
CD-ROM
Included

MICROSOn-e PROFESSIONAL EDITIONS

The comprehensive, must-have reference for .
anyone who develops drivers for Windows 2000

2CXX)

Driver Development
Reference .

Volume 1

IfIIICI'OSOl' ®

Driver Development .
Reference

Volume 1

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2000 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form
or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data pending.

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 WCWC 5 4 3 2 1 0

Distributed in Canada by Penguin Books Canada Limited.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further informa
tion about international editions, contact your local Microsoft Corporation office or contact Microsoft
Press International directly at fax (425) 936-7329. Visit our Web site at mspress.microsoft.com.

Macintosh and TrueType fonts are registered trademarks of Apple Computer, Inc. Kodak is a registered
trademark of Eastman Kodak Company. ActiveX, BackOffice, Direct3D, DirectAnimation, DirectDraw,
DirectInput, DirectMusic, DirectPlay, DirectShow, DirectSound, DirectX, JScript, Microsoft, Microsoft
Press, MS-DOS, MSN, Natural, NetShow, Visual Basic, Visual C++, WebTV, Win32, Win32s, Windows,
and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United
States andlor other countries. All rights reserved. Other product and company names mentioned herein may
be the trademarks of their respective owners.

The example companies, organizations, products, people, and events depicted herein are fictitious. No
association with any real company, organization, product, person, or event is intended or should be inferred.

Acquisitions Editor: Ben Ryan
Project Management and Production: Online Training Solutions, Inc.
Project Editor: John Pierce

Acknowledgments to: the Microsoft Corporation Windows 2000 Team

Part No. 097-0002733

iii

Contents

Part 1 Plug and Play ... 1

Chapter 1 Plug and Play Routines .. 3
IoAcquireRemoveLock .. 5

IoAcquireRemoveLockEx ... 7

IoAdjustPagingPathCount ... 7

IoGetDevicelnterfaceAlias .. 8

IoGetDevicelnterfaces ... 9

IoGetDeviceProperty ; .. 11

IoInitializeRemoveLock ... 15

IoInitializeRemoveLockEx .. 17

IoInvalidateDeviceRelations .. 17

IoInvalidateDeviceState .. 18

IoOpenDevicelnterfaceRegistry Key .. 19

IoOpenDeviceRegistryKey .. 20

IoRegisterDevicelnterface , 22

IoRegisterPlugPlayNotification ... 24

IoReleaseRemoveLock .. 27

IoReleaseRemoveLockEx ... 28

IoReleaseRemoveLockAndWait. ... 28

IoReleaseRemoveLockAndWaitEx ... 29

IoReportDetectedDevice .. 29

IoReportResourceForDetection ... 32

IoReportTargetDeviceChange ... 35

IoReportTargetDeviceChangeAsynchronous .. 36

IoRequestDeviceEject .. ~ 38

iv Windows 2000 Driver Development Reference, Volume 1

10SetDevicelnterfaceState .. 40

IoU nregisterPlugPlay Notification .. 42

Chapter 2 Plug and Play IRPs ... 43
IRP _MN_CANCEL_REMOVE_DEVICE .. 45

IRP _MN_CANCEL_STOP _DEVICE ... 46

IRP _MN_DEVICE_USAGE_NOTIFICATION 47

IRP _MN_EJECT .. 51

IRP _MN_FIL TER_RESOURCE_REQUIREMENTS 52

IRP _MN_QUERY _BUS_INFORMATION .. 54

IRP _MN_QUERY _CAPABILITIES ... 56

IRP _MN_ QUERY _DEVICE_RELATIONS ... 59

IRP _MN_QUERY _DEVICE_TEXT ... 64

IRP_MN_QUERY_ID ... 65

IRP_MN_QUERY_INTERFACE .. 69

IRP _MN_QUERY _LEGACY _BUS_INFORMATION 73

IRP _MN_QUERY_PNP _DEVICE_STATE ... 74

IRP _MN_QUERY _REMOVE_DEVICE .. 75

IRP _MN_QUERY_RESOURCE_REQUIREMENTS 76

IRP _MN_QUERY _RESOURCES ... 77

IRP _MN_ QUERY _STOP _DEVICE ... 78

IRP _MN_READ _ CONFIG .. 79

IRP_MN_REMOVE_DEVICE .. 82

IRP _MN_SET _LOCK ... 83

IRP _MN_START_DEVICE .. 84

IRP _MN_STOP _DEVICE ... 85

IRP _MN_SURPRISE_REMOVAL ... 87

IRP _MN_ WRITE_ CONFIG .. 88

Chapter 3 Plug and Play Structures ... 91
DEVICE_CAPABILITIES ... 91

DEVICE_INTERFACE_ CHANGE_NOTIFICATION 96

HWPROFILE_CHANGE_NOTIFICATION .. 97

LPGUID ... 98

PLUGPLAY_NOTIFICATION_HEADER ... 99

Contents v

PNP_DEVICE_STATE ... 100

TARGET_DEVICE_CUSTOM_NOTIFICATION 101

TARGET_DEVICE_REM OVAL_NOTIFICATION 103

Part 2 Power Management .. 105

Chapter 1 Power Management Support Routines 1 07
PoCallDriver .. 107

PoRegisterDeviceForIdleDetection ... 109

PoRegisterSystemState .. 111

PoRequestPowerIrp ... 112

PoSetDeviceBusy ... 115

PoSetPowerState .. 116

PoSetSystemState .. 118

PoStartNextPowerlrp ... 119

PoUnregisterSystemState ... 120

Chapter 2 1/0 Request for Power Management 121
IRP_MN_POWER_SEQUENCE .. 121

IRP_MN_QUERY_POWER ... 123

IRP _MN_SET_POWER .. 125

IRP _MN_ WAIT_ WAKE .. 129

Chapter 3 Battery Class Driver Routines 133
BatteryClassInitializeDevice ... 133

BatteryClassIoctl ... 135

BatteryClassStatusNotify ... 136

BatteryClassUnload ... 137

Chapter 4 Battery Miniclass Driver Routines 139
Battery MiniDisableStatusN otify .. 140

BatteryMiniQueryInformation ... 141

BatteryMiniQueryStatus .. 144

BatteryMiniQueryTag .. 146

BatteryMiniSetInformation .. 147

BatteryMiniSetStatusN otify ... 148

vi Windows 2000 Driver Development Reference, Volume 1

Chapter 5 Battery Structures .. 151
BATTERy_INFORMATION .. 151

BATTERy_MANUFACTURE_DATE ... 153

BATTERY _REPORTING_SCALE ... 154

Part 3 Setup ... 155

Chapter 1 INF File Sections and Directives 157
General Syntax Rules for INF Files ... 157

Looking at an INF· File ... 160

Summary of INF Sections ... 162

Summary of INF Directives ... 166

INF Version Section ... 169

INF SourceDisksN ames Section .. 173

INF SourceDisksFiles Section .. 175

INF ClassInsta1l32 Section ... 177

INF DestinationDirs Section .. 181

INF ControlFlags Section ... 184

INF Manufacturer Section .. 187

INF Models Section .. 188

INF DDInstall Section .. 191

INF DDInstall.Services Section ... 197

INF DDInstall.HW Section .. 200

INF DDInstall.CoInstallers Section .. 203

INF DDInstall.lnterfaces Section ... 208

INF InterfaceInsta1l32 Section ... 211

INF DDInstall.FactDef Section .. 213

INF Strings Section .. 215

INF AddReg Directive ... 218

INF DelReg Directive .. 224

. INF CopyFiles Directive .. 226

INF DelFiles Directive ... 231

INF RenFiles Directive .. 233

INF AddService Directive .. 235

INF DelService Directive ... 244

INF AddInterface Directive .. 245

Contents vii

INF BitReg Directive ... 248

INF LogConfig Directive ... '" ... 251

INF ProfileItems Directive .. 260

INF UpdateInis Directive ... 264

INF UpdateIniFields Directive .. 267

INF Ini2Reg Directive ... 270

Chapter 2 Setup Functions .. 273
INF File Processing Functions ... 274

Disk Prompting and Error Handling Functions 275

File Queuing Functions .. 276

Default Queue Callback Routine Functions .. 276

Cabinet File Function ... 277

Disk-Space List Functions ... 277

MRU Source List Functions .. 278

File Log Functions ... 279

Chapter 3 Device Installation Functions 281
Update Driver Function ... 282

SetupDi Device Information Functions ... 282

SetupDi Driver Information Functions .. 283

SetupDi Driver Selection Functions .. 283

SetupDi Device Installation Handlers .. 284

SetupDi Device Installation Customization Functions 284

SetupDi Setup Class Functions .. 285

SetupDi Class Bitmap and Icon Functions '" 286

SetupDi Device Interface Functions .. 286

SetupDi Registry Functions ; ... 287

Other SetupDi Functions ... 288

SetupDiAskForOEMDisk .. 289

SetupDiBuildClassInfoList .. 290

SetupDiBuildClassInfoListEx ... 291

SetupDiBuildDriverInfoList .. 292

SetupDiCallClassInstaller .. 294

SetupDiCancelDriverInfoSearch ... 295

SetupDiChangeState .; : ... 296

SetupDiClassGuidsFromName ... 297

viii Windows 2000 Driver Development Reference, Volume 1

SetupDiClassGuidsFromN ameEx .. 298

SetupDiClassN ameFromGuid .. 299

SetupDiClassN ameFromGuidEx .. 300

SetupDiCreateDeviceInfo ... 301

SetupDiCreateDeviceInfoList .. 303

SetupDiCreateDeviceInfoListEx .. 304

SetupDiCreateDeviceInterface ... 305

SetupDiCreateDeviceInterfaceRegKey .. 307

SetupDiCreateDevRegKey ... 308

SetupDiDeleteDeviceInfo ... 310

SetupDiDeleteDeviceInterfaceData ... ; ... 311

SetupDiDeleteDeviceInterfaceRegKey .. 312

SetupDiDeleteDevRegKey ... 313

SetupDiDestroyClassImageList ... 315

SetupDiDestroy DeviceInfoList .. 315

SetupDiDestroy Dri verInfoList ... 316

SetupDiDrawMiniIcon ... 317

SetupDiEnumDeviceInfo ... 319

SetupDiEnumDeviceInterfaces .. 320

SetupDiEnumDriverInfo .. 321

SetupDiGetActualSectionToInstall ... 322

SetupDiGetClassBitmapIndex .. 324

SetupDi GetClassDescription .. 325

SetupDiGetClassDescriptionEx ... 326

SetupDiGetClassDevs .. 327

SetupDiGetClassDevsEx .. 329

SetupDiGetClassImageIndex ... 332

SetupDiGetClassImageList .. 333

SetupDiGetClassImageListEx .. 333

SetupDiGetClassInstallParams ... 334

SetupDiGetDeviceInfoListClass .. 336

SetupDiGetDeviceInfoListDetail ... ~ ... 336

SetupDiGetDeviceInstallParams .. 338

SetupDiGetDeviceInstanceId ... 339

SetupDiGetDeviceInterfaceAlias ... 340

SetupDiGetDeviceInterfaceDetail .. 341

Contents ix

SetupDiGetDeviceRegistryProperty .. 343

SetupDiGetDriverInfoDetail .. 345

SetupDiGetDriverInstallParams .. 347

SetupDiGetHwProfileFriendlyName ... 348

SetupDiGetHwProfileFriendlyNameEx .. 349

SetupDiGetHwProfileList .. 350

SetupDiGetHwProfileListEx ... 351

SetupDiGetINFClass ... 352

SetupDiGetSelectedDevice .. 353

SetupDiGetSelectedDriver ... 354

SetupDiGetWizardPage ... 355

SetupDilnstallClass .. 355

SetupDilnstallClassEx ... 356

SetupDilnstallDevice ... 358

SetupDilnstallDevicelnterfaces ... 360

SetupDiInstallDriverFiles .. 360

SetupDiLoadClasslcon .. 361

SetupDiMoveDuplicateDevice .. 362

SetupDiOpenClassRegKey .. 363

SetupDiOpenClassRegKeyEx ... 364

SetupDiOpenDevicelnfo .. 365

SetupDiOpenDevicelnterface .. 367

SetupDiOpenDevicelnterfaceRegKey ... 368

SetupDiOpenDevRegKey .. 369

SetupDiRegisterCoDevicelnstallers .. 371

SetupDiRegisterDevicelnfo ... 372

SetupDiRemoveDevice .. 375

SetupDiRemoveDevicelnterface ... 376

SetupDiSelectBestCompatDrv ... 377

SetupDiSelectDevice .. : 378

SetupDiSelectOEMDrv ... 379

SetupDiSetClasslnstallParams ... 380

SetupDiSetDevicelnstallParams .. 381

SetupDiSetDeviceRegistryProperty ... 382

SetupDiSetDriverInstallParams ... 384

SetupDiSetSelectedDevice .. 385

x Windows 2000 Driver Development Reference, Volume 1

SetupDiSetSelectedDriver .. 386

SetupDiUnremoveDevice ... 387

UpdateDriverForPlugAndPlayDevices ~ 388

Chapter 4 Device Installation Structures 391
SP _ADDPROPERTYPAGE_DAT A ... 391

SP _ CLASSIMAGELIST _DATA ... 392

SP _CLASSINSTALL_HEADER .. 392

SP _DETECTDEVICE_P ARAMS ... 394

SP _DEVICE_INTERF ACE_DATA .. 395

SP _DEVICE_INTERFACE_DETAIL_DATA .. 396

SP _DEVINFO_DATA .. :': 396

SP _DEVINFO_LIST_DETAIL_DATA .. 397

SP _DEVINSTALL_PARAMS .. 398

SP _DRVINFO_DATA ... 405

SP _DRVINFO_DETAIL_DATA ... 406

SP _DRVINSTALL_PARAMS .. 408

SP _ENABLECLASS_PARAMS ... 410

SP _INSTALL WIZARD_DATA410

SP _MOVEDEV _PARAMS ... 410

SP _NEWDEVICEWIZARD_DATA ... 410

SP _POWERMESSAGEW AKE_PARAMS .. .411

SP _PROPCHANGE_PARAMS .. .412

SP _PROPSHEETPAGE_REQUEST ... 414

SP _REMOVEDEVICE_PARAMS .. 416

SP _SELECTDEVICE_PARAMS .. 417

SP_TROUBLESHOOTER_PARAMS .. 419

SP _UNREMOVEDEVICE_PARAMS .. 419

Chapter 5 Device Installation Function Codes 421
DIF _ADDPROPERTYPAGE_ADV ANCED .. 421

DIF _ALLOW _INSTALL ... 424

DIF _DESTROYPRIV ATEDAT A .. .426

DIF _DETECT .. 427

DIF _INSTALLDEVICE .. 429

DIF _INSTALLDEVICEFILES431

DIF _INSTALLINTERF ACES .. .433

Contents xi

DIF _NEWDEVICEWIZARD_FINISHINSTALL 435

DIF _NEWDEVICEWIZARD_POSTANALYZE 438

DIF _NEWDEVICEWIZARD_PREANALYZE 440

DIF _NEWDEVICEWIZARD.,...PRESELECT ... 442

DIF _NEWDEVICEWIZARD _SELECT ... 444

DIF _POWERMESSAGEW AKE .. 446

DIF _PROPERTYCHANGE .. 447

DIF _REGISTER_COINSTALLERS .. 449

DIF _REGISTERDEVICE ... 450

DIF _REMOVE .. 452

DIF _SELECTBESTCOMPATDRV .. 454

DIF _SELECTDEVICE .. 456

DIF _TROUBLESHOOTER .. 460

DIF _UNREMOVE .. 462

Reserved DIF Codes " .. 463

DIF _ADDPROPERTYPAGE_BASIC .. 464

DIF _ASSIGNRESOURCES ... 464

DIF _CALCDISKSPACE ... 464

DIF _DETECTCANCEL .. 464

DIF _DETECTVERIFY ... 464

DIF _ENABLECLASS ... 464

DIP _FIRSTTIMESETUP .. 464

DIF _FOUNDDEVICE ... 467

DIF _INSTALLCLASSDRIVERS ... 467

DIP _MOVEDEVICE ... 467

Obsolete DIF Codes ... 467

DIF~DESTROYWIZARDDATA .. 467

DIF _INSTALL WIZARD .. 467

DIF _PROPERTIES ... 467

DIF _SELECTCLASSDRIVERS ... 467

DIF _ V ALIDATECLASSDRIVERS ... 468

DIF _ VALIDATEDRIVER .. 468

Chapter 6 PnP Configuration Manager Functions 469
CM_Add_Empty _Log_ Conf ... 469

CM_Add_Empty _Log_Conf_Ex ... 472

xii Windows 2000 Driver Development Reference, Volume 1

CM_Add_ID ... 473

CM_Add_ID_Ex .. 474

CM_Add_Res_Des ... 476

CM_Add_Res_Des_Ex .. 478

CM_ Connect_Machine .. 479

CM_Disconnect_Machine .. 480

CM_Enumerate_Classes ... 480

CM_Enumerate_Classes_Ex .. 481

CM_Enumerate_Enumerators .. 482

CM_Enumerate_Enumerators_Ex .. 484

CM_Free_Log_ Conf , .. 485

CM_Free_Log_ Conf_Ex .. 486

CM_Free_Log_ Conf_Handle ... 487

CM_Free_Res_Des .. 488

CM_Free_Res_Des_Ex .. 489

CM_Free_Res_Des_Handle ... 490

CM_Free _Resource _Conflict_Handle ... 491

CM_ Get_Child ... 491

CM_ Get_ Child_Ex ... 493

CM_Get_Depth ... ; 494

CM_ Get_Depth_Ex .. 495

CM_ Get_Device_ID .. 496

CM_ Get_Device_ID _Ex .. 497

CM_ Get_Device_ID _List .. 498

CM_ GeCDevice_ID _LisCEx .. 500

CM_ GeCDevice_ID _LisCSize ... 501

CM_ GeCDevice_ID _LisCSize_Ex ... 502

CM_ Get_Device_ID _Size .. 503

CM_ GeCDevice_ID _Size_Ex ... 504

CM_Get_DevNode_Status ... 506

CM_GeCDevNode_Status_Ex ... 507

CM_ Get_First_Log_ Conf .. 508

CM_ Get_First_Log_ Conf_Ex .. 510

CM_ GeCLog_ Conf_Priority ... 511

CM_GeCLog_Conf_Priority_Ex ... 512

CM_ Get_Next_Log_ Conf ., .. 513

Contents xiii

CM_Get_Next_Log_Conf_Ex ... 514

CM_Get_Next_Res_Des ... 516

CM_ Get_N ext_Res_Des_Ex ... 517

CM_ Get_Parent ... 518

CM_ Get_Parent_Ex ... 519

CM_ Get_Res_Des_Data .. 520

CM_Get_Res_Des_Data_Ex ... 521

CM_ Get_Res_Des_Data_Size .. 522

CM_GeCRes_Des_Data_Size_Ex ... 523

CM_ GeCResource_ ConflicC Count. ... 524

CM_GeCResource_ConflicCDetails .. 525

CM_Get_Sibling .. 526

CM_Get_Sibling_Ex ... 527

CM_Get_ Version ... 528

CM_ Get_ Version_Ex .. 529

CM_Locate_DevNode ... 529

CM_Locate_DevNode_Ex ... 530

CM_Modify _Res_Des ... 532

CM_Modify _Res_Des_Ex ... 533

CM_Query_Resource_ConflicCList ... 535

CM_Reenumerate_DevNode .. 536

CM_Reenumerate_DevNode_Ex .. 537

CM_Request_Device_Eject ... 538

CM_RequesCDevice_EjecCEx .. 540

Chapter 7 PnP Configuration Manager Structures and Types543
Resource Descriptor Structures .. 543

BUSNUMBER_DES ... 543

BUSNUMBER_RANGE ... 544

BUSNUMBER_RESOURCE .. 545

CS_DES ... 546

CS_RESOURCE .. 547

DEVPRIVATE_DES ... 547

DEVPRIVATE_RANGE ... 547

DEVPRIV ATE_RESOURCE ... 548

DMA_DES .. 548

xiv Windows 2000 Driver Development Reference, Volume 1

DMA_RANGE ... 549

DMA_RESOURCE .. 550

10_DES .. 550

10_RANGE .. 552

10_RESOURCE ... 553

IRQ_DES .. 554

IRQ_RANGE ... 555

IRQ_RESOURCE .. 556

MEM_DES ... 556

MEM_RANGE ... 559

MEM_RESOURCE ... , 560

MFCARD _DES .. 560

MFCARD_RESOURCE .. 561

PCCARD_DES .. 562

, PCCARD_RESOURCE ... 563

Other Structures .. 563

CONFLICT_DETAILS .. 563

PnP Configuration Manager Types .. 565

PNP _ VETO_TYPE .. 565

Chapter 8 Device Setup Classes .. 567

Chapter 9 The txtsetup.oem File Format 575
Disks Section of a txtsetup.oem File .. 576

Defaults Section of a txtsetup.oem File .. 577

HwComponent Section of a txtsetup.oem File ... 577

Files.HwComponent.ID Section of a txtsetup.oem File 578

Config.DriverKey Section of a txtsetup.oem File 580

Hardwarelds.scsi.Service Section of a txtsetup.oem File 581

PAR T 1

Plug and Play

Chapter 1 Plug and Play Routines 3

Chapter 2 Plug and Play IRPs 43

Chapter 3 Plug and Play Structures 91

CHAPTER 1

Plug and Play Routines

These routines are used by drivers to implement plug and play support. The routines are
listed in alphabetical order. The following lists summarize the routines functionally.

See the Plug and Play, Power Management, and Setup Design Guide for background and
task-oriented information on supporting PnP in drivers.

Device Information Routines
loGetDeviceProperty
Retrieves information about a device such as configuration information and the name of
its PD~.

lolnvalidateDeviceRelations
Notifies the PnP Manager that the relations for a device have changed.

lolnvalidateDeviceState
Notifies the PnP Manager that the PnP state of a device has changed. In response, the PnP
Manager sends an IRP_.MN_QUERY_PNP _DEVICE_STATE to the device stack.

loReportDetectedDevice
Reports a non PnP device to the PnP Manager.

loReportResourceForDetection
Claims hardware resources in the configuration registry for a legacy device. This routine is
for drivers that detect legacy hardware which cannot be enumerated by PnP.

Registry Routines
loOpenDevicelnterfaceRegistryKey

3

Returns a handle to a registry key for storing information about a particular device interface.

4 Part 1 Plug and Play

loOpenDeviceRegistryKey
Returns a handle to a device-specific or a driver-specific registry key for a particular device
instance.

Device Interface Routines
loRegisterDevicelnterface
Registers device functionality (a device interface) that a driver will enable for use by appli
cations or other system components.

loSetDevicelnterfaceState
Enables or disables a previously registered device interface. Applications and other system
components can open only interfaces that are enabled.

loOpenDevicelnterfaceRegistryKey
Returns a handle to a registry key for storing information about a particular device interface.

loGetDevicelnterfaces
Returns a list of device interfaces of a particular device interface class (such as all devices
on the system that support a HID interface).

loGetDevicelnterfaceAlias
Returns the alias device interface of the specified interface class, if the alias exists. Device
interfaces are qmsidered aliases if they are exposed by the same underlying device and have
identical interface reference strings, but are of different interface classes.

PnP Notification Routines
loRegisterPlugPlayNotification
Registers a driver callback routine to be called when the specified PnP event occurs.

loReportTargetDeviceChange
Notifies the PnP Manager that a custom event has occurred on a device. The PnP Manager
sends notification of the event to drivers that registered for it. Do not use this routine to re
port system PnP events, such as GUID_TARGET_DEVICE_REMOVE_COMPLETE.

loReportTargetDeviceChangeAsynchronous
Notifies the PnP Manager that a custom event has occurred on a device. Returns immedi
ately; does not wait while the PnP Manager sends notification of the event to drivers that
registered for it. Do not use this routine to report system PnP events, such as GUID_
TARGET _DEVICE_REMOVE_COMPLETE.

Chapter 1 Plug and Play Routines 5

loUnregisterPlugPlayNotification
Removes the registration of a driver's callback routine for a PnP event.

Remove Lock Routines
lolnitializeRemoveLock
Initalizes a remove lock for a device object. A driver can use the lock to track outstanding
I/O on a device and to determine when the driver can delete its device object in response to
an IRP _MN_REMOVE_DEVICE request.

loAcquireRemoveLock
Increments the count for a remove lock, indicating that the associated device object should
not be detached from the device stack nor deleted.

loReleaseRemoveLock
Releases a remove lock acquired with a previous call to IoAcquireRemoveLock.

loReleaseRemoveLockAndWait
Releases a remove lock acquired with a previous call to IoAcquireRemoveLock and waits
until all acquisitions of the lock have been released. A driver typically calls this routine in its
dispatch code for an IRP _MN_REMOVE_DEVICE request.

Other PnP Routines
loAdjustPagingPathCount
Increments or decrements a caller-supplied page-file counter as an atomic operation. This
routine can be used to adjust other counters, such as counters for hibernation files or crash
dump files.

loRequestDeviceEject
Notifies the PnP manager that the device eject button was pressed. Note that this routine
reports a request for a device eject, not media eject.

loAcquireRemoveLock
NTSTATUS

IoAcqu;reRemoveLock(
IN PIO_REMOVE_LOCK RemoveLock.
IN OPTIONAL PVOID Tag
) ;

IoAcquireRemoveLock increments the count for a remove lock, indicating that the associ
ated device object should not be detached from the device stack nor deleted.

6 Part 1 Plug and Play

Parameters
RemoveLock
Points to an IO_REMOVE_LOCK structure that the caller initialized with a previous call to
IoInitializeRemoveLock.

Tag
Optionally points to a caller-supplied tag that identifies this instance of acquiring the remove
lock. For example, a driver Dispatch routine typically sets this parameter to a pointer to the
IRP the routine is processing.

If a driver specifies a Tag on a call to IoAcquireRemoveLock, the driver must supply the
same Tag in the corresponding call to IoReleaseRemoveLock.

The Tag does not have to be unique, but should be something meaningful during debugging.

The 110 system only uses this parameter on checked builds.

Include
ntddk.h

Return Value
IoAcquireRemoveLock returns STATUS_SUCCESS if the call was successful. Possible
error return values include: .

Error Status

Comments

Description

The driver has received an lRP _MN_REMOVE_
DEVICE for the device and is waiting for all remove
locks to clear before deleting the device object. Do not
start any new operations on the device.

A driver must initialize a remove lock with a call to IoInitializeRemoveLock before using
the lock.

A driver must call IoReleaseRemoveLock to release the lock when it is no longer needed.

Callers of IoAcquireRemoveLock must be running at IRQL <= DISPATCH_LEVEL.

See Also
IoInitializeRemoveLock, IoReleaseRemoveLock, IoReleaseRemoveLockAndWait

Chapter 1 Plug and Play Routines 7

loAcquireRemoveLockEx
This routine is reserved for system use. See IoAcquireRemoveLock.

loAdjustPagingPathCount
VOID

IoAdjustPagingPathCount(
IN PLONG Count,
IN BOOLEAN Increment
) ;

IoAdjustPagingPathCount increments or decrements a caller-supplied page-file counter as
an atomic operation. This routine can be used to adjust other counters, such as counters for
hibernation files or crash-dump files.

Parameters
Count
Points to a caller-supplied variable that contains a counter. A driver typically stores a page
file counter in the device extension for the device.

Increment
Specifies whether the counter is to be incremented or decremented. A value of TRUE speci
fies an increment operation.

Include
wdm.h or ntddk.h

Comments
This routine is useful for maintaining a count of paging files on a device. The operating
system notifies a driver that a paging file has been created on, or removed from, one of the
driver's devices by sending an IRP. The IRP has the major code IRP _MJ_PNP and the
minor code IRP _MN_DEVICE_USAGE_NOTIFICATION.

This routine can be used for other counters, such as counters for hibernation files or crash
dump files.

Callers of IoAdjustPagingPathCount can be running at any IRQL.

See Also
IRP _MN_DEVICE_USAGE_NOTIFICATION

8 Part 1 Plug and Play

loGetDevicelnterfaceAlias
NTSTATUS

IoGetDeviceInterfaceAlias(
IN PUNICODE_STRING Symbo7icLinkName,
IN CaNST GUID *A7iaslnterfaceC7assGuid,
OUT PUNICODE_STRING A7iasSymbo7icLinkName
) :

IoGetDeviceInterfaceAlias returns the alias device interface of the specified interface class,
if the alias exists. Device interfaces are considered aliases if they are exposed by the same
underlying device and have identical interface reference strings, but are of different interface
classes.

Parameters
SymbolicLinkName
Points to the name of the device interface for which to retrieve an alias. The caller typically
received this string from a call to IoGetDeviceInterfaces or in a PnP notification structure.

AliaslnterfaceClassGuid
Points to a GUID specifying the interface class of the alias to retrieve.

AliasSymbolicLinkName
Specifies a pointer to a NULL unicode string. On successful return, AliasSymbolicLink
Name.Buffer points to a string containing the name of the requested alias. The caller must
free the unicode string with RtlFreeUnicodeString when it is no longer needed.

Include
wdm.h or ntddk.h

Return Value
IoGetDeviceInterfaceAlias returns STATUS_SUCCESS if the call was successful.
Possible error return values include:

Error Status Description

Possibly indicates that there is no alias of the
specified interface class.

Possibly indicates that there is no alias of the
specified interface class.

Possibly indicates an invalid SymbolicLinkName
or an invalid AliasClassGuid.

Chapter 1 Plug and Play Routines 9

Comments
The SymbolicLinkName parameter specifies a device interface for a particular device,
belonging to a particular interface class, with a particular reference string. IoGetDevice
InterfaceAlias returns another device interface for the same device and reference string,
but of a different interface class, if it exists.

For example, the function driver for a fault-tolerant volume could register and set two
device interfaces, one of the fault-tolerant-volume interface class and one of the volume
interface class. Another driver could call IoGetDevicelnterfaceAlias with the symbolic
link for one of the interfaces and ask whether the other interface exists by specifying its
interface class.

Two device interfaces with NULL reference strings are aliases if they are exposed by the
same underlying device and have different interface class GUIDs.

Callers of IoGetDevicelnterfaceAlias must be running at IRQL PASSIVE_LEVEL in the
context of a system thread.

See Also
IoRegisterDevicelnterface, RtlFreeUnicodeString

loGetDevicelnterfaces
NTSTATUS

IoGetDeviceInterfaces(
IN CONST GUID *InterfaceC7assGuid.
IN PDEVICE_OBJECT Physica7DeviceObject OPTIONAL.
IN ULONG Flags.
OUT PWSTR *Symbo7icLinkList
) ;

IoGetDevicelnterfaces returns a list of device interfaces of a particular device interface
class (such as all devices on the system that support a HID interface).

Parameters
InterfaceClassGuid
Points to a class GUID specifying the device interface class. The GUIDs for a class should
be in a device-specific .h file.

PhysicalDeviceObject
Points to an optional PD~ that narrows the search to only the device interfaces of the device
represented by the PDO.

10 Part 1 Plug and Play

Flags
Specifies flags that modify the search for device interfaces.

Flag

DEVICE_INTERFACE_INCLUDE_
NONACTIVE

Meaning

Return disabled device interfaces in addition to enabled
interfaces.

When searching for a device that supports a particular interface, the caller requires an
enabled interface and thus does not set the DEVICE_INTERFACE_INCLUDE_
NONACTIVE flag.

A driver typically sets the DEVICE_INTERF ACE_INCLUDE_NONACTIVE flag to locate
disabled interfaces that the driver must enable. For example, the class installer for the device
may have been directed by the INF file to register one or more interfaces for the device. The

. interfaces would be registered but are not usable until they are enabled by the driver (using
IoSetDevicelnterfaceState). To narrow the list of interfaces returned to only those exposed
by a given device, a driver can specify a PhysicalDeviceObject.

SymbolicLinkList
Points to a character pointer that is filled in on successful return with a list of unicode strings
identifying the device interfaces that match the search criteria. The newly allocated buffer
contains a list of symbolic link names. Each unicode string in the list is null-terminated; the
end of the whole list is marked by an additional NULL. The caller is responsible for freeing
the buffer (ExFreePool) when it is no longer needed.

If no device interfaces match the search criteria, this routine returns STATUS_SUCCESS
and the string contains a single NULL character.

Include
wdm.h or ntddk.h

Return Value
IoGetDevicelnterfaces returns STATUS_SUCCESS if the call was successful. Possible
error return values include:

Error Status Description

Possibly indicates that PhysicalDeviceObject was
not a valid PDO pointer.

Chapter 1 Plug and Play Routines 11

Comments
IoGetDevicelnterfaces returns a list of device interfaces that match the search criteria.
A kernel-mode component typically calls this routine to get a list of all enabled device
interfaces of a particular device interface class. Such a component can get a pointer to the
file object and/or the device object for an interface using IoGetDeviceObjectPointer or
ZwCreateFile. The device object pointer returned by IoGetDeviceObjectPointer points
to the top of the device stack for the device and can be used in calls to IoCallDriver.

If there is a default interface for the requested device interface class, it is listed first in
SymbolicLinkList. Default interfaces can be set by user mode, but not by kernel mode.

The format of a symbolic link name is opaque; the caller should not attempt to parse a
symbolic link name.

Symbolic links for device interfaces can be used across system boots.

To be notified when additional device interfaces of a particular class are enabled on
the system, register for notification of a device class change with IoRegisterPlugPlay
Notification.

Callers of IoGetDevicelnterfaces must be running at IRQL PASSIVE_LEVEL in the
context of a system thread.

See Also
ExFreePool, IoGetDeviceObjectPointer, IoRegisterDevicelnterface, IoRegister
PlugPlayNotification, IoSetDevicelnterfaceState, ZwCreateFile

loGetDeviceProperty
NTSTATUS

loGetDeviceProperty(
IN PDEVICE_OBJECT DeviceObject,
IN DEVICE_REGISTRY_PROPERTY DeviceProperty,
IN ULONG BufferLength,
OUT PVOID PropertyBuffer,
OUT PULONG Resu7tLength
) ;

IoGetDeviceProperty retrieves information about a device such as configuration
information and the name of its PDO.

Parameters
DeviceObject
Points to the physical device object (PDO) for the device being queried.

12 Part 1 Plug and Play

DeviceProperly
Specifies the device property being requested. Must be one of the following:

DeviceProperty Address
Requests the address of the device on the bus. PropertyBuffer points to a ULONG.

The interpretation of this address is bus-specific. The caller of this routine should call
the routine again to request the DevicePropertyBusTypeGuid, or possibly the Device
PropertyLegacyBusType, so it can interpret the address. An address value of OxFFFFFFFF
indicates that the underlying bus driver did not supply a bus address for the device.

DevicePropertyBootConfiguration
Requests the hardware resources assigned to the device by the firmware, in raw form.
PropertyBuffer points to a CM_RESOURCE_LIST.

DevicePropertyBootConfigurationTranslated
The hardware resources assigned to the device by the firmware, in translated form.
PropertyBuffer points to a CM_RESOURCE_LIST.

DevicePropertyBusNumber
Requests the legacy bus number of the bus the device is connected to. PropertyBuffer points
to a ULONG.

DevicePropertyBusTypeGuid
Requests the GUID for the bus that the device is connected to. The system-defined bus type
GUIDs are listed in wdmguid.h. PropertyBuffer points to a GUID, which is a 16-byte struc
ture that contains the GUID in binary form.

DevicePropertyClassGuid
Requests the GUID for the device's setup class. PropertyBuffer points to a NUL-terminated
array of WCHAR. This routine returns the GUID in a string format as follows, where each
"c" represents a hexadecimal character: {cccccccc-cccc-cccc-cccc-cccccccccccc}

DevicePropertyClassName
Requests the name of the device's setup class, in text format. PropertyBuffer points to a
NUL-terminated array of WCHAR.

DevicePropertyCompatiblelDs
Requests the compatible IDs reported by the device. PropertyBuffer points to a MULTI_SZ.

DevicePropertyDeviceDescription
Requests a string describing the device, such as "Microsoft PS/2 Port Mouse", typically de
fined by the manufacturer. PropertyBuffer points to a NUL-terminated array of WCHAR.

Chapter 1 Plug and Play Routines 13

DevicePropertyDriverKeyName
Requests the name of the driver-specific registry key. PropertyBuffer points to a NUL
terminated array of WCHAR.

DevicePropertyEnumeratorName
Requests the name of the enumerator for the device, such as "PCI" or "root". PropertyBuffer
points to NUL-terminated array of WCHAR.

DevicePropertyFriendlyName
Requests a string that can be used to distinguish between two similar devices, typically de
fined by the class installer. PropertyBuffer points to a NUL-terminated array of WCHAR.

DevicePropertyHardwarelD
Requests the hardware IDs provided by the device that identify the device. PropertyBuffer
points to a MUL TI_SZ.

DevicePropertyLegacyBusType
Requests the bus type, such as PCIBus or PCMCIABus" PropertyBuffer points to an
INTERFACE_TYPE.

DevicePropertyLocationlnformation
Requests information about the device's location on the bus; the interpretation of this infor
mation is bus-specific. PropertyBuffer points to a NUL-terminated array of WCHAR.

DevicePropertyManufacturer
Requests a string identifying the manufacturer of the device. PropertyBuffer points to a
NUL-terminated array of WCHAR.

DevicePropertyPhysicalDeviceObjectName
Requests the name of the PD~ for this device. PropertyBuffer points to a NUL-terminated
array of WCHAR.

DevicePropertyUINumber
Requests a number associated with the device that can be displayed in the user interface.
PropertyBuffer points to a ULONG.

This number is typically a user-perceived slot number, such as a number printed next to
the slot on the board, or some other number that makes locating the physical device easier
for the user. If the device is on a bus that has no UI number convention, or if the bus driver
for the device cannot determine the UI number, this value is OxFFFFFFFF.

BufferLength
Specifies the size, in bytes, of the caller-supplied PropertyBuffer.

14 Part 1 Plug and Play

PropertyBuffer
Points to a caller-supplied buffer to receive the property information. The buffer can be
allocated from pageable memory. The type of the buffer is determined by the Device
Property (see above).

ResultLength
Points to a ULONG to receive the size of the property information returned at Property
Buffer. If IoGetDeviceProperty returns STATUS_BUFFER_TOO_SMALL, it sets this
parameter to the required buffer length.

Include
wdm.h or ntddk.h

Return Value
IoGetDeviceProperty returns STATUS_SUCCESS if the call was successful. Possible
error return values include:

Error Status

Comments

Description

The buffer at PropertyBuffer was too small.
ResultLength points to the required buffer length.

The given DeviceProperty is not one of the
properties handled by this routine.

Possibly indicates that the given DeviceObject was
not a valid PD~ pointer.

IoGetDeviceProperty retrieves device setup information from the registry. Use this routine,
rather than accessing the registry directly, to insulate a driver from differences across plat
forms and from possible changes in the registry structure.

For many DeviceProperty requests, it can take two or more calls to IoGetDeviceProperty
to determine the required BufferLength. The first call should use a best-guess value. If the
return status is STATUS_BUFFER_TOO_SMALL, the driver should free its current buffer,
allocate a buffer of the size returned in ResultLength, and call IoGetDeviceProperty again.
Because some of the setup properties are dynamic, the data size can change between the
time the required size is returned and driver calls this routine again. Therefore, drivers
should call IoGetDeviceProperty inside a loop that executes until the return status is not
STATUS_BUFFER_TOO_SMALL.

Chapter 1 Plug and Play Routines 15

Function drivers that support devices on a legacy bus and a PnP bus can use the Device
PropertyBusNumber, DevicePropertyBusTypeGuid, and DevicePropertyLegacyBus
Type properties to distinguish between the buses.

Callers of IoGetDeviceProperty must be 'running at IRQL PASSIVE_LEVEL in the con
text of a system thread.

See Also
ExAllocatePool, ExAllocatePoolWithTag, CM_RESOURCE_LIST, 10 _RESOURCE_
REQUIREMENTS_LIST, GUID

lolnitializeRemoveLock
VOID

IoInitializeRemoveLock(
IN PIO_REMOVE_LOCK Lock.
IN ULONG A77ocateTag.
IN ULONG MaxLockedMinutes.
IN ULONG HighWatermark
) ;

IoInitializeRemoveLock initalizes a remove lock for a device object. A driver can use the
lock to track outstanding I/O on a device and to determine when the driver can delete its
device object in response to an IRP _MN_REMOVE_DEVICE request.

Parameters
Lock
Points to a caller-supplied 10_REMOVE_LOCK structure that this routine initializes with
information about the lock, including a counter and a synchronization event. A driver writer
must allocate this structure as part of the device object's device extension.

Allocate Tag
Specifies a tag to identify the creator of the lock. Driver writers typically use a 4-character
string, specified in reverse order, like the tags used for ExAllocatePoolWithTag.

The I/O system only uses this parameter on checked builds.

MaxLockedMinutes
Specifies the maximum number of minutes that this lock should be held. A value of zero
means there is no limit. This value is typically used during debugging to identify a driver
routine that holds the lock longer than expected.

The I/O system only uses this parameter on checked builds. If the lock is held for more than
MaxLockedMinutes on a checked build, the system asserts.

16 Part 1 Plug and· Play

High Watermark
Specifies the maximum number of outstanding acquisitions allowed on the lock.

The I/O system only uses this parameter on checked builds. If the lock is acquired
High Watermark times on a checked build, the system asserts.

Include
ntddk.h

Comments
The 10XxxRemoveLockXxx routines provide a way to track the number of outstanding I/O's
on a device and determine when it is safe to detach and delete a driver's device object. The
system provides these routines to driver writers as an alternative to implementing their own
tracking mechanism.

1. To ensure that the driver's DispatchPnP routine will not complete an IRP _MN_
REMOVE_DEVICE request while the lock is held (for example; while another driver
routine is accessing the device).

2. To count the number of reasons why the driver should not delete its device object, and to
set an event when that count goes to zero.

A driver typically calls 10lnitializeRemoveLock in its AddDevice routine, when the driver
initializes the rest of the device extension for a device object.

A driver calls 10AcquireRemoveLock each time it starts an I/O operation. A driver calls
10ReleaseRemoveLock each time it finishes an I/O operation. A driver can acquire the lock
more than once; the 10XxxRemoveLockXxx routines maintain a count of the outstanding
acquisitions of the lock.

A driver should also call 10AcquireRemoveLock when it passes out a reference to its code
(for timers, DPCs, callbacks, etc.). The driver calls 10ReleaseRemoveLock when the event
has returned.

In its dispatch code for IRP _MN_REMOVE_DEVICE, a driver acquires the lock once
more and calls 10ReleaseRemoveLockAndWait. This routine causes the driver to block
until all outstanding acquisitions of the lock have been released. A driver should call 10-
ReleseRemoveLockAndWait after it passes the remove IRP to the next-lower driver but
before it releases memory, calls 10DetachDevice, or calls 10DeleteDevice.

A driver stores the IO_REMOVE_LOCK structure in the device extension of a device
object. The remove lock is deleted when the driver deletes the device extension as part of
processing an IRP _MN_REMOVE_DEVICE request.

Callers of 10lnitializeRemoveLock must be running at IRQL = PASSIVE_LEVEL.

Chapter 1 Plug and Play Routines 17

See Also
IoAcquireRemoveLock, IoReleaseRemoveLock, IoReleaseRemoveLockAndWait

lolnitializeRemoveLockEx
This routine is reserved for system use. See IoInitializeRemoveLock.

lolnvalidateDeviceRelations
VOID

IoInvalidateDeviceRelations(
IN PDEVICE_OBJECT DeviceObject.
IN DEVICE_RELATION_TYPE Type
) ;

IoInvalidateDeviceRelations notifies the PnP manager that the relations for a device have
changed. The types of device relations include bus relations, ejection relations, removal
relations, and the target device relation.

Parameters
De vice Object
Points to the PDO for the device.

Type
Specifies the type of relations that have changed. Possible values include BusRelations,
EjectionRelations, RemovalRelations, and TargetDeviceRelation.

Include
wdm.h or ntddk.h

Comments
For some relation types, such as BusRelations, this routine causes the PnP or Power Man
ager to gather updated relations information by sending an IRP _MN_QUERY _DEVICE_
RELATIONS request to the drivers for the device. For other relation types, such as
EjectionRelations, the PnP Manager does not need to gather new relation information
immediately; the PnP Manager queries drivers for ejection relations only when it is prepar
ing to eject a device.

After a bus driver calls IoInvalidateDeviceRelations to inform the PnP Manager that a
device has disappeared, the bus driver must continue to handle PnP IRPs for that device
until it receives an IRP _MN_REMOVE_DEVICE. In response to such IRPs, the bus driver

18 Part 1 Plug and Play

returns STATUS_NO_SUCH_DEVICE. Until it succeeds the remove IRP, the bus driver
can access the device extension to check its flags for the device.

Callers of IoInvalidateDeviceRelations must be running at IRQL <= DISPATCH_LEVEL.

See Also
IRP _MN_ QUERY_DEVICE_RELATIONS

lolnvalidateDeviceState
VOID

IoInvalidateDeviceState(
IN PDEVICE_OBJECT Physica7DeviceObject
) ;

IoInvalidateDeviceState notifies the PnP manager that some aspect of the PnP state of a
device has changed. In response, the PnP Manager sends an IRP _MN_QUERY_PNP_
DEVICE_STATE to the device stack.

Parameters
PhysicalDeviceObject
Points to the PD~ for the device.

Include
wdm.h or ntddk. h

Comments
Drivers call this routine to indicate that something has changed with respect to one of the
following a~pects of a device's PnP state:

PNP _DEVICE_DISABLED
PNP _DEVICE_DONT_DISPLA Y _IN_UI
PNP _DEVICE_FAILED
PNP _DEVICE_NOT_DISABLEABLE
PNP _DEVICE_REMOVED
PNP _DEVICE_RESOURCE_REQUIREMENTS_CHANGED

In response to this routine, the PnP Manager sends an IRP _MN_QUERY _PNP _DEVICE_
STATE request to the device stack, to determine the current PnP state of the device.

Callers of IoInvalidateDeviceState must be running at IRQL <= DISPATCH_LEVEL.

Chapter 1 Plug and Play Routines 19

See Also
IRP _MN_ QUERY _PNP _DEVICE_STATE, PNP _DEVICE_STATE

loOpenDevicelnterfaceRegistryKey
NTSTATUS

IoOpenDeviceInterfaceRegistryKey(
IN PUNICODE_STRING Symbo7icLinkName.
IN ACCESS_MASK DesiredAccess.
OUT PHANDLE DevicelnterfaceKey
) :

IoOpenDevicelnterfaceRegistry Key returns a handle to a registry key for storing informa
tion about a particular device interface.

Parameters
SymbolicLinkName
Points to a string identifying the device interface. This string was obtained from a previous
call to IoGetDevicelnterfaces, IoGetDevicelnterfaceAlias, or IoRegisterDevicelnterface.

DesiredAccess
Specifies the access the caller requires to the key, such as KEY_READ, KEY _WRITE, or
KEY _ALL_ACCESS.

De vicelnterfaceKey
Points to a returned handle to the requested registry key if the call is successful.

Include
wdm.h or ntddk.h

Return Value
IoOpenDevicelnterfaceRegistryKey returns STATUS_SUCCESS if the call was success
ful. Possible error return values include:

Error Status Description

The routine was not able to locate a registry key
for the device interface, probably due to an error
in the SymbolicLinkName.

The routine was not able to locate a registry key
for the device interface, probably due to an error
in the SymbolicLinkName.

Continued

20 Part 1 Plug and Play

Error Status

STATUS_INVALID_PARAMETER

Comments

Description

Possibly indicates an error in the
SymbolicLinkName.

IoOpenDevicelnterfaceRegistryKey opens a non-volatile subkey of the registry key for
the device interface specified by SymbolicLinkName. Drivers can store information in this
subkey that is specific to this instance of the device interface, such as the default resolution
for a camera. User-mode applications can access this subkey using SetupDiXxx routines.

The driver must call ZwClose to close the handle returned from this routine when access is
no longer required.

Callers of IoOpenDevicelnterfaceRegistry Key must be running at IRQL P ASSIVE_
LEVEL in the context of a system thread.

See Also
IoGetDevicelnterfaces, IoGetDevicelnterfaceAlias, IoRegisterDevicelnterface,
ZwClose

loOpenDeviceRegistryKey
NTSTATUS

IoOpenDeviceRegistryKey(
IN PDEVICE_OBJECT DeviceObject,
IN ULONG DevlnstKeyType,
IN ACCESS_MASK DesiredAccess,
OUT PHANDLE DevlnstRegKey
) ;

IoOpenDeviceRegistryKey returns a handle to a device-specific or a driver-specific
registry key for a particular device instance.

Parameters
DeviceObject
Points to the PDQ of the device instance for which the registry key is to be opened.

DevlnstKeyType
Specifies flags indicating whether to open a device-specific or a driver-specific key. The
flags also indicate whether the key is relative to the current hardware profile. May be a
combination of the following values:

Chapter 1 Plug and Play Routines 21

PLUGPLAY _REG KEY _DEVICE
Open a key for storing device-specific information. The key is located under the key for
the device instance specified by DeviceObject. This flag may not be specified with
PLUGPLA Y _REGKEY _DRIVER.

PLUGPLAY _REG KEY _DRIVER
Open a key for storing driver-specific information. This flag may not be specified with
PLUGPLA Y _REGKEY _DEVICE.

PLUGPLAY _REG KEY _CURRENT _HWPROFILE
Open a key relative to the current hardware profile for device or driver information. This
allows the driver to access configuration information that is hardware-profile-specific. The
caller must specify either PLUGPLA Y _REGKEY _DEVICE or PLUGPLA Y _REG KEY_
DRIVER with this flag.

DesiredAccess
Specifies the access the caller needs to the key.

DevlnstRegKey
Points to a caller-allocated buffer that, on successful return, contains a handle to the
requested registry key.

Include
wdm. h or ntddk. h

Return Value
IoOpenDeviceRegistryKey returns STATUS_SUCCESS if the call was successful. Possi
ble error return values include:

Error Status

STATUS_INVALID_PARAMETER

Comments

Description

Possibly indicates that the caller specified an illegal
set of DevlnstKeyType flags.

Possibly indicates that the DeviceObject is not a
valid PD~.

The driver must call ZwClose to close the handle returned from this routine when access is
no longer required.

The registry keys opened by this routine are non-volatile.

22 Part 1 Plug and Play

User-mode configuration utilities, such as Class Installers, can access these same registry
keys using the configuration manager and device installer APIs.

Callers of IoOpenDeviceRegistryKey must be running at IRQL PASSIVE_LEVEL in the
context of a system thread.

See Also
ZwClose

loRegisterDevicelnterface
NTSTATUS

IoRegisterDeviceInterface(
IN PDEVICE_OBJECT Physica7DeviceObject.
IN CONST GUID *InterfaceC7assGuid.
IN PUNICODE_STRING ReferenceString OPTIONAL,
OUT PUNICODE_STRING Symbo7icLinkName
) ;

IoRegisterDevicelnterface registers device functionality (a device interface) that a driver
will enable for use by applications or other system components.

Parameters
PhysicalDeviceObject
Points to the PDO for the device.

InterfaceClassGuid
Points to the class OUID that identifies the functionality (the device interface) being
registered.

ReferenceString
Optionally points to a reference string. Function drivers typically specify NULL for this
parameter. Filter drivers must specify NULL.

Reference strings are only used by a few bus drivers that use device interfaces as place
holders for software devices that are created on demand. The reference string for a device
interface is passed to the driver by the I/O Manager when the interface is opened. The string
becomes part of the interface's name (as an additional path component). The driver uses ref
erence strings to differentiate between two interfaces of the same class for a single device.

On Microsoft® Windows® 98 systems, the ReferenceString can be no longer than MAX_
PATH characters. There is no length limit on Windows 2000 systems.

Chapter 1 Plug and Play Routines 23

SymbolicLinkName
Points to a unicode string structure allocated by the caller. If this routine is successful, it
initializes the unicode string and allocates the string buffer containing the kernel-mode path
to the symbolic link for this device interface.

The caller must treat SymbolicLinkName as opaque and must not disassemble it.

The caller is responsible for freeing SymbolicLinkName with RtlFreeUnicodeString when
it is no longer needed.

Include
wdm.h or ntddk.h

Return Value
IoRegisterDevicelnterface returns STATUS_SUCCESS if the call was successful. Possible
error return values include:

Error Status

Comments

Description

Possibly indicates that the PhysicalDeviceObject
is not a valid PD~ pointer.

IoRegisterDevicelnterface registers a device interface and returns the name of the inter
face. A driver can call this routine several times for a given device to register several
interfaces. A function or filter driver typically registers device interfaces in its AddDevice
routine. For example, a fault-tolerant volume driver might register a fault-tolerant-volume
interface and a volume interface for a particular volume.

The I/O Manager creates a registry key for the device interface. Drivers can access persistent
storage under this key using IoOpenDevicelnterfaceRegistry Key.

A driver registers an interface once and then calls IoSetDeviceinterfaceState to enable and
disable the interface.

If the device interface specified by the PhysicalDeviceObject, InteifaceClassGuid, and
optional ReferenceString already exists, this routine returns STATUS_SUCCESS and the
SymbolicLinkName for the existing interface.

Most drivers use a NULL reference string for a device interface. If a driver uses a non
NULL reference string~ it must do additional work including possibly managing its own
namespace and security. A filter driver that exposes a device interface must use a NULL
ReferenceString to avoid conflicts with other drivers in the device stack.

24 Part 1 Plug and Play

Callers of this routine are not required to remove the registration for a device interface
when it is no longer needed. Device interface registrations can be removed from user mode,
if necessary.

Callers of IoRegisterDevicelnterface must be running at IRQL PASSIVE_LEVEL in the
context of a system thread.

See Also
IoGetDevicelnterfaces, IoOpenDevicelnterfaceRegistryKey, IoSetDeviceinterfaceState,
RtlFreeUnicodeString

loRegisterPlugPlayNotification
NTSTATUS

IoRegisterPlugPlayNotification(
IN IO_NOTIFICATION_EVENT_CATEGORY EventCategory,
IN ULONG EventCategoryF7ags,
IN PVOID EventCategoryData OPTIONAL,
IN PDRIVER_OBJECT DriverObject,
IN PDRIVER_NOTIFICATION_CALLBACK_ROUTINE Ca77backRoutine,
IN PVOID Context,
OUT PVOID *NotificationEntry
) ;

IoRegisterPlugPlayNotification registers a driver call~ack routine to be called when a PnP
event of the specified category occurs.

Parameters
EventCategory
Specifies the category of PnP event for which the callback routine is being registered.
EventCategory must be one of the following:

Eve~tCategoryDevicelnterfaceChange

PnP events in this category include the arrival (enabling) of a new device interface (GUID_
DEVICE_INTERFACE_ARRIVAL) or the removal (disabling) of an existing device inter
face (GUID_DEVICE_INTERFACE_REMOVAL). See IoRegisterDevicelnterface for
more information on device interfaces ..

EventCategoryHardwareProfileChange
PnP events in this category include query-change (GUID_HWPROFILE_QUERY_
CHANGE), change-complete (GUID_HWPROFILE_CHANGE_COMPLETE), and
change-cancel (GUID_HWPROFILE_CHANGE_CANCELLED) of a hardware profile.

Chapter 1 Plug and Play Routines 25

EventCategoryTargetDeviceChange
PnP events in this category include events related to removing a device: the device's drivers
received a query-remove IRP (GUID_TARGET_DEVICE_QUERY_REMOVE), the
drivers completed a remove IRP (GUID_TARGET_DEVICE_REMOVE_COMPLETE),
or the drivers received a cancel-remove IRP (GUID_TARGET_DEVICE_REMOVE_
CANCELLED). This category is also used for custom notification events.

EventCategoryFlags
Specifies flags that modify the registration operation. Possible values include:

PNPNOTIFY _DEVICEJNTERFACEJNCLUDE_EXISTINGJNTERFACES
Only valid with an EventCategory of EventCategoryDevicelnterfaceChange. If set, the
PnP Manager calls the driver callback routine for each device interface that is currently
registered and active and registers the callback routine for future device interface arrivals
or removals.

EventCategoryData
Points to further information about the events for which CallbackRoutine is being registered.
The information varies for different EventCategory values:

• When EventCategory is EventCategoryDevicelnterfaceChange, EventCategoryData
must point to a GUID specifying a device interface class. CallbackRoutine will be called
when an interface of that class is enabled or removed.

• When EventCategory is EventCategoryHardwareProfileChange, EventCategoryData
must be NULL.

• When EventCategory is EventCategoryTargetDeviceChange, EventCategoryData must
point to the file object for which PnP notification is requested.

DriverObject
Points to the caller's driver object.

To ensure that the driver remains loaded while it is registered for PnP notification, this call
increments the reference count on DriverObject. The PnP Manager decrements the reference
count when this registration is removed.

CallbackRoutine
Points to the routine to be called when the specified PnP event occurs.

26 Part 1 Plug and Play

A callback routine has the following type:

typedef NTSTATUS (* PORI V EILNOTI FI CA TI ON_CALLBACICROUTI N E)
. IN PVOIO NotificationStructure,

IN PVOIO Context
) ;

The NotiJicationStructure is specific to the EventCategory. For example, a callback routine
for an EventCategoryDevicelnterfaceChange receives a DEVICE_INTERFACE_
CHANGE_NOTIFICATION structure.

The Context parameter contains the context data the driver supplied during registration.

The PnP Manager calls driver callback routines at IRQL PASSIVE_LEVEL.

Context
Points to a caller-allocated buffer containing context that the PnP Manager passes to the
callback routine.

NotificationEntry
Points to an opaque value returned by this call that identifies the registration. Pass this value
to IoUnregisterPlugPlayNotification to remove the registration.

Include
wdm.h or ntddk.h

Return Value
IoRegisterPlugPlayNotification returns STATUS_SUCCESS or an appropriate error
status.

Comments
A driver registers for an event category. Each category includes one or more PnP events.

A driver can register different callback routines for different event categories or can register
a single callback routine. A single callback routine can cast the NotificationStructure to a
PLUGPLA Y _NOTIFICATION_HEADER and use the Event field to determine the exact
type of the notification structure.

Notification callback routines should complete their tasks as quickly as possible and return
control to the PnP Manager, to prevent delays in notifying other drivers and applications that
have registered for the event.

The PnP Manager does not take out a reference on the file object when a driver registers for
notification of an EventCategoryTargetDeviceChange. If the driver's notification callback

Chapter 1 Plug and Play Routines 27

routine requires access to the file object, the driver should take out an extra reference on the
file object before calling IoRegisterPlugPlayNotification.

See the Plug & Play, Power Management, and Setup Design Guide for more information on
using PnP notification.

Callers of IoRegisterPlugPlayNotification must be running at IRQL PASSIVE_LEVEL.

See Also
DEVICE_INTERFACE_ CHANGE_NOTIFICATION, HWPROFILE_ CHANGE_
NOTIFICATION, IoUnregisterPlugPlayNotification, PLUGPLA Y _NOTIFICATION_
HEADER, TARGET _DEVICE_ CUSTOM_NOTIFICATION, TARGET _DEVICE_
REMOV AL_NOTIFICATION

loReleaseRemoveLock
VOID

IoReleaseRemoveLock(
IN PIO_REMOVE_LOCK RemoveLock.
IN PVOID Tag
) ;

IoReleaseRemoveLock releases a remove lock acquired with a previous call to IoAcquire
RemoveLock.

Parameters
RemoveLock
Points to an IO_REMOVE_LOCK structure that the caller passed to a previous call to
IoAcquireRemoveLock.

Tag
Points to a caller-supplied tag that was passed to a previous call to IoAcquireRemoveLock.

If a driver specified a Tag when it acquired the lock, the driver must specify the same Tag
when releasing the lock. If the tags do not match, this routine asserts on a checked build.

If the call to IoAcquireRemoveLock did not specify a Tag, then this parameter is NULL.

The I/O system only uses this parameter on checked builds.

Include
ntddk.h

28 Part 1 Plug and Play

Comments
Each call to IoAcquireRemoveLock must have a corresponding call to IoRelease
RemoveLock.

IoReleaseRemoveLock decrements the count of outstanding acquisitions of the remove
lock. If the count goes to zero and the driver has received an IRP _MN_REMOVE_DEVICE
request, IoReleaseRemoveLock sets the event that allows the driver's remove dispatch code
to detach and delete the device object. IoReleaseRemoveLock does not delete the lock; it
decrements the count.

A driver calls a similar routine, IoReleaseRemoveLockAndWait, only in its dispatch code
for an IRP _MN_REMOVE_DEVICE request. A driver calls IoReleaseRemoveLockAnd
Wait to ensure that all outstanding locks have been released before it detaches and deletes
the device object.

Callers of IoReleaseRemoveLock must be running at IRQL <= DISPATCH_LEVEL.

See Also
IoAcquireRemoveLock, IoInitializeRemoveLock, IoReleaseRemoveLockAndWait

loReleaseRemoveLockEx
This routine is reserved for system use. See IoReleaseRemoveLock.

loReleaseRemoveLockAndWait
VOID

IoReleaseRemoveLockAndWait<
IN PIO_REMOVE_LOCK RemoveLock,
IN PVOID Tag
);

IoReleaseRemoveLockAndWait releases a remove lock acquired with a previous call to
IoAcquireRemoveLock and waits until all acquisitions of the lock have been released. A
driver typically calls this routine in its dispatch code for an IRP _MN_REMOVE_DEVICE
request.

Parameters
Remo veL ock
Points to an IO_REMOVE_LOCK structure that the caller passed to a previous call to
IoAcquireRemoveLock.

Tag
Points to a caller-supplied tag that was passed to a previous call to IoAcquireRemoveLock.

Chapter 1 Plug and Play Routines 29

If a driver specified a Tag when it acquired the lock, the driver must specify the same Tag
when releasing the lock. If the tags do not match, this routine asserts on a checked build.

If the call to IoAcquireRemoveLock did not specify a Tag, then this parameter is NULL.

The 110 system only uses this parameter on checked builds.

Include
ntddk.h

Comments
A driver typically calls this routine in its dispatch code for an IRP _MN_REMOVE_
DEVICE request. A driver should call IoReleseRemoveLockAndWait after it passes the
remove IRP to the next-lower driver but before it releases memory, calls IoDetachDevice,
or calls IoDeleteDevice.

A driver must acquire the remove lock once more before calling IoReleaseRemoveLock
AndWait. Typically, a driver calls IoAcquireRemoveLock early in its DispatchPnp rou
tine, before the switch statement. Then the lock is acquired for each PnP operation, includ
ing the acquisition required before calling IoReleaseRemoveLockAndWait in the code that
handles the IRP _MN_REMOVE_DEVICE.

To release a lock from code other than the IRP _MN_REMOVE_DEVICE dispatch code,
use IoReleaseRemoveLock.

Callers of IoReleaseRemoveLockAndWait must be running at IRQL PASSIVE_LEVEL.

See Also
IoAcquireRemoveLock, IoInitializeRemoveLock, IoReleaseRemoveLock

loReleaseRemoveLockAndWaitEx
This routine is reserved for system use. See IoReleaseRemoveLockAndWait.

loReportDetectedDevice
NTSTATUS

IoReportDetectedDev;ce(
IN PDRIVER_OBJECT DriverObject,
IN INTERFACE_TYPE LegacyBusType,
IN ULONG BusNumber,
IN ULONG S7otNumber,
IN PCM_RESOURCE_LIST ResourceList,
IN PIO_RESOURCE_REOUIREMENTS_LIST ResourceRequirements OPTIONAL,
IN BOOLEAN ResourceAssigned,

30 Part 1 Plug and Play

IN OUT PDEVICE_OBJECT *DeviceObject
) :

10ReportDetectedDevice reports a nonPnP device to the PnP Manager.

Parameters
DriverObject
Points to the driver object of the driver that detected the device.

LegacyBusType
Specifies the type of bus on which the device resides. The PnP Manager uses this informa
tion to match the reported device to its PnP-enumerated instance, if one exists.

The interface types, such as PCIBus, are defined in ntddk.h. If a driver does not know the
LegacyBusType for the device, the driver supplies the value InterfaceTypeUndefined for
this parameter.

BusNumber
Specifies the bus number for the device. The PnP Manager uses this information to match
the reported device to its PnP-enumerated instance, if one exists.

The bus number distinguishes the bus on which the device resides from other buses of the
same type on the machine. The bus-numbering scheme is bus-specific. If a driver does not
know the BusNumber for the device, the driver supplies the value -1 for this parameter.

SlotNumber
Specifies the logical slot number of the device. The PnP Manager uses this information to
match the reported device to its PnP-enumerated instance, if one exists.

If a driver does not know the SlotNumber for the device, the driver supplies the value -1 for
this parameter.

ResourceList
Points to the resource list the driver used to detect the device. Resources in this list are in
raw, untranslated form.

ResourceRequirements
Optionally points to a resource requirements list for the detected device. NULL if the caller
does not have this information for the device.

ResourceAssigned
Specifies whether the device's resources have already been reported to the PnP Manager.
If ResourceAssigned is TRUE, the resources have already been reported, possibly with 10-
ReportResourceForDetection, and the PnP Manager will not attempt to claim them on

Chapter 1 Plug and Play Routines 31

behalf of the device. If TRUE, the PnP Manager will also not claim resources when the
device is root-enumerated on subsequent boots.

DeviceObjecf
Optionally points to a PD~ for the detected device.

NULL if the caller does not have a PD~ for the device, which is typically the case. If
DeviceObject is NULL, the PnP Manager creates a PD~ for the device and returns a
pointer to the caller.

If the caller supplies a PD~, the PnP Manager does not create a new PD~. On a given
call to this routine the DeviceObject parameter is either an IN or an OUT parameter, but
not both.

Include
ntddk.h

Return Value
IoReportDetectedDevice returns STATUS_SUCCESS or an appropriate error status.

Comments
A driver should only call IoReportDetectedDevice to report a legacy, nonPnP device.
All PnP devices should be enumerated in response to an IRP _MN_QUERY _DEVICE_
RELATIONS request.

A driver must only do detection on a device if the DoDetectionNow flag is set in the
registry. This flag is typically set in the Services subkey for the driver by an installer.
After reporting detected devices the driver must clear the flag. The location of this flag
is driver-defined.

A driver typically calls this routine from its DriverEntry routine. A few drivers, like certain
NDIS or EISA drivers, might call this routine from an AddDevice routine.

On successful completion of IoReportDetectedDevice, the caller should attach an FDO to
the PD~ returned at DeviceObject. Once the caller attaches its FDO, the caller is the func
tion driver for the device, at least temporarily. There are no filter drivers. The PnP Manager
owns the PD~.

The PnP Manager considers the device to be started and therefore does not call the driver's
AddDevice routine and does not send an IRP _MN_START_DEVICE request. The driver
must be prepared to handle all other PnP IRPs, however.

IoReportDetectedDevice marks the device as a root-enumerated device and this identifi
cation is persistent across system boots. During subsequent system boots the PnP Manager
"detects" the device on the root-enumerated list and configures it like a PnP device: the PnP

32 Part 1 Plug and Play

Manager queries for device information, identifies the appropriate drivers and calls their
AddDevice routines, and sends all the appropriate PnP IRPs. The driver that orignally de
tected the device mayor may not be in the device stack on subsequent boots. It depends on
the device's hardware ID and the resulting INF match, as is true when configuring any PnP
device.

In certain situations the PnP Manager removes the reporting driver from the device stack
and builds a full device stack without waiting for the system to reboot. (For example, when
the user-mode PnP Manager detects the new device.) In such cases, the PnP Manager sends
IRP _MN_QVERY _ID requests to determine the device's hardware ID and compatible IDs
searches for an INF match. If it finds a match, it sends an IRP _MN_QVERY _REMOVE_
DEVICE and an IRP _MN_REMOVE_DEVICE to the device stack to remove the existing
drivers (which at this point are only the driver that called IoReportDetectedDevice and the
parent bus driver). The PnP Manager then rebuilds the device stack using information in the
INF file and the registry.

Callers of IoReportDetectedDevice must be running at IRQL PASSIVE_LEVEL in the
context of a system thread.

See Also
IoReportResourceForDetection, IRP _MN_QVERY _DEVICE_RELATIONS

loReportResourceForDetection
NTSTATUS

IoReportResourceForDetection(
IN PDRIVER-OBJECT DriverObject,
IN PCM_RESOURCE_LIST DriverList OPTIONAL,
IN ULONG DriverListSize OPTIONAL,
IN PDEVICE_OBJECT DeviceObject OPTIONAL,
IN PCM_RESOURCE_LIST DeviceList OPTIONAL,
IN ULONG DeviceListSize OPTIONAL,
OUT PBOOLEAN Conf7ictDetected
) ;

IoReportResourceForDetection claims hardware resources in the configuration registry for
a legacy device. This routine is for drivers that detect legacy hardware which cannot be
enumerated by PnP.

Parameters
DriverObject
Points to the driver object that was input to the driver's DriverEntry routine.

Chapter 1 Plug and Play Routines 33

DriverList
Optionally points to a caller-supplied buffer containing the driver's resource list, if the driver
claims the same resources for all its devices. If the caller specifies a DeviceList, this parame
ter is ignored.

DriverListSize
Specifies the size in bytes of an optional DriverList. If DriverList is NULL, this parameter
should be zero.

DeviceObject
Optionally points to the device object representing device for which the driver is attempting
to claim resources.

DeviceList
Optionally points to a caller-supplied buffer containing the device's resource list. If the
driver claims the same resources for all its devices, the caller can specify a DriverList.

De viceListSize
Specifies the size in bytes of an optional DeviceList. If DeviceList is NULL, this parameter
should be zero.

ConflictDetected
Points to a caller-supplied BOOLEAN value set to TRUE on return if the resources are not
available.

Include
ntddk.h

Return Value
IoReportResoorceForDetection returns STATUS_SUCCESS if the resources are claimed.
Possible error return values include:

Error Status

STATUS_CONFLICTING_ADDRESSES

STATUS_UNSUCCESSFUL

Comments

Description

The resources could not be claimed because they are
in use or needed for a PnP-enumerable device.

The DeviceList or DriverList is invalid.

If a driver supports only PnP hardware, it does no detection and therefore does not call
IoReportResoorceForDetection. The PnP system enumerates each PnP device, assigns

34 Part 1 Plug and Play

resources to the device, and passes those resources to the device's driver(s) in an IRP_
MN_START_DEVICE request.

If a PnP driver supports legacy hardware, however, it must call IoReportResourceFor
Detection to claim hardware resources before it attempts to detect the device.

Callers of this routine specify a CM_RESOURCE_LIST in either a DeviceList or a Driver
List, allocated from paged memory. The caller is responsible for freeing the memory.

A driver that can control more than one legacy card at the same time should claim the
resources for each device against the device object for the respective device (using a the
DeviceObject, DeviceList, and DeviceListSize parameters). Such a driver must not claim
these resources against their driver object.

A CM_RESOURCE_LIST contains two variable-sized arrays. Each array has a default
size of one. If either array has more than one element, the caller must allocate memory
dynamically to contain the additional elements. Only one CM_PARTIAL_RESOURCE_
DESCRIPTOR can be part of each CM_FULL_RESOURCE_DESCRIPTOR in the list,
except for the last full resource descriptor in the CM_RESOURCE_LIST, which can have
additional partial resource descriptors in its array.

IoReportResourceForDetection, with the help of the PnP Manager, determines whether
the resources being requested conflict with resources that have already been claimed.

If a conflict is detected, this routine sets the BOOLEAN at ConflictDetected to TRUE and
returns STATUS_CONFLICTING_ADDRESSES.

If no conflict is detected, this routine claims the resources, sets the BOOLEAN at Conflict
Detected to FALSE, and returns STATUS_SUCCESS.

If this routine succeeds and the driver detects a legacy device, the driver reports the device
to the PnP Manager by calling IoReportDetectedDevice. In that call, the driver sets
ResourceAssigned to TRUE so the PnP Manager does not attempt to claim the resources
again.

When a driver no longer requires the resources claimed by a call to this routine, the driver
calls this routine again with a DriverList or DeviceList with a Count of zero.

If a driver claims resources on a device-specific basis for more than one device, the driver
must call this routine for each such device.

A driver can call this routine more than once for a given device. If one set of resources fails,
the driver can call the routine again for the same device with a different set of resources. If a
set of resources succeeds, the driver can call this routine again with a new list; the new list
replaces the previous list.

Callers of IoReportResourceForDetection must be running at IRQL PASSIVE_LEVEL in
the context of a system thread.

Chapter 1 Plug and Play Routines 35

See Also
CM_RESOURCE_LIST, IoReportDetectedDevice

loReportTargetDeviceChange
NTSTATUS

IoReportTargetDeviceChange(
IN PDEVICE_OBJECT Physica7DeviceObject,
IN PVOID NotificationStructure
) ;

IoReportTargetDeviceChange notifies the PnP Manager that a custom event has occurred
on a device. The PnP Manager sends notification of the event to drivers that registered for
notification on the device. Do not use this routine to report system PnP events, such as
GUID _ T ARGET_DEVICE_REMOVE_ COMPLETE.

Parameters
PhysicalDeviceObject
Points to the PD~ of the device being reported.

NotificationStructure
Points to a caller-supplied TARGET_DEVICE_CUSTOM_NOTIFICATION structure de
scribing the custom event. The PnP Manager sends this structure to drivers that registered
for notification of the event.

NotificationStructure.FileObject must be NULL. NotificationStructure.Event must contain
the custom GUID for the event. The other fields of the NotificationStructure must be filled
in as appropriate for the custom event.

The PnP Manager fills in the NotificationStructure.FileObject field when it sends notifica
tions to registrants.

Include
wdm.h or ntddk.h

Return Value
IoReportTargetDeviceChange returns STATUS_SUCCESS or an appropriate error status.
Possible error status values include:

Error Status Description

The caller specified a system PnP event, such as
GUID_TARGET_DEVICE_QUERY_REMOVE.
This routine is only for custom events.

36 Part 1 Plug and Play

Comments
A driver that defines a custom device event calls 10ReportTargetDeviceChange to inform
the PnP Manager that the custom event has occurred. Custom notifcation can be used for
events like a volume label change.

A driver should call the asynchronous form of this routine, 10ReportTargetDeviceChange
Asynchronous, instead of this routine, to prevent deadlocks.

Certain kernel-mode components can call this synchronous routine. For example, a file
system can call 10ReportTargetDeviceChange to report a "get off the volume" custom
event when a component tries to open the volume for exclusive access. Clients that register
for notification on file system volumes are careful to not request an exclusive open in a PnP
notification callback routine.

The custom notification structure contains a driver-defined event with its own GUID. Driver
writers can generate GUIDs with uuidgen.exe or guidgen.exe.

Callers of 10ReportTargetDeviceChange must be running at IRQL PASSIVE_LEVEL In
the context of a system thread. To report a target device change from raised IRQL, call 10-
ReportTargetDeviceChangeAsynchronous.

10ReportTargetDeviceChange is not supported on-Windows 98; it returns STATUS_
NOT_SUPPORTED.

See Also
10ReportTargetDeviceChangeAsynchronous, TARGET _DEVICE_ CUSTOM_
NOTIFICATION

loReportTargetDeviceChangeAsynchronous
NTSTATUS

IoReportTargetOev;ceChangeAsynchronous(
IN POEVICE_OBJECT PhysicalDeviceObject,
IN PVOIO NotificationStructure,
IN POEVICE_CHANGE_COMPLETE_CALLBACK Callback
IN PVOIO Context OPTIONAL
) ;

OPTIONAL,

10ReportTargetDeviceChangeAsynchronous notifies the PnP Manager that a custom
event has occurred on a device. The routine returns immediately; it does not wait while the
PnP Manager sends notification of the event to drivers that registered for notification on the
device. Do not use this routine to report system PnP events, such as GUID_TARGET_
DEVICE_REMOVE_COMPLETE.

Parameters
PhysicalDeviceObject
Points to the PD~ of the device being reported.

NofificationStructure

Chapter 1 Plug and Play Routines 37

Points to a caller-supplied TAROET_DEVICE_CUSTOM_NOTIFICATION structure de
scribing the custom event. The PnP Manager sends this structure to drivers that registered
for notification of the event.

NotifzcationStructure.FileObject must be NULL. NotificationStructure.Event must contain
the custom OUID for the event. The other fields of the NotifzcationStructure must be filled
in as appropriate for the custom event.

The PnP Manager fills in the NotifzcationStructure.FileObject field when it sends
notifications to registrants.

Callback
Optionally points to a caller-supplied routine that the PnP Manager calls after it finishes
notifying drivers that registered for this custom event.

The callback routine has the following type:

typedef
VOID
(*PDEVICE_CHANGE_COMPLETE_CALLBACK)(

IN PVOID Context
) ;

A device-change-complete callback routine should not block and must not call synchronous
routines that generate PnP events.

The PnP Manager calls device-change-complete callback routines at IRQL P ASSIVE_
LEVEL.

Context
Optionally points to a caller-supplied context structure that the PnP Manager passes to the
Callback routine. The caller must allocate this structure from nonpaged memory.

Include
ntddk.h

38 Part 1 Plug and Play

Return Value
IoReportTargetDeviceChangeAsynchronous returns STATUS_SUCCESS or an appro
priate error status. Possible error status values include:

Error Status

Comments

Description

The caller specified a system PnP event, such as
GUID_TARGET_DEVICE_QUERY _REMOVE.
This routine is only for custom events.

A driver that defines a custom device event calls IoReportTargetDeviceChange
Asynchronous to inform the PnP Manager that the custom event has occurred. Custom
notification can be used for events like a volume label change.

The custom notification structure contains a driver-defined event with its own GUID. Driver
writers can generate GUIDs with uuidgen.exe or guidgen.exe.

When a driver calls this routine while handling an event, an IRP _MN_REMOVE_DEVICE,
or an IRP _MN_SURPRISE_REMOVAL, the PnP Manager calls the driver's Callback
routine after the driver returns and the stack unwinds.

Callers of IoReportTargetDeviceChangeAsynchronous must be running at IRQL <=
DISPATCH_LEVEL. If a driver writer calls this routine at IRQL DISPATCH_LEVEL, the
NotificationStructure must be allocated from nonpaged memory.

See Also
IoReportTargetDeviceChange, TARGET _DEVICE_CUSTOM_NOTIFICATION

loRequestDeviceEject
VOID

IoRequestDeviceEject(
IN PDEVICE_OBJECT Physica7DeviceObject
) :

IoRequestDeviceEject notifies the PnP Manager that the device eject button was pressed.
Note that this routine reports a request for device eject, not media eject.

Parameters
PhysicalDeviceObject
Points to the PD~ for the device.

Chapter 1 Plug and Play Routines 39

Include
wdm.h or ntddk.h

Comments
Typically, a PnP bus driver calls IoRequestDeviceEject to notify the PnP Manager that a
user pressed the device eject button on one of its child devices.

A driver calls this routine, rather than sending an IRP _MN_EJECT request, because this
routine allows the PnP Manager to coordinate additional actions for the eject besides send
ing the IRP. For example, the PnP Manager notifies user-mode and kernel-mode compo
nents that registered for notification of changes on the device.

The PnP Manager directs an orderly shutdown of the device. The PnP Manager:

1. Creates a list of other devices that are affected by this device being ejected.

The PnP Manager queries for the device's removal relations, ejection relations, and bus
relations (child devices).

2. Determines whether the device and its related devices can be software-removed.

The PnP Manager sends IRP _MN_QUERY _REMOVE_DEVICE IRPs to the drivers for
the device and its related devices. The PnP Manager also sends notifications to any user
mode and kernel-mode components that registered for device-change notification on the
device or any of its related devices. If any of the drivers or user-mode components fail the
query-remove, the PnP Manager pops up a dialog box to notify the user that the eject
failed.

3. Software-removes the device and its related devices.

If the previous steps are successful, the PnP Manager notifies registered drivers and ap
plications that the device and its related devices are being software-removed. Then the
PnP Manager sends IRP _MN_REMOVE_DEVICE IRPs to the drivers for the device and
its related devices. Function and filter drivers detach from the device stack and delete
their device objects for the device(s). The bus drivers retain the PDO(s) for the device(s),
unless a device is physically gone and the bus driver omitted the device in its most recent
response to IRP _MN_QUERY _DEVICE_RELATIONS/BusRelations for the device's
parent bus.

4. Directs the bus driver to eject the device (if possible).

The PnP Manager takes different steps, depending on the eject capabilities of the device:

• Hot eject is supported.

If the EjectSupported capability is set for the device, the device can be ejected when
the system is running (is in the PowerSystem Working state). The PnP Manager sends

40 Part 1 Plug and Play

an IRP _MN_EJECT request to the bus driver for the device. Any function and filter
drivers detached previously from the stack in response to the remove IRP, so the bus
driver handles the eject IRP. When the bus driver completes the IRP, the PnP Manager
expects the device to be physically absent from the system.

• Hot eject is not supported.

In this case, the device is Removable but does not support eject. The PnP Manager
marks the device as not-presentlnot-working-properly. The PnP Manager will not
restart the device until a user physically removes it and reinserts it. In this case, the
PnP Manager does not send an IRP _MN_EJECT.

A device's parent bus driver sets the capabilities for a device, including its eject capabili
ties, in response to an IRP _MN_QUERY_CAPABILITIES request. A function or filter
driver can optionally specify capabilities.

When a device is ejected, its child devices are physically removed from the system along
with it.

A user-mode application can initiate a device eject. In that case, no driver calls this routine
but the OS calls the PnP Manager to initiate the steps listed above.

Callers of IoRequestDeviceEject must be running at IRQL <= DISPATCH_LEVEL. The
PnP Manager performs most of its device-eject tasks listed above at IRQL P ASSIVE_
LEVEL.

See Also
IRP _MN_EJECT, IRP _MN_QUERY _REMOVE_DEVICE, IRP _MN_QUERY_
DEVICE_RELATIONS, IRP _MN_REMOVE_DEVICE

loSetDevicelnterfaceState
NTSTATUS

IoSetDeviceInterfaceState(
IN PUNICODE_STRING Symbo7icLinkName,
IN BOOLEAN Enab7e
) ;

IoSetDevicelnterfaceState enables or disables a previously registered device interface.
Applications and other system components can open only interfaces that are enabled.

Parameters
SymbolicLinkName
Points to a string identifying the device interface being enabled or disabled. This string was
obtained from a previous call to IoRegisterDevicelnterface or IoGetDevicelnterfaces.

Chapter 1 Plug and Play Routines 41

Enable
TRUE indicates that the device interface is being enabled. FALSE indicates that the device
interface is being disabled.

Include
wdm.h or ntddk. h

Return Value
10SetDevicelnterfaceState returns STATUS_SUCCESS if the call was successful. This
routine returns an informational status of STATUS_OBJECT_NAME_EXISTS if the caller
requested to enable a device interface that was already enabled. Possible error return values
include:

Error Status

Comments

Description

The caller tried to disable a device interface that
was not enabled.

10SetDevicelnterfaceState enables a registered device interface for use by applications
and other system components. The interface must have been previously registered with 10-
RegisterDevicelnterface or from user mode.

10SetDevicelnterfaceState creates a symbolic link for a device interface that is being
enabled.

A function or filter driver typically calls this routine with Enable set to TRUE after it
successfully starts a device in response to an IRP _MN_START_DEVICE. Such a driver
should disable the device interface (Enable equals FALSE) when it removes the device
in response to an IRP _MN_REMOVE_DEVICE.

If a call to this routine successfully exposes a device interface, the system notifies any com
ponents that registered for PnP notification of a device class change. Similarly, if a call to
this routine disables an existing device interface, the system sends appropriate notifications.

The PnP Manager does not send notification of device-interface arrivals until the IRP _MN_
START_DEVICE IRP completes, indicating that all the drivers for the device have com
pleted their start operations. In addition, the PnP Manager fails create requests for the device
until the IRP _MN_START_IRP completes.

Callers of 10SetDeviceInterfaceState must be running at IRQL PASSIVE_LEVEL in the
context of a system thread.

42 Part 1 Plug and Play

See Also
IoGetDevicelnterfaces, IoRegisterDevicelnterface, IoRegisterPlugPlayNotification

loUnregisterPlugPlayNotification
NTSTATUS

IoUnregisterPlugPlayNotification(
IN PVOID NotificationEntry
) ;

IoUnregisterPlugPlayNotification removes the registration of a driver's callback routine
for a PnP event.

Parameters
NotificationEntry
Points to an opaque value representing the registration to be removed. The value was
returned by a previous call to IoRegisterPlugPlayNotification.

Include
wdm.h or ntddk.h

Return Value
IoUnregisterPlugPlayNotification returns STATUS_SUCCESS if the registration was
successfully removed.

Comments
IoUnregisterPlugPlayNotification removes one PnP notification registration; that is, the
registration of one driver callback routine for one PnP event category.

Drivers should unregister a notification first, then free any related context buffer.

A driver cannot be unloaded until it removes all of its PnP notification registrations because
there is a reference on its driver object for each active registration.

Callers of IoUnregisterPlugPlayNotification must be running at IRQL PASSIVE_LEVEL
in the context of a system thread.

See Also
IoRegisterPlugPlayN otification

43

CHAPTER 2

Plug and Play IRPs

This chapter describes the PnP IRPs that are sent to drivers. All PnP IRPs have the major
code IRP _MJ _PNP and a minor code indicating the particular PnP request.

This chapter provides reference information for the individual IRPs. See the Plug and Play,
Power Management, and Setup Design Guide for a description of the order in which the
IRPs are sent, a discussion of how to handle IRPs in a DispatchPnp routine, and a general
discussion of PnP concepts and terminology.

For each IRP and each kind of driver, a driver is either required to handle the IRP, can
optionally handle the IRP, or must not handle the IRP. Consult the table below to identify
which IRPs your driver will handle and then consult the reference pages for information on
the individual IRPs. The IRPs are listed in functional order in the table and in alphabetical
order in the IRP reference pages.

If an IRP is marked "No" in the table for a particular driver, that driver must not handle the
IRP. The driver must pass the IRP to the next driver in the device stack as described in
the reference page for the IRP.

The PnP Manager sends these IRPs. PnP drivers can send some of these IRPs, but only those
so noted in this chapter.

The following are the PnP IRPs and the drivers that handle them:

Function or Function Bus Driver or
Filter Driver Driver for Bus Filter
for Nonbus Bus Device Driver (for

PnPIRP Device (for bus FDO) child PDOs)

IRP _MN_START_DEVICE Required Required Required

IRP _MN_QUERY _STOP_DEVICE Required Required Required

IRP _MN_STOP _DEVICE Required Required Required

IRP _MN_CANCEL_STOP _DEVICE Required Required Required

IRP _MN_QUERY _REMOVE_DEVICE Required Required Required

Continued

44 Part 1 Plug and Play

Function or Function Bus Driver or
Filter Driver Driver for Bus Filter
for Nonbus Bus Device Driver (for

PnPIRP Device (for bus FDO) child PDOs)

IRP _MN_REMOVE_DEVICE Required Required Required

IRP _MN_CANCEL_REMOVE_DEVICE Required Required Required

IRP _MN_SURPRISE_REMOV AL Required Required Required

IRP _MN_QUERY _CAPABILITIES Optional Optional Required

IRP _MN_QUERY _PNP _DEVICE_STATE Optional Optional Optional

IRP _MN_FILTER_RESOURCE - Optional (1) Optional (1) No
REQUIREMENTS

IRP _MN_DEVICE_USAGE_ Required (1) Required (1) Required (1)

NOTIFICATION

IRP _MN_QUERY _DEVICE_RELATIONS

BusRelations Optional (1) Required No (2)

EjectionRelations No No Optional

RemovalRelations Optional Optional No

TargetDeviceRelation No No Required

IRP _MN_QUERY _RESOURCES No No Required (1)

IRP _MN_QUERY _RESOURCE_ No No Required (1)

REQUIREMENTS

IRP _MN_QUERY_ID

BusQueryDeviceID No No Required

BusQueryHardwareIDs No No Optional

BusQueryCompatibleIDs No No Optional

BusQuerylnstanceID No No Optional

IRP _MN_QUERY _DEVICE_TEXT No No Required (1)

IRP _MN_QUERY_BUS_INFORMATION No No Required (1)

IRP _MN_QUERY _INTERFACE Optional Optional Required (1)

IRP _MN_READ_CONFIG No No Required (1)

IRP _MN_ WRITE_CONFIG No No Required (1)

IRP _MN_EJECT . No No Required (1)

IRP _MN_SET_LOCK No No Required (1)

(1) Required or Optional in certain situations. See the reference page for the IRP for more details.

(2) Bus filter drivers might handle a query for BusRelations.

Chapter 2 Plug and Play IRPs 45

All PnP drivers must handle this IRP.

When Sent

Input

The PnP Manager sends this IRP to inform the drivers for a device that the device will not
be removed.

The PnP Manager sends this IRP at IRQL P ASSIVp_LEVEL in the context of a system
thread.

None

Output
None

VO Status Block
A driver must set Irp->IoStatus.Status to STATUS_SUCCESS for this IRP. If a driver
fails this IRP, the device is left in an inconsistent state.

Operation
This IRP must be handled first by the parent bus driver for a device and then by each higher
driver in the device stack.

In response to this IRP, drivers return the device to the state it was in prior to receiving the
IRP _MN_QUERY _REMOVE_DEVICE request.

If the device is already started when the driver receives this IRP, the driver simply sets
status to success and passes the IRP to the next driver (or completes the IRP if the driver is
a bus driver). For such a cancel-remove IRP, a function or filter driver need not set a com
pletion routine. The device may not be in the remove-pending state, because, for example,
the driver failed the previous IRP _MN_QUERY _REMOVE_DEVICE.

The PnP Manager calls any EventCategoryTargetDeviceChange notification callbacks
with GUID_TARGET_DEVICE_REMOVE_CANCELLED after the IRP _MN_CANCEL_
REMOVE_DEVICE request completes. Such callbacks were registered on the device
by calling IoRegisterPlugPlayNotification. The PnP Manager also calls any user-mode
components that registered for notification on the device by calling RegisterDevice
Notification.

If a file system is mounted on the device, it must undo any operations it did in response to
the query-remove notification.

46 Part 1 Plug and Play

See the Plug and Play, Power Management, and Setup Design Guide for detailed informa
tion on handling remove IRPs and for the general rules for handling all PnP IRPs.

Sending This IRP
Reserved for system use. Drivers must not send this IRP.

See Also
IoRegisterPlugPlayNotification, IRP _MN_QUERY _REMOVE_DEVICE

All PnP drivers must handle this IRP.

When Sent

Input

The PnP Manager sends this IRP, at some point after an IRP _MN_QUERY_STOP_
DEVICE, to inform the drivers for a device that the device will not be stopped for re
source reconfiguration.

The PnP Manager sends this IRP at IRQL PASSIVE_LEVEL in the context of a system
thread.

None

Output
None

1/0 Status Block
A driver must set Irp->IoStatus.Status to STATUS_SUCCESS for this IRP. If a driver
fails this IRP, the device is left in an inconsistent state.

Operation
This IRP must be handled first by the parent bus driver for a device and then by each higher
driver in the device stack.

In response to this IRP, drivers return the device to the started state. Drivers start any IRPs
that were held while the device was in the stop-pending state.

If the device is already in an active state when the driver receives this IRP, a function or
filter driver simply sets status to success and passes the IRP to the next driver. The parent

Chapter 2 Plug and Play IRPs 47

bus driver completes the IRP. For such a cancel-stop IRP, a function or filter driver need
not set a completion routine.

See the Plug and Play, Power Management, and Setup Design Guide for detailed informa
tion on handling stop IRPs and for the general rules for handling all PnP IRPs.

Sending This IRP
Reserved for system use. Drivers must not send this IRP.

See Also
IRP _MN_ QUER Y _STOP_DEVICE

System components send this IRP to ask the drivers for a device whether the device can
support a special file. If all the drivers for the device succeed the IRP, the system creates
the special file. The system also sends this IRP to inform drivers that a special file has been
removed from the device. The special files can be a paging file, a crash dump file, or a
hibernation file.

Function drivers must handle this IRP if their device can contain a paging file, dump file,
or hibernation file. Filter drivers must handle this IRP if the function driver they are filtering
handles the IRP. Bus drivers must handle this IRP for their adapter or controller (bus FDO)
and for their child devices (child PDOs).

When Sent

Input

The system sends this IRP when it is creating or deleting a paging file, dump file, or hiber
nation file. A driver can send this IRP to propagate device usage information to another
device stack.

System components and drivers send this IRP at IRQL PASSIVE_LEVEL in an arbitrary
thread context.

Parameters.UsageNotification.InPath is a BOOLEAN. When this parameter is TRUE, the
system is creating a paging, crash dump, or hibernation file on the device. When InPath is
FALSE, such a file has been removed from the device.

Parameters.UsageNotification.Type is an enum indicating the kind of file. This parameter
has one of the following values: DeviceUsageTypePaging, DeviceUsageTypeDumpFile,
or DeviceUsageTypeHibernation.

48 Part 1 Plug and Play

Output
None

1/0 Status Block
Drivers set Irp->loStatus.Status to STATUS_SUCCESS or to an appropriate error status.

Drivers do not modify the Irp->loStatus.lnformation field; it remains at zero as set by the
component sending the IRP.

Operation
A driver handles this IRP on the IRP's way down the device stack and on the IRP's way back
up the stack.

A driver responds to this IRP with a procedure like the following:

• If Parameters.UsageNotification.lnPath is TRUE, determine whether the device
supports the special file.

A driver should test for the specific Parameters.UsageNotification.Type(s) that the
driver can support. Additional notification types might be added in the future.

See further information below describing the actions required to support each notifica
tion type.

If Parameters.UsageNotification.lnPath is TRUE and the driver cannot support the
special file on the device, the driver must complete the IRP with a failure status.

• If the device supports the special file:

1. Take appropriate actions to reflect that the device now contains, or no longer contains,
a special file.

A driver typically increments or decrements a counter. For example, if Parameters.
UsageNotification.Type is DeviceUsageTypePaging and Parameters.Usage
Notification.lnPath is TRUE, increment a count of the number of paging files on
the device. Certain driver dispatch routines must check the counter(s).

A device that contains a special file should not be disabled. A driver can call 10-
InvalidateDeviceState, requesting the PnP Manager to re-query for the device's
PnP device state information. In response to the resulting IRP _MN_QUERY_
PNP _DEVICE_STATE IRP, the driver should set the PNP _DEVICE_NOT_
DISABLEABLE flag.

If InPath is FALSE, a driver sets the DO_POWER_PAGABLE bit in its device object
for the device.

Chapter 2 Plug and Play IRPs 49

2. Propagate the device usage information to any related devices that require the
information.

As part of its handling of an IRP _MN_DEVICE_USAGE_NOTIFICATION IRP, a
driver might be required to pass the information to one or more other device stacks.
Such a driver creates new IRP _MN_DEVICE_USAGE_NOTIFICATION IRP(s) and
sends them to the appropriate device stack(s). The driver must wait for completion of
any device-us age-notification IRP(s) it sends before the driver finishes processing the
device-usage IRP it received.

How to identify the related devices is device- and driver-specific. Typically, a driver
sends the IRP to other drivers to which it would send 110 requests for the file. When a
bus driver handles this request for a child device, it must send a usage notification IRP
to the device stack for the device's parent.

For example, when ftdisk is running a five-disk stripe set, it propagates paging, hiber
nate, and crash dump notifications to each of those five disks, since each of those
devices can be required to handle paging, hibernate, or crash dump file operations.

3. In a function or filter driver, set an IoCompletion routine.

4. In a function or filter driver, set Irp->IoStatus.Status to STATUS_SUCCESS, set
up the next stack location, and pass the IRP to the next lower driver with IoCall
Driver. Do not complete the IRP.

In a bus driver that is handling the IRP for a child PD~: set Irp->IoStatus.Status and
complete the IRP (IoCompleteRequest).

5. During IRP completion processing:

If an IoCompletion routine detects that a lower driver has failed the IRP, the function
or filter driver must undo any operations it performed in response to the IRP and pro
pagate the error. If the function or filter driver propagated the usage information to any
other device stacks, the driver must send another usage IRP to those stacks to notify
them of the failure.

If status is STATUS_SUCCESS and InPath is TRUE, clear the DO_POWER_
P AGABLE bit.

See the Plug and Play, Power Management, and Setup Design Guide for the general rules
for handling PnP IRPs.

Supporting Paging, Crash Dump, and Hibernation Files on a Device
When any of a driver's special file counts is nonzero, the driver must support the presence of
the special file(s) on its device (or a descendant device).

50 Part 1 Plug and Play

For a DeviceUsageTypePaging file created on its device, a driver must do the following:

• Lock code in memory for its DispatchRead, Dispatch Write, DispatchDeviceControl, and
DispatchPower routines.

• Clear the DO_POWER_PAGABLE bit in its device object for the device (on the IRP's
way up the device stack).

• Fail IRP _MN_QUERY _STOP _DEVICE and IRP _MN_QUERY _REMOVE_DEVICE
requests for the device.

For a DeviceUsageTypeDumpFile file on its device, a driver must do the following:

• Lock code in memory for its DispatchRead, Dispatch Write, DispatchDeviceControl, and
DispatchPower routines.

• Do not take the device out of the DO state.

Do not register the device for idle detection (PoRegisterDeviceForldleDetection). If the
device is already registered, cancel the registration. If the driver performs its own idle de
tection for the device, suspend such detection.

• Clear the DO_POWER_PAGABLE bit in its device object for the device (on the IRP's
way up the device stack).

• FailIRP _MN_QUERY_STOP _DEVICE and IRP _MN_QUERY~REMOVE_DEVICE
requests for the device.

For a DeviceUsageTypeHibernation file on its device, a driver must do the following:

• Lock code in memory for its DispatchRead, Dispatch Write, DispatchDeviceControl, and
DispatchPower routines.

• Ensure the device is in the DO state when the driver receives an S4 system power IRP
indicating that the system is about to hibernate.

• Do not power down the device in response to a D3 set-power IRP that is part of an S4
hibernate action.

Upon receipt of such a D3 set-power IRP, perform all tasks required to put the device
in the D3 state except for powering off the device and notifying the Power Manager
(PoSetPowerState). The device must retain power until the hibernation file has been
written.

• Clear the DO_POWER_PAGABLE bit in its device object for the device (on the IRP's
way up the device stack).

Chapter 2 Plug and Play IRPs 51

• Fail IRP _MN_QUERY _STOP _DEVICE and IRP _MN_QUERY _REMOVE_DEVICE
requests for the device.

See the Plug and Play, Power Management, and Setup Design Guide for more information
about device power states, power IRPs, and supporting power management in drivers.

Sending This IRP
A driver can send an IRP _MN_DEVICE_USAGE_INFORMATION IRP, but only to pro
pagate device usage information to another device stack. A driver is never the initial source
of device usage information.

See Also
IoAdjustPagingPathCount, IRP _MN_QUERY _REMOVE_DEVICE, ·IRP _MN_
QUERY_STOP_DEVICE

Bus drivers typically handle this request for their child devices (child PDOs) that support
device ejection. Function and filter drivers do not receive this request.

When Sent

Input

The PnP Manager sends this IRP to direct the appropriate driver or drivers to eject the
device from its slot.

The PnP Manager sends this IRP at IRQL PASSIVE_LEVEL in an arbitrary thread context.

None

Output
None

1/0 Status Block
A bus driver sets Irp->IoStatus.Status to STATUS_SUCCESS or to an appropriate error
status.

On success, a bus driver sets Irp->IoStatus.Information to zero.

If a bus driver does not handle this IRP, it leaves Irp->IoStatus.Status as is and completes
the IRP.

52 Part 1 Plug and Play

Operation
For the device to be ejected, the device must be in the D3 device power state (off) and must
be unlocked (if the device supports locking).

Any driver that returns success for this IRP must wait until the device has been ejected
before completing the IRP.

See the Plug and Play, Power Management, and Setup Design Guide for the general rules
for handling PnP IRPs.

Sending This IRP
Reserved for system use. Drivers must not send this IRP.

Instead, see the reference page for the IoRequestDeviceEject routine.

See Also
IoRequestDeviceEject

The PnP Manager sends this IRP to a device stack so the function driver can adjust the
resources required by the device, if appropriate.

The function driver typically handles this IRP.

The parent bus driver (and bus filter drivers) should not handle this request for a child PD~;
instead, such a driver should report resource requirements in response to an IRP _MN_
QUERY _RESOURCE_REQUIREMENTS request.

Upper and lower filter drivers do not handle this IRP.

When Sent

Input

The PnP Manager sends this IRP when it is preparing to allocate resource(s) to a device.

The PnP Manager sends this IRP at IRQL PASSIVE_LEVEL in the context of an arbitrary
thread.

Irp->IoStatus.Information points to an IO_RESOURCE_REQUIREMENTS_LIST con
taining the hardware resource requirements for the device. The pointer is NULL if the de
vice consumes no hardware resources.

Parameters.FilterResourceRequirements.IoResourceRequirementList also points to an
IO_RESOURCE_REQUIREMENTS_LIST, but the function driver should use the list in the
IoStatus block.

Chapter 2 Plug and Play IRPs 53

Output
Returned in the 110 status block.

1/0 Status Block
If a function driver handles this IRP, it handles it on the IRP's way back up the stack. If the
function driver handles the IRP successfully, it sets Irp->IoStatus.Status to STATUS_
SUCCESS and sets Irp->IoStatus.lnformation to a pointer to an IO_RESOURCE_
REQUIREMENTS_LIST containing the filtered resource requirements. See the Operation
section below for further information on setting the filtered resource list. If a function driver
encounters an error when handling this IRP, it sets the error in Irp->IoStatus.Status. If a
function driver does not handle this IRP, it uses IoSkipCurrentlrpStackLocation to pass
the IRP down the stack unchanged.

Upper and lower-filter drivers do not handle this IRP. Such a driver calls IoSkipCurrent
IrpStackLocation, passes the IRP down to the next driver, must not modify Irp->IoStatus,
and must not complete the IRP.

The parent bus driver does not handle this IRP.1t leaves Irp->IoStatus as is and completes
the IRP.

Operation
The PnP Manager sends an IRP _MN_QUERY_RESOURCE_REQUIREMENTS request
to the parent bus driver for the device, before the function driver has attached its device
object to the device stack. To give the function driver an opportunity to modify the device's
resource requirements, if appropriate, the PnP Manager later sends an IRP _MN_FIL TER_
RESOURCE_REQUIREMENTS request to the full device stack. The PnP Manager sends
this IRP before it allocates hardware resources to the device during initial device configura
tion. The PnP Manager might also send this IRP during resource rebalancing.

When the PnP Manager sends this IRP, it supplies the driver stack with a resource require
ments list, which drivers can modify and return. The PnP Manager supplies one of the fol
lowing types of resource requirements list (listed in order of priority):

• Forced configuration (modified from a resource list to a resource requirements list)

• Override configuration

• Basic configuration

• Boot configuration (modified from a resource list to a resource requirements list)

If a function driver handles this IRP, it must set a completion routine and handle the IRP on
its way back up the device stack. See the Plug and Play, Power Management, and Setup
Design Guide for information on handling a PnP IRP on its way back up the device stack.

54 Part 1 Plug and Play

If the function driver is not changing the size of the current list pointed to by Irp->Io
Status.Information, the driver can modify the list in place. If the driver needs to change
the size of the requirements list, the driver must allocate a new 10_RESOURCE_
REQUIREMENTS_LIST list from paged memory and free the previous list. The PnP
Manager frees the returned structure when it is no longer needed.

A function driver must preserve the order of resources in the list pointed to by Irp->Io
Status.Information and must not alter resource tags that it does not handle. The driver must
take care to adjust the requirements list in a way that the device.'s parent bus supports. If a
function driver adds a new resource to the requirements list, and that resource is assigned to
the device, the function driver should filter that resource out of the IRP _MN_START_
DEVICE before passing the start IRP down to the bus driver.

If the function driver for the device does not handle this IRP, the PnP Manager uses the
resource requirements as specified by the parent bus driver in response to the IRP _MN_
QUERY _RESOURCE_REQUIREMENTS request.

A function driver must be prepared to handle this IRP for a device at any time after the
driver's AddDevice routine has been called for the device.

See the Plug and Play, Power Management, and Setup Design Guide for the general rules
for handling PnP IRPs.

Sending This IRP
Reserved for system use. Drivers must not send this IRP.

See Also
ExAllocatePoolWithTag, ExFreePool, 10 _RESOURCE_REQUlREMENTS_LIST, IRP _
MN_START_DEVICE

The PnP Manager uses this IRP to request the type and instance number of a device's
parent bus.

Bus drivers should handle this request for their child devices (PDOs). Function and filter
drivers do not handle this IRP.

When Sent
The PnP Manager sends this IRP when a device is enumerated.

The PnP Manager sends this IRP at IRQL PASSIVE_LEVEL in an arbitrary thread context.

Chapter 2 Plug and Play IRPs 55

Input
None

Output
Returned in the I/O status block.

1/0 Status Block
A bus driver sets Irp->IoStatus.Status to STATUS_SUCCESS or to an appropriate error
status.

On success, a bus driver sets Irp->IoStatus.lnformation to a pointer to a completed PNP_
BUS_INFORMATION structure. (See the Operation section below for more information.)
On an error, the bus driver sets Irp->IoStatus.lnformation to zero.

Function and filter drivers do not handle this IRP.

Operation
The information returned in response to this IRP is available to the function and filter
drivers for devices on the bus. Function and filter drivers can call IoGetDeviceProperty
to request a DevicePropertyBusTypeGuid, DevicePropertyLegacyBusType, or Device
PropertyBusNumber. Function and filter drivers that support devices on more than one bus
can use this information to determine on which bus a particular device resides.

If a bus driver returns information in response to this IRP, it allocates a PNP _BUS_
INFORMATION structure from paged memory. The PnP Manager frees the structure
when it is no longer needed.

A PNP _BUS_INFORMATION structure has the following format:

typedef struct _PNP_BUS_INFORMATION {
GUID BusTypeGuid;
INTERFACE_TYPE LegacyBusType;
ULONG BusNumber;

PNP_BUS_INFORMATION. *PPNP_BUS_INFORMATION;

The members of the structure are defined as follows:

BusTypeGuid
A bus driver sets BusTypeGuid to the GUID for the type of the bus on which the device
resides. GUIDs for standard bus types are listed in wdmguid.h. Driver writers should gen
erate GUIDs for other bus types using uuidgen.

56 Part 1 Plug and Play

LegacyBusType
A PnP bus driver sets LegacyBusType to the INTERFACE_TYPE of the parent bus. The
interface types are defined in wdm.h. Some buses have a specific INTERFACE_TYPE
value, such as PCMCIABus, PCIBus, or PNPISABus. For other buses, especially newer
buses like USB, the bus driver sets this member to PNPBus.

The LegacyBusType specifies the interface used to communicate with the device. This may
or may not correspond to the type of the parent bus. For example, the interface for a Card
Bus card that is plugged into a PCI CardBus·controller is PCIBus. However, the interface
for a PCMCIA card on a PCI CardBus controller is PCMCIABus.

BusNumber
A bus driver sets BusNumber to a number distinguishing the bus from other buses of the
same type on the machine. The bus-numbering scheme is bus-specific. Bus numbers may
be virtual, but must match any numbering used by legacy interfaces such as IoReport
ResourceUsage.

See the Plug and Play, Power Management, and Setup Design Guide for the general rules
for handling PnP IRPs.

Sending This IRP
Reserved for system use. Drivers must not send this IRP.

Call IoGetDeviceProperty to get information about the bus to which a device is attached.

See Also
IoGetDeviceProperty

The PnP Manager sends this IRP to get the capabilities of a device, such as whether the
device can be locked or ejected.

Function and filter drivers can handle this request if they alter the capabilities supported by
the bus driver. Bus drivers must handle this request for their child devices.

When Sent
The PnP Manager sends this IRP to the bus driver for a device immediately after the device
is enumerated. The PnP Manager sends this IRP again after all the drivers for a device have
started the device. A driver can send this IRP to get the capabilities for a device.

The PnP Manager and drivers send this IRP at IRQL PASSIVE_LEVEL in an arbitrary
thread context.

Input

Chapter 2 Plug and Play IRPs 57

Parameters.DeviceCapabilities.Capabilities points to a DEVICE_CAPABILITIES
structure containing information about the capabilities of the device.

Output
Parameters.DeviceCapabilities.Capabilities points to the DEVICE_CAPABILITIES
structure that reflects any modifications made by the driver(s) that handle the IRP.

1/0 Status Block
A driver sets Irp->IoStatus.Status to STATUS_SUCCESS or to an appropriate error status
such as STATUS_UNSUCCESSFUL.

If a function or filter driver does not handle this IRP, it calls IoSkipCurrentIrpStack
Location and passes the IRP down to the next driver. Such a driver must not modify
Irp-> IoStatus.Status and must not complete the IRP.

A bus driver sets Irp->IoStatus.Status and completes the IRP.

Operation
When a device is enumerated, but before the function and filter drivers are loaded for
the device, the PnP Manager sends an IRP _MN_QUERY_CAPABILITIES request to the
parent bus driver for the device. The bus driver must set any relevant values in the
DEVICE_CAPABILITIES structure and return it to the PnP Manager.

After the device stack is built and drivers have started the device, the PnP Manager sends
this IRP again to be handled first by the driver at the top of the device stack and then by
each lower driver in the stack. Function and filter drivers can set an IoCompletion routine
and handle this IRP on its way back up the device stack.

Drivers should add capabilities before they pass the IRP to the next lower driver.

Drivers should remove capabilities after all lower drivers have finished with the IRP.
A driver does not typically remove capabilities that have been set by other drivers, but it
might do so if it has special information about the capabilities of the device in a certain
configuration. See the Plug and Play, Power Management, and Setup Design Guide for
information on postponing IRP processing until lower drivers have finished.

After a device is enumerated and its drivers are loaded, its capabilities should not change.
A device's capabilities might change if the device is removed and re-enumerated.

When handling an IRP _MN_QUERY_CAPABILITIES IRP, the driver that is the power
policy manager for the device should set an IoCompletion routine and copy the device
power capabilities, such as the S-to-D power state mappings, on the IRP's way back up the
device stack. To determine the power capabilities of a child device, the parent bus driver

58 Part 1 Plug and Play

creates another query-capabilities IRP and sends the IRP to its parent driver. See Reporting
Device Power Capabilities in Part 3, "Power Management," in the Plug and Play, Power
Management, and Setup Design Guide for more information.

If a driver handles this IRP, it should check the DEVICE_CAPABILITIES.Version value.
If that value is not a version that the driver supports, the driver should fail the IRP. If the
version is supported, the driver should check the Size field. A driver should set only those
fields that are within the bounds of the capabilities structure that it received as input.

Drivers that handle this IRP can set some DEVICE_CAPABILITIES fields but must not set
the Size and Version fields. These fields are only set by the component that sent the IRP.

See the Plug and Play, Power Management, and Setup Design Guide for the general rules
for handling PnP IRPs.

Sending This IRP
A bus driver sends this IRP to the parent device stack when it handles an IRP _MN_
QUERY_CAPABILITIES request for one of its child devices. Also, a driver might send this
IRP to get the device capabilities for one of its devices. A single driver in the stack has only
part of the capabilities information for the device; sending an IRP to the device stack
enables it to gather the full picture, including modifications by any filter drivers, and so
forth.

See the Kernel-Mode Drivers Design Guide for information on sending IRPs. The following
steps apply specifically to this IRP:

• Allocate a DEVICE_CAPABILITIES structure from paged pool and initialize it to zeros.
Initialize the Size to sizeof(DEVICE_CAPABILITIES), the Version to 1, and Address
and UINumber to -1.

• Set the values in the next I/O stack location of the IRP: set MajorFunction to IRP _MJ_
PNP, set MinorFunction to IRP _MN_ QUERY_CAPABILITIES, and set Parameters.
DeviceCapabilities to a pointer to the allocated DEVICE_CAPABILITIES structure.

• Initialize IoStatus.Status to STATUS_NaT_SUPPORTED.

• Deallocate the IRP and the DEVICE_CAP ABILITIES structure when they are no longer
needed.

See Also
DEVICE_CAPABILITIES

Chapter 2 Plug and Play IRPs 59

Bus drivers must handle this request for BusRelations for their adapter or controller (bus
FDO). Filter drivers might handle this request for BusRelations. Bus drivers must handle
this request for TargetDeviceRelation for their child devices (child PDOs). Function and
filter drivers might handle this request for RemovalRelations. Bus drivers might handle
this request for EjectionRelations for their child devices (child PDOs).

When Sent

Input

The PnP Manager sends this IRP to gather information about devices with a relationship to
the specified device.

The PnP Manager queries a device's BusRelations (child devices) when the device is
enumerated and at other times while the device is active, such as when a driver calls
IoInvalidateDeviceRelations to indicate that a child device has arrived or departed.

