
MICROSO~ PROFESSIONAL EDITIONS

"'icrosott~

The comprehensive, must-have reference for
anyone who develops drivers for Windows 2000

Driver Development
Reference

, Volume 2

Driver Development
. Reference

Volume 2

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2000 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form
or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data pending.

Printed and bound in the United States of America.

2 3 4 5 6 7 8 9 WCWC 5 4 3 2 1 0

Distributed in Canada by Penguin Books Canada Limited.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further informa
tion about international editions, contact your local Microsoft Corporation office or contact Microsoft
Press International directly at fax (425) 936-7329. Visit our Web site at mspress.microsoft.com.

Macintosh and TrueType fonts are registered trademarks of Apple Computer, Inc. Kodak is a registered
trademark of Eastman Kodak Company. ActiveX, BackOffice, Direct3D, DirectAnimation, DirectDraw,
Directlnput, DirectMusic, DirectPlay, DirectShow, DirectSound, DirectX, JScript, Microsoft, Microsoft
Press, MS-DOS, MSN, Natural, NetShow, Visual Basic, Visual C++, WebTV, Win32, Win32s, Windows,
and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries. All rights reserved. Other product and company names mentioned herein may
be the trademarks of their respective owners.

The example companies, organizations, products, people, and events depicted herein are fictitious. No
association with any real company, organization, product, person, or event is intended or should be inferred.

Acquisitions Editor: Ben Ryan
P~oject Management and Production: Online Training Solutions, Inc.
Project Editor: John Pierce

Acknowledgments to: the Microsoft Corporation Windows 2000 Team

Part No. 097-0002734

iii

Contents

Part 1 Kernel·Mode Support Routines ... 1

Chapter 1 Summary of Kernel·Mode Support Routines 3
Initialization and Unload ... 4

