and member classes take arguments of type const class-name&. In this case, the
class's generated assignment operator takes a const argument.

Note When virtual base classes are initialized by copy constructors, compiler
generated or user-defined, they are initialized only once: at the point when they
are constructed.

The implications are similar to those of the copy constructor. When the argument type is
not const, assignment from a const object generates an error. The reverse is not true: If a
const value is assigned to a value that is not const, the assignment succeeds.

For more information about overloaded assignment operators, see "Assignment" in
Chapter 12, "Overloading." '

Memberwise Assignment and Initialization
The methods for default assignment and initialization are "memberwise assignment" and
"memberwise initialization," respectively. Memberwise assignment consists of copying
one object to the other, a member at a time, as if assigning each member individually.
Memberwise initialization consists of copying one object to the other, a member at a time,
as if initializing each member individually. The primary difference between the two is
that memberwise assignment invokes each member's assignment operator (operator=),
whereas memberwise initialization invokes each member's copy constructor.

Memberwise assignment is performed only by the assignment operator declared in
the form:

type& type :: operator=([const I volatile] type&)

Default assignment operators for memberwise assignment cannot be generated if any of
the following conditions exist:

• A member class has const members.

• A member class has reference members.

• A member class or its base class has a private assignment operator (operator=).

• A base class or member class has no assignment operator (operator=).

Default copy constructors for memberwise initialization cannot be generated if the class
or one of its base classes has a private copy constructor or if any of the following
conditions exist:

• A member class has const members.

• A member class has reference members.

• A member class or its base class has a private copy constructor.

• A base class or member class has no copy constructor.

Language Reference 353

c++ Language Reference

The default assignment operators and copy constructors for a given class are always
declared, but they are not defined unless both of the following conditions are met:

• The class does not provide a user-defined function for this copy.

• The program requires that the function be present. This requirement exists if an
assignment or initialization is encountered that requires memberwise copying or if the
address of the class's operator= function is taken.

If both of these conditions are not met, the compiler is not required to generate code for the
default assignment operator and copy constructor functions (elimination of such code is an
optimization performed by the Microsoft C++ compiler). Specifically, if the class declares
a user-defined operator= that takes an argument of type "reference to class-name," no
default assignment operator is generated. If the class declares a copy constructor, no
default copy constructor is generated.

Therefore, for a given class A, the following declarations are always present:

II Implicit declarations of copy constructor
II and assignment operator.
A::A(const A&);
A& A::operator=(const A&);

The definitions are supplied only if required (according to the preceding criteria). The copy
constructor functions shown in the preceding example are considered public member
functions of the class.

Default assignment operators allow objects of a given class to be assigned to objects of a
public base-class type. Consider the following code:

class Account
{

public:
II Public member functions

private:
double _balance;

} ;

class Checking public Account
{

private:
int _fOverdraftProtect;

} ;

Account account;
Checking checking;

account = checking;

354 Language Reference

Chapter 11 Special Member Functions

In the preceding example, the assignment operator chosen is Account: : operator=.
Because the default ope ra tor= function takes an argument of type Account& (reference to
Account), the Account subobject of check; ng is copied to account; fOverdraftProtect
is not copied.

Language Reference 355

C HAP T E R 1 2

Overloading

This chapter explains how to use C++ overloaded functions and overloaded operators.
The following topics are included:

• Overview of overloading

• Declaration matching

• Argument matching

• Address of overloaded functions

• Overloaded operators

Overview of Overloading
With the C++ language, you can overload functions and operators. Overloading is the
practice of supplying more than one definition for a given function name in the same
scope. The compiler is left to pick the appropriate version of the function or operator
based on the arguments with which it is called. For example:

double max(double dl. double d2
{

return (dl > d2) ? dl : d2;
}

int max(int il. int i2
{

return (il > i2) ? il i2;
}

The function max is considered an overloaded function. It can be used in code such as
the following:

main()
{

int = max(12. 8);
double d = max(32.9. 17.4);

return + (int)d;
}

Language Reference 357

c++ Language Reference

In the first case, where the maximum value of two variables of type i ntis being requested,
the function max(i nt, i nt) is called. However, in the second case, the arguments are of
type doub 1 e, so the function max (double, double) is called.

Argument Type Differences
Overloaded functions differentiate between argument types that take different initializers.
Therefore, an argument of a given type and a reference to that type are considered the
same for the purposes of overloading. They are considered the same because they take
the same initializers. For example, max (double, doub 1 e) is considered the same as
max(double &, double &). Dec1aringtwosuchfunctionscauses an error.

For the same reason, function arguments of a type modified by const or volatile are not
treated differently than the base type for the purposes of overloading.

However, the function overloading mechanism can distinguish between references that
are qualified by const and volatile and references to the base type. This makes code such
as the following possible:

#include <iostream.h>

class Over
{

public:
Over() { cout « "Over default constructor\n"; }
Over(Over &0) { cout « "Over&\n"; }
Over(const Over &co) { cout « "const Over&\n"; }
Over(volatile Over &vo) { cout« "volatile Over&\n";

} ;

void main()
{

Over 01; II Calls default constructor.
Over 02(01); II Calls Over(Over&).
const Over 03; II Calls default constructor.
Over 04(03); II Call s Over(const Over&).
volatile Over 05; II Call s default constructor.
Over 06(05); II Call s Over(volatile Over&) .

}

Pointers to const and volatile objects are also considered different from pointers to the
base type for the purposes of overloading.

358 Language Reference

Chapter 12 Overloading

Restrictions on Overloaded Functions
Several restrictions govern an acceptable set of overloaded functions:

• Any two functions in a set of overloaded functions must have different argument lists.

• Overloading functions with argument lists of the same types, based on return type
alone, is an error.

Microsoft Specific ~

You can overload operator new solely on the basis of return type - specifically,
on the basis of the memory-model modifier specified.

END Microsoft Specific

• Member functions cannot be overloaded solely on the basis of one being static and the
other nonstatic.

• typedef declarations do not define new types; they introduce synonyms for existing
types. They do not affect the overloading mechanism. Consider the following code:

typedef char * PSTR;

void Print(char *szToPrint);
void Print(PSTR szToPrint);

The preceding two functions have identical argument lists. PSTR is a synonym for type
char *. In member scope, this code generates an error.

• Enumerated types are distinct types and can be used to distinguish between overloaded
functions.

• The types "array of" and "pointer to" are considered identical for the purposes of
distinguishing between overloaded functions. This is true only for singly dimensioned
arrays. Therefore, the following overloaded functions conflict and generate an error
message:

void Print(char *szToPrint);
void Print(char szToPrint[]);

For multiply dimensioned arrays, the second and all succeeding dimensions are
considered part of the type. Therefore, they are used in distinguishing between
overloaded functions:

void Print(char szToPrint[]);
void Print(char szToPrint[][7]);
void Print(char szToPrint[][9][42]);

Language Reference 359

c++ Language Reference

Declaration Matching
Any two function declaratigns of the same name in the same scope can refer to the same
function, or to two discrete functions that are overloaded. If the argument lists of the
declarations contain arguments of equivalent types (as described in the previous section),
the function declarations refer to the same function. Otherwise, they refer to two different
functions that are selected using overloading.

Class scope is strictly observed; therefore, a function declared in a base class is not in
the same scope as a function declared in a derived class. If a function in a derived class
is declared with the same name as a function in the base class, the derived-class function
hides the base-class function instead of causing overloading.

Block scope is strictly observed; therefore, a function declared in file scope is not in the
same scope as a function declared locally. If a locally declared function has the same name
as a function declared in file scope, the locally declared function hides the file-scoped
function instead of causing overloading. For example:

#include <iostream.h>

void func(int i)
{

cout « "Called file-scoped func "« «endl;
}

void func(char *sz)
{

cout « "Called locally declared func "« sz « endl;
}

void maine)
{

}

II Declare func local to main.
extern void func(char *sz);

func(3); II Error. func(int) is hidden.
func("s");

The preceding code shows two definitions from the function func. The definition that takes
an argument of type char * is local to main because of the extern statement. Therefore,
the definition that takes an argument of type i nt is hidden, and the first call to func is in
error.

360 Language Reference

For overloaded member functions, different versions of the function can be given
different access privileges. They are still considered to be in the scope of the enclosing
class and thus are overloaded functions. Consider the following code, in which the
member function Depos it is overloaded; one version is public, the other, private:

class Account
{

public:
Account () ;
double Deposit(double dAmount. char *szPassword);

private:
double Deposit(double dAmount);
int Validate(char *szPassword);

} ;

The intent of the preceding code is to provide an Account class in which a correct
password is required to perform deposits. This is accomplished using overloading.
The following code shows how this class can be used and also shows an erroneous
call to the private member, Depos it:

void main()
{

II Allocate a new object of type Account.
Account *pAcct = new Account;

II Deposit $57.22. Error: calls a private function.
pAcct->Deposit(57.22);

II Deposit $57.22 and supply a password. OK~ calls a
II public function.
pAcct->Deposit(52.77. "pswd");

double Account::Deposit(double dAmount. char *szPassword)
{

}

if(Validate(sZPassword))
return Deposit(dAmount);

else
return 0.0;

Note that the call to Depos it in Account: : Depos it calls the private member function.
This call is correct because Account: : Depos i t is a member function and therefore has
access to the private members of the class.

Chapter 12 Overloading

Language Reference 361

c++ Language Reference

Argument Matching
Overloaded functions are selected for the best match of function declarations in the
current scope to the arguments supplied in the function call. If a suitable function is
found, that function is called. "Suitable" in this context means one of the following:

• An exact match was found.

• A trivial conversion was performed.

• An integral promotion was performed.

• A standard conversion to the desired argument type exists.

• A user-defined conversion (either conversion operator or constructor) to the desired
argument type exists.

• Arguments represented by an ellipsis were found.

The compiler creates a set of candidate functions for each argument. Candidate functions
are functions in which the actual argument in that position can be converted to the type of
the formal argument.

A set of "best matching functions" is built for each argument, and the selected function is
the intersection of all the sets. If the intersection contains more than one function, the
overloading is ambiguous and generates an error. The function that is eventually selected
is always a better match than every other function in the group for at least one argument.
If this is not the case (if there is no clear winner), the function call generates an error.

Consider the following declarations (the functions are marked Va ria n t 1, Va ria n t 2, and
Va ria n t 3, for identification in the following discussion):

Fracti on &Add (Fracti on &f, long 1);
Fraction &Add(long 1. Fraction &f);
Fraction &Add(Fraction &f. Fraction &f);

II Variant 1
II Variant 2
II Variant 3

Fraction Fl. F2;

Consider the following statement:

Fl = Add(F2. 23);

The preceding statement builds two sets:

Set 1: Candidate Functions That Have
First Argument of Type Fraction

Variant 1

Variant 3

362 Language Reference

Set 2: Candidate Functions Whose
Second Argument Can Be Converted to Type int

Variant 1 (int can be converted to long using a
standard conversion)

Chapter 12 Overloading

Functions in Set 2 are functions for which there are implicit conversions from actual
parameter type to formal parameter type, and among such functions there is a function for
which the "cost" of converting the actual parameter type to its formal parameter type is
the smallest.

The intersection of these two sets is Variant 1. An example of an ambiguous function
call is:

Fl = Add(3, 6);

The preceding function call builds the following sets:

Set 1: Candidate Functions That Have
First Argument of Type int

Variant 2 (int can be converted to
long using a standard conversion)

Set 2: Candidate Functions That Have
Second Argument of Type int

Variant 1 (int can be converted to
long using a standard conversion)

Note that the intersection between these two sets is empty. Therefore, the compiler
generates an error message.

For argument matching, a function with n default arguments is treated as n+ 1 separate
functions, each with a different number of arguments.

The ellipsis (...) acts as a wildcard; it matches any actual argument. This can lead to many
ambiguous sets, if you do not design your overloaded function sets with extreme care.

Note Ambiguity of overloaded functions cannot be determined until a function call
is encountered. At that point, the sets are built for each argument in the function call,
and you can determine whether an unambiguous overload exists. This means that
ambiguities can remain in your code until they are evoked by a particular function call.

Argument Matching and the this Pointer
Class member functions are treated differently, depending on whether they are declared as
static. Because nonstatic functions have an implicit argument that supplies the this pointer,
nonstatic functions are considered to have one more argument than static functions;
otherwise, they are declared identically.

These non static member functions require that the implied this pointer match the object
type through which the function is being called, or, for overloaded operators, they require
that the first argument match the object on which the operator is being applied. (For more
information about overloaded operators, see "Overloaded Operators," later in this chapter.)

Unlike other arguments in overloaded functions, no temporary objects are introduced and
no conversions are attempted when trying to match the this pointer argument.

Language Reference 363

c++ Language Reference

When the -> member-selection operator is used to access a member function, the this
pointer argument has a type of class-name * const. If the members are declared as const
or volatile, the types are const class-name * const and volatile class-name * const,
respectively.

The. member-selection operator works exactly the same way, except that an implicit &
(address-of) operator is prefixed to the object name. The following example shows how
this works:

II Expression encountered in code
obj.name

II How the compiler treats it
(&obj)->name

The left operand of the ->* and • * (pointer to member) operators are treated the same way
as the. and -> (member-selection) operators with respect to argument matching.

Argument Matching and Conversions
When the compiler tries to match actual arguments against the arguments in function
declarations, it can supply standard or user-defined conversions to obtain the correct type
if no exact match can be found. The application of conversions is subject to these rules:

• Sequences of conversions that contain more than one user-defined conversion are not
considered.

• Sequences of conversions that can be shortened by removing intermediate conversions
are not considered.

The resultant sequence of conversions, if any, is called the best matching sequence. There
are several ways to convert an object of type int to type unsigned long using standard
conversions (described in Chapter 3, "Standard Conversions"):

• Convert from int to long and then from long to unsigned long.

• Convert from int to unsigned long.

The first sequence, although it achieves the desired goal, is not the best matching
sequence - a shorter sequence exists.

364 Language Reference

Table 12.1 shows a group of conversions, called trivial conversions, that have a limited
effect on determining of which sequence is the best matching. The instances in which
trivial conversions affect choice of sequence are discussed in the list following the table.

Table 12.1 Trivial Conversions

Convert from Type

type-name

type-name&

type-name[]

type-name(argument-list)

type-name

type-name

type-name*

type-name*

Convert to Type

type-name&

type-name

type-name *
(*type-name) (argument-list)

const type-name

volatile type-name

const type-name*

volatile type-name*

The sequence in which conversions are attempted is as follows:

Chapter 12 Overloading

1. Exact match. An exact match between the types with which the function is called and
the types declared in the function prototype is always the best match. Sequences of
trivial conversions are classified as exact matches. However, sequences that do not
make any of these conversions are considered better than sequences that convert:

• From pointer, to pointer to const (type * to const type *).

• From pointer, to pointer to volatile (type * to volatile type *).

• From reference, to reference to const (type & to const type &).

• From reference, to reference to volatile (type & to volatile type &).

2. M~tch using promotions. Any sequence not classified as an exact match that contains
only integral promotions, conversions from float to double, and trivial conversions is
classified as a match using promotions. Although not as good a match as any exact
match, a match using promotions is better than a match using standard conversions.

Language Reference 365

c++ Language Reference

3. Match using standard conversions. Any sequence not classified as an exact match or a
match using promotions that contains only standard conversions and trivial conversions
is classified as a match using standard conversions. Within this category, the following
rules are applied:

• Conversion from a pointer to a derived class, to a pointer to a direct or indirect base
class is preferable to converting to void * or const void *.

• Conversion from a pointer to a derived class, to a pointer to a base class produces a
better match the closer the base class is to a direct base class. Suppose the class
hierarchy is as shown in Figure 12.1.

Figure 12.1 Graph Illustrating Preferred Conversions

Conversion from type 0* to type C* is preferable to conversion from type 0* to type
B*. Similarly, conversion from type 0* to type B* is preferable to conversion from
type 0* to type A *.

This same rule applies to reference conversions. Conversion from type 0& to type
C& is preferable to conversion from type 0& to type B&, and so on.

This same rule applies to pointer-to-member conversions. Conversion from type T

0: : * to type T C:: * is preferable to conversion from type TO: : * to type T B:: *,
.and so on (where T is the type of the member).

The preceding rule applies only along a given path of derivation. Consider the
graph shown in Figure 12.2.

Figure 12.2 Multiple-Inheritance Graph Illustrating Preferred Conversions

Conversion from type C* to type B* is preferable to conversion from type C* to
type A*. The reason is that they are on the same path, and B* is closer. However,
conversion from type C* to type 0* is not preferable to conversion to type A *;
there is no preference because the conversions follow different paths.

366 Language Reference

Chapter 12 Overloading

4. Match with user-defined conversions. This sequence cannot be classified as an
exact match, a match using promotions, or a match using standard conversions. The
sequence must contain only user-defined conversions, standard conversions, or trivial
conversions to be classified as a match with user-defined conversions. A match with
user-defined conversions is considered a better match than a match with an ellipsis
but not as good a match as a match with standard conversions.

5. Match with an ellipsis. Any sequence that matches an ellipsis in the declaration is
classified as a match with an ellipsis. This is considered the weakest match.

User-defined conversions are applied if no built-in promotion or conversion exists.
These conversions are selected on the basis of the type of the argument being matched.
Consider the following code:

class UDC
{

public:

} ;

operator i nt();
operator long();

void Print(int);

UDC udc;
Print(udc);

The available user-defined conversions for class U DC are from type int and type long.
Therefore, the compiler considers conversions for the type of the object being matched:
U DC. A conversion to int exists, and it is selected.

During the process of matching arguments, standard conversions can be applied to both the
argument and the result of a user-defined conversion. Therefore, the following code works:

void LogToFile(long 1);

UDC udc;
LogToFile(udc);

In the preceding example, the user-defined conversion, operator long, is invoked to
convert udc to type long. If no user-defined conversion to type long had been defined, the
conversion would have proceeded as follows: Type UDC would have been converted to type
int using the user-defined conversion. Then the standard conversion from type int to type
long would have been applied to match the argument in the declaration.

Language Reference 367

c++ Language Reference

If any user-defined conversions are required to match an argument, the standard
conversions are not used when evaluating the best match. This is true even if more than
one candidate function requires a user-defined conversion; in such a case, the functions
are considered equal. For example:

class UDCl
{

public:
UDCl(int); II User-defined conversion from into

} ;

class UDC2
{

public:
UDC2(long); II User-defined conversion from long.

} ;

voi d Func (UDCl);
void Func(UDC2);

FunC'(1);

Both versions of Func require a user-defined conversion to convert type int to the class
type argument. The possible conversions are:

• Convert from type int to type UDCl (a user-defined conversion).

• Convert from type int to type long; then convert to type UDC2 (a two-step conversion).

Even though the second of these requires a standard conversion, as well as the user-defined
conversion, the two conversions are still considered equal.

Note User-defined conversions are considered conversion by construction or
conversion by initialization (conversion function). Both methods are considered
equal when considering the best match.

368 Language Reference

Address of Overloaded Functions
Use of a function name without arguments returns the address of that function. For
example:

i nt Func (i nt i. i nt j);
int Func(long 1);

int (*pFunc) (into int) = Func;

In the preceding example, the first version of Func is selected, and its address is copied
into pFunc.

Chapter 12 Overloading

The compiler determines which version of the function to select by finding a function with
an argument list that exactly matches that of the target. The arguments in the overloaded
function declarations are matched against one of the following:

• An object being initialized (as shown in the preceding example)

• The left side of an assignment statement

• A formal argument to a function

• A formal argument to a user-defined operator

• A function return type

If no exact match is found, the expression that takes the address of the function is
ambiguous and an error is generated.

Note that although a nonmember function, Func, was used in the preceding example,
the same rules are applied when taking the address of overloaded member functions.

Overloaded Operators
With C++, you can redefine the function of most built-in operators. These operators can be
redefined, or "overloaded," globally or on a class-by-class basis. Overloaded operators are
implemented as functions and can be class-member or global functions.

The name of an overloaded operator is operatorx, where x is the operator as it appears in
Table 12.2. For example, to overload the addition operator, you define a function called
operator+. Similarly, to overload the addition/assignment operator, +=, define a function
called operator+=.

Language Reference 369

c++ Language Reference

Although these operators are usually called implicitly by the compiler when they are
encountered in code, they can be invoked explicitly the same way as any member or
nonmember function is called:

Point pt;

pt.operator+(3); II Call addition operator to add 3 to pt.

Table 12.2 Redefinable Operators

Operator

!=

%

%=

&
&

&&

&=

()

*
*
*=

+

+

++

+=

-=

->

370 Language Reference

Name

Comma

Logical NOT

Inequality

Modulus

Modulus/assignment

Bitwise AND

Address-of

Logical AND

Bitwise AND/assignment

Function call

Multiplication

Pointer dereference

Multiplication/assignment

Addition

Unary Plus

Increment!

Addition/assignment

Subtraction

Unary negation

Decremene

Subtraction/assignment

Member selection

Type

Binary

Unary

Binary

Binary

Binary

Binary

Unary

Binary

Binary

Binary

Unary

Binary

Binary

Unary

Unary

Binary

Binary

Unary

Unary

Binary

Binary

Table 12.2 Redefinable Operators (continued)

Operator Name Type

->* Pointer-to-member selection Binary

I Division Binary

1= Division/assignment Binary

< Less than Binary

« Left shift Binary

«= Left shift/assignment Binary

<= Less than or equal to Binary

= Assignment Binary

-- Equality Binary

> Greater than Binary

>= Greater than or equal to Binary

» Right shift Binary

»= Right shift/assignment Binary

[] Array subscript

1\ Exclusive OR Binary

1\= Exclusive OR/assignment Binary

Bitwise inclusive OR Binary

1= Bitwise inclusive OR/assignment Binary

II Logical OR Binary

One's complement Unary

delete delete

new new

* Two versions of the unary increment and decrement operators exist: preincrement and postincrement.

The constraints on the various categories of overloaded operators are described in
"Unary Operators," "Binary Operators," "Assignment," "Function Call," "Subscripting,"
"Class-Member Access," and "Increment and Decrement," later in this chapter.

Chapter 12 Overloading

Language Reference 371

c++ Language Reference

The operators shown in Table 12.3 cannot be overloaded.

Table 12.3 Nonredefinable Operators

Operator Name

Member selection

. * Pointer-to-member selection

.. Scope resolution

? : Conditional

Preprocessor symbol

Preprocessor symbol

General Rules for Operator Overloading
The following rules constrain how overloaded operators are implemented. However, they
do not apply to the new and delete operators, which are covered separately in Chapter 4.

• Operators must either be class member functions or take an argument that is of class
or enumerated type or arguments that are references to class or enumerated types.
For example:

class Point
{

public:

} ;

Point operator« Point &); II Declare a member operator
II overload.

II Declare addition operators.
friend Point operator+(Point&. int);
friend Point operator+(into Point&);

The preceding code sample declares the less-than operator as a member function;
however, the addition operators are declared as global functions that have friend
access. Note that more than one implementation can be provided for a given operator.
In the case of the preceding addition operator, the two implementations are provided to
facilitate commutativity. It is just as likely that operators that add a Poi nt to a Poi nt,
i nt to a Poi nt, and so on, might be implemented.

372 Language Reference

• Operators obey the precedence, grouping, and number of operands dictated by their
typical use with built-in types. Therefore, there is no way to express the concept
"add 2 and 3 to an object of type Poi nt," expecting 2 to be added to the x coordinate
and 3 to be added to the y coordinate.

• Unary operators declared as member functions take no arguments; if declared as
global functions, they take one argument.

• Binary operators declared as member functions take one argument; if declared as
global functions, they take two arguments.

• Overloaded operators cannot have default arguments.

• All overloaded operators except assignment (operator=) are inherited by derived
classes.

Chapter 12 Overloading

• The first argument for member-function overloaded operators is always of the class
type of the object for which the operator is invoked (the class in which the operator is
declared, or a class derived from that class). No conversions are supplied for the first
argument.

Note that the meaning of any of the operators can be changed completely. That includes
the meaning of the address-of (&), assignment (=), and function-call operators. Also,
identities that can be relied upon for built-in types can be changed using operator
overloading. For example, the following four statements are usually equivalent when
completely evaluated:

var = var + 1;
var += 1;
var++;
++var;

This identity cannot be relied upon for class types that overload operators. Moreover, some
of the requirements implicit in the use of these operators for basic types are relaxed for
overloaded operators. For example, the addition/assignment operator, +=, requires the left
operand to be an I-value when applied to basic types; there is no such requirement when
the operator is overloaded.

Note For consistency, it is often best to follow the model of the built-in types when
defining overloaded operators. If the semantics of an overloaded operator differ
significantly from its meaning in other contexts, it can be more confusing than useful.

Language Reference 373

c++ Language Reference

Unary Operators
The unary operators are shown in Table12.4 .

Table 12.4 Redefinable Unary Operators

Operator Name

Logical NOT

& Address-of

One's complement

* Pointer dereference

+ Unary plus

++ Increment

Unary negation

Decrement

Of the operators shown in Table 12.4, the postfix increment and decrement
operators (++ and --) are treated separately in Increment and Decrement.

To declare a unary operator function as a non static member, you must declare it in
the form:

ret-type operatoropO

where ret-type is the return type and op is one of the operators listed in Table 12.4.

To declare a unary operator function as a global function, you must declare it in the form:

ret-type operatorop(arg)

where ret-type and op are as described for member operator functions and the arg is an
argument of class type on which to operate.

Note There is no restriction on the return types of the unary operators. For example,
it makes sense for logical NOT (!) to return an integral value, but this is not enforced.

374 Language Reference

Increment and Decrement
The increment and decrement operators fall into a special category because there are two
variants of each:

• Preincrement and postincrement

• Predecrement and postdecrement

Chapter 12 Overloading

When you write overloaded operator functions, it can be useful to implement separate
versions for the prefix and postfix versions of these operators. To distinguish between the
two, the following rule is observed: The prefix form of the operator is declared exactly the
same way as any other unary operator; the postfix form accepts an additional argument of
type int.

Important When specifying an overloaded operator for the postfix form of the
increment or decrement operator, the additional argument must be of type int;
specifying any other type generates an error.

The following example shows how to define prefix and postfix increment and decrement
operators for the Poi nt class:

class Point
{

public:
II Declare prefix and postfix increment operators.
Point& operator++(); II Prefix increment operator.
Point operator++(int); II Postfix increment operator.

II Declare prefix and postfix decrement operators.
Point& operator--(); II Prefix decrement operator.
Point operator--(int); II Postfix decrement operator.

II Define default constructor.
Point() { _x = _y = 0; }

II Define accessor functions.
int x() { return _x; }
int y() { return -y; }

private:
i nt _x, -Y;

} ;

II Define prefix increment operator.
Point& Point::operator++()
{

}

_x++;
-Y++;
return *this;

Language Reference 375

c++ Language Reference

II Define postfix increment operator.
Point Point::operator++(int)
{

}

Point temp = *this;
++*this;
return temp;

II Define prefix decrement operator.
Point& Point::operator--()
{

-y- -;
return *this;

}

II Define postfix decrement operator.
Point Point::operator--(int)
{

}

Point temp = *this;
--*this;
return temp;

The same operators can be defined in file scope (globally) using the following function
heads:

friend Point& operator++(Point&) II Prefix increment
friend Point& operator++(Point&, int II Postfix increment
friend Point& operator--(Point&) II Prefix decrement
friend Point& operator--(Point&, int II Postfix decrement

The argument of type int that denotes the postfix form of the increment or decrement
operator is not commonly used to pass arguments. It usually contains the value O.
However, it can be used as follows:

class Int
{

public:
Int &operator++(int n);

private:
int _i;

} ;

376 Language Reference

Int& Int::operator++(int n)
{

i f(n 1= 0)
i += n;

else
_i++;

return *this;

Int i;

II Handle case where an argument is passed.

II Handle case where no argument is passed.

i .operator++(25); II Increment by 25.

There is no syntax for using the increment or decrement operators to pass these values
other than explicit invocation, as shown in the preceding code. A more straightforward
way to implement this functionality is to overload the addition/assignment operator (+=).

Binary Operators
Table 12.5 shows a list of operators that can be overloaded.

Table 12.5 Redefinable Binary Operators

Operator

!=

%

%=

&

&&

&=

*
*=

+

+=

-=

->

Name

Comma

Inequality

Modulus

Modulus/assignment

Bitwise AND

Logical AND

Bitwise AND/assignment

Multiplication

Multiplication/assignment

Addition

Addition/assignment

Subtraction

Subtraction/assignment

Member selection

Chapter 12 Overloading

(continued)

Language Reference 377

c++ Language Reference

Table 12.5 Redefinable Binary Operators (continued)

Operator Name

->* Pointer-to-member selection

1 Division

1= Division/assignment

< Less than

« Left shift

«= Left shift/assignment

<= Less than or equal to

= Assignment

-- Equality

> Greater than

>= Greater than or equal to

» Right shift

»= Right shift/assignment

A Exclusive OR

A= Exclusive OR/assignment

Bitwise inclusive OR

1= Bitwise inclusive OR/assignment

II Logical OR

To declare a binary operator function as a nonstatic member, you must declare it in
the form:

ret-type operatorop(arg)

where ret-type is the return type, op is one of the operators listed in Table 12.5, and arg·
is an argument of any type.

To declare a binary operator function as a global function, you must declare it in the form:

ret-type operatorop(arg 1, arg2)

where ret-type and op are as described for member operator functions and argl and arg2
are arguments. At least one of the arguments must be of class type.

Note There is no restriction on the return types of the binary operators; however, most
user-defined binary operators return either a class type or a reference to a class type.

378 Language Reference

Assignment
The assignment operator (=) is, strictly speaking, a binary operator. Its declaration is
identical to any other binary operator, with the following exceptions:

• It must be a nonstatic member function. No operator= can be declared as a
nonmember function.

• It is not inherited by derived classes.

Chapter 12 Overloading

• A default operator= function can be generated by the compiler for class types if none
exists. (For more information about default operator= functions, see "Memberwise
Assignment and Initialization" in Chapter 11, "Special Member Functions.")

The following example illustrates how to declare an assignment operator:

class Point
{

public:
Point &operator=(Point &); II Right side is the argument.

} ;

II Define assignment operator.
Point &Point::operator=(Point &ptRHS)
{

}

x = ptRHS._x;
J ptRHS.J;

return *this; II Assignment operator returns left side.

Note that the supplied argument is the right side of the expression. The operator returns
the object to preserve the behavior of the assignment operator, which returns the value
of the left side after the assignment is complete. This allows writing statements such as:

ptl = pt2 = pt3;

Language Reference 379

c++ Language Reference

Function Call
The function-call operator, invoked using parentheses, is a binary operator. The syntax for
a function call is:

Syntax

primary-expression (expression-listopt)

In this context, primary-expression is the first operand, and expression-list, a possibly
empty list of arguments, is the second operand. The function-call operator is used for
operations that require a number of parameters. This works because expression-list is a
list instead of a single operand. The function-call operator must be a nonstatic member
function.

The function-call operator, when overloaded, does not modify how functions are called;
rather, it modifies how the operator is to be interpreted when applied to objects of a given
class type. For example, the following code would usually be meaningless:

Point pt;
pt (3, 2);

Given an appropriate overloaded function-call operator, however, this syntax can be used
to offset the x coordinate 3 units and the y coordinate 2 units. The following code shows
such a definition:

class Point
{

public:
Point() { _x = -y = 0; }
Point &operator()(int dx, int dy)

{ _x += dx; _y += dy; return *this; }
private:

i nt _x, -Y;
} ;

Point pt;
pt (3, 2);

Note that the function-call operator is applied to the name of an object, not the name of a
function.

380 Language Reference

Chapter 12 Overloading

Subscripting
The subscript operator ([]), like the function-call operator, is considered a binary operator.
The subscript operator must be a nonstatic member function that takes a single argument.
This argument can be of any type and designates the desired array subscript.

The following example demonstrates how to create a vector of type int that implements
bounds checking:

#include <iostream.h>

class IntVector
{

public:
IntVector(int cElements);
~IntVector() { delete _iElements;
int& operator[](int nSubscript);

private:

} ;

int *_iElements;
int _iUpperBound;

II Construct an IntVector.
IntVector::IntVector(int cElements
{

_iElements = new int[cElements];
_iUpperBound = cElements;

II Subscript operator for IntVector.
int& IntVector::operator[](int nSubscript
{

}

static int iErr = -1;

if(nSubscript >= 0 && nSubscript < _iUpperBound)
return _iElements[nSubscript];

else
{

}

clog « "Array bounds violation." « endl;
return iErr;

Language Reference 381

c++ Language Reference

II Test the IntVector class.
int main()
{

}

IntVector v(10);

for(int i = 0; i <= 10; ++i)
v[i] = i;

v[3] = v[9];

for(i = 0; i <= 10; ++i)
cout « "Element: ["« «"] - " « v[i]

« endl;

return v[0];

When i reaches 10 in the preceding program, operator[] detects that an out-of-bounds
subscript is being used and issues an error message.

Note that the function operator [] returns a reference type. This causes it to be an I-value,
allowing you to use subscripted expressions on either side of assignment operators.

Class-Member Access
Class-member access can be controlled by overloading the member-selection operator
(-». This operator is considered a unary operator in this usage, and the overloaded
operator function must be a class member function. Therefore, the declaration for such
a function is:

class-type *operator->O

where class-type is the name of the class to which this operator belongs. The member
selection operator function must be a non static member function.

This operator is used (often in conjunction with the pointer-dereference operator) to
implement "smart pointers" that validate pointers prior to dereference or count usage.

The. member-selector operator cannot be overloaded.

382 Language Reference

APPENDIX A

Grammar Summary

This appendix describes the formal grammar of the C++ language, as implemented in
the Microsoft C++ compiler. It is loosely organized around the chapter organization of
this book as follows:

• The "Keywords" section describes keywords, covered in Chapter 1, "Lexical
Conventions."

• The "Expressions" section describes the syntax of expressions, described in
Chapter 4, "Expressions."

• The "Declarations" section describes the syntax of declarations, described in
Chapter 6, "Declarations."

• The "Declarators" section describes the syntax of declarators, covered in
Chapter 7, "Declarators."

• The "Classes" section covers the syntax used in declaring classes, as covered in
Chapter 8, "Classes."

• The "Statements" section covers the syntax used in writing statements, as covered
in Chapter 5, "Statements."

• The "Microsoft Extensions" section covers the syntax of features unique to
Microsoft C++. Many of these features are covered in Appendix B,
"Microsoft-Specific Modifiers."