The PnP Manager queries a device's RemovalRelations before it removes a device's
drivers or ejects the device and it queries for EjectionRelations before it ejects a device.

The PnP Manager queries a device's TargetDeviceRelation when a driver or user-mode
application registers for PnP notification of an EventCategoryTargetDeviceChange on
the device. The PnP Manager queries for the device that is associated with a particular file
object. This is the only PnP IRP that has a valid file object parameter. A driver can query
a device stack for TargetDeviceRelation.

The PnP Manager sends this IRP at IRQL PASSIVE_LEVEL in an arbitrary thread context.

Parameters.QueryDeviceRelations.Type specifies the type of relations being queried.
Possible values include BusRelations, EjectionRelations, RemovalRelations, and
TargetDeviceRelation. PowerRelations is not used.

Irp->FileObject points to a valid file object only if Parameters.QueryDeviceRelations.
Type is TargetDeviceRelation.

Output
Returned in the I/O status block.

1/0 Status Block
A driver sets Irp->IoStatus.Status to STATUS_SUCCESS or to a failure status such as
STATUS_INSUFFICIENT_RESOURCES.

60 Part 1 Plug and Play

On success, a driver sets Irp->IoStatus.lnformation to a PDEVICE_RELATIONS pointer
that points to the requested relations information. The DEVICE_RELATIONS structure is
defined as follows:

typedef struct _DEVICE_RELATIONS {
ULONG Count;
PDEVICE_OBJECT Objects[l]; II variable length

} DEVICE_RELATIONS, *PDEVICE_RELATIONS;

Operation
If a driver returns relations in response to this IRP, it allocates a DEVICE_RELATIONS
structure from paged memory containing a count and the appropriate number of device
object pointers. The PnP Manager frees the structure when it is no longer needed. If a driver
replaces a DEVICE_RELATIONS structure allocated by another driver, it must free the
previous structure.

A driver must reference the PDO of any device that it reports in this IRP (ObReference
Object). The PnP Manager removes the reference when appropriate.

A function or filter driver should be prepared to handle this IRP for a device any time after
its AddDevice routine has completed for the device. Bus drivers should be prepared to
handle a query for BusRelations immediately after a device is enumerated.

See the Plug and Play, Power Management, and Setup Design Guide for the general rules
for handling PnP IRPs.

The following subsections describe the specific actions for handling the various queries.

Bus Relations
When the PnP Manager queries for the bus relations (child devices) of an adapter or con
troller, the bus driver must return a list of pointers to the PDOs of any devices physically
present on the bus. The bus driver reports all devices, regardless of whether they have been
started. The bus driver might need to power up its bus device to determine which children
are present.

The bus driver that responds to this IRP is the function driver for the bus adapter or con
troller, not the parent bus driver for the bus that the adapter or controller is connected to.
Function drivers for non-bus devices do not handle this query. Such drivers just pass the IRP
to the next lower driver. (See Figure 2.1.) Filter drivers typically do not handle this query.

In the example shown in Figure 2.1, the PnP Manager sends an IRP _MN_QUERY_
DEVICE_RELATIONS for BusRelations to the drivers for the USB hub device. The PnP
Manager is requesting a list of the hub device's children.

Keyboard
Device Stack

I-----------l

Joystick
Device Stack

CD IRP
r------t--.I, Upper Filter DO 1

~ ___ ~~o~a~ ___ J ®

USB Hub
Device Stack 1----- -----l

I Lower Filter DO I

~ ___ ~o~o~a~ ___ J

USB Host Controller
Device Stack

(
PCIBus)

~ ___ D_ev_ic_eS_ta_c_k __ __

Figure 2.1 Drivers Handling a Query For Bus Relations

Chapter 2 Plug and Play IRPs 61

1. As with all PnP IRPs, the PnP Manager sends the IRP to the top driver in the device stack
for the device.

2. An optional filter driver might be the top driver in the stack. A filter driver typically does
not handle this IRP; it passes the IRP down the stack. A filter driver might handle this
IRP, for example, if the driver exposes a non-enumerable device on the bus.

3. The USB hub bus driver handles the IRP.

The USB hub bus driver:

• Creates a PD~ for any child device that does not already have one.

• Marks the PD~ inactive for any device that is no longer present on the bus. The
bus driver does not delete such PDOs. See Removing a Device in Part 2, "Plug and
Play," in the Plug and Play, Power Management, and Setup Design Guide for
information on when to delete the PDOs.

• Reports any child devices that are present on the bus.

62 Part 1 Plug and Play

For each child device, the bus driver references the PD~ and puts a pointer to the PD~
in the DEVICE_RELATIONS structure.

There are two PDOs in this example, one for the joystick device and one for the
keyboard device.

The bus driver should check whether another driver already created a DEVICE_
RELATIONS structure for this IRP. If so, the bus driver must add to the existing
information.

If there is no child device present on the bus, the driver sets the count to zero in the
DEVICE_RELATIONS structure and returns success.

• Sets the appropriate values in the 110 status block and passes the IRP to the next lower
driver. The bus driver for the adapter or controller does not complete the IRP.

4. An optional lower filter, if present, typically does not handle this IRP. Such a filter
driver passes the IRP down the stack. If a lower-filter driver handles this IRP, it can add
PDO(s) to the list of child devices but it must not delete any PDOs created by other
drivers.

5. The parent bus driver does not handle this IRP, unless it is the only driver in the device
stack (the device is in raw mode). As with all PnP IRPs, the parent bus driver completes
the IRP with IoCompleteRequest.

If there are one or more bus filter drivers in the device stack, such drivers might handle
the IRP on its way down to the bus driver and/or on the IRP's way back up the device
stack (if there are IoCompletion routines). According to the PnP IRP rules, such a driver
can add PDOs to the IRP on its way down the stack and/or modify the relations list on
the IRP's way back up the stack (in IoCompletion routines).

EjectionRelations
A driver returns pointers to PDOs of any devices that might be physically removed from the
system when the specified device is ejected. Do not report the PDOs of children of the
device; the PnP Manager always requests that child devices be removed before their parent
device.

The PnP Manager sends an IRP _MN_EJECT IRP to a device being ejected. The driver for
such a device also receive a remove IRP. The device's ejection relations receive an IRP _
MN_REMOVE_DEVICE IRP (not an IRP _MN_EJECT IRP).

Only a parent bus driver can respond to an EjectionRelations query for one of its child
devices. Function and filter drivers must pass it to the next lower driver in the device stack.
If a bus driver receives this IRP as the function driver for its adapter or controller, the
bus driver is performing the tasks of a function driver and must pass the IRP to the next
lower driver.

PowerRelations
Reserved.

Removal Relations

Chapter 2 Plug and Play IRPs 63

A driver returns pointers to PDOs of any devices whose drivers must be removed when the
drivers for the specified device are removed. Do not report the PDOs of children of the de
vice; the PnP Manager already requests removal of child devices before removing a device.

The order in which removal relations are removed is undefined. Removal relations at the
same level in the device tree can be removed in any order.

Any driver in the device stack can handle this type of relations query. A function or filter
driver handles the IRP before passing it to the next lower driver. A bus driver handles the
IRP and then completes it.

TargetDeviceRelation
A parent bus driver must handle this type of relations query for its child devices. The bus
driver references the child device's PD~ with ObReferenceObject and returns a pointer
to the PD~ in the DEVICE_RELATIONS structure. There is only one PD~ pointer in the
structure for this relation type. The PnP Manager removes the reference to the PD~ when
the driver or application unregisters for notification on the device.

Only a parent bus driver responds to a TargetDeviceRelation query. Function and filter
drivers must pass it to the next lower driver in the device stack. If a bus driver receives this
IRP as the function driver for its adapter or controller, the bus driver is performing the tasks
of a function driver and must pass the IRP to the next lower driver.

If a driver is not in a PD~-based stack, the driver sends a new target-device-relation query
IRP to the device object associated with the file handle on which the driver performs I/O.

Sending This IRP
Drivers must not send this IRP to request BusRelations. Drivers are not restricted from
sending this IRP for RemovalRelations or EjectionRelations, but it is not likely that a
driver would do so.

Drivers can query a device stack for TargetDeviceRelation. See the Kernel-Mode Drivers
Design Guide for information on sending IRPs. The following steps apply specifically to
this IRP:

• Set the values in the next I/O stack location of the IRP: set MajorFunction to IRP _
MJ_PNP, set MinorFunction to IRP_MN_QUERY_DEVICE_RELATIONS, set
Parameters.QueryDeviceRelations. Type to TargetDeviceRelation, and set Irp->
FileObject to a valid file object.

• Initialize IoStatus.Status to STATUS_NOT_SUPPORTED.

64 Part 1 Plug and Play

If a driver sent this IRP to get the PDO to report in response to an IRP _MN_QUERY_
DEVICE_RELATIONS for TargetDeviceRelation that the driver received, then the driver
reports the PDO and frees the returned relations structure when the IRP completes. If a
driver initiated this IRP for another reason, the driver frees the relations structure when the
IRP completes and dereferences the PDO when it is no longer needed.

See Also
10lnvalidateDeviceRelations, IRP _MN_EJECT, IRP _MN_REMOVE_DEVICE, 10-
RegisterPlugPlayNotification, ObReferenceObject

The PnP Manager uses this IRP to get a device's description or location information.

Bus drivers must handle this request for their child devices if the bus supports this informa
tion. Function and filter drivers do not handle this IRP.

When Sent

Input

The PnP Manager sends two of these IRPs when a device is enumerated: one to query the
device description and one to query the location information.

The PnP Manager sends this IRP at IRQL PASSIVE_LEVEL in an arbitrary thread context.

Parameters.QueryDeviceText.DeviceTextType is a DEVICE_TEXT _TYPE specifying
which string is requested. Possible values for DEVICE_TEXT_TYPE include DeviceText
Description and DeviceTextLocationlnformation.

Parameters.QueryDeviceText.Localeld is an LCID specifying the locale for the re
quested text.

Output
Returned in the I/O status block.

1/0 Status Block
A driver sets Irp->loStatus.Status to STATUS_SUCCESS or to an appropriate error status.

On success, a bus driver sets Irp->loStatus.lnformation to a pointer to a driver-allocated
block of memory containing a WCHAR buffer with the requested information. On an error,
the bus driver sets Irp->loStatus.lnformation to zero.

Chapter 2 Plug and Play IRPs 65

Operation
Bus drivers are strongly encouraged to return device descriptions for their child devices.
This string is displayed in the "found new hardware" pop-up window if no INF match is
found for the device.

Bus drivers are also encouraged to return Locationlnformation for their child devices,
but this information is optional. The format of this string depends on the bus. The Device
Manager displays this string in the general properties tab for the device. Vendors should
choose a string that conveys useful information to users and support personnel. For example,
for PCI, the string contains the bus, device, and function. For PC Card, the string contains
the slot.

If a bus driver returns information in response to this IRP, it allocates a NULL-terminated
Unicode string from paged memory. The PnP Manager frees the string when it is no longer
needed.

If a device does not provide description or location information, the device's parent bus
driver completes the IRP (IoCompleteRequest) without modifying Irp->IoStatus.Status or
Irp-> IoStatus.lnformation.

Function and filter drivers do not handle this IRP; they pass it to the next lower driver with
no changes to Irp-> IoStatus.

Drivers for busses that support different text strings for different locales should be able
to handle a request for a language that is not explicitly supported by the device. In such a
situation, the bus driver should return the closest match for the locale or should fallback
and return some appropriate supported locale string.

See the Plug and Play, Power Management, and Setup Design Guide for the general rules
for handling PnP IRPs.

Sending This IRP
Reserved for system use. Drivers must not send this IRP.

Bus drivers must handle requests for BusQueryDeviceID for their child devices (child
PDOs). Bus drivers can handle requests for BusQueryHardwareIDs, BusQuery
CompatibleIDs, and BusQuerylnstanceID for their child devices. Function and filter
drivers do not handle this IRP.

When Sent
The PnP Manager sends this IRP when a device is enumerated. A driver might send this IRP
to retrieve the instance ID for one of its devices.

66 Part 1 Plug and Play

Input

The PnP Manager and drivers send this IRP at IRQL PASSIVE_LEVEL in an arbitrary
thread context.

Parameters.Queryld.ldType specifies the kind of ID(s) requested. Possible values include
BusQueryDeviceID, BusQueryHardwareIDs, BusQueryComptibleIDs, and BusQuery
InstanceID. The following ID type is reserved: BusQueryDeviceSerialNumber.

Output
Returned in the 110 status block.

1/0 Status Block
A driver sets Irp->IoStatus.Status to STATUS_SUCCESS or to an appropriate error status.

On success, a driver sets Irp->IoStatus.lnformation to a WCHAR pointer that points to the
requested information. On error, a driver sets Irp->IoStatus.lnformation to zero.

Operation
If a driver returns ID(s) in response to this IRP, it allocates a WCHAR structure from paged
pool to contain the ID(s). The PnP Manager frees the structure when it is no longer needed.

A driver returns a single string in response to a BusQueryDeviceID or a BusQuery
InstanceID request, and a MUL TI_SZ string in response to a BusQueryHardwareIDs
or a BusQueryComptibleIDs request.

If a driver returns an ID with an illegal character, the system will bugcheck. Characters with
the following values are illegal in an ID for this IRP:

Less than Ox20 (' ')
Greater than Ox7F
Equal to Ox2C (' I ')

A driver must conform to the following length restrictions for IDs:

• Each hardware ID or compatible ID that a driver returns in this IRP must be less than
MAX_DEVICE_ID _LEN characters long. This constant currently has a value of 200 as
defined in sdk\inc\cfgmgr32.h.

• If a bus driver supplies globally unique instance IDs for its child devices (that is, the
driver sets DEVICE_CAPABILITIES.UniqueID for the devices), then the combination
of device ID plus instance ID must be less than (MAX_DEVICE_ID _LEN - 1) charac
ters. The as requires the additional character for a path separator.

Chapter 2 Plug and Play IRPs 67

• If a bus driver does not supply globally unique instance IDs for its child devices, then the
combination of device ID plus instance ID must be less than (MAX_DEVICE_ID _LEN
- 28). The value of this equation is currently 172.

Bus drivers should be prepared to handle this IRP for a child device immediately after the
device is enumerated.

Specifying BusQueryDevicelD and BusQuerylnstancelD
The values a bus driver supplies for BusQueryDeviceID and BusQueryInstanceID allow
the OS to differentiate a device from other devices on the machine. The OS uses the device
ID, instance ID, and the unique ID field returned in the IRP _MN_QUERY_DEVICE_
CAP ABILITIES IRP to locate registry information for device.

For BusQueryDeviceID, a bus driver supplies the device's device ID. A device ID should
contain the most-specific description of the device possible, incorporating the name of the
enumerator and strings identifying the manufacturer, device, revision, packager, and pack
aged product, where possible. For example, the PCI bus driver responds with device IDs of
the form PCI\VEN_xxxx&DEV _xxxx&SUBSYS_xxxxxxxx&REV _xx, encoding all five of
the items mentioned above. However, a device ID should not contain enough information to
differentiate between two identical devices. This information should be encoded in the
instance ID.

:for BusQueryInstanceID, a bus driver should supply a string that contains the instance
ID for the device. Setup and bus drivers use the instance ID, with other information, to dif
ferentiate between two identical devices on the machine. The instance ID is either unique
across the whole machine or just unique on the device's parent bus.

If an instance ID is only unique on the bus, the bus driver specifies that string for Bus
QueryInstanceID but also specifies a UniqueID value of FALSE in response to an IRP_
MN_ QUERY_CAP ABILITIES request for the device. If UniqueID is FALSE, the PnP
Manager enhances the instance ID by adding information about the device's parent and thus
makes the ID unique on the machine. In this case the bus driver' should not take extra steps
to make its devices' instance IDs globally unique; just return the appropriate capabilities
information and the OS takes care of it.

If a bus driver can supply a globally unique ID for each child device, such as a serial num
ber, the bus driver specifies those strings for BusQueryInstancelD and specifies a Unique
ID value of TRUE in response to an IRP_MN_QUERY_CAPABILITIES request for each
device.

Specifying BusQueryHardwarelDs and BusQueryCompatiblelDs
The values a bus driver supplies for BusQueryHardwareIDs and BusQueryCompatible
IDs allow Setup to locate the appropriate drivers for the bus's child device.

A bus driver responds to each of these requests with a list of IDs that describe the device.
When returning more than one hardware ID and/or more than one compatible ID, a bus

68 Part 1 Plug and Play

driver should list the IDs in the order of most-specific to most-general to facilitate choosing
the best driver match for the device. The first entry in the hardware IDs list is the most
specific description of the device and, as such, it is usually identical to the device ID.

Setup checks the IDs against the IDs listed in INF files for possible matches. Setup first
scans the hardware IDs list, then the compatible IDs list. Earlier entries are treated as more
specific descriptions of the device, and later entries as more general (and thus less optimal)
matches for the device. If no match is found in the list of hardware IDs, Setup might prompt
the user for installation media before moving on to the list of compatible IDs.

See the Plug and Play, Power Management, and Setup Design Guide for the general rules
for handling PnP IRPs.

Sending This IRP
Typically, only the PnP Manager sends this IRP.

To get the hardware IDs or compatible IDs for a device, call IoGetDeviceProperty instead
of sending this IRP.

A driver might send this IRP to retrieve the instance ID for one of its devices. For example,
consider a multifunction PnP ISA device whose functions do not operate independently. The
PnP Manager enumerates the functions as separate devices, but the driver for such a device
might be required to associate one or more of the functions. Because PnP ISA guarantees a
unique instance ID, the driver for such a multifunction device can use the instance IDs to
locate functions that reside on the same device. The driver for such a device must also get
the device's enumerator name by calling IoGetDeviceProperty, to confirm that the device
is a PnP ISA device.

See the Kernel-Mode Drivers Design Guide for information on sending IRPs. The following
steps apply specifically to this IRP:

• Set the values in the next I/O stack location of the IRP: set MajorFunction to IRP _MJ_
PNP, set MinorFunction to IRP _MN_QUERY_ID, and set Parameters.Queryld.ld
Type to BusQuerylnstanceID.

• Set IoStatus.Status to STATUS_NOT_SUPPORTED.

In addition to sending the query ID IRP, the driver must call IoGetDeviceProperty to get
the DevicePropertyEnumeratorName for the device.

After the IRP completes and the driver is finished with the ID, the driver must free the ID
structure returned by the driver(s) that handled the query IRP.

See Also
IoGetDeviceProperty

Chapter 2 Plug and Play IRPs 69

The IRP _MN_QVERY_INTERFACE request enables a driver to export a direct-call inter
face to other drivers.

A bus driver that exports an interface must handle this request for its child devices (child
PDOs). Function and filter can optionally handle this request.

An "interface" in this context consists of routine(s) and possibly data exported by a driver
or set of drivers. An interface has a structure that describes its contents and a OVID that
identifies its type.

For example, the PCMCIA bus driver exports an interface of type OUID_PCMCIA_
INTERFACE_STANDARD that contains routines for operations such as getting the write
protect condition of a PCMCIA memory card. The function driver for such a memory card
can send an IRP _MN_QUERY_INTERFACE request to the parent PCMCIA bus driver to
get pointers to the PCMCIA interface routines.

This section describes the query-interface IRP as a general mechanism. Drivers that expose
an interface should provide additional information about their specific interface.

When Sent

Input

A driver or system component sends this IRP to get information about an interface exported
by a driver for a device.

A driver or system component sends this IRP at IRQL PASSIVE_LEVEL in an arbitrary
thread context.

A driver can receive this IRP at any time after the driver's AddDevice routine has been
called for the device. The device mayor may not be started when this IRP is sent (the driver
cannot assume that it has successfully completed an IRP _MN_START_DEVICE request for
the device).

Parameters.Querylnterface is a structure that describes the interface being requested. The
structure contains the following information:

CONST GUID *InterfaceType;
USHORT Size;
USHORT Version;
PINTERFACE Interface;
PVOID InterfaceSpecificData

70 Part 1 Plug and Play

The members of the structure are defined as follows:

Interface Type
Points to a GUID that identifies the interface being requested. The GUID can be for a
system-defined interface, such as GUID_BUS_INTERFACE_STANDARD, or a custom
interface. The GUIDs for system-defined interfaces are listed in wdmguid.h. GUIDs for
custom interfaces should be generated with uuidgen.

Size
Specifies the size of the interface being requested. Drivers that handle this IRP must not
return an INTERFACE structure larger than Size bytes.

Version
Specifies the version of the interface being requested.

If a driver supports more than one version of an interface, the driver returns the closest sup
ported version without exceeding the requested version. The component that sent the IRP
should examine the returned Interface.Version field and determine what to do based on that
value.

Interface
Points to an INTERFACE structure in which to return the requested interface information.
The component sending the IRP allocates this structure from paged memory.

The base layout for an INTERFACE structure is defined as follows:

typedef VOID (*PINTERFACE_REFERENCE)(PVOID Context);
typedef VOID (*PINTERFACE_DEREFERENCE)(PVOID Context);

typedef STRUCT _INTERFACE {
USHORT Size;
USHORT Version;
PVOID Context;
PINTERFACE_REFERENCE InterfaceReference;
PINTERFACE_DEREFERENCE InterfaceDereference;
II interface-specific entries go here

INTERFACE, *PINTERFACE;

A driver that exports an interface defines a new type containing the members shown above
plus members for routines and/or data in the interface. (The driver also defines a GUID for
the interface, as described in the InterfaceType member, above.)

A driver that exports an interface defines the execution environment for each routine in the
interface, including the IRQL at which the routine can be called, and so forth.

Chapter 2 Plug and Play IRPs 71

InterfaceSpecificData
Specifies additional information about the interface being requested.

For some interfaces, the component sending the IRP specifies additional information in
this field. Typically, this field is NULL and the InterfaceType and Version are sufficient
to identify the interface being requested.

Output
On success, a driver fills in the members of the Parameters.Querylnterface.lnterface
structure.

1/0 Status Block
A driver sets Irp->IoStatus.Status to STATUS_SUCCESS or to an appropriate error status.

On ~uccess, a bus driver sets Irp->IoStatus.lnformation to zero.

If a function or filter driver does not handle this IRP, it calls IoSkipCurrentIrpStack
Location and passes the IRP down to the next driver. Such a driver must not modify
Irp->IoStatus.Status and must not complete the IRP.

If a bus driver does not export the requested interface and therefore does not handle this IRP
for a child PDO, the bus driver leaves Irp->IoStatus.Status as is and completes the IRP.

Operation
A driver handles this IRP if the parameters specify an interface the driver supports.

A driver must not queue this IRP if the IRP requests an interface that the driver does not
support. A driver must check Parameters.Querylnterface.lnterfaceType. If the interface
is not one the driver supports, the driver must pass the IRP to the next lower driver in the
device stack without blocking.

A driver that returns an interface in response to this IRP must reference the interface. The
component that requested the interface by sending the IRP is responsible for dereferencing
the interface (using the interface's InterfaceDereference routine). If the component that
sends the IRP, driver X, passes the interface to another component, driver Y, then driver X
is responsible for taking out another reference on the interface (InterfaceReference) and
driver Y is responsible for removing the additional reference (InterfaceDereference).

A driver that handles this IRP should avoid passing the IRP to another device stack to get
the requested interface. Such a design would create dependencies between the device stacks
that are difficult to manage. For example, the device represented by the second device stack
cannot be removed until the appropriate driver in the first stack dereferences the interface.

Interfaces can be bus-specific or bus-independent. Bus-specific interfaces are defined
in the header files for those buses. The system defines a bus-independent interface,

72 Part 1 Plug and Play

BUS_INTERFACE_STANDARD, for exporting standard bus interfaces. This interface has
the type GUID_BUS_INTERFACE_STANDARD and is defined in wdm.h as follows:

typedef BOOLEAN (*PTRANSLATE_BUS_ADDRESS)(
IN PVOID Context,
IN PHYSICAL_ADDRESS BusAddress,
IN ULONG Length,
IN OUT PULONG AddressSpace,
OUT PPHYSICAL_ADDRESS TranslatedAddress
) ;

typedef struct _DMA_ADAPTER *(*PGET_DMA_ADAPTER)(
IN PVOID Context,
IN struct _DEVICE_DESCRIPTION *DeviceDescriptor,
OUT PULONG NumberOfMapRegisters
) ;

typedef ULONG (*PGET_SET_DEVICE_DATA)(
IN PVOID Context,
IN ULONG DataType,
IN PVOID Buffer,
IN ULONG Offset,
IN ULONG Length
) ;

typedef struct _BUS_INTERFACE_STANDARD {
II
II generic interface header
II
USHORT Size;
USHORT Version;
PVOID Context;
PINTERFACE_REFERENCE InterfaceReference;
PINTERFACE_DEREFERENCE InterfaceDereference;
II
II standard bus interfaces
II
PTRANSLATE_BUS-ADDRESS TranslateBusAddress;
PGET_DMA_ADAPTER GetDmaAdapter;
PGET_SET_DEVICE_DATA SetBusData;
PGET_SET_DEVICE_DATA GetBusData;

See the Plug and Play, Power Management, and Setup Design Guide for the general rules
for handling PnP IRPs.

Chapter 2 Plug and Play IRPs 73

This IRP is used specifically to communicate routine entry points between layered drivers
fo~ a device. A device inteiface is a separate mechanism, primarily for exposing a path to a
device for use by user-mode components or other kernel components. Call IoGetDevice
Interfaces to get a list of device interfaces of a particular device interface class, such as all
the devices on the system that support a HID interface.

Sending This IRP
See the Kernel-Mode Drivers Design Guide for information on sending IRPs. The following
steps apply specifically to this IRP:

• Allocate an INTERFACE structure from paged pool and initialize it to zeros.

• Set the values in the next I/O stack location of the IRP: set MajorFunction to IRP _MJ_
PNP, set MinorFunction to IRP _MN_QUERY_INTERFACE, and set the appropriate
values in Parameters.QueryInterface.

• Initialize IoStatus.Status to STATUS_NOT_SUPPORTED.

• Deallocate the IRP and the INTERFACE structure when they are no longer needed.

• Use the interface routines and context parameter as described in the specification for the
interface.

• Decrement the reference count using the InterfaceDereference routine when the
interface is no longer needed. Do not call any interface routines after dereferencing
the interface.

A driver typically sends this IRP to the top of the device stack in which the driver is
attached. If a driver sends this IRP to a different device stack, the driver must register
for target device notification on the other device. if the other device is not an ancestor of
the device that the driver is servicing. Such a driver calls IoRegisterPlugPlayNotification
with an EventCategory of EventCategoryTargetDeviceChange. When the driver receives
notification of type GUID_TARGET_DEVICE_QUERY_REMOVE, the driver must de
reference the interface. The driver can requery for the interface if it receives a subsequent
GUID _TARGET_DEVICE_REMOVE_CANCELLED notification.

See Also
IoGetDeviceInterfaces, IoRegisterPlugPlayNotification

This IRP is reserved for system use.

74 Part 1 Plug and Play

Function, filter, and bus drivers can handle this request.

When Sent

Input

The PnP Manager sends this IRP after the drivers for a device return success from the IRP _
MN_START_DEVICE request sent when a device is first started. This IRP is not sent on a
start after a stop for resource rebalancing. The PnP Manager also sends this IRP when a
driver for the device calls IoInvalidateDeviceState.

The PnP Manager sends this IRP at IRQL PASSIVE_LEVEL in the context of an arbitrary
thread.

None

Output
Returned in I/O status block.

1/0 Status Block
A driver sets Irp->IoStatus.Status to STATUS_SUCCESS or to an appropriate error status
such as STATUS_UNSUCCESSFUL.

On success, a driver sets Irp->IoStatus.lnformation to a PNP _DEVICE_STATE bitmask.

If a function or filter driver does not handle this IRP, it calls IoSkipCurrentIrpStack
Location, does not set an IoCompletion routine, and passes the IRP down to the next driver.
Such a driver must not modify Irp->IoStatus and must not complete the IRP.

If a bus driver does not handle this IRP, it leaves Irp->IoStatus.Status as is and completes
the IRP.

Operation
This IRP is handled first by the driver at the top of the device stack and then by each next
lower driver in the stack.

A driver handles this IRP if it has information about the PnP state of a device. A driver
can set or clear the flags in the PNP _DEVICE_STATE bitmask. If another driver has set a
PNP _DEVICE_STATE in Irp->IoStatus.lnformation, a driver must take care to modify
the flags in that bitmask rather than overwrite the whole structure.

See the Plug and Play, Power Management, and Setup Design Guide for the general rules
for handling PnP IRPs.

Chapter 2 Plug and Play IRPs 75

Sending This IRP
Reserved for system use. Drivers must not send this IRP.

See Also
IoInvalidateDeviceState, PNP _DEVICE_STATE

All PnP drivers must handle this IRP.

When Sent

Input

The PnP Manager sends this IRP to inform drivers that a device is about to be removed
from the machine and to query whether the device can be removed without disrupting the
machine. The PnP Manager also sends this IRP if a user requests to update driver(s) for
the device.

The PnP Manager sends this IRP at IRQL PASSIVE_LEVEL in the context of a system
thread.

None

Output
None

1/0 Status Block
A driver sets Irp->IoStatos.Statos to STATUS_SUCCESS or to an appropriate error status
such as STATUS_UNSUCCESSFUL.

Operation
This IRP is handled first by the driver at the top of the device stack and then passed down to
each lower driver in the stack.

In response to this IRP, drivers indicate whether the device can be removed without dis
rupting the machine.

See Removing a Device in Part 2, "Plug and Play," in the Plug and Play, Power
Management, and Setup Design Guide for detailed information on handling remove IRPs.
Also see that Design Guide for the general rules for handling all PnP IRPs.

76 Part 1 Plug and Play

Sending This IRP
Reserved for system use. Drivers must not send this IRP.

See Also
IRP _MN_CANCEL_REMOVE_DEVICE, IRP _MN_DEVICE_USAGE_
NOTIFICATION,IRP _MN_REMOVE_DEVICE

The PnP Manager uses this IRP to get a device's resource requirements list.

Bus drivers must handle this request for their child devices that require hardware resources.
Bus filter drivers can handle this request. Function and filter drivers do not handle this IRP.

When Sent

Input

The PnP Manager sends this IRP when a device is enumerated, prior to allocating resources
to a device, and when a driver reports that its device's resource requirements have changed.

The PnP Manager sends this IRP at IRQL PASSIVE_LEVEL in an arbitrary thread context.

None

Output
Returned in the 110 status block.

1/0 Status Block
A driver that handles this IRP sets Irp->IoStatus.Status to STATUS_SUCCESS or an
appropriate error status.

On success, a driver sets Irp->IoStatus.Information to a pointer to an IO_RESOURCE_
REQUIREMENTS_LIST that contains the requested information. On an error, the driver
sets Irp->IoStatus.Information to zero.

Operation
If a bus driver returns a resource requirements list in response to this IRP, it allocates an
IO_RESOURCE_REQUIREMENTS_LIST from paged memory. The PnP Manager frees
the buffer when it is no longer needed.

If a device requires no hardware resources, the device's bus driver completes the IRP
(IoCompleteRequest) without modifying Irp->IoStatus.Status or Irp->IoStatus.
Information.

Chapter 2 Plug and Play IRPs 77

If a bus filter driver handles this IRP, it modifies the resource requirements list created
by the bus driver. A bus filter driver modifies the list on the IRP's way back up the device
stack. A bus filter driver must preserve the order of resources in the resource requirements
list and must not alter resource tags that it does not handle. If a bus filter driver changes
the size of the resource requirements list, the driver must allocate a new structure from
paged memory and free the previous structure. If a bus filter driver adds a new resource
requirement to the list and the resource is assigned to the device, the driver must filter the
new resource out of the IRP _MN_START_DEVICE IRP so it is not passed to the bus
driver.

Function and non-bus filter drivers do not handle this IRP; they pass it to the next lower
driver with no changes to Irp->IoStatos.

See the Plug and Play, Power Management, and Setup Design Guide for the general rules
for handling PnP IRPs.

Sending This IRP
Reserved for system use. Drivers must not send this IRP.

See Also
10 _RESOURCE_REQUIREMENTS_LIST

The PnP Manager uses this IRP to get a device's boot configuration resources.

Bus drivers must handle this request for their child devices that require hardware resources.
Function and filter drivers do not handle this IRP.

When Sent
The PnP Manager sends this IRP when a device is enumerated.

The PnP Manager sends this IRP at IRQL PASSIVE_LEVEL in an arbitrary thread context.

Input
None

Output
Returned in the 110 status block.

78 Part 1 Plug and Play

1/0 Status Block
A bus driver that handles this IRP sets Irp->IoStatus.Status to STATUS_SUCCESS or to
an appropriate error status.

On success, a bus driver sets Irp->IoStatus.Information to a pointer to a CM_
RESOURCE_LIST that contains the requested information. On an error, the bus driver
sets Irp->IoStatus.Information to zero.

Operation
If a bus driver returns a resource list in response to this IRP, it allocates a CM_
RESOURCE_LIST from paged memory. The PnP Manager frees the buffer when it
is no longer needed.

If a device requires no hardware resources, the device's parent bus driver completes the
IRP (IoCompleteRequest) without modifying Irp->IoStatus.Status or Irp->IoStatus.
Information.

Function and filter drivers do not receive this IRP.

See the Plug and Play, Power Management, and Setup Design Guide for the general rules
for handling PnP IRPs.

Sending This IRP
Reserved for system use. Drivers must not send this IRP.

Drivers can call IoGetDeviceProperty to get the boot configuration for a device, in both
raw and translated forms ...

See Also
CM_RESOURCE_LIST, IoGetDeviceProperty

All PnP drivers must handle this IRP.

When Sent
The PnP Manager sends this IRP to query whether a device can be stopped for resource
rebalancing.

The PnP Manager sends this IRP at IRQL PASSIVE_LEVEL in the context of a system
thread.

Chapter 2 Plug and Play IRPs 79

Input
None

Output
None

1/0 Status Block
A driver sets Irp->IoStatus.Status to STATUS_SUCCESS or to an appropriate error status.
If a driver cannot stop the device, the driver sets Irp->IoStatus.Status to STATUS_
UNSUCCESSFUL.

A bus driver can set Irp->IoStatus.Status to STATUS_RESOURCE_REQUIREMENTS_
CHANGED to indicate success for the IRP but also to request that the PnP Manager requery
the resource requirements for the device before sending the stop IRP.

Operation
This IRP is handled first by the driver at the top of the device stack and then passed down to
each lower driver in the stack.

In response to this IRP, drivers indicate whether it is safe to stop the device for resource
rebalancing.

See Stopping a Device for Resource Rebalancing in Part 2, "Plug and Play," in the Plug and
Play, Power Management, and Setup Design Guide for detailed information on handling
stop IRPs. Also see that Design Guide for the general rules for handling all PnP IRPs.

Sending This IRP
Reserved for system use. Drivers must not send this IRP.

See Also
IRP _MN_CANCEL_STOP _DEVICE, IRP _MN_DEVICE_USAGE_NOTIFICATION,
IRP _MN_START_DEVICE, IRP _MN_STOP _DEVICE

Bus drivers for buses with configuration space must handle this request for their child
devices (child PDOs). Filter and function drivers do not handle this request.

When Sent
A driver or other system component sends this IRP to read the configuration space of a
device's parent bus.

80 Part 1 Plug and Play

Input

A driver or other system component sends this IRP at IRQL < DISPATCH_LEVEL in an
arbitrary thread context.

Parameters.ReadWriteConfig is a structure containing the following information:

ULONG WhichSpace;
PVOID Buffer;
ULONG Offset;
ULONG Length

The members of the structure can be interpreted differently by different bus drivers, but the
members are typically defined as follows:

WhichSpace
Specifies the configuration space.

Buffer
Points to a buffer in which to return the requested information. The component sending the
IRP allocates this structure from paged memory. The format of the buffer is bus-specific.

Offset
Specifies an offset into the configuration space.

Length
Specifies the number of bytes to read.

Output
On success, a bus driver fills the buffer at Parameters.ReadWriteConfig.Buffer with the
requested data.

1/0 Status Block
A bus driver sets Irp->IoStatus.Status to STATUS_SUCCESS or to an appropriate error
status such as STATUS_INVALID_PARAMETER_n, STATUS_NO_SUCH_DEVICE, or
STATUS_DEVICE_NOT _READY.

On success, a bus driver sets Irp->IoStatus.lnformation to the number of bytes returned.

If a bus driver is unable to complete this request immediately it can mark the IRP pending,
return STATUS_PENDING, and complete the IRP at a later time.

Chapter 2 Plug and Play IRPs 81

Operation
A bus driver handles this IRP for its child devices (child PDOs).

Function and filter drivers do not handle this IRP; they pass it to the next lower driver with
no changes to Irp->IoStatus.Status and do not set an IoCompletion routine.

A bus driver that handles this request should check the WhichSpace parameter to ensure that
it contains a value that the driver supports.

See the Plug and Play, Power Management, and Setup Design Guide for the general rules
for handling PnP IRPs. .,---- '

Sending This IRP
Typically, a function driver sends this,IRP to the top driver in the device stack to which it is
attached and the IRP is handled by the parent bus driver.

See the Kernel-Mode Drivers Design Guide for information on sending IRPs. The following
steps apply specifically to this IRP:

• Allocate a buffer from paged pool and initialize it to zeros.

• Set the values in the next 110 stack location of the IRP: set MajorFunction to IRP _MJ_
PNP, set MinorFunction to IRP _MN_READ_CONFIG, and set the appropriate values
in Parameters.ReadWriteConfig.

• Initialize IoStatus.Status to STATUS_NOT_SUPPORTED.

• Deallocate the IRP and the buffer when they are no longer needed.

Drivers must send this IRP from IRQL < DISPATCH_LEVEL.

A driver can access a bus's configuration space at DISPATCH_LEVEL through a bus inter
face routine, if the parent bus driver supports such an interface. To get a bus interface,
a driver sends an IRP _MN_QUERY_INTERFACE request to the device stack in which the
driver is attached. The driver then calls the appropriate routine returned in the interface.

For example, to read configuration space from DISPATCH~EVEL a driver can call IRP_
MN_QUERY_INTERFACE during driver initialization to get the BUS_INTERFACE_
STANDARD interface from the parent bus driver. The driver sends the query IRP from
IRQL PASSIVE_LEVEL. Later, from code at IRQL DISPATCH_LEVEL, the driver calls
the appropriate routine returned in the interface, such as the Interface.GetBusData routine.

See Also
IRP _MN_QUERY_INTERFACE, IRP _MN_ WRITE_CONFIG

82 Part 1 Plug and Play

IRP _MN_REMOVE_DEVICE
All PnP drivers must handle this IRP.

When Sent

Input

The PnP Manager uses this IRP to. direct drivers to. remo.ve a device's so.ftware representa
tio.n (device o.bjects, and so. fo.rth). The PnP Manager sends this IRP when a device has
been remo.ved in an o.rderly fa shinn (fo.r example, initiated by a user in the Unplug o.r Eject
Hardware applet), by surprise (a user pulls the device fro.m its slo.t witho.ut prio.r warning), o.r
when the user requests to. update driver(s). The PnP Manager also. sends this IRP if nne o.f
the drivers in the device stack fails an IRP _MN_START_DEVICE request fo.r the device.

Fo.r an o.rderly device remo.val, the PnP Manager sends an IRP _MN_QUERY_REMOVE_
DEVICE prio.r to. the remo.ve IRP. In this case, the device is in the remo.ve-pending state
when the remo.ve IRP arrives. Fo.r a surprise device remo.val o.n Micro.so.ft Windo.ws 2000,
the PnP Manager sends an IRP _MN_SURPRISE_REMOV AL prio.r to. the remo.ve IRP. In
this case, the device is in the surprise-remo.ved state when the remo.ve IRP arrives. Drivers
can also. receive a remo.ve IRP befo.re a device is started. In this case, the device is in the
no.n-started state when the IRP arrives.

The PnP Manager sends this IRP at IRQL PASSIVE_LEVEL in the co.ntext o.f a system
thread.

No.ne

Output
No.ne

1/0 Status Block
A driver mu~t set Irp->IoStatus.Status to. STATUS_SUCCESS. Drivers must no.t fail
this IRP.

Operation
This IRP is handled first by the driver at the to.p o.f the device stack and then by each lo.wer
driver in the stack.

In respo.nse to. this IRP, drivers perfo.rm such tasks as po.wering do.wn the device, remo.ving
the device's so.ftware representatio.n (device o.bjects, and so. fo.rth), and releasing any re
so.urces fo.r the device. See Removing a Device in Part 2, "Plug and Play," in the Plug and
Play, Power Management, and Setup Design Guide fo.r detailed info.rmatio.n o.n handling
remo.ve IRPs in functio.n, filter, and bus drivers.

Chapter 2 Plug and Play IRPs 83

Also see the Plug and Play, ,Power Management, and Setup Design Guide for the general
rules for handling all PnP IRPs.

Sending This IRP
Reserved for system use. Drivers must not send this IRP.

If a bus driver detects that one (or more) of its child devices (child PDOs) has been physi
cally removed from the machine, the bus driver calls IoInvalidateDeviceRelations to report
the change to the PnP Manager. The PnP Manager then sends remove IRPs for any devices
that have disappeared.

See Also
IoInvalidateDeviceRelations, IoRegisterPlugPlayNotification, IRP _MN_CANCEL_
REMOVE_DEVICE,IRP _MN_QUERY _REMOVE_DEVICE, IRP _MN_SURPRISE_
REMOVAL

Bus drivers must handle this IRP for their child devices (child PDOs) that support device
locking. Function and filter drivers, do not handle this request.

When Sent

Input

The PnP Manager sends this IRP to direct driver(s) to lock the device and prevent device
eject, or to unlock the device.

The PnP Manager sends this IRP at IRQL PASSIVE_LEVEL in an arbitrary thread context.

Parameters.SetLock.Lock is a BOOLEAN specifying whether to lock (TRUE) or unlock
(FALSE) the device.

Output
None

1/0 Status Block
A bus driver sets Irp->IoStatus.Status to STATUS_SUCCESS or to an appropriate error
status.

On success, a driver sets Irp->IoStatus.Information to zero.

If a bus driver does not handle this IRP, it leaves Irp->IoStatus.Status as is and completes
the IRP.

84 Part 1 Plug and Play

Function and filter drivers do not handle this IRP. Such drivers call IoSkipCurrentIrp
StackLocation and pass the IRP down to the next driver. Function and filter drivers do not
set an IoCompletion routine, do not modify Irp->IoStatus, and must not complete the IRP.

Operation
If a driver returns success for this IRP, it ensures that the device has been locked or
unlocked before completing the IRP.

See the Plug and Play, Power Management, and Setup Design Guide for the general rules
for handling PnP IRPs.

Sending This IRP
Reserved for system use. Drivers must not send this IRP.

All PnP drivers must handle this IRP.

When Sent

Input

The PnP Manager sends this IRP after it has assigned hardware resources, if any, to the de
vice. The device may have been recently enumerated and is being started for the first time,
or the device may be restarting after being stopped for resource rebalancing.

Sometimes the PnP Manager sends an IRP _MN_START_DEVICE to a device that is al
ready started, supplying a different set of resources than the device is currently using. A
driver initiates this action by calling IoInvalidateDeviceState and responding to the subse
quent IRP _MN_QUERY_PNP _DEVICE_STATE request with the PNP _RESOURCE_
REQUIREMENTS_CHANGED flag set. A bus driver might use this mechanism, for
example, to open a new aperture on a PCI-to-PCI bridge.

The PnP Manager sends this IRP at IRQL PASSIVE_LEVEL in the context of a system
thread.

Parameters.StartDevice.AllocatedResources points to a CM_RESOURCE_LIST
describing the hardware resources that the PnP Manager assigned to the device. This list
contains the resources in raw form. Use the raw resources to program the device.

Parameters.StartDevice.AllocatedResourcesTranslated points to a CM_RESOURCE_
LIST describing the hardware resources that the PnP Manager assigned to the device. This
list contains the resources in translated form. Use the translated resources to connect the
interrupt vector, map I/O space, and map memory.

Chapter 2 Plug and Play IRPs 85

Output
None

1/0 Status Block
A driver sets Irp->IoStatus.Status to STATUS_SUCCESS or to an appropriate error status
such as STATUS_UNSUCCESSFUL or STATUS_INSUFFICIENT_RESOURCES.

If a driver requires some time to execute its start operations for a device, it can mark the IRP
pending and return STATUS_PENDING.

Operation
This IRP must be handled first by the parent bus driver for a device and then by each higher
driver in the device stack.

In response to this IRP, drivers start a device for the first time or restart a device that was
stopped. The exact operations required to start a device vary from device to device, but can
include powering on the device, performing device-specific initialization, and connecting
the interrupt.

A driver can typically handle this IRP in the same way whether it is starting a device for the
first time or restarting a device after an IRP _MN_STOP _DEVICE, except if a driver needs
to restore device state on a restart after a stop.

See Starting a Device in Part 2, "Plug and Play," in the Plug and Play, Power Management,
and Setup Design Guide for detailed information on handling a start IRP. Also see that
Design Guide for the general rules for handling all PnP IRPs.

Sending This IRP
Reserved for system use. Drivers must not send this IRP.

See Also
IRP _MN_STOP _DEVICE

All PnP drivers must handle this IRP.

When Sent
The PnP Manager sends this IRP to stop a device so it can reconfigure the device's hard
ware resources. The PnP Manager sends this IRP only if a prior IRP _MN_QUERY_STOP_
DEVICE completed successfully.

86 Part 1 Plug and Play

Input

The PnP Manager sends this IRP at IRQL PASSIVE_LEVEL in the context of a system
thread.

None

Output
None

1/0 Status Block
A driver must set Irp->IoStatus.Status to STATUS_SUCCESS.

Operation
This IRP is handled first by the driver at the top of the device stack and then passed down to
each lower driver in the stack.

In response to this IRP, drivers stop the device and release any hardware resources being
used by the device, such as I/O ports and interrupts.

On Windows 2000, a stop IRP is used solely to free a device's hardware resources so they
can be reconfigured. Once the resources are reconfigured, the device is restarted. A stop IRP
is not a precursor to a remove IRP. See the Plug and Play, Power Management, and Setup
Design Guide for more information about the order in which PnP IRPs are sent to devices.

A driver must not fail this IRP. If a driver cannot release the device's hardware resources, it
must fail the preceding query-stop IRP.

See Stopping a Device/or Resource Rebalancing in Part 2, "Plug and Play," in the Plug and
Play, Power Management, and Setup Design Guide for detailed information on handling
stop IRPs. Also see that Design Guide for the general rules for handling all PnP IRPs.

Sending This IRP
Reserved for system use. Drivers must not send this IRP.

See Also
IRP _MN_QUERY _STOP_DEVICE, IRP _MN_START_DEVICE

Chapter 2 Plug and Play IRPs 87

All PnP drivers must handle this IRP.

When Sent

Input

The Windows 2000 PnP Manager sends this IRP to notify the drivers for a device that the
device has been unexpectedly removed from the machine and is no longer available for I/O.

The Windows 2000 PnP Manager sends this IRP before notifying user-mode applications
or other kernel-mode components. After this IRP completes, the PnP Manager notifies reg
istered applications and drivers that the device has been removed.

The device can be in any PnP state when the PnP Manager sends this IRP.

The Windows 98 PnP Manager does not send this IRP.

The Windows 2000 PnP Manager sends this IRP at IRQL PASSIVE_LEVEL in the context
of a system thread.

None

Output
None

1/0 Status Block
A driver must set Irp->IoStatus.Status to STATUS_SUCCESS. A driver must not fail
this IRP.

Operation
This IRP is handled first by the driver at the top of the device stack and then passed down to
each lower driver in the stack.

This IRP indicates that a user removed a hot-plug device, either on purpose or by accident,
without first using the user interface that manages removal of the device, or that a driver for
the device failed a start IRP after a successful stop IRP.

Because the device is no longer present on the machine, drivers must immediately stop all
access to the device. A driver releases any resources associated with the device, but leaves
its device object attached to the device stack until the PnP Manager sends a subsequent
IRP _MN_REMOVE_DEVICE request. Drivers fail any outstanding I/O to the device.

88 Part 1 Plug and Play

See Removing a Device in Part 2, "Plug and Play," in the Plug and Play, Power Manage
ment, and Setup Design Guide for detailed information on handling this IRP and for the
general rules for handling all PnP IRPs.

Sending This IRP
Reserved for system use. Drivers must not send this IRP.

See Also
IRP _MN_REMOVE_DEVICE

Bus drivers for buses with configuration space must handle this request for their child
devices (child PDOs). Function and filter 'drivers do not handle this request.

When Sent

Input

A driver or other system component sends this IRP to write data to the configuration space
of a device's parent bus.

A driver or other system component sends this IRP at IRQL < DISPATCH_LEVEL in an
arbitrary thread context.

Parameters.ReadWriteConfig is a structure containing the following information:

ULONG WhichSpace;
PVOID Buffer;
ULONG Offset;
ULONG Length

The members of the structure can be interpreted differently by different bus drivers, but the
members are typically defined as follows:

WhichSpace
Specifies the configuration space.

Buffer
Points to a buffer that contains the data to be written. The format of the buffer is bus
specific.

Offset
Specifies an offset into the configuration space.

Chapter 2 Plug and Play IRPs 89

Length
Specifies the number of bytes to be written.

Output
Returned in the 110 status block.

1/0 Status Block
A bus driver sets Irp->IoStatus.Status to STATUS_SUCCESS or to an appropriate error
status such as STATUS_INVALID_PARAMETER_n, STATUS_NO_SUCH_DEVICE, or
STATUS_DEVICE_NOT _READY.

On success, a bus driver sets Irp->IoStatus.lnformation to the number of bytes written.

If a bus driver is unable to complete this request immediately, it can mark the IRP pending,
return STATUS_PENDING, and complete the IRP at a later time.

Operation
A bus driver handles this IRP for its child devices (child PDOs).

Function and filter drivers do not handle this IRP; they pass it to the next lower driver with
no changes to Irp->IoStatus.Status and do not set an loCompletion routine.

See the Plug and Play, Power Management, and Setup Design Guide for the general rules
for handling PnP IRPs.

Sending This IRP
Typically, a function driver sends this IRP to the device stack to which it is attached and the
IRP is handled by the parent bus driver.

See the Kernel-Mode Drivers Design Guide for information on sending IRPs. The following
steps apply specifically to this IRP:

• Allocate a buffer from paged pool and initialize it with the data to be written.

• Set the values in the next 110 stack location of the IRP: set MajorFunction to IRP _MJ_
PNP, set MinorFunction to IRP _MN_ WRITE_CONFIG, and set the appropriate values
in Parameters.ReadWriteConfig.

• Initialize IoStatus.Status to STATUS_NOT_SUPPORTED.

• Deallocate the IRP and the buffer when they are no longer needed.

Drivers must send this IRP from IRQL < DISPATCH_LEVEL.

90 Part 1 Plug and Play

A driver can access a bus's configuration space at DISPATCH_LEVEL through a bus
interface routine, if the parent bus driver exports such an interface. To get a bus interface,
a driver sends an IRP _MN_QUERY_INTERFACE request to its parent bus driver. The
driver then calls the appropriate routine returned in the interface.

For example, to write configuration space from DISPATCH_LEVEL a driver can call IRP _
MN_QUERY_INTERFACE during driver initialization to get the BUS_INTERFACE_
STANDARD interface from the parent bus driver. The driver sends the query IRP from
IRQL PASSIVE_LEVEL. Later, from code at IRQL DISPATCH_LEVEL, the driver calls
the appropriate routine returned in the interface, such as the Interface.SetBusData routine.

See Also
IRP _MN_QUERY _INTERFACE, IRP _MN_READ_CONFIG

91

CHAPTER 3

Plug and Play Structures

T,his chapter describes the structures that are parameters to more than one PnP routine or
IRP. Structures that are used by only one routine are described in the documentation for that
routine or IRP.

See the Plug and Play, Power Management, and Setup Design Guide for background and
task-oriented information on supporting PnP in drivers.

DEVICE_CAPABILITIES
typedef struct _DEVICE_CAPABILITIES {

USHORT Size;
USHORT Version;
ULONG DeviceDl:l;
ULONG DeviceD2:1;
ULONG LockSupported:l;
ULONG EjectSupported:l;
ULONG Removable:l;
ULONG DockDevice:l;
ULONG UniqueID:l;
ULONG SilentInstall:l;
ULONG RawDeviceOK:l;
ULONG SurpriseRemovalOK:l;
ULONG WakeFromD0:1;
ULONG WakeFromDl:l;
ULONG WakeFromD2:1;
ULONG WakeFromD3:1;
ULONG HardwareDisabled:l;
ULONG NonDynamic:l;
ULONG WarmEjectSupported:l;
ULONG Reserved:15;
ULONG Address;
ULONG UINumber;
DEVICE_POWER-STATE DeviceState[PowerSystemMaximum];
SYSTEM_POWER_STATE SystemWake;
DEVICE_POWER-STATE DeviceWake;

92 Part 1 Plug and Play

ULONG DILatency;
ULONG D2Latency;
ULONG D3Latency;

} DEVICE_CAPABILITIES. *PDEVICE_CAPABILITIES;

A DEVICE_CAPABILITIES structure describes PnP and power capabilities of a device.
This structure is returned in response to an IRP _MN_QUERY_CAPABILITIES IRP.

Members
Size
Specifies the size of the structure, in bytes. This field is set by the component that sends the
IRP _MN_ QUERY_CAP ABILITIES request.

Version
Specifies the version of the structure, currently version 1. This field is set by the component
that sends the IRP _MN_QUERY_CAPABILITIES request.

DeviceD1
Specifies whether the device hardware supports the D 1 power state. Drivers should not
change this value.

DeviceD2
Specifies whether the device hardware supports the D2 power state. Drivers should not
change this value.

LockSupported
Specifies whether the device supports physical-device locking that prevents device ejection.
This member pertains to ejecting the device from its slot, rather than ejecting a piece of re
moveable media from the device.

EjectSupported
Specifies whether the device supports software-controlled device ejection while the system
is in the PowerSystem Working state. This member pertains to ejecting the device from its
slot, rather than ejecting a piece of removable media from the device.

Removable
Specifies whether the device can be dynamically removed from the system. If TRUE, the
device is displayed in the Unplug or Eject Hardware applet, unless SurpriseRemovalOK is
also set to TRUE.

DockDevice
Specifies whether the device is a docking peripheral.

Chapter 3 Plug and Play Structures 93

UniquelD
Specifies whether the device supports system-wide unique IDs (that is, the concatenation of
its DeviceID and its InstanceID is unique system-wide). This bit is clear if the IDs that the
device supports are unique only within the scope of the bus.

Silentlnstall
Specifies whether the Device Manager should suppress all installation pop-ups; except
required pop-ups such as "no compatible drivers found."

RawDeviceOK
Specifies whether the driver for the underlying bus can drive the device if there is no func
tion driver (for example, SCSI devices in pass-through mode).

SurpriseRemovalOK
Specifies whether the system should display a pop-up window if a user removes the device
from the machine without first going through the Unplug or Eject Hardware applet (a "sur
prise-style" removal).

WakeFromDO
Specifies whether the device can respond to an external wake signal while in the DO state.
Drivers should not change this value.

WakeFromD1
Specifies whether the device can respond to an external wake signal while in the D 1 state.
Drivers should not change this value.

WakeFromD2
Specifies whether the device can respond to an external wake signal while in the D2 state.
Drivers should not change this value.

WakeFromD3
Specifies whether the device can respond to an external wake signal while in the D3 state.
Drivers should not change this value.

HardwareDisabled
When set, this flag specifies that the device's hardware is disabled.

A device's parent bus driver or a bus filter driver sets this flag when such a driver determines
that the device hardware is disabled.

The PnP Manager sends one IRP _MN_QUERY_CAPABILITIES IRP right after a device
is enumerated and sends another after the device has been started. The PnP Manager only
checks this bit right after the device is enumerated. Once the device is started, this bit is
ignored.

94 Part 1 Plug and Play

NonDynamic
Reserved for future use.

Warm EjectS u pported
Reserved for future use.

Reserved
Reserved for system use.

Address
Specifies an address indicating where the device is located on its underlying bus.

The interpretation of this number is bus-specific. If the address is unknown or the bus
driver does not support an address, the bus driver leaves this member at its default value
of OxFFFFFFFF.

The following list describes the information certain bus drivers store in the Address field for
their child devices:

1394
Does not supply an address because the addresses are volatile. Defaults to OxFFFFFFFF.

EISA
Slot Number (O-F).

IDE
For an IDE device, the address contains the target ID and LUN. For an IDE channel, the
address is zero or one (0 = primary channel and 1 = secondary channel).

ISApnp
Does not supply an address. Defaults to OxFFFFFFFF.

PC Card (PCMCIA)
The socket number (typically OxOO or Ox40).

PCI
The device number in the high word and the function number in the low word.

SCSI
The target ID.

USB
The port number.

Chapter 3 Plug and Play Structures 95

UINumber
Specifies a number associated with the device that can be displayed in the user interface.

This number is typically a user-perceived slot number, such as a number printed next to the
slot on the board, or some other number that makes locating the physical device easier for
the user. For buses with no such convention, or when the UINumber is unknown, the bus
driver leaves this member at its default value of OxFFFFFFFF.

DeviceState
An array of values indicating the most-powered device power state that the device can
maintain for each system power state. The DeviceState[PowerSystem Working] element
of the array corresponds to the SO system state. The entry for PowerSystemUnspecified
is reserved for system use.

The entries in this array are based on the capabilities of the parent devnode. As a general
rule, a driver should not change these values. However, if necessary, a driver can lower
the value, for example, from PowerDeviceDl to PowerDeviceD2.

If the bus driver is unable to determine the appropriate device power state for a root
enumerated device, it sets DeviceState[PowerSystem Working] to PowerDeviceDO
and all other entries to PowerDeviceD3.

SystemWake
Specifies the least-powered system power state from which the device can signal a
wake event. A value of PowerSystemUndefined indicates that the device cannot wake
the system.

A bus driver can get this information from its parent devnode.

In general, a driver should not change this value. If necessary, however, a driver can raise
the power state, for example, from PowerSystemHibernate to PowerSystemSl, to indicate
that its device cannot wake the system from ahibernation state but can from a higher
powered sleep state.

DeviceWake
Specifies the least-powered device power state from which the device can signal a wake event.
A value of PowerDeviceUndefined indicates that the device cannot signal a wake event.

D1Latency
Specifies the device's approximate worst-case latency, in 100-microsecond units, for re
turning the device to the PowerDeviceDO state from the PowerDeviceDl state. Set to zero
if the device does not support the D I state.

96 Part 1 Plug and Play

D2Latency
Specifies the device's approximate worst-case latency, in lOO-microsecond units, for re
turning the device to the PowerDeviceDO state from the PowerDeviceD2 state. Set to zero
if the device does not support the D2 state.

D3Latency
Specifies the device's approximate worst-case latency, in lOO-microsecond units, for re
turning the device to the PowerDeviceDO state from the PowerDeviceD3 state. Set to zero
if the device does not support the D3 state.

Include
wdm.h or ntddk.h

Comments
Bus drivers set the appropriate values in this structure in response to an IRP_MN_QUERY_
CAPABILITIES IRP. Bus filter drivers, function drivers, and filter drivers might alter the
capabilities set by the bus driver.

Drivers that send an IRP _MN_QUERY_CAPABILITIES request must initialize the Size,
Version, Address, and UINumber members of this structure before sending the IRP.

See Also
IRP _MN_QUERY_CAPABILITIES

DEVICE_INTERFACE_ CHANGE_NOTIFICATION
typedef struct _DEVICE_INTERFACE_CHANGE_NOTIFICATION {

USHORT Version;
USHORT Size;
GUID Event;
II
II Event-specific data
II
GUID InterfaceClassGuid;
PUNICODE_STRING SymbolicLinkName;

} DEVICE_INTERFACE_CHANGE_NOTIFICATION, *PDEVICE_INTERFACE_CHANGE_NOTIFICATION;

A device-interface-change notification structure describes a device interface that has been
enabled (arrived) or disabled (removed). The PnP Manager sends this structure to a driver
that registered a callback routine for notification of EventCategoryDeviceInterfaceChange
events.

Members
Version
Specifies the version of the data structure, currently 1.

Size

Chapter 3 Plug and Play Structures 97

Specifies the size of the structure, in bytes, including the size of the standard first three
members plus the event-specific data.

Event
Specifies a GUID identifying the event: GUID _DEVICE_INTERFACE_ARRIV AL or
GUID_DEVICE_INTERFACE_REMOVAL. The GUIDs are defined in wdmguid.h.

InterfaceClassGuid
Specifies the class of the device interface that has just been enabled or disabled.

SymbolicLinkName
Points to a Unicode string that contains the name of the symbolic link for the device
interface.

Include
wdm.h or ntddk.h

Comments
This structure is allocated from paged memory.

See Also
HWPROFILE_ CHANGE_NOTIFICATION, IoRegisterPlugPlayNotification,
PLUGPLA Y _NOTIFICATION_HEADER, T ARGET_DEVICE_REMOV AL_
NOTIFICATION

HWPROFILE_ CHANGE_NOTIFICATION
typedef struct _HWPROFILE_CHANGE_NOTIFICATION {

USHORT Version;
USHORT Size;
GUID Event;
/I
II (No event-specific data)
II

} HWPROFILE_CHANGE_NOTIFICATION. *PHWPROFILE_CHANGE_NOTIFICATION;

98 Part 1 Plug and Play

A hardware-profile-change notification structure describes an event related to a hardware
profile configuration change. The PnP Manager sends this structure to a driver that regis
tered a callback routine for notification of EventCategoryHardwareProfileChange events.

Members
Version
Specifies the version of the data structure, currently 1.

Size
Specifies the size of the structure, in bytes including the size of the standard first three
members plus the event-specific data.

Event
Specifies a GUID identifying the event: GUID_HWPROFILE_QUERY_CHANGE,
GUID_HWPROFILE_CHANGE_COMPLETE, or GUID_HWPROFILE_CHANGE_
CANCELLED. The GUIDs are defined in wdmguid.h.

Include
wdm.h or ntddk.h

Comments
There is no event-specific data for a hardware-profile-change event.

See Also
DEVICE_INTERFACE_ CHANGE_NOTIFICATION, IoRegisterPlugPlayNotification,
PLUGPLA Y _NOTIFICATION_HEADER, TARGET_DEVICE_REMOV AL_
NOTIFICATION

LPGUID
typedef struct _GUID {

ULONG Datal;
USHORT Data2;
USHORT Data3;
UCHAR Data4[8J;

} GUID

typedef GUID *LPGUID;

An LPGUID is a long pointer to a GUID.

Include
wdm.h or ntddk.h

Comments
A OUID is a 128-bit unique identifier.

PLUGPLAV _NOTIFICATION_HEADER
typedef struct _PLUGPLAY_NOTIFICATION_HEAOER {

USHORT Version;
USHORT Size;
GUIO Event;

Chapter 3 Plug and Play Structures 99

} PLUGPLAY_NOTIFICATION_HEAOER, *PPLUGPLAY_NOTIFICATION_HEAOER;

A PnP notification header is included at the beginning of each PnP notification structure,
such as a DEVICE_INTERF ACE_CHANOE_NOTIFICATION structure.

Members
Version
Specifies the version of the data structure, currently set to 1.

Size
Specifies the size of the structure, in bytes.

Event
Specifies a OUID identifying the event.

Include
wdm.h or ntddk.h

Comments
Drivers can cast a PnP notification structure to this type to access the Event field and
identify the exact type of the structure.

See Also
DEVICE_INTERFACE_CHANOE_NOTIFICATION, HWPROFILE_CHANOE_
NOTIFICATION, IoRegisterPlugPlayNotification, TAROET_DEVICE_ CUSTOM_
NOTIFICATION, TAROET_DEVICE_REMOV AL_NOTIFICATION

100 Part 1 Plug and Play

Flags

PNP _DEVICE_STATE is a bitmask of flags describing the PnP state of a device. Drivers
return this structure in response to an IRP _MN_QUERY_PNP _STATE IRP.

PNP _DEVICE_DISABLED
The device is physically present but is disabled in hardware.

PNP _DEVICE_DONT _DISPLAY IN_UI
Don't display the device in the user interface. Set for a device that is physically present but
not usabie in the current configuration, such as a game port on a laptop that is not usable
when the laptop is undocked.

PNP _DEVICE_FAILED
The device is present but not functioning properly.

When both this flag and PNP _DEVICE_RESOURCE_REQUIREMENTS_CHANGED
are set, the device must be stopped before the PnP Manager assigns new hardware resources
(non-stop rebalance is not supported for the device).

PNP _DEVICE_NOT _DISABLEABLE
The device must not be disabled.

A driver sets this bit for a device that is required for proper system operation. For
example, if a driver receives notification that a device is in the paging path (lRP _MN_
DEVICE_US AGE_NOTIFICATION for DeviceUsageTypePaging), the driver calls
IoInvalidateDeviceState and sets this flag in the resulting IRP _MN_QUERY _PNP _
DEVICE_STATE IRP.

If this bit is set for a device, the PnP Manager propagates this setting to the device's parent
device, its parent's parent device, and so forth.

If this bit is set for a non-enumerable device, the device cannot be disabled or uninstalled.

PNP_DE~CE_REMOVED

The device has been physically removed.

PNP _DEVICE_RESOURCE_REQUIREMENTS_CHANGED
The resource requirements for the device have changed.

Typically, a bus driver sets this flag when it has determined that it must expand its resource
requirements in order to enumerate a new child device.

Chapter 3 Plug and Play Structures 101

Include
wdm.h or ntddk.h

Comments
The PnP Manager queries a device's PNP _DEVICE_STATE right after starting the device
by sending an IRP _MN_QUERY_PNP _DEVICE_STATE request to the device stack. In
response to this IRP, the drivers for the device set the appropriate flags in PNP _DEVICE_
STATE.

If any of the state characteristics change after the initial query, a driver notifies the PnP
Manager by calling IoInvalidateDeviceState. In response to a call to IoInvalidate
DeviceState, the PnP Manager queries the device's PNP _DEVICE_STATE again.

If a device is marked PNP _DEVICE_NOT_DISABLEABLE, the debugger displays a
DNUF _NOT _DISABLEABLE user flag for the devnode. The debugger also displays a
DisableableDepends value that counts the number of reasons why the device cannot be
disabled. This value is the sum of X+ Y, where X is one if the device cannot be disabled
and Y is the count of the device's child devices that cannot be disabled.

See Also
IoInvalidateDeviceState,IRP _MN_QUERY_PNP _DEVICE_STATE

TARGET _DEVICE_ CUSTOM_NOTIFICATION
typedef struct _TARGET_DEVICE_CUSTOM_NOTIFICATION {

USHORT Version;
USHORT Size;
GUID Event;
II
II Event-specific data
II
PFILE_OBJECT FileObject;
LONG NameBufferOffset;
UCHAR CustomDataBuffer[l];

} TARGET_DEVICE_CUSTOM_NOTIFICATION, *PTARGET_DEVICE_CUSTOM_NOTIFICATION;

A TARGET_DEVICE_CUSTOM_NOTIFICATION structure describes a custom
device event.

Members
Version
Specifies the version of the data structure, currently 1.

102 Part 1 Plug and Play

Size
Specifies the size of the structure, in bytes, including the first three standard members plus
the event -specific data.

Event
Specifies a GUID identifying the event. GUIDs for custom event notification are defined by
the components that use this mechanism.

FileObject
Points to a file object for the device.

NameBufferOffset
Specifies the offset, in bytes, from beginning of CustomDataBuffer where text begins. A
value of -1 indicates that there is no text.

Custom DataBuffer
A variable-length buffer, optionally containing binary data at the start of the buffer, fol
lowed by an optional text buffer (word-aligned).

Include
wdm.h or ntddk.h

Comments
Kernel-mode components use this structure for custom event notification: to signal a cus
tom event (IoReportTargetDeviceChange[Asynchronous]) and when handling a custom
event (in a notification callback routine).

This structure accommodates both a variable-length binary data buffer and a variable-length
Unicode text buffer. The NameBufferOffset must indicate where the text buffer begins, so
the data can be delivered in the appropriate format (ANSI or Unicode) to user-mode appli
cations that registered for handle-based notification with RegisterDeviceNotification. See
the Platform SDK documentation for information on RegisterDeviceNotification.

See Also
IoRegisterPlugPlayNotification, IoReportTargetDeviceChange, IoReportTarget
DeviceChangeAsynchronous

Chapter 3 Plug and Play Structures 103

TARGET _DEVICE_REMOVAL_NOTIFICATION
typedef struct _TARGET_DEVICE_REMOVAL_NOTIFICATION {

USHORT Version;
USHORT Size;
GUID Event;
II
II Event-specific data
II
PFILE_OBJECT FileObject;

} TARGET_DEVICE_REMOVAL_NOTIFICATION, *PTARGET_DEVICE_REMOVAL_NOTIFICATION;

A TARGET _DEVICE_REMOV AL_NOTIFICATION structure describes a device-removal
event. The PnP Manager sends this structure to a driver that registered a callback routine for
notification of EventCategoryTargetDeviceChange events.

Members
Version
Specifies the version of the data struCture, currently set to 1.

Size
Specifies the size of the structure, in bytes, including the size of the standard first three
members plus the event-specific data.

Event
Specifies a GUID identifying the event: GUID_TARGET_DEVICE_QUERY_REMOVE,
GUID _TARGET _DEVICE_REMOVE_COMPLETE, or GUID _TARGET _DEVICE_
REMOVE_CANCELLED. These GUIDs are defined in wdmguid.h.

FileObject
Points to a file object for the device.

Include
wdm.h or ntddk.h

See Also
DEVICE_INTERFACE_CHANGE_NOTIFICATION, HWPROFILE_CHANGE_
NOTIFICATION, IoRegisterPlugPlayNotification, TARGET_DEVICE_CUSTOM_
NOTIFICATION

PAR T 2

Power Management

Chapter 1 Power Management Support Routines 107

Chapter 2 1/0 Request for Power Management 121

Chapter 3. Battery Class Driver Routines 133

Chapter 4 Battery Miniclass Driver Routines 139

Chapter 5 Battery Structures 151

107

CHAPTER 1

Power Management Support Routines

All drivers that support power management call PoXxx routines. These routines are declared
in ntddk.h and wdm.h.

This chapter describes the following power management routines in alphabetical order:

• PoCallDriver

• PoRegisterDeviceForldleDetection

• PoRegisterSystemState

• PoRequestPowerlrp

• PoSetDeviceBusy

• PoSetPowerState

• PoSetSystemState

• PoStartNextPowerlrp

• PoUnregisterSystemState

PoCaliDriver
NTSTATUS

PoCallDriver
IN PDEVICE_OBJECT DeviceObject,
IN OUT PIRP Irp
) :

PoCallDriver passes a power IRP to the next lower driver in the device stack.

108 Part 2 Power Management

Parameters
DeviceObject
Points to the driver-created device object to which the IRP is to be routed.

Irp
Points to an IRP.

Include
ntddk. h or wdm.h

Return Value
PoCallDriver returns STATUS_SUCCESS to indicate success. It returns STATUS
PENDING if it has queued the IRP.

Comments
Drivers call PoCallDriver-not IoCallDriver-to pass a power IRP to the next lower
driver. Drivers must call PoStartNextPowerlrp before calling PoCallDriver.

A driver that requires a new IRP should call PoRequestPowerlrp. A driver must not
allocate its own power IRP.

When passing a power IRP down to the next lower driver, the caller should use IoSkip
CurrentIrpStackLocation or IoCopyCurrentIrpStackLocationToNext to set the IRP
stack location, then call PoCallDriver. Use IoCopyCurrentIrpStackLocationToNext if
processing the IRP requires setting a completion routine, or IoSkipCurrentStackLocation
if no completion routine is needed.

When a device is powering up, its drivers must set completion routines to perform start-up
tasks (initializing the device, restoring context, etc.) after the bus driver has set the device in
the working state. Set completion routines before calling PoCallDriver.

When a device is powering down, its drivers rarely set completion routines; they must per
form necessary power-down tasks before passing the IRP to the next lower driver. After the
IRP has reached the bus driver, the device will be powered off and its drivers no longer have
access to it.

Only one inrush IRP can be active in the system at a time. When passing a power-up IRP for
a device that requires inrush current (i.e. the DO_POWER_INRUSH flag is set in the device
object), PoCallDriver checks whether another inrush IRP is already active. If so, PoCaIlD
river queues the current IRP for handling after the previous IRP completes and returns
STATUS_PENDING. See Setting Device Object Flags for Power Management in Part 3,
"Power Management," in the Plug and Play, Power Management, and Setup Design Guide
for more information on inrush IRPs.

Chapter 1 Power Management Support Routines 109

If an IRP _MN_SET_POWER or IRP _MN_QUERY_POWER request is already active for
DeviceObject, PoCallDriver queues this IRP and returns STATUS_PENDING.

On Windows® 2000, drivers that are not in the paging path (that is, the DO_POWER_
P AGABLE flag is set in the device object) should call PoCallDriver at IRQL P ASSIVE_
LEVEL. Drivers that are in the paging path (DO_POWER_PAGABLE is not set in the
device object) or require inrush current (DO_POWER_INRUSH is set in the device
object) can call PoCallDriver at IRQL PASSIVE_LEVEL or DISPATCH_LEVEL.

On Windows 98, all drivers call PoCallDriver at IRQL PASSIVE_LEVEL.

See Also
PoRequestPowerlrp

PoRegisterDeviceForldleDetection
PULONG

PoRegisterDeviceForIdleDetection (
IN PDEVICE_OBJECT DeviceObject.
IN ULONG Conservationld7eTime.
IN ULONG Performanceld7eTime.
IN DEVICE_POWER-STATE State
) ;

PoRegisterDeviceForldleDetection enables or cancels idle detection and sets idle time-out
values for a device.

Parameters
DeviceObject
Points to the driver-created device object for the device. On Windows 2000, this parameter
can point to a PD~ or FDO. On Windows 98, this parameter must point to the PD~ of the
underlying device.

Conservationldle Time
Sets the time-out value (in seconds) to apply when the system power policy optimizes for
energy conservation. Specify zero to disable idle detection when conservation policy is in
effect.

Performanceldle Time
Sets the time-out value (in seconds) to apply when the system power policy optimizes for
performance. Specify zero to disable idle detection when performance policy is in effect.

110 Part 2 Power Management

State
Specifies the device power state to be requested in an IRP _MN_SET _POWER request
when either ConservationldleTime or PeiformanceldleTime has been met. Possible values
are PowerDeviceDO, PowerDeviceDl, PowerDeviceD2, and PowerDeviceD3.

Include
ntddk.h or wdm.h

Return Value
PoRegisterDeviceForldleDetection returns a pointer to the idle counter to indicate that idle
detection has been enabled. It returns NULL to indicate that idle detection has been dis
abled, that an idle counter could not be allocated, or that one or both of the time-out values
were invalid.

Comments
PoRegisterDeviceForldleDetection enables drivers to use the Power Manger's idle detec
tion mechanism. Drivers call PoRegisterDeviceForldleDetection for any of the following
reasons:

• To enable idle detection for the device and set initial idle time-out values

• To change the idle time-out values for a device

• To disable idle detection for a device

After enabling its device for idle detection, the driver calls PoSetDeviceBusy whenever its
device is in use, passing the idle pointer returned by PoRegisterDeviceForldleDetection.

Whenever the device satisfies the current idle time-out value, the Power Manager sends an
IRP _MN_SET _POWER request to the top of the device stack, specifying device power
state State. In response to the IRP, each driver performs any device-specific tasks required
before the power state transition, then passes the IRP to the next lower driver. When the IRP
reaches the bus driver, that driver puts the device in the requested lower power state and
completes the IRP.

PoRegisterDeviceForldleDetection sets time-out values for both conservation and perfor
mance. The ConservationldleTime value applies when the system power policy optimizes
for conservation; the PeiformanceldleTime value applies when the system power policy
optimizes for performance. Typically, the applicable policy depends upon the power source:
when running with AC power, the system optimizes for performance, and when running off
a battery, the system optimizes for conservation.

Chapter 1 Power Management Support Routines 111

Certain devices can specify time-out values of -1 to use the standard power policy time-outs
for their device class. The standard time-out values provide for better system integration for
supported standard device classes. At present, WDM supports this feature for devices of
type FILE_DEVICE_DISK and FILE_DEVICE_MASS_STORAGE. PoRegisterDevice
ForldleDetection returns NULL if -1 is specified for a device of an unsupported type.

Only one idle detection can be set per device. Subsequent calls to PoRegisterDeviceFor
IdleDetection change the idle detection values.

If both ConservationldleTime and PerformanceldleTime are zero, this routine cancels all
idle detection for the device and returns NULL.

PoRegisterDeviceForIdleDetection can free a driver from the need to perform its own idle
detection. However, drivers can also implement their own idle detection.

Callers of PoRegisterDeviceForldleDetection must be running at IRQL<DISP ATCH_
LEVEL.

See Also
PoSetDeviceBusy

PoRegisterSystemState
PVOID

PoRegisterSystemState (
IN PVOID StateHandle.
IN EXECUTION_STATE Flags
) ;

PoRegisterSystemState registers the system as busy due to certain activity.

Parameters
StateHandle
Points to a caller-supplied memory location that can contain a registration state handle. If
NULL, this is a new registration. If non-NULL, this parameter points to a handle returned
by a previous call to PoRegisterSystemState.

Flags
Indicates the type of activity. Possible values are one or more of the following:

ES_SVSTEM_REQUIRED
The system is not idle, regardless of apparent load.

ES_DISPLAV _REQUIRED
Use of the display is required.

112 Part 2 Power Management

ES_USER_PRESENT
A user is present.

ES_CONTINUOUS
The settings are continuous and should remain in effect until explicitly changed.

Include
ntddk.h or wdm.h

Return Value
PoRegisterSystemState returns a handle to be used later to change or unregister the system
busy state. It returns NULL if the handle could not be allocated.

Comments
PoRegisterSystemState registers the system busy state as indicated by the flags. The
registration persists until the caller explicitly changes it with another call to PoRegister
SystemState or cancels it with a call to PoUnregisterSystemState.

The Flags parameter specifies the type of activity in progress. Drivers can specify any
combination of the. flags.

Setting ES_CONTINUOUS makes the busy state persist until a driver explicitly changes or
cancels it by calling PoRegisterSystemState or PoUnregisterSystemState.

A driver can set the system busy state to request that the Power Manager avoid system
power state transitions out of the system working state (SO) while driver activity is occur
ring. Note, however, that under some circumstances (such as a critically low battery) the
Power Manager may override this request and put the system to sleep anyway.

Callers of PoRegisterSystemState must be running at IRQL<DISPATCH_LEVEL.

See Also
PoSetSystemState, PoUnregisterSystemState

PoRequestPowerlrp
NTSTATUS

PoRequestPowerIrp
IN PDEVICE_OBJECT DeviceObject.
IN UCHAR MinorFuhction.
IN POWER-STATE PowerState.
IN PREQUEST_POWER_COMPLETE Comp7etionFunction.

IN PVOID Context,
OUT PIRP *Irp OPTIONAL
) :

Chapter 1 Power Management Support Routines 113

PoRequestPowerlrp allocates a power IRP and sends it to the top driver in the device stack
for the specified device.

Parameters
DeviceObject
Points to the target device object for the IRP. On Windows 2000, this parameter can point
to a PDO or FDO. On Windows 98, this parameter must point to the PDO of the underlying
device.

MinorFunction
Specifies one of the following minor power IRP codes: IRP _MN_QUERY _POWER, IRP_
MN_SET _POWER, or IRP _MN_ WAIT _ WAKE.

Po werSt ate
Specifies a power state to pass in the IRP. For IRP _MN_SET_POWER and IRP _MN_
QUERY_POWER, specify the requested new device power state. Possible values are
enumerators of the DEVICE_POWER_ST ATE type.

For IRP _MN_ WAIT_WAKE, specify the lowest (least-powered) system power state from
which the device should be allowed to wake the system Possible values are enumerators of
the SYSTEM_POWER_STATE type.

CompietionFunction
Points to the caller's PowerCompletion callback to be called when the IRP has completed.
The callback is declared as follows:

VOID
(*PREQUEST_POWER-COMPLETE) (

IN PDEVICE_OBJECT DeviceObject,
IN UCHAR MinorFunction,
IN POWER-STATE PowerState,
IN PVOID Context,
IN PIO_STATUS_BLOCK IoStatus
) :

The callback parameters are as follows:

DeviceObject
Points to the target device object for the completed power IRP.

114 Part 2 Power Management

MinorFunction
Specifies the minor function code in the power IRP.

PowerState
Specifies the device power state passed to PoRequestPowerIrp.

Context
Points to the context passed to PoRequestPowerIrp.

loStatus
Points to the IoStatus block in the completed IRP.

Context
Points to a caller-supplied context to be passed through to the PowerCompletion callback.
When the caller requests a device set-power IRP in response to a system set-power IRP, the
Context should contain the system set-power IRP that triggered the request.

Irp
Points to a caller-supplied variable in which this routine returns a pointer to the IRP it
allocates. This parameter can be NULL.

Include
ntddk.h or wdm.h

Return Value
PoRequestPowerIrp returns one of the following:

STATUS_PENDING
The IRP has been sent.

STATUSJNSUFFICIENT _RESOURCES
The routine could not allocate the IRP.

STATUSJNVALID _PARAMETER_2
MinorFunction does not signify a valid minor power IRP code.

Comments
A driver calls PoRequestPowerIrp-not IoAllocateIrp-to allocate and send a power IRP
that has minor IRP code IRP _MN_SET_POWER,IRP _MN_QUERY_POWER, or IRP_
MN_ WAIT_WAKE. (A driver must call IoAllocateIrp to send a power IRP with minor IRP
code IRP _MN_POWER_SEQUENCE.)

Chapter 1 Power Management Support Routines 115

A device power policy owner calls this routine to send a wait/wake, query, or set-power IRP.

PoRequestPowerlrp allocates a device power IRP and sends it to the top of the device
stack for the device. After the bus driver and all other drivers have completed the IRP, and
the 110 Manager has called all IoCompletion routines set by drivers as they passed the IRP
down the device stack, the CompletionFunction is called with the given Context.

The CompletionFunction performs any additional tasks the sender of the IRP requires
after all other drivers have completed the IRP. It need not free the IRP; the Power Manager
does that. On Windows 98, the CompletionFunction is always called at IRQL PASSIVE_
LEVEL, and drivers must complete IRPs at IRQL PASSIVE_LEVEL. On Windows 2000,
the CompletionFunction can be called at IRQL PASSIVE_LEVEL or DISPATCH_LEVEL.

A device power policy owner calls PoRequestPower Irp to send a device query-or set
power IRP when it receives a system query- or set-power IRP. The driver should set an
IoCompletion routine in the system IRP and pass the system IRP to the next lower driver.
The IoCompletion routine calls PoRequestPowerlrp to send the device IRP, passing the
system IRP in the Context parameter. The Context parameter is subsequently passed to the
CompietionFunction for the device IRP. In the CompletionFunction, the driver can complete
the system IRP. See Sending IRP _MN_QUERY_POWER or IRP _MN_SET_POWERfor
Device Power States and WaitlWake Callback Routines for details.

If the driver supports the GUID_POWER_DEVICE_ENABLE control, the driver should
use the Boolean value of the control to determine whether to dynamically power itself on
and off while the system is in the PowerSystem Working (SO) state. See the Volume 2
of the Windows 2000 Driver Development Reference for more information on IRP _MJ_
SYSTEM_CONTROL IRPs, which send requests with minor code IRP _MN_ WMI to
inform drivers of the value of the GUIDs.

Drivers can use the returned Irp to cancel an IRP _MN_ W AIT_ WAKE IRP. Drivers
" requesting other power IRPs can pass NULL for this parameter.

Callers of PoRequestPowerlrp must be running at IRQL <= DISPATCH_LEVEL.

See Also
PoStartNextPowerlrp,IRP _MN_SET_POWER, IRP _MN_QUERY _POWER, IRP _MN_
WAIT_WAKE

PoSetDeviceBusy
VOID

PoSetDeviceBusy(
PULONG Id7ePointer
) ;

116 Part 2 Power Management

PoSetDeviceBusy notifies the Power Manager that the device associated with IdlePointer
is busy.

Parameters
IdlePointer
Specifies an idle pointer previously returned by PoRegisterDeviceForIdleDetection.

Include
ntddk. h or wdm.h

Comments
A driver uses PoSetDeviceBusy along with PoRegisterDeviceForIdleDetection to enable
system idle detection for its device. If a device that is registered for idle detection becomes
idle, the Power Manager sends an IRP _MN_SET _POWER IRP to put the device in a re
quested sleep state.

PoSetDeviceBusy reports that the device is busy, so that the Power Manager can restart
its idle countdown. If the device is not powered up, PoSetDeviceBusy does not change its
state. That is, it does not cause the system to send a power-on request.

A driver should call PoSetDeviceBusy on every I/O request.

PoSetDeviceBusy can be called from any IRQL.

See Also
PoRegisterDeviceForIdleDetection

PoSetPowerState
POWEFLSTATE

PoSetpowerState
IN PDEVICE_OBJECT DeviceObject,
IN POWEFLSTATE_TYPE Type,
IN POWEFLSTATE State
) :

PoSetPowerState notifies the system of a device's power state.

Parameters
DeviceObject
Points to the target device object.

Chapter 1 Power Management Support Routines 117

Type
Indicates whether to set a system or a device power state. Drivers must specify Device
PowerState.

State
Specifies the power state to be set. Drivers must specify an enumerator of DEVICE_
POWER_STATE: PowerDeviceDO, PowerDeviceDl, PowerDeviceD2, or Power
DeviceD3.

Include
ntddk.h or wdm.h

Return Value
On Windows 2000, PoSetPowerState returns the previous power state. On Windows 98,
PoSetPowerState returns the state passed in State.

Comments
PoSetPowerState notifies the Power Manager of the new power state for a device. A driver
should call PoSetPowerState every time its device changes power state.

A driver calls this routine after receiving a device set-power IRP and before calling Po
StartNextPowerlrp. When starting a device (that is, when handling a PnP IRP _MN_
START_DEVICE request), the driver should call PoSetPowerState to notify the Power
Manager that the device is in the DO state.

If the device is powering down, the driver must call PoSetPowerState before leaving the
DO state. In addition, the driver must be able to process client requests before PoSetPower
State returns.

If the device is powering up, the driver must call PoSetPowerState after the device is
successfully put into the DO state.

Callers of PoSetPowerState must be running at IRQL<DISP ATCH_LEVEL except
when setting state to DO. When setting state to DO, callers can be running at IRQL<=
DISPATCH_LEVEL.

See Also
PoStartNextPowerlrp

118 Part 2 Power Management

PoSetSystemState
VOID

PoSetSystemState
IN EXECUTION_STATE Flags
) ;

Drivers call PoSetSystemState to indicate that the system is active.

Parameters
Flags
Specifies the system activity. Possible values are one or more of the following:

ES_SYSTEM_REQUIRED
The system is not idle, regardless of apparent load.

ES_DISPLA Y _REQUIRED
Use of the display is required.

ES_USER_PRESENT
A user is present.

Include
ntddk.h or wdm.h

Comments
A driver calls PoSetSystemState to set flags indicating that system activity is occurring:
Unlike PoRegisterSystemState, this routine does not allow the driver to set a persistent
busy state.

The Flags parameter specifies the type of activity occurring. Drivers can specify any com
bination of the flags.

Drivers can set the system busy state to request that the system avoid leaving of the working
state while driver activity is occurring. Note, however, that under some circumstances (such
as a critically low battery) the Power Manager may override this request and put the system
to sleep anyway.

Callers of PoSetSystemState must be running at IRQL <= DISPATCH_LEVEL.

See Also
PoRegisterSystemState, PoUnregisterSystemState

PoStartNextPowerlrp
VOID

PoStartNextPowerIrp(
IN PIRP Irp
) :

Chapter 1 Power Management Support Routines 119

PoStartNextPowerlrp informs the Power Manager that the driver is ready to handle the
next power IRP.

Parameters
Irp
Points to an IRP in which the major function code is IRP _MJ_POWER.

Include
ntddk.h or wdm.h

Comments
PoStartNextPowerIrp must be called by every driver in the device stack.

Calling this routine indicates that the driver is finished with the previous power IRP, if any,
and is ready to handle the next power IRP. It must be called for every power IRP.

Although power IRPs are completed only once, typically by the bus driver for a device, each
driver in the device stack must call PoStartNextPowerlrp as the IRP travels down or back
up the stack. Even if a driver fails the IRP, it must nevertheless call PoStartNextPowerlrp
to inform the Power Manager that it is ready to handle another power IRP.

The driver must call PoStartNextPowerlrp while the current IRP stack location points
to the current driver. Therefore, this routine must be called before IoCompleteRequest,
IoSkipCurrentIrpStackLocation, and PoCallDriver. Note, however, that a driver can
call PoStartNextPowerlrp from its IoCompletion routine associated with the IRP or from
the callback routine it passed to PoRequestPowerlrp.

Bus drivers must call PoStartNextPowerlrp before completing each IRP.

Callers of PoStartNextPowerlrp must be running at IRQL<=DISP ATCH_LEVEL.

See Also
PoCallDriver, PoStartNextPowerIRP

120 Part 2 Power Management

PoU n reg isterSystemState
VOID

PoUnregisterSystemState
IN PVOID StateHand7e
) ;

PoUnregisterSystemState cancels a system state registration created by PoRegister
SystemState.

Parameters
StateHandle
Specifies a handle previously returned by PoRegisterSystemState.

Include
ntddk. h or wdm.h

Comments
This routine cancels a system busy state registration established by PoRegisterSystemState
and frees the associated StateHandle.

Callers of PoUnregisterSystemState must be running at IRQL<DISPATCH_LEVEL.

See Also
PoRegisterSystemState

CHAPTER 2

1/0 Request for Power Management

All power IRPs have the major code IRP _MJ_POWER and one of the following minor
codes, indicating a specific power management request:

• IRP_MN_SET_POWER

• IRP_MN_QUERY_POWER

• IRP_MN_WAIT_WAKE

• IRP _MN_POWER_SEQUENCE

121

For each power IRP a driver receives, it must call PoStartNextPowerlrp to indicate to the
Power Manager that it is ready to handle the next power IRP.

After calling PoStartNextPowerlrp, the driver must use PoCallDriver to pass the power
IRP down the device stack. Power IRPs are typically completed by the bus driver for the
device, and therefore must be passed all the way down the device stack.

This chapter provides reference information for the individual IRPs in alphabetical order.
See the Plug and Play, Power Management, and Setup Design Guide for mo"re information
on when the IRPs are sent and how drivers should handle them, along with a general intro
duction to power management and terminology.

IRP _MN_POWER_SEQUENCE

When Sent
The Power Manager cannot send this IRP. A driver sends this IRP as an optimization to
determine whether its device actually entered a specific power state. The IRP is optional.

To send this IRP, a driver must call IoAllocatelrp to allocate the IRP, specifying the major
IRP code IRP _MJ_POWER and minor IRP code IRP _MN_POWER_SEQUENCE, and then
call PoCallDriver to pass the IRP to the next lower driver. Senders of this IRP must be
running at IRQL <= DISPATCH_LEVEL.

122 Part 2 Power Management

Input
None.

Output
Parameters.PowerSequence points to a POWER_SEQUENCE structure with the
following members:

SequenceD1
Number of times the device has been in power state D 1 or lower.

SequenceD2
Number of times the device has been in power state D2 or lower.

SequenceD3
Number of times the device has been in power state D3.

The sequence values track the minimum'number of times a device has been in the corre
sponding power state or a lower power state.

The bus driver increments the values in SequenceDl, SequenceD2, and SequenceD3 at
least each time the device enters in the corresponding power state or a lower power state.

1/0 Status Block
A driver sets Irp->IoStatus.Status to STATUS_SUCCESS to indicate that it has returned
the requested information, or STATUS_NaT_IMPLEMENTED to indicate that it does not
support this IRP.

Operation
This IRP returns the power sequence values for a device. Bus drivers can optionally handle
it; function and filter drivers can optionally send it.

For a device that takes a long time to change state, this IRP provides a useful optimization.
Every time the device changes its power state, its bus driver increments the sequence value
corresponding to that power state. The bus driver initializes the sequence values at boot time
and continually increments them thereafter; they need not be reset to zero.

A device policy owner can send this IRP once to get the sequence values before shutting
off the device and once again to get new values when restoring power to the device. By
comparing the two sets of values, the driver can determine whether the device actually
entered the lower-powered state. If the device did not lose power, the driver can avoid a
time-consuming reinitialization when the device returns to the DO state.

Chapter 2 1/0 Request for Power Management 123

For example, if the device takes a long time to restore power upon reaching the D2 state, the
driver can store the SequenceD2 value before it sets the device state to D2 or lower. Later,
when power is being restored to the device, the driver can compare the new SequenceD2
value with its stored value to determine whether the device state actually dropped below D2.
If the values match, the device did not actually enter a D2 or lower state, and the driver can
avoid reinitializing the device.

IRP _MN_QUERY _POWER

When Sent

Input

The Power Manager or a device power policy owner sends this IRP to determine whether
it can change the system or device power state, typically to go to sleep. A driver must call
PoRequestPower Irp to allocate and send this IRP.

The Power Manager sends this IRP at IRQL PASSIVE_LEVEL to device stacks that set the
DO_POWER_PAGABLE flag in the PD~.

The Power Manager can send the IRP at IRQL DISPATCH_LEVEL if the DO_POWER_
INRUSH flag is set. Such drivers cannot directly or indirectly access any paged code
or data.

Parameters.Power.Type specifies the type of power state being set, either SystemPower
State or DevicePowerState.

Parameters.Power.State specifies the power state itself, as follows:

• If Parameters. Power. Type is SystemPowerState, the value is an enumerator of the
SYSTEM_POWER_ST ATE type.

• If Parameters.Power. Type is DevicePowerState, the value is an enumerator of the
DEVICE_POWER_STATE type.

• Parameters.Power .ShutdownType specifies additional information about the requested
transition. Possible values are enumerators of the POWER_ACTION type.

Output
None.

1/0 Status Block
A driver sets Irp->IoStatus.Status to STATUS_SUCCESS to indicate that the device
can enter the requested state. A driver sets any appropriate failure status to indicate that it
cannot enter the requested state.

124 Part 2 Power Management

Operation
The parameters for IRP _MN_QUERY_POWER are identical to those for IRP _MN_
SET_POWER. Rather than notifying drivers of an irrevocable change to the power state,
however, IRP _MN_QUERY_POWER queries whether the system or a device can enter
a particular power state.

A driver must not change the power state of its device in response to an IRP _MN_
QUERY_POWER request.

IRP _MN_QUERY_POWER for a System Power State
The Power Manager sends this IRP to ensure that it can change the system power state
without disrupting work, such as dropping network connections.

Whenever possible, the Power Manager queries before sending IRP _MN_SET _POWER
to request a system sleep state. However, under some conditions (such as the user pressing
the Power Off button or a battery expiring), the Power Manager might issue an IRP _MN_
SET_POWER request without first querying. The Power Manager queries only for sleep
states; it never queries before returning to the working state.

When a driver receives a system power query IRP, it should fail the IRP if it cannot support
any of the device states that are valid for the queried system state. See DeviceState for de
tails. Otherwise, the driver should pass the IRP to the next lower driver. The bus driver
completes the IRP.

When a device power policy owner receives a system power query IRP, it should set an
IoCompletion routine in the IRP before passing it down. In the IoCompletion routine, it
should send an IRP _MN_QUERY_POWER for a device state that is valid for the queried
system state. See Handling a System Query Power IRP in a Device Power Policy Owner
for details.

When the IRP specifies PowerSystemShutdown (S5), the value at Parameters.Power.
ShutdownType provides a reason for the shutdown. The ShutdownType tells the driver
whether the system is resetting (PowerActionShutdownReset) or powering off indefinitely
to reboot later (PowerActionShutdownOff). For drivers of most devices, the difference is
inconsequential. However, for certain devices, such as a video streaming device that per
forms DMA, a driver might choose to power down its device when the system is resetting,
thus stopping any ongoing I/O.

On Microsoft® Windows® 2000 systems, the value at Shutdown Type can also be Power
ActionShutdown. In this case, the driver cannot tell what type of shutdown is requested
and should therefore proceed as for a reset.

If a driver fails a IRP _MN_QUERY_POWER request for a system power state, the Power
Manager typically responds by issuing an IRP _MN_SET_POWER IRP. Usually, this IRP
will reaffirm the current system state. However, it is possible that drivers might receive an

Chapter 2 1/0 Request for Power Management 125

IRP _MN_SET _POWER to the queried state or to some other intermediate state. Drivers
should be prepared to handle these situations.

IRP _MN_QUERY_POWER for a Device Power State
A device power policy owner sends this IRP down its stack in response to a system IRP _
MN_QUERY _POWER request.

If a driver can put its device in the requested device state, it sets IoStatus.Status to
STATUS_SUCCESS and passes the IRP down to the next lower driyer, and so forth
until the IRP reaches the bus driver. If any driver in the stack must fail the IRP, that driver
should complete the IRP immediately by calling IoCompleteRequest and returning a
failure status. Drivers that fail the IRP do not pass it further down the stack.

By returning STATUS_SUCCESS, the driver guarantees that it will not start any operation
that would change its ability to set the requested power state. The driver should queue any
IRPs that require such operations until it completes a set-power IRP that returns the device
to an acceptable power state.

On Windows 2000 systems, when the IRP specifies PowerDeviceDl, PowerDeviceD2,
or PowerDeviceD3, the value at Parameters.Power.ShutdownType provides information
about the current system power IRP, if a system power IRP is active. In this case, the value
at ShutdownType indicates the currently requested system power state, or PowerAction
None if a system request is not outstanding. On Windows 98, this field always contains
PowerActionNone when the iRP requests a device power state.

See Also
IRP _MN_SET _POWER, PoRequestPowerlrp

IRP _MN_SET _POWER

When Sent
Either the system Power Manager or a device power policy owner can send this IRP.

The Power Manager sends this IRP to notify drivers of a change to the system power state.
If a driver has registered its device for idle detection, the Power Manager sends this IRP to
change the power state of an idle device.

A driver that owns power policy sends this IRP to set the device power state for its device. A
driver must call PoRequestPowerlrp to send this IRP.

The Power Manager sends this IRP at IRQL PASSIVE_LEVEL to device stacks that set the
DO_POWER_PAGABLE flag in the PDO. Drivers in such stacks can touch paged code or
data to complete the request.

126 Part 2 Power Management

Input

The Power Manager can send the IRP at IRQL DISPATCH_LEVEL if the DO_POWER_
INRUSH flag is set. Such drivers cannot directly or indirectly access any paged code
or data.

Parameters.Power.Type specifies the type of power state being set, either SystemPower
State or DevicePowerState.

Parameters.Power.State specifies the power state itself, as follows:

• If Parameters.Power. Type is SystemPowerState, the value is an enumerator of the
SYSTEM_POWER_STATE type.

• If Parameters.Power. Type is DevicePowerState, the value is an enumerator of the
DEVICE_POWER_STATE type.

• Parameters.Power.ShutdownType specifies additional information about the requested
transition. Possible values are enumerators of the POWER_ACTION type.

Output
Parameters.Power.SystemContext is reserved for system use.

110 Status Block
A driver sets Irp->IoStatus.Status to STATUS_SUCCESS to indicate that the device has
entered the requested state.

A driver must not fail this IRP.

Operation
The Power Manager or a driver can request an IRP _MN_SET_POWER IRP. The Power
Manager sends this IRP for one of the following reasons:

• To notify drivers of a change to the system power state

• To change the power state of a device for which the Power Manager is performing idle
detection

A driver that owns device power policy sends IRP _MN_SET _POWER to change the power
state of its device.

At any given time, the system allows only one such IRP to be active for each device object.

Each driver must pass each power IRP down to the next-lower driver using the PoCall
Driver routine. The PoCallDriver interface is similar to that of IoCallDriver, except that

Chapter 2 110 Request for Power Management 127

the power management subsystem might delay the IRP before passing it on to the next
driver. For example, delays can occur on a PowerDeviceDO request if the device requires
inrush current and therefore must be powered up serially with another such device.

IRP _MN_SET_POWER for System Power States
Only the Power Manager can send a system set-power IRP.

Whenever possible, the Power Manager sends IRP _MN_QUERY_POWER before sending
IRP _MN_SET_POWER to request a system sleep state. However, under some conditions
(such as the user pressing the Power Off button or a battery expiring), the Power Manager
might issue IRP _MN_SET _POWER without first querying. The Power Manager queries
only for sleep states; it never queries before powering up.

The IRP _MN_SET_POWER request is sent to the top driver in the device stack for a de
vice. The top driver passes the IRP down to the next lower driver and so forth until the IRP
reaches the bus driver, which must complete the IRP. A filter driver typically does not need
to act on a system set-power IRP, other than to pass it on. The device power policy owner,
however, sets an IoCompletion routine before passing down the IRP; in the IoCompletion
routine, it sends an IRP _MN_SET_POWER request for a device power IRP. See Handling
a System Set-Power IRP in a Device Power Policy Owner for details.

A system set-power IRP informs drivers that a change to the system power state is imminent
and the drivers must prepare for it. However, a driver should not change the power state of
its device until it receives an IRP _MN_SET_POWER for a device power state. For example,
a transition to a sleeping state might require that a driver power off its device. The driver
must complete this IRP in a timely manner, but it can wait until the device is ready to enter
the new state. In general, drivers should avoid any delay that a typical user would find
noticeably slow. For example, a driver could delay a system state change to flush cached
disk or network data, but should not keep a network connection alive or format a tape.

The value at Parameters.Power .ShutdownType provides additional information about
the pending actions. When the IRP specifies PowerSystemShutdown (S5), a driver can
determine whether the system is resetting (PowerActionShutdownReset) or powering off
indefinitely to reboot later (PowerActionShutdownOff). For drivers of most devices, the
difference is inconsequential. However, for certain devices, such as video streaming devices,
a driver might power off the device in order to stop 110 when the system is resetting.

On Windows 2000 systems, the value at ShutdownType can also be PowerAction
Shutdown. In this case, the driver cannot tell what type of shutdown is requested and should
therefore proceed as for a reset.

Device Power States
A driver must set the device into the requested state before completing the IRP.

When the IRP requests a transition to a lower power state, drivers must handle the IRP as it
travels down the device stack, saving any context the driver will need to restore the device

128 Part 2 Power Management

to the working state. When the bus driver receives the IRP, it does the same, then sets the
device into the requested power state, calls PoSetPowerState to notify the Power Manager,
starts the next power IRP (PoStartNextPowerlrp), and completes the device power IRP.

The driver must complete this IRP in a timely manner. In general, drivers should avoid any
delay that a typical user would find noticeably slow. For example, a driver could delay a
system state change to flush cached disk or network data, but should not keep a network
connection alive or format a tape. See Passing Power IRPs for more information.

On Windows 2000 systems, if the IRP specifies PowerDeviceDl, PowerDeviceD2, or
PowerDeviceD3, and a system set-power IRP is active, the value at Parameters.Power.
Shutdown Type provides information about the system IRP.

Drivers of devices on the hibernate path should inspect this value. If the IRP requests
PowerDeviceD3 and Shutdown Type is PowerActionHibernate, such a driver should
save any context required to restore the device, but should not power down the device;
the device will enter the D3 state when the machine loses power.

On Windows 2000 systems, drivers should not rely on the value at ShutdownType if the
requested power state is PowerDeviceDO.

On Windows 98, if the IRP requests a device power state, the ShutdownType is always
Power ActionN one.

The driver that determines when to power down a device varies depending on the
device class.

The driver that determines when to power up a device is almost always a driver that accesses
the device registers. The driver must verify that the device is in the DO state before access
ing the device's hardware registers. If the device is not in the DO state, the driver must call
PoRequestPowerIrp to send an IRP to power up the device. A driver cannot access its
device unless the device is in the DO state.

When a driver receives a set-power IRP for device state DO, it sets an IoCompletion routine
and passes the IRP to the next lower driver.

When the IRP reaches the bus driver, that driver applies (or resets) power to the device,
completes the IRP, and calls PoSetPowerState to inform the Power Manager of the new
power state for the device.

After the bus driver completes the power-up IRP, function and filter drivers handle the IRP
in their IoCompletion routines as it travels back up the device stack. In the IoCompletion
routine, each driver restores or reinitializes its device context and performs any other re
quired start-up tasks.

See Handling IRP _MN_SET_POWERfor Device Power States for details.

Chapter 2 VO Request for Power Management 129

See Also
PoCallDriver, PoStartNextPowerlrp, PoSetPowerState, PoRequestPowerlrp,
PoRegister DeviceForldleDetection

IRP _MN_WAIT_WAKE

When Sent

Input

A driver that owns power policy targets this IRP to its PD~ to enable its device to awaken
in response to an external event, such as an incoming phone call. A driver must call Po
RequestPowerlrp to send this IRP.

As a general rule, a driver should send this IRP as soon as it determines that its device
should be enabled for wake-up. Consequently, drivers for most such devices send this IRP
after powering on their devices and before completing the IRP _MN_START_DEVICE
request.

However, a ~ver can send the IRP any time the device is in the working state (Power
DeviceDO). The device stack must not be in transition; that is, a driver should not send
an IRP _MN_ W AIT_ WAKE while any other power IRP is active in its device stack.

A wait/wake IRP does not change the power state of the system or of a device. It simply en
ables a wake-up signal from the device. When the wake-up signal arrives, the policy owner
must call PoRequestPowerlrp to send a set-power IRP to explicitly return its device to DO.

The driver must be running at IRQL PASSIVE_LEVEL to send this IRP. However, the IRP
can be completed at IRQL DISPATCH_LEVEL.

Parameters.WaitWake.SystemWake contains the lowest (least-powered) system power
state from which the device should be allowed to awaken the system.

Output
None.

1/0 Status Block
A driver sets Irp->IoStatus.Status to one of the following:

STATUS_PENDING
The driver received the IRP and is waiting for the device to signal wake-up.

130 Part 2 Power Management

STATUSJNVALID _DEVICE_STATE
The device is in a less-powered state than the DeviceWake state specified in the DEVICE_
CAPABILITIES structure for the device, or the device cannot awaken the system from the
SystemWake state passed in the IRP.

STATUS_NOT_SUPPORTED
The device does not support wake-up.

STATUS_DEVICE_BUSY
An IRP _MN_ WAIT_WAKE request is already pending and must be completed or canceled
before another IRP _MN_ WAIT _ WAKE request can be issued.

STATUS_SUCCESS
The device has signaled a wake event.

STATUS_CANCELED
The IRP has been canceled.

If a driver must fail this IRP, it completes the IRP immediately and does not pass the IRP to
the next lower driver.

Operation
A driver sends IRP _MN_ WAIT _WAKE for either of two reasons:

1. To enable its device to awaken a sleeping system in response to an external wake-up
signal.

2. To enable its device to awaken from a device sleep state in response to an external wake
up signal.

The IRP must be passed down the device stack to the bus driver for the device, which calls
IoMarklrpPending and returns STATUS_PENDING from its DispatchPower routine. The
IRP remains pending until a wake-up signal occurs or until the driver that sent the IRP.
cancels it.

A driver can have only one wait/wake IRP pending at a time. A driver that enumerates more
than one child PD~ must fail any wait/wake request that arrives while it already has such an
IRP pending. However, the driver should keep an internal count of wait/wake IRPs, incre
menting the count each time it receives a request and decrementing the count each time it
completes a request. If the count is nonzero after it has completed a wait/wake IRP, the
driver should send another wait/wake IRP to its device stack to "rearm" itself for wake-up.
See Understanding the Path ofWaitlWake IRPs Through a Device Tree for details.

Chapter 2 I/O Request for Power Management 131

Each driver sets an IoCompletion routine as the IRP travels down the device stack.
When the device signals a wake-up event, the bus driver services the wake-up signal
and completes the IRP, returning STATUS_SUCCESS. The 110 Manager then calls the
IoCompletion routine of the next higher driver, and so on up the device stack.

When a driver sends a wait/wake IRP, it should specify a callback routine in the Po
RequestPowerlrp call. In the callback routine, the driver typically services the device.
The power policy owner for the device must call PoRequestPowerIrp to send an IRP _
MN_SET_POWER for device state DO.

A driver that acts as the bus driver for one device and the policy owner for a parent device
requests an IRP _MN_ W AIT_ W AKE IRP for the parent's PD~ whenever it has an outstand
ing IRP _MN_ WAIT _ WAKE request from one or more of its child PDOs. For example, the
bus driver for a USB device acts as the policy owner for the USB hub controller. Inits role
as policy owner, the driver sends a wait/wake IRP to the hub PD~ when it receives its first
wait/wake IRP from a device PD~. When the IRP completes, this same driver must deter
mine which USB device signaled the wake-up event. If additional child device stacks have
also sent wait/wake IRPs, the driver must send its own device stack a wait/wake IRP to
"rearm" it for wait/wake on those children.

To cancel an IRP _MN_ W AIT_ WAKE, a driver calls IoCancelIrp. Only the driver that
originated the IRP can cancel it. A driver cancels a pending IRP _MN_ WAIT _ WAKE when
any of the following occurs:

• The driver receives a PnP IRP that stops or removes the device.

• The system is going to sleep and the device wake signal must not awaken it.

Drivers can optionally support the WMI OUID _DEVICE_ WAKE_ENABLE control, which
allows the user to choose whether the device can wake a sleeping system. The user interface
presents this control if the driver and PD~ support it, as determined by querying the device
capabilities.

When the user changes the DEVICE_ WAKE_ENABLE setting, the driver receives a system
controlIRP (IRP _MJ_SYSTEM_CONTROL) with minor IRP code IRP _MN_ WMI. See
Volume 2 of the Windows 2000 Driver Development Reference for details.

See Also
PoRequestPowerlrp

CHAPTER 3

Battery Class Driver Routines

The battery class driver exports the following routines for use by miniclass drivers:

• BatteryClasslnitializeDevice

• BatteryClassloctl

• BatteryClassStatusN otify

• BatteryClassUnload

These routines are declared in batclass. h.

BatteryClassl n itial izeDevice
NTSTATUS

BatteryClassInitializeDevice
IN PBATTERY_MINIPORT_INFO MiniportInfo,
IN PVOID *C7assData
) ;

BatteryClasslnitializeDevice initializes a new battery device with the class driver.

Parameters
Miniportlnfo
Points to a BATTERY_MINIPORT_INFO structure, defined as follows:

typedef struct {
USHORT MajorVersion;
USHORT MinorVersion;
PVOID Context;
BCLASS_OUERY_TAG OueryTag;
BCLASS_OUERY_INFORMATION OueryInformation;
BCLASS_SET_INFORMATION SetInformation;
BCLASS_OUERY_STATUS OueryStatus;

133

134 Part 2 Power Management

BCLASS_SET_STATUS_NOTIFY SetStatusNotify:
BCLASS_DISABLE_STATUS_NOTIFY DisableStatusNotify:
PDEVICE_OBJECT Pdo:
PUNICODE_STRING DeviceName:

BATTERY_MINI PORT_INFO. *PBATTERY_MINIPORT_INFO:

MajorVersion
Specifies the major version number of the battery class driver. Miniclass drivers should
specify BATTERY_CLASS_MAJOR_ VERSION.

MinorVersion
Specifies the minor version number of the battery class driver. Miniclass drivers should
specify BATTERY_CLASS_MINOR_ VERSION.

Context
Points to the context area allocated by the miniclass driver.

QueryTag
Specifies the entry point of the miniclass driver's BatteryMiniQueryTag routine.

Querylnformation
Specifies the entry point of the miniclass driver's BatteryMiniQueryInformation routine.

Setlnformation
Specifies the entry point of the miniclass driver's BatteryMiniSetInformation routine.

QueryStatus
Specifies the entry point of the miniclass driver's BatteryMiniQueryStatus routine.

SetStatusNotify
Specifies the entry point of the miniclass driver's BatteryMiniSetStatusNotify routine.

DisableStatusNotify
Specifies the entry point of the miniclass driver's BatteryMiniDisableStatusNotify routine.

Pdo
Points to the PDO for the battery device.

DeviceName
Points to a UNICODE string, and should be NULL.

ClassData
Points to a location at which BatteryClasslnitializeDevice returns a handle to be used in
subsequent calls to BatteryClassXxx routines.

Chapter 3 Battery Class Driver Routines 135

Return Value
BatteryClasslnitializeDevice returns STATUS_SUCCESS or, possibly, STATUS_
INSUFFICIENT_RESOURCES if not enough memory is available to store the battery
miniclass data.

Comments
Battery miniclass drivers must call BatteryClasslnitializeDevice to register each battery
device and to pass data about the device and the miniclass driver to the battery class driver.