IRPs .. 14

Synchronization ... 21

Memory .. 32

DMA .. 41

PIO ... 43

Driver-Managed Queues .. 44

Driver System Threads .. 46

Strings .. 47

Data Conversions ... 49

Access to Driver-Managed Objects ... 50

Error Handling ... 52

Chapter 2 Executive Support Routines .. 55
ExAcquireFastMutex ... 55

ExAcquireFastMutexUnsafe .. 56

ExAcquireResourceExc1usive .. 57

ExAcquireResourceExc1usiveLite ... 57

ExAcquireResourceShared .. 58

ExAcquireResourceSharedLite .. 58

ExAcquireSharedStarveExc1usive ... 60

ExAcquireSharedW aitForExc1usi ve .. 61

ExAllocateFromNPagedLookasideList ; .. 63

ExAllocateFromPagedLookasideList .. 64

ExAllocateFromZone ... 65

iv Windows 2000 Driver Development Reference, Volume 2

ExAllocatePool ... 65

ExAllocatePoolWithQuota ... 66

ExAllocatePoolWithQuotaTag ... 67

ExAllocatePoolWithTag ... 69

ExAllocatePoolWithTagPriority .. 70

ExConvertExclusiveToShared ... 71

ExConvertExclusiveToSharedLite ... 72

ExCreateCallback ... 72

ExDeleteNPagedLookasideList .. 74

ExDeletePagedLookasideList. .. 75

ExDeleteResource .. 75

ExDeleteResourceLite .. 76

ExExtendZone .. 76

ExFreePool ... 77

ExFreeToNPagedLookasideList. .. 77

ExFreeToPagedLookasideList ... 78

ExFreeToZone .. 80

ExGetCurrentResourceThread ... 80

ExGetExclusiveWaiterCount ... 80

ExGetPreviousMode .. 81

ExGetSharedWaiterCount .. 82

ExlnitializeFastMutex .. 83

ExlnitializeNPagedLookasideList .. 84

ExlnitializePagedLookasideList. .. 87

ExlnitializeResource .. , 89

ExlnitializeResourceLite .. 90

ExlnitializeSListHead .. 91

Exlnitialize W orkItem ... 92

ExlnitializeZone ... 92

ExlnterlockedAddLargelnteger .. 92

ExlnterlockedAddLargeStatistic .. 94

ExlnterlockedAddUlong ... 94

ExlnterlockedAllocateFrornZone ... 96

ExlnterlockedCompareExchange64 ... 96

ExlnterlockedDecrementLong ... 97

ExlnterlockedExchangeAddLargelnteger .. 97

Contents v

ExInterlockedExchangeUlong ... 98

ExInterlockedExtendZone ... 99

ExInterlockedFlushSList ... 99

ExInterlockedFreeToZone ... 100

ExInterlockedIncrementLong .. 100

ExInterlockedInsertHeadList ... 100

ExInterlockedInsertTailList ... 101

ExInterlockedPopEntryList ... 103

ExInterlockedPopEntrySList ... 104

ExInterlockedPushEntryList .. 105

ExInterlockedPushEntrySList. ... 107

ExInterlockedRemoveHeadList ... 108

ExIsFullZone ... 109

ExIsObjectInFirstZoneSegment.. ... 109

ExIsProcessorFeaturePresent. .. 109

ExIsResourceAcquiredExclusi ve ... 110

ExIsResourceAcquiredExclusiveLite .. 111

ExIsResourceAcquiredSharedLite ... 111

ExLocaITimeToSystemTime ... 112

ExNotifyCallback .. 113

ExQueryDepthSList ... 114

ExQueue WorkItem .. 114

ExRaiseAccessViolation .. 115

ExRaiseDatatypeMisalignment ... 115

ExRaiseStatus .. 116

ExRegisterCallback ... 116

ExReinitializeResourceLite ... 119

ExReleaseFastMutex ... 120

ExReleaseFastMutexUnsafe .. 120

ExReleaseResource .. 121

ExReleaseResourceForThread ... 121

ExReleaseResourceForThreadLite .. 122

ExReleaseResourceLite ... 122

ExSetResourceOwnerPointer ... 123

ExSetTimerResolution ... 124

ExSystemTimeToLocaITime ... 124

vi Windows 2000 Driver Development Reference, Volume 2

ExTryToAcquireFastMutex ... 125

ExTryToAcquireResourceExc1usiveLite .. 126

ExUnregisterCallback .. 127

ExUuidCreate ... 127

InterlockedCompareExchange ... 128

InterlockedCompareExchangePointer .. 129

InterlockedDecrement .. 130

InterlockedExchange .. 131

InterlockedExchangeAdd ... 132

InterlockedExchangePointer ... 133

InterlockedIncrement .. 134

PAGED_CODE .. 135

ProbeForRead ... 135

ProbeForWrite .. 136

Chapter 3 Hardware Abstraction Layer Routines 139
AllocateAdapterChannel .. 139

AllocateCommonBuffer ... 141

FlushAdapterBuffers .. 143

FreeAdapterChannel. .. 145

FreeCommonBuffer .. 146

FreeMapRegisters ... 147

GetDmaAlignment ... 148

GetScatterGatherList .. 149

HalAllocateCommonBuffer ... 151

HalAssignSlotResources .. 151

HalExamineMBR ... 152

HalFreeCommonBuffer .. 153

HaIGetAdapter .. 153

HaIGetBusData ... 153

HalGetBusDataByOffset .. 154

HalGetDmaAlignmentRequirement ... 154

HaIGetInterruptVector .. 154

HalReadDmaCounter ... 155

HalSetBusData ... 155

HalSetBusDataByOffset ... 157

Contents vii

HalTranslateBusAddress ... 157

MapTransfer .. 158

PutDmaAdapter ... 160

PutScatterGatherList .. 160

ReadDmaCounter ... 162

READ_PORT_BUFFER_UCHAR ... 163

READ_PORT_BUFFER_ULONG ... 163

READ_PORT_BUFFER_USHORT ... 164

READ_PORT_UCHAR .. 165

READ_PORT_ULONG .. 165

READ_PORT_USHORT .. 166

READ_REGISTER_BUFFER_UCHAR .. 167

READ_REGISTER_BUFFER_ULONG .. 167

READ_REGISTER_BUFFER_USHORT .. 168

READ_REGISTER_UCHAR ... 169

READ_REGISTER_ULONG ... 169

READ_REGISTER_USHORT ... 170

WRITE_PORT_BUFFER_UCHAR .. 171

WRITE_PORT_BUFFER_ULONG .. 171

WRITE_PORT_BUFFER_USHORT .. 172

WRITE_PORT_UCHAR ... 173

WRITE_PORT_ULONG ... 173

WRITE_PORT_USHORT ... 174

WRITE_REGISTER_BUFFER_UCHAR ... 175

WRITE_REGISTER_BUFFER_ULONG ... 175

WRITE_REGISTER_BUFFER_USHORT ... 176

WRITE_REGISTER_UCHAR .. 177

WRITE_REGISTER_ ULONG .. 177

WRITE_REGISTER_USHORT .. 178

Chapter 4 1/0 Manager Routines ... 179
IoAcquireCancelSpinLock. .. 179

IoAcquireRemoveLock .. 180

IoAcquireRemoveLockEx ... 180

IoAdjustPagingPathCount ... 180

IoAllocateAdapterChannel .. 180

viii Windows 2000 Driver Development Reference, Volume 2

IoAssignArcName .. 181

IoAssignResources ... 182

IoAttachDevice ... 185

IoAttachDeviceByPointer ... 186

IoAttachDeviceToDeviceStack .. 186

IoBuildAsynchronousFsdRequest .. 188

IoBuildDeviceIoControlRequest .. 189

IoBuildPartialMdl ... 191

IoBuildSynchronousFsdRequest .. 193

IoCallDriver .. 195

IoCancelIrp ... 196

IoCheckShareAccess .. 197

IoCornpleteRequest .. 198

IoConnectInterrupt ... 199

IoCopyCurrentIrpStackLocationToNext .. 202

IoCreateController .. 203

IoCreateDevice ... 204

IoCreateFile .. 207

IoCreateN otificationEvent.. .. 217

IoCreateSyrnbolicLink ... 218

IoCreateSynchronizationEvent.. ... 219

IoCreateUnprotectedSyrnbolicLink .. 220

IoDeassignArcN arne .. 221

IoDeleteController .. 222

IoDeleteDevice ... 223

IoDeleteSyrnbolicLink ... 224

IoFreeAdapterChannel ... 224

IoFreeController ... 224

IoFreeIrp ... 225

IoFreeMapRegisters ... 226

IoFreeMdl ... 226

IoFree W orkItern ... 227

IoGetAttachedDeviceReference ... 228

IoGetBootDiskInformation ... 228

IoGetConfigurationInformation ... 229

IoGetCurrentlrpStackLocation ... 231

Contents ix

loGetCurrentProcess .. 232

loGetDevicelnterfaceAlias .. 232

loGetDevicelnterfaces ... 232

loGetDeviceObjectPointer ... 233

loGetDeviceProperty ... 234

loGetDeviceTo Verify .. 234

loGetDmaAdapter .. 235

loGetDriverObjectExtension ... : 237

loGetFileObjectGenericMapping .. 237

loGetFunctionCodeFromCtlCode .. 238

loGetlnitiaIStack .. 239

loGetNextlrpStackLocation ... 239

loGetRelatedDeviceObject .. 240

loGetRemainingStackSize ... 241

loGetStackLimits ... 242

lolnitializeDpcRequest .. 243

lolnitializelrp ... 244

lolnitializeRemoveLock .. 245

lolnitializeRemoveLockEx .. 245

lolnitializeTimer .. 245

lolnvalidateDeviceRelations .. 246

lolnvalidateDeviceState ... 246

lolsErrorUserlnduced .. 246

loIs W dm V ersionA vailable .. 247

loMakeAssociatedlrp ... 248

loMapTransfer ... 249

loMarkIrpPending .. 251

loOpenDevicelnterfaceRegistryKey .. 252

loOpenDeviceRegistryKey .. 252

loQueryDeviceDescription .. 252

loQueueWorkItem ... 255

loRaiseHardError ... 257

loRaiselnformationalHardError ... 258

loReadPartitionTable .. 260

loRegisterDevicelnterface ... 262

loRegisterDriverReinitialization .. 262

x Windows 2000 Driver Development Reference, Volume 2

10RegisterPlugPlay Notification .. 263

10RegisterShutdownNotification .. 263

10ReleaseCanceISpinLock. ... 264

10ReleaseRemoveLock ... 265

10ReleaseRemoveLockEx .. 265

10ReleaseRemoveLockAndWait .. 265

10ReleaseRemoveLockAndWaitEx .. 265

10RemoveShareAccess ... 266

10ReportDetectedDevice .. 266

10ReportResourceForDetection .. 267

10ReportResourceU sage ... 267

10ReportTargetDeviceChange .. 269

10ReportTargetDeviceChangeAsynchronous ... 270

10RequestDeviceEject .. 270

10RequestDpc ... 270

10Reuselrp .. 271

10SetCanceIRoutine .. 271

10SetCompletionRoutine .. 273

10SetDevicelnterfaceState .. 274

10SetHardErrorOrVerifyDevice ... 275

10SetNextlrpStackLocation .. 275

10SetPartitionlnformation ... 276

10SetShareAccess ... 278

10SetThreadHardErrorMode ... 279

10SizeOfirp ... 280

10SkipCurrentlrpStackLocation ... 281

10StartNextPacket. .. 281

10StartNextPacketByKey ... 282

10StartPacket .. 283

10StartTimer ... 284

10StopTimer .. 285

IoU nregisterPlugPlay Notification .. 286

10UnregisterShutdownNotification .. 286

10UpdateShareAccess ... 287

10 WMIAllocatelnstancelds .. 288

10 WMIDeviceObjectToProviderId ... 289

Contents xi

10 WMIRegistrationControl. ... 290

10 WMISuggestlnstanceN arne .. 291

10WMIWriteEvent ... 292

10WriteErrorLogEntry ... 294

10WritePartitionTable .. 294

Chapter 5 Kernel Routines .. 297
KeAcquireSpinLock .. 297

KeAcquireSpinLockAtDpcLevel.. ... 298

KeBugCheck .. 299

KeBugCheckEx ... 300

KeCancelTirner .. 301

KeClearEvent ... 301

KeDelayExecutionThread .. 302

KeDeregisterBugCheckCallback ... 305

KeEnterCriticaIRegion ... 306

KeFlushloBuffers .. 306

KeGetCurrentlrql ... 307

KeGetCurrentProcessorNurnber .. 307

KeGetCurrentThread ... 308

KeGetDcacheFiIISize ... 309

KelnitializeCallbackRecord ... 309

KelnitializeDeviceQueue ... 310

KelnitializeDpc .. 310

KelnitializeEvent ... 311

KelnitializeMutex .. 313

KelnitializeSernaphore ... 314

KelnitializeSpinLock ... 315

KelnitializeTirner ... 315

KelnitializeTirnerEx .. 316

KelnsertByKeyDeviceQueue ... 317

KelnsertDeviceQueue .. 318

KelnsertQueueDpc ... 319

KeLeaveCriticalRegion ... 320

KeLowerlrq1 .. 321

KePulseEvent .. ~ 321

xii Windows 2000 Driver Development Reference, Volume 2

KeQuerylnterruptTime ... 322

KeQueryPerformanceCounter .. 323

KeQuery PriorityThread .. 324

KeQuerySystemTime ... 325

KeQueryTickCount .. 326

KeQueryTimelncrement ... 326

KeRaiselrql. .. 327

KeRaiselrqIToDpcLevel. .. 328

KeReadStateEvent .. 328

KeReadStateMutex ... 329

KeReadStateSemaphore ... 330

KeReadStateTimer ... 330

KeRegisterBugCheckCallback ... 331

KeReleaseMutex .. 333

KeReleaseSemaphore ... 334

KeReleaseSpinLock ... 335

KeReleaseSpinLockFromDpcLevel ... 336

KeRemoveBy KeyDeviceQueue ... 337

KeRemoveDeviceQueue .. 338

KeRemoveEntryDeviceQueue ... 339

KeRemoveQueueDpc ... 340

KeResetEvent ... 340

KeRestoreFloatingPointState ... 341

KeSaveFloatingPointState .. 342

KeSetBasePriorityThread ... 343

KeSetEvent ... 344

KeSetlmportanceDpc ... 346

KeSetTargetProcessorDpc .. 347

KeSetPriorityThread ... 348

KeSetTimer .. 349

KeSetTimerEx .. 351

KeStallExecutionProcessor .. 353

KeSynchronizeExecution ... 353

Ke WaitForMultipleObjects .. 355

Ke WaitForMutexObject ... 359

Ke WaitForSingleObject ... 362

Contents xiii

Chapter 6 Memory Manager Routines .. 367
ADDRESS_AND_SIZE_TO_SPAN_PAGES .. 367

ARGUMENT_PRESENT ... 368

BYTE_OFFSET .. 369

BYTES_TO_PAGES ... 369

COMPUTE_PAGES_SPANNED ... 370

CONTAINING_RECORD .. 370

FIELD_OFFSET .. 371

MmAllocateContiguousMemory ... 372

MmAllocateContiguousMemorySpecifyCache 373

MmAllocateNonCachedMemory ... 374

MmAllocatePagesForMdl .. 375

MmBuildMdIForNonPagedPool .. 377

MmCreateMdl. ... 378

MmFreeContiguousMemory ... 378

MmFreeContiguousMemorySpecifyCache ... 379

MmFreeNonCachedMemory ... 379

MmFreePagesFromMdl ... 380

MmGetMdIByteCount ... 381

MmGetMdIByteOffset ... 381

MmGetMdlPfnArray ... 382

MmGetMdlVirtualAddress .. 383

MmGetPhysicalAddress .. 384

MmGetSystemAddressForMdl .. 384

MmGetSystemAddressForMdlSafe ... 385

MmInitializeMdl .. 387

MmIsAddressValid , ... 388

MmIsN onPagedSystemAddress Valid .. 388

MmIsThisAnNtAsSystem .. 389

MmLockPagableCodeSection ... 389

MmLockPagableDataSection .. 393

MmLockPagableSectionByHandle .. 394

MmMaploSpace ... 396

MmMapLockedPages .. 397

MmMapLockedPagesSpecifyCache .. 398

xiv Windows 2000 Driver Development Reference, Volume 2

MmPageEntireDriver ... 399

MmResetDriverPaging ' ... 400

MmPrepareMdlForReuse ... 401

MmProbeAndLockPages ... , 401

MmQuerySystemSize ... 402

MmSizeOfMdl. ... 403

MmUnlockPages .. 404

MmUnlockPagableImageSection ... 404

MmUnmapIoSpace ... 406

MmUnmapLockedPages .. 406

PAGE_ALIGN ... 407

ROUND_TO_PAGES .. 408

Chapter 7 Object Manager Routines .. 409
ObDereferenceObject ... 409

ObGetObjectSecurity ... 410

ObReferenceObject .. 411

ObReferenceObjectByHandle .. 412

ObReferenceObjectByPointer .. 414

ObReleaseObjectSecurity ... 415

Chapter 8 Process Structure Routines .. 417
PsCreateSystemThread ... 417

PsGetCurrentProcess .. 419

PsGetCurrentProcessId ... 419

PsGetCurrentThread ... 420

PsGetCurrentThreadId .. 420

PsGetVersion .. 421

PsSetCreateProcessN otify Routine ... 422

PsSetCreateThreadNotifyRoutine .. 424

PsSetLoadImageN otify Routine .. 425

PsTerminateSystemThread ... 427

Chapter 9 Run-time Library Routines .. 429
InitializeListHead ... 429

InitializeObjectAttributes ... 430

InsertHeadList .. 431

Contents xv

InsertTailList. ... 432

IsListEmpty .. 433

PopEntryList .. 434

PushEntryList .. 434

RemoveEntryList ... 435

RemoveHeadList ... 436

RemoveTailList ... 437

RtlAnsiStringToUnicodeSize .. 437

RtlAnsiStringToUnicodeString ... 438

RtlAppendUnicodeStringToString .. 439

RtlAppendUnicodeToString .. 440

RtlAreBitsClear ... 441

RtlAreBitsSet ... 442

RtlCharTolnteger ... 443

RtlCheckBit '" ... 444

RtlCheckRegistryKey .. 445

RtlClearAIIBits .. 446

RtlClearBits ... 447

RtlCompareMemory .. 448

RtlCompareString .. 448

RtlCompareUnicodeString '" 449

RtlConvertLongToLargelnteger .. 450

RtlConvertLongToLuid ... 451

RtlConvertUlongToLargelnteger ... 452

RtlConvertUlongToLuid .. 452

RtlCopyBytes .. 453

RtlCopyMemory .. 454

RtlCopyMemory32 .. 455

RtlCopyString .. 455

RtlCopyUnicodeString ... 456

RtlCreateRegistry Key .. 457

RtlCreateSecurityDescriptor .. 458

RtlDeleteRegistryValue ... 459

RtlEnlargedlntegerMultiply ... 461

RtlEnlargedU nsignedDi vide .. 461

RtlEnlargedUnsignedMultiply ... 461

xvi Windows 2000 Driver Development Reference, Volume 2

RtlEqualLuid .. 461

RtlEqualMemory .. 462

RtlEqualString .. 463

RtlEqualUnicodeString .. 464

RtlExtendedIntegerMultiply ... 465

RtlExtendedLargeIntegerDivide ... 465

RtlExtendedMagicDivide ... 465

RtlFillBytes .. 465

RtlFillMemory .. 466

RtlFindClearB its ... 466

RtlFindClearBitsAndSet ... 468

RtlFindClearRuns ... 469

RtlFindFirstRunClear ... 470

RtlFindLastBackwardRunClear ... 471

RtlFindLeastSignificantBit.. ... 472

RtlFindMostSignificantBit .. 473

RtlFindLongestRunClear .. 473

RtlFindNextForwardRunClear ... 474

RtlFindSetBits .. 475

RtlFindSetBitsAndClear ... 476

RtIFreeAnsiString ... 477

RtlFree UnicodeString ... 478

RtIGetVersion ... 479

RtIGUIDFromString ... 480

RtlInitAnsiString .. 480

RtlInitializeBitMap ... 481

RtlInitString .. 482

RtlInitUnicodeString .. 483

RtlInt64ToUnicodeString ... 484

RtlIntegerToUnicodeString .. 485

RtlIntPtrToUnicodeString .. 486

RtILargeIntegerAdd .. 487

RtILargeIntegerAnd .. 487

RtlLargeIntegerArithmeticShift ... 487

RtILargeIntegerDivide .. 488

RtlLargeIntegerEqualTo ... 488

Contents xvii

RtlLargelntegerEqualToZero ... 488

RtlLargelntegerGreaterThan .. 488

RtlLargelntegerGreaterThanOrEqualTo .. 489

RtlLargelntegerGreaterOrEqualToZero .. 489

RtlLargelntegerGreaterThanZero .. 489

RtlLargelntegerLessThan .. 489

RtlLargelntegerLessThanOrEqualTo .. 490

RtlLargelntegerLessOrEqualToZero '" 490

RtlLargelntegerLessThanZero ... 490

RtlLargelntegerNegate ... 490

RtlLargelntegerNotEqualTo .. 491

RtlLargelntegerNotEqualToZero ... 491

RtlLargelntegerShiftLeft ... 491

RtlLargelntegerShiftRight ... 491

RtlLargelntegerSubtract. .. 492

RtlLengthSecurityDescriptor , ... 492

RtlMoveMemory ... '" 493

RtlNumberOfClearBits .. '" 493

RtlNumberOfSetBits .. 494

RtlPrefixUnicodeString ... 495

RtlQueryRegistryValues .. 496

RtlRetrieveUlong ... 500

RtlRetrieveUshort .. 501

RtlSetAIIBits .. 502

RtlSetBits ... 503

RtlSetDaclSecurity Descriptor .. 504

RtlStoreUlong .. 505

RtlStoreUlonglong ... 506

RtlStoreUlongPtr ... 506

RtlStoreUshort ... 507

RtlStringFromGUID .. 508

RtlTimeFieldsToTime ... 509

RtlTimeToTimeFields ... 510

RtlUlongByteSwap .. 511

RtlUlonglongByteSwap ... 512

RtlUnicodeStringToAnsiSize .. 512

xviii Windows 2000 Driver Development Reference, Volume 2

RtlUnicodeStringToAnsiString .. 513

RtlUnicodeStringTolnteger .. 514

RtlUpcaseUnicodeChar .. 515

RtlUpcaseUnicodeString .. 516

RtlUpperChar ... 517

RtlUpperString ... 517

RtlU shortByteSwap .. 518

RtlValidSecurityDescriptor .. 519

RtlVerify Versionlnfo ... 519

RtlVolurneDeviceToDosN arne ... 523

RtIWriteRegistryValue ... 523

RtlxUnicodeStringToAnsiSize ... 525

RtlZeroBytes .. 526

RtlZeroMernory .. 526

Chapter 10 Security Reference Monitor Routines 527
SeAccessCheck .. 527

SeAssignSecurity .. 529

SeAssignSecurityEx ... 531

SeDeassignSecurity .. 535

SeSinglePrivilegeCheck ... 536

SeValidSecurityDescriptor ... 537

Chapter 11 ZwXxx Routines .. 539
ZwClose ... 539

ZwCreateDirectoryObject .. 540

ZwCreateFile .. 542

ZwCreateKey .. 552

ZwDeleteKey .. 554

ZwEnurnerateKey ... 555

ZwEnurnerateValueKey ... 557

ZwFlushKey ... 559

ZwMakeTernporaryObject ... 559

ZwMap ViewOfSection ... 560

ZwOpenFile .. 562

ZwOpenKey ... 564

ZwOpenSection .. 565

Contents xix

ZwOpenSymbolicLinkObject .. 566

ZwQueryInformationFile ... 567

ZwQueryKey ... 569

ZwQuerySymbolicLinkObject.. ... 571

ZwQueryValueKey .. 572

ZwReadFile .. 574

ZwSetInformationFile .. 577

ZwSetInformationThread ... 579

ZwSetValueKey ... 580

ZwUnmap View Of Section ... 582

ZwWriteFile ... 584

Chapter 12 System Structures .. 587
ANSI_STRING .. 587

CM_EISA_FUNCTION_INFORMATION .. 588

CM_EISA_SLOT_INFORMATION .. 591

CM_FLOPPY_DEVICE_DATA ... 592

CM_FULL_RESOURCE_DESCRIPTOR .. 595

CM_INT13_DRIVE_PARAMETER .. 595

CM_KEYBOARD':"DEVICE_DATA ... 596

CM_MCA_POS_DATA .. 597

CM_P ARTIAL_RESOURCE_DESCRIPTOR 598

CM_PARTIAL_RESOURCE_LIST ... 604

CM_RESOURCE_LIST .. 604

CM_SCSI_DEVICE_DATA' ... 605

CM_SERIAL_DEVICE_DATA .. 606

CONTROLLER_OBJECT .. 607

DEVICE_DESCRIPTION ... 608

DEVICE_OBJECT .. 610

DMA_ADAPTER .. 613

DMA_OPERATIONS ... 614

DRIVER_OBJECT .. 616

FILE_ALIGNMENT_INFORMATION ... 619

FILE_BASIC_INFORMATION ... 619

FILE_DISPOSITION_INFORMATION .. 620

FILE_END_OF _FILE_INFORMATION ... 621

xx Windows 2000 Driver Development Reference, Volume 2

FILE_FS_DEVICE_INFORMATION ... 621

FILE_FULL_EA_INFORMATION .. 622

FILE_NAME_INFORMATION .. , ... 623

FILE_OBJECT .. 624

FILE_POSITION_INFORMATION ... 625

FILE_STANDARD _INFORMATION .. 626

IO_RESOURCE_DESCRIPTOR ... 627

IO_RESOURCE_LIST .. 631

IO_RESOURCE_REQUIREMENTS_LIST .. 631

IO_STACK_LOCATION .. 632

IO_STATUS_BLOCK ... 635

IRP .. 636

KEY_BASIC_INFORMATION .. 640

KEY _FULL_INFORMATION , ... 640

KEY _NODE_INFORMATION ... 642

KEY _ VALUE_BASIC_INFORMATION ... 643

KEY _ V ALUE_FULL_INFORMATION .. 644

KEY _ V ALUE_P ARTIAL_INFORMA TION .. 645

OEM_STRING ... 646

PCI_COMMON_CONFIG ... 647

PCI_SLOT_NUMBER ... 650

POOL_ TyPE .. 651

RTL_OSVERSIONINFOW ... 652

RTL_OSVERSIONINFOEXW .. 653

SCATTER_GATHER_LIST .. 655

UNICODE_STRING .. 656

Chapter 13 IRP Function Codes and IOCTLs 659
Determining Required I/O Support by Device Object Type 659

Input and Output Parameters for Common I/O Requests 661

IRP _MJ_CLEANUP .. 661

IRP _MJ_CLOSE .. 662

IRP _MJ_CREATE ... 663

IRP _MJ_DEVICE_CONTROL ... 663

IRP _MJ_FLUSH_BUFFERS ... 664

IRP _MJ_INTERNAL_DEVICE_CONTROL ... 665

Contents xxi

IRP _MJ_PNP ... 666

IRP_MJ_POWER .. 667

IRP_MJ_READ ... 667

IRP _MJ_SHUTDOWN ... 668

IRP _MJ_ WRITE ... 669

Defining 110 Control Codes ... 670

Device-type-specific 110 Requests .. 674

Part 2 Serial and Parallel Drivers .. 677

Chapter 1 Serial Driver Reference .. 679
Serial Major 110 Requests .. 680

IRP _MJ_CREATE ... 680

IRP _MJ_DEVICE_CONTROL ... 681

IRP _MJ_FLUSH_BUFFERS .. 682

IRP _MJ_INTERNAL_DEVICE_CONTROL ... 683

IRP _MJ _PNP ... 683

IRP _MJ_POWER .. 684

IRP_MJ_QUERY_INFORMATION .. 684

IRP _MJ_READ ... 685

IRP _MJ_SET_INFORMATION ... 686

IRP _MJ_SYSTEM_CONTROL ... 687

IRP_MJ_WRITE ... 689

Serial Device Control Requests ... 690

IOCTL_SERIAL_ CLEAR_STATS .. 691

IOCTL_SERIAL_CLR_DTR .. 692

IOCTL_SERIAL_CLR_RTS ... 692

IOCTL_SERIAL_CONFIG_SIZE .. 693

IOCTL_SERIAL_GET_BAUD_RATE .. 693

IOCTL_SERIAL_GET_CHARS ... 694

IOCTL_SERIAL_GET_COMMSTATUS .. 694

IOCTL_SERIAL_GET_DTRRTS ... 695

IOCTL_SERIAL_GET_HANDFLOW ... 696

IOCTL_SERIAL_GET _LINE_CONTROL .. 696

IOCTL_SERIAL_GET_MODEM_CONTROL 697

IOCTL_SERIAL_GET_MODEMSTATUS .. 698

IOCTL_SERIAL_GET_PROPERTIES .. 698

xxii Windows 2000 Driver Development Reference, Volume 2

IOCTL_SERIAL_GET _STATS .. 699

IOCTL_SERIAL_GET _ TIMEOUTS .. 699

IOCTL_SERIAL_GET_ WAIT_MASK ... 700

IOCTL_SERIAL_IMMEDIATE_CHAR .. 701

IOCTL_SERIAL_LSRMST_INSERT ... 701

IOCTL_SERIAL_PURGE ... 702

IOCTL_SERIAL_RESET_DEVICE ... 703

IOCTL_SERIAL_SET_BAUD_RATE ... 703

IOCTL_SERIAL_SET_BREAK_OFF .. 704

IOCTL_SERIAL_SET_BREAK_ON .. 704

IOCTL_SERIAL_SET_CHARS .. 705

IOCTL_SERIAL_SET _DTR ... 705

IOCTL_SERIAL_SET_FIFO_CONTROL .. 706

IOCTL_SERIAL_SET _HAND FLOW .. 706

IOCTL_SERIAL_SET_LINE_CONTROL ... 707

IOCTL_SERIAL_SET_MODEM_CONTROL 707

IOCTL_SERIAL_SET_QUEUE_SIZE ... 708

IOCTL_SERIAL_SET_RTS .. 708

IOCTL_SERIAL_SET_TIMEOUTS ... 709

IOCTL_SERIAL_SET_ WAIT_MASK ... 709

IOCTL_SERIAL_SET_XOFF ... 710

IOCTL_SERIAL_SET_XON ... 710

IOCTL_SERIAL_ WAIT_ON_MASK ... 711

IOCTL_SERIAL_XOFF _COUNTER ... 711

Serial Internal Device Control Requests .. 712

IOCTL_SERIAL_INTERNAL_BASIC_SETTINGS 713

IOCTL_SERIAL_INTERNAL_CANCEL_ W AIT_ WAKE 714

IOCTL_SERIAL_INTERNAL_DO _ WAIT _ WAKE 714

IOCTL_SERIAL_INTERNAL_RESTORE_SETTINGS 715

Chapter 2 Serenum Driver Reference .. 717
Serenurn Device Control Requests ... 718

IOCTL_SERENUM_PORT_DESC ... 718

IOCTL_SERENUM_GET_PORT_NAME .. 719

Serenum Internal Device Control Requests .. 720

IOCTL_INTERNAL_SERENUM_REMOVE_SELF 720

Contents xxiii

Chapter 3 Parport Driver Reference ... 721
Parport Major I/O Requests ... 721

IRP _MJ_CREATE ... 722

IRP _MJ_INTERNAL_DEVICE_CONTROL ... 723

Parport Internal Device Control Requests ... 723

IOCTL_INTERNAL_DESELECT_DEVICE ... 724

IOCTL_INTERNAL_ GET _MORE_P ARALLEL_PORT _INFO 725

IOCTL_INTERNAL_GET_PARALLEL_PNP _INFO 725

IOCTL_INTERNAL_GET_PARALLEL_PORT_INFO 726

IOCTL_INTERNAL_INIT_1284_3_BUS .. 727

IOCTL_INTERNAL_PARALLEL_CLEAR_CHIP _MODE 727

IOCTL_INTERNAL_PARALLEL_CONNECT_INTERRUPT 728

IOCTL_INTERNAL_PARALLEL_DISCONNECT_INTERRUPT 730

IOCTL_INTERNAL_PARALLEL_PORT_ALLOCATE 731

IOCTL_INTERNAL_PARALLEL_PORT_FREE 731

IOCTL_INTERNAL_PARALLEL_SET_CHIP _MODE 732

IOCTL_INTERNAL_RELEASE_PARALLEL_PORT_INFO 733

IOCTL_INTERNAL_SELECT_DEVICE .. 733

IOCTL_INTERNAL_XXx ... 734

Parport Data Types .. 735

MORE_PARALLEL_PORT_INFORMATION 735

PARALLEL_1284_COMMAND .. 737

PARALLEL_CHIP_MODE .. 738

PARALLEL_PNP_INFORMATION .. 738

PARALLEL_PORT_INFORMATION ... 741

PARALLEL_INTERRUPT_INFORMATION 742

PARALLEL_INTERRUPT_SERVICE_ROUTINE 743

Parport Callback Routines ... 744

ClearChipMode .. 745

DeselectDevice .. 746

FreePort .. 747

FreePortFromInterruptLevel .. 748

QueryNum Waiters ... 749

Try AllocatePort ... 749

Try AllocatePortAtInterruptLevel .. 750

xxiv Windows 2000 Driver Development Reference, Volume 2

TrySelectDevice ... 751

TrySetChipMode .. 753

Chapter 4 Parclass Driver Reference ... 755
Parclass Major I/O Requests .. 756

IRP _MJ_CREATE ... 756

IRP _MJ_DEVICE_CONTROL ... 757

IRP _MJ_INTERNAL_DEVICE_CONTROL ... 758

IRP _MJ_QUERY_INFORMATION ... 758

IRP _MJ_READ .. 760

IRP _MJ_ WRITE .. 761

Parclass Device Control Requests .. 762

IOCTL_IEEE1284_GET_MODE .. 762

IOCTL_IEEE1284_NEGOTIATE ... 763

IOCTL_PAR_GET_DEFAULT_MODES ... 764

IOCTL_PAR_GET_DEVICE_CAPS .. 765

IOCTL_PAR_IS_PORT _FREE ... 765

IOCTL_PAR_QUERY _DEVICE_ID .. 766

IOCTL_PAR_QUERY_DEVICE_ID_SIZE. ... 767

IOCTL_P AR_ QUERy_INFORMATION ... 767

IOCTL_P AR_ QUERY _RA W _DEVICE_ID ... 768

IOCTL_PAR_SET_INFORMATION ... 768

IOCTL_PAR_SET_READ_ADDRESS .. 769

IOCTL_PAR_SET_ WRITE_ADDRESS ... 770

IOCTL_SERIAL_GET_TIMEOUTS .. 771

IOCTL_SERIAL_SET_TIMEOUTS ... 771

Parclass Internal Device Control Requests ... 772

IOCTL_INTERNAL_DISCONNECT_IDLE .. 773

IOCTL_INTERNAL_LOCK_PORT ... 773

IOCTL_INTERNAL_PARCLASS_CONNECT 774

IOCTL_INTERNAL_PARCLASS_DISCONNECT 774

IOCTL_INTERNAL_PARDOT3_CONNECT .. 775

IOCTL_INTERNAL_PARDOT3_DISCONNECT 775

IOCTL_INTERNAL_UNLOCK_PORT .. 775

Parclass Data Types .. 776

PAR_QUERY _INFORMATION ... 776

Contents xxv

PAR_SET _INFORMATION ... 777

PARCLASS_INFORMATION ... 778

PARCLASS_NEGOTIATION_MASK .. 780

Parc1ass Callback Routines .. 780

DetermineIeeeModes ... 781

IeeeFwdToRevMode ... 782

IeeeRevToFwdMode ... 783

NegotiateIeeeMode .. 784

ParalleIRead ... 785

ParallelWrite .. 787

TerminateIeeeMode ... 788

Part 3 Drivers for Input Devices ... 789

Chapter 1 HID 1/0 Requests ... 791
I/O Requests Serviced by HID Class Driver. ... 791

IOCTL_HID _GET _POLL_FREQUENCY _MSEC 791

IOCTL_HID _SET _POLL_FREQUENCY _MSEC 792

IOCTL_GET_NUM_DEVICE_INPUT_BUFFERS 793

IOCTL_SET _NUM_DEVICE_INPUT _BUFFERS 793

IOCTL_HID _GET_COLLECTION_INFORMATION 794

IOCTL_HID_GET_COLLECTION_DESCRIPTOR 795

IOCTL_HID_FLUSH_QUEUE .. 795

IOCTL_HID _GET_FEATURE ... 796

IOCTL_HID _SET_FEATURE .. 796

IOCTL_GET_PHYSICAL_DESCRIPTOR .. 797

IOCTL_HID_GET_HARDWARE_ID .. 797

IOCTL_HID_GET_MANUFACTURER_STRING 798

IOCTL_HID _GET_PRODUCT_STRING .. 799

IOCTL_HID _GET_SERIALNUMBER_STRING 799

IOCTL_HID_GET_INDEXED_STRING ... 800

I/O Requests Serviced by HID Minidrivers ... 800

IOCTL_GET _PHYSICAL_DESCRIPTOR .. 801

IOCTL_HID_ACTIVATE_DEVICE .. 801

IOCTL_HID_DEACTIV ATE_DEVICE ... 802

IOCTL_HID _ GET_DEVICE_ATTRIBUTES .. 803

IOCTL_HID_GET_DEVICE_DESCRIPTOR .. 803

xxvi Windows 2000 Driver Development Reference, Volume 2

IOCTL_HID _GET_FEATURE ... 804

IOCTL_HID_GET_INDEXED_STRING ... 805

IOCTL_HID_GET _REPORT _DESCRIPTOR .. 805

IOCTL_HID_GET_STRING ... 806

IOCTL_HID _READ _REPORT ... 807

IOCTL_HID _SET_FEATURE .. 808

IOCTL_HID _ WRITE_REPORT ... 809

Chapter 2 HID Support Routines for Clients 811
HidD _Flush Queue .. 811

HidD _FreePreparsedData ... 812

HidD_GetAttributes ... 812

HidD _ GetConfiguration ... 813

HidD _ GetFeature ... 813

HidD _ GetHidGuid ... 814

HidD _ GetIndexedString ... 814

HidD _ GetManufacturerString .. 815

HidD_GetNumInputBuffers ... 816

HidD _ GetPhysicalDescriptor ... 817

HidD _ GetPreparsedData .. 818

HidD _ GetProductString ... 818

HidD_GetSerialNumberString ... 819

HidD _SetConfiguration .. 820

HidD _SetFeature .. 821

HidD _SetNumInputBuffers .. 822

HidP _GetButtonCaps ... 823

HidP _GetButtons .. 824

HidP _GetButtonsEx ... 826

HidP _GetCaps .. ~ ... 828

HidP _GetLinkCollectionNodes .. 829

HidP _ GetScaledU sage Value .. 831

HidP _GetSpecificBuUonCaps .. 833

HidP _GetSpecificValueCaps ... 835

HidP _GetUsageValue .. 837

HidP _GetUsageValueArray ... 839

HidP _GetValueCaps .. 842

Contents xxvii

HidP _MaxUsageListLength .. 843

HidP _SetButtons .. 844

HidP _SetScaledU sage Value .. 847

HidP _SetUsageValue ... 849

HidP _SetUsageValueArray ... 851

HidP _TranslateUsagesTol8042ScanCodes ... 853

HidP _ U sageListDifference .. 854

Chapter 3 HID Structures for Clients .. 855
HID _ COLLECTION_INFORMATION ... 855

HIDP _COLLECTION_DESC ... 856

HIDD _ATTRIBUTES ... 857

HIDD_CONFIGURATION ... 858

HIDP _BUTTON_CAPS .. 858

HIDP _CAPS .. 861

HIDP _LINK_COLLECTION_NODE .. 863

HIDP _ V ALUE_CAPS ... 865

USAGE_AND_PAGE ... 870

Chapter 4 HID Support Routines for MiniDrivers 871
HidRegisterMinidri ver ... 871

Chapter 5 HID Structures for Minidrivers 873
HID_DEVICE_ATTRIBUTES ... 873

HID _DEVICE_EXTENSION ... 874

HID _MINIDRIVER_REGISTRATION ... 875

HID _XFER_PACKET ... 876

Chapter 6 Kbdclass Driver Reference .. 877
Kbdclass Major I/O Requests .. 878

Kbdclass Device Control Requests .. 884

Kbdclass Class Service Callback Routine ... 891

Chapter 7 Mouclass Driver Reference .. 893
Mouclass Major I/O Requests .. 894

Mouclass Device Control Requests ... 900

Mouclass Class Service Callback Routine ... 902

xxviii Windows 2000 Driver Development Reference, Volume 2

Chapter 8 18042prt Driver Reference .. 905
I8042prt Keyboard Major I/O Requests ... 905

I8042prt Keyboard Internal Device Control Requests 909

I8042prt Mouse Major I/O Requests .. 916

I8042prt Mouse Internal Device Control Requests 919

I8042prt Keyboard Callback Routines ... 923

I8042prt Mouse Callback Routines .. 927

Chapter 9 Kbfiltr Driver Reference ... 931
Kbfiltr Internal Device Control Requests ... 931

Kbfiltr Callback Routines ... 934

Chapter 10 Moufiltr Driver Reference .. 939
Moufiltr Internal Device Control Requests .. 939

Moufiltr Callback Routines .. 942

Part 4 USB Drivers .. 945

Chapter 1 1/0 Requests for USB Client Drivers 947
IOCTL_INTERNAL_USB_SUBMIT_URB ... 947