Language Reference 383

c++ Language Reference

Keywords
class-name:

identifier

enum-name:
identifier

typedef-name:
identifier

identifier: one of
nondigit
identifier nondigit
identifier digit

nondigit: one of
_abcdefghijklm
nopqrstuvwxyz
ABCDEFGHIJKLM
NOPQRSTUVWXYZ

digit: one of
0123456789

Expressions
expression:

assignment-expression
expression , assignment-expression

assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression

assignment-operator: one of
= *= 1= %= += -= >= <= &= "= 1=

conditional-expression:
logical-or-expression
logical-or-expression ? expression conditional-expression

logical-or-expression:
logical-and-expression
logical-or-expression II logical-and-expression

384 Language Reference

10 gical-and-expression:
inclusive-or-expression
logical-and-expression && inclusive-or-expression

inclusive-or-expression:
exclusive-or-expression
inclusive-or-expression exclusive-or-expression

exclusive-or-expression:
and-expression
exclusive-or-expression 1\ and-expression

and-expression:
equality-expression
and-expression & equality-expression

equality-expression:
relational-expression
equality-expression -- relational-expression
equality-expression != relational-expression

relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression => shift-expression

shift-expression:
additive-expression
shift-expression « additive-expression
shift-expression » additive-expression

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression

. additive-expression - multiplicative-expression

multiplicative-expression:
segment-expression
multiplicative-expression * segment-expression
multiplicative-expression / segment-expression
multiplicative-expression % segment-expression

segment-expression:
pm-expression
segment-expression :> pm-expression

Appendix A Grammar Summary

Language Reference 385

c++ Language Reference

pm-expression:
cast-expression
pm-expression • * cast-expression
pm-expression ->* cast-expression

cast-expression:
unary-expression
(type-name) cast-expression

unary-expression:
postfix-expression
+ + unary-expression
- unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-name)
allocation-expression
deallocation-expression

unary-operator: one of
*&+-!-

allocation-expression:
::opt new placementopt new-type-name new-initializeropt
: :opt new placementopt (type-name) new-initializeropt

placement:
(expression-list

new-type-name:
type-specifier-list new-declarator opt

new-declarator:
ms-modifier-list opt * cv-qualifier-list opt new-declaratoropt
ms-modifier-list opt complete-class-name :: *cv-qualifier-listopt
new-declarator opt

new-declaratoropt [expression]

new-initializer:
(initializer-list)

deallocation-expression:
•• opt delete cast-expression
: : opt delete [] cast-expression

386 Language Reference

postfix-expression:
primary-expression
postfix-expression [expression
postfix-expression (expression-list)
simple-type-name (expression-list)
postfix-expression • name
postfix-expression -> name
postfix-expression ++
postfix-expression
dynamic_cast < type-id > (expression)
static_cast < type-id > (expression)
const_cast < type-id > (expression)
reinterpret_cast < type-id > (expression)
typeid(expression)
typeid(type-id)

expression-list:
assignment-expression
expression-list , assignment-expression

primary-expression:
literal
this
•• identifier
:: operator-Junction-name
:: qualified-name (expression
name

name:
identifier
operator-Junction-name
conversion-Junction-name

,... class-name
qualified-name

qualified-name:
ms-modifier-listopt qualified-class-name •• name

literal:
integer-constant
character-constant
floating-constant
string-literal

Appendix A Grammar Summary

Language Reference 387

c++ Language Reference

integer-constant:
decimal-constant integer-suffixopt
octal-constant integer-suffixopt
hexadecimal-constant integer-sufflXopt
, c-char-sequence'

decimal-constant:
nonzero-digit
decimal-constant digit

octal-constant:
o
octal-constant octal-digit

hexadecimal-constant:
Ox hexadecimal-digit
OX hexadecimal-digit
hexadecimal-constant hexadecimal-digit

nonzero-digit: one of
123456789

octal-digit: one of
01234567

hexadecimal-digit: one of
0123456789
abcdef
ABCDEF

integer-suffix:
unsigned-suffix long-suffixopt
long-suffix unsigned-suffixopt

unsigned-suffix: one of
nU

long-suffix: one of
IL

character-constant:
, c-char-sequence'
L' c-char-sequence'

c-char-sequence:
c-char
c-char-sequence c-char

388 Language Reference

c-char:
any member of the source character set except the single quote (,) ,
backslash (\), or newline character
escape-sequence

escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence

simple-escape-sequence: one of
\' \" \? \\
\a \b \f \n \r \t \v

octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence:
\xhexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

floating-constant:
fractional-constant exponent-partoptfloating-suffixopt
digit-sequence exponent-part floating-su!fixopt

fractional-constant:
digit-sequenceopt • digit-sequence
digit-sequence •

exponent-part:
e signopt digit-sequence
E signopt digit-sequence

sign: one of
+-

digit-sequence:
digit
digit-sequence digit

floating-suffix: one of
flFL

string literal:
"s-char-sequence opt"

L "s-char-sequence opt"

Appendix A Grammar Summary

Language Reference 389

c++ Language Reference

s-char-sequence:
s-char
s-char-sequence s-char

s-char:
any member of the source character set except double quotation marks ("),
backslash (\), or newline character
escape-sequence

Declarations
declaration:

decl-specifiersopt declarator-listopt ;
asm-declaration
function-definition
linkage-specification
template-declaration:

asm-declaration:
__ asm(string-literal);

decl-specifiers:
decl-specifiersopt decl-speeifier

decl-specifier:
storage-class-specifier
type-specifier
Jet-specifier
friend
typedef
__ declspec (extended-decl-modifier-seq)

storage-class-speeifier:
auto
register
static
extern

Jct-specifier:
inUne
virtual

390 Language Reference

type-specifier:
simple-type-name
class-specifier
enum-specifier
elaborated-type-specifier
const
volatile

extended-decl-modifier-seq:
extended-decl-modifier opt

extended-dec I-modifier extended-decl-modifier-seq

extended-decl-modifier:
thread
naked
dllimport
dllexport

simple-type-name:
complete-class-name
qualified-type-name
char
short
int
long
signed
unsigned
float
double
void

elaborated-type-specifier:
class-key identifier
class-key class-name
enum-name

class-key:
class
struct
union

qualified-type-name:
typedef-name
class-name :: qualified-type-name

complete-class-name:
qualified-class-name
:: qualified-class-name

Appendix A Grammar Summary

Language Reference 391

c++ LaIlguage Reference

qualified-class-name:
class-name
class-name :: qualified-class-name

enum-specifier:
enum identifieropt { enum-listopt }

enum-list:
enumerator
enum-list , enumerator

enumerator:
identifier
identifier = constant-expression

constant-expression:
conditional-expression

linkage-specification:
extern string-literal { declaration-listopt }
extern string-literal declaration

dec laration-list:
declaration
declaration-list declaration

template-declaration:
template < template-argument-list > declaration

template-argument-list:
template-argument
template-argument-list , template-argument

template-argument:
type-argument
argument-declaration

type-argument:
class identifier

template-class-name:
template-name < template-arg-list >

template-arg -list:
template-arg
template-arg-list , template-arg

template-arg:
expression
type-name

392 Language Reference

original-namespace-name :
identifier

namespace-definition:
original-namespace-definitio~

extension-namespace-definition
unnamed-namespace-definition

original-namespace-definition :
namespace identifier {namespace-body}

extension-namespace-definition :
namespace original-namespace-name { namespace-body }

unnamed-namespace-definition :
namespace { namespace-body }

namespace-body:
declaration-seq opt

id-expression :
unqualified-id
qualified-id

nested-name-specifier :
class-or-namespace-name :: nested-name-specifieropt

class-or-namespace-name :
class-name
namespace-name

namespace-name :
original-namespace-name
names pace-alias

names pace-alias :
identifier

namespace-alias-definition :
namespace identifier = qualified-namespace-specifier;

qualified-names pace-specifier :
: : opt nested-name-specifieropt class-or-namespace-name

using-declaration:
using ::opt nested-name-specifier unqualified-id
using:: unqualified-id

using -directive :
using namespace ::opt nested-name-specifieropt .namespace-name

Appendix A Grammar Summary

Language Reference 393

c++ Language Reference

Declarators
declarator-list:

init-declarator
declarator-list, init-declarator

in it-decla ra tor:
ms-modifier-listopt declarator initializeropt

declarator:
dname
ptr-operator declarator
declarator (argument-declaration-list) cv-mod-listopt
declarator [constant-expressionopt]
(declarator)

cv-mod-list:
cv-qualijier cv-mod-li~toPt

ptr-operator:
ms-modijier-listopt * cv-qualijier-listopt
ms-modijier-listopt & cv-qualijier-listopt
ms-modijier-listopt complete-class-name •• * cv-qualijier-listopt

cv-qualijier-list:
cv-qualijier cv-qualijier-listopt

cv-qualijie r:
const
volatile

dname:
name
class-name
,...., class-name
typedef-name
qualijied-type-name .

type-name:
type-speciJier-list ms-modijier-listopt abstract-declaratoropt

type-specijier-list:
type-specijier type-specijier-listopt

abstract-dec larato r:
ptr-operator ms-modijier-listopt abstract-declaratoropt
abstract-declaratoropt (argument-declaration-list) cv-qualijier-listopt
abstract-declaratoropt [constant-expressionopt].
(ms-modijier-listopt abstract-declarator)

394 Language Reference

argument-declaration-list:
arg-declaration-listopt •. ·opt

arg-declaration-list , •.•

arg-declaration-list:
argument-declaration
arg-declaration-list , argument-declaration

argument-declaration:
decl-specifiers ms-modifier-listopt declarator
decl-specifiers ms-modifier-listopt declarator = expression
decl-specifiers ms-modifier-listopt abstract-declaratoropt
decl-specifiers ms-modifier-listopt abstract-declaratoropt = expression

function-definition:
decl-specifiersopt ms-modifier-listopt declarator ctor-initializeropt fct-body

fct-body:
compound-statement

initializer:
= expression
= { initializer-list ,opt }

(expression-list)

initializer-list:
expression
initializer-list , expression
{ initializer-list ,opt }

Classes
class-specifier:

class-head { member-listopt }

class-head:
class-key ambient-modelopt identifieropt base-specopt
class-key ambient-modelopt class-name base-specopt

member-list:
member-declaration member-listopt
access-specifier : member-listopt

member-declaration:
decl-specifiersopt member-declarator-listopt
function-definition ; opt

qualified-name ;

Appendix A Grammar Summary

Language Reference 395

c++ Language Reference

member-declarator-list:
member-declarator
member-declarator-list , member-declarator

member-declarator:
ms-modifier-listopt declarator pure-specifieropt
identifieropt : constant-expression

pure-specifier:
= 0

base-spec:
: base-list

base-list:
base-specifier
base-list, base-specifier

base-specifier:
complete-class-name
virtual access-specifieropt complete-class-name
access-specifier virtualopt complete-class-name

access-specifier:
private
protected
public

conversion-Junction-name:
operator conversion-type-name

conversion-type-name:
type-specifier-list ptr-operatoropt

ctor-initializer:
: mem-initializer-list

mem-initializer-list:
mem-initializer
mem-initializer , mem-initializer-list

mem-initializer:
complete-class-name (expression-listopt)
identifier (expression-listopt)

operator-Junction-name:
operator operator

396 Language Referenc-e

operator: one of
new delete
+ * I % A & 1

= < > += -= *= 1=
A= &= 1= « » »= «= --

<= >= && II ++ ->*
0 []

Statements
statement:

labeled-statement
expression-statement
compound-statement
selection-statement
iteration-statement
jump-statement
declaration-statement
asm-statement
try-except-statement
try-finally-statement

labeled-statement:
identifier : statement
case constant-expression statement
default : statement

expression-statement:
expressionopt ;

compound-statement:
{ statement-listopt }

statement-list:
statement
statement-list statement

selection-statement:
if (expression) statement
if (expression) statement else statement
switch (expression) statement

iteration-statement:
while (expression) statement
do statement while (expression) ;

%=
!=

->

for (for-init-statement expressionopt ; expressionopt) statement

Appendix A Grammar Summary

Language Reference 397

c++ Language Reference

/or- init -statement:
expression-statement
declaration-statement

jump-statement:
break ;
continue;
return . expressionopt
goto identifier ;

declaration-statement:
declaration

try-except-statement:
. __ try compound-statement

__ except (expression) compound-statement

try-finally-statement:
__ try compound-statement
__ finally (expression) compound-statement

Microsoft Extensions
asm-statement:

__ 3sm assembly-instruction ;opt

__ 3sm { assembly-instruction-list } ;opt

assembly-instruction-list:
assembly-instruction ;opt

assembly-instruction; assembly-instruction-list ;opt

ms-modifier-list:
ms-modifier ms-modifier-listopt

ms-modifier:
cdecl
fastcall
stdcall

__ syscall (reserved for future implementations)
__ oldcall (reserved for future implementations)
__ unaligned (reserved for future implementations)
based-modifier

based-modifier:
__ based (based-type)

based-type:
name

398 Language Reference

APPENDIX B

Microsoft-Specific Modifiers

Many of the Microsoft-specific keywords can be used to modify declarators to form
derived types. (For more information about declarators, see Chapter 7, "Declarators.")

Table B.1 Microsoft-Specific Keywords

Keyword Meaning Used to Form Derived Types?

asm

based

cdecl

__ declspec

fastcall

stdcall

Insert the following assembly-language code.

The name that follows declares a 32-bit offset to
the 32-bit base contained in the declaration.

The name that follows uses the C naming and
calling conventions.

The name that follows (thread, naked, dllimport,
or dllexport) specifies a Microsoft-specific
storage-class attribute.

The name that follows declares a function that
uses registers, when availab~e, instead of the stack
for argument passing.

The name that follows specifies a function that
observes the standard calling convention.

No

Yes

Yes

No

Yes

Yes

The following sections discuss the syntactic usage and semantic meaning of the
Microsoft-specific modifiers.

Based Addressing
This section includes the following topics:

• based

• Based pointers

• Pointers based on pointers

Language Reference 399

c++ Language Reference

Using __ based in 32-bit Compilations
Based addressing is useful when you need precise control over the segment in which
objects are allocated (static and dynamic based data).

The only form of based addressing acceptable in 32-bit compilations is "based on a
pointer" that defines a type that contains a 32-bit displacement to a 32-bit base or based
on void.

Syntax

based-range-modifier:
__ based (base-expression)

base-expression :
based-variable
based -abstract-dec la ra to r
segment-name
segment-cast

based-variable :
identifier

based-abstract-declarator :
abstract-declarator

base-type:
type-name

Based Pointers
Pointers based on pointer addresses are the only form of the __ based keyword valid
in 32-bit compilations. In such compilations, based pointers are 32-bit offsets from a
32-bit base.

When dereferencing a based pointer, the base must be either explicitly specified or
implicitly known through the declaration.

Pointers Based on Pointers
The "based on pointer" variant of based addressing enables specification of a pointer
as a base-expression. The based pointer, then, is an offset into the segment starting at
the beginning of the pointer on which it is based.

One use for pointers based on pointers is for persistent objects that contain pointers.
A linked list of pointers based on pointers can be saved to disk and reloaded to another
place in memory, and the pointers will still be valid. The following example declares
such a linked list:

400 Language Reference

Appendix B Microsoft-Specific Modifiers

void *vpBuffer;

struct llist_t
{

void __ basedC vpBuffer) *vpData;
llist t basedC vpBuffer) *llNext;

} ;

The pointer, v p B u f fer, is assigned the address of memory allocated at some later point
in the program; the linked list is then relocated relat~ve to the value of v p Buff e r.

Pointers based on pointer addresses are the only forms of __ based valid in 32-bit
compilations. In such compilations, they are 32-bit displacements from a 32-bit base.

Calling and Naming
Convention Modifiers

Calling conventions determine how functions are called; naming conventions determine
how external names are treated. For more information, see "Calling Conventions Topics,"
in Microsoft Visual C++ 6.0 Programmer's Guide online.

Extended Storage-Class Attributes
This section describes extended attribute syntax, which simplifies and standardizes
extensions to the Microsoft C and C++ languages. The storage-class attributes that use
extended attribute syntax include thread, naked, dllimport, and dllexport. Use of these
attributes is described later in this section.

Extended Attribute Syntax
The extended attribute syntax for specifying storage-class information uses the __ declspec
keyword, which specifies that an instance of a given type is to be stored with a Microsoft
specific storage-class attribute (thread, naked, dllimport, dllexport, nothrow, property,
selectany, or uuid). Examples of other storage-class modifiers include the static and extern
keywords. However, these keywords are part of the ANSI specification of the C and C++
languages, and as such are not covered by extended attribute syntax.

This is the extended attribute syntax for C++:

Syntax

decl-specifier :
__ declspec (extended-decl-modifier-seq)

extended-decl-modifier-seq :
extended-decl-modifier opt

extended-decl-modifier extended-decl-modifier-seq

Language Reference 401

c++ Language Reference

extended-decl-modifier:
thread
naked
dllimport
dllexport
nothrow
property
selectany
uuid("ComObjectGUID")

White space separates the declaration modifier sequence. Examples of the syntax appear
in later sections.

The thread, naked, dllimport, dllexport, nothrow, property, selectany, and u1.lid
storage-class attributes are properties only of the declaration of the object or function to
which they are applied. Unlike the __ near and __ far keywords, which actually affect
the type of object or function (in this case, 2- and 4-byte addresses), these storage-class
attributes do not redefine the type attributes of the object itself. The thread attribute
affects data and objects only. The naked attribute affects functions only. The dllimport
and dllexport attributes affect functions, data, and objects. The property, selectany,
and uuid attributes affect COM objects.

The thread Attribute
Thread Local Storage (TLS) is the mechanism by which each thread in a multithreaded
process allocates storage for thread-specific data. In standard multithreaded programs,
data is shared among all threads of a given process, whereas thread local storage is the
mechanism for allocating per-thread data. For a complete discussion of threads, see
"Multithreading Topics" in the Visual C++ Programmer's Guide online.

The C and C++ languages include the extended storage-class attribute, thread. The thread
attribute must be used with the __ declspec keyword to declare a thread variable. For
example, the following code declares an integer thread local variable and initializes it
with a value:

__ declspec(thread) int tls_i = 1;

You must observe these guidelines when declaring thread local objects and variables:

• You can apply the thread attribute only to data declarations and definitions, and
classes that do not have member functions. It cannot be used on function declarations
or definitions. For example, the following code generates a compiler error:

#define Thread __ declspec(thread)
Thread void func(); II Error

402 Language Reference

Appendix B Microsoft-Specific Modifiers

• You can specify the thread attribute only on data items with static storage duration.
This includes global data objects (both static and extern), local static objects, and
static data members of classes. You cannot declare automatic data objects with the
thread attribute. For example, the following code generates compiler errors:

#define Thread __ declspec(thread)
voi d func! ()
{

Thread int tls_i;

int func2(Thread int tls_i
{

II Error

II Error

• You must use the thread attribute for the declaration and the definition of a thread
local object, whether the declaration and definition occur in the same file or separate
files. For example, the following code generates an error:

#define Thread __ declspec(thread)
extern int tls_i; II This generates an error, because the
int Thread tls_i; II declaration and the definition differ.

•. You cannot use the thread attribute as a type modifier. For example, the following
code generates a compiler error:

char __ declspec(thread) *ch; II Error

• Classes can be instantiated using thread only if they contain no member functions.
The thread attribute is ignored if no object is declared as part of the class declaration.
For example:

__ declspec(thread) class X {
public:

int I; } x; II x is a thread object

X y; II y is not a thread object

Because the declaration of objects that use the thread attribute is permitted, these two
examples are semantically equivalent:

#define Thread __ declspec(thread)
Thread class B
{

Language Reference 403

c++ Language Reference

II Code
} BObject; II Okay--BObject declared thread local.

class B
{

II Code
}

Thread B BObject; II Okay--BObject declared thread local.

• Standard C permits initialization of an object or variable with an expression involving
a reference to itself, but only for objects of nonstatic extent. Although C++ normally
permits such dynamic initialization of an object with an expression involving a
reference to itself, this type of initialization is not permitted with thread local objects.
For example:

#define Thread __ declspec(thread)
Thread int tls i tls_i;
i nt j = j;

Thread int tls i sizeof(tls i)

II C and C++ error
II Okay in C++; C error
II Okay in C and C++

Note that a sizeof expression that includes the object being initialized does not
constitute a reference to itself and is allowed in C and C++.

The naked Attribute
For functions declared with the naked attribute, the compiler generates code without prolog
and epilog code. You can use this feature to write your own prolog/epilog code sequences
using inline assembler code. Naked functions are particularly useful in writing virtual
device drivers.

Because the naked attribute is only relevant to the definition of a function and is not a type
modifier, naked functions use the extended attribute syntax, described previously. For
example, this code defines a function with the naked attribute:

__ declspec(naked) int func(formal_parameters)
{

II Function body

Or, alternatively:

#define Naked __ declspec(naked)
Naked int func(formal_parameters)
{

II Function body
}

404 Language Reference

Appendix B Microsoft-Specific Modifiers

The naked attribute affects only the nature of the compiler's code generation for the
function's prolog and epilog sequences. It does not affect the code that is generated for
calling such functions. Thus, the naked attribute is not considered part of the function's
type, and function pointers cannot have the naked attribute. Furthermore, the naked
attribute cannot be applied to a data definition. For example, this code sample generates
an error:

__ declspec(naked) int i; II Error--naked attribute not
II permitted on data declarations.

The naked attribute is relevant only to the definition of the function and cannot be
specified in the function's prototype. For example, this declaration generates a compiler
error:

__ declspec(naked) int func(); II Error--naked attribute not
II permitted on function declarations

Rules and Limitations
• The return statement is not permitted in a naked function. However, you can return an

int by moving the return value into the EAX register before the RET instruction.

• Structured exception handling constructs are not permitted in a naked function, because
the constructs must unwind across the stack frame.

• The setjrnp run-time function cannot be used in a naked function, because it too must
unwind across the stack frame. However, use of the longjrnp run-time function is
permitted.

• Use of the _aUoca function is not permitted in a naked function.

• To ensure that no initialization code for local variables appears before the prolog
sequence, initialized local variables are not permitted at function scope. In particular,
the declaration of C++ objects is not permitted at function scope. There can, however,
be initialized data in a nested scope.

• Frame pointer optimization (the lOy compiler option) is not recommended, but it is
automatically suppressed for a naked function.

Considerations for Writing Prolog/Epilog Code
Before writing your own prolog and epilog code sequences, it is important to understand
how the stack frame is laid out. It is also useful to know how to use the LOCAL_SIZE
symbol.

Language Reference 405

c++ Language Reference

c++ Stack Frame Layout
This example shows the standard prolog code that might appear in a 32-bit function:

push
mov
sub
push

ebp
ebp, esp
esp, local bytes
<registers>

Save ebp
Set stack frame pointer
Allocate space for locals
Save registers

The local bytes variable represents the number of bytes needed on the stack for local
variables, and the < reg i s t e r s > variable is a placeholder that represents the list of registers
to be saved on the stack. After pushing the registers, you can place any other appropriate
data on the stack. The following is the corresponding epilog code:

pop
mov
pop
ret

<registers>
esp, ebp
ebp

Restore registers
Restore stack pointer
Restore ebp
Return from function

The stack always grows down (from high to low memory addresses). The base pointer
(e b p) points to the pushed value of e b p. The locals area begins at e b p - 2. To access local
variables, calculate an offset from ebp by subtracting the appropriate value from ebp.

The compiler provides a symbol, __ LOCAL_SIZE, for use in the inline assembler block
of function prolog code. This symbol is used to allocate space for local variables on the
stack frame in custom prolog code.

The compiler determines the value of __ LOCAL_SIZE. Its value is the total number
of bytes of all user-defined local variables and compiler-generated temporary variables.
__ LOCAL_SIZE can be used only as an immediate operand; it cannot be used in an
expression. You must not change or redefine the value of this symbol. For example:

mov
mov

eax, LOCAL_SIZE
eax, [ebp - __ LOCAL_SIZE]

;Immediate operand--Okay
;Error

The following example of a naked function containing custom prolog and epilog sequences
uses the __ LOCAL_SIZE symbol in the prolog sequence:

__ declspec (naked) func()
{

int i;
i nt j;

asm 1* prolog *1

push ebp
mov ebp, esp

406 Language Reference

Appendix B Microsoft-Specific Modifiers

1*

sub esp,
}

Function body *1

asm 1* epil og

mov esp, ebp
pop ebp
ret
}

*1

The dllexport and dllimport Attributes
The dllexport and dllimport storage-class modifiers export and import functions, data,
and objects to and from a DLL. These modifiers, or attributes, explicitly define the DLL's
interface to its client, which can be the executable file or another DLL. Declaring functions
as dllexport eliminates the need for a module-definition (.DEF) file, at least with respect
to the specification of exported functions. Note that dllexport replaces the __ export
keyword.

The declaration of dllexport and dllimport uses extended attribute syntax:

__ declspec(dllexport) void func();

Alternatively, to make your code more readable, you can use macro definitions:

#define Dlllmport __ declspec(dllimport
#define DllExport __ declspec(dllexport)

DllExport void func();
DllExport int i = 10;
Dlllmport int j;

DllExport int n;

Definitions and Declarations
The DLL interface refers to all items (functions and data) that are known to be exported by
some program in the system; that is, all items that are declared as dllimport or dllexport.
All declarations included in the DLL interface must specify either the dllimport or
dllexport attribute. However, the definition must specify only the dllexport attribute.
For example, the following function definition generates a compiler error:

__ declspec(dllimport) int func() II Error; dllimport
II prohibited on definition.

{

return 1;
}

Language Reference 407

c++ Language Reference

This code also generates an error:

#define Dlllmport __ declspec(dllimport

__ declspec(dllimport) int i = 10; II Error; this is a
II definition.

However, this is correct syntax:

__ declspec(dllexport) int i = 10; II Okay--export definition

The use of dllexport implies a definition, while dllimport implies a declaration. You must
use the extern keyword with dllexport to force a declaration; otherwise, a definition is
implied. Thus, the following examples are correct:

#define Dlllmport __ declspec(dllimport
#define DllExport __ declspec(dllexport)

extern Dlllmport int k; II These are both correct and imply a
DllImport int j; II declaration.

The following examples clarify the preceding:

static __ declspec(dllimport) int 1;

void func()
{

static __ declspec(dllimport) int s;

__ declspec(dllimport int m;

__ declspec(dllexport int n;

extern __ declspec(dllimport int i;

extern __ declspec(dllexport int k;

__ declspec(dllexport) int x = 5;

}

II Error; not declared extern.

II Error; not declared
II extern.
II Okay; this is a
II declaration.
II Error; implies external
II definition in local scope.
II Okay; this is a
II declaration.
II Okay; extern implies
II declaration.
II Error; implies external
II definition in local scope.

Defining Inline C++ Functions with dllexport and
dllimport
You can define as inline a function with the dllexport attribute. In this case, the function
is always instantiated and exported, whether or not any module in the program references
the function. The function is presumed to be imported by another program.

408 Language Reference

Appendix B Microsoft-Specific Modifiers

You can also define as inline a function declared with the dllimport attribute. In this case,
the function can be expanded (subject to lOb specifications), but never instantiated. In
particular, if the address of an inline imported function is taken, the address of the function
residing in the DLL is returned. This behavior is the same as taking the address of a non
inline imported function.

These rules apply to in line functions whose definitions appear within a class definition.
In addition, static local data and strings in in line functions maintain the same identities
between the DLL and client as they would in a single program (that is, an executable file
without a DLL interface).

Exercise care when providing imported inline functions. For example, if you update the
DLL, don't assume that the client will use the changed version of the DLL. To ensure that
you are loading the proper version of the DLL, rebuild the DLL's client as well.

General Rules and Limitations
• If you declare a function or object without the dllimport or dllexport attribute, the

function or object is not considered part of the DLL interface. Therefore, the definition
of the function or object must be present in that module or in another module of the
same program. To make the function or object part of the DLL interface, you must
declare the definition of the function or object in the other module as dllexport.
Otherwise, a linker error is generated.

If you declare a function or object with the dllexport attribute, its definition must
appear in some module of the same program. Otherwise, a linker error is generated.

• If a single module in your program contains both dllimport and dllexport declarations
for the same function or object, the dllexport attribute takes precedence over the
dllimport attribute. However, a compiler warning is generated. For example:

__ declspec(dllimport int i;
__ declspec(dllexport) int i; II Warning; inconsistent;

II dllexport takes precedence.

• In C++, you can initialize a globally declared or static local data pointer or with the
address of a data object declared with the dllimport attribute, which generates an error
in C. In addition, you can initialize a static local function pointer with the address of
a function declared with the dllimport attribute. In C, such an assignment sets the
pointer to the address of the DLL import thunk (a code stub that transfers control to
the function) rather than the address of the function. In C++, it sets the pointer to the
address of the function. For example:

__ declspec(dllimport void funcl(void);
__ declspec(dllimport) int i;

int *pi = &i;
static void (*pf)(void) &func1 ;

I I Error inC
II Address of thunk in C,
II function in C++

Language Reference 409

c++ Language Reference

void func2()
{

static int *pi = &i;
static void (*pf)(void)

}

II Error in C
&func1; II Address of thunk in C,

II function in C++

However, because a program that includes the dllexport attribute in the declaration of
an object must provide the definition for that object somewhere in the program, you
can initialize a global or local static function pointer with the address of a dllexport
function. Similarly, you can initialize a global or local static data pointer with the
address of a dllexport data object. For example, the following code does not generate
errors in C or C++:

__ declspec(dllexport void func1(void);
__ declspec(dllexport int i;

int *pi = &i;
static void (*pf)(void)

void func2()
{

static int *pi = &i;

&func1 ;
I I Okay
I I 0 kay

static void (*pf)(void)
I I Okay

&func1 ; I I Okay
}

Using dllimport and dllexport in C++
You can declare C++ classes with the dllimport or dllexport attribute. These forms
imply that the entire class is imported or exported. Classes exported this way are called
exportable Classes.

The following example defines an exportable class. All its member functions and static
data are exported:

#define DllExport __ declspec(dllexport)

class DllExport C
{

} ;

int i;
virtual int func(void)
{ return 1; }

Note that explicit use of the dllimport and dllexport attributes on members. of an
exportable class is prohibited.

410 Language Reference

Appendix B Microsoft-Specific Modifiers

dllexport Classes
When you declare a class dllexport, all its member functions and static data members
are exported. You must provide the definitions of all such members in the same program.
Otherwise, a linker error is generated. The one exception to this rule applies to pure
virtual functions, for which you need not provide explicit definitions. However, because
a destructor for an abstract class is always called by the destructor for the base class, pure
virtual destructors must always provide a definition. Note diat these rules are the same for
nonexportable classes.

If you export data of class type· or functions that return classes, be sure to export the class.

dllimport Classes
When you declare a class dllimport, all its member functions and static data members are
imported. Unlike the behavior of dllimport and dllexport on nonclass types, static data
members cannot specify a definition in the same program in which a dllimport class is
defined.

Inheritance and Exportable Classes
All base classes of an exportable class must be exportable. If not, a compiler warning is
generated. Moreover, all accessible members that are also classes must be exportable. This
rule permits a dllexport class to inherit from a dllimport class, and a dllimport class to
inherit from a dllexport class (though the latter is not recommended). As a rule, everything
that is accessible to the DLL's client (according to c++ access rules) should be part of the
exportable interface. This includes private data members referenced in inline functions.

Selective Member Import/Export
Because member functions and static data within a class implicitly have external linkage,
you can declare them with the dllimport or dllexport attribute, unless the entire class is
exported. If the entire class is imported or exported, the explicit declaration of member
functions and data as dllimport or dllexport is prohibited. If you declare a static data
member within a class definition as dllexport, a definition must occur somewhere within
the same program (as with nonclass external linkage).

Similarly, you can declare member functions with the dllimport or dllexport attributes.
In this case, you must provide a dllexport definition somewhere within the same program.

Language Reference 411

c++ Language Reference

It is worthwhile to note several important points regarding selective member import
and export:

• Selective member import/export is best used for providing a version of the exported
class interface that is more restrictive; that is, one for which you can design a DLL
that exposes fewer public and private features than the language would otherwise
allow. It is also useful for fine-tuning the exportable interface: when you know that
the client, by definition, is unable to access some private data, you need not export
the entire class.

• If you export one virtual function in a class, you must export all of them, or at least
provide versions that the client can use directly.

• If you have a class in which you are using selective member import/export with virtual
functions, the functions must be in the exportable interface or defined inline (visible to
the client).

• If you define a member as dllexport but do not include it in the class definition,
a compiler error is generated. You must define the member in the class header.

• Although the definition of class members as dllimport or dllexport is permitted,
you cannot override the interface specified in the class definition.

• If you define a member function in a place other than the body of the class definition
in which you declared it, a warning is generated if the function is defined as dllexport
or dllimport (if this definition differs from that specified in the class declaration).

Inline Assembler
The inline assembler lets you embed assembly-language instructions in your C source
programs without extra assembly and link steps. The inline assembler is built into the
compiler - you don't need a separate assembler such as the Microsoft Macro Assembler
(MASM).

Because the inline assembler doesn't require separate assembly and link steps, it is more
convenient than a separate assembler. Inline assembly code can use any C variable or
function name that is in scope, so it is easy to integrate it with your program's C code.
And because the assembly code can be mixed with C statements, it can do tasks that are
cumbersome or impossible in C alone.

The __ asm keyword invokes the inline assembler and can appear wherever a C statement
is legal. It cannot appear by itself. It must be followed by an assembly instruction, a group
of instructions enclosed in braces, or, at the very least, an empty pair of braces. The term
" __ asm block" here refers to any instruction or group of instructions, whether or not in
braces.

The following code is a simple __ asm block enclosed in braces. (The code is a custom
function prolog sequence.)

412 Language Reference

asm
{

push ebp
mav ebp, esp
sub esp, LOCAL - SIZE

}

Alternatively, you can put __ asm in front of each assembly instruction:

asm push ebp
asm mav ebp, esp
asm sub esp, LOCAL_SIZE

Appendix B Microsoft-Specific Modifiers

Since the __ asm keyword is a statement separator, you can also put assembly instructions
on the same line:

asm push ebp asm mav ebp, esp asm sub esp,

Language Reference 413

APPENDIX C

Compiler COM Support Classes

Microsoft Specific ~

Standard classes are used to support some of the COM types. The classes are defined in
COMDEF.H and the header files generated from the type library.

#include <comdef.h>

Class Purpose

_com_error Defines the error object thrown by _com_raise_error in most failures.

Encapsulates COM interface pointers, and automates the required calls
to AddRef, Release, and Querylnterface.

_varianCt

Wraps the BSTR type to provide useful operators and methods.

Wraps the VARIANT type to provide useful operators and methods.

In addition, there is a support routine called _com_raise_error, which is used by all
compiler-generated COM support code to throw a _com_error in response to a failure

_com_raise_error is defined in comdef.h as,

void __ stdcall _com_raise_error(HRESULT hr, IErrorlnfo* perrinfo = 0) throw(_com_error);

The actual source code is,

void __ stdcall _com_raise_error(HRESULT hr, IErrorlnfo* perrinfo) throw(_com_error)
{

throw _com_error(hr, perrinfo);
}

_com_raise_error can be replaced by a user-written version of the same name and
prototype. This could be done if you want to use #import, but don't want to use C++
exception handling. In that case, a user version of _com_raise_error might decide to
do a longjmp or pop up a message box and halt. The user version should not return,
though, since the compiler COM support code does not expect it to return.

END Microsoft Specific

Language Reference 415

c++ Language Reference

com error
Microsoft Specific ~

A _com_error object represents an exception condition detected by the error-handling
wrapper functions in the header files generated from the type library or by one of the
COM support classes. The _com_error class encapsulates the HRESUL T error code
and any associated IErrorInfo object.

#include <comdef.h>

Construction

Operators

operator =

Extractor Functions

Error

ErrorInfo

WCode

IErrorlnfo functions

Description

HelpContext

HelpFile

Source

GUID

Format Message Extractor

ErrorMessage

Constructs a _com_error object.

Assigns an existing _com_error object to another.

Retrieves the HRESUL T passed to the constructor.

Retrieves the IErrorInfo object passed to the constructor.

Retrieves the 16-bit error code mapped into the encapsulated HRESULT.

Calls IErrorInfo: : GetDescription function.

Calls IErrorInfo: : GetHelpContext function.

Calls IErrorInfo: : GetHelpFile function

Calls IErrorInfo: : GetSource function.

Calls IErrorInfo: : GetGUID function.

Retrieves the string message for HRESUL T stored in the _com_error object.

Exeplnfo.wCode to HRESUL T Mappers

HRESULTTo WCode

WCodeToHRESULT

END Microsoft Specific

416 Language Reference

Maps 32-bit HRESULT to 16-bit wCode.

Maps 16-bit wCode to 32-bit HRESULT.

Appendix C Compiler COM Support Classes

Member Functions

_com_error::_ com_error
Microsoft Specific ~

_com_error(HRESUL T hr, IErrorInfo* perrinfo = NULL) throw();
_com_error(const _com_error& that) throw();

Parameters

hr
HRESUL T information

perrinfo
IErrorlnfo object

that
An existing _com_error object

Remarks

Constructs a _com_error object. The first constructor creates a new object given an
HRESUL T and optional IErrorInfo object. The second creates a copy of an existing
_com_error object.

END Microsoft Specific

_com_error:: Description
Microsoft Specific ~

_bstr_t Description() const throw ();

Return Value

Returns the result of IErrorInfo::GetDescription for the IErrorlnfo object recorded
within the _com_error object. The resulting BSTR is encapsulated in a _bstr_t object.
If no IErrorInfo is recorded, it returns an empty _bstr_t.

Remarks

Calls the IErrorlnfo::GetDescription function and retrieves IErrorInfo recorded within
the _com_error object. Any failure while calling the IErrorInfo: : GetDescription method
is ignored.

END Microsoft Specific

Language Reference 417

c++ Language Reference

_com_error:: Error
Microsoft Specific ~

HRESUL T Error() const throw();

Return Value

Raw HRESUL T item passed into the constructor.

Remarks

Retrieves the encapsulated HRESUL T item in a _com_error object.

END Microsoft Specific

_com_error:: Errorlnfo
Microsoft Specific ~

IErrorInfo * ErrorInfo() const throw();

Return Value

Raw IErrorInfo item passed into the constructor.

Remarks

Retrieves the encapsulated IErrorInfo item in a _com_error object, or NULL if no
IErrorInfo item is recorded. The caller must call Release on the returned object when
finished using it.

END Microsoft Specific

_com_error:: ErrorMessage
Microsoft Specific ~

const TCHAR * ErrorMessage() const throw();

Return Value

Returns the string message for the HRESULT recorded within the _com_error object.
If the HRESUL T is a mapped 16-bit wCode, then a generic message " I 0 i spa t c her r 0 r

#<wCode> "is returned. If no message is found, then a generic message "Unknown error

#< h res u 1 t> "is returned. The returned string is either a Unicode or multi byte string,
depending on the state.ofthe _UNICODE macro.

418 Language Reference

Appendix C Compiler COM Support Classes

Remarks

Retrieves the appropriate system message text for HRESUL T recorded within the
_com_error object. The system message text is obtained by calling the Win32
FonnatMessage function. The string returned is allocated by the FormatMessage
API, and it is released when the _com_error object is destroyed.