This routine should be called as part of the device initialization, typically from the miniclass
driver's AddDevice routine.

The Context member of the BATTERY_MINIPORT_INFO structure points to an area
where the class and miniclass drivers maintain information about the battery device and its
drivers. The context area typically contains the pageable device extension from the FDO and
can also include other information at the discretion of the driver writer.

The class driver passes a pointer to the context area in calls to the BatteryMiniXxx routines.
In their BatteryMiniXxx routines, miniclass drivers should read and write the device exten
sion data through the passed-in pointer.

Miniclass drivers must supply entry points for all the BatteryMiniXxx routines.

See Also
BatteryMiniDisableStatusNotify, BatteryMiniQuerylnformation, BatteryMiniQuery
Status, BatteryMiniQueryTag, BatteryMiniSetlnformation, BatteryMiniSetStatus
Notify

BatteryClassloctl
NTSTATUS

BatteryClassIoctl
IN PVOID C7assData,
IN PIRP Irp
) ;

BatteryClassloctl handles system-defined battery IOCTLs.

Parameters
ClassData
Points to a battery class handle previously returned by BatteryClasslnitializeDevice.

Irp
Points to the IRP containing the IOCTL to be handled.

136 Part 2 Power Management

Return Value
BatteryClasslocti returns STATUS_SUCCESS when it satisfies the request and completes
the IRP. It returns STATUS_NOT_SUPPORTED for all IRPs other than device control
IRPs that specify battery IOCTLs.

Comments
BatteryClassloctl handles and completes device control IRPs intended for the battery. Such
IRPs have one of the following I/O control codes:

• IOCTL_BATTERY_QUERY_INFORMATION

• IOCTL_BATTERY_QUERY_STATUS

• IOCTL_BATTERY_QUERY_TAG

• IOCTL_BATTERY_SET_INFORMATION

The standard battery IOCTLs correspond to the miniclass driver's BatteryMiniXxx support
routines.

When the miniclass driver is called with an IRP _MJ_DEVICE_CONTROL request, it
should determine whether the IRP contains any private IOCTL defined by the miniclass
driver. If so, the miniclass driver should satisfy the request, complete the IRP, and return.

If the IRP contains a public IOCTL, the driver should pass the IRP to the class driver's
BatteryClassloctl routine. This routine examines the IRP, determines whether it applies
to the caller's battery device, and if so, calls the appropriate BatteryMiniXxx routine to
perform the requested operation.

If BatteryClassloctl returns STATUS_NOT_SUPPORTED for the IRP, the miniclass
driver must either complete the IRP or forward it to the next-lower driver.

See Also
BatteryMiniQuerylnformation, BatteryMiniQueryStatus, BatteryMiniQueryTag,
BatteryMiniSetlnformation

BatteryClassStatusNotify
NTSTATUS

BatteryClassStatusNotify
IN PVOID C7assData
);

BatteryClassStatusNotify notifies the battery class driver of changes in battery status.

Parameters
ClassData

Chapter 3 Battery Class Driver Routines 137

Points to a battery class handle previously returned by BatteryClasslnitializeDevice.

Return Value
BatteryClassStatusNotify returns STATUS_SUCCESS.

Comments
Battery miniclass drivers must call BatteryClassStatusNotify whenever any of the
following occur:

• The battery goes on- or off-line.

• The battery's capacity becomes critically low.

• The battery's power state changes; that is, the battery starts or stops charging or
discharging.

• The battery's capacity or power state deviates from the criteria set previously with
Battery MiniSetStatusN otify.

The battery class driver queues status requests internally. If any such requests are pending
when the miniclass driver calls BatteryClassStatusNotify, the class driver immediately
calls the miniclass driver's BatteryMiniQueryStatus routine.

See Also
BatteryMiniQueryStatus, BatteryMiniSetStatusNotify

BatteryClassUnload
TSTATUS

BatteryClassUnload
IN PVOID C7assData
) ;

BatteryClassUnload frees resources for a battery device that is no longer in use.

Parameters
ClassData
Points to a battery class handle previously returned by BatteryClasslnitializeDevice.

138 Part 2 Power Management

Return Value
BatteryClassUnload returns STATUS_SUCCESS.

Comments
BatteryClassUnload frees the battery class handle and unloads the battery device. In
essence, it undoes the registration and initialization performed by
BatteryClassInitializeDevice.

A miniclass driver should call this routine when its battery device is no longer available
for use. Typically, the driver might make such a call when handling a PnP IRP _MN_
REMOVE_DEVICE request or from its Unload routine.

139

CHAPTER 4

Battery Miniclass Driver Routines

Battery miniclass drivers must include routines to support PnP and to support battery man
agement and monitoring. Entry points for the following routines are required to support
standard operating system and PnP Manager functionality:

• DriverEntry

• AddDevice

• DispatchDeviceControl

• DispatchPnP

• DispatchPower

• Unload

For details on a battery minidriver's support for any of the above routines, see the Plug and
Play, Power Management, and Setup Design Guide.

Entry points for the following routines, described in this chapter, are required in all battery
miniclass drivers:

• BatteryMiniDisableStatusN otify

• BatteryMiniQuerylnformation

• BatteryMiniQueryStatus

• BatteryMiniQueryTag

• Battery MiniSetInformation

• Battery MiniSetStatusNotify

140 Part 2 Power Management

The battery class driver calls BatteryMiniXxx routines to get and set information about a
specific battery device. Battery miniclass drivers must supply entry points for these routines.
The BatteryMiniXxx routines can have any name chosen by the driver writer. Prototypes
appear in batclass.h.

BatteryMini DisableStatusNotify
NTSTATUS

BatteryMiniDisableStatusNotify(
IN PVOID Context
) :

BatteryMiniDisableStatusNotify disables status notification for a battery device.

Parameters
Context
Points to the miniclass-driver-allocated context area for the battery device.

Return Value
BatteryMiniDisableStatusNotify returns one of the following:

STATUS_SUCCESS
A battery is currently installed and status notification has been disabled.

STATUS_NO _SUCH_DEVICE
No battery is present.

STATUS_NOT_SUPPORTED
No functionality is provided for this routine.

Comments
The battery class driver calls BatteryMiniDisableStatusNotify when it no longer requires
notification of battery conditions set in an earlier call to BatteryMiniSetStatosNotify.

Miniclass drivers that supply a fully functional BatteryMiniDisableStatosNotify routine
must also supply a fully functional BatteryMiniSetStatusNotify routine, and vice versa.

The battery class driver calls this routine at IRQL PASSIVE_LEVEL.

See Also
BatteryMiniSetStatusNotify, BatteryClassStatusNotify

BatteryMiniQuerylnformation
NTSTATUS

BatteryMiniQueryInformation
IN PVOID Context,
IN ULONG BatteryTag,

Chapter 4 Battery Miniclass Driver Routines 141

IN BATTERY_QUERY_INFORMATION_LEVEL Level,
IN LONG AtRate OPTIONAL,
OUT PVOID Buffer,
IN ULONG BufferLength,
OUT PULONG ReturnedLength
) ;

BatteryMiniQuerylnformation returns information about the given battery device.

Parameters
Context
Points to the miniclass-driver-allocated context area for the battery device.

BatteryTag
Points to a battery tag previously returned by BatteryMiniQueryTag.

Level
Specifies the type of battery information to be returned. Possible values are
Batterylnformation, BatteryGranularitylnformation, BatteryTemperature, Battery
EstimatedTime, BatteryDeviceName, BatteryManufactureDate, BatteryManufacture
Name, and BatteryUniqueID.

AtRate
Specifies the rate of drain, in negative milliwatts, used to calculate the time to discharge
the battery. Meaningful only when Level is BatteryEstimatedTime; ignored for all other
values of Level.

Buffer
Points to a buffer allocated by the miniclass driver in which to return the requested infor
mation. Miniclass drivers format the contents of the buffer depending upon the value of
Level, as follows:

Batterylnformation
Return information formatted as a BATTERY_INFORMATION structure.

142 Part 2 Power Management

BatteryGranularitylnformation
Return a variable-length array of type BATTERY_REPORTING_SCALE that contains
the reporting granularity of the remaining capacity. The number of entries returned depends
upon the size of the returned buffer, to a maximum of four entries per battery.

BatteryTemperature
Return a ULONG value giving the current temperature of the battery, in tenths of a degree
Kelvin.

BatteryEstimatedTime
Return a ULONG value estimating the number of seconds of runtime remaining on the
battery, based on the rate of drain specified in AtRate. If AtRate is negative or zero, the
miniclass driver should calculate the runtime based on the current rate of drain. However,
if the driver cannot make an estimate (for example, AtRate is zero and the battery is not
discharging), it should return BATTERY _ UNKNOWN_TIME.

BatteryDeviceName
Return a UNICODE string specifying the name of the battery. For example, DR202 identi
fies a Duracell smart battery.

BatteryManufactureDate
Return a BATTERY_MANUFACTURE_DATE structure specifying the date the battery
was manufactured.

BatteryManufactureName
Return a UNICODE string specifying the model name given to the battery by its manu
facturer.

BatteryUniquelD
Return a UNICODE string that uniquely identifies the battery, typically a concatenation of
the battery's manufacturer, date, and serial number.

BatterySerialNumber
Return a UNICODE string that contains the battery's serial number.

BufferLength
Specifies the length in bytes at Buffer.

ReturnedLength
Specifies the number of bytes returned at Buffer.

Return Value
, BatteryMiniQuerylnformation returns one of the following:

Chapter 4 Battery Miniclass Driver Routines 143

STATUS_SUCCESS
The battery designated by BatteryTag is currently installed and the requested information
has been returned.

STATUS _NO _SUCH_DEVICE
The battery designated by BatteryTag is not present.

STATUSJNVALlD_DEVICE_REQUEST
The Level parameter specifies information that this battery does not support.

STATUSJNVALlD_PARAMETER
The Level parameter is not one of the enumerators listed.

Comments
The battery class driver calls a miniclass driver's BatteryMiniQuerylnformation routine to
get various types of information about the battery. The information returned depends upon
the Level parameter. Not all batteries support all the possible types of information that the
class driver might request. Miniclass drivers should return STATUS_INVALID_DEVICE_
REQUEST for any such requests.

If Level specifies Batterylnformation, the miniclass driver must return a BATTERY_
INFORMATION structure at Buffer. This structure contains status information about the
battery, including its capabilities, technology (whether the battery is rechargeable), and
chemistry; theoretical and actual full-charged capacity; critical bias; number of charge/
discharge cycles; and the capacity levels at which warning alerts occur.

If Level specifies BatteryGranularitylnformation, the miniclass driver can return an
array of one to four elements, formatted as BATTERY_REPORTING_SCALE structures.
Each element of the array consists of a granularity value and a remaining capacity value, in
milliwatt-hours. The granularity indicates the precision of measurement and thus is an
indicator of the accuracy of the capacity.

Most types of batteries report capacity on a single scale. Miniclass drivers for these batteries
return only one entry, giving the remaining capacity and the precision of the scale. Some
batteries, however, have two scales: a gross scale that measures whether capacity is greater
or less than fifty percent, and a finer scale that applies as capacity approaches zero. Mini
class drivers for such batteries should return two entries describing the two scales.

If Level specifies BatteryEstimatedTime, the miniclass driver must use the optional AtRate
parameter to. estimate the amount of time remaining to use the battery. The AtRate parameter
specifies a drain rate, in negative milliwatts.

If Level specifies BatteryUniqueld, the miniclass driver must return a string that uniquely
identifies this particular battery. For control method and smart batteries, the unique ID is

144 Part 2 Power Management

the concatenation of the manufacture name, the device name, the manufacture date, and the
ASCII representation of the battery's serial number. This value is not meant to be displayed.

The battery class driver calls this routine at IRQL PASSIVE_LEVEL.

See Also
BATTERY_INFORMATION, BATTERY_MANUFACTURE_DATE, BATTERY_
REPORTING_SCALE

BatteryM i niQueryStatus
NTSTATUS

BatteryMiniQueryStatus(
IN PVOID Context,
IN ULONG BatteryTag,
OUT PBATTERY_STATUS BatteryStatus
) ;

BatteryMiniQueryStatus returns status information about the given battery device.

Parameters
Context
Points to the miniclass-driver-allocated context area for the battery device.

BatteryTag
Specifies a battery tag previously returned by BatteryMiniQueryTag.

BatteryStatus
Points to a BATTERY_STATUS structure in which the miniclass driver returns infor
mation. The BATTERY_STATUS structure is defined as follows:

typedef struct _BATTERY_STATUS {
ULONG PowerState;
ULONG Capacity;
ULONG Voltage;
LONG Rate;

BATTERY_STATUS, *PBATTERY_STATUS;

PowerState
Specifies a battery power state as one or more of the following flags, ORed together:
BATTERY_POWER_ON_LINE, BATTERY_DISCHARGING, BATTERY_CHARGING,
and BATTERY_CRITICAL.

Chapter 4 Battery Miniclass Driver Routines 145

Capacity
Specifies the capacity of the given battery, in milliwatt-hours, or BATTERY_UNKNOWN_
CAPACITY if the capacity cannot be determined.

Voltage
Specifies the voltage, in millivolts, across the terminals of the given battery, or BATTERY_
UNKNOWN_VOLTAGE if the voltage cannot be determined.

Rate
Specifies the current rate of battery usage in milliwatts or, if the driver reports relative
capacity, in units per hour. A positive value means that the battery is charging; a negative
value means the battery is discharging. If the driver cannot determine the rate, it should
return BATTERY_UNKNOWN_RATE.

Return Value
BatteryMiniQueryStatus returns one of the following:

STATUS_SUCCESS
The battery designated by BatteryTag is currently installed .

. STATUS_NO_SUCH_DEVICE
The battery designated by BatteryTag is not present.

Comments
The battery class driver calls BatteryMiniQueryStatus to get status information about the
battery. The status information includes the battery's power state, capacity, voltage, and the
amount of current flowing at the time of the request.

If the miniclass driver does not supply fully functional BatteryMiniSetStatusNotify and
BatteryMiniDisableStatusNotify routines, the battery class driver calls BaderyMini
QueryStatus at regular but infrequent intervals to poll the battery's status. Otherwise, the
class driver calls this routine after the miniclass driver has notified it of a change in battery
status.

Before reporting a critically low, discharging battery (BATTERY_DISCHARGING and
BATTERY_CRITICAL), the miniclass driver should ensure that the problem is legitimate
(rather than a transitory state) and if so, should attempt to solve the problem. Possible solu
tions might include switching to AC power or to another battery. When the miniclass driver
reports that a battery is critical and discharging, the system assumes that battery failure is
imminent and prepares to shut down.

The battery class driver calls this routine at IRQL PASSIVE_LEVEL.

146 Part 2 Power Management

See Also
BatteryClassStatusNotify, Battery MiniDisableStatusNotify, BatteryMiniSetStatus
Notify

8atteryMiniQueryTag
NTSTATUS

BatteryMiniQueryTag(
IN PVOID Context,
OUT PULONG BatteryTag
) ;

BatteryMiniQueryTag returns the current battery tag.

Parameters
Context
Points to the miniclass-driver-allocated context area for the battery device.

BatteryTag
Points to a caller-allocated variable in which the miniclass driver returns the battery tag.

Return Value
BatteryMiniQueryTag returns one of the following:

STATUS_SUCCESS
A battery is currently installed.

STATUS_NO _SUCH_DEVICE
No battery is present.

Comments
The battery class driver calls BatteryMiniQueryTag to get the value of the current battery
tag. If a battery is present, BatteryMiniQueryTag should return the tag in BatteryTag and
return STATUS_SUCCESS.

Each time a battery is inserted, the miniclass driver must increment the value of the tag,
regardless of whether this is a new battery or the same battery that was previously present.

If no battery is present, or if the miniclass driver cannot determine whether a battery is
present, it should return STATUS_NO_SUCH_DEVICE and set the value of the tag to
BATTERY_TAG_INVALID.

The battery class driver calls this routine at IRQL PASSIVE_LEVEL.

BatteryMiniSetlnformation
NTSTATUS

BatteryMiniSetInformation(
IN PVOID Context.
IN ULONG BatteryTag.

Chapter 4 Battery Miniclass Driver Routines 147

IN BATTERY_SET_INFORMATION_LEVEL Level.
IN PVOID Buffer OPTIONAL
) ;

BatteryMiniSetlnformation requests that a battery enter the charging or discharging state,
or sets a critical bias value for the battery.

Parameters
Context
Points to the minic1ass-driver-allocated context area for the battery device.

BatteryTag
Specifies a battery tag previously returned by BatteryMiniQueryTag.

Level
Specifies one of the following values: BatteryCriticalBias, BatteryCharge, or
BatteryDischarge.

Buffer
Specifies the critical bias adjustment in milliwatts if Level is BatteryCriticalBias. Not used
for other values of Level.

Return Value
BatteryMiniSetInformation returns one of the following:

STATUS_SUCCESS
The operation succeeded.

STATUS_NO _SUCH_DEVICE
No battery is present.

STATUS_NOT_SUPPORTED
The specified battery does not support the requested operation.

STATUS_UNSUCCESSFUL
The operation failed.

148 Part 2 Power Management

Comments
The battery class driver calls BatteryMiniSetInformation to request that a battery start to
charge or discharge. It can also call this routine to set a critical bias value.

With a smart battery charger/selector, the class driver specifies BatteryCharge to select a
battery to charge, possibly discontinuing the charging of another battery.

The class driver specifies BatteryDischarge to indicate which battery should power the
system.

The critical bias adjustment is analogous to the reserve capacity of the gas tank in an auto
mobile. It represents the remaining charge when the battery capacity is reported as zero.
Although the class driver does not change the critical bias value in normal use, this field
is provided in the interface as a maintenance feature. Not all batteries can maintain a
critical bias setting. Miniclass drivers for such batteries should return STATUS_NOT_
SUPPORTED.

The battery class driver calls this routine at IRQL PASSIVE_LEVEL.

BatteryMi n iSetStatusNotify
NTSTATUS

BatteryMiniSetStatusNotify(
IN PVOID Context.
IN ULONG BatteryTag.
IN PBATTERY_NOTIFY BatteryNotify
) ;

BatteryMiniSetStatusNotify sets battery capacity and power state levels at which the class
driver requires notification.

Parameters
Context
Points to the miniclass-driver-allocated context area for the battery device.

BatteryTag
Specifies a battery tag previously returned by BatteryMiniQueryTag.

BatteryNotify
Points to a BATTERY_NOTIFY structure, defined as follows:

typedef struct {
ULONG PowerState;
ULONG LowCapacity;
ULONG HighCapacity;

BATTERY_NOTIFY. *PBATTERY_NOTIFY;

Chapter 4 Battery MiniclassDriver Routines 149

PowerState
Sets one or more of the following flags to specify a battery power state: BATTERY_
POWER_ON_LINE, BATTERY_DISCHARGING, BATTERY_CHARGING,
BATTERY_CRITICAL.

LowCapacity
Specifies a ULONG value indicating the battery capacity below which the class driver
requires notification.

HighCapacity
Specifies a ULONG value indicating the battery capacity above which the class driver
requires notification. .

Return Value
BatteryMiniSetStatusNotify returns one of the following:

STATUS_SUCCESS
A battery is currently installed.

STATUS_NO _SUCH_DEVICE
No battery is present or the given battery tag is invalid.

STATUS_NOT_SUPPORTED
The miniclass driver cannot distinguish the target condition.

Comments
The battery class driver calls a miniclass driver's BatteryMiniSetStatusNotify routine to set
criteria for an acceptable range of battery conditions. When the battery's capacity or power
state deviates from these criteria, the miniclass driver must call BatteryClassStatusNotify
to notify the class driver.

In PowerState, the class driver specifies one or more battery power states. Any time the
battery enters a power state that is not in PowerState, the miniclass driver must notify
the class driver.

In LowCapacity and HighCapacity, the class driver specifies a range of capacity. When
the capacity falls above or below this range, the miniclass driver must notify the class driver.

Some batteries might be unable to distinguish the precise capacities requested by the battery
class driver. When possible, miniclass drivers for these batteries should attempt to correct
for the error so that the user can be informed when the battery approaches a critical state.
Otherwise, such drivers should return STATUS_NOT_SUPPORTED.

150 Part 2 Power Management

The battery class driver calls this routine at IRQL PASSIVE_LEVEL.

See Also
BatteryClassStatusNotify, BatteryMiniDisableStatusNotify

C HAP T E' R 5

Battery Structures

This chapter describes the following structures used by battery minic1ass drivers:

• BATTERY_INFORMATION

• BATTERY_MANUFACTURE_DATE

• BATTERY_REPORTING_SCALE

BATTERY _INFORMATION
typedef struct _BATTERY_INFORMATION {

ULONG Capabilities;
UCHAR Technology;
UCHAR Reserved[3];
UCHAR Chemistry[4];
ULONG DesignedCapacity;
ULONG FullChargedCapacity;
ULONG DefaultAlertl;
ULONG DefaultAlert2;
ULONG CriticalBias;
ULONG CycleCount;

} BATTERY_INFORMATION, *PBATTERY_INFORMATION;

Battery minic1ass drivers fill in this structure in response to certain BatteryMiniQuery
Information requests.

Members
Capabilities
Specify battery capabilities as a ULONG value encoded with one or more of the follow
ing flags:

BATTERY_SYSTEM_BATTERY
Set this flag if the battery can provide general power to run the system.

151

152 Part 2 Power Management

BATIERY _CAPACITY_RELATIVE
Set this flag if the minic1ass driver will report battery capacity and rate as a percentage of
total capacity and rate rather than as absolute values. Otherwise, the minic1ass driver should
report capacity in milliwatt-hours and rate in milliwatts.

BATIERY JS_SHORT _TERM
Set this flag if the battery is a UPS, intended for short-term, failsafe use. Clear the flag for
any other type of device.

BA TIERY _SET _CHARGE_SUPPORTED
Set this flag if the minic1ass driver supports the BatteryCharge setting in calls to
BatteryMiniSetInformation.

BATTERY _SET _DISCHARGE_SUPPORTED
Set this flag if the minic1ass driver supports the BatteryDischarge setting in calls to
Battery MiniSetInformation.

Technology
Specify zero for a primary, nonrechargeable battery, or one for a secondary, rechargeable
battery.

Chemistry
Specify a four-character string indicating the type of chemistry used in the battery.
Possible values include PbAc (Lead Acid), LION (Lithium Ion), NiCd (Nickel Cadmium),
NiMH (Nickel Metal Hydride), NiZn (Nickel Zinc), and RAM (Rechargeable Alkaline
Manganese). Additional values might be returned as additional battery types become
available.

DesignedCapacity
Specify the theoretical capacity of the battery when new, in milliwatt-hours. If BATTERY_
CAPACITY_RELATIVE is set, the units are undefined.

FullChargedCapacity
Specify the battery's current fully charged capacity, in milliwatt-hours. If BATTERY_
CAPACITY_RELATIVE is set, the units are undefined.

DefaultAlert1
Specify the capacity (in milliwatt-hours) at which a low battery alert should occur.

Chapter 5 Battery Structures 153

Defau ItAlert2
Specify the capacity (in milliwatt-hours) at which a warning battery alert should occur.

Critical Bias
Specify the amount (in milliwatt-hours) of any small reserved charge remaining when
the critical battery level shows zero. Miniclass drivers should subtract this value from the
battery's FullChargedCapacity and -remaining capacity (reported in BATTERY_STATUS)
before reporting those values.

CycleCount
Specify the number of charge/discharge cycles the battery has experienced, or zero if the
battery does not support a cycle counter.

See Also
BatteryMiniQueryInformation, BatteryMiniQueryStatus

BATTERY_MANUFACTURE_DATE
typedef struct _BATTERY_MANUFACTURE_DATE {

UCHAR Day;
UCHAR Month;
USHORT Year;
BATTERY_MANUFACTURE_DATE. *PBATTERY_MANUFACTURE_DATE;

Battery miniclass drivers fi~l in this structure in response to certain BatteryMiniQuery
Information requests.

Members
Day
Specify a value in the range 1 to 31, inclusive.

Month
Specify a value in the range 1 to 12, inclusive.

Year
Specify a value >= 1996.

See Also
BatteryMiniQueryInformation

154 Part 2 Power Management

typedef struct {
ULONG Granularity;
ULONG Capacity;
BATTERY_REPORTING_SCALE;

Battery miniclass drivers fill in this structure in response to certain BatteryMiniQuery
Information requests.

Members
Granularity
Specify the granularity of the Capacity value, in milliwatt-hours. For most batteries, this
value describes a monotonically increasing scale of capacity. For lithium ion batteries, this
value describes one of two possible scales: a gross measure of battery capacity, with a large
granularity, or a finer measure as the capacity approaches zero.

Capacity
Specify the battery capacity described by the corresponding granularity, in milliwatt-hours.

See Also
BatteryMiniQuerylnformation

PAR T 3

Setup

Chapter 1 INF File Sections and Directives 157

Chapter 2 Setup Functions 273

Chapter 3 Device Installation Functions 281

Chapter 4 Device Installation Structures 391

Chapter 5 Device Installation Function Codes 421

Chapter 6 PnP Configuration Manager Functions 469

Chapter 7 PnP Configuration-Manager Structures and Types 543

Chapter 8 Device Setup Classes 567

Chapter 9 The txtsetup.oem File Format 575

157

CHAPTER 1

INF File Sections and Directives

This chapter describes the syntax of INF files. See Creating an INF File in Part 4, "Setup,"
in the Plug and Play, Power Management, and Setup Design Guide for additional
information on creating and using INF files.

This introduction contains the following information:

• General Syntax Rules for INF Files

• Looking at an INF File

• Summary of INF Sections

• Summary of INF Directives

General Syntax Rules for INF Files
An INF file is a simple text file organized into named sections.

Some sections have system-defined names and some sections have names determined by the
writer of the INF. Each section contains section-specific entries and/or directives that refer
ence additional sections specified elsewhere in the INF file. Each section, section-specific
entry, and directive has a particular purpose, for example, to copy files from the distribution
media, to install a driver service, or to add (or modify) the value entries in registry keys.

The rest of this discussion describes syntax rules governing the required contents of INF
files, the format of section names, using string tokens, and line format, continuation, and
comments.

Required Contents
• The set of required and optional sections, entries, and directives in any particular INF

depends on the type of device/driver or component (such as an application or device class
installer DLL) to be installed. The set of sections, section-specific entries, and directives
required to install any particular device and its driver(s) also depends somewhat on the

158 Part 3 Setup

corresponding class installer. For more information about how the system-supplied class
installers handle device-type-specific INF files, see also the Plug and Play, Power
Management, and Setup Design Guide and, for certain types of devices, the appropriate
manual in this documentation set.

• Sections can be specified in any order. Most INFs list sections in a particular order, by
convention, but Setup finds sections by name, not by location within the INF file.

Section Names
• Each section in an INF begins with the section name enclosed in brackets ([]). The

section name can be system-defined or INF-writer-defined.

For example, [Manufacturer] specifies the start of the system-named Manufacturer
section, while [Std.Mfg] represents a particular INF-writer-defined Models section name.

A section name has a maximum length of 255 bytes on Microsoft® Windows® 2000. On
Windows 98, section names should be no longer than 28 characters. INFs designed to
work on both platforms must adhere to the smaller limit.

Each section ends at the beginning of a new [section-name] or at the end-of-file mark.

• If more than one section in an INF has the same name, the system merges their entries
and directives into a single section.

• Section names, entries, and directives are case-insensitive, so version, VERSION, and
Version are equally valid section-name specifications within an INF.

• Unless it is enclosed in double-quote characters ("), an INF-writer-defined section name
referenced elsewhere in the INF file must be a unique-to-the-INF unquoted string of
explicitly visible characters, excluding certain characters with INF-specific meanings. In
particular, an unquoted section name referenced by a section entry or directive cannot
have leading or trailing spaces, a linefeed character, a return character, or any invisible
control character, and it should not contain tabs. In addition, it cannot contain either of
the bracket ([]) characters, a single percent (%) character, a semicolon (;), or any
internal double-quote (") character(s), and it cannot have a backslash (\) as its last
character.

For example, Std.Mfg and Std_Mfg are unique and valid section names when referenced
by n INF entry or directive, but Std;Mfg (with its internal semicolon) is invalid unless it
is enclosed by double quotes (").

However, specifying an INF-writer-defined section name as a II quoted string" overrides
most of the the preceding restrictions on characters in referenced section names. Such a
delimited section name can contain almost any explicitly or implicitly visible characters

Chapter 1 INF File Sections and Directives 159

except the closing bracket (]) as long as the corresponding section in the INF matches this
"quoted string" exactly.

For example, ";; Std Mfg " is a valid section-name reference if the corresponding
section declaration in the INF exactly matches the name inside the double quotes with
respect to its space and semicolon characters as [;; Std Mfg].

Using String Tokens
• Many values in an INF, including INF-writer-defined section names, can be expressed

as tokens of the form % strkey %. Each such strkey must be defined in the Strings section
of the INF file as a value consisting of a sequence of explicitly visible characters, which
the Windows 2000 setup code converts, if necessary, into Unicode internally. (See the
reference for the Strings section for more detailed information about how to define
%strkey% tokens and their respective values.)

Line Format, Continuation, and Comments
• Each entry and directive in a section ends with a return or linefeed character. Conse

quently, the text editor used to create an INF file must not insert return or linefeed
characters after some arbitrary, editor-determined number of characters.

• The backslash character (\) can be used as an explicit line continuator in an entry or
directive. If part of an entry or directive, such as a path, includes a backslash at the end
of a line, that backslash must be delimited with double quotes ("\") to override its
interpretation as a line continuator.

• Comments begin with a semicolon (;) character. When parsing and interpreting an INF
file, the system assumes th,!t the following have no relevance to the installation process:

(1) Any characters following a semicolon on the same line, unless the semicolon appears
within a "quoted string" or %strkey% token

(2) Any empty line containing nothing except a linefeed or return character

• Commas separate the values supplied in section entries and directives.

An INF entry or directive can omit an optional value in the middle of a list of values, but
the commas must remain. Windows 2000 INFs can omit trailing commas, but Windows
9x INFs must not. Dual-OS INFs should specify trailing commas in any sections that are
used on Windows 9x machines. Dual-OS INFs can omit trailing commas in sections that
are only used in Windows 2000 (that is, sections whose names are decorated with .nt,
.ntx86, and so forth).

160 Part 3 Setup

For example, consider the syntax for a SourceDisksFiles section entrY:

filename = diskid[,[subdir][,size]]

An entry that omits the subdir value but supplies the size value must specify both delimit
ing internal commas, as follows:

filename = diskid"size

An entry in a Windows 2000 INF that omits the two optional values can have this format:

filename = diskid

An entry in a Windows9x INF that omits the two optional values must specify the trailing
commas, as follows:

filename = diskid"

Looking at an INF File
The following example shows selected fragments from a system-supplied class installer's
INF file to illustrate how any INF file is made up of sections, each containing zero or more
lines, some of which are entries that reference additional INF-writer-defined sections:

[Version]
Signature="$Windows NT$"
Class=Mouse
ClassGUID={4D36E96F-E325-11CE-BFCl-08002BE10318}
Provider=%Provider% : defined later in Strings section
LayoutFile=layout.inf : entry used only by system installers
DriverVer=09/28/1999,5.00.2136.1

: ... some class installer sections omitted here

[DestinationDirs]
DefaultDestDir=12 : DIRID_DRIVERS

: ... [ControlFlags] section omitted here

[Manufacturer]
%StdMfg% =StdMfg : (Standard types)
%MSMfg% =MSMfg : Microsoft
: ... %otherMfg% entries omitted here

[StdMfg] : per-M~nufacturer Models section
: Std serial mouse
%*pnp0f0c.DeviceDesc%= Ser_Inst,*PNP0F0C,SERENUM\PNP0F0C,SERIAL_MOUSE
: Std InPort mouse

Chapter 1 INF File Sections and Directives 161

%*pnp0f0d.DeviceDesc% Inp_Inst.*PNP0F0D
... more StdMfg entries and following
MSMfg and xxMfg Models sections omitted here

per-Models DDInstall (Ser_Inst. Inp_Inst. etc.)
sections also omitted here

[Strings]
; where INF %strkey% tokens are defined as user-visible (and
; possibly as locale-specific) strings.
Provider = "Microsoft"

StdMfg
MSMfg

"(Standard mouse types)"
"Microsoft"

*pnp0f0c.DeviceDesc
*pnp0f0d.DeviceDesc

"Standard Serial Mouse"
"InPort Adapter Mouse"

HI D\vi d_045E&Pi d_0009. Devi ceDesc = "Mi crosoft USB I ntell i mouse"

A few sections within the preceding Windows 2000 INF have system-defined names,
such as Version, DestinationDirs, Manufacturer, and Strings. Some named sections like
Version, DestinationDirs, and Strings have only simple entries. Others reference addi
tional INF-writer-defined sections, as shown in the preceding example of the Manufacturer
section.

Note the implied hierarchy of related sections for mouse device driver installation(s) starting
with the Manufacturer section in the preceding example. Figure Lion the next page shows
the hierarchy of some of the sections in the INF file.

Note the following about the implied hierachy of an INF file:

• Each %xxMfg% entry in the Manufacturer section references a per-manufacturer
Models section (StdMfg, MSMfg) elsewhere in the INF. (The entries in the example
above use %strkey% tokens.)

• Each Models section specifies some number of entries; in the example they are
%xxx.DeviceDesc % tokens.

Each such %xxx.DeviceDesc% token references some number of per-model(s) DDlnstall
sections (Ser_Inst and Inp_Inst) for that manufacturer's product line, with each entry
identifying a single device (*PNPOFOC and *PNPOFOD, hence the "DeviceDesc" shown
here) or a set of compatible models of a device.

162 Part 3 Setup

Manufacturer List

[Manufacturer]
%StdMfg% = StdMfg
%MSMfg% = MsMfg

Standard Models List

--t-~ [StdMfg]
% ·pnpOfOc. DeviceDesc%
=SeUnst, ...
% ·pnpOfOd.DeviceDesc%
= Inp-'nst, .,.

Microsoft Models List

[MSMfg]

%HIDWid_045E&Pid_0009.Devi
ceDesc%=HID_Mouse-'nst, ...

Serial Mouse Install Info

-+--~ [SeUnst]
CopyFiles = ...

InPort Mouse Install Info
[Inp-'nst]
CopyFiles = ...

DDlnstall
sections,

etc.

Figure 1.1 Sample Hierarchy of Sections in an INF File

Other
SeUnst

Installation
Sections

Other
Inp-'nst

Installation
Sections

• Each such DDlnstall-type Xxx_Inst section, in tum, can have certain system-defined
extensions appended and/or can contain directives that reference additional INF-writer
defined sections. For instance, the full INF shown as fragments in the preceding example
also has a Ser_Inst.Services section, and its Ser_Inst section has a CopyFiles directive
that references a Ser_CopyFiles section elsewhere in this INF.

Summary of INF Sections
The following summarizes the system-defined sections that can be used in INF files.
System-defined section names are case-insensitive, so version, VERSION, and Version
are equally valid section-names within an INF.

This chapter describes the INF sections in the same general order used in most device INF
files. However, these sections actually can be specified in any arbitrary order. The Windows
2000 setup code finds all sections within each INF file by section name, not by sequential
order, whether system-defined or INF-writer-defined.

Version Section
This is a required section for every INF file. For installation on Windows 2000 and/or
Windows 9x platforms, this section must have a valid Signature entry.

Chapter 1 INF File Sections and Directives 163

SourceDisksNames Section
This section is required if the INF has a corresponding SourceDisksFiles section. This sec
tion is required to install IHV /OEM-supplied devices and their drivers from distribution
media included in packaged products. It is also required in such an INF that installs either
of the following:

A coinstaller DLL to supplement the operations of a system-supplied device class installer
or coinstaller(s) (see also DDlnstall.Colnstallers later in this list)

A new class installer DLL to supplement the operations of the OS's device installer (see also
Classlnstall32 later in this list)

This section identifies the individual source distribution disks or CD-ROM discs for the
installation. By contrast, the system-supplied INFs each specify a LayoutFile entry in their
Version sections and provide at least one other INF file detailing the source distribution
contents and layout of all software components to be installed.

SourceDisksFiles Section
This section identifies the location(s) of files to be installed from the distribution media
to the destination(s) on the target machine. An INF that has this section must also have a
SourceDisksNames section.

Classlnstall32 Section
This section initializes a device setup class. This section is required in any class installer
INF file, but see also DDlnstall.Colnstallers later in this list. INFs tbat install devices and
their drivers under any system-defined device class do not need this section.

DestinationDirs Section
Device/driver INFs have a DestinationDirs section to specify a default destination directory
for INF-specified copies of the files supplied on the distribution media or listed in the INF
layout file(s). This section is required unless the INF installs a device, such as a modem or
display monitor, that has no files except its INF to be installed with it.

Control Flags Section
This section controls whether the Add New Hardware Wizard presents a list of INF
specified Models values from which the end user selects a particular manually installed
device (or model of a device) to be installed from the INF. It also can control whether an
INF is used only to transfer files from the distribution media.

In general, most INFs for device drivers and for the system class installers have this section
so they can exclude at least a subset of Models entries from the list of manually installable
devices to be displayed to end users. INFs that only install PnP devices suppress the display
of all model-specific information.

164 Part 3 Setup

Manufacturer Section
This section is required in INFs for devices and their drivers.

The Manufacturer section of a system device class INF is sometimes called a "Table of
Contents," because each of its entries references an INF-writer-defined Models section,
which, in tum, references additional INF-writer-defined sections, such as a per-models
entry Dlnstall section, DDlnstall.Services section, and so forth.

Models Section (per Manufacturer entry)
This section is required to identify the device(s) for which the INF installs driver(s). It
specifies a set of mappings between the generic name (string) for a device, the device ID,
and the name of the DDlnstall section, elsewhere in the INF, containing the installation
instructions for the device.

An INF that installs one or more devices and driver(s) for a single provider would have only
one Models section, but system INFs for device classes can have many INF-writer-defined
Models sections.

DDlnstall Section (per Models entry)
This section is required to actually install any device(s) listed in a Models section in the INF,
along with the driver(s) for each such device. A DDlnstall section can be shared by more
than one Models section.

DDlnstall.Services Section
This section is required as an expansion of the DDlnstall section for most Windows 2000
kernel-mode device drivers, including any WDM drivers (exceptions are INFs for modems
and display monitors). It controls how and when the services of a particular driver are
started, its dependencies (if any) on underlying legacy drivers, and so forth. This section
also sets up event-logging services by a device driver if it supports event logging.

DDlnstall.HW Section
This optional section adds device-specific (and typically, driver-independent) information to
the registry or removes such information from the registry, possibly for a multifunction de
vice or to install one or more PnP filter drivers.

DDI nstall.Colnstaliers Section
This optional section registers one or more device-specific or class-specific coinstallers sup
lied on the distribution media to supplement the operations of the system's device intaller, of
an existing device class installer, and/or of existing class-specific coinstaller(s), if any.

A device-specific coins taller is an IHV/OEM-provided Win32® DLL that typically writes
additional configuration information to the registry or performs other device installation
tasks that require dynamically generated, machine-specific information that is not available
when the device's INF is created. A class-specific coinstaller is also a Win32 DLL that

Chapter 1 INF File Sections and Directives 165

supplements the installation operations of an already installed device class installer or of the
system's device installer.

DDlnstall.lnterfaces Section
If a device/driver "exports" certain system-defined device interfaces, such as kemel
streaming still-image capture or data decompression, or it exports a new class of device
interface to higher level components, its INF can have this section.

Interfacelnstall32 Section
If a to-be-installed component, such as a new class driver, provides one or more new device
interfaces to higher-level components, its INF has this section. In effect, this section boot
straps a set of device interface(s) of a new class by setting up whatever is needed to make
use of the functionality that interface class provides.

DDlnstall.FactDef Section
This section should be included in the INF of any manually installed nonPnP device. It
specifies the factory default hardware configuration settings, such as the bus-relative I/O
ports, IRQ (if any), and so forth, for the card.

Strings Section
This section is required in every INF file to define each % strkey % token specified in
the INF. By convention, the Strings section (or sections if the INF provides a set of locale
specific Strings sections) appear(s) last in all system-supplied INF files for ease of

. maintenance and localization.

Some of the sections listed here, particularly those with Install in their names, can contain
directives that reference additional INF-writer-defined sections. Each directive causes
particular operations to be carried out on the items listed under the appropriate type of INF
writer-defined section during the installation process.

The set of valid entries and/or directives for any particular section in the preceding list is
section-specific and shown in the formal syntax of the reference for each of these sections.
Optional entries and directives within each such section are shown enclosed in unbolded
brackets, as for example:

[Version]

[Provider=%INF-creator%]

The Provider entry in a [Version] section is optional in the sense that it is not a mandatory
entry in every INF file.

166 Part 3 Setup

Summary of INF Directives
The following summarizes the system-defined directives that can be used in INF files. INF
directive names are case-insensitive, so Addreg, addReg, and AddReg are equally valid as
directive specifications within an INF.

This chapter lists the most commonly used directives first, together with their reciprocal or
related directives. The most rarely used directives are toward the end of the chapter.

Add Reg Directive
This directive references one or more add-registry-sections used to add subkeys and/or
value entries to the registry or to modify existing value entries.

The particular INF section in which an AddReg (or DelReg) directive occurs determines
the default ("relative") location within the registry for the modifications specified in the
referenced add-registry (or delete-registry) section. For device/driver INFs, these default
registry locations, which can be designated in the INF's add/delete-registry sections by the
value HKR, are typically user-visible, device-specific or driver-specific subkeys somewhere
under the following keys in the HKEY _LOCAL_MACHINE registry tree:

• .• Enum, under which the system's PnP enumerators store device-specific information,
such as the device ID, compatible device IDs, if any, and so forth

Any INF-supplied information stored somewhere in the •• Enum (sometimes called
the "device" or "hardware") branch of the registry is generally device-specific but
driver-independent in nature. For example, an add-registry section referenced in the
DDlnstall.HW INF section can be used to write the value entries of a Device
Parameters subkey under the device-specific key in the •. Enum branch. The OS
creates such a device-specific subkey of the .• Enum branch for each detected and enu
merated PnP device and for legacy (nonPnP) devices. As another example, device
specific logical-configuration information, whether supplied by a PnP bus driver or by
an add-registry-section referenced in an INF-writer-created log-con fig-section is also
stored in a subkey of such a device-specific key.

In the Windows 2000 registry, this .• Enum branch is a subtree of the •• \CurrentControl
Set\Control tree.

• •• Class\SetupClassGUID, in which the system's device installer stores information about
each particular (setup) class of devices and under which the corresponding device class
installer and coinstallers, if any, store per-device/driver information, such as the "friendly
name" of a particular device, the device description string, the name of the device's
manufacturer, the name of the driver image, and so forth

For example, any add-registry section referenced in an INF's DDlnstall section is
assumed to store this kind of registry information, possibly some of it as localized string

Chapter 1 INF File Sections and Directives 167

values, in a subkey (sometimes called the "software" or "driver" key) under the
.. Class\SetupClassGUID key for the appropriate device class.

In the Windows 2000 registry, this .• Class branch is also a subtree of the •• \Current
ControlSet\Control tree.

Additional INF sections referenced by AddReg can set up registry information for supplied
coinstallers, for system-defined device interfaces (such as kernel streaming interfaces) ex
ported to higher level components by a device/driver, for new device interfaces exported by
an installed component for a given class of devices, for driver services, and/or even for a
new setup class of devices if the INF has a Classlnsta1l32 section.

Del Reg Directive
This directive references one or more del-registry-sections used to remove obsolete subkeys
and/or value entries from the registry. For example, such a section might appear in an INF
that upgrades a previous installation.

CopyFiles Directive
This directive references one or more file-list-sections specifying transfers of modelldevice
specific driver image(s) and any other necessary files from the distribution media to the des
tination directory for each such file. Alternatively, this directive can specify a single file to
be copied from the distribution media to the default destination directory.

Del Files Directive
This rarely used directive references one or more file-list-sections specifying files to be de
leted from the target of the installation. For example, such an optional section might appear
in an INF to "deinstall" file(s) that will be superceded by some file(s) to be installed by the
INF. If no such stale file(s) could possibly be installed on the target machine, this directive
is irrelevant.

RenFiles Directive
This rarely used directive references one or more file-list-sections specifying INF-associated
source files to be renamed on the destination. For example, such an optional section might
appear in an INF if the installer should change the name(s) of one or more "replaced" files
on the destination to preserve them when copying files supplied on the distribution media.

AddService Directive
This directive references at least a service-install-section, possibly with an additional
event-log-install-section.

INFs for most kinds of Windows 2000 devices (those that install drivers) have an INF
writer-defined service-install-section to specify any dependencies on system-supplied
drivers or services, during which stage of the system initialization process the supplied
driver(s) should be loaded, and so forth. Many INFs for device drivers also have an

168 Part 3 Setup

INF-writer-defined event-log-install-section that is referenced by the AddService directive
to set up event logging by the device driver.

DelService Directive
This rarely used directive deletes a previously installed service. For example, it might undo
the operations of an AddService directive specified in a previous version of the INF file.

Addlnterface Directive
This directive references an add-interface-section in which one or more AddReg directives
are specified referencing sections that set up the registry entries for the device interfaces
supported by this device/driver. Optionally, such an add-interface-section can reference one
or more additional sections that specify delete-registry, file-transfer, file-delete, and/or file
rename operations.

BitReg Directive
This rarely used directive references one or more bit-registry-sections specifying existing
REG_BINARY-type value entries in the registry for which particular bits in the values are
to be modified.

LogConfig Directive
This directive references one or more log-con fig-sections that specify acceptable bus
relative and device-specific hardware configurations in an INF for device(s) that are
detected (by PnP device enumerators) or manually installed. For example, INFs for
nonPnP ISA, EISA, and MeA devices, which are manually installed, use this directive.
(See also this directive's reference for more information about the even more rarely used
DD Install.LogConfigOverride section.)

Updatelnis Directive
This rarely used directive references one or more update-ini-sections specifying parts of a
supplied INI file to be read during installation and, possibly specifying line-by-line modifi
cations to be made in that INI file.

UpdatelniFields Directive
This rarely used directive references one or more update-iniJields-sections specifying modi
fications to be made on fields within the lines of an INl file.

Ini2Reg Directive
This rarely used directive references one or more ini-to-registry-sections specifying lines or
sections of an INI file to be written into the registry.

The specific set of valid sections under which any of the directives in the preceding list can
be be specified is system-determined. For quick reference, the basic form of each valid sec
tion is shown later in the formal syntax of the reference for each directive, as for example:

Chapter 1 INF File Sections and Directives 169

[DDlnstall] I [DDlnstall.HW] I [DDlnstall.Colnstallers] I [ClasslnstaIl32] I
[ClasslnstaIl32.ntx86]

AddReg=add-re gistry-section[, add-registry-section] ...

However, the system-defined extensions for cross-platform Windows 2000 and dual-OS
INF files can be appended to certain INF-writer-defined section names, as explained in
Creating an INF File. That is, the undecorated [DDlnstall.HW] section shown in the formal
syntax for the AddReg directive reference implies the validity of all decorated forms of this
type of section, such as [install-section-name.nt.HW], [install-section-name.ntx86.HW],
and so forth.

The rest of this chapter describes the formal syntax and meaning for each system-defined
named section, standard INF-writer-defined section, and directive that can be specified in an
INF file.

INF Version Section
[Version]

Signature="signature-name"
[Class=class-name]
[ClassGuid={ nnnnnnnn-nnnn-nnnn-nnnn-nnnnnnnnnnnn }]
[Provider= % INF -creator%]
[LayoutFile=jilename.inf [/ilename.inf] ...]
[CatalogFile=filename.cat]
[CatalogFile.nt=unique-filename.cat]
[CatalogFile.ntx86=unique-filename.cat]
DriverVer=mmldd/yyyy[;x.y. v.z]

By convention, the Version section appears first in INF files. Every INF file must have this
section.

Entries and Values
Signature=lIsignature-namell

Can be any of $Windows NT$, $Chicago$, or $Windows 95$. The enclosing $ are required
but these strings are otherwise case-insensitive. If the signature-name is none of these string
values, the file is not accepted as a valid INF.

If an INF is used to install device(s)/driver(s) on both Windows 9x and Windows 2000
platforms, it must designate any OS-specific installation information by appending system
defined extension(s) to its DDlnstall section(s), whether the signature-name is $Windows
NT$, $Chicago$, or $Windows 95$. (See Creating an INF File in the Plug and Play, Power
Management, and Setup Design Guide for a discussion of these extensions.)

170 Part 3 Setup

Class=class-name
For any standard type of device, this specifies the class name, such as one of the system
defined class names like Net or Display as listed in devguid.h, for the type of device to be
installed from this INF file. See Device Setup Classes for more information on the system
defined device setup classes.

If an INF specifies a Class it should also specify the corresponding system-defined GUID
value for its ClassGUID entry. Specifying the matching GUID value for a device of any
predefined device setup class can install such a device and its driver(s) faster since this helps
the system setup code to optimize its INF searching.

Any INF that adds a new setup class of devices to the system should supply a unique, case
insensitive class-name value that is different from any of the system-defined device-type
specific classes in devguid.h. Such an INF must specify a newly generated GUID value for
the ClassGUID entry. Otherwise, this entry is irrelevant to an INF that installs neither a new
device driver under a predefined device setup class nor a new device setup class.

ClassGuid = {nnnnnnnn-nnnn-nnnn-nnnn-nnnnnnnnnnnn}
Specifies the device-class GUID, formatted as shown here, where each n is a hexadecimal
digit.

For a Windows 2000 device/driver(s) INF, such a GUID value determines the device (setup)
class subkey in the registry •.• \Class tree under which to write registry information for the
driver(s) of device(s) installed from this INF file. This class-specific GUID value also
identifies the device-class installer for the type of device and class-specific property-page
provider, if any.

For a new device setup class, the INF must specify a newly generated ClassGUID value.
For more information about creating GUIDs, see the Plug and Play, Power Management,
and Setup Design Guide. For more information about system-defined device setup classes,
see Device Setup Classes.

Provider=%INF-creator%
Identifies the provider of the INF file. Typically, this is specified as an % Organization
Name% token that is expanded later in the INF's Strings section.

For example, INFs supplied with the system typically specify the INF-creator as %Msft%
and define %Msft% = "Microsoft" in their Strings sections.

LayoutFile=filename.inf [,filename.inf] ...
Specifies one or more additional system-supplied INF files that contain layout information
on the source media required for installing the software described in this INF. All system
supplied INFs specify this entry, but IHV/OEM-supplied INFs do not.

Chapter 1 INF File Sections and Directives 171

INF files that are not distributed with the OS itself must omit this entry and have Source
DisksNames and SourceDisksFiles sections instead. By convention, these two sections
follow the Version section.

CatalogFile=filename.cat
Specifies the catalog file to be included on the distribution media of a device/driver when
it has been tested, certified, and assigned digital signature(s) by the Microsoft Windows
Hardware Quality Lab. (Contact WHQL for more information about the signing, testing,
and certification of IHV and/or OEM driver packages.) The file has the extension .cat.

Catalog files are not listed in the SourceDisksFiles or CopyFiles sections of the INF. Setup
assumes that the catalog file is in the same location as the INF file.

System-supplied INF files never have CatalogFile= entries because the OS validates the
signature for such an INF against all system-supplied xxx. cat files.

[CatalogFile.nt=unique-filename.cat] I
[CatalogFile.ntx86=unique-filename.cat] I
Specifies another INF-writer-determined but unique file name, also with the extension .cat,
for a Windows 2000-specific or Windows 2000-platform-specific catalog file to be included
on the distribution media of a device/driver already validated by WHQL.

If these optional entries are omitted from a dual-OS INF file, a given CatalogFile=
filename. cat is used for validating WDM device/driver installations on all Windows 2000
and Windows 98 machines. If any decorated CatalogFile.xxx= entry existsin an INF's
Version section together with an undecorated CatalogFile= entry, the undecorated entry
is assumed to identify a filename.cat for validating device/driver installations only on
Windows 98 machines.

Note that any cross-platform and/or dual-OS device/driver INF file that has CatalogFile=
and CatalogFile.xxx= entries must supply a unique IHV/OEM-determined name for each
such .cat file.

DriverVer=mm/dd/yyyy[,x.y. V .z]
This entry specifies version information for drivers installed by this INF. This entry is
required in Windows 2000 INFs.

The mm/dd/yyyy value specifies the date of the driver package, including the driver files and
the INF. A hyphen (-) can be used as the date field separator in place of the slash (/).

The x.y. v.z specifies an optional version number. This value is for display purposes only (for
example, in the Device Manager). The OS does not use this value for driver selection.

A Windows 2000 INF should have a DriverVer entry in the Version section to provide
version information for the whole INF plus DriverVer directives in the individual DDlnstall
sections to provide version information for individual drivers. DriverVer entries in the

172 Part 3 Setup

DDlnstall sections are more specific and take precedence over the global DriverVer entry
in the Version section.

When the OS searches for drivers, it chooses a driver with a more recent DriverVer date
over a driver with an earlier date. If an INF has no DriverVer entry or is unsigned, the OS
applies the default date of 0010010000.

Windows 98 does not recognize a DriverVer entry in the Version section. Therefore, an
INF that will be used on Windows 98 should have DriverVer entries in the undecorated
DDlnstall sections that are used by Windows.98.

Comments
When the Microsoft Windows Hardware Quality Lab certifies a driver package, it returns
.cat catalog file(s) to the IHV or OEM that contain the digitally encrypted signature(s) for
the driver package. The IHV or OEM must list any .cat file(s) in the Version section of
their INF and must supply the files on the distribution media in the same location as the
IHV/OEM-supplied INF file. The .cat files must be in uncompressed form.

Example
The following example shows a Version section typical of a simple device-driver INF, fol
lowed by the required SourceDisksNames and SourceDisksFiles sections implied by the
entries specified in this sample Version section:

[Version]
Signature="$Chicago$"
Class=SCSIAdapter
ClassGUID={4D36E97B-E325-11CE-BFC1-08002BE10318}
Provider=%INF_Provider%
CatalogFile=aha154_win98.cat
CatalogFile.ntx86=aha154_ntx86.cat
DriverVer=08/20/1999

[SourceDisksNames]

diskid = description[, [tagfile] [, <unused>, subdir]]

1 = %Floppy_Description%",\Win98
2 = %Floppy_Description%",\WinNT

[SourceDisksFiles]

; filename_on_source = diskID[, [subdir][, size]]

aha154x.mpd = 1"

[SourceDisksFiles.x86]
aha154x.sys = 2.\x86

[Strings]
INF_Provider="Adaptec"

Chapter 1 INF File Sections and Directives 173

Floppy_Description = "Adaptec Drivers Disk"

See Also
DDlnstall, SourceDisksNames, SourceDisksFiles, Strings

INF SourceDisksNames Section
[SourceDisksNames] I
[SourceDisksN ames.x86]

diskid = %strkey% I ["]disk-description["][,[tagfile][,unused,path]]

A SourceDisksNames section identifies the distribution disk(s) or CD-ROM disc(s) that
contain the source files to be transferred to the target machine during installation.

Entry Values,
diskid
Specifies a nonnegative integer that identifies a source disk. This value can be expressed in
decimal or in hexadecimal notation, but it cannot require more than four bytes of storage. If
there is more than one source disk for the distribution, each diskid entry in this section must
have a unique value, such as 1, 2, 3, ... or OxO, Ox1, Ox2, ... and so forth.

disk-description
Specifies a %strkey% token or a "quoted string" that describes the contents and/or purpose
of the disk identified by dis kid. The installer can display the value of this string to the end
user during installation, for example, to identify a source disk to be inserted into a drive at a
particular stage of the installation process.

Every %strkey% specification in this section must be defined in the INF's Strings section.
Any disk-description that is not a %strkey% token is a user-visible string that must be de
limited by double-quote characters (") if it has any leading or trailing spaces.

174 Part 3 Setup

tagfile
This optional value specifies the name of a tag file supplied on the distribution disk, either
in the root directory or in the given path subdirectory, if any, of the disk. The value should
specify only the filename, not any directory or,subdirectory.

Setup uses a tag file to verify that the user inserted the correct installation disk. Tag files are
only used for removeable media.

A vendor can also use a tag file to contain a "cabinet" of compressed installation files. If
tagfile has the extension .cab, Setup uses it as a tag file and as a source ~f installation files.

unused
This is not used on Windows 2000. This value is only used in Windows 9x. See the
Windows 98 DDK documentation for further information.

path
This optional value specifies the path to the directory on the distribution disk containing
source files, including the tagfile if any. The path is relative to the root and is expressed as
\dirnamel\dirname2 ... and so forth. If this value is omitted from an entry, files are assumed
to be in the root directory of the distribution disk.

Subdirectories containing particular source files can be specified relative to a given path
directory in the corresponding SourceDisksFiles section of the INF file. However, any
tagfile supplied on the distribution disk must reside either in the given path directory or,
if path is omitted, in the root directory.

Comments
A SourceDisksNames section can have any number of entries, one for each distribution
disk. Any INF with a SourceDisksNames section also must have a SourceDisksFiles
section.

These sections never appear in system-supplied INFs. Instead, system-supplied INFs specify
LayoutFile entries in their Version sections.

To support a multiplatform distribution of Windows 2000 driver files, construct platform
specific SourceDisksNames sections. For example, all system setup API functions that
process a SourceDisksNames section will search first for a SourceDisksNames.x86 sec
tion on a Windows 2000 x86-based platform and only look at an undecorated SourceDisks
Names section if they cannot find a SourceDisksNames.x86 section.

Examples
In the following example, the write.exe file is the same for all Windows 2000 platforms and
is located in the \common directory on a CD-ROM distribution disc. The cmd.exe file is a
platform-specific file that is only used on Windows 2000 x86-based platforms.

[SourceDisksNames]
1 = "Windows NT CD-ROM".file.tag .. \common

[SourceDisksNames.x86]
2 = "Windows NT CD-ROM".file.tag .. \x86

[SourceDisksFiles]
write.exe = 1
cmd.exe = 2

Chapter 1 INF File Sections and Directives 175

This next example again shows the SourceDisksNames section from the example in the
preceding reference for the Version section.

[SourceDisksNames]

diskid = description[. [tagfile] [. <unused>. subdir]]

1 = %Floppy_Description% ••. \Win98
2 = %Floppy_Description% ••• \WinNT

See Also
DestinationDirs, SourceDisksFiles, Version

INF SourceDisksFiles Section
[SourceDisksFiles] I
[SourceDisksFiles.x86]

filename = diskid[,[subdir][, size]]

A SourceDisksFiles section names the source files used during installation, identifies the
source disks (or CD-ROM discs) that contain those files, and provides the path to the sub
directories, if any, on the distribution disks containing individual files.

Entry Values
filename
Specifies the name of the file on the source disk.

diskid
Specifies the integer identifying the source disk that contains the file. This value and the
initial path to the subdir(ectory), if any, containing the named file must be defined in a
SourceDisksNames section of the same INF.

176 Part 3 Setup

subdir
This optional value specifies the subdirectory (relative to the SourceDisksNames path
specification, if any) on the source disk where the named file resides.

If this value is omitted from an entry, the named source file is assumed to be in the root
directory or in the path directory that was specified in the SourceDisksNames section for
the given disk.

size
This optional value specifies the uncompressed size, in bytes, of the given file.

Comments
A SourceDisksFiles section can have any number of entries, one for each file on the distri
bution disk(s). Any INF with a SourceDisksFiles section also must have a SourceDisks
Names section. (These sections are omitted from a system-supplied INF, which instead
specifies a LayoutFile entry in its Version section.)

To support a multiplatform distribution of Windows 2000 source files, construct platform
specific SourceDisksFiles sections. For example, all system setup API functions that pro
cess a SourceDisksFiles section will search first for a SourceDisksFiles.x86 section on a
Windows 2000 x86-based platform and only look in an undecorated SourceDisksFiles
section if they cannot find a SourceDisksFiles.x86 section.

However, the presence of a SourceDisksFiles.x86 section does not exclude the existence of
an undecorated SourceDisksFiles section within the same INF if it installs some software
that is cross-platform in nature.

Example
The following example shows the SourceDisksFiles section for the corresponding
SourceDisksNames example shown in the immediately preceding section and in the
Version section. -

[SourceDisksFiles]

; filename_on_source diskID[, [subdir][, size]]

aha154x.mpd = 1" ; on distribution disk 1, in subdir \win9x

[SourceDisksFiles.x86]
aha154x.sys = 2,\x86 ; on distribution disk 2, in subdir \WinNT\x86

Chapter 1 INF File Sections and Directives 177

See Also
CopyFiles, DestinationDirs, RenFiles, SourceDisksNames, Version

INF Classlnstall32 Section
[Classlnsta1l32] I [Classlnsta1l32.ntx86]

AddReg=add-registry-section[, add-registry-section] ...
[Copyfiles=@filename I Jile-list-section[, Jile-list-section J .•.]
[DeIReg=del-registry-section[, del-registry-sectionJ ... J
[Delfiles=file-list section[,Jile-list-sectionJ ... J
[Renfiles=Jile-list-section[,Jile-list-sectionJ ... J
[BitReg=bit-registry-section[,bit-registry-section J ... J
[U pdatelnis=update-ini-section [,update-ini-section] ...]
[U pdatelniFields=update-inifie Ids-section [,update-inifie Ids-section] ... J
[Ini2Reg=ini-to-registry-section [,ini-to- registry-section] ...]

A Classlnsta1l32 section installs a new setup device class (and possibly a class installer) for
some number of devices of the same new type.

An INF for device(s) in a system-defined device setup class should not specify a Class
Insta1l32 section. However, coinstaller(s) can be provided for any such device or class of
devices to supplement the installation operations of existing class installers or of the
Windows 2000 device installer.

Usually, a Classlnsta1l32 section will have one or more AddReg directives to add value
entries under a system-provided SetupClassGUID subkey in the registry. These value entries
can include the class-specific "friendly name," class-installer path specification, class icon,
property-page provider, if any, and so forth. Except for AddReg and CopyFiles, the other
directives shown here are very seldom used in a Classlnsta1l32 section.

Valid Directives
AddReg=add-registry-section[, add-registry-section] ...
References one or more named sections in which class-specific value entries are specified
to be written into the registry when this INF is processed. Typically, this is used to give the
new device setup class at least a friendly name that other components can later retrieve from
the registry and use to open installed devices of this new device class, to "install" any new
device class installer and/or property-page provider for this device setup class, and so
forth. An HKR specification in any add-registry-section referenced here designates the
.. Class\{ SetupClassGUID} registry key.

178 Part 3 Setup

Copyfiles=@filename I file-list-section[, file-list-section] ...
Either specifies one named file to be copied from the source media to the destination or
references one or more named sections in which class-relevant file(s) on the source media
are specified for transfer to the destination. The DefaultDestDir entry in the Destination
Dirs section of the INF specifies the destination directory for any class-specific single file
to be copied.

System-supplied INFs for device setup classes (and class installers) do not use this directive
in this section.

DeIReg=del-registry-section[, del-registry-section] ...
References one or more named sections in which value entries or keys are specified to be
removed from the registry during installation of the class installer.

However, if a particular {SetupClassGUID} subkey exists in the registry •• Class branch, the
system setup code subsequently ignores the Classlnstall32 section of any INF that specifies
the same GUID value in its Version section. Consequently, an INF cannot replace an exist
ing class installer or modify its behavior from a Classlnstall32 section. To modify the
behavior of existing class installer, use a class-specific coinstaller.

Delfiles=file-list section[, file-list-section] ...
References one or more named sections in which previously installed class-relevant file(s)
on the destination are specified for deletion.

Renfiles=file-list-section[, file-list-section] ...
References one or more named sections in which class-relevant file(s) to be renamed on the
destination are listed.

BitReg=bit-registry-section[,bit-registry-section] ...
Is valid in this section but almost never used.

Updatelnis=update-ini-section[,update-ini-section] ...
Is valid in this section but almost never used.

UpdatelniFields=update-inifields-section[,update-inifields-section] ...
Is valid in this section but almost never used.

Ini2Reg=ini-to-registry-section[,ini-to-registry-section] ...
Is valid in this section but almost never used.

Comments
The system processes the Classlnstall32 section of an INF for a new device setup class
when such a device is about to be installed but the SetupClassGUID value of that device's

Chapter 1 INF File Sections and Directives 179

class is not predefined by Windows 2000. (See Device Setup Classes for a list of the system
defined setup class names and GUIDs.)

To support a multiplatform distribution of Windows 2000 driver files, construct platform
specific Classlnsta1l32 sections. For example, all system setup API functions that process a
Classlnsta1l32 section will search first for a Classlnsta1l32.ntx86 section on a Windows
2000 x86-based platform and only look at an undecorated Classlnsta1l32 section if they
cannot find a Classlnsta1l32.ntx86 section.

Every device installed on Windows 2000 platforms is associated with a device setup class in
the registry. If the INF for a particular device to be installed is not associated with a new de
vice class installer or its ClassGUID= specification in the Version section does not match
any of the system-defined setup class GUIDs, that device's registry subkey is created under
•. Class\{ Unknown ClassG UID} .

The INF for any device class installer typically has an AddReg directive in its Classlnstall-
32 section to define at least one named section that creates a friendly name for its kind of
device in the SetupClassGUID subkey of the registry •• Class tree. The Windows 2000 setup
code automatically creates this SetupClassGUID subkey in the registry from the value sup
plied for the ClassGUID= entry in the Version section of such an INF file when the first
device of that (new) setup class is installed.

Under this SetupClassGUID subkey, such an INF also provides registry information for
some number of Models-specific subkeys, using additional AddReg directives in its per
manufacturer, per-models DDlnstall sections. In addition, the INF can use the add-registry
section(s) referenced in its Classlnsta1l32 section to specify a property-page provider and
to exert control over how its class of devices is handled in the user interface.

Such a class-specific add-registry section has the following general form to define a friendly
name for the device setup class and other class-specific value entries in the class-specific
registry key:

[SetupClassAddReg]

HKR"" % DevClassName % ; device-class friendly name
[HKR"Installer32" " c lass- installe r .dll,c lass-entry-point"]
[HKR"EnumPropPages32,,"prop-provider.dll,provider-entry-point"]
HKR"Icon" "icon-number"
[HKR"SilentInstall"l]
[HKR"NolnstallClass"l]
[HKR"NoDisplayClass"l]

A nonnegative icon-number indicates the icon is supplied by the given property-page pro
vider or by the new device class installer. Negative icon-number values are reserved for
system use.

180 Part 3 Setup

Setting the predefined Silentlnstall, NoDisplayClass, and NolnstallClass Boolean value
entries in a class-specific registry key has the following effects:

• Setting Silentlnstall directs installers to send no pop-ups to the user that require a
response while installing device(s) of this class, whether specified in the DDlnstall
sections of the class installer's INF file or in separate INFJiles for subsequently installed
devices that declare themselves of this class by setting the same ClassGuid={ Class
GUID} specification in their respective Version sections. For example, the system class
installers of CD-ROM and disk devices and the system parallel port class installer set
Silentlnstall in their respective registry keys.

If a class-specific installer requires the machine to be rebooted for any device that it
installs, the class-specific add-registry section in its INF cannot have this value entry.

• Setting NoDisplayClass suppresses the user-visible display of all devices of this class by
the Device Manager. For example, the system class installers for printers and for network
drivers (including clients, services, and protocols) set NoDisplayClass in their respective
registry keys.

• Setting NolnstallClass indicates that no device of this type will ever require manual
. installation by an end user. For example, the system class installers for exclusively PnP
devices set NolnstallClass in their respective registry keys.

A CiassInstall32 section can contain AddReg directives to set the DeviceType, Device
Characteristics, and Security for devices of its setup class. See the INF AddReg Directive
for more information.

Examples
This example shows the CiassInstall32 section, along with the named section it references
with the AddReg directive, of the INF for the system display class installer.

[C1asslnstal132]
AddReg=disp1ay_c1ass_addreg

[d1sp1ay_c1ass_addreg]
HKR",,%DisplayC1assName%
H KR, , Ins ta 11 e r32 , , "Des k. Cp 1 ,01 s p 1 ayC1 ass Ins ta 11 e r"
HKR, ,Icon, ,"-1"

By contrast, this example shows the add-registry section referenced in the system CD-ROM
INF's CiassInstall32 section. It sets up a class-specific property-page provider for the CD
ROM devices/drivers that it installs. This INF also sets the Silentlnstall and NoInstallClass
value entries in the CD-ROM class key to TRUE (1).

[cdrom_class_addreg]
HKR",,%CDClassName%

Chapter 1 INF File Sections and Directives 181

HKR"EnumPropPages32,,"SysSetup.Dll ,CdromPropPageProvider"
HKR, , Sil entlnstall ,,1
HKR"NolnstallClass,.l
HKR"Icon,,"101"

See Also
AddReg, BitReg, CopyFiles, DDlnstall, DelFiles, DelReg, Ini2Reg, Models, RenFiles,
SetupDiBuildClasslnfoListEx, UpdatelniFields, Updatelnis, Version

INF DestinationDirs Section
[DestinationDirs]

[DefauItDestDir=dirid[,subdir]]
rJile-list-section=dirid[,subdir]] ...

A DestinationDirs section specifies the target destination directory or directories for all
copy, delete, and/or rename operations on files referenced by name elsewhere in the
INF file.

This section is required in any INF that uses a CopyFiles directive or that references afile
list-section, whether with a CopyFiles, DelFiles, or RenFiles directive.

Entry Values
DefaultDestDir=dirid[,subdir]]
Specifies the default destination directory for all copy, delete, and/or rename operations on
files that are not explicitly listed in afile-list-section referenced by other entries here.

file-list-section
Specifies the INF-writer-determined name of a section referenced by a CopyFiles, Reo
Files, or DelFiles directive elsewhere in the INF file. Such an entry is optional if this section
has a DefaultDestDir entry and all copy-file operations specified in this INF have the same
target destination. However, any file-list-section referenced by a RenFiles or DelFiles
directive elsewhere in the INF must be listed here.

dirid
Specifies the directory identifier of the target directory for operations on files that are refer
enced by name, possibly within a namedfile-list-section of the INF. This can be one of the

182 Part 3 Setup

following numerical values, which are shown here with the values most commonly specified
by device/driver INFs toward the top of this list:

Value

12

10

11

50
30
54
01

17
20
51
52
55
23

-1

21

53

24
25
18

Destination Directory

Drivers directory
This is equivalent to %windir%\system32\drivers on Windows 2000 platforms and to
%windir%\systemVoSubsys on Windows 9x platforms.

Windows directory
This is equivalent to %windir% for both Windows 2000 and Windows 9x.

System directory
This is equivalent to %windir%\system32 for Windows 2000 and to
%windir%\system for Windows 9x.

%windir%\system directory (Windows 2000 only)

Root directory of the boot drive (a.k.a. "ARC system partition" for Windows 2000)

Directory where ntldr.exe and osloader.exe are located (Windows 2000 only)

SourceDrive:\pathname (the directory from which the INF file was installed)

INF file directory

Fonts directory

Spool directory

Spool drivers directory

Print processors directory

Color (lCM)

Absolute path

Viewers directory

. User Profile directory

Applications directory

Shared directory

Help directory

The following dirid values are for commonly used shell "special folders":

Value Shell Special Folder

16406 All U sers\Start Menu

16407 All Users\Start Menu\Programs

16408 All Users\Start Menu\Programs\Startup

16409 All U sers\Desktop

16415 All U sers\Favorites

16419 All U sers\Application Data

16422 Program Files

Value

16427
16429

16430

Shell Special Folder

Program Files\Common

All Users\Templates

All U sers\Documents

Chapter 1 INF File Sections and Directives 183

Besides the values listed above that are defined in setupapi.h, you can use any of the
CSIDL_Xxx values defined in shlobj.h. To define a dirid value for a folder not listed above,
add 16384 (Ox4000) to the CSIDL_Xxx value. For more information on CSIDL_Xxx values,
see the Platform SDK documentation.

subdir
Specifies the subdirectory (and the rest of its path, if any, under the directory identified by
dirid) to be the destination of the file operations in the givenfile-list-section.

Comments
The optional DefaultDestDir entry provides a default destination for copy, rename, and
delete file operations that appear elsewhere in the INF file:

• CopyFiles directives that use the direct copy (@filename) notation must have a Default
DestDir entry in the DestinationDirs section of the INF in which the direct-copy entry
appears.

• CopyFiles, RenFiles, or DelFiles sections that are not directly referenced in the
DestinationDirs section must have a DefaultDestDir entry in the DestinationDirs
section of the INF in which the copy/rename/delete files section(s) appear.

Because all WDM drivers must be installed in the %windir%\system32\drivers directory
of computers running Windows 2000 or Windows 98, their dual-OS INFs must specify the
dirid value 10 with an explicit subdir path as system32\drivers either as the DefaultDest
Dir entry, if any, or in the givenfile-list-section(s) (referenced elsewhere in the INF with
the CopyFiles directive) that list the WDM driver images to be copied to the target.

Examples
This example sets the default target directory for all copy-file, delete-file, and rename-file
operations specified in a given Windows 2000 INF file to the %windir%\system32\drivers
directory. Such a simple DestinationDirs section is common to INFs for new Windows
2000 peripheral devices, because such an INF usually just copies a set of source files into
a single directory on the target machine.

[DestinationDirs]
DefaultDestDir = 12 ; dirid = \Drivers on WinNT platforms

184 Part 3 Setup

This example shows a fragment of the DestinationDirs section of the INF for Windows
2000-installed display/video drivers, for which the CiassInstaIl32 section was shown as an
example in the immediately preceding reference.

[OestinationOirs]
OefaultOestOir = 11 : dirid = \system32 on WinNT platforms

list of per-Manufacturer, per-Models, per-OOlnstall-section, and
CopyFiles-referenced xxx.Miniport/xxx.Display sections omitted here
along with several other miniport/display paired drivers

vga.Miniport 12
vga.Display 11
xga.Miniport 12
xga.Display 11

all video miniports copied into \system32\drivers on WinNT platforms
all paired display drivers copied into \system32

See Also
ClassInstaIl32, CopyFiles, DDlnstall, DelFiles, RenFiles, SourceDisksFiles, Source
DisksNames, Version

INF Control Flags Section
[ControIFlags]

ExciudeFromSelect=* I
ExciudeFromSelect=hw-id[,hw-id] ; ..
[ExciudeFromSelect.nt=hw-id[,hw-id] ...]
[ExciudeFromSelect.ntx86=hw-id[,hw-id] ...]
[CopyFilesOnly=hw-id[,hw-id] ...]
[InteractiveInstaIl=hw-id[,hw-id] ...]

Typically, a ControlFlags section has one or more ExciudeFromSelect entries to control
which device(s) listed in the per-manufacturer Models section of INF file will not be dis
played to the end user as options during manual installations.

INFs that install exclusively PnP devices also have this section unless they set the No
InstallClass value entry in their respective SetupClassGUID keys to TRUE, as already
described in the reference for the CiassInsta1l32 section.

Entries and Values
ExcludeFromSelect

Chapter 1 INF File Sections and Directives 185

Removes all (*) or the specified list of devices from the display shown to the end user, from
which that user is expected to select a particular device for installation. To exclude a set of
OS-incompatible or platform-incompatible devices from this display, one or more Exclude
FromSelect entries can have the following system-defined (and case-insensitive) extensions
appended:

.nt
Do not display these device(s) on computers running Windows 2000 .

. ntx86
Do not display these device(s) on x86-based computers running Windows 2000.

hw-id
Identifies a device that is specified in the per-manufacturer Models section of the INF file.
Each such hw-id value in a given entry must be separated from the next with a comma (,).

CopyFilesOnly
Installs only the INF-specifiedfiles for the given device(s) because the device hardware
is not accessible or available yet. This entry is rarely used. However, it can be used to pre
install ,the driver(s) of a device for which the card will later be seated in a particular slot that
is currently in use. For example, if a device currently seated in the particular slot is neces
sary to transfer INF-specified files to the target, the INF would have this entry.

Interactivel nstall
Forces the specified list of devices to be installed in a user's context. Each line can specify
one or more hardware or compatible IDs and there can be one or more lines.

This entry is optional. The preferred way to install devices is to omit this entry and allow
Setup to install the device in the context of a trusted system thread, if possible. However, if
a device absolutely requires a user to be logged in when the device is installed, include this
entry in the device INF. This entry is not supported on Windows 9x systems.

Comments
The system's New Device Wizard builds a list of installable devices by searching through
all available INF files. It extracts information about models/devices from each of these INF
files and displays this information to the end user, unless an INF overrides this behavior by
suppressing the display of one or more models/devices in that INF's ControlFlags section.

Listing the hw-id of a device in an ExcludeFromSelect entry removes it from the display
shown to the end user. Specifying * (an asterisk) for the ExcludeFromSelect value removes
all devices/models defined in the INF file from this user-visible list.

186 Part 3 Setup

An INF writer should use the InteractiveInstall sparingly and only in the following
situations:

• To install driver(s) for devices that have corrupted or otherwise incorrectly defined hard
ware IDs. For example, when two or more different devices share the same Hardware ID.
This case is strictly forbidden by the Plug and Play standard, but some hardware vendors
have made this error in hardware design.

• To install drivers for devices that require their own driver and absolutely cannot use the
generic class driver or another driver supplied with Windows 2000. The Interactive
Install directive forces the Windows 2000 Device Manager to ask the user for confirma
tion for compatible ID matches.

In the future, WHQL might not grant the Windows Logo to devices whose INF files include
any InteractiveInstall entries.

Example
This example of the ControlFlags section in the system mouse class installer INF sup
presses the display of devices/models that cannot be installed on Windows 2000 x86-based
platforms. (Some relevant fragments of the same INF were already shown in the intro
duction to this chapter.)

[Control Flags]
; Exclude all bus mice and InPort mice for x86 platforms
ExcludeFromSelect.ntx86=*PNP0F0D,*PNP0Fll,*PNP0F00,*PNP0F02,*PNP0F15
; Hide this entry always
ExcludeFromSelect=UNKNOWN_MOUSE

The following INF file fragment shows two devices: one that is fully PnP capable and re
quires no user intervention during installation and another that requires its own driver and
cannot use any other driver. Specifying InteractiveInstall for the second device forces
Windows 2000 to install this device in a user's context (a user with administrative rights),
including prompting the user for the location of the driver files (INF file, driver file, and so
on) as required.

[Manufacturer]
%Mfg% = ModelsSection

[ModelsSection]
; Models section, with two entries
%Devicel.DeviceDesc% = Devicel.lnstall, \

PCI\VEN_1000&DEV_0001&SUBSYS_00000000&REV_01
%Device2.Device.Desc% = Device2.Install, \

PCI\VEN_1000&DEV_0001&SUBSYS_00000000&REV_02

Chapter 1 INF File Sections and Directives 187

[Control Flags]
Interactivelnstall = \

PCI\VEN_1000&DEV_0001&SUBSYS_00000000&REV_02

See Also
Classlnstall32, Manufacturer, Models

INF Manufacturer Section
[Manufacturer]

manufacturer-name
[manufacturer-name] ... I
% strkey % =models-section-name
[%strkey%=models-section-name] ...

The Manufacturer section identifies the manufacturer of one or more devices that can be
installed using the INF file. It also defines the Models section name for the installation of
that manufacturer's devices and their driver(s).

Entries and Values
manufacturer-name
Identifies the device(s)' manufacturer and the corresponding Models section elsewhere in the
INF. Each such entry must uniquely identify the manufacturer within the INF file. However,
an entry specified in this manner cannot be localized.

strkey
Specifies a token, unique within the INF, representing the name of a manufacturer. Each
such % strkey % token must be defined in a Strings section of the INF file.

models-section-name
Specifies an INF-writer-defined name for the per-manufacturer Models section within the
INF file. This value must be unique within the INF and must follow the same general rules
for defining section names already described in General Syntax Rules for INF Files.

Comments
Any INF that installs one or more devices must have a Manufacturer section. An
IHV/OEM-supplied INF typically specifies only a single entry in this section, but using
a %strkey%=models-section-name entry simplifies the localization of the INF for the inter
national market, as described in Creating International INF Files or as described later in
the Strings section.

188 Part 3 Setup

If an INF file specifies one or more entries in the manufacturer-name format, each such
entry implicitly specifies the name of the corresponding Models section elsewhere in
the INF.

The Manufacturer section of a system-supplied device setup class INF is sometimes
called a "Table of Contents" because this section sets up the installation of every manufac
turer's devices/models of the same class for which the drivers are supplied with the OS. Each
entry in such an INF's Manufacturer section specifies both an easily localizable %strkey%
token for the name of a manufacturer and a unique-to-the-INF per-manufacturer Models
section name.

Examples
This example shows a Manufacturer section typical to an INF for a single IHV.

[Manufacturer]
%LogiMfg%=LogiMfg ; Models section == LogiMfg

[Strings]
Log; Mfg = "Logitech"

The next example shows part of a Manufacturer section typical to an INF for a device
class-specific installer:

[Manufacturer]
%ADP%=ADAPTEC
; several entries omitted here for brevity
%SONY%=SONY
%ULTRASTOR%=ULTRASTORE

See Also
Models; Strings

INF Models Section
[models-section-name]

device-description=install-section-name,hw-id[,compatible-id ...]
[device-description=install-section-name,hw-id[,compatible-id] ...] ...

A per-manufacturer Models section identifies at least one device, references the DDlnstall
section of the INF file for that device, and specifies a unique-to-the-INF hardware identifier
for that device. Any entry in the per-manufacturer Models section also can specify one or
more additional device ID(s) for model(s) compatible with the device designated by the
initial HW ID and controlled by the same driver(s).

Chapter 1 INF File Sections and Directives 189

Each INF-writer-defined models-section-name must be referenced in the Manufacturer
section of the INF file. There can be one or more entries in any per-manufacturer Models
section, depending upon how many devices (and drivers) the INF file installs for a particular
manufacturer.

Entry Values
device-description
Identifies a device to be installed, expressed as any unique combination of explicitly visible
characters or as a % strkey % token defined in a Strings section of the INF file.

install-section-name
Specifies an INF-writer-determined name of the DDlnstall section for the device (and
compatible models of device, if any).

hw-id
Specifies a vendor-defined string that identifies a device, which the PnP Manager uses to
find an INF-file match for this device. Such a hardware ID has one of the following formats:

enumerator\enumerator-specific-device-id
Is the typical format for individual PnP devices reported to the PnP Manager by a single
enumerator. For example, USB\VID_045E&PID_00B identifies the Microsoft HID key
board device on a USB bus. Depending on the enumerator, such a specification can even
include the device's hardware revison number as, for example, PCI\VEN_I0ll&DEV_
002&SUBSYS_00000000&REV _02.

*enumerator-specific-device-id
Indicates with the asterisk (*) that the device is supported by more than one enumerator. For
example, *PNPOFOI identifies the Microsoft serial mouse, which also has a compatible-id
specification of SERENUM\PNPOFO 1.

device-class-specific-ID
Is an I/O bus-specific format, as described in the hardware specification for the bus, for the
hardware IDs of all peripheral devices on that type of I/O bus.

Note that a single device can have more than one hw-id value. The PnP Manager uses each
such hw-id value, which is usually provided by the underlying bus when it enumerates its
child devices, to create a subkey for each such device in the registry .. Enum branch. For
manually installed devices, the system's setup code uses their hw-id values as specified in
their respective INF files to create each such registry subkey.

compatible-id
Specifies a hw-id value compatible with that designated by the given hw-id. Any number
of compatible-id values can be specified for an entry in the Models section, each separated

190 Part 3 Setup

from the next by a comma (,). All such compatible devices and/or device models are con
trolled by the same driver as the device designated by the initial hw-id.

Comments
Any given install-section-name must be unique within the INF and must follow the same
general rules for defining section names already described in General Syntax Rules for INF
Files. Such a DDlnstall section name referenced in a per-manufacturer Models section
also can have extensions appended to the given install-section~name, thus defining addi
tional DDlnstall sections for the OS-specific or platform-specific installation of the given
device(s). For more information about using extensions in cross-platform Windows 2000
and/or dual-OS files, see also Creating an INF File in Part 4, "Setup," in the Plug and Play,
Power Management, and Setup Design Guide.

Any given hw-id for a manually installed device can be specified in the ControlFlags
section of the INF to prevent that device from being displayed to the end user by the Add
New Hardware Wizard.

For more information about PnP hw-id and compatible-id values, see also the Plug and Play,
Power Management, and Setup Design Guide.

For each device/driver installed using an INF file, the device installer(s) use the information
supplied in the Manufacturer section and per-manufacturer Models sections to generate
Device Description, Manufacturer Name, Device ID if the installation is manual, and, pos
sibly, Compatibility List value entries in the registry.

Example
This example shows a per-manufacturer Models section with some representative entries
from the system mouse class installer's INF file, defining the DDlnstall sections for some
devices/models.

[Manufacturer]
%StdMfg% =StdMfg (Standard types)
%MSMfg% =MSMfg Microsoft
; ... %otherMfg% omitted here

[StdMfg] ; per-Manufacturer Models section
; Std serial mouse

%*pnp0f0c.DeviceDesc%= Ser_Inst,*PNP0F0C,SERENUM\PNP0F0C,SERIAL_MOUSE
; Std InPort mouse

%*pnp0f0d.DeviceDesc% = Inp_Inst,*PNP0F0D
, ... more StdMfg entries

See Also
ControlFlags, DDlnstall, Manufacturer, Strings

INF DDlnstall Section
[install-section-name] I
[install-section-name.nt] I
[install-section-name.ntx86]

[DriverVer=mmlddlyyyy[,x. y. v.z]]

Chapter 1 INF File Sections and Directives 191

[CopyFiles=@filename I file-list-section[Jile-list-section] ...]
AddReg=add-registry-section [,add-registry-section] ...
[Include=filename.inj[lilename2 .inj] ...]
[Needs=inf-section-name[,inf-section-name] ...]
[Delfiles=file-list-section [Iile-list-section] ...]
[Renfiles=file-list-section[Jile-list-section] ...]
[DelReg=del-registry-section[,del-registry-section] ...]
[BitReg=bit-registry-section [,bit- registry-section] ...]
[LogConfig=lo g-config-section[,lo g-config -section] ...]
[Profileltems=p rofile- items-section [,p rofile- items-section] ...]
[Updatelnis=update-ini-section [,update-ini-section] ...]
[U pdatelniFields=update-inifie Ids-section [,update- inifie Ids-section] ...]
[Ini2Reg=ini-to-registry-section[,ini-to-registry-section] ...]

Each per-Models DDlnstall section contains an optional DriverVer entry and one or more
directives referencing additional named sections in the INF file, shown here with the most
commonly specified INF directives, CopyFiles and AddReg, listed first. The sections
referenced by these directives contain instructions for installing driver files and writing any
device-specific and/or driver-specific information into the registry.

Directives and Entries
DriverVer=mm/dd/yyyy[,X.Y. v .zl
This optional entry specifies version information. for the driver package.

The mmiddlyyyy value specifies the date of the driver package, including the driver files
and the INF. This date should be the most recent date of any file in the driver package.
A hyphen (-) can be used as the date field separator in place of the slash (I).

The x.y.v.z specifies an optional version number. This value is for display purposes only (for
example, in the Device Manager). The as does not use this value for driver selection.

When the as searches for drivers, it chooses a driver with a more recent DriverVer date
over a driver with an earlier date. If an INF has no DriverVer entry or is unsigned, the as
applies the default date of 0010010000.

192 Part 3 Setup

A Windows 2000 INF should have a DriverVer entry in its Version section and/or in the
individual DDInstall sections. If there is a DriverVer entry in a DDInstall section, the OS
uses that entry instead of the one in the Version section for that particular device.

Windows 98 does not recognize a DriverVer entry in the Version section. Therefore, an
INF that will be used on Windows 98 should have DriverVer entries in the undecorated
DDInstall sections that are used by Windows 98.

CopyFiles=@filename I file-list-section[,file-list-section) ...
This directive either specifies one named file to be copied from the source media to the
destination or references one or more INF-writer-defined sections in which device-relevant
file(s) on the source media are specified for transfer to the destination. The CopyFiles
directive is optional, but is present in most DDInstall sections.

The DefaultDestDir entry in the DestinationDirs section of the INF specifies the destina
tion for any single file to be copied. The SourceDisksNames and SourceDisksFiles sec
tions, or an additional INF specified in the LayoutFile entry of this INF's Version section,
provides the location on the distribution media of the driver file(s).

AddReg=add-registry-section[,add-registry-section) ...
This directive references one or more INF-writer-defined sections in which new subkeys,
possibly with initial value entries, are specified to be written into the registry or in which the
value entries of existing keys are modified.

An HKR specification in such an add-registry section designates the •• Class\SetupClass
GUID\device-instance-id registry path to the user-accessible driver (a.k.a. "software" key).

·lnclude=filename.inf[,filename2.inf) ...
This optional entry specifies one or more additional named INF files containing sections
needed to install this device and/or driver. If this entry is specified, usually so is a Needs
entry.

For example, the system INFs for device drivers that depend on the system's kemel
streaming support specify this entry as Include= ks.inf[, [kscaptur.inf,] [ksfilter.inf]].

Needs=inf-section-name[,inf-section-name) ...
This optional entry specifies the particular section(s) within the given INF file(s) that must
be processed during the installation of this device. Typically, such a named section is a DD
Install (or DDInstall.xxx) section within one of the INF file(s) listed in an Include entry.
However, it can be any section that is referenced within such a DDInstall or DDInstall.xxx
section of the included INF.

For example, the INFs for device drivers that have the preceding Include entry specify
this entry as Needs= KS.Registration[, KSCAPTUR.Registration I KSCAPTUR.
Registration.NT, MSPCLOCK.Installation]

Chapter 1 INF File Sections and Directives 193

DeIFiles=file-list-section[,file-list-section] ...
This directive references one or more INF-writer-defined sections listing file(s) on the target
to be deleted. In general, this directive is used only in INFs that upgrade a previous device/
driver installation to remove obsolete files from the target machine.

RenFiles=file-list-section[,file-list-section] ...
This directive references one or more INF-writer-defined sections listing file(s) to be re
named on the destination before device-relevant source files are copied to the target com
puter. Typically, this directive is used only in INFs that upgrade a previous installation to
"save" previously installed files on the target machine from being overwritten.

DeIReg=del-registry-section[,del-registry-section] ...
This directive references one or more INF-writer-defined sections in which keys and/or
value entries are specified to be removed from the registry during installation of the
device(s).

Typically, this directive is used to handle upgrades when an INF must clean up old registry
entries from a previous installation of this device. An HKR specification in such a delete
registry section designates the •• Class\SetupClassGUID\device-instance-id registry path to
the user-accessible driver (a.k.a. "software" key).

BitReg=bit-registry-section[,bit-registry-section] ...
This directive references one or more INF-writer-defined sections in which existing registry
value entries of type REG_BINARY are modified. (See also AddReg.) An HKR specifica
tion in such a bit-registry section designates the .. Class\SetupClassGUID\device-instance-id
registry path to the user-accessible driver (a.k.a. "software" key).

LogConfig=log-config-section[,log-config-section] ...
This directive references one or more INF-writer-defined sections within an INF for a root
enumerated device or for a manually installed device. In these named sections, the INF for
such a "detected" or manually installed device specifies one or more logical configurations
of bus-relative hardware resources that the device must have to be operational. The INF for
such a manually installed device that is not software-configurable also should have a
DDlnstall.FactDef section.

The LogConfig directive is never used to install PnP peripheral devices, but, for more infor
mation about using a DDlnstall.LogConfigOverride section to override the hardware re
source requirements reported by the underlying bus, see the reference for this directive later
in this chapter.

This directive is irrelevant to all higher level (nondevice) drivers and components.

194 Part 3 Setup

Profileltems=profile-items-section[,profile-items-section] ...
This directive references one or more INF-writer-defined sections that describe items to be
added to, or removed from, the Start menu.

This directive is only supported on Windows 2000 platforms.

Updatelnis=update-ini-section[,update-ini-section] ...
This rarely used directive references one or more INF-writer-defined sections, specifying a
source INI file from which a particular section or line within such a section is to be read into
a destination INI file of the same name during installation. Optionally, line-by-line modifi
cations to an existing INI file on the destination from a given source INI file of the same
name can be specified in the update-ini section.

UpdatelniFields=update-i n ifields-section[,update-inifields-section] ...
This rarely used directive references one or more INF-writer-defined sections in which
modifications within the lines of a device-specific INI file are specified.

Ini2Reg=ini-to-registry-section[,ini-to-registry-sectionJ ...
This rarely used directive references one or more INF-writer-defined sections in which
sections or lines from a device-specific INI file, supplied on the source media, are to be
moved into the registry.

Comments
The given install-section-name must be referenced in a device/models-specific entry under
the per-manufacturer Models section of the INF file.

Except for devices that have no associated files to be transferred from the source media, a
dual-OS INF file for a WDM driver must have at least two parallel DDlnstall sections for a
given device, as follows:

1. For Windows 9x platforms, provide an undecorated DDlnstall section that specifies en
tries for device installations. There is no DDlnstall.Services section in such a dual-OS
INF file, because Windows 9x does not store the same information about device/driver
services and dependencies in its registry as Windows 2000 does. Depending on the
device, it can also have either or both of the optional DDlnstall.HW and DDlnstall.
Interfaces sections to install the device/driver on Windows 9x platforms. (It might also
have a DDlnstall.LogConfigOverride section, as described later in the reference for the
LogConfig directive.)

2. For Windows 2000 platforms, provide a corresponding DDlnstall.ntx86 section that
specifies the entries for device/driver installations on x86-based Windows 2000 plat
forms. (Alternatively, the INF could have a corresponding DDlnstall.nt section.) If the
INF installs driver(s), such a dual-OS INF must have DDlnstall.ntx86.Services section(s)
to specify the device/driver registry information to be stored in the Windows 2000

Chapter 1 INF File Sections and Directives 195

registry's ••• \CurrentControlSet\Services tree. Depending on the device, it can also
have one or more of the optional DDlnstall.ntx86.HW, DDlnstall.ntx86.CoInstallers,
and/or DDlnstall.ntx86.Interfaces sections to install the same device/driver on x86-
based Windows 2000 platforms. (It might also have a DDlnstall.nt.LogConfigOverride
section, as described later in the reference for the LogConfig directive.)

For more information about how to use the system-defined .nt and .ntx86 extensions in
cross-platform and/or dual-OS INF files, see also Creating an INF File.

Each directive in a DDlnstall section can reference more than one section name, but each
additional named section must be separated from the next with a comma (,). Each such
section name must be unique within the INF and must follow the same general rules for
defining section names already described in General Syntax Rules for INF Files.

Any AddReg directive specified in a DDlnstall section is assumed to reference an add
registry section that cannot be used to store information about upper or lower filter drivers,
about multifunction devices, or about driver-independent but device-specific parameters. If a
device/driver INF must store this type of information in the registry, it must use an AddReg
directive in its undecorated DDlnstall.HW section and decorated DDlnstall.xxx.HW
sections, if any, to reference another INF-writer-defined add-registry section.

A DDlnstall section can include a directive named Reboot or Restart. These directives are
only for compatibility with Windows 9x. If one of these entries is present the OS is forced to
reboot when the device is installed. These directives should never be used for PnP devices.
In any case, it is best to let Setup determine whether the machine needs to be rebooted rather
than specifying these directives.

Examples
This example shows the expansion of the DDlnstall sections, Ser_Inst and Inp_Inst, refer
enced in the example for the immediately preceding per-manufacturer Models section.

[Ser_Inst]
CopyFiles=Ser_CopyFiles, mouclass_CopyFiles

[Ser _CopyFil es]
sermouse.sys

[mouclass_CopyFiles] section name referenced by > 1 CopyFiles
mouclass.sys

[Inp_Inst]
CopyFiles=Inp_CopyFiles, mouclass_CopyFiles

[Inp_CopyFiles]
inport.sys

196 Part 3 Setup

This example shows the DDlnstall.NT section in a dual-OS INF file for a system-supplied
WDM driver of a particular audio device. With the exception of the DriverVer entry, its
entries are identical to the undecorated DDlnstall section for installations of the same device
on Windows 9x platforms. However, a DDlnstall.NT section is necessary in such a dual-OS
INF file to set up the DDlnstall.NT.Services section that is required to install the
device/driver on Windows 2000 platforms.

[WDMPNPB003_Device.NT]
DriverVer=01/14/1999,5.0
Include=ks.inf, wdmaudio.inf
Needs=KS.Registration, WDMAUDIO.Registration.NT
LogConfig=SB16.LCl,SB16.LC2,SB16.LC3,SB16.LC4,SB16.LC5
; a few log-config-sections omitted here for brevity
CopyFiles=MSSB16.CopyList
AddReg=WDM_SB16.AddReg

The following shows the sections referenced by the preceding Needs entry in the system
supplied ks.infand wdmaudio.inJfiles specified in the Include entry. When the Windows
2000 device installer and/or media class installer process this device's DDlnstall.NT section,
these next two sections are also processed.

[KS.Registration]
; following AddReg= is actually a single line in the ks.inf file
AddReg=ProxyRegistration,CategoryRegistration,\

TopologyNodeRegistration,PluglnRegistration,PinNameRegistration.\
DeviceRegistration

CopyFiles=KSProxy.Files.KSDriver.Files

[WDMAUDIO.Registration.NT]
AddReg=WDM.AddReg
CopyFiles=WDM.CopyFiles.Sys, WDM.CopyFiles.Drv

INF-writer-defined add-registry and file-list sections
referenced by preceding directives are omitted here for brevity

See Also
AddReg, BitReg, Copy Files , DelFiles, DelReg, DestinationDirs, DDlnstall.CoInstallers,
DDlnstall.FactDef, DDlnstall.HW, DDlnstall.Interfaces, DDlnstall.Services, Ini2Reg,
LogConfig, Manufacturer, Models, RenFiles, ProfileItems, SourceDisksFiles, Source
DisksNames, UpdateIniFields, UpdateInis, Version

INF DDlnstall.Services Section
[install-section-name.Services] I
[install-section-name.nt.Services] I
[install-section-name.ntx86.Services]

Chapter 1 INF File Sections and Directives 197

AddService=ServiceName,rJlags],service-install-section[,
event-log-install-section[,[EventLogType][,EventName]]] ...

[DeIService=ServiceName[,rJlags] [,[EventLogType] [,EventName]]] ...
[Include=filename .inJIJilename2 .inj] ...]
[Needs=inf-section-name[,inf-section-name] ...]

Each per-Models DDlnstall.Services section contains one or more AddService directives
referencing additional INF-writer-defined section(s) in a Windows 2000 INF file.

Windows 2000 INFs commonly use the DDlnstall.Services section with at least one Add
Service directive to control how and when the services of a particular driver are loaded, any
dependencies on other services or on underlying (legacy) drivers it might have, and so forth.
Optionally, they set up event-logging services by the device driver(s) as well.

DDlnstall.Services sections should have the same platform and OS decorations as their
related DDlnstall sections. For example, a DDlnstall.ntx86 section would have a corres
ponding DDlnstall.ntx86.Services section.

This section is irrelevant to exclusively Windows 9x installations.

Directives and Entries
AddService=ServiceName,[flags],service-install-section[,event-log-instal I-section
[,[EventLogType][, EventName]]] ...
This directive references an INF-writer-defined service-install-section and, possibly, an
event-log-install-section elsewhere in the INF file for the driver(s) of the device(s) covered
by this DDlnstall section.

DeIService=ServiceName[,[flags][,[EventLogType][,EventName]]] ...
This directive removes a previously installed service from the target machine. This directive
is very rarely used, except possibly in an INF file that upgrades a previous installation of
the same devices/models listed in the per-manufacturer per-Models section that defined the
name of this DDlnstall section.

Include=filename.inf[,filename2.inf] ...
This optional entry specifies one or more additional named INF files containing sections
needed to install this device. If this entry is specified, usually so is a Needs entry.

198 Part 3 Setup

Needs=inf-section-name[,inf-section-name] ...
This optional entry specifies the particular named section that must be processed during
the installation of this device. Typically, such a named section is a DDInstall.Services or
DDInstall.xxx.Services section within an INF file listed in an Include entry. However, it
can be any section that is referenced within such a DDInstall.Services or DDInstali.
xxx.Services section.

Comments
The given DDInstall section must be referenced in a device/models-specific entry under
the per-manufacturer Models section of the INF file. The case-insensitive extensions to the
install-section-name shown in the formal syntax statement can be inserted into such a DD
Install.Services section name in dual-OS and/or cross-platform INF files. For more infor
mation about how to use the system-defined .nt and .ntx86 extensions in cross-platform
Windows 2000 and/or dual-OS INF files, see also Creating an INF File in Part 4, "Setup,"
in the Plug and Play, Power Management, and Setup Design Guide.

For more detailed information about INF-writer-defined service-install-sections and
event-log-install-sections, see the reference for the AddService directive.

Examples
This example shows the DDInstall.Services section for the Ser_Inst section shown as an
example in the immediately preceding reference for the DDInstall section.

[Ser_Inst.Services]
AddService=sermouse, 0x00000002, sermouse_Service_Inst,\

sermouse_EventLog_Inst

flags value in preceding entry indicates function driver of device

AddService = mouclass" mouclass_Service_Inst, mouclass_EventLog_Inst

entries in the following xxx_Inst sections omitted here for brevity,
but fully specified as the example for the AddService directive

Chapter 1 INF File Sections and Directives 199

This example shows the DDlnstall.NT.Services section and its INF-writer-defined service
install-sections in the dual-OS INF file for the system-supplied WDM audio device/driver
shown as an example in the immediately preceding reference for the DDlnstall section.

[WDMPNPB003_Device.NT.Services]
AddService = wdmaud.0x00000000.wdmaud_Service_Inst
AddService = swmidi .0x00000000.swmidi_Service_Inst
AddService = sb16. 0x00000002.sndblst_Service_Inst

DisplayName
ServiceType
StartType
ErrorControl

= %wdmaud.SvcDesc%
1

= 1
= 1

friendly name (see Strings)
SERVICE_KERNEL_DRIVER
SERVICE_SYSTEM_START
SERVICE_ERROR-NORMAL

ServiceBinary = %10%\system32\drivers\wdmaud.sys

[swmidi_Service_Inst]
DisplayName = %swmidi .SvcDesc%
ServiceType 1
StartType = 1
ErrorControl = 1
ServiceBinary = %10%\system32\drivers\swmidi .sys

DisplayName
ServiceType
StartType
ErrorControl

= %sndblst.SvcDesc%
1

= 1
= 1

ServiceBinary = %10%\system32\drivers\mssb16.sys

[Strings] ; only immediately preceding %strkey% tokens shown here
%wdmaud.SvcDesc%="Microsoft WDM Virtual Wave Driver (WDM)"
%swmidi .SvcDesc%="Microsoft Software Synthesizer (WDM)"
%sndblst.SvcDesc%="WDM Sample Driver for SB16"

The reference for the DDlnstall.HW section, next, has more examples of DDlnstall.
Services section(s) with some service-install section(s) referenced by the AddService
directive, including one for a PnP filter driver.

See Also
AddService, DDlnstall, DDlnstall.HW, DelService, Models

200 Part 3 Setup

INF DDlnstall.HW Section
[install-section-name.HW] I
[install-section-name.nt.HW] I
[install-section-name.ntx86.HW]

[AddReg=add-registry-section[, add-registry-section] ... J ...
[Include=filename.inj[JUename2 .inj] ... J
[Needs=inlsection-name[,inf-section-name J ... J
[DeIReg=del-registry-section[, del-registry-section] ...] ...
[BitReg=bit-registry-section[,bit-registry-sectionJ ... J .,.

DDlnstall.HW sections are typically used for installing multifunction devices, for install
ing PnP filter drivers, and for setting up any user-accessible device-specific but driver
independent information in the registry, whether with explicit AddReg directives or with
Include and Needs entries.

Directives and Entries
AddReg=add-registry-section[, add-registry-section] ...
References one or more INF-writer-defined add-registry-sections elsewhere in the INF
file for the device(s) covered by this DDlnstall.HW section. Such an add-registry section
typically installs filters and/or stores per-device information in the registry. An HKR speci
fication in such an add-registry section designates the •• Enum\enumeratorID\device
instance-id registry path to a user-accessible per-device (a.k.a. "hardware") subkey.

Include=filename.inf[,filename2.inf] ...
Specifies one or more additional named INF files containing section(s) needed to install this
device. If this entry is specified, usually so is a Needs entry.

Needs=inf-section-name[, i nf-section-name] ...
Specifies the named section(s) that must be processed during the installation of this device.
Typically, such a named section is a DDlrtstall.HW (or DDlnstall.xxx.HW) section within
an INF file listed in an Include entry. However, it can be any section that is referenced
within such a DDlnstall.HW or DDlnstall.xxx.HW section of the included INF.

DeIReg=del-registry-section[, del-registry-section] ...
References one or more INF-writer-defined delete-registry-sections elsewhere in the INF
file for the driver(s) of the device(s) covered by this DDlnstall section. Such a delete
registry section removes stale registry information for a previously installed device/driver
from the target machine. An HKR specification in such a delete-registry section designates
the same subkey as for AddReg.

Chapter 1 INF File Sections and Directives 201

This directive is rarely used, except in an INF file that upgrades a previous installation of
the same devices/models listed in the per-manufacturer per-Models section that defined the
name of this DDlnstall section.

BitReg=bit-registry-section[,bit-registry-section] ...
Is valid in this section, but almost never used. An HKR specification in a referenced bit
registry section designates the same subkey as for AddReg.

Comments
The case-insensitive extensions to the install-section-name shown in the formal syntax
statement can be inserted into such a DDlnstall.HW section name in cross-platform
Windows 2000 and/or dual-OS INF files. For more information about how to use the
system-defined .nt and .ntx86 extensions in cross-platform and/or dual-OS INF files, see
also Creating an INF File.

Any DDlnstall.HW section either must have an AddReg directive or must Include another
INF file and reference a section in the corresponding Needs entry that sets up the necessary
registry information.

Each directive in a DDlnstall.HW section can reference more than one INF-writer-defined
section, but each additional named section must be separated from the next with a comma
(,). Each such section name must be unique within the INF and must follow the same gen
eral rules for defining section names already described in General Syntax Rules for INF
Files.

For more information about installing multifunction devices, see also the Plug and Play,
Power Management, and Setup Design Guide.

Example
This example shows how the Windows 2000 CD-ROM device class installer INF uses
DDlnstall.HW sections to support both CD audio and changer functionality by creating
the appropriate registry section(s) and setting these up as PnP upper filter drivers with
AddService directives.

" Installation section for cdaudio. Sets cdrom as the service
" and adds cdaudio as a PnP upper filter driver.

[cdaudio_installJ
CopyFiles=cdaudio_copyfiles,cdrom_copyfiles

[cdaudio_install.HWJ
AddReg=nosync_addreg,cdaudio_addreg

; cdaudio_addreg required to register this as a PnP filter driver

202 Part 3 Setup

[cdaudio_install.Services]
AddService=cdrom,0x00000002,cdrom_ServiceInstallSection
AddService=cdaudio"cdaudio_ServiceInstallSection

[changer_install]
CopyFiles=changer_copyfiles,cdrom_copyfiles

[changer_install.HW]
AddReg=changer_addreg

changer_install.Services section similar to cdaudio's

some similar cdrom_install(.HW)/addreg sections omitted

[cdaudio_addreg] ; changer_addreg section has similar entry
HKR, ,"UpperFilters",0x00010000,"cdaudio" ; REG_MULTI_SZ value

Use next section to disable synchronous transfers to this device.
Sync transfers will always be turned off by default in this INF
for any cdrom-type device.

[nosync_addreg]
HKR,,"DefaultRequestFlags",0x00010001,8

[autorun_addreg]
HKLM,"System\CurrentControlSet\Services\cdrom","AutoRun",0x00010003,1

;; service-install sections for cdrom, cdaudio, and changer

[cdrom_ServiceInstallSection]
DisplayName %cdrom_ServiceDesc%
ServiceType 1
StartType 1
ErrorControl 1
ServiceBinary
LoadOrderGroup
AddReg

%12%\cdrom.sys
SCSI CDROM Class
autorun_addreg

[cdaudio_ServiceInstallSection]
DisplayName %cdaudio_ServiceDesc%
ServiceType 1
StartType 1
ErrorControl 1
ServiceBinary %12%\cdaudio.sys

; ... changer_ServiceInstallSection similar to cdaudio's

Chapter 1 INF File Sections and Directives 203

See Also
AddReg, BitReg, DDlnstall, DDlnstall.Services, DelReg

INF DDlnstall.Colnstaliers Section
[install-section-name. CoInstallers] I
[install-section-name.nt.CoInstallers] I
[install-section-name.ntx86.CoInstallers]

AddReg=add-registry-section[, add-registry-section] ...
CopyFiles=@filename I file-list-section[Jile-list-section] ...
[Include=filename.inftJilename2 .inj] ...]
[N eeds=inf-section-name[,inf-section-name] ...]
[DeIFiles=file-list-section[,file-list-section] ...]
[RenFiles=file-list-section[,file-list-section] ...]
[DelReg=del-registry-section[, del-registry-section] ...]
[BitReg=bit-registry-section [,bit-registry-section] ...]
[U pdateInis=update-in i-section [,update- in i-section] ...]
[U pdateIniFields=update-inifie lds-section[,update-inifie Ids-section] ...]
[Ini2Reg=ini-to-re gistry-section[,ini- to-registry-section] ...]

This optional section registers one or more device-specific coinstallers or (rarely) device
class-specific coinstallers supplied on the distribution media to supplement the operations
of existing device class installer(s).

Directives and Entries
AddReg=add-registry-section[, add-registry-section] ...
References one or more INF-writer-defined add-registry-sections that store registry infor
mation about the supplied coinstaller(s).

An HKR specified in such an add-registry section designates the .• Class\SetupClassGUID\
device-instance-id registry path to the user-accessible driver (a.k.a. "software") key. Thus,
for a device-specific coinstaller, it writes (or modifies) a CoInstallers32 value entry in this
user-accessible per-device/driver "software" subkey.

For a class-specific coinstaller, it registers the new coinstaller(s) by modifying the contents
of the appropriate .• CoDeviceInstallers\SetupClassGUID subkey(s). The path to the appro
priate registry SetupClassGUID subkey(s) must be explicitly specified in the referenced
add-registry section(s).

204 Part 3 Setup

CopyFiles=@filename I file-list-section[, file-list-section] ...
Transfers the source coinstaller file(s) to the destination on the target machine, usually by
referencing one or more INF-writer-definedjile-list-sections elsewhere in the INF file. Such
a file-list section specifies the coinstaller file(s) to be copied from the source media to the
destination directory on the target.

However, system INFs that install coinstallers never use this directive in a DDlnstall.
CoInstallers section.

Include=filename.inf[,filename2.inf] ...
Specifies one or more additional named INF files containing sections needed to install the
coinstaller(s) for this device or device setup class. If this entry is specified, usually so is a
Needs entry.

Needs=inf-section-name[,inf-section-name] ...
Specifies the particular section(s) that must be processed during the installation of this
device. Typically, such a named section is a DDlnstall.CoInstallers (or DDlnstall.xxx.
CoInstallers) section within a INF file listed in an Include entry. However, it can be any
section that is referenced within such a DDlnstall.CoInstallers or DDlnstall.xxx.
CoInstallers section of the included INF.

DeIFiles=file-list-section[,file-list-section] ...
References a file-list section specifying file(s) to be removed from the target. This directive
is rarely used, but it might be used in an INF that upgrades a previous installation with new
coinstaller file(s).

RenFiles=file-list-section[,file-list-section] ...
References a file-list section specifying file(s) on the destination to be renamed before co
installer source files are copied to the target. This directive also is rarely used, but it might be
used in an INF that upgrades a previous installation with new coinstaller file(s).

Del Reg=del-registry-section[, del-registry-section] ...
References one or more INF-writer-define delete-registry-sections. Such a section speci
fies stale registry information about the coinstaller(s) for a previous installation of the same
device(s) that should be removed from the registry. An HKR specified in such a delete
registry section designates the same registry subkey as already described for AddReg.
This directive is very rarely used in a DDlnstall.CoInstallers section.

BitReg=bit-registry-section[,bit-registry-section] ...
Is valid in this section but almost never used. An HKR specified in such a bit-registry
section designates the same registry subkey as already described for AddReg.

Chapter 1 INF File Sections and Directives 205

Updatelnis=update-ini-section[,update-ini-section] ...
Is valid in this section but almost never used.

UpdatelniFields=update-inifields-section[,update-inifields-section] ...
Is valid in this section but almost never used.

Ini2Reg=ini-to-registry-section[,ini-to-registry-section] ...
Is valid in this section but almost never used.

Comments
The given DDlnstall section must be referenced in a device/models-specific entry under the
per-manufacturer Models section of the INF file.