IOCTL_INTERNAL_USB_RESET_PORT .. 948

IOCTL_INTERNAL_USB_GET_PORT_STATUS 948

IOCTL_INTERNAL_ USB _ENABLE_PORT ... 949

IOCTL_INTERNAL_ USB _GET_HUB _COUNT 949

IOCTL_INTERNAL_USB_CYCLE_PORT ... 949

IOCTL_INTERNAL_ USB _GET _ROOTHUB_PDO 950

IOCTL_INTERNAL_USB_GET_HUB_NAME 950

IOCTL_INTERNAL_USB_GET_BUS_INFO .. 950

IOCTL_INTERNAL_USB_GET_CONTROLLER_NAME 951

Chapter 2 USB Client Support Routines 953
GET_ISO_URB_SIZE ... 953

GET _SELECT_CONFIGURATION_REQUEST_SIZE 954

GET _SELECT_INTERFACE_REQUEST _SIZE 954

GET_USBD_INTERFACE_SIZE ... 955

U sbBuildFeatureRequest .. 956

U sbBuildGetDescriptorRequest ... 957

U sbBuildGetStatusRequest .. 959

Contents xxix

U sbBuildlnterruptOrBulkTransferRequest .. 960

UsbBuildSelectConfigurationRequest ... 962

UsbBuildSelectlnterfaceRequest ... 963

UsbBuildVendorRequest ... 964

USBD _ CreateConfigurationRequest ... 966

USBD _ CreateConfigurationRequestEx ... 967

USBD_GetlnterfaceLength ... 968

USBD_GetUSBDIVersion .. 969

USBD _ParseConfigurationDescriptor ... 970

USBD _ParseConfigurationDescriptorEx .. 970

USBD_ParseDescriptors .. 972

USBD _RegisterHcFilter .. 973

Chapter 3 USB Structures ... 975
URB ... 975

_URB_BULK_OR_INTERRUPT_TRANSFER 978

_URB_CONTROL_DESCRIPTOR_REQUEST 980

_URB_CONTROL_FEATURE_REQUEST .. 982

_URB_CONTROL_GET_CONFIGURATION_REQUEST 983

_URB_CONTROL_GET_INTERFACE_REQUEST 984

_URB_CONTROL_GET_STATUS_REQUEST 985

_URB_CONTROL_TRANSFER .. 986

_URB_CONTROL_ VENDOR_OR_CLASS_REQUEST 988

_URB_FRAME_LENGTH_CONTROL ... 990

_ URB_ GET_CURRENT _FRAME_NUMBER 991

_URB_GET_FRAME_LENGTH .. 992

_URB_HEADER ... 992

_URB_ISOCH_TRANSFER ... 997

_URB_PIPE_REQUEST ... 999

_URB_SELECT_CONFIGURATION .. 1000

_URB_SELECT_INTERFACE ... 1001

_URB_SET_FRAME_LENGTH .. 1002

USB_CONFIGURATION_DESCRIPTOR .. 1003

USB_DEVICE_DESCRIPTOR ... 1004

USB_ENDPOINT_DESCRIPTOR ... 1006

USB_INTERFACE_DESCRIPTOR ... 1007

xxx Windows 2000 Driver Development Reference, Volume 2

USB_HUB_NAME .. 1008

USB_ROOT_HUB_NAME ... 1009

USB_STRING_DESCRIPTOR ... 1009

USBD_INTERFACE_INFORMATION ... 1010

USBD_INTERFACE_LIST_ENTRY .. 1012

USBD_PIPE_INFORMATION ... 1012

USBD _ISO~PACKET_DESCRIPTOR ... 1014

Part 5 IEEE 1394 Drivers ... 1015

Chapter 1 IEEE 1394 Bus 1/0 Requests 1017
IOCTL_CLASS_1394 .. 1017

REQUEST_ALLOCATE_ADDRESS_RANGE 1018

REQUEST_ASYNC_LOCK .. 1023

REQUEST_ASYNC_READ .. 1027

REQUEST_ASYNC_STREAM .. 1029

REQUEST_ASYNC_ WRITE .. 1031

REQUEST_BUS_RESET .. 1033

REQUEST_BUS_RESET_NOTIFICATION .. 1034

REQUEST_CONTROL ... 1035

REQUEST_FREE_ADDRESS_RANGE .. 1037

REQUEST_GET_ADDR_FROM_DEVICE_OBJECT 1038

REQUEST_GET_CONFIGURATION_INFO 1039

REQUEST_GET_GENERATION_COUNT ... 1042

REQUEST_GET_LOCAL_HOST_INFO ... 1043

REQUEST_GET_SPEED_BETWEEN_DEVICES 1045

REQUEST_GET_SPEED_TOPOLOGY _MAPS 1046

REQUEST_ISOCH_ALLOCATE_BANDWIDTH 1047

REQUEST _ISOCH_ALLOCATE_ CHANNEL 1049

REQUEST_ISOCH_ALLOCATE_RESOURCES 1050

REQUEST_ISOCH_ATTACH_BUFFERS ... 1053

REQUEST _IS OCH_DETACH_B UFFERS ... 1055

REQUEST _ISOCH_FREE_BANDWIDTH .. 1056

REQUEST _ISOCH_FREE_CHANNEL ... 1057

REQUEST_ISOCH_FREE_RESOURCES ... 1058

REQUEST _ISOCH_LISTEN .. 1059

REQUEST_ISOCH_QUERY _CYCLE_TIME 1060

Contents xxxi

REQUEST_ISOCH_QUERY_RESOURCES 1061

REQUEST _ISOCH_SET _CHANNEL_BANDWIDTH 1062

REQUEST _ISOCH_STOP .. 1063

REQUEST_ISOCH_TALK ... 1064

REQUEST_SEND _PHY _CONFIG_PACKET 1065

REQUEST_SET_DEVICE_XMIT_PROPERTIES 1066

REQUEST_SET_LOCAL_HOST_PROPERTIES 1067

Chapter 2 IEEE 1394 Structures .. 1069
ADDRESS_FIFO ... 1069

ADDRESS_OFFSET ... 1069

ADDRESS_RANGE ... 1070

CONFIG_ROM ... 1070

CYCLE_TIME .. 1071

GET_LOCAL_HOST_INF01 ... 1072

GET_LOCAL_HOST_INF02 ... 1072

GET_LOCAL_HOST _INFO 3 ... 1074

GET_LOCAL_HOST_INF04 ... 1074

GET_LOCAL_HOST _INF05 ... 1075

GET_LOCAL_HOST_INF06 ... 1075

IO_ADDRESS ... 1076

IRB ... 1077

ISOCH_DESCRIPTOR ... 1079

NODE_ADDRESS .. 1082

NOTIFICATION_INFO .. 1082

PHY_CONFIGURATION_PACKET ... 1085

SELF _ID : ... 1086

SELF _ID_MORE .. 1087

SPEED_MAP .. 1089

TEXTUAL_LEAF ... 1090

TOPOLOGY_MAP ... 1090

Part 6 PCMCIA Drivers .. 1093

Chapter 1 PCMCIAJNTERFACE_STANDARD Interface
Memory Card Routines ... 1095

PCMCIA_IS_ WRITE_PROTECTED ... 1096

xxxii Windows 2000 Driver Development Reference, Volume 2

PCMCIA_MODIFY_MEMORY _ WINDOW .. 1097

PCMCIA_SET_ VPP .. 1099

Part 7 5MB Client Drivers ... 1101

Chapter 1 5MB IOCTLS ... 1103
5MB_BUS_REQUEST .. 1103

5MB_DEREGISTER_ALARM_NOTIFY .. 1104

5MB_REGISTER_ALARM_NOTIFY ... 1105

Chapter 2 5MB Structures .. 1107
5MB_CLASS ... 1107

5MB_REGISTER_ALARM .. 1109

5MB_REQUEST .. 1110

Part 8 WMI Kernel-Mode Data Providers ... 1113

Chapter 1 WMllRPs ... 1115
IRP _MN_CHANGE_SINGLE_INSTANCE ... 1116

IRP _MN_CHANGE_SINGLE_ITEM ... 1118

IRP _MN_DISABLE_COLLECTION ... 1120

IRP _MN_DISABLE_EVENTS ... 1121

IRP _MN_ENABLE_COLLECTION ... 1123

IRP _MN_ENABLE_EVENTS .. 1124

IRP _MN_EXECUTE_METHOD .. 1126

IRP_MN_QUERY_ALL_DATA ... 1129

IRP _MN_QUERY _S INGLE_INS T ANCE .. 1131

IRP _MN_REGINFO .. 1134

Chapter 2 WMI Library Support Routines 1139
WmiCompleteRequest. ... 1139

WmiFireEvent .. 1141

WmiSystemControl .. 1142

Chapter 3 WMI Library Callback Routines 1145
DpWmiExecuteMethod .. 1145

DpWmiFunctionControl ... 1147

DpWmiQueryDataBlock .. 1149

DpWmiQueryReginfo .. 1151

DpWmiSetDataBlock ... 1153

Contents xxxiii

DpWmiSetDataItem ... 1155

Chapter 4 WMI Structures .. 1157
WMILIB_CONTEXT .. 1157

WMIGUIDREGINFO ... 1159

WMIREGGUID ... 1160

WMIREGINFO ... 1163

WNODE_ALL_DATA .. 1165

WNODE_EVENT _ITEM .. 1167

WNODE_EVENT_REFERENCE ... 1168

WNODE_HEADER .. 1169

WNODE_METHOD_ITEM .. 1174

WNODE_SINGLE_INSTANCE ... 1175

WNODE_SINGLE_ITEM ... 1176

WNODE_TOO_SMALL ... 1178

Chapter 5 WMI Event Trace Structures 1179
EVENT_TRACE_HEADER ... 1179

PAR T 1

Kernel-Mode Support Routines

Chapter 1 Summary of Kernel-Mode Support Routines 3

Chapter 2 Executive Support Routines 55

Chapter 3 Hardware Abstraction Layer Routines 139

Chapter 4 1/0 Manager Routines 179

Chapter 5 Kernel Routines 297

Chapter 6 Memory Manager Routines 367

Chapter 7 Object Manager Routines 409

Chapter 8 Process Structure Routines 417

Chapter 9 Run-time Library Routines 429

Chapter 10 Security Reference Monitor Routines 527

Chapter 11 ZwXxx Routines 539

Chapter 12 System Structures 587

Chapter 13 IRP Function Codes and 10CTLs 659

CHAPTER 1

Summary of Kernel-Mode Support Routines

This chapter summarizes the kernel-mode support routines that can be called by Microsoft®
Windows NT®lWindows® 2000 and WDM kernel-mode drivers. Drivers can also use rou
tines provided by a compiler, such as C string manipulation routines.

Support routines are categorized as follows:

• Initialization and unload

• IRPs

• Synchronization

• Memory

• DMA

• PIO

• Driver-managed queues

• Driver-dedicated system threads and system worker threads

• Strings

• Data conversions

• Access to and access rights on driver-managed objects

• Handling errors

Some routines are listed in more than one section or subsection of this chapter.

3

4 Part 1 Kernel-Mode Support Routines

Initialization and Unload
This section summarizes kernel-mode support routines that can be called by drivers from
their DriverEntry, AddDevice, Reinitialize, or Unload routines.

The categories of kernel-mode support routines include those that drivers can call to:

• Get and report hardware configuration information about their devices and the
current platform

• Get and report configuration information and register interfaces in the registry

• Set up certain standard driver routines

• Set up and free the objects and resources they might use

• Initialize driver-managed internal queues

Hardware Configuration
loGetDeviceProperty
Retrieves device setup information from the registry. Use this routine, rather than accessing
the registry directly, to insulate a driver from differences across platforms and from possible
changes in the registry structure.

loReportDetectedDevice
Reports a nonPnP device to the PnP Manager.

loReportResourceForDetection
Claims hardware resources in the configuration registry for a legacy device. This routine is
for drivers that detect legacy hardware which cannot be enumerated by PnP.

loGetDmaAdapter
Returns a pointer to the DMA adapter structure that represents either the DMA channel to
which a device is connected or the driver's busmaster adapter.

loGetConfigurationlnformation
Returns a pointer to the I/O Manager's configuration information structure, which indicates
the number of disk, floppy, CD-ROM, tape, SCSI HBAs, serial, and parallel device objects
that have already been named by previously loaded drivers, as well as whether certain ad
dress ranges have been claimed by "AT" disk-type drivers.

HalExamineMBR
Returns data from the master boot record (MBR) of a disk.

Chapter 1 Summary of Kernel-Mode Support Routines 5

loReadPartitionTable
Returns a list of partitions on a disk with a given sector size.

lolnvalidateDeviceRelations
Notifies the PnP Manager that the relations for a device have changed. The types of device
relations include bus relations, ejection relations, removal relations, and the target device
relation.

lolnvalidateDeviceState
Notifies the PnP Manager that some aspect of the PnP state of a device has changed. In
response, the PnP Manager sends an IRP _MN_QUERY_PNP _DEVICE_STATE to the
device stack.

loRegisterPlugPlayNotification
Registers a driver callback routine to be called when a PnP event of the specified category
occurs.

loUnregisterPlugPlayNotification
Removes the registration of a driver's callback routine for a PnP event.

loRequestDeviceEject
Notifies the PnP Manager that the device eject button was pressed. This routine reports a
request for device eject, not media eject.

loReportTargetDeviceChange
Notifies the PnP Manager that a custom event has occurred on a device. The PnP Manager
sends notification of the event to drivers that registered for notification on the device.

Registry
loGetDeviceProperty
Retrieves device setup information from the registry. Use this routine, rather than accessing
the registry directly, to insulate a driver from differences across platforms and from possible
changes in the registry structure.

loOpenDevicelnterfaceRegistryKey
Returns a handle to a registry key for storing information about a particular device interface.

loOpenDeviceRegistryKey
Returns a handle to a device-specific or a driver-specific registry key for a particular device
instance.

6 Part 1 Kernel·Mode Support Routines

loRegisterDevicelnterface
Registers device functionality (a device interface) that a driver will enable for use by appli
cations or other system components. The I/O Manager creates a registry key for the device
interface. Drivers can access persistent storage under this key using IoOpenDevice
InterfaceRegistry Key.

loSetDevicel nterfaceState
Enables or disables a previously registered device interface. Applications and other system
components can open only interfaces that are enabled.

RtlCheckRegistryKey
Returns STATUS_SUCCESS if a key exists in the registry along the given relative path.

RtlCreateRegistryKey
Adds a key object in the registry along the given relative path.

RtlQueryRegistryValues
Gives the driver-supplied QueryRegistry callback (read only) access to the entries for the
specified value name along the specified relative path in the registry after the QueryRegistry
routine is given control.

RtlWriteRegistryValue
Writes caller-supplied data into the registry along the specified relative path at the given
value name.

RtlDeleteRegistryValue
Removes the specified value name (and the associated value entries) from the registry along
the given relative path.

In itializeObjectAttributes
Sets up a parameter of type OBJECT_ATTRIBUTES for a subsequent call to a
ZwCreateXxx or ZwOpenXxx routine.

ZwCreateKey
Creates a new key in the registry with the given object's attributes, allowed access, and
creation options (such as whether the key is created again when the system is booted).
Alternatively, opens an existing key and returns a handle for the key object.

ZwOpenKey
Returns a handle for a key in the registry given the object's attributes (which must include
a name for the key) and the desired access to the object.

Chapter 1 Summary of Kernel-Mode Support Routines 7

ZwQueryKey
Returns information about the class of a key, and the number and sizes of its subkeys. This
information includes, for example, the length of subkey names and the size of value entries.

ZwEnumerateKey
Returns the specified information about the subkeys of an opened key in the registry.

ZwEnumerateValueKey
Returns the specified information about the value entry, as selected by a zero-based index,
of an opened key in the registry.

ZwQueryValueKey
Returns the value entry, as selected by a zero-based index, for an opened key in the registry.

ZwSetValueKey
Replaces (or creates) a value entry for an opened key in the registry.

ZwFlushKey
Forces changes made by ZwCreateKey or ZwSetValueKey for the opened key object to be
written to disk.

ZwDeleteKey
Removes a key and its value entries from the registry as soon as the key is closed.

ZwClose
Releases the handle for an opened object, causing the handle to become invalid and
decrementing the reference count of the object handle.

Standard Driver Routines
loRegisterDriverReinitialization
Sets up the driver-supplied Reinitialize routine, together with its context, so that the
Reinitialize routine is called after each subsequently loaded driver's DriverEntry routine
returns control.

loConnectlnterrupt
Registers an ISR and sets up interrupt objects using values supplied in the PnP IRP _MN_
START_DEVICE request. Returns a pointer to a set of interrupt objects that must be passed,
along with the driver's SynchCritSection entry point, to KeSynchronizeExecution.

loDisconnectlnterrupt
Releases a driver's interrupt objects.

8 Part 1 Kernel-Mode Support Routines

lolnitializeDpcRequest
Associates a driver-supplied DpcForIsr routine with a given device object, so that the Dpc
ForIsr can complete interrupt-driven I/O operations.

KelnitializeDpc
Initializes a DPC object, setting up a driver-supplied CustomDpc routine that can be called
with a given context.

Kel nitialize Timer
Initializes a notification timer object to the Not-Signaled state.

KelnitializeTimerEx
Initializes a notification or synchronization timer object to the Not-Signaled state.

lolnitializeTimer
Associates a timer with the given device object and registers a driver-supplied IoTimer
routine for the device object.

MmLockPagableCodeSection
Locks a set of driver routines marked with a special compiler directive into system space.
This operation can occur during driver initialization but usually occurs in the driver's
DispatchCreate routine.

MmLockPagableDataSection
Locks a named data section, which is marked with a special compiler directive, into system
space if that data is used infrequently, predictably, and at an IRQL less than DISP ATCH_
LEVEL.

MmLockPagableSectionByHandle
Locks a pageable section into system memory using a handle returned from MmLock
PagableCodeSection or MmLockPagableDataSection.

MmUnlockPagablelmageSection
Releases a set of driver routines or a set of data that was locked into nonpaged system space
when the driver is no longer processing IRPs.

MmPageEntireDriver
Allows a driver to page out all of its code and data, regardless of the attributes of the various
sections in the driver's image.

MmResetDriverPaging
Resets a driver's pageable status to that specified by the sections which make up the driver's
image.

Objects and Resources
loCreateDevice

Chapter 1 Summary of Kernel-Mode Support Routines 9

Initializes a device object, which represents a physical, virtual, or logical device for which
the driver is being loaded into the system. Then it allocates space for the driver-defined
device extension associated with the device object.

loDeleteDevice
Removes a device object from the system when the underlying device is removed from the
system.

loGetDeviceObjectPointer
Requests access to a named device object and returns a pointer that device object if the re
quested access is granted. Also returns a pointer to the file object referenced by the named
device object. In effect, this routine establishes a connection between the caller and the next
lower-level driver.

loAttachDeviceToDeviceStack
Attaches the caller's device object to the highest device object in a chain of drivers and
returns a pointer to the previously highest device object. I/O requests bound for the target
device are routed first to the caller.

loGetAttachedDeviceReference
Returns a pointer to the highest level device object in a driver stack and increments the
reference count on that object.

loDetachDevice
Releases an attachment between the caller's device object and a target driver's device object.

loAllocateDriverObjectExtension
Allocates a per-driver context area with a given unique identifier.

loGetDriverObjectExtension
Retrieves a previously allocated per-driver context area.

loRegisterDevicelnterface
Registers device functionality (a device interface) that a driver will enable for use by ap
plications or other system components. The I/O Manager creates a registry key for the
device interface. Drivers can access persistent storage under this key using IoOpenDevice
InterfaceRegistry Key.

lolsWdmVersionAvaiiable
Checks whether a given WDM version is supported by the operating system.

10 Part 1 Kernel-Mode Support Routines

loDeleteSymbolicLink
Releases a symbolic link between a device object name and a user-visible name.

loAssignArcName
Sets up a symbolic link between a named device object (such as a tape, floppy, or
CD-ROM) and the corresponding ARC name for the device.

loDeassignArcName
Releases the symbolic link created by calling IoAssignArcName.

loSetShareAccess
Sets the access allowed to a given file object that represents a device. (Only highest-level
drivers can call this routine.)

loConnectlnterrupt
Registers a driver's ISR according to the parameters supplied in the IRP _MN_START_
DEVICE request. Returns a pointer to a set of allocated, initialized, and connected interrupt
objects that is used as an argument to KeSynchronizeExecution.

loDisconnectlnterrupt
Releases a driver's interrupt objects when the driver unloads.

loReadPartitionTable
Returns a list of partitions on a disk with a given sector size.

loSetPartitionlnformation
Sets the partition type and number for a (disk) partition.

loWritePartitionTable
Writes partition tables for a disk, given the device object that represents the disk, the sector
size, and a pointer to a buffer containing the drive layout structure.

loCreateController
Initializes a controller object that represents a physical device controller which is shared by
two or more similar devices that have the same driver, and specifies the size of the controller
extension.

loDeleteControlier
Removes a controller object from the system.

KelnitializeSpinLock
Initializes a variable of type KSPIN_LOCK.

Chapter 1 Summary of Kernel-Mode Support Routines 11

KelnitializeDpc
Initializes a DPC object, setting up a driver-supplied CustomDpc routine that can be called
with a given context.

KelnitializeTimer
Initializes a notification timer object to the Not-Signaled state.

KelnitializeTimerEx
Initializes a notification or synchronization timer object to the Not-Signaled state.

KelnitializeEvent
Initializes an event object as a synchronization (single waiter) or notification (multiple
waiters) type event and sets up its initial state (Signaled or Not-Signaled).

ExlnitializeFastMutex
Initializes a fast mutex variable that is used to synchronize mutually exclusive access to
a shared resource by a set of threads.

KelnitializeMutex
Initializes a mutex object at a given level number as set to the Signaled state.

KelnitializeSemaphore
Initializes a semaphore object to a given count and specifies an upper bound for the count.

loCreateNotification Event
Initializes a named notification event to be used to synchronize access between two or more
components. Notification events are not automatically reset.

loCreateSynchronizationEvent
Initializes a named synchronization event to be used to serialize access to hardware between
two otherwise unrelated drivers.

PsCreateSystemThread
Creates a kernel-mode thread that is associated with a given process object or with the
default system process. Returns a handle for the thread.

PsTermi nateSystemTh read
Terminates the current thread and satisfies as many waits as possible for the current thread
object.

KeSetBasePriorityThread
Sets up the run-time priority, relative to the system process, for a driver-created thread.

12 Part 1 Kernel-Mode Support Routines

KeSetPriorityThread
Sets up the run-time priority for a driver-created thread with a real-time priority attribute.

MmlsThisAnNtAsSystem
Returns TRUE if the current platform is a server, indicating that more resources are likely to
be necessary to process I/O requests than if the machine were a client.

MmQuerySystemSize
Returns an estimate (small, medium, or large) of the amount of memory available on the
current platform.

ExlnitializeNPagedLookasideList
Initializes a lookaside list of nonpaged memory. After a successful initialization, fixed-size
blocks can be allocated from and freed to the lookaside list.

ExlnitializePagedLookasideList
Initializes a lookaside list of paged memory. After a successful initialization, fixed-size
blocks can be allocated from and freed to the lookaside list.

ExlnitializeResourceLite
Initializes a resource, for which the caller provides the storage, to be used for synchro
nization by a set of threads.

ExReinitializeResourceLite
Reinitializes an existing resource variable.

ExDeleteResourceLite
Deletes a caller-initialized resource from the system's resource list.

ObReferenceObjectByHandle
Returns a pointer to the object body and handle information (attributes and granted access
rights), given the handle for an object, the object's type, and a mask. Specifies the desired
access to the object and the preferred access mode. A successful call increments the refer
ence count for the object.

ObReferenceObjectByPointer
Increments the reference count for an object so the caller can ensure that the object is not
removed from the system while the caller is using it.

ObReferenceObject
Increments the reference count for an object, given a pointer to the object.

Chapter 1 Summary of Kernel-Mode Support Routines 13

ObDereferenceObject
Releases a reference to an object (decrements the reference count), given a pointer to the
object body.

RtllnitString
Initializes a counted string in a buffer.

RtlinitAnsiString
Initializes a counted ANSI string in a buffer.

RtllnitUnicodeString
Initializes a counted Unicode string in a buffer.

InitializeObjectAttributes
Initializes a parameter of type OBJECT_ATTRIBUTES for a subsequent call to a Zw
CreateXxx or ZwOpenXxx routine.

ZwCreateDirectoryObject
Creates or opens a directory object with a specified set of object attributes and requests one
or more types of access for the caller. Returns a handle for the directory object.

ZwCreateFile
Creates or opens a file object that represents a physical, logical, or virtual device, a direc
tory, a data file, or a volume. Returns a handle for the file object.

ZwCreateKey
Creates or opens a key object in the registry and returns a handle for the key object.

ZwDeleteKey
Deletes an existing, open key in the registry after the last handle for the key is closed.

ZwMakeTemporaryObject
Resets the "permanent" attribute of an opened object, so that the object and its name can be
deleted when the reference count for the object becomes zero.

ZwClose
Releases the handle for an opened object, causing the handle to become invalid, and decre
ments the reference count of the object handle.

PsGetVersion
Indicates whether the driver is running on a free or checked build of Windows NT/
Windows 2000, and optionally supplies information about the operating system version
and build number.

14 Part 1 Kernel-Mode Support Routines

ObGetObjectSecurity
Returns a buffered security descriptor for a given object.

ObReleaseObjectSecurity
Releases the security descriptor returned by ObGetObjectSecurity.

Initializing Driver-Managed Queues
KelnitializeSpinLock

IRPs

Initializes a variable of type KSPIN_LOCK. An initialized spin lock is a required parameter
to the Ex .. lnterlockedList routines.

InitializeListHead
Sets up a queue header for a driver's internal queue, given a pointer to driver-supplied
storage for the queue header and queue.

ExlnitializeSListHead
Sets up the queue header for a sequenced, interlocked, singly-linked list.

KelnitializeDeviceQueue
Initializes a device queue object to a Not Busy state, setting up an associated spin lock for
multiprocessor-safe access to device queue entries.

This section describes kernel-mode support routines that drivers can call:

• While processing IRPs

• To allocate and set up IRPs for requests from higher-level drivers to lower drivers

• To use file objects

Processing IRPs
loGetCurrentlrpStackLocation
Returns a pointer to the caller's I/O stack location in a given IRP.

loGetNextlrpStackLocation
Returns a pointer to the next-l ower-level driver's I/O stack location in a given IRP.

Chapter 1 Summary of Kernel-Mode Support Routines 15

loCopyCurrentlrpStackLocationToNext
Copies the IRP stack parameters from the current stack location to the stack location of the
next-lower driver and allows the current driver to set an 110 completion routine.

loSkipCurrentlrpStackLocation
Copies the IRP stack parameters from the current stack location to the stack location of the
next-lower driver and does not allow the current driver to set an 110 completion routine.

loGetRelatedDeviceObject
Returns a pointer to the device object represented by a given file object.

loGetFunctionCodeFromCtlCode
Returns the value of the function field within a given 10CTL_XXX or FSCTL~.

loSetCompletionRoutine
Registers a driver-supplied 10Completion routine for an IRP, so the 10Completion routine
is called when the next-lower-level driver has completed the requested operation in one or
more of the following ways: successfully, with an error, or by canceling the IRP.

loCaliDriver
Sends an IRP to a lower-level driver.

PoCallDriver
Sends an IRP with major function code IRP _MJ_POWER to the next-lower driver.

loMarklrpPending
Marks a given IRP indicating that STATUS_PENDING was returned because further
processing is required by another driver routine or by a lower-level driver.

loStartPacket
Calls the driver's Startlo routine with the given IRP for the given device object or inserts the
IRP into the device queue if the device is already busy, specifying whether the IRP is can
celable.

loAcquireCancelSpinLock
Synchronizes cancelable state transitions for IRPs in a multiprocessor-safe manner.

loSetCancelRoutine
Sets or clears the Cancel routine in an IRP. Setting a Cancel routine makes an IRP
cancelable.