END Microsoft Specific

Microsoft Specific ~

GUID GUID() const throw();

Return Value

Returns the result of IErrorInfo::GetGUID for the IErrorInfo object recorded within
the _com_error object. If no IErrorInfo object is recorded, it returns GUID _NULL.

Remarks

Calls the IErrorInfo::GetGUID method. Any failure while calling the
IErrorInfo::GetGUID method is ignored.

END Microsoft Specific

_com_error::HelpContext
Microsoft Specific ~

DWORD HelpContext() const throw();

Return Value

Returns the result of IErrorInfo: : GetHelpContext for the IErrorInfo object recorded
within the _com_error object. If no IErrorInfo object is recorded, it returns a zero.

Remarks

Calls the IErrorInfo: : GetHelpContext interface method. Any failure while calling the
IErrorInfo::GetHelpContext method is ignored.

END Microsoft Specific

_com_error:: HelpFile
Microsoft Specific ~

_hstr _t HelpFile() const throw();

Language Reference 419

c++ Language Reference

Return Value

Returns the result of IErrorInfo: : GetHelpFile for the IErrorInfo object recorded within
the _com_error object. The resulting BSTR is encapsulated in a _bstr_t object. If no
IErrorlnfo is recorded, it returns an empty _bstr_t.

Remarks

Calls the IErrorInfo::GetHelpFile interface method. Any failure while calling the
IErrorlnfo: :GetHelpFile method is ignored.

END Microsoft Specific

_com_error::HRESULTToWCode
Microsoft Specific ~

static WORD HRESULTToWCode(HRESULT hr) throw();

Return Value

16-bit wCode mapped from the 32-bit HRESUL T

Parameters

hr
The 32-bit HRESULT to be mapped to 16-bit wCode

Remarks

Performs 32-bit HRESULT to 16-bit wCode mapping. See _com_error::WCode for
more information.

See Also

_com_error::WCode, _com_error::WCodeToHRESULT, _com_error Overview

END Microsoft Specific

_com_error: :Source
Microsoft Specific ~

_bstr _t Source() const throw();

Return Value

Returns the result of IErrorInfo::GetSource for the IErrorInfo object recorded within
the _com_error object. The resulting BSTR is encapsulated in a _bstr_t object. If no
IErrorInfo is recorded, it returns an empty _bstr ~t.

420 Language Reference

Appendix C Compiler COM Support Classes

Remarks

Calls the IErrorInfo::GetSource interface method. Any failure while calling the
IErrorInfo: : GetSource method is ignored.

END Microsoft Specific

Microsoft Specific ~

WORD WCode () const throw();

Return Value

If the HRESULT is within the range Ox80040200 to Ox8004FFFF, the WCode method
returns the HRESUL T minus Ox80040200, else it returns zero.

Remarks

The WCode method retrieves a 16-bit error code which has been mapped into the
encapsulated HRESULT.

The WCode method is used to undo a mapping which happens in the COM support
code. The wrapper for a dispinterface property or method calls a support routine
which packages the arguments and calls IDispatch::lnvoke. Upon return, if a failure
HRESUL T of DISP _E_EXCEPTION is returned, the error information is retrieved from
the EXCEPINFO structure passed to IDispatch::Invoke. The error code can either be a
16-bit value stored in the wCode member of the EXCEPINFO structure or a full 32-bit
value in the scode member of the EXCEPINFO structure. If a 16-bit wCode is returned,
it must first be mapped to a 32-bit failure HRESULT.

See Also

_com_error: :HRESUL TIo WCode, _com_error:: WCodeToHRESULT,
_com_error Overview

END Microsoft Specific

_com_error::WCodeToHRESULT
Microsoft Specific ~

static HRESULT WCodeToHRESULT(WORD wCode) throw();

Return Value

32-bit HRESULT mapped from the 16-bit wCode.

Parameters

wCode
The 16-bit wCode to be mapped to 32-bit HRESULT

Language Reference 421

c++ Language Reference

Remarks

Performs 16-bit wCode to 32-bit HRESULT mapping. See the WCode member function.

See Also

_com_error:: WCode, _com_error: :HRESUL ITo WCode, _com_error Overview

END Microsoft Specific

Operators

_com_error::operator =
Microsoft Specific ~

_com_error& operator = (const _com_error& that) throw ();

Parameters

that
A _com_error object

Remarks

Assigns an existing _com_error object to another.

END Microsoft Specific

_COffi_ptr_t
Microsoft Specific ~

A _com_ptr_t object encapsulates a COM interface pointer and is called a "smart" pointer.
This template class manages resource allocation and deallocation, via function calls to the
IUnknown member functions: Querylnterface, AddRef, and Release.

A smart pointer is usually referenced by the typedef definition provided by the
_COM_SMARTPTR_TYPEDEF macro. This macro takes an interface name and the
lID, and declares a specialization of _com_ptr_t with the name of the interface plus a
suffix of Ptr. For example,

_COM_SMARTPTR_TYPEDEF(IMyInterface, __ uu;dof(IMyInterface));

declares the _com_ptr_t specialization IMylnterfacePtr.

A set of function templates, not members of this template class, support comparisons with
a smart pointer on the right-hand side of the comparison operator.

#include <comdef.h>

422 Language Reference

Construction

Low-level Operations

AddRef

Attach

CreateInstance

Detach

GetActiveObject

GetlnterfacePtr

Query Interface

Release

Operators

operator =

operators ==, ! =,
<,>,<=,>=

Extractors

Appendix C Compiler COM Support Classes

Calls the AddRef member function of IUnknown on the encapsulated
interface pointer.

Encapsulates a raw interface pointer of this smart pointer's type.

Creates a new instance of an object given a CLSID or ProgID.

Extracts and returns the encapsulated interface pointer.

Attaches to an existing instance of an object given a CLSID or ProgID.

Returns the encapsulated interface pointer.

Calls the Querylnterface member function of IUnknown on the encapsulated
interface pointer.

Calls the Release member function of IUnknown on the encapsulated
interface pointer.

Assigns a new value to an existing _com_ptr_t object.

Compare the smart pointer object to another smart pointer, raw interface pointer,
or NULL.

Extract the encapsulated COM interface pointer.

END Microsoft Specific

Language Reference 423

c++ Language Reference

Member Functions

Microsoft Specific ~

_com_ptr_t() throw();
_com_ptr _t(Interface* plnteiface) throw();
_com_ptr_t(Interface* plnteiface, boolfAddRef) throw();
_com_ptr_t(int NULL) throw(_com_error);
template< > _com_ptr_t(const _com_ptr_t& cp) throw();
template<typename _InterfacePtr> _com_ptr_t(const _InterfacePtr& p) throw(_com_error);
template< > _com_ptr_t(const _variant_t& varSrc) throw(_com_error);
explicit _com_ptr_t(const CLSID& clsid, DWORD dwClsContext = CLSCTX_ALL)

throw(_com_error);
explicit _com_ptr_t(LPOLESTR IpOleStr, DWORD dwClsContext = CLSCTX_ALL)

throw(_com_error);
explicit _com_ptr_t(LPCSTR IpcStr, DWORD dwClsContext = CLSCTX_ALL) .

throw(_com_error);

Parameters

plnteiface
a raw interface pointer

fAddRef

cp

p

if true, AddRef is called to increment the reference count of the encapsulated interface
pointer

a raw interface pointer, its type being different from the smart pointer type of this
_com_ptr_t object

varSrc
a _varianCt object

clsid
the CLSID of a coc1ass

dw Cis Context
context for running executable code

IpOleStr
a Unicode string that holds either a CLSID (starting with "{") or a ProgID

IpcStr
a multibyte string that holds either a CLSID (starting with" {") or a ProgID.

424 Language Reference

Appendix C Compiler COM Support Classes

Remarks

Constructs a _com_ptr_t object.

• _com_ptr_t() Constructs a NULL smart pointer.

• _com_ptr_t(plnteiface) Constructs a smart pointer from a raw interface pointer
of this smart pointer's type. AddRef is called to increment the reference count for the
encapsulated interface pointer.

• _com_ptr_t(plnteiface,fAddRef) Constructs a smart pointer from a raw interface
pointer of this smart pointer's type. If fAddRef is true, AddRef is called to increment
the reference count for the encapsulated interface pointer. If fAddRef is false, this
constructor takes ownership of the raw interface pointer without calling AddRef.

• _com_ptr_t(NULL) Constructs a NULL smart pointer. The NULL argument
must be a zero.

• _com_ptr_t(cp) Constructs a smart pointer as a copy of another instance of the
same smart pointer. AddRef is called to increment the reference count for the
encapsulated interface pointer.

• _com_ptr_t(p) Constructs a smart pointer from a different smart pointer type
or from a different raw interface pointer. QueryInterface is called to find an
interface pointer of this smart pointer's type. If QueryInterface fails with an
E_NOINTERFACE error, a NULL smart pointer is constructed. Any other error
causes a _com_error to be raised.

• _com_ptr_t(varSrc) Constructs a smart pointer from a _ variant_t object. The
encapsulated VARIANT must be of type VT_DISPATCH or VT_UNKNOWN,
or it can be converted into one of these two types. If QueryInterface fails with an
E_NOINTERFACE error, a NULL smart pointer is constructed. Any other error
causes a _com_error to be raised.

• _com_ptr_t(clsid, dwClsContext) Constructs a smart pointer given the CLSID
of a coc1ass. This function calls CoCreateInstance, by the member function
CreateInstance, to create a new COM object and then queries for this smart pointer's
interface type. If QueryInterface fails with an E_NOINTERFACE error, a NULL
smart pointer is constructed. Any other error causes a _com_error to be raised.

• _com_ptr_t(IpOleStr, dwClsContext) Constructs a smart pointer given a Unicode
string which holds either a CLSID (starting with "{") or aProgID. This function calls
CoCreateInstance, by the member function CreateInstance, to create a new COM
object and then queries for this smart pointer's interface type. If QueryInterface fails
with an E_NOINTERFACE error, a NULL smart pointer is constructed. Any other
error causes a _com_error to be raised.

Language Reference 425

c++ Language Reference

• _com_ptr_t(IpcStr, dwClsContext) Constructs a smart pointer given a multibyte
character string which holds either a CLSID (starting with" {") or a ProgID. This
function calls CoCreateInstance, by the member function CreateInstance, to
create a new COM object and then queries for this smart pointer's interface type.
If Querylnterface fails with an E_NOINTERFACE error, a NULL smart pointer
is constructed. Any other error causes a _com_error to be raised.

END Microsoft Specific

Microsoft Specific ~

void AddRef() throw(_com_error);

Remarks

Calls IUnknown::AddRef on the encapsulated interface pointer, raising an E_POINTER
error if the pointer is NULL.

END Microsoft Specific

Microsoft Specific ~

void Attach(Interface* plnteiface) throw();
void Attach(Interface* plnteiface, boolfAddRef) throw();

Parameters

plnteiface
a raw interface pointer

fAddRef
If it is true, then AddRef is called. If it is false, the _com_ptr_t object takes
ownership of the raw interface pointer without calling AddRef.

Remarks

Encapsulates a raw interface pointer of this smart pointer's type.

• Attach(plnteiface) AddRef is not called. The ownership of the interface is passed
to this _com_ptr_t object. Release is called to decrement the reference count for the
previously encapsulated pointer.

• Attach(plnteiface,fAddRef) IffAddRefis true, AddRefis called to increment
the reference count for the encapsulated interface pointer. IffAddRefis false, this
_com_ptr_t object takes ownership of the raw interface pointer without calling
AddRef. Release is called to decrement the reference count for the previously
encapsulated pointer.

END Microsoft Specific

426 Language Reference

Appendix C Compiler COM Support Classes

_ com_ptr _ t:: Createlnstance
Microsoft Specific ~

HRESUL T Createlnstance(const CLSID& rclsid, IUnknown* pOuter-NULL,
DWORD dwClsContext = CLSCTX_ALL) throw();

HRESULT Createlnstance(LPOLESTR clsidString, IUnknown* pOuter-NULL,
DWORD dwClsContext = CLSCTX_ALL) throw();

HRESUL T Createlnstance(LPCSTR clsidStringA, IUnknown* pOuter-NULL,
DWORD dwClsContext = CLSCTX_ALL) throw();

Parameters

rclsid
the CLSID of an object

clsidString
a Unicode string that holds either a CLSID (starting with "{") or a ProgID

clsidStringA
a multibyte string that holds either a CLSID (starting with "{") or a ProgID

dw Cis Context
context for running executable code

pOuter
the outer unknown for aggregation

Remarks

Creates a new running instance of an object given a CLSID or ProgID. These member
functions call CoCreatelnstance to create a new COM object and then queries for this
smart pointer's interface type. The resulting pointer is then encapsulated within this
_com_ptr_t object. Release is called to decrement the reference count for the previously
encapsulated pointer. This routine returns the HRESUL T to indicate success or failure.

• Createlnstance(rclsid, dwClsContext) Creates a new running instance of an object
given a CLSID.

• Createlnstance(clsidString, dwClsContext) Creates a new running instance of an
object given a Unicode string which holds either a CLSID (starting with "{") or a
ProgID.

• Createlnstance(clsidStringA, dwClsContext) Creates a new running instance of
an object given a multibyte character string which holds either a CLSID (starting
with "{") or a ProgID. Calls MultiByteToWideChar, which assumes that the string
is in the ANSI code page rather than an OEM code page.

END Microsoft Specific

Language Reference 427

c++ Language Reference

Microsoft Specific ~

Interface* Detach() throw();

Remarks

Extracts and returns the encapsulated interface pointer, then clears the encapsulated pointer
storage to NULL. This removes the interface pointer from encapsulation. It is up to you to
call Release on the returned interface pointer.

END Microsoft Specific

_com_ptr_t::GetActiveObject
Microsoft Specific ~

HRESUL T GetActiveObject(const CLSID& rclsid) throw();
HRESUL T GetActiveObject(LPOLESTR clsidString) throw();
HRESUL T GetActiveObject(LPCSTR clsidStringA) throw();

Parameters

rclsid
the CLSID of an object

clsidString
a Unicode string that holds either a CLSID (starting with "{") or aProgID

clsidStringA
a multibyte string that holds either a CLSID (starting with "{") or a ProgID

Remarks

Attaches to an existing instance of an object given a CLSID or ProgID. These member
functions call GetActiveObject to retrieve a pointer to a running object that has been
registered with OLE and then queries for this smart pointer's interface type. The resulting
pointer is then encapsulated within this _com_ptr_t object. Release is called to decrement
the reference count for the previously encapsulated pointer. This routine returns the
HRESUL T to indicate success or failure.

• GetActiveObject(rclsid) Attaches to an existing instance of an object given a
CLSID.

• GetActiveObject(clsidString) Attaches to an existing instance of an object given
a Unicode string which holds either a CLSID (starting with "{") or aProgID.

428 Language Reference

Appendix C Compiler COM Support Classes

• GetActiveObject(clsidStringA) Attaches to an existing instance of an object given a
multibyte character string which holds either a CLSID (starting with "{") or a ProgID.
Calls MultiByteToWideChar, which assumes that the string is in the ANSI code page
rather than an OEM code page.

END Microsoft Specific

_com_ptr _t: :GetlnterfacePtr
Microsoft Specific ~

Interface* GetInterfacePtr() const throw();

Remarks

Returns the encapsulated interface pointer, which may be NULL.

END Microsoft Specific

_com_ptr _t: :Querylnterface
Microsoft Specific ~

template<typename _InterfaceType> HRESULT Querylnterface
(const IID& iid, _InterfaceType*& p) throw ();

template<typename _InterfaceType> HRESULT Querylnterface
(const IID& iid, _InterfaceType** p) throw();

Parameters

iid
lID of an interface pointer

p
raw interface pointer

Remarks

Calls IUnknown::Querylnterface on the encapsulated interface pointer with the
specified lID, and returns the resulting raw interface pointer in p. This routine returns
the HRESUL T to indicate success or failure.

END Microsoft Specific

Language Reference 429

c++ Language Reference

Microsoft Specific ~

void Release() throw(_com_error);

Remarks

Calls IUnknown: : Release on the encapsulated interface pointer, raising an E_POINTER
error if this interface pointer is NULL.

END Microsoft Specific

Operators

Microsoft Specific ~

_com_ptr_t& operator=(Interface* plnteiface) throw();
_com_ptr_t& operator=(int NULL) throw(_com_error);
template< > _com_ptr_t& operator=(const _com_ptr_t& cp) throw();
template< > _com_ptr_t& operator=(const _ varianCt& varSrc) throw(_com_error);
template<typename _InterfacePtr> _com_ptr_t& operator=(const _InterfacePtr& p)

throw(_com_error);

Remarks

Assigns an interface pointer to this _com_ptr_t object:

• operator=(plnteiface) Encapsulates a raw interface pointer of this smart pointer's
type. AddRef is called to increment the reference count for the encapsulated interface
pointer, and Release is called to decrement the reference count for the previously
encapsulated pointer.

• operator=(NULL) Sets a smart pointer to NULL. The NULL argument must be
a zero.

• operator=(cp) Sets a smart pointer to be a copy of another instance of the same
smart pointer of the same type. AddRef is called to increment the reference count for
the encapsulated interface pointer, and Release is called to decrement the reference
count for the previously encapsulated pointer.

430 Language Reference

Appendix C Compiler COM Support Classes

• operator=(varSrc) Sets a smart pointer to be a _ variant_t object. The
encapsulated VARIANT must be of type VT_DISPATCH or VT_UNKNOWN,
or it can be converted to one of these two types. If QueryInterface fails with an
E_NOINTERFACE error, a NULL smart pointer results. Any other error causes
a _com_error to be raised.

• operator=(p) Sets a smart pointer to be a different smart pointer of a different
type or a different raw interface pointer. QueryInterface is called to find an
interface pointer of this smart pointer's type, and Release is called to decrement
the reference count for the previously encapsulated pointer. If QueryInterface
fails with an E_NOINTERF ACE, a NULL smart pointer results. Any other
error causes a _com_error to be raised.

END Microsoft Specific

_com_ptr_t Relational Operators
Microsoft Specific ~

template<typename _InterfacePtr> bool operator==(_InterfacePtr p) throw(_com_error);
template<> bool operator==(Interface* p) throw(_com_error);
template<> bool operator==(_com_ptr_t& p) throw();
template<> bool operator==(int NULL) throw(_com_error);
template<typename _InterfacePtr> bool operator!=(_InterfacePtr p) throw(_com_error);
template<> bool operator!=(Interface* p) throw(_com_error);
template<> bool operator!=(_com_ptr_t& p) throw(_com_error);
template<> bool operator!=(int NULL) throw(_com_error);
template<typename _InterfacePtr> bool operator« _InterfacePtr p) throw(_com_error);
template<typename _InterfacePtr> bool operator>(_InterfacePtr p) throw(_com_error);
template<typename _InterfacePtr> bool operator<=(_InterfacePtr p) throw(_com_error);
template<typename _InterfacePtr> bool operator>=(_InterfacePtr p) throw(_com_error);

Remarks

Compares a smart pointer object to another smart pointer, raw interface pointer, or
NULL Except for the NULL pointer tests, these operators first query both pointers for
IUnknown, and compare the results.

END Microsoft Specific

Language Reference 431

c++ Language Reference

_com_ptr_t Extractors
Microsoft Specific ~

operator Interface*() const throw();
operator Interface&() const throw(_com_error);
Interface& operator*() const throw(_com_error);
Interface* operator->() const throw(_com_error);
Interface** operator&() throw();
operator booI() const throw();

Remarks

• operator Interface* Returns the encapsulated interface pointer, which may
be NULL.

• operator Interface& Returns a reference to the encapsulated interface pointer,
and issues an error if the pointer is NULL.

• operator* Allows a smart pointer object to act as though it were the actual
encapsulated interface when dereferenced.

• operator-> Allows a smart pointer object to act as though it were the actual
encapsulated interface when dereferenced.

• operator& Releases any encapsulated interface pointer, replacing it with NULL,
and returns the address of the encapsulated pointer. This allows the smart pointer
to be passed by address to a function which has an out parameter through which it
returns an interface pointer.

• operator bool Allows a smart pointer object to be used in a conditional expression.
This operator returns true if the pointer is not NULL.

END Microsoft Specific

432 Language Reference

Appendix C Compiler COM Support Classes

Relational Function Templates
Microsoft Specific ~

template<typename _Interface Type> bool operator==(int NULL, _com_ptr_t<_Interface
Type>& p) throw(_com_error);

template<typename Interface, typename _InterfacePtr> bool operator==
(_Interface* i, _com_ptr_t<_InterfacePtr>& p) throw(_com_error);

template<typename _Interface> bool operator!=(int NULL, _com_ptr_t<_Interface>& p)
throw(_com_error);

template<typename _Interface, typename _InterfacePtr> bool operator!=
(_Interface* i, _com_ptr_t<_InterfacePtr>& p) throw(_com_error);

template<typename _Interface> bool operator« int NULL, _com_ptr_t<_Interface>& p)
throw(_com_error);

template<typename _Interface, typename _InterfacePtr> bool operator<
(_Interface* i, _com_ptr_t<_InterfacePtr>& p) throw(_com_error);

template<typename _Interface> bool operator>(int NULL, _com_ptr_t<_Interface>& p)
throw(_com_error);

template<typename _Interface, typename _InterfacePtr> bool operator>(_Interface* i,
_com_ptr_t<_InterfacePtr>& p) throw(_com_error);

template<typename _Interface> bool operator<=(int NULL, _com_ptr_t<_Interface>& p)
throw(_com_error);

template<typename _Interface, typename _InterfacePtr> bool operator<=(_Interface* i,
_com_ptr_t<_InterfacePtr>& p) throw(_com_error);

template<typename _Interface> bool operator>=(int NULL, _com_ptr_t<_Interface>& p)
throw(_com_error);

template<typename _Interface, typename _InterfacePtr> bool operator>=(_Interface* i,
_com_ptr_t<_InterfacePtr>& p) throw(_com_error);

Parameters

I
a raw interface pointer

p
a smart pointer

Remarks

They are function templates which allow comparison with a smart pointer on the right
hand side of the comparison operator. These are not member functions of _com_ptr_t.

END Microsoft Specific

Language Reference 433

c++ Language Reference

bstr t
Microsoft Specific ~

A _bstr_t object encapsulates the BSTR data type. The class manages resource allocation
and deallocation, via function calls to SysAllocString and SysFreeString, and other
BSTR APIs when appropriate. The _bstr_t class uses reference counting to avoid
excessive overhead.

#include <comdef.h>

Construction

Operations

copy

length

Operators

Constructs a _bstr_t object.

Constructs a copy of the encapsulated BSTR.

Returns the length of the encapsulated BSTR.

operator = Assigns a new value to an existing _bstr_t object.

operator += Appends characters to the end of the _bstr _t object.

operator + Concatenates two strings.

operator! Checks if the encapsulated BSTR is a NULL string.

operator ==, !=, '<, Compares two _bstr_t objects.
>,<=,>=

operator wchar_t*, Extract the pointers to the encapsulated Unicode or multibyte BSTR object.
char*

END Microsoft Specific

Member Functions

Microsoft Specific ~

~bstr _t() throw();
_bstr_t(const -,--bstr_t& sl) throw();
_bstr_t(const char* s2) throw(_com_error);

434 Language Reference

Appendix C Compiler COM Support Classes

_bstr_t(const wchar_t* s3) throw(_com_error);
_bstr_t(const _ varianCt& var) throw (_com_error);
_bstr_t(BSTR bstr, boolJCopy) throw (_com_error);

Parameters

sl
a _bstr_t object to be copied

s2
a multibyte string

s3
a Unicode string

var
a _ variant_t object

bstr
an existing BSTR object

jCopy
if false, the bstr argument is attached to the new object without making a copy by
calling SysAllocString.

Remarks

Constructs a _bstr_t object.

• _bstr_t() Constructs a default _bstr_t object that encapsulates a NULL BSTR
object.

• _bstr_t(_bstr_t& sl) Constructs a _bstr_t object as a copy of another. This is a
"shallow" copy, which increments the reference count of the encapsulated BSTR
object instead of creating a new one.

• _bstr_t(char* s2) Constructs a _bstr_t object by calling SysAllocString to create
a new BSTR object and encapsulate it. This constructor first performs a multi byte to
Unicode conversion.

• _bstr_t(wchar_t* s3) Constructs a _bstr_t object by calling SysAllocString to
create a new BSTR object and encapsulates it.

• _bstr _t(_ variant_t& var) Constructs a _bstr _t object from a _ varianCt object
by first retrieving a BSTR object from the encapsulated VARIANT object.

• _bstr_t(BSTR bstr, booljCopy) Constructs a _bstr_t object from an existing BSTR
(as opposed to a wchar_t* string). IfjCopy is false, the supplied BSTR is attached to
the new object without making a new copy via SysAllocString. This is the method
used by the wrapper functions in the type library headers to encapsulate and take
ownership of a BSTR, returned by an interface method, in a _bstr_t object.

END Microsoft Specific

Language Reference 435

c++ Language Reference

Microsoft Specific ~

BSTR copy() const throwLcom_error);

Remarks

Returns a newly allocated copy of the encapsulated BSTR object.

END Microsoft Specific

Microsoft Specific ~

unsigned int length () const throw();

Remarks

Returns the length of the encapsulated BSTR object.

END Microsoft Specific

Operators

_bstr _t: :operator =
Microsoft Specific ~

_hstr_t& operator=(const _hstr_t& sl) throw ();
_hstr_t& operator=(const char* s2) throw(_com_error);
_hstr_t& operator=(const wchar_t* s3) throw(_com_error);
_hstr_t& operator=(const _ variant_t& var) throw(_com_error);

Parameters

sl
a _hstr_t object to be assigned to an existing _hstr_t object

s2
a multibyte string to be assigned to an existing _hstr_t object

s3
a Unicode string to be assigned to an existing _hstr_t object

var
a _varianCt object to be assigned to an existing _hstr_t object

436 Language Reference

Appendix C Compiler COM Support Classes

Remarks

Assigns a new value to an existing _bstr_t object.

END Microsoft Specific

_bstr_t::operator +=, +
Microsoft Specific ~

_bstr_t& operator+=(const _bstr_t& sl) throw(_com_error);
_bstr_t operator+(const _bstr_t& sl) const throw(_com_error);
friend _bstr_t operator+(const char* s2, const _bstr_t& sl);
friend _bstr_t operator+(const wchar_t* s3, const _bstr_t& sl);

Parameters

sl

s2
a multibyte string

s3
a Unicode string

Remarks

These operators perform string concatenation:

• operator+=(sl) Appends the characters in the encapsulated BSTR of sl to the
end of this object's encapsulated BSTR.

• operator+(sl) Returns the new _bstr_t which is formed by concatenating this
object's BSTR with that of sl.

• operator+(s2, sl) Returns a new _bstr_t which is formed by concatenating
a multibyte string s2; converted to Unicode, with the BSTR encapsulated in sl.

• operator+(s3, sl) Returns a new _bstr_t which is formed by concatenating
a Unicode string s3 with the BSTR encapsulated in sl.

END Microsoft Specific

Language Reference 437

c++ Language Reference

Microsoft Specific ~

bool operator!() const throw();

Remarks

Checks if the encapsulated BSTR object is the NULL string. It returns true if
yes, false if not.

END Microsoft Specific

_bstr_t Relational Operators
Microsoft Specific ~

bool operator==(const _bstr_t& str) const throw();
bool operator!=(const _bstr_t& str) const throw();
bool operator« const _bstr_t& str) const throw();
bool operator>(const _bstr_t& str) const throw();
bool operator<=(const _bstr_t& str) const throw();
bool operator>=(const _bstr_t& str) const throw();

Remarks

These operators compare two _bstr_t objects lexicographically. The operators return
true if the comparisons hold, otherwise return false.

END Microsoft Specific

bstr t: :wchar t* bstr t:: char* - -. - ,- -
Microsoft Specific ~

operator const wchar_t*() const throw();
operator wchar_t*() const throw();
operator const char*() c~nst throw(_com_error);
operator char*() const throw(_com_error);

Remarks

These operators can be used to extract raw pointers to the encapsulated Unicode or
multibyte BSTR object. The operators return the pointer to the actual internal buffer,
so the resulting string cannot be modified.

END Microsoft Specific

438 Language Reference

Appendix C Compiler COM Support Classes

variant t -- --
Microsoft Specific ~

A _ variant_t object encapsulates the V ARIANT data type. The class manages resource
allocation and deallocation, and makes function calls to Variantlnit and VariantClear
as appropriate.

#include <comdef.h>

Construction

_varianCt

Operations

Attach

Constructs a _ variant_t object.

Attaches a VARIANT object into the _ variant_t object.

Clears the encapsulated VARIANT object. Clear

ChangeType

Detach

SetString

Changes the type of the _ variant_t object to the indicated V ARTYPE.

Detaches the encapsulated VARIANT object from this _ variant_t object.

Assigns a string to this _ varianCt object.

Operators

operator =

operator ==, !=

Extractors

Assigns a new value to an existing _ variant_t object.

Compare two _variant_t objects for equality or inequality.

Extract data from the encapsulated V ARIANT object.

END Microsoft Specific

Language Reference 439

c++ Language Reference

Member Functions

Microsoft Specific ~

_ variant_t() throw();
_ variant_t(const VARIANT & varSrc) throw(_com_error);
_ variant_t(const V ARIANT* p VarSrc) throw(_com_error);
_ variant_t(const _ variant_t& var _CSrc) throw(_com_error);
_ variant_t(VARIANT & varSrc, boolfCopy) throw(_com_error);
_ varianCt(short sSrc, V ARTYPE vtSrc = VT_I2) throw(_com_error);
_ varianCt(long lSrc, V ARTYPE vtSrc = VT_I4) throw(_com_error);
_ varianCt(tloatjltSrc) throw();
_ variant_t(double dblSrc, V ARTYPE vtSrc = VT_RS) throw(_com_error);
_ variant_t(const CY & cySrc) throw();
_ variant_t(const _bstr_t& bstrSrc) throw(_com_error);
_ variant_t(const wchar_t *wstrSrc) throw(_com_error);
_ variant_t(const char* strSrc) throw(_com_error);
_ variant_t(bool bSrc) throw();
_ variant_t(IUnknown* pIUknownSrc, boolfAddRef = true) throw();
_ variant_t(IDispatch* pDispSrc, boolfAddRef = true) throw();
_ varianCt(const DECIMAL& decSrc) throw();
_ variant_t(BYTE bSrc) throw();

Parameters

varSrc
a VARIANT object to be copied into the new _ variant_t object

pVarSrc
pointer to a VARIANT object to be copied into the new _ variant_t object

var_CSrc
a _ variant_t object to be copied into the new _ variant_t object

fCopy
if false, the supplied VARIANT object is attached to the new _ variant_t object
without making a new copy by VariantCopy

ISrc, sSrc
an integer value to be copied into the new _ variant_t object

vtSrc
the V ARTYPE for the new _ varianCt object

jltSrc, dblSrc
a numerical value to be copied into the new _ variant_t object

440 Language Reference

Appendix C Compiler COM Support Classes

cySrc
a CY object to be copied into the new _ variant_t object

bstrSrc
a _bstr_t object to be copied into the new _variant_t object

strSrc, wstrSrc
a string to be copied into the new _ variant_t object

bSrc
a bool value to be copied into the new _ varianCt object

pIUknownSrc
COM interface pointer to a VT_UNKNOWN object to be encapsulated into the
new _ variant_t object

pDispSrc
COM interface pointer to a VT_DISPATCH object to be encapsulated into the
new _ variant_t object

decSrc
a DECIMAL value to be copied into the new _ varianCt object

bSrc
a BYTE value to be copied into the new _ variant_t object

Remarks

Constructs a _ variant_t object.

• _variant_t() Constructs an empty _variant_t object, VT_EMPTY.

• _ variant_t(VARIANT & varSrc) Constructs a _ variant_t object from a copy of
the VARIANT object. The variant type is retained.

• _ variant_t(V ARIANT* p VarSrc) Constructs a _ varianCt object from a copy of
the VARIANT object. The variant type is retained.

• _ variant_t(_ variant_t& var _CSrc) Constructs a _ variant_t object from another
_ variant_t object. The variant type is retained.

• _varianCt(VARIANT& varSrc, boolJCopy) Constructs a _variant_t object from
an existing VARIANT object. If jCopy is false, the V ARIANT object is attached to
the new object without making a copy.

• _ variant_t(short sSrc, V ARTYPE vtSrc = VT_I2) Constructs a _ variant_t object
of type VT_I2 or VT_BOOL from a short integer value. Any other V ARTYPE
results in an E_INV ALIDARG error.

• _variant_t(long ISrc, VARTYPE vtSrc = VT_I4) Constructs a _variant_t object
of type VT_I4, VT_BOOL, or VT_ERROR from a long integer value. Any other
V ARTYPE results in an E_INV ALIDARG error.

Language Reference 441

c++ Language Reference

• _ variant_t(float fltSrc) Constructs a _ variant_t object of type VT _R4 from a float
numerical value.

• _ variant_t(double dblSrc, V ARTYPE vtSrc = VT_RS) Constructs a _ variant_t
object of type VT_RS or VT_DATE from a double numerical value. Any other
V ARTYPE results in an E_INV ALIDARG error.

• _ variant_t(CY & cySrc) Constructs a _ variant_t object of type VT _ CY from a
CYobject.

• _ varianCt(_bstr_t& bstrSrc) Constructs a _ variant_t object of type VT_BSTR
from a _bstr_t object. A new BSTR is allocated.

• _varianCt(wchar_t *wstrSrc) Constructs a _variant_t object of type VT_BSTR
from a Unicode string. A new BSTR is allocated.

• _ varianCt(char* strSrc) Constructs a _ variant_t object of type VT_BSTR from
a string. A new BSTR is allocated.

• _ varianCt(bool bSrc) Constructs a _ variant_t object of type VT_BOOL from a
bool value.

• _ variant_t(IUnknown* pIUknownSrc, boolfAddRef = true) Constructs a
_variant_t object of type VT_UNKNOWN from a COM interface pointer. IfJAddReJ
is true, then AddRef is called on the supplied interface pointer to match the call to
Release that will occur when the _ variant_t object is destroyed. It is up to you to
call Release on the supplied interface pointer. If JAddReJ is false, this constructor
takes ownership of the supplied interface pointer; do not call Release on the
supplied interface pointer.

• _ variant_t(IDispatch* pDispSrc, boolJAddReJ = true) Constructs a _ varianCt
object of type VT_DISPATCH from a COM interface pointer. IfJAddReJis true, then
AddRef is called on the supplied interface pointer to match the call to Release that will
occur when the _ variant_t object is destroyed. It is up to you to call Release on the
supplied interface pointer. If fAddRef is false, this constructor takes ownership of
the supplied interface pointer; do not call Release on the supplied interface pointer.

• _ variant_t(DECIMAL& decSrc) Constructs a _ variant_t object of type
VT_DECIMAL from a DECIMAL value.

• _ varianCt(BYTE bSrc) Constructs a _ variant_t object of type VT _ un from
a BYTE value.

END Microsoft Specific

442 Language Reference

Appendix C Compiler COM Support Classes

_ variant_t: :Attach
Microsoft Specific ~

void Attach(VARIANT & varSrc) throw(_com_error);

Parameters

varSrc
a VARIANT object to be attached to this _ variant_t object

Remarks

Takes ownership of the VARIANT by encapsulating it. This member function releases
any existing encapsulated VARIANT, then copies the supplied VARIANT, and sets its
V ARTYPE to VT_EMPTY to make sure its resources can only be released by the
_ varianCt destructor.

END Microsoft Specific

_ variant_t: :Clear
Microsoft Specific ~

void Clear() throw(_com_error);

Remarks

Calls VariantClear on the encapsulated VARIANT object.

END Microsoft Specific

_ variant_t: :ChangeType
Microsoft Specific ~

void ChangeType(V ARTYPE vartype, const _ variant_t* pSrc = NULL) throw(_com_error);

Parameters

vartype
the V ARTYPE for this _ variant_t object

pSrc
a pointer to the _ varianCt object to be converted. If this value is NULL, conversion is
done in place.

Remarks

This member function converts a _ variant_t object into the indicated V ARTYPE. If pSrc
is NULL, the conversion is done in place, otherwise this _ variant_t object is copied from
pSrc and then converted.

END Microsoft Specific

Language Reference 443

c++ Language Reference

Microsoft Specific ~

VARIANT Detach() throw(_com_error);

Return Value

The encapsulated VARIANT.

Remarks

Extracts and returns the encapsulated VARIANT, then clears this _ variant_t object
without destroying it. This member fl!nction removes the VARIANT from encapsulation
and sets the VARTYPE of this _variant_t object to VT_EMPTY.1t is up to you to
release the returned VARIANT by calling the VariantInit function.

END Microsoft Specific

_ variant_t: :SetString
Microsoft Specific ~

void SetString(const char* pSrc) throw(_com_error);

Parameter

pSrc
pointer to the character string

Remarks

Converts an ANSI character string to a Unicode BSTR string and assigns it to this
_ variant_t object.