If an INF includes a DDlnstall.Coinstallers section, there must be one for each platform
decorated and undecorated DDlnstall section. For example, if an INF contains an [install
section-name.ntx86] section and an [install-section-name] section and it registers
device-specific coinstaller(s), then the INF must include both an [install-section
name.ntx86. Coinstallers] section and an [install-section-name.Coinstallers] section.
For more information about how to use the system-defined .nt and .ntx86 extensions in
cross-platform and/or dual-OS INF files, see also Creating an INF File. Coinstallers are
not supported on Windows 9x platforms.

Each directive in a DDlnstall.Colnstallers section can reference more than one INF-writer
defined section name, but each additional named section must be separated from the next
with a comma (,). Each directive-created section name must be unique within the INF and
must follow the same general rules for defining section names already described in General
Syntax Rules for INF Files.

A coinstaller is a Win32 DLL that typically writes additional configuration information to
the registry or performs other installation tasks that require dynamically generated, machine
specific information that is not available when an INF is created. A device-specific co
installer supplements the installation operations either of the OS's device installer or of the
appropriate class installer when that device is installed. A device-class-specific coinstaller
supplements the installation operations either of the OS's device installer or of the appro
priate class installer for every device of that class when they are installed.

For more information about writing and using coinstallers, see also the Plug and Play,
Power Management, and Setup Design Guide.

Installing Coinstaller Images
All coinstaller files must be copied into the %windir%\system32 directory on Windows 2000
machines, or into %windir%\system on Windows 9x machines. Like any INF CopyFiles
operation, the destination is controlled explicitly for a namedfile-list-section in the

206 Part 3 Setup

DestinationDirs section of the INF file by the dirid value 11 or by supplying this dirid
value for the DefaultDestDir entry.

Registering Device-Specific Coinstallers
To add the REG_MULTI_SZ-type value entry for one or more device-specific coinstallers
to the registry, an add-registry-section referenced by the AddReg directive has the follow
ing general form:

[DDlnstall.CoInstallers_DeviceAddReg]

HKR"CoInstallers32,OxOOOl 0000, I I DevSpeciJicColnstall.dll
[,DevSpecificEntryPoint] I I [, I I DevSpecific2 Colnstall.dll

[,DevSpeciJic2EntryPointJ" ... J

The entry in such an add-registry section appears as a single line within the INF file, and
each supplied device-specific coins taller DLL must have a unique name. After it has been
registered, the system's device installer calls such a device-specific coinstaller at each sub
sequent step of the installation process for that device.

When the optional DevSpecificEntryPoint is omitted from an add-registry section ,entry, the
default CoDeviceInstall routine is assumed to be the entry point of any coinstaller DLL.

Registering Device-Class Coinstallers
To add a value entry (and setup-class subkey, if it does not exist already) for one or more
device-class coinstallers to the registry, an add-registry-section referenced by the AddReg
directive has the following general form:

[DDlnstall.CoInstallers_ClassAddReg]

HKLM,System\CurrentControISet\Controi
\CoDeviceInstallers,{SetupClassGUID},

OxOOOl0008, "DevCIssColnst.dll[,DevClssEntryPointJ II

Each entry in such an add-registry section appears' as a single line within the INF file, and
each supplied class coinstaller DLL must have a unique name. If the supplied coinstaller(s)
should be used for more than one class of devices, this add-registry section can have more
than one entry, each with the appropriate SetupClassGUID value. (The reference for the
Version section earlier in this chapter contains a summary of the system-defined device
classes and their respective setup ClassGUID values.)

Such a supplemental device-class coinstaller must not replace any already registered co
installer(s) for an existing class installer, so it must have a unique name and the REG_
MULTI_SZ-type value supplied must be appended (as indicated by the 8 in the flags
value OxOOl0008) to the class-specific coinstaller entries, if any, already present in the

Chapter 1 INF File Sections and Directives 207

{SetupClassGUID} subkey. However, the as setup functions will never append a duplicate
DevClssColnstall.dll to a value entry if a coinstaller of the same name is already registered.

The INF for a supplemental device-class coinstaller can be activated by a right-click install
or through a custom setup application's call to SetuplnstallFromlnfSection.

Example
This example shows the DDlnstall.Colnstallers section for IrDA serial network cards. The
system-supplied INF for these IrDA (serial) NICs supplies a coinstaller to the system IrDA
class installer.

; DDlnstall section
[PNP.NT]
AddReg=ISIR.reg, Generic.reg, Serial.reg
PromptForPort=0 This is handled by IRCLASS.DLL
LowerFilters=SERIAL This is handled by IRCLASS.DLL
BusType=14
Characteristics=0x4 NCF_PHYSICAL

; ... PNP.NT.Services section omitted here
[PNP.NT.Colnstallers]
AddReg = ISIR.Colnstallers.reg

[I RS I R. reg]
HKR, Ndi, HelpText, 0, %IRSIR.Help%
HKR, Ndi, Service, 0, "IRSIR"
HKR, Ndi\Interfaces, DefUpper, 0, "ndisirda"
HKR, Ndi\Interfaces, DefLower, 0, "nolower"
HKR, Ndi\Interfaces, UpperRange, 0, "ndisirda"
HKR, Ndi\Interfaces, LowerRange, 0, "nolower"

[Generic. reg]
HKR"InfraredTransceiverType,0,"0"

[Seri a 1 . reg]
HKR"Serial~ased,0, "0"

[ISIR.Colnstallers.reg]
HKR"Colnstallers32,0x00010000,"IRCLASS.dll ,IrSIRClassColnstaller"

; ... Services and Event Log registry sections omitted here
[Strings]

IRSIR.Help = "An IrDA serial infrared device is a built-in COM port or
external transceiver which transmits infrared pulses. This NDIS
miniport driver installs as a network adapter and binds to the FastIR
protocol."

208 Part 3 Setup

The preceding PNP.NT.CoInstallers section only referenced a coinstaller-specific add-
. registry section. It has no CopyFiles directive because this system-supplied INF installs a
set of IrDA network devices and, like all system INFs, uses the LayoutFile entry in its
Version section to transfer the coinstaller file to the destination. However, any DDlnstall.
CoInstallers section in an INF supplied by an IHV or OEM also would have a CopyFiles
directive, along with SourceDisksNames and SourceDisksFiles sections.

See Also
AddReg, BitReg, CopyFiles, DDlnstall, DelFiles, DelReg, DestinationDirs, Ini2Reg,
RenFiles, SourceDisksFiles, SourceDisksNames, UpdateIniFields, UpdateInis, Version

INF DDlnstall.lnterfaces Section
[install-section-name.Interfaces] I
[install-section-name .nt.Interfaces] I
[install-section-name .ntx86.Interfaces]

AddInterface={inteifaceGUID} [, [reference string] [,[add-inteiface-section] [Jlags]]] ...
[Include=filename.inj[,filename2 .inj] ...]
[N eeds=inf-section-name [,inf-section-name] ...]

Each per-Models DDlnstall.Interfaces section can have one or more AddInterface direc
tives, depending on how many predefined device interfaces a particular device/driver sup
ports and/or how many new (and compatible with existing) device interfaces the driver(s)
of that device export for use by still higher level components.

To support existing device interfaces, such as any of the system's predefined kemel
streaming interfaces, specify the appropriate inteifaceGUID value(s) in this section. To
install a component, such as a class driver, that exports a whole new class of device inter
faces, an INF also must have an InterfaceInsta1l32 section.

Directives and Entries
Addlnterface={interfaceGUID} [, [reference string] [,[add-interface-section] [,flags]]]

This directive installs support for a device interface, designated by the given inteifaceGUID
value, that the device/driver exports to higher level components. Usually, it also references
an INF-writer-defined add-inteiface-section elsewhere in the INF file.The {inteifaceGUID}
and/or (rarely specified) reference-string can be expressed as %strkey% tokens that are
defined in a Strings section of the INF file. The INF of a PnP device function or filter driver
usually omits the optional reference string entry unless that driver uses reference strings to
discriminate between two interfaces of the same class for a single device. The flags, if
specified, must be zero.

Chapter 1 INF File Sections and Directives 209

An add-interface-section typically references an add-registry section that contains value
entries to be stored in the registry about the interface(s) supported by the device/driver.
An HKR specified in such an add-registry section designates the user-accessible device
interface subkey of the •• DeviceClasses\{InterfaceClassGuid}\ registry branch. In the
Windows 2000 registry, DeviceClasses is a subkey of the •• CurrentControlSet\Control key.

Include=filename.inf[,filename2.inf] ...
This optional entry specifies one or more additional named INF files containing sections
needed to register the interfaces supported by this device/driver. If this entry is specified,
usually so is a Needs entry.

Needs=inf-section-name[,inf-section-name] ...
This optional entry specifies the particular section(s) that must be processed during the in
stallation of this device. Typically, such a named section is a DDlnstall.Interfaces (or DD
Install.xx.x.Interfaces) section within a INF file listed in an Include entry. However, it can
be any section that is referenced within such a DDlnstall.Interfaces or DDlnstall.xx.x.
Interfaces section of the included INF.

Comments
The given DDlnstall section must be referenced by a device/models-specific entry under
the per-manufacturer Models section of the INF file. The case-insensitive extensions to the
install-section-name shown in the formal syntax statement can be inserted into such a DD
Install.Interfaces section name in cross-platform and/or dual-OS INF files. For more infor
mation about how to use the system-defined .nt or .ntx86 extensions in cross-platform
and/or dual-OS INF files, see also Creating an INF File.

If a given {interfaceGUID} is not installed already, the OS's setup code installs that device
interface class in the system. Usually, an INF that installs one or more new device interfaces
for every subsequently installed device also has an [InterfaceInsta1l32] section containing
each specified {interfaceGUID} as an entry to set up registry information, copy any neces
sary files, and so forth for such new device-interface classes.

For more information about how to create a GUID, see the Platform SDK documentation.
For the system-defined interface class GUIDs, see the appropriate system-supplied header,
such as ks.h for the kernel-streaming interface class GUIDS.

When a driver is loaded, it must call IoSetDeviceInterfaceState once with each {interface
GUID} value specified in the INF's DDlnstall.Interfaces section that the driver supports on
the underlying device to enable the interface for runtime use by higher level components. As
an alternative to registering its support for a device interface in its INF, a device driver can
call IoRegisterDeviceInterface before making its initial call to IoSetDeviceInterfaceState.
Usually, a PnP function or filter driver makes this call from its AddDevice routine.

210 Part 3 Setup

Each AddInterface directive in a DDlnstall.Interfaces section can reference an INF-writer
defined add-inteiface-section. Each such section name must be unique within the INF and
must follow the same general rules for defining section names already described in General
Syntax Rules for INF Files.

For more detailed information about INF-writer-defined add-inteiface-sections, see the
reference for the AddInterface directive.

Example
This example shows the DDlnstall.NT.Interfaces section in the dual-OS INF file for the
system-supplied WDM audio device/driver shown as examples in the preceding references
for the DDlnstall section and DDlnstall.Services section.

following Addlnterface= are all Single lines (without
backslash line continuators) in the system-supplied INF file

[WDMPNPB003_Device.NT.lnterfaces]
Addlnterface=%KSCATEGORY_AUDIO%,%KSNAME_Wave%,\

WDM_SB16.Interface.Wave
Addlnterface=%KSCATEGORY_AUDIO%,%KSNAME_Topology%,\

WDM_SB16.Interface.Topology
Addlnterface=%KSCATEGORY_AUDIO%,%KSNAME_UART%,\

WDM_SB16.Interface.UART
Addlnterface=%KSCATEGORY_AUDIO%,%KSNAME_FMSynth%,\

WDM_SB16.Interface.FMSynth

[Strings] ; only immediately preceding %strkey% tokens shown here
%KSCATEGORY_AUDIO% = "{6994ad04-93ef-lld0-a3cc-00a0c9223196}"
KSNAME_Wave = "Wave"
KSNAME_UART = "UART"
KSNAME_FMSynth = "FMSynth"
KSNAME_Topology = "Topology"

See Also
Addlnterface, DDlnstall, InterfaceInsta1l32, IoRegisterDeviceInterface,
IoSetDeviceInterfaceState

Chapter 1 INF File Sections and Directives 211

INF Interfacelnstall32 Section
[lnterfacelnstaIl32]

{InterfaceClassGUID }=install-interface-section[,flags] ... I
install-interface-section.nt[,flags] ... I
install-interface-section.ntx86 [,flags] ...

This section sets up one or more new device interface classes for a device/driver that exports
such an interface to still higher level components. The INF of such a device/driver also has a
DDlnstall.lnterfaces section to register its own support for each such new device interface
class or else the driver must call IoRegisterDevicelnterface with each InterfaceClassGUID
value when it is loaded.

Note that any subsequently installed devices/drivers also can register their support for such a
new device interface in the DDlnstall.lnterfaces sections of their respective INF files or by
calling IoRegisterDevicelnterface. In effect, this section bootstraps a new device interface
class for all devices/drivers that register support for that interface.

Entry Values
InterfaceClassGUID
Specifies a OUID value identifying the newly exported device interface.

Each given OUID value in this section also must be referenced by an Addlnterface direc
tive in the DDlnstall.lnterfaces (or appropriate DDlnstall.xxx.lnterfaces) section of the
INF file, or else the newly installed device's driver must call IoRegisterDevicelnterface
with this OUID.

For more information about how to create a OUID, see the Platform SDK documentation.
For the system-defined interface class OUIDS, see the appropriate headers, such as ks.h for
the kernel-streaming interfaces.

install-interface-section
Rt?ferences an INF-writer-defined section, possibly with any of the system-defined exten
sions, elsewhere in this INF.

flags
If specified, must be zero.

212 Part 3 Setup

Comments
When a given InteifaceClassGUID is not already installed in the system, that interface is
installed as the corresponding DDlnstall.Interfaces (or DDlnstall.xxx.Interfaces) section is
processed by the system setup functions during device installation or when that device's
driver makes the initial call to IoRegisterDeviceInterface.

Each INF-writer-created inteiface-install-section name must be unique within the INF and
must follow the same general rules for defining section names already described in General
Syntax Rules for INF Files. Extensions, such as .NT or .ntx86, to a given inteiface-install
section allow OS-specific and/or platform-specific interfaces to be exported from the same
INF file. For more information about these system-defined extensions, see Creating an INF
File in Part 4, "Setup," in the Plug and Play, Power Management, and Setup Design Guide.

Any given inteiface-install-section has the following general form:

[inteiface-install-section]

AddReg=add-registry-section[, add-registry-section] ...
[Copyflles=@filename I file-list-section[, file-list-section] ...]
[DelReg=del-registry-section[, del-registry-section] ...]
[BitReg=bit-registry-section [,bit- registry-section] ...]
[Delflles=file-list section[,file-list-section] ...]
[Renflles=file-list-section[,file-list-section] ...]
[U pdateInis=update-ini-section [,update-ini-section] ...]
[U pdateIniFields=update-inifie lds-section [,update- inifie lds-section] ...]
[Ini2Reg=ini-to-registry-section[,ini-to-re gistry-section] ...]

As shown here, an interface-install section must have at least one AddReg directive that
references one or more add-registry sections to set up device-interface-specific information
in the registry during installation of this interface. An HKR specified in such an add-registry
section designates the •• DeviceClasses\{/nteifaceClassGUID} key.

The registry information about this interface should include at least a friendly name for the
new device interface and whatever information the higher level components that open and
use this interface will need.

In addition, such an inteiface-install-section might use any of the optional directives shown
here to specify interface-specific installation operations.

See Also
AddReg, BitReg, ClassInsta1l32, CopyFiles, DDlnstall, DDlnstall.Interfaces, DelFiles,
DelReg, Ini2Reg, IoRegisterDeviceInterface, RenFiles, UpdateIniFields, Updatelnis

INF DDlnstall.FactDef Section
[install-section-name.FactDef] I
[install-section-name.nt.FactDef] I
[install-section-name .ntx86.FactDef]

ConfigPriority=Priority _ Value
[DMAConfig=[DMAattrs:]DMANum]
[IOConfig=io-range]
[MemConfig=mem-range]
[IRQConfig=[IRQattrs:]IRQNum

Chapter 1 INF File Sections and Directives 213

This section should be used in an INF for any manually installed nonPnP device that an end
user might install with the Add New Hardware wizard. This section specifies the factory
default hardware configuration settings, such as the bus-relative 110 ports, IRQ (if any), and
so forth, for such a card.

Section Entries and Values
ConfigPriority=Priority _Value
Specifies the priority value for this factory-default logical configuration, as HARD
RECONFIG, indicating a jumper change is required to reset this logical configuration.

DMAConfig=[DMAattrs:]DMANum
Specifies the bus-relative DMA channel as a decimal number. DMAattrs is optional if the
device is connected on a bus that has only 8-bit DMA channels and the device uses standard
system DMA. Otherwise, it can be one of the letters D for 32-bit DMA, W for 16-bit DMA,
and N for 8-bit DMA, with M if the device uses busmaster DMA and with one of the
following (mutually exclusive) letters indicating the type of DMA channel used: A, B,
or F. If none of A, B, or F is specified, a standard DMA channel is assumed.

IOConfig=io-range
Specifies the 110 port range for the device in the following form:

start-end[([decode-mask] [:alias-offset] [:attr])]
where:

start specifies the (bus-relative) starting address of the 110 port range as a 64-bit
hexadecimal value.

end specifies the ending address of the 110 port range, also as an 64-bit hexadecimal value.

214 Part 3 Setup

decode-mask defines the alias type and can be any of the following:

Mask Value

3ff

fff

ffff

o

alias-offset is ignored.

Meaning

IO-bit decode

12-bit decode

16-bit decode

- positive decode

Ox04

OxlO

OxOO

OxFF

attr specifies the letter M if the given range is in system memory. If omitted; the given range
is in 110 port space.

MemConfig=mem-range
Specifies the memory range for the device in the following form:

start-end[(attr)]
where:

start specifies the starting (bus-relative) address of the device memory range as a 64-bit
hexadecimal value.

end specifies the ending address of the memory range, also as a 64-bit hexadecimal value.

attr specifies the attributes of the memory range as one or more of the following letters: R
(read-only), W (write-only), RW (read/write), C (combined write allowed), H (cacheable),
F (prefetchable), and D (card decode addressing is 32-bit, instead of 24-bit) If both Rand W
are specified or if neither is specified, read/write is assumed.

IRQConfig=[IRQattrs:]IRQNum
Specifies the bus-relative IRQ that the device uses as a decimal number. IRQattrs is omitted
if the device uses a bus-relative, edge-triggered IRQ. Otherwise, specify L to indicate a
level-triggered IRQ and LS if the device can share the IRQ line listed in this entry.

Comments
The given DDlnstall section must be referenced in a device-specific entry under the per
manufacturer Models section of the INF file. The case-insensitive extensions to the
install-section-name shown in the formal syntax statement can be inserted into such a
DDlnstall.FactDef section name in cross-OS and/or cross-platform INF files. For more
information about these system-defined extensions, see Creating anlNF File.

This section must contain complete factory-default information for installing one device.
The INF should specify this set of entries in the order best suited to how the driver initializes
its device. If necessary, it can have more than one of any particular kind of entry. For
example, the INF for a device that used two DMA channels would have two DMAConfig=

Chapter 1 INF File Sections and Directives 215

lines in its DDInstall.FadDef section. From this section, the Add New Hardware wizard
builds binary logical configuration records and stores them in the registry.

The INF files of manually installed devices for which the factory-default logical configu
ration setting(s) can be changed also should use the LogConfig directive in their DDInstall
sections. In general, such an INF should specify the entries in each of its log-config sections
and in its DDInstall.FactDef section in the same order.

Examples
This IOConfig= entry specifies an 110 port region, eight bytes in size, which can start at
2F8.

IOConfig=2F8-2FF

This MemConfig= entry specifies a memory region of 32K bytes that can start at DOOOO.

MemConfig=D0000-D7FFF

See Also
DDlnstall, LogConfig

INF Strings Section
[Strings] I [Strings.LanguageID] ...

strkeyl= ["]some string["]
strkey2 = II string-with-leading-or-trailing-whitespace II I

"very-long-multiline-string II I
II string-with-semicolon II I II string-ending-in-backslash II I
II II double-quoted-string-value""

An INF file must have at least one Strings section to define every % strkey % token
specified elsewhere in that INF.

Entry Values
strkey1, strkey2, ...
Each strkey in an INF file must specify a unique name consisting of letters, digits, and/or
other explicitly visible characters. A % character within such a strkey token can be ex
pressed as % %.

some string I "some string"
Specifies a string, optionally delimited with double-quote characters ("), that contains
letters, digits, punctuation, and possibly even certain implicitly visible characters, in

216 Part 3 Setup

particular, internal space and/or tab characters. However, an unquoted string cannot contain
an internal double-quote ("), semicolon (;), linefeed, return, or any invisible control charac
ters, and it cannot have a backslash (\) as its final character.

II string-with-Ieading-or-trailing-whitespace II I
IIvery-long-multiline-stringll I
IIstring-with-semicolonll Ilistring-ending-in-backslashil I
1111 double-quoted-string-val ue 1111

Any given string containing leading or trailing whitespace(s) that is so long it linewraps, or
a string that contains a semicolon or a final backslash character must be be enclosed in a pair
of double-quote characters ("). The system INF parser discards the outermost enclosing
pair of double-quote characters delimiting such a string, along with any leading or trailing
whitespace characters outside the double-quote string delimiters. To summarize, the value
specified for a %strkey% token must be enclosed in double quotes, if it meets any of the
following criteria:

• If a given string has leading and/or trailing whitespace(s) that must be retained as part
of its value, that string must be enclosed in double-quote characters to prevent its leading
and/or trailing whitespaces from being discarded by the INF parser.

• If a long string might contain any internallinefeed or return characters due to line- .
wrapping in the text editor, it also should be enclosed in double-quotes to prevent
truncation of the string at the initial internallinefeed or return character.

• If such a string contains a semicolon, it must be enclosed in double-quotes to prevent the
string from being truncated at the semicolon. (As already mentioned in General Syntax
Rulesfor INF Files, the semicolon character begins each comment in INF files.)

• If such a string ends in a backslash, it must be enclosed in double-quotes to prevent the
string from being concatenated with the next entry. (As already mentioned in General
Syntax Rules for INF Files, the backs lash character (\) is used as the line continuator in
INF files.)

• Like an unquoted string specification, such a "quoted string" cannot contain internal
double-quote characters. However, it can be specified as an explicitly double-quoted
string value by using one or more additional pairs of double-quote characters (for
example, "" some string" ").

The Windows 2000 INF parser not only discards the outermost pair of enclosing double
quotes for any" quoted string" in this section, but also condenses each subsequent sequen
tial pair of double-quotes into a single double-quote character. That is, """some string"""
also becomes "some string" when it has been parsed.

Chapter 1 INF File Sections and Directives 217

Comments
Because the system INF parser strips the outermost pair of enclosing double quotes from
any "quoted string" defining a %strkey% token, many of the system INFs define all their
%strkey% tokens as "quoted string"s to avoid the inadvertant loss of leading and trailing
whitespaces during INF parsing, to ensure that particularly long string values that wrap
across lines cannot be truncated, and to ensure that strings with ending backslashes cannot
be concatenated to the next line in the INF file.

To create a single international INF file, the INF can have a set of locale-specific Strings.
LanguageID sections, as shown in the formal syntax statement. The LanguageID extension
is a hexadecimal value whose lower 10 bits contain the primary language ID and the next 6
bits contain the sublanguage ID. The language and sublanguage IDs match the system
defined values of the Win32 LANG_XXX and SUBLANG_XXX constants. (See the Platform
SDK's winnt.h file for the definition of these constants.) For example, a LanguageID value
of 0407 represents a primary language ID of LANG_GERMAN (07) with a sUblanguage ID
of SUB LANG_GERMAN (01).

Depending on the current locale of a particular machine, the system setup functions process
each such Strings.LanguageID section in a given INF file as follows:

1. First, look for the .LanguageID values in the INF that match the current locale assigned
to the machine. If such an exact match is found, use that Strings.LanguageID INF section
to translate %strkey% tokens for this device/driver installation.

2. Otherwise, look next for a match to the LangID value with the value of SUBLANG_
NEUTRAL as the SubLangID. If such a match is found, use that INF section to translate
%strkey% tokens for this device/driver installation.

3. Otherwise, look next for a match to the LangID value and any valid SubLangID for the
same LangID family. If such a partial match is found, use that Strings.LanguageID INF
section to translate %strkey% tokens for this device/driver installation.

4. Otherwise, use the undecorated Strings section(s) of the INFto translate %strkey%
tokens for this installation.

By convention, the Strings section is the last within all system INF files for convenience in
creating a set of INFs for the international market. Using %strkey% tokens for all user
visible string values within an INF simplifies the translation(s) of such strings by placing all
that can be displayed to the end user in a single per-locale Strings section of an INF file.

Although the Strings section is usually the last section in every INF file, any given
%strkey% token defined in the Strings section can be used repeatedly elsewhere in the
INF, in particular, wherever the "translated" value of that token is required. The system
setup functions expand each % strkey % token to the specified string and then use that
expanded value for further INF processing.

218 Part 3 Setup

The use of %strkey% tokens within INF files is not restricted to user-visible string values.
These tokens can be used in any manner convenient to the INF writer, as long as each such
token is defined within a Strings section of the INF file. For example, when writing an
INF file that requires the specification of several GUIDs, it might be convenient to use a
per-GUID number of %strkey% tokens with meaningful names as substitutes for each such
GUID value. Specifying such a set of %strkey% = "{GUID}" values in the INF file's
Strings section would require explicit GUID values to be typed only once each, and it
would provide more human-readable internal INF documentation than using explicit GUID
values throughout the INF file.

All %strkey% tokens must be defined within the INF file in which they are referenced. This
implies the following for any INF file that has Include= and Needs= entries in one or more
of its DDlnstall, DDlnstall.Services, DDlnstall.HW, DDlnstall.CoInstallers, and/or
DDlnstall.Interfaces sections:

• An included INF is assumed to have its own respective Strings section to define all
%strkey% tokens referenced in that INF.

Example
The following example shows a fragment of a Strings section from a system-supplied
locale-specific dvd.inJfor installations in English-speaking countries.

[Strings]
Msft="Microsoft"
MfgToshiba="Toshiba"
Tosh404.DeviceDesc="Toshiba DVD decoder card"

See Also
DDlnstall, DDlnstall.CoInstaIlers, DDlnstall.HW, DDlnstall.Interfaces, DDlnstali.
Services, Manufacturer, IntetfaceInstall32, Models, SourceDisksN ames, Version

INF AddReg Directive
[DDlnstall] I [DDlnstall.HW] I [DDlnstall.CoInstallers] I [ClassInstaIl32] I
[ClassInstaIl32.ntx86]

AddReg=add-registry-section[, add-registry-section] ...

An AddReg directive references one or more INF-writer-defined sections used to modify
or create registry information. Each such add-registry section can have entries to do the
following:

• Add new keys, possibly with initial value entries, to the registry

Chapter 1 INF File Sections and Directives 219

• Add new value entries to existing registry keys

• Modify existing value entries of particular keys in the registry

An AddReg directive can be specified under any of the sections shown in the formal syn
tax statement. This directive also can be specified under any of the following INF-writer
defined sections:

• A service-install-section or event-lag-install section referenced by the AddService
directive in a DDlnstall.Services section

• An add-inteiface-section referenced by the Addlnterface directive in a
DDlnstall.lnterfaces section

• An install-inteiface-section referenced in an Interfacelnsta1l32 section

Comments
Any given add-registery-section name must be unique to the INF file, but it can be refer
enced by AddReg directives in other sections of the same INF. Each INF-writer-defined
section name must be unique within the INF and must follow the same general rules for
defining section names already described in General Syntax Rules for INF Files. For more
information about how to use the system-defined .nt or .ntx86 extensions in cross-platform
and/or dual-OS INF files, see also Creating an INF File.

Each named section referenced by an AddReg directive has the following form:

[add-registry-section]

reg-root, [subkey], [value-entry-name], [flags], [value]

An add-registy-section section can have any INF-writer-determined number of entries, each
on a separate line.

Add Reg-Referenced Section Entries

reg-root
Identifies the root of the registry tree for other values supplied in this entry. The value can
be one of the following:

HKCR
Abbreviation for HKEY _ CLASSES_ROOT.

HKCU
Abbreviation for HKEY _CURRENT_USER.

220 Part 3 Setup

HKLM
Abbreviation for HKEY _LOCAL_MACHINE.

HKU
Abbreviation for HKEY _USERS.

HKR
Relative to the registry key most pertinent to the section in which this AddReg directive
appears, such as the per-device "hardware" subkey in the registry •• \Enum\enumeratorID\
device-instance-id branch, the corresponding driver-specific "software" subkey under the
registry •• Class\SetupClassGUID\device-instance-id branch, and so forth.

subkey
This optional value, formed either as a %strkey% token defined in a Strings section of
the INF or as a registry path under the given reg-root (keyJ\key2\key3 ...), specifies one of
the following:

• A new subkey to be added to the registry at the end of the given registry path

• An existing subkey in which the additional values specified in this entry will be written
(possibly replacing the value of an existing named value entry of the given subkey)

• Both a new subkey to be added to the registry together with its initial value entry

val ue-entry-name
This optional value either names an existing value entry in the given (existing) subkey or
creates the name of a new value entry to be added in the specified subkey, whether it
already exists or is a new key to be added to the registry. This value can be expressed either
as "quoted string" or as a %strkey% token that is defined in the INF's Strings section. (If
this is omitted fora string-type value, the value-entry-name is the default "unnamed" value
entry for this key in the Windows 2000 registry or the Default value entry in this key in the
Windows 9x registry.)

The OS supports some system-defined special value-entry-name keywords. See the end of
this Comments section for more information.

flag
This optional value, expressed as an ORed bitmask of system-defined flag values in hexa
decimal notation, defines the data type for a value entry and/or controls the add-registry
operation. Possible INF-specified bitmask value(s) for each of these system-defined flags
include the following:

Chapter 1 INF File Sections and Directives 221

OxOOOOOOOO (= FLG_ADDREG_ TYPE_SZ)
The given value entry and/or value is of type REG_SZ. Note that this is the default type for
a specified value entry, so the flags value can be omitted from any reg-root: line in an add
registry section that operates on a value entry of this type.

Ox00000001 (= FLG_ADDREG_BINVALUETYPE)
The given value is "raw" data. (This value is identical to the Windows 2000-specific
FLG_ADDREG_TYPE_BINARY.)

Ox00000002 (= FLG_ADDREG_NOCLOBBER)
Prevent a given value from replacing the value of an existing value entry.

Ox00000004 (= FLG_ADDREG_DELVAL)
Delete the given subkey from the registry, or delete the s.!Jecified value-entry-name from the
specified registry subkey.

Ox00000010 (= FLG_ADDREG_KEYONL Y)
Create the given subkey, but ignore any supplied value-entry-name and/or value.

Ox00000020 (= FLG_ADDREG_OVERWRITEONLY)
Reset to the supplied value only if the specified value-entry-name already exists in the given
subkey.

Ox00010000 (= FLG_ADDREG_ TYPE_MUL TLSZ)
The given value entry and/or value is of the registry type REG_MULTI_SZ. This
specification does not require any NUL terminator for a given string value.

Ox00000008 (= FLG_ADDREG_APPEND)
Append a given value to that of an existing named value entry. This flag is valid only for
value entries of type REG_MULTI_SZ.

Ox00020000 (= FLG_ADDREG_TYPE_EXPAND_SZ)
The given value entry and/or value is· of the registry type REG_EXPAND_SZ.

Ox00010001 (= FLG_ADDREG_ TYPE_DWORD)
The given value entry and/or value is of the registry type REG_DWORD.

Ox00020001 (= FLG_ADDREG_ TYPE_NONE)
The given value entry and/or value is of the Windows 2000 registry type REG_NONE.

value
This optionally specifies a new value for the specified value-entry-name to be added to the
given registry key. Such a value can be a "replacement" value for an existing named value
entry in an existing key, a value to be appended (jlag value OxOOOl0008) to an existing

222 Part 3 Setup .

named REG_MULTI_SZ-type value entry in an existing key, a new value entry to be
written into an existing key, or the initial value entry for a new subkey to be added to the
registry.

The expression of such a value depends on the registry type specified for the flag, as
follows:

• A registry string-type value can be expressed either as a "quoted string" or as a
%strkey% token defined in a Strings section of the INF file. Such an INF-specified
value need not include a NUL terminator at the end of each string.

• A registry numerical-type value can be expressed as a hexadecimal (using Ox notation) or
decimal number.

Note that the lower-order bit of the low word in aflag value distinguishes between charac
ter and binary data. Consequently, a Windows 95 installer interprets the extended Windows
2000 and Windows 98 registry data types as either REG_SZ or REG_BINARY.

To represent a number of a registry type other than one of the predefined REG_XXX types,
specify a new type number in the high word of the flag ORed with FLG_ADDREG_
BINV ALUETYPE in its low word. The data for such a value must be specified in binary
format as a sequence of bytes separated by commas. For example, to store 16 bytes of data
of a new registry data type, such as Ox38, as a value entry, the add-registry section entry
would be something like the following:

HKR"MYValue,0x00380001,l,0,2,3,4,5,6,7,8,9~A,B,C,D,E,F

This technique can be used to define new registry types for numerical values, but not for
values of type REG_EXPAND _SZ, REG_MULTI_SZ, REG_NONE, or REG_SZ.

Special value-entry-name Keywords
Windows 2000 defines special keywords for use in the HKR AddReg entries:

[Classlnstal132] I [ClassInstal132.ntx86] I [insta77-section-name.HW] I [insta77-
section-name.nt*.HW]

Add Reg = Xxx_Add Reg

HKR"DeviceCharacteristics,0x10001,characteristics
HKR"DeviceType,0x10001,device-type
HKR"SecuritY"security-descriptor-string
HKR"UpperFilters,0x10000,service-name
HKR"LowerFilters,0x10000,service-name
HKR"Exclusive,0x10001,reserved RESERVED. Do not use.

Chapter 1 INF File Sections and Directives 223

The special keywords are used as follows:

DeviceCharacteristics
A DeviceCharacteristics entry specifies characteristics for the device. The characteris
tics value is a numeric value that is the result of ORting one or more FILE_ * file charac
teristics values as defined in wdrn. h or ntddk. h.

Setup stores the specified device characteristics in a private location in the registry, separate
from where Setup creates user-defined registry entries specified in other HKR AddReg
entries.

A characteristics value of zero directs Setup to ignore the class-wide device characteristics,
if any, that were specified in the associated class installer INF.

DeviceType
A DeviceType entry specifies a device type for the device. The device-type is the numeric
value of a FILE_DEVICE_XXX constant defined in wdrn.h or ntddk.h. The flag value of
OxlOOOl specifies that the device-type value is a REG_DWORD.

A class-installer INF should specify the device type that applies to all, or almost all, of the
devices in the class. For example, if the devices in the class are of type FILE_DEVICE_
CDROM, specify a device-type of Ox02. If a device INF specifies a DeviceType, it over
rides the type set by the class installer, if any. If the class and/or device INF specifies a
DeviceType, the PnP Manager applies that type to the PD~ for the device.

Security
A Security entry specifies a security descriptor for the device. The security-descriptor
string is a string with tokens to indicate the DACL (D:) security component. See the
Platform SDK documentation for more information on security descriptor strings. A class
installer INF can specify a security descriptor for a device class. A device INF can speci
fy a security descriptor for an individual device, overriding the security for the class. If the
class and/or device INF specifies a security-descriptor-string, the PnP Manager propagates
the descriptor to all the device objects for a device, including the FDO, filter DOs, and
the PDO.

UpperFilters
An UpperFilters entry specifies a PnP upper-filter driver. This entry in a DDlnstall.HW
section defines one or more device-specific upper-filter drivers. In a Classlnsta1l32 section,
this entry defines one or more class-wide upper-filter drivers.

LowerFilters
A LowerFilters entry specifies a PnP lower-filter driver. This entry in a DDlnstall.HW sec
tion defines one or more device-specific lower-filter drivers. In a Classlnsta1l32 section,
this entry defines one or more class-wide lower-filter drivers.

224 Part 3 Setup

Example
An AddReg directive referenced the (SCSI) MiniporCEventLog_AddReg section in this
example under an INF-writer-defined section referenced by the AddService directive in a
DDlnstall.Services section of this INF. Registry entries for event-logging by all SCSI mini
ports are identical on Windows 2000 platforms.

[Miniport_EventLog_AddReg]
'HKR"EventMessageFile,0x00020000,"%%SystemRoot%%\System32\IoLogMsg.dll"

double-quote delimiters in preceding entry prevent truncation
; if line wraps

HKR"TypesSupported,0x00010001,7

See Also
AddInterface, AddService, BitReg, ClassInstall32, DDlnstall, DDlnstall.CoInstallers,
DDlnstall.HW, DDlnstall.Interfaces, DDlnstall.Services, DeIReg, InterfaceInstall32,
Strings

INF Del Reg Directive
[DDlnstall] I [DDlnstall.HW] I [DDlnstall.CoInstallers] I [ClassInstaIl32] I [ClassInstall-
32.ntx86]

DeIReg=de l-registry-section [, de l-registry-section] ...

. A DeIReg directive references one or more INF-writer-defined sections describing keys
and/or value entries to be removed from the registry.

A DeIReg directive can be specified under any of the sections shown in the formal syntax
statement. This directive also can be specified under any of the following INF-writer
defined sections:

• A service-install-section or event-log-install section referenced by the AddService di
rective in a DDlnstall.Services section

• An add-inteiface-section referenced by the AddInterface directive in a DDlnstall.
Interfaces section

• An install-inteiface-section referenced in an InterfaceInstall32 section

Comments
In general, an INF should never attempt to delete subkeys or value entries within existing
subkeys that were set up by system components or by the INFs for other devices. The

Chapter 1 INF File Sections and Directives 225

purpose of a delete-registry section is to clean stale registry information from a previous
installation using a new INF file supplied by the same provider.

Any given del-registry-section name must be unique to the INF file, but it can be referenced
by DelReg directives in other sections of the same INF. Each INF-writer-defined section
name must be unique within the INF and must follow the same general rules for defining
section names already described in General Syntax Rules for INF Files. For more informa
tion about how to use the system-defined .nt or .ntx86 extensions in cross-platform and/or
dual-OS INF files, see also Creating an INF File.

Each named section referenced by a DelReg directive has the following form:

[del-registry-section]

reg-root-string, subkey[, value-entry-name]

A del-registry-section can have any INF-writer-determined number of entries, each on a
separate line.

Del Reg-Referenced Section Entries
reg-root-string
Identifies the root of the registry tree for other values supplied in this entry. The value can
be one of the following:

HKCR
Abbreviation for HKEY _CLASSES_ROOT.

HKCU
Abbreviation for HKEY _CURRENT_USER.

HKLM
Abbreviation for HKEY_LOCAL_MACHINE.

HKU
Abbreviation for HKEY _USERS.

HKR
Relative to the registry key most pertinent to the section in which this DelReg directive
appears, such as the per-device "hardware" subkey in the registry .• \Enum\enumeratorID\
device-instance-id branch, the corresponding driver-specific "software" subkey under the
registry •. Class\SetupClassGUID\device-instance-id branch, and so forth.

226 Part 3 Setup

subkey
This value, formed either as a % strkey % token defined in a Strings section of the INF or as
a registry path under the given reg-root (keyJ\key2\key3 ...), specifies one of the following:

• A subkey to be deleted from the registry at the end of the given registry path

• An existing subkey from which the given value-entry-name is to be deleted

val ue-entry-name
This value, formed either as a % strkey % token (defined in a Strings section) or as a
"quoted string" identifies a named value entry to be removed from the given subkey.
This value should be omitted if the given subkey is being removed from the registry.

Example
This example shows how the system-supplied COMILPT ports class installer's INF removes
stale Windows 2000-specific registry information about COM ports from the registry.

[ComPort.NT]
CopyFiles=ComPort.NT.Copy
AddReg=ComPort.AddReg. ComPort.NT.AddReg
... ; more di rect i yes ami tted here

[ComPort.NT.HW]
DelReg=ComPort.NT.HW.DelReg

[ComPort.NT.Copyj
seri al .sys
serenum.sys

[Comport.NT.AddReg]
HKR •• EnumPropPages32 •• "MSPorts.dll .SerialPortPropPageProvider"

[ComPort.NT.HW.DelReg]
HKR •. UpperFilters

See Also
AddReg, Addlnterface, AddService, BitReg, Classlnstall32, DDlnstall, DDlnstall.
Colnstallers, DDlnstall.HW, DDlnstall.Services, Interfacelnstall32, Strings

INF CopyFiles Directive
[DDlnstall] I [DDlnstall.Colnstallers] I [ClasslnstaIl32] I [ClasslnstaIl32.ntx86]

Copyfiles=@filename I file-list-section[,file-list-section] ...

Chapter 1 INF File Sections and Directives 227

A CopyFiles directive can do either of the following:

• Cause a single file to be copied from the source media to the default destination directory.

• Reference one or more INF-writer-defined sections in the INF that each specify a list of
files to be copied from the source media to the destination.

A CopyFiles directive can be specified within any of the sections shown in the formal
syntax statement. This directive also can be specified within any of the following INF
writer-defined sections:

• An add-inteiface-section referenced by the Addlnterface directive in a
DDlnstall.lnterfaces section

• An install-inteiface-section referenced in an Interfacelnsta1l32 section

Comments
Any file-list-section name must be unique to the INF file, but it can be referenced by Copy
Files, DelFiles, or RenFiles directives elsewhere in the same INF. Such an INF-writer
defined section name must follow the same general rules for defining section names already
described in General Syntax Rules for INF Files. For more information about how to use the
system-defined .nt and .ntx86 extensions in cross-platform and/or dual-OS INF files, see
also Creating an INF File in Part 4, "Setup," in the Plug and Play, Power Management, and
Setup Design Guide.

Each named section referenced by a CopyFiles directive has one or more entries of the
following form:

ffile-list-section]
destination-file-name[,source-file-name] [,temporary-file-name] [,flag]

An INF-writer-definedfile-list-section can have any number of entries, each on a sepa
rate line.

CopyFiles-Referenced Section Entries
destination-fi Ie-name
Specifies the name of the destination file. If no source-file-name is given, this specification
is also the name of the source file.

source-file-name
Specifies the name of the source file. If the source and destination file names for the file
copy operation are the same, source-file-name can be omitted.

228 Part 3 Setup

temporary-file-name
Specifies the name of a temporary file to be created in the copy operation if a file of the
same name on the destination is open or currently in use. Only used on Windows 9x plat
forms. Windows 2000 automatically generates temporary file names when necessary and
renames the copied source files the next time the OS is started so this value is irrelevant in
INFs for Windows 2000 device/driver installations.

flag
These optional flags, expressed in hexadecimal notation or as a decimal value in a section
entry, can be used to control how (or whether) a particular source file is copied to the desti
nation. One or more (ORe d) values for the following system-defined flags can be specified,
but some of these flags are mutually exclusive:

Ox00000400 (COPYFLG_REPLACEONL Y)
Copy the source file to the destination directory only if the file is already present in the
destination directory.

Ox00000800 (COPYFLG_NODECOMP)
Copy the source file to the destination directory without decompressing the source file if it is
compressed.

Ox00000008 (COPYFLG_FORCE_FILEJN_USE)
Force file-in-use behavior: do not copy over an existing file of the same name if it is cur
rently open. Instead, copy the given source file with a temporary name so that it can be
renamed and used when the next reboot occurs.

Ox00000010 (COPYFLG_NO_OVERWRITE)
Do not replace an existing file in the destination directory with a source file of the same
name. This flag cannot be combined with any other flags.

Ox00001000 (COPYFLG_REPLACE_BOOT _FILE)
This file is required by the system loader. The system will prompt the user to reboot the
system.

Ox00002000 (COPYFLG_NOPRUNE)
Do not delete this operation as a result of optimization.

For example, Setup might determine that the file copy operation is not necessary because the
file already exists. However, the writer of the INF knows that the operation is required and
directs Setup to override its optimization and perform the file operation.

Ox00000020 (COPYFLG_NO _VERSION_DIALOG)
Do not write over a file in the destination directory with the source file if the existing file is
newer than the source file.

Chapter 1 INF File Sections and Directives 229

This flag is irrelevant to digitally signed Windows 2000 INF files. If a driver package is
digitally signed, Setup installs the package as a whole and does not selectively omit files in
the package based on other versions already present on the machine.

Ox00000004 (COPYFLG_NOVERSIONCHECK)
Ignore file versions and write over existing files in the destination directory. This flag and
the next two are mutually exclusive. This flag is irrelevant to digitally signed Windows 2000
INF files.

Ox00000040 (COPYFLG_ OVERWRITE_ OLDER_ ONL Y)
Copy the source file to the destination directory only if the file on the destination will be
superceded by a newer version. This flag is irrelevant to digitally signed Windows 2000 INF
files.

Ox00000001 (COPYFLG_WARNJF _SKIP)
Send a warning if the user elects to not copy a file. This flag and the next are mutually
exclusive, and both are irrelevant to Windows 2000 INF files that are digitally signed.

Ox00000002 (COPYFLG_NOSKIP)
Do not allow the user to skip copying a file. This flag is implied on Windows 2000
platforms if the driver package is signed.

The DestinationDirs section of an INF file controls the destination for all file-copy
operations, whatever the section containing a particular CopyFiles directive, as follows:

• If a named section referenced by a CopyFiles directive has a corresponding entry in
the DestinationDirs section of the same INF, that entry explicitly specifies the target
destination directory into which all files listed in the named section will be copied. If
the named section is not listed in the DestinationDirs section, Setup uses the
DefaultDestDir in the INF.

• If a CopyFiles directive uses the @filename syntax, Setup uses the DefaultDestDir entry
in the DestinationDirs section of the INF.

The INF also supplies path specification(s) to file(s) copied from source media in either of
the following ways:

• In IHV/OEM-supplied INFs, by using the SourceDisksNames and, possibly, Source
DisksFiles sections of this INF to explicitly specify the full path to each named source
file that is not in the root directory (or directories) on the distribution media

• In system-supplied INFs, by supplying one or more additional INF files, identified by
name in the LayoutFile entry of the INF's Version section

230 Part 3 Setup

Example
This example shows how the SourceDisksNames, SourceDisksFiles, and DestinationDirs
sections specify the paths for copy-file (and delete-file) operations that occur in processing a
simple device-driver INF. (The same INF was also used previously as examples of Version,
SourceDisksNames, and SourceDisksFiles sections.)

[SourceDisksNames]
1 = %Floppy_Description%",\Win98 ; path to Win98 source files
2 = %Floppy_Description%",\WinNT

[SourceDisksFiles]
ahal54x.mpd = 1" ; on distribution disk 1, in subdir \win98

[SourceDisksFiles.x86]
ahal54x.sys = 2,\x86 on distribution disk 2, in subdir \WinNT\x86

[DestinationDirs]
ASPIDEV = 11 ; Win98-specific del-file section

; delete existing file(s) from DIRID_SYSTEM
DefaultDestDir = 12 DIRID_DRIVERS

\System32\Drivers on Windows NT platforms
== \System\IoSubsys on Win9x platforms

... Manufacturer and Models sections omitted here

Win9x-specific DDInstall, given [AHAI54X.NTx86] in this INF
[AHA154X]
CopyFiles=@AHA154x.MPD
DelFiles=ASPIDEV ; defines a delete-files section not shown here
; ... some other directives and sections omitted here

[AHA154X.NTx86]
CopyFiles=@AHAI54x.SYS

some other directives and sections omitted here

This example shows how a CopyFiles directive can be used in a DDlnstall.Colnstallers
section of an INF for a device driver that provides two device-specific coinstallers to sup
plement the INF processing of the system device-type-specific class installer.

[DestinationDirs]
XxDev_Coinstallers_CopyFiles = 11 ; DIRID_SYSTEM

other file-list entries and DefaultDestDirs omitted here

Manufacturer, Models, and DDInstall sections omitted here

[XxDev_Install .Colnstall ers]
CopyFiles=XxDev_Coinstallers_CopyFiles
; ... AddReg omitted here

[XxDev_Coinstallers_CopyFiles]

Chapter 1 INF File Sections and Directives 231

XxPrelnst.dll ; dey-specific coinstaller run before class installer
XxPostlnst.dll ; run after class installer (post processing)

As the preceding example suggests, the names of new device-specific coinstallers can be
constructed from the name of the provider (shown here as Xx) and the intended use for each
such coinstaller DLL (shown here as Prelnst and PostInst).

See Also
AddInterface, ClassInstall32, DDlnstall, DDlnstall.CoInstallers, DDlnstall.Interfaces,
DelFiles, DestinationDirs, InterfaceInstall32, RenFiles, SourceDisksFiles, SourceDisks
Names, Version

INF Del Files Directive
[DDlnstall] I [DDlnstall.CoInstallers] I [ClassInsta1l32] I [ClassInstaIl32.ntx86]

Delfiles=file-list-section [, file-list-section] ...

A DelFiles directive references an INF-writer-defined section elsewhere in the INF file,
causing that list of files to be deleted in the context of operations on the section in which
the referring DelFiles directive is specified.

A DelFiles directive can be specified within any of the sections shown in the formal syntax
statement. This directive also can be specified within any of the following INF-writer
defined sections:

• An add-inteljace-section referenced by the AddInterface directive in a DDlnstall.
Interfaces section

• An install-inteljace-section referenced in an InterfaceInstall32 section

Comments
Typically, this directive is used only in an "upgrade" INF file to delete obsolete (driver) files
for a previous installation of the same device(s) from the target machine. However, the re
placement driver(s) should be tested with any application(s) and/or other drivers that might
depend on the previously installed driver(s) before such an upgrade INF deletes stale driver
file(s).

232 Part 3 Setup

Any file-list-section name must be unique to the INF file, but it can be referenced by Copy
Files, DelFiles, or RenFiles directives elsewhere in the same INF. Such an INF-writer
defined section name must follow the same general rules for defining section names already
described in General Syntax Rules for INF Files. For more information about how to use the
system-defined .nt and/or .ntx86 extensions in cross-platform and/or dual-OS INF files, see
also Creating an INF File in Part 4, "Setup," in the Plug and Play, Power Management, and
Setup Design Guide.

Each named section refere,nced by a DelFiles directive has one or more entries of the
following form:

rJile-list-section]

destination-file-name[",{lag]

Afile-list-section can have any number of entries, each on a separate line.

Del Files-Referenced Section Entries

destination-file-name
Specifies the name of the file to be deleted from the destination.

Do not specify a file that is listed in a CopyFiles directive. If a file is listed in both a Copy
Files-referenced and a DelFiles-referenced section, and the file is currently present on the
system with a valid signature, the OS might optimize away the copy operation but perform
the delete operation. This is very likely not what the INF writer intended.

flag
This optional value can be one of the following, expressed in hexadecimal notation as
shown here or as a decimal value:

Ox00000001 (DELFLGJN_ USE)
Delete the named file, possibly after it has been used during the installation process, either
on a Windows 2000 or Windows 9x machine.

Setting this flag value in an INF queues the file-deletion operation until the system has
restarted if the given file cannot be deleted because it is in use while this INF is being
processed. Otherwise, such a file will not be deleted.

Ox00010000 (DELFLGJN_USE1)
This flag is a high-word version of the DELFLG_IN_USE flag, and it has the same purpose
and effect. This flag should be used in Windows 2000-only INF files.

Setting this flag value in an INF prevents conflicts with the COPYFLG_ WARN_IF _
SKIP flag in an INF with both DelFiles and CopyFiles directives that reference the same
file-list-section.

Chapter 1 INF File Sections and Directives 233

The DestinationDirs section of the INF file controls the destination for all file-deletion
operations, whatever the section containing a particular DelFiles directive, as follows:

• If a named section referenced by a DelFiles directive has a corresponding entry in the
DestinationDirs section of the same INF, that entry explicitly specifies the target des
tination directory from which all files listed in the named section will be deleted. If the
named section is not listed in the DestinationDirs section, Setup uses the DefaultDest
Dir entry in the INF.

Example
This example shows how the DestinationDirs section specifies the path for a delete-file
operation that occurs in processing a simple device-driver INF. (The same INF was also
used previously as an example of the CopyFiles directive.)

[DestinationDirs]
ASPIDEV = 11 ; name of Win9x-specific delete-file section

; delete existing file(s) from DIRID_SYSTEM
DefaultDestDir = 12 ; DIRID_DRIVERS

[AHAI54X] ; Win9x-specific DDInstall section
CopyFiles=@AHAI54x.MPD
DelFiles=ASPIDEV ; defines delete-files section name
; ... some other directives and sections omitted here

[ASPIDEV]
VASPID.VXD name of file to be deleted. if it exists on target

See Also
Addlnterface, Classlnstall32, CopyFiles, DDlnstall, DDlnstall.Colnstallers,
DestinationDirs, Interfacelnstall32, RenFiles

INF RenFiles Directive
[DDlnstall] I [DDlnstall.Colnstallers] I [ClassInstaIl32] I [ClasslnstaIl32.ntx86]

Renfiles=file-list-section[, file-list-section] ...

A RenFiles directive references an INF-writer-defined section elsewhere in the INF file,
causing that list of files to be renamed in the context of operations on the section in which
the referring RenFiles directive is specified.

234 Part 3 Setup

A RenFiIes directive can be specified within any of the sections shown in the formal syn
tax statement. This directive also can be specified within any of the following INF-writer
defined sections:

• An add-inteJface-section referenced by the AddInterface directive in a DDlnstall.
Interfaces section

• An install-inteJface-section referenced in an InterfaceInsta1l32 section

Comments
Typically, this directive is used only in an "upgrade" INF file to preserve files that were in
stalled on the target machine in a previous installation of the same device(s) if some new
files supplied on the source media have the same names.

Any file-list-section name must be unique to the INF file, but it can be referenced by Copy
Files, DelFiles, or RenFiIes directives elsewhere in the same INF. Such an INF-writer
defined section name must follow the same general rules for defining section names already
described in General Syntax Rules for INF Files. For more information about how to use the
system-defined .nt and/or .ntx86 extensions in cross-platform and/or dual-OS INF files, see
also Creating an INF File.

Each named section referenced by a RenFiles directive has one or more entries of the fol
lowing form:

[file-fist-section]

new-dest-file-name,old-source-file-name

A file-list-section can have any number of entries, each on a separate line.

RenFiles-Referenced Section Entries

new-dest-file-name
Specifies the new name to be given to the file on the destination.

old-source-file-name
Specifies the old name of the file.

The DestinationDirs section of the INF file controls the destination for all file-rename
operations, whatever the section containing a particular RenFiles directive, as follows:

• If a named section referenced by a RenFiIes directive has a corresponding entry in the
DestinationDirs section in the same INF, that entry explicitly specifies the target desti
nation directory in which all files listed in the named section will be renamed on the

Chapter 1 INF File Sections and Directives 235

destination before these source files are copied. If the section is not listed in the
DestinationDirs section, Setup uses the DefaultDestDir entry in the INF.

Example
This example shows a section referenced by a RenFiles directive.

[RenameOldFilesSec]
devfile41.sav, devfile41.sys

See Also
Addlnterface, Classlnsta1l32, CopyFiles, DDlnstall, DDlnstall.Colnstallers, DelFiles,
DestinationDirs, Interfacelnsta1l32, SourceDisksFiles, SourceDisksN ames, Version

INF AddService Directive
[DDlnstall.Services]

AddService=ServiceNarne,rJlags],service-install-section[,
event-log -install-section [, [EventLo gType] [,EventN arne]]]

An AddService directive is used in a DDlnstall.Services section to control how (and when)
the services of particular Windows 2000 device(s)' driver(s) are loaded, any dependencies
on other underlying legacy drivers or services, and so forth. Optionally, this directive sets up .
event-logging services by the device/driver(s) as well.

This directive is irrelevant to exclusively Windows 9x INF files. It also is not used in
Windows 2000 INF files that install devices, such as modems or display monitors, that
do not install any drivers.

Entry Values
ServiceName
Specifies the name of the service to be installed. For a device, this value is usually a generic
name for its driver, such as "sermouse," or some such name.

flags
Specifies one or more (ORed) of the following system-defined flags, expressed as a hexa
decimal value:

Ox00000002 (SPSVCINST _ASSOCSERVICE)
Mark the named service as the PnP function driver (or legacy driver) for the particular
device being installed by this INF file. Such a device might be anyone of the device(s)

236 Part 3 Setup

or device-compatible models listed in an entry of the Models section that referenced this
DDlnstall section. Do not specify this flag on filter drivers.

Ox00000008 (SPSVCINST _NOCLOBBER_DISPLAYNAME)
Do not overwrite the given service's (optional) friendly name if this service already exists in
the system.

Ox00000100 (SPSVCINST _NOCLOBBER_DESCRIPTION)
Do not overwrite the given service's (optional) description if this service already exists in the
system.

Ox00000010 (SPSVCINST _NOCLOBBER_STARTTYPE)
Do not overwrite the given service's start type'if this named service already exists in the
system.

Ox00000020 (SPSVCINST _NOCLOBBER_ERRORCONTROL)
Do not overwrite the given service's error-control value if this named service already exists
in the system. '

Ox00000040 (SPSVCINST _NOCLOBBER_LOADORDERGROUP)
Do not overwrite the given service's load-order-group value if this named service already
exists in the system. INFs that install exclusively PnP devices and devices with WDM
drivers should not set this flag.

Ox00000080 (SPSVCINST _NOCLOBBER_DEPENDENCIES)
Do not overwrite the given service's dependencies list if this named service already exists in
the system. INFs that install exclusively PnP devices and devices with WDM drivers should
not set this flag.

Ox00000001 (SPSVCINST _ TAGTOFRONT)
Move the named service's tag to the front of its group order list, thereby ensuring that it is
loaded first within that group (unless a subsequently installed device with this INF specifi
cation displaces it). INFs that install exclusively PnP devices and devices with WDM drivers
should not set this flag.

service-instal I-section
References an INF-writer-defined section that contains information for installing the named
service for this device (or devices).

event-log-instal I-section
Optionally references an INF-writer-defined section in which event-logging services for this
device (or devices) are set up.

Chapter 1 INF File Sections and Directives 237

EventLogType
Optionally specifies one of System, Security, or Application. If omitted, this defaults to
System, which is almost always the appropriate value for the installation of device drivers.
For example, an INF would specify Security only if the to-be-installed driver provides its
own security support.

EventName
Optionally specifies a name to use for the event log. If omitted, this defaults to the given
ServiceName.

Comments
The system-defined and case-insensitive extensions can be inserted into a DDlnstall.
Services section containing an AddService directive in cross-OS and/or cross-platform
INF files to specify platform-specific or OS-specific installations. For more information
about how to use the system-defined .nt and/or .ntx86 extensions in cross-platform and/or
dual-OS INF files, see also Creating an INF File in Part 4, "Setup," in the Plug and Play,
Power Management, and Setup Design Guide.

Each INF-writer-created section name must be unique within the INF and must follow the
same general rules for defining section names already described in General Syntax Rules for
INF Files.

An AddService directive must reference a named service-install-section elsewhere in the
INF file. Each such named section has the following form:

[service-install-section]

[DisplayName=name]
[Description=description-string]
ServiceType=type-code
StartType=start-code
ErrorControl=error-control-level
ServiceBinary=path-to-service
[StartName=driver-object-name]
[AddReg=add-registry-section[, add-registry-section] ...]
[DelReg=del-registry-section[, del-registry-section] ...]
[BitReg=bit-registry-section [,bit-registry-section] ...]
[LoadOrderGroup=load-order-group-name]
[Dependencies=depend-on-item-name[,depend-on-item-name] ...]

Any service-install-section must have at least the ServiceType, StartType, ErrorControl,
and ServiceBinary entries as shown here, but the remaining entries are optional.

238 Part 3 Setup

Service-Install Section Entries and Values

DisplayName=name
Specifies a friendly name for the service/driver, usually, for ease of localization, expressed
as a % strkey % token defined in a Strings section of the INF file.

Description=description-string
Optionally specifies a string that describes the service, usually expressed as a %strkey%
token defined in a Strings section of the INF file.

This string gives the user more information about the service than the DisplayName. For
example, the DisplayName might be something like "DHCP Client" and the Description
might be something like "Manages network configuration by registering and updating IP
addresses and DNS names".

The description-string should be long enough to be descriptive but not so long as to be
awkward. If a description-string contains any %strkey% tokens, each token can represent
a maximum of 511 characters. The total string, after any string token substitutions, should
be no longer than 1024 characters. Most strings will be shorter.

Service Type=type-code
In any INF that installs support for one or more devices, the type-code specification must be
lor Ox00000001, that is, equivalent to SERVICE_KERNEL_DRIVER.

However, a device-dedicated application supplied when installing the device would be clas
sified as either of SERVICE_ WIN32_0WN_PROCESS (specified as 10 or Ox00000010 in
the INF) or SERVICE_ WIN32_SHARE_PROCESS (specified as 20 or Ox00000020 in the
INF). A highest level network driver, such as a redirector, or a file system would be classi
fied as SERVICE_KERNEL_FILE_SYSTEM_DRIVER by specifying 2 or Ox00000002
in its INF.

StartType=start-code
Specifies when to start the driver as one of the following numerical values, expressed either
in decimal or, as shown here, in hexadecimal notation.

OxO (SERVICE_BOOT _START)
Indicates a driver started by the operating system loader.

This value should be used only for drivers of devices required for loading the OS.

Ox1 (SERVICE_SYSTEM_START)
Indicates a driver started during OS initialization.

This value should be used by Windows 2000 PnP drivers that do device detection during
initialization but are not required to load the system.

Chapter 1 INF File Sections and Directives 239

For example, a PnP driver that also can detect a legacy device should specify this value in its
INF so that its DriverEntry routine will be called to find the legacy device, even if that
device cannot be enumerated by the PnP Manager.

Ox2 (SERVICE_AUTO _START)
Indicates a driver started by the Service Control Manager during system startup.

This value should never be used in the INF files for WDM or Windows 2000 PnP device
drivers.

Ox3 (SERVICE_DEMAND _START)
Indicates a driver started on demand, either by the PnP Manager when the corresponding
device is enumerated or possibly by the Service Control Manager in response to an explicit
user demand for a nonPnP device.

This value should be used in the INF files for all WDM drivers of devices that are not re
quired to load the system and for all Windows 2000 PnP device drivers that are neither
required to load the system nor engaged in device detection.

Ox4 (SERVICE_DISABLED)
Indicates a driver that cannot be started.

This value can be used to temporarily disable the driver services for a device, but a
device/driver cannot be installed if this value is specified in the service-install section
of its INF file.

ErrorControl=error-control-level
Specifies the level of error control as one of the following numerical values, expressed
either in decimal or, as shown here, in hexadecimal notation.

OxO (SERVICE_ERRORJGNORE)
If the driver fails to load or initialize, proceed with system startup and do not display a
warning to the user.

Ox1 (SERVICE_ERROR_NORMAL)
If the driver fails to load or initialize its device, system startup should proceed but display a
warning to the user.

Ox2 (SERVICE_ERROR_SEVERE)
If the driver fails to load, system startup should switch to the registry's LastKnown
Good control set and continue system startup, even if the driver again indicates a load
ing or device/driver initialization error.

240 Part 3 Setup

Ox3 (SERVICE_ERROR_CRITICAL)
If the driver fails to load and system startup is not using the Windows 2000 registry's Last
KnownGood control set, switch to LastKnownGood and try again. If startup still fails
when using LastKnownGood, run a bug-check routine. (Only devices/drivers necessary
for the system to boot specify this value in their INF files.)

ServiceBinary=path-to-service
Specifies the path to the binary for the service, expressed as % dirid% Yilename.

The dirid number is one of the system-defined directory identifiers already described in the
reference for the DestinationDirs section. The given filename specifies a file already trans
ferred (see INF CopyFiles Directive) from the source distribution media to that directory on
the target machine.

StartName=driver-object-name
This optional entry specifies the name of the driver object representing this device/driver. If
type-code specifies 1 or 2 (SERVICE_KERNEL_DRIVER or SERVICE_FILE_SYSTEM_
DRIVER), this name is the Windows 2000 driver object name that the I/O Manager uses to
load the driver.

AddReg=add-registry-section[, add-registry-section] ...
References one or more INF-writer-defined add-registry-sections in which any registry in
formation pertinent to the newly installed service(s) is set up. This directive is rarely used
in a service-install-section. An HKR specification in such an add-registry section designates
the HKLM\System\CurrentControlSet\Services\ServiceName registry key.

DeIReg=del-registry-section[, del-registry-section] ...
References one or more INF-writer-defined del-registry-sections in which pertinent registry
information for an already installed service(s) is removed. An HKR specification in such a
del-registry section designates the
HKLM\System\CurrentControlSet\Services\ServiceName registry key. This directive is
almost never used in a service-install-section, but it might be used in an INF that "updates"
the registry for a previous installation of the same device/driver services.

BitReg=bit-registry-section[,bit-registry-section] ...
Is valid in a service-install-section but almost never used. An HKR specification in such a
bit-registry section also designates the HKLM\System\CurrentControlSet\Services\
ServiceName registry key.

LoadOrderGroup=load-order-group-name
This optional entry identifies the Windows 2000 load order group of which this driver is a
member. It can be one of the "standard" load order groups, such as SCSI class or NDIS,
defined by previous versions of Windows NT®.

Chapter 1 INF File Sections and Directives 241

In general, this entry is unnecessary for devices with WDM drivers or for exclusively PnP
devices, unless there are legacy dependencies on such a group. However, this entry can be
useful if device detection is supported by loading a group of drivers in a particular order.

Dependencies=depend-on-item-name[,depend-on-item-name] ...
Each depend-on-item-name in a dependencies list specifies the name of a service or load
order group on which the device/driver depends.

If the depend-on-item-name specifies a service, the service that must be running before
this driver is started. For example, the INF for the system-supplied Win32 TCP/IP print
services depends on the support of the underlying (kernel-mode) TCP/IP transport stack.
Consequently, the INF for the TCP/IP print services specifies this entry as Dependencies
=TCPIP.

A depend-on-item-name can specify a load order group on which this device/driver depends.
Such a driver is started only if at least one member of the specified group has been started.
Preceed the group name with a plus sign (+). For example, the system RAS services INF
might have an entry like Dependencies = +NetBIOSGroup,RpcSS, which lists both a load
order group and a service.

The as loads drivers according to the service-install section start-code specifications of
their INFs, as follows:

1. During the system boot start phase, the as loads all OxO (SERVICE_BOaT_START)
drivers.

2. During the system start phase, the as first loads all WDM and Windows 2000 PnP
drivers for which the PnP Manager finds devnodes in the registry .• \Enum tree
(whether their INFs say OxOl for SERVICE_SYSTEM_START or Ox03 for SERVICE_
DEMAND_START).Then the as loads all remaining SERVICE_SYSTEM_
START drivers.

3. During the system auto-start phase, the as loads all remaining SERVICE_AUTO_
START drivers.

For more information, see How Does Setup Select a Driver For a Device? in Part 4,
"Setup," in the Plug and Play, Power Management, and Setup Design Guide.

Registering for Event Logging
An AddService directive also can reference an INF-writer-defined event-log-install-section
elsewhere in the INF file.

242 Part 3 Setup

Each such named section referenced by an AddService directive has the following form:

[event-log-install-section]

AddReg=add-registry-section[, add-registry-section] .. .
[DeIReg=del-registry-section[, del-registry-section] ...]
[BitReg=bit-registry-section[,bit-registry-section] ...]

For a typical device/driver INF, the event-log-install section uses only the AddReg directive
to reference a single INF-writer-defined section that sets up an event-logging message file
for the driver in the registry. An HKR specification in such an add-registry section desig
nates the HKLM\System\CurrentControISet\Services\EventLog\EventLogType\Event
Name registry key. This event-logging add-registry section has the following general form:

[drivername _EventLog_AddReg]
HKR"EventMessageFile,Ox00020000, "path\IoLogMsg.dll;path\driver.sys"
HKR" TypesSupported,OxOOOlOOl, 7

In particular, such a section adds two value entries in the registry subkey created for the
device/driver, as follows:

• The value entry named EventMessageFile is of type REG_EXPAND_SZ, as specified
by the FLG_ADDREG_TYPE_EXPAND_SZ value Ox0002000.lts given value, en
closed in double quotes (") associates the system-supplied IoLogMsg.dll (but it could
associate another logging DLL) with the driver binary. Usually, the Windows 2000 paths
to each of these files is expressed as follows:

%%SystemRoot%%\System32\IoLogMsg.dll, and %%SystemRoot%%\System32\
drivers\driver.sys, unless the driver binary was copied into another subdirectory on the
target machine, as specified in the DestinationDirs section or in a section referenced by
a CopyFiles directive elsewhere in the INF file.

• The value entry named TypesSupported is of type REG_DWORD, as specified by the
FLG_ADDREG_TYPE_DWORD value OxOOOlOOOO. For drivers, this value should be
7 (equivalent to the OR of EVENTLOG_SUCCESS, EVENTLOG_ERROR_TYPE,
EVENTLOG_ WARNING_TYPE, and EVENTLOG_INFORMATION_TYPE, without
setting the EVENTLOG_AUDIT_XXX bits).

However, an event-log-install section also can use the DelReg directive to reference a
section in which a previously installed event-log message file is removed from the registry
by explicitly deleting the existing EventMessageFile and TypesSupported value entries for
a driver binary that is being superceded by a newly installed driver. (See also the reference
for the DelService directive.) While a BitReg directive also is valid within an INF-writer-

Chapter 1 INF File Sections and Directives 243

defined event-log-install-section, it is almost never used, because the standard value entries
for device driver event logging are not bitmasks.

Example
This example shows the service-install and event-log-install sections referenced by the
AddService directive as already shown earlier in the example for DDlnstall.Services.

[sermouse_Service_Inst]
DisplayName %sermouse.SvcDesc%
ServiceType 1
StartType 3
ErrorControl 1
ServiceBinary
LoadOrderGroup

%12%\sermouse.sys
Pointer Port

[sermouse_EventLog_Inst]
Add Reg = sermouse_EventLog_AddReg

[sermouse_EventLog_AddReg]

SERVICE_KERNEL_DRIVER
SERVICE_DEMAND_START
SERVICE_ERROR-NORMAL

HKR .• EventMessageFile.0x00020000."%%SystemRoot%%\System32\IoLogMsg.dll;
%%SystemRoot%%\System32\drivers\sermouse.sys"

Preceding entry on single line in INF file. Enclosing quotes
prevent the semicolon from being interpreted as a comment.

HKR .• TypesSupported.0x00010001.7

DisplayName
ServiceType
StartType
ErrorControl
ServiceBinary
LoadOrderGroup

%mouclass.SvcDesc%
1
1
1
%12%\mouclass.sys
Pointer Class

[mouclass_EventLog_Inst]
AddReg = mouclass_EventLog_AddReg

[mouclass_EventLog_AddReg]

SERVICE_KERNEL_DRIVER
SERVICE_SYSTEM_START
SERVICE_ERROR_NORMAL

HKR •• EventMessageFile.0x0002000."%%SystemRoot%%\System32\IoLogMsg.dll;
%%SystemRoot%%\System32\drivers\mouclass.sys"

HKR •• TypesSupported,0x00010001.7

[Strings]

sermouse.SvcDesc
mouclass.SvcDesc

"Serial Mouse Driver"
"Mouse Class Driver"

244 Part 3 Setup

The example in the reference for the DDlnstall.HW section, described earlier, also shows
some service-install sections referenced by the AddService directive to set up PnP upper
filter drivers.

See Also
AddReg, BitReg, CopyFiles, DDlnstall.HW, DDlnstall.Services, DelReg, DelService,
DestinationDirs, Strings

INF DelService Directive
[DDlnstall.Services]

DelService=ServiceName [, [flags] [,[EventLogType] [,EventName]]]

A DelService directive is used in a DDlnstall.Services section to remove one or more
previously installed device/driver service(s) from the target machine.

Entry Values
ServiceName
Specifies the name of the service to be removed.

For a device, this value is usually a generic name for its driver, such as "sermouse," or some
such name.

flags
This optional value is specifies one or more of the following flags:

SPSVCINST _DELETEEVENTLOGENTRY
An event-log entry (or entries) associated with the given ServiceName should also be
removed from the system.

SPSVCINST _STOPSERVICE
Stop the service before deleting it.

EventLogType
Optionally specifies one of System, Security, or Application. This can be omitted if the
event log to be removed is of type System.

EventName
Optionally specifies the name for the event log. This can be omitted if it is identical to the
given ServiceName.

Chapter 1 INF File Sections and Directives 245

Comments
This directive is almost never used, except possibly in an INF file that upgrades a previous
installation of the same devices/models listed in the per-manufacturer per-Models section
that referenced this DDlnstall section and, in the upgrade process, supercedes previously
installed services.

However, by default, event-log information supplied by a particular device driver is not
removed from the system on deinstallation, unless the INF for the device/driver explicitly
requests the removal (flags or EventName) of the event log along with the removal of the
driver services.

See Also
AddService, DDlnstall.Services, DelReg

INF Addlnterface Directive
[DDlnstall.lnterfaces]

Addlnterface={Inte1j'aceGUID} [, [reference string] [,[add-inte1j'ace-section] [,flags]]]

One or more Addlnterface directives can be specified to install support for device inter
faces exported to higher level components, such as other drivers or applications, and to
reference the add-interface section typically used for setting up registry information about
the device/driver support of each such device interface.

An exported device interface can be one of the system-defined device interfaces, such as
those defined by kernel streaming, or even a new device interface class to be exported for
any subsequently installed device/driver that can use it.

Values
InterfaceGUID
Either specifies a new OUID value generated for this device/driver or, more commonly,
specifies one of the system-defined OUID values of a device interface supported by the to
be-installed driver or component. This can be expressed as an explicit OUID value of the
form {nnnnnnnn-nnnn-nnnn-nnnn-nnnnnnnnnnnn} or as a %strkey% token defined to
"{ nnnnnnnn-nnnn-nnnn-nnnn-nnnnnnnnnnnn }" in a Strings section of the INF file.

For more information about how to create a OUID, see the Platform SDK documentation.
For the system-defined interface class OUIDS, see the appropriate header, such as ks.h for
the kernel-streaming interface OUIDs.

246 Part 3 Setup

reference string
This optional value associated with the given interface can be expressed either as a "quoted
string" or as a %strkey% token defined in a Strings section of the INF file.

PnP function and filter drivers usually omit this value from the AddInterface= entries in
their INF files, but such a reference string can be used as a placeholder for software devices
that are created on demand. That is, the same InterfaceGUID value can be specified in INF
entries with two or more unique reference strings. Because the I/O Manager passes such a
reference string value as a path component of the interface's name whenever it is opened,
the installed driver thus can discriminate between interfaces of the same class for a single
device.

add-interlace-section
References the name of a section elsewhere in the INF file, which typically has an AddReg
directive to set up the registry entries exporting the driver's support of this device interface
class.

flags
If specified, must be zero.

Comments
The system-defined and case-insensitive extensions can be inserted into a DDlnstall.
Interfaces section containing an AddInterface directive in cross-OS and/or cross-platform
INF files to specify platform-specific or OS-specific interface installations. For more infor
mation about how to use the system-defined .nt and/or .ntx86 extensions in cross-platform
and/or dual-OS INF files, see also Creating an INF File.

If a given {InterfaceGUID} is not installed already, the system setup code installs that
device-interface class in the system. Any INF that installs such a new device-interface class
typically also has an [InterfaceInsta1l32] section containing the specified {InterfaceGUID}
as an entry and referencing an INF-writer-defined interface-install-section that sets up the
new device-interface-specific installation operations for that device-interface class.

To enable a device interface for runtime use by higher level components, the driver must
make a call IoSetDeviceInterfaceState with each {InterfaceGUID} value identifying a de
vice interface class that the driver supports on the underlying device. As an alternative to
registering its support for a device interface in its INF, a device driver can call IoRegister
DeviceInterface before making its initial call to IoSetDeviceInterfaceState. Usually, a
PnP function or filter driver makes this call from its AddDevice routine.

Each AddInterface directive in a DDlnstall.lnterfaces section can reference an INF-writer
defined add-interface-section elsewhere in the INF file. Each INF-writer-defined section
name must be unique within the INF and must follow the same general rules for defining
section names already described in General Syntax Rules for INF Files.

Chapter 1 INF File Sections and Directives 247

An add-interface section referenced by the Addlnterface directive has the following form:

[add-inteiface-section]

AddReg=add-registry-section [, add-registry-section] .. .
[DelReg=del-registry-section[, del-registry-section] ...]
[BitReg=bit-registry-section [,bit-registry-section] ...]
[Copy Files=@filename I Jile-list-section[Jile-list-section] ...]
[DeIFiles=file-list-section[Jile-list-seciion] ...]
[RenFiles=file-list-section[Jile-list-section] ...]
[Updatelnis=update-ini-section[, update-ini-section] ...]
[UpdatelniFields=update-inifields-section[, update-inifields-section] ...]
[Ini2Reg=ini-to- registry-section[, ini-to-registry-section] ...]

Typically, an add-interface section contains only an AddReg directive that, in tum, refer
nces a single add-registry section. The add-registry section is used to store information in
the registry about the interface(s) supported by the device driver for subsequent use by still
higher level drivers and applications.

An add-registry section referenced within such an add-interface section is both
device/driver-specific and interface-specific in nature. However, it must have a value
entry defining a friendly name for the exported device interface so that still higher level
components can refer to that interface by its friendly name in the user interface. An HKR
specified in such an add-registry section designates the user-mode-accessible device
interface subkey of the •• DeviceClasses\{InteifaceGUID}\ branch. In the Windows 2000
registry, DeviceClasses is a subkey of the .• CurrentControlSet\Control key.

Example
This example shows some of the expansion of the DDlnstall.lnterfaces section for a
particular audio device that supports system-defined kernel-streaming interfaces.

[ESS6881.Device.Interfaces]
AddInterface=%KSCATEGORY_AUDIO%.%KSNAME_Wave%.~SSAud.Interface.Wave
AddInterface=%KSCATEGORY_RENDER%.%KSNAME_Wave%.ESSAud.Interface.Wave
AddInterface=%KSCATEGORY_CAPTURE%.%KSNAME_Wave%.ESSAud.Interface.Wave
AddInterface=%KSCATEGORY_AUDIO%.%KSNAME_Topology%.\
ESSAud.Interface.Topology
AddInterface=%KSCATEGORY_AUDIO%.%KSNAME_UART%.WDM.lnterface.UART
Addlnterface=%KSCATEGORY_RENDER%.%KSNAME_UART%.WDM.lnterface.UART
AddInterface=%KSCATEGORY_CAPTURE%.%KSNAME_UART%.WDM.Interface.UART
AddInterface=%KSCATEGORY_AUDIO%.%KSNAME_FMSynth%.WDM.Interface.FMSynth
AddInterface=%KSCATEGORY_RENDER%.%KSNAME_FMSynth%.\
WDM.lnterface.FMSynth

248 Part 3 Setup

[ESSAud.lnterface.Wave]
AddReg=ESSAud.lnterface.Wave.AddReg

[ESSAud.lnterface.Wave.AddReg]
HKR •• CLSID .. %Proxy.CLSID%
HKR •• FriendlyName •. %ESSAud.Wave.szPname%

[WDM.lnterface.UART]
AddReg=WDM.lnterface.UART.AddReg

[WDM.lnterface.UART.AddReg]
HKR •• CLSID •• %Proxy.CLSID%
HKR •• FriendlyName •• %WDM.UART.szPname%

[Strings]
KSCATEGORY_AUDIO="{6994ad04-93ef-lld0-a3cc-00a0c9223196}"
KSCATEGORY_RENDER=n{65e8773e-8f56-11d0-a3b9-00a0c9223196}"
KSCATEGORY_CAPTURE="{65e8773d-8f56-11d0-a3b9-00a0c9223196}"

KSNAME_Wave="Wave"
KSNAME_UART="UART"

Proxy.CLSID="{17cca71b-ecd7-11d0-b908-00a0c9223196}"

ESSAud.Wave.szPname="ESS AudioDrive"

See Also
AddReg, BitReg, CopyFiIes, DDlnstall.lnterfaces, DelFiIes, DelReg, Ini2Reg,
Interfacelnstall32, IoRegisterDevicelnterface, IoSetDevicelnterfaceState, RenFiIes,
UpdatelniFields, Updatelnis

INF BitReg Directive
[DDlnstall] I [DDlnstall.HW] I [DDlnstall.Colnstallers] I [ClasslnstaIl32] I
[ClasslnstaIl32.ntx86]

BitReg=bit-re gistry-section[,bit-registry-section] ...

A BitReg directive references one or more INF-writer-defined sections used to set or clear
bits within an existing REG_BINARY-type value entry in the registry. However, this direc
tive is very rarely used in device/driver INF files.

A BitReg directive can be specified under any of the sections shown in the formal syntax
statement. This directive also can be specified under any of the following INF-writer
defined sections:

Chapter 1 INF File Sections and Directives 249

• A service-install-section or event-log-install section referenced by the AddService
directive in a DDlnstall.Services section

• An add-inteiface-section referenced by the AddInterface directive in a DDlnstall.
Interfaces section

• An install-inteiface-section referenced in an InterfaceInstall32 section

Comments
A given bit-registy-section name must be unique to the INF file, but it can be referenced by
BitReg directives in other sections of the same INF. Each INF-writer-created section name
must be unique within the INF and must follow the same general rules for defining section
names already described in General Syntax Rules for INF Files. For more information about
how to use the system-defined .nt and/or .ntx86 extensions in cross-platform and/or dual
as INF files, see also Creating an INF File in Part 4, "Setup," in the Plug and Play, Power
Management, and Setup Design Guide.

Each named section referenced by an BitReg directive has the following form:

[bit-registry-section]

reg-root, [subkey], value-entry-name, [flag], byte-mask, byte-to-modify

A bit-registry-section can have any INF-writer-determined number of entries, each on a
separate line.

BitReg-Referenced Section Entries
reg-root
Identifies the root of the registry tree for other values supplied in this entry. The value can
be one of the following:

HKCR
Abbreviation for HKEY_CLASSES_ROOT.

HKCU
Abbreviation for HKEY _CURRENT _USER.

HKLM
Abbreviation for HKEY _LOCAL_MACHINE.

HKU
Abbreviation for HKEY _USERS.

250 Part 3 Setup

HKR
Relative to the registry key most pertinent to the section in which this BitReg directive
appears, such as the per-device "hardware" subkey in the registry .• \Enum\enumeratorID\
device-instance-id branch, the corresponding driver-specific "software" subkey under the
registry •• Class\SetupClassGUID\device-instance-id branch, and so forth.

subkey
This optional value, expressed either as a %strkey% token defined in a Strings section of
the INF or as a registry path under the given reg-root (keyJ\key2\key3 ...), specifies the key
containing the value entry to be modified.

value-entry-name
Specifies the name of an existing REG_BINARY-type value entry in the (existing) subkey
to be modified. It can be expressed either as "quoted string" or as a %strkey% token that is
defined in the INF's Strings. section.

flag
This optional value specifies whether to clear or set the bits specified in the given byte-mask.
Its default value is zero, meaning clear the bits. Specify one to set the bits.

byte-mask
This byte-sized mask, expressed in hexadecimal notation, specifies which bits to clear or set
in the current value of the given value-entry-name.

byte-to-modify
This byte-sized value, expressed in decimal, specifies the zero-based index of the byte
within the REG_BINARY-type value to be modified.

Comments
The value of an existing REG_BINARY-type value entry also can be modified by simply
overwriting its current value within an add-registry section elsewhere in the INF file. For
more information about add-registry sections, see the reference for the AddReg directive.

Using a BitReg directive requires the definition of another INF file section. However, the
value of an existing REG_BINARY-type value entry can be modified bit-by-bit in such a
section, thereby preserving the values of all remaining bits.

Examples
These examples show a bit-registry section for a fictional application.

Chapter 1 INF File Sections and Directives 251

[AppX_BitReg]
; set first bit of byte 0 in ProgramData value entry
HKLM,Software\AppX,ProgramData,1,0x01,0

preceding would change value 30,00,10 to 31,00,10

clear high bit of byte 2 in ProgramData value entry
HKLM,Software\AppX,ProgramData,,0x80,2

preceding would change value 30,00,f0 to 30,00,70

set second and third bits of byte 1 in ProgramData value entry
HKLM,Software\AppX,ProgramData,1,0x06,1
; preceding would change value 30,00,f0 to 30,06,f0

See Also
Addlnterface, AddReg, AddService, Classlnstall32, DDlnstall, DDlnstall.Colnstallers,
DDlnstall.HW, Interfacelnstall32

INF LogConfig Directive
[DDInstall] I
[D D Install.LogConfigOverride] I
[D D Install.nt.LogConfigOverride]

LogConfig=log-config-section[,log-config-section] ...

A LogConfig directive typically references one or more INF-writer-defined sections in each
of which a set of logical hardware configuration resources is specified. That is, each such
section specifies the interrupt request lines, memory ranges, 110 ports, and DMA channels
that can be used by the device (or set of compatible device models) to be installed. In effect,
each such INF-writer-defined log-con fig-section presents an alternative set of bus-relative
hardware resources that can be used by the given peripheral device(s).

INF files that install devices on nonPnP ISA, EISA, and MeA buses use this directive. INF
files for PnP peripherals do not since the logical configurations of such devices is provided
to their respective function drivers by the PnP Manager.

Comments
A LogConfig directive can be specified under any per-manufacturer, per-models DDInstall
section, as shown here. Appending the .LogConfigOverride extension to a defined DD
Install section name forces the PnP Manager to accept the hardware configuration require
ments supplied in the given log-config-section(s) of the INF for the given device(s), rather
than using the resource requirements reported by the bus.

Otherwise, the PnP Manager assigns a set of logical hardware resources to each such
device (or set of device-compatible models) covered by a DDInstall section. That iS,the

252 Part 3 Setup

PnP Manager queries the system bus drivers, receives their reports of per-device 110 bus
configuration resources in use, and assigns per-device sets of logical hardware resources to
achieve the best system-wide balance in the usage of all such resources.

The system-defined and case-insensitive extensions can be inserted into such a DDlnstaZZ
(or DDlnstaZZ.LogConfigOverride or DDlnstaZZ.nt.LogConfigOverride) section containing
a LogConfig directive in cross-OS and/or cross-platform INF files to specify platform
specific or OS-specific logical configurations. For more information about how to use the
system-defined .nt extension in cross-platform and/or dual-OS INF files, see also Creating
an INF File in Part 4, "Setup," in the Plug and Play, Power Management, and Setup Design
Guide.

In practice, an INF for any nonPnP device that supports several alternate logical configura
tions typically defines some number of log-config sections, each specifying a discrete set
of logical configuration resources. Such an INF uses the ConfigPriority entry in each such
log-config section to rank each possible logical configuration according to its effects on
device/driver performance, ease of initialization, and so forth.

A given log-con fig-section name must be unique to the INF file, but it can be referenced
by LogConfig directives in other INF DDlnstaZZ.xxx sections for the same device(s). Each
INF-writer-created section name must be unique within the INF and must follow the same
general rules for defining section names already described in General Syntax Rules for
INF Files.

Each named section referenced by a LogConfig directive has the following form:

[log-con fig-section]

ConfigPriority=Priority _ Value [,Config_Type]
[DMAConfig=[DMAattrs:]DMANum[,DMANum] ...]
[IOConfig=io-range[,io-range] ...]
[MemConfig=mem-range[,mem-range] ...]
[IRQConfig=[IRQattrs:]IRQNum[,IRQNum] ...]
[PcCardConfig=Configlndex[: [M emoryCardBase 1] [:M emoryCardBase2]] [(attrs)]]
[MfCardConfig=ConfigRegBase:ConfigOptions[:IoResourcelndex] [(attrs)] ...]

Only one ConfigPriority entry can be used in each log-config section. There can be more
than one of each of the other entries, depending on the hardware resource requirements of
the device.

One or more MfCardConfig= entries can appear only in a log-con fig-section that is refer
nced by a LogConfig directive in the DDlnstall.LogConfigOverride section of an INF for a
multifunction device. For more information about INFs for multifunction devices, see also
the Plug and Play, Power Management, and Setup Design Guide.

Chapter 1 INF File Sections and Directives 253

LogConfig-Referenced Section Entries and Values
ConfigPriority=Priority _ Value[,Config_ Type]
Specifies the priority value for this logical configuration, as one of the following:

DESIRED
Soft configured, most optimal.

NORMAL
Soft configured, less optimal than DESIRED. This is the typical setting.

NORMAL should be specified if the log-config section was defined in a DDlnstall.Log
ConfigOverride section, and no ConJig_Type value can be specified.

SUBOPTIMAL
Soft configured, less optimal than NORMAL.

HARDRECONFIG
Requires a jumper change to reconfigure.

HARDWIRED
Cannot be changed.

RESTART
Requires Windows 2000 restart to take effect.

REBOOT
For Windows 2000, this is the same as RESTART.

POWEROFF
Requires power cycle to take effect.

DISABLED
Hardware/device is disabled.

Config_Type is obsolete in Windows 2000 INF files.

DMAConfig=[DMAattrs:]DMANum[,DMANum] ...]
DMAattrs is optional if the device is connected on a bus that has only 8-bit DMA channels
and the device uses standard system DMA. Otherwise, it can be the letter D for 32-bit DMA,
W for 16-bit DMA, or N for 8-bit DMA, with M if the device uses busmaster DMA and
with one of the following (mutually exclusive) letters, indicating the type of DMA channel:
A, B, or F. If A, B, or F is not specified, a standard DMA channel is assumed.

DMANum specifies one or more bus-relative DMA channel(s) as decimal number(s), each
separated from the next by a comma (,).

254 Part 3 Setup

IOConfig=io-range[,io-range] ...
Specifies one or more I/O port range(s) for the device, in either of the following forms:

start-end[([decode-mask] [:alias-offset] [:attrD]
(Type 1 I/O range) where:

start specifies the starting address of the I/O port range as a 64-bit hexadecimal address.

end specifies the ending address of the I/O port range, also as a 64-bit hexadecimal address.

decode-mask defines the alias type and can be any of the following:

Mask Value

3ff

fff

ffff

o

alias-offset is ignored.

Meaning

lO-bit decode

l2-bit decode

l6-bit decode

positive decode

Ox04

Ox 10

OxOO

OxFF

attr specifies the letter M if the given range is in system memory. If omitted, the given range
is in I/O port space.

size@min-max[%align-mask][([decode-mask][:alias-offset][:attrD]
(Type 2 I/O range) where:

size specifies the number of bytes required for the I/O port range as a 32-bit hexadecimal
value.

min specifies the lowest possible starting address of the I/O port range as a 64-bit
hexadecimal address.

max specifies the highest possible ending address of the I/O port range as a 64-bit
hexadecimal address.

align-mask optionally specifies a 64-bit mask that is used in an AND operation to align the
start of the I/O port range on an integral (usually 32-bit or 64-bit) address boundary.

decode-mask defines the alias type and can be any of the following:

Mask Value Meaning lOR_Alias =

3ff lO-bit decode Ox04

fff l2-bit decode OxlO

ffff l6-bit decode OxOO

0 positive decode OxFF

Chapter 1 INF File Sections and Directives 255

alias-offset is ignored.

attr specifies the letter M if the given range is in system memory. If omitted, the given range
is in I/O port space.

MemConfig=mem-range[,mem-range],"
Specifies one or more memory range(s) for the device in either of the following forms:

start-end[(attr)] I size@min-max[%align-mask][(attr)]
where:

start specifies the starting (bus-relative) physical address of the device memory range as a
64-bit hexadecimal value.

end specifies the ending physical address of the memory range, also as a 64-bit hexadecimal
value.

attr specifies the attributes of the memory range as one or more of the following letters: R
(read-only), W (write-only), RW (read/write), C (combined write allowed), H (cacheable),
F (prefetchable), and D (card decode addressing is 32-bit, instead of 24-bit). If both Rand
W are specified or if neither is specified, read/write is assumed.

size specifies the number of bytes required in the memory range as a 32-bit hexadecimal
value.

min specifies the lowest possible starting address of the device memory range as a 64-bit
hexadecimal value.

max specifies the highest possible ending address of the memory range as a 64-bit
hexadecimal value.

align-mask optionally specifies a 64-bit mask that is used in an AND operation to align the
start of the device memory range on an integral (usually 64-bit) address boundary. If align
mask is omitted, the default memory alignment is on a 4K boundary (FFFFFOOO).

IRQConfig=[IRQattrs:]IRQNum[,IRQNum],"
IRQattrs is omitted if the device uses a bus-relative, edge-triggered IRQ. Otherwise, specify
L to indicate a level-triggered IRQ and LS if the device can share the IRQ line(s) listed in
this entry.

IRQNum specifies one or more bus-relative IRQs the device can use as decimal numbers,
each separated from the next by a comma (,).

PcCardConfig=Configlndex[:[MemoryCard8ase1][:MemoryCard8ase2]][{attrs)]
Configures PCMCIA card registers and/or creates up to two permanent memory windows
that map to the attribute space of the device. A driver can use the memory window(s) to
access the attribute space from an ISR. Specify all numeric values in hexadecimal format.

256 Part 3 Setup

The elements of a PcCardConfig entry are as follows:

Configlndex
Specifies the 8-bit PCMCIA configuration index for a device on a PCMCIA bus.

MemoryCardBase1
Optionally specifies a 32-bit base address for a first memory window.

MemoryCardBase2
Optionally specifies a 32-bit base address for a second memory window.

attrs
Optionally specifies one or more attributes for the device, separated by spaces. An invalid
attribute specifier invalidates the whole PcCardConfig entry. Attributes can be specified in
any order except for the positional attributes A and C.

The attributes include:

W 16-bit 110 data path. The default is 8-bit if the INF specifies a LogConfig. If there
is no LogConfig, the driver uses 16-bit 110.

Sn -IOCSI6 source. If n is 0, -IOCSI6 is based on the value of the datasize bit. If n is 1,
-IOCSI6 is based on the -lOIS 16 signal from the device. The default is S1.

Zn I/O 8-bit, zero wait state. If n is 1, 8-bit I/O accesses occur with zero additional wait
states. If n is 0, access will occur with additional wait states. This flag has no meaning
for 16-bit I/O. The default is ZOo

Xln I/O wait states. If n is 1, 16-bit system accesses occur with one additional wait state.
The default is XI.

M 16-bit access to the memory windows. The default is 8-bit.

XMn Memory wait states, where n can be 0, 1,2 or 3. This value determines the number of
additional wait states for 16-bit accesses to a memory window. The default is XM3.

The following two attributes relate positionally to memory window resources. The first A or
C specified in the attribute string, reading from left to right, corresponds to the first memory
resource in the device's resource list. The next A or C corresponds to the second memory re
source. Subsequent attribute/common-memory specifiers are ignored.

A

C

Memory range to be mapped as Attribute memory

Memory range to be mapped as Common Memory (default)

Chapter 1 INF File Sections and Directives 257

For example, an attrs value of (W CA M XMl XIO) translates to:

110 16-bit
1 st memory window is common
2nd memory window is attribute
memory 16-bit
one wait state on memory windows
zero wait states on 110 windows

MfCardConfig=ConfigRegBase:ConfigOptions[:loResourcelndex][(attrs)] ...
Specifies the attribute-memory location of the set of configuration registers for one function
of a multifunction device, as follows:

ConfigRegBase specifies the attribute offset of the configuration registers for this function of
the multifunction device.

ConfigOptions specifies the 8-bit PCMCIA configuration option register.

IoResourcelndex specifies the index to the IOConfig entry for the bus driver to use in pro
gramming the configuration 110 base and limit registers. This index is zero-based, that is,
zero designates the initial IOConfig entry in this log-config section.

attrs can be A if the PCMCIA bus driver should tum on audio enable i.n the configuration
and status register(s).

Each MfCardConfig entry supplies information about a single function of the multifunction
device. When a set of LogContig directives each reference a discrete log-config section in
the INF's DDlnstall.LogConfigOverride section, each such log-config section must 'have its
entries, including MfCardConfig entries, listed in the same order.

From a log-config section, the system installer builds binary logical configuration records
and stores them in the registry.

An INF file can contain any number of per-device log-config sections. However, each
such section must contain complete information for installing one device. In general, the
INF should specify the entries in each of its log-config sections in the same order. The INF
should specify each set of entries in the order best suited to how the driver initializes its
device.

If more than one log-config section is present for a given device, only one of these INF sec
tions will be used during installation. Such an INF file partially controls which such section
is used with the ConfigPriority value it supplies in each such log-config section. That is,
the system installer(s) attempt to honor any ranked log-config priorities in a given INF file,
but might choose a lower ranked logical configuration if a conflict with an already installed
device is found.

258 Part 3 Setup

During installation, one and only one resource from each entry in a given log-config
section is selected and assigned to a particular device. If a particular device needs more
than one resource of the same type, a set of entries of that type must be used in its log
config section(s). For example, to ensure two I/O port ranges for a particular device, two
IOConfig= entries must be specified in the log-config section for that device. On the other
hand, if a device requires no IRQ, its INF can simply omit the IRQConfig entry from the
log-config section(s).

Examples
This example shows some valid PcCardConfig entries for a PCMCIA device.

PcCardConfig=0:E0000:F0000(W)
PcCardConfig=0:E0000(M)
PcCardConfig=0::(W)
PcCardConfig=0(W)

This example shows a Type 1 I/O range specification in an IOConfig entry. It specifies an
I/O port region, eight bytes in size, which can start at 1F8, 2F8, or 3F8.

IOConfig=lF8-1FF. 2F8-2FF. 3F8-3FF

By contrast, this example shows a Type 2 I/O range specification in an IOConfig entry.
It specifies an I/O port region, eight bytes in size, which can start at 300, 308, 310, 318,
320, or 328.

IOConfig=8@300-32F%FF8

This example shows a set 258f IOConfig= entries for a four-port device, each specifying an
I/O port range that is offset by Ox400 bytes from the next.

IoConfig=0x200-0x21f
IoConfig=0x600-0x61f
IoConfig=0xA00-0xAlf
IoConfig=0xE00-0xElf

The next two examples show typical MemConfig entries.

This example specifies a memory region of 32K bytes that can start at either COOOO or
DOOOO.

MemConfig=C0000-C7FFF. D0000-D7FFF

This example specifies a memory region of 32k bytes starting on 64K boundaries.

MemConfig=8000@C0000-D7FFF%F0000

This example shows how the system HDC class INF file sets up a number of log-config
sections for generic ESDI hard disk controllers and uses a DDlnstall.LogConfigOverride
section for a particular IDE controller.

[MS_HDC] ; per-manufacturer Models section
%FujitsuldePccard.DeviceDesc% =

Chapter 1 INF File Sections and Directives 259

atapi_fujitsu_Inst. PCMCIA\FUJITSU-IDE-PC_CARD-DDF2
%*PNP0600. Devi ceDesc% = atapi_Inst. *PNP0600 ; generi c ESDI ,HDCs
%PCI\CC_0101.DeviceDesc% = pciide_Inst •. PCI\CC_0101

; ... other manufacturers' Models sections omitted

[atapi_Inst]
CopyFiles = @atapi .sys
LogConfig = esdilcl. esdilc2. esdilc3. esdilc4

; ... [atapi_Inst.Services] + service/EventLog-install omitted here

[esdil cl]
ConfigPriority=HARDWIRED
IOConfig=lf0-1f7(3ff::)
IoConfig=3f6-3f6(3ff::)
IROConfig=14

[esdil c2]
ConfigPriority=HARDWIRED
IOConfig=170-177(3ff::)
IoConfig=376-376(3ff::)
IROConfig=15

[esdilc3]
ConfigPriority=HARDWIRED
IOConfig=le8-1ef(3ff::)
IoConfig=3ee-3ee(3ff::)
I ROConfi g=l1

[esdilc4]

[atapi_fujitsu_Inst.LogConfigOverride]
LogConfig = fujitsu.LogConfig0

[fujitsu.LogConfig0]
ConfigPriority=NORMAL
IOConfig=10@100-400%fff0
IROConfig=14.15.5.7.9.11.12.3
PcCardConfig=1:0:0(W)

For some examples of how MfCardConfig entries are used, see also the Plug and Play,
Power Management, and Setup Design Guide.

260 Part 3 Setup

See Also
DDlnstall, DDlnstall.FactDef

INF Profileltems Directive
[DDlnstall]

Profileltems=profile-items-section['profile-items-section] ...

A Profileltems directive is used in a DDlnstall section to list one or more profile-items
sections that contain items to be added to, or removed from, the Start menu.

This directive is only supported on Windows 2000.

Comments
A given profile-items-section name must be unique to the INF file.

Each INF-writer-:defined section name must be unique within the INF and must follow
the same general rules for defining section names described in General Syntax Rules for INF
Files.

Each named section referenced by a Profileltems directive has the following form:

fprofile-items-section]

Name=link-name[,name-attributes]
CmdLine=dirid,[subdir] ,filename
[SubDir=path]
[WorkingDir=wd-dirid, wd-subdir]
[IconPath=icon-dirid,[icon-subdir] ,icon1ilename]
[IconIndex=index-value]
[HotKey=hotkey-value]
[Infotip=info-tip]

Each profile-items-section contains detailed information for creating or removing one Start
menu item. To manipulate more than one menu item from an INF, create more than one
profile-items-section and list the sections in the Profileltems directive.

Any of the string parameters specified in the profile-items-section entries can be specified
using a %strkey% token, as described at the beginning of this chapter (General Syntax Rules
for INF Files).

Chapter 1 INF File Sections and Directives 261

Profile Items-Referenced Section Entries and Values

Name=link-name[,name-attributes]
The link-name specifies the name of the link for the menu item, without the . Ink extension.

The optional name-attributes value specifies one or more flags that affect the operation on
the menu item. This value is expressed as an ORed bitmask of system-defined flag values.
Possible flags include the following:

Ox00000001 (= FLG_PROFITEM_CURRENTUSER)
Directs Setup to create or delete a Start menu item in the current user's profile. If this flag is
not specified, Setup processes the item for all users.

Ox00000002 (= FLG_PROFITEM_DELETE)
Directs Setup to delete the menu item. If this flag is not specified, the item is created.

Ox00000004 (= FLG_PROFITEM_GROUP)
Directs Setup to create or delete a Start menu group. If this flag is not specified, Setup
creates or deletes a menu item, not a menu group.

If no flag is specified, Setup creates a menu item for all users.

CmdLine=dirid,[subdir],filename
The dirid specifies a value that identifies the directory in which the co~and program re
sides. For example, a dirid of 11 indicates the system directory. The possible dirid values
are listed in the description of the dirid value in the DestinationDirs section.

If a subdir string is present, the command program is in a subdirectory of the directory
referenced by dirid. The subdir specifies the subdirectory. If no subdir is specified, the
program resides in the directory referenced by dirid.

The filename specifies the name of the program associated with the menu item.

SubDir=path
This optional entry specifies a subdirectory (submenu) under Start\Programs in which the
menu item resides. If this entry is omitted, the path defaults to Start\Programs.

For example, if the profile-items-section has the entry "Subdir=Accessories\Games",
then the menu item is being created or deleted in the Start\Programs\Accessories\Games
submenu.

WorkingDir=wd-dirid[, wd-subdir]
This optional entry specifies a working directory for the command program. If this entry
is omitted, the working directory defaults to the directory in which the command program
resides.

262 Part 3 Setup

The wd-dirid value identifies the working directory. The possible dirid values are listed in
the description of the dirid value in the DestinationDirs section.

The wd-subdir string, if present, specifies a subdirectory of wd-dirid to be the working di
rectory. Use this parameter to specify a directory that doesn't have a system-defined dirid.
If this parameter is omitted, the wd-dirid value alone specifies the working directory.

IconPath=icon-dirid,[icon-subdir],icon-filename
This optional entry specifies the location of a file that contains an icon for the menu item.

The icon-dirid string identifies the directory for the DLL that contains the icon. The possible
icon-dirid values are listed in the description of the dirid value in the DestinationDirs
section.

The icon-subdir value, if present, indicates that the DLL is in a subdirectory of icon
dirid. The icon-subdir value specifies the subdirectory.

The icon-filename value specifies the DLL that contains the icon.

If this entry is omitted, Setup looks for an icon in the file specified in the CmdLine entry.

Iconlndex=index-value
This optional entry specifies which icon in a DLL to use for the menu item. For information
on indexing the icons in a DLL, see the Platform SDK documentation.

If an IconPath entry is specified, the index-value indexes into that DLL. Otherwise, this
value indexes into the file specified in the CmdLine entry.

HotKey=hotkey-value
This optional entry specifies a keyboard accelerator for the menu item. See the Platform
SDK documentation for more information on hot keys.

Infotip=info-tip
This optional entry specifies an informational tip for the menu item. This value can be
expressed as a string or as a % strkey % token that is defined in a Strings section of the
INF file.

Example
The following INF excerpt illustrates how to use profile-items-sections.

[FreecellJ
OptionDesc
Tip
Iconlndex
Parent
CopyFi 1 es

= %Freecell_DESC%
= %Freecell_TIP%
= 62 ;Windows mini-icon for dialogs
= Games
= FreecellCopyFilesSys, FreecellCopyFilesHelp

ProfileItems
Uninstall
Modes

[FreecellUninstall]
DelFiles
ProfileItems

[FreecellInstallItems]

Chapter 1 INF File Sections and Directives 263

FreecellUninstallItems,FreecellInstallItems
FreecellUninstall
0,1,2,3

FreecellCopyFilesSys, FreecellCopyFilesHelp
FreecellUninstallItems, FreecellUninstallItemsCommon

Name = %Freecell_DESC%
CmdLine = 11"freecell .exe
Worki ngDi r = 11
Subdir %Games_GROUP%
InfoTip = %Freecell_Infotip%

[FreecellUninstallItems]
Name
Subdir

%Freecell_DESC%,0x00000003
= %Games_GROUP%

[FreecellUninstallItemsCommon]
Name %Freecell_DESC%,0x00000002
Subdir = %Games_GROUP%

[Strings]
KEY_OPTIONAL
alComponents"

Games_DESC
Games_TIP
games.

Games_GROUP

Freecell_DESC
Freecell_TI P

Minesweeper_DESC
Mi nesweeper _TIP

Solitaire_DESC
Solitaire_TIP

See Also
DDlnstall

"SOFTWARE\Micr6soft\Windows\CurrentVersion\Setup\Option

"Games"
"Includes Freecell, Minesweeper, Pinball, and Solitaire

"Accessories\Games"

"Freecell"
"Logic puzzle in the form of a card game"

"Minesweeper"
"Strategy game"

"Solitaire"
"Card game"

264 Part 3 Setup

INF Updatelnis Directive
[DDlnstall] I [DDlnstall.Colnstallers] I [ClasslnstaIl32] I [ClasslnstaIl32.ntx86]

Updatelnis=update-ini-section[,' update-ini-section] ...

An Updatelnis directive references one or more named sections, specifying a given source
INI file from which a particular section or line within such a section is to be read during
installation and applied to an existing INI file of the same name on the target machine.
Optionally, line-by-line modifications from and to such INI files can be specified in the
update-ini section.

This directive is almost never specified in Windows 2000 device/driver INF files, due
to the lack of necessity for INI files on their distribution media in prior Windows 2000
releases. However, the Updatelnis directive is valid in any of the sections shown in the
formal syntax statement, as well as in INF-writer-defined sections referenced by an
Addlnterface directive or referenced in an Interfacelnstall32 section.

Comments
A given update-ini-section name must be unique to the INF file.

Each INF-writer-created section name must be unique within the INF and must follow the
same general rules for defining section names already described in General Syntax Rules for
INF Files. For more information about how to use the system-defined .nt and/or .ntx86
extensions in cross-platform and/or dual-OS INF files, see also Creating an INF File in Part
4, "Setup," in the Plug and Play, Power Management, and Setup Design Guide.

Each named section referenced by an Updatelnis directive has the following form:

[update-ini-section]

ini-file,ini-section[,old-ini-entry] [,new-ini-entry] [,[lags]

An update-ini-section can have any INF-writer-determined number of entries, each on a
separate line.

Updatelnis-Referenced Section Entries
ini-file
Specifies the name of an INI file supplied on the source media and, implicitly, that of the
INI file to be updated on the target machine. This value can be expressed as afilename or
as a %strkey% token that is defined in a Strings section of the INF file.

Chapter 1 INF File Sections and Directives 265

ini-section
Specifies the name of the section within the given INI file. If the next two values are spe
cified, this section contains an entry to be changed. If an old-ini-entry is omitted but a
new-ini-entry is provided, the new entry is to be added as this section is read.

old-ini-entry
This optional value specifies the name of an entry in the given ini-section, usually expressed
in the form "key=value". Either or both of key and value can be expressed as %strkey%
tokens defined in a Strings section of the INF file. The asterisk (*) can be specified as a
wild-card for either the key or the value.

new-ini-entry
This optional value specifies either a change to a given old-ini-entry or the addition of a new
entry. This value can be expressed in the same manner as old-ini-entry.

flags
This optional value controls the interpretation of the given old-ini-entry and/or new-ini
entry. The flags can be one of the following numerical values:

Value

o

1

2

Meaning

This is the default value for the flags if it is omitted.

If the given old-ini-entry key is present in the INI files, replace that key=value with the
given new-ini-entry. Only the keys in the INI files must match; the corresponding value of
each such key is ignored.

To add a new-ini-entry to the destination INI file unconditionally, omit the old-ini-entry
value from the entry in the update-ini section of the INF. To delete an old-ini-entry from
the destination INI file unconditionally, omit the new-ini-entry value.

If the given old-ini-entry (key=value) exists in the INI files, replace it in the destination
INI file with the given new-ini-entry. Both the key and value of the given old-ini-entry
must match those in the INI files for such a replacement to be made, not just their keys as
for the preceding flags value.

If the key specified for old-ini-entry cannot be found in the destination INI file, do
nothing. Otherwise, the changes made depend on matches found in the INI files for the
given keys of old-ini-entry and new-ini-entry, as follows:

If the key of the old-ini-entry exists in the INI files but so does the key of the new-ini
entry, replace the old-ini-entry with the new-ini-entry in the destination INI file and, then,
remove the superfluous new-ini-entry from that INI file.

If the key of the old-ini-entry exists in the INI files but the key of the new-ini-entry does
not, replace the old-ini-entry key with that of the new-ini-entry in the destination INI file
but leave the value of the old-ini-entry unchanged.

Continued

266 Part 3 Setup

Value

3

Meaning

If the key and value specified for old-ini-entry cannot be found in the INI files, do
nothing. Otherwise, the changes made depend on matches found in the INI files for the
given keys and values of old-ini-entry and new-in i-entry, as follows:

If the key=value of the old-ini-entry exists in the INI files but so does the key=value of the
new-ini-entry, replace the old-ini-entry with the new-ini-entry in the destination INI file
and, then, remove the superfluous new-ini-entry from that INI file.

If the key=value of the old-ini-entry exists in the INI files but the new-ini-entry does not,
replace the old-ini-entry with the new-ini-entry in the destination INI file but leave the
value of the old-ini-entry unchanged.

The INF provides the full path to the given ini-file on the distribution media in one of the
following ways:

• In IHV/OEM-supplied INFs, by using the SourceDisksNames and SourceDisksFiles
sections of this INF to explicitly specify the full path to each named source file that is not
in the root directory (or directories) on the distribution media

• In system-supplied INFs, by supplying one or more additional INF files, identified in the
LayoutFile entry in the Version section of the INF file

Any filename specified within an old-ini-entry or new-ini-entry should designate the desti
nation directory containing that file. Such a destination directory path to a filename in an
update-ini-section entry must be specified as the value of a DIRID _XXX, enclosed in % (per
cent) characters and followed by a \ (back slash). That is, such a DIRID _XXX specification
in an update-ini section entry has the form %dirid%\ where dirid is one of the predefined
directory identifiers or is a user-defined value created by a call to the SetupSetDirectoryld
function. The backslash separates the %dirid% from the given filename, as in any full path
specification to a file. For example, %11 %\card.ini can be used to reference card.ini in the
system32 directory. The installer replaces such a specification with the full destination path
to such a file during installation.

For a summary of the predefined dirid values, see the reference for the DestinationDirs
section.

Example
The following example shows, in part, how the Updatelnis directive is used to install the
system-supplied FAX services. This method works on both Windows 98 and Windows
2000. If your INF only supports Windows 2000, consider using the Pronleltems directive
instead. (See the /NF Profile/tems Directive section for more information.)

Chapter 1 INF File Sections and Directives 267

[FAX]
•... some other directives omitted for brevity
UpdateInis = FAXInis. OLDFaxRemove.ini. WFWFaxCleanUp.ini

[FAXlnis]
; Create link to SendTo folder. but first create folder
setup.ini. progman.groups •. "SendTo="" .. \ .. \%SendTo_Desc%"""
; Create link to EXE
setup. ini .SendTo ..