16 Part 1 Kernel-Mode Support Routines

loReleaseCancelSpinLock
Releases the cancel spin lock when the driver has changed the cancelable state of an IRP or
releases the cancel spin lock from the driver's Cancel routine.

loCancelirp
Marks an IRP as canceled.

loReadPartitionTable
Returns a list of partitions on a disk with a given sector size.

loSetPartitionlnformation
Sets the partition type and number for a (disk) partition.

loWritePartitionTable
Writes partition tables for a disk, given the device object representing the disk, the sector
size, and a pointer to a buffer containing the drive geometry.

loAllocateErrorLogEntry
Allocates and initializes an error log packet; returns a pointer so that the caller can supply
error-log data and call IoWriteErrorLogEntry with the packet.

loWriteErrorLogEntry
Queues a previously allocated and filled-in error log packet to the system error logging
thread.

lolsErrorUserlnduced
Returns a Boolean value indicating whether an I/O request failed due to one of the
following conditions: STATUS_IO_TIMEOUT, STATUS_DEVICE_NOT_READY,
STATUS_UNRECOGNIZED_MEDIA, STATUS_ VERIFY_REQUIRED, STATUS_
WRONG_VOLUME, STATUS_MEDIA_ WRITE_PROTECTED, or STATUS_NO_
MEDIA_IN_DEVICE. If the result is TRUE, a removable-media driver must call
IoSetHardErrorOrVerifyDevice before completing the IRP.

loSetHardErrorOrVerifyDevice
Supplies the device object for which the given IRP was failed due to a user-induced error,
such as supplying the incorrect media for the requested operation or changing the media
before the requested operation was completed. A file system driver uses the associated
device object to notify the user, who can then correct the error or retry the operation.

loGetDeviceToVerify
Returns a pointer to the device object, representing a removable-media device that is the
target of the given thread's I/O request. Useful only to file systems or other highest-level
drivers.

Chapter 1 Summary of Kernel-Mode Support Routines 17

loRaiseHardError
Notifies the user that the given IRP was failed on the given device object for an optional
VPB, so that the user can correct the error or retry the operation.

loRaiselnformationalHardError
Notifies the user of an error, providing an I/O error status and an optional string supplying
more information.

ExRaiseStatus
Raises an error s~atus and causes a caller-supplied structured exception handler to be called.
Useful only to highest-level drivers that supply exception handlers, in particular to file
systems.

loStartNextPacket
Dequeues the next IRP for a given device object, specifies whether the IRP is cancelable,
and calls the driver's Startlo routine.

loStartNextPacketByKey
Dequeues the next IRP for a device object according to a specified sort-key value, specifies
whether the IRP is cancelable, and calls the driver's Startlo routine.

loCompleteRequest
Completes an I/O request, giving a priority boost to the original caller and returning a
given IRP to the I/O system for disposal: either to call any IoCompletion routines supplied
by higher-level drivers, or to return status to the original requestor of the operation.

loGetCurrentProcess
Returns a pointer to the current process. Useful only to highest-level drivers.

loGetlnitialStack
Returns the initial base address of the current thread's stack. Useful only to highest-level
drivers.

loGetRemainingStackSize
Returns the amount of available stack space. Useful only to highest-level drivers.

loGetStackLimits
Returns the boundaries of the current thread's stack frame. Useful only to highest-level
drivers.

18 Part 1 Kernel-Mode Support Routines

Driver-Allocated IRPs
loBuildAsynchronousFsdRequest
Allocates and sets up an IRP that specifies a major function code (lRP _MJ_PNP,IRP_
MJ_READ,IRP _MJ_ WRITE, IRP _MJ_SHUTDOWN, or IRP _MJ_FLUSH_BUFFERS)
with a pointer to:

• The lower driver's device object on which the 110 should occur

• A pointer to a buffer which will contain the data to be read or which contains the
data to be written

• The length of the buffer in bytes

• The starting offset on the media

• The 110 status block where the called driver can return status information and the
caller's IoCompletion routine can access it

Returns a pointer to the IRP so the caller can set any necessary minor function code and set
up its IoCompletion routine before sending the IRP to the target driver.

loBuildSynchronousFsdRequest
Allocates and sets up an IRP specifying a major function code (lRP _MJ_PNP,IRP _MJ_
READ, IRP _MJ_ WRITE, IRP _MJ_SHUTDOWN, or IRP _MJ_FLUSH_BUFFERS) with
a pointer to:

• The lower driver's device object on which the 110 should occur

• A buffer which will contain the data to be read or which contains the data to be
written

• The length of the buffer in bytes

• The starting offset on the media

• An event object to be set to the Signaled state when the requested operation
completes

• The 110 status block where the called driver can return status information and the
caller's IoCompletion routine can access it.

Returns a pointer to the IRP so the caller can set any necessary minor function code and set
up its IoCompletion routine before sending the IRP to the target driver.

Chapter 1 Summary of Kernel-Mode Support Routines 19

loBuildDeviceloControlRequest
Allocates and sets up an IRP specifying a major function code (either IRP _MJ_
INTERNAL_DEVICE_CONTROL or IRP _MJ_DEVICE_CONTROL) with an optional
input or output buffer; a pointer to the lower driver's device object; an event to be set to the
Signaled state when the requested operation completes; and an I/O status block to be set by
the driver that receives the IRP. Returns a pointer to the IRP so the caller can set the appro
priate 10CTL_XXX before sending the IRP to the next-lower-level driver.

PoRequestPowerlrp
Allocates and initializes an IRP with major function code IRP _MJ_POWER and then sends
the IRP to the top-level driver in the device stack for the specified device object.

loSizeOflrp
Returns the size in bytes required for an IRP with a given count of I/O stack locations.

loAliocatelrp
Allocates an IRP, given the number of I/O stack locations (optionally, for the caller, but
at least one for each driver layered under the caller) and whether to charge quota against
the caller. Returns a pointer to an IRP in nonpaged system space if successful; otherwise,
returns NULL.

lolnitializelrp
Initializes an IRP, given a pointer to an already allocated IRP, its length in bytes, and its
number of I/O stack locations.

loSetNextlrpStackLocation
Sets the current IRP stack location to the caller's location in an IRP. The stack location
must have been allocated by a preceding call to IoAllocatelrp that specified a stack-size
argument large enough to give the caller its own stack location.

loAliocateMdl
Allocates an MDL large enough to map the starting address and length supplied by the
caller; optionally associates the MDL with a given IRP.

loBuildPartialMdl
Builds an MDL for the specified starting virtual address and length in bytes from a given
source MDL. Drivers that split large transfer requests into a number of smaller transfers can
call this routine.

loFreeMdl
Releases a given MDL allocated by the caller.

20 Part 1 Kernel-Mode Support Routines

loMakeAssociatedlrp
Allocates and initializes an IRP to be associated with a master IRP sent to the highest-level
driver, allowing the driver to "split" the original request and send associated IRPs on to
lower-level drivers or to the device.

loSetCompletionRoutine
Registers a driver-supplied 10Completion routine with a given IRP, so that the 10-
Completion routine is called when lower-level drivers have completed the request. The
IoCompletion routine lets the caller release the IRP it allocated with IoAllocatelrp or
IoBuildAsynchronousFsdRequest; to release any other resources it allocated to set up
an IRP for lower drivers; and to perform any 110 completion processing necessary.

loCaliDriver
Sends an IRP to a lower-level driver.

loFreelrp
Releases an IRP that was allocated by the caller.

loReuselrp
Reinitializes for reuse an IRP that was previously allocated by IoAllocatelrp.

File Objects
InitializeObjectAttributes
Initializes a parameter of type OBJECT_ATTRIBUTES for a subsequent call to a Zw
CreateXxx or ZwOpenXxx routine.

ZwCreateFile
Creates or opens a file object representing a physical, logical, or virtual device, a directory,
a data file, or a volume.

ZwQuerylnformationFile
Returns information about the state or attributes of an open file.

loGetFileObjectGenericMapping
Returns information about the mapping between generic access rights and specific access
rights for file objects.

ZwReadFile
Returns data from an open file.

ZwSetlnformationFile
Changes information about the state or attributes of an open file.

Chapter 1 Summary of Kernel-Mode Support Routines 21

ZwWriteFile
Transfers data to an open file.

ZwClose
Releases the handle for an opened object, causing the handle to become invalid and
decrementing the reference count of the object handle.

Synch ron ization
This section describes the kernel-mode support routines that drivers can call to:

• Synchronize the execution of their own standard driver routines

• Temporarily change the current IRQL for a call to a support routine or that return
the current IRQL

• Synchronize access to resources with spin locks or to perform interlocked
operations without spinlocks

• Manage time-outs or determine system time

• Use system threads or to manage synchronization within a non-arbitrary thread
context

Driver Routines and 1/0 Objects
KeSynchronizeExecution
Synchronizes the execution of a driver-supplied SynchCritSection routine with that of the
ISR associated with a set of interrupt objects, given a pointer to the interrupt objects.

loRequestDpc
Queues a driver-supplied DpcForIsr routine to complete interrupt-driven I/O processing at
a lower IRQL.

KelnsertQueueDpc
Queues a DPC to be executed as soon as the IRQL of a processor drops below DISP ATCH_
LEVEL; returns FALSE if the DPC object is already queued.

KeRemoveQueueDpc
Removes a given DPC object from the DPC queue; returns FALSE if the object is not in
the queue.

22 Part 1 Kernel-Mode Support Routines

KeSetlmportanceDpc
Controls how a particular DCP is queued and, to some degree, how soon the DPC routine
is run.

KeSetTargetProcessorDpc
Controls on which processor a particular DCP subsequently will be queued.

AllocateAdapterChannel
Connects a device object to an adapter object and calls a driver-supplied AdapterControl
routine to carry out an 110 operation through the system DMA controller or a busmaster
adapter as soon as the appropriate DMA channel and any necessary map registers are
available. (This routine reserves exclusive access to a DMA channel and map registers for
the specified device.)

FreeAdapterChannel
Releases an adapter object, representing a system DMA channel, and optionally releases
map registers, if any were allocated.

FreeMapRegisters
Releases a set of map registers that were saved from a call to AllocateAdapterChannel,
after the registers have been used by IoMapTransfer and the busmaster DMA transfer is
complete.

loAliocateControlier
Connects a device object to a controller object and calls a driver-supplied ControllerControl
routine to carry out an 110 operation on the device controller as soon as the controller is not
busy. (This routine reserves exclusive access to the hardware controller for the specified
device.)

loFreeControlier
Releases a controller object, provided that all device operations queued to the controller for
the current IRP have completed.

loStartTimer
Enables the timer for a given device object and calls the driver-supplied 10Timer routine
once per second thereafter.

loStopTimer
Disables the timer for a given device object so that the driver-supplied 10Timer routine is
not called unless the driver re-enables the timer.

Chapter 1 Summary of Kernel-Mode Support Routines 23

KeSetTimer
Sets the absolute or relative interval at which a timer object will be set to the Signaled state
and optionally supplies a timer DPC to be executed after the interval expires.

KeSetTimerEx
Sets the absolute or relative interval at which a timer object will be set to the Signaled state,
optionally supplies a timer DPC to be executed when the interval expires, and optionally
supplies a recurring interval for the timer.

KeCancelTimer
Cancels a timer object before the interval passed to KeSetTimer expires; dequeues a timer
DPC before the timer interval, if any was set, expires.

KeReadStateTimer
Returns whether a given timer object is set to the Signaled state.

loStartPacket
Calls the driver's Startlo routine with the given IRP for the given device object or inserts
the IRP into the device queue if the device is already busy, specifying whether the IRP is
cancelable.

loStartNextPacket
Dequeues the next IRP for a given device object, specifying whether the IRP is cancelable,
and calls the driver's Startlo routine.

loStartNextPacketByKey
Dequeues the next IRP, according to the specified sort-key value, for a given device object.
Specifies whether the IRP is cancelable and calls the driver's Startlo routine.

loSetCompletionRoutine
Registers a driver-supplied IoCompletion routine with a given IRP, so the IoCompletion
routine is called when the next-lower-level driver has completed the requested operation in
one or more of the following ways: successfully, with an error, or by canceling the IRP.

loSetCancelRoutine
Sets or clears the Cancel routine in an IRP. Setting a Cancel routine makes an IRP
cancelable.

KeStallExecutionProcessor
Stalls the caller (a device driver) for a given interval on the current processor.

24 Part 1 Kernel-Mode Support Routines

IRQL

ExAcquireResourceExclusiveLite
Acquires an initialized resource for exclusive access by the calling thread and optionally
waits for the resource to be acquired.

ExTryToAcquireResourceExclusiveLite
Acquires a given resource for exclusive access immediately or returns FALSE.

ExAcquireResourceSharedLite
Acquires an initialized resource for shared access by the calling thread and optionally waits
for the resource to be acquired.

ExAcquireSharedStarveExclusive
Acquires a given resource for shared access without waiting for any pending attempts to
acquire exclusive access to the same resource.

ExAcquireSharedWaitForExclusive
Acquires a given resource for shared access, optionally waiting for any pending exclusive
waiters to acquire and release the resource first.

ExReleaseResourceForThreadLite
Releases a given resource that was acquired by the given thread.

ZwReadFile
Reads data from an open file. If the caller opened the file object with certain parameters,
the caller can wait on the file handle for completion of the I/O.

ZwWriteFile
Writes data to an open file. If the caller opened the file object with certain parameters, the
caller can wait on the file handle for completion of the I/O.

KeRaiselrql
Raises the hardware priority to a given IRQL value, thereby masking off interrupts of
equivalent or lower IRQL on the current processor.

KeRaiselrqlToDpcLevel
Raises the hardware priority to IRQL DISPATCH_LEVEL, thereby masking off interrupts
of equivalent or lower IRQL on the current processor.

KeLowerlrql
Restores the IRQL on the current processor to its original value.

Chapter 1 Summary of Kernel-Mode Support Routines 25

KeGetCurrentlrql
Returns the current hardware priority IRQL value.

Spin Locks and Interlocks
loAcquireCancelSpinLock
Synchronizes cancelable state transitions for IRPs in a multiprocessor-safe manner.

loSetCancelRoutine
Sets or clears the Cancel routine in an IRP during a cancelable state transition. Setting a
Cancel routine makes an IRP cancelable.

loReleaseCancelSpinLock
Releases the cancel spin lock when the driver has changed the cancelable state of an IRP
or releases the cancel spin lock from the driver's Cancel routine.

KelnitializeSpinLock
Initializes a variable of type KSPIN_LOCK, used to synchronize access to data shared
among nonISR routines. An initialized spin lock also is a required parameter to the Ex
InteriockedXxx routines.

KeAcquireSpinLock
Acquires a spin lock so the caller can synchronize access to shared data safely on multi
processor platforms.

KeReleaseSpinLock
Releases a spin lock that was acquired by calling KeAcquireSpinLock and restores the
original IRQL at which the caller was running.

KeAcquireSpinLockAtDpcLevel
Acquires a spin lock, provided that the caller is already running at IRQL DISP ATCH_
LEVEL.

KeReleaseSpinLockFromDpcLevel
Releases a spin lock that was acquired by calling KeAcquireSpinLockAtDpcLevel.

Exlnterlocked .. List
Insert and remove IRPs in a driver-managed internal queue, which is protected by an
initialized spin lock for which the driver provides the storage.

Ke .. DeviceQueue
Insert and remove IRPs in a driver-allocated and managed internal device queue object,
which is protected by a built-in spin lock.

26 Part 1 Kernel-Mode Support Routines

ExlnterlockedAddUlong
Adds a value to a variable of type ULONG as an atomic operation, using a spin lock to en
sure multiprocessor-safe access to the variable; returns the value of the variable before the
call occurred.

ExlnterlockedAdd Largel nteger
Adds a value to a variable of type LARGE_INTEGER as an atomic operation, using a spin
lock to ensure multiprocessor-safe access to the variable; returns the value of the variable
before the call occurred.

Interlockedlncrement
Increments a variable of type LONG as an atomic operation. The sign of the return value
is the sign of the result of the operation.

InterlockedDecrement
Decrements a variable of type LONG as an atomic operation. The sign of the return value is
the sign of the result of the operation.

InterlockedExchange
Sets a variable of type LONG to a specified value as an atomic operation; returns the value
of the variable before the call occurred.

Interlocked ExchangeAdd
Adds a value to a given integer variable as an atomic operation; returns the value of the
variable before the call occurred.

InterlockedCompareExchange
Compares the values referenced by two pointers. If the values are equal, resets one of the
values to a caller-supplied value in an atomic operation.

InterlockedCompareExchangePointer
Compares the pointers referenced by two pointers. If the pointer values are equal, resets one
of the values to a caller-supplied value in an atomic operation.

ExinteriockedCompareExchange64
Compares one integer variable to another and, if they are equal, resets the first variable to a
caller-supplied ULONGLONG-type value as an atomic operation.

KeGetCurrentProcessorNumber
Returns the current processor number when debugging spin lock usage in SMP machines.

Timers
lolnitializeTimer

Chapter 1 Summary of Kernel·Mode Support Routines 27

Associates a timer with the given device object and registers a driver-supplied 10Timer
routine for the device object.

loStartTimer
Enables the timer for a given device object and calls the driver-supplied 10Timer routine
once every second.

loStopTimer
Disables the timer for a given device object so the driver-supplied laTimer routine is not
called unless the driver re-enables the timer.

KelnitializeDpc
Initializes a DPC object and sets up a driver-supplied CustomTimerDpc routine that can be
called with a given context.

KelnitializeTimer
Initializes a notification timer object to the Not-Signaled state.

KelnitializeTimerEx
Initializes a notification or synchronization timer object to the Not-Signaled state.

KeSetTimer
Sets the absolute or relative interval at which a timer object will be set to the Signaled state;
optionally supplies a timer DPC to be executed when the interval expires.

KeSetTimerEx
Sets the absolute or relative interval at which a timer object will be set to the Signaled state;
optionally supplies a timer DPC to be executed when the interval expires; and optionally
supplies a recurring interval for the timer.

KeCancelTimer
Cancels a timer object before the interval passed to KeSetTimer expires; dequeues a timer
DPC before the timer interval, if any was set, expires.

KeReadStateTimer
Returns TRUE if a given timer object is set to the Signaled state.

KeQuerySystemTime
Returns the current system time.

28 Part 1 Kernel-Mode Support Routines

KeQueryTickCount
Returns the number of interval-timer interrupts that have occurred since the system was
booted.

KeQueryTimelncrement
Returns the number of IOO-nanosecond units that are added to the system time at each
interval-timer interrupt.

KeQuerylnterruptTime
Returns the current value of the system interrupt-time count in IOO-nanosecond units.

KeQueryPerformanceCounter
Returns the system performance counter value in hertz.

Driver Threads, Dispatcher Objects, and Resources
KeDelayExecutionThread
Puts the current thread into an alertable or nonalertable wait state for a given interval.

ExlnitializeResourceLite
Initializes a resource, for which the caller provides the storage, to be used for synchro
nization by a set of threads (shared readers, exclusive writers).

ExReinitializeResourceLite
Reinitializes an existing resource variable.

ExAcquireResourceExclusiveLite
Acquires an initialized resource for exclusive access by the calling thread and optionally
waits for the resource to be acquired.

ExTryToAcquireResourceExclusiveLite
Either acquires a given resource for exclusive access immediately, or returns FALSE.

ExAcquireResourceSharedLite
Acquires an initialized resource for shared access by the calling thread and optionally waits
for the resource to be acquired.

ExAcquireSharedStarveExclusive
Acquires a given resource for shared access without waiting for any pending attempts to
acquire exclusive access to the same resource.

Chapter 1 Summary of Kernel-Mode Support Routines 29

ExAcquireSharedWaitForExclusive
Acquires a given resource for shared access, optionally waiting for any pending exclusive
waiters to acquire and release the resource first.

ExlsResourceAcquiredExclusiveLite
Returns whether the calling thread has exclusive access to a given resource.

ExlsResourceAcquiredSharedLite
Returns how many times the calling thread has acquired shared access to a given resource.

ExGetExclusiveWaiterCount
Returns the number of threads currently waiting to acquire a given resource for exclusive
access.

ExGetSharedWaiterCount
Returns the number of threads currently waiting to acquire a given resource for shared
access.

ExConvertExclusiveToSharedLite
Converts a given resource from acquired for exclusive access to acquired for shared access.

ExGetCurrentResourceThread
Returns the thread ID of the current thread.

ExReleaseResourceForThreadLite
Releases a given resource that was acquired by the given thread.

ExDeleteResourceLite
Deletes a caller-initialized resource from the system's resource list.

loQueueWorkltem
Queues an initialized work queue item so the driver-supplied routine will be called when a
system worker thread is given control.

KeSetTimer
Sets the absolute or relative interval at which a timer object will be set to the Signaled state,
and optionally supplies a timer DPC to be executed when the interval expires.

KeSetTimerEx
Sets the absolute or relative interval at which a timer object will be set to the Signaled state.
Optionally supplies a timer DPC to be executed when the interval expires and a recurring
interval for the timer.

30 Part 1 Kernel-Mode Support Routines

KeCancelTimer
Cancels a timer object before the interval passed to KeSetTimer expires. Dequeues a timer
DPC before the timer interval (if any) expires.

KeReadStateTimer
Returns TRUE if a given timer object is set to the Signaled state.

KeSetEvent
Returns the previous state of a given event object and sets the event (if not already Signaled)
to the Signaled state.

KeClearEvent
Resets an event to the Not-Signaled state.

KeResetEvent
Returns the previous state of an event object and resets the event to the Not-Signaled state.

KeReadStateEvent
Returns the current state (nonzero for Signaled or zero for Not-Signaled) of a given event
object.

ExAcquireFastMutex
Acquires an initialized fast mutex, possibly after putting the caller into a wait state until it is
acquired, and gives the calling thread ownership with APCs disabled.

ExTryToAcquireFastMutex
Acquires the given fast mutex immediately for the caller with APCs disabled, or returns
FALSE.

ExReleaseFastMutex
Releases ownership of a fast mutex that was acquired with ExAcquireFastMutex or
ExTryToAcquireFastMutex.

ExAcquireFastMutexUnsafe
Acquires an initialized fast mutex, possibly after putting the caller into a wait state until it is
acquired.

ExReleaseFastMutexUnsafe
Releases ownership of a fast mutex that was acquired with ExAcquireFastMutexUnsafe.

Chapter 1 Summary of Kernel-Mode Support Routines 31

KeReleaseMutex
Releases a given mutex object, specifying whether the caller will call one of the KeWaitXxx
routines as soon as KeReleaseMutex returns the previous value of the mutex state (a zero
for Signaled; otherwise, Not-Signaled).

KeReadStateMutex
Returns the current state (one for Signaled or any other value for Not-Signaled) of a given
mutex object.

KeReleaseSemaphore
Releases a given semaphore object. Supplies a (run-time) priority boost for waiting threads
if the release sets the semaphore to the Signaled state. Augments the semaphore count by a
given value and specifies whether the caller will call one of the KeWaitXxx routines as soon
as KeReieaseSemaphore returns.

KeReadStateSemaphore
Returns the current state (zero for Not-Signaled or a positive value for Signaled) of a given
semaphore object.

KeWaitForSingleObject
Puts the current thread into an alertable or nonalertable wait state until a given dispatcher
object is set to the Signaled state or (optionally) until the wait times out.

KeWaitForMutexObject
Puts the current thread into an alertable or nonalertable wait state until a given mutex is set
to the Signaled state or (optionally) until the wait times out.

KeWaitForMultipleObjects
Puts the current thread into an alertable or nonalertable wait state until anyone or all of
a number of dispatcher objects are set to the Signaled state or (optionally) until the wait -
times out.

PsGetCurrentThread
Returns a handle for the current thread.

KeGetCurrentThread
. Returns a pointer to the opaque thread object that represents the current thread.

loGetCurrentProcess
Returns a handle for the process of the current thread.

PsGetCurrentProcess
Returns a pointer to the process of the current thread.

32 Part l' Kernel-Mode Support Routines

KeEnterCriticalRegion
Temporarily disables the delivery of normai kernel APes while a highest-level driver is
running in the context of the user-mode thread that requested the current 110 operation.
Special kernel-mode APes are still delivered.

KeLeaveCriticalRegion
Re-enables, as soon as possible, the delivery of normal kernel-mode APes that were dis
abled by a preceding call to KeEnterCriticalRegion.