END Microsoft Specific

444 Language Reference

Appendix C Compiler COM Support Classes

Operators

_ variant_t: :operator =
Microsoft Specific ~

_ variant_t& operator=(const VARIANT & varSrc) throw(_com_error);
_ variant_t& operator=(const V ARIANT* p VarSrc) throw(_com_error);
_ variant_t& operator=(const _ variant_t& var _CSrc) throw(_com_error);
_ varianCt& operator=(short sSrc) throw(_com_error);
_ variant_t& operator=(long ISrc) throw(_com_error);
_variant_t& operator=(floatjltSrc) throw(_com_error);
_ variant_t& operator=(double dblSrc) throw(_com_error);
_ varianCt& operator=(const CY & cySrc) throw(_com_error);
_ variant_t& operator=(const _bstr_t& bstrSrc) throw(_com_error);
_variant_t& operator=(const wchar_t* wstrSrc) throw(_com_error);
_ variant_t& operator=(const char* strSrc) throw(_com_error);
_ variant_t& operator=(IDispatch* pDispSrc) throw(_com_error);
_ variant_t& operator=(bool bSrc) throw(_com_error);
_ variant_t& operator=(IUnknown* pSrc) throw(_com_error);
_ variant_t& operator=(const DECIMAL& decSrc) throw(_com_error);
_ variant_t& operator=(BYTE bSrc) throw(_com_error);

Remarks

The operator assigns a new value to the _ variant_t object:

• operator=(varSrc) Assigns an existing V ARIANT to a _ varianCt object.

• operator=(p VarSrc) Assigns an existing VARIANT to a _ variant_t object.

• operator=(var _CSrc) Assigns an existing _ variant_t object to a _ variant_t object.

• operator=(sSrc) Assigns a short integer value to a _ variant_t object.

• operator=(ISrc) Assigns a long integer value to a _ varianCt object.

• operator=(jltSrc) Assigns a float numerical value to a _ variant_t object.

• operator=(dblSrc) Assigns a double'numerical value to a _variant_t object.

• operator=(cySrc) Assigns a CY object to a _ varianCt object.

• operator=(bstrSrc) Assigns a BSTR object to a _ variant_t object.

• operator=(wstrSrc) Assigns a Unicode string to a _ variant_t object.

• operator=(strSrc) Assigns a multibyte string to a _ variant_t object.

• operator=(bSrc) Assigns a bool value to a _ variant_t object.

Language Reference 445

c++ Language Reference

• operator=(pDispSrc) Assigns a VT_DISPATCH object to a _ variant_t object.

• operator=(pIUnknownSrc) Assigns a VT_UNKNOWN object to a _varianCt
object.

• operator=(decSrc) Assigns a DECIMAL value to a _ variant_t object.

• operator=(bSrc) Assigns a BYTE value to a _ varianCt object.

END Microsoft Specific

_ variant_t Relational Operators
Microsoft Specific ~

bool operator==(const VARIANT & varSrc) const throw(_com_error);
bool operator==(const V ARIANT* pSrc) const throw(_com_error);
bool operator!=(const VARIANT& varSrc) const throw(_com_error);
bool operator!=(const V ARIANT* pSrc) const throw(_com_error);

Parameter

varSrc
a VARIANT to be compared with the _ variant_t object

pSrc
pointer to the VARIANT to be compared with the _ variant_t object

Remarks

Compares a _ varianCt object with a VARIANT, testing for equality or inequality.
Returns true if comparison holds, false if not.

END Microsoft Specific

_ variant_t Extractors
Microsoft Specific ~

operator short() const throw(_com_error);
operator long() const throw(_com_error);
operator float() const throw(_com_error);
operator double() const throw(_com_error);
operator CY() const throw(_com_error);
operator bool() const throw(_com_error);
operator DECIMAL() const throw(_com_error);
operator BYTE() const throw(_com_error);
operator _bstr_t() const throw(_com_error);
operator IDispatch*() const throw(_com_error);
operator IUnknown*() const throw(_com_error);

446 Language Reference

Appendix C Compiler COM Support Classes

Remarks

Extracts raw data from an encapsulated VARIANT. If the V ARIANT is not already
the proper type, Variant Change Type is used to attempt a conversion, and an error
is generated upon failure:

• operator short() Extracts a short integer value.

• operator long() Extracts a long integer value.

• operator float() Extracts a float numerical value.

• operator double() Extracts a double integer value.

• operator CY () Extracts a CY object.

• operator bool() Extracts a bool value.

• operator DECIMAL() Extracts a DECIMAL value.

• operator BYTE() Extracts a BYTE value.

• operator _bstr_t() Extracts a string, which is encapsulated in a _bstr_t object.

• operator IDispatch*() Extracts a dispinterface pointer from an encapsulated
VARIANT. AddRef is called on the resulting pointer, so it is up to you to call
Release to free it.

• operator IUnknown*() Extracts a COM interface pointer from an encapsulated
VARIANT. AddRef is called on the resulting pointer, so it is up to you to call
Release to free it.

END Microsoft Specific

Language Reference 447

APPENDIX D

This appendix contains the following charts:

• ASCII Character Codes

• ASCII Multilingual Codes

• ANSI Character Codes

• Key Codes

ASCII Character Codes

The ASCII character code tables contain the decimal and hexadecimal values of the
extended ASCII (American Standards Committee for Information Interchange) character
set. The extended character set includes the ASCII character set and 128 other characters
for graphics and line drawing, often called the "IBM character set."

• Chart 1 (codes 0-127)

• Chart 2 (codes 128-255)

ASCII Multilingual Codes

Charts

There are a number of variants on the IBM character set, called "code pages." Systems sold
in some European countries use the multilingual character set known as Code Page 850,
which contains fewer graphics symbols and more accented letters and special characters.

ANSI Character Codes

The ANSI character code chart lists the extended character set of most of the programs
used by Windows. The codes of the ANSI (American National Standards Institute)
character set from 32 through 126 are displayable characters from the ASCII character set.
The ANSI characters displayed as solid blocks are undefined characters and may appear
differently on output devices.

Key Codes

Some keys, such as function keys, cursor keys, and AL T + KEY combinations, have no
ASCII code. When a key is pressed, a microprocessor within the keyboard generates an
"extended scan code" of two bytes. The first (low-order) byte contains the ASCII code, if
any. The second (high-order) byte has the scan code - a unique code generated by the
keyboard when a key is either pressed or released. Because the extended scan code is more
extensive than the standard ASCII code, programs can use it to identify keys which do not
have an ASCII code.

Language Reference 449

c++ Language Reference

ASCII Character Codes Chart 1
Ctrl Dec Hex Char Code Dec Hex Char Dec Hex Char Dec Hex Char
II@ 0 00 NUL 32 20 sp 64 40 @ 96 60 ..
"A 1 01 g SOH 33 21 ! 65 41 A 97 61 a
liB 2 02 e STX 34 22 u 66 42 B 98 62 b
"C 3 03 • ETX 35 23 II 67 43 C 99 63 C
liD 4 04 • EOT 36 24 $ 68 44 D 100 64 d
liE 5 05 .0- ENQ 37 25 Yo 69 45 E 101 65 e
"F 6 06 • ACK 38 26 8: 70 46 F 102 66 r
"G 7 07 • BEL
"H 8 08 a BS

39 27 I

40 28 (
71 47 G
72 48 H

103 67 9
104 68 h

"I 9 09 0 HT 41 29) 73 49 I 105 69 i
IIJ 10 OA B LF 42 2A * 74 4A J 106 6A j
"K 11 OB ~ VT 43 2B + 75 4B J(107 6B k
ilL 12 OC ¥ FF 44 2C I 76 4C L 108 6C I
"M 13 OD r CR 45 2D - 77 4D M 109 6D
liN 14 OE n SO 46 2E 78 4E N 110 6E n
"0 15 OF :+: SI 47 2F / 79 4F 0 111 6F 0
lip 16 10 ~ SLE 48 30 8 80 50 P 112 70 P
IIQ 17 11 --4 CS1 49 31 1 81 51 Q 113 71 q
"R 18 12 t DC2 50 32 2 82 52 R 114 72 r
liS 19 13 II DC3 51 33 3 83 53 S 115 73 S

liT 20 14 en DC4 52 34 4 84 54 T 116 74 t
"U 21 15 § NAK 53 35 5 85 55 U 117 75 U

"V 22 16 - SYN 54 36 6 86 56 U 118 76 U

"W 23 17 I ETB 55 37 7 87 57 W 119 77 W

"X 24 18 t CAN 56 38 8 88 58 X 120 78 X
lIy 25 19 J. EM 57 39 9 89 59 Y. 121 79 Y
liZ 26 1A -+ SIB 58 3A . 90 5A Z 122 7A Z
"[27 1B of- ESC 59 3B .

~
91 5B [123 7B {

"\ 28 1C L FS 60 3C < 92 5C , 124 7C I
I

"] 29 1D * GS 61 3D = 93 5D] 125 7D }
1111 30 IE '" RS 62 3E > 94 5E A 126 7E
II 31 IF .,. US - 63 3F ? 95 5F - 127 7F at

t ASCII code 127 has the code DEL. Under MS-DOS, this code has the same effect as ASCII 8 (BS).
The DEL code can be generated by the CTRL+BKSP key.

450 Language Reference

Appendix D Charts

ASCII Character Codes Chart 2
Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char

128 80 g I

160 AO a 192 CO L 224 EO «
129 81 U 161

I

Al I 193 C1 .1 225 E1 P
130 82

I

e
131 83 .A a
132 84 a

162 A2
I

0

163 A3
I

U

164 A4 n

194 C2

1 195 C3
196 C4 -

226 E2 r
227 E3 n
228 E4 1:

133 85
.... a

134 86 0 a
135 87 ~
136 88 .A

e

165 A5 N
166 A6 :!:

167 A7 :!

168 A8 ~

197 C5

1 198 C6
199 C7
200 C8

229 E5 0-

230 E6 jJ

231 E7 T
232 E8 ~

137 89 e
138 8A

....
e

169 A9 .-
170 AA -.

201 C9 n 202 CA
233 E9 a
234 EA g

139 8B "i
140 8C A-

I
141 8D

I

171 AB ~
172 AC ~
173 AD i

203 CB

n 204 CC
205 CD =

235 EB c5
236 EC CD

237 ED pS
, 142 8E A

143 8F
0

A
144 90

I

E
145 91 4!@

146 92 fI
147 93 a
148 94 ii
149 95

....
0

150 96
A-

U

151 97
....
U

152 98 ij
153 99 li
154 9A U
155 9B ¢
156 9C £
157 9D ¥
158 9E R
159 9F f

174 AE «
175 AF »
176 BO iiii
177 B1
178 B2 II
179 B3
180 B4
181 B5 =
182 B6
183 B7 -Ii
184 B8

~ 185 B9
186 BA
187 BB

~ 188 BC
189 BD JJ
190 BE ::I
191 BF ,

206 CE Jl

207 CF I
208 DO Jl
209 D1 T
210 D2

11 211 D3
212 D4 b

213 D5 f
214 D6

J
215 D7
216 D8
217 D9
218 DA ,
219 DB
220 DC

~ 221 DD
222 DE
223 DF

238 EE E
239 EF n
240 FO -
241 F1 .:!:.
242 F2 1:
243 F3 ~
244 F4 J 245 F5
246 F6
247 F7 ~

248 F8 0

249 F9 .
250 FA
251 FB J
252 FC n
253 FD ;2;

254 FE •
255 FF

Language Reference 451

c++ Language Reference

ASCII Multilingual Codes Chart

7 •

8a
9 0

10 I
11 8
12 ~

13 r
14 n
15 *
16 ..

17 ..

18 t
19 !!
20 11
21 §

22 -

23 :t
24 t
25 l
26 -+

27 of-

28 L

29 ..

30 '"
31 ..

32

33 ,

34 "

35 11
36 $
37 %

38 It
39 I

40 (

41)

42 *
43 +

44 I

45 _

46 •

47 /

48 e
49 1
50 2
51 3
52 4
53 5
54 6
55 7
56 8
57 9
58

59

60 <
61 =
62)

63 ?

452 Language Reference

64 @

65 A
66 B
67 C
68 D
69 E
70 F
71 G
72 H
73 I
74 J
75)(

76 L
77 M
78 tt
79 0
80 P
81 Q
82 R
83 S

84 T
85 U
86 V
87 W
88 X
89 'i
90 Z
91 [

92 \

93]

94 A

95

96" 128 ~

97d 129 U
98b 130 e
99C 131 a.

100 d 132 a
101 e 133 a
102 f 134 a.
103 g 135 Ii

104 h 136 e
105 i 137 e
106 j 138 e
107 k 139 Y
108 1 140 i
109 In 141 1
110 n 142 A
l11 0 143 A
112 P 144 E
113 q 145 (@

114 r 146 fI
115 S 147 0
116 t 148 i:j

117 U 149 0
118 U 150 fi
119 W 151 U
120 X 152 ij
121 Y 153 i:i
122 Z 154 U
123 { 155 H

124 156 £.
125} 157.H

126 158 x
127.0 159 f

160 a
161 i
162 6
163 U
164 ii
165 iii
166 !!:

167 !

168 i
169 IS)

170 -.

171 ~

172~
173 i
174 «

175»

176 m~
177 ~
178 I
179 1
180 i
181 it
182 it
183 it
184 @

185 11
186 II

187 11
188 !I

189 e
190 ¥
191 1

192 L

193 1-

194 T

195 ~
196 -

197 t
198 a
199 A
200 I.!:

201 Ii
202 :!!

203 'if
204 It
205 =
206 it
207 0

208 6
209 I)

210 E
2n E
212 E
213 I

214 i
215 i
216 Y
217 J

218 r
219 I
220 •

221 ;

222 i
223 •

224 6
225 R
226 0
227 0
228 0

229 0
230 jJ

231 It
232 j)
233 (i
234 0
235 U
236 Y
237 Y
238

239 '

240 •

241 .:!:.

242 =
243 %
244 11
245 §
246

247

248 0

249 ••

250 •

251 I

252]:

253 2;

254 •

255

ANSI Character Codes Chart
o •
1 •

2 •

3 •

4 •

5 •

6 •

7 •

8 •

9 •

10 •

11 •

12 •

13 •

14 •

15 •

16 •

17 •

18 •

19 •

20 •

21 •

22 •

23 •

24 •

25 •

26 •

27 •

28 •

29 •

30 •

31 •

32

33 !
34 II

35 U

36 $
37 %
38 &

39

40 (

41)

42 *
43 +

44

45 -

46 •

47 I
48 0
49 1

50 2
51 3
52 4
53 5

54 6
55 7
56 8
57 9
58

59

60 <
61

62 >
63 ?

64 @

65 A
66 B
67 C
68 D
69 E
70 F
71 G

72 H
73 I

74 J

75 K
76 L

77 M
78 H
79 0
80 P
81 Q

82 R
83 S
84 T
85 U

86 U

87 W
88 X

89 Y
90 2

91 [

92 \

93]

94

95

96 ...

97 a
98 b
99 C

100 d
101 e
102 f

103 9
104 h

105 i
106 j
107 k
108 1
109 (I)

110 n
111 0

112 P
113 q
114 r
115 5

116 t
117 U

118 U

119 W

120 X

121 9
122 Z

123 {

124 I
125 }

126

127 •

TT

128 •

129 •

130 '

TT131 f
TT132 "

133 .••
TT t
TT134

1'r135 i
TT136

TT137 %0
TT138 S
TT139 <

TT140 CE
141 •

142 •

143 •

144 •

145 01;

146 '

TT147 "

TT148 "

TT
149

•

TT150

TT151 -

TT152 -

TT153 TM

TT154 So

TT155 >

TT156 ce
157 •

158 •

TT159 Y
• Indicates that this character is not supported by Windows.

160

161 i
162 ¢

163 £
164 !I:I!

165 ¥
166

167 §
168

169 ©
170 !!

171 «

172 .,

173 -

174 ®
175

176 0

177 :!:

178 2;

179]:

180

181 J.l
182 ,.

183 •

184 ...

185 1

186 2

187 »

188 "
189 %
190 II
191 6

TT Indicates that this character is available only in TrueType fonts.

192 A
193 A
194 A
195 A
196 A
197 A
198 d:
199 C
200 E
201 E
202 E
203 E
204 i
205 i
206 i
207 Y
208 D
209 H
210 iJ
211 0
212 fi
213 0
214 ii
215 X

216 H
217 it
218 (i

219 0
220 U
221 Y
222 I>

223 B

224 a
225 a
226 a
227 a
228 a
229 a
230 ,iJ!

231 ~

232 e
233 e
234 e
235 e
236 i
237 i
238 1:
239 i
240 ft
241 n
242 0
243 6
244 a
~45 0'
246 ii
247

248 B

249 U
250 li
251 il
252 U
253 Y
254 Jl
255 Y

Appendix D Charts

Language Reference 453

c++ Language Reference

Key Codes Chart 1
ASCllor ASCllor ASCllor

Scan ASCII or Extendedt Extendedt Extendedt
Key Code Extendedt with SHIFT withCTRL withAIT

Dec Hex Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char
ESC 1 01 27 1B ESC 27 1B ESC 27 1B ESC 1 01 NUL§
1! 2 02 49 31 1 33 21 ! 120 78 NUL
2@ 3 03 50 32 2 64 40 @ 3 03 NUL 121 79 NUL
3# 4 04 51 33 3 35 23 # 122 7A NUL
4$ 5 05 52 34 4 36 24 $ 123 7B NUL
5% 6 06 53 35 5 37 25 % 124 7C NUL
6A 7 07 54 36 6 94 5E A 30 IE RS 125 7D NUL
7& 8 08 55 37 7 38 26 &: 126 7E NUL
8* 9 09 56 38 8 42 2A * 127 7F NUL
9(10 OA 57 39 9 40 28 (128 80 NUL
0) 11 OB 48 30 0 41 29) 129 81 NUL
-- 12 OC 45 2D - 95 5F 31 IF US 130 82 NUL -
=+ 13 OD 61 3D = 43 2B + 131 83 NUL
BKSP 14 OE 8 08 8 08 127 7F 14 OE NUL§
TAB 15 OF 9 09 15 OF NUL 148 94 NUL§ 15 A5 NUL§
Q 16 10 113 71 q 81 51 Q 17 11 DC1 16 10 NUL
W 17 11 119 77 w 87 57 W 23 17 ETB 17 11 NUL
E 18 12 101 65 e 69 45 E 5 05 ENQ 18 12 NUL
R 19 13 114 72 r 82 52 R 18 12 DC2 19 13 NUL
T 20 14 116 74 t 84 54 T 20 14 SO 20 14 NUL
Y 21 15 121 79 y 89 59 y 25 19 EM 21 15 NUL
U 22 16 117 75 u 85 55 U 21 15 NAK 22 16 NUL
I 23 17 105 69 i 73 49 I 9 09 TAB 23 17 NUL
a 24 18 111 6F 0 79 4F 0 15 OF SI 24 18 NUL
P 25 19 112 70 P 80 50 P 16 10 DLE 25 19 NUL
[{ 26 1A 91 5B [123 7B { 27 1B ESC 26 1A NUL§
]} 27 1B 93 5D] 125 7D } 29 10 GS 27 1B NUL§
ENTER 28 1C 13 OD CR 13 OD CR 10 OA LF 28 1C NUL§
ENTER£ 28 1C 13 OD CR 13 OD CR 10 OA LF 166 A6 NUL§
LCTRL 29 10
RCTRL£ 29 10
A 30 IE 97 61 a 65 41 A 1 01 SOH 30 IE NUL
S 31 IF 115 73 s 83 53 S 19 13 DC3 31 IF NUL
D 32 20 100 64 d 68 44 D 4 04 EaT 32 20 NUL
F 33 21 102 66 f 70 46 F 6 06 ACK 33 21 NUL
G 34 22 103 67 g 71 47 G 7 07 BEL 34 22 NUL
H 35 23 104 68 h 72 48 H 8 08 BS 35 23 NUL
J 36 24 106 6A j 74 4A J 10 OA LF 36 24 NUL
K 37 25 107 6B k 75 4B K 11 OB VT 37 25 NUL
L 38 26 108 6C 1 76 4C L 12 OC FF 38 26 NUL

39 27 59 3B ; 58 3A : 39 27 NUL§
111 40 28 39 27 34 22 " 40 28 NUL§
- 41 29 96 60 , 126 7E - 41 29 NUL§

LSHIFT 42 2A
\1 43 2B 92 5C \ 124 7C I 28 1C FS
Z 44 2C 122 7A z 90 5A Z 26 1A SUB 44 2C NUL
X 45 2D 120 78 x 88 58 X 24 18 CAN 45 2D NUL
C 46 2E 99 63 c 67 43 C 3 03 ETX 46 2E NUL
V 47 2F 118 76 v 86 56 V 22 16 SYN 47 2F NUL
B 48 30 98 62 b 66 42 B 2 02 STX 48 30 NUL
N 49 31 110 6E n 78 4E N 14 OE SO 49 31 NUL
M 50 32 109 6D m 77 4D M 13 OD CR 50 32 NUL
,< 51 33 44 2C , 60 3C < 51 33 NUL§
.> 52 34 46 2E 62 3E > 52 34 NUL§

454 Language Reference

Key Codes Chart 2
ASCllor ASCllor ASCllor

Scan ASCII or Extendedt Extendedt Extendedt
Key Code Extendedt with SHIFT withCIRL withAIT

Dec Hex Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char
I? 53 35 47 2F / 63 3F ? 53 34 NUL§
GRAY 1£ 53 35 47 2F / 63 3F ? 149 95 NUL 164 A5 NUL
RSHIFT 54 36
*PRTSC 55 37 42 2A * PRTSC tt 16 10
LALT 56 38
RALT£ 56 38
SPACE 57 39 32 20 SPC 32 20 SPC 32 20 SPC 32 20 SPC
CAPS 58 3A
F1 . 59 3B 59 3B NUL 84 54 NUL 94 5E NUL 104 68 NUL
F2 60 3C 60 3C NUL 85 55 NUL 95 5F NUL 105 69 NUL
F3 61 3D 61 3D NUL 86 56 NUL 96 60 NUL 106 6A NUL
F4 62 3E 62 3E NUL 87 57 NUL 97 61 NUL 107 6B NUL
F5 63 3F 63 3F NUL 88 58 NUL 98 62 NUL 108 6C NUL
F6 64 40 64 40 NUL 89 59 NUL 99 63 NUL 109 6D NUL
F7 65 41 65 41 NUL 90 5A NUL 100 64 NUL 110 6E NUL
F8 66 42 66 42 NUL 91 5B NUL 101 65 NUL 111 6F NUL
F9 67 43 67 43 NUL 92 5C NUL 102 66 NUL 112 70 NUL
FlO 68 44 68 44 NUL 93 5D NUL 103 67 NUL 113 71 NUL
F11£ 87 57 133 85 EO 135 87 EO 137 89 EO 139 8B EO
F12£ 88 58 134 86 EO 136 88 EO 138 8A EO 140 8C EO
NUM 69 45
SCROLL 70 46
HOME 71 47 71 47 NUL 55 37 7 119 77 NUL
HOME£ 71 47 71 47 EO 71 47 EO 119 77 EO 151 97 NUL
UP 72 48 72 48 NUL 56 38 8 141 8D NUL§
UP£ 72 48 72 48 EO 72 48 EO 141 8D EO 152 98 NUL
PGUP 73 49 73 49 NUL 57 39 9 132 84 NUL
PGUP£ 73 49 73 49 EO 73 49 EO 132 84 EO 153 99 NUL
GRAY- 74 4A 45 2D -
LEFT 75 4B 75 4B NUL 52 34 4 115 73 NUL
LEFT£ 75 4B 75 4B EO 75 4B EO 115 73 EO 155 9B NUL
CENTER 76 4C 53 35 5
RIGHT 77 4D 77 4D NUL 54 36 6 116 74 NUL
RIGHT£ 77 4D 77 4D EO 77 4D EO 116 74 EO 157 9D NUL
GRAY+ 78 4E 43 2B +
END 79 4F 79 4F NUL 49 31 1 117 75 NUL
END£ 79 4F 79 4F EO 79 4F EO 117 75 EO 159 9F NUL
DOWN 80 50 80 50 NUL 50 32 2 145 91 NUL§
DOWN£ 80 50 80 50 EO 80 50 EO 145 91 EO 160 AO NUL
PGDN 81 51 81 51 NUL 51 33 3 118 76 NUL
PGDN£ 81 51 81 51 EO 81 51 EO 118 76 EO 161 Al NUL
INS 82 52 82 52 NUL 48 30 0 146 92 NUL§
INS£ 82 52 82 52 EO 82 52 EO 146 92 EO 162 A2 NUL
DEL 83 53 83 53 NUL 46 2E 147 93 NUL§
DEL£ 83 53 83 53 EO 83 53 EO 147 93 EO 163 A3 NUL

t Extended codes return 0 (NUL) or EO (decimal 224) as the initial character. This is a signal that a second
(extended) code is available in the keystroke buffer.

§ These key combinations are only recognized on extended keyboards.
£ These keys are only available on extended keyboards. Most are in the Cursor/Control cluster. If the raw

scan code is read from the keyboard port (60h), it appears as two bytes (EOh) followed by the nonnal scan
code. However, when the keypad ENTER and I keys are read through the BIOS interrupt 16h, only EOh is
seen since the interrupt only gives one-byte scan codes.

tt Under MS-DOS, SHIFT + PRTSC causes interrupt 5, which prints the screen unless an interrupt handler has
been defined to replace the default interrupt 5 handler.

Appendix D Charts

Language Reference 455

-- (decrement operator)
overloading 374, 375-377
postfix 83-84
prefix 88-89

- (subtraction operator)
binary -operator expressions 98-100
overloading 377
pointer types 100

- (unary negation operator)
described 87
overloading 374

! (logical NOT operator)
described 87
overloading 374

! operator, _bstct class 434, 438
!= (inequality operator), overloading 377
!= (not-equal-to operator),

binary -operator expressions 103-104
!= operator

_bstct class 434, 438
_com_ptct class 423,431,433
_ varianCt class 439, 446

% (modulus operator)
binary-operator expressions 97-98
overloading 377

%= (modulus/assignment operator),
overloading 377

& (address-of operator)
changing meaning 373
described 85-86
overloading 374

& (bitwise AND operator)
binary-operator expressions 104
overloading 377

&& (logical AND operator)
described 105-106
overloading 377

&= (bitwise AND/assignment operator),
overloading 377

() parentheses
declarators 211
function-call operator 380

* (indirection operator) 85, 231

* (multiplication operator)
binary-operator expressions 97-98
overloading 377

* (pointer dereference operator),
overloading 374

* (wildcards), specifying filenames 36
*= (multiplication/assignment operator),

overloading 377
, (comma operator)

described 11 0
overloading 377

. (member-selection operator)
described 82,267,364
objects and references

binary-operator expressions 304
. * (pointer-to-member operator) 224,364
/ (division operator)

binary-operator expressions 97-98
overloading 378

/= (division/assignment operator),
overloading 378

: (scope-resolution operator)
described 27,95,268,285
nested classes 179-180
search order 304-305

? (conditional-expression operator) 45, 111
? (wildcards), specifying filenames 36
[] (brackets) array subscript operator

described 381-382
examples 230
overloading 381-382
redefining 231

A (exclusive OR operator)
binary-operator expressions 104
overloading 378

A= (exclusive OR/assignment operator),
overloading 378

__ (double underscore), identifier naming 7
{ } (braces)

asm block delimiters 412
compound linkage specifier 188

I (bitwise inclusive OR operator)
binary-operator expressions 105
overloading 378

Index

Language Reference 457

Index

II (logical OR operator)
described 106
overloading 378

1= (bitwise inclusive OR/assignment operator),
overloading 378

,..., (bitwise complement operator) 87
,..., (one's complement operator)

described 87
overloading 374

,..., (tilde), specifying destructors 325
+ (addition operator)

binary-operator expressions 98-100
overloading 377
pointer types 99

+ (addition/assignment operator),
overloading 377

+ (unary plus operator)
described 86
overloading 374

+ operator, _bstet class 434, 437
++ (increment operator)

overloading 374, 375-377
postfix 83-84
prefix 88-89

+= (addition/assignment operator),
overloading 373

+= operator, _bstet class 434, 437
< (less-than operator)

binary -operator expressions 10 1-103
overloading 378

< operator
_bstet class 434, 438
_com_ptr_t class 423,431,433

« (left-shift operator)
binary-operator expressions 100-101
overloading 378

«= (left-shift/assignment operator),
overloading 378

<= (less than or equal to operator),
overloading 378

<= operator
_bstet class 434, 438
_com_ptr_t class 423,431,433

= (equal sign), assignment operator
changing meaning 373
described 379
overloading 378, 379

= (simple assignment operator) 108-109
-= (subtraction/assignment operator),

overloading 377

458 Language Reference

= operator
bstet class 436-437
_com_error class 416
_com_ptr_t class 430-431
_ varianCt class 439, 445-446

== (equality operator), overloading 378
== (equal-to operator),

binary -operator expressions 103-104
== operator

_bstet class· 434, 438
_com_ptet class 423,431,433
_varianCt class 439,446

> (greater-than operator)
binary-operator expressions 101-103
overloading 378

-> (member-selection operator)
described 82,267,364
for pointers binary operator 304
overloading 377, 382

-> (pointer-to-member operator) 224
> operator

_bstet class 434, 438
_com_ptet class 423,431,433

->* (pointer-to-member operator) 364
->* (pointer-to-member selection operator),

overloading 378
>= (greater-than or equal to operator),

overloading 378
>= operator

_bstet class 434, 438
_com_ptet class 423,431,433

» (right-shift operator)
binary-operator expressions 100-10 1
overloading 378

»= (right-shift/assignment operator),
overloading 378

... (ellipsis)
as argument 233
functions requiring variable

arguments lists 242
wildcard 363

0' (NULL character constant) 18

A
abort function

described 38
immediate termination, effects 41

abstract classes
described 302-303
protocol implementing 289-290
restrictions on using 302-303

abstract declarators
arrays in expressions 231
arrays 231,228-231
default arguments 241
described 212-213
function declarations 232
multi dimentional arrays 228
pointers to members 223-228
pointers 214
references to pointers 220-222
references 217-222

access privileges, nested classes 279
access specifiers 308-309
access to members

controlling 307-308
friends 312-316
member-selection operator (-»,

overloading 382
multiple-inheritance paths 317
private members 309-311
protected members 316
public members 309-310
specifiers

base classes (table) 309
base classes 309-311
described 308-309
syntax 308

static 311
types of (table) 307
virtual functions 316-317

accessor functions, defined 257
actual arguments

defined xv
initializing 77

acyclic graphs 328-329
addition operator (+)

binary-operator expressions 98-100
overloading 377
pointer types 99

addition/assignment operator (+=)
described 373
overloading 377

addresses, returning, overloaded functions 369
address-of operator (&)

changing meaning 373
overloading 374
unary-operator expressions 85-86

aggregate types
described 247
initializing 248-249

aggregate-initializer lists 247
allocation of memory

failed, testing for 339-341
new operator 337-339

ambiguities
multiple-inheritance class names 294--297
names 304
virtual base classes 296

ambiguity resolution 213-214
ambiguous conversions 297
ambiguous expressions 123
AND operator, bitwise (&)

See bitwise AND operator (&)
AND operator, logical (&&)

See logical AND operator (&&)
anonymous class types 180,255-256
anonymous structures 180
anonymous types 179-180
anonymous unions 274-276
ANSI character codes (chart) 449
argc argument, main function syntax 34
argument declaration list 238
argument expressions, default 241
argument lists

in function declarations 239
in function prototypes 238
variable, functions with 242-244

argument types, in overloading functions 358
arguments

actual
defined xv
initializing 77

command-line
parsing 36, 37
_setargv function 36
syntax 34
wildcards 36

conversions, overloaded functions 364--368
default

declarators 241,239-240
overview 79

defined xv
ellipsis (...) as 233
ellipsis notation 79
formal

defined xv
initializing 77
scope 28

function, name scope 305
handling, _setargv function 37
matching, overloaded functions 362-368
types, treatment of 78
variable lists 233-234
variable number 79

argv argument, main function syntax 35
arithmetic conversions, usual described 63-64
array subscript operator ([]) 230, 231
array pointers, conversion 67-68

Index

Language Reference 459

Index

arrays
character, initializing 250
constructors 324
declarators

described 228-231,231,238
expressions 231
multi dimentional 228
syntax 228

initializing 347
ordering of c++ 231
type wchar_t 18
types

described 48
indirection on 231

unsized, declaring in members 264-265
ASCII character codes

(charts) 450-452
extended scan code (charts) 454
key codes (charts) 454-455
multilingual (chart) 452

ASCII multilingual codes (chart) 452
__ asm block delimiters ({ }) 412
__ asm keyword, invoking inline assembler 412
assembler, inline 412-413
assignment operator (=)

changing meaning 373
overloading 378, 379

assignment operators
binary -operator expressions

described 108-109
(table) 106-107

copying class objects 352, 353-355
overloading 379

assignment, copying objects 351-355
associati vi ty

operator with precedence (list) 8-10
operators 8, 84

asterisk (*),
indirection operator 231

atexit function 41
auto keyword

declaration statements 151
declarations, used in 165
described 42

automatic objects
destruction 152
initialization 151-152

automatic storage classes
declaration statements 151
described 42
specifiers 165

460 Language Reference

B
backslash (\), interpreting different uses 36
(backslash), interpreting different uses 36
bad_typeid exception,

run-time type information 133
base classes

access specifiers 309-311
accessibility (table) 66
casting 124
conversion 68
declaring 285
defined 283
described 290
duplicate 128
function behavior (table) 319-320
initializing 348-351
member access (table) 309
multiple

described 291-294
name ambiguities 294-297

nonvirtual, destructors 328
pointers 124
pointers to members 69
pointers to, conversion 66, 67
scope of initializers 351
virtual 127,292-294
virtual and ambiguities 296
virtual functions 298-301

based addressing 399-400
__ based keyword 400-401
based pointers

based on pointers 400
described 400-401

binary operators
additive (+ and -) 98-100
assignment

described 108-109
overloading 379
(table) 106-107

bitwise AND (&) 104
bitwise exclusive OR (A) 104
bitwise inclusive OR (I) 105
bitwise shift 100-101
comma (,) 110
equality 101-104
function-call (), overloading 380
(list) 96-97
logical AND (&&) 105-106
logical OR (II) 106
multiplicative (*) 97-98

binary operators (continued)
redefinable, overloading (list) 377-378
relational 101-103
subscripting, overloading 381-382

bit fields
described 276-277
ordering of data 277
restrictions on use 278
syntax 276

bitwise AND operator (&)
binary-operator expressions 104
overloading 377

bitwise AND/assignment operator (&=),
overloading 377

bitwise complement operator (,..,),
unary-operator expressions 87

bitwise exclusive OR operator (A),
binary -operator expressions 104

bitwise inclusive OR operator (I)
binary-operator expressions 105
overloading 378

bitwise inclusive OR/assignment operator (1=),
overloading 378

bitwise shift operators,
binary -operator expressions 100-101

block scope, linkage rules 30
blocks, defined 139
braces ({ }), _asm block delimiters 412
brackets ([]), subscript operator 381-382
break statements

iteration statements, using with 144
switch statements, using with 143, 149

_bstct class
described 434
member functions

_bstr_t::_bstr_t 434-435
_bstr_t::copy 436
_bstr_t::length 436

operators
_bstr_t::operator! 438
_bstct::operator +=, + 437
_bstr_t::operator = 436-437
operator! 434
operator + 434
operator += 434
operator = 434

overview 434
relational operators

_bstr_t::wchact*, _bstct::char* 438
(list) 438
operators ==, !=, <, >, <=, >= 434,438
operators wchact*, char* 434

c
c++

file translation order 1-2
keywords (list) 6
manual, overview xiv

calling conventions
linkage specification effects 186-188
modifiers 401

case statements, using labels with 137, 141-144
casting operators

bad_cast exception 129
consCcast 131
dynamic_cast 125-129
(list) 125
reinterpreC cast 131
static_cast 129-131

catch statements
described 156-160
example 158

char type (table) 45-46
char* operator, _bstct class 434, 438
character arrays, initializing 250
character codes