"""%SendToFax_DESC%"".%11%\awsnto32.exe .••.. %Sendfax%"

Program Item for the FAX group
first. create Accessories/Fax folder (if it doesn't exist)

setup.ini .progman.groups •• "groupFAX=%FAXApps_DESC%"
setup.ini .grotlpFax .. \ """%FAXCOVER_Link_Desc%"".FaxCover.exe ••.•. %FaxCover
%"

setup.ini .groupFAX •• \ """%SendNewFax%"".%11%\awsnto32.exe .•••• %Newfax%"
.... more "update" entries omitted here

See Also
Addlnterface, Classlnstall32, DDlnstall, DDlnstall.Colnstallers, DestinationDirs,
Ini2Reg, Interfacelnstall32, ProfileItems, SourceDisksFiles, SourceDisksNames,
Strings, UpdatelniFields, Version

INF UpdatelniFields Directive
[DDlnstall] I [DDlnstall.Colnstallers] I [ClasslnstaIl32] I [ClasslnstaIl32.ntx86]

U pdatelniFields=update-inijields-section[, update-inijields-section] ...

An UpdatelniFields directive references one or more named sections in which fine-grained
modifications within the lines of an INI file can be specified.

This directive is almost never specified in Windows 2000 device/driver INF files, due to the
lack of necessity for INI files on their distribution media in prior Windows 2000 releases.
However, the UpdatelniFields directive is valid in any of the sections shown in the formal
syntax statement, as well as in INF-writer-defined sections referenced by an Addlnterface
directive or referenced in an InterfacelnstalI32 section.

Comments
A given update-inijields-section name must be unique to the INF file. Each INF-writer
created section name must be unique within the INF and must follow the same general rules
for defining section names already described in General Syntax Rules for INF Files. For

268 Part 3 Setup

more information about how to use the system-defined .nt and/or .ntx86 extensions in cross
platform and/or dual-OS INF files, see also Creating an INF File in Part 4, "Setup," in the
Plug and Play, Power Management, and Setup Design Guide.

Each named section referenced by an UpdatelniFields directive has the following form:

[update-iniJields-section]

ini-file,ini-section,profile-name[,old-field] [,new-field] [,flags]

An update-iniJields-section can have any INF-writer-determined number of entries, each on
a separate line.

By contrast with a section referenced by the Updatelnis directive, a section referenced by
UpdatelniFields replaces, adds, or deletes portions of a line in an existing INI file line
rather than affecting the whole value of a particular line. At least one of the old1ield and/or
new-field value(s) must be specified in each section entry.

UpdatelniFields-Referenced Section Entries

ini-file
Specifies the name of an INI file supplied on the source media and, implicitly, that of a to
be-updated INI file on the target machine. This value can be expressed as afilename or as a
% strkey % token that is defined in a Strings section of the INF file.

ini-section
Specifies the name of the section within the given INI files containing the line to be
modified.

profile-name
Specifies the name of the line to be modified within the given INI section. At least one of
the old-field and/or new-field must be specified to effect a modification of this line.

old-field
Specifies an existing field within the given line. If new-field is omitted from this section
entry, this field will be deleted from the given line. Otherwise, the given new-field value
should replace this field.

new-field
Specifies a replacement for a given old-field or, if old-field is omitted, an addition to the
given line.

Chapter 1 INF File Sections and Directives 269

flags
Specifies (in bit 0) how to interpret given old-field and/or new-field if either or both contain
an asterisk (*), and/or (in bit 1) which separator character to use when appending a given
new-field to the given line, as follows:

Bit zero = 0
Interpret any asterisk (*) in the given old-field and/or new-field literally, not as a wild-card
character, when searching for a match in the given line of the INI file. This is the default
value.

Bit zero = 1
Interpret any asterisk (*) in the given old-field and/or new-field as a wild-card character
when searching for a match in the given line of the INI file.

Bit one = 0
Use a space character as a separator when adding the given new-field to the given line of the
INI file. This is the default value.

Bit one = 1
Use a comma (,) as a separator when adding the given new-field to the given line of the
INI file.

Any comments in a to-be-modified INI file line are removed because they might not be ap
plicable after changes made according to this section. When looking for fields in the line in
the INI files, spaces, tabs, and commas are interpreted as field delimiters. However, a space
character is used as the default separator when a new field is appended to a line.

The INF provides the full path to the given ini-file on the distribution media in one of the
following ways:

• In IHV/OEM-supplied INFs, by using the SourceDisksNames and SourceDisksFiles
sections of this INF to explicitly specify the full path to each named source file that is not
in the root directory (or directories) on the distribution media

• In system-supplied INFs, by supplying one or more additional INF files, identified in the
LayoutFile entry in the Version section of the INF file

See Also
Addlnterface, Classlnsta1l32, DDlnstall, DDlnstall.Colnstallers, Ini2Reg, Interface
Insta1l32, SourceDisksFiles, SourceDisksNames, Strings, Updatelnis, Version

270 Part 3 Setup

INF Ini2Reg Directive
[DDlnstall] I [DDlnstall.CoInstallers] I [ClassInsta1l32] I [ClassInsta1l32.ntx86]

Ini2Reg=ini-to-registry-section[, ini-to-registry-section] ...

An Ini2Reg directive references one or more named sections in which lines or sections from
a supplied INI file are moved into the registry, thereby creating or replacing one or more
value entries under a specified key.

This directive is almost never specified in Windows 2000 device/driver INF files, due to the
lack of necessity for INI files on their distribution media in prior Windows NTlWindows
2000 releases. However, the Ini2Reg directive is valid in any of the sections shown in the
formal syntax statement, as well as in INF-writer-defined sections referenced by an Add
Interface directive or referenced in an InterfaceInsta1l32 section.

Comments
A given ini-to-registry-section name must be unique to the INF file. Each INF-writer
created section name must be unique within the INF and must follow the same general
rules for defining section names already described in General Syntax Rules for INF Files.
For more information about how to use the system-defined .nt and/or .ntx86 extensions
in cross-platform and/or dual-OS INF files, see also Creating an INF File in Part 4, "Setup,"
in the Plug and Play, Power Management, and Setup Design Guide.

Each named section referenced by an Ini2Reg directive has the following form:

[ini-to-registry-section]

ini-file,ini-section,[ini-key],reg-root,subkey[,flag s]

An ini-to-registry-section can have any INF-writer-determined number of entries, each on a
separate line.

Ini2Reg-Referenced Section Entries
ini-file
Specifies the name of an INI file supplied on the source media. This value can be expressed
as a filename or as a % strkey % token that is defined in a Strings section of the INF file.

ini-section
Specifies the name of the section within the given INI file containing the registry informa
tion to be copied.

Chapter 1 INF File Sections and Directives 271

ini-key
Specifies the name of the key in the INI file to copy to the registry. If this value is omitted,
the whole ini-section is to be transferred to the specified registry sub key.

reg-root
Identifies the root of the registry tree for other values supplied in this entry. For specifics,
see the reference for the AddReg directive.

subkey
Identifies the subkey to receive the value, expressed either as a %strkey% token defined in
a Strings section of the INF or as an explicit registry path (keyJ\key2\key3 ...) from the given
reg-root.

flags
Specifies (in bit 0) how to handle the INI file after transferring the given information to the
registry and/or (in bit 1) whether to overwrite existing registry information, as follows:

Bit zero = 0
Do not remove the given information from the INI file after copying it into the registry. This
is the default.

Bit zero = 1
Delete the given information from the INI file after moving it into the registry.

Bit one = 0
If the specified sub key already exists in the registry, do not transfer the INI -supplied
information into this subkey. Otherwise, create the given subkey in the registry with this
INI -supplied information as its value entry. This is the default.

Bit one = 1
If the specified subkey already exists in the registry, replace its value entry with the INI
supplied information.

The INF provides the full path to the given ini-file on the distribution media in one of the
following ways:

• In IHV/OEM-supplied INFs, by using the SourceDisksNames and, possibly, Source
DisksFiles sections of this INF to explicitly specify the full path to each named source
file that is not in the root directory (or directories) on the distribution media

• In system-supplied INFs, by supplying one or more additional INF files, identified in the
LayoutFile entry in the Version section of the INF file

272 Part 3 Setup

See Also
AddInterface, AddReg, ClassInstall32, DDlnstall, DDlnstall.CoInstallers, Interface
Insta1l32, SourceDisksFiles, SourceDisksNames, Strings, UpdateIniFields, UpdateInis,
Version

CHAPTER 2

Setup Functions

This chapter summarizes the Setup functions. Installation software can use these
functions to:

• Read and process INF files

• Determine the amount of free space required on the installation's target system

• Move files from installation source media to media on the installation's target system,
while requesting user intervention as needed

• Create a log of files moved during an installation

Installation software typically uses these functions in conjunction with device installation
functions and PnP Configuration Manager functions.

The Setup functions listed in this chapter are described in detail in the Platform SDK
documentation. Their purpose is to enable installation software.

This chapter contains the· following topics:

• INF File Processing Functions

• Disk Prompting and Error Handling Functions

• File Queuing Functions

• Default Queue Callback Routine Functions

• Cabinet File Function

• Disk-Space List Functions

• MR U Source List Functions

• File Log Functions

273

274 Part 3 Setup

INF File Processing Functions
The INF file processing functions provide setup and installation functionality that includes:

• Opening and closing an INF file

• Retrieving information about an INF file

• Retrieving information about source files and target directories for copy operations

• Performing the installation actions specified in an INF file section

The following table lists the functions used for processing INF files. For detailed function
descriptions, see the Platform SDK documentation.

Function

SetupCloseInfFile

SetupCopyOEMInf

SetupDecompressOrCopyFile

SetupFindFirstLine

SetupFindNextLine

SetupFindNextMatchLine

SetupGetBinaryField

SetupGetFieldCount

SetupGetFileCompressionInfo

SetupGetInfFileList

SetupGetInfinformation

SetupGetIntField

SetupGetLineByIndex

SetupGetLineCount

SetupGetLineText

SetupGetMultiSzField

SetupGetSourceFileLocation

SetupGetSourceFileSize

SetupGetSourceInfo

Description

Frees resources and closes the INF handle.

Copies a file into %windir%Vnf.

Copies a file and, if necessary, decompresses it.

Finds a pointer to the first line in a·section of an INF file or, if a
key is specified, the first line that matches the key.

Returns a pointer to the next line in an INF file section.

Returns a pointer to the next line in an INF file section or, if a
key is specified, the next line that matches the key.

Retrieves binary data from a field in a specified line, in an INF
file.

Returns the number of fields in a line.

Retrieves file compression information from an INF file.

Returns a list of the INF files in a specified directory.

Returns information about an INF file.

Obtains the integer value of a specified field in a specified line,
in an INF file.

Returns a pointer to the line associated with a specified index
value in a specified section.

Returns the number of lines in the specified section.

Retrieves the contents of a specified line from an INF file.

Returns multiple strings, starting at a specified field in a line.

Returns the location of a source file listed in an INF file.

Returns the size of a specified file or a set of files listed in a
specified section of an INF file.

Retrieves the path, tag file, or description for a source.

Function

SetupGetStringField

SetupGetTargetPath

SetupInstallFile

SetupInstallFileEx

SetupInstallFilesFromInfSection

SetupInstallFromInfSection

SetupInstallServicesFromInf
Section

SetupOpeoAppendInfFile

SetupOpenInfFile

SetupOpenMasterInf

SetupQueryInfFileInformation

SetupQueryInfV ersion
Information

SetupSetDirectory Id

Chapter 2 Setup Functions 275

Description

Retrieves string data from a field in a specified line, in an
INF file.

Determines the target path for the files listed in a specified INF
file section.

Installs a specified file into a specific target directory.

Installs a specified file into a specific target directory. The
installation is postponed if an existing version of the file is
in use.

Queues the files in a specified INF file section for copying.
(Same as SetupQueueCopySection.)

Performs the directives specified in an INF DDlnstall section.

Performs service installation and deletion operations as
specified in an INF DDlnstall.Services section.

Opens an INF file and appends it to an existing INF handle.

Opens an INF file and returns a handle to it.

Opens the master INF file that contains file and layout
information for files shipped with Microsoft® Windows
NT®IWindows® 2000.

Returns the name of one of the constituent INF files of a
specified INF file.

Returns the version number of one of the constituent INF files
of a specified INF file.

Assigns a directory ID (DIRID) to a specified directory.

Disk Prompting and Error Handling Functions
You can use the Setup functions to prompt the user to insert new media, or to handle errors
that arise when files are being copied, renamed, or deleted.

The following table lists functions that provide dialog boxes for requesting installation
media and reporting errors. For detailed function descriptions, see the Platform SDK
documentation.

Function

SetupCopyError

SetupDeleteError

SetupPromptForDisk

SetupRenameError

Description

Generates a dialog box that informs the user of a copy error.

Generates a dialog box that informs the user of a delete error.

Generates a dialog box that prompts the user for an installation
medium or source file location.

Generates a dialog box that informs the user of a rename error.

276 Part 3 Setup

File Queuing Functions
U sing the Setup functions, you can queue files for various operations. File queues can be
established for copying, renaming, and deleting files: Typically, an application queues all
of the file operations necessary for an entire installation, then "commits" the queue so the
operations are performed in a single batch.

The following table provides a summary of file queuing functions. For detailed function
descriptions, see the Platform SDK documentation.

Function

SetupCloseFileQueue

SetupCommitFileQueue

SetupOpenFileQueue

SetupPromptReboot

SetupQueueCopy

SetupQueueCopySection

SetupQueueDefaultCopy

SetupQueueDelete

SetupQueueDeleteSection

SetupQueueRename

SetupQueueRenameSection

SetupScanFileQueue

SetupSetPlatformPath
Override

Description

Destroys a file queue along with any uncommitted file operations.

Commits (performs) all queued operations.

Creates and returns a handle to a file queue.

Prompts the user to reboot his or her machine, if necessary.

Queues a specified file for copying.

Queues the files in a specified INF file section for copying.

Queues a specified file for copying, using default source and
destination settings contained in the INF file.

Queues a specified file for deletion.

Queues the files in an INF file section for deletion.

Queues a specified file for renaming.

Queues the files in an INF section for renaming.

Scans a file queue and performs a specified operation on each
queue entry.

Sets the value used for overriding the default platform-specific
source path.

Default Queue Callback Routine Functions
If you associate a callback routine with a file queue, the callback routine will be called each
time the system performs one of the queued file operations. Typically, you can use the de
fault queue callback routine, SetupDefaultQueueCallback, to handle these notifications.

The following table lists functions associated with the default queue callback routine. For
detailed function descriptions, and for more information about using callback routines with
file queues, see the Platform SDK documentation.

Function

SetupDefaultQueueCallback

SetuplnitDefaultQueueCallback

SetuplnitDefaultQueueCallbackEx

SetupTermDefaultQueueCallback

Cabinet File Function

Chapter 2 Setup Functions 277

Description

Handles notifications sent by the system when queued file
operations are performed.

Initializes context information needed by Setup
DefaultQueueCallback.

Initializes context information needed by Setup
DefaultQueueCallback, and provides a separate window
for displaying progress messages.

Notifies the system that the setup application will not
commit any more file queue operations.

A cabinet file is a single file, usually with a .cab extension, that contains several compressed
files as a file library. Cabinet files are used to organize the installation files that will be
copied to the user's system. A compressed file can be spread over several cabinet files.

The following function is used with cabinet files. For a detailed function description, see the
Platform SDK documentation.

Function

SetuplterateCabinet

Disk-Space List Functions

Description

Sends a notification to a callback function for each file
stored in a cabinet file.

Disk-space list functions are used to create and modify disk-space lists. These lists can be
used to calculate the total disk space required to handle the files that will be copied or de
leted during the installation procedure.

The following table lists the functions that can be used to manipulate disk-space lists. For
detailed function descriptions, see the Platform SDK documentation.

Function

SetupAddlnstallSectionToDisk
SpaceList

SetupAddSectionToDisk
SpaceList

SetupAddToDiskSpaceList

Description

Searches for CopyFile and DelFile directives in a DDlnstall
section of an INF file, then adds the file operations specified
in those sections to a disk-space list.

Adds to a disk-space list all the file copy or delete
operations listed in a specified section of an INF file.

Adds a single delete or copy operation to a disk-space list.

Continued

278 Part 3 Setup

Function

SetupCreateDiskSpaceList

SetupDestroyDiskSpaceList

SetupQueryDrivesInDiskSpace
List

SetupQuerySpaceRequiredOn
Drive

SetupRemoveFromDiskSpace
List

SetupRemoveInstallSection
FromDiskSpaceList

SetupRemoveSectionFromDisk
SpaceList

MRU Source List Functions

Description

Creates a disk-space list.

Destroys a disk -space list and releases the resources
allocated to it.

Fills a caller-supplied buffer with a list of the drives refer
enced by the file operations listed in the disk-space list.

Examines a disk-space list to determine the space required
to perform all the file operations listed for a particular drive.

Removes a file copy or delete operation from a disk-space
list.

Searches for CopyFiles and DelFiles directives in a
DDlnstall section of an INF file, and removes the file
operations specified in those sections from a disk-space list.

Removes from a disk-space list the file copy or delete
operations listed in a specified section of an INF file.

Most recently used (MRU) source lists are resident on the user's machine and contain
information about source paths used in previous installations. This information can be used
when prompting the user for a source path.

The setup application can access a user-specific source list and, if the application has admin
istrator privilege, the system-wide source list. The setup application can also create a tempo
rary source list that is discarded when the setup application exits. By calling SetupSet
SourceList, the setup application identifies which source list it will use during the
installation.

The following table lists the functions that can be used to manipulate source lists. For
detailed function descriptions, see the Platform SDK documentation.

Function

SetupAddToSourceList

SetupCancelTemporarySourceList

SetupFreeSourceList

SetupQuerySourceList

SetupRemoveFromSourceList

SetupSetSourceList

Description

Adds an entry to a source list.

Cancels use of a temporary list.

Frees resources allocated by a previous call to Setup
SetSourceList.

Queries the current list of installation sources.

Removes an entry from an installation source list.

Sets the installation source list to the system MRU list, the
user MRU list, or a temporary list.

Chapter 2 Setup Functions 279

File Log Functions
You can use a log file to record information about the files copied to a system during an
installation. The log file can be either the system log or your own installation log file.

The following table lists the functions that can be used to manipulate log files. For detailed
function descriptions, see the Platform SDK documentation.

Function

SetuplnitializeFileLog

SetupLogError

SetupLogFile

SetupQueryFileLog

SetupRemoveFileLogEntry

SetupTerminateFileLog

Description

. Initializes a log file for use.

Writes an error message to a log file. (It should be used only
during the installation of the operating system.)

Adds an entry to the log file.

Retrieves information from a log file.

Removes an entry from a log file.

Releases resources allocated to a log file.

281

CHAPTER 3

Device Installation Functions

This section describes the Setup functions that support Windows® 2000 device installation.
These functions provide high-level device installation support used by system installation
and maintenance utilities. They provide a superset of the functionality provided by the
Windows 98 Device Installer functions. For the device installation operations that do not
have SetupDiXxx APIs, call the appropriate PnP Configuration Manager Functions
(CM_Xxx functions).

This chapter lists the Setup device installation functions in alphabetical order. The following
tables provide functional summaries of the functions: .

• Update Driver Function

• Device Information Functions

• Driver Information Functions

• Driver Selection Functions

• Device Installation Handlers

• Device Installation Customization Functions

• Setup Class Functions

• Class Bitmap and Icon Functions

• Device Interface Functions

• Registry Functions

• Other Functions

282 Part 3 Setup

Update Driver Function
Function

UpdateDriverForPlugAndPlayDevices

Description

Given an INF and a hardware ID, VpdateDriver
ForPlugAndPlayDevices installs updated drivers for
devices that match the hardware ID.

SetupDi Device Information Functions
Function

SetupDiCreateDevicelnfoList

SetupDiCreateDevicelnfoListEx

SetupDiCreateDevicelnfo

SetupDiOpenDevicelnfo

SetupDiEnumDevicelnfo

SetupDiGetDevicelnstanceld

SetupDiGetDevicelnfoListClass

SetupDiGetDevicelnfoListDetail

SetupDiGetClassDevs

SetupDiGetClassDevsEx

SetupDiSetSelectedDevice

SetupDiGetSelectedDevice

Description

Creates an empty device information set. This set can
be associated with a class GVID.

Creates an empty device information set. This set can
be associated with a class GVID and can be for
devices on a remote machine.

Creates a new device information element and adds it
as a new member to the specified device information
set.

Retrieves information about an existing device in
stance and adds it to the specified device information
set.

Returns a context structure for a device information
element of a device information set.

Retrieves the device instance ID associated with a
device information element.

Retrieves the class GVID associated with a device
information set if it has an associated class.

Retrieves information associated with a device
information set including the class GVID, remote
machine handle, and remote machine name.

Returns a device information set that contains all
devices of a specified class.

Returns a device information set that contains all
devices of a specified class on a local or remote
machine.

Sets the specified device information element to be the
currently-selected member of a device information set.
This function is typically used by an installation
wizard.

Retrieves the currently-selected device for the
specified device information set.

Function

SetupDiRegisterDevicelnfo

SetupDiDeleteDevicelnfo

SetupDiDestroyDevicelnfoList

Chapter 3 Device Installation Functions 283

Description

Registers a newly created device instance with the
Plug and Play Manager.

Deletes a member from the specified device informa
tion set. This function does not delete the actual
device.

Destroys a device information set and frees all
associated memory.

SetupDi Driver Information Functions
Function

SetupDiBuildDriverlnfoList

SetupDiEnumDriverlnfo

SetupDiGetDriver InfoDetaii

SetupDiSetSelectedDriver

SetupDiGetSelectedDriver

SetupDiCancelDriverlnfoSearch

SetupDiDestroyDriverlnfoList

Description

Builds a list of drivers associated with a specified
device instance or with the device information set's
global class driver list.

Enumerates the members of a driver information list.

Retrieves detailed information for a specified driver
information element.

Sets the specified member of a driver list as the
currently selected-driver. It can also be used to reset
the driver list so that there is no currently-selected
driver.

Retrieves the member of a driver list that has been
selected as the driver to install.

Cancels a driver list' search that is currently underway
in a different thread.

Destroys a driver information list.

SetupDi Driver Selection Functions
Function

SetupDiAskForOEMDisk

SetupDiSelectOEMDrv

SetupDiSelectDevice

Description

Displays a dialog that asks the user for the path to an
OEM installation disk.

Selects a driver for a device using an OEM path
supplied by the user.

Default handler for the DIF _SELECTDEVICE
request.

284 Part 3 Setup

SetupDi Device Installation Handlers
Function

SetupDiCallClassInstaller

SetupDiChangeState

SetupDiRegisterCoDevicelnstallers

SetupDiInstallDevice

SetupDiInstallDriverFiles

SetupDiInstallDevicelnterfaces

SetupDiMoveDuplicateDevice

SetupDiRemoveDevice

SetupDiUnremoveDevice

SetupDiRegisterDevicelnfo

SetupDiSelectDevice

SetupDiSelectBestCompatDrv

Description

Calls any registered coinstallers and the appropriate
class installer with the specified installation request.

The default handler for the DIF _PROPERTY
CHANGE request. It can be used to change the state
of an installed device.

Registers the device-specific coinstallers listed in
the INF file for the specified device. This function
is the default handler for DIF _REGISTER_
COINSTALLERS.

The default handler for the DIF _INSTALLDEVICE
request.

The default handler for the DIF _INSTALLDEVICE
FILES request.

The default handler for the DIF~INSTALL
INTERFACES request. It installs the interfaces listed
in a DDlnstall.lnterfaces section of a device INF file.

The default handler for the DIF _MOVEDEVICE
request.

The default handler for the DIF _REMOVEDEVICE
request.

The default handler for the DIF _UNREMOVE
request.

The default handler for the DIF _REGISTERDEVICE
request.

The default handler for the DIF _SELECTDEVICE
request.

The default handler for the DIF _SELECTBEST
COMPATDRV request.

SetupDi Device Installation Customization Functions
Function

SetupDiGetClasslnstallParams

SetupDiSetClasslnstallParams

Description

Retrieves class install parameters for a device
information set or a particular device information
element.

Sets or clears class install parameters for a device
information set or a particular device information
element.

Function

SetupDiGetDevicelnstallParams

SetupDiSetDevicelnstallParams

SetupDiGetDriver InstallParams

SetupDiSetDriverlnstallParams

SetupDi Setup Class Functions
Function

SetupDiBuildClasslnfoList

SetupDiBuildClasslnfoListEx

SetupDiGetClassDescription

SetupDiGetClassDescriptionEx

SetupDiGetINFClass

SetupDiClassGuidsFromName

SetupDiClassGuidsFromNameEx

SetupDiClassNameFromGuid

SetupDiClassNameFromGuidEx

SetupDiInstall Class

SetupDiInstallClassEx

SetupDiOpenClassRegKey

Chapter 3 Device Installation Functions 285

Description

Retrieves device install parameters for a device
information set or a particular device information
element.

Sets device install parameters for a device information
set or a particular device information element.

Retrieves install parameters for the specified driver.

Sets the install parameters for the specified driver.

Description

Returns a list of setup class GUIDs that includes every
class installed on the system.

Returns a list of setup class GUIDs that includes every
class installed on the local system or a remote system.

Retrieves the class description associated with the
specified setup class GUID.

Retrieves the description of a setup class installed on a
local or remote machine.

Retrieves the class of a specified device INF file.

Retrieves the GUID(s) associated with the specified
class name. This list is built based on what classes are
currently installed on the system.

Retrieves the GUID(s) associated with the specified
class name. This resulting list contains the classes
currently installed on a local or remote machine.

Retrieves the class name associated with the class
GUID.

Retrieves the class name associated with a class
GUID. The class can be installed on a local or remote
machine.

Installs the Classlnstall32 section of the specified INF
file.

Installs a class installer or an interface class.

Opens the device setup class registry key or a specific
class's subkey.

Continued

286 Part 3 Setup

Function

SetupDiOpenClassRegKeyEx

Description

Opens the device setup class registry key, the device
interface class registry key, or a specific class's
subkey. This function opens the specified key on the
local machine or on a remote machine.

SetupDi Class Bitmap and Icon Functions
Function

SetupDiGetClassImageList

SetupDiGetClassImageListEx

SetupDiGetClassImageIndex

SetupDiGetClassBitmapIndex

SetupDiDrawMiniIcon

SetupDiLoadClassIcon

SetupDiDestroyClassImageList

Description

Builds an image list that contains bitmaps for every
installed class and returns the list in a data structure.

Builds an image list of bitmaps for every class
installed on a local or remote machine.

Retrieves the index within the class image list of a
specified class.

Retrieves the index of the mini-icon supplied for the
specified class.

Draws the specified mini-icon at the location
requested.

Loads both the large and mini-icon for the specified
class.

Destroys a class image list.

SetupDi Device Interface Functions
Function

SetupDiCreateDevicelnterface

SetupDiOpenDevicelnterface

SetupDiGetDeviceInterfaceAlias

SetupDiGetClassDevs

SetupDiGetClassDevsEx

Description

Registers device functionality (a device interface) for
a device.

Retrieves information about an existing device
interface and adds it to the specified device
information set.

Returns an alias of the specified device interface.

Returns a device information set that contains all
devices of a specified class.

Returns a device information set that contains all
devices of a specified class on a local or remote
machine.

Function

SetupDiEnumDevicelnterfaces

SetupDiGetDevicelnterfaceDetail

SetupDiCreateDevicelnterfaceRegKey

SetupDiOpenDevicelnterfaceRegKey

SetupDiDeleteDevicelnterfaceRegKey

SetupDiInstallDevicelnterfaces

SetupDiRemoveDevicelnterface

SetupDiDeleteDevicelnterfaceData

SetupDiInstallClassEx

SetupDiOpenClassRegKeyEx

SetupDi Registry Functions
Function

SetupDiCreateDevRegKey

SetupDiOpenDevRegKey

Chapter 3 Device Installation Functions 287

Description

Returns a context structure for a device interface
element of a device information set. Each call returns
information about one device interface; the function
can be called repeatedly to get information about
several interfaces exposed by one or more devices.

Returns details about a particular device interface.

Creates a registry subkey for storing information about
a device interface instance and returns a handle to the
key.

Opens the registry subkey that is used by applications
and drivers to store information specific to a device
interface instance and returns a handle to the key.

Deletes the registry subkey that was used by
applications and drivers to store information specific
to a device interface instance.

Is the default handler for the DIF_
INST ALLINTERF ACES request. It installs
the interfaces listed in a DDlnstall.Interfaces section
of a device INF file.

Removes a registered device interface from the
system.

Deletes a device interface from a device information
set.

Installs a class installer or an interface class.

Opens the device setup class registry key, the device
interface class registry key, or a specific class's
subkey. This function opens the specified key on the
local machine or on a remote machine.

Description

Creates a registry storage key for device-specific
configuration information and returns a handle to the
key.

Opens a registry storage key for device-specific
configuration information and returns a handle to the
key.

Continued

288 Part 3 Setup

Function

SetupDiDeleteDevRegKey

SetupDiOpenClassRegKey

SetupDiOpenClassRegKeyEx

SetupDiCreateDevicelnterfaceRegKey

SetupDiOpenDevicelnterfaceRegKey

SetupDiDeleteDevicelnterfaceRegKey

SetupDiSetDeviceRegistryProperty

SetupDiGetDeviceRegistryProperty

Other SetupDi Functions
Function

SetupDiGetActualSectionTolnstall

SetupDiGetHwProfileFriendlyName

SetupDiGetHwProfileFriendlyNameEx

SetupDiGetHwProfileList

SetupDiGetH wPrordeListEx

Description

Deletes the specified user-accessible registry keyes)
associated with a device information element.

Opens the setup class registry key or a specific class's
subkey.

Opens the device setup class registry key, the device
interface class registry key, or a specific class's
subkey. This function opens the specified key on the
local machine or on a remote machine.

Creates a non-volatile registry subkey for storing
information about a device interface instance and
returns a handle to the key.

Opens the registry subkey that is used by applications
and drivers to store information specific to a device
interface instance and returns a handle to the key.

Deletes the registry subkey that was used by appli
cations and drivers to store information specific to
a device interface instance.

Sets the specified Plug and Play device property.

Retrieves the specified Plug and Play device property.

Description

Finds the appropriate DDlnstall section to use when
installing a device from a device INF file.

Retrieves the friendly name associated with a
hardware profile ID.

Retrieves the friendly name associated with a
hardware profile ID on a local or remote machine.

Retrieves a list of all currently defined hardware
profile IDs.

Retrieves a list of all currently defined hardware
profile IDs on a local or remote machine.

Chapter 3 Device Installation Functions 289

SetupDiAskForOEMDisk
BOOLEAN

SetupDiAskForOEMDisk(
IN HDEVINFO DevicelnfoSet.
IN PSP_DEVINFO_DATA DevicelnfoData OPTIONAL
) ;

SetupDiAskForOEMDisk displays a dialog that asks the user for the path to an OEM
installation disk.

Parameters
DevicelnfoSet
Supplies a handle to the device information set for the local machine that contains the device
being installed.

DevicelnfoData
Supplies a pointer to an SP _DEVINFO_DATA structure for the device being installed. If
this parameter is not specified, the driver being installed is associated with the global class
list of the device information set.

Return Value
The function returns TRUE if it is successful and the DriverPath field of the SP _DEV
INST ALLP ARAMS structure is updated to reflect the new path. If the user cancels
the dialog, the function returns FALSE and a call to GetLastError returns ERROR_
CANCELLED.

Comments
This function allows the user to browse local and network drives for OEM installation files.
The DevicelnfoSet must only contain elements on the local machine.

See Also
SetupDiSelectOEMDrv

290 Part 3 Setup

SetupDiBuildClasslnfoList
BOOLEAN

SetupDiBuildClassInfoList(
IN DWORD F7 ags,
OUT LPGUID C7assGuidList,
IN DWORD C7assGuidL1stSize,
OUT PDWORD RequiredSize
) ;

SetupDiBuildClasslnfoList returns a list of setup class GUIDs that includes every class
installed on the system.

Parameters
Flags
Flags used to control exclusion of classes from the list. If no flags are specified, all setup
classes are included in the list. Can be a combination of the following values:

DIBCLNOINSTALLCLASS
Exclude a class if it has the NolnstaIlClass value entry in its registry key.

DIBCLNODISPLA YCLASS
Exclude a class if it has the NoDisplayClass value entry in its registry key.

Class GuidList
Supplies a pointer to a buffer that receives a list of setup class GUIDs.

ClassGuidListSize
Supplies the number of GUIDs in the ClassGuildList array.

RequiredSize
Supplies a pointer to a variable that receives the number of GUIDs returned. If this number
is greater than the size of the ClassGuidList, the number indicates how large the ClassGuid
List array must be in order to contain the list.

Return Value
The function returns TRUE if it is successful. Otherwise it returns FALSE and the logged
error can be retrieved with a call to GetLastError.

Comments
To retrieve the list of setup class GUIDs installed on a remote system use SetupDiBuild
ClasslnfoListEx.

Chapter 3 Device Installation Functions 291

See Also
SetupDiBuildClassInfoListEx, SetupDiGetClassDescription, SetupDiGetINFClass

SetupDiBuildClasslnfoListEx
BOOLEAN

SetupDiBuildClassInfoListEx(
IN DWORD Flags,
OUT LPGUID C7assGuidList,
IN DWORD C7assGuidListSize,
OUT PDWORD RequiredSize,
IN PCTSTR MachineName, OPTIONAL
IN PVOID Reserved,
) :

SetupDiBuildClassInfoListEx returns a list of setup class GUIDs that includes every class
installed on the local system or a remote system.

Parameters
Flags
Flags used to control exclusion of classes from the list. If no flags are specified, all setup
classes are included in the list. Can be a combination of the following values:

DIBCLNOINSTALLCLASS
Exclude a class if it has the NoInstallClass value entry in its registry key.

D1BCLNODISPLAYCLASS
Exclude a class if it has the NoDisplayClass value entry in its registry key.

Class GuidList
Supplies a pointer to a buffer that receives a list of setup class GUIDs.

Class GuidListSize
Supplies the number of GUIDs in the ClassGuildList array.

RequiredSize
Supplies a pointer to a variable that receives the number of GUIDs returned. If this number
is greater than the size of the ClassGuidList, the number indicates how large the ClassGuid
List array must be in order to contain the list.

292 Part 3 Setup

MachineName
Optionally supplies the name of a remote machine from which to retrieve installed setup
classes. If MachineName is NULL, this function builds a list of classes installed on the local
machine.

Reserved
Must be NULL.

Return Value
The function returns TRUE if it is successful. Otherwise it returns FALSE and the logged
error can be retrieved with a call to GetLastError.

See Also
SetupDiBuildClasslnfoList, SetupDiGetClassDescriptionEx

SetupDiBuildDriverlnfoList
BOOLEAN

SetupDiBuildDriverInfoList(
IN HDEVINFO DevicelnfoSet,
IN OUT PSP_DEVINFO_DATA DevicelnfoData, OPTIONAL
IN DWORD DriverType
) ;

SetupDiBuildDriverInfoList builds a list of drivers associated with a specified device
instance or with the device information set's global class driver list.

Parameters
DevicelnfoSet
Supplies a handle to the device information set to contain the driver information list (either
globally for all elements or specifically for a single element). The device information set
must not contain remote elements.

DevicelnfoData
Supplies a pointer to the SP _DEVINFO_DATA structure for the device information element
for which to build a driver list. If this parameter is NULL, the list is associated with the de
vice information set and not with a particular device information element. Use NULL with
driver lists of type SPDIT_CLASSDRIVER only.

If the class of this device is updated as a result of building a compatible driver list, the
ClassGuid field of the SP _DEVINFO_DATA structure is updated upon return.

Chapter 3 Device Installation Functions 293

DriverType
Specifies what type of driver list to build. Must be one of the following values:

SPOIT _CLASSORIVER
Build a list of class drivers.

SPOIT _ COMPATORIVER
Build a list of drivers for this device. DevicelnfoData must be specified if this flag is set.

Return Value
The function returns TRUE if it is successful. Otherwise it returns FALSE and the logged
error can be retrieved with a call to GetLastError.

Comments
The caller can set Flags in the SP _DEVINSTALL_P ARAMS that are associated with the
device information set or with a specific device (DevicelnfoData) to control how the list is
built. For example, the caller can set the DI_FLAGSEX_ALLOWEXCLUDEDDRVS flag
to include drivers that are marked Exclude From Select.

A driver is Exclude From Select if either it is marked ExcludeFromSelect in the INF file or
it is a driver for a device whose whole setup class is marked NolnstallClass or NoUseClass
in the class installer INF. Drivers for PnP devices are typically "Exclude From Select"; PnP
devices should not be manually installed. To build a list of driver files for a PnP device a
caller of SetupDiBuildDriverlnfoList must set this flag.

The DriverPath in the SP _DEVINS'T ALL_P ARAMS contains either a path to a directory
containing INF files or a path to a specific INF file. If DI_ENUMSINGLEINF is set,
DriverPath contains a path to a single INF file. If DriverPath is NULL, this function
builds the driver list from the default INF location, %windir%\inf.

After this function has built the specified driver list, the caller can enumerate the elements of
the list by calling SetupDiEnumDriverlnfo.

If the driver list is associated with a device instance (that is, DevicelnfoData is specified),
the resulting list is composed of drivers that have the same class as the device instance with
which they are associated. If this is a global class driver list (that is, DriverType is SPDIT_
CLASSDRIVER and DevicelnfoData is not specified), the class that is used when building
the list is the class associated with the device information set. If the device information set
has no associated class, drivers of all classes are used when building the list.

Another thread can terminate the building of a driver list by a call to SetupDiCancel
DriverlnfoSearch.

The DevicelnfoSet must only contain elements on the local machine. This function only
searches for local drivers.

294 Part 3 Setup

See Also
SetupDiCancelDriverInfoSearch, SetupDiDestroyDriverInfoList, SetupDiEnum
DriverInfo

SetupDiCallClasslnstaller
BOOLEAN

SetupDiCallClassInstaller(
IN DI_FUNCTION Insta77Function.
IN HDEVINFO DevicelnfoSet.
IN PSP_DEVINFO_DATA DevicelnfoData OPTIONAL
);

SetupDiCallClassInstaIler calls any registered coinstallers and the appropriate class
installer with the specified installation request (DIF code).

Parameters
Instal/Function
Specifies the device installation request (DIF request) to pass to the coinstallers and class
installer. DIF codes have the format DIF _XXX and are defined in setupapi.h. See Device
Installation Function Codes for more information.

DevicelnfoSet
Supplies a handle to a device information set for the local machine.

DevicelnfoData
Supplies a pointer to an SP _DEVINFO_DATA structure that specifies a device in the
DeviceInfoSet. If DeviceInfoData is NULL, this function calls the installers for the setup
class associated with the device information set.

Return Value
The function returns TRUE if it is successful. Otherwise it returns FALSE and the logged
error can be retrieved with a call to GetLastError.

Comments
SetupDiCaIlClassInstaIler calls the class installer and any coinstallers that are registered
for a device or a device setup class. This function loads the installers if they are not yet
loaded. This function also calls the default handler for the DIF request, if there is a default
handler and if the installers returned a status indicating that the default handler should be
called.

Chapter 3 Device Installation Functions 295

Setup applications call this function with a variety of device installation function requests
(DIF requests). This function ensures that all the appropriate installers and default handlers
are called, in the correct order, for a given DIF request.

The DevicelnfoSet must only contain elements on the local machine.

See the Plug and Play, Power Management, and Setup Design Guide for information on the
design and operation of class installers and coinstallers.

See Also
SP _DEVINFO_DATA

SetupDiCancelDriverlnfoSearch
BOOLEAN

SetupDiCancelDriverInfoSearch(
IN HDEVINFO DevicelnfoSet
) ;

SetupDiCancelDriverlnfoSearch cancels a driver list search that is currently underway in
a different thread.

Parameters
DevicelnfoSet
Supplies a handle to the device information set for which a driver list is being built.

Return Value
If a driver list search is underway for the specified device information set when this function
is called, the search is terminated. SetupDiCancelDriverlnfoSearch returns TRUE when
the termination is confirmed. Otherwise it returns FALSE and a call to GetLastError re
turns ERROR_INVALID_HANDLE.

Comments
SetupDiCancelDriverlnfoSearch is a synchronous call; therefore, it does not return until
the driver search thread responds to the termination request.

See Also
SetupDIBuildDriverlnfoList

296 Part 3 Setup

SetupDiChangeState
BOOLEAN

SetupDiChangeState(
IN HDEVINFO DevicelnfoSet.
IN OUT PSP_DEVINFO_DATA DevicelnfoData
) ;

SetupDiChangeState is the default handler for the DIF _PROPERTYCHANGE installation
request. This function changes the state of an installed device.

Parameters
DeviceinfoSet
Supplies a handle to a device information set for the local machine.

De viceinfoData
Supplies a pointer to an SP _DEVINFO _DATA structure that specifies a device in the
DevicelnfoSet. This is an IN OUT parameter because the DevInst field of the structure
can be updated with a new handle value upon return.

Return Value
The function returns TRUE if it is successful. Otherwise it returns FALSE and the logged
error can be retrieved with a call to GetLastError.

Comments
Callers of this function must specify a DICS_XXX flag in the SP _PROPCHANGE_
P ARAMS for the device element that indicates the type of state change to perform on the
device. Callers of this function must set the appropriate fields in the SP _PROPCHANGE_ .
P ARAMS and call SetupDiSetClassInstallParams before calling this function.

If you specify the DICS_FLAG_CONFIGSPECIFIC flag in the SP _PROPCHANGE_
PARAMS then you must fill in the HwProfile field. A value of zero for HwProfile
indicates the current profile.

To enable/disable a device in the current hardware profile, set the DICS_FLAG_
CONFIGSPECIFIC flag in the SP _PROPCHANGE_PARAMS. To enable/disable a
device globally, such as in both the docked and undocked hardware profiles, set the DICS_
FLAG_GLOBAL flag.

This function does the following:

DieS_ENABLE
Loads the drivers for the device and starts the device, if possible. If the function is not able
to start the device, it sets the DI_NEEDREBOOT flag for the device which indicates to the

Chapter 3 Device Installation Functions 297

initiator of the property change request that they must prompt the user to reboot the
machine.

DICS_DISABLE
Disables the device. If the device is disableable but this function cannot disable the device
dynamically, this function marks the device to be disabled the next time the machine
reboots.

DICS_PROPCHANGE
Removes and reconfigures the device so the new properties can take effect. This flag
typically indicates that a user has changed a property on a Device Manager property page
for the device. The PnP Manager directs the drivers for the device to remove their device
objects and then the PnP Manager reconfigures and restarts the device.

Callers of this function should not specify DICS_STOP or DICS_START in the SP _
PROPCHANGE_PARAMS. Use DICS_PROPCHANGE to stop and restart a device
to cause changes in the device's configuration to take effect.

If DI_DONOTCALLCONFIGMG is set for a device, you should not call SetupDiChange
State for the device but should instead set the DI_NEEDREBOOT flag.

See Also
DIF _PROPERTYCHANGE, SetupDiCallClassInstaller, SP _PROPCHANGE_PARAMS

SetupDiClassGuidsFromName
BOOLEAN

SetupDiClassGuidsFromName(
IN PCTSTR C7assName,
OUT LPGUID C7assGuidList,
IN DWORD C7assGuidListSize,
OUT PDWORD RequiredSize
) ;

SetupDiClassGuidsFromName retrieves the GUID(s) associated with the specified class
name. This list is built based on the classes currently installed on the system.

Parameters
ClassName
Supplies the name of the class for which to retrieve the class GUID.

ClassGuidList
Supplies a pointer to an array to receive the list of GUIDs associated with the specified class
name.

298 Part 3 Setup

ClassGuidListSize
Supplies the number of GUIDs in the ClassGuidList array.

RequiredSize
Supplies a pointer to a variable that receives the number of GUIDs associated with the
class name. If this number is greater than the size of the ClassGuidList buffer, the number
indicates how large the array must be in order to store all the GUIDs.

Return Value
The function returns TRUE if it is successful. Otherwise it returns FALSE and the logged
error can be retrieved with a call to GetLastError.

Comments
Call SetupDiClassGuidsFromNameEx to retrieve the class GUIDs for a class on a remote
machine.

See Also
SetupDiClassGuidsFromNameEx, SetupDiClassNameFromGuid

SetupDiClassGuidsFromNameEx
BOOLEAN

SetupDiClassGuidsFromNameEx(
IN PCTSTR C7assName,
OUT LPGUID C7assGuidList,
IN DWORD C7assGuidListSize,
OUT PDWORD RequiredSize,
IN PCSTR MachineName, OPTIONAL
IN PVOID Reserved
) ;

SetupDiClassGuidsFromNameEx retrieves the GUID(s) associated with the specified
class name. This resulting list contains the classes currently installed on a local or remote
machine.

Parameters
ClassName
Supplies the name of the class for which to retrieve the class GUIDs.

ClassGuidList
Supplies a pointer to an array to receive the list of GUIDs associated with the specified
class name.

Chapter 3 Device Installation Functions 299

Class GuidListSize
Supplies the number of GUIDs in the ClassGuidList array.

RequiredSize
Supplies a pointer to a variable that receives the number of GUIDs associated with the
class name. If this number is greater than the size of the ClassGuidList buffer, the number
indicates how large the array must be in order to store all the GUIDs.

MachineName
Optionally supplies the name of a remote machine from which to retrieve the GUIDs. If
MachineName is NULL, the local machine is used.

Reserved
Must be NULL.

Return Value
The function returns TRUE if it is successful. Otherwise it returns FALSE and the logged
error can be retrieved with a call to GetLastError.

Comments
Class names are not guaranteed to be unique; only GUIDs are unique. Therefore, one class
name can return more than one GUID.

See Also
SetupDiClassGuidsFromName, SetupDiClassNameFromGuidEx

SetupDiClassNameFromGuid
BOOLEAN

SetupDiClassNameFromGuid(
IN LPGUID C7assGuid.
OUT PTSTR C7assName.
IN DWORD C7assNameSize.
OUT PDWORD RequiredSize OPTIONAL
) ;

SetupDiClassNameFromGuid retrieves the class name associated with a class GUID.

Parameters
Class Guid
Supplies the class GUID of the class name to retrieve.

300 Part 3 Setup

ClassName
Receives the name of the class for the specified GUID.

ClassNameSize
Supplies the size, in characters, of the ClassName buffer.

RequiredSize
Receives the number of characters required to store the class name (including terminating
NULL). RequiredSize is always less than MAX_CLASS_NAME_LEN.

Return Value
The function returns TRUE if it is successful. Otherwise it returns FALSE and the logged
error can be retrieved with a call to GetLastError.

Comments
Call SetupDiClassNameFromGuidEx to retrieve the name for a class on a remote
machine.

See Also
SetupDiClassGuidsFromName,.SetupDiClassNameFromGuidEx

SetupDiClassNameFromGuidEx
BOOLEAN

SetupDiClassNameFromGuidEx(
IN LPGUID C7assGuid.
OUT PTSTR C7assName.
IN DWORD C7assNameSize.
OUTPDWORD RequiredSize. OPTIONAL
IN PCSTR MachineName. OPTIONAL
IN PVOID Reserved
);

SetupDiClassNameFromGuidEx retrieves the class name associated with a class GUID.
The class can be installed on a local or remote machine.

Parameters
Class Guid
Supplies the class GUID of the class name to retrieve.

ClassName
Receives the name of the class for the specified GUID.

Chapter 3 DevIce InstallatIon FunctIons 301

ClassNameSlze
Supplies the size, in characters, of the ClassName buffer.

RequlredSlze
Receives the number of characters required to store the class name (including terminating
NULL). RequiredSize is always less than MAX_CLASS_NAME_LEN.

MachineName
Optionally supplies the name of a remote machine on which the class is installed. If
MachineName is NULL, the local machine is used.

Reserved
Must be NULL.

Return Value
The function returns TRUE if it is successful. Otherwise it returns FALSE and the logged
error can be retrieved with a call to GetLastError.

See Also
SetupDiClassGuidsFromNameEx,.SetupDiClassNameFromGuid

SetupDiCreateDevicelnfo
BOOLEAN

SetupDiCreateDeviceInfo(
IN HDEVINFO DevicelnfoSet.
IN PCTSTR DeviceName.
IN LPGUID C7assGuid.
IN PCTSTR DeviceDescription. OPTIONAL
IN HWND hwndParent. OPTIONAL
IN DWORD CreationF7ags.
OUT PSP_DEVINFO_DATA DevicelnfoData OPTIONAL
) :

SetupDiCreateDevicelnfo creates a new device information element and adds it as a new
member to the specified device information set.

Parameters
DevicelnfoSet
Supplies a handle to the device information set for the local machine.

302 Part 3 Setup

DeviceName
Supplies either a full device instance ID (for example, Root*PNPOSOO\OOOO) or a root
enumerated device ID without the Enum branch prefix and instance ID suffix (for example,
*PNPOSOO). The root-enumerated device ID can be used only if the DICD_OENERATE_
ID flag is specified in the CreationFlags parameter.

Class Guid
Supplies a pointer to the OUID for this device's class. If the class is not known, this value
should be OUID _NULL.

DeviceDescription
Supplies a textual description of the device.

hwndParent
Supplies the window handle of the top-level window to use for any user interface related to
installing the device.

CreationFlags
Controls how the device information element is created. Can be a combination of the
following values:

DICD_GENERATEjD
If this flag is specified, DeviceName contains only a Root-enumerated device ID and the
system creates a unique device instance key for it. This unique device instance key is
generated as:

Enum\Root\DeviceNameVnstanceID where InstanceID is a four-digit, base-IO number
that is unique among all subkeys under Enum\Root\DeviceName. Call SetupDiGetDevice
InstanceId to find out what ID was generated for this device information element.

DICD jNHERIT _ CLASSDRVS
If this flag is specified, the resulting device information element inherits the class driver list,
if any, associated with the device information set. In addition, if there is a selected driver for
the device information set, that same driver is selected for the new device information
element.

DevicelnfoData
Optionally supplies a pointer to an SP _DEVINFO _DATA structure to receive the new
device information element. If this parameter is not NULL, the caller must set cbSize to
sizeof(SP _DEVINFO_DATA).

Chapter 3 Device Installation Functions 303

Return Value
The function returns TRUE if it is successful. Otherwise it returns FALSE and the logged
error can be retrieved with a call to GetLastError.

Comments
If this device instance is being added to a set that has an associated class, the device class
must be the same or the call fails. In this case, a call to GetLastError returns ERROR_
CLASS_MISMATCH.

If the specified device instance is the same as an existing device instance key in the registry,
the call fails. In this case, a call to GetLastError returns ERROR_DEVINST_ALREADY_
EXISTS. This occurs only if the DCID_GENERATE_ID flag is not set.

If the new device information element was successfully created but the caller-supplied
DevicelnfoData buffer is invalid, the function returns FALSE. In this case, a call to Get
LastError returns ERROR_INVALID_USER_BUFFER. However, the device information
element will have been added as a new member of the set already.

The DevicelnfoSet must only contain elements on the local machine.

See Also
SetupDiDeleteDeviceInfo, SetupDiEnumDeviceInfo, SetupDiOpenDeviceInfo,
SP _DEVINFO_DATA

SetupDiCreateDevicelnfoList
HDEVINFO

SetupDiCreateDeviceInfoList(
IN LPGUID C7assGuid, OPTIONAL
IN HWND hwndParent OPTIONAL
) ;

SetupDiCreateDeviceInfoList creates an empty device information set. This set can be
associated with a class GUID.

Parameters
ClassGuid
Optionally supplies the GUID of the setup class associated with this device information set.
If this parameter is specified, only devices of this class may be included in this device infor
mation set.

304 Part 3 Setup

hwndParent
Optionally supplies the window handle of the top-level window to use for any user interface
related to non-device-specific actions (such as a select-device dialog using the global class
driver list).

Return Value
The function returns a handle to an empty device information set if it is successful. Other
wise it returns INVALID_HANDLE~ VALUE. To get extended error infonnation, call Get
LastError.

Comments
The caller of this function must delete the returned device information set when it is no
longer needed by calling SetupDiDestroyDeviceInfoList.

To create a device infonnation list for a remote machine use SetupDiCreateDeviceInfo
ListEx.

See Also
SetupDiCreateDeviceInfoListEx, SetupDiGetClassDevs, SetupDiDestroyDeviceInfo
List, SetupDiGetDeviceInfoListClass

SetupDiCreateDevicelnfoListEx
HDEVINFO

SetupDiCreateDeviceInfoListEx(
IN LPGUID C7assGuid. OPTIONAL
IN HWND hwndParent. OPTIONAL
IN PCTSTR MachineName. OPTIONAL
IN PVOID Reserved
) ;

SetupDiCreateDeviceInfoListEx creates an empty device infonnation set. This set can be
associated with a class OUID and can be for devices on a remote machine.

Parameters
Class Guid
Optionally supplies the OUID of the setup class associated with this device infonnation set.
If this parameter is specified, only devices of this ,class may be included in this device infor
mation set.

Chapter 3 Device Installation Functions 305

hwndParent
Optionally supplies the window handle of the top-level window to use for any user interface
related to non-device-specific actions (such as a select-device dialog using the global class
driver list).

MachineName
Optionally supplies the name of a machine on the network. If such a name is specified,
only devices on that machine can be created and opened in this device information set. If
MachineName is NULL, the device information set is for local devices.

Reserved
Must be NULL.

Return Value
The function returns a handle to an empty device information set if it is successful. Other
wise, it returns INV ALID _HANDLE_ V ALUE. To get extended error information, call
GetLastError.

Comments
The caller of this function must delete the returned device information set when it is no
longer needed by calling SetupDiDestroyDevicelnfoList.

If the device information set is for devices on a remote machine (MachineName is not
NULL), all subsequent operations on this set or any of its elements must use routines that
support device information sets with remote elements. The SetupDiXxx routines that do not
provide this support, such as SetupDiCallClasslnstaller, have a statement to that effect in
their reference page.

See Also
SetupDiCreateDevicelnfoList, SetupDiDestroyDevicelnfoList, SetupDiGetDevicelnfo
ListDetaii

SetupDiCreateDevicelnterface
BOOLEAN

SetupDiCreateDevicelnterface(
IN HDEVINFO DevicelnfoSet.
IN PSP_DEVINFO_DATA DevicelnfoData.
IN LPGUID InterfaceC7 assGui d.
IN PCTSTR ReferenceString. OPTIONAL
IN DWORD CreationF7ags.
OUT PSP_DEVICE_INTERFACE_DATA DevicelnterfaceData OPTIONAL
) ;

306 Part 3 Setup

SetupDiCreateDevicelnterface registers device functionality (a device interface) for a
device.

Parameters
DevicelnfoSet
Points to the device information set containing the device for which an interface is being
registered. This handle is typically returned by SetupDiGetClassDevs. The device infor
mation set must not contain remote elements.

DevicelnfoData
Supplies a pointer to an SP _DEVINFO _DATA structure that identifies the device in the
device information set.

InterfaceClassGuid
Points to a class GUID that specifies the interface class for the new interface.

ReferenceString
Optionally points to a reference string; this parameter is typically NULL.

Reference strings are only used by a few bus drivers that use device interfaces as place
holders for software devices that are created on demand.

Creation Flags
Reserved. Must be zero.

De vicelnterfaceData
Optionally points to a caller-allocated buffer to receive information about the new device
interface. The caller must set DevicelnteifaceData.cbSize to sizeof(SP _DEVICE_INTER
FACE_DATA) before calling this function.

Return Value
SetupDiCreateDevicelnterface returns TRUE if the function completed without error. If
the function completed with an erorr, it returns FALSE and the error code for the failure can
be retrieved by calling GetLastError. '

Comments
SetupDiCreateDevicelnterface registers an interface for a device. If a device has more than
one interface, call this function once for each interface being registered.

Before a registered interface can be used by applications and other system components the
interface must be enabled by the driver for the device.

/.

Chapter 3 Device Installation Functions 307

This function creates a registry key for the new device interface. Callers of this function can
access non-volatile storage under this key using SetupDiOpenDeviceInterfaceRegKey.

If the new device interface is successfully created and registered, but the caller-supplied
DevicelnteifaceData buffer is invalid, this function returns FALSE and GetLastError
returns ERROR_INVALID_USER_BUFFER. The caller's buffer error does not prevent
the interface from being created and registered.

The DevicelnfoSet must only contain elements on the local machine.

See Also
SetupDiOpenDeviceInterfaceRegKey, SetupDiRemoveDeviceInterface

SetupDiCreateDevicelnterfaceRegKey
HKEY

SetupDiCreateDeviceInterfaceRegKey(
IN HDEVINFO DevicelnfoSet,
IN PSP_DEVICE_INTERFACE_DATA DevicelnterfaceData,
IN DWORD Reserved,
IN REGSAM samDesired,
IN HINF InfHand7e, OPTIONAL
IN PCTSTR InfSectionName OPTIONAL
) ;

SetupDiCreateDeviceInterfaceRegKey creates a registry key for storing information about
a device interface instance and returns a handle to the key.

Parameters
De vicelnfoSet
Points to a device information set containing the interface and its underlying device. The
device information set must not contain remote elements.

De vicelnterfaceData
Points to a structure that identifies the device interface, possibly returned by SetupDi
CreateDeviceInterface.

Reserved
Reserved. Must be zero.

sam Desired
Specifies the registry access requested by the caller to the key being created.

308 Part 3 Setup

/nfHand/e
Optionally supplies the handle of an open INF file that contains a DDlnstall section to be
executed for the newly-created key. If this parameter is not NULL, InfSectionName must
be specified as well.

/nfSectionName
Optionally points to the name of an DDlnstall section in the INF file specified by InfHandle~
This section is executed for the newly created key. If this parameter is not NULL, InfHandle
must be specified as well.

Return Value
SetupDiCreateDevicelnterfaceRegKey returns a handle to the newly-created registry key.
If the function fails, it returns INV ALID_HANDLE_ VALUE. Call GetLastError to get
extended error information.

Comments
SetupDiCreateDevicelnterfaceRegKey creates a non-volatile subkey of the registry key
for the specified device interface. Callers of this function can store private configuration
data for the device interface in this subkey. The driver for the device can access this subkey
using IoXxx routines.

Close the handle returned from this function by calling RegCloseKey.

The DevicelnfoSet must only contain elements on the local machine.

See Also
SetupDiCreateDeviceInterface, SetupDiDeleteDeviceInterfaceRegKey, SetupDiOpen
DevicelnterfaceRegKey

SetupDiCreateDevRegKey
HKEY

SetupD;CreateDevRegKey(
IN HDEVINFO DevicelnfoSet.
IN PSP_DEVINFO_DATA DevicelnfoData.
IN DWORD Scope.
IN DWORD HwProfi7e.
IN DWORD KeyType.
IN HINF InfHand7e. OPTIONAL
IN PCTSTR InfSect i onName OPTIONAL
) ;

SetupDiCreateDevRegKey creates a registry storage key for device-specific configuration
information and returns a handle to the key.

Parameters
DevicelnfoSet

Chapter 3 Device Installation Functions 309

Supplies a handle to the device information set containing information about the device
instance whose registry configuration storage key is to be created. The device information
set must not contain remote elements.

DevicelnfoData
Supplies a pointer to an SP _DEVINFO_DATA structure indicating the device instance for
which to create the registry key.

Scope
Specifies the scope of the registry key to be created. The scope determines where the infor
mation is stored. The key created can be global or hardware profile-specific. Can be one of
the following values:

DICS_FlAG_GlOBAl
Create a key to store global configuration information. This information is not specific to
a particular hardware profile. On Windows NT®lWindows 2000 this creates a key that is
rooted at HKEY _LOCAL_MACHINE. The exact key opened depends on the value of
the KeyType parameter.

DICS_FlAG_ CONFIGSPECIFIC
Create a key to store hardware profile-specific configuration information. This key is rooted
at one of the hardware-profile specific branches, instead of HKEY_LOCAL_MACHINE.

HwProfile
Specifies the hardware profile for which to create a key if HwProfileFlags is set to
SPDICS_FLAG_CONFIGSPECIFIC. If HwProfile is 0, the key for the current hardware
profile is created. If HwProfileFlags is SPDICSYLAG_GLOBAL, HwProfile is ignored.

KeyType
Specifies the type of registry storage key to create. Can be one of the following values:

DIREG_DEV
Create a hardware registry key for the device. This is the key for storage of driver
independent configuration information. This key is in the Devicelnstance key of the Enum
branch.

DIREG_DRV
Create a software, or driver, registry key for the device. This key is located in the Class
branch.

310 Part 3 Setup

/nfHand/e
Supplies the handle of an open INF file that contains a DDlnstall section to be executed
for the newly-created key. If this parameter is specified, InfSectionName must be specified
as well.

/nfSectionName
Supplies the name of a DDlnstall section in the INF file specified by InfHandle. This sec
tion is executed for the newly created key. If this parameter is specified, InfHandle must be
specified as well.

Return Value
If the function is successful, it returns a handle to the newly-created registry key where
private configuration data pertaining to this device instance can be stored/retrieved. If the
function fails, it returns INVALID_HANDLE_ V ALUE. Call GetLastError to get extended
error information.

Comments
Close the handle returned from this function by calling RegCloseKey.

The specified device instance must be registered before calling this function. After creating
the device instance with SetupDiCreateDevicelnfo, call SetupDiRegisterDevicelnfo to
register it.

The DevicelnfoSet must only contain elements on the local machine.

See Also
SetupDiCreateDevicelnfo, SetupDiGetHwProfileList, SetupDiOpenDevRegKey,
SetupDiRegisterDevicelnfo

SetupDi DeleteDevicelnfo
BOOLEAN

SetupDiDeleteDeviceInfo(
IN HDEVINFO DevicelnfoSet,
IN PSP_DEVINFO_DATA DevicelnfoData
) ;

SetupDiDeleteDevicelnfo deletes a member from the specified device information set. This
function does not delete the actual device.

Parameters
DevicelnfoSet

Chapter 3 Device Installation Functions 311

Supplies a handle to the device information set containing the device information member to
delete.

DevicelnfoData
Supplies a pointer to the SP _DEVINFO_DATA structure for the device information
member to delete.

Return Value
The function returns TRUE if it is' successful. Otherwise it returns FALSE and the logged
error can be retrieved with a call to GetLastError.

Comments
If the specified device information element is in use (for example, by a wizard page), the
function fails. In this case, a call to GetLastError returns ERROR_DEVINFO_DATA_
LOCKED. This happens if a handle to a wizard page is retrieved with a call to SetupDiGet
WizardPage with this device information element specified and the DIWP _FLAG_USE_
DEVINFO_DATA flag set. To delete this device information element, you must first close
the wizard's HPROPSHEETP AGE handle.

See Also
SetupDiCreateDevicelnfo, SetupDiEnumDevicelnfo, SetupDiGetWizardPage, Setup
DiOpenDevicelnfo

SetupDiDeleteDevicelnterfaceData
BOOLEAN

SetupDiDeleteDeviceInterfaceData(
IN HDEVINFO DevicelnfoSet.
IN PSP_DEVICE_INTERFACE_DATA DevicelnterfaceData
) :

SetupDiDeleteDevicelnterfaceData deletes a device interface from a device informa
tion set.

Parameters
De vicelnfoSet
Points to the device information set containing the interface and its underlying device. This
handle is typically returned by SetupDiGetClassDevs.

312 Part 3 Setup

De vicelnterfaceData
Points to a structure that identifes the interface to be deleted. This structure is typically
returned by SetupDiEnumDevicelnterfaces.

Return Value
SetupDiDeleteDevicelnterfaceData returns TRUE if the function completed without error.
If the function completed with an erorr, it returns FALSE and the error code for the failure
can be retrieved by calling GetLastError.

Comments
SetupDiDeleteDevicelnterfaceData deletes a device interface element from a device infor
~ation set. This function has no effect on the device interface or the underlying device.

See Also
SetupDiEnumDevicelnterfaces, SetupDiGetClassDevs, SetupDiRemoveDeviceInterface

SetupDiDeleteDevicelnterfaceRegKey
BOOLEAN

SetupDiDeleteDev;ceInterfaceRegKey(
IN HDEVINFO DevicelnfoSet,
IN PSP_DEVICE_INTERFACE_DATA DevicelnterfaceData,
IN DWORD Reserved
) ;

SetupDiDeJeteDevicelnterfaceRegKey deletes the registry subkey that was used by
applications and drivers to store information specific to a device interface instance.

Parameters
DevicelnfoSet
Points to a device information set containing the interface and its underlying device. The
device information set must not contain remote elements.

DevicelnterfaceData
Points to a structure that identifies the device interface, possibly returned 'by SetupDi
CreateDevicelnterface or SetupDiEnumDevicelnterfaces.

Reserved
Reserved. Must be zero.

Chapter 3 Device Installation Functions 313

Return Value
SetupDiDeleteDevicelnterfaceRegKey returns TRUE if it is successful; otherwise, it
returns FALSE and the logged error can be retrieved with a call to GetLastError.

Comments
SetupDiDeleteDevicelnterfaceRegKey deletes the subkey used by drivers and appli
cations to store information about the device interface instance. This subkey was created
by SetupDiCreateDevicelnterfaceRegKey or by the driver's call to an associated IoXxx
routine. SetupDiDeleteDevicelnterfaceRegKey does not affect the main registry key for
the device interface instance nor any other subkeys that may have been created.

The DevicelnfoSet must only contain elements on the local machine.

See Also
SetupDiCreateDevicelnterface, SetupDiCreateDevicelnterfaceRegKey

SetupDiDeleteDevRegKey
BOOLEAN

SetupDiDeleteDevRegKey(
IN HDEVINFO DevicelnfoSet,
IN PSP_DEVINFO_DATA DevicelnfoData,
IN DWORD Scope,
IN DWORD HwProfi7e,
IN DWORD Key Type
) :

SetupDiDeleteDevRegKey deletes the specified user-accessible registry keyes) associated
with a device information element.

Parameters
DevicelnfoSet
Supplies a handle to the device information set containing the device instance whose
registry configuration storage key is to be deleted. The device information set must not
contain remote elements.

De vicelnfoData
Supplies a pointer to an SP _DEVINFO_DATA structure indicating the device instance for
which to delete registry keyes).

314 Part 3 Setup

Scope
Specifies the scope of the registry key to delete. The scope indicates where the information
is located. The key can be global or hardware profile-specific. Can be one of the following
values:

DICS_FLAG_ GLOBAL
Delete the key that stores global configuration information.

DICS_FLAG_CONFIGSPECIFIC
Delete the key that stores hardware profile-specific configuration information.

HwProfiie
If Scope is set to DICS_FLAG_CONFIGSPECIFIC, the HwProfile parameter specifies the
hardware profile for which to delete the registry key. If HwProfile is 0, the key for the cur
rent hardware profile is deleted. If HwProfile is OxFFFFFFFF, the registry key for all hard
ware profiles is deleted.

KeyType
Specifies the type of registry storage key to delete. Can be one of the following values:

DIREG_DEV
Delete the hardware registry key for the device. This is the key for storage of driver
independent configuration information. This key is in the Device Instance key of the Enum
branch.

DIREG_DRV
Delete a software, or driver, registry key for the device. This key is located in the Class
branch.

DIREG_BOTH
Delete both the hardware and software keys for the device.

Return Value
The function returns TRUE if it is successful. Otherwise it returns FALSE and the logged
error can be retrieved with a call to GetLastError.

Comments
The DevicelnfoSet must only contain elements on the local machine.

See Also
SetupDiCreateDevRegKey, SetupDiGetHwProfileList

Chapter 3 Device Installation Functions 315

SetupDiDestroyClasslmageList
BOOLEAN

SetupDiDestroyClassImageList(
IN PSP_CLASSIMAGELIST_DATA C7asslmageListData
) :

SetupDiDestroyClasslmageList destroys a class image list that was built by a call
to SetupDiGetClasslmageList or SetupDiGetClasslmageListEx.

Parameters
ClasslmageListData
Supplies a pointer to an SP _CLASSIMAGELIST_DATA structure that contains the class
image list to destroy.

Return Value
The function returns TRUE if it is successful. Otherwise it returns FALSE and the logged
error can be retrieved by a call to GetLastError.

See Also
SetupDiGetClasslmageList, SetupDiGetClasslmageListEx

SetupDiDestroyDevicelnfoList
BOOLEAN

SetupDiDestroyDeviceInfoList(
IN HDEVINFO DevicelnfoSet
) ;

SetupDiDestroyDevicelnfoList destroys a device information set and frees all associated
memory.

Parameters
DevicelnfoSet
Supplies a handle to the device information set to destroy.

Return Value
The function returns TRUE if it is successful. Otherwise it returns FALSE and the logged
error can be retrieved with a call to GetLastError.

316 Part 3 Setup

See Also
SetupDiCreateDevicelnfoList, SetupDiGetClassDevs

SetupDiDestroyDriverlnfoList
BOOLEAN

SetupDiDestroyDriverInfoListC
IN HDEVINFO DevicelnfoSet,
IN PSP_DEVINFO_DATA DevicelnfoData, OPTIONAL
IN DWORD DriverType
) ;

SetupDiDestroyDriverlnfoList destroys a driver information list.

Parameters
DevicelnfoSet
Supplies a handle to the device information set that contains the driver information list to
destroy.

DevicelnfoData
Supplies a pointer to the SP _DEVINFO_DATA structure associated with the driver in
formation list to destroy. If this parameter is not specified, the global class driver list is
destroyed.

DriverType
Specifies what type of driver list to destroy. Must be one of the following values:

SPDIT _ CLASSDRIVER
Destroy a list of class drivers.

SPDIT _ COMPATDRIVER
Destroy a list of compatible drivers for the specified device. DevicelnfoData must be
specified if this flag is set.

Return Value
The function returns TRUE if it is successful. Otherwise it returns FALSE and the logged
error can be retrieved with a call to GetLastError.

Comments
If the currently selected driver is a member of the list being destroyed, the selection is reset.

Chapter 3 Device Installation Functions 317

If a class driver list is being destroyed, the DI_FLAGSEX_DIDINFOLIST and DI_
DIDCLASS flags are reset for the corresponding device information set or device informa
tion element. The DI_MUL TMFGS flags is also reset.

If a compatible driver list is being destroyed, the DI_FLAGSEX_DIDCOMPATINFO and
DI_DIDCOMPAT flags are reset for the corresponding device information element.

See Also
SetupDiBuildDriverlnfoList

SetupDiDrawMinilcon
INT

SetupOiOrawMiniIcon(
IN HOC hde,
IN RECT re,
IN INT Minileonlndex,
IN OWORO F7 ags
) ;

SetupDiDrawMiniIcon draws the specified mini-icon at the location requested.

Parameters
hdc
Supplies the handle of the device context in which the mini-icon will be drawn.

rc
The rectangle in the specified device context handle to draw the mini-icon in.

Minilconlndex
The index of the mini-icon, as retrieved from SetupDiLoadClassIcon or SetupDiGet
ClassBitmaplndex. The following predefined indexes for devices can be used:

Class Index

Computer 0

Display 2

Mouse 5

Keyboard 6

FDC 9

HDC 9

Ports 10

Continued

318 Part 3 Setup

Class Index

Net 15

System 0

Sound 8

Printer 14

Monitor 2

Network Transport 3

Network Client 16

Network Service 17

Unknown 18

Flags
These flags control the drawing operation. The LOWORD contains the actual flags defined
as follows:

DMLMASK
Draw the mini-icon's mask into HDC.

DMLBKCOLOR
Use the system color index specified in the HIWORD of Flags as the background color. If
this flag is not set, COLOR_WINDOW is used.

DMLUSERECT
If set, SetupDiDrawMiniIcon uses the supplied rectangle and stretches the icon to fit.

Return Value
This function returns the offset from the left side of rc where the string should start.

Comments
By default, the icon is centered vertically and butted against the left side of the specified
rectangle.

See Also
SetupDiGetClassBitmaplndex, SetupDiLoadClasslcon

SetupDiEnumDevicelnfo
BOOLEAN

SetupDiEnumDeviceInfo(
IN HDEVINFO DevicelnfoSet.
IN DWORD Memberlndex.
OUT PSP_DEVINFO_DATA DevicelnfoData
) ;

Chapter 3 Device Installation Functions 319

SetupDiEnumDevicelnfo returns a context structure for a device information element of a
device information set. Each call returns information about one device; the function can be
called repeatedly to get information about several devices.

Parameters
DevicelnfoSet
Supplies a handle to the device information set.

Memberlndex
Supplies the zero-based index of the device information element to retrieve.

De vicelnfoData
Supplies a pointer to an SP _DEVINFO_DATA structure to receive information about this
element. The caller must set cbSize to sizeof(SP _DEVINFO_DATA).

Return Value
The function returns TRUE if it is successful. Otherwise it returns FALSE and the logged
error can be retrieved with a call to GetLastError.

Comments
To enumerate device information elements, an installer should initially call SetupDiEnum
Devicelnfo with the Memberlndex parameter set to O. The installer should then increment
Memberlndex and call SetupDiEnumDevicelnfo until there are no more values (the func
tion fails and a call to GetLastError returns ERROR_NO_MORE_ITEMS).

Call SetupDiEnumDevicelnterfaces to get a context structure for a device interface
element (vs. a device information element).

See Also
SetupDiCreateDevicelnfo, SetupDiDeleteDevicelnfo, SetupDiEnumDevicelnterfaces,
SetupDiOpenDevicelnfo,SP _DEVINFO_DATA

320 Part 3 Setup

SetupDiEnumDevicelnterfaces
BOOLEAN

SetupDiEnumDeviceInterfaces(
IN HDEVINFO DevicelnfoSet.
IN PSP_DEVINFO_DATA DevicelnfoData. OPTIONAL
IN LPGUID InterfaceC7assGuid.
IN DWORD Memberlndex.
OUT PSP_DEVICE_INTERFACE_DATA DevicelnterfaceData
) :

SetupDiEnumDeviceInterfaces returns a context structure for a device interface element of
a device information set. Each call returns information about one device interface; the func
tion can be called repeatedly to get information about several interfaces exposed by one or
more devices.

Parameters
DevicelnfoSet
Points to a device information set containing the device(s) for which to return interface
information. This handle is typically returned by SetupDiGetClassDevs.

DevicelnfoData
Optionally points to an SP _DEVINFO_DATA structure that constrains the search for
interfaces to those of just one device in the device information set. This pointer is typically
returned by SetupDiEnumDeviceInfo.

Interface Class Guid
Points to a aUlD that specifies the device interface class for the requested interface.

Memberlndex
Specifies a zero-based index into the list of interfaces in the device information set. The
caller should call this function first with Memberlndex set to zero to obtain the first inter
face. Then, repeatedly increment Memberlndex and retrieve an interface until this function
fails and GetLastError returns ERROR_NO_MORE_ITEMS~

If DevicelnfoData specifies a particular device, the Memberlndex is relative to only the
interfaces exposed by that device.

DevicelnterfaceData
Points to a caller-allocated buffer that contains, on successful return, a completed SP _
DEVICE_INTERF ACE_DATA structure that identifies an interface that meets the search
parameters. The caller must set DevicelnteifaceData.cbSize to sizeof(SP _DEVICE_
INTERFACE_DATA) before calling this function.

Chapter 3 Device Installation Functions 321

Return Value
SetupDiEnumDevicelnterfaces returns TRUE if the function completed without error. If
the function completed with an error, FALSE is returned and the error code for the failure
can be retrieved by calling GetLastError.

Comments
DevicelnteifaceData points to a structure that identifies a requested device interface.
To get detailed information about an interface, call SetupDiGetDevicelnterfaceDetail.
The detailed information includes the name of the device interface that can be passed to a
Win32® function such as CreateFile to get a handle to the interface.

See Also
SetupDiGetClassDevs, SetupDiEnumDevicelnfo, SetupDiGetDevicelnterfaceDetail

SetupDiEnumDriverlnfo
BOOLEAN

SetupDiEnumDriverInfo(
IN HDEVINFO DevicelnfoSet,
IN PSP_DEVINFO_DATA DevicelnfoData, OPTIONAL
IN DWORD DriverType,

IN DWORD Memberlndex,

OUT PSP_DRVINFO_DATA DriverlnfoData
) ;

SetupDiEnumDriverlnfo enumerates the members of a driver information list.

Parameters
De vicelnfoSet
Supplies a handle to the device information set containing a driver information list to
enumerate.

De vicelnfoData
Supplies a pointer to an SP _DEVINFO_DATA structure that contains a driver information
list to enumerate. If this parameter is not specified, the global driver list owned by the device
information set is used (this list is of type SPDIT_CLASSDRIVER).

322 Part 3 Setup

DriverType
Specifies what type of driver list to enumerate. Must be one of the following values:

SPOIT _CLASSORIVER
Enumerate a class driver list.

SPOIT _COMPATORIVER
Enumerate a list of compatible drivers for the specified device. DevicelnfoData must be
specified if this flag is set.

Memberlndex
Supplies the O-based index of the driver information member to retrieve.

DriverlnfoData
Supplies a pointer to an SP _DRVINFO_DATA structure to receive information about the
enumerated driver.

Return Value
The function returns TRUE if it is successful. Otherwise it returns FALSE and the logged
error can be retrieved with a call to GetLastError.

Comments
To enumerate driver information set members, an installer should first call SetupDi
EnumDriverInfo with the Memberlndex parameter set to O. It should then increment
Memberlndex and call SetupDiEnumDriverInfo until there are no more values. When
there are no more values, the function fails and a call to GetLastError returns ERROR_
NO_MORE_ITEMS.

See Also
SetupDiBuildDriver InfoList

SetupDiGetActualSectionTolnstal1
BOOLEAN

SetupDiGetActualSectionToInstall(
IN HINF InfHand7e,
IN PCTSTR InfSectionName,
OUT PTSTR InfSectionWithExt, OPTIONAL
IN DWORD InfSectionWithExtSize,
OUT PDWORD RequiredSize, OPTIONAL
OUT PTSTR *Extension OPTIONAL
) ;

Chapter 3 Device Installation Functions 323

SetupDiGetActualSectionTolnstall finds the appropriate DDlnstall section to use when
installing a device from a device INF file.

Parameters
InfHandle
Supplies the handle of the INF file that contains the DDlnstall section.

InfSectionName
Supplies a pointer to the name of the DDlnstall section as specified by the driver node being
installed.

InfSectionWithExt
Supplies a pointer to a character buffer to receive the name of the DDlnstall section that
should be used for installation. If this parameter is NULL, InfSection WithExtSize must be O.
The caller can use the NULL value to determine the required buffer size, because the func
tion returns TRUE and RequiredSize is set to the size, in characters, necessary to store the
DDlnstall section name. '

InfSection WithExtSize
Supplies the size, in characters, of the InfSection WithExt buffer.

RequiredSize
Supplies a pointer to a variable that receives the size, in characters, required to store the
actual DDlnstall section name, including the terminating NULL.

Extension
Supplies a pointer to a variable that receives a pointer to the extension, including ". ". This
parameter is NULL if an extension is not required. Extension points to the extension within
the caller-supplied buffer. If the InfSection WithExt buffer is not supplied, this variable is not
filled in.

Return Value
If the function is successful, it returns TRUE. If the function fails, it returns INVALID_
HANDLE_ VALUE. To get extended error information, call GetLastError.

Comments
This function supports an as/architecture-specific extension that can be used to specify
multiple installation behaviors for a single device, dependent on the operating environment.
An extension is appended to the INF file DDlnstall section name to identify that it contains
as/architecture-specific installation instructions. SetupDiGetActualSectionTolnstall
searches for the different DDlnstall section names in the manner described next.

324 Part 3 Setup

Starting with the DDlnstall section name as specified in the driver node (for example,
InstallSec) the function attempts to find one of the following section names (the search is
carried out in the order listed):

In Windows 2000:

1. InstallSec.NTplaiform

2. InstallSec.NT

3. InstallSec

In Windows 98:

1. InstallSec. Win

2. InstallSec

The first DDlnstall section located is used for the installation. This section name is also used
as the base for Hardware and Services section names. For example, if the DDlnstall section
name found is InstaIlSec.NTX86, the Services section name must be named InstaIlSec.
NTX86.Services.

The original DDlnstall section name specified in the driver node is written to the driver's
registry key's InfSection value entry. The extension that was found is stored in the key as
the REG_SZ value InfSectionExt. For example:

InfSection
InfSectionExt

REG_SZ
: REG_SZ :

"InstallSec"
".NTX86"

If a driver is not selected for the specified device information element, a NULL driver is
installed. Upon return, the Install Parameters flags in the device's SP _DEVINS TALL_
P ARAMS structure indicate whether the system should be restarted or rebooted for the
device to start.

The function uses information on the local machine when selecting the correct section name
decoration.

See Also
INF DDlnstall Section, SetupDiInstallDevice

SetupDiGetClassBitmaplndex
BOOLEAN

SetupDiGetClassBitmapIndex(
IN LPGUID C7assGuid, OPTIONAL
OUT PINT Minilconlndex
) ;

Chapter 3 Device Installation Functions 325

SetupDiGetClassBitmaplndex retrieves the index of the mini-icon supplied for the
specified class.

Parameters
ClassGuid
Points to the GUID of the class for which to retrieve the mini-icon.

Minilconlndex
A pointer to a buffer to receive the index of the mini-icon for the specified class. This buffer
is always filled in. It receives the index of the Unknown mini-icon if there is no mini-icon
for the specified class.

Return Value
If there is a min-icon for the specified class, the function returns TRUE.

If there is no mini-icon for the specified class, the function returns FALSE and the Mini
Iconlndex buffer receives the index for the Unknown mini-icon.

See Also
SetupDiDrawMiniIcon, SetupDiLoadClasslcon

SetupDiGetClassDescription
BOOLEAN

SetupDiGetClassDescription(
IN LPGUID C7assGuid,
OUT PTSTR C7assDescription,
IN DWORD C7assDescriptionSize,
OUT PDWORD RequiredSize OPTIONAL
) ;

SetupDiGetClassDescription retrieves the class description associated with the specified
setup class GUID.

Parameters
Class Guid
Supplies the GUID of the setup class whose description is to be retrieved.

Class Description
Supplies a pointer to a character buffer that receives the class description.

326 Part 3 Setup

ClassDescriptionSize
Supplies the size, in characters, of the ClassDescription buffer.

RequiredSize
Receives the size, in characters, required to store the class description (including terminating
NULL). RequiredSize is always less than LINE_LEN.

Return Value
The function returns TRUE if it is successful. Otherwise it returns FALSE and the logged
error can be retrieved with a call to GetLastError.

Comments
Call SetupDiGetClassDescriptionEx to retrieve the description of a setup class installed on
a remote machine.

See Also
SetupDiBuildClasslnfoList, SetupDiGetClassDescriptionEx, SetupDiGetINFClass

SetupDiGetClassDescriptionEx
BOOLEAN

SetupDiGetClassDescriptionEx(
IN LPGUID C7assGuid.
OUT PTSTR C7assDescription.
IN DWORD C7assDescriptionSize.
OUT PDWORD RequiredSize. OPTIONAL
IN PCTSTR MachineName. OPTIONAL
IN PVOID Reserved
);

SetupDiGetClassDescriptionEx retrieves the description of a setup class installed on a
local or remote machine.

Parameters
Class Guid
Supplies the GUID of the setup class whose description is to be retrieved.

ClassDescription
Supplies a pointer to a character buffer that receives the class description.

ClassDescriptionSize
Supplies the size, in characters, of the ClassDescription buffer.

Chapter 3 Device Installation Functions 327

RequiredSize
Receives the size, in characters, required to store the class description (including terminating
NULL). RequiredSize is always less than LINE_LEN.

MachineName
Optionally supplies the name of a remote machine on which the setup class resides. A value
of NULL for MachineName specifies that the class is installed on the local machine.

Reserved
Must be NULL.

Return Value
The function returns TRUE if it is successful. Otherwise it returns FALSE and the logged
error can be retrieved with a call to GetLastError.

Comments
If there is a friendly name in the registry key for the class, this routine returns the friendly
name. Otherwise, this routine returns the class name.

See Also
SetupDiBuildClasslnfoList, SetupDiBuildClasslnfoListEx, SetupDiGetDevicelnfoList
Detail, SetupDiGetlNFClass

SetupDiGetClassDevs
HDEVINFO

SetupDiGetClassDevs(
IN LPGUID C7assGuid, OPTIONAL
IN PCTSTR Enumerator, OPTIONAL
IN HWND hwndParent, OPTIONAL
IN DWORD Flags
) ;

SetupDiGetClassDevs returns a device information set that contains all devices of a
specified class.

Parameters
ClassGuid
Optionally points to a class GUID for a setup class or an interface class. If the DIGCF _
DEVICEINTERF ACE flag is set, ClassGuid represents an interface class; otherwise,
ClassGuid represents a setup class.

328 Part 3 Setup

If the DIGCF _ALLCLASSES flag is set, this parameter is ignored and the resulting list
contains devices of all installed classes.

Enumerator
Optionally points to a string that filters the devices that are returned.

If the DIGCF _DEVICEINTERF ACE flag is set, this parameter optionally points to a string
representing the PnP name of a particular device. This function only examines this particular
device to determine whether it exposes any interfaces of the requested interface class.

If the DIGCF _DEVICEINTERFACE flag is not set, this parameter optionally specifies the
name of the PnP enumerator that enumerates the devices of interest. (The names of system
supplied enumerators appear in register.h.) This function only examines device instances of
this enumerator. If this parameter is NULL, this function retrieves device information for all
device instances on the system.

hwndParent
Supplies the handle of the top-level window to be used for any user interface relating to the
members of this set.

Flags
Supplies control options used in building the device information set. Can be a combination
of the following values:

DIGCF _ALLCLASSES
Return a list of installed devices for all classes. If this flag is set, the ClassGuid parameter is
ignored.

DlGCF _DEVICEINTERFACE
Return devices that expose interfaces of the interface class specified by ClassGuid. If this
flag is not set, ClassGuid specifies a setup class.

DIGCF _PRESENT
Return only devices that are currently present.

DIGCF _PROFILE
Return only devices that are a part of the current hardware profile.

Return Value
SetupDiGetClassDevs returns a handle to a device information set containing all installed
devices matching the specified parameters. If the function fails, it returns INVALID_
HANDLE_ V ALUE or another ~ppropriate error. To get extended error information, call
GetLastError.

Chapter 3 Device Installation Functions 329

Comments
The caller of this function must delete the returned device information set when it is no
longer needed by calling SetupDiDestroyDeviceInfoList.

If DIGCF _DEVICEINTERF ACE is set, ClassGuid (if used) must point to a device interface
class GUID and Enumerator (if used) must point to a PnP device name. The returned device
information set contains devices that expose interfaces of the requested interface class.
Enumerate the interfaces of the devices using SetupDiEnumDeviceInterfaces.

If DIGCF _DEVICEINTERF ACE is not set, ClassGuid (if used) must point to a setup class
GUID and Enumerator (if used) must specify the name of the PnP enumerator that enumer
ates the devices of interest.

Call SetupDiGetClassDevsEx to retrieve the devices for a class on a remote machine.

See Also
SetupDiCreateDevicelnfoList, SetupDiDestroyDevicelnfoList, SetupDiEnumDevice
Interfaces, SetupDiGetClassDevsEx

SetupDiGetClassDevsEx
HDEVINFO

SetupDiGetClassDevsEx(
IN LPGUID C7assGuid. OPTIONAL
IN PCTSTR Enumerator. OPTIONAL
IN HWND hwndParent. OPTI ONAl
IN DWORD F7 ags.
IN HDEVINFO Devi celnfoSet. OPTIONAL
IN PCTSTR MachineName. OPTIONAL
IN PVOID Reserved
) ;

SetupDiGetClassDevsEx returns a device information set that contains all devices of a
specified class on a local or remote machine.

Parameters
ClassGuid
Optionally points to a class GUID for a setup class or an interface class. If the DIGCF _
DEVICEINTERFACE flag is set, ClassGuid represents an interface class; otherwise,
ClassGuid represents a setup class.

If the DIGCF _ALLCLASSES flag is set, this parameter is ignored and the resulting list
contains devices of all installed classes.

330 Part 3 Setup

Enumerator
Optionally points to a string that filters the devices that are returned.

If the DIGCF _DEVICEINTERFACE flag is set, this parameter optionally points to a string
representing the PnP name of a particular device. This function only examines this particular
device to determine whether it exposes any interfaces of the requested interface class.

If the DIGCF _DEVICEINTERF ACE flag is not set, this parameter optionally specifies the
name of the PnP enumerator that enumerates the devices of interest. (The names of system
supplied enumerators appear in register.h.) This function only examines device instances of
this enumerator. If this parameter is NULL, this function retrieves device information for all
device instances on the system.

hwndParent
Supplies the handle of the top-level window to be used for any user interface relating to the
members of this set.

Flags
Supplies control options used in building the device information set. Can be a combination
of the following values:

DIGCF _ALLCLASSES
Return a list of installed devices for all classes. If this flag is set, the ClassGuid parameter is
ignored.

DIGCF _DEVICEINTERFACE
Return devices that expose interfaces of the interface class specified by ClassGuid. If this
flag is not set, ClassGuid specifies a setup class.

DIGCF _PRESENT
Return only devices that are currently present.

DIGCF _PROFILE
Return only devices that are a part of the current hardware profile.

DevicelnfoSet
Optionally supplies the handle of an existing device information set into which this function
adds the requested device information.

If DevicelnfoSet is nonNULL, then the device information set it specifies is returned on
success, with the retrieved device information added. If this parameter is NULL, this
function creates a new device information set.

Chapter 3 Device Installation Functions 331

If DevicelnfoSet is nonNULL and ClassGuid specifies a setup class, then the associated
class of DevicelnfoSet (if any) must match the ClassGuid. ClassGuid specifies a setup class
if it is nonNULL and the DIGCF _DEVICEINTERF ACE flag is not set.

MachineName
Optionally supplies the name of a remote machine on which the devices reside. A value of
NULL for MachineName specifies that the class is installed on the local machine.

Reserved
Must be NULL.

Return Value
SetupDiGetClassDevsEx returns a handle to a device information set containing all devices
matching the specified parameters. If the function fails, it returns INV ALID _HANDLE_
V ALUE or another appropriate error. To get extended error information, call GetLast
Error.

Comments
The caller of this function must delete the returned device information set when it is no
longer needed by calling SetupDiDestroyDevicelnfoList.

If DIGCF _DEVICEINTERFACE is set, ClassGuid (if used) must point to a device interface
class GUID and Enumerator (if used) must point to a PnP device name. The returned device
information set contains devices that expose interfaces of the requested interface class.
Enumerate the interfaces of the devices using SetupDiEnumDevicelnterfaces.

If DIGCF _DEVICEINTERFACE is not set, ClassGuid (if used) must point to a setup class
GUID and Enumerator (if used) must specify the name of the PnP enumerator that enumer
ates the devices of interest.

A driver can use this function to get a list of device interfaces of a particular class that
are exposed by devices of a particular setup class. For example, to get a list of the device
interfaces of interface class "mounted device" that are exposed by devices in the setup class
"Volume":

1. Create a device information set (SetupDiCreateDevicelnfoList[Ex]) with an associated
setup class of "Volume".

2. Call SetupDiGetClassDevsEx, specifying:

• ClassGuid with the GUID for the interface class "mounted device".

• Flags with DIGCF _DEVICEINTERF ACE set.

332 . Part 3 Setup

• DevicelnfoSet with the HDEVINFO returned in step (1). The associated setup class of
this HDEVINFO is "Volume".

In this kind of call to SetupDiGetClassDevsEx, the device interfaces retrieved are filtered
based on whether their corresponding device's setup class matches that of the device infor
mation set.

See Also
SetupDiCreateDevicelnfoListEx, SetupDiDestroyDevicelnfoList, SetupDiEnum
I>evicelnterfaces

SetupDiGetClasslmagelndex
BOOLEAN

SetupDiGetClassImageIndex(
IN PSP_CLASSIMAGELIST_DATA C7asslmageListData,
IN LPGUID C7assGuid,
OUT PINT Imagelndex
);

SetupDiGetClassImageIndex retrieves the index within the class image list of a speci
fied class.

Parameters
ClasslmageListData
Supplies a pointer to an SP _CLASSIMAGELIST_DATA structure that contains the class's
image.

Class Guid
Supplies a pointer to the GUID for the class.

Imagelndex
Supplies a pointer to a variable that receives the index of the specified class's image within
the class image list.

Return Val ue
The function returns TRUE if it is successful. Otherwise it returns FALSE and the logged
error can be retrieved by a call to GetLastError.

See Also
SetupI>iGetClasslmageList, SetupI>iGetClasslmageListEx

SetupDiGetClasslmageList
BOOLEAN

SetupDiGetClassImageList(

Chapter 3 Device Installation Functions 333

OUT PSP_CLASSIMAGELIST_DATA C7asslmageListData
) :

SetupDiGetClasslmageList builds an image list that contains bitmaps for every installed
class and returns the list in a data structure.

Parameters
ClasslmageListData
Supplies a pointer to an SP _CLASSIMAGELIST_DATA structure to receive information
regarding the class image list, including a handle to the image list. The cbSize field of this
structure must be initialized with the size of the structure, in bytes, before calling'this func
tion or it will fail.

Return Value
The function returns TRUE if it is successful. Otherwise it returns FALSE and the logged
error can be retrieved by a call to GetLastError.

Comments
The image list built by this function should be destroyed by calling SetupDiDestroyClass
ImageList.

Call SetupDiGetClasslmageListEx to retrieve the image list for classes installed on a
remote machine.

See Also
SetupDiDestroyClasslmageList, SetupDiGetClasslmageListEx

SetupDiGetClasslmageListEx
BOOLEAN

SetupDiGetClassImageListEx(
OUT PSP_CLASSIMAGELIST_DATA C7asslmageListData,
IN PCSTR MachineName, OPTIONAL
IN PVOID Reserved
) :

SetupDiGetClasslmageListEx builds an image list of bitmaps for every class installed on a
local or remote machine.

334 Part 3 Setup

Parameters
ClasslmageListData
Supplies a pointer to an SP _CLASSIMAGELIST_DATA structure to receive information
regarding the class image list, including a handle to the image list. The cbSize field of this
structure must be initialized with the size of the structure, in bytes, before calling this func
tion or it will fail.

MachineName
Optionally supplies the name of a remote machine for whose classes the bitmap list is to be
built. If MachineName is NULL, this function builds the list for the local machine.

Reserved
Must be NULL.

Return Value
The function returns TRUE if it is successful. Otherwise it returns FALSE and the logged
error can be retrieved by a call to GetLastError.

Comments
The image list built by this function should be destroyed by calling SetupDiDestroy
ClassImageList.

Note Class-specific icons on a remote machine can only be displayed if the class is also
present on the local machine. Thus, if the remote machine has class X, but class X is not
installed locally, then the generic (unknown) icon will be returned.

See Also
SetupDiDestroyClassImageList, SetupDiGetClassImageList

SetupDiGetClasslnstallParams
BOOLEAN

SetupDiGetClassInstallParams(
IN HDEVINFO DevicelnfoSet.
IN PSP_DEVINFO_DATA DevicelnfoData. OPTIONAL
OUT PSP_CLASSINSTALL_HEADER C7asslnsta77Params. OPTIONAL
IN DWORD C7asslnsta77ParamsSize.
OUT PDWORD RequiredSize OPTIONAL
) :

SetupDiGetClassInstallParams retrieves class install parameters for a device information
set or a particular device information element.

Parameters
DeviceinfoSet

Chapter 3 Device Installation Functions 335

Supplies a handle to the device information set that contains the class install parameters to
retrieve.

DeviceinfoData
Supplies a pointer to an SP _DEVINFO_DATA structure that contains the class install
parameters to retrieve. If this parameter is not specified, the class install parameters
retrieved are associated with the device information set for the global class driver list.

CiassinstallParams
Supplies a pointer to a buffer that contains a class install header structure. This structure
must have its cbSize field set to sizeof(SP _CLASSINSTALL_HEADER) on input or the
buffer is considered to be invalid. On output, the InstallFunction field is filled with the
DI_FUNCTION code for the class install parameters being retrieved. If the buffer is large
enough, it receives the class install parameters structure specific to the function code. If
ClasslnstallParams is not specified, ClasslnstallParamsSize must be O.

CiassinstallParamsSize
Supplies the size, in bytes, of the ClasslnstallParams buffer. If the buffer is supplied, it must
be at least as large as sizeof(SP _CLASSINSTALL_HEADER). If the buffer is not supplied,
ClasslnstallParamsSize must be O.

RequiredSize
Supplies a pointer to a variable to receive the number of bytes required to store the class
install parameters.

Return Value
The function returns TRUE if it is successful. Otherwise it returns FALSE and the logged
error can be retrieved with a call to GetLastError.

Comments
The class install parameters are specific to a particular device installation request (DI_
FUNCTION) that is stored in the ClasslnstallHeader field located at the beginning of
the ClasslnstallParams buffer.

See Also
SetupDiSetClasslnstallParams

336 Part 3 Setup

SetupDiGetDevicelnfoListClass
BOOLEAN

SetupDiGetDeviceInfoListClass(
IN HDEVINFO DevicelnfoSet.
OUT LPGUID C7assGuid
) ;

SetupDiGetDevicelnfoListClass retrieves the class GUID associated with a device
information set if it has an associated class.

Parameters
DevicelnfoSet
Supplies a handle to the device information set to query.

Class Guid
Supplies a pointer to the variable that receives the GUID for the associated class.

Return Value
The function returns TRUE if it is successful. Otherwise it returns FALSE and the logged
error can be retrieved with a call to' GetLastError.

Comments
If the specified device information set does not have an associated class because a class
GUrD was not specified when the set was created with SetupDiCreateDevicelnfoList, the
function fails. In this case, a call to GetLastError returns ERROR_NO_ASSOCIATED_
CLASS.

If a device information set is for a remote machine, use SetupDiGetDeviceInfoListDetaii
to get the associated remote machine handle and machine name.

See Also
SetupDiCreateDevicelnfoList, SetupDiGetClassDevs, SetupDiGetDevicelnfoListDetaii

SetupDiGetDevicelnfoListDetail
BOOLEAN

SetupDiGetDeviceInfoListDetail(
IN HDEVINFO DevicelnfoSet.
OUT PSP_DEVINFO_LIST_DETAIL_DATA DevicelnfoSetDetai7Data
) ;

Chapter 3 Device Installation Functions 337

SetupDiGetDevicelnfoListDetaii retrieves information associated with a device infor
mation set including the class OUID, remote machine handle, and remote machine name.

Parameters
De vicelnfoSet
Supplies a handle to the device information set to query.

DevicelnfoSetDetailData
Supplies a pointer to a caller-allocated SP _DEVINFO_LIST_DETAIL_DATA structure that
receives the device information set information.

The caller must set cbSize to sizeof(SP _DEVINFO_LIST_DETAIL_DATA) or the function
will fail with GetLastError returning ERROR_INV ALID _ USER_B UFFER.

If the function completes successfully, ClassGuid contains the class OUID associated with
the device information set or OUID _NULL.

If the function completes successfully and the device information set is for a remote
machine, RemoteMachineHandle contains the ConfigMgr32 machine handle for accessing
the remote machine and RemoteMachineName contains the name of the remote machine.
If there is a remote handle for the device information set, it must be used when calling
CM_Xxx_Ex functions because the DevInst handles are relative to the remote handle.

If the device information set is for the local machine, RemoteMachineHandle is NULL and
RemoteMachineName is an empty string.

Return Value
The function returns TRUE if it is successful. Otherwise it returns FALSE and the logged
error can be retrieved with a call to GetLastError.

Comments
If the parameters are valid, SetupDiGetDevicelnfoListDetaii sets values in the Devicelnfo
SetDetailData structure (except for the cbSize field) and returns status NO_ERROR.

See Also
SetupDiCreateDeviceInfoListEx, SetupDiGetClassDevsEx, SetupDiGetDevice
InfoListClass

338 Part 3 Setup

SetupDiGetDevicelnstallParams
BOOLEAN

SetupDiGetDevicelnstallParams(
IN HDEVINFO DevicelnfoSet.
IN PSP_DEVINFO_DATA DevicelnfoData. OPTIONAL
OUT PSP_DEVINSTALL_PARAMS Devicelnsta77Params
) ;

SetupDiGetDevicelnstallParams retrieves device install parameters for a device informa
tion set or a particular device information element.

Parameters
DevicelnfoSet
Supplies a handle to the device information set containing information about the device
instance to retrieve.

DevicelnfoData
Supplies a pointer to an SP _DEVINFO _DATA structure that contains the device install
parameters to retrieve. If this parameter is not specified, the install parameters retrieved are
those associated with the device information set.

DevicelnstallParams
Supplies a pointer to an SP _DEVINSTALL_P ARAMS structure that receives the device
install parameters. The cbSize field of this structure must be set to the size, in bytes, of the
structure before calling this function.

Return Value
The function returns TRUE if it is successful. Otherwise it returns FALSE and the logged
error can be retrieved with a call to GetLastError.

See Also
SetupDiSetDeviceI~stallParams

SetupDiGetDevicelnstanceld
BOOLEAN

SetupDiGetDeviceInstanceId(
IN HDEVINFO DevicelnfoSet,
IN PSP_DEVINFO_DATA DevicelnfoData,
OUT PTSTR Devicelnstanceld,
IN DWORD DevicelnstanceldSize,
OUT PDWORD RequiredSize OPTIONAL
) ;

Chapter 3 Device Installation Functions 339

SetupDiGetDevicelnstanceld retrieves the device instance ID associated with a device
information element.

Parameters
DevicelnfoSet
Supplies a handle to the device information set that contains the device information element
to retrieve.

DevicelnfoData
Supplies a pointer to the SP _DEVINFO_DATA structure for the device information element
whose ID is to be retrieved.

Devicelnstanceld
Supplies a pointer to the character buffer that will receive the ID for the specified device
information element.

DevicelnstanceldSize
Supplies the size, in characters, of the Devicelnstanceld buffer.

RequiredSize
Supplies a pointer to the variable that receives the number of characters required to store the
device instance ID.

Return Value
The function returns TRUE if it is successful. Otherwise it returns FALSE and the logged
error can be retrieved with a call to GetLastError.

See Also
SetupDiCreateDevicelnfo, SetupDiCreateDevRegKey, SetupDiOpenDevicelnfo,
SetupDiOpenDevRegKey

340 Part 3 Setup

SetupDiGetDevicelnterfaceAI ias
BOOLEAN

SetupDiGetDeviceInterfaceAlias(
IN HDEVINFO DevicelnfoSet,
IN PSP_DEVICE_INTERFACE_DATA DevicelnterfaceData,
IN LPGUID A7iaslnterfaceC7assGuid,
OUT .PSP _DEV I CE_I NTERFACE_DATA A 7 i asDevi celnterfaceDa ta
) ;

SetupDiGetDevicelnterfaceAlias returns an alias of the specified device interface. Device
interfaces are considered aliases if they are exposed by the same underlying device and have
identical reference strings, but are of different interface classes.

Parameters
DevicelnfoSet
Points to the device information set containing the device interface for which to retrieve an
alias. This handle is typically returned by SetupDiGetClassDevs.

DevicelnterfaceData
Points to a structure that identifies the device interface within the device information set.
This pointer is typically returned by SetupDiEnumDevicelnterfaces.

A liasinterfaceCiassGuid
Is a class GUID specifying the interface class of the alias to retrieve.

AliasDeviceinterfaceData
Points to a caller-allocated buffer that contains, on successful return, a completed
SP _DEVICE_INTERFACE_DATA structure that identifies the requested alias. The caller
must set AliasDevicelnteifaceData.cbSize to sizeof(SP _DEVICE_INTERF ACE_DATA)
before calling this function.

Return Value
SetupDiGetDevicelnterfaceAlias returns TRUE if the function completed without error. If
the function completed with an error, FALSE is returned and the error code for the failure
can be retrieved by calling GetLastError.

Chapter 3 Device Installation Functions 341

Possible errors returned by GetLastError include:

Error

Comments

Meaning

Invalid DevicelnfoSet or invalid
DevicelnteifaceData parameter.

There is no alias of class
AliaslnteifaceClassGuid for the specified
device interface.

Invalid AliasDevicelnteifaceData buffer.

SetupDiGetDeviceInterfaceAlias can be used to locate a device that exposes more than
one interface. For example, consider a disk that can be part of a fault-tolerant volume and
can contain encrypted data. The function driver for the disk device could register a fault
tolerant-volume interface and an encrypted-volume interface. These interfaces are device
interface aliases if the function driver registers them with identical reference strings and
they refer to the same device. (The reference strings will likely be NULL and therefore are
equal.) To locate such a multi-interface device, first locate all available devices that expose
one of the interfaces, such as the fault-tolerant-volume interface, using SetupDiGetClass
Devs and SetupDiEnumDeviceInterfaces. Then, pass a device with the first interface
(fault-tolerant-volume) to SetupDiGetDeviceInterfaceAlias and request an alias of the
other interface class (encrypted-volume).

If the requested alias exists but the caller-supplied AliasDevicelnterjaceData buffer is
invalid, this function successfully adds the device interface element to DevlnfoSet but
returns FALSE for the return value. In this case, GetLastError returns ERROR_
INVALID_USER_BUFFER.

See Also
SetupDiEnumDeviceInterfaces, SetupDiGetClassDevs

SetupDiGetDevicelnterfaceDetail
BOOLEAN

SetupDiGetDeviceInterfaceDetail(
IN HDEVINFO DevicelnfoSet.
IN PSP_DEVICE_INTERFACE_DATA DevicelnterfaceData.
OUT PSP_DEVICE_INTERFACE_DETAIL_DATA DevicelnterfaceDetai7Data. OPTIONAL

IN DWORD DevicelnterfaceDetai7DataSize.
OUT PDWORD RequiredSize. OPTIONAL
OUT PSP_DEVINFO_DATA DevicelnfoData OPTIONAL
) ;

342 Part 3 Setup

SetupDiGetDeviceInterfaceDetaii returns details about a particular device interface.

Parameters
DeviceinfoSet
Points to the device information set containing the interface and its underlying device. This
handle is typically returned by SetupDiGetClassDevs.

DeviceinterfaceData
Points to a structure that identifies the interface, typically returned by SetupDiEnum
DeviceInterfaces.

De viceinterfaceDetaiiData
Optionally points to a caller-allocated buffer to receive information about the specified
interface. The caller must set DeviceInteifaceDetailData.cbSize to sizeof(SP _DEVICE_
INTERFACE_DETAIL_DATA) before calling this function. The cbSize field always
contains the size of the fixed part of the data structure, not a size reflecting the variable
length string at the end.

This parameter must be NULL if DevicelnteifaceDetailSize is zero.

DeviceinterfaceDetaiiDataSize
Specifies the size of the DevicelnteifaceDetailData buffer. The buffer must be at least
(offsetof(SP _DEVICE_INTERF ACE_DETAIL_DATA, DevicePath) + sizeof(TCHAR»
bytes, to contain the fixed part of the structure and a single NULL to terminate an empty
MULTI_SZ string.

This parameter must be zero if DevicelnteifaceDetailData is NULL.

RequiredSize
Optionally points to a caller-allocated variable to receive the required size of the Device
InterJaceDetailData buffer. This size includes the size of the fixed part of the structure plus
the number of bytes required for the variable-length device path string.

DeviceinfoData
Optionally points to a caller-allocated buffer to receive information about the device that
exposes the requested interface. The caller must set DevicelnJoData.cbSize to sizeof(SP _
DEVINFO_DATA).

Return Value
SetupDiGetDeviceInterfaceDetaii returns TRUE if the function completed without error. If
the function completed with an error, FALSE is returned and the error code for the failure
can be retrieved by calling GetLastError.

Chapter 3 Device Installation Functions 343

Comments
Using this function to get details about an interface is typically a two-step process:

1. Get the required buffer size. Call SetupDiGetDevicelnterfaceDetaii with a NULL
DevicelnterfaceDetailData pointer, an DevicelnterfaceDetailDataSize of zero, and
a valid RequiredSize variable. In response to such a call, this function returns the
required buffer size at RequiredSize and fails with GetLastError returning ERROR_
INSUFFICIENT_BUFFER.

2. Allocate an appropriately sized buffer and call the function again to get the interface
details.

The interface detail returned by this function consists of a device path that can be passed
to Win32 functions such as CreateFile. Do not attempt to parse the device path symbolic
name. The device path can be reused across system boots.

SetupDiGetDevicelnterfaceDetaii can be used to get just the DevicelnfoData. If the inter
face exists but DevicelnterfaceDetailData is NULL, this function fails, GetLastError re
turns ERROR_INSUFFICIENT_BUFFER, and the DevicelnfoData structure is filled with
information about the device that exposes the interface.

See Also
CreateFile, SetupDiEnumDevicelnterfaces, SetupDiGetClassDevs

SetupDiGetDeviceRegistryProperty
BOOLEAN

SetupDiGetDeviceRegistryProperty
IN HDEVINFO DevicelnfoSet,
IN PSP_DEVINFO_DATA DevicelnfoData,
IN DWORD Property,
OUT PDWORD PropertyRegData Type , OPTIONAL
OUT PBYTE PropertyBuffer,
IN DWORD PropertyBufferSize,
OUT PDWORD RequiredSize OPTIONAL
) ;

SetupDiGetDeviceRegistryProperty retrieves the specified Plug and Play device property.

Parameters
DeviceinfoSet
Supplies a handle to the device information set containing information about the device
instance for which to retrieve a Plug and Play property.

344 Part 3 Setup

DevicelnfoData
Supplies a pointer to an SP _DEVINFO_DATA structure indicating the device instance for
which to retrieve the Plug and Play property.

Property
Supplies an ordinal specifying the property to be retrieved. Can be one of the following
values:

Code

SPDRP _ADDRESS

SPDRP _BUSNUMBER

SPDRP _BUSTYPEGUID

SPDRP _CAPABILITIES

SPDRP _CHARACTERISTICS

SPDRP_CLASS

SPDRP _CLASSGUID

SPDRP _COMPATIBLEIDS

SPDRP _CONFIGFLAGS

SPDRP _DEVICEDESC

SPDRP _DEVTYPE

SPDRP _DRIVER

SPDRP _ENUMERATOR_NAME

SPDRP _EXCLUSIVE

SPDRP _FRIENDL YNAME

SPDRP _HARDW AREID

SPDRP _LEGACYBUSTYPE

SPDRP _LOCATION_INFORMATION

SPDRP _LOWERFILTERS

SPDRP_MFG

SPDRP _PHYSICAL_DEVICE_OBJECT_NAME

SPDRP _SECURITY

SPDRP _SERVICE

SPDRP _ULNUMBER

SPDRP _ULNUMBER_DESC_FORMAT

SPDRP _ UPPERFILTERS

Property

Device Address

BusNumber

BusTypeGUID

Capabilities

Device Characteristics

Class

ClassGUID

CompatibleIDs

ConfigFlags

DeviceDesc

Device Type

Driver

Enumerator Name

Exclusive access

FriendlyName

HardwareID

LegacyBusType

LocationInformation

LowerFilters

Mfg

PhysicalDeviceObjectN arne

Security (binary form)

Service

UiNumber

Format-message-style string to format UI
number

UpperFilters

Chapter 3 Device Installation Functions 345

PropertyRegDataType
Supplies a pointer to a variable to receive the data type of the property being retrieved. This
is one of the standard registry data types.

PropertyBuffer
Supplies a pointer to a buffer to receive the property being retrieved.

PropertyBufferSize
Supplies the length, in bytes, of PropertyBuffer.

RequiredSize
Supplies a pointer to a variable to receive the number of bytes required to store the requested
property in PropertyBuffer.

Return Value
The function returns TRUE if it is successful. Otherwise it returns FALSE and the logged
error can be retrieved with a call to GetLastError.

See Also
SetupDiSetDeviceRegistryProperty

SetupDiGetDriverlnfoDetail
BOOLEAN

SetupDiGetDriverInfoDetail(
IN HDEVINFO DevicelnfoSet.
IN PSP_DEVINFO_DATA DevicelnfoData, OPTIONAL
IN PSP_DRVINFO_DATA DriverlnfoData,
OUT PSP_DRVINFO_DETAIL_DATA DriverlnfoDetai7Data, OPTIONAL
IN DWORD DriverlnfoDetai7DataSize.
OUT PDWORD RequiredSize OPTIONAL
) ;

SetupDiGetDriverInfoDetaii retrieves detailed information for a specified driver
information element.

Parameters
DevicelnfoSet
Supplies a handle to the device information set that contains a driver information structure
for which to retrieve details.