KeSaveFloatingPointState
Saves the current thread's nonvolatile floating-point context so that the caller can carry out
its own floating-point operations.

KeRestoreFloatingPointState
Restores the previous nonvolatile floating-point context that was saved with KeSave
FloatingPointState.

ZwSetlnformationThread
Sets the priority of a given thread for which the caller has a handle.

PsGetCurrentProcessld
Returns the system-assigned identifier of the current process.

PsGetCurrentThreadld
Returns the system-assigned identifier of the current thread.

PsSetCreateProcessNotifyRoutine
Registers a highest level driver's callback that is subsequently notified whenever a new
process is created or existing process deleted.

PsSetCreateThreadNotifyRoutine
Registers a highest level driver's callback that is subsequently notified whenever a new
thread is created or an existing thread is deleted.

PsSetLoadlmageNotifyRoutine
Registers a callback routine for a highest level system-profiling driver. The callback is
subsequently notified whenever a new image is loaded for execution.

Memory
This section describes the kernel-mode support routines and macros that drivers can call to:

• Allocate and free temporary buffers

Chapter 1 Summary of Kernel-Mode Support Routines 33

• Allocate long-tenn internal driver buffers

• Manage buffered data or to initialize driver-allocated buffers

• Get mapped addresses and to allocate or manage MDLs (memory descriptor lists)

• Manipulate buffers and MDLs

• Communicate with their respective devices

• Lock and unlock their pageable code or data sections, or that they can call to make
their entire driver pageable

• Set up mapped sections and views of memory

Buffer Management
ExAllocatePool
Allocates (optionally cache-aligned) memory from paged or nonpaged system space.

ExAllocatePoolWithQuota
Allocates pool memory charging quota against the original requestor of the I/O operation.
(Only highest-level drivers can call this routine.)

ExAllocatePoolWithTag
Allocates (optionally cache-aligned) tagged memory from paged or nonpaged system space.
The caller-supplied tag is put into any crash dump of memory that occurs.

ExAllocatePoolWithQuotaTag
Allocates tagged pool memory charging quota against the original requestor of the I/O
operation. The caller-supplied tag is put into any crash dump of memory that occurs. Only
highest-level drivers can call this routine.

ExFreePool
Releases memory to paged or nonpaged system space.

ExlnitializeNPagedLookasideList
Initializes a lookaside list of nonpaged memory. After successful initialization of the list,
fixed-size blocks can be allocated from, and freed to, the lookaside list.

ExAllocateFromNPagedLookasideList
Removes the first entry from the specified lookaside list in nonpaged memory. If the look
aside list is empty, allocates an entry from nonpaged pool.

34 Part 1 Kernel-Mode Support Routines

ExFreeToNPagedLookasideList
Returns an entry to the specified lookaside list in nonpaged memory. If the list has reached
its maximum size, returns the entry to nonpaged pool.

ExDeleteNPagedLookasideList
Deletes a nonpaged lookaside list.

ExlnitializePagedLookasideList
Initializes a lookaside list of paged memory. After successful initialization of the list,
fixed-size blocks can be allocated from and freed to the lookaside list.

ExAllocateFromPagedLookasideList
Removes the first entry from the specified lookaside list in paged memory. If the lookaside
list is empty, allocates an entry from paged pool.

ExFreeToPagedLookasideList
Returns an entry to the specified lookaside list in paged memory. If the list has reached its
maximum size, returns the entry to paged pool.

ExDeletePagedLookasideList
Deletes a paged lookaside list.

MmQuerySystemSize
Returns an estimate (small, medium, or large) of the amount of memory available on the
current platform.

MmlsThisAnNtAsSystem
Returns TRUE if the machine is running as a Windows NTlWindows 2000 server. If this
routine returns TRUE, the caller is likely to require more resources to process 110 requests,
and the machine is a server so it is likely to have more resources available.

Long-Term Internal Driver Buffers
MmAllocateContiguousMemory
Allocates a range of physically contiguous, cache-aligned memory in nonpaged pool.

MmFreeContiguousMemory
Releases a range of physically contiguous memory when the driver unloads.

MmAllocateNonCachedMemory
Allocates a virtual address range of noncached and cache-aligned memory in nonpaged
system space (pool).

Chapter 1 Summary of Kernel-Mode Support Routines 35

MmFreeNonCachedMemory
Releases a virtual address range of noncached memory in nonpaged system space when the
driver unloads.

AllocateCommonBuffer
Allocates and maps a logically contiguous region of memory that is simultaneously
accessible both from the processor and from a device, given access to an adapter object,
the requested length of the memory region to allocate, and access to variables where the
starting logical and virtual addresses of the allocated region are returned. Returns TRUE if
the requested length was allocated. Can be used for continuous busmaster DMA or for
system DMA using the autoinitialize mode of a system DMA controller.

FreeCommonBuffer
Releases an allocated common buffer and unmaps it, given access to the adapter object,
the length, and the starting logical and virtual addresses of the region to be freed when the
driver unloads. Arguments must match those passed in the call to AllocateCommonBuffer.

Buffered Data and Buffer Initialization
RtlCompareMemory
Compares data, given pointers to caller-supplied buffers and the length in bytes for the
comparison. Returns the number of bytes that are equal.

RtlCopyMemory
Copies the data from one caller-supplied buffer to another, given pointers to both buffers
and the length in bytes to be copied.

RtlMoveMemory
Copies the data from one caller-supplied memory range to another, given pointers to the
base of both ranges and the length in bytes to be copied.

Rtl Fill Memory
Fills a caller-supplied buffer with the specified UCHAR value, given a pointer to the buffer
and the length in bytes to be filled.

RtlZeroMemory
Fills a buffer with zeros, given a pointer to the caller-supplied buffer and the length in bytes
to be filled.

RtlStoreUshort
Stores a USHORT value at a given address, avoiding alignment faults.

36 Part 1 Kernel-Mode Support Routines

Rtl RetrieveUshort
Retrieves a USHORT value at a given address, avoiding alignment faults, and stores the
value at a given address, that is assumed to be aligned.

RtlStoreUlong
Stores a ULONG value at a given address, avoiding alignment faults.

RtlRetrieveUlong
Retrieves a ULONG value at a given address, avoiding alignment faults, and stores the value
at a given address, that is assumed to be aligned.

Address Mappings and MDLs
MmGetPhysicalAddress
Returns the corresponding physical address for a given valid virtual address.

MmGetMdlVirtualAddress
Returns a (possibly invalid) virtual address for a buffer described by a given MDL; the
returned address, used as an index to a physical address entry in the MDL, can be input to
MapTransfer for drivers that use DMA.

MmGetSystemAddressForMdl
Returns a system-space virtual address that maps the physical pages described by a given
MDL for drivers whose devices must use PIa. If no virtual address exists, one is assigned. If
none are available, a bug check is issued. Windows 2000 drivers should use MmGet
SystemAddressForMdlSafe instead.

MmGetSystemAddressForMdlSafe
Returns a system-space virtual address that maps the physical pages described by a given
MDL for drivers whose devices must use PIa. If no virtual address exists, one is assigned.

MmBuildMdlForNonPagedPool
Fills in the corresponding physical addresses of a given MDL that specifies a range of
virtual addresses in nonpaged pool.

MmGetMdlByteCount
Returns the length in bytes of the buffer mapped by a given MDL.

MmGetMdlByteOffset
Returns the byte offset within a page of the buffer described by a given MDL.

Chapter 1 Summary of Kernel-Mode Support Routines 37

MmMapLockedPages
Maps already locked physical pages, described by a given MDL, to a returned virtual
address range.

MmUnmapLockedPages
Releases a mapping set up by MmMapLockedPages.

MmlsAddressValid
Returns whether a page fault will occur if a read or write operation is done at the given
virtual address.

MmSizeOfMdl
Returns the number of bytes required for an MDL describing the buffer specified by the
given virtual address and length in bytes.

MmCreateMdl
Allocates and initializes an MDL describing a buffer specified by the given virtual address
and length in bytes; returns a pointer to the MDL.

MmPrepareMdlForReuse
Reinitializes a caller-created MDL for reuse.

MmlnitializeMdl
Initializes a caller-created MDL to describe a buffer specified by the given virtual address
and length in bytes.

MmMaploSpace
Maps a physical address range to a cached or noncached virtual address range in nonpaged
system space.

MmUnmaploSpace
Unmaps a virtual address range from a physical address range.

Mm ProbeAndLockPages
Probes the pages specified in an MDL for a particular kind of access, makes the pages
resident, and locks them in memory; returns the MDL updated with corresponding physical
addresses. (Usually, only highest-level drivers call this routine.)

MmUnlockPages
Unlocks the previously probed and locked pages specified in an MDL.

38 Part 1 Kernel-Mode Support Routines

loAliocateMdl
Allocates an MDL large enough to map the starting address and length supplied by the
caller; optionally associates the MDL with a given IRP.

loBuildPartialMdl
Builds an MDL for the specified starting virtual address and length in bytes from a given
source MDL. Drivers that split large transfer requests into a number of smaller transfers can
call this routine.

loFreeMdl
Releases a given MDL allocated by the caller.

Buffer and MDL Management
ADDRESS_AND_SIZE_TO_SPAN_PAGES
Returns the number of pages required to contain a given virtual address and size in bytes.

BYTE_OFFSET
Returns the byte offset of a given virtual address within the page.

BYTES_ TO_PAGES
Returns the number of pages necessary to contain a given number of bytes.

PAGE_ALIGN
Returns the page-aligned virtual address for the page that contains a given virtual address.

ROUND_TO_PAGES
Rounds a given size in bytes up to a page-size multiple.

Device Memory Access
For the following, XXX_REGISTER_XXX indicates device memory that is mapped onto
system space, while XXX_PORT_XXX indicates device memory in I/O space.

READ_PORT_UCHAR
Reads a UCHAR value from the given I/O port address.

READ_PORT_USHORT
Reads a USHORT value from the given I/O port address.

READ_PORT _ULONG
Reads a ULONG value from the given I/O port address.

Chapter 1 Summary of Kernel-Mode Support Routines 39

READ_PORT_BUFFER_UCHAR
Reads a given count of UCHAR values from the given I/O port into a given buffer.

READ_PORT_BUFFER_USHORT
Reads a given count of USHORT values from the given I/O port into a given buffer.

READ_PORT_BUFFER_ULONG
Reads a given count of ULONG values from the given I/O port into a given buffer.

WRITE_PORT _UCHAR
Writes a given UCHAR value to the given I/O port address.

WRITE_PORT _USHORT
Writes a given USHORT value to the given I/O port address.

WRITE_PORT _ULONG
Writes a given ULONG value to the given I/O port address.

WRITE_PORT_BUFFER_UCHAR
Writes a given count of UCHAR values from a given buffer to the given I/O port.

WRITE_PORT _BUFFER_USHORT
Writes a given count of USHORT values from a given buffer to the given I/O port.

WRITE_PORT _BUFFER_ULONG
Writes a given count of ULONG values from a given buffer to the given I/O port.

READ_REGISTER_UCHAR
Reads a UCHAR value from the given register address in memory space.

READ_REGISTER_USHORT
Reads a USHORT value from the given register address in memory space.

READ_REGISTER_ULONG
Reads a ULONG value from the given register address in memory space.

READ _REGISTER_BUFFER_UCHAR
Reads a given count of UCHAR values from the given register address into the given buffer.

READ _REGISTER_BUFFER_USHORT
Reads a given count of USHORT values from the given register address into the given
buffer.

40 Part 1 Kernel-Mode Support Routines

READ_REGISTER_BUFFER_ULONG
Reads a given count of ULONG values from the given register address into the given buffer.

WRITE_REGISTER_UCHAR
Writes a given UCHAR value to the given register address in memory space.

WRITE_REGISTER_USHORT
Writes a given USHORT value to the given register address in memory space.

WRITE_REGISTER_ULONG
Writes a given ULONG value to the given register address in memory space.

WRITE_REGISTER_BUFFER_UCHAR
Writes a given count of UCHAR values from a given buffer to the given register address.

WRITE_REGISTER_BUFFER_USHORT
Writes a given count of USHORT values from a given buffer to the given register address.

WRITE_REGISTER_BUFFER_ULONG
Writes a given count of ULONG values from a given buffer to the given register address.

Pageable Drivers
MmLockPagableCodeSection
Locks a set of driver routines marked with a special compiler directive into system space.

MmLockPagableDataSection
Locks data marked with a special compiler directive into system space, when that data is
accessed infrequently, predictably, and at an IRQL less than DISPATCH_LEVEL.

MmLockPagableSectionByHandle
Locks a pageable section into system memory using a handle returned from MmLock
PagableCodeSection or MmLockPagableDataSection.

MmUnlockPagablelmageSection
Releases a section that was previously locked into system space when the driver is no longer
processing IRPs, or when the contents of the section is no longer required.

MmPageEntireDriver
Lets a driver page all of its code and data regardless of the attributes of the various sections
in the driver's image.

Chapter 1 Summary of Kernel-Mode Support Routines 41

MmResetDriverPaging
Resets a driver's pageable status to that specified by the sections which make up the driver's
image.

Sections and Views
InitializeObjectAttributes
Sets up a parameter of type OBJECT_ATTRIBUTES for a subsequent call to a Zw
CreateXxx or ZwOpenXxx routine.

ZwOpenSection
Obtains a handle for an existing section, provided that the requested access can be allowed.

ZwMapViewOfSection
Maps a view of an open section into the virtual address space of a process. Returns an offset
into the section (base of the mapped view) and the size mapped.

ZwUnMapViewOfSection
Releases a mapped view in the virtual address space of a process.

Access to Structures
ARGUMENT_PRESENT

DMA

Returns FALSE if an argument pointer is NULL; otherwise returns TRUE.

CONTAINING_RECORD
Returns the base address of an instance of a structure given the structure type and the
address of a field within it.

FIELD_OFFSET
Returns the byte offset of a named field in a known structure type.

loGetDmaAdapter
Returns a pointer to an adapter object that represents either the DMA channel to which the
driver's device is connected or the driver's busmaster adapter. Also returns the maximum
number of map registers the driver can specify for each DMA transfer.

MmGetMdlVirtualAddress
Returns the base virtual address of a buffer described by a given MDL. The returned
address, used as an index to a physical address entry in the MDL, can be input to Map
Transfer.

42 Part 1 Kernel-Mode Support Routines

MmGetSystemAddressForMdlSafe
Returns a nonpaged system-space virtual address for the base of the memory area described
by an MDL. It maps the physical pages described by the MDL into system space, if they are
not already mapped to system space. WDM drivers should use MmGetSystemAddress
ForMdl instead.

ADDRESS_AND _SIZE_TO _SPAN_PAGES
Returns the number of pages spanned by the virtual range defined by a virtual address and a
length in bytes. A driver can use this macro to determine whether a transfer request must be
split into partial transfers.

AllocateAdapterChannel
Reserves exclusive access to a DMA channel and map registers for a device. When the
channel and registers are available, this routine calls a driver-supplied AdapterControl
routine to carry out an 110 operation through either the system DMA controller or a bus
master adapter.

AllocateCommonBuffer
Allocates and maps a logically contiguous region of memory that is simultaneously
accessible from both the processor and a device. This routine returns TRUE if the requested
length was allocated.

FlushAdapterBuffers
Forces any data remaining in either a busmaster adapter's or the system DMA controller's
internal buffers to be written into memory or to the device.

FreeAdapterChannel
Releases an adapter object that represents a system DMA channel, and optionally releases
any allocated map registers.

FreeCommonBuffer
Releases and unmaps a previously allocated common buffer. Arguments must match those
passed in an earlier call to AllocateCommonBuffer.

FreeMapRegisters
Releases a set of map registers that were saved from a call to AllocateAdapterChannel.
A driver calls this routine after using the registers in one or more calls to MapTransfer,
flushing the cache by calling FlushAdapterBuffers, and completing the busmaster DMA
transfer.

GetDmaAlignment
Returns the buffer alignment requirements for a DMA controller or device.

PIO

Chapter 1 Summary of Kernel·Mode Support Routines 43

GetScatterGatherList
Prepares the system for scatter/gather DMA for a device and calls a driver-supplied routine
to carry out the I/O operation. For devices that support scatter/gather DMA, this routine
combines the functionality of AllocateAdapterChannel and MapTransfer.

KeFlushloBuffers
Flushes the memory region described by an MDL from all processors' caches into memory.

MapTransfer
Sets up map registers for an adapter object previously allocated by AllocateAdapter
Channel to map a transfer from a locked-down buffer. Returns the logical address of the
mapped region and, for busmaster devices that support scatter/gather, the number of bytes
mapped.

PutDmaAdapter
Frees an adapter object previously allocated by IoGetDmaAdapter.

PutScatterGatherList
Frees map registers and scatter/gather list previously allocated by GetScatterGatherList.

ReadDmaCounter
Returns the number of bytes yet to be transferred during the current system DMA operation
(in autoinitialize mode).

MmProbeAndLockPages
Probes the pages specified in an MDL for a particular kind of access, makes the pages
resident, and locks them in memory; returns the MDL updated with corresponding physical
addresses.

MmGetSystemAddressForMdlSafe
Returns a system-space virtual address that maps the physical pages described by a given
MDL for drivers whose devices must use PIO. If no virtual address exists, one is assigned.
Windows 98 drivers should use MmGetSystemAddressForMdl instead.

KeFlushloBuffers
Flushes the memory region described by a given MDL from all processors' caches into
memory.

MmUnlockPages
Unlocks the previously probed and locked pages specified in an MDL.

44 Part 1 Kernel-Mode Support Routines

MmMaploSpace
Maps a physical address range to a cached or noncached virtual address range in nonpaged
system space.

MmUnmaploSpace
Unmaps a virtual address range from a physical address range.

Driver-Managed Queues
KelnitializeSpinLock
Initializes a variable of type KSPIN_LOCK. An initialized spin lock is a required parameter
to the Ex .. InterlockedList routines.

InitializeListHead
Sets up a queue header for a driver's internal queue, given a pointer to driver-supplied
storage for the queue header and queue. An initialized queue header is a required parameter
to the ExInteriockedInsertIRemove .. List routines.

ExlnterlockedlnsertTailList
Inserts an entry at the tail of a doubly-linked list, using a spin lock to ensure
multiprocessor-safe access to the list and atomic modification of the list links.

ExlnterlockedlnsertHeadList
Inserts an entry at the head of a doubly-linked list, using a spin lock to ensure
multiprocessor-safe access to the list and atomic modification of the links in the list.

ExlnterlockedRemoveHeadList
Removes an entry from the head of a doubly-linked list, using a spin lock to ensure
multiprocessor-safe access to the list and atomic modification of the links in the list.

ExlnterlockedPopEntryList
Removes an entry from the head of a singly-linked list as an atomic operation, using a
spin lock to ensure multiprocessor-safe access to the list.

ExlnterlockedPushEntryList
Inserts an entry at the head of a singly-linked list as an atomic operation, using a spin lock
to ensure multiprocessor-safe access to the list.

ISListEmpty
Returns TRUE if a queue is empty. (This type of doubly-linked list is not protected by a spin
lock, unless the caller explicitly manages synchronization to queued entries with an initial
ized spin lock for which the caller supplies the storage.)

Chapter 1 Summary of Kernel-Mode Support Routines 45

InsertTailList
Queues an entry at the end of the list.

InsertHeadList
Queues an entry at the head of the list.

RemoveHeadList
Dequeues an entry at the head of the list.

RemoveTailList
Dequeues an entry at the end of the list.

RemoveEntryList
Returns whether a given entry is in the given list and dequeues the entry if it is.

PushEntryList
Inserts an entry into the queue. (This type of singly-linked list is not protected by a spin
lock, unless the caller explicitly manages synchronization to queued entries with an ini
tialized spin lock for which the caller supplies the storage.)

PopEntryList
Removes an entry from the queue.

ExlnterlockedPopEntrySList
Removes an entry from the head of a sequenced, singly-linked list that was set up with
ExlnitializeSListHead.

ExlnterlockedPushEntrySList
Queues an entry at the head of a sequenced, singly-linked list that was set up with
ExlnitializeSListHead.

ExQueryDepthSList
Returns the number of entries currently queued in a sequenced, singly-linked list.

ExlnitializeNPagedLookasideList
Sets up a lookaside list, protected by a system-supplied spin lock, in nonpaged pool from
which the driver can allocate and free blocks of a fixed size.

KelnitializeDeviceQueue
Initializes a device queue object to a not-busy state, setting up an associated spin lock for
multiprocessor-safe access to device queue entries.

46 Part 1 Kernel-Mode Support Routines

KelnsertDeviceQueue
Acquires the device queue spin lock and queues an entry to a device driver if the device
queue is not empty; otherwise, inserts the entry at the tail of the device queue.

KelnsertByKeyDeviceQueue
Acquires the device queue spin lock and queues an entry to a device driver if the device
queue is not empty; otherwise, inserts the entry into the queue according to the given sort
key value.

KeRemoveDeviceQueue
Removes an entry from the head of a given device queue.

KeRemoveByKeyDeviceQueue
Removes an entry, selected according to the specified sort-key value, from the given device
queue.

KeRemoveEntryDeviceQueue
Determines whether a given entry is in the given device queue and, if so, dequeues the entry.

Driver System Threads
PsCreateSystemThread
Creates a kernel-mode thread associated with a given process object or with the default
system process. Returns a handle for the thread.

PsTerminateSystemThread
Terminates the current thread and satisfies as many waits as possible for the current thread
object.

PsGetCurrentThread
Returns a handle for the current thread.

KeGetCurrentThread
Returns a pointer to the opaque thread object that represents the current thread.

KeQueryPriorityThread
Returns the current priority of a given thread.

KeSetBasePriorityThread
Sets up the run-time priority, relative to the system process, for a driver-created thread.

KeSetPriorityThread
Sets up the run-time priority for a driver-created thread with a real-time priority attribute.

Chapter 1 Summary of Kernel·Mode Support Routines 47

KeDelayExecutionThread
Puts the current thread into an alertable or nonalertable wait state for a given interval.

loQueueWorkltem
Queues an initialized work queue item so the driver-supplied routine will be called when a
system worker thread is given control.

ZwSetlnformationThread
Sets the priority of a given thread for which the caller has a handle.

Strings
RtlinitString
Initializes the specified string in a buffer.

Rtll n itAnsiString
Initializes the specified ANSI string in a buffer.

RtlinitUnicodeString
Initializes the specified Unicode string in a buffer.

RtlAnsiStringToUnicodeSize
Returns the size in bytes required to hold a Unicode version of a given buffered ANSI
string.

RtlAnsiStringToUnicodeString
Converts a buffered ANSI string to a Unicode string, given a pointer to the source-string
buffer and the address of caller-supplied storage for a pointer to the destination buffer. (This
routine allocates a destination buffer if the caller does not supply the storage.) You can also
use the string manipulation routines provided by a compiler to convert ANSI strings to
Unicode.

RtlFreeUnicodeString
Releases a buffer containing a Unicode string, given a pointer to the buffer returned by
RtlAnsiStringTo UnicodeString.

RtlUnicodeStringToAnsiString
Converts a buffered Unicode string to an ANSI string, given a pointer to the source-string
buffer and the address of caller-supplied storage for a pointer to the destination buffer. (This
routine allocates a destination buffer if the caller does not supply the storage.)

48 Part 1 Kernel-Mode Support Routines

Rtl FreeAnsiString
Releases a buffer containing an ANSI string, given a pointer to the buffer returned by
RtiU nicodeStringToAnsiString.

RtlAppendUnicodeStringToString
Concatenates a copy of a buffered Unicode string with a buffered Unicode string, given
pointers to both buffers.

RtlAppendUnicodeToString
Concatenates a given input string with a buffered Unicode string, given a pointer to the
buffer.

RtlCopyString
Copies the source string to the destination, given pointers to both buffers, or sets the length
of the destination string (but not the length of the destination buffer) to zero if the optional
pointer to the source-string buffer is NULL.