ANSI (chart) 453
ASCII (charts) 450-452,454-455
ASCII multilingual (chart) 452

character constants
described 13, 15
escape sequences (list) 14-15
escape sequences 15
NULL ('\0') 18
wchar_t type 14
wide character 14

charts
ANSI character codes 453
ASCII character codes 450-452
ASCII multilingual codes 452
overview 449

class declarations, defining friends in 316
class hierarchy

casting operators 124
duplicate base classes, showing 128
dynamic_cast operator 126
multiple inheritance, showing 126-127
virtual base classes, showing 127

class keyword
class type declaration 255
described 27

class members See members
class names

declaring and accessing 260
declaring class members 255
declaring types 259

Index

Language Reference 461

Index

class scope
described 25
friend functions 261
linkage rules 30
summary of rules 304-307
type names 281

class types
anonymous unions 276
anonymous 255-256
classes, user-defined 253
conversions and constants 333
declaring 151, 177-178,255
defining 254,255-257
differences among 255
overview 254
typedef, using 174-175
union member data 274
union 273-274

classes
abstract

described 302-303
protocol implementation 289-290
restrictions on using 302-303

anonymous 180
base See base classes
COM support

See compiler COM support classes
composed, defined 325
declaring with dllimportJdllexport 410
declaring without definition 260
defining

described 256
supplying members 254

derived
multiple base 291
multiple inheritance 288, 294-297, 317
single inheritance 284-288
syntax 283
virtual base 292-294
virtual functions 289

described 53
empty, declaring 258
friends, declaring as 314-316
grammar summary 395-397
member functions 266-267
members See members
names

hiding 27
using typedef 261

nested
access privileges 279
described 179,254,278-281
syntax 254

462 Language Reference

classes (continued)
overview 253-254
pointers to, conversion 66, 67
reference conversion 68
storage See storage classes

class-keys, nondefining declarations 260
class-specifiers, using 254
class-type objects 257-258
COM support classes

See compiler COM support classes
COM types See compiler COM support classes
_com_error class

member functions
_com_error::_com_error 417
_com_error::Description 417
_com_error::Error 418
_com_error::ErrorInfo 418
_com_error: :ErrorMessage 418-419
_com_error::GUID 419
_com_error: : HelpContext 419
_com_error: : HelpFile 419-420
_com_error::HRESULTTo WCode 420
_com_error::Source 420-421
_com_error::WCode 421
_com_error: :WCodeToHRESULT

421-422
operators

_com_error: : operator = 422
operator = 416

overview 416
_com_ptct class

described 422
extractors (list) 432
member functions

_com_ptct: :30m_ptct 424-426
_com_ptct::AddRef 426
_com_ptr_t::Attach 426
_com_ptct: :Createlnstance 427
_com_ptr_t: :Detach 428
_com_ptct::GetActiveObject 428-429
_com_ptr_t: : GetInterfacePtr 429
_com_ptct::Querylnterface 429
_com_ptct: :Release 430

operators
_com_ptct::operator = 430-431
operator = 423, 430

overview 423
relational function templates (list) 433
relational operators

(list) 431
operators ==, !=, <, >, <=, >= 423,

431,433
COMDEF.H header file 415

comma operator (,)
binary-opeator expressions 110
overloading 377

command-line arguments
See also arguments
parsing 36,37
passing to main function 34
syntax 34
wildcards 36

command-line options, CL
IGf (enable string pooling) 18
Ivd (enable/suppress vtordisp members) 294
Ivmg (specifying inheritance type) 226

comments 3-4
compatibility, operands (table) 123
compiler COM support classes

_bstet class
described 434
member functions 434-436
operator! 434
operator + 434
operator += 434
operator = 434
operator wchar_t* ,char* 434
operators ==, !=, <, >, <=, >= 434, 438
operators 436-438
overview 434
relational operators (list) 438

_corn_error class
member functions 417-422
operator = 416
operators 422
overview 416

_com_ptet class
described 422
extractors (list) 432
member functions 424-430
operator = 423, 430
operators ==, !=, <, >, <=, >= 423,

431,433
operators 430-433
overview 423
relational function templates (list) 433
relational operators (list) 431

defined 415
_ varianct class

described 439
member functions 440-444
operator = 439
operators ==, != 439,446
operators 445-447
overview 439

compiler options
See also command-line options
IEHa (copy-constructed object

passed by value) 168
IEHs (returns unwindable object

by value) 167
I-GX (copy-constructed object

passed by value) 168
IGX (returns unwindable object

by value) 167
101(inline-assemblyelimination) 167
102 (inline-assembly elimination) 167
lOb (inline-function expansion) 168
lObO (default option for debug builds) 167
109 (inline-assembly elimination) 167
lOx (inline-assembly elimination) 167

complement operator (-)
See one's complement operator (-)

composed classes, construction 325
composed derivative types 53
compound assignment operators 109
compound assignment, defined 106
compound linkage specifier ({ }) 188
compound statements 139-140
concatenation, string literals 18
conditional compilation,

detecting C++ compilation 187
conditional-expression operator (?) 45, 111
const keyword

pointers, effect on 214-216
used with this pointer 270

const objects, initializing pointers to 246
consCcast operator 131
constant expressions

conversion 69
described 112

constants
character 13, 14, 15
decimal 12
described 11
enumerators See enumerators
floating-point

described 16
limits (table) 57-58
syntax 16
types 17

hexadecimal 12
integer 11, 12
integral limits (table) 56-57
long integers 12
NULL character ('\0') 18
octal 12

Index

Language Reference 463

Index

constants (continued)
string literals

concatenation 18
defined 17, 18, 19
escape sequences 19
types 17

unsigned integers 12
construction, order 325
constructors

array, default constructor 324
calling virtual function 323-324
conversion

described 333,333-334
drawbacks of 334

copy
described 321-322
(table) 321

declaring 321-322,322,324
default

described 324
(table) 321

explicitly calling 322
initializers 306
initializing using 249,323
tasks performed by 320-321

constructs, used with pointers
to members (table) 51

continue statements 149
controlling access to members 307-308
convention modifiers, calling and naming 401
conversion constructors

defined 333
described 333-334
drawbacks of 334

conversion functions
declaring 337
described 335-336
syntax 335

conversions
ambiguities 297
argument matching,

overloaded functions 364-368
base classes 68
class types 332
enumerators 185
explicit type

described 113, 116, 117
legal described 115
operator 113-115

floating and integral conversions 63
floating conversions 62, 63
forward-reference class type 116

464 Language Reference

conversions (continued)
integral conversions

signed to unsigned 61
standard 62
unsigned to signed 62

integral promotions 60, 63
integral types 61
I-value results 59
multiple-inheritance 366
pointers modified by const or volatile 68
pointers to base-class members 69
pointers to classes 66-67
pointers to functions 66
pointers to members 68
pointers to objects 65
pointers to type void 65
pointers 65,66, 115-116
references 68
to reference types 116
trivial (table) 365
types 59
usual arithmetic 63-64

conversions by constructors, defined 332
copy constructors

described 321-322
(table) 321

copying objects 351-355

o
data members, static 271-272
data ordering, bit fields 277
data storage, class-member 265
deallocating memory, delete operator 341-343
decimal constants 12
declaration statements

automatic objects 151
control transfers 152-153
described 136, 151-152
destruction of static objects 155
initializers in blocks 152
static object declaration 153-155

declarations
See also declarators; definitions
abstract pointers 214
ambiquity resolution 213-214
argument declaration list 238
auto keyword 165
class types 255
classes

See also class declarations
friends, defining in 316
nested 278-281

declarations (continued)
class-key 260
constructors 321-'--322,322,324
conversion functions 337
declarators described 210-211
default argument expressions 241
definitions 163, 164
derived classes 283
described 163
described 23
destructors 326
dllexport extended storage-class

attribute 407
dllimport extended storage-class

attribute 407
empty classes 258
enumeration

conversion by integral promotion 185
defined 181
described 182-184
names 184

enumerator constants, defined 184
explicit instantiation 193
explicit qualification 208
friends 263,315-316
functions, variable arguments lists 233-234
grammar summary 390-393
initializers, using 219
linkage specifications

calling conventions, effect on 186-188
defined 186
effects of 187-18.8
syntax 186
(table) 187

matching, overloaded functions 360-361
members

storage class 263-264
namespace alias 199
narnespace definition 197-198
namespace members 198
namespaces

described 195-196
overview 194-195

point of declaration 25-26
prototypes 163
register keyword 165
specifiers

described 164-165
friend 176
function 167-168
storage-class 165-166
type name combinations (table) 177
type 177, 179

static, linkage 29

declarations (continued)
syntax 163
template specifications 188-190
type 176
typedef

class types 174-175
described 30,55
specifiers 172-173

unnamed namespaces 196-197
unsized arrays, in members 264-265
uses (list) 163
using -declaration 199-204
using-directive 204-207

declarators
See also function declarations
abstract

default arguments 241
described 212-213
references 218,217-222

aggregate-initializer lists 247
argument lists in function prototypes 238
array types, indirection 231
arrays

described 228-231
in expressions 231
multidimentional 228
ordering of C++ 231
using 230

default arguments 239-240
described 209, 211
function overloading

considerations (table) 235
described 234-237

grammar summary 394-395
initializers 245
initializing character arrays 250
interpretation of subscript operator 231
overview 210-211
parentheses, using 211
pointers to members

classes using inheritance 225-228
described 223-228
restrictions 224
virtual functions and 224-225

references to pointers 220-222
reference-type function arguments 217-218
reference-type function returns 218-219
restrictions on functions 237
syntax generally 211
type name, using 212,213,214
typedef keyword 211
void keyword 234

declaring, class names 260
__ declspec keyword 401-402

Index

Language Reference 465

Index

decorated names, restrictions on length 5
decrement operator (--)

overloading 374, 375-377
postfix expressions 83-84
prefix expressions 88-89

default arguments, declarators
definitions 242
described 239-240

default constructors
defined 324
(table) 321

default statements,
label restrictions 137, 141-144

definitions
See also declarations
declarations 163
described 24
dllexport extended

storage-class attribute 407
dllimport extended

storage-class attribute 407
function 242-244

delete operator
memory deallocation 341-343
overview 337
unary-operator expressions 95-96
using destructors 327

derived class object, casting 124
derived classes

abstract
described 302-303
protocol implementing 289-290
restrictions on using 302-303

construction of 324
multiple inheritance

access control 317
base classes 291-294
described 288
name ambiguities 294-297

overview 283
pointers to members 69
scope 304,304-306
single inheritance 284-288
virtual base classes 292-294
virtual functions

described 298-301
hierarchies 289

derived types
classes 53
described 48
directly derived

described 48
examples 51-53
references to objects 49-50

466 Language Reference

derived types (continued)
Microsoft-specific keywords (list) 399
structures 54
unions 54

destruction
automatic objects 152
static objects 155

destructors
calling 330
declaring 326
defined 325
non virtual base classes 328
order of destruction 326,328,329
specifying with tilde (,..,) 325
using 327
virtual base classes 328-329

directives, conditional compilation 187
division operator (I)

binary-operator expressions 97-98
overloading 378

division/assignment operator (/=),
overloading 378

dllexport
classes 411
extended storage-class attribute

class declarations 410
defined with inline functions 408
described 407
selective member import/export 411-412

inheritance and exportable classes 411
dllimport

classes 411
extended storage-class attribute

class declarations 410
defined with inline functions 408
described 407
selective member import/export 411-412

inheritance and exportable classes 411
DLLs (dynamic-link libraries) See dllimport

extended storage-class attribute;
dllexport storage-class attribute

do/while statements
syntax 144-145
(table) 144
using 146

dominance, object names 296
double type

floating-point constants 16
sizes 47

double underscore C_), identifier naming 7
duplicate base classes, dynamic_cast

operator 128

dynamic allocation
failed, testing for 339-341
freeing memory, delete operator 341-343
new operator 337-339

dynamic_cast operator
bad_cast exception 129
described 125-129

dynamic-link libraries (DLLs) See dllimport
extended storage-class attribute;
dllexport storage-class attribute

E
IEHa compiler option 167
IEHs compiler option 167
elaborated-type-specifiers 260
ellipses (...)

as arguments 233
functions requiring variable

arguments lists 242
wildcards 363

else statements 140-141
empty classes, declaring 258
enum keyword 181-184
enum type names, declarations 151
enumerators

declaring 25
defining constants 184
described 181-184
integral promotion 185
linkage 30,30-31
names 181-184

environment-processing, _setenvp function 37
envp argument, main function syntax 35
epilog/prolog code See prolog/epilog code
equality operator (==)

binary -operator expressions 101-104
overloading 378

equals sign (=), assignment operator 379
escape sequences

described 15
(list) 14-15
string literals 19

evaluation order
expressions 120-121
operators 8

exception handling, C++
described 156
example 158
flow of control 157
structured exception handling 162
syntax 156
try, catch, and throw statements 156-160
unhandled C++ exceptions 161

exclusive OR operator (A)
See also bitwise exclusive OR operator (A)
overloading 378

exclusive OR/assignment operator (A=),
overloading 378

execution character set 13
exit function

described 38
initialization considerations 40

exit processing, atexit function 41
exit statements 39
exiting programs 38
explicit instantiation 193
explicit qualifiers 208
explicit type conversions

described 116, 117
expressions with 113
legal 115
operator 113-115

exponents, floating-point constants 16
expression statements 138-139
expressions

argument, default 241
binary -operator

additive operators (+ and -) 98-100
assignment operators (table) 106-107
assignment operators 108-109
bitwise shift operator 100-10 1
bitwise 104-105
comma (,) 110
described 96-97
equality operators 101-104
logical operators 105-106
multiplicative operators (*) 97-98
relational operators 101-103

casting operators, dynamic_cast 125-129
categories (list) 71-72
conditional-operator (?) 111
constant 112
conversion 69, 67-68
defined 71
evaluation order 120-121
explicit instantiation 193
explicit type conversion

described 113-115,116,117
legal 115

function templates 191-192
grammar summary 384-390
gray expressions 123
member function templates 192
notation (table) 123
null pointer 116
pointer types 115-116
pointer -to-member operators 117-119

Index

Language Reference 467

Index

expressions (continued)
postfix

described 74-75
function-call operator 76
increment (++) and decrement (--)

operators 83-84
member-selection operator 82
subscript operator 75
syntax 75

primary
described 72-73
names 73
qualified names 74
snytax 72

sequence points 121-122
, unary-operator

address-of operator (&) 85-86
bitwise complement operator (,..,) 87
decrement operator (--.:) 88-89
delete operator 95-96
described 84
increment operator (++) 88-89
indirection operator (*) 85
logical NOT operator (!) 87
new operator 90
one's complement operator (,..,) 87
sizeof operator 89-90
unary negation operator (-) 87
unary plus operator (+) 86

extended scan code,
ASCII character codes (charts) 449

extended storage-class attributes
class declarations, dllexport/dllimport 410
__ dec1spec keyword 401-402
defined with inline functions

dllexport/dllimport 408 '
described 401-402
dllexport 407
dllimport 407
naked

described 406
described 404-406
writing prolog/epilog code 405

selective member import/export 411-412
syntax 401-402
thread 402-404

extern keyword
declarations

(table) 166
used in 153-155

linkage'specifications 186-188
storage class 42

external linkage 29

468 Language Reference

external variables 42
extractors

F

_com_ptct class (list) 432
_varianCt class 446-447

__ far keyword, used with this pointer 269
file scope

described 25
linkage rules 29
names, hiding 27

filenames, specifying with
wildcards (?) and (*) 36

files, translation order 1 2
FLOAT.H include file '

numerical limits 56
FLOAT.H include files

floating limits 57
floating and integral conversions

floating to floating 63
floating to integral 63
integral to floating 63

floating conversions, floating to floating 62
floating types

conversions 62, 63
limits, FLOAT.H include file 57
(table) 46
vs. integral and void 45

floating-point constants
described 16-17
double type 16
limits (table) 57-58
long double type 17
mantissa 16

for statements
loop elements (table) 147
syntax 144-145
(table) 144
using 147-148

formal arguments
defined xv
initializing 77
scope 28

forward-reference class type conversion 116
friend declarations 263
friend functions

behavior (table) 319-320
class members 266
in class declarations 261
linkage 30
nested classes 280-281
using 312-314

friend keyword
access to friends 312-314
using 312-314

friend specifiers 176
friends

access rules 310,312-316
declaring 314-316
defining in class declarations 316

function arguments, name scope 305
function declarations

argument declaration list 238
argument lists in 239
default arguments 239-240
function overloading

considerations (table) 235
described 234-237

(list) 232
no arguments 234
syntax 232-233
variable arguments lists 233-234
void keyword 234

function definitions 242
function names, declarations 151
function parameters, linkage 30-31
function scope 24
function specifiers, inline 167-168
function templates 191-192
function-call operator ()

overloading 380
postfix expressions 76, 77-81, 78

functions
See also member functions
abort 38
accessor 257
atexit 41
calling C functions 32
conversion 335-336
exit 38,40
friend

class declarations 261
class members 266
nested 280-281

inline 166, 168-171
main vs. wmain 34
main, startup code 33
member function templates 192
operator delete 341-343
operator new 359, 337-339
overloading, overview 358
pointers to functions 48
prototypes 163
recursive 167
restrictions on 237

functions (continued)
_seCnew _handler

described 339
using 340-341

_setargv 36, 37
_setenvp 37
type conversion 68
types 48
variable argument lists 242-244
virtual

abstract classes 289-290
accessing 316-317
declaring 171
defined 298
described 298-301
hierarchies 289

wmain, startup code 33
fundamental types

G

conversions See conversions
described 45
storage required 46
(table) 45-46

/G(n) command-line option, CL 13
/Gf command-line option, CL 18
global objects 304
gota statements

labels, using with 137
transfer of control 150

grammar summary, overview 383
graphs

acyclic 328-329
inheritance 328-329

gray expressions 123
greater-than operator (»

binary -operator expressions 1 0 1-1 02
overloading 378

greater-than or equal to operator (>=),
overloading 378

/GX compiler option 167
/-GX compiler option 168

H
handlers, setting 339-341
header (.H) files, COMDEF.H 415
hexadecimal constants 12
hiding names

class 27
with block scope 26
with file scope 27

Index

Language Reference 469

Index

identifiers
case sensitivity 5
class names 255
described 4
keywords, C++ (list) 6
length restrictions 5
Microsoft-specific 7
naming

double-underscore prefix 5
restrictions 5

scope of 28
syntax 5

if statements 140-141
include (.H) files

FLOAT.H 57
LIMITS.H 56

inclusive OR operator, bitwise (I)
See bitwise inclusive OR operator (I)

incomplete types, initializing 249
increment operator (++)

overloading 374, 375-377
postfix expressions 83-84
prefix expressions 88-89

indirection operator (*)
described 231
unary-operator expressions 85

inequality operator (!=), overloading 377
inheritance

base-class accessibility
described 66
(table) 66

construction order 325
exportable classes, dllexportldllimport 411
graphs 328-329
multiple

access control 317
base classes 291-294
described 366,288
name ambiguities 294-297
with class hierarchy 126

representing pointers to members 225-228
single 284-288
unions 274

initialization
aggregate types 247,248-249
arrays 347
automatic objects 151-152
bases and members

described 348-351
scope of 351

calling constructors 323
character arrays 250

470 Language Reference

initialization (continued)
constructors 249, 306
copying objects 351-355
explicit 345-346
incomplete types 249
local variables 43
new operator, objects allocated 92
objects from free store 346
objects, using copy constructors 257-258
order of execution 39
pointers to const objects 246
references 251-252
special member functions, using 344-346
static members 246
static objects 153-155, 348
uninitialized objects 246

initializer-lists 229
initializers

declarators
described 245
syntax 245

in blocks 152
initializers and unions 250
inline assembler 412-413
inline class member functions 168-169
inline expansion, controlling 167
inline functions

defined with dllexport 408
defined with dllimport 408-409
defining 267
described 166, 168-169
linkage 167
scope 29
using 170-171
vs. macros 169-170

inline keyword 167
inline specifier 168
inline_depth pragma directive 168
inline_recursion pragma directive 168
inlining 167
instances, defined (list) 21-22
instantiate, defined 167
instantiation, explicit 193
insufficient memory, testing for 339-341
integer constants

described 11, 12
limits (table) 56-57
long type 12
unsigned type 12

integral conversions
constant expressions 69
floating to integral 63
integral to floating 63
signed to unsigned 61

integral conversions (continued)
standard 62
types 61
unsigned to signed 62

integral promotions
described 60
enumerators 185
value-preserving 60

integral types
conversion

described 63
signed to unsigned 61
unsigned to signed 62

LIMITS.H include file 56
sized 47
(table) 45-46
vs. floating and void 45

interface pointers, _ variant_t class 442
internal linkage 29
iteration statements

J

See also switch statements
described 144-145

jump statements 148

K
key codes, ASCII character codes (charts) 449
keywords

L

auto described 42
C++ (list) 6
extern 42
grammar summary (list) 384
Microsoft-specific

described 7
grammar summary 398
(list) 399, 7

register 42
static described 42

labeled statements 136-137
labels, using with case statements 137
language, defined (list) 21-22
late binding, defined 321
left-shift operator «<)

binary-operator expressions 100-10 1
overloading 378

left-shift/assignment operator «<=),
overloading 378

less-than operator «)
binary -operator expressions 1 0 1-1 02
overloading 378

less-than or equal to operator (<=),
overloading 378

lexical, elements described 1
lifetime

new operator, object allocated with 92
scope See scope

LIMITS.H include file
integral limits 56
numerical limits 56

linkage
described 29
enumerators 30
external 29
internal 29
modules in different languages 186-188
no linkage 29
non-C++ functions 32
program and 28
rules 29,30-31,33-34
static member functions 271
typedef declarations 30
types 29

linkage specification
calling conventions, effect on 186-188
defined 186
effects of 187-188
extern 186-188
(table) 187

linkage specifier, compound ({ }) 188
linkage-specification, extern 32
literals See constants
local scope 24
local variables, initialization 43
__ LOCAL_SIZE predefined macro 406
logical AND operator (&&)

binary -operator expressions 105-106
overloading 377

logical NOT operator (!)
overloading 374
unary-operator expressions 87

logical OR operator (II)
binary-operator expressions 106
overloading 378

long double type
floating-point constants 16
sizes 47

I-values
conversion results 59
defined 55, 56

Index

Language Reference 471

Index

M
macros

__ LOCAL_SIZE predefined 406
vs. inline functions 169-170

main function
initialization considerations 39
restrictions 38
startup code 33, 37
vs. wmain 34

mantissas floating-point constants 16
member access in base class (table) 309
member data, unions 274
member functions

_bstct class
_bstct: :_bstct 434-435
_bstct: :copy 436
_bstct::length 436

_com_error class
_com_error::_com_error 417
_com_error: : Description 417
_com_error::Error 418
_com_error: :Errorlnfo 418
_com_error: :ErrorMessage 418-419
_com_error::GUID 419
_com_error: : HelpContext 419
_com_error::HelpFile 419-420
_com_error::HRESULTToWCode 420
_com_error::Source 420-421
_com_error::WCode 421
_com_error::WCodeToHRESULT

421-422
_com_ptct class

_com_ptct: :_com_ptct 424-426
_com_ptct: :AddRef 426
_com_ptct: :Attach 426
_com_ptct::CreateInstance 427
_com_ptct: :Detach 428
_com_ptct::GetActiveObject 428-429
_com_ptct::GetInterfacePtr 429
_com_ptct::QueryInterface 429
_com_ptct::Release 430

declarations examples 267-268
defined 266
described 266-267
friends, declaring as 314-316
initializers, scope of 351
initializing

arrays 347
bases and members 348-351
static objects 348

inline 267
nested classes 279-280

472 Language Reference

member functions (continued)
nonstatic

See also nonstatic member
overloading 363
this argument 268-269

overloading See overloading
special

behavior (table) 319-320
initialization using 344-346
(list) 319

static
See also static members
data 271-272
overloading 363

templates 192
this pointer 269-270
unions 274
_ varianCt class

_ varianCt::_ varianCt 440
_ varianCt::Attach 443
_ varianCt::ChangeType 443
_variant_t::Clear 443
_ varianCt::Detach 444
_ varianCt::SetString 444

member un sized arrays, declaring in
members 264-265

member-access control (table) 307
members

See also data members; member functions
access See access
bit fields 276-277
categories (list) 261
data storage 265
declaration

abstract base classes 264
storage classes 263-264

defined 254
described 261-262
initializing

declarators 262
described 348-351
static 246

naming restrictions 265
pointers to

conversion 67, 68, 69
declarators 223-228
described 51, 66
restrictions 224

protected, accessing 316
scope of initializers 351

. member-selection for objects
and references (.) 304

member-selection for pointers
binary operator (-» 304

member-selection operator (.) 267,364
member-selection operator (->)

argument matching 364
described 267
overloading 377,382

member-selection operators (.) and (-»
class scope 25
postfix expressions 82
specifying names 304

memory allocation
failed, testing for 339-341
new operator 337-339

memory dea1location, delete operator 341-343
memory handlers, setting 339-341
Microsoft -specific keywords

grammar summary 398
(list) 399

Microsoft-specific modifiers (list) 399
modifiers

__ based keyword 40~01
calling and naming convention 401
__ declspec keyword 401
grammar summary 398
Microsoft-specific (list) 399

modulus operator (%)
binary-operator expressions 97-98
overloading 377

modulus/assignment operator (%=),
overloading 377

multilingual codes, ASCII (chart) 449
multiple inheritance

access control 317
base classes 291-294
conversions 366
described 288
names 294-297
with class hierarchy 126

multiplication operator (*)
binary-operator expressions 97-98
overloading 377

multiplication/assignment operator (*=),
overloading 377

multi-threaded processes See thread attribute

N
naked extended storage-class attribute

described 404-406
writing prolog/epilog code 405

naked functions See naked extended
storage-class attribute

name decoration, linkage specification 186-188
name scope, function arguments 305
name spaces, typedef declaration 175

names
ambiguity 304, 294-297
classes

described 261
hiding 27
use described 259

dominance 296
enumerators 184
external, linkage 30
global 304
hiding 26
linkage rules 29,30-31
members, restrictions 265
multiple-inheritance ambiguities 294-297
primary expressions 73
qualified names

scope rules 304-305
syntax 74

simple type 176
static keyword 166
typedef

described 175
redeclarations 173-174

types See types
without storage-class specifiers 166

namespace alias 199
namespace declarations 195-196
namespace definition 197-198
namespace members 198
namespaces

global 194-195
unnamed 196-197

naming conventions, modifiers 401
negation operator, unary (-) 87
negative subscripts 76
nested classes

access privileges 279
declaring 260
described 179,254,278-281
friend functions 280-281
member functions 279-280

nested types 179-180
new operator

dynamic allocation 337-339
unary-operator expressions 90 .
using destructors 327

non-C++ functions, linkage 32
nonredefinable operators (list) 372
non static member functions

described 267-268
overloading 363
this keyword, using 269
using 268-269

nonvirtual base classes, destructors 328

Index

Language Reference 473

Index

NOT operator, logical (!)
See logical NOT operator (!)

notation in expressions (table) 123
NULL character constant ('\0') 18
null pointers, conversion 65,69, 116
NULL smart pointers,

_com_ptct class 425-426,430
null statements 139
numerical limits

o

floating 57
integral (table) 56-57
integral 56

101 compiler option 167
102 compiler option 167
lOb compiler option 168
lObO compiler option 167
object construction 324-325
object names, declarations 151
object types 45
objects

arrays 48
class-type 257-258
copying 351-355
declaring

automatic 151
static 153-155

destructors
overview 325-326
using 327

global 304
initialization

described 246
static 348
using copy constructors 257-258

order of destruction 328,329
passing by reference 49-50
temporary

described 330-331
destruction points (table) 331

type conversions 332
octal constants 12
109 compiler option 167 •
one's complement operator (,..,)

overloading 374
unary-operator expressions 87

operands
See also operators
compati?ility with operators (table) 123
converSIOns 63-64

operator delete function 341-343
operator new function 359, 337-339

474 Language Reference

operator= operator 352,353-354
operators

< (less-than operator) 101-103
= (assignment), changing meaning 373
> (greater-than operator) 101-102
addition (+), overloading 377
addition/assignment (+=)

described 373
overloading 377

additive (+ and -) 98-100
address-of (&)

changing meaning 373
described 85-86
overloading 374

arr~y subscript ([]) 230, 231
aSSIgnment

described 352, 108-109
(table) 106-107

assignment (=), overloading 378,379
associativity 8
binary

additive (+ and -) 98-100
assignment (table) 106-107
assignment 108-109
bitwise AND (&) 104
bitwise exclusive OR e') 104
bitwise inclusive OR (I) 105
bitwise shift 100-10 1
comma (,) 110
equality 101-104
(list) 96-97
logical AND (&&) 105-106
logical OR (II) 106
member-selection for objects

and references (.) 304
member-selection for pointers

binary operator (-» 304
multiplicative (*) 97-98
overloading (list) 377-378
relational 101-103
scope resolution (::) 304-305

bitwise AND (&)
described 104
overloading 377

bitwise ANDlassignment (&=),
overloading 377

bitwise exclusive OR (A) 104
bitwise inclusive OR (I)

described 105
overloading 378

bitwise inclusive OR/assignment (1=)
overloading 378 '

bitwise shift 100-10 1

operators (continued)
_bstct class

_bstct::operator! 438
_bstct: : operator +=, + 437
_bstct::operator = 436--437
_bstct::wchact*, _bstct::char* 438
operator! 434
operator + 434
operator += 434
operator = 434
operator wchar_t*, char* 434
operators ==, !=, <, >, <=, >= 434, 438
relational operators (list) 438

c++ described 8
casting

bad_cast exception 129
consCcast 131
dynanric_cast 125-129
(list) 125
reinterpreCcast 131
static_cast 129-131

_com_error class
30m_error::operator = 422
operator = 416

_com_ptct class
_com_ptct: : operator = 430-431
extractors (list) 432
operator = 423,430
operators ==, !=, <, >,

<=,>= 423,431,433
relational function templates (list) 433
relational operators (list) 431

comma (,)
described 11 0
overloading 377

compound assignment operators 109
conditional (?) 111
decrement (--)

described 375-377
overloading 374
postfix 83-84
prefix 88-89

delete
described 327,95-96
overview 337

division (I)
described 97-98
overloading 378

division/assignment (/=), overloading 378
equality (==), overloading 378
equal-to (==) 103-104
evaluation order 8
exclusive OR (A), overloading 378

operators (continued)
exclusive OR/assignment (A=),

overloading 378
explicittype conversion 113-115
function-call ()

described 76
overloading 380

greater than (», overloading 378
greater than or equal to (>=),

overloading 378
increment (++)

described 375-377
overloading 374
postfix 83-84
prefix 88-89

indirection (*) 231
inequality (!=), overloading 377
left-shift «<)

described 100-101
overloading 378

left-shift/assignment «<=), overloading 378
less than «), overloading 378
less than or equal to «=), overloading 378
logical AND (&&)

described 105-106
overloading 377

logical negation operator, overloading 374
logical NOT (!)

described 87
overloading 374

logical OR (II)
described 106
overloading 378

member-selection (.) and (-» 82
member-selection (.) 267,364
member-selection (-»

described 267,364,382
overloading 377

member-selection 25, 304
memberwise assignment 353-354
modulus (%)

described 97-98
overloading 377

modulus/assignment (%=), overloading 377
multiplication (*)

described 97-98
overloading 377

multiplication/assignment (*=),
overloading 377

new
described 327,337-339
overview 90-91

not-equal-to (!=) 103-104

Index

Language Reference 475

Index

operators (continued)
one's complement (-), overloading 374
operand compatibility (table) 123
operator= 352, 353-354
overloading

assignment 379
binary (list) 377-378
described 369-372
function-call () 380
member-selection (-» 382
nonredefinable (list) 372
overview 358
overview 71
redefinable (list) 370-371
rules 372-373
subscript ([]) 381-382
unary 374

pointer dereference (*), overloading 374
pointer-to...:member (. * and -» 224
pointer-to-member (->* and .*) 364
pointer-to-member selection (->*),

overloading 378
pointer-to-member 117-119
postfix

decrement (--) 83-84
described 74-75
function-call 76, 77-81, 78
increment (++) 83-84
member-selection (.) and (-» 82
subscript 75-76

precedence and associativity (list) 8-10
redefining 369-372
right shift (»)

described 100-101
overloading 378

right shift/assignment (»=),
overloading 378

run-time type information
bad_typeid exception 133
type_info class 134
typeid operator 132-133

scope resolution (::) 27, 179,
268,285,304-305

simple assignment (=) 108-109
sizeof 265,89-90
subscript ([])

described 75
overloading 381-382

subtraction (-), overloading 377
subtraction/assignment (-=),

overloading 377
syntax 8

476 Language Reference

operators (continued)
unary

address of (&) 85-86
associativity 84
bitwise complement (-) 87
decrement (--) 88-89
delete 95-96
increment (++) 88-89
indirection (*) 85
(list) 84
logical NOT (!) 87
new 90
one's cQmplement (-) 87
overloading 374
sizeof 89-90

unary negation (-)
described 87
overloading 374

unary plus (+)
described 86
overloading 374

used with pointer-to-member (table) 51
_ varianCt class

extractors 446-447
operator = 439
operator ==,!= 439,446
relational operators 446
_ varianCt::operator = 445-446

OR operator, logical See logical OR operator (II)
OR operators, bitwise exclusive (A)

See bitwise exclusive OR operator (A)
OR operators, bitwise inclusive (I)

See bitwise inclusive OR operator (I)
order of evaluation 120-121
overloaded function

considerations (table) 235
described 234-237

overloading
functions

address return 369
argument conversions 364-368
argument matching 362-364
argument type differentiation 358
declaration matching 360-361
nonstatic 363
operator new 359
restrictions 359
scope issues 360-361
static 363
typedef declaration 359
wildcard, ellipsis (...) 363

operators (continued)
operators

assignment 379
binary (list) 377-378
described 369-372
function-call () 380
member-selection (-» 382
nonredefinable (list) 372
overview 71
redefinable (list) 370-371
rules 372-373
subscript ([]) 381-382
unary 374

overview 357-358
lOx compiler option 167

p

pack pragma directive 265
parameters See arguments
parentheses ()

declarators 211
function-call operator 380

parsing
command-line arguments 36,37
tokens, described 2, 3

passing objects, by reference to functions 49-50
plus operator, unary (+) 86
point of declaration, defined 25-26
pointer conversions

array expressions 67-68
const and volatile types 68
null pointers 65,69
pointers to base-class members 69
pointers to classes 66, 67
pointers to functions 66
pointers to objects 65
pointers to type void 65

pointer dereference operator (*),
overloading 374

pointer types
addition operator (+) 99
relational operators 103
subtraction operator (-) 100

pointers
based 400-401
const keyword, effect 214-216
conversions 65
converting types 115-116
declarators, syntax 214
interface, _ varianCt class 442
null pointer 116
references to, declaring 220-222

pointers (continued)
smart, 30m_ptCt class 425-426,

427,430,432
this

argument matching,
overloaded functions 363-364

type of 269-270
using 269

to base class 124
to const objects

initializing 246
uninitializing 246

to functions, types 48
to members

and virtual functions 224-225
declarators 51, 223-228
representing, using inheritance 225-228
restrictions 224
syntax 223, 226

volatile keyword, effect 214-216
pointer-to-member conversions

constant expressions 69
described 68

pointer-to-member operators
described 224
expressions with 117-119
operators and constructs 51
this pointer 364

pointer-to-.member selection operator (->*),
overloadmg 378

polymorphic class, casting 124
pol~I?orphism, late binding 321
pOSItIve subscripts 76
postfix expressions

described 74-75
syntax 75

postfix operators
decrement (--) 83-84
function-call 76, 77-81, 78
increment (++) 83-84
member-selection (.) and (-» 82
subscript 75-76
(table) 74

pragma directives
inline_depth 168
inline_recursion 168
pack 265
vtordisp 294

precedence
operator with associativity (list) 8-10
operators 8

preprocessing, defined 1

Index

Language Reference 477

Index

preprocessor directives, grammar summary 398
primary expressions

described 72-73
names 73
qualified names 74

private members, accessing 308, 309-311
PROG.CPP 173
programs

defined 28
file translation order 1,2
fundamental elements 1
lexical elements (list) 1
startup code

initialization considerations 39
main and wmain functions 33
main function restrictions 38
main function 37

termination
considerations 40
implementing 38,39

prolog/epilog code
naked extended storage-class

attribute 404-406
stack frame layout 406
writing considerations 405

promotions, integral 60
protected members,

accessing 308,309-310,316
prototypes, defined 163
public members, accessing 308, 309-310
punctuators