346 Part 3 Setup

DevicelnfoData
Supplies a pointer to an SP _DEVINFO_DATA structure that contains a driver information
structure for which to retrieve details. If this parameter is not specified, the driver referenced
is a member of the global class driver list owned by the device information set.

DriverlnfoData
Supplies a pointer to an SP _DRVINFO_DATA structure that specifies the driver for which
details are to be retrieved.

DriverlnfoDetailData
Supplies a pointer to an SP _DRVINFO_DETAIL_DATA structure that receives detailed
information about the specified driver. If this parameter is not specified, DriverlnfoDetail
DataSize must be O. If this parameter is specified, the cbSize field of this structure must be
set to the size, in bytes, of the structure before calling SetupDiGetDriverlnfoDetail.

DriverlnfoDetailDataSize
Supplies the size, in bytes, of the DriverlnfoDetailData buffer.

RequiredSize
Supplies a pointer to a variable that receives the number of bytes required to store the
detailed driver information. This value includes both the size of the structure and the
additional bytes required for the variable-length character buffer at the end that holds the
hardware ID and the compatible IDs MUL TI_SZ list.

Return Value
The function returns TRUE if it is sUGcessful. Otherwise it returns FALSE and the logged
error can be retrieved with a call to GetLastError.

Comments
If the specified driver information member and the caller-supplied buffer are both valid, this
function is guaranteed to fill in all static fields in the SP _DRVINFO_DETAIL_DATA
structure and as many IDs as possible in the variable-length buffer at the end while still
maintaining MUL TI_SZ format. In this case, the function returns FALSE and a call to
GetLastError returns ERROR_INSUFFICIENT_BUFFER. If specified, RequiredSize
contains the total number of bytes required for the structure with all IDs.

See Also
SetupDiEnumDriverlnfo, SetupDiGetSelectedDriver

SetupDiGetDriverlnstal1 Params
BOOLEAN

SetupDiGetDriverInstallParams(
IN HDEVINFO DevicelnfoSet.

Chapter 3 Device Installation Functions 347

IN PSP_DEVINFO_DATA DevicelnfoData. OPTIONAL
IN PSP_DRVINFO_DATA DriverlnfoData.
OUT PSP_DRVINSTALL_PARAMS Driverlnsta77Params
) ;

SetupDiGetDriverInstallParams retrieves install parameters for the specified driver.

Parameters
DevicelnfoSet
Supplies a handle to the device information set containing a driver information structure for
which to retrieve installation parameters.

De vicelnfoData
Supplies a pointer to an SP _DEVINFO_DATA structure that contains a driver information
structure for which to retrieve installation parameters. If DevicelnfoData is not specified, the
driver referenced is a member of the global class driver list owned by the device informa
tion set.

DriverlnfoData
Supplies a pointer to an SP _DRVINFO_DATA structure that specifies the driver for which
install parameters are to be retrieved.

DriverlnstallParams
Supplies a pointer to an SP _DRVINSTALL_PARAMS structure to receive the install pa
rameters for this driver. The cbSize field of this structure must be set to the size, in bytes,
of the structure before calling this function.

Return Value
The function returns TRUE if it is successful. Otherwise it returns FALSE and the logged
error can be retrieved by a call to GetLastError.

See Also
SetupDiSetDriverInstallParams

348 Part 3 Setup

SetupDiGetHwProfileFriendlyName
BOOLEAN

SetupDiGetHwProfileFriendlyName(
IN DWORD HwProfi7e.
OUT PTSTR Friend7yName.
IN DWORD Friend7yNameSize.
OUT PDWORD RequiredSize OPTIONAL
) ;

SetupDiGetHwProfileFriendlyName retrieves the friendly name associated with a
hardware profile ID.

Parameters
HwProfile
Supplies the hardware profile ID associated with the friendly name to retrieve. If this
parameter is 0, the friendly name for the current hardware profile is retrieved.

FriendlyName
Supplies a pointer to a character buffer to receive the friendly name.

FriendlyNameSize
Supplies the size, in characters, of the FriendlyName buffer.

RequiredSize
Supplies a pointer to a variable to receive the number of characters required to store the
friendly name (including the terminating NULL).

Return Value
The function returns TRUE if it is successful. Otherwise it returns FALSE and the logged
error can be retrieved with a call to GetLastError.

Comments
Call SetupDiGetHwProfileFriendlyNameEx to get the friendly name of a hardware profile
ID on a remote machine.

See Also
SetupDiGetH wProfileFriendlyNameEx, SetupDiGetH wProfileList

SetupDiGetHwProfileFriendlyNameEx
BOOLEAN

SetupDiGetHwProfileFriendlyNameEx(
IN DWORD HwProfi7e,
OUT PTSTR Friend7yName,
IN DWORD Friend7yNameSize,
OUT PDWORD RequiredSize, OPTIONAL
IN PCTSTR MachineName, OPTIONAL
IN PVOID Reserved
) :

Chapter 3 Device Installation Functions 349

SetupDiGetHwProfileFriendlyNameEx retrieves the friendly name associated with a
hardware profile ID on a local or remote machine.

Parameters
HwProfile
Supplies the hardware profile ID associated with the friendly name to retrieve. If this
parameter is 0, the friendly name for the current hardware profile is retrieved.

FriendlyName
Supplies a pointer to a character buffer to receive the friendly name.

FriendlyNameSize
Supplies the size, in characters, of the FriendlyName buffer.

RequiredSize
Supplies a pointer to a variable to receive the number of characters required to store the
friendly name (including the terminating NULL).

MachineName
Optionally supplies the name of a remote machine on which the hardware profile ID resides.
If MachineName is NULL, the hardware profile ID is on the local machine.

Reserved
Must be NULL.

Return Value
The function returns TRUE if it is successful. Otherwise it returns FALSE and the logged
error can be retrieved with a call to GetLastError.

See Also
SetupDiGetHwProfileFriendlyName, SetupDiGetHwProfileListEx

350 Part 3 Setup

SetupDiGetHwProfileList
BOOLEAN

SetupDiGetHwProfileList
OUT PDWORD HwProfi7eList,
IN DWORD HwProfi7eListSize,
OUT PDWORD RequiredSize,
OUT PDWORD Current7yActivelndex OPTIONAL
) ;

SetupDiGetHwProfileList retrieves a list of all currently defined hardware profile IDs.

Parameters
HwProfileList
Supplies a pointer to an array to receive the list of currently defined hardware profile IDs.

HwProfiieListSize
Supplies the number of DWORDs in the HwProfileList buffer.

RequiredSize
Supplies a pointer to a variable that receives the number of hardware profiles currently
defined. If the number is larger than HwProfileListSize, the list is truncated to fit the array
size. The value returned in RequiredSize indicates the array size required to store the entire
list of hardware profiles. In this case, the function fails and a call to GetLastError returns
ERROR_INSUFFICIENT_BUFFER.

Currently Activelndex
Supplies a pointer to a variable that receives the index within the returned HwProfileList of
the currently active hardware profile.

Return Value
The function returns TRUE if it is successful. Otherwise it returns FALSE and the logged
error can be retrieved with a call to GetLastError.

Comments
Call SetupDiGetHwProfileListEx to retrieve the hardware profile IDs for a remote
machine.

See Also
SetupDiCreateDevRegKey, SetupDiOpenDevRegKey

SetupDiGetHwProfileListEx
BOOLEAN

SetupDiGetHwProfileListEx
OUT PDWORD HwProfi7eList,
IN DWORD HwProfi7eListSize,
OUT PDWORD RequiredSize,

Chapter 3 Device Installation Functions 351

OUT PDWORD Current7yActivelndex, OPTIONAL
IN PCTSTR MachineName, OPTIONAL
IN PVOID Reserved
) :

SetupDiGetHwProfileListEx retrieves a list of all currently defined hardware profile IDs
on a local or remote machine.

Parameters
HwProfileList
Supplies a pointer to an array to receive the list of currently defined hardware profile IDs.

HwProfileListSize
Supplies the number of DWORDs in the HwProfileList buffer.

RequiredSize
Supplies a pointer to a variable that receives the number of hardware profiles currently
defined. If the number is larger than HwProJileListSize, the list is truncated to fit the array
size. The value returned in RequiredSize indicates the array size required to store the entire
list of hardware profiles. In this case, the function fails and a call to GetLastError returns
ERROR_INSUFFICIENT_BUFFER.

Currently Activelndex
Supplies a pointer to a variable that receives the index within the returned HwProJileList of
the currently active hardware profile.

MachineName
Optionally supplies the name of a remote machine for which to retrieve the list of hardware
profile IDs. If MachineName is NULL, the list is retrieved for the local machine.

Reserved
Must be NULL.

Return Value
The function returns TRUE if it is successful. Otherwise it returns FALSE and the logged
error can be retrieved with a call to GetLastError.

352 Part 3 Setup

See Also
SetupDiGetHwProfileFriendlyNameEx

SetupDiGetlNFClass
BOOLEAN

SetupDiGetINFClass(
IN PCTSTR InfName,
OUT LPGUID C7assGuid,
OUT PTSTR C7assName,
IN DWORD C7assNameSize,
OUT PDWORD RequiredSize OPTIONAL
) :

SetupDiGetINFClass returns the class of a specified device INF file.

Parameters
InfName
Supplies the name of a device INF file. This name can include a path. However, if just the
filename is specified, the file is searched for in each directory listed in the DevicePath entry
under the HKLM\SOFTW ARE\Microsoft\ Windows\CurrentVersion subkey of the
registry.

ClassGuid
Receives the class GUID for the specified INF file. If the INF file does not specify a class
name, this variable is set to GUID_NULL. Call SetupDiClassGuidsFromName to deter
mine if one or more classes with this name are alrea~y installed.

ClassName
Receives the name of the class for the specified INF file. If the INF file does not specify a
class name, but does specify a GUID, this buffer receives the name retrieved by calling
SetupDiClassNameFromGuid. However, if SetupDiClassNameFromGuid cannot
retrieve a class name (for example, the class is not installed), it returns an empty string.

ClassNameSize
Supplies the size, in characters, of the ClassName buffer.

RequiredSize
Receives the number of characters required to store the class name (including terminating
NULL). RequiredSize is always less than MAX_CLASS_NAME_LEN.

Chapter 3 Device Installation Functions 353

Return Value
The function returns TRUE if it is successful. Otherwise it returns FALSE and the logged
error can be retrieved with a call to GetLastError.

Comments
This function works with device INF files on Windows NT 4.0, Windows 2000, and higher
and Windows 9x. Do not use this function with legacy INF files.

See Also
SetupDiBuildClasslnfoList, SetupDiClassGuidsFromName, SetupDiClassNameFrom
Guid, SetupDiGetClassDescription

SetupDiGetSelectedDevice
BOOLEAN

SetupDiGetSelectedDev;ce(
IN HDEVINFO DevicelnfoSet.
OUT PSP_DEVINFO_DATA DevicelnfoData
) :

SetupDiGetSelectedDevice retrieves the currently-selected device for the specified device
information set.

Parameters
DevicelnfoSet
Supplies a handle to the device information set from which to retrieve the selected device.

DevicelnfoData
Supplies a pointer to an SP _DEVINFO_DATA structure that receives the currently-selected
device. The caller must set cbSize to sizeof(SP _DEVINFO_DATA). If a device is not
currently selected, the function fails and a call to GetLastError returns ERROR_NO_
DEVICE_SELECTED.

Return Value
The function returns TRUE if it is successful. Otherwise it returns FALSE and the logged
error can be retrieved with a call to GetLastError.

Comments
SetupDiGetSelectedDevice is usually used by an installation wizard.

354 Part 3 Setup

See Also
SetupDiSetSelectedDevice, SP _DEVINFO _DATA

SetupDiGetSelected Driver
BOOLEAN

SetupDiGetSelectedDr;ver(
IN HDEVINFO DevicelnfoSet,
IN PSP_DEVINFO_DATA DevicelnfoData, OPTIONAL
OUT PSP_DRVINFO_DATA DriverlnfoData
) ;

SetupDiGetSelectedDriver retrieves the member of a driver list that has been selected as
the driver to install.

Parameters
DeviceinfoSet
Supplies a handle to the device information set to query.

DeviceinfoData
Supplies a pointer to an SP _DEVINFO_DATA structure that indicates the device instance
for which to retrieve the selected driver. If this parameter is NULL, the selected class driver
for the global class driver list is retrieved.

DriverinfoData
Supplies a pointer to an SP _DRVINFO_DATA structure that receives information about the
selected driver.

Return Value
The function returns TRUE if it is successful. Otherwise it returns FALSE and the logged
error can be retrieved with a call to GetLastError. If a driver has not been selected for the
specified device instance, the logged error is ERROR_NO_DRIVER_SELECTED.

See Also
SetupDiSetSelectedDriver

Chapter 3 Device Installation Functions 355

SetupDiGetWizardPage
HPROPSHEETPAGE

SetupDiGetWizardPage(
IN HDEVINFO DevicelnfoSet,
IN PSP_DEVINFO_DATA DevicelnfoData, OPTIONAL
IN PSP_INSTALLWIZARD_DATA Insta77WizardData,
IN DWORD PageType,
IN DWORD Fl ags
) ;

This function is reserved for system use. For information on wizard pages, see the
DIF _NEWDEVICEWIZARD _XXX requests such as DIF _NEWDEVICEWIZARD_
FINISHINST ALL.

SetupDilnstaliClass
BOOLEAN

SetupDiInstallClass(
IN HWND hwndParent, OPTIONAL
IN PCTSTR InfFi7eName,
IN DWORD Flags,
IN HSPFILEQ Fi7eOueue OPTIONAL
) ;

SetupDiInstallClass installs the Classlnstall32 section of the specified INF file.

Parameters
hwndParent
Supplies the handle of the parent window for any user interface used to install this class.

InfFileName
Specifies the name of the INF file containing a Classlnstall32 section.

Flags
These flags control the installation process. Can be a combination of the following:

DLNOVCP
Set this flag if FileQueue is supplied. DI_NOVCP instructs the SetuplnstallFromlnf
Section function not to create a queue of its own and to use the caller-supplied queue
instead. If this flag is set, files are not copied just queued.

DLNOBROWSE
Set this flag to disable browsing in the event a copy operation cannot find a specified file. If
the caller supplies a file queue, this flag is ignored.

356 Part 3 Setup

OI_FORCECOPY
Set this flag to always copy files, even if they are already present on the user's machine. If
the caller supplies a file queue, this flag is ignored.

01_ QUIETINSTALL
Set this flag to suppress the user interface unless absolutely necessary. For example, do not
display the progress dialog. If the caller supplies a file queue, this flag is ignored.

FileQueue
If the DI_NOVCP flag is set, this parameter supplies a handle to a file queue where file
operations should be queued but not committed.

Return Value
The function returns TRUE if it is successful. Otherwise it returns FALSE and the logged
error can be retrieved with a call to GetLastError.

Comments
This function is called by a class installer when it installs a device of a new device class.

To install an interface class or a device class, use SetupDiInstallClassEx.

See Also
SetupDiCallClasslnstaller, SetupDiInstallClassEx

SetupDilnstallClassEx
BOOLEAN

SetupDiInstallClassEx(
IN HWND hwndParent. OPTIONAL
IN PCTSTR InfFi7eName. OPTIONAL
IN DWORD F7 ags,
IN HSPFILEQ Fi7eQueue, OPTIONAL
IN LPGUID InterfaceC7assGuid, OPTIONAL
IN PVOID Reservedl,
IN PVOID Reserved2
) ;

SetupDiInstallClassEx installs a class installer or an interface class.

Parameters
hwndParent
Optionally supplies the handle of the parent window for any user interface used to install
this class.

Chapter 3 Device Installation Functions 357

InfFileName
Optionally specifies the name of an INF file.

If this function is being used to install a class installer, the INF file contains a Class
Insta1l32 section and this parameter must be nonNULL.

If this function is being used to install an interface class; the INF file contains an
Interfacelnsta1l32 section.

Flags
Specifies flags that control the installation process. Can be a combination of the following:

OI_NOVCP
Set this flag if FileQueue is supplied. DI_NOVCP instructs the SetuplnstallFromlnf
Section function to not create a queue of its own and to use the caller-supplied queue
instead. If this flag is set, files are not copied just queued.

OI_NOBROWSE
Set this flag to disable browsing in the event a copy operation cannot find a specified file. If
the caller supplies a file queue, this flag is ignored.

OI_FORCECOPY
Set this flag to always copy files, even if they are already present on the user's machine. If
the caller supplies a file queue, this flag is ignored.

01_ QUIETINSTALL
Set this flag to suppress the user interface unless absolutely necessary. For example, do not
display the progress dialog. If the caller supplies a file queue, this flag is ignored.

FileQueue
If the DI_NOVCP flag is set, this parameter supplies a handle to a file queue where file
operations should be queued but not committed.

InterfaceClassGuid
Optionally points to a GUID specifying an interface class to be installed. If this parameter is
nonNULL, this function is being used to install the interface class represented by the GUID.
If this parameter is NULL, this function is being used to install a class installer.

Reserved 1
Reserved. Must be zero.

Reserved2
Reserved. Must be zero.

358 Part 3 Setup

Return Value
SetupDiInstallClassEx returns TRUE if it is successful. Otherwise it returns FALSE and
the logged error can be retrieved with a call to GetLastError.

Comments
SetupDiInstallClassEx is typically called by a class installer to install a new device setup
class or a new device interface class. Note that an interface class can also be installed auto
matically as a result of installing the device interfaces for a device instance (SetupDiInstall
DeviceInterfaces) .

See Also
SetupDiCall ClassInstaller, SetupDiInstallDeviceInterfaces

SetupDilnstaliDevice
BOOLEAN

SetupDiInstallDevice(
IN HDEVINFO DevicelnfoSet.
IN OUT PSP_DEVINFO_DATA DevicelnfoData
) ;

SetupDiInstallDevice is the default handler for the DIF _INSTALLDEVICE installation
request. It installs a driver for a device.

Parameters
DeviceinfoSet
Supplies a handle to the device information set for the local machine that contains the device
to be installed.

DeviceinfoData
Supplies a pointer to an SP _DEVINFO_DATA structure that identifies the device to be
installed. This is an IN OUT parameter because the DevInst field of the structure can be
updated with a new handle value upon return.

Return Value
The function returns TRUE if it is successful. Otherwise it returns FALSE and the logged
error can be retrieved with a call to GetLastError.

Comments
This function installs a driver from the INF file. SetupAPI's definition of the "driver" is
really a "driver node". Therefore, when this function installs a driver, that includes installing

Chapter 3 Device Installation Functions 359

the service(s) for the device, the driver files, any device-specific coinstallers, property-page
providers, and control-panel applets, and registering any device interfaces. A successful
installation includes, but is not limited to, the following steps:

• Create a driver key in the registry and write appropriate entries (such as InfPath and
ProviderName).

• Locate and process the DDlnstall section for the device. The section might be
OS/architecture-specific. The DDlnstall section's AddReg and DelReg entries are di
rected at the device's software key. Locate and process the DDlnstall.HW section whose
AddReg and DelReg entries are directed at the device's hardware key. Locate and
process the DDlnstall.LogConfigOverride section, if present, to supply an override Log
Config for the device. Locate and process the DDlnstall.Services section to add services
for the device (and potentially remove any old services that are no longer necessary).

• Copy the INF to system INF directory.

• Possibly perform the other file operations, based on flag settings in the device installation
parameters.

If the DI_NOFILECOPY flag and the DI_NOVCP flag are clear, perform any specified
file in the DDlnstall section. If the DI_NOVCP flag is set, queue any file operations. If
the DI_NOFILECOPY flag is set, do not copy the files; this flag might be set if, for ex
ample, a DIF _INSTALLDEVICEFILES operation was already performed for this device
installation .

•. Load the driver(s) for the device, including the function driver and any upper or lower
filter drivers.

• Call the drivers at their AddDevice routines.

• Start the device (send an IRP _MN_START_DEVICE).

Setup does not start the device if the DI_NEEDRESTART, DI_NEEDREBOOT, or DI_
DONOTCALLCONFIGMG flag in the SP _DEVINSTALL_P ARAMS structure is set.

A class installer should return ERROR_DI_DO_DEFAULT or call this function when
handling a DIF _INSTALLDEVICE request. This function performs numerous tasks for
device installation and that list of tasks might be expanded in future releases. If a class
installer performs device installation without calling this function, the class installer might
not work properly on future versions of the operating system.

See Also
DIF _INSTALLDEVICE, SetupDiCallClasslnstaller, SetupDiInstallDriverFiles

360 Part 3 Setup

SetupDilnstallDevicelnterfaces
BOOLEAN

SetupDiInstallDeviceInterfaces(
IN HDEVINFO OevicelnfoSet,
IN PSP_DEVINFO_DATA OevicelnfoOata
) ;

SetupDiInstallDevicelnterfaces is the default handler for the DIF _
INST ALLINTERF ACES installation request. It installs the interfaces
listed in a DDlnstall.lnterfaces section of a device INF file.

Parameters
DevicelnfoSet
Points to the device information set containing the device whose interfaces are to be in
stalled. The device information set must not contain remote elements.

DevicelnfoData
Points to an SP _DEVINFO_DATA structure that identifies a device in the device
information set.

Return Value
SetupDiInstallDevicelnterfaces returns TRUE if the function completed without error. If
the function completed with an error, FALSE is returned and the error code for the failure
can be retrieved by calling GetLastError.

Comments
SetupDiInstallDevicelnterfaces processes each Addlnterface entry in the INF file and
creates each interface using SetupDiCreateDevicelnterface.

The DevicelnfoSet must only contain elements on the local machine.

For information on INF file format, see the chapter on INF File Sections and Directives.

See Also
DIF _INSTALLINTERF ACES, SetupDiCreateDevicelnterface

SetupDilnstallDriverFiles
BOOLEAN

SetupDiInstallDriverFiles(
IN HDEVINFO DevicelnfoSet,
IN PSP_DEVINFO_DATA DevicelnfoData OPTIONAL
) ;

Chapter 3 Device Installation Functions 361

SetupDiInstallDriverFiles is the default handler for the DIF _INSTALLDEVICEFILES
installation request. It is similar to the SetupDiInstallDevice function; however, it performs
only the file copy commands. The SetupDiInstallDriverFiles function does not configure
the device.

Parameters
DevicelnfoSet
Supplies a handle to the device information set for which driver files are to be installed. The
device information set must not contain remote elements.

DevicelnfoData
Supplies a pointer to an SP _DEVINFO_DATA structure indicating a particular member for
which to perform file installation.

Return Value
The function returns TRUE if it is successful. Otherwise it returns FALSE and the logged
error can be retrieved with a call to GetLastError.

Comments
A driver must be selected for the specified device information set or element before this
function is called.

This function processes the CopyFiles, Delfiles, and Renfiles entries in the selected INF.

The DevicelnfoSet must only contain elements on the local machine.

See Also
SetupDiCallClasslnstaller, SetupDiInstallDevice

SetupDiLoadClasslcon
BOOLEAN

SetupDiLoadClassIcon(
IN LPGUID C7assGuid,
OUT HICON *Largelcon, OPTIONAL

OUT LPINT Minilconlndex OPTIONAL
) ;

SetupDiLoadClasslcon loads both the large and mini-icon for the specified class.

362 Part 3 Setup

Parameters
Class Guid
Supplies the GUID of the class for which the icon(s) should be loaded.

Largelcon
Supplies a pointer to a variable to receive a handle for the loaded large icon for the specified
class. If this parameter is not specified, the large icon is not loaded.

Minilconlndex
Supplies a pointer to a variable to receive the index of the mini-icon for the specified class.
The mini-icon is stored in the device installer's mini-icon cache.

Return Value
The function returns TRUE if it is successful. Otherwise it returns FALSE and the logged
error can be retrieved by a call to GetLastError.

Comments
The icons of the class are either predefined and loaded from the device installer's internal
cache, or they are loaded directly from the class installer's executable. This function queries
the registry value ICON in the specified class's section. If the ICON value is specified, it
indicates which mini-icon to load.

If the ICON value is negative, the absolute value represents a predefined icon in the class's
registry. See SetupDiDrawMinilcon for a list of the predefined mini-icons.

If the ICON value is positive, it represents an icon in the class installer's executable that will
be extracted. The value 1 is reserved. This function also uses the INST ALLER32 registry
value and then the ENUMPROPPAGES32 registry value to determine which executable to
extract the icon(s) from.

See Also
SetupDiDrawMiniIcon, SetupDiGetClassBitmapIndex

SetupDiMoveDuplicateDevice
BOOLEAN

SetupDiMoveDuplicateDevice(
IN HDEVINFO DevicelnfoSet,
IN PSP_DEVINFO_DATA DestinationDevicelnfoData
) ;

Chapter 3 Device Installation Functions 363

SetupDiMoveDuplicateDevice is the default handler for the DIF _MOVEDEVICE installa
tion request. This function moves a device to a new location of the Enum branch of the
registry.

Parameters
DevicelnfoSet
Supplies a handle to the device information set for the device which is to be moved. The
device information set must not contain remote elements.

DestinationDevicelnfoData
Supplies a pointer to an SP _DEVINFO_DATA structure for the device instance that is the
destination of the move. This device instance must contain class install parameters for DIF _
MOVEDEVICE or the function fails with an error of ERROR_NO _ CLASSINST ALL_
PARAMS.

Return Value
The function returns TRUE if it is successful. Otherwise it returns FALSE and the logged
error can be retrieved with a call to GetLastError.

Comments
This function is typically only used by system components and is not called by vendor
device installers.

See Also
SP _MOVEDEV _PARAMS

SetupDiOpenClassRegKey
HKEY

SetupDiOpenClassRegKey(
IN LPGUID C7assGuid. OPTIONAL
IN REGSAM samDesired
) ;

SetupDiOpenClassRegKey opens the setup class registry key or a specific class's subkey.

Parameters
Class Guid
Optionally supplies the GUID of the setup class whose key is to be opened. If this parameter
is NULL, the root of the setup class tree (HKLM\SYSTEM\CurrentControISet\Control\
Class) is opened.

364 Part 3 Setup

samDesired I

Specifies the access to the key required by the caller.

Return Value
If the function is successful, it returns a handle to an opened registry key where informa
tion pertaining to this setup class can be stored/retrieved. If the function fails, it returns
INVALID_HANDLE_ VALUE. To get extended error information, call GetLastError.

Comments
This function does not create a registry key if it does not already exist.

The handle returned from this function must be closed by calling RegCloseKey.

To open the interface class registry key or a specific interface class subkey, call SetupDi
OpenClassRegKeyEx.

See Also
SetupDiOpenClassRegKey Ex, SetupDiOpenDev RegKey

SetupDiOpenClassRegKeyEx
HKEY

SetupDiOpenClassRegKeyEx(
IN LPGUID C7assGuid. OPTIONAL
IN REGSAM samDesired.
IN DWORD Flags.
IN PCTSTR MachineName. OPTIONAL
IN PVOID Reserved
) ;

SetupDiOpenClassRegKeyEx opens the device setup class registry key, the device inter
face class registry key, or a specific class's sUbkey. This function opens the specified key
on the local machine or on a remote machine.

Parameters
Class Guid
Optionally points to the GUID of the class for which the registry key is to be opened. If
this parameter is NULL, the root of the class tree (HKLM\SYSTEM\CurrentControISet\
Control\Class) is opened.

samDesired
Specifies the access to the key required by the caller.

Chapter 3 Device Installation Functions 365

Flags
Specifies the kind of registry key to be opened. Can be one of the following:

DIOCRJNSTALLER
Open a setup class key. If ClassGuid is NULL, open the root key of the class installer
branch.

DIOCRJNTERFACE
Open an interface class key. If ClassGuid is NULL, open the root key of the interface class
branch.

MachineName
Optionally points to a string containing the name of a remote machine on which to open the
specified key.

Reserved
Reserved. Must be NULL.

Return Value
SetupDiOpenClassRegKeyEx returns a handle to an opened registry key where infor
mation pertaining to this setup class can be stored/retrieved. If the function fails, it returns
INVALID_HANDLE_ VALUE. To get extended error information, call GetLastError.

Comments
SetupDiOpenClassRegKeyEx does not create a registry key if it does not already exist.

Callers of this function must close the handle returned from this function by calling
RegCloseKey.

See Also
SetupDiCreateDevicelnterfaceRegKey, SetupDiOpenDevRegKey

SetupDiOpenDevicelnfo
BOOLEAN

SetupDiOpenDeviceInfo(
IN HDEVINFO DevicelnfoSet.
IN PCTSTR Devicelnstanceld.
IN HWND hwndParent. OPTIONAL
IN DWORD OpenF7ags.
OUT PSP_DEVINFO_DATA DevicelnfoData OPTIONAL
) :

366 Part 3 Setup

SetupDiOpenDevicelnfo retrieves information about an existing device instance and adds
it to the specified device information set. If a device information element already exists for
this device instance, the function returns the existing element.

Parameters
DevicelnfoSet
Supplies a handle to a device information set to which the opened device information
element should be added.

Devicelnstanceld
Supplies the ID of the device instance. This is the registry path relative to the Enum path of
the device instance key. For example, Root*PNP0500\OOOO.

hwndParent
Supplies the window handle of the top-level window to use for any user interface related to
installing the device.

Open Flags
Controls how the device information element is opened. Can be one or more of the
following:

0100_ CANCEL_REMOVE
If this flag is specified and the device had been marked for pending removal, the OS cancels
the pending removal.

0100 JNHERIT _CLASSDRVS
If this flag is specified, the resulting device information element inherits the class driver list,
if any, associated with the device information set. In addition, if there is a selected driver for
the device information set, that same driver is selected for the new device information
element.

If the device information element was already present, its class driver list, if any, is replaced
with the inherited list.

DevicelnfoData
Supplies a pointer to a variable that receives a context structure that is initialized for
the newly-opened device information element. The caller must set cbSize to sizeof(SP_
DEVINFO_DATA).

Return Value
The function returns TRUE if it is successful. Otherwise it returns FALSE and the logged
error can be retrieved with a call to GetLastError.

Chapter 3 Device Installation Functions 367

Comments
If this device instance is being added to a set that has an associated class, the device class
must be the same or the call will fail. In this case, a call to GetLastError returns ERROR_
CLASS_MISMATCH.

If the new device information element is successfully opened but the caller-supplied Device
InfoData buffer is invalid, this function returns FALSE. In this case, a call to GetLastError
returns ERROR_INVALID_USER_BUFFER. However, the device information element is
added as a new member of the set anyway.

See Also
SetupDiCreateDeviceInfo, SetupDiDeleteDeviceInfo, SetupDiEnumDeviceInfo, SP _
DEVINFO_DATA

SetupDiOpenDevicelnterface
BOOLEAN

SetupDiOpenDeviceInterface(
IN HDEVINFO DevicelnfoSet,
IN PCTSTR DevicePath,
IN DWORD OpenF7ags,
OUT PSP_DEVICE_INTERFACE_DATA DevicelnterfaceData OPTIONAL
) ;

SetupDiOpenDeviceInterface retrieves information about an existing device interface and
adds it to the specified device information set. This function creates a device information
element for the underlying device if one is not already present in the device information set.

Parameters
DevicelnfoSet
Points to a device information set that contains, or will contain, the device that exposes the
interface being opened.

DevicePath
Points to a string containing the name of the device interface to be opened. This name
is a Win32 device path typcially received in a PnP notification structure or obtained by a
previous call to SetupDiEnumDeviceInterfaces and its related functions.

OpenFlags
Reserved. Must be zero.

368 Part 3 Setup

De vicelnterfaceData
Optionally points to a caller-allocated buffer to receive a completed SP _DEVICE_
INTERF ACE_DATA structure that identfies the interface. The caller must set Device
Interj'aceData.cbSize to sizeof(SP _DEVICE,-INTERF ACE_DATA) before calling this
function.

Return Value
SetupDiOpenDeviceInterface returns TRUE if the function completed without error. If the
function completed with an error, it returns FALSE and the error code for the failure can be
retrieved by calling GetLastError.

Comments
If a device interface element for the interface already exists in DevicelnfoSet, SetupDi
OpenDeviceInterface updates the flags. This function, therefore, can be used to refresh
the flags for a device interface. For example, an interface might have been inactive when it
was first opened, but has subsequently become active.

If the new device interface is successfully opened, but the caller-supplied Devicelnterj'ace
Data buffer is invalid, this function returns FALSE and GetLastError returns ERROR_
INVALID_USER_BUFFER. The caller's buffer error does not prevent the interface from
being opened.

See Also
SetupDiEnumDeviceInterfaces

SetupDiOpenDevicelnterfaceRegKey
HKEY

SetupDiOpenDeviceInterfaceRegKey(
IN HDEVINFO OevicelnfoSet.
IN PSP_DEVICE_INTERFACE_DATA OevicelnterfaceOata.
IN DWORD Reserved.
IN REGSAM samOesired
) ;

SetupDiOpenDeviceInterfaceRegKey opens the registry subkey that is used by applica
tions and drivers to store information specific to a device interface instance and returns a
handle to the key.

Parameters
DevicelnfoSet
Points to a device information set containing the interface and its underlying device.

Chapter 3 Device Installation Functions 369

DevicelnteriaceData
Points to a structure that identifies the device interface, possibly returned by SetupDi
CreateDeviceInterface or SetupDiEnumDeviceInterfaces.

Reserved
Reserved. Must be zero.

sam Desired
Specifies the access to the registry key requested by the caller.

Return Value
SetupDiOpenDeviceInterfaceRegKey returns a handle to the opened registry key. If the
function fails, it returns INV ALID _HANDLE_ V ALUE. To get extended error information,
call GetLastError.

Comments
Close the handle returned from by function by calling RegCloseKey.

See Also
SetupDiCreateDeviceInterface, SetupDiCreateDeviceInterfaceRegKey, SetupDiEnum
DeviceInterfaces

SetupDiOpenDevRegKey
HKEY

SetupDiOpenDevRegKey(
IN HDEVINFO DevicelnfoSet.
IN PSP_DEVINFO_DATA DevicelnfoData.
IN DWORD Scope.
IN DWORD HwProfi7e.
IN DWORD KeyType.
IN REGSAM samDesired
) ;

SetupDiOpenDevRegKey opens a registry storage key for device-specific configuration
information and returns a handle to the key.

Parameters
DevicelnfoSet
Supplies a handle to the device information set containing information about the device
instance whose registry configuration storage key is to be opened.

370 . Part 3 Setup

DeviceinfoData
Supplies a pointer to an SP _DEVINFO_DATA structure indicating the device instance for
which to open the registry key.

Scope
Specifies the scope of the registry key to open. The scope determines where the information
is stored. The key opened can be global or hardware profile-specific. Can be one of the fol
lowing values:

DICS_FlAG_GlOBAl
Open a key to store global configuration information. This information is not specific to a
particular hardware profile. On Windows NTlWindows 2000 this opens a key that is. rooted
at HKEY _LOCAL_MACHINE. The exact key opened depends on the value of the Key
Type parameter.

DICS_FlAG_CONFIGSPECIFIC
Open a key to store hardware profile-specific configuration information. This key is rooted
at one of the hardware-profile specific branches, instead of HKEY _LOCAL_MACHINE.
The exact key opened depends on the value of the KeyType parameter.

HwProfile
Specifies the hardware profile to open a key for, if Scope is set to SPDICS_FLAG_
CONFIGSPECIFIC. If HwProfile is 0, the key for the current hardware profile is opened.
If Scope is SPDICS_FLAG_GLOBAL, this parameter is ignored.

KeyType
Specifies the type of registry storage key to open. Can be one of the following values:

DIREG_DEV
Open a hardware registry key for the device. This is the key for storage of driver
independent configuration information.

This key has the form HKLM\SYSTEM\CurrentControlSet\Enum\enumerator\
deviceID\device-instance\Device Parameters. Only use this API to open this key. Do
not open this registry path directly. This path is only provided here to aid debugging.

DIREG_DRV
Open a software, or driver, registry key for the device.

This key has the form HKLM\SYSTEM\CurrentControlSet\Control\Class\ClassGUID\
InstanceID where classGUID is the GUID representing the device's class and InstanceID is
a base-la, four-digit ordinal representing this device instance within the list of device in
stances for this class. Only use this API to open this key. Do not open this registry path
directly. This path is only provided here to aid debugging.

Chapter 3 Device Installation Functions 371

samDesired
Specifies the access you require for this key.

Return Value
If the function is successful, it returns a handle to an opened registry key where private
configuration data pertaining to this device instance can be stored/retrieved.

If the function fails, it returns INV ALID_HANDLE_ V ALUE. To get extended error
information, call GetLastError.

Comments
Close the handle returned from this function by calling RegCloseKey.

The specified device instance must be registered before calling this function. After creating
the device instance with SetupDiCreateDevicelnfo, call SetupDiRegisterDevicelnfo to
register it.

See Also
SetupDiCreateDevicelnfo, SetupDiCreateDevRegKey, SetupDiGetHwProfileList,
SetupDiRegisterDevicelnfo

SetupDiRegisterCoDevicelnstallers
BOOLEAN

SetupDiRegisterCoDeviceInstallers(
IN HDEVINFO OevicelnfoSet,
IN PSP_DEVINFO_DATA OevicelnfoOata
) ;

SetupDiRegisterCoDevicelnstallers registers the device-specific coinstallers listed in the
INF file for the specified device. This function is the default handler for DIF _REGISTER_
COINSTALLERS.

Parameters
DevicelnfoSet
Supplies a handle to the device information set containing a device information element for
which coinstallers are to be registered. The device information set must not contain any
remote elements.

DevicelnfoData
Identifies the device within the device information set. This parameter identifies a device
information element in the device information set.

372 Part 3 Setup

Return Value
SetupDiRegisterCoDevicelnstallers returns TRUE if the function succeeds. If the function
returns FALSE, call GetLastError for extended error information.

Comments
SetupDiRegisterCoDevicelnstallers reads the INF file for the device specified by
DevicelnfoData and creates registry entries to register any device-specific coinstallers
listed in the INF. Coinstallers are listed in an [XxxlnstallSec.ColnstaIlers] section, where
XxxlnstallSec is the install section name for the selected driver node, potentially decorated
with an OS/architecture-specific extension. This function also copies the files for the
coinstallers, unless the DI_NOFILECOPY flag is set.

If there is no driver selected or the device has a legacy INF file, this function does not
register any coinstallers.

Registering a new device-specific coinstaller invalidates the Device Installer's current list
of coinstallers. After a successful registration, the Device Installer updates its list of co
installers.

This function only registers device-specific coinstallers, not class coinstallers. See the Plug
and Play, Power Management, and Setup Design Guide for information on registering a
class coinstaller.

See the Plug and Play, Power Management, and Setup Design Guide for further information
on writing device-specific coinstallers.

The DevicelnfoSet must only contain elements on the local machine.

See Also
DIF _REGISTER_COINSTALLERS, SetupDiCallClasslnstaller

Setu pOi RegisterOevicelnfo
BOOLEAN

SetupDiRegisterDeviceInfo(
IN HDEVINFO DevicelnfoSet.
IN OUT PSP_DEVINFO_DATA DevicelnfoData.
IN DWORD Flags.
IN PSP_DETSIG_CMPPROC CompareProc. OPTIONAL
IN PVOID CompareContext. OPTIONAL
OUT PSP_DEVINFO_DATA DupDevicelnfoData OPTIONAL
) ;

Chapter 3 Device Installation Functions 373

SetupDiRegisterDeviceInfo registers a newly created device instance with the Plug and
Play Manager. This function is the default handler for the DIF _REGISTERDEVICE request
and should only be called for nonPnP devices.

Parameters
DevicelnfoSet
Supplies a handle to a device information set. The device information set must not contain
any remote elements.

DevicelnfoData
Supplies a pointer to a SP _DEVINFO_DATA structure that identifies the device in the
DevicelnfoSet. This is an IN OUT parameter because the DevInst field of the structure can
be updated with a new handle value upon return.

Flags
Controls how the device is registered. Can be the following value:

SPRDLFIND_DUPS
Search for a previously-existing device instance corresponding to the device information
pointed to by DevicelnfoData. If this flag is not specified, the device instance is registered
regardless of whether or not a device instance already exists for it.

If the caller supplies a CompareProc they must also set this flag.

CompareProc
Supplies a comparison callback function to use in duplicate'detection. If specified, the
function is called for each device instance that is of the same class as the device instance
being registered. The prototype of the callback function is as follows:

typedef DWORD (CALLBACK* PSP_DETSIG_CMPPROC)
IN HDEVINFO DeviceInfoSet,
IN PSP~DEVINFO_DATA NewDeviceData.
IN PSP_DEVINFO_DATA ExistingDeviceData,
IN PVOID CompareContext OPTIONAL
) ;

The compare function must return ERROR_DUPLICATE_FOUND if it finds that the two
devices are duplicates. Otherwise it should return NO_ERROR. If some other error is en
countered, the callback function should return the appropriate ERROR_ * code to indicate
the failure.

If CompareProc is not specified and duplication detection is requested, a default comparison
behavior is used. The default is to compare the new device's detect signature with the detect

374 Part 3 Setup

signature of all other devices in the class. The detect signature is contained in the class
specific resource descriptor of the device's boot log configuration.

CompareContext
Supplies a pointer to a caller-supplied context buffer that is passed into the callback
function. This parameter is ignored if CompareProc is not specified.

DupDevicelnfoData
Optionally supplies a pointer to a device information element to receive a duplicate device
instance, if any, discovered as a result of attempting to register this device. The caller must
set cbSize to sizeof(SP _DEVINFO_DATA). This will be filled in if the function returns
FALSE, and GetLastError returns ERROR_DUPLICATE_FOUND. This device informa
tion element is added as a member of the specified DevicelnfoSet, if not already a member.
If DupDevicelnfoData is not specified, the duplicate is not added to the device informa
tion set.

If you call this function when handling a DIF _REGISTERDEVICE request, the Dup
DevicelnfoData parameter must be NULL.

Return Value
The function returns TRUE if it is successful. Otherwise it returns FALSE and the logged
error can be retrieved with a call to GetLastError.

Comments
Do not call this function for PnP devices. PnP devices are registered by the OS.

After registering a device information element, the caller should refresh any stored copies of
the DevInst handle associated with this device. This is necessary because the handle value
might have changed during registration. The caller need not retrieve the SP _DEVINFO_
DATA structure again because the DevInst field of the structure is updated to reflect the
current value of the handle.

The DevicelnfoSet must only contain elements on the local machine.

See Also
DIF _REGISTERDEVICE, SP _DEVINFO_DATA, SP _DEVINSTALL_PARAMS

SetupDiRemoveDevice
BOOLEAN

SetupDiRemoveDevice(
IN HDEVINFO DeviceInfoSet,
IN OUT PSP_DEVINFO_DATA DeviceInfoData
) ;

Chapter 3 Device Installation Functions 375

SetupDiRemoveDevice is the default handler for the DIF _REMOVE installation request. It
removes a device from the system.

Parameters
DevicelnfoSet
Supplies a handle to a device information set for the local machine.

DevicelnfoData
Supplies a pointer to an SP _DEVINFO_DATA structure that identifies the device in the
DevicelnfoSet. This is an IN OUT parameter because the DevInst field of the structure can
be updated with a new handle value upon return. If this is a global removal or the last hard
ware profile-specific removal, all traces of the device instance are deleted from the registry
and the DevicelnfoSet handle is NULL.

Return Value
The function returns TRUE if it is successful. Otherwise it returns FALSE and the logged
error can be retrieved by a call to GetLastError.

Comments
This function removes the device from the system. It deletes the device's hardware and
software registry keys and any hardware-profile-specific registry keys (configuration
specific registry keys). This function dynamically stops the device if its DevInst is active
and this is a global removal or the last configuration-specific removal. If the device cannot
be dynamically stopped, flags are set in the Install Parameter block of the device informa
tion set that eventually cause the user to be prompted to shut down the system.

Device removal is either global to all hardware profiles or specific to one hardware profile
as specified by the ClassInstallParams field of the structure. Configuration-specific re
moval is only appropriate for root-enumerated devices and should only be requested by
system code.

The DevicelnfoSet must only contain elements on the local machine.

See Also
SP _DEVINFO_DATA, SP _REMOVEDEVICE_PARAMS

376 Part 3 Setup

SetupDi RemoveDevicel nterface
BOOLEAN

SetupDiRemoveDeviceInterface(
IN HDEVINFO DevicelnfoSet,
IN OUT PSP_DEVICE_INTERFACE_DATA DevicelnterfaceData
) :

SetupDiRemoveDeviceInterface removes a registered device interface from the system.

Parameters
DevicelnfoSet
Points to the device information set containing the interface and its underlying device. This
handle is typically returned by SetupDiGetClassDevs. The device information set must not
contain remote elements.

DevicelnterfaceData
Points to a structure that identifes the interface being removed. This information is typically
returned by SetupDiEnumDeviceInterfaces.

After the interface is removed, this function sets the SPINT_REMOVED flag in Device
InteifaceData.Flags. It also clears the SPINT_ACTIVE flag, but note that this flag should
have already been cleared when this function was called.

Return Value
SetupDiRemoveDeviceInterface returns TRUE if the function completed without error. If
the function completed with an erorr, it returns FALSE and the error code for the failure can
be retrieved by calling GetLastError.

Comments
SetupDiRemoveDeviceInterface removes the specified device interface from the system,
including deleting the associated registry key.

Call SetupDiDeleteDeviceInterfaceData to delete the interface from a device informa
tion list.

A device interface must be disabled to be removed. If the interface is enabled, this function
fails and GetLastError returns ERROR_DEVICE_INTERF ACE_ACTIVE. Disable an
interface using whatever interface-specific mechanism is provided (for example, an IOCTL).
If the caller has no way of disabling an interface and the interface must be removed, the
caller must stop the underlying device using SetupDiChangeState. Stopping the device
disables all the interfaces exposed by the device.

The DevicelnfoSet must only contain elements on the local machine.

Chapter 3 Device Installation Functions 377

See Also
SetupDiChangeState, SetupDiCreateDevicelnterface, SetupDiDeleteDevicelnterface
Data, SetupDiEnumDevicelnterfaces, SetupDiGetClassDevs

SetupDiSelectBestCompatDrv
BOOLEAN

SetupDiSelectBestCompatDrv(
IN HDEVINFO DevicelnfoSet.
IN OUT PSP_DEVINFO_DATA DevicelnfoData
) :

SetupDiSelectBestCompatDrv is the default handler for the DIF _
SELECTBESTCOMPATDRV installation request.

Parameters
DevicelnfoSet
Supplies a handle to a device information set. The device information set must not contain
any remote elements.

De vicelnfoData
Supplies a pointer to an SP _DEVINFO _DATA structure that indicates the member of the
device information set for which a driver is to be selected.

Return Value
The function returns TRUE if it is successful. Otherwise it returns FALSE and the logged
error can be retrieved by a call to GetLastError.

Comments
SetupDiSelectBestCompatDrv selects the best driver for the device from the device in
formation element's compatible driver list. To get the selected driver for a device, call
SetupDiGetSelectedDriver.

The best driver has the lowest "rank". A "rank zero" match is the best match. To choose
between several drivers in the driver list that have the same best-rank match, this function
chooses the driver with the most-recent date. A driver's date is set with a DriverVer entry
in the driver's INF file. This function only considers the DriverVer date if the INF is
digitally signed.

This function uses information on the local machine when selecting the best driver.

378 Part 3 Setup

See Also
DIF _SELECTBESTCOMP ATDRV, SP _DEVINFO _DATA

SetupDiSelectDevice
BOOLEAN

SetupDiSelectDevice(
IN HDEVINFO DevicelnfoSet,
IN OUT PSP_DEVINFO_DATA DevicelnfoData OPTIONAL
) ;

SetupDiSelectDevice is the default handler for the DIF _SELECTDEVICE request.

Parameters
DeviceinfoSet
Supplies a handle to a device information set for the local machine.

DeviceinfoData
Supplies a pointer to an SP _DEVINFO_DATA structure that indicates the member of the
device information set for which a driver is to be selected. If this parameter is not specified,
a driver is selected for the global class driver list associated with the device information set.

Return Value
The function returns TRUE if it is successful. Otherwise it returns FALSE and the logged
error can be retrieved by a call to GetLastError.

Comments
The function handles the user interface that allows the user to select a driver for the device
specified. By setting the Flags field of the SP _DEVINSTALL_PARAMS structure, the
caller can specify special handling of the user interface such as to allow users to select a
driver from an OEM installation disk.

The DevicelnfoSet must only contain elements on the local machine.

See Also
SetupDiCallClasslnstaller, SP _DEVINSTALL_PARAMS

SetupDiSelectOEMDrv
BOOLEAN

SetupDiSelectOEMDrv(
IN HWND hwndParent, OPTIONAL
IN HDEVINFO DevicelnfoSet,

Chapter 3 Device Installation Functions 379

IN OUT PSP_DEVINFO_DATA DevicelnfoData OPTIONAL
);

SetupDiSelectOEMDrv selects a driver for a device using an OEM path supplied by
the user.

Parameters
hwndParent
Supplies a window handle that will be the parent of any dialogs created during the proces
sing of this function. This parameter can be used to override the hwndParent field in the
install parameters block of the specified device information set or element. The device
information set must not contain remote elements.

DeviceinfoSet
Supplies a handle to the device information set that contains the device being installed.

DeviceinfoData
Supplies a pointer to an SP _DEVINFO_DATA structure for the device being installed. If
this parameter is not specified, the device being installed is associated with the global class
driver list of the device information set.

Return Value
The function returns TRUE if it is successful. Otherwise it returns FALSE and the logged
error can be retrieved by a call to GetLastError.

Comments
This function asks the user for the OEM path and then calls the class installer to select a
driver from the OEM path.

The DevicelnfoSet must only contain elements on the local machine.

See Also
SetupDiAskForOEMDisk

380 Part 3 Setup

SetupDiSetClasslnstallParams
BOOLEAN

SetupDiSetClassInstallParams(
IN HDEVINFO DevicelnfoSet.
IN PSP_DEVINFO_DATA DevicelnfoData. OPTIONAL
IN PSP_CLASSINSTALL_HEADER C7asslnsta77Params. OPTIONAL
IN DWORD C7asslnsta77ParamsSize
) ;

SetupDiSetClasslnstallParams sets or clears class install parameters for a device
information set or a particular device information element.

Parameters
DeviceinfoSet
Supplies a handle to the device information set that contains the class install parameters
to set.

DeviceinfoData
Supplies a pointer to an SP _DEVINFO _DATA structure that contains the class install pa
rameters to set. If DevicelnfoData is not specified, the class install parameters to set are
associated with the device information set.

CiassinstallParams
Supplies a pointer to a buffer that contains the new class install parameters to use. The SP _
CLASSINST ALL_HEADER structure at the beginning of this buffer must have its cbSize
field set to sizeof(SP _CLASSINSTALL_HEADER) and the InstallFunction field must be
set to the DI_FUNCTION code that reflects the type of parameters contained in the rest of
the buffer.

If ClasslnstallParams is not specified, the current class install parameters, if any, are cleared
for the specified device information set or element.

ClassinstallParamsSize
Supplies the size, in bytes, of the ClasslnstallParams buffer. If the buffer is not supplied
(that is, the class install parameters are being cleared), ClasslnstallParamsSize must be O.

Return Value
The function returns TRUE if it is successful. Otherwise it returns FALSE and the logged
error can be retrieved with a call to GetLastError.

Chapter 3 Device Installation Functions 381

Comments
All parameters are validated before any changes are made. Therefore, a return value of
FALSE indicates that no parameters were modified.

A consequence of setting class install parameters is that the DI_CLASSINSTALLPARAMS
flag is set. If the caller wants to set the parameters, but disable their use, this flag must be
cleared by a call to SetupDiSetDevicelnstallParams.

If the class install parameters are cleared, the DI_ CLASSINST ALLP ARAMS flag is reset.

See Also
SetupDiGetClasslnstallParams, SetupDiSetDevicelnstallParams

SetupDiSetDevicelnstallParams
BOOLEAN

SetupDiSetDeviceInstallParams(
IN HDEVINFO DevicelnfoSet.
IN PSP_DEVINFO_DATA DevicelnfoData. OPTIONAL
IN PSP_DEVINSTALL_PARAMS Devicelnsta77Params
) ;

SetupDiSetDevicelnstallParams sets device install parameters for a device information set
or a particular device information element.

Parameters
DeviceinfoSet
Supplies a handle to the device information set that contains the device install parameters
to set.

DeviceinfoData
Supplies a pointer to an SP _DEVINFO_DATA structure that contains device install pa
rameters to set. If this parameter is not specified, the install parameters set are associated
with the device information set for the global class driver list.

DeviceinstaiiParams
Supplies a pointer to an SP _DEVINST ALL_P ARAMS structure that contains the new
values of the parameters. The cbSize field of this structure must be set to the size, in bytes,
of the structure before calling this function.

Return Value
The function returns TRUE if it is successful. Otherwise it returns FALSE and the logged
error can be retrieved with a call to GetLastError.

382 Part 3 Setup

Comments
All parameters are validated before any changes are made. Therefore, a return value of
FALSE indicates that no parameters were modified.

See Also
SetupDiGetDevicelnstallParams

SetupDiSetDeviceRegistryProperty
BOOLEAN

SetupDiSetDeviceRegistryProperty(
IN HDEVINFO DevicelnfoSet.
IN OUT PSP_DEVINFO_DATA DevicelnfoData.
IN DWORD Property.

IN CONST BYTE *PropertyBuffer.
IN DWORD PropertyBufferSize
) ;

SetupDiSetDeviceRegistryProperty sets the specified Plug and Play device property.

Parameters
DevicelnfoSet
Supplies a handle to the device infon,n.ation set containing information about the device
instance whose Plug and Play property is to be modified.

DevicelnfoData
Supplies a pointer to an SP _DEVINFO_DATA structure indicating the device instance
whose Plug and Play property is to be modified. If the ClassGUID property is being set, this
structure is updated upon return to reflect the device's new class.

Property
Supplies an ordinal specifying the property to be set. Can be one of the following values:

Code

SPDRP _CHARACTERISTICS

SPDRP _COMPATIBLEIDS

SPDRP _CONFIGFLAGS

SPDRP _DEVTYPE

SPDRP _EXCLUSIVE

SPDRP _FRIENDL YNAME

SPDRP _HARDW AREID

Property

Device Characteristics

CompatibleIDs

ConfigFlags

Device Type

Exclusive access

FriendlyName

HardwareID

Code

SPDRP _LOCATION_INFORMATION

SPDRP _LOWERFILTERS

SPDRP _SECURITY

SPDRP _SECURITY _SDS

SPDRP _SERVICE

SPDRP _ULNUMBER_DESC_FORMAT

SPDRP _ UPPERFILTERS

Do not set the following values:

SPDRP _ADDRESS

SPDRP _BUSNUMBER

SPDRP _BUSTYPEGUID

SPDRP _CAPABILITIES

Chapter 3 Device Installation Functions 383

Property

LocationInformation

LowerFilters

Security (binary form)

Security (SDS form)

Service

Format-message-style string to format UI number

UpperFilters

SPDRP _CLASS (established by the class GUID in the INF)

SPDRP _CLASSGUID (established by the class GUID in the INF)

SPDRP _DEVICEDESC (provided by the bus driver or INF)

SPDRP _DRIVER (determined by PnP during device installation)

SPDRP _ENUMERATOR_NAME

SPDRP_LEGACYBUSTYPE

SPDRP _MFG (specified by the INF)

SPDRP _PHYSICAL_DEVICE_OBJECT_NAME

SPDRP _ULNUMBER

PropertyBuffer
The address of a buffer that contains the new data for the property. If the property is being
cleared, then this pointer should be NULL and PropertyBufferSize must be zero.

PropertyBufferSize
Supplies the size, in bytes, of PropertyBuffer. If PropertyBuffer is NULL, then this field
must be zero.

Return Value
The function returns TRUE if it is successful. Otherwise it returns FALSE and the logged
error can be retrieved with a call to GetLastError.

384 Part 3 Setup

Comments
The class name property cannot be set because it is based on the corresponding class GUID
and is automatically updated when that property is changed. When the ClassGUID property
changes, SetupDiSetDeviceRegistryProperty automatically cleans up any software keys
associated with the device.

See Also
SetupDiGetDeviceRegistryProperty

SetupDiSetDriverl nstall Params
BOOLEAN

SetupDiSetDriverInstallParams(
IN HDEVINFO DevicelnfoSet,
IN PSP_DEVINFO_DATA DevicelnfoData, OPTIONAL
IN PSP_DRVINFO_DATA DriverlnfoData,
IN PSP_DRVINSTALL_PARAMS Driverlnsta77Params
);

SetupDiSetDriverlnstallParams establishes install parameters for the specified driver.

Parameters
DevicelnfoSet
Supplies a handle to the device information set containing a driver information structure for
which to set installation parameters.

DevicelnfoData
Supplies a pointer to an SP _DEVINFO_DATA structure that contains a driver information
structure for which to set installation parameters. If this parameter is not specified, the driver
referenced is a member of the global class driver list owned by the device information set.

DriverlnfoData
Supplies a pointer to an SP _DRVINFO_DATA structure that specifies the driver for which
install parameters are to be set.

DriverlnstallParams
Supplies a pointer to an SP _DRVINSTALL_PARAMS structure that specifies what the new
driver install parameters should be. The cbSize field of this structure must be set to the size,
in bytes, of the structure before this function is called.

Chapter 3 Device Installation Functions 385

Return Value
The function returns TRUE if it is successful. Otherwise it returns FALSE and the logged
error can be retrieved by a call to GetLastError.

See Also
SetupDiGetDriverlnstallParams

SetupDiSetSelectedDevice
BOOLEAN

SetupDiSetSelectedDevice(
IN HDEVINFO DevicelnfoSet.
IN PSP_DEVINFO_DATA DevicelnfoData
) ;

SetupDiSetSelectedDevice sets the specified device information element to be the cur
rently-selected member of a device information set. This function is typically used by an
installation wizard.

Parameters
DevicelnfoSet
Supplies a handle to the device information set for which the selected device should be set.

De vicelnfoData
Supplies a pointer to an SP _DEVINFO_DATA structure that specifies the device infor
mation element to select.

Return Value
The function returns TRUE if it is successful. Otherwise it returns FALSE and the logged
error can be retrieved with a call to GetLastError.

See Also
SetupDiGetSelectedDevice

386 Part 3 Setup

SetupDiSetSelected Driver
BOOLEAN

SetupDiSetSelectedDriver(
IN HDEVINFO DevicelnfoSet,
IN PSP_DEVINFO_DATA DevicelnfoData, OPTIONAL
IN OUT PSP_DRVINFO_DATA DriverlnfoData OPTIONAL
);

SetupDiSetSelectedDriver sets the specified member of a driver list as the
currently-selected driver. It can also be used to reset the driver list so that there is
no currently-selected driver.

Parameters
DevicelnfoSet
Supplies a handle to the device information set containing information about the device
instance for which to set a selected driver.

De vicelnfoData
Supplies a pointer to an SP _DEVINFO_DATA structure that contains the device informa
tion element for which to select a driver. If this parameter is NULL, a class driver for the
global class driver list is selected.

DriverlnfoData
If this parameter is specified, it supplies a pointer to a driver information structure that indi
cates the driver to be selected. If this parameter is NULL, the driver list is reset (that is, no
driver is selected).

If the Reserved field of the SP _DRVINFO_DATA structure is 0, the caller is requesting
a search for a driver node with the specified parameters (DriverType, Description, and
ProviderName). If a match is found, that driver node is selected. The Reserved field is
updated on output to reflect the actual driver node where the match was found. If a match
is not found, the function fails and a call to GetLastError returns ERROR_INV ALID_
PARAMETER.

Return Value
The function returns TRUE if it is successful. Otherwise it returns FALSE and the logged
error can be retrieved with a call to GetLastError.

See Also
SetupDiGetSelectedDriver

SetupDiUnremoveDevice
BOOLEAN

SetupDiUnremoveDevice(
IN HDEVINFO OevicelnfoSet,
IN OUT PSP_DEVINFO_DATA OevicelnfoOata
) ;

Chapter 3 Device Installation Functions 387

SetupDiUnremoveDevice is the default handler for the DIF _UNREMOVE installation
request. This function restores a device to a hardware profile and starts the device, if
possible.

Parameters
De vicelnfoSet
Supplies a handle to a device information set for the local machine.

De vicelnfoData
Supplies a pointer to an SP _DEVINFO_DATA structure that identifies the device in the
DevicelnfoSet. This is an IN OUT parameter because the DevInst field of the structure can
be updated with a new handle value upon return.

Return Value
The function returns TRUE,if it is successful. Otherwise it returns FALSE and the logged
error can be retrieved by a call to GetLastError.

Comments
SetupDiUnremoveDevice restores a device to a hardware profile. This function starts the
device, if possible, or it sets a flag in the device install parameters that eventually causes the
user to be prompted to shut down the system.

The device being restored must have class install parameters for DIF _ UNREMOVE or the
function fails and GetLastError returns ERROR_NO_CLASSINSTALL_PARAMS.

The DevicelnfoSet must only contain elements on the local machine.

See Also
DIF _UNREMOVE, SetupDiRemoveDevice, SP _DEVINFO_DATA

388 Part 3 Setup

UpdateDriverForPlugAndPlayDevices
BOOLEAN

UpdateDriverForPlugAndPlayDevices(
HWND hwndParent.
LPCTSTR Hardwareld.
LPCTSTR Fu77InfPath.
DWORD Insta77F7ags.
PBOOL bRebootRequired OPTIONAL
) ;

Given an INF and a hardware ID, UpdateDriverForPlugAndPlayDevices installs updated
drivers for devices that match the hardware ID.

Parameters
hwndParent
A caller-supplied handle to the top-level window to use for any UI related to installing
device(s).

Hardwareld
A caller-supplied Hardware ID to match against existing devices on the machine.

FulllnfPath
A caller-supplied full path to an INF and any associated driver files. The files should be
on the distribution media or in a vendor-created directory, not in a system location such as
%windir%\inf The function copies driver files to the appropriate system locations if the
installation is successful.

Instal/Flags
This parameter is typically zero.

In a special situation, an application might specify the INST ALLFLAG_FORCE flag. If
this flag is set and this function finds a device that matches the Hardwareld, it installs new
driver(s) for the device whether or not better drivers already exist on the machine. Vendors
must use this flag with extreme caution because it can cause an older driver to be installed
over a newer driver.

bRebootRequired
Optional address of a BOOLEAN that indicates whether a reboot is required and who should
prompt for it.

If bRebootRequired is NULL, this function prompts for a reboot after installing driver(s),
if necessary. If bRebootRequired is a valid pointer, this function returns its reboot status

Chapter 3 Device Installation Functions 389

through this parameter and it is the caller's responsibility to prompt for a reboot if one is
needed.

Return Value
The function returns TRUE if a device was upgraded to the specified driver.

Otherwise, it returns FALSE and the logged error can be retrieved with a call to
GetLastError. Possible error values returned by GetLastError include:

Error Value

ERROR_FILE_NOT_FOUND

ERROR_NO_SUCH_DEVINST

ERROR_INV ALID_FLAGS

NO_ERROR

Comments

Description

The FullInfPath does not exist.

The HardwareId does not match any device on the
machine.

InstallFlags does not contain an accepted value.

The routine found a match for the Hardwareld but
the specified driver was not better than the current
driver and the caller did not specify the
INSTALLFLAG_FORCE flag.

UpdateDriverForPlugAndPlayDevices scans the devices on the machine and attempts
to install the driver(s) specified at Full/nfPath on any device(s) that match the given
Hardware/d. The default behavior is to only install the specified driver(s) if they are better
than the currently installed driver(s) and the specified driver(s) are also better than any
driver(s) in %windir%\inf For more information, see How Does Setup Select a Driver
for a Device? in Part 4, "Setup," in the Plug and Play, Power Management, and Setup
Design Guide

UpdateDriverForPlugAndPlayDevices attempts to install the specified driver(s) on all
hardware that matches the specified Hardware/d.

This function is defined in newdev.h. Applications that call this function must link to
newdev.lib.

CHAPTER 4

Device Installation Structures

This chapter describes the structures that are parameters to SetupDiXxx functions, device
installation function requests (DIP requests), and other device installation operations.

typedef struct _SP_ADDPROPERTYPAGE_DATA {
SP_CLASSINSTALL_HEADER ClassInstallHeader;
DWORD Flags;
HPROPSHEETPAGE DynamicPages[MAX_INSTALLWIZARD_DYNAPAGES];
DWORD NumDynamicPages;
HWND hwndWizardDlg;

SP_ADDPROPERTYPAGE_DATA. *PSP_ADDPROPERTYPAGE_DATA;

391

An installer uses an SP _ADDPROPERTYPAGE_DATA structure to supply custom prop
erty page(s) for a device when handling a DIP _ADDPROPERTYPAGE_ADVANCED
request.

Members
ClasslnstaliHeader
An install request header that contains the header size and the DIP code for the request.

Flags
Reserved. Must be zero.

DynamicPages
An array of property sheet page handles. An installer can add the handles of custom property
pages to this array.

NumDynamicPages
The number of pages added to the DynamicPages array.

392 Part 3 Setup

Because the array index is zero-based, this value is also the index to the next free entry in
the array. For example, if there are 3 pages in the array, DynamicPages[3] is the next entry
for an installer to use.

hwndWizardDlg
The window handle of the Device Manager top-level window.

Comments
See the Platform SDK for documentation on the PROPSHEETPAGE structure and for more
information on property pages.

See Also
DIF _ADDPROPERTYPAGE_ADVANCED

SP _CLASSIMAGELIST_DATA
typedef struct _SP_CLASSIMAGE_DATA {

DWORD cbSize;
HIMAGELIST ImageList;
DWORD Reserved;

SP_CLASSIMAGE_DATA, *PSP_CLASSIMAGE_DATA;

An SP _CLASSIMAGELIST_DATA structure describes a class image list.

Members
cbSize
The size, in bytes, of the SP _CLASSIMAGE_DATA structure.

ImageList
A handle to the class image list.

See Also
SetupDiDestroyClasslmageList, SetupDiGetClasslmagelndex, SetupDiGetClass
ImageList

SP _CLASSINSTALL_HEADER
typedef struct _SP_CLASSINSTALL_HEADER {

DWORD cbSize;
DI_FUNCTION InstallFunction;

} SP_CLASSINSTALL_HEADER, *PSP_CLASSINSTALL_HEADER;

Chapter 4 Device Installation Structures 393

An SP _CLASSINSTALL_HEADER is the first member of any class install parameters
structure. It contains the device installation request code that defines the format of the rest
of the install parameters structure.

Members
cbSize
The size, in bytes, of the SP _CLASSINSTALL_HEADER structure.

Install Function
The device installation request (DIF code) for the class install parameters structure.

DIF codes have the format DIF _XXX and are defined in setupapi.h. See the chapter on
Device Installation Function Codes for a complete description of DIF codes.

Comments
When a component allocates a class install parameters structure, it typically initializes
the header fields of the structure. Such a component sets the InstallFunction member
to the DIF code for the installation request and sets cbSize to the size of the SP _
CLASSINSTALL_HEADER structure. For example:

SP_REMOVEDEVICE_PARAMS RemoveDeviceParams;
RemoveDeviceParams.ClasslnstallHeader.cbSize = sizeof(SP_CLASSINSTALL_HEADER);
RemoveDeviceParams.ClasslnstallHeader.lnstallFunction = DIF_REMOVE;

A component must set the InstallFunction before passing a class install parameters
structure to SetupDiSetClassInstallParams.

However, a component need not set this field when passing class install parameters to
SetupDiGetClassInstallParams. This function sets the InstallFunction in the structure it
passes back to the caller; this function sets it to the DIF _XXX code for the currently active
device installation request.

See Also
SetupDiCallClassInstaller, SetupDiGetClassInstallParams, SetupDiSetClass
InstallParams, SP _DETECTDEVICE_PARAMS, SP _MOVEDEV _PARAMS, SP _
NEWDEVICEWIZARD_DATA, SP _POWERMESSAGEWAKE_PARAMS, SP_
PROPCHANGE_PARAMS, SP _REMOVEDEVICE_PARAMS, SP _SELECTDEVICE_
P ARAMS, SP _ TROUBLESHOOTER_P ARAMS, SP _ UNREMOVEDEVICE_P ARAMS

394 Part 3 Setup

SP _DETECTDEVICE_PARAMS
typedef struct _SP_DETECTDEVICE_PARAMS {

SP_ClASSINSTAll_HEADER ClassInstallHeader;
PDETECT_PROGRESS_NOTIFY DetectProgressNotify;
PVOID ProgressNotifyParam;

} SP_DETECTDEVICE_PARAMS, *PSP_DETECTDEVICE_PARAMS;

An SP _DETECTDEVICE_PARAMS structure corresponds to a DIF _DETECT installation
request.

Members
ClasslnstaliHeader
An install request header that contains the size of the header and the DIF code for the
request. See SP _CLASSINSTALL_HEADER for more information.

DetectProgressNotify
A callback routine that displays a progress bar for the device detection operation. The call
back routine is supplied by the Setup component that sends the DIF _DETECT request. The
callback has the following prototype:

typedef BOOl (CAllBACK* PDETECT_PROGRESS_NOTIFY)(
IN PVOID ProgressNotifyParam,
IN DWORD DetectComplete
) ;

ProgressNotifyParam is an opaque "handle" that identifies the detection operation. This
value is supplied by the Setup component that sent the DIF _DETECT request.

DetectComplete is a value between 0 and 100 that indicates the percent completion. The
class installer increments this value at various stages of its detection activities, to notify the
user of its progress.

ProgressNotifyParam
The opaque ProgressNotifyParam "handle" that the class installer passes to the progress
callback routine.

See Also
DIP_DETECT, SetupDiCallClasslnstaller, SP _CLASSINSTALL_HEADER

typedef struct _SP_DEVICE_INTERFACE_DATA {
DWORD cbSize;
GUID InterfaceClassGuid;
DWORD Flags;
ULONG_PTR Reserved;

Chapter 4 Device Installation Structures 395

} SP_DEVICE_INTERFACE_DATA. *PSP_DEVICE_INTERFACE_DATA;

An SP _DEVICE_INTERFACE_DATA structure defines a device interface in a device
information set.

Members
cbSize
The size, in bytes, of the SP _DEVICE_INTERFACE_DAT A structure.

InterfaceClassGuid
The OVID for the class to which the device interface belongs.

Flags
Can be one of the following:

SPINT _ACTIVE
The interface is active (enabled).

SPINT _DEFAULT
Reserved. Not currently used.

SPINT _REMOVED
The interface is removed.

See Also
SetupDiCreateDevicelnterface, SetupDiEnumDevicelnterfaces, SetupDiGet
DevicelnterfaceAlias, SetupDiOpenDevicelnterface, SP _DEVICE_INTERFACE_
DETAIL_DATA

396 Part 3 Setup

SP _DEVICE_INTERFACE_DETAIL_DATA
typedef struct _SP_DEVICE_INTERFACE_DETAIL_DATA {

DWORD cbS;ze:
TCHAR Dev;cePath[ANYSIZE_ARRAYJ:

} SP_DEVICE_INTERFACE_DETAIL_DATA, *PSP_DEVICE_INTERFACE_DETAIL_DATA:

An SP _DEVICE_INTERF ACE_DETAIL_DAT A structure contains the path for a device
interface.

Members
cbSize
The size, in bytes, of the fixed portion of the SP _DEVICE_INTERFACE_DETAIL_DATA
structure.

DevicePath
A NULL-terminated string that contains the device interface path. This path can be passed
to Win32® functions such as CreateFile.

See Also
SetopDiGetDevicelnterfaceDetaii

typedef struct _SP_DEVINFO_DATA {
DWORD cbS;ze:
GUID ClassGu;d;
DWORD Devlnst;
ULONG_PTR Reserved;

} SP_DEVINFO_DATA, *PSP_DEVINFO_DATA;

An SP _DEVINFO _DATA structure defines a device instance that is a member of a device
information set.

Members
cbSize
The size, in bytes, of the SP_DEVINFO_DATA structure.

ClassGuid
The GUID of the device's setup class.

Devlnst
An opaque handle to the device instance (also known as a handle to the devnode).

Chapter 4 Device Installation Structures 397

Some functions, such as SetupDiXxx functions, take the whole SP _DEVINFO_DATA
structure as input to identify a device in a device information set. Other functions, such as
CM_Xxx functions like Cm_GeCDevNode_Status, take this DevInst handle as input.

Comments
An SP _DEVINFO_DATA structure identifies a device in a device information set. For
example, when Setup sends a DIF _INSTALLDEVICE request to a class installer and
coinstallers, it includes a handle to a device information set and a pointer to an SP _
DEVINFO_DATA that specifies the particular device. Besides DIF requests, this struc
ture is also used in some SetupDiXxx functions.

See Also
SP _DEVINFO_LIST_DETAIL_DATA

typedef struct _SP_DEVINFO_LIST_DETAIL_DATA {
DWORD cbSize;
GUID ClassGuid;
HANDLE RemoteMachineHandle;
TCHAR RemoteMachineName[SP_MAX_MACHINENAME_LENGTH];

} SP_DEVINFO_LIST_DETAIL_DATA, *PSP_DEVINFO_LIST_DETAIL_DATA:

An SP _DEVINFO_LIST_DETAIL_DATA structure contains information about a device
information set, such as its associated setup class aUlD (if it has an associated setup class).

Members
cbSize
The size, in bytes, of the SP _DEVINFO_LIST_DETAIL_DATA structure.

ClassGuid
The setup class aUlD that is associated with the device information set or aUlD_NULL if
there is no associated setup class.

RemoteMachineHandle
A Configuration Manager machine handle for the remote machine, if the device information
set is for a remote machine. If the device information set is for the local machine, this mem
beris NULL.

This is typically the parameter that components use to access the remote machine. The
RemoteMachineName contains a string, in case the component requires the name of
the remote machine.

398 Part 3 Setup

RemoteMachineName
A NULL-terminated string that contains the name of the remote machine. If the device
information set is for the local machine, this member is an empty string.

See Also
SetupDiGetDevicelnfoListDetaii

SP _DEVINSTALL_PARAMS
typedef struct _SP_DEVINSTALL_PARAMS {

DWORD cbSize;
DWORD Flags;
DWORD FlagsEx;
HWND hwndParent;
PSP_FILE_CALLBACK InstallMsgHandler;
PVOID InstallMsgHandlerContext;
HSPFILEO FileOueue;
ULONG_PTR ClasslnstallReserved;
DWORD Reserved;
TCHAR DriverPath[MAX_PATH];

SP_DEVINSTALL_PARAMS, *PSP_DEVINSTALL_PARAMS;

An SP _DEVINSTALL_PARAMS structure contains device installation parameters associ
ated with a particular device information element or associated globally with a device infor
mation set.

Members
cbSize
The size, in bytes, of the SP _DEVINST ALL_P ARAMS structure.

Flags
Flags that control installation and user interface operations. Some flags can be set prior to
sending the device installation request while others are set automatically· during the proces
sing of some requests. Flags can be a combination of the following values.

The flag values are listed in groups: writeable by setup applications and installers, read only
(only set by the OS), reserved, and obsolete. The first group lists flags that are writeable:

DI_CLASSINSTALLPARAMS
Set to use the Class Install parameters. SetupDiSetClasslnstallParams sets this flag
when the caller specifies parameters and clears the flag when the caller specifies a NULL
parameters pointer.

Chapter 4 Device Installation Structures 399

DLCOMPAT _FROM_CLASS
Set to force SetupDiBuildDriverlnfoList to build a device's list of compatible drivers from
its class driver list instead of the INF file.

DI_DRIVERPAGE_ADDED
Set by a class installer or coinstaller if the installer supplies a page that replaces the
system-supplied driver properties page. If this flag is set, the OS does not display
the system-supplied driver page.

DI_DONOTCALLCONFIGMG
Set if the Configuration Manager should not be called to remove or reenumerate devices
during the execution of certain device installation functions (for example, SetupDiInstall
Device).

Setup applications, including class installers and coinstallers, must obey this flag. If this flag
is set, such components must not call the following functions:

CM_Reenumerate_DevNode. CM_Reenumerate_DevNode_Ex
CM_Query_And_Remove_SubTree. CM_Query_And_Remove_SubTree_Ex
CM_Setup_DevNode. CM_Setup_DevNode_Ex
CM_Set_HW_Prof_Flags. CM_Set_HW_Prof_Flags_Ex
CM_Enable_DevNode. CM_Enable_DevNode_Ex
CM_Disable_DevNode. CM_Disable_DevNode_Ex

DLENUMSINGLEINF
Set if installers and other Setup components should only search the INF file specified by
SP _DEVINSTALL_PARAMS.DriverPath. If this flag is set, DriverPath contains the path
to a single INF file instead of a path to a directory.

DIJNF JS_SORTED
Set to indicate that the Select Device page should list drivers in the order they appear in the
INF file, instead of sorting them alphabetically.

DIJNSTALLDISABLED
Set if the device should be installed in a disabled state by default. To be recognized, this flag
must be set before Setup calls the default handler for the DIF _INSTALLDEVICE request.

DLNEEDREBOOT
For Windows NT®lWindows® 2000, this flag is set if the device requires that the machine
be rebooted after device installation or a device state change. A class installer or coinstaller
should set this flag during device installation if the installer determines that a reboot is
necessary.

DI_NEEDRESTART
The same as DI_NEEDREBOOT.

400 Part 3 Setup

OLNOBROWSE
Set to disable browsing when the user is selecting an OEM disk path. A setup application
sets this flag to constrain a user to only installing from the installation media location.

OLNOOI_OEFAULTACTION
Set if SetupDiCallClassInstaller should not perform any default action if the class installer
returns ERR_DI_DO_DEFAVLT or there is not a class installer.

OI_NOFILECOPY
Set·if Setup applications and components, such as SetupDiInstallDevice, should skip file
copying.

OLNOVCP
Set to disable creation of a new copy queue. Vse the caller-supplied copy queue in SP_
DEVINSTALL_PARAMS.FileQueue.

OLNOWRITEJOS
Set to prevent SetupDiInstallDevice from writing the INF-specified hardware and com
patible IDs to the device properties for the devnode. This flag should only be set for root
enumerated devices.

This flag overrides the DI_FLAGSEX_AL W A YSWRITEIDS flag.

DI_PROPERTIES_CHANGE
Set by the Device Manager if a device's properties have been changed, requiring an update
of the installer's user interface.

01_ QUIETINSTALL
Set if the device installer functions must be silent and use default choices wherever possible.
Class installers and coinstallers must not display any VI if this flag is set.

OI_RESOURCEPAGE_AOOEO
Set by a class installer or coinstaller if the installer supplies a page that replaces the
system-supplied resource properties page. If this flag is set, the OS does not display
the system-supplied resource page.

OI_SHOWOEM
Set to allow support for OEM disks. If this flag is set, the OS presents a "Have Disk" button
on the Select Device page. This flag is set, by default, in system-supplied wizards.

01_ USECI_SELECTSTRINGS
Set if a class installer or coinstaller supplied strings that should be used during SetupDi
SelectDevice.

The following flags are read only (only set by the OS):

Chapter 4 Device Installation Structures 401

DLDIDCLASS
Set if SetupDiBuildDriverInfoList has already built a list of the drivers for this class of
device. If this list has already been built, it contains all the driver information and this flag is
always set. SetupDiDestroyDriverlnfoList clears this flag when it deletes a list of drivers
for a class.

This flag is read only. Only the OS sets this flag.

DLDIDCOMPAT
Set if SetupDiBuildDriverInfoList has already built a list of compatible drivers for this
device. If this list has already been built, it contains all the driver information and this flag is
always set. SetupDiDestroyDriverlnfoList clears this flag when it deletes a compatible
driver list.

This flag is only set in device installation parameters that are associated with a particular
device information element, not in parameters for a device information set as a whole.

This flag is read only. Only the OS sets this flag.

DLMULTMFGS
Set by SetupDiBuildDriverInfoList if a list of drivers for a device setup class contains
drivers provided by multiple manufacturers.

This flag is read only. Only the OS sets this flag.

The following flags are reserved:

DCAUTOASSIGNRES

DCDISABLED

DCFORCECOPY

DCGENERALPAGE_ADDED

DCOVERRIDE_INFFLAGS

DCSHOWALL

DCSHOWCLASS

DCSHOWCOMPAT

The following flags are obsolete:

DCNOSELECTICONS

DCPROPS_NOCHANGEUSAGE

FlagsEx
Additional flags that provide control over installation and user interface operations.
Some flags can be set prior to calling the device installer functions while others are set

402 Part 3 Setup

automatically during the processing of some functions. FlagsEx can be a combination
of the following values.

The flag values are listed in groups: writeable by setup applications and installers, read only
(only set by the OS), reserved, and obsolete.

The first group lists flags that are writeable:

DLFLAGSEX_ALLOWEXCLUDEDDRVS
If set, include drivers that have been marked "Exclude From Select".

For example, if this flag is set, SetupDiSelectDevice displays drivers that have the Exclude
From Select state and SetupDiBuildDriverlnfoList includes Exclude From Select drivers
in the requested driver list.

A driver is "Exclude From Select" if either it is marked ExcludeFromSelect in the INF
file or it is a driver for a device whose whole setup class is marked NolnstallClass or No
Use Class in the class installer INF. Drivers for PnP devices are typically "Exclude From
Select"; PnP devices should not be manually installed. To build a list of driver files for a
PnP device a caller of SetupDiBuildDriverlnfoList must set this flag.

DLFLAGSEX_ALWAYSWRITEIDS
If set and the DI_NOWRITE_IDS flag is clear, always write hardware ahd compatible IDs
to the device properties for the devnode. This flag should only be set for root-enumerated
devices.

DLFLAGSEX_APPENDDRIVERLIST
If set, SetupDiBuildDriverInfoList appends a new driver list to an existing list. This flag is
relevant when searching multiple locations.

DLFLAGSEX_DRIVERLIST _FROM_URL
If set, build the driver list from INF(s) retrieved from the URL specified in SP_
DEVINSTALL_PARAMS.DriverPath. If the DriverPath is an empty string, use
the Windows Update web site.

Currently, the as does not support URLs. Use this flag to direct SetupDiBuild
DriverInfoLIst to search the Windows Update web site.

Do not set this flag if DI_ QUIETINSTALL is set.

DLFLAGSEX_EXCLUDE_ OLD JNET _DRIVERS
If set, do not include old Internet drivers when building a driver list. This flag should be set
any time you are building a list of potential drivers for a device. You can clear this flag if
you are just getting a list of drivers currently installed for a device.

Chapter 4 Device Installation Structures 403

DLFLAGSEX_FIL TERCLASSES
If set, SetupDiBuildClasslnfoList will check for class inclusion filters. This means that a
device will not be included in the class list if its class is marked as NolnstallClass.

DLFLAGSEXJNET _DRIVER
If set, the driver was obtained from the Internet. Setup will not use the device's INF to install
future devices because Setup cannot guarantee that it can retrieve the driver files again from
the Internet.

DLFLAGSEX_NO _DRVREG_MODIFY
Do not process the AddReg and DelReg entries for the device's hardware and software
(driver) keys. That is, the AddReg and DelReg entries in the INF file DDlnstall and
DDlnstall.HW sections.

DLFLAGSEX_POWERPAGE_ADDED
If set, an installer added their own page for the power properties dialog. The OS will not
display the system-supplied power properties page. This flag is only relevant if the device
supports power management.

DLFLAGSEX_PROPCHANGE_PENDING
If set, the user made changes to one or more device property sheets. The property-page
provider typically sets this flag.

When the user closes the device property sheet, the Device Manager checks the DI_
FLAGSEX_PROPCHANGE_PENDING flag. If it is set, the Device Manager clears this
flag, sets the DI_PROPERTIES_CHANGE flag, and sends a DIF _PROPERTYCHANGE
request to the installers to notify them that something has changed.

DI_FLAGSEX_SETFAILEDINSTALL
If set, the FAILEDINST ALL flag will be set when SetupDiInstallDevice installs a NULL
driver.

DLFLAGSEX_USECLASSFORCOMPAT
Filter INF files on the device's setup class when building a list of compatible drivers. If a
device's setup class is known, setting this flag decreases the time required to build a list of
compatible drivers when searching INFs that are not precompiled. This flag is ignored if
.DI_COMPAT_FROM_CLASS is set.

The following flags are read only; only the OS sets these flags:

DI_FLAGSEX_ CLFAILED
Set by the OS if a class installer failed to load or start. This flag is read only.

404 Part 3 Setup

DLFLAGSEX_DIDCOMPATINFO
Setup has built a list of driver nodes that are compatible with the device. This flag is
read only.

DI_FLAGSEX_DIDINFOLIST
Setup has built a list of driver nodes that includes all the drivers listed in the INFs of the
specified setup class. If the specified setup class is NULL because the HDEVINFO set or
device has no associated class, the list includes all driver nodes from all available INFs.
This flag is read only.

DLFLAGSEXJN_SYSTEM_SETUP
If set, installation is occurring during initial system setup. This flag is read only.

The following flags are reserved:

DCFLAGSEX_BACKUPONREPLACE

DCFLAGSEX_DEVICECHANGE

DCFLAGSEX_OLDINF _IN_CLASSLIST

DCFLAGSEX_PREINSTALLBACKUP

DCFLAGSEX_USEOLDINFSEARCH

The following flags are obsolete:

DCFLAGSEX_AUTOSELECTRANKO

DCFLAGSEX_NOUIONQUERYREMOVE

hwndParent
Window handle that will own the user interface dialogs related to this device.

InstallMsgHandler
Callback used to handle events during file copying. An installer can use a callback, for
example, to perform special processing when committing a file queue.

InstallMsgHandlerContext
Private data used by the InstallMsgHandler callback.

FileQueue
A handle to a caller-supplied file queue where file operations should be queued but not
committed.

If you associate a file queue with a device information set (SetupDiSetDevicelnstall
Params), you must disassociate the queue from the device information set before you delete
the device information set. If you fail to disassociate the file queue, Setup is not able to dec
rement its reference count on the device information set and is unable to free the memory.

Chapter 4 Device Installation Structures 405

This queue is only used if the DI_NOVCP flag is set, indicating that file operations should
be enqueued but not committed.

ClasslnstaliReserved
A pointer for class-installer data. Coinstallers must not use this field.

DriverPath
This path is used by the SetupDiBuildDriverInfoList function.

See Also
SetupDiBuildClasslnfoList, SetupDiBuildDriverlnfoList, SetupDiCallClasslnstaller,
SetupDiGetDevicelnstallParams, SetupDiInstallDevice, SetupDiSelectDevice, Setup
DiSetDevicelnstallParams

typedef struct _SP_DRVINFO_DATA {
DWORD cbSize;
DWORD DriverType;
ULONG_PTR Reserved;
TCHAR Description[LINE_LEN];
TCHAR MfgName[LINE_LEN];
TCHAR ProviderName[LINE_LEN];
FILETIME DriverDate;
DWORDLONG DriverVersion;

} SP_DRVINFOR-DATA, *PSP_DRVINFO_DATA;

An SP _DRVINFO_DATA structure contains information about a driver. This structure is a
member of a driver information list that can be associated with a particular device instance
or globally with a device information set.

Members
cbSize
The size, in bytes, of the SP _DRVINFO_DATA structure.

DriverType
The type of driver represented by this structure. Must be one of the following values:

SPOIT _CLASSORIVER
This structure represents a class driver.

SPOIT_COMPATORIVER ..
This structure represents a compatible driver.

406 Part 3 Setup

Description
A NULL-terminated string that describes the device supported by this driver.

MfgName
A NULL-terminated string that contains the name of the manufacturer of the device
supported by this driver.

ProviderName
A NULL-terminated string giving the provider of this driver. This is typically the name of
the organization that creates the driver or INF file. ProviderName can be an empty string.

DriverDate
Date of the driver. From the DriverVer entry in the INF file. See the INF DDlnstall Section
for more information on the DriverVer entry.

DriverVersion
Version of the driver. From the DriverVer entry in the INF file.

Comments
This structure equates to SP _DRVINFO_DATA_ V2. If you are writing a component that
must run on Windows NT and/or Windows 98 as well as Windows 2000, you must use the
old version of this structure (VI). To use the old structure, specify the macro USE_SP_
DRVINFO_DATA_ VI. Version 1 of the structure contains only the first six members.

See Also
SetupDiEnumDriverlnfo, SetupDiGetDriverlnstallParams, SetupDiGetSelectedDriver,
SetupDiSetDriverlnstallParams, SetupDiSetSelectedDriver

typedef struct _SP_DRVINFO_DETAIL_DATA {
DWORD cbSize;
FILETIME InfDate;
DWORD CompatIDsOffset;
DWORD CompatIOsLength;
ULONG_PTR Reserved:
TCHAR SectionName[LINE_LEN];

TCHAR InfFileName[MAX_PATH];
TCHAR DrvDescription[LINE_LEN];
TCHAR HardwareIO[ANYSIZE_ARRAY];

} SP_ORVINFO_OETAIL_OATA. *PSP_ORVINFO_OETAIL_OATA;

Chapter 4 Device Installation Structures 407

An SP _DRVINFO_DETAIL_DATA structure contains detailed information about a
particular driver information structure.

Members
cbSize
The size, in bytes, of the SP_DRVINFO_DETAIL_DATA structure.

InfDate
Date of the INF file for this driver.

CompatlDsOffset
The offset, in characters, from the beginning of the HardwareID buffer where the Compat
IDs list begins.

CompatlDsLength
The length, in characters, of the CompatIDs list starting at offset CompatlDsOffset from
the beginning of the HardwareID buffer. The CompatIDs list is a list of NULL-terminated
strings with an extra NULL at the end of the list.

Section Name
A NULL-terminated string that contains the name of the INF file DDINstali section for this
driver. This must be the basic DDlnstali section name without any OS/architecture-specific
extensions; for example, InstallSec.

InfFileName
A NULL-terminated string that contains the full-qualified name of the INF file for this
driver.

DrvDescription
A NULL-terminated string that describes the driver.

HardwarelD
A buffer that contains the HardwareID and Compatible IDs list. This is a list of NULL
terminated strings, with an extra NULL at the end of the list.

See Also
INF DDlnstall Section, SetupDiGetDriverInfoDetaii

408 Part 3 Setup

SP _DRVINSTALL_PARAMS
typedef struct _SP_DRVINSTALL_PARAMS

DWORD cbSize;
DWORD Rank;
DWORD Flags;
DWORD_PTR PrivateData;
DWORD Reserved;

SP_DRVINSTALL_PARAMS, *PSP_DRVINSTALL_PARAMS;

An SP _DRVINSTALL_PARAMS structure contains driver installation parameters associ
ated with a particular driver information element.

Members
cbSize
The size, in bytes, of the SP_DRVINSTALL_PARAMS structure.

Rank
The rank match of this driver. Ranges from 0 to n, where 0 is the most compatible.

Flags
Flags that control functions operating on this driver. Can be a combination of the following:

DNF _BAD_DRIVER
Do not use this driver. Installers can read and write this flag.

If this flag is set, SetupDiSelectBestCompatDrv and SetupDiSelectDevice ignore this
driver.

A class installer or coinstaller can set this flag to prevent Setup from listing the driver in the
Select Driver dialog box. An installer might set this flag when handling a DIF _SELECT
DEVICE or DIF _SELECTBESTCOMPATDRV request, for example.

DNF _CLASS_DRIVER
This driver is a class driver. This flag is READ ONLY to installers.

DNF _COMPATIBLE_DRIVER
This driver is a compatible driver. This flag is READONL Y to installers.

DNF_DUPDESC
There are other providers supplying drivers that have the same description as this driver.
This flag is READONL Y to installers.

Chapter 4 Device Installation Structures 409

DNF _DUPPROVIDER
There are other providers supplying drivers that have the same description as this driver.
The only difference between this driver and its match is the driver date. This flag is
READONL Y to installers.

If this flag is set, Setup displays the driver date and driver version next to the driver so the
user can distinguish it from its match.

DNF _EXCLUDEFROMLIST
Do not display this driver in any driver-select dialogs.

DNF JNDEXED_DRIVER
Reserved.

DNF JNET _DRIVER
This driver came from the Internet or from Windows Update. This flag is READONL Y to
installers.

If you call SetupCopyOEMInf you must specify the SPOST_URL flag so that when Setup
copies this INF into the %windir%\inf directory Setup will mark it as an Internet INF. If you
omit this step then Setup will attempt to use this device to install other devices. The result
ing problem is that Setup does not have the source files any more and will end up prompting
the user with an invalid path.

DNF _LEGACYINF
This driver comes from a legacy INF file. This flag is valid for Windows NTlWindows 2000
only. This flag is READONLY to installers.

DNF _NODRIVER
Set if no physical driver is to be installed for this logical driver.

DNF _OLD JNET _DRIVER
This driver came from the Internet, but Setup does not currently have access to its source
files. This flag is READONL Y to installers.

The system will not install a driver marked with this flag because Setup does not have the
source files and would end up prompting the user with an invalid path. The INF for such a
driver can be used for everything except for installing devices.

DNF _ OLDDRIVER
This driver presently/previously controlled the associated device. This flag is READONL Y
to installers.

PrivateData
A field a class installer can use to store private data. Coinstallers should not use this field.

410 Part 3 Setup

See Also
SetupDiGetDriverlnstallParams, SetupDiSetDriverlnstallParams

typedef struct _SP_ENABLECLASS_PARAMS {
SP_CLASSINSTALL_HEADER ClasslnstallHeader;
GUID ClassGuid;
DWORD EnableMessage;

} SP_ENABLECLASS_PARAMS, *PSP_ENABLECLASS_PARAMS;

This structure is obsolete.

SP _INSTALLWIZARD_DATA
This structure is obsolete.

Instead of DIF _INSTALLWIZARD, Setup uses the DIF _NEWDEVICEWIZARD_XXX
requests such as DIF _NEWDEVICEWIZARD _FINISHINSTALL.

typedef struct _SP_MOVEDEV_PARAMS
SP_CLASSINSTALL_HEADER ClasslnstallHeader;
SP_DEVINFO_DATA SourceDevicelnfoData;

SP_MOVEDEV_PARAMS, *PSP_MOVEDEV_PARAMS;

This structure and its associated DIF _MOVEDEVICE installation request are reserved for
system use.

SP _NEWDEVICEWIZARD_DATA
typedef struct _SP_NEWDEVICEWIZARD_DATA {

SP_CLASSINSTALL_HEADER ClasslnstallHeader;
DWORD Flags;

HPROPSHEETPAGE DynamicPages[MAX_INSTALLWIZARD_DYNAPAGES];
DWORD NumDynamicPages;
HWND hwndWizardDlg;

} SP_NEWDEVICEWIZARD_DATA, *PSP_NEWDEVICEWIZARD_DATA;

An SP _NEWDEVICEWIZARD _DATA structure is used by installers to extend the
operation of the hardware installation wizard by adding custom pages. It is used with
DIF _NEWDEVICEWIZARD_XXX installation requests.

Members
ClasslnstaliHeader

Chapter 4 Device Installation Structures 411

An install request header that contains the header size and the DIF code for the request. See
SP _CIASSINSTALL_HEADER for more information.

Flags
Reserved. Must be zero.

DynamicPages
An array of property sheet page handles. An installer can add the handles of custom wizard
pages to this array.

NumDynamicPages
The number of pages added to the DynamicPages array.

Because the array index is zero-based, this value is also the index to the next free entry in
the array. For example, if there are 3 pages in the array, DynamicPages[3] is the next entry
for an installer to use.

hwndWizardDlg
The window handle of the hardware installation wizard top-level window.

See Also
DIF _NEWDEVICEWIZARD _FINISHINSTALL, DIF _NEWDEVICEWIZARD_
POSTANAL YZE, DIF _NEWDEVICEWIZARD _PREANAL YZE, DIF _
NEWDEVICEWIZARD _PRESELECT, DIF _NEWDEVICEWIZARD _SELECT,
SP _CLASSINSTALL_HEADER

SP _POWERMESSAGEWAKE_PARAMS
typedef struct _SP_POWERMESSAGEWAKE_PARAMS {

SP_CLASSINSTALL_HEADER ClasslnstallHeader;
TCHAR PowerMessageWake[LINE_LEN];

} SP_POWERMESSAGEWAKE_PARAMS, *PSP_POWERMESSAGEWAKE_PARAMS;

An SP _POWERMESSAGEW AKE_PARAMS structure corresponds to a
DIF _POWERMESSAGEW AKE installation request.

Members
ClasslnstallHeader
An install request header that contains the header size and the DIF code for the request. See
SP _CIASSINSTALL_HEADER.

412 Part 3 Setup

PowerMessageWake
Buffer that contains a string of custom text. Setup displays this text on the power manage
ment page of the device properties display in Device Manager.

Comments
Setup only sends the DIF _POWERMESSAGEW AKE request if the drivers for the device
support power management.

See Also
DIF _POWERMESSAGEWAKE, SP _CLAS S INSTALL_HEADER

typedef struct _SP_PROPCHANGE_PARAMS {
SP_CLASSINSTALL_HEADER ClasslnstallHeader;
DWORD StateChange;
DWORD Scope;
DWORD HwProfile;

} SP_PROPCHANGE_PARAMS, *PSP_PROPCHANGE_PARAMS;

An SP _PROPCHANGE_PARAMS structure corresponds to a DIF _PROPERTYCHANGE
installation request.

Members
ClasslnstaliHeader
An install request header that contains the header size and the DIF code for the request. See
SP _CLASSINSTALL_HEADER.

StateChange
State change action. Can be one of the following values:

DieS_ENABLE
The device is being enabled.

For this state change, Setup enables the device if the DICS_FLAG_GLOBAL flag is
specified.

If the DICS_FLAG_CONFIGSPECIFIC flag is specified and the current hardware profile
is specified then Setup enables the device. If the DICS_FLAG_CONFIGSPECIFIC is
specified and not the current hardware profile then Setup sets some flags in the registry and
does not change the device's state. Setup will change the device state when the specified
profile becomes the current profile.

Chapter 4 Device Installation Structures 413

DICS_DISABLE
The device is being disabled.

For this state change, Setup disables the device if the DICS_FLAG_GLOBAL flag is
specified.

If the DICS_FLAG_ CONFIGSPECIFIC flag is specified and the current hardware profile
is specified then Setup disables the device. If the DICS_FLAG_CONFIGSPECIFIC is
specified and not the current hardware profile then Setup sets some flags in the registry and
does not change the device's state.

DICS_PROPCHANGE
The properties of the device have changed.

For this state change, Setup ignores the Scope information and stops and restarts the device.

DICS_START
The device is being started (if the request is for the currently active hardware profile).

DICS_START must be DICS_FLAG_CONFIGSPECIFIC; you cannot perform that
change globally.

Setup only starts the device if the current hardware profile is specified, otherwise Setup sets
a registry flag and does not change the state of the device.

DICS_STOP
The device is being stopped. The driver stack will be unloaded and the CSCONFIGFLAG_
DO_NaT_START flag will be set for the device.

DICS_STOP must be DICS_FLAG_CONFIGSPECIFIC; you cannot perform that
change globally.

Setup only stops the device if the current hardware profile is specified, otherwise Setup sets
a registry flag and does not change the state of the device.

Components should not specify DICS_STOP or DICS_START. Instead, they should use
DICS_PROPCHANGE to stop and restart a device to cause changes in the device's con
figuration to take effect.

Scope
Flags that specify the scope of a device property change. Can be one of the following:

DICS_FLAG_ GLOBAL
Make the change in all hardware profiles.

DICS_FLAG_ CONFIGSPECIFIC
Make the change in the specified profile only.

414 Part 3 Setup

The following flag is obsolete:

DICS_FLAG_ CONFIGGENERAL

HwProfile
Supplies the hardware profile ID for profile-specific changes. Zero specifies the current
hardware profile.

See Also
DIF _PROPERTYCHANGE, SetupDiCallClasslnstaller, SetupDiChangeState, SP _
CLASSINST ALL_HEADER

typedef struct _SP_PROPSHEETPAGE_REQUEST {
DWORD CbSize;
DWORD PageRequested;
HDEVINFO DevicelnfoSet;
PSP_DEVINFO_DATA DevicelnfoData;

} SP_PROPSHEETPAGE_REQUEST, *PSP_PROPSHEETPAGE_REQUEST;

An SP _PROPSHEETPAGE_REQUEST structure can be pa414sed as the first parameter
(lpv) to the ExtensionPropSheetPageProc entry point in the Setupapi DLL. Extension
PropSheetPageProc is used to retrieve a handle to a specified property sheet page. For in
formation on ExtensionPropSheetPageProc and related functions, see the Platform SDK
documentation.

Members
CbSize
The size, in bytes, of the SP _PROPSHEETP AGE_REQUEST structure.

PageRequested
The property sheet page to add to the to property sheet. Can be one of the following values:

SPPSR_SELECT _DEVICE_RESOURCES
Specifies the Resource Selection page supplied by the Setupapi DLL.

SPPSR_ENUM_BASIC_DEVICE_PROPERTIES
Specifies a page that is supplied by the device's BasicProperties32 provider. That
is, an installer or other component that supplied page(s) in response to a DIF_
ADDPROPERTYPAGE_BASIC installation request.

Chapter 4 Device Installation Structures 415

SPPSR_ENUM_ADV _DEVICE_PROPERTIES
Specifies a page that is supplied by the class and/or the device's EnumPropPages32 pro
vider. That is, an installer or other component that supplied page(s) in response to a DIF_
ADDPROPERTYPAGE_ADV ANCED installation request.

DevicelnfoSet
The handle for the device information set that contains the device being installed.

DevicelnfoData
A pointer to an SP _DEVINFO_DATA structure for the device being installed.

Comments
The component that is retrieving the property pages calls Setupapi's ExtensionPropSheet
PageProc function and passes in a pointer to a SP _PROPSHEETPAGE_REQUEST struc
ture, the address of their AddPropSheetPageProc function, and some private data. The
property sheet provider calls the AddPropSheetPageProc routine for each property sheet
it provides.

The following code excerpt illustrates how to retrieve one page, the Setupapi's Resource
Selection page:

{

DWORD Err;
HINSTANCE hLib;
FARPROC PropSheetExtProc;
HPROPSHEETPAGE hPages[2];

if(!(hLib = GetModuleHandle(TEXT("setupapi.dll"))))
return GetLastError();

}

if(!(PropSheetExtProc = GetProcAddress(hLib.

}

"ExtensionPropSheetPageProc"))) {
Err = GetLastError();
FreeLibrary(hLib);
return Err;

PropPageRequest.cbSize = sizeof(SP_PROPSHEETPAGE_REQUEST);
PropPageRequest.PageRequested =

SPPSR-SELECT_DEVICE_RESOURCES;
PropPageRequest.DevicelnfoSet DevicelnfoSet;
PropPageRequest.DevicelnfoData = DevicelnfoData;

416 Part 3 Setup

}

if(!PropSheetExtProc(&PropPageRequest.

}

AddPropSheetPageProc. &hPages[l])) {
Err = ERROR-INVALID_PARAMETER;
FreeLibrary(hLib);
return Err;

The AddPropSheetPageProc for the above excerpt would be something like the following:

BOOL
CALLBACK
AddPropSheetPageProc(

{

}

See Also

)

IN HPROPSHEETPAGE hpage.
IN LPARAM lParam

*«HPROPSHEETPAGE *)lParam) = hpage;
return TRUE;

DIF _ADDPROPERTYPAGE_ADVANCED, DIF _ADDPROPERTYPAGE_BASIC

typedef struct _SP_REMOVEDEVICE_PARAMS {
SP_CLASSINSTALL_HEADER ClassInstallHeader;
DWORD Scope;
DWORD HwProfile;

SP_REMOVEDEVICE_PARAMS. *PSP_REMOVEDEVICE_PARAMS;

An SP _REMOVEDEVICE_PARAMS structure corresponds to the DIF _REMOVE
installation request.

Members
Classlnstall Header
An install request header that contains the header size and the DIF code for the request. See
SP _CLASSINSTALL_HEADER.

Scope
Flags that indicate the scope of the device removal. Can be one of the following values:

Chapter 4 Device Installation Structures 417

DLREMOVEDEVICE_GLOBAL
Make this change in all hardware profiles. Remove information about the device from the
registry.

DLREMOVEDEVICE_CONFIGSPECIFIC
Make this change to only the hardware profile specified by HwProfile. this flag only applies
to root-enumerated devices. When Setup removes the device from the last hardware profile
in which it was configured, Setup performs a global removal.

HwProfile
The hardware profile ID for profile-specific changes. Zero specifies the current hardware
profile.

See Also
DIF _REMOVE, SetupDiCallClasslnstaller, SetupDiRemoveDevice, SP _
CLASSINSTALL_HEADER

typedef struct _SP_SELECTDEVICE_PARAMS
SP_CLASSINSTALL_HEADER ClasslnstallHeader;
TCHAR Title[MAX_TITLE_LEN];
TCHAR Instructions[MAX_INSTRUCTION_LEN];
TCHAR ListLabel[MAX_LABEL_LEN];
TCHAR SubTitle[MAX_SUBTITLE_LEN];

} SP_SELECTDEVICE_PARAMS, *PSP_SELECTDEVICE_PARAMS;

An SP _SELECTDEVICE_PARAMS structure corresponds to a DIF _SELECTDEVICE
installation request.

Members
ClasslnstallHeader
An install request header that contains the header size and the DIF code for the request. See
SP _CLASSINSTALLflEADER.

Title
Buffer that contains an installer-provided window title for driver-selection windows. Setup
uses this title for the select-driver window header title in the AddlRemove Hardware wizard
or the window title for the Select Device dialogs.

Instructions
Buffer that contains an installer-provided select-device instructions.

418 Part 3 Setup

ListLabel
Buffer that contains an installer-provided label for the list of drivers from which the user can
select.

SubTitle
Buffer that contains an installer-provided subtitle used in select-device wizards. This string
is not used in select dialogs.

Comments
If an installer sets fields in this structure to be used during driver selection, the installer must
also set the DI_USECI_SELECTSTRINGS flag in the SP _DEVINSTALL_PARAMS.

Figure 4.1 shows a sample Select Device dialog box and identifies the strings an installer
can supply.

Select a Device Driver ------------
Which driver do you want to install for this device? _____ _

Figure 4.1 Sample Select Device Dialog

See Also

Title
SubTitle

Instructions

ListLabel

DIF . .,SELECTDEVICE, SetupDiCallClassInstaller, SetupDiSelectDevice, SP _CLASS
INSTALL_HEADER

Chapter 4 Device Installation Structures 419

typedef struct _SP_TROUBLESHOOTER-PARAMS
SP_CLASSINSTALL_HEADER ClasslnstallHeader;
TCHAR ChmFile[MAX_PATH];
TCHAR HtmlTroubleShooter[MAX_PATH];

} SP_TROUBLESHOOTER-PARAMS, *PSP_TROUBLESHOOTER_PARAMS;

An SP _TROUBLESHOOTER_PARAMS structure corresponds to a DIF_
TROUBLESHOOTER installation request.

Members
ClasslnstallHeader
An install request header that contains the header size and the DIF code for the request. See
SP _CLASSINSTALL_HEADER.

ChmFile
Optionally specifies a string buffer that contains the path to a CHM file. The CHM file
contains HTML help topics with troubleshooting information. The path must be fully
qualified if the file is not in default system help directory (%windir%\help).

HtmlTroubleShooter
Optionally specifies a string buffer that contains the path to a topic in the ChmFile. This
parameter identifies the page of the ChmFile that Setup should display first.

Comments
An installer fills in this structure in response to a DIF _TROUBLESHOOTER request.

See Also
DIF _TROUBLESHOOTER, SetupDiCallClasslnstaller, SP _CLASSINSTALL_HEADER

typedef struct _SP_UNREMOVEDEVICE_PARAMS {
SP_CLASSINSTALL_HEADER ClasslnstallHeader;
DWORD Scope;
DWORD HwP rofil e;

SP_UNREMOVEDEVICE_PARAMS, *PSP_UNREMOVEDEVICE_PARAMS;

An SP _UNREMOVEDEVICE_PARAMS structure corresponds to a DIF _UNREMOVE
installation request.

420 Part 3 Setup

Members
ClasslnstaliHeader
An install request header that contains the header size and the DIF code for the request. See
SP _CLASSINSTALL_HEADER.

Scope
A flag that indicates the scope of the unremove operation. This flag must always be set to
DI_UNREMOVEDEVICE_CONFIGSPECIFIC

HwProfile
The hardware profile ID for profile-specific changes. Zero specifies the current hardware
profile.

See Also
DIF _UNREMOVE SetupDiCallClasslnstaller, SetupDiUnremoveDevice SP_
CLASSINST ALL_HEADER

421

CHAPTER 5

Device Installation Function Codes

This chapter describes the Microsoft® Windows® 2000 device installation requests that
Setup applications send to class installers and coinstallers. Each request is represented by a
Device Installation Function code (a DIF code). The DIF code constants are defined in the
setupapi.h header file.

Installers that handle these requests include class installers, class coinstallers, and device
coinstallers. Some installers are provided by Microsoft and some are provided by OEMs and
third-party vendors. Setup sends a DIF request to an installer by calling the installer at its
entry point. The DIF code is one of the parameters to the installer routine; other parameters
provide additional input.

This chapter describes the DIF codes in alphabetical order ..

See Writing a Coinstaller and Writing a Class Installer in Part 4, "Setup," in the Plug and
Play, Power Management, and Setup Design Guide for information on writing installers.

DIF _ADDPROPERTYPAGE_ADVANCED
A DIF _ADDPROPERTYP AGE_ADV ANCED request allows an installer to supply custom
property page(s) for a device.

When Sent
When a user clicks on the properties for a device in the Device Manager or in a Control
Panel applet.

Who Handles
Class Coinstaller

Device Coins taller

Class Installer

Can handle

Can handle

Can handle

422 Part 3 Setup

Input
DevicelnfoSet
Supplies a handle to the device information set containing the device.

DevicelnfoData
Optionally supplies a pointer to an SP _DEVINFO_DATA structure that identifies the device
in the device information set. If DevicelnfoSet is NULL, Setup is requesting property pages
for the device setup class.

Device Installation Parameters
Device installation parameters (SP _DEVINSTALL_PARAMS) are associated with
the DevicelnfoData, if specified, or with the DevicelnfoSet.

Class Installation Parameters
An SP _ADDPROPERTYPAGE_DATA structure is associated with the DevicelrifoData,
if specified, or with the DevicelnfoSet.

Output
Device Installation Parameters
An installer can modify the device installation parameters.

Class Installation Parameters
An installer can modify the SP _ADDPROPERTYPAGE_DATA to supply custom page(s).

Return Value
A coins taller can return NO_ERROR or a Win32® error. A coins taller should not return
ERROR_DI_POSTPROCESSING_REQUIRED for this DIF request.

A class installer returns NO_ERROR if it successfully supplies page(s). Otherwise, a class
installer returns ERROR_DI_DO_DEFAULT or a Win32 error.

Default Handler
None.

Operation
In response to this DIF request an installer can supply custom property pages. Installers
should handle this DIF request instead of supplying an EnumPropPages32 registry entry.
The EnumPropPages32 method is supported, but handling this DIF request allows you to
supply property pages from a class installer or coinstaller and removes the need for a
separate property-page provider.

Chapter 5 Device Installation Function Codes 423

An installer typically handles this DIF request to add a new device-specific or setup
class-specific property page. An installer can also replace the system-supplied driver
property page, resource property page, or power property page for a device. If an installer
replaces a system-supplied page, the installer must set the appropriate flag in the device
installation parameters for the device:

DI_DRIVERPAGE_ADDED
The installer supplied a driver property page.

DI_RESOURCEPAGE_ADDED
The installer supplied a resource property page.

DLFLAGSEX_POWERPAGE_ADDED
The installer supplied a power property page.

An installer cannot replace the system-supplied general properties page.

Setup only displays one driver page, one resource page, and one power page for a device.
An installer should not supply a replacement system page if a previous installer already sup
plied a page of that type. This constraint does not apply to non-system-supplied property
pages.

The following pseudo-code shows how an installer adds a custom page to the array of pages
in the class install parameters:

II get the class install parameters by calling
II SetupDiGetClasslnstallParams

II check whether NumDynamicPages has reached the max

II for a system page, check whether a previous installer
II supplied it

II fill in the PROPSHEETPAGE structure

II add the page and increment the NumDynamicPages counter
PropPageData.DynamicPages[PropPageData.NumDynamicPages++J

CreatePropertySheetPage(&Page);

II apply the modified parameters by calling
II SetupDiSetClasslnstallParams

II for a system page, set the appropriate flag in the devinstall
II parameters

424 Part 3 Setup

If an installer adds custom property page(s), the installer should first check whether Num
DynamicPages in the class install parameters has reached MAX_INSTALL WIZARD_
DYNAPAGES.

A coinstaller should add custom pages in its preprocessing pass.

If an installer allows a user to set a property that requires Setup to remove and restart the
device, the installer must set the DI_FLAGSEX_PROPCHANGE_PENDING flag in the de
vice installation parameters from its DialogProc routine.