RtlCopyUnicodeString
Copies the source string to the destination, given pointers to both buffers, or sets the length
of the destination string (but not the length of the destination buffer) to zero if the optional
pointer to the source-string buffer is NULL.

RtlEqualString ,
Returns TRUE if the given ANSI alphabetic strings are equivalent.

RtlEqualUnicodeString
Returns TRUE if the given buffered strings are equivalent.

RtlCompareString
Compares two buffered, single-byte character strings and returns a signed value indicating
whether they are equivalent or which is greater.

RtlCompareUnicodeString
Compares two buffered Unicode strings and returns a signed value indicating whether they
are equivalent or which is greater.

Rtl U pperStri ng
Converts a copy of a buffered string to uppercase and stores the copy in a destination buffer.

RtlUpcaseUnicodeString
Converts a copy of a buffered Unicode string to uppercase and stores the copy in a
destination buffer.

Chapter 1 Summary of Kernel-Mode Support Routines 49

RtllntegerToUnicodeString
Converts an unsigned integer value in the specified base to one or more Unicode characters
in a buffer.

RtlUnicodeStringTolnteger
RtlUnicodeStringTolnteger converts the Unicode string representation of an integer into
its integer equivalent.

Data Conversions
Interlocked Exchange
Sets a variable of type LONG to a given value as an atomic operation; returns the original
value of the variable.

RtlConvertLongToLargelnteger
Converts a given LONG value to a LARGE_INTEGER value.

RtlConvertUlongToLargelnteger
Converts a given ULONG value to a LARGE_INTEGER value.

RtlTimeFieldsToTime
Converts information in a TIME_FIELDS structure to system time.

RtlTimeToTimeFields
Converts a system time value into a buffered TIME_FIELDS value.

ExSystemTimeToLocalTime
Adds the time-zone bias for the current locale to GMT system time, converting it to
local time.

ExLocalTimeToSystemTime
Subtracts the time-zone bias from the local time, converting it to GMT system time.

RtlAnsiStringToUnicodeString
Converts a buffered ANSI string to a Unicode string, given a pointer to the source-string
buffer and the address of caller-supplied storage for a pointer to the destination buffer. (This
routine allocates a destination buffer if the caller does not supply the storage.)

RtlUnicodeStringToAnsiString
Converts a buffered Unicode string to an ANSI string, given a pointer to the source-string
buffer and the address of caller-supplied storage for a pointer to the destination buffer. (This
routine allocates a destination buffer if the caller does not supply the storage.)

50 Part 1 Kernel-Mode Support Routines

Rtl UpperString
Converts a copy of a buffered string to uppercase and stores the copy in a destination buffer.

RtlU pcaseU nicodeString
Converts a copy of a buffered Unicode string to uppercase and stores the copy in a
destination buffer.

RtlCharTolnteger
Converts a single-byte character value into an integer in the specified base.

RtllntegerToUnicodeString
Converts an unsigned integer value in the specified base to one or more Unicode characters
in the given buffer.

RtlUnicodeStringTolnteger
Converts a Unicode string representation of an integer into its integer equivalent.

Access to Driver-Managed Objects
ExCreateCaliback
Creates or opens a callback object.

ExNotifyCallback
Calls the callback routines registered with a previously created or opened callback object.

ExRegisterCaliback
Registers a callback routine with a previously created or opened callback object, so that the
caller can be notified when conditions defined for the callback occur.

ExUnregisterCaliback
Cancels the registration of a callback routine with a callback object.

loRegisterDevicelnterface
Registers device functionality (a device interface) that a driver can enable for use by
applications or other system components.

loSetDevicelnterfaceState
Enables or disables a previously registered device interface. Applications and other system
components can open only interfaces that are enabled.

Chapter 1 Summary of Kernel-Mode Support Routines 51

loGetDevicelnterfaceAlias
Returns the alias device interface of the specified interface class, if the alias exists. Device
interfaces are considered aliases if they are exposed by the same underlying device and have
identical interface reference strings, but are of different interface classes.

loGetDevicelnterfaces
Returns a list of device interfaces of a particular device interface class (such as all devices
on the system that support a HID interface).

loGetFileObjectGenericMapping
Returns information about the mapping between generic access rights and specific access
rights for file objects.

loSetShareAccess
Sets the access allowed to a given file object representing a device. (Only highest-level
drivers can call this routine.)

loCheckShareAccess
Checks whether a request to open a file object specifies a desired access that is compatible
with the current shared access permissions for the open file object. (Only highest-level
drivers can call this routine.)

loUpdateShareAccess
Modifies the current share-access permissions on the given file object. (Only highest-level
drivers can call this routine.)

loRemoveShareAccess
Restores the shared-access permissions on the given file object that were modified by a
preceding call to IoUpdateShareAccess.

RtlLengthSecurityDescriptor
Returns the size in bytes of a given security descriptor.

RtlValidSecurityDescriptor
Returns whether a given security descriptor is valid.

RtlCreateSecurityDescriptor
Initializes a new security descriptor to an absolute format with default values (in effect, with
no security constraints).

RtlSetDaclSecurityDescriptor
Sets the discretionary ACL information for a given security descriptor in absolute format.

52 Part 1 Kernel-Mode Support Routines

SeAssignSecurity
Builds a security descriptor for a new object, given the security descriptor of its parent
directory (if any) and an originally requested security for the object.

SeDeassignSecurity
Deallocates the memory associated with a security descriptor that was created with
SeAssignSecurity.

SeValidSecurityDescriptor
Returns whether a given security descriptor is structurally valid.

SeAccessCheck
Returns a Boolean indicating whether the requested access rights can be granted to an object
protected by a security descriptor and, possibly, a current owner.

SeSinglePrivilegeCheck
Returns a Boolean indicating whether the current thread has at least the given privilege
level.

Error Handling
loAllocateErrorLogEntry
Allocates and initializes an error log packet; returns a pointer so the caller can supply
error-log data and call 10WriteErrorLogEntry with the packet.

loWriteErrorLogEntry
Queues a previously allocated error log packet, filled in by the driver, to the system error
logging thread.

lolsErrorUserlnduced
Returns a Boolean indicating whether an 110 request failed due to one of the following
(user-correctable) conditions: STATUS_IO_TIMEOUT, STATUS_DEVICE_NOT_
READY, STATUS_UNRECOGNIZED_MEDIA, STATUS_ VERIFY_REQUIRED,
STATUS_ WRONG_VOLUME, STATUS_MEDIA_ WRITE_PROTECTED, or STATUS_
NO_MEDIA_IN_DEVICE. If the result is TRUE, a removable-media driver must call 10-
SetHardErrorOrVerifyDevice before completing the IRP.

loSetHardErrorOrVerifyDevice
Supplies the device object for which the given IRP was failed due to a user-induced error,
such as supplying the incorrect media for the requested operation or changing the media
before the requested operation was completed. (A file system driver uses the associated

Chapter 1 Summary of Kernel·Mode Support Routines 53

device object to send a popup to the user; the user can then correct the error or retry the
operation.)

loSetThreadHardErrorMode
Enables or disables error reporting for the current thread using IoRaiseHardError or
IoRaiselnformationalHardError.

loGetDeviceToVerify
Returns a pointer to the device object, representing a removable-media device, that is the
target of the given thread's I/O request. (This routine is useful only to file systems or other
highest-level drivers.)

loRaiseHardError
Causes a popup to be sent to the user indicating that the given IRP was failed on the
given device object for an optional VPB, so that the user can correct the error or retry the
operation.

loRaiselnformationalHardError
Causes a popup to be sent to the user, showing an I/O error status and optional string
supplying more information.

ExRaiseStatus
Raises an error status so that a caller-supplied structured exception handler is called. (This
routine is useful only to highest-level drivers that supply exception handlers, in particular to
file systems.)

KeBugCheckEx
Brings down the system in a controlled manner, displaying the bug check code and possibly
more information, after the caller discovers an unrecoverable inconsistency that will corrupt
the system unless it is brought down. After the system is brought down, this routine displays
bug-check and possibly other information. (This routine can be called when debugging
under-development drivers. Otherwise, drivers should never call this routine when they can
handle an error by failing an IRP and by calling IoAllocateErrorLogEntry and IoWrite
ErrorLogEntry.)

KeBugCheck
Brings down the system in a controlled manner when the caller discovers an unrecoverable
inconsistency that will corrupt the system if the caller continues to run. KeBugCheckEx is
preferable.

KelnitializeCallbackRecord
Initializes a bug-check callback record before a device driver calls KeRegisterBugCheck
Callback.

54 Part 1 Kernel-Mode Support Routines

KeRegisterBugCheckCallback
Registers the device driver's bug-check callback routine, that is called if a system bug check
occurs. Such a driver-supplied routine saves driver-determined state information, such as
the contents of device registers, that would not otherwise be written into the system crash
dump file.

KeDeregisterBugCheckCallback
Removes a device driver's callback routine from the set of registered bug-check callbacks.

CHAPTER 2

Executive Support Routines

References for the ExXxx routines are in alphabetical order.

For an overview of the functionality of these routines, see Chapter 1, Summary of Kernel
Mode Support Routines.

ExAcquireFastMutex
VOID

ExAcquireFastMutex(
IN PFAST_MUTEX FastMutex
) ;

55

The ExAcquireFastMutex support routine acquires the given fast mutex with APCs to the
current thread disabled.

Parameters
FastMutex
Pointer to an initialized fast mutex for which the caller provides the storage.

Include
wdm.h or ntddk.h

Comments
ExAcquireFastMutex puts the caller into a wait state if the given fast mutex cannot be
acquired immediately. Otherwise, the caller is given ownership of the fast mutex with APCs
to the current thread disabled until it releases the fast mutex.

Use ExTryToAcquireFastMutex if the current thread can do other work before it waits on
the acquisition of the given mutex.

Any fast mutex acquired using ExAcquireFastMutex or ExTryToAcquireFastMutex
must be released with ExReleaseFastMutex.

56 Part 1 Kernel-Mode Support Routines

Callers of ExAcquireFastMutex must be running at IRQL < DISPATCH_LEVEL.
ExAcquireFastMutex sets the IRQL to APC_LEVEL, and the caller continues to run at
APC_LEVEL after ExAcquireFastMutex returns. ExAcquireFastMutex saves the caller's
previous IRQL in the mutex, however, and that IRQL is restored when the caller invokes
ExReleaseFastMutex.

See Also
ExAcquireFastMutexUnsafe, ExlnitializeFastMutex, ExReleaseFastMutex,
ExTryToAcquireFastMutex

ExAcquireFastMutexUnsafe
VOID

ExAcquireFastMutexUnsafe(
IN PFAST_MUTEX FastMutex
) ;

The ExAcquireFastMutexUnsafe support routine acquires the given fast mutex for the
current thread.

Parameters
FastMutex
Pointer to an initialized fast mutex for which the caller provides the storage.

Include
wdm.h or ntddk.h

Comments
ExAcquireFastMutexUnsafe puts the caller into a wait state if the given fast mutex cannot
be acquired immediately. Otherwise, the caller is given ownership of the fast mutex and ex
clusive access to the resource it protects until it releases the fast mutex.

Any fast mutex acquired using ExAcquireFastMutexUnsafe must be released with
ExReleaseFastMutexUnsafe.

Callers of ExAcquireFastMutexUnsafe must ensure that APCs are not delivered to the
current thread while the fast mutex is held. This can be accomplished in two ways:

1. Callers can set the IRQL = APC_LEVEL before calling ExAcquireFastMutexUnsafe or

2. Callers can invoke ExAcquireFastMutexUnsafe from within a critical section by calling
KeEnterCriticalRegion prior to calling ExAcquireFastMutexUnsafe.

Chapter 2 Executive Support Routines 57

If the caller chooses to invoke ExAcquireFastMutexUnsafe from within a critical section,
then the caller must be running at IRQL < DISPATCH_LEVEL.

See Also
ExAcquireFastMutex, ExlnitializeFastMutex, ExReleaseFastMutexUnsafe,
KeEnterCriticalRegion, KeLeaveCriticalRegion

ExAcquireResourceExclusive
BOOLEAN

ExAcquireResourceExclusive(
IN PERESOURCE Resource.
IN BOOLEAN Wait
) ;

The ExAcquireResourceExciusive support routine is exported to support existing driver
binaries and is obsolete. Use ExAcquireResourceExciusiveLite instead.

ExAcquireResourceExclusiveLite
BOOLEAN

ExAcquireResourceExclusiveLite(
IN PERESOURCE Resource.
IN BOOLEAN Wait
) ;

The ExAcquireResourceExciusiveLite support routine acquires the given resource for
exclusive access by the calling thread.

Include
ntddk.h

Parameters
Resource
Pointer to the resource to acquire.

Wait
Set to TRUE if the caller should be put into a wait state until the resource can be acquired if
it cannot be acquired immediately.

58 Part 1 Kernel·Mode Support Routines

Return Value
ExAcquireResourceExciusiveLite returns TRUE if the resource is acquired. This routine
returns FALSE if the input Wait is FALSE and exclusive access cannot be granted
immediately.

Comments
Normal kernel APCs must be disabled before calling ExAcquireResourceExciusiveLite.
Otherwise a bugcheck occurs. Normal kernel APCs can be disabled by calling KeEnter
CriticalRegion or by raising the calling thread's IRQL to APC_LEVEL.

For better performance, call ExTryToAcquireResourceExciusiveLite, rather than calling
ExAcquireResourceExciusiveLite with Wait set to FALSE.

Callers of ExAcquireResourceExciusiveLite must be running at IRQL < DISP ATCH_
LEVEL.

See Also
ExAcquireResourceSharedLite, ExGetExciusive WaiterCount, ExGetShared
WaiterCount, ExInitializeResourceLite, ExReinitializeResourceLite,
ExIsResourceAcquiredExciusiveLite, ExReleaseResourceForThreadLite,
ExTryToAcquireResourceExciusiveLite, KeEnterCriticalRegion

ExAcquireResourceShared
BOOLEAN
ExAcquireResourceSharedLite(

IN PERESOURCE Resource.
IN BOOLEAN Wait
);

The ExAcquireResourceShared support routine is exported to support existing driver
binaries, and is obsolete. Use ExAcquireResourceSharedLite instead.

ExAcquireResourceSharedLite
BOOLEAN

ExAcquireResourceSharedLite(
IN PERESOURCE Resource.
IN BOOLEAN Wait
) ;

The ExAcquireResourceSharedLite support routine acquires the given resource for shared
access by the calling thread.

Parameters
Resource
Pointer to the resource to acquire.

Wait

Chapter 2 Executive Support Routines 59

Set to TRUE if the resource cannot be acquired immediately and if the caller should be put
into a wait state until the resource can be acquired.

Include
ntddk.h

Return Value
ExAcquireResourceSharedLite returns TRUE if (or when) the resource is acquired. This
routine returns FALSE if the input Wait is FALSE and shared access cannot be granted
immediately.

Comments
Whether or when the caller is given shared access to the given resource depends on the
following:

• If the resource is currently unowned, shared access is granted immediately to the current
thread.

• If the caller already has acquired the resource, the current thread is granted the same type
of access recursively. Note that making this call does not convert a caller's exclusive
ownership of a given resource to shared.

• If the resource is currently owned as shared by another thread and no thread is waiting for
exclusive access to the resource, shared access is granted to the caller immediately. The
caller is put into a wait state if there is an exclusive waiter.

• If the resource is currently owned as exclusive by another thread or if there is another
thread waiting for exclusive access and the caller does not already have shared access to
the resource, the current thread either is put into a wait state (Wait set to TRUE) or
ExAcquireResourceSharedLite returns FALSE.

Callers of ExAcquireResourceSharedLite must be running at IRQL < DISPATCH_
LEVEL.

60 Part 1 Kernel-Mode Support Routines

See Also
ExAcquireResourceExclusiveLite, ExAcquireSharedStarveExclusive,
ExAcquireSharedWaitForExclusive, ExConvertExclusiveToSharedLite,
ExGetExclusive WaiterCount, ExGetSharedWaiterCount, ExlnitializeResource
Lite, ExReinitializeResourceLite, ExIsResourceAcquiredSharedLite,
ExReleaseResourceForThreadLite

ExAcquireSharedStarveExclusive
BOOLEAN

ExAcquireSharedStarveExclusive(
IN PERESOURCE Resource,
IN BOOLEAN Wait
) ;

The ExAcquireSharedStarveExclusive support routine acquires a given resource for
shared access without waiting for any pending attempts to acquire exclusive access to the
same resource.

Parameters
Resource
Pointer to the resource to be acquired for shared access.

Wait
Set to TRUE if the caller will wait until the resource becomes available when access cannot
be granted immediately.

Include
ntddk.h

Return Value
ExAcquireSharedStarveExclusive returns TRUE if the requested access is granted. This
routine returns FALSE if the input Wait is FALSE and shared access cannot be granted
immediately.

Comments
Whether or when the caller is given shared access to the given resource depends on the
following:

• If the resource is currently unowned, shared access is granted immediately to the current
thread.

Chapter 2 Executive Support Routines 61

• If the caller already has acquired the resource, the current thread is granted the same type
of access recursively. Note that making this call does not convert a caller's exclusive
ownership of a given resource to shared.

• If the resource is currently owned as shared by another thread, shared access is granted to
the caller immediately, even if another thread is waiting for exclusive access to that
resource.

• If the resource is currently owned as exclusive by another thread, the caller either is put
into a wait state (Wait set to TRUE) or ExAcquireSharedStarveExclusive returns
FALSE.

Callers of ExAcquireSharedStarveExclusive usually need quick access to a shared re
source in order to save an exclusive accessor from doing redundant work. For example, a
file system might call this routine to modify a cached resource, such as a BCB pinned in the
cache, before the Cache Manager can acquire exclusive access to the resource and write
the cache out to disk.

Callers of ExAcquireSharedStarveExclusive must be running at IRQL < DISP ATCH_
LEVEL.

See Also
ExAcquireResourceSharedLite, ExAcquireSharedWaitForExclusive,
ExConvertExclusiveToSharedLite, ExGetExclusive WaiterCount,
ExIsResourceAcquiredExclusiveLite, ExIsResourceAcquiredSharedLite,
ExTryToAcquireResourceExclusiveLite

ExAcquireSharedWaitForExclusive
BOOLEAN

ExAcquireSharedWaitForExclusive(
IN PERESOURCE Resource.
IN BOOLEAN Wait
) ;

The ExAcquireSharedWaitForExclusive support routine acquires the given resource for
shared access immediately if shared access can be granted. Optionally, the caller can wait
for other threads to acquire and release exclusive ownership of the resource.

Parameters
Resource
Pointer to the resource to be acquired for shared access.

62 Part 1 Kernel-Mode Support Routines

Wait
Set to TRUE if the caller will wait until the resource becomes available when access cannot
be granted immediately.

Include
ntddk.h

Return Value
ExAcquireSharedWaitForExciusive returns TRUE if the requested access is granted or
an exclusive owner releases the resource. This routine returns FALSE if the input Wait is
FALSE and shared access cannot be granted immediately.

Comments
Whether or when the caller is given shared access to the given resource depends on the
following:

• If the resource is currently unowned, shared access is granted immediately to the current
thread.

• If the caller already has exclusive access to the resource, the current thread is granted the
same type of access recursively.

• If the resource is currently owned as shared and there are no pending attempts to acquire
exclusive access, shared access is granted to the caller immediately.

• If the resource is currently owned as shared but there is a pending attempt to acquire
exclusive access, the caller either is put into a wait state (Wait set to TRUE) or
ExAcquireSharedWaitForExciusive returns FALSE.

When the current thread waits to acquire the resource until after a pending exclusive
ownership has been released, ExAcquireSharedWaitForExciusive returns TRUE when
the current thread is granted shared access to the resource and resumes execution.

Callers of ExAcquireSharedWaitForExciusive must be running at IRQL < DISPATCH_
LEVEL.

See Also
ExAcquireResourceSharedLite, ExAcquireSharedStarveExciusive,
ExConvertExciusiveToSharedLite, ExGetExciusive WaiterCount, ExIsResource
AcquiredExciusiveLite, ExIsResourceAcquiredSharedLite,
ExTryToAcquireResourceExciusiveLite

ExAllocateFromNPagedLookasideList
PVOID

ExAllocateFromNPagedLookasideList(
IN PNPAGED_LOOKASIDE_LIST Lookaside
) ;

Chapter 2 Executive Support Routines 63

The ExAllocateFromNPagedLookasideList support routine returns a pointer to a non
paged entry from the given lookaside list, or it returns a pointer to a newly allocated
nonpaged entry.

Parameters
Lookaside
Pointer to the head of the lookaside list, which the caller already initialized with
ExlnitializeNPagedLookasideList.

Include
wdm.h or ntddk.h

Return Value
ExAllocateFromNPagedLookasideList returns a pointer to an entry if one can be
allocated. Otherwise, it returns NULL.

Comments
If the given lookaside list is not empty, ExAllocateFromNPagedLookasideList removes
the first entry from the list and returns a pointer to this entry. Otherwise, ExAllocateFrom
NPagedLookasideList either calls the Allocate routine specified at list initialization or
ExAllocatePoolWithTag to return an entry pointer.

The caller then can set up the returned entry with any caller-determined data. For example,
a driver might use each such fixed-size entry to set up command blocks, like SCSI SRBs, to
peripheral devices on a particular type of I/O bus. The caller should release each entry with
ExFreeToNPagedLookasideList when it is no longer in use.

Callers of ExAllocateFromNPagedLookasideList must be running at IRQL <=
DISPATCH_LEVEL.

See Also
ExlnitializeNPagedLookasideList, ExAllocateFromPagedLookasideList,
ExFreeToNPagedLookasideList

64 Part 1 Kernel-Mode Support Routines

ExAllocateFromPagedLookasideList
PVOID

ExAllocateFromPagedLookasideList(
IN PPAGED_LOOKASIDE_LIST Lookaside
) :

The ExAllocateFromPagedLookasideList support routine returns a pointer to a paged
entry from the given lookaside list, or it returns a pointer to a newly allocated paged entry.

Parameters
Lookaside
Pointer to the resident head of the lookaside list, which the caller already initialized with
ExlnitializePagedLookasideList.

Include
wdm.h or ntddk.h

Return Value
ExAllocateFromPagedLookasideList returns a pointer to an entry if one can be allocated.
Otherwise, it returns NULL.

Comments
If the given lookaside list is not empty, ExAllocateFromPagedLookasideList removes
the first entry from the list and returns a pointer to this entry. Otherwise, ExAllocateFrom
PagedLookasideList either calls the Allocate routine specified at list initialization or
ExAllocatePoolWithTag to return an entry pointer.

The caller then can set up the returned entry with any caller-determined data. Because the
entries in a paged lookaside list are allocated from pageable memory, access to these entries
must not cause a page fault. Consequently, the user of a paged lookaside list must ensure
that each such entry cannot be accessed from an arbitrary thread context or at raised IRQL.
The caller should release each entry with ExFreeToNPagedLookasideList when it is no
longer in use.

Callers of ExAllocateFromPagedLookasideList must be running at IRQL < DISPATCH_
LEVEL.

See Also
ExlnitializePagedLookasideList, ExFreeToPagedLookasideList

ExAliocateFromZone
PVOID

ExAllocateFromlone(
IN PlaNE_HEADER Zone
) ;

Chapter 2 Executive Support Routines 65

The ExAllocateFrornZone support routine is exported to support existing driver binaries.
This routine is obsolete; use lookaside lists instead. See Buffer Management in Chapter 1 for
more information.

ExAliocatePool
PVOID

ExAllocatePool(
IN POOL_TYPE Poo7Type,
IN SIlE_T NumberOfBytes
) ;

The ExAllocatePool support routine allocates pool memory of the specified type and returns
a pointer to the allocated block. This routine is used for general pool allocation of memory.

Parameters
Poo/Type
Specifies the type of pool memory to allocate. See POOL_TYPE for a description of the
available pool memory types.

NumberOfBytes
Specifies the number of bytes to allocate.