C++ described 8
syntax 8

pure-specifiers 264

Q
qualification, explicit 208
qualified names

R

scope rules 304-305
syntax 74

recursive functions 167
redeclaration of typedef names 173-174
redefinable operators (list) 371
redefinable unary operators (list) 374
redefining operators See overloading, operators
reference types, conversions 116
reference, conversion 68
references

declarators 218,217-222
initializing 251-252

478 Language Reference

references (continued)
passing to functions 217-218
to objects 49-50

reference-type function r~turns 218-219
referencing, templates 191
register keyword

declarations 42, 151, 165
variables 42

reinterpreCcast operator 131
relational function templates,

_com_ptct class (list) 433
relational operators

binary -operator expressions 10 1-103
_bstct class (list) 438
_com_ptct class (list) 431
_ varianCt class 446

return statements
terminating programs 39,40
using 150

return type conversion 68
right-shift operator (»)

binary-operator expressions 1 00-1 0 1
overloading 378

right-shift/assignment operator (»=),
overloading 378

RTTI (run-time type information)
See run-time type information (RTTI)

run-time type information (RTTI)
bad_typeid exception 133
described 132
type_info class 134
typeid operator 132-133

r-values, defined 55, 56

s
scope

block, linkage rules 30
classes

constructor initializer 306
described 25
linkage rules 30
qualified names 304-305
type names 281

file 25,29
formal arguments to functions 28
friend functions and nested classes 280--281
functions 24
hiding names 26-27
local 24
overloading 360--361
static member functions 270-271
summary of rules 304, 304-306

scope-resolution operator (::) 27,95,
179,268,285,304-305

search order, scope resolution 305
selection statements 140, 141-144
selective member import/export,

dllimport/dllexport 411-412
sequence points, expressions 121-122
_seCnew_handler function 339-341
_setargv function 36,37
_setenvp function,

suppressing library routine use 37
shift operators, bitwise binary-operator

expressions 100-10 1
short int type (table) 45-46
short type (table) 45-46
signed char type (table) 45-46
signed short type (table) 45-46
signed type

conversion from unsigned 62
conversion to unsigned 61

simple assignment operator (=) 108-109
simple assignment, defined 106
single inheritance 284-288
sized integer types 47
sizeof operator

described 265
unary-operator expressions 89-90

sizes, types 47
smart pointers See pointers, smart
source character set 13
specifications

linkage 186-188
templates 188-190

specifiers
access to members

base classes 309-311
described 308,309
syntax 308

eleborated-type 260
friend 176
function 167-168
inline 167
pure 264
storage-class 165
syntax 164
type name combinations (table) 177
type 176, 177
typedef 172-175
virtual 171

specifying inheritance type (lvmg) 226
stack frame layout,

writing prolog/epilog code 406
standard conversions See conversions
standard integral conversion 62

startup code
command-line arguments, parsing 36,37
initialization considerations 39
main and wmain functions 33
main function 37-38

statements
break, using 143, 149
catch See catch statements
categories 135
class type 151
compound 139-140
continue 149
declaration

automatic objects 151
described 136
destruction of static objects 155
overview 151-152
static objects 153-155
transfers of control 152-153

described 136
do/while 144-146
enum type 151
expression 138-139
for

described 144, 147-148
loop elements (table) 147

function declarations 151
goto 150, 137
grammar summary 397-398
if/else 140, 140-141
iteration

described 144-145
(table) 144

jump 148
labeled 136-137
null 139
object declarations 151
return

described 150, 150
program termination 39, 40

selection 140, 141-144
struct type 151
switch

behavior (table) 142
described 149, 141-144

syntax 136
throw See throw statements
try See try statements
typedef declarations 151
union type 151
while 144-145

Index

Language Reference 479

Index

static data members
accessing 272
described 271-272

static declarations, linkage 29
static keyword

declarations
initialization 153-155
used in 166

described 42
linkage 166, 188

static members
access control 311
described 267-268
functions

described 270-271
linkage 271
overloading 363

initializing 246
static objects, initializing 348, 153-155
static storage class

declaration statements 153-155
described 42
specifiers 166
static and extern (table) 166

static variables, initialization 43
static_cast operator 129-131
storage classes

automatic 42, 165
member declarations 263-264
static 42
types 41

storage-class specifiers
automatic 165
described 165
extern 166
names without 166
static and extern (table) 166
static 166

string literals
concatenation 18
escape sequences 19
folded 18
length restrictions 19
syntax 17
wide character 19

struct keyword
class type declaration 255
defining class types 254

struct type names, declarations 151
structtypes 177-178
structured exception handling 162
structures

anonymous 180
declaring 255

480 Language Reference

structures (continued)
derived types 54

subscript operator ([])
described 230,231
overloading 381-382
postfix expressions 75-76

subscripts, positive and negative 76
subtraction operator (-)

binary-operator expressions 99-100
overloading 377
pointer types 100

subtraction/assignment operator (-=),
overloading 377

switch statements
behavior (table) 142
break, using with 149
labels, restrictions 137
using 141-144

syntax

T

bit fields 276
class-member declaration 263-264
command-line arguments 34
conversion functions 335
declarators

arrays 228
described 211
initializers 245
pointers to members 223,226
pointers 214
references 217

extended storage-class attributes 401-402
function declarations 232-233
function definitions 242
grammar summary 383
identifiers 5
linkage to non-C++ functions 32
main function 33
operators 8
punctuators 8
this pointer 269

template specifications 188-190
templates

differences from other implementations 194
functions 191-192
member functions 192
referencing 191

temporary objects
described 330-331
destruction points (table) 331

termination
abort function 38, 41

termination (continued)
atexit function 41
considerations 40
exit function

described 38
initialization considerations 40

implementing 38, 39
return statement 39, 40

terms, defined (list) 21-22
ternary operator See conditional operator (? :)
this argument, nonstatic

member functions 268-269
this keyword, modifiers semantics 270
this pointer

const keyword 270
described 269
__ far keyword 269
member functions 266
overloaded functions argument

matching 364,363-364
syntax 269
types 269-270
volatile keyword 270

thread attribute 402-404
thread extended storage-class attribute 402-404
thread-local storage See thread attribute
throw statement

described 156-160
example 158

tilde (""'), specifying destructors 325
tokens

described 1
parsing 2,3

translation phases 1, 2
translation units

defined 2,3
linkage See linkage

trivial conversions (table) 365
try statements

described 156-160
example 158

type casts, syntactic ambiguity 213-214
type checking 259
type conversions

See also conversions
class types 332

type library, COMDEF.H header files 415
type names

class scope 281
combinations (table) 177
declarators, using 212,213,214
defining 55
simple 176

type specifiers
name combinations (table) 177
nested classes 179
nested 179-180
syntax 176
user-defined 177

type_info class, run-time type information 134
typedef declarations

described 55, 172-173
name spaces 175
overloaded functions 359
PROG.CPP 173
using 173-174
with class types 174-175

typedef keyword
class type declaration 255-256
described 211

typedef names
declarations 151
linkage 30-31
redec1aration 173-174

typedef statements, naming class types 261
typeid operator

bad_typeid exception 133
run-time type information 132-133

types
aggregate, initializing 248-249
anonymous 179-180
class See class types
COM support classes

See compiler COM support classes
conversions See conversions
derived

composed 53,54
described 48
directly derived 48-53
Microsoft-specific keywords (list) 399

floating
(table) 45-46
vs. integral and void 45

fundamental
described 45
storage required 46
(table) 45-46

incomplete initializing 249
integral

conversions 61
(table) 45-46
vs. floating and void 45

(list) 45
nested 179-180
numerical limits 56

Index

Language Reference 481

Index

types (continued)
pointers

u

addition operator (+) 99
subtraction operator (-) 100

reference, initializing 251-252
sized integers 47
sizes 47
struct 177-178
union 177-178
user-defined 177-178
void vs. integral and floating 45
wchact 14,17

unary negation operator (-)
overloading 374
unary-operator expressions 87

unary operators
address-of (&) 85-86
associativity 84
bitwise complement (,...,) 87
decrement (--) 88-89
delete 95-96
increment (++) 88-89
indirection (*) 85
(list) 84
logical NOT (!) 87
new 90
one's complement (,...,) 87
overloading 374
redefinable (list) 374
sizeof 89-90
unary negation (-) 87
unary plus (+) 86

unary plus operator (+)
overloading 374
unary-operator expressions 86

unhandled C++ exceptions 161
uninitialized objects 246
union keyword

class type declaration 255
defining class types 254,273-274,275

union type names, declarations 151
union types 177
unions

anonymous 274-276
declaring 255
derived types 54
inheritance restrictions 274
initializers 250
member data 274

unnamed namespace, defined 196-197
unsigned char type (table) 45-46

482 Language Reference

unsigned short type (table) 45-46
unsigned type

conversion from signed 61
conversion to signed 62

unsized arrays
declaring in member lists 264-265
restrictions 265

user-defined types, syntax 177
usual arithmetic conversions 63-64

v
variable argument lists 233-234
variables

arrays 48
automatic 42
external 42
local, initializing 43
reference types, initializing 251-252
register 42
static 42

_ varianct class
described 439
extractors 446-447
member functions

_ varianCt::_ varianCt 440-442
_ varianCt: : Attach 443
_ varianCt: :ChangeType 443
_ varianCt: :Clear 443
_varianCt::Detach 444
_ varianCt::SetString 444

operators
operator = 439
_ varianct::operator = 445-446

overview 439
relational operators

(list) 446
operator ==,!= 439,446

Ivd command-line option, CL 294
virtual base class hierarchies 289
virtual base classes

ambiguities and 296
described 292-294
destructors 328-329
dynamic_cast operator 127

virtual functions
abstract classes 289-290
accessing 316-317
behavior (table) 319-320
declaring 171
defined 298
described 298-301
late binding 321
pointer to members 224-225

virtual keyword 167, 171
/vmg command-line option, CL 226
void keyword, function declarations 234
void types

pointer conversion 65,66
vs. floating and integral 45

volatile keyword
pointers; effect on 214-216
using with this pointer 270

vtordisp members (/vd),
command-line option, CL 294

vtordisp pragma directive 294

w
wchact* operator, _bstct class 434, 438
while statements

syntax 144-145
(table) 144
using 145

white space
comments 3,4
defined 3
tokens separated by 2

wide-character constants 14
wide-character strings 18
wildcards

command-line arguments 36
ellipsis (...) 363
specifying filenames (?) and (*) 36

wmain function
startup code 33
vs. main 34

z
zero values, conversion to null pointers 65, 69

Index

Language Reference 483

Microsoft®

Visual
C++® 6.0

Preprocessor
Reference

Contents

Introduction. .. vii
Special Terminology ... , vii

Chapter 1 The Preprocessor. .. 1
Special Terminology. .. 1

Phases of Translation. " 1

Preprocessor Directives. .. 3

The #define Directive. .. 4

The #error Directive. .. 6

The #if, #elif, #else, and #endif Directives. .. 7

The #ifdef and #ifndef Directives. .. 11

The #import Directive. .. 12

The Primary Type Library Header File. .. 14

The exclude attribute. .. 15

The high_method_prefix attribute .. 16

The high_property _prefixes attribute .. 16

The implementation_only attribute 16

The include(...) attribute. 17

The inject_statement attribute .. , 17

The named_guids attribute .. 17

The no_implementation attribute. .. 17

The no_auto_exclude attribute .. , 18

The no_namespace attribute. .. 18

The raw _dispinterfaces attribute .. 18

The raw_interfaces_only attribute. .. 18

The raw _method_prefix attribute. .. 19

The raw _native_types attribute ... , 19

The raw _property _prefixes attribute 19

The rename attribute. .. 20

The rename_namespace attribute. .. 20

The #include Directive ... , 21

Language Reference iii

Contents

The #line Directive. .. 23

The Null Directive .. , 24

The #Undef Directive .. , 24

Preprocessor Operators. , 25

Stringizing Operator (#) .. 25

Charizing Operator (#@) ... 27

Token-Pasting Operator (##) ... , 27

Macros ... , 28

Macros and C++ .. , 29

Predefined Macros .. 30

Chapter 2 Pragma Directives .. 33
Pragmas Specific to the C++ Compiler ... 34

init_seg ., 34

pointers_to_members .. , 35

vtordisp ., 36

C and C++ Compiler Pragmas. .. 36

alloc_text. .. 36

auto_inline .. , 37

bss_seg ... 37

check_stack ... , 38

code_seg .. 38

const_seg ... , 39

comment , " " , 39

component. ., 40

data_seg. .. 42

function. .. 42

hdrstop .. , 42

include_alias ... ; .. , 43

inline_depth ... , 45

inline_recursion .. 45

intrinsic . i. • • • • • • • • • • • • • • • • ., 46

message ... 47

once .. , 47

optimize. , 47

pack ' .. , 48

setlocale .. , 50

warning .. , 50

iv Language Reference

Contents

Appendix Grammar Summary. .. 53
Definitions .. 53

Conventions .. 54

Preprocessor Grammar. .. 54

Index ... 57

Language Reference v

Introduction

This book explains the preprocessor as it is implemented in Microsoft Visual C++.
The preprocessor is a tool you use to process C and C++ files before they are passed
to the compiler. It allows you to:

• Define and undefine macros

• Expand macros

• Conditionally compile code

• Insert specified files

• Specify compile-time error messages

• Apply machine-specific rules to specified sections of code

Special Terminology
In this book, the term "argument" refers to the entity that is passed to a function. In
some cases, it is modified by "actual" or "formal," which mean the argument expression
specified in the function call and the argument declaration specified in the function
definition, respectively.

The term "variable" refers to a simple C-type data object. The term "object" refers to both
C++ objects and variables; it is an inclusive term.

Language Reference vii

C HAP T E R

The Preprocessor

The preprocessor is a text processor that manipulates the text of a source file as part of the
first phase of translation. The preprocessor does not parse the source text, but it does break
it up into tokens for the purpose of locating macro calls. Although the compiler ordinarily
invokes the preprocessor in its first pass, the preprocessor can also be invoked separately
to process text without compiling.

Microsoft Specific ~

You can obtain a listing of your source code after preprocessing by using the IE or IEP
compiler option. Both options invoke the preprocessor and output the resulting text to
the standard output device, which, in most cases, is the console. The difference between
the two options is that IE includes #line directives and IEP strips these directives out.

END Microsoft Specific

Special Terminology
In the preprocessor documentation, the term "argument" refers to the entity that is
passed to a function. In some cases, it is modified by "actual" or "formal," which
mean the argument expression specified in the function call and the argument
declaration specified in the function definition, respectively.

The term "variable" refers to a simple C-type data object. The term "object" refers
to both C++ objects and variables; it is an inclusive term.

Phases of Translation
C and C++ programs consist of one or more source files, each of which contains some of
the text of the program. A source file, together with its include files (files that are included
using the #include preprocessor directive) but not including sections of code removed by
conditional-compilation directives such as #if, is called a "translation unit."

Source files can be translated at different times - in fact, it is common to translate only
out-of-date files. The translated translation units can be kept either in separate object files
or in object-code libraries. These separate translation units are then linked to form an
executable program or a dynamic-link library (DLL).

Language Reference 1

Preprocessor Reference

Translation units can communicate using:

• Calls to functions that have external linkage.

• Calls to class member functions that have external linkage.

• Direct modification of objects that have external linkage.

• Direct modification of files.

• Interprocess communication (for Microsoft Windows-based applications only).

The following list describes the phases in which the compiler translates files:

Character mapping
Characters in the source file are mapped to the internal source representation. Trigraph
sequences are converted to single-character internal representation in this phase.

Line splicing
All lines ending in a backslash (\) and immediately followed by a newline character
are joined with the next line in the source file, forming logical lines from the physical
lines. Unless it is empty, a source file must end in a newline character that is not
preceded by a backslash.

Tokenization
The source file is broken into preprocessing tokens and white-space characters.
Comments in the source file are replaced with one space character each. Newline
characters are retained.

Preprocessing
Preprocessing directives are executed and macros are expanded into the source
file. The #include statement invokes translation starting with the preceding three
translation steps on any included text.

Character-set mapping
All source-character-set members and escape sequences are converted to their
equivalents in the execution-character set. For Microsoft C and C++, both the
source and the execution character sets are ASCII.

String concatenation
All adjacent string and wide-string literals are concatenated. For example, "Stri ng "
" con cat e nat ion" becomes "s t r i n 9 con cat e nat ion. "

2 Language Reference

Chapter 1 The Preprocessor

Translation
All tokens are analyzed syntactically and semantically; these tokens are converted into
object code.

Linkage
All external references are resolved to create an executable program or a dynamic-link
library.

The compiler issues warnings or errors during phases of translation in which it encounters
syntax errors.

The linker resolves all external references and creates an executable program or DLL by
combining one or more separately processed translation units along with standard libraries.

Preprocessor Directives
Preprocessor directives, such as #define and #ifdef, are typically used to make source
programs easy to change and easy to compile in different execution environments.
Directives in the source file tell the preprocessor to perform specific actions. For example,
the preprocessor can replace tokens in the text, insert the contents of other files into
the source file, or suppress compilation of part of the file by removing sections of text.
Preprocessor lines are recognized and carried out before macro expansion. Therefore, if
a macro expands into something that looks like a preprocessor command, that command
is not recognized by the preprocessor.

Preprocessor statements use the same character set as source file statements, with the
exception that escape sequences are not supported. The character set used in preprocessor
statements is the same as the execution character set. The preprocessor also recognizes
negative character values.

The preprocessor recognizes the following directives:

#define #error #import #Undef

#elif #if #include

#else #ifdef #line

#endif #ifndef #pragma

The number sign (#) must be the first nonwhite-space character on the line containing the
directive; white-space characters can appear between the number sign and the first letter
of the directive. Some directives include arguments or values. Any text that follows a
directive (except an argument or value that is part of the directive) must be preceded
by the single-line comment delimiter (II) or enclosed in comment delimiters (1* *1).
Lines containing preprocessor directives can be continued by immediately preceding
the end-of-line marker with a backslash (\).

Preprocessor directives can appear anywhere in a source file, but they apply only to the
remainder of the source file.

Language Reference 3

Preprocessor Reference

The #define Directive
You can use the #define directive to give a meaningful name to a constant in your
program. The two forms of the syntax are:

Syntax

#define identifier token-stringopt
#define identifier[(identifieropt, ... , identifieropt)] token-stringopt

The #define directive substitutes token-string for all subsequent occurrences of an
identifier in the source file. The identifier is replaced only when it forms a token.
(See "Tokens" in Chapter 1, "Lexical Conventions," in the Microsoft Visual C++ 6.0
Language Reference, a volume of the Microsoft Visual C++ 6.0 Reference Library.) For
instance, identifier is not replaced if it appears in a comment, within a string, or as part of
a longer identifier.

A #define without a token-string removes occurrences of identifier from the source file.
The identifier remains defined and can be tested using the #if defined and #ifdef
directives.

The token-string argument consists of a series of tokens, such as keywords, constants,
or complete statements. One or more white-space characters must separate token-string
from identifier. This white space is not considered part of the substituted text, nor is any
white space following the last token of the text.

Formal parameter names appear in token-string to mark the places where actual values
are substituted. Each parameter name can appear more than once in token-string, and
the names can appear in any order. The number of arguments in the call must match the
number of parameters in the macro definition. Liberal use of parentheses ensures that
complicated actual arguments are interpreted correctly.

The second syntax form allows the creation of function-like macros. This form accepts
an optional list of parameters that must appear in parentheses. References to the identifier
after the original definition replace each occurrence of identifier(identifieropr. ... ,
identifieropt) with a version of the token-string argument that has actual arguments
substituted for formal parameters.

The formal parameters in the list are separated by commas. Each name in the list must be
unique, and the list must be enclosed in parentheses. No spaces can separate identifier and
the opening parenthesis. Use line concatenation -:- place a backslash (\) before the newline
character - for long directives on multiple source lines. The scope of a formal parameter
name extends to the new line that ends token-string.

4 Language Reference

Chapter 1 The Preprocessor

When a macro has been defined in the second syntax form, subsequent textual instances
followed by an argument list constitute a macro call. The actual arguments following an
instance of identifier in the source file are matched to the corresponding formal parameters
in the macro definition. Each formal parameter in token-string that is not preceded by
a stringizing (#), charizing (#@), or token-pasting (##) operator, or not followed by
a ## operator, is replaced by the corresponding actual argument. Any macros in the
actual argument are expanded before the directive replaces the formal parameter.
(The operators are described in "Preprocessor Operators," later in this chapter.)

The following examples of macros with arguments illustrate the second form of the
#define syntax:

II Macro to define cursor lines
#define CURSOR(top. bottom) «top) « 8) I bottom))

II Macro to get a random integer with a specified range
#define getrandom(min. max) \

«rand()%(int)«(max) + l)-(min)))+ (min))

Arguments with side effects sometimes cause macros to produce unexpected results.
A given formal parameter may appear more than once in token-string. If that formal
parameter is replaced by an expression with side effects, the expression, with its side
effects, may be evaluated more than once. (See the examples under "Token-Pasting
Operator (##)," later in this chapterJ

The #Undef directive causes an identifier's preprocessor definition to be forgotten.
See The #Undef Directive for more information.

If the name of the macro being defined occurs in token-string (even as a result of another
macro expansion), it is not expanded.

A second #define for a macro with the same name generates an error unless the second
token sequence is identical to the first.

Microsoft Specific ~

Microsoft C/C++ allows the redefinition of a macro, but generates a warning, provided
the new definition is lexically identical to a previous definition. ANSI C considers macro
redefinition an error. For example, these macros are equivalent for C/C++ but generate
warnings:

#define test(fl. f2
#define test(al. a2

END Microsoft Specific

f1 * f2
al * a2

Language Reference 5

Preprocessor Reference

This example illustrates the #define directive:

fldefine WIDTH
fldefi ne LENGTH

80
(WIDTH + 10)

The first statement defines the identifier WIDTH as the integer constant 80 and defines
LENGTH in terms of WIDTH and the integer constant 10. Each occurrence of LENGTH is
replaced by (WI DTH + 10). In tum, each occurrence of WIDTH + 10 is replaced by the
expression (80 + 10). The parentheses around WIDTH + 10 are important because
they control the interpretation in statements such as the following:

var = LENGTH * 20;

After the preprocessing stage the statement becomes:

var = (80 + 10) * 20;

which evaluates to 1800. Without parentheses, the result is:

var = 80 + 10 * 20;

which evaluates to 280.

Microsoft Specific ~

Defining macros and constants with the ID compiler option has the same effect as using
a #define preprocessing directive at the beginning of your file. Up to 30 macros can be
defined with the ID option.

END Microsoft Specific

The #error Directive
Error directives produce compiler-time error messages.

Syntax

#error token-string

The error messages include the argument token-string and are subject to macro expansion.
These directives are most useful for detecting programmer inconsistencies and violation of
constraints during preprocessing. The following example demonstrates error processing
during preprocessing:

#if ldefined(__ cplusplus)
#error c++ compiler required.
#endif

When #error directives are encountered, compilation terminates.

6 Language Reference

Chapter 1 The Preprocessor

The #if~ #elif, #else, and #endif Directives
The #if directive, with the #elif, #else, and #endif directives, controls compilation of
portions of a source file. If the expression you write (after the #if) has a nonzero value,
the line group immediately following the #if directive is retained in the translation unit.

Syntax

conditional :
if-part elif-partsopt else-partopt endif-line

if-part:
if-line text

if-line:
#if constant-expression
#ifdef identifier
#ifndef identifier

elif-parts :
elif-line text
elif-parts elif-line text

elif-line :
#elif constant-expression

else-part:
else-line text

else-line:
#else

endif-line :
#endif

Each #if directive in a source file must be matched by a closing #endif directive. Any
number of #elif directives can appear between the #if and #endif directives, but at most
one #else directive is allowed. The #else directive, if present, must be the last directive
before #endif. .

The #if, #elif, HeIse, and #endif directives can nest in the text portions of other #if
directives. Each nested HeIse, #elif, or #endif directive belongs to the closest preceding
#if directive.

All conditional-compilation directives, such as #if and #ifdef, must be matched with
closing #endif directives prior to the end of file; otherwise, an error message is generated.
When conditional-compilation directives are contained in include files, they must satisfy
the same conditions: There must be no unmatched conditional-compilation directives at
the end of the include file.

Language Reference 7

Preprocessor Reference

Macro replacement is performed within the part of the command line that follows an
#elif command, so a macro call can be used in the constant-expression.

The preprocessor selects one of the given occurrences of text for further processing.
A block specified in text can be any sequence of text. It can occupy more than one line.
D sually text is program text that has meaning to the compiler or the preprocessor.

The preprocessor processes the selected text and passes it to the compiler. If text contains
preprocessor directives, the preprocessor carries out those directives. Only text blocks
selected by the preprocessor are compiled.

The preprocessor selects a single text item by evaluating the constant expression following
each #if or #elif directive until it finds a true (nonzero) constant expression. It selects all
text (including other preprocessor directives beginning with #) up to its associated #elif,
#else, or #endif.

If all occurrences of constant-expression are false, or if no #elif directives appear, the
preprocessor selects the text block after the #else clause. If the #else clause is omitted and
all instances of constant-expression in the #if block are false, no text block is selected.

The constant-expression is an integer constant expression with these additional
restrictions:

• Expressions must have integral type and can include only integer constants, character
constants, and the defined operator.

• The expression cannot use sizeof or a type-cast operator.

• The target environment may not be able to represent all ranges of integers.

• The translation represents type iot the same as type long, and unsigned int the same
as unsigned long.

• The translator can translate character constants to a set of code values different
from the set for the target environment. To determine the properties of the target
environment, check values of macros from LIMITS.H in an application built for the
target environment.

• The expression must not perform any environmental inquiries and must remain
insulated from implementation details on the target computer.

The preprocessor operator defined can be used in special constant expressions, as shown
by the following syntax:

Syntax

defined(identifier)
defined identifier

This constant expression is considered true (nonzero) if the identifier is currently
defined; otherwise, the condition is false (0). An identifier defined as empty text is
considered defined. The defined directive can be used in an #if and an #elif directive,
but nowhere else.

8 Language Reference

Chapter 1 The Preprocessor

In the following example, the #if and #endif directives control compilation of one of
three function calls:

#if defined(CREDIT)
credit();

#elif defined(DEBIT)
debit() ;

#else
printerror();

flendi f

The function call to credit is compiled if the identifier CREDIT is defined. If the identifier
DEB I T is defined, the function call to deb i t is compiled. If neither identifier is defined, the
call to pri nterror is compiled. Note that CREDIT and credi t are distinct identifiers in
C and c++ because their cases are different.

The conditional compilation statements in the following example assume a previously
defined symbolic constant named DLEVEL.

#if DLEVEL > 5
#define SIGNAL 1
#if STACKUSE == 1

#define STACK 200
#else

#define STACK 100
#endif

#else
#define SIGNAL 0
#if STACKUSE == 1

#define STACK 100
#else

#define STACK 50
#endif

#endif
#if DLEVEL == 0

fldefine STACK 0
#elif DLEVEL == 1

#define STACK 100
#elif DLEVEL > 5

display(debugptr);
#else

#define STACK 200
#endif

The first #if block shows two sets of nested #if, #else, and #endif directives. The first set
of directives is processed only if DLEVEL > 5 is true. Otherwise, the statements after #else
are processed.

Language Reference 9

Preprocessor Reference

The #elif and #else directives in the second example are used to make one of four choices,
based on the value of DLEVEL. The constant STACK is set to 0, 100, or 200, depending on the
definition of DLEVEL. If DLEVEL is greater than 5, then the statement

#elif DLEVEL > 5
display(debugptr);

is compiled and STACK is not defined.

A common use for conditional compilation is to prevent multiple inclusions of the same
header file. In C++, where classes are often defined in header files, constructs like the
following can be used to prevent multiple definitions:

II EXAMPLE.H - Example header file

#if !defined(EXAMPLE_H
#define EXAMPLE_H

class Example
{

} ;

#endif II !defined(EXAMPLE_H)

The preceding code checks to see if the symbolic constant EXAM P L E_H is defined. If so, the
file has already been included and need not be reprocessed. If not, the constant EXAMPLE_H
is defined to mark EXAMPLE.H as already processed.

Microsoft Specific ~

Conditional compilation expressions are treated as signed long values, and these
expressions are evaluated using the same rules as expressions in C++. For example,
this expression:

#if 0xFFFFFFFFL > lUL

is true.

END Microsoft Specific

10 Language Reference

Chapter 1 The Preprocessor

The #ifdef and #ifndef Directives
The Difdef and #ifndef directives perform the same task as the #if directive when it is
used with defined(identifier).

Syntax

#ifdef identifier
#ifndef identifier

is equivalent to

#if defined identifier
#if !defined identifier

You can use the #ifdef and #ifndef directives anywhere #if can be used. The #ifdef
identifier statement is equivalent to #i f 1 when identifier has been defined, and it is
equivalent to #i f 0 when identifier has not been defined or has been undefined with the
#Undef directive. These directives check only for the presence or absence of identifiers
defined with Ddefine, not for identifiers declared in the C or C++ source code.

These directives are provided only for compatibility with previous versions of the
language. The defined(identifier) constant expression used with the #if directive
is preferred.

The Difndef directive checks for the opposite of the condition checked by #ifdef.Jf the
identifier has not been defined (or its definition has been removed with #Undef), the
condition is true (nonzero). Otherwise, the condition is false (0).

Microsoft Specific ~

The identifier can be passed from the command line using the ID option. Up to 30 macros
can be specified with ID.

This is useful for checking whether a definition exists, because a definition can be passed
from the command line. For example:

II PROG.CPP
#ifndef test
#define final
#endif

II These three statements go in your source code.

CL IDtest prog.cpp ~I This is the command for compilation.

END Microsoft Specific

Language Reference 11

Preprocessor Reference

The #import Directive
c++ Specific ~

The #import directive is used to incorporate information from a type library. The content
of the type library is converted into C++ classes, mostly describing the COM interfaces.

Syntax

#import ''filename'' [attributes]
#import <filename> [attributes]

attributes:
attribute1, attribute2, .. .
attribute1 attribute2 .. .

filename is the name of the file containing the type library information. A file can be one of
the following types:

• a type library (.TLB or .ODL) file

• an executable (.EXE) file

• a library (.DLL) file containing a type library resource (such as .OCX)

• a compound document holding a type library

• any other file format that can be understood by the LoadTypeLib API

The filename is optionally preceded by a directory specification. The filename must
name an existing file. The difference between the two forms is the order in which the
preprocessor searches for the type library files when the path is incompletely specified.

Syntax Form

Quoted form

Angle-bracket form

Action

This form instructs the preprocessor to first look for type library files in the
same directory of the file that contains the #import statement, and then in the
directories of whatever files that include (#include) that file. The preprocessor
then searches along the paths shown below.

This form instructs the preprocessor to search for type library files along the
paths shown below.

The compiler will search in the following directories for the named file:

1. the PATH environment variable path list

2. the LIB environment variable path list

3. the path specified by the II (additional include directories) compiler option

12 Language Reference

Chapter 1 The Preprocessor

#import can optionally include one or more attributes. These attributes tell the compiler
to modify the contents of the type-library headers. A backslash (\) symbol can be used to
include additional lines in a single #import statement. For example:

#import "test.lib" no_namespace \
rename("OldName". "NewName")

The #import attributes are listed below:

exclude

high_property _prefixes

include(...)

named_guids

no_implementation

raw _dispinterfaces

raw _method_prefix

raw _property_prefixes

rename_namespace

high_method_prefix

implementation_only

injeccstatement

no_auto_exclude

no_namespace

raw _interfaces_only

raw _native_types

rename

#import creates two header files that reconstruct the type library contents in C++ source
code. The primary header file is similar to that produced by the Microsoft Interface
Definition Language (MIDL) compiler, but with additional compiler-generated code and
data. The primary header file has the same base name as the type library, plus a .TLH
extension. The secondary header file has the same base name as the type library, with a
· TLI extension. It contains the implementations for compiler-generated member functions,
and is included (#include) in the primary header file.

Both header files are placed in the output directory specified by the !Fo (name object file)
option. They are then read and compiled by the compiler as if the primary header file was
named by a #include directive.

The following compiler optimizations come with the #import directive:

• The header file, when created, is given the same timestamp as the type library.

• When #import is processed, the compiler first checks if the header exists and is up to
date. If yes, then it does not need to be recreated.

• The compiler delays initializing the OLE subsystem until the first #import command
is encountered.

The #import directive also participates in minimal rebuild and can be placed in a
precompiled header file.

Language Reference 13

Preprocessor Reference

The Primary Type Library Header File
The primary type library header file consists of seven sections:

1. Heading boilerplate: Consists of comments, #include statement for COMDEF.H
(which defines some standard macros used in the header), and other miscellaneous
setup information.

2. Forward references and typedefs: Consists of structure declarations such as struct
IMylnterface, and typedefs for any TKIND_ALIAS items.

3. Smart pointer declarations: The template class _com_ptr_t is a smart-pointer
implementation that encapsulates interface pointers and eliminates the need to
call AddRef, Release, QueryInterface functions. In addition, it hides the
CoCreateInstance call in creating a new COM object. This section uses macro
statement _COM_SMARTPTR_TYPEDEF to establish typedefs of COM
interfaces to be template specializations of the _com_ptr_t template class. For
example, for interface IFoo, the .TLH file will contain:

_COM_SMARTPTR_TYPEDEF(IFoo. __ uuidof(IFoo));

which the compiler will expand to:

typedef _com_ptr_t<_com_IIID<IFoo. __ uuidof(IFoo» > IFooPtr;

Type I FooPtr can then be used in place of the raw interface pointer I Foo*.
Consequently, there is no need to call the various IUnknown member functions.

4. Typeinfo declarations: Primarily consists of class definitions and other items exposing
the individual typeinfo items returned by ITypeLib:GetTypeInfo. In this section, each
typeinfo from the type library is reflected in the header in a form dependent on the
TYPEKIND information.

5. Optional old-style GUID definition: Contains initializations of the named GUID
constants. These are names of the form CLSID _ CoClass and lID_Interface, similar
to those generated by the MIDL c()mpiler.

6. #include statement for the secondary type library header.

7. Footer boilerplate: Currentlyincludes#pragma pack(pop).

All sections, except the heading boilerplate and footer boilerplate section, are enclosed in
a namespace with its name specified by the library statement in the original IDL file. You
can use the names from the type library header either by an explicit qualification with the
namespace name or by including the following statement:

using namespace MyLib;

immediately after the #import statement in the source code.

14 Language Reference

The namespace can be suppressed by using the no_namespace attribute of the
#import directive. However, suppressing the namespace may lead to name collisions.
The namespace can also be renamed by the rename_namespace attribute.

Chapter 1 The Preprocessor

The compiler provides the full path to any type library dependency required by the type
library it is currently processing. The path is written, in the form of comments, into the
type library header (. TLH) that the compiler generates for each processed type library.

If a type library includes references to types defined in other type libraries, then the
. TLH file will include comments of the following sort:

II
II Cross-referenced type libraries:
II
II #import "c:\path\typelib0.tlb"
II

The actual filename in the #import comment is the full path of the cross-referenced type
library, as stored in the registry. If you encounter errors that are due to missing type
definitions, check the comments at the head of the. TLH to see which dependent type
libraries may need to be imported first. Likely errors are syntax errors (e.g. C2143,
C2146, C2321), C2501 (missing decl-specifiers), or C2433 (,inline' not permitted on
data declaration) while compiling the .TLI file.

You must determine which of the dependency comments are not otherwise provided for by
system headers and then provide an #import directive at some point before the #import
directive of the dependent type library in order to resolve the errors.

The exclude attribute
exclude("Name}"[, "Name2" , •••])

Name}
First item to be excluded

Name2
Second item to be excluded (if necessary)

Type libraries may include definitions of items defined in system headers or other type
libraries. This attribute can be used to exclude these items from the type library header
files being generated. This attribute can take any number of arguments, each being a
top-level type library item to be excluded.

Language Reference 15

Preprocessor Reference

The high_method_prefix attribute
high_method_prefix("Prefix")

Prefix
Prefix to be used

By default, high-level error-handling properties and methods are exposed by
member functions named without a prefix. The names are from the type library.
The high_method_prefix attribute is used to specify a prefix to be used in naming
these high-level properties and methods.

The high_property _prefixes attribute
high_property _prefixes("GetPrefix," "PutPrefix," "PutRefPrefix")

GetPrefix
Prefix to be used for the propget methods

PutPrefix
Prefix to be used for the propput methods

PutRefPrefix
Prefix to be used for the propputref methods

By default, high-level error-handling propget, propput, and propputref methods are
exposed by member functions named with prefixes Get, Put, and PutRef respectively.
The high_property _prefixes attribute is used to specify alternate prefixes for all three
property methods.

The implementation_only attribute
The implementation_only attribute suppresses the generation of the .TLR header file (the
primary header file). This file contains all the declarations used to expose the type-library
contents. The .TLI header file, with the implementations of the wrapper member functions,
will be generated and included in the compilation.

When this attribute is specified, the content of the. TLI header is in the same namespace
as the one normally used in the .TLR header. In addition, the member functions are not
declared as inline.

The implementation_only attribute is intended for use in conjunction with the
no_implementation attribute as a way of keeping the implementations out of the
precompiled header (peR) file. An #import statement with the no_implementation
attribute is placed in the source region used to create the peR. The resulting peR is
used by a number of source files. An #import statement with the implementation_only
attribute is then used outside the peR region. You are required to use this statement
only once in one of the source files. This will generate all the required wrapper member
functions without additional recompilation for each source file.

16 Language Reference

Note The implementation_only attribute in one #import statement must be use
in conjunction with another #import statement, of the same type library, with the
no_implementation attribute. Otherwise, compiler errors will be generated. This

Chapter 1 The Preprocessor

is because wrapper class definitions generated by the #import statement with the
no_implementation attribute are required to compile the implementations generated
by the implementation_only attribute.

The include(...) attribute
include(Namel[, Name2, ...])