See the Plug and Play, Power Management, and Setup Design Guide for an overall discus
sion of handling DIF codes in an installer.

See Also
SP _ADDPROPERTYPAGE_DATA, SP _DEVINFO_DATA, SP _DEVINS TALL_
PARAMS

A DIF _ALLOWINSTALL request asks the installers for a device whether Setup can pro
ceed to install the device.

When Sent
After selecting a driver for the device but before installing the device.

Who Handles

Input

Class Coins taller

Device Coinstaller

Class Installer

DevicelnfoSet

Can handle

Should not handle

Can handle

Supplies a handle to the device information set containing the device.

DevicelnfoData
Supplies a pointer to an SP _DEVINFO_DATA structure that identifies the device in the
device information set.

Device Installation Parameters
There are device installation parameters (SP _DEVINSTALL_PARAMS) associated with
the DevicelnfoData.

Class Installation Parameters
None.

Output
None.

Return Value

Chapter 5 Device Installation Function Codes 425

A coinstaller can return NO_ERROR, ERROR_DI_POSTPROCESSING_REQVIRED, or a
Win32 error.

A class installer typically returns ERROR_DI_DO_DEFAVLT or a Wln32 error.

Typical Win32 error codes for this DIF request include ERROR_DI_DONT_INSTALL,
ERROR_NON_ WINDOWS_NT_DRIVER, and ERROR_REQVIRES_INTERACTIVE_
WINDOWSTATION.

Default Handler
None.

Operation
In response to a DIF _ALLOW _INSTALL request an installer confirms whether Setup can
install the device.

An installer can fail this request if it determines that the selected driver is incorrect (for
example, if the driver is a Windows 9x-only driver that will not work correctly on Windows
2000) or if it determines that a selected driver is known to have bugs.

An installer might fail this request if the DI_QVIETINSTALL flag is set in the device in
stallation parameters and the installer needs to display VI during device installation. This
failure is rare, however, because an installer can typically supply any VI pages in response
to the DIF _NEWDEVICEWIZARD _FINISHINSTALL request. In that case, VI does not
prevent the installer from succeeding a DIF _ALLOW _INSTALL request for which the quiet
flag is set. If, however, an installer cannot limit its VI to the finish-install case, the installer
must fail this DIF request if the DI_QVIETINSTALL flag is set. An installer might have
this restriction, for example, if it calls third-party code that displays VI.

If an installer fails this DIF request, Setup aborts the installation.

If an installer fails this DIF request and DI_QVIETINSTALL is not set in the device instal
lation parameters, the installer should display a dialog box with a message that explains why
the device is not being installed.

See the Plug and Play, Power Management, and Setup Design Guide for an overall
discussion on handling DIF codes in an installer.

426 Part 3 Setup

See Also
SP _DEVINFO _DATA, SP _DEVINST ALL_P ARAMS

DIF _DESTROVPRIVATEDATA
A DIP _DESTROYPRIVATEDATA request directs a class installer to free any memory
or resources it allocated and stored in the ClasslnstallReserved field of the SP _
DEVINSTALL_PARAMS structure.

When Sent
When Setup destroys a device information set or an SP _DEVINFO_DATA element,
or when Setup discards its list of coinstallers and class installer for a device.

Who Handles

Input

Class Coinstaller

Device Coins taller

Class Installer

DevicelnfoSet

Does not handle

Does not handle

Can handle

Supplies a handle to a device information set.

DevicelnfoData
Optionally supplies a pointer to an SP _DEVINFO_DATA structure that identifies a device
in the device information set.

Device Installation Parameters
Device installation parameters (SP _DEVINSTALL_PARAMS) are associated with
the DevicelnfoData, if specified, or with the DevicelnfoSet.

Class Installation Parameters
None.

Output
Device Installation Parameters
An installer can clear the ClasslnstallReserved field in the device installation parameters
(SP _DEVINSTALL_PARAMS).

Chapter 5 Device Installation Function Codes 427

Return Value
A coinstaller does not handle this DIF request; it simply returns NO_ERROR in its pre
processing pass.

A class installer typically returns ERROR_DI_DO_DEFAULT or a Win32 error.

Default Handler
None.

Operation
In response to a DIF _DESTROYPRIVATEDATA request a class installer frees any
memory or resources it allocated and stored in the ClasslnstallReserved field of the SP _
DEVINSTALL_PARAMS structure.

Coinstallers should not use the ClassInstallReserved field.

See the Plug and Play, Power Management, and Setup Design Guide for an overall
discussion on handling DIF codes in an installer.

See Also
SP _DEVINFO_DATA, SP _DEVINSTALL_PARAMS

DIF_DETECT
A DIF _DETECT request directs an installer to detect nonPnP devices of a particular class
and add the devices to the device information set. This request is used for nonPnP devices.

When Sent
When the AddlRemove Hardware wizard is detecting nonPnP devices.

Who Handles

Input

Class Coins taller

Device Coinstaller

Class Installer

DevicelnfoSet

Can handle

Does not handle

Can handle

Supplies a handle to the device information set.

428 Part 3 Setup

Associated Class?
There is a device setup class associated with the DevicelnfoSet.

DevicelnfoData
None.

Device Installation Parameters
There are device installation parameters associated with the DevicelnfoSet.

Class Installation Parameters
An SP _DETECTDEVICE_P ARAMS structure is associated with the DevicelnfoSet. The
parameters contain a callback routine that the class installer calls to indicate the progress of
the detection operation.

Output
DevicelnfoSet
An installer adds a device information element to the DevicelnfoSet for each device it
detects, regardless of whether a device has been previously detected and installed.

Device Installation Parameters
An installer can modify the device installation parameters for the DevicelnfoSet or for new
device information elements it creates.

Return Value
If a coinstaller does not detect devices, it returns NO_ERROR from its preprocessing
pass. If a coinstaller detects devices, it can do so during pre- or postprocessing and return
NO_ERROR or a Win32 error.

If a class installer detects devices, it returns NO_ERROR or an appropriate Win32 error. If a
class installer does not handle this DIF request, it returns ERROR_DI_DO_DEPAULT.

Default Handler
None.

Operation
In response to a DIP_DETECT request an installer can detect devices of its setup class.

If an installer detects devices, it should do at least the following:

• Call the DetectProgressNotify callback routine in the SP _DETECTDEVICE_
P ARAMS class installation parameters, if detection will potentially take a notice
able amount of time.

Chapter 5 Device Installation Function Codes 429

• For each device the installer detects, it should:

• Create a device information element (SetupDiCreateDevicelnfo).

• Provide information for driver selection.

The installer can manually select the driver for the device or the installer can set the
device's hardware ID that Setup will use to find an INF for the device. An installer sets
the hardware ID by calling SetupDiSetDeviceRegistryProperty with a Property of
SPDRP _HARDWAREID.

• Possibly set some device installation parameters .

• Return NO_ERROR for successful detection or return a Win32 error.

If one or more installers detects device(s) in response to this DIF code, Setup compares the
list of detected devices to its current list of devices. If the installers detected a new device,
Setup attempts to install the device. If the installers omitted a device that appears in Setup's
list, Setup typically removes the device.

To detect nonPnP devices during GUI-mode setup, an installer must handle the DIF_
FIRSTTIMESETUP request. GUI-mode setup does not send a DIF _DETECT request.

See the Plug and Play, Power Management, and Setup Design Guide for an overall
discussion on handling DIF codes in an installer.

See Also
DIF _FIRSTTIMESETUP, SetupDiCreateDevicelnfo, SP _DETECTDEVICE_PARAMS,
SP _DEVINST ALL_P ARAMS

DIF _INSTALLDEVICE
A DIF _INSTALLDEVICE request allows an installer to perform any final tasks before
and/or after the device is installed.

When Sent
After selecting the driver, registering any device coinstallers, and registering any device
interfaces.

Who Handles
Class Coinstaller

Device Coinsta1ler

Class Installer

Can handle

Can handle

Can handle

430 Part 3 Setup

Input
DevicelnfoSet
Supplies a handle to the device information set containing the device to be installed.

DevicelnfoData
Supplies a pointer to an SP _DEVINFO_DATA structure for the device in the device
information set.

Device Installation Parameters
There are device installation parameters (SP _DEVINSTALL_PARAMS) associated with
the DevicelnfoData.

Class Installation Parameters
None.

Output
Device Installation Parameters
An installer can modify the device installation parameters for the DevicelnfoData. For
example, an installer might set the DI_NEEDREBOOT flag or it might set the DI_
DONOTCALLCONFIGMG flag to prevent Setup from bringing the device online
dynamically with its newly installed driver and settings.

Return Value
A coinstaller typically returns NO_ERROR or ERROR_DI_POSTPROCESSING_
REQUIRED. A coinstaller might return a Win32 error.

A class installer typically returns ERROR_DI_DO_DEFAULT or a Win32 error. If a class
installer successfully installs the device, including superceding aI1 the operations of the de
fault handler, the class installer returns NO_ERROR.

Default Handler
SetupDiInstallDevice

Operation
In response to a DIF _INSTALLDEVICE request an installer typically performs any final
installation operations before the default handler installs the device. For example, an in
staller can check, and possibly modify, the upper-filter drivers and lower-filter drivers for
the device listed in the registry.

Chapter 5 Device Installation Function Codes 431

Unless the DI_NOFILECOPY flag is set in the device installation parameters, an installer
that handles this DIF request should copy files required for the device, such as driver files
and control panel files. ,
If the DI_NOFILECOPY flag is clear but the DI_NOVCP flag is set, the installer must
enqueue any file operations to the supplied file queue but must not commit the queue.

A coins taller can handle this DIF request in its preprocessing pass and/or in its post
processing pass. In its preprocessing pass, a coinstaller performs any operations that must
occur before Setup loads the drivers and starts the device. In its postprocessing pass, the
device is up and running (unless the DI_NEEDREBOOT flag was set and thus Setup could
not bring the device online dynamically).

If a class installer performs a few operations but does not replace the default handler, the
class installer returns ERROR_DI_DO_DEFAULT.

If this DIF code completes with a Win32 error, Setup aborts the installation.

See the Plug and Play, Power Management, and Setup Design Guide for an overall dis
cussion on handling DIF codes in an installer.

See Also
DIF _INSTALLDEVICEFILES, SetupDiInstallDevice, SP _DEVINFO_DATA,
SP _DEVINSTALL_P ARAMS

DIF _INSTALLDEVICEFILES
A DIF _INSTALLDEVICEFILES request allows an installer to participate in copying
the files to support a device or to make a list of the files for a device. The device files
include files for the selected driver, any device interfaces, and any coinstallers.

When Sent
Setup components send this DIF request for a variety of reasons. Some Setup
components send this DIF request before DIF _REGISTER_COINSTALLERS, DIF_
INST ALLINTERF ACES, and DIF _INSTALL_DEVICE to ensure that all the relevant
files can be copied before proceeding with the installation. Some Setup components omit
this DIF request and expect the files to be copied during the handling of those three DIF
requests. In addition, some Setup components send this DIF request to retrieve the list of the
files associated with a device.

432 Part 3 Setup

Who Handles

Input

Class Coinstaller

Device Coinsta1ler

Class Installer

DevicelnfoSet

Can handle

Does not handle

Can handle

Supplies a handle to the device information set containing the device whose supporting files
are to be copied.

DevicelnfoData
Supplies a pointer to an SP _DEVINFO_DATA structure that identifies the device in the
device information set.

Device Installation Parameters
There are device installation parameters (SP _DEVINSTALL_PARAMS) associated with
the DevicelnfoData.

If the DI_NOVCP flag is set, the device installation parameters contain a valid FileQueue
handle and installers that handle this DIP request add their file operations to this queue and
do not commit the queue.

Class Installation Parameters
None.

Output
Device Installation Parameters
An installer can modify the FileQueue, if there is one.

Return Value
A coins taller can return NO_ERROR, ERROR_DI_POSTPROCESSING_REQUIRED, or a
Win32 error.

A class installer typically returns ERROR_DI_DO_DEFAULT or a Win32 error. If a class
installer performs or enqueues all the necessary file operations, and thus supercedes the de
fault handler, the class installer returns NO_ERROR.

Default Handler
SetupDiInstallDriverFiles

Chapter 5 Device Installation Function Codes 433

Operation
In response to a DIF _INSTALLDEVICEFILES request an installer specifies any necessary
file operations. For example, an installer can specify an additional file to be copied that is
required for device installation. If the DI_NOVCP flag is set, an installer specifies file op
erations by adding them to the FileQueue in the device installation parameters. See the
Platform SDK for information on using file queues and for reference pages on file-queueing
functions such as SetuplnstallFilesFromlnfSection.

If this DIF request is sent during device installation, and it completes with a Win32 error,
Setup aborts the installation.

If a Setup component sends this DIF request to retrieve a list of the files associated with a
device, the component retrieves the file queue but does not commit the queue.

See the Plug and Play, Power Management, and Setup Design Guide for an overall
discussion on handling DIF codes in an installer.

See Also
SetupDiInstallDriverFiles, SP _DEVINFO _DATA, SP _DEVINSTALL_P ARAMS

DIF _INSTALLINTERFACES
A DIP _INSTALLINTERF ACES request allows an installer to participate in the registration
of the device interfaces for a device.

When Sent
After registering device coinstallers but before completing device installation.

Who Handles

Input

Class Coinstaller

Device Coins taller

Class Installer

DevicelnfoSet

Can handle

Can handle

Can handle

Supplies a handle to the device information set containing the device.

DevicelnfoData
Supplies a pointer to an SP _DEVINFO_DATA structure that identifies the device in the
device information set.

434 Part 3 Setup

Device Installation Parameters
There are device installation parameters (SP _DEVINSTALL_PARAMS) associated with
the DevicelnfoData.

Class Installation Parameters
None.

Output
Device Installation Parameters
An installer might modify the device installation parameters, but not usually for this DIF
request.

Return Value
A coinstaller can return NO_ERROR, ERROR_DI_POSTPROCESSING_REQUIRED, or a
Win32 error.

A class installer typically returns ERROR_DI_DO_DEFAULT or a Win32 error. If a
class installer installs the interfaces, including calling SetupDiInstallDevicelnterfaces,
the class installer returns NO_ERROR.

Default Handler
SetupDiInstallDevicelnterfaces

Operation
In response to a DIF _INSTALLINTERFACES request an installer might register a device
interface programmatically instead of having the interface registered through the INF file.
Typically, third-party installers don't handle this DIF request.

Unless the DI_NOFILECOPY flag is set, an installer that handles this DIF request should
copy files required for the device interface(s).

If the DI_NOFILECOPY flag is clear but the DI_NOVCP flag is set, the installer must
enqueue any file operations to the supplied file queue but must not commit the queue.

If an installer registers a device interface, a kernel-mode component for the device (for ex
ample, a driver) must call IoSetDevicelnterfaceState to enable the interface.

If this DIF code completes with a Win32 error, Setup aborts the installation.

See the Plug and Play, Power Management, and Setup Design Guide for an overall
discussion on handling DIF codes in an installer.

Chapter 5 Device Installation Function Codes 435

See Also
SetupDiInstallDevicelnterfaces, SP _DEVINFO_DATA, SP _DEVINSTALL_PARAMS

DIF _NEWDEVICEWIZARD_FINISHINSTALL
A DIF _NEWDEVICEWIZARD _FINISHINSTALL request allows an installer to supply
wizard page(s) that Setup displays to the user after the device has been installed but be
fore Setup displays the standard finish page. Setup sends this request when installing
PnP devices and manually installed nonPnP devices.

When Sent
After Setup installs a device (on successful completion of DIF _INST ALLDEVICE process
ing) but before it displays the Finish wizard page.

Setup sends this request during "New Hardware Found" (PnP) and "Add New Hardware"
(nonPnP) device installation and ~uring GUI-mode setup.

Who Handles

Input

Class Coins taller

Device Coins taller

Class Installer

DevicelnfoSet

Can handle

Can handle

Can handle

Supplies a handle to the device information set containing the device.

DevicelnfoData
Supplies a pointer to an SP _DEVINFO_DATA structure that identifies the device in the
device information set.

Device Installation Parameters
There are device installation parameters (SP _DEVINSTALL_PARAMS) associated with
the DevicelnfoData.

Class Installation Parameters
An SP _NEWDEVICEWIZARD_DATA structure is associated with the DevicelnfoData.

436 Part 3 Setup

Output
Device Installation Parameters
An installer can modify the flags in the device installation parameters.

Class Installation Parameters
An installer can modify the SP _NEWDEVICEWIZARD_DATA to supply custom page(s).

Return Value
If a coinstaller does not handle this DIF request it returns NO_ERROR from its
preprocessing pass. If a coins taller handles this request it can return NO_ERROR,
ERROR_DI_POSTPROCESSING_REQUIRED, or a Win32 error.

A class installer returns NO_ERROR if it successfully supplies page(s). Otherwise, a class
installer returns ERROR_DI_DO_DEFAULT or a Win32 error.

Default Handler
None.

Operation
A DIF _NEWDEVICEWIZARD_FINISHINSTALL request allows an installer to supply
wizard page(s) that Setup displays to the user after the device has been installed but before
Setup displays the standard Finish page. Setup sends this request when installing any kind of
device, whether it is a PnP-enumerated device, a detected nonPnP device, or a manually
installed nonPnP device.

An installer can handle this DIF request for any PnP device.

This DIF request is not supported when installing certain nonPnP devices such as modems,
printers, and scanners. If a user manually installs a nonPnP printer, modem, or scanner using
the AddlRemove Hardware wizard, the Setup application for that device does not display
any finish-install pages supplied for the device.

An installer typically uses a custom Finish page to collect additional user preference set
tings, such as modem line speeds or default area codes.

Class installers and coinstallers should only supply finish-install pages if they absolutely
require that the user answer questions before the device can operate properly. If the ques
tions are optional, or if the questions were previously answered (for example, this is an
upgrade for an existing device), then they should not supply finish-install pages. Class in
stallers and coinstallers should always supply one or more property pages in response to
DIF _ADDPROPERTYPAGE_ADV ANCED so the user can adjust device settings after
the device is installed.

Chapter 5 Device Installation Function Codes 437

The following pseudo-code shows how an installer adds a custom page to the array of pages
in the class install parameters:

II get the class install parameters by calling
II SetupDiGetClassInstallParams

II check whether NumDynamicPages has reached the max

II fill in the PROPSHEETPAGE structure

II add the page and increment the NumDynamicPages counter
NewDevW;zardData.Dynam;cPages[NewDevW;zardData.NumDynam;cPages++]

CreatePropertySheetPage(&Page);

II apply the modified params by calling
II SetupDiSetClassInstallParams

See the Platform SDK for information on the CreatePropertySheetPage function.

If an installer's custom Finish page gathers settings from the user and the device needs to
be restarted to have the new settings take effect, the page dialog procedure calls SetupDi
ChangeState with a State Change value of DICS_PROPCHANGE in the class installation
parameters. This call to SetupDiChangeState directs the PnP Manager to query-remove and
remove the device, reenumerate the device's parent, rebuild the device stack of drivers, and
restart the device. If an installer determines that the device cannot be dynamically removed
and restarted, the installer can set the DI_NEEDREBOOT flag in the device install parame
ters instead of calling SetupDiChangeState. An installer should not force a reboot,
however, unless it is absolutely necessary.

Setup and the PnP Manager attempt to install PnP devices in a trusted PnP context without
requiring user response to dialog boxes (a "server-side" installation). If an installer supplies
custom Finish page(s), however, Setup is required to display those pages to the user. Setup
aborts the trusted installation and restarts the device installation when a user with admin
istrative privileges logs in (a "client-side" installation).

GUI-mode setup sends the DIF _NEWDEVICEWIZARD_FINISHINSTALL request
for each device it installs, but GUI-mode setup cannot display installation wizard pages.
If an installer supplies custom finish pages, GUI-mode setup marks the device so the user
receives a "New Hardware Found" popup at first login. The network configuration com
ponent of GUI-mode setup locates any network devices, such as ISDN boards, that have
finish-install wizard pages, gathers those pages, and incorporates them into the network
setup wizard pages.

438 Part 3 Setup

An installer should supply a Wizard 97 header title and a header subtitle in the
PROPSHEETP AGE structure for a custom wizard page. An installer should not re
place the system-supplied wizard title. See the Platform SDK for documentation of
the PROPSHEETP AGE structure and for more information about property pages.

Installers should supply their finish-install wizard pages, regardless of the value of the
DI_QUIETINSTALL flag. The sender of the DIF _NEWDEVICEWIZARD_FINISH
INSTALL request determines whether to display the wizard pages and ensures that the
pages are freed in either case.

An installer can use this DIF request to add custom wizard pages, but an installer cannot
replace the system-supplied finish page.

See the Plug and Play, Power Management, and Setup Design Guide for an overall
discussion on handling DIF codes in an installer.

See Also
DIF _INSTALLDEVICE, SetupDiChangeState, SP _DEVINFO_DATA, SP_
DEVINSTALL_P ARAMS, SP _NEWDEVICEWIZARD _DATA

DIF _NEWDEVICEWIZARD_POSTANALYZE
A DIF _NEWDEVICEWIZARD _POSTANAL YZE request allows an installer to supply
wizard pages that Setup displays to the user after the devnode is registered but before Setup
installs the drivers for the device. This request is only used during manual installation of
nonPnP devices.

When Sent
After Setup registers the device, which makes the devnode "live", but before Setup installs
the drivers for the device.

Who Handles

Input

Class Coinstaller

Device Coinstaller

Class Installer

OevicelnfoSet

Can handle

Does not handle

Can handle

Supplies a handle to the device information set containing the device.

Chapter 5 Device Installation Function Codes 439

DevicelnfoData
Supplies a pointer to an SP _DEVINFO_DATA structure that identifies the device in the
device information set.

Device Installation Parameters
There are device installation parameters (SP _DEVINSTALL_PARAMS) associated with
the DevicelnfoData.

Class Installation Parameters
An SP _NEWDEVICEWIZARD_DATA structure is associated with the DevicelnfoData.

Output
Device Installation Parameters
An installer can modify the flags in the device installation parameters. Setup does not check
the flags upon completion of this DIF request, but it will check them later in the installation
process.

Class Installation Parameters
An installer can modify the SP _NEWDEVICEWIZARD_DATA to supply custom page(s).

Return Value
If a coinstaller does not handle this DIF request it returns NO_ERROR from its
preprocessing pass. If a coinstaller handles this request it can return NO_ERROR,
ERROR_DI_POSTPROCESSING_REQUIRED, or a Win32 error.

A class installer returns NO_ERROR if it successfully supplies page(s). Otherwise, a class
installer returns ERROR_DI_DO_DEFAULT or a Win32 error.

Default Handler
None.

Operation
A DIF _NEWDEVICEWIZARD _POSTANAL YZE request allows an installer to supply
wizard pages that Setup displays to the user after the devnode is registered but before Setup
installs the drivers for the device. This request is only used during manual installation of
nonPnP devices.

If an installer adds custom postanalyze page(s), the installer should first check whether
NumDynamicPages in the class install parameters has reached MAX_INSTALL WIZARD_
DYNAPAGES.

440 Part 3 Setup

After the user clicks "Next" on a custom page, Setup installs the drivers for the device and
the PnP Manager starts the device. A postanalyze wizard page is the last chance for an in
staller to do work before the drivers are loaded and the device is started.

An installer should supply a Wizard 97 header title and a header subtitle in the PROP
SHEETP AGE structure for a custom wizard page. An installer should not replace the
system-supplied wizard title. See the Platform SDK for documentation of the PROPSHEET
PAGE structure and for more information about property pages.

See the Plug and Play, Power Management, and Setup Design Guide for an overall discus
sion on handling DIF codes in an installer.

See Also
DIF _NEWDEVICEWIZARD _PREANAL YZE, DIF _NEWDEVICEWIZARD_
PRESELECT, DIF _NEWDEVICEWIZARD_SELECT, SP _DEVINFO_DATA, SP_
DEVINST ALL_P ARAMS, SP _NEWDEVICEWIZARD _DATA

DIF _NEWDEVICEWIZARD_PREANAL YZE
A DIF _NEWDEVICEWIZARD_PREANALYZE request allows an installer to supply wiz
ard pages that Setup displays to the user before it displays the analyze page. This request is
only used during manual installation of nonPnP devices.

When Sent
After the user has selected a driver, but before Setup registers the device which makes the
devnode "live".

Who Handles

Input

Class Coins taller

Device Coinstaller

Class Installer

DevicelnfoSet

Can handle

Does not handle

Can handle

Supplies a handle to the device information set containing the device.

DevicelnfoData
Supplies a pointer to an SP _DEVINFO_DATA structure that identifies the device in the de
vice information set.

Chapter 5 Device Installation Function Codes 441

Device Installation Parameters
There are device installation param~ters (SP _DEVINST ALL_PARAMS) associated with
the DevicelnfoData.

Class Installation Parameters
An SP _NEWDEVICEWIZARD_DATA structure is associated with the DevicelnfoData.

Output
Device Installation Parameters
An installer can modify the flags in the device installation parameters. Setup does not check
the flags upon completion of this DIF request, but it checks them later in the installation
process.

Class Installation Parameters
An installer can modify the SP _NEWDEVICEWIZARD_DATA to supply custom wizard
page(s).

Return Value
If a coinstaller does not handle this DIF request it returns NO_ERROR from its preprocess
ing pass. If a coinstaller handles this request it can return NO_ERROR, ERROR_DI_POST
PROCESSING_REQUIRED, or a Win32 error.

A class installer returns NO _ERROR if it successfully supplies page(s). Otherwise, a class
installer returns ERROR_DI_DO_DEFAULT or a Win32 error.

Default Handler
None.

Operation
A DIF _NEWDEVICEWIZARD_PREANALYZE request allows an installer to supply
wizard pages that Setup displays to the user before it displays the analyze page. These pages
can be thought of as "post-select" pages. This request is only used during manual installation
of nonPnP devices.

An installer might use a custom preanalyze page, for example, to choose a COM port after
a modem device is selected.

If an installer adds custom preselect page(s), the installer should first check whether Num
DynamicPages in the class install parameters has reached MAX_INSTALL WIZARD_
DYNAPAGES.

442 Part 3 Setup

An installer should supply a Wizard 97 header title and a header subtitle in the PROP
SHEETP AGE structure for a custom wizard page. An installer should not replace the
system-supplied wizard title. See the Platform SDK for documentation of the PROPSHEET
PAGE structure and for more information about property pages.

See the Plug and Play, Power Management, and Setup Design Guide for an overall
discussion on handling DIF codes in an installer.

See Also
DIF _NEWDEVICEWIZARD _PRESELECT, DIF _NEWDEVICEWIZARD_
POST ANAL YZE, DIF _NEWDEVICEWIZARD _SELECT, SP _DEVINFO_DATA,
SP _DEVINSTALL_P ARAMS, SP _NEWDEVICEWIZARD _DATA

DIF _NEWDEVICEWIZARD_PRESELECT
A DIF _NEWDEVICEWIZARD _PRESELECT request allows an installer to supply wizard
pages that Setup displays to the user before it displays the select-driver page. This request is
only used during manual installation of nonPnP devices.

When Sent
After the user has selected the class for the device but before Setup displays the "Select a
Device Driver" page.

Who Handles

Input

Class Coins taller

Device Coinstaller

Class Installer

DevicelnfoSet

Can handle

Does not handle

Can handle

Supplies a handle to the device information set containing the device.

DevicelnfoData
Supplies a pointer to an SP _DEVINFO_DATA structure that identifies the device in the
device information set.

Device Installation Parameters
There are device installation parameters (SP _DEVINSTALL_PARAMS) associated with
the DevicelnfoData.

Chapter 5 Device Installation Function Codes 443

Class Installation Parameters
An SP _NEWDEVICEWIZARD_DATA structure is associated with the DevicelnfoData.

Output
Device Installation Parameters
An installer can modify the flags in the device installation parameters. Setup does not check
the flags upon completion of this DIF request, but it checks them later in the installation
process.

Class Installation Parameters
An installer can modify the SP _NEWDEVICEWIZARD_DATA to supply custom page(s).

Return Value
If a coinstaller does not handle this DIF request it returns NO_ERROR from its pre
processing pass. If a coinstaller handles this request it can return NO_ERROR, ERROR_
DI_POSTPROCESSING_REQUIRED, or a Win32 error.

A class installer returns NO_ERROR if it successfully supplies page(s). Otherwise, a class
installer returns ERROR_DI_DO _DEF A UL T or a Win32 error.

Default Handler
None.

Operation
A DIF _NEWDEVICEWIZARD _PRESELECT request allows an installer to supply wizard
pages that Setup displays to the user before it displays the select-driver page. This request is
only used during manual installation of nonPnP devices.

If an installer adds custom preselect page(s), the installer should first check whether
NumDynamicPages in the class install parameters has reached MAX_INSTALL WIZARD_
DYNAPAGES.

A coinstaller can add custom pages in its preprocessing pass and/or in its postprocessing
pass. If it adds page(s) in its preprocessing pass, those pages are displayed before any
page(s) supplied by the class installer.

If one or more installers add custom preselect pages, Setup displays the pages before the
"Select a Device Driver" page. However, if the user presses "Back" on the select-driver
page, Setup skips the custom preselect pages and goes back to the "Hardware Type" class
selection page.

An installer should supply a Wizard 97 header title and a header subtitle in the
PROPSHEETP AGE structure for a custom wizard page. An installer should not replace

444 Part 3 Setup

the system-supplied wizard title. See the Platform SDK for documentation of the
PROPSHEETPAGE structure and for more information about property pages.

See the Plug and Play, Power Management, and Setup Design Guide for an overall
discussion on handling DIF codes in an installer.

See Also
DIF _NEWDEVICEWIZARD _PREANAL YZE, DIF _NEWDEVICEWIZARD_
POST ANAL YZE, DIF _NEWDEVICEWIZARD _SELECT, SP _DEVINFO _DATA,
SP _DEVINSTALL_PARAMS, SP _NEWDEVICEWIZARD_DATA

DIF _NEWDEVICEWIZARD_SELECT
A DIF _NEWDEVICEWIZARD _SELECT request allows an installer to supply custom
wizard page(s) that replace the standard select-driver page. This request is only used during
manual installation of nonPnP devices.

When Sent
Immediately before Setup displays the "Select a Device Driver" page.

Who Handles

Input

Class Coinstaller

Device Coinstaller

Class Installer

DevicelnfoSet

Can handle

Does not handle

Can handle

Supplies a handle to the device information set containing the device.

DevicelnfoData
Supplies a pointer to an SP _DEVINFO_DATA structure that identifies the device in the
device information set.

Device Installation Parameters
There are device installation parameters (SP _DEVINST ALL_P ARAMS) associated with
the DevicelnfoData.

Class Installation Parameters
An SP _NEWDEVICEWIZARD_DATA structure is associated with the DevicelnfoData.

Chapter 5 Device Installation Function Codes 445

Output
Device Installation Parameters
An installer can modify the flags in the device installation parameters. Setup does not check
the flags upon completion of this DIF request, but it checks them later in the installation
process.

Class Installation Parameters
An installer can modify the SP _NEWDEVICEWIZARD_DATA to supply custom page(s).

Return Value
If a coinstaller does not handle this DIF request it returns NO_ERROR from its
preprocessing pass. If a coinstaller handles this request it can return NO_ERROR,
ERROR_DI_POSTPROCESSING_REQUIRED, or a Win32 error.

A class installer returns NO_ERROR if it successfully supplies page(s). Otherwise, a class
installer returns ERROR_DI_DO_DEFAULT or a Win32 error.

Default Handler
None.

Operation
A DIP _NEWDEVICEWIZARD _SELECT request allows an installer to supply custom
wizard page(s) that replace the standard select-driver page. This request is only used during
manual installation of nonPnP devices.

An installer responds to this DIF request to completely replace the standard select-driver
wizard page. If, instead, the installer only needs to modify the standard page or modify
the list of drivers from which to choose, the installer should do so in response to the DIF_
SELECTDEVICE request.

A coinstaller should add custom page(s) in its postprocessing pass and only if the class
installer did not add custom page(s). If the class installer added page(s), the coinstaller
should not. Otherwise, the user might be asked to choose a driver twice.

If an installer supplies a custom select page, the installer must set the selected driver. In the
installer's code that supports the wizard page, after the user clicks "Next", the installer must
call SetupDiSetSelectedDriver.

An installer should supply a Wizard 97 header title and a header subtitle in the
PROPSHEETP AGE structure for a custom wizard page. An installer should not re
place the system-supplied wizard title. See the Platform SDK for documentation of the
PROPSHEETP AGE structure and for more information about property pages.

446 Part 3 Setup

See the Plug and Play, Power Management, and Setup Design Guide for an overall
discussion on handling DIF codes in an installer.

See Also
DIF _NEWDEVICEWIZARD_PREANAL YZE, DIF _NEWDEVICEWIZARD_
PRESELECT, DIF _NEWDEVICEWIZARD _POSTANAL YZE, DIF _SELECTDEVICE,
SetupDiSetSelectedDevice, SetupDiSetSelectedDriver, SP _DEVINFO_DATA, SP_
DEVINST ALL_P ARAMS, SP _NEWDEVICEWIZARD _DATA

DIF _POWERMESSAGEWAKE
A DIF _POWERMESSAGEW AKE request allows an installer to supply custom text that
Setup displays on the power management properties page of the device properties.

When Sent
When a user clicks on a menu item or tab to display the properties of a device.

Setup only sends this DIF request if the drivers for the device support power management.
Otherwise, Setup does not display any power properties for the device.

Who Handles

Input

Class Coinstaller

Device Coins taller

Class Installer

DevicelnfoSet

Can handle

Can handle

Can handle

Supplies a handle to the device information set containing the device.

DevicelnfoData
Supplies a pointer to an SP _DEVINFO_DATA structure that identifies the device in the
device information set.

Device Installation Parameters
There are device installation parameters (SP _DEVINSTALL_PARAMS) associated with
the DevicelnfoData.

Class Installation Parameters
An SP _POWERMESSAGEW AKE_P ARAMS structure is associated with the
DevicelnfoData.

Chapter 5 Device Installation Function Codes 447

Output
Class Installation Parameters
An installer can modify the SP _POWERMESSAGEW AKE_P ARAMS to supply custom
text for a device's power properties page.

Return Value
A coinstaller typically returns NO_ERROR, ERROR_DI_POSTPROCESSING_
REQUIRED, or a Win32 error.

A class installer returns NO_ERROR if it successfully supplies power properties text.
Otherwise, a class installer returns ERROR_DI_DO_DEFAULT or a Win32 error.

Default Handler
None.

Operation
A DIF _POWERMESSAGEW AKE request allows an installer to supply text that Setup
displays on the power properties page for a device.

If a coinstaller supplies power-properties text, it should do so in its postprocessing phase.
A coinstaller should take care when overwriting any power-properties text supplied by an
installer that handled the request before the coins taller.

See the Plug and Play, Power Management, and Setup Design Guide for an overall
discussion on handling DIF codes in an installer.

See Also
SP _DEVINFO_DATA, SP _DEVINSTALL_PARAMS, SP _POWERMESSAGEWAKE_
PARAMS

DIF _PROPERTYCHANGE
A DIF _PROPERTYCHANGE request notifies the installer that the device's properties are
changing. The device is being enabled, disabled, started, stopped, or some item on a prop
erty page has changed. This DIF request gives the installer an opportunity to participate in
the change.

When Sent
When a device is being enabled, disabled, started, stopped, or its properties have changed.

448 Part 3 Setup

For example, Setup sends this request when a property-page provider sets the DI_FLAG
SEX_PROPCHANGE_PENDING flag in the FlagsEx field of the SP _DEVINS TALL_
P ARAMS structure for the device.

Who Handles

Input

Class Coins taller

Device Coinstaller

Class Installer

DevicelnfoSet

Can handle

Can handle

Can handle

Supplies a handle to the device information set containing the device.

DevicelnfoData
Supplies a pointer to an SP _DEVINFO _DATA structure for the device in the device
information set.

Device Installation Parameters
There are device installation parameters (SP _DEVINSTALL_PARAMS) associated with
the DevicelnfoData.

Class Installation Parameters
An SP _PROPCHANGE_PARAMS structure is associated with the DevicelnfoData.

Output
None.

Return Value
A coinstaller can return NO_ERROR, ERROR_DI_POSTPROCESSING_REQUlRED, or a
Win32 error.

A class installer typically returns ERROR_DI_DO_DEFAULT or a Win32 error. If a class
installer fully handles the property change request, including calling or superceding the de
fault handler, the class installer returns NO_ERROR.

Default Handler
SetupDiChangeState

Chapter 5 Device Installation Function Codes 449

Operation
In response to a DIF _PROPERTYCHANGE request an installer can participate in the
property-change operation. The class installation parameters (SP _PROPCHANGE_
P ARAMS) indicate which change is taking place.

See the Plug and Play, Power Management, and Setup Design Guide for an overall
discussion on handling DIF codes in an installer.

See Also
SetupDiChangeState, SP _DEVINFO_DATA, SP _DEVINSTALL_PARAMS,
SP _PROPCHANGE_P ARAMS

DIF _REGISTER_ COINSTALLERS
A DIF _REGISTER_COINSTALLERS request allows an installer to participate in the
registration of device-specific coinstallers for a device.

When Sent
Before completing device installation.

Who Handles

Input

Class Coinstaller

Device Coinstaller

Class Installer

DevicelnfoSet

Can handle

Does not handle

Can handle

Supplies a handle to the device information set containing the device for which coinstallers
are to be registered.

DevicelnfoData
Supplies a pointer to an SP _DEVINFO_DATA structure that identifies the device in the
device information set.

Device Installation Parameters
There are device installation parameters (SP _DEVINSTALL_PARAMS) associated with
the DevicelnfoData.

Class Installation Parameters
None.

450 Part 3 Setup

Output
None.

Return Value
A coinstaller can return NO_ERROR, ERROR_DI_POSTPROCESSING_REQUIRED, or a
Win32 error.

A class installer typically returns ERROR_DI_DO_DEFAULT or a Win32 error. If a class
installer fully handles the registration request, including calling or superceding the default
handler, the class installer returns NO_ERROR.

Default Handler
SetupDiRegisterCoDevicelnstallers

Operation
In response to a DIF _REGISTER_COINSTALLERS request an installer might modify the
list of coinstallers for the device. For example, an installer might programmatically register
or remove a device-specific coinstaller for the device based on analysis of the device.

Unless the DI_NOFILECOPY flag is set, an installer that handles this DIF request should
copy files required for the coinstaller(s).

If the DI_NOFILECOPY flag is clear but the DI_NOVCP flag is set, the installer must
enqueue any file operations to the supplied file queue but must not commit the queue.

If this DIF code completes with a Win32 error, Setup aborts the installation.

See the Plug and Play, Power Management, and Setup Design Guide for an overall
discussion on handling DIF codes in an installer.

See Also
SetupDiRegisterCoDevicelnstaUers, SP _DEVINFO_DATA, SP _DEVINS TALL_
PARAMS

DIF _REGISTERDEVICE
The DIF _REGISTERDEVICE request allows an installer to participate in registering a
newly created device instance with the PnP Manager. Setup sends this DIF request for
nonPnP devices.

When Sent
When an installer reports a previously unknown device in response to a DIP_DETECT
request or if a user manually selects a device in the AddlRemove Hardware wizard. Setup

Chapter 5 Device Installation Function Codes 451

sends this DIF request in the analyze phase of the Add Hardware Wizard before it installs
the device. Setup also sends this request during nonPnP detection.

Who Handles

Input

Class Coins taller

Device Coins taller

Class Installer

DevicelnfoSet

Can handle

Does not handle

Can handle

Supplies a handle to the device information set containing the device.

DevicelnfoData
Supplies a pointer to an SP _DEVINFO_DATA structure that identifies the device in the
device information set.

Device Installation Parameters
There are device installation parameters (SP _DEVINST ALL_P ARAMS) associated with
the DevicelnfoData.

Class Installation Parameters
None.

Output
None.

Return Value
A coinstaller can return NO_ERROR or a Win32 error. A coinstaller should not return
ERROR_DI_POSTPROCESSING_REQUIRED for this DIF request.

A class installer typically returns ERROR_DI_DO_DEFAULT or a Win32 error. If a class
installer completely registers the device, including performing duplicate detection, the
class installer returns NO_ERROR.

If an installer determines that the device is a duplicate it returns ERROR_DUPLICATE_
FOUND.

Default Handler
SetopDiRegisterDevicelnfo

452 Part 3 Setup

Operation
A setup application typically sends this DIF request to register a nonPnP device with
the PnP Manager. NonPnP devices must be registered before they can be installed on
Windows 2000.

An installer typically handles this DIF request to do duplicate detection. Such an installer
typically calls the default handler (SetupDiRegisterDevicelnfo) and specifies its detection
routine. If the registration is successful and the installer determines that the device is not a
duplicate, the installer returns NO_ERROR.

A coinstaller should perform any operations to handle this DIF request in its preprocessing
pass. When the coinstaller is called for postprocessing, the device instance has already been
registered by either the class installer or the default handler.

If an installer returns an error for this DIF code, typically ERROR_DUPLICATE_FOUND,
Setup deletes the device from the device information set.

See the Plug and Play, Power Management, and Setup Design Guide for an overall
discussion on handling DIF codes in an installer.

See Also
DIP_DETECT, SetupDiRegisterDevicelnfo, SP _DEVINFO_DATA, SP _DEVINS TALL_
PARAMS

DIF_REMOVE
A DIF _REMOVE request notifies an installer that Setup is about to remove a device and
gives the installer an opportunity to prepare for the removal.

When Sent
When a user removes a device in the Device Manager or in the AddlRemove Hardware
wizard.

Who Handles

Input

Class Coinstaller

Device Coinstaller

Class Installer

DevicelnfoSet

Can handle

Can handle

Can handle

Supplies a handle to the device information set containing the device to be removed.

Chapter 5 Device Installation Function Codes 453

DevicelnfoData
Supplies a pointer to an SP _DEVINFO_DATA structure for the device in the device
information set.

Device Installation Parameters
There are device installation parameters (SP _DEVINSTALL_PARAMS) associated with
the DevicelnfoData.

Class Installation Parameters
An SP _REMOVEDEVICE_P ARAMS structure might be associated with the Device
InfoData.

There are no class installation parameters for the request if the DI_CLASSINSTALL
PARAMS flag is clear in the SP _DEVINSTALL_PARAMS. In this case, no hardware
profile is specified and the device is to be removed from the system as a whole.

Output
None.

Return Value
A coinstaller can return NO_ERROR, ERROR_DI_POSTPROCESSING_REQUIRED, or a
Win32 error.

A class installer typically returns ERROR_DI_DO_DEFAULT or a Win32 error. If a class
installer fully handles this request, including calling or superceding the default handler, the
class installer returns NO_ERROR.

Default Handler
SetupDiRemoveDevice

Operation
In response to a DIF _REMOVE request, an installer typically performs some clean-up
operations. In this case, a coinstaller returns NO_ERROR and a class installer returns
ERROR_DI_DO_DEFAULT.

If an installer determines that the device should not be removed, the installer fails the DIF
request by returning a Win32 error. If the DI_QUIETINSTALL flag is clear, the installer
should display a message to the user explaining why the device is not being removed.

Coinstallers must not attempt to remove the device themselves by calling SetupDiRemove
Device. Coinstallers typically handle this request in postprocessing, after the device has
been successfully removed.

454 Part 3 Setup

If a coinstaller needs to delete information in the registry, for example, the coins taller
should do so in postprocessing and only if the previous installers succeeded the removal
request. In its preprocessing pass, the coins taller should store the registry information in its
context parameter and return ERROR_DI_POSTPROCESSING_REQUIRED to request
postprocessing. When Setup calls the coinstaller for postprocessing of this DIP request, the
coinstaller should check that the DIP status is NO_ERROR and then delete the registry
information. If a coinstaller deletes registry information in its preprocessing pass and the
class installer (or another coinstaller) fails the DIP_REMOVE, the coinstaller could leave
the device in an unpredictable state.

Installers should not delete files when handling this DIP request, in case the files are in use
by another device.

Setup sends this DIP request before it initiates PnP query-remove and remove processing.

See the Plug and Play, PowerManagl!ment, and Setup Design Guide for an overall
discussion on handling DIP codes in an installer.

See Also
SetupDiRemoveDevice, SP _DEVINPO_DATA, SP _DEVINSTALL_PARAMS, SP_
REMOVEDEVICE_PARAMS

DIF _SELECTBESTCOMPATDRV
A DIP _SELECTBESTCOMPATDRV request allows an installer to select the best driver
from the device information element's compatible driver list.

When Sent
When the OS is preparing to install a new PnP device or is performing a change-driver
operation on a PnP device.

This DIP request is typically used during a PnP configuration. If a device is being manually
installed, Setup sends a DIP _SELECTDEVICE request.

Who Handles

Input

Class Coins taller

Device Coinstaller

Class Installer

DevicelnfoSet

Can handle

Does not handle

Can handle

Supplies a handle to the device information set containing the device.

Chapter 5 Device Installation Function Codes 455

DevicelnfoData
Supplies a pointer to an SP _DEVINFO_DATA structure that identifies the device in the
device information set.

Device Installation Parameters
There are device installation parameters (SP _DEVINSTALL_PARAMS) associated with
the DevicelnfoData.

Class Installation Parameters
None.

Output
Device Installation Parameters
An installer can modify the device installation parameters, but they typically do not when
handling this DIF request.

DevicelnfoData
As a side effect, an installer can modify the driver list associated with the DevicelnfoData,
in particular, the SP _DRVINSTALL_PARAMS.

Return Value
A coinstaller can return NO_ERROR, ERROR_DI_POSTPROCESSING_REQUIRED, or a
Win32 error.

A class installer typically returns ERROR_DI_DO_DEFAULT or a Win32 error. In some
cases, a class installer returns NO_ERROR.

Default Handler
SetupDiSelectBestCompatDrv

Operation
An installer handles this DIF request to participate in selecting a driver for a PnP device. An
installer typically responds to this DIF request in one of the following ways:

• Do nothing.

If an installer has no special selection requirements, it does nothing in response.to this
DIF request. A class installer returns ERROR_DI_DO_DEFAULT and a coinstaller
returns NO_ERROR.

• Modify the parameters of one or more drivers in the driver list.

456 Part 3 Setup

For example, an installer might remove a driver from consideration for the device by
marking it DNF _BAD_DRIVER. An installer modifies driver parameters with a pro
cedure like the following:

1. Get the information about the first driver in the list by calling SetupDiEnumDriver
Info and SetupDiGetDriverInstallParams. If appropriate, modify the driver parame
ters and apply the change by calling SetupDiSetDriverInstallParams.

If a driver is a worst-case choice, set the driver's rank to OxFFFF or higher in the driver
install parameters. See How Does Setup Select a Driver For a Device? in Part 4,
"Setup," in the Plug and Play, Power Management, and Setup Design Guidefor more
information.

2. Repeat the previous step until you have processed all the drivers in the list. Be sure to
increment the Memberlndex parameter to SetupDiEnumDriverInfo as described in
the'reference page for that function.

After a class installer modifies the driver list, it returns ERROR_DI_DO_DEFAULT.
If a coins taller modifies the driver list, it should do so in preprocessing and return
NO_ERROR.

• Select the best driver for the device.

This action is less common, but an installer might choose the best driver for the device.
Such an installer would examine the data for each driver, choose a driver, and call Setup
DiSetSelectedDriver to set the driver. After an installer sets the selected driver, it returns
NO_ERROR.

If a coinstaller selects a driver, it should do so in postprocessing.

See the Plug and Play, Power Management, and Setup Design Guide for an overall
discussion of handling DIF codes in an installer.

See Also
SetupDiSelectBestCompatDrv, SetupDiSetSelectedDriver, SP _DEVINFO _DATA,
SP _DEVINSTALL_P ARAMS

DIF _SELECTDEVICE
A DIF _SELECTDEVICE request allows an installer to participate in selecting the driver for
a device.

When Sent
When choosing a driver for a newly enumerated device or a new driver for an existing
device (change driver). For example, when a user selects AddlRemove Hardware and selects

Chapter 5 Device Installation Function Codes 457

the modem class. Or, a user inserts a PnP device and selects "Choose a Driver From a List"
in the Found New Hardware Wizard.

Who Handles

Input

Class Coinstaller

Device Coins taller

Class Installer

DevicelnfoSet

Can handle

Does not handle

Can handle

Supplies a handle to the device information set containing the device for which a driver is to
be selected.

Associated Class?
There is a device setup class associated with the DevicelnfoSet.

DevicelnfoData
Optionally supplies a pointer to an SP _DEVINFO_DATA structure that identifies the device
in the device information set.

If DevicelnfoData is NULL, this request is to select a driver for the device setup class
associated with the DevicelnfoSet.

Device Installation Parameters
If DevicelnfoData is not NULL, there are device installation parameters (SP _
DEVINST ALL_P ARAMS) associated with the DevicelnfoData. If DevicelnfoData
is NULL, there are device installation parameters associated with the DevicelnfoSet.

Of particular interest is the DriverPath, which contains the location of INF(s) to use when
building the driver list.

Class Installation Parameters
An SP _SELECTDEVICE_P ARAMS structure is associated with the DevicelnfoData if
DevicelnfoData is not NULL. Otherwise, the class installation parameters are associated
with the device information set as a whole.

Output
Device Installation Parameters
An installer can modify the device installation parameters, but it should not modify the
DriverPath field.

458 Part 3 Setup

Class Installation Parameters
An installer can modify the SP _SELECTDEVICE_PARAMS. For example, an installer
might specify a title and/or instructions for Setup to use in the dialog box that asks the user
to select a driver.

If an installer sets new select-device parameters, vs. modifying parameters set by a previous
installer, the installer must zero the fields it does not set.

Return Value
If a coins taller does nothing for this DIF code, it returns NO_ERROR from its preprocessing
pass. If a coinstaller handles this DIF code, it should do so in its preprocessing pass and re
turn NO_ERROR or a Win32 error. By the time a coinstaller is called for postprocessing,
the driver has already been selected.

A class installer returns ERROR_DI_DO_DEFAVLT, a Win32 error, or NO_ERROR.

If an installer builds and modifies the driver list, it returns ERROR_DI_BAD _PATH if
SP _DEVINSTALL_PARAMS.DriverPath is not NVLL yet there are no valid drivers at
that location. This can be true if there are no drivers at that location or if there are drivers,
but only ones that the installer marks DNF _BAD_DRIVER. In response to this error code,
Setup displays an error to the user.

Default Handler
SetupDiSelectDevice

Operation
In response to a DIF _SELECTDEVICE request, an installer performs any selection opera
tions required for its device or device class, besides what the default handler does. An in
staller typically responds to this DIF request in one of the following ways:

• Do nothing.

If an installer has no special selection requirements, it does nothing in response to this
DIF code. A class installer returns ERROR_DI_DO_DEFAVLT and a coinstaller returns
NO_ERROR.

• Supply select strings that Setup will display in the selection VI.

An installer can supply select strings in the class installation parameters (SP _SELECT
DEVICE_PARAMS). For example, an installer can modify the Instructions or the
window header Title.

A class installer should not supply select strings if a coinstaller already supplied select
strings. The coinstaller probably has more relevant information.

Chapter 5 Device Installation Function Codes 459

If an installer modifies the SP _SELECTDEVICE_PARAMS, the installer must also set
the DI_USECI_SELECTSTRINGS flag in the SP_DEVINSTALL_PARAMS.

If an installer successfully supplies select strings, Setup still needs to call the default
handler. Therefore, in this case, a coinstaller returns NO_ERROR and a class installer
returns ERROR_DI_DO_DEFAULT.

• Modify the device installation parameters.

An installer can modify the device installation parameters (SP _DEVINST ALL_
PARAMS). For example, an installer might set the DI_SHOWOEM flag to have
Setup display the Have Disk button.

If a class installer successfully modifies the device installation parameters, the class
installer returns ERROR_DI_DO_DEFAULT.

• Modify the list of drivers from which the user can select.

This action is less common, but possible. An installer that modifies the driver list might,
or might not, also supply select strings.

An installer that modifies the driver list typically marks driver(s) that are inappropriate
for the device. An installer marks such drivers with the flag DNF _BAD _DRIVER. Setup
omits these drivers from the list it displays to the user. An installer marks bad drivers
with a procedure like the following:

1. Build the driver list by calling SetupDiBuildDriverInfoList with a DriverType of
SPDIT_CLASSDRIVER.

2. Get the information about the first driver in the list by calling SetupDiEnumDriver
Info and SetupDiGetDriverInstallParams. If the driver is not appropriate for the
device, set the DNF _BAD _DRIVER flag in the Flags field of the parameters. Apply
the change to the parameters by calling SetupDiSetDriverInstallParams.

3. Repeat the previous step until you have processed all the drivers in the list. Be sure to
increment the Memberlndex parameter to SetupDiEnumDriverInfo as described in
the reference page for that function.

An installer might set the DNF _BAD _DRIVER flag for one or more drivers in the driver
list, but an installer must not clear that flag.

If one or more installers successfully modify the driver list, Setup still needs to call the
default handler. Therefore, in this case, a coinstaller returns NO_ERROR and a class
installer returns ERROR_DI_DO_DEFAULT.

• Display its own driver-selection user interface and set the selected driver.

460 Part 3 Setup

Only a class installer can display its own driver-selection user interface; coinstallers must
not. For example, a class installer might display pictures instead of textual lists.

If the class installer successfully sets the selected driver, the class installer returns NO_
ERROR and Setup does not call the default handler and therefore does not display the
default selection interface.

If a class installer only needs to display its own interface during the Add New Hardware
wizard, the class installer should handle the DIF _NEWDEVICEWIZARD _SELECT
request instead of this request.

If the DI_ENUMSINGLEINF flag is set in the device installation parameters, the Driver
Path is a path to a single INF instead of a path to a directory. An installer must use only that'
single INF to build the driver list.

See the Plug and Play, Power Management, and Setup Design Guide for an overall
discussion on handling DIF codes in an installer.

See Also
DIF _NEWDEVICEWIZARD _SELECT, SetupDiSelectDevice, SP _DEVINFO_DATA,
SP _DEVINSTALL_PARAMS, SP _SELECTDEVICE_PARAMS

DIF _TROUBLESHOOTER
The DIF _TROUBLESHOOTER request allows an installer to launch a.troubleshooter for a
device or to return CHM and HTM troubleshooter files for Setup to launch.

When Sent
When a user clicks the "Troubleshooter" button for a device in the Device Manager.

Who Handles

Input

Class Coins taller

Device Coins taller

Class Installer

OevicelnfoSet

Can handle

Can handle

Can handle

Supplies a handle to the device information set containing the device.

Chapter 5 Device Installation Function Codes 461

DevicelnfoData
Supplies a pointer to an SP _DEVINFO_DATA structure that identifies the device in the
device information set.

Device Installation Parameters
There are device installation parameters (SP _DEVINSTALL_PARAMS) associated with
the DevicelnfoData.

Class Installation Parameters
An SP _TROUBLESHOOTER_PARAMS structure is associated with the DevicelnfoData.

Output
Class Installation Parameters
An installer might modify the SP _ TROUBLESHOOTER_P ARAMS, setting a CHM or
HTML file.

Return Value
If a coinstaller does not handle this request, it returns NO_ERROR from its preprocess
ing pass.

If a coinstaller handles this request, it does so in its postprocessing pass. If the coinstaller
supplies CHM and HTML files, it propagates the status it received (probably ERROR_
DI_DO_DEFAULT). If the coinstaller runs a troubleshooter and fixes the problem, the
coinstaller returns NO_ERROR. If the coinstaller runs a troubleshooter but does not fix
the problem, it propagates the status it received (ERROR_DI_DO_DEFAULT).

If a class installer launches its own troubleshooter and fixes the problem, the class installer
returns NO_ERROR. If a class installer supplies a CHM file and an HTML file or the class
installer runs a troubleshooter but does not fix the problem, the class installer returns
ERROR_DI_DO_DEFAULT.

If an installer encounters an error when handling this DIF code, the installer returns an
appropriate Win32 error.

Default Handler
None.

There is no default handler for DIF _TROUBLESHOOTER, but the as provides default
troubleshooters that attempt to resolve device problems if there are no installer-supplied
troubleshooters.

462 Part 3 Setup

Operation
An installer calls CM_Get_DevNode_Status to get the device status and the CM problem
code. Depending on the problem, an installer might provide a troubleshooter, a help file,
or nothing. A troubleshooter can possibly resolve a problem with a device. If a trouble
shooter resolves the problem, it should call SetupDiCallClasslnstaller to send a DIF _
PROPERTYCHANGE request of type DICS_PROPCHANGE. If an installer does not
supply a troubleshooter for a device, it might supply a help file of problem-solving
suggestions for the user.

If no installer runs its own troubleshooter, Setup runs HTML Help to display information
to the user. If an installer supplied a CHM file in the class installation parameters, Setup dis
plays that file. Otherwise, Setup displays system-supplied troubleshooting information.

The class installation parameters contain at most one ChmFile and HtmlTroubleshooter
pair. If more than one installer specifies these values, Setup uses the values set by the last
installer that handled the DIF request.

See the Plug and Play, Power Management, and Setup Design Guide for an overall
discussion on handling DIF codes in an installer.

See Also
CM_Get_DevNode_Status, SP _DEVINFO_DATA, SP _DEVINS TALL_PARAMS,
SP _TROUBLESHOOTER_PARAMS

DIF _UNREMOVE
A DIF _ UNREMOVE request notifies the installer that Setup is about to reinstate a device
in a given hardware profile and gives the installer an opportunity to participate in the opera
tion. Setup only sends this request for nonPnP devices.

When Sent
When a root-enumerated, nonPnP device is reinstated to a hardware profile.

Who Handles

Input

Class Coinstaller

Device Coinstaller

Class Installer

DevicelnfoSet

Can handle

Can handle

Can handle

Supplies a handle to the device information set containing the device.

Chapter 5 Device Installation Function Codes 463

DevicelnfoData
Supplies a pointer to an SP _DEVINFO_DATA structure that identifies the device in the
device information set.

Device Installation Parameters
There are device installation parameters (SP _DEVINSTALL_PARAMS) associated with
the DevicelnfoData.

Class Installation Parameters
An SP _UNREMOVEDEVICE_PARAMS structure is associated with the DevicelnfoData.
The Scope field must be set to DI_UNREMOVEDEVICE_CONFIGSPECIFIC and a hard
ware profile must be specified in the HwProfile field.

Output
None.

Return Value
A coinstaller can return NO_ERROR, ERROR_DI_POSTPROCESSING_REQUIRED, or a
Win32 error.

A class installer typically returns ERROR_DI_DO_DEFAULT or a Win32 error. In some
cases, a class installer returns NO_ERROR.

Default Handler
SetupDiUnRemoveDevice

Operation
"Unremoving" a device essentially means that Setup clears a flag that previously marked a
device as "not present" in a particular hardware profile.

See the Plug and Play, Power Management, and Setup Design Guide for an overall
discussion on handling DIF codes in an installer.

See Also
SetupDiUnRemoveDevice, SP _DEVINFO_DATA, SP _DEVINSTALL_PARAMS,
SP _UNREMOVEDEVICE_PARAMS

Reserved DIF Codes
The DIF codes listed in this section are reserved for system use. Third-party installers
should not handle or send these requests.

464 Part 3 Setup

DIF _ADDPROPERTYPAGE_BASIC
This DIP request is reserved for system use. Third-party installers must not handle this
request.

DIF _ASSIGNRESOURCES
This DIP request is reserved for system use. Third-party installers must not handle this
request.

DIF _CALCDISKSPACE
This DIP request is reserved for system use. Third-party installers must not handle this
request.

DIF _DETECTCANCEL
This DIP request is reserved for system use. Third-party installers must not handle this
request.

DIF _DETECTVERIFY
This DIP request is reserved for system use. Third-party installers must not handle this
request.

DIF _ENABLECLASS
This DIP request is reserved for system use. Third-party installers must not handle this
request.

DIF _FIRSTTIMESETUP
A DIP _PIRSTTIMESETUP request directs an installer to carry out any class-specific in
stallation tasks that need to be completed during the initial installation of the operating
system.

This DIP request is reserved. Only system-supplied installers are allowed to handle this DIP
request.

When Sent
During GUI-mode setup.

Chapter 5 Device Installation Function Codes 465

Who Handles

Input

Class Coins taller

Device Coinstaller

Class Installer

DevicelnfoSet

Can handle

Does not handle

Can handle

Supplies a handle to the device information set.

Associated Class?
There is a device setup class associated with the DevicelnfoSet.

DevicelnfoData
None.

Device Installation Parameters
There are device installation parameters (SP _DEVINSTALL_PARAMS) associated with
the DevicelnfoSet.

Class Installation Parameters
None.

Output
DevicelnfoSet
An installer adds a device information element to the DevicelnfoSet for each detected device
it wants to have installed. An installer might also build a global class driver list.

Device Installation Parameters
An installer can modify the device installation parameters for the DevicelnfoSet or for new
device information elements it creates.

Return Value
A class coinstaller can detect devices during pre- or postprocessing. Such a coinstaller re
turns ERROR_DI_POSTPROCESSING_REQUIRED (for postprocessing) and/or returns
NO_ERROR or a Win32 error after its detection operations. If a coinstaller does not detect
devices, it returns NO_ERROR from its preprocessing pass.

466 Part 3 Setup

If a class installer detects devices, it returns NO_ERROR or an appropriate Win32 error. If a
class installer does not handle this DIF request, it returns ERROR_DI_DO_DEFAVLT.

Default Handler
None.

Operation
GVI-mode setup sends a DIF _FIRSTTIMESETUP request with an empty DevicelnfoSet.
The installers can perform legacy detection of nonPnP devices and add them to the Device
InfoSet. System-supplied installers can also handle this DIF request when migrating legacy
device installations from Windows 9x or Windows NT® to Windows 2000.

An installer detects new devices of its setup class, based on registry information, by calling
into a kernel-mode detection component, or by consulting unattend.txt information stored
when a migration DLL ran during an OS upgrade.

If an installer detects a nonPnP device, the installer should select a driver for the device
as follows: create a device information element (SetupDiCreateDevicelnfo), set the
SPDRP _HARDW AREID property by calling SetupDiSetDeviceRegistryProperty, call
SetupDiBuildDriverlnfoList, and then call SetupDiCallClasslnstaller to send a DIF_
SELECTBESTCOMPATDRV request.

If one or more installers detect device(s) in response to this DIF code, GVI-mode setup
attempts to install the device(s). GVI-mode setup attempts to install all devices in the list; if
an installer returns a device that was previously configured, GVI-mode setup will install the
device twice.

An installer must handle this DIF request silently. That is, without displaying VI to the user.

Installers should not perform tasks when handling this DIF request that require the machine
to be rebooted. For example, a class installer should not set drivers to load at the next boot
for the purpose of determining which drivers succeed after the reboot.

To detect nonPnP devices during GVI-mode setup, an installer must handle this request.
GUI-mode setup does not send a DIF _DETECT request.

See the Plug and Play, Power Management, and Setup Design Guide for an overall dis
cussion on handling DIF codes in an installer.

See Also
DIF _SELECTBESTCOMP ATDRV, SetupDiBuildDriverlnfoList, SetupDiCall
Classlnstaller, SetupDiCreateDevicelnfo, SetupDiSetDeviceRegistryProperty,
SP _DEVINFO_DATA, SP _DEVINSTALL_PARAMS

Chapter 5 Device Installation Function Codes 467

DIF _FOUNDDEVICE
This DIF request is reserved for system use. Third-party installers must not handle this
request.

DIF _INSTALLCLASSDRIVERS
This DIF request is reserved for system use. Third-party installers must not handle this
request.

DIF _MOVEDEVICE
This DIF request is reserved for system use. Third-party installers must not handle this
request.

Obsolete DIF Codes
The DIF codes listed in this section are obsolete. Third-party installers should not handle or
send these requests.

DIF _DESTROVWIZARDDATA
This DIF code is obsolete.

Setup uses the DIF _NEWDEVICEWIZARD_XXX requests instead, such as DIF_
NEWDEVICEWIZARD _FINISHINSTALL.

DIF _INSTALLWIZARD
This DIF code is obsolete.

For PnP devices, Setup uses the DIF _NEWDEVICEWIZARD_XXX requests instead,
such as DIF _NEWDEVICEWIZARD_FINISHINSTALL.

DIF _PROPERTIES
This DIF code is obsolete.

To supply custom property pages for a device an installer handles the DIF _ADD
PROPERTYPAGE_ADV ANCED request.

DIF _SELECTCLASSDRIVERS
This DIF request is obsolete.

468 Part 3 Setup

DIF _ VALIDATECLASSDRIVERS
This DIF code is obsolete.

DIF _VALIDATEDRIVER
This DIF code is obsolete.

469

CHAPTER 6

PnP Configuration Manager Functions

This section describes PnP Configuration Manager functions, which can be called by class
installers, co-installers, and additional installation applications running under Microsoft®
Windows NT®IWindows® 2000. These fUnctions are typically used in conjunction with
device installation functions. Function prototypes are defined in cfgmgr32.h. Additional
definitions are in cfg.h.

CM_Add_Empty _L09_ Conf
CMAPI CONFIGRET WINAPI

CM_Add_Empty_Lo 9_Conf(
OUT PLOG_CONF p7cLogConf.
IN DEVINST dnDevlnst.
IN PRIORITY Priority.
IN ULONG u7F7ags
) ;

The CM_Add_Empty _Lo~ Conf function creates an empty logical configuration, for a
specified configuration type and a specified device instance, on the local system.

Parameters
plcLogConf
Address of a location to receive the handle to an empty logical configuration.

dnDevlnst
Caller-supplied device instance handle, obtained from the SP _DEVINFO_DATA structure
that is used with the device installation functions.

Device instance handles can also be obtained by calling the following functions:

CM_Locate_DevNode
CM_Locate_DevN ode_Ex
CM_GeCChild
CM_GeCChild_Ex

470 Part 3 Setup

CM_GeCParent
CM_GeCParenCEx
CM_ GeCSibling
CM_ GeCSibling_Ex

Priority
Caller-supplied configuration priority value. This must be one of the constant values listed
in the following table. The constants are listed in order of priority, from highest to lowest.
(For multiple configurations with the same ulFlags value, the system will attempt to use the
one with the highest priority first.)

Priority Constant

LCPRCFORCECONFIG

LCPRCBOOTCONFIG

LCPRCDESIRED

LCPRCNORMAL

LCPRCLASTBESTCONFIG

LCPRCSUBOPTIMAL

LCPRCLASTSOFTCONFIG

LCPRCRESTART

LCPRCREBOOT

LCPRCPOWEROFF

LCPRCHARDRECONFIG

LCPRCHARDWIRED

LCPRCIMPOSSIBLE

LCPRCDISABLED

ulFlags

Definition

Result of a forced configuration.

Result of a boot configuration.

Preferred configuration (better performance).

Workable configuration (acceptable performance).

For internal use only.

Not a desirable configuration, but it will work.

For internal use only.

The system must be restarted

The system must be restarted (same as
LCPRCRESTART).

The system must be shut down and powered off.

A jumper must be changed.

The configuration cannot be changed.

The configuration cannot exist.

Disabled configuration.

Caller-supplied flags that specify the type of the logical configuration. One of the following
flags must be specified:

Configuration Type Flags Definitions

Resource descriptors added to this configuration will
describe a basic configuration.

Do not use. (Only the PnP manager can create a filtered
configuration.)

Configuration Type Flags

Chapter 6 PnP Configuration Manager Functions 471

Definitions

Do not use. (Only the PnP manager can create an
allocated configuration.)

Resource descriptors added to this configuration will
describe a boot configuration.

Resource descriptors added to this configuration will
describe a forced configuration.

Resource descriptors added to this configuration will
describe an override configuration.

One of the following bit flags can be OR'ed with the configuration type flag.

Priority Comparison Flags

PRIORITY _EQUAL_FIRST

PRIORITY _EQUAL_LAST

Return Value

Definitions

If multiple configurations of the same type (ulFlags)
have the same priority (Priority), this configuration is
placed at the head of the list.

(Default) If multiple configurations of the same type
(ulFlags) have the same priority (Priority), this
configuration is placed at the tail of the list.

If the operation succeeds, the function returns CR_SUCCESS. Otherwise, it returns one of
the CR_-prefixed error codes defined in cfgmgr32.h.

Comments
Calling CM_Add_Empty _LOlL Conf can cause the handles returned by CM_ Get_First_
Log_ Conf and CM_ Get_Next_LolL Conf to become invalid. Thus if you want to obtain
logical configurations after calling CM_Add_Empty _LOlL Conf, your code must call CM_
Get_First_LolL Conf again and start at the first configuration.

, To remove a logical configuration created by CM_Add_Empty_LoILConf, call CM_
Free_LolL Conf.

The handle received inplcLogConfmust be explicitly freed by calling CM_Free_LolL
Conf_Handle.

See Also
CM_Add_Empty _LOlL Conf_Ex

472 Part 3 Setup

CM_Add_Empty _LoQ_ Conf_Ex
CMAPI CONFIGRET WINAPI

CM_Add_Empty_Log_Conf_Ex(
OUT PLOG_CONF p7cLogConf.
IN DEVINST dnOevlnst.
IN PRIORITY Priority.
IN ULONG u7F7ags.
IN HMACHINE hMachine
) :

The CM_Add_Empty _Log_ Conf_Ex function creates an empty logical configuration, for a
specified configuration type and a specified device instance, on either the local or a remote
system.

Parameters
plcLogConf
Pointer to a location to receive the handle to an empty logical configuration.

dnDevlnst
Caller-supplied device instance handle, obtained from the SP _DEVINFO_DATA structure
that is used'with the device installation functions.

Device instance handles can also be obtained by calling the following functions:

CM_Locate_DevN ode
CM_Locate_DevN ode_Ex
CM_GeCChild
CM_GeCChild_Ex
CM_GeCParent
CM_GeCParenCEx
CM-.:.GeCSibling
CM_ GeCSibling_Ex

Priority
Caller-supplied configuration priority value. For a list of values, see the Priority description
for CM_Add_Empty _LoJL Conf.

ulFlags
Caller-supplied flags that specify the type of the logical configuration. For a list of flags, see
the description ulFlags description for CM_Add_Empty _LoJL Conf.

Chapter 6 PnP Configuration Manager Functions 473

hMachine
Caller-supplied machine handle, obtained from a previous call to CM_ Connect_Machine,
or NULL.

Return Value
If the operation succeeds, the function returns CR_SUCCESS. Otherwise, it returns one of
the CR_ -prefixed error codes defined in cfgmgr32.h.

Comments
Calling CM_Add_Empty _Lo~ Conf_Ex can cause the handles returned by CM_ Get_
First_Lo~Conf_Ex and CM_Get_Next_Lo~Conf_Ex to become invalid. Thus if you
want to obtain logical configurations after calling CM_Add_Empty _Log_ Conf_Ex, your
code must call CM_ Get_First_Lo~ Conf_Ex again and start at the first configuration.

To remove a logical configuration created by CM_Add_Empty _Lo~ Conf_Ex, call
CM_Free_Lo~ Conf_Ex.

The handle received inplcLogConfmust be explicitly freed by calling CM_Free_LolL
Conf_Handle.

See Also
CM_Add_Empty _Lo~ Conf

CMAPI CONFIGRET WINAPI
CM_Add_ID(

IN DEVINST dnDevlnst.
IN PTSTR pszID.
IN ULONG u7F7ags
) ;

The CM_Add_ID function appends a specified device ID (if not already present) to a
device instance's hardware ID list or compatible ID list.

Parameters
dnDevlnst
Caller-supplied device instance handle, obtained from the SP _DEVINFO_DATA structure
that is used with the device installation functions.

474 Part 3 Setup

Device instance handles can also be obtained by calling the following functions:

CM_Locate_Dev Node
CM_Locate_DevNode_Ex
CM_GeCChild
CM_GeCChild_Ex
CM_GeCParent
CM_GeCParenCEx
CM_ GeCSibling
CM_ GeCSibling_Ex

pszlD
Caller-supplied pointer to a NULL-terminated device ID string.

ulFlags
Caller-supplied flag constant indicating the list onto which the supplied device ID should be
appended. The following flag constants are valid.

Flag Constant

CM_ADD_ID_COMPATIBLE

Return Value

Definition

The specified device ID should be appended to the
specific device instance's compatible ID list.

The specified device ID should be appended to the
specific device instance's hardware ID list.

If the operation succeeds, the function returns CR_SUCCESS. Otherwise, it returns one of
the CR_-prefixed error codes defined in cfgmgr32.h.

Comments
Each appended device ID is considered less compatible than IDs already existing in the
specified list.

See Also
CM_Add_ID _Ex SetupDiSetDeviceRegistryProperty

CM_Add_ID_Ex
CMAPI CONFIGRET WINAPI

CM_Add_ID(
IN DEVINST dnDevlnst.
IN PTSTR pszID.

IN ULONG u7F7ags,
IN HMACHINE hMachine
) ;

Chapter 6 PnP Configuration Manager Functions 475

The CM_Add_ID_Ex function appends a device ID (if not already present) to a device
instance's hardware ID list or compatible ID list, on either the local or a remote system.

Parameters
dnDevlnst
Caller-supplied device instance handle, obtained from the SP _DEVINFO_DATA structure
that is used with the device installation functions.

Device instance handles can also be obtained by calling the following functions:

CM_Locate_Dev Node
CM_Locate_DevNode_Ex
CM_GeCChild
CM_GeCChild_Ex
CM_GeCParent
CM_GeCParenCEx
CM_ GeCSibling
CM_ GeCSibling_Ex

pszlD
Caller-supplied pointer to a NULL-terminated device ID string.

ulFlags
Caller-supplied flag constant indicating the list onto which the supplied device ID should be
appended. The following flag constants are valid.

Flag Constant

hMachine

Definition

The specified device ID should be appended to. the
specific device instance's compatible ID list.

The specified device ID should be appended to the
specific device instance's hardware ID list.

Caller-supplied machine handle, obtained from a previous call to CM_ Connect_Machine,
or NULL.

476 Part 3 Setup

Return Value
If the operation succeeds, the function returns CR_SUCCESS. Otherwise, it returns one of
the CR_-prefixed error codes defined in cfgmgr32.h.

Comments
Each appended device ID is considered less compatible than IDs already existing in the
specified list.

See Also
CM_Add_ID SetupDiSetDeviceRegistryProperty

CM_Add_Res_Des
CMAPI CONFIGRET WINAPI

CM_Add_Res_Des(
OUT PRES_DES prdResDes,
IN LOG_CONF 7cLogConf,
IN RESOURCEID ResourceID,
IN PCVOID ResourceData,
IN ULONG ResourceLen,
IN ULONG u7F7ags
) ;

The CM_Add_Res_Des function adds a resource descriptor to a logical configuration.

Parameters
prdResDes
Pointer to a location to receive a handle to the new resource descriptor.

/cLogConf
Caller-supplied handle to the logical configuration to which the resource descriptor should
be added. This handle must have been previously obtained by calling one of the following
functions:

CM_Add_Empty _Log_Conf
CM_Add_Empty _Log_Conf_Ex
CM_GeCFirsCLog_Conf
CM_GeCFirsCLog_Conf_Ex
CM_GeCNexCLog_Conf
CM_GeCNexCLog_Conf_Ex

Chapter 6 PnP Configuration Manager Functions 477

ResourcelD
Caller-supplied resource type identifier, which identifies the type of structure supplied by'
ResourceData. This must be one of the ResType_-prefixed constants defined in cfgmgr32.h.

ResourceData
Caller-supplied pointer to one of the resource structures listed in the following table.

ResourcelD Parameter

ResType_BusNumber

ResType_ Class Specific

ResType_DevicePrivate

ResType_DMA

ResType_IO

ResType_IRQ

ResType_Mem

ResType_MfCardConfig

ResType_PcCardConfig

ResourceLen

Resource Structure

BUSNUMBER_RESOURCE

CS_RESOURCE

DEVPRIV ATE_RESOURCE

DMA_RESOURCE

IO_RESOURCE

IRQ_RESOURCE

MEM_RESOURCE

MFCARD_RESOURCE

PCCARD_RESOURCE

Caller-supplied length of the structure pointed to by ResourceData.

ulFlags
Not used, must be zero.

Return Value
If the operation succeeds, the function returns CR_SUCCESS. Otherwise, it returns one of
the CR_-prefixed error codes defined in cfgmgr32.h.

Comments
Callers of CM_Add_Res_Des must call CM_Free_Res_Des_Handle to deallocate the
resource descriptor handle, after it is no longer needed.

See Also
CM_Add_Res_Des_Ex, CM_Free_Res_Des_Handle

478 Part 3 Setup

CM_Add_Res_Des_Ex
CMAPI CONFIGRET WINAPI

CM_Add_Res_Des_ExC
OUT PRES_DES prdResDes,
IN LOG_CONF 7cLogConf,
IN RESOURCEID ResourceID,
IN PCVOID ResourceData,
IN ULONG ResourceLen,
IN ULONG u7F7ags,
IN HMACHINE hMachine
) ;

The CM_Add_Res_Des_Ex function adds a resource descriptor to a logical configuration,
on either the local or a remote system.

Parameters
prdResDes
Pointer to a location to receive a handle to the new resource descriptor.

IcLogConf
Caller-supplied handle to the logical configuration to which the resource descriptor should
be added. This handle must have been previously obtained by calling one of the following
functions:

CM_Add_Empty _Log_Conf
CM_Add_Empty _Log_Conf_Ex
CM_GeCFirsCLog_Conf
CM_ Get_FirsCLog_ Conf_Ex
CM_GeCNexCLog_Conf
CM_GeCNexCLog_Conf_Ex

ResourcelD
Caller-supplied resource type identifier, which identifies the type of structure supplied by
ResourceData. This must be one of the ResType_-prefixed constants defined in cfgmgr32.h.

ResourceData
Caller-supplied pointer to one of the resource structures listed in the following table.

ResourceID Parameter

ResType_BusNumber

ResType_ Class Specific

Resource Structure

BUSNUMBER_RESOURCE

CS_RESOURCE

ResourceID Parameter

ResType_DevicePrivate

ResType_DMA

ResType_IO

ResType_IRQ

ResType_Mem

ResType_MfCardConfig

ResType_PcCardConfig

ResourceLen

Chapter 6 PnP Configuration Manager Functions 479

Resource Structure

DEVPRIV ATE_RESOURCE

DMA_RESOURCE

IO_RESOURCE

IRQ_RESOURCE

MEM_RESOURCE

MFCARD_RESOURCE

PCCARD_RESOURCE

Caller-supplied length of the structure pointed to by ResourceData.

ulFlags
Not used, must be zero.

hMachine
Caller-supplied machine handle, obtained from a previous call to CM_Connect_Machine,
or NULL.

Return Value
If the operation succeeds, the function returns CR_SUCCESS. Otherwise, it returns one of
the CR_-prefixed error codes defined in cfgmgr32.h.

Comments
Callers of CM_Add_Res_Des_Ex must call CM_Free_Res_Des_Handle to deallocate the
resource descriptor handle, after it is no longer needed.

See Also
CM_Add_Res_Des, CM_Free_Res_Des_Handle

CM_ Connect_Machine
CMAPI CONFIGRET WINAPI

CM_Connect_Machine(
IN PCTSTR UNCServerName,
OUT PHMACHINE phMachine
) ;

The CM_ Connect_Machine function creates a connection to a remote system.

480 Part 3 Setup

Parameters
UNCServerName
Caller-supplied text string representing the UNC name, including the \\ prefix, of the system
for which a connection will be made.

phMachine
Address of a location to receive a machine handle.

Return Value
If the operation succeeds, the function returns CR_SUCCESS. Otherwise, it returns one of
the CR_-prefixed error codes defined in cfgmgr32.h.

Comments
Callers of CM_ Connect_Machine must call CM_Disconnect_Machine to deallocate the
machine handle, after it is no longer needed.

CM_Disconnect_Machine
CMAPI CONFIGRET WINAPI

CM_Disconnect_Machine(
IN HMACHINE hMachine
);

The CM_Disconnect_Machine function removes a connection to a remote system.

Parameters
hMachine
Caller-supplied machine handle, obtained from a previous call to CM_Connect_Machine.

Return Value
If the operation succeeds, the function returns CR_SUCCESS. Otherwise, it returns one of
the CR_-prefixed error codes defined in cfgmgr32.h.

CM_Enumerate_ Classes
CMAPI CONFIGRET WINAPI

CM_Enumerate_Classes(
IN ULONG u7C7asslndex.
OUT LPGUID C7assGuid.
IN ULONG u7F7ags
) ;

Chapter 6 PnP Configuration Manager Functions 481

The CM_Enumerate_Classes function, when called repeatedly, enumerates the local
system's installed device classes by supplying each class's GUID.

Parameters
ulClasslndex
Caller-supplied index into the system's list of device classes. For more information, see the
following Comments section.

Class Guid
Caller-supplied address of a GUID structure (described in the Platform SDK) to receive a
device class's GUID.

ulFlags
Not used, must be zero.

Return Value
If the operation succeeds, the function returns CR_SUCCESS. Otherwise, it returns one of
the CR_-prefixed error codes defined in cfgmgr32.h.

Comments
To enumerate the local system's device classes, call CM_Enumerate_Classes repeatedly,
starting with a ulClasslndex value of zero and incrementing the index value with each sub
sequent call until the function returns CR_NO_SUCH_ VALUE. Some index values might
represent list entries containing invalid class data, in which case the function returns CR_
INV ALID _DATA. This return value can be ignored.

The class GUIDs obtained from this function can be used as input to the device installation
functions.

See Also
CM_Enumerate_ Classes_Ex

CM_Enumerate_Classes_Ex
CMAPI CONFIGRET WINAPI

CM_Enumerate_Classes_Ex<
IN ULONG u7C7asslndex,
OUT LPGUID C7assGuid,
IN ULONG u7F7ags,
IN HMACHINE hMachine
) :

482 Part 3 Setup

The CM_Enumerate_ Classes_Ex function, when called repeatedly, enumerates a local or
remote system's installed device classes, by supplying each class's GUID.

Parameters
ulClasslndex
Caller-supplied index into the system's list of device classes. For more information, see the
following Comments section.

Class Guid
Caller-supplied address of a GUID structure (described in the Platform SDK) to receive a
device class's GUID.

ulFlags
Not used, 1JlUSt be zero.

hMachine
Caller-supplied machine handle, obtained from a previous call to CM_Connect_Machine.

Return Value
If the operation succeeds, the function returns CR_SUCCESS. Otherwise, it returns one of
the CR_-prefixed error codes defined in cfgmgr32.h.

Comments
To enumerate the local or remote system's device classes, call CM_Enumerate_ Classes_
Ex repeatedly, starting with a ulClasslndex index value of zero and incrementing the index
value with each subsequent call until the function returns CR_NO_SUCH_ VALUE. Some
index values might represent list entries containing invalid class data, in which case the
function returns CR_INVALID_DATA. This return value can be ignored.

The class GUIDs obtained from this function can be used as input to the device installation
functions.

See Also
CM_Enumerate_ Classes

eM_Enumerate Enumerators
CMAPI CONFIGRET WINAPI

CM_Enumerate_Enumerators<
IN ULONG u7Enumlndex,
OUT PTCHAR Buffer,

IN OUT PULONG pu7Length.
IN ULONG u7F7ags
) ;

Chapter 6 PnP Configuration Manager Functions 483

The CM_Enumerate_Enumerators function enumerates the local system's device enu
merators by supplying each enumerator's name.

Parameters
ulEnumlndex
Caller-supplied index into the system's list of device enumerators. For more information, see
the following Comments section.

Buffer
Address of a buffer to receive an enumerator name. This buffer should be MAX_DEVICE_
ID_LEN-sized (or, set Buffer to zero and obtain the actual name length in the location refer
enced by puLength).

pulLength
Caller-supplied address of a location to hold the buffer size. The caller supplies the length of
the buffer pointed to by Buffer. The function replaces this value with the actual size of the
enumerator's name string. If the caller-supplied buffer length is too small, the function sup
plies the required buffer size and returns CR_BUFFER_SMALL.

ulFlags
Not used, must be zero.

Return Value
If the operation succeeds, the function returns CR_SUCCESS. Otherwise, it returns one of
the CR_-prefixed error codes defined in cfgmgr32.h.

Comments
To enumerate the local system's device enumerators, call CM_Enumerate_Enumerators
repeatedly, starting with a ulEnumlndex index value of zero. and incrementing the index
value with each subsequent call until the function returns CR_NO_SUCH_ VALUE.

After enumerator names have been obtained, the names can be used as input to CM_ Get_
Device_ID _List.

See Also
CM_Enumerate_Enumerators_Ex

484 Part 3 Setup

CM_Enumerate_Enumerators_Ex
CMAPI CONFIGRET WINAPI

CM_Enumerate_Enumerators_Ex<
IN ULONG u7Enumlndex.
OUT PTCHAR Buffer.
IN OUT PULONG pu7Length.
IN ULONG u7F7ags.
IN HMACHINE hMachine
) ;

The CM_Enumerate_Enumerators_Ex function enumerates a local or remote system's
device enumerators, by supplying each enumerator's name.

Parameters
ulEnumlndex
Caller-supplied index into the system's list of device enumerators. For more information, see
the following Comments section.

Buffer
Address of a buffer to receive an enumerator name. This buffer should be MAX_DEVICE_
ID_LEN-sized (or, set Buffer to zero and obtain the actual name length in the location refer
enced by puLength).

pulLength
Caller-supplied address of a location to hold the buffer size. The caller supplies the length
of the buffer pointed to by Buffer. The function replaces this value with the actual size of the
enumerator's name string. If the caller-supplied buffer length is too small, the function sup
plies the required buffer size and returns CR_BUFFER_SMALL.

ulFlags
Not used, must be zero.

hMachine
Caller-supplied machine handle, obtained from a previous call to CM_ Connect_Machine.

Return Value
If the operation succeeds, the function returns CR_SUCCESS. Otherwise, it returns one of
the CR_-prefixed error codes defined in cfgmgr32.h.

Chapter 6 PnP Configuration Manager Functions 485

Comments
To enumerate the local or remote system's device enumerators, call CM_Enumerate_
Enumerators_Ex repeatedly, starting with a ulEnumlndex index value of zero, and incre
menting the index value with each subsequent call until the function returns
CR_NO_SUCH_ VALUE.

After enumerator names have been obtained, the names can be used as input to CM_ Get_
Device_ID _List.

See Also

CM_Free_Log_Conf
CMAPI CONFIGRET WINAPI

CM_Free_Lo9_Conf(
IN LOG_CONF 7cLogConfToBeFreed.
IN ULONG u7F7ags
);

The CM_Free_Lo~ Conf function removes a logical configuration and all associated
resource descriptors, for the local system.

Parameters
IcLogConffoBeFreed
Caller-supplied handle to a logical configuration. This handle must have been previously
obtained by calling one of the following functions:

CM_Add_Empty _Log_Conf
CM_Add_Empty _Log_Conf_Ex
CM_GeCFirsCLog_Conf
CM_GeCFirsCLo~Conf_Ex

CM_GeCNexCLog_Conf
CM_GeCNext_Log_Conf_Ex

ulFlags
Not used, must be zero.

Return Value
If the operation succeeds, the function returns CR_SUCCESS. Otherwise, it returns one of
the CR_-prefixed error codes defined in cfgmgr32.h.

486 Part 3 Setup

Comments
Calling CM_Free_Lo~ Conf can cause the handles returned by CM_ Get_First_Lo~
Conf and CM_Get_Next_Lo~Confto become invalid. Thus if you want to obtain logical
configurations after calling CM_Free_Lo~Conf, your code must call CM_Get_First_
Lo~ Conf again and start at the first configuration.

Note that calling CM_Free_Lo~Conffrees the configuration, but not the configuration's
handle. To free the handle, call CM_Free_Lo~ Conf_Handle.

See Also
CM-,-Free_Lo~ Conf_Ex

CM_Free_Lo9_ Conf_Ex
CMAPI CONFIGRET WINAPI

CM_Free_Lo9_Conf_Ex(
IN LOG_CONF 7cLogConfToBeFreed.
IN ULONG u7F7ags.
IN HMACHINE hMachine
) ;

The CM_Free_Lo~ Conf_Ex function removes a logical configuration and all associated
resource descriptors, for a local or remote system.

Parameters
IcLogConfToBeFreed
Caller-supplied handle to a logical configuration. This handle must have been previously
obtained by calling one of the following functions:

CM_Add_Empty _Log_Conf
CM_Add_Empty _Log_Conf_Ex
CM_ GeCFirst_Log_ Conf
CM_GeCFirsCLog_Conf_Ex
CM_GeCNext_Log_Conf
CM_GeCNexCLog_Conf_Ex

ulFlags
Not used, must be zero.

hMachine
Caller-supplied machine handle, obtained from a previous call to CM_ Connect_Machine.

Chapter 6 PnP Configuration Manager Functions 487

Return Value
If the operation succeeds, the function returns CR_SUCCESS. Otherwise, it returns one of
the CR_-prefixed error codes defined in cfgmgr32.h.

Comments
Calling CM_Free_Lo~Conf_Ex can cause the handles returned by CM_Get_First_Lo~
Conf_Ex and CM_Get_Next_Lo~Conf_Ex to become invalid. Thus if you want to obtain
logical configurations after calling CM_Free_Lo~Conf_Ex, your code must call CM_
Get_First_Lo~ Conf_Ex again and start at the first configuration.

Note that calling CM_Free_Lo~Conf_Ex frees the configuration, but not the configura
tion's handle. To free the handle, call CM_Free_Lo~Conf_Handle_Ex.

See Also
CM_Free_Lo~Conf

CM_Free_Log_ Conf_Handle
CMAPI CONFIGRET WINAPI

CM_Free_Lo9_Conf_Handle(
IN LOG_CONF 7cLogConf
) ;

The CM_Free_Lo~ Conf_Handle function invalidates a logical configuration handle and
frees its associated memory allocation.

Parameters
/cLogConf
Caller-supplied logical configuration handle. This handle must have been previously
obtained by calling one of the following functions:

CM_Add_Empty _Log_Conf
CM_Add_Empty _Log_Conf_Ex
CM_ GeCFirsCLog_Conf
CM_ GeCFirsCLog_Conf_Ex
CM_GeCNexCLog_Conf
CM_ GeCNexCLog_ Conf_Ex

Return Value
If the operation succeeds, the function returns CR_SUCCESS. Otherwise, it returns one of
the CR_-prefixed error codes defined in cfgmgr32.h.

488 Part 3 Setup

Comments
Each time your code calls one of the functions listed under the description of lcLogConf, it
must subsequently call CM_Free_Lo~ Conf_Handle.

CM_Free_Res_Des
CMAPI CONFIGRET WINAPI

CM_Free_Res_Des (
OUT PRES_DES prdResDes.
IN RES_DES rdResDes.
IN ULONG u7F7ags
) ;

The CM_Free_Res_Des function removes a resource descriptor from a logical con
figuration, for the local system.

Parameters
prdResDes
Caller-supplied location to receive a handle to the configuration's previous resource
descriptor. This parameter can be NULL. For more information, see the following
Comments section.

rdResDes
Caller-supplied handle to the resource descriptor to be removed. This handle must have been
previously obtained by calling one of the following functions:

CM_Add_Res_Des
CM_Add_Res_Des_Ex
CM_GeCNexCRes_Des
CM_Get_Next_Res_Des_Ex
CM_Modify _Res_Des
CM_Modify _Res_Des_Ex

ulFlags
Not used, must be zero.

Return Value
If the operation succeeds, the function returns CR_SUCCESS. Otherwise, it returns one of
the CR_-prefixed error codes defined in cfgmgr32.h.

Chapter 6 PnP Configuration Manager Functions 489

Comments
Resource descriptors for each configuration are stored in an array. If you specify an address
for prdResDes, then CM_Free_Res_Des returns a handle to the resource descriptor that was
previous, in the array, to the one removed. If the handle specified by rdResDes represents
the resource descriptor located first in the array, then prdResDes receives a handle to the
logical configuration.

Note that calling CM_Free_Res_Des frees the resource descriptor, but not the descriptor's
handle. To free the handle, call CM~Free_Res_Des_Handle.

See Also
CM_Free_Res_Des_Ex

CM_Free_Res_Des_Ex
CMAPI CONFIGRET WINAPI

CM_Free_Res_Des_Ex(
OUT PRES_DES prdResDes,
IN RES_DES rdResDes,
IN ULONG u7F7ags,
IN HMACHINE hMachine
) :

The CM_Free_Res_Des_Ex function removes a resource descriptor from a logical
configuration for a local or remote system.

Parameters
prdResDes
Caller-supplied location to receive a handle to the configuration's previous resource
descriptor. This parameter can be NULL. For more information, see the following
Comments section.

rdResDes
Caller-supplied handle to the resource descriptor to be removed. This handle must have been
previously obtained by calling one of the following functions:

CM_Add_Res_Des
CM_Add_Res_Des_Ex
CM_GeCNexCRes_Des
CM_GeCNexCRes_Des_Ex
CM_Modify _Res_Des
CM_Modify _Res_Des_Ex

490 Part 3 Setup

ulFlags
Not used, must be zero.

hMachine
Caller-supplied machine handle, obtained from a previous call to CM_Connect_Machine.

Comments
Resource descriptors for each configuration are stored in an array. If you specify an address
for prdResDes, then CM_Free_Res_Des returns a handle to the resource descriptor that was
previous, in the array, to the one removed. If the handle specified by rdResDes represents
the resource descriptor located first in the array, then prdResDes receives a handle to the
logical configuration.

Note that calling CM_Free_Res_Des_Ex frees the resource descriptor, but not the
descriptor's handle. To free the handle, call CM_Free_Res_Des_Handle_Ex.

Return Value
If the operation succeeds, the function returns CR_SUCCESS. Otherwise, it returns one of
the CR_-prefixed error codes defined in cfgmgr32.h.

See Also
CM_Free_Res_Des

CM_Free_Res_Des_Handle
CMAPI CONFIGRET WINAPI

CM_Free_Res_Des_HandleC
IN RES_DES rdResDes
) ;

The CM_Free_Res_Des_Handle function invalidates a resource description handle and
frees its associated memory allocation.

Parameters
rdResDes
Caller-supplied resource descriptor handle to be freed. This handle must have been previ
ously obtained by calling one of the following functions:

CM_Add_Res_Des
CM_Add_Res_Des_Ex
CM_GeCNexCRes_Des
CM_GeCNexCRes_Des_Ex

CM_Modify _Res_Des
CM_Modify _Res_Des_Ex

Return Value

Chapter 6 PnP Configuration Manager Functions 491

If the operation succeeds, the function returns CR_SUCCESS. Otherwise, it returns one of
the CR_-prefixed error codes defined in cfgmgr32.h.

Comments
Each time your code calls one of the functions listed under the description of RdResDes, it
must subsequently call CM_Free_Res_Des_Handle.

CM_Free _Resou rce _ Confl ict_Hand Ie
CMAPI CONFIGRET WINAPI

CM_Free_Resource_Conflict_HandleC
IN CONFLICT_LIST c7Conf7ictList
) ;

The CM_Free_Resource_ Conflict_Handle function invalidates a handle to a resource
conflict list, and frees the handle's associated memory allocation.

Parameters
clConflictList
Caller-supplied handle to be freed. This conflict list handle must have been previously
obtained by calling CM_ Query _Resource_ Conflict_List.

Return Value
If the operation succeeds, the function returns CR_SUCCESS. Otherwise, it returns one of
the CR_-prefixed error codes defined in cfgmgr32.h.

Comments
An application must call CM_Free_Resource_Conflict_Handle after it has finished using
the handle that was obtained calling CM_Query_Resource_Conflict_List.

CM_ Get_Child
CMAPI CONFIGRET WINAPI

CM_Get_ChildC
OUT PDEVINST pdnDevlnst.
IN DEVINST dnDevlnst.
IN ULONG u7F7ags
) ;

492 Part 3 Setup

The CM_ Get_Child function is used to obtain a device instance handle to the first child
node of a specified device node, in the local system's device tree.

Parameters
pdnDevlnst
Caller-supplied address of a location to receive the first child's device instance handle.

dnDevlnst
Caller-supplied device instance handle, obtained from the SP _DEVINFO_DATA structure
that is used with the device installation functions.

Device instance handles can also be obtained by calling the following functions:

CM_Locate_DevNode
CM_Locate_Dev Node_Ex
CM_GeCChild
CM_GeCChild_Ex
CM_ Get_Parent
CM_GeCParenCEx
CM_ GeCSibling
CM_ GeCSibling_Ex

ulFlags
Not used, must be zero.

Return Value
If the operation succeeds, the function returns CR_SUCCESS. Otherwise, it returns one of
the CR_-prefixed error codes defined in cfgmgr32.h.

Comments
To enumerate all children of a device node in the local system's device tree, first call CM_
Get_Child to obtain a device instance handle to the first child node, then call CM_ Get_
Sibling to obtain handles for the rest of the children.

See Also
CM_Get_ Child_Ex

CM_ Get_ Child_Ex
CMAPI CONFIGRET WINAPI

CM_Get_Child_Ex(
OUT PDEVINST pdnDevlnst,
IN DEVINST dnDevlnst,
IN ULONG u7F7ags,
IN HMACHINE hMachine
) :

Chapter 6 PnP Configuration Manager Functions 493

The CM_ Get_Child_Ex function is used to obtain a device instance handle to the first child
node of a specified device node, in a local or remote system's device tree.

Parameters
pdnDevlnst
Caller-supplied address of a location to receive the first child's device instance handle.

dnDevlnst
Caller-supplied device instance handle, obtained from the SP _DEVINFO_DATA structure
that is used with the device installation functions.

Device instance handles can also be obtained by calling the following functions:

CM_Locate_Dev Node
CM_Locate_DevNode_Ex
CM_GeCChild
CM_ GeCChild_Ex
CM_GeCParent
CM_GeCParenCEx
CM_ GeCSibling
CM_ GeCSibling_Ex

ulFlags
Not used, must be zero.

hMachine
Caller-supplied machine handle, obtained from a previous call to CM_ Connect_Machine.

Return Value
If the operation succeeds, the function returns CR_SUCCESS. Otherwise, it returns one of
the CR_-prefixed error codes defined in cfgmgr32.h.

. 494 Part 3 Setup

Comments
To enumerate all children of a device node in a local or remote system's device tree, first call
CM_ Get_Child_Ex to obtain a handle to the first child node, then call CM_ Get_Siblin~
Ex to obtain handles for the rest of the children.

See Also
CM_Get_Child

eM_Get_Depth
CMAPI CONFIGRET WINAPI

CM_Get_Depth(
OUT PULONG pu7Depth.
IN DEVINST dnDevlnst.
IN ULONG u7F7ags
) ;

The CM_ Get_Depth function is used to obtain the depth of a specified device node, within
the local system's device tree.

Parameters
pulDepth
Caller-supplied address of a location to receive a depth value, where zero represents the
device tree's root node, one represents the root node's children, and so on.

dnDevlnst
Caller-supplied device instance handle, obtained from the SP _DEVINFO_DATA structure
that is used with the device installation functions.

Device instance handles can also be obtained by calling the following functions:

CM_Locate_DevNode
. CM_Locate_DevNode_Ex
CM_GeCChild
CM_GeCChild_Ex
CM_GeCParent
CM_GeCParenCEx
CM_ GeCSibling
CM_ GeCSibling_Ex

ulFlags
Not used, must be zero.

Chapter 6 PnP Configuration Manager Functions 495

Return Value
If the operation succeeds, the function returns CR_SUCCESS. Otherwise, it returns one of
the CR_-prefixed error codes defined in cfgmgr32.h.

See Also
CM_Get_Depth_EX

CM_ Get_Depth_Ex
CMAPI CONFIGRET WINAPI

CM_Get_Depth_Ex(
OUT PULONG pu7Depth.
IN DEVINST dnDevlnst.
IN ULONG u7F7ags.
IN HMACHINE hMachine
) :

The CM_ Get_Depth_Ex function is used to obtain the depth of a specified device node,
within a local or remote system's device tree.

Parameters
pulDepth
Caller-supplied address of a location to receive a depth value, where zero represents the
device tree's root node, one represents the root node's children, and so on.

dnDevlnst
Caller-supplied device instance handle, obtained from the SP _DEVINFO _DATA structure
that is used with the device installation functions.

Device instance handles can also be obtained by calling the following functions:

CM_Locate_DevNode
CM_Locate_DevNode_Ex
CM_ Get_Child
CM_GeCChild_Ex
CM_GeCParent
CM_GeCParenCEx
CM_ GeCSibling
CM_ GeCSibling_Ex

ulFlags
Not used, must be zero.

496 Part 3 Setup

hMachine
Caller-supplied machine handle, obtained from a previous call to CM_ Connect_Machine.

Return Value
If the operation succeeds, the function returns CR_SUCCESS. Otherwise, it returns one of
the CR_ -prefixed error codes defined in cfgmgr32.h.

See Also
CM_Get_Depth

CM_Get_Device_ID
CMAPI CONFIGRET WINAPI

CM_Get_Device_ID(
IN DEVINST dnDevlnst,
OUT PTCHAR Buffer,
IN ULONG BufferLen,
IN ULONG u7F7ags
) :

The CM_Get_Device_ID function is used for obtaining the device instance ID associated
with a specified device instance, on the local system.

Parameters
dnDevlnst
Caller-supplied device instance handle, obtained from the SP _DEVINFO_DATA structure
that is used with the device installation functions.

Device instance handles can also be obtained by calling the following functions:

CM_Locate_DevNode
CM_Locate_DevNode_Ex
CM_GeCChild
CM_GeCChild_Ex
CM_GeCParent
CM_GeCParenCEx
CM_ GeCSibling
CM_ GeCSibling_Ex

Buffer
Address of a buffer to receive a device instance ID string. The required buffer size can be
obtained by calling CM_Get_Device_ID_Size, then incrementing the received value to
allow room for the string's terminating NULL.

Chapter 6 PnP Configuration Manager Functions 497

BufferLen
Caller-supplied length, in characters, of the buffer specified by Buffer.

ulFlags
Not used, must be zero.

Return Value
If the operation succeeds, the function returns CR_SUCCESS. Otherwise, it returns one of
the CR_-prefixed error codes defined in cfgmgr32.h.

Comments
The function appends a NULL terminator to the supplied device instance ID string, unless
the buffer is too small to hold the string. In this case, the function supplies as much of the
identifier string as will fit into the buffer, and then returns CR_BUFFER_SMALL.

See Also
CM_ Get_Device_ID _Ex

CM_ Get_Device_ID _Ex
CMAPI CONFIGRET WINAPI

CM_Get_Device_ID_Ex(
IN DEVINST dnDevlnst.
OUT PTCHAR Buffer.
IN ULONG BufferLen.
IN ULONG u7F7ags.
IN HMACHINE hMachine
) ;

The CM_Get_Device_ID_Ex function is used for obtaining the device instance ID
associated with a specified device instance, on a local or remote system.

Parameters
dnDevlnst
Caller-supplied device instance handle, obtained from the SP _DEVINFO_DATA structure
that is used with the device installation functions.

Device instance handles can also be obtained by calling the following functions:

CM_Locate_DevN ode
CM_Locate_DevNode_Ex
CM_GeCChild
CM_GeCChild_Ex

498 Part 3 Setup

CM_GeCParent
CM_GeCParent_Ex
CM_ Get_Sibling
CM_ GeCSibling_Ex

Buffer
Address of a buffer to receive a device instance ID string. The required buffer size can be
obtained by calling CM:...Get_Device_ID_Size_Ex, then incrementing the received value to
allow room for the string's terminating NULL.

BufferLen
Caller-supplied length, in characters, of the buffer specified by Buffer.

ulFlags
Not used, must be zero.

hMachine
Caller-supplied machine handle, obtained from a previous call to CM_ Connect_Machine.

Return Value
If the operation succeeds, the function returns CR_SUCCESS. Otherwise, it returns one of
the CR_-prefixed error codes defined in cfgmgr32.h.

Comments
The function appends a NULL terminator to the supplied device instance ID string, unless
the buffer is too small to hold the string. In this case, the function supplies as much of the
identifier string as will fit into the buffer, and then returns CR_BUFFER_SMALL.

See Also
CM_ Get_Device_ID

CM_ Get_Device_ID _List
CMAPI CONFIGRET WINAPI

CM_Get_Device_ID_List(
IN PCTSTR pszFi7ter.
OUT PTCHAR Buffer.
IN ULONG BufferLen.
IN ULONG u7F7ags
) ;

OPTIONAL

The CM_ Get_Device_ID _List function is used to obtain a list of device instance IDs
associated with the local system's device instances.

Parameters
pszFilter

Chapter 6 PnP Configuration Manager Functions 499

Caller-supplied pointer to a character string specifying a subset of the system's device
instance identifiers, or NULL. See the following description of ulFlags.

Buffer
Address of a buffer to receive a set of NULL-terminated device instance identifier strings.
The end of the set is terminated by an extra NULL: The required buffer size should be
obtained by calling CM_ Get_Device_ID _List_Size.

BufferLen
Caller-supplied length, in characters, of the buffer specified by Buffer.

ulFlags
One of the optional, caller-supplied bit flags, listed in the following table, which specify
search filters. If no flags are specified, the function returns all device instance IDs for all
device instances.

Flag Definition

CM_GETIDLIST_FILTER_ENUMERA TOR

If this flag is set, pszFilter must specify the name of a device enumerator,
optionally followed by a device identifier. The string format is
EnumeratorName\<.DeviceID>, such as ROOT or ROOT*PNP0500.

If pszFilter supplies only an enumerator name, the function returns device
instance IDs for the instances of each device associated with the enumerator.
Enumerator names can be obtained by calling ~M_Enumerate_Enumerators.

If pszFilter supplies both an enumerator and a device ID, the function returns
device in~~ance IDs only for the device instances of the specified device,
associated with the enumerator.

CM_ GETIDLIST_FILTER_SERVICE

If this flag is set, pszFilter must specify the name of a Windows 2000 service
(typically a driver). The function returns device instance IDs for the device
instances controlled by the specified service.

Note that if the device tree does not contain a device node for the specified
service, this function creates one by default. To inhibit this behavior, also set
CM_GETIDLIST_DONOTGENERATE.

CM_GETIDLIST_FILTER_EJECTRELATIONS

If this flag is set, pszFilter must specify a device name. The function returns
device instance IDs for the ejection relations of the specified device instance.

Continued

500 Part 3 Setup

Flag Definition

CM_GETIDLIST_FILTER_REMOV ALRELATIONS

If this flag is set, pszFilter must specify a device name. The function returns
device instance IDs for the removal relations of the specified device instance.

CM_GETIDLIST_FILTER_POWERRELATIONS

Not used.

CM_GETIDLIST _FILTER_B US RELATIONS

Not used.

CM_GETIDLIST_DONOTGENERATE

Return Value

Used only with CM_GETIDLIST_FILTER_SERVICE. If set, and if the device
tree does not contain a device node for the specified service, this flag prevents
the function from creating a device node for the service.

If the operation succeeds, the function returns CR_SUCCESS. Otherwise, it returns one of
the CR_-prefixed error codes defined in cfgmgr32.h.

CM_ Get_Device _I D _List_Ex
CMAPI CONFIGRET WINAPI

CM_Get_Device_ID_List_Ex(
IN PCTSTR pszFi7ter, OPTIONAL
OUT PTCHAR Buffer,
IN ULONG BufferLen,
IN ULONG u7F7ags,
IN HMACHINE hMachine
) ;

The CM_Get_Device_ID_List_Ex function is used to obtain a list of device instance
identifiers associated with device instances on a local or remote system.

Parameters
pszFilter
Caller-supplied pointer to a character string specifying a subset of the system's device
instance identifiers, or NULL. See the following description of ulFlags.

Buffer
Address of a buffer to receive a set of NULL-terminated device instance identifier strings.
The end of the set is terminated by an extra NULL. The required buffer size should be ob
tained by calling CM_ Get_Device_ID _List_Size_Ex.

Chapter 6 PnP Configuration Manager Functions 501

BufferLen
Caller-supplied length, in characters, of the buffer specified by Buffer.

ulFlags
One of the optional, caller-supplied bit flags that specify search filters. If no flags are speci
fied, the function supplies all instance identifiers for all device instances. For a list of bit
flags, see the ulFlags description for CM_Get_Device_ID_List.

hMachine
Caller-supplied machine handle, obtained from a previous call to CM_ Connect_Machine.

Return Value
If the operation succeeds, the function returns CR_SUCCESS. Otherwise, it returns one of
the CR_-prefixed error codes defined in cfgmgr32.h.

CM_ Get_Device _I D _List_Size
CMAPI CONFIGRET WINAPI

CM_Get_Device_ID_List_Size(
OUT PULONG pulLen,
IN PCTSTR pszFilter, OPTIONAL
IN ULONG ulF7ags
) ;

The CM_Get_Device_ID_List_Size function supplies the buffer size required to hold a list
of device instance identifiers associated with the local system's device instances.

Parameters
pulLen
Receives a value representing the required buffer size, in characters.

pszFilter
Caller-supplied pointer to a character string specifying a subset of the system's device
instance identifiers, or NULL. See the following description of ulFlags.

ulFlags
One of the optional, caller-supplied bit flags that specify search filters. If no flags are speci
fied, the function supplies the buffer size required to hold all instance identifiers for all
device instances. For a list of bit flags, see the ulFlags description for CM_Get_Device_
ID_List.

502 Part 3 Setup

Return Value
If the operation succeeds, the function returns CR_SUCCESS. Otherwise, it returns one of
the CR_-prefixed error codes defined in cfgmgr32.h.

Comments
The CM_Get_Device_ID_List_Size function should be called to determine the buffer size
required by CM_ Get_Device_ID _List.

The size value supplied in the location pointed to by pulLen is guaranteed to represent a
buffer size large enough to hold all device instance identifier strings and terminating
NULLs. The supplied value might actually represent a buffer size that is larger than nec
essary, so don't assume the value represents the true length of the character strings that
CM_ Get_Device_ID _List will provide.

See Also
CM_ Get_Device_ID _List_Size_Ex

CM_Get_Device_ID_List_Size_Ex
CMAPI CONFIGRET WINAPI

CM_Get_Device_ID_List_Size_Ex(
OUT PULONG pulLen.
IN PCTSTR pszFilter. OPTIONAL
IN ULONG ulF7ags.
IN HMACHINE hMachine
) ;

The CM_Get_Device_ID_List_Size_Ex function supplies the buffer size required to hold a
list of device instance identifiers associated with a local or remote system's device instances.

Parameters
pulLen
Receives a value representing the required buffer size, in characters.

pszFilter
Caller-supplied pointer to a character string specifying a subset of the system's device
instance identifiers, or NULL. See the following description of ulFlags.

ulFlags
One of the optional, caller-supplied bit flags that specify search filters. If no flags are
specified, the function supplies the buffer size required to hold all instance identifiers for

Chapter 6 PnP Configuration Manager Functions 503

all device instances. For a list of bit flags, see the ulFlags description for CM_Get_Device_
ID _List_Ex.

hMachine
Caller-supplied machine handle, obtained from a previous call to CM_ Connect_Machine.

Return Value
If the operation succeeds, the function returns CR_SUCCESS. Otherwise, it returns one of
the CR_-prefixed error codes defined in cfgmgr32.h.

Comments
The CM_Get_Device_ID_List_Size_Ex function should be called to determine the buffer
size required by CM_Get_Device_ID_List_Ex.

The size value supplied in the location pointed to by pulLen is guaranteed to represent a
buffer size large enough to hold all device instance identifier strings and terminating
NULLs. The supplied value might actually represent a buffer size that is larger than nec
essary, so don't assume the value represents the true length of the character strings that
CM_ Get_Device_ID _List_Ex will provide.

See Also
CM_ Get_Device_ID _List_Size

CM_Get_Device_ID_Size
CMAPI CONFIGRET WINAPI

CM_Get_Device_ID_Size(
OUT PULONG pu7LenJ
IN DEVINST dnDevlnst.
IN ULONG u7F7ags
) ;

The CM_Get_Device_ID_Size function supplies the buffer size required to hold a device
instance identifier associated with a device instance on the local system.

Parameters
pulLen
Receives a value representing the required buffer size, in characters.

dnDevlnst
Caller-supplied device instance handle, obtained from the SP _DEVINFO _DATA structure
that is used with the device installation functions.

504 Part 3 Setup

Device instance handles can also be obtained by calling the following functions:

CM_Locate_DevNode
CM_Locate_DevNode_Ex
CM_GeCChild
CM_GeCChild_Ex
CM_GeCParent
CM_GeCParenCEx
CM_GeCSibling
CM_GeCSibling_Ex

ulFlags
Not used, must be zero.