Include
wdm.h or ntddk.h

Return Value
If the PoolType is one of the XxxMustS(ucceed) values, this call succeeds if the system has
any available must-succeed memory, and ExAllocatePool returns a pointer to allocated pool
memory.

ExAllocatePool returns a NULL pointer if the PoolType is not one of the XxxMust
S(ucceed) values and not enough free pool exists to satisfy the request.

66 Part 1 Kernel-Mode Support Routines

Comments
If the NumberOjBytes requested is >= PAGE_SIZE, a page-aligned buffer is allocated.
Memory requests for <= PAGE_SIZE do not cross page boundaries. Memory requests for
< PAGE_SIZE are not necessarily page-aligned but are aligned on an 8-byte boundary.

For the PoolType NonPagedPoolMustSucceed, somewhat less than PAGE_SIZE memory
is available. If such a call fails to allocate sufficient memory, ExAllocatePool causes a
system crash. Consequently, a caller should request this type of memory only if that caller
needs it to prevent the system from crashing or being corrupted. Very few drivers ever
encounter a situation that requires them to allocate this type of memory.

A successful allocation requesting NumberOjBytes < PAGE_SIZE of nonpaged pool gives
the caller exactly the number of requested bytes of memory. Any successful allocation that
requests NumberOjBytes >PAGE_SIZE wastes all unused bytes on the last-allocated page.

Callers of ExAllocatePool must be running at IRQL <= DISPATCH_LEVEL. A caller at
DISPATCH_LEVEL must specify a NonPagedXxx PoolType. Otherwise, the caller must be
running at IRQL < DISPATCH_LEVEL.

If ExAllocatePool returns NULL, the caller should return the NTSTATUS value STATUS_
INSUFFICIENT_RESOURCES or should delay processing to another point in time.

See Also
ExAllocatePoolWithTag, ExFreePool

ExAllocatePoolWithQuota
PVOID

ExAllocatePoolW;thQuota(
IN POOL_TYPE Poo7Type.
IN SIZE_T NumberOfBytes
) ;

The ExAllocatePoolWithQuota support routine allocates pool memory, charging quota
against the current thread.

Parameters
PoolType
Specifies the type of pool memory to allocate. See POOL_TYPE for a description of the
available pool memory types.

NumberOfBytes
Specifies the number of bytes to allocate.

Chapter 2 Executive Support Routines 67

Include
wdm. h or ntddk.h

Return Value
ExAllocatePoolWithQuota returns a pointer to the allocated pool.

If the request cannot be satisfied, ExAllocatePoolWithQuota raises an exception.

Comments
This routine is called by highest-level drivers that allocate memory to satisfy a request in
the context of the thread that originally made the I/O request. Lower-level drivers call Ex
AllocatePool instead.

If the NumberOfBytes requested is >= PAGE_SIZE, a page-aligned buffer is allocated.
Quota is not charged to the thread for allocations >= PAGE_SIZE.

Memory requests for < PAGE_SIZE are allocated within a page and do not cross page
boundaries. Memory requests for < PAGE_SIZE are not necessarily page-aligned but are
aligned on an 8-byte boundary.

ExAllocatePoolWithQuota raises an exception if the pool allocation fails.

Callers of ExAllocatePoolWithQuota must be running at IRQL < DISPATCH_LEVEL.

See Also
ExAllocatePool, ExAllocatePoolWithQuotaTag, ExFreePool

ExAllocatePoolWithQuotaTag
PVOID

ExAllocatePoolWithQuotaTag(
IN POOL_TYPE Poo7Type.
IN SIZE_T NumberOfBytes.
IN ULONG Tag
) ;

The ExAllocatePoolWithQuotaTag support routine allocates pool memory, charging the
quota against the current thread. A call to this routine is equivalent to calling ExAllocate
PoolWithQuota, except it inserts a caller-supplied tag before the allocation. This tag
appears in any crash dump of the system that occurs.

68 Part 1 Kernel-Mode Support Routines

Parameters
PoolType
Specifies the type of pool memory to allocate. See POOL_TYPE for a description of the
available pool memory types.

NumberOfBytes
Specifies the number of bytes to allocate.

Tag
Specifies a string, delimited by single quote marks, with up to four characters. The string is
usually specified in reversed order.

Include
wdm.h or ntddk. h

Return Value
ExAllocatePoolWithQuotaTag returns a pointer to the allocated pool.

If the request cannot be satisfied, ExAllocatePoolWithQuotaTag raises an exception.

Comments
During driver development on a checked build of the system, this routine can be useful for
crash debugging. Calling this routine, rather than ExAllocatePoolWithQuota, causes the
caller-supplied tag to be inserted into a crash dump of pool memory.

The Tag passed to this routine is more readable if its bytes are reversed when this routine is
called. For example, if a caller passes 'Fred' as a Tag, it would appear as 'derF' if the pool is
dumped or when tracking pool usage in the debugger.

Callers of ExAllocatePoolWithQuotaTag, like callers of ExAllocatePoolWithQuota,
must be running at IRQL < DISPATCH_LEVEL.

See Also
ExAllocatePoolWithQuota, ExFreePool

ExAllocatePoolWith Tag
PVOID

ExAllocatePoolWithTag(

) ;

IN POOL_TYPE Poo7Type.
IN SIZE_T NumberOfBytes.
IN ULONG Tag

Chapter 2 Executive Support Routines 69

The ExAllocatePoolWithTag support routine allocates pool memory. A call to this routine
is equivalent to calling ExAllocatePool, except that ExAllocatePoolWithTag inserts a
caller-supplied tag before the allocation. This tag appears in any crash dump of the system
that occurs.

Parameters
Poo/Type
Specifies the type of pool memory to allocate. See POOL_TYPE for a description of the
available pool memory types.

NumberOfBytes
Specifies the number of bytes to allocate.

Tag
Specifies a string, delimited by single quote marks, with up to four characters. The string is
usually specified in reversed order.

Include
wdm.h or ntddk.h

Return Value
If the PoolType is one of the XxxMustS(ucceed) values, and if the system has any available
memory, this call succeeds and ExAllocatePoolWithTag returns a pointer to allocated pool
memory.

ExAllocatePoolWithTag returns a NULL pointer if the PoolType is not one of the
XxxMustS(ucceed) values and not enough free pool exists to satisfy the request.

Comments
During driver development on a checked build of the system, this routine can be useful
for crash debugging. Calling this routine, rather than ExAllocatePool, inserts the caller
supplied tag into a crash dump of pool memory.

70 Part 1 Kernel-Mode Support Routines

The Tag passed to this routine is more readable if its bytes are reversed when this routine
is called. For example, if a caller passes 'Fred' as a Tag, it would appear as 'derF' if pool is
dumped or when tracking pool usage in the debugger.

Callers of ExAlIocatePoolWithTag, like callers of ExAlIocatePool, can be running at
IRQL DISPATCH_LEVEL only if the requested PoolType is one of the NonPagedXxx.
Otherwise, callers must be running at IRQL < DISPATCH_LEVEL.

See Also
ExAllocatePool, ExAllocatePoolWithQuotaTag, ExAllocatePoolWithTagPriority,
ExFreePool

ExAllocatePoolWithTagPriority
NTKERNELAPI
PVOID
NTAPI
ExAllocatePoolWithTagPriority(

IN POOL_TYPE Poo7Type.
IN SIZE_T NumberOfBytes.
IN ULONG Tag.
IN EX_POOL_PRIORITY Priority
) ;

ExAllocatePoolWithTagPriority allocates pool memory of the specified type.

Parameters
Poo/Type
Specifies the type of pool memory to allocate. See POOL_TYPE for a description of the
available pool memory types.

NumberOfBytes
Specifies the number of bytes to allocate.

Tag
Specifies the four-character tag used to mark the allocated buffer. See ExAllocatePool
WithTag for a description of how to use tags.

Priority
Indicates the importance of this request.

Priority Value

LowPoolPriority

N ormalPoolPriority

HighPoolPriority

Chapter 2 Executive Support Routines 71

Description

Specifies the system may fail the request when it runs low on resources.
Driver allocations that can recover from an allocation failure use this
priority.

Specifies the system may fail the request when it runs very low on
resources. Most drivers should use this value.

Specifies the system must not fail the request, unless it is completely out
of resources. Drivers only use this value when it is critically important
for the request to succeed.

The XxxSpecialPoolOverrun and XxxSpecialPoolUnderrun variants specify how memory
should be allocated when Driver Verifier (or special pool) is enabled. If the driver specifies
XxxSpecialPoolUnderrun, when the Memory Manager allocates memory from special pool,
it allocates it at the beginning of a physical page. If the driver specifies XxxSpecialPool
Overrun, the Memory Manager allocates it at the end of a physical page.

Include
ntddk.h

Comments
Callers of ExAlIocatePoolWithTagPriority, like callers of ExAlIocatePoolWithTag, can
be running at IRQL DISPATCH_LEVEL only if the requested PoolType is one of the Non
PagedXxx. Otherwise, callers must be running at IRQL < DISPATCH_LEVEL.

See Also
ExAlIocatePool, ExAlIocatePoolWithTag, ExAlIocatePoolWithQuotaTag, ExFreePool

ExConvertExclusiveToShared
VOID
ExConvertExclusiveToShared(

IN PERESOURCE Resource
) ;

The ExConvertExciusiveToShared support routine is exported to support existing driver
binaries, and is obsolete. Use ExConvertExciusiveToSharedLite instead.

72 Part 1 Kernel-Mode Support Routines

ExConvertExclusiveToSharedLite
VOID

ExConvertExclusiveToSharedLite(
IN PERESOURCE Resource
) ;

The ExConvertExciusiveToSharedLite support routine converts a given resource from
acquired for exclusive access to acquired for shared access.

Parameters
Resource
Pointer to the resource for which the access should be converted.

Include
ntddk.h

Comments
The caller must have exclusive access to the given resource. During this conversion, the
current thread and any other threads waiting for shared access to the resource are given
shared access.

Callers of ExConvertExciusiveToSharedLite must be running at IRQL < DISP ATCH_
LEVEL.

See Also
ExIsResourceAcquiredExciusiveLite

ExCreateCaliback
NTSTATUS

ExCreateCallback(
OUT PCALLBAC~OBJECT *Ca77backObject,
IN POBJECT_ATTRIBUTES ObjectAttributes,
IN BOOLEAN Create,
IN BOOLEAN A77owMu7tip7eCa77backs
) ;

The ExCreateCallback support routine either creates a new callback object or opens an
existing callback object on behalf of the caller.

Parameters
CallbackObject

Chapter 2 Executive Support Routines 73

Pointer to the newly created or opened callback object if the routine completes with
STATUS_SUCCESS.

ObjectAttributes
Pointer to a structure that contains the callback object's attributes, previously initialized by
InitializeObjectAttributes.

Create
Requests that a callback object be created if the requested object cannot be opened.

A 110 wMultipleCallbacks
Specifies whether a newly created callback object should allow multiple registered callback
routines. This parameter is ignored when Create is FALSE or when opening an existing
object.

Include
wdm.h or ntddk.h

Return Value
ExCreateCallback returns STATUS_SUCCESS if a callback object was opened or created.
Otherwise, it returns an NTST ATUS error code to indicate the nature of the failure.

Comments
A driver calls ExCreateCallback to create a new callback object or to open an existing
callback object. After the object has been created or opened, other components can call
ExRegisterCallback to register callback routines with the callback object.

Before calling ExCreateCallback, the driver must call InitializeObjectAttributes to
initialize the OBJECT_ATTRIBUTES structure for the callback object. The caller must
specify a name for the object; otherwise, the call fails with STATUS_UNSUCCESSFUL.
Unnamed callback objects are not permitted. The caller should also specify any appropriate
attributes, such as OBJ_CASE_INSENSITIVE.

When all operations have been completed with the callback object, the driver must call
ObDereferenceObject to ensure that the object is deleted to prevent a memory leak.

74 Part 1 Kernel-Mode Support Routines

The system creates the following callback objects for driver use:

Callback Object Name

\Callback\SetSystemTime

\Callback\PowerState

Usage

The system calls any callback routines registered for this object
whenever the system time changes.

The system calls any callback routines registered for this object
whenever certain system power characteristics change. When a driver
registers for callback notification (ExRegisterCallback), it can
specify the changes for which it should be notified.

Callers of this routine must be running at IRQL PASSIVE_LEVEL.

See Also
ExRegisterCallback, ExNotifyCallback, InitializeObjectAttributes, ObDereference
Object

ExDeleteNPagedLookasideList
VOID

ExDeleteNPagedLookasideList(
IN PNPAGED_LOOKASIDE_LIST Lookaside
) ;

The ExDeieteNPagedLookasideList support routine destroys a nonpaged lookaside list.

Parameters
Lookaside
Pointer to the head of the lookaside list to be deleted, which the caller originally set up with
ExlnitializeNPagedLookasideList.

Include
wdm.h or ntddk.h

Comments
ExDeieteNPagedLookasideList is the reciprocal of ExlnitializeNPagedLookasideList. It
frees any remaining entries in the specified lookaside list and then removes the list from the
system-wide set of active lookaside lists.

The caller of ExDeieteNPagedLookasideList is responsible for subsequently releasing the
memory that the caller provided to contain the list head.

Callers of ExDeieteNPagedLookasideList must be running at IRQL <= nISP ATCH_
LEVEL.

See Also
ExlnitializeNPagedLookasideList

ExDeletePagedLookasideList
VOID

ExDeletePagedLookasideList(
IN PPAGED_LOOKASIDE_LIST Lookaside
) :

Chapter 2 Executive Support Routines 75

The ExDeletePagedLookasideList support routine destroys a paged lookaside list.

Parameters
Lookaside
Pointer to the head of the lookaside list to be deleted, which the caller originally set up with
ExlnitializePagedLookasideList.

Include
wdm. h or ntddk. h

Comments
ExDeletePagedLookasideList is the reciprocal of ExlnitializePagedLookasideList. It
frees any remaining entries in the specified lookaside list and then removes the list from the
system-wide set of active lookaside lists.

The caller of ExDeletePagedLookasideList is responsible for subsequently releasing the
memory that the caller provided to contain the list head.

Callers of ExDeletePagedLookasideList must be running at IRQL < DISPATCH_LEVEL.

See Also
ExlnitializePagedLookasideList .

ExDeleteResource
NTSTATUS

ExDeleteResource(
IN PERESOURCE Resource
) :

The ExDeleteResource support routine is exported to support existing driver binaries and is
obsolete. Use ExDeleteResourceLite instead.

76 Part 1 Kernel-Mode Support Routines

ExDeleteResourceLite
NTSTATUS

ExDeleteResourceLiteC
IN PERESOURCE Resource
) ;

The ExDeleteResourceLite support routine deletes a given resource from the system's
resource list.

Parameters
Resource
Pointer to the caller-supplied storage for the initialized resource variable to be deleted.

Include
ntddk.h

Return Value
ExDeleteResourceLite returns STATUS_SUCCESS if the resource was deleted.

Comments
After calling ExDeleteResourceLite, the caller can free the memory it allocated for its
resource.

Callers of ExDeleteResourceLite must be running at IRQL < DISPATCH_LEVEL.

See Also
ExFreePool, ExlnitializeResourceLite, ExReinitializeResourceLite

ExExtendZone
NTSTATUS

ExExtendloneC
IN PlONE_HEADER Zone,
IN PVOID Segment,
IN ULONG SegmentSize
) ;

The ExExtendZone support routine is exported to support existing driver binaries and
is obsolete. Driver writer should use lookaside lists instead. See Buffer Management in
Chapter 1 for more information.

ExFreePool
VOID

ExFreePool(
IN PVOID P
) ;

Chapter 2 Executive Support Routines 77

The ExFreePool support routine deallocates a block of pool memory.

Parameters
p

Specifies the address of the block of pool memory being deallocated.

Include
wdm. h or ntddk. h

Comments
This routine releases memory allocated by ExAllocatePool, ExAllocatePoolWithTag,
ExAllocatePoolWithQuota, or ExAllocatePoolWithQuotaTag. The memory block must
not be accessed after it is freed.

Callers of ExAllocatePool must be running at IRQL <= DISPATCH_LEVEL.

A caller at DISPATCH_LEVEL must have specified a NonPagedXxx PoolType when the
memory was allocated. Otherwise, the caller must be running at IRQL < DISPATCH_
LEVEL.

See Also
ExAllocatePool, ExAllocatePoolWithQuota, ExAllocatePoolWithQuotaTag,
ExAllocatePoolWithTag

ExFreeToNPagedLookasideList
VOID

ExFreeToNPagedLookasideList(
IN PNPAGED_LOOKASIDE_LIST Lookaside,
IN PVOID Entry
) ;

The ExFreeToNPagedLookasideList support routine returns a nonpaged entry to the given
lookaside list or to nonpaged pool.

78 Part 1 Kernel-Mode Support Routines

Parameters
Lookaside
Pointer to the head of the lookaside list, which the caller already initialized with Ex
InitializeNPagedLookasideList.

Entry
Pointer to the entry to be freed. The caller obtained this pointer from a preceding call to
ExAlIocateFromNPagedLookasideList.

Include
wdm.h or ntddk.h

Comments
ExFreeToNPagedLookasideList is the reciprocal of ExAllocateFromNPagedLookaside
List. It releases a caller-allocated entry back to the caller's lookaside list or to nonpaged pool
when that entry is no longer in use.

The same entry can be reallocated or another entry allocated later with a subsequent call to
ExAlIocateFromNPagedLookasideList. The user of the lookaside list can allocate and free
such entries dynamically on an "as needed" basis until it calls ExDeleteNPagedLookaside
List, which releases any outstanding entries in the list before it clears the system state for
the given lookaside list and returns control.

If the specified lookaside list has not yet reached the system-determined maximum number
of entries, ExFreeToNPagedLookasideList inserts the given entry at the front of the list.
Otherwise, the buffer at Entry is released to nonpaged pool using the caller-supplied Free
routine, if any, that was set up when the lookaside list was initialized or ExFreePool.

Callers of ExFreeToNPagedLookasideList must be running at IRQL <= DISPATCH_
LEVEL.

See Also
ExAlIocateFromNPagedLookasideList, ExDeleteNPagedLookasideList,
ExInitializeNPagedLookasideList

ExFreeToPagedLookasideList
VOID

ExFreeToPagedLookasideList(
IN PPAGED_LOOKASIDE_LIST Lookaside,
IN PVOID Entry
) ;

Chapter 2 Executive Support Routines 79

The ExFreeToPagedLookasideList support routine returns a pageable entry to the given
lookaside list or to paged pool.

Parameters
Lookaside
Pointer to the resident head of the lookaside list, which the caller already initialized with
ExlnitializePagedLookasideList.

Entry
Pointer to the entry to be freed. The caller obtained this pointer from a preceding call to
ExAllocateFromPagedLookasideList.

Include
wdm.h or ntddk.h

Comments
ExFreeToPagedLookasideList is the reciprocal of ExAllocateFromPagedLookasideList.
It releases a caller-allocated entry back to the caller's lookaside list or to paged pool when
that entry is no longer in use.

The same entry can be reallocated or another entry can be allocated later with a subsequent
call to ExAllocateFromPagedLookasideList. The user of a lookaside list can allocate and
free such entries dynamically, as needed, until it calls ExDeletePagedLookasideList. Ex
DeletePagedLookasideList releases any outstanding entries in the list before it clears the
system state for the given lookaside list and returns control.

If the specified lookaside list has not yet reached the system-determined maximum number
of entries, ExFreeToPagedLookasideList inserts the given entry at the front of the list.
Otherwise, the buffer at Entry is released back to paged pool using the caller-supplied Free
routine, if any, that was set up when the lookaside list was initialized or ExFreePool.

Callers of ExFreeToPagedLookasideList must be running at IRQL < DISP ATCH_
LEVEL.

See Also
ExAllocateFromPagedLookasideList, ExDeletePagedLookasideList, Exlnitialize
PagedLookasideList

80 Part 1 Kernel-Mode Support Routines

ExFreeToZone
PVOID

ExFreeToZone(
PZONE_HEADER Zone,
PVOID Block
) ;

The ExFreeToZone support routine is exported to support existing driver binaries and is
obsolete. Driver writer should use lookaside lists instead. See Buffer Management in
Chapter 1 for more information.

ExGetCurrentResourceThread
ERESOURCE_THREAD

ExGetCurrentResourceThread(
) ;

The ExGetCurrentResourceThread support routine identifies the current thread for a
subsequent call to ExReleaseResourceForThreadLite.

Include
ntddk.h

Return Value
ExGetCurrentResourceThread returns the thread ID of the current thread.

Comments
Callers of ExGetCurrentResourceThread must be running at IRQL <= DISP ATCH_
LEVEL.

See Also
ExIsResourceAcquiredExclusiveLite, ExIsResourceAcquiredSharedLite, ExRelease
ResourceForThreadLite

ExGetExclusiveWaiterCount
ULONG

ExGetExclusiveWaiterCount(
IN PERESOURCE Resource
) ;

The ExGetExclusive W aiterCount support routine returns the number of waiters on
exclusive access to a given resource.

Parameters
Resource
Pointer to the resource to be tested.

Include
ntddk.h

Return Value

Chapter 2 Executive Support Routines 81

ExGetExciusiveWaiterCount returns the number of threads currently waiting to acquire
the given resource for exclusive access.

Comments
ExGetExciusive WaiterCount can be called to get an estimate of how many other threads
might be waiting to modify the data protected by a particular resource variable. The caller
cannot assume that the returned value remains constant for any particular interval.

Callers of ExGetExciusiveWaiterCount can be running at IRQL <= DISPATCH_LEVEL.

See Also
ExAcquireResourceExciusiveLite, ExAcquireResourceSharedLite, ExAcquire
SharedStarveExciusive, ExAcquireSharedWaitForExciusive, ExGetShared
WaiterCount, ExReleaseResourceForThreadLite

ExGetPreviousMode
KPROCESSOR_MODE

ExGetPreviousMode<
VOID
) ;

The ExGetPreviousMode support routine returns the previous processor mode for the
current thread.

Return Value
ExGetPreviousMode returns a KPROCESSOR_MODE value, one of .KernelMode or
UserMode. This value specifies the previous processor mode for the current thread.

Include
wdm.h or ntddk.h

82 Part 1 Kernel-Mode Support Routines

Comments
If an I/O request can originate either in user mode or kernel mode and the caller passes
pointers to data structures used for I/O, the driver must be able to determine whether the
caller's pointers are valid in user mode or kernel mode.

If drivers are processing I/O requests using the normal IRP-based I/O dispatch method, they
can determine the previous processor mode by checking the RequestMode parameter in the
IRP header. (The RequestMode parameter is set by the I/O Manager.)

Alternatively, ExGetPreviousMode can be used to determine the previous processor mode.
This routine is particularly useful in situations where a previous mode parameter is not
available, for example, in a file driver that uses fast I/O.

Callers of ExGetPreviousMode must be running at IRQL <= DISPATCH_LEVEL.

See Also
KeGetCurrentThread

ExGetSharedWaiterCount
ULONG

ExGetSharedWaiterCount(
IN PERESOURCE Resource
) ;

The ExGetSharedWaiterCount support routine returns the number of waiters on shared
access to a given resource.

Parameters
Resource
Pointer to the resource to be tested.

Include
ntddk.h

Return Value
ExGetSharedWaiterCount returns the number of threads currently waiting to acquire the
given resource for shared access.

Chapter 2 Executive Support Routines 83

Comments
ExGetSharedWaiterCount can be called to get an estimate of how many other threads
might be waiting to read the data protected by a particular resource variable. The caller
cannot assume that the returned value remains constant for any particular interval.

Callers of ExGetSharedWaiterCount can be running at IRQL <= DISPATCH_LEVEL.

See Also
ExAcquireResourceExciusiveLite, ExAcquireResourceSharedLite, ExAcquireShared
StarveExciusive, ExAcquireSharedWaitForExciusive, ExGetExciusive WaiterCount,
ExReleaseResourceForThreadLite

ExlnitializeFastMutex
VOID

ExInitializeFastMutex(
IN PFAST_MUTEX FastMutex
) ;

The ExlnitializeFastMutex support routine initializes a fast mutex variable, used to
synchronize mutually exclusive access by a set of threads to a shared resource.