Name}
First item to be forcibly included

Name2
Second item to be forcibly included (if necessary)

Type libraries may include definitions of items defined in system headers or other type
libraries. #import attempts to avoid multiple definition errors by automatically excluding
such items. If items have been excluded, as indicated by warning C4192, and they should
not have been, this attribute can be used to disable the automatic exclusion. This attribute
can take any number of arguments, each being the name of the type-library item to be
included.

The inject_statement attribute
inject_statement{" source_text")

source_text
Source text to be inserted into the type library header file

The inject_statement attribute inserts its argument as source text into the type-library
header. The text is placed at the beginning of the namespace declaration that wraps the
type-library contents in the header file.

The named_9uids attribute
The named~uids attribute tells the compiler to define and initialize GUID variables
in old style, of the form LIBID_MyLib, CLSID_MyCoClass, IID_Mylnterface, and
DIID _MyDisplnterface.

The no_implementation attribute
The no_implementation attribute suppresses the generation of the .TLI header, which
contains the implementations of the wrapper member functions. If this attribute is
specified, the .TLH header, with the declarations to expose type-library items, will
be generated without an #include statement to include the .TLI header file.

This attribute is used in conjunction with implementation_only.

Language Reference 17

Preprocessor Reference

The no_auto_exclude attribute
Type libraries may include definitions of items defined in system headers or other type
libraries. #import attempts to avoid multiple definition errors by automatically excluding
such items. When this is done, warning C4192 will be issued for each item to be excluded.
You can disable this automatic exclusion by using this attribute.

The no_namespace attribute
The type-library contents in the #import header file·are normally defined in a namespace.
The namespace name is specified in the library statement of the original IDL file. If the
no_namespace attribute is specified, this namespace is not generated by the compiler.

If you want to use a different namespace name, use the rename_namespace attribute
instead.

The raw_dispinterfaces attribute
The raw _dispinterfaces attribute tells the compiler to generate low-level wrapper
functions for dispinterface methods and properties that call IDispatch: : Invoke and
return the HRESUL T error code.

If this attribute is not specified, only high-level wrappers are generated, which throw
C++ exceptions in case of failure.

The raw_interfaces_only attribute
The raw _interfaces_only attribute suppresses the generation of error-handling wrapper
functions and __ declspec(property) declarations that use those wrapper functions.

The raw _interfaces_only attribute also causes the default prefix used in naming the
non-property functions to be removed. Normally, the prefix is raw_. If this attribute
is specified, the function names are directly from the type library.

This attribute allows you to expose only the low-level contents of the type library.

18 Language Reference

Chapter 1 The Preprocessor

The raw_method_prefix attribute
raw _method_prefix("Prefix")

Prefix
The prefix to be used

Low-level properties and methods are exposed by member functions named with a default
prefix of raw_ to avoid name collisions with the high-level error-handling member
functions. The raw _method_prefix attribute is used to specify a different prefix.

Note The effects of the raw _method_prefix attribute will not be changed by the
presence of the raw _interfaces_only attribute. The raw _method_prefix always takes
precedence over raw _interfaces_only in specifying a prefix. If both attributes are used
in the same #import statement, then the prefix specified by the raw _method_prefix
attribute is used.

The raw_native_types attribute
By default, the high-level error-handling methods use the COM support classes _bstr_t
and _ variant_t in place of the BSTR and VARIANT data types and raw COM interface
pointers. These classes encapsulate the details of allocating and deallocating memory
storage for these data types, and greatly simplify type casting and conversion operations.
The raw _native_types attribute is used to disable the use of these COM support classes
in the high-level wrapper functions, and force the use of low-level data types instead.

The raw_property_prefixes attribute
raw_property _prefixes("GetPrefix," "PutPrefix," "PutRefPrefix")

GetPrefix
Prefix to be used for the propget methods

PutPrefix
Prefix to be used for the propput methods

PutRefPrefix
Prefix to be used for the propputref methods

By default, low-level propget, propput, and propputref methods are exposed by
member functions named with prefixes of get_, puC, and putref_ respectively.
These prefixes are compatible with the names used in the header files generated by
MIDL. The raw _property _prefixes attribute is used to specify alternate prefixes for
all three property methods.

Language Reference 19

Preprocessor Reference

The rename attribute
rename("OldName," "NewName")

OldName
Old name in the type library

NewName
Name to be used instead of the old name

The rename attribute is used to work around name collision problems. If this attribute
is specified, the compiler replaces all occurrences of OldName in a type library with the
user-supplied NewName in the resulting header files.

This attribute can be used when a name in the type library coincides with a macro
definition in the system header files. If this situation is not resolved, then various
syntax errors will be generated, such as C2059 and C2061.

Note The replacement is for a name used in the type library, not for a name used
in the resulting header file.

Here is an example: Suppose a property named My Par e n t exists in a type library,
and a macro GetMyPa rent is defined in a header file and used before #import. Since
GetMyPa rent is the default name of a wrapper function for the error-handling get
property, a name collision will occur. To work around the problem, use the following
attribute in the #import statement:

rename("MyParent","MyParentX")

which renames the name MyParent in the type library. An attempt to rename the
GetMyPa rent wrapper name will fail:

rename("GetMyParent","GetMyParentX")

This is because the name GetMyParent only occurs in the resulting type library header file.

The rename_namespace attribute
rename_namespace("NewName")

NewName
The new name of the namespace

The rename_namespace attribute is used to rename the namespace that contains the
contents of the type library. It takes a single argument, NewName, which specifies the
new name for the namespace.

To remove the namespace, use the no_namespace attribute instead.

END C++ Specific

20 Language Reference

Chapter 1 The Preprocessor

The #include Directive
The #include directive tells the preprocessor to treat the contents of a specified file as if
those contents had appeared in the source program at the point where the directive appears.
You can organize constant and macro definitions into include files and then use #include
directives to add these definitions to any source file. Include files are also useful for
incorporating declarations of external variables and complex data types. You only
need to define and name the types once in an include file created for that purpose.

Syntax

#include "path-spec"
#include <path-spec>

The path-spec is a filename optionally preceded by a directory specification. The filename
must name an existing file. The syntax of the path-spec depends on the operating system
on which the program is compiled.

Both syntax forms cause replacement of that directive by the entire contents of the
specified include file. The difference between the two forms is the order in which the
preprocessor searches for header files when the path is incompletely specified.

Syntax Form Action

Quoted form This form instructs the preprocessor to look for include files in the same directory
of the file that contains the #include statement, and then in the directories of
whatever files that include (#include) that file. The preprocessor then searches
along the path specified by the II compiler option, then along paths specified by the
INCLUDE environment variable.

Angle-bracket form This form instructs the preprocessor to search for include files first along the path
specified by the II compiler option, then along the path specified by the INCLUDE
environment variable.

The preprocessor stops searching as soon as it finds a file with the given name. If you
specify a complete, unambiguous path specification for the include file between two sets
of double quotation marks (" "), the preprocessor searches only that path specification and
ignores the standard directories.

If the filename enclosed in double quotation marks is an incomplete path specification, the
preprocessor first searches the "parent" file's directory. A parent file is the file containing
the #include directive. For example, if you include a file named fi 1 e2 within a file named
fi 1 el, fi 1 el is the parent file.

Language Reference 21

Preprocessor Reference

Include files can be "nested"; that is, an #include directive can appear in a file named by
another #include directive. For example, fi 1 e2, above, could include fi 1 e3. In this case,
fi 1 el would still be the parent of fi 1 e2 but would be the "grandparent" of fi 1 e3.

When include files are nested, directory searching begins with the directories of the parent
file and then proceeds through the directories of any grandparent files. Thus, searching
begins relative to the directory containing the source currently being processed. If the file
is not found, the search moves to directories specified by the II compiler option. Finally,
the directories specified by the INCLUDE environment variable are searched.

The following example shows file inclusion using angle brackets:

#include <stdio.h>

This example adds the contents of the file named STDIO.H to the source program.
The angle brackets cause the preprocessor to search the directories specified by
the INCLUDE environment variable for STDIO.H, after searching directories
specified by the II compiler option.

The following example shows file inclusion using the quoted form:

#include "defs.h"

This example adds the contents of the file specified by DEFS.H to the source program.
The double quotation marks mean that the preprocessor searches the directory containing
the parent source file first.

Nesting of include files can continue up to 10 levels. Once the nested #include is
processed, the preprocessor continues to insert the enclosing include file into the
original source file.

Microsoft Specific ~

To locate includable source files, the preprocessor first searches the directories specified
by the II compiler option. If the II option is not present or fails, the preprocessor uses
the INCLUDE environment variable to find any include files within angle brackets.
The INCLUDE environment variable and II compiler option can contain multiple paths
separated by semicolons (;). If more than one directory appears as part of the II option or
within the INCLUDE environment variable, the preprocessor searches them in the order
in which they appear.

For example, the command

CL IID:\MSVC\INCLUDE MVPROG.C

causes the preprocessor to search the directory D:\MSVC\INCLUDE for include files such
as STDIO.H. The commands

SET INCLUDE=D:\MSVC\INCLUDE
CL MVPROG.C

have the same effect. If both sets of searches fail, a fatal compiler error is generated.

22 Language Reference

Chapter 1 The Preprocessor

If the filename is fully specified for an include file with a path that includes a colon
(for example, F:\MSVC\SPECIAL\INCL\TEST.H), the preprocessor follows the path.

For include files specified as #include "path-spec," directory searching begins with the
directory of the parent file and then proceeds through the directories of any grandparent
files. Thus, searching begins relative to the directory containing the source file containing
the #include directive being processed. If there is no grandparent file and the file has not
been found, the search continues as if the filename were enclosed in angle brackets.

END Microsoft Specific

The #line Directive
The #line directive tells the preprocessor to change the compiler's internally stored line
number and filename to a given line number and filename. The compiler uses the line
number and filename to refer to errors that it finds during compilation. The line number
usually refers to the current input line, and the filename refers to the current input file.
The line number is incremented after each line is processed.

Syntax

#line
digit-sequence ''filename'' opt

The digit-sequence value can be any integer constant. Macro replacement can be
performed on the preprocessing tokens, but the result must evaluate to the correct syntax.
The filename can be any combination of characters and must be enclosed in double
quotation marks (" "). Iffilename is omitted, the previous filename remains unchanged.

You can alter the source line number and filename by writing a #line directive. The
translator uses the line number and filename to determine the values of the predefined
macros __ FILE __ and __ LINE __ . You can use these macros to insert self-descriptive
error messages into the program text. For more information on these predefined macros,
see Predefined Macros.

The __ FILE __ macro expands to a string whose contents are the filename, surrounded by
double quotation marks (" ").

If you change the line number and filename, the compiler ignores the previous values and
continues processing with the new values. The #line directive is typically used by program
generators to cause error. messages to refer to the original source file instead of to the
generated program.

Language Reference 23

Preprocessor Reference

The following examples illustrate #line and the __ LINE __ and __ FILE __ macros.

In this statement, the internally stored line number is set to 151 and the filename is
changed to copy. c.

tiline 151 "copy.c"

In this example, the macro ASSERT uses the predefined macros __ LINE __ and
__ FILE __ to print an error message about the source file if a given "assertion" is not true.

tldefine ASSERT(cond)

if(!(cond))\
{printf("assertion error line %d. file(%s)\n". \
__ LI N E __ • __ FI L E__);}

The Null Directive
The null preprocessor directive is a single number sign (#) alone on a line. It has no effect.

Syntax

The #undef Directive
As its name implies, the #Undef directive removes (undefines) a name previously created
with #deflne.

Syntax

#Undef
identifier

The #Undef directive removes the current definition of identifier. Consequently,
subsequent occurrences of identifier are ignored by the preprocessor. To remove a macro
definition using #Undef, give only the macro identifier; do not give a parameter list.

You can also apply the #Undef directive to an identifier that has no previous definition.
This ensures that the identifier is undefined. Macro replacement is not performed within
#Undef statements.

The #Undef directive is typically paired with a #deflne directive to create a region in a
source program in which an identifier has a special meaning. For example, a specific
function of the source program can use manifest constants to define environment-specific
values that do not affect the rest of the program. The #Undef directive also works with the
#if directive to control conditional compilation of the source program. See The #if, Iklif,
#else, and #endif Directives for more information.

24 Language Reference

Chapter 1 The Preprocessor

In the following example, the #Undef directive removes definitions of a symbolic constant
and a macro. Note that only the identifier of the macro is given.

1tdefine WIDTH
1tdefine ADD(X. Y)

1tundef WIDTH
lIundef ADD

Microsoft Specific ~

80
(X) + (Y)

Macros can be undefined from the command line using the IU option, followed by
the macro names to be undefined. The effect of issuing this command is equivalent to
a sequence of #Undef macro-name statements at the beginning of the file.

END Microsoft Specific

Preprocessor Operators
Four preprocessor-specific operators are used in the context of the #define directive
(see the following list for a summary of each). The stringizing, charizing, and
token-pasting operators are discussed in the next three sections. For information
on the defined operator, see The #if, #elif, #else, and #endif Directives.

Operator Action

Stringizing operator (#) Causes the corresponding actual argument to be enclosed in double
quotation marks

Chari zing operator (#@) Causes the corresponding argument to be enclosed in single quotation
marks and to be treated as a character (Microsoft Specific)

Token-pasting operator (##) Allows tokens used as actual arguments to be concatenated to form
other tokens

defined operator Simplifies the writing of compound expressions in certain macro directives

Stringizing Operator (#)
The number-sign or "stringizing" operator (#) converts macro parameters (after expansion)
to string constants. It is used only with macros that take arguments. If it precedes a formal
parameter in the macro definition, the actual argument passed by the macro invocation is
enclosed in quotation marks and treated as a string literal. The string literal then replaces
each occurrence of a combination of the stringizing operator and formal parameter within
the macro definition.

Language Reference 25

Preprocessor Reference

White space preceding the first token of the actual argument and following the last token
of the actual argument is ignored. Any white space between the tokens in the actual
argument is reduced to a single white space in the resulting string literal. Thus, if a
comment occurs between two tokens in the actual argument, it is reduced to a single white
space. The resulting string literal is automatically concatenated with any adjacent string
literals from which it is separated only by white space.

Further, if a character contained in the argument usually requires an escape sequence when
used in a string literal (for example, the quotation mark (") or backs lash (\) character), the
necessary escape backslash is automatically inserted before the character. The following
example shows a macro definition that includes the stringizing operator and a main
function that invokes the macro:

/ldefine stringer(x) printf(fix "\n")

void main()
{

}

stringer(In quotes in the printf function call\n);
stringer("In quotes when printed to the screen"\n);
stringer("This: \" prints an escaped double quote");

Such invocations would be expanded during preprocessing, producing the following code:

void main()
{

}

printf("In quotes in the printf function call\n" "\n");
printf("\"In quotes when printed to the screen\"\n" "\n");
printf("\"This: \\\" prints an escaped double quote\"" "\n");

When the program is run, screen output for each line is as follows:

In quotes in the printf function call

"In quotes when printed to the screen"

"This: \" prints an escaped double quotation mark"

Microsoft Specific ---t

The Microsoft C (versions 6.0 and earlier) extension to the ANSI C standard that
previously expanded macro formal arguments appearing inside string literals and character
constants is no longer supported. Code that relied on this extension should be rewritten
using the stringizing (#) operator.

END Microsoft Specific

26 Language Reference

Chapter 1 The Preprocessor

Charizing Operator (#@)
Microsoft Specific ~

The charizing operator can be used only with arguments of macros. If #@ precedes a
formal parameter in the definition of the macro, the actual argument is enclosed in single
quotation marks and treated as a character when the macro is expanded. For example:

#define makechar(x) #@x

causes the statement

a = makechar(b);

to be expanded to

a = 'b';

The single-quotation character cannot be used with the charizing operator.

END Microsoft Specific

Token-Pasting Operator (##)
The double-number-sign or "token-pasting" operator (#If), which is sometimes called
the "merging" operator, is used in both object-like and function-like macros. It permits
separate tokens to be joined into a single token and therefore cannot be the first or last
token in the macro definition.

If a formal parameter in a macro definition is preceded or followed by the token-pasting
operator, the formal parameter is immediately replaced by the unexpanded actual
argument. Macro expansion is not performed on the argument prior to replacement.

Then, each occurrence of the token-pasting operator in token-string is removed, and the
tokens preceding and following it are concatenated. The resulting token must be a valid
token. If it is, the token is scanned for possible replacement if it represents a macro name.
The identifier represents the name by which the concatenated tokens will be known in
the program before replacement. Each token represents a token defined elsewhere, either
within the program or on the compiler command line. White space preceding or following
the operator is optional.

Language Reference 27

Preprocessor Reference

This example illustrates use of both the stringizing and token-pasting operators in
specifying program output:

tidefine paster(n) printf("token" tin " = %d", tokenlNfn)
int token9 = 9;

If a macro is called with a numeric argument like

paster(9);

the macro yields

pri ntf("token" "9" " = %d", token9);

which becomes

printf("token9 %d", token9);

Macros
Preprocessing expands macros in all lines that are not preprocessor directives (lines that
do not have a # as the first non-white-space character) and in parts of some directives that
are not skipped as part of a conditional compilation. "Conditional compilation" directives
allow you to suppress compilation of parts of a source file by testing a constant expression
or identifier to determine which text blocks are passed on to the compiler and which text
blocks are removed from the source file during preprocessing.

The #detine directive is typically used to associate meaningful identifiers with constants,
keywords, and commonly used statements or expressions. Identifiers that represent
constants are sometimes called "symbolic constants" or "manifest constants." Identifiers
that represent statements or expressions are called "macros." In this preprocessor
documentation, only the term "macro" is used.

When the name of the macro is recognized in the program source text or in the arguments
of certain other preprocessor commands, it is treated as a call to that macro. The macro
name is replaced by a copy of the macro body. If the macro accepts arguments, the actual
arguments following the macro name are substituted for formal parameters in the macro
body. The process of replacing a macro call with the processed copy of the body is called
"expansion" of the macro call.

28 Language Reference

Chapter 1 The Preprocessor

In practical terms, there are two types of macros. "Object-like" macros take no arguments,
whereas "function-like" macros can be defined to accept arguments so that they look and
act like function calls. Because macros do not generate actual function calls, you can
sometimes make programs run faster by replacing function calls with macros. (In C++,
inline functions are often a preferred method.) However, macros can create problems if
you do not define and use them with care. You may have to use parentheses in macro
definitions with arguments to preserve the proper precedence in an expression. Also,
macros may not correctly handle expressions with side effects. See the get ran d om
example in The #define Directive for more information.

Once you have defined a macro, you cannot redefine it to a different value without first
removing the original definition. However, you can redefine the macro with exactly the
same definition. Thus, the same definition can appear more than once in a program.

The #Undef directive removes the definition of a macro. Once you have removed the
definition, you can redefine the macro to a different value. The #define Directive and
The #Undef Directive discuss the #define and #Undef directives, respectively.

Macros and C++
C++ offers new capabilities, some of which supplant those offered by the ANSI C
preprocessor. These new capabilities enhance the type safety and predictability of
the language:

• In C++, objects declared as const can be used in constant expressions. This allows
programs to declare constants that have type and value information, and enumerations
that can be viewed symbolically with the debugger. Using the preprocessor #define
directive to define constants is not as precise. No storage is allocated for a const object
unless an expression that takes its address is found in the program.

• The C++ inline function capability supplants function-type macros. The advantages of
using inline functions over macros are:

• Type safety. Inline functions are subject to the same type checking as normal
functions. Macros are not type safe.

• Correct handling of arguments that have side effects. Inline functions evaluate the
expressions supplied as arguments prior to entering the function body. Therefore,
there is no chance that an expression with side effects will be unsafe.

For more information on inline functions, see inline, __ inline.

For backward compatibility, all preprocessor facilities that existed in ANSI C and in earlier
C++ specifications are preserved for Microsoft C++.

Language Reference 29

Preprocessor Reference

Predefined Macros
The compiler recognizes six predefined ANSI C macros (see Table 1.1), and the
Microsoft C++ implementation provides several more (see Table 1.2). These macros
take no arguments and cannot be redefined. Their value (except for __ LINE __
and __ FILE __) must be constant throughout compilation. Some of the predefined
macros listed below are defined with multiple values. Their values can be set by
selecting the corresponding menu option in the Visual C++ development environment,
or by using a command-line switch. See the tables below for more information.

Table 1.1 ANSI Predefined Macros

Macro

TIMESTAMP __

Description

The compilation date of the current source file. The date is a string literal of
the form Mmm dd yyyy. The month name Mmm is the same as for dates
generated by the library function asctime declared in TIME.H.

The name of the current source file. __ FILE __ expands to a string
surrounded by double quotation marks.

The line number in the current source file. The line number is a decimal
integer constant. It can be altered with a #line directive.

Indicates full conformance with the ANSI C standard. Defined as the integer
constant 1 only if the IZa compiler option is given and you are not compiling
C++ code; otherwise·is undefined.

The most recent compilation time of the current source file. The time is a
string literal of the form hh:mm:ss.

The date and time of the last modification of the current source file, expressed
as a string literal in the form Ddd Mmm Date hh:mm:ss yyyy, where Ddd is
the abbreviated day of the week and Date is an integer from 1 to 31.

Table 1.2 Microsoft-Specific Predefined Macros

Macro Description

_CHAR_UNSIGNED

__ cplusplus

_CPPRTTI

_CPPUNWIND

_DLL

_M_ALPHA

30 Language Reference

Default char type is unsigned. Defined when IJ is specified.

Defined for C++ programs only.

Defined for code compiled with lOR (Enable Run-Time Type Information).

Defined for code compiled with lOX (Enable Exception Handling).

Defined when IMD or IMDd (Multithread DLL) is specified.

Defined for DEC ALPHA platforms. It is defined as 1 by the
ALPHA compiler, and it is not defined if another compiler is used.

Chapter 1 The Preprocessor

Table 1.2 Microsoft-Specific Predefined Macros (continued)

Macro Description

Defined for x86 processors. See Table 1.3 for more details.

Defined for Power Macintosh platforms. Default is 601 (lQP601).
See Table 1.4 for more details.

Defined for MIPS platforms. Default is 4000 (lQMR4000).
See Table 1.5 for more details.

Defined for PowerPC platforms. Default is 604 (lQP604).
See Table 1.6 for more details.

Defines the MFC version. Defined as Ox0421 for
Microsoft Foundation Class Library 4.21. Always defined.

This macro is defined when compiling with the IZe compiler option
(the default). Its value, when defined, is 1.

Defines the compiler version. Defined as 1200 for Microsoft Visual C++ 6.0.
Always defined.

Defined when IMD or IMDd (Multithreaded DLL) or IMT or IMTd
(Multithreaded) is specified.

Defined for applications for Win32. Always defined.

As shown in following tables, the compiler generates a value for the preprocessor
identifiers that reflect the processor option specified.

Table 1.3 Values for _M_IX86

Option in Developer Studio Command-Line Option

Blend 1GB

Pentium

Pentium Pro

80386

80486

IG5

IG6

IG3

IG4

Resulting Value

_M_IX86 = 500 (Default. Future compilers will
emit a different value to reflect the dominant
processor.)

_M_IX86 = 500

_M_IX86 = 600

_M_IX86 = 300

_M_IX86 = 400

Language Reference 31

Preprocessor Reference

Table 1.4 Values for _M_MPPC

Option in development Command-Line Option Resulting Value
environment

PowerPC 601 IQP601 _M_MPPC = 601 (Default)

PowerPC 603 IQP603 _M_MPPC = 603

PowerPC 604 IQP604 _M_MPPC = 604

PowerPC 620 IQP620 _M_MPPC = 620

Table 1.5 Values for _M_MRXOOO

Option in Developer Studio Command-Line Option Resulting Value

R4000 IQMR4000 _M_MRXOOO = 4000 (Default)

R4100 IQMR4100 _M_MRXOOO = 4100

R4200 IQMR4200 _M_MRXOOO = 4200

R4400 IQMR4400 _M_MRXOOO = 4400

R4600 IQMR4600 _M_MRXOOO = 4600

R10000 IQMRIOOOO _M_MRXOOO = 10000

Table 1.6 Values for _M_PPC

Option in Developer Studio Command-Line Option Resulting Value

PowerPC 601

PowerPC 603

PowerPC 604

PowerPC 620

32 Language Reference

IQP601

IQP603

IQP604

IQP620

_M_PPC=601

_M_PPC =603

_M_PPC = 604 (Default)

_M_PPC=620

CHAPTER 2

Pragma Directives

Each implementation of C and c++ supports some features unique to its host machine
or operating system. Some programs, for instance, need to exercise precise control over
the memory areas where data is placed or to control the way certain functions receive
parameters. The #pragma directives offer a way for each compiler to offer machine
and operating-system-specific features while retaining overall compatibility with the
C and c++ languages. Pragmas are machine- or operating-system-specific by definition,
and are usually different for every compiler.

Syntax

#pragma token-string

The token-string is a series of characters that gives a specific compiler instruction and
arguments, if any. The number sign (#) must be the first non-white-space character on
the line containing the pragma; White-space characters can separate the number sign
and the word pragma. Following #pragma, write any text that the translator can parse
as preprocessing tokens. The argument to #pragma is subject to macro expansion.

If the compiler finds a pragma it does not recognize, it issues a warning, but compilation
continues.

Pragmas can be used in conditional statements, to provide new preprocessor functionality,
or to provide implementation-defined information to the compiler. The C and c++
compilers recognize the following pragmas:

alloc_text comment iniCseg* optimize

auto_inline component inline_depth pack

bss_seg data_seg inline_recursion pointers_to_members*

check_stack function intrinsic setlocale

code_seg hdrstop message vtordisp*

consCseg include_alias once warning

* Supported only by the c++ compiler.

Language Reference 33

Preprocessor Reference

Pragmas Specific to the C++ Compiler
The following pragma directives are specific to the c++ compiler:

• iniCseg

• pointers_to_members

• vtordisp

c++ Specific ~

#pragma iniCseg({ compiler I lib I user I "section-name" [, ''June-name'']})

Specifies a keyword or code section that affects the order in which startup code is
executed. Because initialization of global static objects can involve executing code,
you must specify a keyword that defines when the objects are to be constructed. It is
particularly important to use the init_seg pragma in dynamic-link libraries (DLLs)
or libraries requiring initialization.

The option~ to the init_seg pragma are:

compiler

lib

Reserved for Microsoft C run-time library initialization. Objects in this group are
constructed first.

Available for third-party class-library vendors' initializations. Objects in this group
are constructed after those marked as compiler but before any others.

user
Available to any user. Objects in this group are constructed last.

section-name
Allows explicit specification of the initialization section. Objects in a user-specified
section-name are not implicitly constructed; however, their addresses are placed in the
section named by section-name.

June-name
Specifies a function to be called in place of exitO when the program exits. The function
specified must have the same signature as the exit function:

int funcname(void (__ cdecl *)(void));

If you need to defer initialization (for example, in a DLL), you may choose to specify the
section name explicitly. You must then call the constructors for each static object.

END C++ Specific

34 Language Reference

Chapter 2 Pragma Directives

pointers_to_members
c++ Specific ~

#pragma pointers_to_members(pointer-declaration, [most-general-representation])

Specifies whether a pointer to a class member can be declared before its associated
class definition and is used to control the pointer size and the code required to interpret
the pointer. You can place a pointers_to_members pragma in your source file as an
alternative to using the Ivrnx compiler options.

The pointer-declaration argument specifies whether you have declared a pointer to a
member before or after the associated function definition. The pointer-declaration
argument is one of the following two symbols:

Argument

full_generality

Comments

Generates safe, sometimes nonoptimal code. You use full~enerality if
any pointer to a member is declared before the associated class definition.
This argument always uses the pointer representation specified by the
most-general-representation argument. Equivalent to Ivmg.

Generates safe, optimal code using best-case representation for all pointers
to members. Requires defining the class before declaring a pointer to a
member of the class. The default is best_case.

The most-general-representation argument specifies the smallest pointer representation
that the compiler can safely use to reference any pointer to a member of a class in a
translation unit. The argument can be one of the following:

Argument

single_inheritance

multiple_inheritance

virtuaCinheritance

END C++ Specific

Comments

The most general representation is single-inheritance, pointer to a
member function. Causes an error if the inheritance model of a class
definition for which a pointer to a member is declared is ever either
multiple or virtual.

The most general representation is multiple-inheritance, pointer to
a member function. Causes an error if the inheritance model of a
class definition for which a pointer to a member is declared is virtual.

The most general representation is virtual-inheritance, pointer
to a member function. Never causes an error. This is the
default argument when #pragma pointers_to_members(full~enerality)
is used.

Language Reference 35

Preprocessor Reference

vtordisp
c++ Specific ~

#pragma vtordisp({on I off})

Enables the addition of the hidden vtordisp construction/destruction displacement
member. The vtordisp pragma is applicable only to code that uses virtual bases. If a
derived class overrides a virtual function that it inherits from a virtual base class, and if
a constructor or destructor for the derived class calls that function using a pointer to the
virtual base class, the compiler may introduce additional hidden "vtordisp" fields into
classes with virtual bases.

The vtordisp pragma affects the layout of classes that follow it. The /vdO and /vdl options
specify the same behavior for complete modules. Specifying off suppresses the hidden
vtordisp members. Specifying on, the default, enables them where they are necessary. Tum
off vtordisp only if there is no possibility that the class's constructors and destructors call
virtual functions on the object pointed to by the this pointer.\

#pragma vtordisp(off)
class GetReal : virtual public { ... };
#pragma vtordisp(on)

END C++ Specific

C and C++ Compiler Pragmas
The following pragmas are defined for both the C and c++ compilers:

alloc_text component inicseg*

auto_inline consCseg inline_depth

bss_seg data_seg inline _recursion

check_stack function intrinsic

code_seg hdrstop message

comment include_alias once

* Supported only by the C++ compiler.

#pragma alloc_text("textsection", functionl, ...)

optimize

pack

pointers_to_members*

setlocale

vtordisp*

warning

N ames the' code section where the specified function definitions are to reside. The pragma
must occur between a function declarator and the function definition for the named
functions.

36 Language Reference

Chapter 2 Pragma Directives

The alloc_text pragma does not handle C++ member functions or overloaded functions.
It is applicable only to functions declared with C linkage - that is, functions declared with
the extern "e" linkage specification. If you attempt to use this pragma on a function with
C++ linkage, a compiler error is generated.

Since function addressing using __ based is not supported, specifying section locations
requires the use of the alloc_text pragma. The name specified by textsection should be
enclosed in double quotation marks.

The alloc_text pragma must appear after the declarations of any of the specified functions
and before the definitions of these functions.

Functions referenced in an ~illoc_text pragma should be defined in the same module as
the pragma. If this is not done and an undefined function is later compiled into a different
text section, the error mayor may not be caught. Although the program will usually run
correctly, the function will not be allocated in the intended sections.

Other limitations on alloc_text are as follows:

• It cannot be used inside a function.

• It must be used after the function has been declared, but before the function has
been defined.

#pragma auto_inUne([{on I off}])

Excludes any functions defined within the range where off is specified from being
considered as candidates for automatic inline expansion. To use the auto_inUne pragma,
place it before and immediately after (not in) a function definition. The pragma takes effect
at the first function definition after thepragma is seen. Pragma auto_inUne does not apply
to explicit inline functions.

bss_seg
#pragma data_seg(r'section-name"[, "section-class"]])

Specifies the default section for unitialized data. The data_seg pragma has the same effect
but works with initialized or unitialized data. In some cases, you can use bss_seg to speed
up your load time by putting all unitialized data in one section.

#pragma bss_seg("MY_DATA")

causes uninitialized data allocated following the #pragma statement to be placed in a
section called MY_DATA.

Data allocated using the bss_seg pragma does not retain any information about its location.

The second parameter, section-class, is included for compatibilty with versions of
Visual C++ prior to version 2.0, and is now ignored.

Language Reference 37

Preprocessor Reference

#pragma check_stack([{on I off}])
#pragma check_stack {+ I - }

Instructs the compiler to tum off stack probes if off (or -) is specified, or to tum on stack
probes if on (or +) is specified. If no argument is given, stack probes are treated according
to the default. This pragma takes effect at the first function defined after the pragma is
seen. Stack probes are not a part of macros nor of functions that are generated inline.

If you don't give an argument for the check_stack pragma, stack checking reverts to the
behavior specified on the command line. For more information, see "Compiler Reference."
The interaction of the #pragma check_stack and the /Gs option is summarized in
Table 2.1.

Table 2.1 Using the check_stack Pragma

Syntax Compiled with /Gs option?

#pragma check_stack() or
#pragma check_stack

#pragma check_stack() or
#pragma check_stack

#pragma check_stack(on) or
#pragma check_stack +

#pragma check_stack(off) or
#pragma check_stack -

cOde_seg

Yes

No

Yes or no

Yes or no

#pragma code_seg(r'section-name"[, "section-class"]])

Action

Turns off stack checking
for functions that follow

Turns on stack checking for
functions that follow

Turns on stack checking for
functions that follow

Turns off stack checking for
functions that follow

Specifies a code section where functions are to be allocated. The code_seg pragma
specifies the default section for functions. You can, optionally, specify the class as well as
the section name. Using #pragma code_seg without a section-name string resets allocation
to whatever it was when compilation began.

38 Language Reference

Chapter 2 Pragma Directives

const_seg
#pragma const_seg(r'section-name"[, "section-class"]])

Specifies the default section for constant data. The data_seg pragma has. the same effect
but works with all data. You can use this pragma to put all your constant data in one
read-only section.

lipragma const_seg("MY_DATA")

causes constant data allocated following the #pragma statement to be placed in a section
called MY_DATA.

Data allocated using the const_seg pragma does not retain any information about its
location.

The second parameter, section-class, is included for compatibilty with versions of
Visual C++ prior to version 2.0, and is now ignored.

comment
#pragma comment(comment-type [, commentstring])

Places a comment record into an object file or executable file. The comment-type is one
of five predefined identifiers, described below, that specify the type of comment record.
The optional commentstring is a string literal that provides additional information for
some comment types. Because commentstring is a string literal, it obeys all the rules
for string literals with respect to escape characters, embedded quotation marks ("),
and concatenation.

compiler
Places the name and version number of the compiler in the object file. This comment
record is ignored by the linker. If you supply a commentstring parameter for this record
type, the compiler generates a warning.

exestr
Places commentstring in the object file. At link time, this string is placed in the
executable file. The string is not loaded into memory when the executable file is
loaded; however, it can be found with a program that finds printable strings in files.
One use for this comment-record type is to embed a version number or similar
information in an executable file.

Language Reference 39

Preprocessor Reference

lib
Places a library-search record in the object file. This comment type must be
accompanied by a commentstring parameter containing the name (and possibly the
path) of the library that you want the linker to search. Since the library name precedes
the default library-search records in the object file, the linker searches for this library
just as if you had named it on the command line. You can place multiple library-search
records in the same source file; each record appears in the object file in the same order
in which it is encountered in the source file.

linker
Places a linker option in the object file. You can use this comment-type to specify a
linker option instead placing the option on the Link tab of the Project Settings dialog
box. For example, you can specity the linclude option to force the inclusion of a symbol:

#pragma comment(linker, "/include: __ mySymbol")

user
Places a general comment in the object file. The commentstring parameter contains the
text of the comment. This comment record is ignored by the linker.

The following pragma causes the linker to search for the EMAPI.LIB library while linking.
The linker searches first in the current working directory and then in the path specified in
the LIB environment variable.

#pragma comment(lib, "emapi")

The following pragma causes the compiler to place the name and version number of the
compiler in the object file:

#pragma comment(compiler)

Note For comments that take a commentstring parameter, you can use a macro in any
place where you would use a string literal, provided that the macro expands to a string
literal. You can also concatenate any combination of string literals and macros that
expand to string literals. For example, the following. statement is acceptable:

#pragma comment (user, "Compi 1 ed on " __ DATE __ " at " __ TIME __)

component
#pragma component(browser, { on I off}[, references [, name]])
#pragma component(minrebuild, on I off)

Controls the collecting of browse information or dependency information from within
source files.

Browser

You can tum collecting on or off, and you can specify particular names to be ignored as
information is collected.

40 Language Reference

Chapter 2 Pragma Directives

U sing on or off controls the collection of browse information from the pragma forward.
For example:

#pragma component(browser. off)

stops the compiler from collecting browse information.

Note To tum on the collecting of browse information with this pragma, browse
information must first be enabled from the Project Settings dialog box or the
command line.

The references option can be used with or without the name argument. Using references
without name turns on or off the collecting of references (other browse information
continues to be collected, however). For example:

#pragma component(browser. off. references)

stops the compiler from collecting reference information.

U sing references with name and off prevents references to name from appearing in
the browse information window. Use this syntax to ignore names and types you are
not interested in and to reduce the size of browse information files. For example:

#pragma component(browser. off. references. DWORD)

ignores references to DWORD from that point forward. You can tum collecting of
references to DWORD back on by using on:

#pragma component(browser. on. references. DWORD)

This is the only way to resume collecting references to name; you must explicitly tum
on any name that you have turned off.