Return Value
If the operation succeeds, the function returns CR_SUCCESS. Otherwise, it returns one of
the CR_-prefixed error codes defined in cfgmgr32.h.

Comments
The CM_ Get_Device_ID _Size function should be called to determine the buffer size
required by CM_Get_Device_ID.

The size value supplied in the location pointed to by pulLen is less than or equal to MAX_
DEVICE_ID_LEN, and does not include the identifier string's terminating NULL. If the
specified device instance does not exist, the function supplies a size value of zero.

See Also
CM_ Get_Device_ID _Size_Ex

CM_Get_Device_ID_Size_Ex
CMAPI CONFIGRET WINAPI

CM_Get_Device_ID_Size_Ex(
OUT PULONG pulLen.
IN DEVINST dnDevlnst.
IN ULONG ulFlags.
IN HMACHINE hMachine
);

The CM_Get_Device_ID_Size_Ex function supplies the buffer size required to hold a
device instance identifier associated with a device instance on a local or remote system.

Parameters
pulLen

Chapter 6 PnP Configuration Manager Functions 505

Receives a value representing the required buffer size, in characters.

dnDevlnst
Caller-supplied device instance handle, obtained from the SP _DEVINFO_DATA structure
that is used with the device installation functions.

Device instance handles can also be obtained by calling the following functions:

CM_Locate_DevN ode
CM_Locate_DevNode_Ex
CM_ GeCChild
CM_GeCChild_Ex
CM_GeCParent
CM_GeCParenCEx
CM_ GeCSibling
CM_ GeCSibling_Ex

ulFlags
Not used, must be zero.

hMachine
Caller-supplied machine handle, obtained from a previous call to CM_Connect_Machine.

Return Value
If the operation succeeds, the function returns CR_SUCCESS. Otherwise, it returns one of
the CR_-prefixed error codes defined in cfgmgr32.h.

Comments
The CM_ Get_Device_ID _Size_Ex function should be called to determine the buffer size
required by CM_ Get_Device_ID _Ex.

The size value supplied in the location pointed to by pulLen is less than or equal to MAX_
DEVICE_ID_LEN, and does not include the identifier string's terminating NULL. If the
specified device instance does not exist, the function supplies a size value of zero.

See Also
CM_ Get_Device_ID _Size

506 Part 3 Setup

CM_ Get_DevNode_Status
CMAPI CONFIGRET WINAPI

CM_Get_DevNode_StatusC
OUT PULONG pu7Status,
OUT PULONG pu7Prob7emNumber,
IN DEVINST dnDevlnst,
IN ULONG u7F7ags
) ;

The CM_Get_DevNode_Status function is used to obtain the status of a device instance
from its device node, in the local system's device tree.

Parameters
pulStatus
Address of a location to receive status bit flags. The function can set any combination of the
DN_ -prefixed bit flags defined in cfg.h.

ptJlProblemNumber
Address of a location to receive one of the CM_PROB_-prefixed problem values defined in
cfg.h. Used only if DN_HAS_PROBLEM is set in pulStatus.

dnDevlnst
Caller-supplied device instance handle, obtained from the SP _DEVINFO_DATA structure
that is used with the device installation functions.

Device instance handles can also be obtained by calling the following functions:

CM_Locate_DevN ode
CM_Locate_DevNode_Ex
CM_GeCChild
CM_ Get_ Child_Ex
CM_GeCParent
CM_GeCParenCEx
CM_ GeCSibling
CM_ Get_Sibling_Ex

ulFlags
Not used, must be zero.

Return Value
If the operation succeeds, the function returns CR_SUCCESS. Otherwise, it returns one of
the CR_-prefixed error codes defined in cfgmgr32.h.

See Also
CM_ Get_DevNode_Status_Ex

CM_Get_DevNode_Status_Ex
CMAPI CONFIGRET WINAPI

CM_Get_DevNode_Status_Ex<
OUT PULONG pu7Status.
OUT PULONG pu7Prob7emNumber.
IN DEVINST dnDevlnst.
IN ULONG u7F7ags.
IN HMACHINE hMachine
) :

Chapter 6 PnP Configuration Manager Functions 507

The CM_Get_DevNode_Status_Ex function is used to obtain the status of a device
instance from its device node, on a local or remote system's device tree.

Parameters
pulStatus
Address of a location to receive status bit flags. The function can set any combination of the
DN_-prefixed bit flags defined in cIg.h.

pulProblemNumber
Address of a location to receive one of the CM_PROB_ -prefixed problem values defined in
cIg.h. Used only ifDN_HAS_PROBLEM is set inpulStatus.

dnDevlnst
Caller-supplied device instance handle, obtained from the SP _DEVINFO_DATA structure
that is used with the device installation functions.

Device instance handles can also be obtained by calling the following functions:

CM_Locate_DevN ode
CM_Locate_DevNode_Ex
CM_GeCChild
CM_GeCChild_Ex
CM_GeCParent
CM_GeCParenCEx
CM_ GeCSibling
CM_ GeCSibling_Ex

ulFlags
Not used, must be zero.

508 Part 3 Setup

hMachine
Caller-supplied machine handle, obtained from a previous call to CM_ Connect_Machine.

Return Value
If the operation succeeds, the function returns CR_SUCCESS. Otherwise, it returns one of .
the CR_-prefixed error codes defined in cfgmgr32.h.

See Also
CM_ Get_DevNode_Status

CMAPI CONFIGRET WINAPI
CM_Get_First_Lo9_Conf(

OUT PLOG_CONF p7cLogConf.
IN DEVINST dnDevlnst.
IN ULONG u7F7ags
) ;

OPTIONAL

The CM_Get_First_Log_Conf function is used to obtain the first logical configuration,
of a specified configuration type, associated with a specified device instance on the local
system.

Parameters
plcLogConf
Address of a location to receive the handle to a logical configuration, or NULL. (See the
fol!owing Comments section.)

dnDevlnst
Caller-supplied device instance handle, obtained from the SP _DEVINFO_DATA structure
that is used with the device installation functions.

Device instance handles can also be obtained by calling the following functions:

CM_Locate_DevNode
CM_Locate_DevNode_Ex
CM_GeCChild
CM_GeCChild_Ex
CM_GeCParent
CM_GeCParenCEx
CM_ GeCSibling
CM_ GeCSibling_Ex

Chapter 6 PnP Configuration Manager Functions 509

ulFlags
Caller-supplied flag value indicating the type of logical configuration being requested. One
of the flags in the following table must be specified.

Configuration Type Flags

BASIC_LOG_CONF

FILTERED_LOG_CONF

BOOT_LOG_CONF

FORCED_LOG_CONF

OVERRIDE_LOG_CONF

Return Value

Definitions

The caller is requesting basic configuration information.

The caller is requesting filtered configuration
information.

The caller is requesting allocated configuration
information.

The caller is requesting boot configuration information.

The caller is requesting forced configuration information.

The caller is requesting override configuration
information.

If the operation succeeds, the function returns CR_SUCCESS. Otherwise, it returns one of
the CR_-prefixed error codes defined in cfgmlJr32.h.

Comments
Calling CM_Add_Empty _Lo~ Conf or CM_Free_Lo~ Conf can invalidate the handle
obtained from a previous call to CM_ Get_First_Lo~ Conf. Thus if you want to obtain
logical configurations after calling CM_Add_Empty _Lo~ Conf or CM_Free_Lo~ Conf,
your code must call CM_ Get_First_Lo~ Conf again and start at the first configuration.

The handle received in plcLogConf must be explicitly freed by calling CM_Free_LolL
Conf_Handle.

If CM_ Get_First_LolL Conf is called with plcLogConf set to NULL, no handle is returned.
This allows you to use the return status to determine if a configuration exists without the
need to subsequently free the handle.

See Also
CM_Get_First_Lo~Conf_Ex

510 Part 3 Setup

CM_ Get_First_Lo9_ Conf_Ex
CMAPI CONFIGRET WINAPI

CM_Get_First_Lo9_Conf_Ex(
OUT PLOG_CONF p7cLogConf,
IN DEVINST dnDevlnst,
IN ULONG u7F7ags,
IN HMACHINE hMachine
) :

OPTIONAL

The CM_Get_First_Lo~Conf_Ex function is used to obtain the first logical configuration
associated with a specified device instance, on a local or remote system.

Parameters
plcLogConf
Address of a location to receive the handle to a logical configuration, or NULL. (See the
following Comments section.

dnDevlnst
Caller-supplied device instance handle, obtained from the SP _DEVINFO_DATA structure
that is used with the device installation functions.

Device instance handles can also be obtained by calling the following functions:

CM_Locate_DevNode
CM_Locate_DevN ode_Ex
CM_GeCChild
CM_GeCChild_Ex
CM_ Get_Parent
CM_GeCParenCEx
CM_ GeCSibling
CM_ GeCSibling_Ex

ulFlags
Caller-supplied flag value indicating the type of logical configuration being requested. For a
list of flags, see the ulFlags description for CM_Get_First_Log_Conf.

hMachine
Caller-supplied machine handle, obtained from a previou~ call to CM_ Co~nect_Machine.

Return Value
If the operation succeeds, the function returns CR_SUCCESS. Otherwise, it returns one of
the CR_-prefixed error codes defined in cfgmgr32.h.

Chapter 6 PnP Configuration Manager Functions 511

Comments
Calling CM_Add_Empty _LOL Conf_Ex or CM_Free_LoL Conf_Ex can invalidate the
handle obtained from a previous call to CM_ Get_First_LoL Conf_Ex. Thus if you want to
obtain logical configurations after calling CM_Add_Empty_LoLConf_Ex or CM_Free_
LOL Conf_Ex, your code must call CM_ Get_First_LoL Conf_Ex again and start at the
first configuration.

The handle received inplcLogConfmust be explicitly freed by calling CM_Free_Lo~
Conf_Handle.

If CM_ Get_First_Log_ Conf_Ex is called with plcLogConf set to NULL, no handle is
returned. This allows you to use the return status to determine if a configuration exists
without the need to subsequently free the handle.

See Also
CM_ Get_First_Log_ Conf

CM_ Get_LoQ_ Conf_Priority
CMAPI CONFIGRET WINAPI

CM_Get_Lo9_Conf_Priority(
IN LOG_CONF 7cLogConf.
OUT PPRIORITY pPriority.
IN ULONG u7F7ags
) :

The CM_ Get_Lo~ Conf_Priority function is used to obtain the configuration priority of a
specified logical configuration, on the local system.

Parameters
IcLogConf
Caller-supplied handle to a logical configuration. This handle must have been previously
obtained by calling one of the following functions:

CM_Add_Empty _Log_Conf
CM_Add_Empty _Log_Conf_Ex
CM_GeCFirsCLog_Conf
CM_GeCFirsCLog_Conf_Ex
CM_GeCNexCLog_Conf
CM_GeCNexCLog_Conf_Ex

pPriority
Caller-supplied address of a location to receive a configuration priority value. For a list of
priority values, see the description of Priority for CM_Add_Empty_Lo~Conf.

512 Part 3 Setup

ulFlags
Not used, must be zero.

Return Value
If the operation succeeds, the function returns CR_SUCCESS. Otherwise, it returns one of
the CR_-prefixed error codes defined in cfgmgr32.h.

See Also
CM_ Get_Lo~ Conf_Priority _Ex

CM_ Get_Lo9_ Conf_Priority _Ex
CMAPI CONFIGRET WINAPI

CM_Get_Lo9_Conf_Priority_Ex(
IN LOG_CONF 7cLogConf,
OUT PPRIORITY pPriority,
IN ULONG u7F7ags,
IN HMACHINE hMachine
) ;

The CM_ Get_Lo~ Conf_Priority _Ex function is used to obtain the configuration priority
of a specified logical configuration, on a local or remote system.

Parameters
IcLogConf
Caller-supplied handle to a logical configuration. This handle must have been previously
obtained by calling one of the following functions:

CM_Add_Empty _Log_Conf
CM_Add_Empty _Log_Conf_Ex
CM_GeCFirsCLog_Conf
CM_GeCFirsCLog_Conf_Ex
CM_GeCNexCLog_Conf
CM_GeCNexCLog_Conf_Ex

pPriority
Caller-supplied address of a location to receive a configuration priority value. For a list of
priority values, see the description of Priority for CM_Add_Empty _Lo~ Conf_Ex.

ulFlags
Not used, must be zero.

Chapter 6 PnP Configuration Manager Functions 513

hMachine
Caller-supplied machine handle, obtained from a previous call to CM_Connect_Machine.

Return Value
If the operation succeeds, the function returns CR_SUCCESS. Otherwise, it returns one of
the CR_-prefixed error codes defined in cfgmgr32.h.

Comments

See Also
CM_ Get_Lo~ Conf_Priority

CM_ Get_Next_Lo9_ Conf
CMAPI CONFIGRET WINAPI

CM_Get_Next_Lo9_Conf(
OUT PLOG_CONF p7cLogConf.
IN LOG_CONF 7cLogConf.
IN ULONG u7F7ags
) :

OPTIONAL

The CM_Get_Next_Lo~Conf function is used to obtain the next logical configuration
associated with a specific device instance, on the local system.

Parameters
plcLogConf
Address of a location to receive the handle to a logical configuration, or NULL. (See the
following Comments section.

IcLogConf
Caller-supplied handle to a logical configuration. This handle must have been previously
obtained by calling one of the following functions:

CM_GeCFirsCLog_Conf
CM_ GeCNexCLog_Conf

ulFlags
Not used, must be zero.

514 Part 3 Setup

Return Value
If the operation succeeds, the function returns CR_SUCCESS. Otherwise, it returns one of
the CR_ -prefixed error codes defined in cfgmgr32.h.

Comments
To enumerate the logical configurations associated with a device instance, call CM_
Get_First_Lo~ Conf to obtain the first logical configuration of a specified configuration
type, then call CM_Get_Next_Lo~Conf repeatedly until it returns CR_NO_MORE_
LOG_CONF.

Calling CM_Add_Empty _Lo~ Conf or CM_Free_Log_ Conf can invalidate the handle
obtained from a previous call to CM_ Get_Next_Lo~ Conf. Thus if you want to obtain
logical configurations after calling CM_Add_Empty _Lo~ Conf or CM_Free_Lo~ Conf,
your code must call CM_ Get_First_Lo~ Conf again and start at the first configuration.

The handle received inplcLogConfmust be explicitly freed by calling CM_Free_Lo~
Conf_Handle.

If CM_Get_Next_Lo~Confis called withplcLogConfset to NULL, no handle is returned.
This allows you to use the return status to determine if a configuration exists without the
need to subsequently free the handle.

See Also
CM_Get_Next_Lo~ Conf_Ex

CM_ Get_Next_Log_ Conf_Ex
CMAPI CONFIGRET WINAPI

CM_Get_Next_Lo9_Conf_Ex<
OUT PLOG_CONF p7cLogConf,
IN LOG_CONF 7cLogConf,

IN ULONG u7F7ags,
IN HMACHINE hMachine
) ;

OPTIONAL

The CM_ Get_Next_Lo~ Conf_Ex function is used to obtain the next logical configuration
associated with a specific device instance, on a local or remote system.

Parameters
p/cLogConf
Address of a location to receive the handle to a logical configuration, or NULL. (See the
following Comments section.

Chapter 6 PnP Configuration Manager Functions 515

IcLogConf
Caller-supplied handle to a logical configuration. This handle must have been previously
obtained by calling one of the following functions:

CM_GeCFirsCLog_Conf_Ex
CM_GeCNexCLog_Conf_Ex

ulFlags
Not used, must be zero.

hMachine
Caller-supplied machine handle, obtained from a previous call to CM_Connect_Machine.

Return Value
If the operation succeeds, the function returns CR_SUCCESS. Otherwise, it returns one of
the CR_ -prefixed error codes defined in cfgmgr32.h.

Comments
To enumerate the logical configurations associated with a device instance, call CM_Get_
First_LoILConf_Ex to obtain the first logical configuration, then call CM_Get_Next_
LOILConf_Ex repeatedly until it returns CR_NO_MORE_LOG_CONF.

Calling CM_Add_Empty _LOlL Conf_Ex or CM_Free_Lo~ Conf_Ex can invalidate
the handle obtained from a previous call to CM_ Get_Next_LolL Conf_Ex. Thus if you
want to obtain logical configurations after calling CM_Add_Empty _LOlL Conf_Ex or
CM_Free_LolL Conf_Ex, your code must call CM_ Get_First_LolL Conf_Ex again and
start at the first configuration.

The handle received in plcLogConfmust be explicitly freed by calling
CM_Free_LoILConf_Handle.

If CM_Get_Next_LoILConf_Ex is called with plcLogConf set to NULL, no handle is
returned. This allows you to use the return status to deter:mine if a configuration exists
without the need to subsequently free the handle.

See Also
CM_Get_Next_LoILConf

516 Part 3 Setup

CM_ Get_Next_Res_Des
CMAPI CONFIGRET WINAPI

CM_Get_Next_Res_Des(
OUT PRES_DES prdResDes.
IN RES_DES rdResDes.
IN RESOURCEID ForResource.
OUT PRESOURCEID pResourceID.
IN ULONG u7F7ags
) ;

The CM_ Get_Next_Res_Des function is used to obtain a handle to the next resource
descriptor, of a specified resource type, for a logical configuration on the local system.

Parameters
prdResDes
Pointer to a location to receive a resource descriptor handle.

rdResDes
Caller-supplied handle to either a resource descriptor or a logical configuration. For more
information, see the following Comments section.

ForResource
Caller-supplied resource type identifier, indicating the type of resource descriptor being
requested. This must be one of the ResType_-prefixed constants defined in cfgmgr32.h.

pResourcelD
Pointer to a location to receive a resource type identifier, if ForResource specifies Res
Type_All. For any other ForResource value, callers should set this to NULL.

ulFlags
Not used, must be zero.

Return Value
If the operation succeeds, the function returns CR_SUCCESS. Otherwise, it returns one of
the CR_-prefixed error codes defined in cfgmgr32.h.

Comments
To enumerate a logical configuration's resource descriptors, begin by calling CM_Get_
Next_Res_Des with the logical configuration's handle as the argument for rdResDes. This
obtains a handle to the first resource descriptor of the type specified by F orResource. Then
for each subsequent call to CM_Get_Next_Res_Des, specify the most recently obtained

Chapter 6 PnP Configuration Manager Functions 517

descriptor handle as the argument for rdResDes. Repeat until the function returns CR_
NO_MORE_RES_DES.

To retrieve the information stored in a resource descriptor, call CM_Get_Res_Des_Data.

To modify the information stored in a resource descriptor, call CM_Modify _Res_Des.

Callers of CM_Get_Next_Res_Des must call CM_Free_Res_Des_Handle tq deallocate
the resource descriptor handle, after it is no longer needed.

See Also
CM_ Get_Next_Res_Des_Ex

CM_ Get_Next_Res_Des_Ex
CMAPI CONFIGRET WINAPI

CM_Get_Next_Res_Des_Ex(
OUT PRES_DES prdResDes,
IN RES_DES rdResDes,
IN RESOURCEID ForResource,
OUT PRESOURCEID pResourceID,
IN ULONG u7F7ags,
IN HMACHINE hMachine
) :

The CM_Get_Next_Res_Des_Ex function is used to obtain a handle to the next resource
descriptor, of a specified resource type, for a logical configuration on a local or remote
system.

Parameters
prdResDes
Pointer to a location to receive a resource descriptor handle.

rdResDes
Caller-supplied handle to either a resource descriptor or a logical configuration. For more
information, see the following Comments section~

ForResource
Caller-supplied resource type identifier, indicating the type of resource descriptor being
requested. This must be one of the ResType_-prefixed constants defined in cfgmgr32.h.

pResourcelD
Pointer to a location to receive a resource type identifier, if ForResource specifies
ResType_AII. For any other ForResource value, callers should set this to NULL.

518 Part 3 Setup

ulFlags
Not used, must be zero.

hMachine
Caller-supplied machine handle, obtained from a previous call to CM_ Connect_Machine.

Return Value
If the operation succeeds, the function returns CR_SUCCESS. Otherwise, it returns one of
the CR_-prefixed error codes defined in cfgmgr32.h.

Comments
To enumerate a logical configuration's resource descriptors, begin by calling CM_Get_
Next_Res_Des_Ex with the logical configuration's handle as the argument for rdResDes.
This obtains a handle to the first resource descriptor of the type specified by ForResource.
Then for each subsequent call to CM_Get_Next_Res_Des_Ex, specify the most recently
obtained descriptor handle as the argument for rdResDes. Repeat until the function returns
CR_NO_MORE_RES_DES.

To retrieve the information stored in a resource descriptor, call
CM_Get_Res_Des_Data_Ex.

To modify the information stored in a resource descriptor, call CM_Modify_Res_Des_Ex.

Callers of CM_Get_Next_Res_Des_Ex must call CM_Free_Res_Des_Handle to deallo
cate the resource descriptor handle, after it is no longer needed.

See Also
CM_Get_Next_Res_Des

CM_ Get_Parent
CMAPI CONFIGRET WINAPI

CM_Get_Parent(
OUT PDEVINST pdnOevlnst,
IN DEVINST dnOevlnst,
IN ULONG u7F7ags
) ;

The CM_Get_Parent function is used to·obtain a device instance handle to the parent node
of a specified device node, in the local system's device tree.

Parameters
pdnDevlnst

Chapter 6 PnP Configuration Manager Functions 519

Caller-supplied address of a location to receive the first child's device instance handle.

dnDevlnst
Caller-supplied device instance handle, obtained from the SP _DEVINFO_DATA structure
that is used with the device installation functions.

Device instance handles can also be obtained by calling the following functions:

CM_Locate_Dev Node
CM_Locate_DevNode_Ex
CM_GeCChild
CM_GeCChild_Ex
CM_ GeCParent
CM_GeCParenCEx
CM_ GecSibling
CM_ GeCSibling_Ex

ulFlags
Not used, must be zero.

Return Value
If the operation succeeds, the function returns CR_SUCCESS. Otherwise, it returns one of
the CR_-prefixed error codes defined in cfgmgr32.h.

See Also
CM_Get_Parent_Ex

CM_ Get_Parent_Ex
CMAPI CONFIGRET WINAPI

CM_Get_Parent_Ex(
OUT PDEVINST pdnDevlnst.
IN DEVINST dnDevlnst.
IN ULONG u7F7ags.
IN HMACHINE hMachine
) ;

The CM_ Get_Parent_Ex function is used to obtain a device instance handle to the parent
node of a specified device node, in a local or remote system's device tree.

520 Part 3 Setup

Parameters
pdnDevlnst
Caller-supplied address of a location to receive the first child's device instance handle.

dnDevlnst
Caller-supplied device instance handle, obtained from the SP _DEVINFO_DATA structure
that is used with the device installation functions.

Device instance handles can also be obtained by calling the following functions:

CM_Locate_DevNode
CM_Locate_DevNode_Ex
CM_GeCChild
CM_GeCChild_Ex
CM_GeCParent
CM_GeCParenCEx
CM_ GeCSibling
CM_ GeCSibling_Ex

ulFlags
Not used, must be zero.

hMachine
Caller-supplied machine handle, obtained from a previous call to CM_ Connect_Machine.

Return Value
If the operation succeeds, the function returns CR_SUCCESS. Otherwise, it returns one of
the CR_-prefixed error codes defined in cfgmgr32.h.

See Also
CM_Get_Parent_Ex

CM_ Get_Res_Des_Data
CMAPI CONFIGRET WINAPI

CM_Get_Res_Des_Data<
IN RES_DES rdResDes.
OUT PVOID Buffer.
IN ULONG BufferLen.
IN U LONG u 7 n'ags
) ;

Chapter 6 PnP Configuration Manager Functions 521

The CM_ Get_Res_Des_Data function is used to retrieve the information stored in a
resource descriptor on the local system.

Parameters
rdResDes
Caller-supplied handle to a resource descriptor, obtained by a previous call to CM_Get_
Next_Res_Des.

Buffer
Address of a buffer to receive the contents of a resource descriptor. The required buffer size
should be obtained by calling CM_Get_Res_Des_Data.:...Size.

BufferLen
Caller-supplied length of the buffer specified by Buffer.

ulFlags
Not used, must be zero.

Return Value
If the operation succeeds, the function returns CR_SUCCESS. Otherwise, it returns one of
the CR_-prefixed error codes defined in cfgmgr32.h.

Comments
Information returned in the buffer supplied by Buffer will be formatted as one of the re
source type structures listed in the description of CM_Add_Res_Des, based on the resource
type that was specified when CM_Get_Next_Res_Des was called to obtain the resource
descriptor handle.

See Also
CM_Get_Res_Des_Data_Ex

CM_Get_Res_Des_Data_Ex
CMAPI CONFIGRET WINAPI

CM_Get_Res_Des_Data_Ex(
IN RES_DES rdResDes.
OUT PVOID Buffer.
IN ULONG BufferLen.
IN ULONG u7F7ags.
IN HMACHINE hMachine
) ;

522 Part 3 Setup

The CM_ Get_Res_Des_Data_Ex function is used to retrieve the information stored in a
resource descriptor on a local or remote system.

Parameters
rdResDes
Caller-supplied handle to a resource descriptor, obtained by a previous call to CM_Get_
Next_Res_Des_Ex.

Buffer
Address of a buffer to receive the contents of a resource descriptor. The required buffer size
should be obtained by calling CM_Get_Res_Des_Data_Size_Ex.

BufferLen
Caller-supplied length of the buffer specified by Buffer.

ulFlags
Not used, must be zero.

hMachine
Caller-supplied machine handle, obtained from a previous call to CM_ Connect_Machine.

Return Value
If the operation succeeds, the function returns CR_SUCCESS. Otherwise, it returns one of
the CR_-prefixed error codes defined in cfgmgr32.h.

Comments
Information returned in the buffer supplied by Buffer will be formatted as one of the re
source type structures listed in the description of CM_Add_Res_Des_Ex, based on the
resource type that was specified when CM_ Get_Next_Res_Des_Ex was called to obtain the
resource descriptor handle.

See Also
CM_Get_Res_Des_Data

CM_Get_Res_Des_Data_Size
CMAPI CONFIGRET WINAPI

CM_Get_Res_Des_Data_Size(
OUT PULONG pu7Size.
IN RES_DES rdResDes.
IN ULONG u7F7ags
) ;

Chapter 6 PnP Configuration Manager Functions 523

The CM_ Get_Res_Des_Data_Size function supplies the buffer size required to hold the
information contained in a specified resource descriptor on the local system.

Parameters
pulSize
Caller-supplied address of a location to receive the required buffer size.

rdResDes
Caller-supplied handle to a resource descriptor, obtained by a previous call to CM_Get_
Next_Res_Des.

ulFlags
Not used, must be zero.

Return Value
If the operation succeeds, the function returns CR_SUCCESS. Otherwise, it returns one of
the CR_-prefixed error codes defined in cfgmgr32.h.

Comments
The returned size value represents the size of the appropriate resource structure (see CM_
Add_Res_Des). If the resource descriptor resides in a resource requirements list, the re
turned size includes both the size of the resource structure and the space allocated for
associated range arrays.

See Also
CM_Get_Res_Des_Data_Size_Ex

CM_ Get_Res_Des_Data_Size_Ex
CMAPI CONFIGRET WINAPI

CM_Get_Res_Des_Data_Size_Ex(
OUT PULONG pu7Size.
IN RES_DES rdResDes.
IN ULONG u7F7ags.
IN HMACHINE hMachine
) ;

The CM_Get_Res_Des_Data.::..Size_Ex function supplies the buffer size required to hold
the information contained in a specified resource descriptor on a local or remote system.

524 Part 3 Setup

Parameters
pulSize
Caller-supplied address of a location to receive the required buffer size.

rdResDes
Caller-supplied handle to a resource descriptor, obtained by a previous call to CM_Get_
Next_Res_Des_Ex.

ulFlags
Not used, must be zero.

hMachine
Caller-supplied machine handle, obtained from a previous call to CM_ Connect_Machine.

Return Value
If the operation succeeds, the function returns CR_SUCCESS. Otherwise, it returns one of
the CR_-prefixed error codes defined in cfgmgr32.h.

Comments
The returned size value represents the size of the appropriate resource structure (see CM_
Add_Res_Des_Ex). If the resource descriptor resides in a resource requirements list, the
returned size includes both the size of the resource structure and the space allocated for
associated range arrays.

See Also
CM_ Get_Res_Des_Data_Size

CM_ Get_Resou rce _ Confl ict_ Cou nt
CMAPI CONFIGRET WINAPI

CM_Get_Resource_Conflict_CountC
IN CONFLICT_LIST c7Conf7ictList.
OUT PULONG pu7Count
) ;

The CM_Get_Resource_Conflict_Count function supplies the number of conflicts con
tained in a specified resource conflict list.

Parameters
clConflictList

Chapter 6 PnP Configuration Manager Functions 525

Caller-supplied handle to a conflict list, obtained by a previous call to CM_ Query _
Resource_ Conflict_List.

pulCount
Caller-supplied address of a location to receive the conflict count.

Return Value
If the operation succeeds, the function returns CR_SUCCESS. Otherwise, it returns one of
the CR_ -prefixed error codes defined in cfgmgr32.h.

Comments
The count value obtained by calling CM_ Get_Resource_ Conflict_Count can be used to
determine the number of times to call CM_ Get_Resource_ Conflict_Details, which sup
plies information about each conflict.

If there are no entries in the conflict list, the location supplied by pulCount will receive zero.

CM_ Get_Resou rce _Conflict_Details
CMAPI CONFIGRET WINAPI

CM_Get_Resource_Conflict_DetailsC
IN CONFLICT_LIST c7Conf7ictList,
IN ULONG u7Index,
IN OUT PCONFLICT_DETAILS pConf7ictDetai7s
) ;

The CM_Get_Resource_Conflict_Details function supplies details about oneof the
resource conflicts in a conflict list.

Parameters
clConflictList
Caller-supplied handle to a conflict list, obtained by a previous call to CM_Query_
Resource_ Conflict_List.

ullndex
Caller-supplied value used as an index into the conflict list. This value can be from zero to
one less than the number returned by CM_ Get_Resource_ Conflict_Count.

526 Part 3 Setup

pConflictDetai/s
Caller-supplied address of a CONFLICT_DETAILS structure to receive conflict details. The
caller must supply values for the structure's CD _ulSize and CD _ulMask structures.

Return Value
If the operation succeeds, the function returns CR_SUCCESS. Otherwise, it returns one of
the CR_-prefixed error codes defined in cfgmgr32.h.

Comments
To determine conflicting resource requirements between a specified device and other
devices on a system, use the following steps.

1. Call CM_Query_Resource_ConflicCList to obtain a handle to a list of resource conflicts.

2. Call CM_GeCResource_ConflicCCount to determine the number of conflicts contained
in the resource conflict list.

3. Call CM_GeCResource_Conflict_Details for each entry in the conflict list.

The following conflicts are typically not reported:

• If there are multiple conflicts for a resource, and the owners of only some of the conflicts
can be determined, the conflicts without identifiable owners are not reported.

• Conflicts that appear to be with the specified device (that is, the device conflicts with
itself) are not reported.

• If multiple non-Plug and Play devices use the same driver, resource conflicts among these
devices might not be reported.

Sometimes, resources assigned to the HAL might be reported as either conflicting with the
HAL or not available.

CM_Get_Sibling
CMAPI CONFIGRET WINAPI

CM_Get_Sibling(
OUT PDEVINST pdnDevlnst.
IN DEVINST Devlnst.
IN ULONG u7F7ags
) ;

The CM_ Get_Sibling function is used to obtain a device instance handle to the next sibling
node of a specified device node, in the local system's device tree.

Parameters
pdnDevlnst

Chapter 6 PnP Configuration Manager Functions 527

Caller-supplied address of a location to receive the sibling's device instance handle.

Devlnst
Caller-supplied device instance handle, obtained from the SP _DEVINFO_DATA structure
that is used with the device installation functions.

Device instance handles can also be obtained by calling the following functions:

CM_GeCChild
CM_GeCChild_Ex
CM_ GeCSibling
CM_ GeCSibling_Ex

ulFlags
Not used, must be zero.

Return Value
If the operation succeeds, the function returns CR_SUCCESS. Otherwise, it returns one of
the CR_-prefixed error codes defined in cfgmgr32.h.

Comments
To enumerate all children of a device node in the local system's device tree, first call CM_
Get_Child to obtain a handle to the first child node, then call CM_ Get_Sibling to obtain
handles for the rest of the children.

See Also
CM_ Get_Siblin~Ex

CM_Get_Siblin9_Ex
MAPI CONFIGRET WINAPI
CM_Get_Siblin9_Ex(

OUT PDEVINST pdnDevlnst,
IN DEVINST Devlnst,
IN ULONG u7F7ags,
IN HMACHINE hMachine
) ;

The CM_ Get_Siblin~Ex function is used to obtain a device instance handle to the next
sibling node of a specified device node, in a local or remote system's device tree.

528 Part 3 Setup

Parameters
pdnDevlnst
Caller-supplied address of a location to receive the sibling's device instance handle.

Devlnst
Caller-supplied device instance handle, obtained from the SP _DEVINFO_DATA structure
that is used with the device installation functions.

Device instance handles can also be obtained by calling the following functions:

CM_GeCChild
CM_GeCChild_Ex
CM_ GeCSibling
CM_ GeCSibling_Ex

ulFlags
Not used, must be zero.

hMachine
Caller-supplied machine handle, obtained from a previous call to CM_ Connect_Machine.

Return Value
If the operation succeeds, the function returns CR_SUCCESS. Otherwise, it returns one of
the CR_-prefixed error codes defined in cfgmgr32.h.

Comments
To enumerate all children of a device node in the local system's device tree, first call CM_
Get_Child_Ex to obtain a handle to the first child node, then call CM_ Get_Sibling_Ex to
obtain handles for the rest of the children.

See Also
CM_ Get_Sibling

eM_Get_Version
CMAPI WORD WINAPI

CM_Get_Version<
VOID
) :

The CM_Get_ Version function returns the version number of cfgmgr32.dll residing on the
local system.

Chapter 6 PnP Configuration Manager Functions 529

Return Value
The major revision number is returned in the high byte and the minor revision number is
returned in the low byte. For example, version 4.0 is returned as Ox0400.

See Also
CM_ Get_ Version_Ex

CM_Get_ Version_Ex
CMAPI WORD WINAPI

CM_Get_Version_Ex(
IN HMACHINE hMachine
) :

The CM_Get_ Version function returns the version number of cfgmgr32.dll residing on a
local or remote system.

Parameters
hMachine
Caller-supplied machine handle, obtained from a previous call to CM_Connect_Machine.

Return Value
The major revision number is returned in the high byte and the minor revision number is
returned in the low byte. For example, version 4.0 is returned as Ox0400.

See Also
CM_ Get_ Version

CM_Locate_DevNode
CMAPI CONFIGRET WINAPI

CM_Locate_DevNode(
OUT PDEVINST pdnDevlnst.
IN DEVINSTID pDeviceID. OPTIONAL
IN ULONG u7F7ags
) :

The CM_Locate_DevNode function supplies a device instance handle to the device node
that is associated with a specified device instance identifier, on the local system.

530 Part 3 Setup

Parameters
pdnDevlnst
Caller-supplied address of a location to receive a device instance handle.

pDevicelD
Caller-supplied pointer to a NULL-terminated string representing a device instance identi
fier. If this value is NULL, or if it points to a zero-length string, the function supplies a de
vice instance handle to the device node at the top of the device tree.

ulFlags
One of the caller-supplied bit flags listed in the following table.

Flag Definition

CM_LOCATE_DEVNODE_NORMAL

(Default.) The function only searches for device nodes representing devices
that are currently plugged into the system.

CM_LOCATE_DEVNODE_PHANTOM

The function searches both for device nodes representing devices that are
currently plugged into the system, and for device nodes representing devices
that are not currently pluggeo in (but were previously).

CM_LOCATE_DEVNODE_CANCELREMOVE

Not used.

CM_LOCATE_DEVNODE_NOV ALIDATION

Not used.

Return Value
If the operation succeeds, the function returns CR_SUCCESS. Otherwise, it returns one of
the CR_-prefixed error codes defined in cfgmgr32.h.

See Also
CM_Locate_DevNode_Ex

CM_Locate_DevNode_Ex
CMAPI CONFIGRET WINAPI

CM_Locate_DevNode_Ex(
OUT PDEVINST pdnDevlnst,
IN DEVINSTID pDeviceID, OPTIONAL

IN ULONG u7F7ags.
IN HMACHINE hMachine
) :

Chapter 6 PnP Configuration Manager Functions 531

The CM_Locate_DevNode_Ex function supplies a device instance handle to the device
node that is associated with a specified device instance identifier, on a local or remote
system.

Parameters
pdnDevlnst
Caller-supplied address of a location to receive a device instance handle.

pDevicelD
Caller-supplied pointer to a NULL-terminated string representing a device instance identi
fier. If this value is NULL, or if it points to a zero-length string, the function supplies a de
vice instance handle to the device node at the top of the device tree.

ulFlags
One of the caller-supplied bit flags listed in the following table.

Flag Definition

CM_LOCATE_DEVNODE_NORMAL

(Default.) The function only searches for device nodes representing devices
that are currently plugged into the system.

CM_LOCATE_DEVNODE_PHANTOM

The function searches both for device nodes representing devices that are
currently plugged into the system, and for device nodes representing devices
that are not currently plugged in (but were previously).

CM_LOCATE_DEVNODE_CANCELREMOVE

Not used.

CM_LOCATE_DEVNODE_NOV ALIDATION

Not used.

hMachine
Caller-supplied machine handle, obtained from a previous call to CM_Connect_Machine.

Return Value
If the operation succeeds, the function returns CR_SUCCESS. Otherwise, it returns one of
the CR_-prefixed error codes defined in cfgmgr32.h.

532 Part 3 Setup

See Also
CM_Locate_DevNode

eM_Modify _Res_Des
CMAPI CONFIGRET WINAPI

CM_Modify_Res_Des(
OUT PRES_DES prdResDes.
IN RES_DES rdResDes.
IN RESOURCEID ResourceID.
IN PCVOID ResourceData.
IN ULONG ResourceLen.
IN ULONG u7F7ags
) ;

The CM_Modify _Res_Des function modifies a specified resource descriptor on the local
system.

Parameters
prdResDes
Pointer to a location to receive a handle to the modified resource descriptor.

rdResDes
Caller-supplied handle to the resource descriptor to be modified. This handle must have
been previously obtained by calling one of the following functions:

CM_Add_Res_Des
CM_Add_Res_Des_Ex
CM_GeCNexCRes_Des
CM_GeCNexCRes_Des_Ex
CM_Modify _Res_Des
CM_Modify _Res_Des_Ex

ResourcelD
Caller-supplied resource type identifier. This must be one of the ResType_ -prefixed con
stants defined in cfgmgr32.h.

ResourceData
Caller-supplied pointer to a resource descriptor, which can be one of the structures listed
under the CM_Add_Res_Des function's description of ResourceData.

ResourceLen
Caller-supplied length of the structure pointed to by ResourceData.

Chapter 6 PnP Configuration Manager Functions 533

ulFlags
Not used, must be zero.

Return Value
If the operation succeeds, the function returns CR_SUCCESS. Otherwise; it returns one of
the CR~-prefixed error codes defined in cfgmgr32.h.

Comments
The caller-supplied resource descriptor data replaces the existing data. The values specified
for ResourceID and ResourceLen do not have to match the existing resource descriptor.

If the value specified for ResourceID is ResType_ ClassSpecitic, then the specified resource
descriptor must be the last one associated with the logical configuration.

Callers of CM_Modify _Res_Des must call CM_Free_Res_Des_Handle to deallocate the
resource descriptor handle, after it is no longer needed.

See Also
CM_Modify _Res_Des_Ex

eM_Modify _Res_Des_Ex
CMAPI CONFIGRET WINAPI

CM_Modify_Res_Des_Ex(
OUT PRES_DES prdResDes,
IN RES_DES rdResDes,
IN RESOURCEID ResourceID,
IN PCVOID ResourceData,
IN ULONG ResourceLen,
IN ULONG u7F7ags,
IN HMACHINE hMachine
) ;

The CM_Modify _Res_Des_Ex function modifies a specified resource descriptor on a local
or remote system.

Parameters
prdResDes
Pointer to a location to receive a handle to the modified resource descriptor.

534 Part 3 Setup

rdResDes
Caller-supplied handle to the resource descriptor to be modified. This handle must have
been previously obtained by calling one of the following functions:

CM_Add_Res_Des
CM_Add_Res_Des_Ex
CM_GeCNexCRes_Des
CM_GeCNexCRes_Des_Ex
CM_Modify _Res_Des
CM_Modify _Res_Des_Ex

ResourcelD
Caller-supplied resource type identifier. This must be one of the ResType_ -prefixed
constants defined in cfgmgr32.h.

ResourceData
Caller-supplied pointer to a resource descriptor, which can be one of the structures listed
under the CM_Add_Res_Des_Ex function's description of ResourceData.

ResourceLen
Caller-supplied length of the structure pointed to by ResourceData.

ulFlags
Not used, must be zero.

hMachine
Caller-supplied machine handle, obtained from a previous call to CM_ Connect_Machine.

Return Value
If the operation succeeds, the function returns CR_SUCCESS. Otherwise, it returns one of
the CR_ -prefixed error codes defined in cfgmgr32.h.

Comments
The caller-supplied resource descriptor data replaces the existing data. The values specified
for ResourceID and ResourceLen do not have to match the existing resource descriptor.

If the value specified for ResourceID is ResType_ ClassSpecific, then the specified resource
descriptor must be the last one associated with the logical configuration.

Callers of CM_Modify _Res_Des_Ex must call CM_Free_Res_Des_Handle to deallocate
the resource descriptor handle, after it is no longer needed.

Chapter 6 PnP Configuration Manager Functions 535

See Also
CM_Modify _Res_Des

CM_ Query _Resource_ Conflict_List
CMAPI CONFIGRET WINAPI

CM_Query_Resource_Conflict_List(
OUT PCONFLICT_LIST pc7Conf7ictList.
IN DEVINST dnDevlnst.
IN RESOURCEID ResourceID.
IN PCVOID ResourceData.
IN ULONG ResourceLen.
IN ULONG u7F7ags.
IN HMACHINE hMachine
) ;

The CM_ Query _Resource_ Conflict_List function identifies device instances having re
source requirements that conflict with a specified device instance's resource description.

Parameters
pclConflictList
Caller-supplied address of a location to receive a handle to a conflict list.

dnDevlnst
Caller-supplied device instance handle, obtained from the SP _DEVINFO_DATA structure
that is used with the device installation functions.

Device instance handles can also be obtained by calling the following functions:

CM_Locate_DevNode
CM_Locate_DevNode_Ex
CM_GeCChild
CM_GeCChild_Ex
CM_GeCParent
CM_GeCParenCEx
CM_ GecSibling
CM_ GeCSibling_Ex

ResourcelD
Caller-supplied resource type identifier. This must be one of the ResType_ -prefixed
constants defined in cfgmgr32.h.

536 Part 3 Setup

ResourceData
Caller-supplied pointer to a resource descriptor, which can be one of the structures listed
under the CM_Add_Res_Des function's description of ResourceData.

ResourceLen
Caller-supplied length of the structure pointed to by ResourceData.

ulFlags
Not used, must be zero.

hMachine
Caller-supplied machine handle, obtained from a previous call to CM_ Connect_Machine.

Return Value
If the operation succeeds, the function returns CR_SUCCESS. Otherwise, it returns one of
the CR_-prefixed error codes defined in cfgmgr32.h.

Comments
When calling CM_ Query _Resource_ Conflict_List, specify a device instance handle and
resource descriptor. (Resource descriptors for existing device nodes· can be obtained by
calling CM_Get_Res_Des_Data.) These parameters indicate the specific resources you'd
like a specific device to use. The resulting conflict list identifies devices that use the same
resources, along with resources reserved by the system.

After calling CM_Query_Resource_Conflict_List, an application can call CM_Get_
Resource_ Conflict_ Count to determine the number of conflicts contained in the resource
conflict list. (The number of conflicts can be zero.) Then the application can call CM_Get_
Resource_Conflict_Detaiis for each entry in the conflict list.

After an application has finished using the handle received for pclConflictList, it must call
CM_Free_Resource_ Conflict_handle.

CM_Reenumerate_DevNode
CMAPI CONFIGRET WINAPI

CM_Reenumerate_DevNode<
IN DEVINST dnDevlnst,
IN ULONG u7F7ags
) ;

The CM_Reenumerate_DevNode function enumerates the devices identified by a specified
device node and all of its children.

Parameters
dnDevlnst

Chapter 6 PnP Configuration Manager Functions 537

Caller-supplied device instance handle, obtained from the SP _DEVINFO_DATA structure
that is used with the device installation functions.

Device instance handles Can also be obtained by calling the following functions:

CM_Locate_DevNode
CM_Locate_DevNode_Ex
CM_GeCChild
CM_GeCChild_Ex
CM_GeCParent
CM_GeCParenCEx
CM_ GeCSibling
CM_ GeCSibling_Ex

ulFlags
Not used, must be zero.

Return Value
If the operation succeeds, the function returns CR_SUCCESS. Otherwise, it returns one of
the CR_-prefixed error codes defined in cfgmgr32.h.

Comments
If the specified device node represents a hardware or software bus device, the PnP Manager
queries the device's drivers for a list of children, then attempts to configure and start any
child devices that were not previously configured. The PnP Manager also initiates surprise
removal of devices that are no longer present (see IRP _MN_SURPRISE_REMOV AL).

See Also
CM_Reenumerate_DevNode_Ex

CM_Reenumerate_DevNode_Ex
CMAPI CONFIGRET WINAPI

CM_Reenumerate_DevNode_Ex<
IN DEVINST dnDevInst,
IN ULONG u7F7ags,
IN HMACHINE hMachine
) ;

The CM_Reenumerate_DevNode_Ex function enumerates the devices identified by a
specified device node and all of its children.

538 Part 3 Setup

Parameters
dnDevlnst
Caller-supplied device instance handle, obtained from the SP _DEVINFO_DATA structure
that is used with the device installation functions.

Device instance handles can also be obtained by calling the following functions:

CM_Locate_DevNode
CM_Locate_DevN ode_Ex
CM_ GeCChild
CM_GeCChild_Ex
CM_GeCParent
CM_ GeCParenCEx
CM_ GeCSibling
CM_ GeCSibling_Ex

ulFlags
Not used, must be zero.

hMachine
Caller-supplied machine handle, obtained from a previous call to CM_Connect_Machine.

Return Value
If the operation succeeds, the function returns CR_SUCCESS. Otherwise, it returns one of
the CR_-prefixed error codes defined in cfgmgr32.h.

Comments
If the specified device node represents a hardware or software bus device, the PnP Manager
queries the device's drivers for a list of children, then attempts to configure and start any
child devices that were not previously configured. The PnP Manager also initiates surprise
removal of devices that are no longer present (see IRP _MN_SURPRISE_REMOVAL).

See Also
CM_Reenumerate_DevNode

CM_Request_Device_Eject
CMAPI CONFIGRET WINAPI

CM_Request_Device_Eject(
IN DEVINST dnDevlnst,
OUT PPNP_VETO_TYPE pVetoType,
OUT LPTSTR pszVetoName,

IN ULONG u7NameLength.
IN ULONG u7F7ags
) ;

Chapter 6 PnP Configuration Manager Functions 539

The CM_Request_Device_Eject function prepares a local device instance for safe removal,
if the device is removable. If the device can be physically ejected, it will be.

Parameters
dnDevlnst
Caller-supplied device instance handle, obtained from the SP _DEVINFO_DATA structure
that is used with the device installation functions.

Device instance handles can also be obtained by calling the following functions:

CM_Locate_DevN ode
CM_Locate_DevNode_Ex
CM_GeCChild
CM_GeCChild_Ex
CM_GeCParent
CM_GeCParenCEx
CM_ GecSibling
CM_ GeCSibling_Ex

pVetoType
(Optional.) If the removal request fails, this parameter receives a PNP _ VETO_TYPE-typed
value indicating the reason for the failure.

pszVetoName
(Optional.) Caller-supplied pointer to a string buffer that receives a text string. The type of
information this string provides is dependent on the value received by pVetoType, as
indicated in the following table.

pVetoType

PNP _ VetoTypeUnknown

PNP _ VetoLegacyDevice

PNP _ VetoPendingClose

PNP _ Veto WindowsApp

PNP _ Veto Windows Service

PNP _ VetoOutstandingOpen

PNP _ VetoDevice

PNP _ VetoDriver

pszVetoName

Not used.

A device instance path.

A device instance path.

An application module.

A Windows service

. A device instance path.

A device instance path.

A driver name.

Continued

540 Part 3 Setup

pVetoType

PNP _ VetoIllegalDeviceRequest

PNP _ VetolnsufficientPower

PNP _ VetoN onDisableable

PNP _ VetoLegacyDriver

ulNameLength

pszVetoName

A device instance path.

Not used.

A device instance path.

A Windows service

(Optional.) Caller-supplied value representing the length of the string buffer supplied by
pszVetoName. This should be set to MAX_PATH.

ulFlags
Not used.

Return Value
If the operation succeeds, the functiGn returns CR_SUCCESS. Otherwise, it returns one of
the CR_-prefixed error codes defined in cfgmgr32.h.

See Also
CM_Request_Device_Eject_Ex

CM_Request_Device_Eject_Ex
CMAPI CONFIGRET WINAPI

CM_Request_Device_Eject_Ex(
IN DEVINST dnOevlnst.
OUT PPNP_VETO_TYPE pVetoType.
OUT LPTSTR pszVetoName,
IN ULONG u7NameLength.
IN ULONG u7F7ags
IN HMACHINE hMachine
) :

The CM_Request_Device_Eject function prepares a local or remote device instance for
safe removal, if the device is removable. If the device can be physically ejected, it will be.

Parameters
dnDevlnst
Caller-supplied device instance handle, obtained from the SP _DEVINFO_DATA structure
that is used with the device installation functions.

Chapter 6 PnP Configuration Manager Functions 541

Device instance handles can also be obtained by calling the following functions:

CM_Locate_DevN ode
CM_Locate_DevNode_Ex
CM_GeCChild
CM_GeCChild_Ex
CM_GeCParent
CM_GeCParent_Ex
CM_ Get_Sibling
CM_ GeCSibling_Ex

pVetoType
(Optional.) If the removal request fails, this parameter receives a PNP _ VETO _TYPE-typed
value indicating the reason for the failure.

pszVetoName
(Optional.) Caller-supplied pointer to a string buffer that receives a text string. The type of
information this string provides is dependent on the value received by pVetoType, as indi
cated in the following table.

pVetoType

PNP _ VetoTypeUnknown

PNP _ VetoLegacyDevice

PNP _ VetoPendingClose

PNP _ Veto WindowsApp

PNP _ Veto Windows Service

PNP _ VetoOutstandingOpen

PNP _ VetoDevice

PNP _ VetoDriver

PNP _ VetoIllegalDeviceRequest

PNP _ VetoInsufficientPower

PNP _ VetoNonDisableable

PNP _ VetoLegacyDriver

ulNameLength

pszVetoName

Not used.

A device instance path.

A device instance path.

An application module.

A Windows service

A device instance path.

A device instance path.

A driver name.

A device instance path.

Not used.

A device instance path.

A Windows service

(Optional.) Caller-supplied value representing the length of the string buffer supplied by
pszVetoName. This should be set to MAX_PATH. '

ulFlags
Not used.

542 Part 3 Setup

hMachine
Caller-supplied machine handle, obtained from a previous call to CM_ Connect_Machine.

Return Value
If the operation succeeds, the function returns CR_SUCCESS. Otherwise, it returns one of
the CR_-prefixed error codes defined in cfgmgr32.h.

Comments
For remote systems, this function only works for "dock" device instances. That is, the
function can only be used remotely to undock a system. In that case, the caller must have
Se UndockPrivilege.

See Also
CM_Request_Device_Eject

CHAPTER 7

PnP Configuration Manager Structures and
Types

This chapter describes the structures and types used with PnP Configuration Manager
functions.

Resource Descriptor Structures
This section describes the structures used to specify resource descriptors.

BUSNUMBER_DES
typedef struct BusNumber_Des_s {

DWORD BUSD_Count;
DWORD BUSD_Type;
DWORD BUSD_Flags;
ULONG BUSD_Alloc_Base;
ULONG BUSD_Alloc_End;

} BUSNUMBER-DES. *PBUSNUMBER_DES;

543

The BUSNUMBER_DES structure is used for specifying either a resource list or a resource
requirements list that describes bus number usage for a device instance.

Members
BUSD_Count
For a resource list:

Zero.

For a resource requirements list:

The number of elements in the BUSNUMBER_RANGE array that is included in the
BUSNUMBER_RESOURCE structure.

544 Part 3 Setup

BUSD_Type
Must be set to the constant value BusNumberType_Range.

BUSD_Flags
Not used.

For a resource list:

The lowest-numbered of a range of contiguous bus numbers allocated to the device.

For a resource requirements list:

Zero.

For a resource list:

The highest-numbered of a range of contiguous bus numbers allocated to the device.

For a resource requirements list:

Zero.

Comments
The BUSNUMBER_DES structure is included as a member of the BUSNUMBER_
RESOURCE structure.

BUSNUMBER_RANGE
typedef struct BusNumber_Range_s {

ULONG BUSILMin;
ULONG BUSR_Max;
ULONG BUSlLnBusNumbers;
ULONG BUSR_Flags;
BUSNUMBER_RANGE. *PBUSNUMBER_RANGE;

The BUSNUMBER_RANGE structure specifies a resource requirements list that describes
bus number usage for a device instance.

Members
BUSR_Min
The lowest-numbered of a range of contiguous bus numbers that can be allocated to the
device.

Chapter 7 PnP Configuration Manager Structures and Types 545

BUSR_Max
The highest-numbered of a range of contiguous bus numbers that can be allocated to the
device.

BUSR_nBusNumbers
The number of contiguous bus numbers required by the device.

BUSR_Flags
Not used.

Comments
The BUSNUMBER_RANGE structure is included as a member of the
BUSNUMBER_RESOURCE structure.

BUSNUMBER_RESOURCE
typedef struct BusNumber_Resource_s {

BUSNUMBER-DES BusNumber_Header;
BUSNUMBER-RANGE BusNumber_Data[ANYSIZE_ARRAY];

} BUSNUMBER-RESOURCE, *PBUSNUMBER-RESOURCE;

The BUSNUMBER_RESOURCE structure specifies either a resource list or a resource
requirements list that describes bus number usage for a device instance.

Members
BusNumber_Header
A BUSNUMBER_DES structure.

BusNumber _Data
For a resource list:

Zero.

For a resource requirements list:

A BUSNUMBER_RANGE array.

546 Part 3 Setup

typedef struct CS_Des_s {
DWORD CSD_SignatureLength;
DWORD CSD_LegacyDataOffset;
DWORD CSD_LegacyDataSize;
DWORD CSD_Flags;
GUID CSD_ClassGuid;
BYTE CSD_Signature[ANYSIZE_ARRAY];

} CS_DES, *PCS_DES;

The CS~DES structure is used for specifying a resource list that describes device class
specific resource usage for a device instance.

Members
CSO _SignatureLength
The number of elements in the byte array specified by CSD _Signature.

CSO _LegacyOataOffset
Offset, in bytes, from the beginning of the CSD_Signature array to the beginning of a block
of data. For example, if the data block follows the signature array, and if the signature array
length is 16 bytes, then the value for CSD _LegacyDataOffset should be 16.

CSO _LegacyOataSize
Length, in bytes, of the data block whose offset is specified by CSD _LegacyDataOffset.

CSO_Flags
Not used.

CSO _ ClassGuid
A globally unique identifier (GUID) identifying a device setup class. If both CSD_
SignatureLength and CSD _LegacyDataSize are zero, the GUID is null.

CSO_Signature
A byte array containing a class-specific signature.

Comments
The data block identified by CSD_LegacyDataSize and CSD_LegacyDataOffset can
contain legacy, class-specific data, as stored in the DeviceSpecificData member of a CM_
PARTIAL_RESOURCE_DESCRIPTOR structure, if the structure's Type member is
CmResourceTypeDeviceSpecific.

The class-specific signature identified by CSD _SignatureLength and CSD _Signature can
contain additional class-specific device identification information.

Chapter 7 PnP Configuration Manager Structures and Types 547

typedef struct CS_Resource_s {
CS_DES CS_Header;

} CS_RESOURCE, *PCS_RESOURCE;

The CS_RESOURCE structure is used for specifying a resource list that describes device
class-specific resource usage for a device instance.

Members
CS_Header
A CS_DES structure.

DEVPRIVATE_DES
typedef struct DevPrivate_Des_s

DWORD PD_Count;
DWORD PD_Type;
DWORD PD_Datal;
DWORD PD_Data2;
DWORD PD_Data3;
DWORD PD_Flags;

} DEVPRIVATE_DES, *PDEVPRIVATE_DES;

The DEVPRIV ATE_DES structure is used for specifying either a resource list or a resource
requirements list that describes private device-specific resource usage for a device instance.
This structure is for internal use only.

DEVPRIVATE_RANGE
typedef struct DevPrivate_Range_s {

DWORD PR_Datal; II mask for base alignment
DWORD PR-Data2; II number of bytes
DWORD PR-Data3; II minimum address

} DEVPRIVATE_RANGE, *PDEVPRIVATE_RANGE;

The DEVPRIVATE_RANGE structure specifies a resource requirements list that describes
private device-specific resource usage for a device instance. This structure is for internal
use only.

548 Part 3 Setup

DEVPRIVATE_RESOURCE
typedef struct DevPrivate_Resource_s {

DEVPRIVATE_DES PRV_Header;
DEVPRIVATE_RANGE PRV_Data[ANYSIZE_ARRAY];
DEVPRIVATE_RESOURCE, *PDEVPRIVATE_RESOURCE;

The DEVPRIV ATE_RESOURCE structure is used for specifying either a resource list or a
resource requirements list that describes private device-specific resource usage for a device
instance. This structure is for internal use only.

typedef struct DMA_Des_s {
DWORD DD_Count;
DWORD DD_Type;
DWORD DD_Flags;
ULONG DD_Alloc_Chan;

} DMA_DES, *PDMA_DES;

The DMA_DES structure is used for specifying either a resource list or a resource require
ments list that describes direct memory access (DMA) channel usage for a device instance.

Members
DD_Count

For a resource list:

Zero.

For a resource requirements list:

The number of elements in the DMA_RANGE array that is included in the DMA_
RESOURCE structure.

DD_Type
Must be set to the constant value DType_Range.

DD_Flags
One bit flag from each of the flag sets described in the following table.

Flag

Channel Width Flags

fDD_BYTE

fDD_WORD

fDD_DWORD

Definition

8-bit DMA channel.

16-bit DMA channel.

32-bit DMA channel.

Chapter 7 PnP Configuration Manager Structures and Types 549

Flag

IDD_BYTE~AND_ WORD

mDD_Width

Bus Mastering Flags

fDD_NoBusMaster

IDD _BusMaster

mDD _BusMaster

DMA Type Flags

fDD _TypeStandard

IDD_TypeA

IDD_TypeB

IDD_TypeF

mDD_Type

For a resource list:

The DMA channel allocated to the device.

For a resource requirements list:

Not used.

typedef struct DMA_Range_s {

ULONG DILMi n:
ULONG DR_Max:
ULONG DILFl ags:

} DMA_RANGE, *PDMA_RANGE:

Definition

8-bit and 16-bit DMA channel.

Bit mask for the bits within DD_Flags
that specify the channel width value.

No bus mastering.

Bus mastering.

Bit mask for the bits within DD_Flags
that specify the bus mastering value.

Standard DMA.

TypeADMA.

TypeBDMA.

Type F DMA.

Bit mask for the bits within DD_Flags
that specify the DMA type value.

The DMA_RANGE structure specifies a resource requirements list that describes DMA
channel usage for a device instance.

Members
DR_Min
The lowest-numbered DMA channel that can be allocated to the device.

550 Part 3 Setup

DR_Max
The highest-numbered DMA channel that can be allocated to the device.

DR_Flags
One bit flag from each of the flag sets described in the table included with the description of
the DR_Flags member of the DMA_DES structure.

DMA_RESOURCE
typedef struct DMA_Resource_s {

DMA_DES DMA_Header;
DMA_RANGE DMA_Data[ANYSIZE_ARRAY];

} DMA_RESOURCE, *PDMA_RESOURCE;

The DMA_RESOURCE structure is used for specifying either a resource list or a resource
requirements list that describes DMA channel usage for a device instance.

Members
DMA_Header
A DMA_DES structure.

For a resource list:

Zero.

For a resource requirements list:

A DMA_RANGE array.

typedef struct IO_Des_s {
DWORD IOD_Count;
DWORD IOD_Type;
DWORDLONG IOD_Alloc_Base;
DWORDLONG IOD_Alloc_End;
DWORD IOD_DesFlags;

} 10_DES, *PIO_DES;

The IO_DES structure is used for specifying either a resource list or a resource requirements
list that describes I/O port usage for a device instance.

Chapter 7 PnP Configuration Manager Structures and Types 551

Members
10D_Count

For a resource list:

Zero.

For a resource requirements list:

The number of elements in the la_RANGE array that is included in the la_RESOURCE
structure.

10D_Type
Must be set to the constant value IOType_Range.

For a resource list:

The lowest-numbered of a range of contiguous I/O port addresses allocated to the device.

For a resource requirements list:

Zero.

100 _Alloe_End

For a resource list:

The highest-numbered of a range of contiguous I/O port addresses allocated to the device.

For a resource requirements list:

Zero.

100 _Des Flags
One bit flag from each of the flag sets described in the following table.

Port Type Flags

Flag Definition

nOD_IO

nOD _Memory

The device is accessed in I/O address
space.

The device is accessed in memory
address space.

Bit mask for the bits within
IOD_DesFlags that specify the port type
value.

Continued

552 Part 3 Setup

Flag

Decode Flags

typedef struct lO_Range_s {
DWORDLONG lOR-Align;
DWORD lOR-nPorts;
DW,ORDLONG lOR-Mi n;
DWORDLONG lOR-Max;
DWORD lOR-RangeFlags;
DWORDLONG lOR-Alias;
lO_RANGE, *PlO_RANGE;

Definition

The device decodes 10 bits of the port
address. .

The device decodes 12 bits of the port
address.

The device decodes 16 bits of the port
address.

The device uses "positive decode" instead
of "subtractive decode."

Bit mask for the bits within
IOD _DesFlags that specify the decode
value.

The 10 _RANOE structure specifies a resource requirements list that describes 110 port
usage for a device instance.

Members
lOR_Align
Mask used to specify the port address boundary on which the first allocated 110 port address
must be aligned.

IOR_nPorts
The number of 110 port addresses required by the device.

lOR_Min
The lowest-numbered of a range of contiguous 110 port addresses that can be allocated to
the device.

Chapter 7 PnP Configuration Manager Structures and Types 553

lOR_Max
The highest-numbered of a range of contiguous 110 port addresses that can be allocated to
the device.

IOR_RangeFlags
One bit flag from each of the flag sets described in the table included with the description of
the IOD_DesFlags member of the 10_DES structure. For more information, see the follow
ing Comments section.

lOR_Alias
One of the bit flags described in the following table.

Flag

10 _ALIAS_l O_BIT _DECODE

10_ALIAS_12_BIT_DECODE

10_ALIAS_16_BIT_DECODE

10 _ALIAS_POSITIVE_DECODE

Definition

The device decodes 10 bits of the port address.

The device decodes 12 bits of the port address.

The device decodes 16 bits of the port address.

The device uses "positive decode" instead of
"subtractive decode."

For more information, see the following Comments section.

Comments
The flags specified for lOR_Alias have the same interpretation as the address decoding
flags specified for IOD_DesFlags. (However, the two sets of flags are not equivalent in
assigned values and cannot be used interchangeably.) A resource requirements list can
be specified using either set of flags, but using decode flags in IOD _DesFlags is recom
mended. If address decoding flags are specified using both IOD _DesFlags and IOR_
Alias, contents of the latter overrides the former.

typedef struct 10_Resource_s {
la_DES la_Header;
la_RANGE IO_Data[ANYSIZE_ARRAY];

} IO_RESOURCE, *PIO_RESOURCE;

The 10_RESOURCE structure is used for specifying either a resource list or a resource
requirements list that describes 110 port usage for a device instance.

Members
IO_Header
An 10_DES structure.

554 Part 3 Setup

10_Data

For a resource list:

Zero.

For a resource requirements list:

An la_RANGE array.

typedef struct IRQ_Des_s
DWORD IRQD_Count;
DWORD IRQD_Type;
DWORD IRQD_Flags;
ULONG IRQD_Alloc_Num;
ULONG IRQD_Affinity;
IRQ_DES. *PIRQ_DES;

The IRQ_DES structure is used for specifying either a resource list or a resource require
ments list that describes IRQ line usage for a device instance.

Members
IRQD_Count

For a resource list:

Zero.

For a resource requirements list:

The number of elements in the IRQ_RANGE array that is included in the IRQ_
RESOURCE structure.

IRQD_Type
. Must be set to the constant value IRQType_Range.

IRQD_Flags
One bit flag from each of the flag sets described in the following table.

Sharing Flags

Flag Definition

flRQD _Exclusive

flRQD _Share

mIRQD _Share

The IRQ line cannot be shared.

The IRQ line can be shared.

Bit mask for the bits within IRQD_Flags
that specify the sharing value.

Chapter 7 PnP Configuration Manager Structures and Types 555

Flag

Triggering Flags

fIRQD _Level

fIRQD_Edge

mIRQD _Edge_Level

For a resource list:

Definition

The IRQ line is level-triggered.

The IRQ line is edge-triggered.

Bit mask for the bits within IRQD _Flags
that specify the triggering value.

The number of the IRQ line that is allocated to the device.

For a resource requirements list: .

Not used.

IRQD _Affinity

For a resource list:

A bit mask representing the processor affinity of the IRQ line that is allocated to the device.
Bit zero represents the first processor, bit two the second, and so on. Set this value to -1 to
represent all processors.

For a resource requirements list:

Not used.

typedef struct IRQ_Range_s {
ULONG IRQR-Min; II minimum IRQ in the range
ULONG IRQR_Max; II maximum IRQ in the range
ULONG IRQR-Flags; II flags describing the range (fIRQD flags)

} IRQ_RANGE, *PIRQ_RANGE;

The IRQ_RANGE structure specifies a resource requirements list that describes IRQ line
usage for a device instance.

Members
IRQR_Min
The lowest-numbered of a range of contiguous IRQ lines that can be allocated to the device.

IRQR_Max
The highest-numbered of a range of contiguous IRQ lines that can be allocated to the device.

556 Part 3 Setup

IRQR_Flags
One bit flag from each of the flag sets described in the table included with the description of
the IRQD _Flags member of the IRQ_DES structure.

typedef struct IRQ_Resource_s {
IRQ_DES IRQ_Header:
IRQ_RANGE IRQ_Data[ANYSIZE_ARRAY]:
IRQ_RESOURCE, *PIRQ_RESOURCE:

The IRQ_RESOURCE structure is used for specifying either a resource list or a resource
requirements list that describes IRQ line usage for a device instance.

Members
10_Header
An IRQ_DES structure.

10_Data

For a resource list:

Zero.

For a resource requirements list:

An IRQ_RANGE array.

typedef struct Mem_Des_s {
DWORD MD_Count:
DWORD MD_Type:
DWORDLONG MD_Alloc_Base;
DWORDLONG MD_Alloc_End;
DWORD MD_Flags:
DWORD MD_Reserved:

} MEM_DES, *PMEM_DES;

The MEM_DES structure is used for specifying either a resource list or a resource require
ments list that describes memory usage for a device instance.

Chapter 7 PnP Configuration Manager Structures and Types 557

Members
MD_Count

For a resource list:

Zero.

For a resource requirements list:

The number of elements in the MEM_RANGE array that is included in the MEM_
RESOURCE structure.

MD_Type
Must be set to the constant value MType_Range.

MD _Alloc_Base

For a resource list:

The lowest-numbered of a range of contiguous physical memory addresses allocated to the
device.

For a resource requirements list:

Zero.

For a resource list:

The highest-numbered of a range of contiguous physical memory addresses allocated to the
device.

For a resource requirements list:

Zero.

MD_Flags
One bit flag from each of the flag sets described in the following table.

Flag

Read-Only Flags

fMD_ROM

fMD_RAM

mMD_MemoryType

Definition

The specified memory range is read-only.

The specified memory range is not read
only.

Bit mask for the bit within MD_Flags that
specifies the read-only attribute.

Continued

558 Part 3 Setup

Flag

Write-Only Flags

fMD _ReadDisallowed

fMD _ReadAllowed

mMD _Readable

Address Size Flags

fMD_24

fMD_32

mMD_32_24

Pre-Fetch Flags

fMD _PrefetchAllowed

fMD _PrefetchDisallowed

mMD _Prefetchable

Caching Flags

fMD _ Cacheable

fMD _NonCacheable

mMD _ Cacheable

Combined-Write Caching Flags

fMD_ CombinedWriteAllowed

fMD _ CombinedWriteDisallowed

mMD _ CombinedWrite

MD _Reserved
For internal use only.

Definition

The specified memory range is write-only.

The specified memory range is not write
only.

Bit mask for the bit within MD _Flags that
specifies the write-only attribute.

24-bit addressing (not used).

32-bit addressing.

Bit mask for the bit within MD _Flags that
specifies the address size.

The specified memory range can be
prefetched.

The specified memory range cannot be
prefetched.

Bit mask for the bit within MD _Flags that
specifies the prefetch ability.

The specified memory range can be cached.

The specified memory range cannot be
cached.

Bit mask for the bit within MD _Flags that
specifies the caching ability.

Combined-write caching is allowed.

Combined-write caching is not allowed.

Bit mask for the bit within MD_Flags that
specifies the combine-write caching ability.

typedef struct Mem_Range_s
DWORDLONG MR_Align;
ULONG MR-nBytes;
DWORDLONG MR-Min;
DWORDLONG
DWORD

MR-Max;
MR_Flags;

DWORD MR-Reserved;
} MEM_RANGE. *PMEM_RANGE;

Chapter 7 PnP Configuration Manager Structures and Types 559

The MEM_RANGE structure specifies a resource requirements list that describes memory
usage for a device instance.

Members
MR_Align
Mask used to specify the memory address boundary on which the first allocated memory
address must be aligned.

MR_nBytes
The number of bytes of memory required by the device.

MR_Min
The lowest-numbered of a range of contiguous memory addresses that can be allocated to
the device.

MR_Max
The highest-numbered of a range-of contiguous memory addresses that can be allocated to
the device.

MR_Flags
One bit flag from each of the flag sets described in the table included with the description of
the MD _Flags member of the MEM_DES structure.

MR_Reserved
For internal use only.

560 Part 3 Setup

MEM_RESOURCE
ypedef struct Mem_Resource_s {

MEM_DES MEM_Header:
MEM_RANGE MEM_Data[ANYSIZE_ARRAY]:

} MEM_RESOURCE. *PMEM_RESOURCE:

The MEM_RESOURCE structure is used for specifying either a resource list or a resource
requirements list that describes memory usage for a device instance.

Members
MEM_Header
A MEM_DES structure.

For a resource list:

Zero.

For a resource requirements list:

A MEM_RANGE array.

MFCARD_DES
typedef struct MfCard_Des_s {

DWORD PMF_Count:
DWORD PMF_Type:
DWORD PMF_Flags;
BYTE PMF_ConfigOptions:
BYTE PMF_IoResourcelndex:
BYTE PMF_Reserved[2]:
DWORD PMF_ConfigRegisterBase:

} MFCARD_DES. *PMFCARD_DES;

The MFCARD _DES structure is used for specifying either a resource list or a resource
requirements list that describes resource usage by one of the hardware functions provided by
an instance of a multifunction device.

Members
PMF_Count
Must be 1.

PMF_Type
Not used. '

PMF_Flags

Chapter 7 PnP Configuration Manager Structures and Types 561

One bit flag is defined, as described in the following table.

Flag Definition

If set, audio is enabled.

PMF _ConfigOptions
Contents of the 8-bit PCMCIA Configuration Option Register.

PMF JoResourcelndex
Zero-based index indicating the IO_RESOURCE structure that describes the I/O resources
for the hardware function being described by this MFCARD_DES structure.

PMF _Reserved
Not used.

PMF _ConfigRegisterBase
Offset from the beginning of the card's attribute memory space to the base configuration
register address.

MFCARD_RESOURCE
typedef struct MfCard_Resource_s {

MFCARD_DES MfCard_Header:
} MFCARD_RESOURCE. *PMFCARD_RESOURCE:

The MFCARD _RESOURCE structure is used for specifying either a resource list or a
resource requirements list that describes resource usage by one of the hardware functions
provided by an instance of a multifunction device.

Members
MfCard_Header
A MFCARD _DES structure.

562 Part 3 Setup

typedef struct PcCard_Des_s {
DWORD PCD_Count;
DWORD PCD_Type;
DWORD PCD_Flags;
BYTE PCD_ConfigIndex;
BYTE PCD_Reserved[3];
DWORD PCD_MemoryCardBasel;
DWORD PCD_MemoryCardBase2;

} PCCARD_DES, *PPCCARD_DES;

The PCCARD _DES structure is used for specifying either a resource list or a resource
requirements list that describes resource usage by a PCMCIA card instance.

Members
PCD_Count
Must be 1.

PCD_Type
Not used.

PCD_Flags
One bit flag from each of the flag sets described in the following table.

Flag

I/O Addressing Flags

fPCD_10_8

fPCD_10_16

roPCD _10 _8_16

Memory Addressing Flags

fPCD_MEM_8

fPCD_MEM_16

mPCD_MEM_8_16

PCD _ Configlndex

Definition

The device uses 8-bit I/O addressing.

The device uses 16-bit I/O addressing.

Bit mask for the bit within PCD _Flags that
specifies 8-bit or 16-bit I/O addressing.

The device uses 8-bit memory addressing.

The device uses 16-bit memory addressing.

Bit mask for the bit within PCD _Flags that
specifies 8-bit or 16-bit memory addressing.

The 8-bit index value used to locate the device's configuration.

PCD _Reserved[3]
Not used.

Chapter 7 PnP Configuration Manager Structures and Types 563

PCD _MemoryCardBase1
Optional, card base address of the first memory window.

PCD _MemoryCardBase2
Optional, card base address of the second memory window.

PCCARD_RESOURCE
typedef struct PcCard_Resource_s {

PCCARD_DES PcCard_Header;
} PCCARD_RESOURCE, *PPCCARD_RESOURCE;

The PCCARD _RESOURCE structure is used for specifying either a resource list or a
resource requirements list that describes resource usage by a PCMCIA card instance.

Members
PeCard_Header
A PCCARD _DES structure.

Other Structures
This sections describes additional PnP Configuration Manager structures.

CONFLICT_DETAILS
typedef struct _CONFLICT_DETAILS_W

ULONG CD_ulSize;
ULONG CD_ulMask;
DEVINST CD_dnDevlnst;
RES_DES CD_rdResDes;
ULONG CD_ulFlags;
WCHAR CD_szDescription[MAX_PATH];

} CONFLICT_DETAILS_W , *PCONFLICT_DETAILS_W;

The CONFLICT_DETAILS structure is used as a parameter to the CM_Get_Resource_
Conflict_Details function.

Members
CD_ulSize
Size, in bytes, of the CONFLICT_DETAILS structure.

564 Part 3 Setup

CD_ulMask
One or more bit flags supplied by the caller of CM_ Get_Resource_ Conflict_Details. The
bit flags are described in the following table.

Flag

CM_CDMASK_RESDES

CM_CDMASK_FLAGS

CD_dnDevlnst

Description

If set, CM_GeCResource_ConflicCDetaiis supplies
a value for the CD_dnDevlnst member.

Not used.

If set, CM_ GeCResource_ Conflict_Details supplies
a value for the CD_ulFlags member.

If set, CM_GeCResource_ConflicCDetaiis supplies
a value for the CD_szDescription member.

If CM_CDMASK_DEVINST is set in CD_uIMask, this member will receive a handle to
a device instance that has conflicting resources. If a handle is not obtainable, the member re
ceives -1.

CD _rdResDes
Not used.

CD_ulFlags
If CM_CDMASK_FLAGS is set in CD_uIMask, this member can receive bit flags listed in
the following table.

Flag

CM_CDFLAGS_RESERVED

CD _szDescription

Description

If set, the string contained in the CD _szDescription
member represents a driver name instead of a device
name, and CD _dnDevlnst is -1.

If set, the conflicting resources are owned by the root
device (that is, the HAL), and CD_dnDevlnst is-I.

If set, the owner of the conflicting resources cannot
be determined, and CD_dnDevlnst is -1.

IfCM_CDMASK_DESCRIPTION is set in CD_uIMask, this member will receive a
NULL-terminated text string representing a description of the device that owns the re
sources, If CM_CDFLAGS_DRIVER is set in CD_uIFlags, this string represents a driver
name. If CM_CDFLAGS_ROOT_OWNED or CM_CDFLAGS_RESERVED is set, the
string value is NULL.

Chapter 7 PnP Configuration Manager Structures and Types 565

PnP Configuration Manager Types
This section describes PnP Configuration Manager data types.

typedef enum _PNP_VETO_TYPE {
PNP_VetoTypeUnknown.
PNP_VetoLegacyDev;ce.
PNP_VetoPendingClose.
PNP_VetoWindowsApp.
PNP_VetoW;ndowsServ;ce.
PNP_VetoOutstandingOpen.
PNP_VetoDevice.
PNP_VetoDr;ver.
PNP_VetoIllegalDeviceRequest.
PNP_Vetolnsuffic;entPower.
PNP_VetoNonD;sableable.
PNP_VetoLegacyDr;ver.

} PNP_VETO_TYPE. *PPNP_VETO_TYPE:

If the PnP Manager rejects a request to perform an operation, the PNP _VETO_TYPE
enumeration is used for identifying the reason for the rejection.

Enumerators
PNP _ VetoTypeUnknown
The specified operation was rejected for an unknown reason.

PNP _ Veto LegacyDevice
The device does not support the specified PnP operation.

PNP _ VetoPendingClose
The specified operation cannot be completed because of a pending close operation.

PNP _ VetoWindowsApp
A Microsoft® Win32® application vetoed the specified operation.

PNP _ VetoWindowsService
A Win32 service vetoed the specified operation.

PNP _ VetoOutstandingOpen
The requested operation was rejected because of outstanding open handles.

566 Part 3 Setup

PNP _ Veto Device
The device supports the specified operation, but the device rejected the operation.

PNP _ VetoDriver
The driver supports the specified operation, but the driver rejected the operation.

PNP _ Veto lIIeg al DeviceRequest
The device does not support the specified operation.

PNP _ VetolnsufficientPower
There is insufficient power to perform the requested operation.

PNP _ VetoNonDisableable
The device cannot be disabled.

PNP _ VetoLegacyDriver
The driver does not support the specified PnP operation.

567

CHAPTER 8

Device Setup Classes

To facilitate device installation, devices that are set up and configured in the same way are
grouped into a device setup class. For example, SCSI media changer devices are grouped
into the MediumChanger device setup class. The device setup class defines such things as
the class installer and class coinstallers that are involved in installing the device.

Microsoft defines setup classes for most devices. IHV s and OEMs can define new device
setup classes, but only if none of the existing classes apply. For example, a camera vendor
might think they need to define a new setup class, but cameras fall under the Image class.
Similarly, UPS devices fall under the Battery class.

There is a GUID associated with each device setup class. System-defined setup class
GUIDs are defined in devguid.h and typically have symbollic names of the form GUID_
DEVCLASS_XXX.

The device setup class GUID defines the .• \CurrentControISet\Control\Class\ClassGUID
registry key under which to create a new subkey for any particular device of a standard
setup class.

This chapter lists the system-defined device setup classes. In the definition for a given class,
the Class and ClassGuid entries correspond to the values that must be specified in the INF
Version Section of a device's INF file.

Supplying the appropriate class GUID value in the INF for a device, rather than or in
addition to the Class=class-name entry, improves the performance of system INF search
ing significantly. In fact, system INFs that do not require either entry, such as those that
neither install a new device class installer nor a device driver, sometimes supply Class
Guid={OOOOOOOO-OOOO-OOOO-OOOO-OOOOOOOOOOOO} in their Version sections to cut
down on the system's INF searching time.

568 Part 3 Setup

1394 Host Bus Controller
Class = 1394
ClassGuid = {6bddlfcl-810f-11dO-bec7-08002be2092f}

This class includes system-supplied drivers of 1394 host controllers connected on a PCI bus,
but not drivers of 1394 peripherals.

Battery Devices
Class = Battery
ClassGuid = {72631e54-78a4-11dO-bcf7-00aaOOb7b32a}

This class includes drivers of battery devices and UPSes.

CD-ROM Drives
Class = CDROM
ClassGuid = {4d36e965-e325-11ce-bfc1-08002be10318}

This class includes drivers of CD-ROM drives, including SCSI CD-ROM drives. By default,
the system's CD-ROM class installer also installs a system-supplied CD audio driver and
CD-ROM changer driver as PnP filters.

Disk Drives
Class = DiskDrive
ClassGuid = {4d36e967-e325-11ce-bfc1-08002bel0318}

This class includes drivers of hard disk drives. See also the HDC and SCSIAdapter classes.

Display Adapters
Class = Display
ClassGuid = {4d36e968-e325-11 ce-bfc 1-08002be 1 0318}

This class includes drivers of video adapters, including display drivers and video miniports.

Floppy Disk Controllers
Class = FDC
ClassGuid = {4d36e969-e325-11ce-bfcl-08002bel0318}

This class includes drivers of floppy disk drive controllers.

Floppy Disk Drives
Class= Floppy Disk
ClassGuid= {4d36e980-e325-11ce-bfc1-08002be10318} ,

This class includes drivers of floppy drives.

Hard Disk Controllers
Class = HOC

Chapter 8 Device Setup Classes 569

ClassGuid = {4d36e96a-e325-11 ce-bfc 1-08002be 1 0318 }

This class includes drivers of hard disk controllers, including AT AI AT API controllers but
not SCSI and RAID disk controllers.

Human Input Devices (HID)
Class = HIDClass
ClassGuid = {745aI7aO-74d3-11dO-b6fe-00aOc90f57da}

This class includes devices that export interfaces of the HID class, including HID keyboard
and mouse devices, which the installed HID device drivers enumerate as their respective
"child" devices. (See also the Keyboard or Mouse classes later in this list.)

Imaging Device
Class = Image
ClassGuid = {6bddlfc6-810f-lldO-bec7-08002be2092f}

This class includes drivers of still-image capture devices, digital cameras, and scanners.

IrDA Devices
Class = Infrared
ClassGuid = {6bdd 1 fc5-81 Of-II dO-bec7 -08002be2092f}

This class includes Serial-IR and Fast-IR NDIS miniports, but see also the Network Adapter
. class for other NDIS NIC mini ports.

Keyboard
Class = Keyboard
ClassGuid = {4d36e96b-e3 25-11 ce-bfc 1-08002be 1 0318 }

This class includes all keyboards. That is, it also must be specified in the (secondary) INF
for an enumerated "child" HID keyboard device.

Medium Changers
Class= MediumChanger
ClassGuid= {ce5939ae-ebde-lldO-bI81-0000f8753ec4}

This class includes drivers of SCSI media changer devices.

Memory Technology Driver
Class = MTD
ClassGUID = {4d36e970-e325-11ce-bfcl-08002bel0318}

This class includes drivers for memory devices, such as flash memory cards.

570 Part 3 Setup

Multimedia
Class = Media
ClassGuid = {4d36e96c-e325-11 ce-bfc 1-08002be 1 0318 }

This class includes Audio and DVD multimedia devices, joystick ports, and full-motion
video-capture devices.

Modem
Class = Modem
ClassGuid = {4d36e96d-e325-11 ce-bfc 1-08002be 1 0318}

This class installs modems. An INF for a device of this class installs no device driver(s), but
rather specifies the features and configuration information of a particular modem and stores
this information in the registry. See also the Multifunction class.

Monitor
Class = Monitor
ClassGuid = {4d36e96e-e325-11 ce-bfc 1-08002be 1 0318}

This class includes display monitors. An INF for a device of this class installs no device
driver(s), but rather specifies the features of a particular monitor to be stored in the registry
for use by drivers of video adapters. (Monitors are enumerated as the child devices of
display adapters.)

Mouse
Class = Mouse
ClassGuid = {4d36e96f-e325-11 ce-bfc 1-08002be 1 0318}

This class includes all mice and other kinds of pointing devices, such as trackballs. That is,
it also must be specified in the (secondary) INF for an enumerated "child" HID mouse
device.

Multifunction Devices
Class = Multifunction
ClassGuid = {4d36e971-e325-11 ce-bfc 1-08002be 1 0318}

This class includes combo cards, such as a PCMCIA modem and netcard adapter. The driver
for such a PnP multifunction device is installed under this class and enumerates the modem
and netcard separately as its "child" devices.

Multi-port Serial Adapters
Class = MultiportSerial
ClassGuid = {50906cb8-ba12-11d1-bf5d-0000f805f530}

Chapter 8 Device Setup Classes 571

This class includes intelligent multiport serial cards, but not peripheral devices that connect
to its ports. It does not include unintelligent (16550-type) mutiport serial controllers or
single-port serial controllers (see the Ports class).

Network Adapter
Class = Net
ClassGuid = {4d36e972-e325-11 ce-bfc 1-08002be 1 0318 }

This class includes NDIS NIC miniports excluding Fast-IR miniports, NDIS intermediate
drivers (of "virtual adapters"), and CoNDIS MCM miniports.

Network Client
Class = NetClient
ClassGuid = {4d36e973-e325-11ce-bfc 1-08002be 1 0318}

This class includes network and/or print providers.

Network Service
Class = N etService
ClassGuid = {4d36e974-e325-11ce-bfc1-08002be10318}

This class includes network services, such as redirectors and servers.

Network Transport
Class = NetTrans
ClassGuid = {4d36e975-e325-11ce-bfc 1-08002be 1 0318}

This class includes NDIS protocols, CoNDIS stand-alone call managers, and CoNDIS
clients, as well as higher level drivers in transport stacks.

PCMCIA Adapters
Class = PCMCIA
ClassGuid = {4d36e977 -e325-11 ce-bfc 1-08002be 1 0318 }

This class includes system-supplied drivers of PCMCIA and CardBus host controllers, but
not drivers of PCMCIA or CardBus peripherals.

572 Part 3 Setup

Ports (COM & LPT serial ports)
Class = Ports
ClassGuid = {4d36e978-e32S-11 ce-bfc 1-08002be 1 0318}

This class includes drivers of serial or parallel port devices, but see also the MultiportSerial
class.

Printer
Class = Printer
ClassGuid = {4d36e979-e32S-11ce-bfc1-08002be10318}

This class includes printers.

SCSI and RAID Controllers
Class = SCSIAdapter
ClassGuid = {4d36e97b-e32S-11 ce-bfc 1-08002be 1 0318}

This class includes SCSI HBA miniports and disk-array controller drivers.

Smart Card Readers
Class = SmartCardReader
ClassGuid = {SOddS230-ba8a-11d1-bfSd-0000f805fS30}

This class includes drivers for smart card readers.

Storage Volumes
Class = Volume
ClassGuid = {71a27cdd-812a-lldO-bec7-08002be2092f}

This class includes storage volumes as defined by the system-supplied logical volume man
ager and class drivers that create device objects to represent storage volumes, such as the
system disk class driver.

System Devices
Class = System
ClassGuid = {4d36e97 d-e32S-11 ce-bfc 1-08002be 1 0318}

This class includes the Windows® 2000 HALs, system bus drivers, the system ACPI driver,
and the system volume-manager driver. It also includes battery drivers and UPS drivers.

Tape Drives
Class = TapeDrive
ClassGuid = {6d807884-7 d21-11 cf-80 1 c-08002be 1 0318 }

This class includes drivers of tape drives, including all tape miniclass drivers.

Chapter 8 Device Setup Classes 573

USB
Class = USB
ClassGuid = {36fege60-e465-llef-8056-444553540000}

This class includes system-supplied (bus) drivers of USB host controllers and drivers of
USB hubs, but not drivers of USB peripherals.

The following classes and GUIDs should not be used to install devices (or drivers) on
Windows 2000 platforms:

Adapter
Class = Adapter
ClassGUID = {4d36e964-e325-llce-bfel-08002beI0318}

This class is obsolete.

APM
Class = APMSupport
ClassGUID = {d45bleI8-e8fa-Ildl-9f77-0000f805f530}

This class is reserved for system use.

Computer
Class = Computer
ClassGUID = {4d36e966-e325-llce-bfel-08002beI0318}

This class is reserved for system use.

Decoders
Class = Decoder
ClassGUID = {6bddlfc2-81 Of-lldO-bee7 -08002be2092f}

This class is reserved for future use.

Global Positioning System
Class = GPS
ClassGUID = {6bddlfe3-810f-lldO-bee7-08002be2092f}

This class is reserved for future use.

No driver
Class = NoDriver
ClassGUID = {4d36e976-e325-llee-bfel-08002beI0318}

This class is obsolete.

574 Part 3 Setup

Non-Plug and Play Drivers
Class = LegacyDriver
ClassGUID = {8ecc055d-047f-11d1-a537-0000f8753ed1}

This class is reserved for system use.

Other Devices
Class = Unknown
ClassGUID = {4d36e97 e-e325-11ce-bfc 1-08002be 1 0318 }

This class is reserved for system use. Enumerated devices for which the system cannot
determine the type are installed under this class. Do not use this class if you're unsure in
which class your device belongs; either determine the correct device setup class or create
a new class.

Printer Upgrade
Class = Printer Upgrade
ClassGUID = {4d36e97 a-e325-11 ce-bfc 1-08002be 1 0318 }

This class is reserved for system use.

Sound
Class = Sound
ClassGUID = {4d36e97 c-e325-11 ce-bfc 1-08002be 1 0318}

This class is obsolete.

575

CHAPTER 9

The txtsetup.oem File Format

During the text-mode setup phase of Windows® 2000 installation, the Setup program installs
drivers for devices that are required to boot the machine. Most of these drivers are included
with the operating system. A vendor can enable users to install an additional driver during
text-mode setup by supplying a txtsetup.oem file on a floppy disk. This chapter describes the
format of a txtsetup.oem file. See the Plug and Play, Power Management, and Setup Design
Guide for an overview of text-mode setup installation and a general discussion of installing
a device required to boot the machine.

A txtsetup.oem file consists of several sections that use the following general format:

[SectionName]
entry = valuel.value2 •...

The name of the section is enclosed in square brackets ([D. A pound sign (#) or semicolon
character (;) at the beginning of a line indicates a comment. Strings with embedded spaces,
commas, or hashes must be enclosed in double quotes (" ").

A txtsetup.oem file must include the following sections:

• A Disks section

See Disks Section of a txtsetup.oem File for further information.

• A Defaults section

See Defaults Section of a txtsetup.oem File for further information.

• One or more HwComponent sections

See HwComponent Section of a txtsetup.oem File for further information.

• One or more Files.HwComponent.ID sections

See Files.HwComponent.lD Section of a txtsetup.oem File for further information.

576 Part 3 Setup

• One or more Conflg.DriverKey sections

See Config.DriverKey Section of a txtsetup.oem File for further information.

A txtsetup.oem file for a PnP mass storage device must also include the following section:

• A HardwareIds.scsi.Service section

See Hardwarelds.scsi.Service Section of a txtsetup.oem File for further information.

Disks Section of a txtsetup.oem File
The Disks section identifies the disks in the device installation kit. This section has the
following format:

[Disks]
diskN = "description" ,tagfile,directory

diskN
Specifies a key that can be used in subsequent sections to identify the disk.

description
Specifies a string containing the name of the disk. Setup uses the description to prompt the
user to insert the disk.

tagfile
Specifies the name of a verification file on the disk. The filename must be specified as a full
path from the root and must not specify a drive. Setup checks for this file to ensure that the
user inserted the correct disk.

directory
Specifies the directory on the disk where the installation files are located. The directory
must be specified as a full path from the root and must not specify a drive.

The following example shows a Disks section for an installation kit with two disks:

[Disks]
diskl "OEM SCSI driver disk l",\disk1.tag,\
disk2 "OEM SCSI driver disk 2",\disk2.tag,\

Chapter 9 The txtsetup.oem File Format 577

Defaults Section of a txtsetup.oem File
The Defaults section lists the default driver(s) for each hardware component supported by
this file. Setup highlights the default selection when it presents a list of drivers to the user.

[Defaults]
component = ID

component
Specifies a hardware component supported by this file. The component must be one of the
following system-defined values: computer or scsi.

10
Specifies a string that identifies the default option. This string matches an ID specified in the
corresponding HwComponent section.

If a txtsetup.oem file fails to define a default driver for a supported component, Setup uses
the first entry in the HWComponent section.

The following example shows a Defaults section (and the HwComponent section) for a
txtsetup.oem file that supports one component (scsi):

[Defaults]
SCSI = oemscsi

[SCSI] ; HWComponent section
oemscs; = "OEM Fast SCSI Controller"
oemscsi2 = "OEM Fast SCSI Controller 2"

HwComponent Section of a txtsetup.oem File
A HwComponent section lists the drivers available for a particular component. There is a
HwComponent section for each type of component supported by the file.

[HwComponent]
ID = description

HwComponent
The name of the section must be one of the following system-defined values: computer
or scsi.

578 Part 3 Setup

ID
Specifies a string, unique within this section, that identifies the option.

For each entry in this section, there must be a corresponding Files.HwComponent.ID· section
in the file.

For the computer component, the last three characters of the string determine which kernel
Setup copies. If this string ends in "_up", Setup copies the uniprocessor kernel. If this string
ends in "_mp", Setup copies the multiprocessor kernel. If the string does not end in "_Xp",
Setup copies one or the other kernel, but does not guarantee which one.

description
Specifies a string that Setup presents to the user in the menu of driver choices.

The following example shows a HwComponent section for a txtsetup.oem file that supports
one component (scsi) and offers two options:

[SCSI] ; HwComponent section
oemscsi = "OEM Fast SCSI Controller"
oemscsi2 = "OEM Fast SCSI Controller 2"

Files.HwComponent.ID Section of a txtsetup.oem File
A Files.HwComponent.ID section lists the files to be copied if the user selects a particular
component option. One of these sections must be present for each option listed in each
HwComponent section.

[Files.HwComponent.ID]
Jiletype = diskN jilename[,DriverKey]

Files. HwComponent. ID
HwComponent corresponds to the name of a HwComponent section in the file. ID corres
ponds to an ID entry in that HwComponent section.

filetype
Identifies the type of the file to be copied. One of these entries is present for each file to be
copied for this HwComponent.ID.

The Jiletype is one of the following system-defined values:

driver
Valid for all components. Setup copies the file to %systemroot%\system32\drivers.

Chapter 9 The txtsetup.oem File Format 579

dll
Valid for all components. Useful for the GDI portion of a display driver. Setup copies the
file to %systemroot%~ystem32.

hal
Valid only for the computer component. Setup copies the file to %systemroot%~ystem32\
hal.dll (for x86) or to \os\winntVzal.dll on the system partition (for non-x86).

inf
Valid for all components. Specifies the regular INF file for the device. This file is used
during GUI-mode setup and for other device maintenance operations. The file is copied to
%systemroot%~ystem32 .

catalog
Valid for drivers. Specifies a catalog file for the device. Not required for any component.
For example, catalog = dl, mydriver.cat. See the WHQL guidelines for more information
on catalog files.

detect
Valid for the computer component (x86 only). If specified, replaces the standard x86
hardware recognizer. Setup copies the file to c:\ntdetect.com.

diskN
Identifies the disk from which to copy the file. This value must match an entry in the Disks
section.

filename
Specifies the name of the file, not including the directory path or drive. To form the full file
name, Setup appends the filename to the directory specified for the disk in the Disks section.

DriverKey
Specifies the name of the key to be created in the registry services tree for this file, if the file
is of type driver. This value is used to form Config.DriverKey section names. This value is
required for components of type scsi.

The following example shows a Files.HwComponent.ID section in a txtsetup.oem file:

[Files.SCSI.oemscsi]
driver = dl.oemfs2.sys.OEMSCSI
inf = dl.oemsetup.inf
dll = dl. oemdrv.dll
catalog = dl. oemdrv.cat

580 Part 3 Setup

Config.DriverKey Section of a txtsetup.oem File
A Config.DriverKey section specifies values to be set in the registry for particular compo
nent options. Setup automatically creates the required values in the Services\DriverKey key.
Use this section to specify additional keys to be created under Services\DriverKey and
values under Services\DriverKey and Services\DriverKey\subkey_name.

[Config.DriverKey]
value = sub key _name, value_name, value_type, value

subkey_name
Specifies the name of a key under the Services\DriverKey tree where Setup places the
specified value. Setup creates the key if it does not exist.

If subkey_name is the empty string (""), the value is placed under the Services\DriverKey.

The subkey _name can specify more than one level of subkey, such as II subkey 1 \subkey2\
subkey3".

value_name
Specifies the name of the value to be set.

value_type
Specifes the type of the registry entry. The value_type can be one of the following:

REG_DWORD
One value is allowed; it must be a string of 1-8 hex digits.

For example:

value = parameters.NumberOfButtons.REG_DWORD.0X2

REG_SZorREG_EXPAND_SZ
One value is allowed; it is interpreted as the zero-terminated string to be stored.

For example:

value = parameters.Description.REG_SZ."This is a text string"

REG_BINARY
One value is allowed; it is a string of hex digits, each pair of which is interpreted as a byte
value.

For example (stores the byte stream OO,34,ec,4d,04,5a):

value = parameters.Data.REG_BINARY.0034eC4D045a

Chapter 9 The txtsetup.oem File Format 581

REG_MUL TI_SZ
Multiple value arguments are allowed; each is interpreted as a component of the MUL TI_SZ
string.

For example:

value = parameters,Strings,REG_MULTI_SZ,Stringl,"String 2",string3

value
Specifies the value; its format depends on value_type.

The following example shows a Config.DriverKey section:

[Config.OEMSCSI]
value = "",tag,REG_DWORD,5
value = parameters\Pnplnterface,5,REG_DWORD,l

Hardwarelds.scsi.Service Section of a txtsetup.oem File
A Hardwarelds.scsi.Service section specifies the hardware IDs of the devices that a
particular mass-storage driver supports.

[Hardwarelds.scsi.Service]
id = "deviceID"," service"

Hardwarelds.scsi. Service
Service specifies the service to be installed.

deviceld
Specifies the device ID for a mass-storage device.

service
Specifies the service to be installed for the device.

The following example excerpt shows a Hardwarelds.scsi.Service section for a disk device:

[Hardwarelds.scsi.oemscsi]
id = "PCI\VEN_9004&DEV_8111","oemscsi"

Here they are
in one place

practica I ,deta lied
explanations of the

Microsoft networking APls!

MICROSOFr" PROGRAMMING SERIES

U.S.A.
U.K.
Canada

Network
Programming

for

$49.99

Anthony Jones and
Jim Ohlund

£46.99 [V.A.T. included]

$74.99

ISBN 0-7356-0560-2

Microsoft Press® products are available worldwide wherever quality
computer books are sold. For more information, contact your book or
computer retailer, software reseller; or local Microsoft® Sales Office, or visit
our Web site at mspress.microsoft.com. To locate your nearest source for
Microsoft Press products, or to order directly, call 1-800-MSPRESS in the
U.S. (in Canada, call 1-800-268-2222).

Prices and availability dates are subject to change.

Microsoft has developed many

exciting networking technologies, but

until now, no single source has

described how to use them with

older, and even some newer, applica

tion programming interfaces (APls).

NETWORK PROGRAMMING FOR

MICROSOFT WINDOWS is the only book

that provides definitive, hands-on

coverage of how to use legacy net

working APls, such as NetBIOS, on

32-bit platforms, plus recent network

ing APls such as Winsock 2 and

Remote Access Service (RAS).

mspress.microsoft.com

II

~,I
ti Learn to write drivers

the easy wa),-
with help from a Windows

Driver Model authority.
MICR06OI'I" PROGRAMMING SIIIlIES . Mictosott"

Programming

~n~ows
Driver

Model

Canada

L'lhe_' i guide to the
I Microsoft Windows
~rlverModel

WalterOney

£32.99 [V.A.T. included]
$74.99

ISBN 0-7356-0588-2

Microsoft Press® products are available worldwide wherever quality
computer books are sold. For more information, contact your book or
computer retailer, software reseller, or local Microsoft Sales Office, or visit
our Web site at mspress.microsoft.com. To locate your nearest source for
Microsoft Press products, or to order directly, call 1-800-MSPRESS in the
U.S. (in Canada, call 1-800-268-2222).

Prices and availability dates are subject to change.

The new driver model for Microsoft
Windows 98 and Windows 2000 supports
Plug and Play, provides po~er management
capabilities, and expands on the driver/
minidriver approach. PROGRAMMING THE
MICROSOFf® WINDOWS® DRIVER MODEL is the
official guide to the Windows Driver Model.
Written by device-driver programming expert
Walter Oney in close cooperation with the
Microsoft Windows DDK team, it provides
extensive practical examples, illustrations,
advice, and line-by-line analysis of
code samples to clarify real-world
programming issues.

mspress.microsoft.com

MICROSOFT LICENSE AGREEMENT
Book Companion CD

IMPORTANT-READ CAREFULLY: This Microsoft End-User License Agreement ("EULA") is a legal agreement between you
(either an individual or an entity) and Microsoft Corporation for the Microsoft product identified above, which includes computer
software and may include associated media, printed materials, and "online" or electronic documentation ("SOFTWARE PROD
UCT'). Any component included within the SOFTWARE PRODUCT that is accompanied by a separate End-User License
Agreement shall be governed by such agreement and not the terms set forth below. By installing, copying, or otherwise using the
SOFTWARE PRODUCT, you agree to be bound by the terms of this EULA.lf you do not agree to the terms of this EULA, you are
not authorized to install, copy, or otherwise use the SOFTWARE PRODUCT; you may, however, return the SOFTWARE PROD
UCT, along with all printed materials and other items that form a part of the Microsoft product that includes the SOFTWARE
PRODUCT, to the place you obtained them for a full refund.

SOFTWARE PRODUCT LICENSE

The SOFTWARE PRODUCT is protected by United States copyright laws and international copyright treaties, as well as other intellec
tual property laws and treaties. The SOFTWARE PRODUCT is licensed, not sold.

1. GRANT OF LICENSE. This EULA grants you the following rights:

a. Software Product. You may install and use one copy of the SOFTWARE PRODUCT on a single computer. The primary user
of the computer on which the SOFTWARE PRODUCT is installed may make a second copy for his or her exclusive use on a
portable computer.

b. StoragelNetwork Use. You may also store or install a copy of the SOFTWARE PRODUCT on a storage device, such as a
network server, used only to install or run the SOFTWARE PRODUCT on your other computers over an internal network;
however, you must acquire and dedicate a license for each separate computer on which the SOFTWARE PRODUCT is installed
or run from the storage device. A license for the SOFTWARE PRODUCT may not be shared or used concurrently on different
computers.

c. License Pak. If you have acquired this EULA in a Microsoft License Pak, you may make the number of additional copies of the
computer software portion of the SOFTWARE PRODUCT authorized on the printed copy of this EULA, and you may use each
copy in the manner specified above. You are also entitled to make a corresponding number of secondary copies for portable
computer use as specified above.

d. Sample Code. Solely with respect to portions, if any, of the SOFTWARE PRODUCT that are identified within the SOFT
WARE PRODUCT as sample code (the "SAMPLE CODE"):

i. Use and Modification. Microsoft grants you the right to use and modify the source code version of the SAMPLE CODE,
provided you comply with subsection (d) (iii) below. You may not distribute the SAMPLE CODE, or any modified version
of the SAMPLE CODE, in source code form.

ii. Redistributable Files. Provided you comply with subsection (d) (iii) below, Microsoft grants you a nonexclusive, royalty
free right to reproduce and distribute the object code version of the SAMPLE CODE and of any modified SAMPLE CODE,
other than SAMPLE CODE, or any modified version thereof, designated as not redistributable in the Readme file that forms
a part of the SOFTWARE PRODUCT (the "Non-Redistributable Sample Code"). All SAMPLE CODE other than the Non
Redistributable Sample Code is collectively referred to as the "REDISTRIBUTABLES."

iii. Redistribution Requirements. If you redistribute the REDISTRIBUTABLES, you agree to: (i) distribute the
REDISTRIBUTABLES in object code form only in conjunction with and as a part of your software application product;
(ii) not use Microsoft's name, logo, or trademarks to market your software application product; (iii) include a valid
copyright notice on your software application product; (iv) indemnify, hold harmless, and defend Microsoft from and
against any claims or lawsuits, including attorney's fees, that arise or result from the use or distribution of your software
application product; and (v) not permit further distribution of the REDISTRIBUTABLES by your end user. Contact
Microsoft for the applicable royalties due and other licensing terms for all other uses and/or distribution of the
REDISTRIBUTABLES.

2. DESCRIPTION OF OTHER RIGHTS AND LIMITATIONS.

• Limitations on Reverse Engineering, Decompilation, and Disassembly. You may not reverse engineer, decompile, or
disassemble the SOFfW ARE PRODUCT, except and only to the extent that such activity is expressly permitted by applicable
law notwithstanding this limitation.

• Separation of Components. The SOFTWARE PRODUCT is licensed as a single product. Its component parts may not be
separated for use on more than one computer.

• Rental. You may not rent, lease, or lend the SOFfW ARE PRODUCT.

• Support Services. Microsoft may, but is not obligated to, provide you with support services related to the SOFTWARE
PRODUCT ("Support Services"). Use of Support Services is governed by the Microsoft policies and programs described in the
user manual, in "online" documentation, and/or in other Microsoft-provided materials. Any supplemental software code
provided to you as part of the Support Services shall be considered part of the SOFTWARE PRODUCT and subject to the terms
and conditions of this EULA. With respect to technical information you provide to Microsoft as part of the Support Services,
Microsoft may use such information for its business purposes, including for product support and development. Microsoft will
not utilize such technical information in a form that personally identifies you.

• Software Transfer. You may permanently transfer all of your rights under this EULA, provided you retain no copies, you
transfer all of the SOFTWARE PRODUCT (including all component parts, the media and printed materials, any upgrades, this
EULA, and, if applicable, the Certificate of Authenticity), and the recipient agrees to the terms of this EULA.

• Termination. Without prejudice to any other rights, Microsoft may terminate this EULA if you fail to comply with the terms
and conditions of this EULA. In such event, you must destroy all copies of the SOFTWARE PRODUCT and all of its
component parts.

3. COPYRIGHT. All title and copyrights in and to the SOFTWARE PRODUCT (including but not limited to any images,
photographs, animations, video, audio, music, text, SAMPLE CODE, REDISTRIBUTABLES, and "applets" incorporated into the
SOFTWARE PRODUCT) and any copies of the SOFTWARE PRODUCT are owned by Microsoft or its suppliers. The SOFT
WARE PRODUCT is protected by copyright laws and international treaty provisions. Therefore, you must treat the SOFTWARE
PRODUCT like any other copyrighted material except that you may install the SOFTWARE PRODUCT on a single computer
provided you keep the original solely for backup or archival purposes. You may not copy the printed materials accompanying the
SOFTWARE PRODUCT.

4. U.S. GOVERNMENT RESTRICTED RIGHTS. The SOFTWARE PRODUCT and documentation are provided with
RESTRICTED RIGHTS. Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph
(c)(l)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 or subparagraphs (c)(1) and (2)
of the Commercial Computer Software-Restricted Rights at 48 CFR 52.227-19, as applicable. Manufacturer is Microsoft
Corporation/One Microsoft Way/Redmond, WA 98052-6399.

5. EXPORT RESTRICTIONS. You agree that you will not export or re-export the SOFTWARE PRODUCT, any part thereof, or
any process or service that is the direct product of the SOFTWARE PRODUCT (the foregoing collectively referred to as the
"Restricted Components"), to any country, person, entity, or end user subject to U.S. export restrictions. You specifically agree not
to export or re-export any of the Restricted Components (i) to any country to which the U.S. has embargoed or restricted the export
of goods or services, which currently include, but are not necessarily limited to, Cuba, Iran, Iraq, Libya, North Korea, Sudan, and
Syria, or to any national of any such country, wherever located, who intends to transmit or transport the Restricted Components
back to such country; (ii) to any end user who you know or have reason to know will utilize the Restricted Components in the
design, development, or production of nuclear, chemical, or biological weapons; or (iii) to any end user who has been prohibited
from participating in U.S. export transactions by any federal agency of the U.S. government. You warrant and represent that
neither the BXA nor any other U.S. federal agency has suspended, revoked, or denied your export privileges.

DISCLAIMER OF WARRANTY

NO WARRANTIES OR CONDITIONS. MICROSOFT EXPRESSLY DISCLAIMS ANY WARRANTY OR CONDmON FOR THE
SOFTWARE PRODUCT. THE SOFTWARE PRODUCT AND ANY RELATED DOCUMENTATION ARE PROVIDED "AS IS"
WITHOUT WARRANTY OR CONDITION OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITA
TION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
NONINFRINGEMENT. THE ENTIRE RISK ARISING OUT OF USE OR PERFORMANCE OF THE SOFTWARE PRODUCT
REMAINS WITH YOU.

LIMITATION OF LIABILITY. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL
MICROSOFT OR ITS SUPPLIERS BE LIABLE FOR ANY SPECIAL, INCIDENTAL, INDIRECT, OR CONSEQUENTIAL DAM
AGES WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS
INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR ANY OTHER PECUNIARY LOSS) ARISING OUT OF THE USE OF
OR INABILITY TO USE THE SOFTWARE PRODUCT OR THE PROVISION OF OR FAILURE TO PROVIDE SUPPORT
SERVICES, EVEN IF MICROSOFT HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN ANY CASE,
MICROSOFT'S ENTIRE LIABILITY UNDER ANY PROVISION OF THIS EULA SHALL BE LIMITED TO THE GREATER OF
THE AMOUNT ACTUALLY PAID BY YOU FOR THE SOFTWARE PRODUCT OR US$5.00; PROVIDED, HOWEVER, IF YOU
HAVE ENTERED INTO A MICROSOFT SUPPORT SERVICES AGREEMENT, MICROSOFT'S ENTIRE LIABILITY REGARDING
SUPPORT SERVICES SHALL BE GOVERNED BY THE TERMS OF THAT AGREEMENT. BECAUSE SOME STATES AND
JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION Of LIABILITY, THE ABOVE LIMITATION MAY NOT
APPLY TO YOu.

MISCELLANEOUS

This EULA is governed by the laws of the State of Washington USA, except and only to the extent that applicable law mandates govern
ing law of a different jurisdiction.

Should you have any questions concerning this EULA, or if you desire to contact Microsoft for any reason, please contact the Microsoft
subsidiary serving your country, or write: Microsoft Sales Information Center/One Microsoft Way/Redmond, WA 98052-6399.

PN 097-0002296

Proof of Purchase 0-7356-0929-~

Do not send this card with your registration.
Use this card as proof of purchase if participating in a promotion or

rebate offer on Microsoft® Windows® 2000 Driver Development Kit. Card must be
used in cOnjunction with other proof(s) of payment such as your dated sales

receipt-see offer details.

Microsoft® Windows® 2000 Driver Development Kit

WHERE DID YOU PURCHASE THIS PRODUCT?

CUSTOMER NAME

mspress.microsoft.com
Microsoft Press, PO Box 97017, Redmond, WA 98073-9830

-----~-------------------------------

I
I

OWNER REGISTRATION CARD Register Today! 0-7356-0929-2

Return the bottom portion of this card to register today.

Microsoft® Windows® 2000 Driver Development Kit

FIRST NAME MIDDLE INITIAL LAST NAME

INSTITUTION OR COMPANY NAME

ADDRESS

CITY STATE ZIP

()
E·MAIL ADDRESS PHONE NUMBER

U.S. and Canada addresses only. Fill in information above and mail postage-free.
Please mail only the bottom half of this page.

For information about Microsoft Press ®

products, visit our Web site at

mspress.microsoft.com

.-------------------------------~-----~

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 108 REDMOND WA

POSTAGE WILL BE PAID BY ADDRESSEE

MICROSOFT PRESS
PO BOX 97017
REDMOND, WA 98073-9830

11.1111111.111111.111 •• 11.1.111111111111.11.111111.1

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Part No. 097-0002733

Driver Development
Reference Volume 1

The essential reference to Plug and Play, power
management, setup, and kernel-mode drivers

Developing reliable drivers- the most essential part of any
operating system-requires good documentation. Open
this volume to get complete, authoritative reference
information about Plug and Play, power-management, and
setup driver support in Windows 2000.

mspress.microsoft.com

.icl'OSott~