To prevent the preprocessor from expanding name (such as expanding NULL to 0),
put quotes around it:

#pragma component(browser. off. references. "NULL")

Minimal Rebuild

The Visual C++ minimal rebuild feature requires that the compiler create and store
C++ class dependency information, which takes disk space. To save disk space, you
can use 1fpragma component (mi nrebui 1 d. off) whenever you don't need to collect
dependency information, for instance, in unchanging header files. Insert #pragma
c omp 0 n en t (min reb u i 1 d. 0 n) after unchanging classes to tum dependency collection
back on.

For more information, see the Enable Minimal Rebuild (lGm) compiler option.

Language Reference 41

Preprocessor Reference

data_seg
#pragma data_seg(f'section-name"[, "section-class"]])

Specifies the default section for data. For example:

/lpragma data_seg("MY_DATA")

causes data allocated following the #pragma statement to be placed in a section
called MY_DATA.

Data allocated using the data_seg pragma does not retain any information about
its location.

The second parameter, section-class, is included for compatibilty with versions of
Visual c++ prior to version 2.0, and is now ignored.

function
#pragma function(jimctionl [,junction2, ...])

Specifies that calls to functions specified in the pragma's argument list be generated. If
you use the intrinsic pragma (or /Oi) to tell the compiler to generate intrinsic functions
(intrinsic functions are generated as inline code, not as function calls), you can use the
function pragma to explicitly force a function call. Once a function pragma is seen, it
takes effect at the first function definition containing a specified intrinsic function. The
effect continues to the end of the source file or to the appearance of an intrinsic pragma
specifying the same intrinsic function. The function pragma can be used only outside
of a function - at the global level.

For lists of the functions that have intrinsic forms, see #pragma intrinsic.

hdrstop
#pragma hdrstop [(''filename'')]

Controls the way precompiled headers work.. The filename is the name of the precompiled
header file to use or create (depending on whether lYu or IYc is specified). Iffilename
does not contain a path specification, the precompiled header file is assumed to be in the
same directory as the source file. Any filename is ignored when IYX, the automatic
precompiled header option, is specified.

If a C or C++ file contains a hdrstop pragma when compiled with either IYX or IY c, the.
compiler saves the state of the compilation up to the location of the pragma. The compiled
state of any code that follows the pragma is not saved.

42 Language Reference

Chapter 2 Pragma Directives

The hdrstop pragma cannot occur inside a header file. It must occur in the source file at
the file level; that is, it cannot occur within any data or function declaration or definition.

Note The hdrstop pragma is ignored unless either the IYX option is specified or
the lYu or IY c option is specified without a filename.

Use filename to name the precompiled header file in which the compiled state is
saved. A space between hdrstop and filename is optional. The filename specified in
the hdrstop pragma is a string and is therefore subject to the constraints of any C or
C++ string. In particular, you must enclose it in quotation marks as shown in the
following example:

f/pragma hdrstop("c:\projects\include\myinc.pch")

The name of the precompiled header file is determined according to the following rules,
in order of precedence:

1. The argument to the /Fp compiler option

2. The filename argument to #pragma hdrstop

3. The base name of the source file with a .PCB extension

#pragma include_alias("longJilename", "shortJilename")
#pragma include_alias(<longJilename>, <shortJilename>)

Specifies that shortJilename is to be used as an alias for longJilename. Some file
systems allow longer header filenames than the 8.3 FAT file system limit. The
compiler cannot simply truncate the longer names to 8.3, because the first eight
characters of the longer header filenames may not be unique. Whenever the compiler
encounters the longJilename string, it substitutes shortJilename, and looks for the
header file shortJilename instead. This pragma must appear before the corresponding
#include directives. For example:

II First eight characters of these two files not unique.
f/pragma inc 1 ude_a 1 i as ("App 1 eSystemHeade rOui ckd raw. h", "qu i c kd ra. h"
f/pragma include_alias("AppleSystemHeaderFruit.h", "fruit.h")

/lpragma include_alias("GraphicsMenu.h", "gramenu.h")

/linclude "AppleSystemHeaderOuickdraw.h"
/linclude "AppleSystemHeaderFruit.h"
/linclude "GraphicsMenu.h"

Language Reference 43

Preprocessor Reference

The alias being searched for must match the specification exactly, in case as well as
in spelling and in use of double quotation marks or angle brackets. The include_alias
pragma performs simple string matching on the filenames; no other filename validation
is performed. For example, given the following directives,

/lpragma include_aliasC"mymath.h", "math.h")
/linclude "./mymath.h"
/linclude "sys/mymath.h"

no aliasing (substitution) is performed, since the header file strings do not match exactly.
Also, header filenames used as arguments to the IYu, IYc, and IYX compiler options, or
the hdrstop pragma, are not substituted. For example, if your source file contains the
following directive,

/linclude <AppleSystemHeaderStop.h>

the corresponding compiler option should be

IYcAppleSystemHeaderStop.h

You can use the include_alias pragma to map any header filename to another. For example:

/lpragma include_al iasC "api .h"., "c:\version1.0\api .h"
/lpragma include_aliasC <stdio.h>, <newstdio.h>)
/linclude "api .h"
/linclude <stdio.h>

Do not mix filenames enclosed in double quotation marks with filenames enclosed in
angle brackets. For example, given the above two #pragma include_alias directives,
the compiler performs no substitution on the following #include directives:

/linclude <api .h>
/linclude "stdio.h"

Furthermore, the following directive generates an error:

/lpragma include_aliasC<header.h>, "header.h") II Error

Note that the filename reported in error messages, or as the value of the predefined
__ FILE __ macro, is the name of the file after the substitution has been performed.
For example, after the following directives,

/lpragma include_aliasC "VeryLongFileName.H", "myfile.h")
/linclude "VeryLongFileName.H"

an error in VERYLONGFILENAME.H produces the following error message:

myfile.h(15) : error C2059 : syntax error

Also note that transitivity is not supported. Given the following directives,

Ifpragma include_aliasC "one.h", "two.h")
/lpragma include_aliasC "two.h", "three.h")
/linclude "one.h"

the compiler searches for the file TWO.H rather than THREE.H.

44 Language Reference

Chapter 2 Pragma Directives

#pragma inline_depth([0 ... 255])

Controls the number of times inline expansion can occur by controlling the number of
times that a series of function calls can be expanded (from 0 to 255 times). This pragma
controls the inlining of functions marked inUne and __ inUne or inlined automatically
under the IOb2 option.

The inline_depth pragma controls the number of times a series of function calls can be
expanded. For example, if the inline depth is four, and if A calls Band B then calls C,
all three calls will be expanded inline. However, if the closest inline expansion is two,
only A and B are expanded, and C remains as a function call.

To use this pragma, you must set the lab compiler option to 1 or 2. The depth set using
this pragma takes effect at the first function call after the pragma. If you do not specify
a value within the parentheses, inUne_depth sets the inline depth back to its default
value of 8.

The inline depth can be decreased during expansion but not increased. If the inline depth
is six and during expansion the preprocessor encounters an inline_depth pragma with a
value of eight, the depth remains six.

An inline depth of 0 inhibits inline expansion; an inline depth of 255 places no limit on
inline expansion. If either pragma is used without specifying a value, the default value
is used.

inline_recursion
#pragma inUne_recursion([{on I off}])

Controls the inline expansion of direct or mutually recursive function calls. Use this
pragma to control functions marked as inUne and __ inline or functions that the compiler
automatically expands under the IOb2 option. Use of this pragma requires an lab compiler
option setting of either 1 or 2. The default state for inUne_recursion is off. This pragma
takes effect at the first function call after the pragma is seen and does not affect the
definition of the function.

The inline_recursion pragma controls how recursive functions are expanded. If
inline_recursion is off, and if an inline function calls itself (either directly or indirectly),
the function is expanded only once. If inUne_recursion is on, the function is expanded
mUltiple times until the value of inUne_depth is reached or capacity limits are reached.

Language Reference 45

Preprocessor Reference

intrinsic
#pragma intrinsic(junctioni [,junction2, ... J)

Specifies that calls to functions specified in the pragma's argument listare intrinsic. The
compiler generates intrinsic functions as inline code,. not as function calls. The library
functions with intrinsic forms are listed below. Once an intrinsic pragma is seen, it takes
effect at the first function definition containing a specified intrinsic function. The effect
continues to the end of the source file or to the appearance of a function pragma specifying
the same intrinsic function. The intrinsic pragma can be used only outside of a function
definition - at the global level.

The following functions have intrinsic forms:

- disable _outp fabs strcmp

- enable _outpw labs strcpy

_inp _rotI memcmp strlen

_inpw _rotr memcpy

lrotI strset memset - -

_lrotr abs strcat

Programs that use intrinsic functions are faster because they do not have the overhead
of function calls but may be larger due to the additional code generated.

Note The _alloca and setjmp functions are always generated inline; this behavior
is not affected by the intrinsic pragma.

The floating-point functions listed below do not have true intrinsic forms. Instead they
have versions that pass arguments directly to the floating-point chip rather than pushing
them onto the program stack:

acos cosh

asin fmod

pow

sinh

tanh

The floating-point functions listed below have true intrinsic forms when you specify both
the 10i and lag compiler options (or any option that includes lag: lax, 101, and 102):

atan exp log 1 0 sqrt

atan2 log sin tan

cos

You can use the lap or IZa compiler option to override generation of true intrinsic
floating-point options. In this case, the functions are generated as library routines that
pass arguments directly to the floating-point chip instead of pushing them onto the
program stack.

46 Language Reference

Chapter 2 Pragma Directives

message
#pragma message(messagestring)

Sends a string literal to the standard output without terminating the compilation. A typical
use of the message pragma is to display informational messages at compile time.

The following code fragment uses the message pragma to display a message during
compilation:

#if _M_IX86 == 500
#pragma message("Pentium processor build")
#endif

The messagestring parameter can be a macro that expands to a string literal, and you
can concatenate such macros with string literals in any combination. For example, the
following statements display the name of the file being compiled and the date and time
when the file was last modified:

#pragma message("Compi 1 i ng " __ FI LE __)
#pragma message("Last modified on " __ TIMESTAMP __

once
#pragma once

Specifies that the file, in which the pragma resides, will be included (opened) only once
by the compiler in a build. A common use for this pragma is the following:

IIheader.h
#pragma once
II Your C or C++ code would follow:

optimize
#pragma optimize("[optimization-list]", {on I off})

Feature Only in Professional and Enterprise Edition Code optimization is supported
only in Visual C++ Professional and Enterprise Editions. For more information, see
Microsoft Visual C++ Editions online.

Specifies optimizations to be performed on a function-by-function basis. The optimize
pragma must appear outside a function and takes effect at the first function defined
after the pragma is seen. The on and off arguments tum options specified in the
optimization-list on or off.

Language Reference 47

Preprocessor Reference

The optimization-list can be zero or more of the parameters shown in Table 2.2.

Table 2.2 Parameters of the optimize Pragma

Parameter(s) Type of optimization

a

g

p

s or t

w

y

Assume no aliasing.

Enable global optimizations.

Improve floating-point consistency.

Specify short or fast sequences of machine code.

Assume no aliasing across function calls.

Generate frame pointers on the program stack.

These are the same letters used with the 10 compiler options. For example,

1fpragma optimi ze("atp", on)

U sing the optimize pragma with the empty string (" ") is a special form of the directive.
It either turns off all optimizations or restores them to their original (or default) settings.

ifpragma optimize("", off)

ifpragma optimize(, on)

pack
#pragma pack([n])

Specifies packing alignment for structure and union members. Whereas the packing
alignment of structures and unions is set for an entire translation unit by the IZp option,
the packing alignment is set at the data-declaration level by the pack pragma. The pragma
takes effect at the first structure or union declaration after the pragma is seen; the pragma
has no effect on definitions.

When you use #pragma pack(n), where n is 1,2,4, 8, or 16, each structure member after
the first is stored on the smaller member type or n-byte boundaries. If you use #pragma
pack without an argument, structure members are packed to the value specified by IZp.
The default /Zp packing size is /Zp8.

The compiler also supports the following enhanced syntax:

#pragma pack([[{pushlpop},] [identifier,]] [n])

48 Language Reference

Chapter 2 Pragma Directives

This syntax allows you to combine program components into a single translation unit
if the different components use pack pragmas to specify different packing alignments.

Each occurrence of a pack pragma with a push argument stores the current packing
alignment on an internal compiler stack. The pragma's argument list is read from left
to right. If you use push, the current packing value is stored. If you provide a value for
n, that value becomes the new packing value. If you specify an identifier, a name of
your choosing, the identifier is associated with the new packing value.

Each occurrence of a pack pragma with a pop argument retrieves the value at the top
of an internal compiler stack and makes that value the new packing alignment. If you
use pop and the internal compiler stack is empty, the alignment value is that set from
the command-line and a warning is issued. If you use pop and specify a value for n,
that value becomes the new packing value. If you use pop and specify an identifier,
all values stored on the stack are removed from the stack until a matching identifier is
found. The packing value associated with the identifier is also removed from the stack
and the packing value that existed just before the identifier was pushed becomes the
new packing value. If no matching identifier is found, the packing value set from the
command line is used and a level-one warning is issued. The default packing alignment
is 8.

The new, enhanced functionality of the pack pragma allows you to write header files
that ensure that packing values are the same before and after the header file is encountered:

/* File name: include!.h
*/
#pragma pack(push. enter_include!
/* Your include-file code ... */
#pragma pack(pop. enter_include!
/* End of include!.h */

In the previous example, the current pack value is associated with the identifier
enter _i ncl ude! and pushed, remembered, on entry to the header file. The pack
pragma at the end of the header file removes all intervening pack values that may
have occurred in the header file and removes the pack value associated with
en t e r _ inc 1 u de!. The header file thus ensures that the pack value is the same before
and after the header file.

The new functionality also allows you to use code, such as header files, that uses pack
pragmas to set packing alignments that differ from the packing value set in your code:

#pragma pack(push. before_include!)
#include "include!.h"
#pragma pack(pop. before_include!)

In the previous example, your code is protected from any changes to the packing value that
might occur in i ncl ude. h.

Language Reference 49

Preprocessor Reference

setlocale
#pragma setlocale("locale-string")

Defines the locale (country and language) to be used when translating wide-character
constants and string literals. Since the algorithm for converting multibyte characters to
wide characters may vary by locale or the compilation may take place in a different locale
from where an executable file will be run, this pragma provides a way to specify the target
locale at compile time. This guarantees that the wide-character strings will be stored in the
correct format. The default locale-string is "C". The "C" locale maps each character in
the string to its value as a wchar_t (unsigned short).

warning
#pragma warning(warning-specifier: warning-number-list [,warning-specifier: warning-number-list ...])
#pragma warning(push[, n])
#pragma warning(pop)

Allows selective modification of the behavior of compiler warning messages.

The warning-specifier can be one of the following.

Warning-specifier

once

default

1,2,3,4

disable

error

Meaning

Display the specified message(s) only once.

Apply the default compiler behavior to the specified message(s).

Apply the given warning level to the specified warning message(s).

Do not issue the specified warning message(s).

Report the specified warnings as errors.

The warning-number-list can contain any warning numbers. Multiple options can be
specified in the same pragma directive as follows:

#pragma warning(disable: 4507 34; once: 4385; error: 164)

This is functionally equivalent to:

4fopragma warning(disable : 4507 34) II Disable warning messages
II 4507 and 34.

#pragma warning(once : 4385 II Issue warning 4385
II only once.

#pragma warning(error : 164 II Report warning 164
II as an error.

50 Language Reference

Chapter 2 Pragma Directives

For warning numbers greater than 4699, those associated with code generation, the
warning pragma has effect only when placed outside function definitions. The pragma
is ignored if it specifies a number greater than 4699 and is used inside a function. The
following example illustrates the correct placement of warning pragmas to disable,
and then restore, the generation of a code-generation warning message:

int a;
#pragma warning(disable: 4705)
void func()
{

a;

#pragma warning(default: 4705)

The warning pragma also supports the following syntax:

#pragma warning(push [,n])
#pragma warning(pop)

Where n represents a warning level (1 through 4).

The pragma warning(push) stores the current warning state for all warnings. The
pragma warning(push, n) stores the current state for all warnings and sets the global
warning level to n.

The pragma warning(pop) pops the last warning state pushed onto the stack.
Any changes made to the warning state between push and pop are undone. Consider
this example:

#pragma warning(push)
#pragma warning(disable 4705
1fpragma warning(disable 4706
#pragma warning(disable 4707
II Some code
1fpragma warning(pop)

At the end of this code, pop restores the state of all warnings (including 4705, 4706,
and 4707) to what it was at the beginning of the code.

When you write header files, you can use push and pop to ensure that changes to warning
states made by the user do not prevent your headers from compiling properly. Use push at
the beginning of the header and pop at the end. Suppose, for example, you have a header
that does not compile cleanly at warning level 4. The following code changes the warning
level to 3, then restores the original warning level at the end of the header:

#pragma warning(push. 3)
II Declarationsl definitions
#pragma warning(pop)

Language Reference 51

APPENDIX

Grammar Summary

This appendix describes the formal grammar of the preprocessor. It covers the syntax
of preprocessing directives and operators discussed in Chapter 1, "The Preprocessor,"
and Chapter 2, "Pragma Directives."

The following topics are included:

• Definitions

• Conventions

• Preprocessor Grammar

Definitions
Terminals are endpoints in a syntax definition. No other resolution is possible. Terminals
include the set of reserved words and user-defined identifiers.

Nonterminals are placeholders in the syntax. Most are defined elsewhere in this syntax
summary. Definitions can be recursive. The following nonterminals are defined in
Appendix A, "Grammar Summary," of the Microsoft Visual C++ 6.0 Language Reference
volume of the Microsoft Visual C++ 6.0 Reference Library:

constant, constant-expression, identifier, keyword, operator, punctuator

An optional component is indicated by the subscripted opt. For example, the following
indicates an optional expression enclosed in curly braces:

{ expressionopt }

Language Reference 53

Preprocessor Reference

Conventions
The conventions use different font attributes for different components of the syntax.
The symbols and fonts are as follows:

Attribute

nonterminal

#inc1ude

opt

default typeface

Description

Italic type indicates nonterminals.

Terminals in bold type are literal reserved words and symbols that must be
entered as shown. Characters in this context are always case sensitive.

Nonterminals followed by opt are always optional.

Characters in the set described or listed in this typeface can be used as
terminals in statements.

A colon (:) following a nonterminal introduces its definition. Alternative definitions are
listed on separate lines.

Preprocessor Grammar
#define identifier token-stringopt
#define identifier[(identifieropt, ... , identifieropt)] token-stringopt
defined(identifier)
defined identifier
#include "path-spec"
#include <path-spec>
#line digit-sequence ''filename'' opt

#Undef identifier
#error token-string
#pragma token-string

conditional :
if-part elif-partsopt else-partopt endif-line

if-part:
if-line text

if-line:
#if constant-expression
#ifdef identifier
#ifndef identifier

54 Language Reference

elif-parts :
elif-line text
elif-parts elif-line text

elif-line :
#elif constant-expression

else-part:
else-line text

else-line:
#else

endif-line :
#endif

digit-sequence :
digit
digit-sequence digit

digit: one of
0123456789

token-string :
String of tokens

token:
keyword
identifier
constant
operator
punctuator

filename:
Legal operating system filename

path-spec:
Legal file path

text:
Any sequence of text

Appendix Grammar Summary

Note The following nonterminals are expanded in Appendix A, "Grammar Summary,"
of the Microsoft Visual C++ 6.0 Language Reference: constant, constant-expression,
identifier, keyword, operator, and punctuator.

Language Reference 55

(number sign)
preprocessor directive 3
stringizing preprocessor operator

#define preprocessor directive 5
described 25-26

##, token-pasting preprocessor operator
#define preprocessor directive 5
described 27-28

#@, charizing preprocessor operator
#define preprocessor directive 5
described 27

/* */ delimiters, preprocessor directive 3
/ / single-line comment delimiters,

preprocessor directive 3

A
actual arguments, defined vii, 1
alloc_text pragma directive 36-37
arguments

actual, defined vii
besCcase, pointers_to _members

pragma directive 35
described 1
formal, defined vii
fulLgenerality, pointers_to_members

pragma directive 35
multiple_inheritance, pointers_to_members

pragma directive 35
single_inheritance, pointers_to _members

pragma directive 35
token-string 4-5
virtuaLinheritance, pointers_to_members

pragma directive 35
auto_inline pragma directive 37

B
backslash (\)

preprocessor directives
additional lines in #import 13
before newline character 4
end-of-line marker 3

backslash (\) (continued)
stringizing operator (#) 26
translation phases, lines ending in 2

(backslash)
preprocessor directives

additional lines in #import 13
before newline character 4
end-of-line marker 3

stringizing operator (#) 26
translation phases, lines ending in 2

besccase argument, pointers_to_members
pragma directive 35

bss_seg pragma directive 37

c
C and C++ compiler

pragma directives specific to
alloc_text 36-37
auto_inline 37
bss_seg 37
check_stack 38
code_seg 38
comment 39-40
component 40-41
consCseg 39
data_seg 42
function directive 42
hdrstop 42-43
include_alias 43-44
inline_depth 45
inline_recursion 45
intrinsic 46
list 36
message 47
once 47
optimize 47-48
pack 48-49
setlocale 50
warning 50-51

Index

Language Reference 57

Index

c++ compiler
pragma directives specific to

inicseg 34
overview 34
pointers_to_members 35
vtordisp 36

c++ preprocessor macros 29
_CHAR_UNSIGNED Microsoft-specific

predefined macro 30
character mapping, translation phases 2
characters, newline translation phases 2
character-set mapping, translation phases 2
charizing preprocessor operator (#@)

#define preprocessor directive 5
described 27

check_stack pragma directive
described 38
IGs compiler option (table) 38

code_seg pragma directive 38
comment pragma directive 39-40
compiler options

IE, IEP 1
IGm 41
IGs (table) 38
10 48
lOb 45
IOb2 45
10i 42
lOp 46
fY)(,fYu,fYc 42,43,44
IZa 46
IZp 48

compiler-time error messages,
#error preprocessor directive 6

component pragma directive
described 40-41
DWORD, effect 41
IGm compiler option 41
NULL preprocessor directive, effect 41

consCseg pragma directive 39
conventions grammar 54
_cplusplus Microsoft-specific

predefined macro 30
_ CPPRTTI Microsoft -specific

predefined macro 30
_ CPPUNWIND Microsoft-specific

predefined macro 30

58 Language Reference

o
data_seg pragma directive 42
DATE predefined macro 30
#define preprocessor directive

charizing (#@) operator 5
described 3,4-6
#ifdef and #ifndef used with 11
preprocessor operators (list) 25
stringizing (#) operator 5
token-pasting (##) operator 5
#Undef preprocessor directive,

effect on definition 5
vs. #Undef 24
without token-string 4

delimiters, (1* *1) preprocessor
directive 3

directives, preprocessor
See preprocessor directives

_DLL Microsoft-specific
predefined macro 30

DWORD, component pragma
directive effect 41

E
IE vs. IEP compiler options
#elif preprocessor directive 7-10
#else preprocessor directive 7-10
#endit preprocessor directive 7-10
#error preprocessor directive

compiler-time error messages 6
described 6

exclude attribute preprocessor
directive 15

F
FILE predefined macro 30
formal arguments, defined vii, 1
full-generality argument,

pointers_to_members
pragma directive 35

function pragma directive
described 42
10i compiler option 42

function-like macro, defined 29

G
10m compiler option,

component pragma directive 41
grammar

conventions 54
definitions 53
preprocessor 54-55
summary 53-55

lOs compiler option, check_stack
pragma directive (table) 38

H
hdrstop pragma directive

described 42-43
/yX, /Yu, /Y c compiler options 42-43

header file, primary type library
preprocessor directive

described 14-15
#import statement 14
#include statement 14

high_method_prefix attribute
preprocessor directive 16

high_property _prefixes attribute
preprocessor directive 16

#if defined preprocessor directive,
testing identifier 4

#if preprocessor directive
described 7-10
#ifdef and #ifndef used with 11

#ifdef preprocessor directive
described 3, 11
#ifdef and #ifndef used with 11
testing identifier 4

#ifndef preprocessor directive
described 11
#ifdef and #ifndef used with 11

implementation_only attribute
preprocessor directive

described 16-17
#import statement 16
#import, using with 17

#import preprocessor directive
attributes (list) 13
described 12-13
implementation_only attribute 17
#include, using with 12, 13
no_auto_exclude attribute 18
no_namespace attribute 18
rename attribute 20

#import statement
header file,

primary type library 14
implementation_only attribute

preprocessor directive 16
#include preprocessor directive

described 21-23
#import, using with 12, 13
no_implementation attribute 17

#include statement
header file,

primary type library 14
translation phases 2

include(...) attribute
preprocessor directive 17

include_alias pragma directive
described 43-44
/yX, /Y u, /Y c compiler

options 44
inicseg pragma directive 34
injecCstatement attribute

preprocessor directive 17
inline_depth pragma directive

described 45
lOb compiler option 45
IOb2 compiler option 45

inline_recursion pragma directive
described 45
lOb compiler option 45
IOb2 compiler option 45

intrinsic pragma directive
described 46
floating-point functions (list) 46
function pragma directive 42
functions (list) 46
lOp compiler option 46
IZa compiler option 46

Index

Language Reference 59

Index

L
library header file, preprocessor directive

See header file, primary type library
preprocessor directive

#line preprocessor directive 23-24
line splicing, translation phases 2
LINE predefined macro 30
linkage, translation phases 3

M
_M_ALPHA Microsoft-specific

predefined macro 30
_M_IX86 Microsoft -specific

predefined macro
described 31
values (table) 31

_M_MPPC Microsoft-specific
predefined macro

described 31
values (table) 32

_M_MRXOOO Microsoft-specific
predefined macro

described 31
values (table) 32

_M_PPC Microsoft-specific
predefined macro

described 31
values (table) 32

macros
ANSI predefined

DATE 30
FILE 30
LlNE 30
STDC 30
(table) 30
TIME 30
_TIMESTAMP _ 30

C++ preprocessor 29
function-like, defined 29
Microsoft-specific predefined

_CHAR_UNSIGNED 30
_cplusplus 30
_CPPRTTI 30
_CPPUNWIND 30
_DLL 30
_M_ALPHA 30
_M_IX86 values (table) 31
_M_IX86, described 31
_M_MPPC values (table) 32
_M_MPPC, described 31

60 Language Reference

_macros (continued)
Microsoft-specific predefined (continued)

M_MRXOOO values (table) 32
_M_MRXOOO, described 31
_M_PPC values (table) 32
_M_PPC, described 31
_MFC_VER 31
_MSC_EXTENSIONS 31
_MSC_VER 31
_MT 31
table 30-31
_WIN32 31

object-like, described 29
overview 28-29
predefined described 30

message pragma directive 47
MFC VER Microsoft-specific

predefined macro 31
_MSC_EXTENSIONS Microsoft-specific

predefined macro 31
MSC VER Microsoft-specific

predefined macro 31
_MT Microsoft-specific predefined macro 31
multiple_inheritance argument,

pointers_to_members pragma directive 35

N
named~uids attribute

preprocessor directive 17
newline character

backslash (\) before 4
translation phases 2

no_auto_exclude attribute
preprocessor directive

described 18
#import, using with 18

no_implementation attribute
preprocessor directive

described 17
#include, using with 17

no_namespace attribute
preprocessor directive

described 18
#import, using with 18

nonterminals 54
null preprocessor directive 24
number sign (#)

preprocessor directive 3
stringizing preprocessor operator

#define preprocessor directive 5
described 25-26

o
10 compiler options,

optimize pragma directive 48
lab compiler option

inline_depth pragma directive 45
inline_recursion pragma directive 45

IOb2 compiler option
inline_depth pragma directive 45
inline_recursion pragma directive 45

object-like macro, defined 29
objects, defined vii, 1
10i compiler option,

function pragma directive 42
once pragma directive 47
lap compiler option,

intrinsic pragma directive 46
operators, preprocessor

See preprocessor operators
optimize pragma directive

described 47-48

p

10 compiler options 48
parameters (table) 48

pack pragma directive
described 48-49
IZp compiler option 48

phases, translation See translation phases
pointers_to_members pragma directive

besCcase argument 35
described 35
full~enerality argument 35
multiple_inheritance argument 35
single_inheritance argument 35
virtuaCinheritance argument 35

pound sign (#) See number sign
pragma directives

C and C++ compiler specific
alloc_text 36-37
auto_inline 37
bss_seg 37
check_stack 38
code_seg 38
comment 39-40
component 40-41
consCseg 39
data_seg 42
function directive 42
hdrstop 42-43
include_alias 43-44
inline_depth 45
inline_recursion 45

pragma directives (continued)
C and C++ compiler specific (continued)

intrinsic 46
list 36
message 47
once 47
optimize 47-48
pack 48-49
setlocale 50
warning 50-51

C++ compiler specific
iniCseg 34
overview 34
pointers_to_members 35
vtordisp 36

overview 33
preprocessor reference (list) 33

predefined macros 30-32
preprocessing, translation phases 2
preprocessor

described 1
overview vii

preprocessor directives
backslash (\)

additional lines in #import 13
before newline character 4
end-of-line marker 3

#define
described 3,4-6
#ifdef and #ifndef used with 11
preprocessor operators (list) 25
without token-string 4

delimiters (1* *1) 3
described 3
#elif 7-10
#else 7-10
#endit 7-10
#error

compiler-time error messages 6
described 6

exclude attribute 15
header file, primary type library

described 14-15
#import statement 14
#include statement 14

high_method_prefix attribute 16
high_property _prefixes attribute 16
#if and #ifdef, testing identifier 4
#if

described 7-10
#ifdef and #ifndef used with 11

#ifdef 3, 11

Index

Language Reference 61

Index

#ifndef 11
implementation_only attribute

described 16-17
#import statement 16
#import, using with 17

#import
attributes (list) 13
described 12-13
#inc1ude, using with 12, 13

#inc1ude 21-23
inc1ude(...) attribute 17
injecCstatement attribute 17
#line 23-24
(list) 3
named_guids attribute 17
no_auto_exclude attribute

described 18
#import, using with 18

no_implementation attribute
described 17
#inc1ude, using with 17

no_namespace attribute
described 18
#import, using with 18

null 24
number signs (#) 3
raw _dispinterfaces attribute 18
raw_interfaces_onlyattribute 18
raw_method_prefix attribute 19
raw_native_types attribute 19
raw_property _prefixes attribute 19
rename attribute

described 20
#import, using with 20

rename_namespace attribute 20
single-line comment delimiters (II) 3
token-string argument 4-5
#Undef

described 24-25
effect on definition 5
#ifdef and #ifndef used with 11
vs. #define 24

preprocessor grammar 54-55
preprocessor macros See macros
preprocessor operators

charizing (#@) 27
(list) 25
overview 25
stringizing (#)

backslash (\) 26
described 25-26·

token-pasting (##) 27-28

62 Language Reference

prop get methods
high_property _prefixes attribute

preprocessor directive 16
raw _property -prefixes attribute 19

propput methods
high_property _prefixes

attribute preprocessor 16
raw _property _prefixes attribute 19

propputref methods
high_property...:prefixes attribute

preprocessor 16
raw _property _prefixes attribute 19

R
raw _dispinterfaces attribute

preprocessor directive 18
raw _interfaces_only attribute

preprocessor directive 18
raw _method_prefix attribute

preprocessor directive 19
raw _native_types attribute

preprocessor directive 19
raw _property _prefixes attribute

preprocessor directive 19
rename attribute preprocessor directive

described 20
#import, using with 20

rename_namespace attribute
preprocessor directive 20

s
setlocale pragma directive 50
single _inheritance argument,

pointers_to_members pragma
directive 35

single-line comment delimiters (II),
preprocessor directive 3

source code preprocessing,
IE or IEP compiler options 1

STDC predefined macro 30
string concatenation,

translation phases 2
stringizing preprocessor operator (#)

#define preprocessor directive 5
described 25-26

syntax summary 53-55

T
terminals 54
_ TIME_ predefined macro 30
_TIMESTAMP _ predefined macro 30
tokenization, translation phases 2
token-pasting preprocessor operator (##)

#define preprocessor directive 5
described 27-28

token-string argument,
preprocessor directive 4-5

translation phases
backlash (\), lines ending in 2
character mapping 2
character-set mapping 2
described 1-3
#include statement 2
line splicing 2
linkage 3
newline character 2
preprocessing 2
string concatenation 2
tokenization 2
translation tokens 3
units

communicate (list) 2
described 1-2

translation tokens,
translation phases 3

translation unit
communicate (list) 2
described 1-2

#Undef preprocessor directive
described 24-25
effect on definition 5
#ifdef and #ifndef used with 11
vs. #define 24

v
variables vii, 1
virtuaLinheritance argument,

pointers_to_members
pragma directive 35

vtordisp pragma directive 36

w
warning pragma directive

described 50-51
specifier (list) 50

_ WIN32 Microsoft-specific
predefined macro 31

IYX, IYu, IYc compiler options
hdrstop pragma directive 42-43
include_alias pragma directive 44

/Za compiler option,
intrinsic pragma directive 46

/Zp compiler option,
pack pragma directive 48

Index

Language Reference 63

BUI1d
for 32-bit Windows Q}atforms with

VISUal CHI

£46.99 [V.A.T. included)
Canada $66.99
ISBN 1-57231-565-2

Microsoft Press® products are available worldwide wherever quality
computer books are sold. For more information, contact your book or
computer retailer, software reseller, or local Microsoft Sales Office, or visit
our Web site at mspress.microsoft.com. To locate your nearest source for
Microsoft Press products, or to order directly, call1-800-MSPRESS in the
U.S. (in Canada, call 1-800-268-2222).

Prices and availability dates are subject to change.

Building on the solid achievements of three previous

editions, INSIDE VISUAL C++®, Fourth Edition, pre

sents detailed and comprehensive coverage of Visual

C++ and the intricacies of 32-bit programming in

Windows®. This book is loaded with inside information

and real-world examples to help you fully exploit the

capabilities of Microsoft's powerful and complex

development tool.

Microsoft Press has titles
to help everyon~e

from new users
to seasoned developers~

Step by Step Series
Self-paced tutorials for
classroom instruction or
individualized study Starts Here™ Series

Interactive instruction
on CD-ROM that helps
students learn by doing

Quick Course" Series
Fast, to-the-point
instruction for new users

Guide Series
Concise, task-oriented
A-Z references for
quick, easy answers
anywhere

Running Series

Official Series
Timely books on a wide
variety of Internet topics
geared for advanced
users

At a Glance Series
Quick visual guides for
task-oriented instruction

A comprehensive
curriculum alternative to
standard documentation
books

Microsoft Press@ products are available worldwide wherever quality
. computer books are sold. For more information, contact your book
or computer retailer, software reseller, or local Microsoft Sales Office,
or visit our Web site at mspress.microsoft.com. To locate your nearest
source for Microsoft Press products, or to order directly, call 1-800-
MSPRESS in the U.S. (in Canada, call 1-800-268-2222).

Prices and availability dates are subject to change.

start faster
and go farther!
The wide selection of books and CD-ROMs published by Microsoft Press contain

something for every level of user and every area of interest, from just-in-time

online training tools to development tools for professional programmers. Look

for them at your bookstore or computer store today!

Professional Select
Editions Series
Advanced titles geared
for the system
administrator or technical
support career path

Mlcrosoft® Certified
Professional Training
The Microsoft Official
Curriculum for
certification exams

Strategic Technology
Series

Best Practices Series
Candid accounts of
the new movement in
software development

Microsoft
Programming Series
The foundations of
software development

Microsoft Press"
Interactive
Integrated multimedia
courseware for all levels

Easy-to-read overviews
for decision makers

Microsoft
Professional Editions
Technical information
straight from the source

Solution Developer
Series
Comprehensive titles
for intermediate
to advanced developers

mspress.microsoft.c,)

Microsoft Press Online is your road map to the best

available print and multimedia materials-resources that will

help you maximize the effectiveness of Microsoft® software

products. Our goal is making it easy and convenient for you to find exactly

the Microsoft Press® book or interactive product you need, as well as bringing

you the latest in training and certification materials from Microsoft Press.

Where do you want to go today?®

ine

Part No. 097-0001952

Visual C++ 6.0
Language Reference
This is Volume Five of the five-volume Microsoft
Visual C++ 6.0 Reference Library. This reference
set is taken from the online product documentation
for Microsoft Visual C++ version 6.0, the
development system for the Win32® API. In its
printed form, this material is portable, easy to use,
and easy to browse-a comprehensive alternative to
the substantial online help system in Visual C++ 6.0.

MICROSOFT VISUAL C++ 6.0 LANGUAGE REFERENCE

Three books in one, this volume guides you through the
C and C++ languages and the preprocessor. The language
references cover terminology and concepts, programming
structures, functions, declarations, and expressions.
Additionally, the C++ reference covers classes, run-time type
information (RTII), and namespaces. The final' section of this
valuable resource, the preprocessor reference, discusses the
translation phases, preprocessor directives, predefined
macros, and pragmas.

mspress.microsoft.com

Microsoft Press