Parameters
FastMutex
Pointer to a caller-allocated FAST _MUTEX structure, which represents the fast mutex, in
the nonpaged memory pool.

Include
wdm. h or ntddk.h

Comments
ExlnitializeFastMutex must be called before any calls to other Ex .. FastMutex routines
occur.

Although the caller supplies the storage for the given fast mutex, the FAST_MUTEX
structure is opaque: that is, its members are reserved for system use.

For better performance, use the Ex .• FastMutex routines instead of the Ke .. Mutex routines.
However, a fast mutex cannot be acquired recursively, as a kernel mutex can.

Callers of ExlnitializeFastMutex must be running at IRQL <= DISPATCH_LEVEL.

84 Part 1 Kernel-Mode Support Routines

See Also
ExAcquireFastMutex, ExAcquireFastMutexUnsafe, ExReieaseFastMutex,
ExReieaseFastMutexUnsafe, ExTryToAcquireFastMutex, KelnitializeMutex

Exlnitial izeN PagedLookasideList
VOID

ExInitializeNPagedLookasideList(
IN PNPAGED_LOOKASIDE_LIST Lookaside.
IN PALLOCATE_FUNCTION Allocate OPTIONAL.
IN PFREE_FUNCTION Free OPTIONAL.
IN ULONG Flags.
IN SIZE_T Size.
IN ULONG Tag.
IN USHORT Depth
) ;

The ExlnitiaiizeNPagedLookasideList support routine initializes a lookaside list for
nonpaged entries of the specified size.

Parameters
Lookaside
Pointer to the caller-supplied memory for the lookaside list head to be initialized. The caller
must provide at least sizeof(NPAGED _LOOKASIDE_LIST) in nonpaged system space for
this opaque list head.

Allocate
Either points to a caller-supplied routine for allocating an entry when the lookaside list is
empty, or this parameter can be NULL. Such a caller-supplied routine is declared as follows:

PVOID
(*PALLOCATE_FUNCTION) (

IN_POOL_TYPE Pool Type.
IN ULONG NumberOfBytes.
IN ULONG Tag
) ;

II NonPagedPool
II value of Size
II value of Tag

If Allocate is NULL, subsequent calls to ExAllocateFromNPagedLookasideList automati
cally allocate entries whenever the lookaside list is empty.

Free
Either points to a caller-supplied routine for freeing an entry whenever the lookaside list is
full, or this parameter can be NULL. Such a caller-supplied routine is declared as follows:

VOID
(*PFREE_FUNCTION)

PVOID Buffer
) ;

Chapter 2 Executive Support Routines 85

If Free is NULL, subsequent calls to ExFreeToNPagedLookasideList automatically
release the given entry back to nonpaged pool whenever the list is full, that is, currently
holding the system-determined maximum number of entries.

Flags
Reserved. Must be zero.

Size
Specifies the size in bytes for each nonpaged entry to be allocated subsequently.

Tag
Specifies the pool tag for lookaside list entries. The Tag is a string of four characters deli
mited by single quote marks (for example, 'derF'). The characters are usually specified in
reverse order so they are easier to read when dumping pool or tracking pool usage with the
PoolHitTag variable in the debugger.

Depth
Reserved. Must be zero.

Include
wdm.h or ntddk.h

Comments
After calling ExlnitializeNPagedLookasideList, memory blocks of the caller-specified
Size can be allocated from and freed to the lookaside list with calls to ExAllocateFrom
NPagedLookasideList and ExFreeToNPagedLookasideList, respectively. Such dyna
mically allocated and freed entries can be any data structure or fixed-size buffer that the
caller uses while the system is running, particularly if the caller cannot predetermine how
many such entries will be in use at any given moment. The layout and contents of each
fixed-size entry are caller-determined.

ExlnitializeNPagedLookasideList initializes the system state to track usage of the given
lookaside list, as follows:

• Zero-initializes the counters to be maintained for entries

• Stores the entry points of the caller-supplied Allocate and Free routines, if any, or sets
these entry points to ExAllocatePoolWithTag and ExFreePool, respectively

86 Part 1 Kernel-Mode Support Routines

• Initializes a system spin lock to control allocations from and frees to the lookaside list in
a multiprocessor-safe manner if necessary

• Stores the caller-supplied entry Size and list Tag

• Sets up the system-determined limits (minimum and maximum) on the number of entries
to be held in the lookaside list, which can be adjusted subsequently if system-wide de
mand for entries is higher or lower than anticipated

• Sets up the system-determined flags, which control the type of memory from which
entries will be allocated subsequently

The OS maintains a set of alliookaside lists currently in use. As demand for lookaside list
entries and on available nonpaged memory varies while the system runs, the OS adjusts its
limits for the number of entries to be held in each nonpaged lookaside list dynamically.

ExlnitializeNPagedLookasideList sets up the opaque list head at the caller-supplied
location but preallocates no memory for list entries. Subsequently, the initial entries are
allocated dynamically as calls to ExAllocateFromNPagedLookasideList occur, and
these initial entries are held in the lookaside list as reciprocal calls to ExFreeToNPaged
LookasideList occur. Entries collect in the given lookaside list until the system-determined
maximum is reached, whereupon any additional entries are returned to nonpaged pool as
they are freed. If the list becomes empty, allocate requests are satisfied by the Allocate
routine specified at list initialization or by ExAllocatePoolWithTag.

It is more efficient to pass NULL pointers for Allocate and Free to ExlnitializeNPaged
LookasideList if the user of a lookaside list does nothing more than allocate and release
fixed-size entries within these caller-supplied routines. However, any component that uses
a lookaside list might supply these routines to do additional caller-determined processing,
such as tracking its own dynamic memory usage by maintaining state about the number of
entries it allocates and frees.

If the caller of ExlnitializeNPagedLookasideList supplies an Allocate routine, that routine
must allocate entries for the lookaside list using the given input parameters when it calls
ExAllocatePoolWithTag.

Callers of ExlnitializeNPagedLookasideList can be running at IRQL <= DISPATCH_
LEVEL, but are usually running at PASSIVE_LEVEL.

See Also
ExAllocateFromNPagedLookasideList, ExAllocatePoolWithTag, ExDeleteNPaged
LookasideList, ExFreeToNPagedLookasideList, ExFreePool, ExlnitializePaged
LookasideList

ExlnitializePagedLookasideList
VOID

ExInitializePagedLookasideList(
IN PPAGED_LOOKASIDE_LIST Lookaside,

Chapter 2 Executive Support Routines 87

IN PALLOCATE_FUNCTION Allocate OPTIONAL,
IN PFREE_FUNCTION Free OPTIONAL,
IN ULONG F7 ags,
IN SIZE_T Size,
IN ULONG Tag,
IN USHORT Depth
) ;

The ExlnitializePagedLookasideList support routine initializes a lookaside list for
pageable entries of the specified size.

Parameters
Lookaside
Pointer to the caller-supplied memory for the lookaside list head to be initialized. The caller
must provide at least sizeof(P AGED _LOOKASIDE_LIST) in non paged system space for
this opaque list head, even though the entries in this lookaside list will be allocated from
pageable memory.

Allocate
Either points to a caller-supplied routine for allocating an entry when the lookaside list is
empty, or this parameter can be NULL. Such a caller-supplied routine is declared as follows:

PVOID
(*PALLOCATE_FUNCTION) (

IN_POOL_TYPE Pool Type,
IN ULONG NumberOfBytes,
IN ULONG Tag
) ;

I I PagedPool
/I value of Size
II value of Tag

If Allocate is NULL, subsequent calls to ExAllocateFromPagedLookasideList auto
matically allocate entries whenever the lookaside list is empty.

Free
Either points to a caller-supplied routine for freeing an entry whenever the lookaside list is
full, or this parameter can be NULL. Such a caller-supplied routine is declared as follows:

VOID
(*PFREE_FUNCTION)

PVOID Buffer
) ;

88 Part 1 Kernel-Mode Support Routines

If Free is NULL, subsequent calls to ExFreeToPagedLookasideList automatically release
the given entry back to paged pool whenever the list is full, that is, currently holding the
system-determined maximum number of entries.

Flags
Reserved. Must be zero.

Size
Specifies the size in bytes of each entry in the lookaside list.

Tag
Specifies the pool tag for lookaside list entries. The Tag is a string of four characters deli
mited by single quote marks (for example, 'derF'). The characters are usually specified in
reverse order so they are easier to read when dumping pool or tracking pool usage with the
PoolHitTag variable in the debugger.

Depth
Reserved. Must be zero.

Include
wdm.h or ntddk.h

Comments
After calling ExlnitializePagedLookasideList, blocks of the caller-specified Size can
be allocated from and freed to the lookaside list with calls to ExAllocateFromPaged
LookasideList and ExFreeToPagedLookasideList, respectively. Such dynamically
allocated and freed entries can be any data structure or fixed-size buffer that the caller uses
while the system is running, particularly if the caller cannot predetermine how many such
entries will be in use at any given moment. The layout and contents of each fixed-size entry
are caller-determined.

ExlnitializePagedLookasideList initializes the system state to track usage of the given
lookaside list, as follows:

• Zero-initializes the counters to be maintained for entries

• Stores the entry points of the caller-supplied Allocate and Free routines, if any, or sets
these entry points to ExAllocatePoolWithTag and ExFreePool, respectively

• Initializes a system spin lock to control allocations from and frees to the lookaside list in
a multiprocessor-safe manner if necessary

• Stores the caller-supplied entry Size and list Tag

Chapter 2 Executive Support Routines 89

• Sets up the system-determined limits (minimum and maximum) on the number of entries
to be held in the lookaside list, which can be adjusted subsequently if system-wide
demand for entries is higher or lower than anticipated

• Sets up the system-determined flags, which control the type of memory from which
entries will be allocated subsequently

The OS maintains a set of alllookaside lists in use. As demand for lookaside list entries
and on available paged memory varies while the system runs, the OS adjusts its limits for
the number of entries to be held in each paged lookaside list dynamically.

ExInitializePagedLookasideList sets up the opaque list head at the caller-supplied location
but preallocates no memory for list entries. Subsequently, the initial entries are allocated
dynamically as calls to ExAllocateFromPagedLookasideList occur, and these initial
entries are held in the lookaside list as reciprocal calls to ExFreeToPagedLookasideList
occur. Entries collect in the given lookaside list until the system-determined maximum is
reached, whereupon any additional entries are returned to paged pool as they are freed. If the
list becomes empty, allocate requests are satisfied by the Allocate routine specified at list
initialization or by ExAllocatePoolWithTag.

It is more efficient to pass NULL pointers for Allocate and Free to ExInitializePaged
LookasideList if the user of a lookaside list does nothing more than allocate and release
fixed-size entries within these caller-supplied routines. However, any component that uses
a lookaside list might supply these routines to do additional caller-determined processing,
such as tracking its own dynamic memory usage by maintaining state about the number of
entries it allocates and frees.

If the caller of ExInitializePagedLookasideList supplies an Allocate routine, that routine
must allocate entries for the lookaside list using the given input parameters when it calls
ExAllocatePoolWithTag.

Callers of ExInitializePagedLookasideList must be running at IRQL < DISPATCH_
LEVEL.

See Also
ExAllocateFromPagedLookasideList, ExAllocatePoolWithTag, ExDeletePaged
LookasideList, ExFreePool, ExFreeToPagedLookasideList, ExInitializeNpaged
LookasideList

ExlnitializeResource
NTSTATUS

ExlnitializeResource(
IN PERESOURCE Resource
) ;

90 Part 1 Kernel-Mode Support Routines

The ExInitializeResource support routine is exported to support existing driver binaries and
is obsolete. Use ExInitializeResourceLite instead.

ExlnitializeResourceLite
NTSTATUS

ExInitializeResourceLite(
IN PERESOURCE Resource
) ;

The ExInitializeResourceLite support routine initializes a resource variable.

Parameters
Resource
Pointer to the caller-supplied storage, which must be at least sizeof(ERESOURCE), for the
resource variable being initialized.

Include
ntddk.h

Return Value
ExInitializeResourceLite returns STATUS_SUCCESS.

Comments
The storage for ERESOURCE must not be allocated from paged pool.

The resource variable can be used for synchronization by a set of threads. Although the
caller provides the storage for the resource variable, the ERESOURCE structure is opaque:
that is, its members are reserved for system use.

Call ExDeleteResourceLite before freeing the memory for the resource.

Callers of ExInitializeResourceLite must be running at IRQL <= DISPATCH_LEVEL.

See Also
ExAcquireResourceExciusiveLite, ExAcquireResourceSharedLite, ExAcquire
SharedStarveExciusive, ExAcquireSharedWaitForExciusive, ExConvertExciusive
ToSharedLite, ExDeleteResourceLite, ExIsResourceAcquiredExciusiveLite,
ExIsResourceAcquiredSharedLite, ExReinitializeResourceLite, ExRelease
ResourceForThreadLite, ExTryToAcquireResourceExciusiveLite

Exl n itial izeSListHead
VOID

ExInitializeSListHead(
IN PSLIST_HEADER SListHead
) ;

Chapter 2 Executive Support Routines 91

The ExlnitializeSListHead support routine initializes the head of a sequenced, interlocked,
singly linked list.

Parameters
SListHead
Pointer to caller-supplied memory for the list head to be initialized. The caller must provide
at least sizeof(SLIST_HEADER) in nonpaged memory for this opaque list head.

Include
wdm.h or ntddk.h

Comments
ExlnitializeSListHead initializes the system-maintained state for the S-List and sets the
first-entry pointer to NULL. The caller must provide resident storage for and initialize a spin
lock with KelnitializeSpinLock before inserting any caller-allocated entry into its initial
ized S-List.

The sequence number for an S-List is incremented each time an entry is inserted into or
removed from the S-List. To determine the number of entries currently in an S-List, call
ExQueryDepthSList.

Subsequent calls to ExlnteriockedPushEntrySList and ExlnterlockedPopEntrySList
insert and remove caller-allocated entries into and from the S-List. All entries for an S-List
must be allocated from nonpaged pool.

Drivers that retry 110 operations should use a doubly linked interlocked queue and the
ExlnterlockedlnsertIRemove .. List routines, rather than an S-List.

To manage a dynamically sized set of fixed-size entries, consider setting up a lookaside list
with ExlnitializeNPageLookasideList or ExlnitializePagedLookasideList, instead of
using an S-List.

Callers of ExlnitializeSListHead must be running at IRQL <= DISPATCH_LEVEL.

92 Part 1 Kernel-Mode Support Routines

See Also
ExlnitializeNPagedLookasideList, ExlnitializePagedLookasideList, Exlnterlocked
InsertTailList, ExlnterlockedPopEntrySList, ExlnterlockedPushEntrySList,
ExQueryDepthSList, ExQueue Workltem, KelnitializeSpinLock

Exl n itial izeWorkltem
VOID

ExlnitializeWorkltem(
IN PWORK_QUEUE_ITEM Item,
IN PWORKER_THREAD_ROUTINE Routine,
IN PVOID Context
) ;

The ExlnitializeWorkltem support routine is exported to support existing driver binaries
and is obsolete. Use IoAllocate W orkltem instead.

ExlnitializeZone
NTSTATUS

ExlnitializeZone(
IN PZONE_HEADER Zone,
IN ULONG 87ockSize,
IN PVOID Initia7Segment,
IN ULONG Initia7SegmentSize
) ;

The E;xlnitializeZone support routine is exported to support existing driver binaries and is
obsolete. Driver writers should use lookaside lists instead. See Buffer Management in
Chapter 1 for more information.

Exl nterlockedAdd Largelnteger
LARGE_INTEGER

ExlnterlockedAddLargelnteger(
IN PLARGE_INTEGER Addend,
IN LARGE_INTEGER Increment,
IN PKSPIN_LOCK Lock
) ;

The ExlnterlockedAddLargelnteger support routine adds a large integer value to a given
addend as an atomic operation.

Parameters
Addend

Chapter 2 Executive Support Routines 93

Pointer to a large integer to be adjusted by the Increment value.

Increment
Specifies a value to be added to Addend.

Lock
Pointer to a spin lock to be used to synchronize access to Addend.

Include
wdm.h or ntddk.h

Return Value
ExlnterlockedAddLargelnteger returns the initial value of the Addend.

Comments
Support routines that do interlocked operations are assumed to be incapable of causing a
page fault. That is, neither their code nor any of the data they touch can cause a page fault
without bringing down the system. They use spin locks to achieve atomicity in SMP com
puters. The caller must provide resident storage for the Lock, which must be initialized with
KelnitializeSpinLock before the initial call to an ExlnterlockedXxx.

The Lock passed to ExlnterlockedAddLargelnteger is used to assure that the add opera
tion on Addend is atomic with respect to any other operations on the same value which syn
chronize with this same spin lock.

ExlnterlockedAddLargelnteger masks interrupts. Consequently, it can be used for syn
chronization between an ISR and other device driver code, provided that the same Lock is
never reused in a call to a routine that runs at IRQL DISPATCH_LEVEL.

Note that calls to InterlockedXxx are guaranteed to be atomic with respect to other
InterlockedXxx calls without caller supplied spin locks.

Callers of ExlnterlockedAddLargelnteger run at any IRQL.

See Also
ExlnterlockedAddUlong, Interlockedlncrement, InterlockedDecrement, Kelnitialize
SpinLock

94 Part 1 Kernel-Mode Support Routines

ExlnterlockedAddLargeStatistic
VOID
ExlnterlockedAddLargeStatistic

IN PLARGE_INTEGER Addend.
IN ULONG Increment
) ;

ExlnterlockedAddLargeStatistic performs an interlocked addition of a ULONG increment
value to a LARGE_INTEGER addend value.

Parameters
Addend
Pointer to a LARGE_INTEGER value that is incremented by the value of Increment.

Increment
Specifies a ULONG value that is added to the value that Addend points to.

Include
wdm.h or ntddk. h

Comments
Support routines that do interlocked operations must not cause a page fault. Neither their
code nor any of the data they access can cause a page fault without bringing down the
system.

ExlnterlockedAddLargeStatistic masks interrupts, and can be safely used to synchronize
an ISR with other driver code.

ExlnterlockedAddLargeStatistic runs at any IRQL.

See Also
ExlnterlockedAddLargelnteger, ExlnterlockedAddUlong

ExlnterlockedAddUlong
ULONG

ExlnterlockedAddUlong(
IN PULONG Addend.
IN ULONG Increment.
PKSPIN_LOCK Lock
) ;

Chapter 2 Executive Support Routines 95

The ExlnterlockedAddUlong support routine adds an unsigned long value to a given
unsigned integer as an atomic operation.

Parameters
Addend
Pointer to an unsigned long integer whose value is to be adjusted by the Increment value.

Increment
Is an unsigned long integer to be added.

Lock
Pointer to a spin lock to be used to synchronize access to the Addend.

Include
wdm.h or ntddk.h

Return Value
ExlnterlockedAddUlong returns the original (unsummed) value of the Addend.

Comments
Consider using InterlockedExchangeAdd instead of this routine. InteriockedExchange
Add can be more efficient because it does not use a spin lock and it is inlined by the
compiler.

Support routines that do interlocked operations are assumed to be incapable of causing a
page fault. That is, neither their code nor any of the data they touch can cause a page fault
without bringing down the system. They use spin locks to achieve atomicity in SMP compu
ters. The caller must provide resident storage for the Lock, which must be initialized with
KelnitializeSpinLock before the initial call to an ExlnteriockedXxx.

The Lock passed to ExlnteriockedAddULong is used to assure that the add operation on
Addend is atomic with respect to any other operations on the same value which synchronize
with this same spin lock.

ExlnteriockedAddUlong masks interrupts. Consequently, it can be used for synchroniza
tion between an ISR and other driver code, provided that the same Lock is never reused in
a call to a routine that runs at IRQL DISPATCH_LEVEL.

Note that calls to InterlockedXxx are guaranteed to be atomic with respect to other
InteriockedXxx calls without caller supplied spin locks.

Callers of ExlnteriockedAddUlong run at any IRQL.

96 Part 1 Kernel-Mode Support Routines

See Also
ExlnterlockedAddLargelnteger, Interiockedlncrement, InterlockedDecrement,
KelnitializeSpinLock

ExlnterlockedAllocateFromZone
PVOID

ExInterlockedAllocateFrornZone(
IN PZONE_HEADER Zone.
IN PKSPIN_LOCK Lock
) ;

The ExlnterlockedAllocateFromZone support routine is exported to support existing
driver binaries and is obsolete. Driver writer should use lookaside lists instead. See Buffer
Management in Chapter 1 for more information.

ExinteriockedCompareExchange64
LONG LONG

ExInterlockedCornpareExchange64(
IN OUT PLONGLONG Destination,
IN PLONGLONG Exchange.
IN PLONGLONG Campa rand,
IN PKSPIN_LOCK Lock
) ;

The ExlnteriockedCompareExchange64 support routine compares one integer variable to
another and, if they are equal, sets the first variable to a caller-supplied value.

Parameters
Destination
Pointer to an integer that will be compared and possibly replaced.

Exchange
Pointer to an integer that will replace the one at Destination if the comparison results in
equality.

Comparand
Pointer to an integer with which the value at Destination will be compared.

Lock
Pointer to a caller-allocated spin-lock that is used if the host system does not support an
8-byte atomic compare and exchange operation.

Chapter 2 Executive Support Routines 97

Include
wdm.h or ntddk.h

Return Value
ExInteriockedCompareExchange64 returns the value of the variable at Destination when
the call occurred.

Comments
ExInteriockedCompareExchange64 tests and, possibly, replaces the value of a given
variable. For most underlying microprocessors, this routine is implemented inline by the
compiler to execute as an atomic operation. If a spin lock is used, this routine can only be
safely used on nonpaged parameters.

If the Destination and Comparand are unequal, ExInteriockedCompareExchange simply
returns the value of Destination.

ExInteriockedCompareExchange64 is atomic only with respect to other
(Ex)InteriockedXxx calls.

Callers of ExInteriockedCompareExchange64 can be running at any IRQL.

See Also
InteriockedCompareExchange, InterlockedExchange, InteriockedExchangeAdd

ExlnterlockedDecrementLong
INTERLOCKED_RESULT

ExInterlockedDecrementLong(
IN PLONG Addend.
IN PKSPIN_LOCK Lock
) ;

The ExInterlockedDecrementLong support routine is exported to support existing driver
binaries and is obsolete. Use InterlockedDecrement instead.

ExlnterlockedExchangeAddLargelnteger
LARGE_INTEGER

ExInterlockedExchangeAddLargeInteger(
IN PLARGE_INTEGER Addend.
IN LARGE_INTEGER Increment.
IN PKSPIN_LOCK Lock
) ;

98 Part 1 Kernel-Mode Support Routines

The ExlnterlockedExchangeAddLargelnteger support routine perfoIlJ)s an atomic opera
tion that increments the Addend value by the Increment value.

Parameters
Addend
Pointer to a value that is incremented by the value of Increment.

Increment
The increment value added to the value pointed to by Addend.

Lock
:t;>ointer to a spin lock that is used to synchronize access to Addend. (Lock might not be used;
see the Comments section).

Include
ntddk.h

Return Value
ExlnterlockedExchangeAddLargelnteger returns the input value pointed to by Addend.

Comments
If supported by the processor, ExlnterlockedExchangeAddLargelnteger uses a memory
locked, atomic exchange operation. If such an exchange operation is supported, the routine
does not use the spin lock and is probably faster than ExlnterlockedAddLargelnteger.1f
such an exchange operation is not supported, this routine uses the spin lock and is equivalent
to ExlnterlockedAddLargelnteger.

See Also
ExlnterlockedAddLargelnteger, ExlnterlockedAddUlong, InterlockedDecrement,
Interlockedlncrement

Exl nterlocked ExchangeU long
ULONG

ExInterlockedExchangeUlong(
IN PULONG Target,
IN ULONG Value,
IN PKSPIN_LOCK Lock
) ;

Chapter 2 Executive Support Routines 99

The ExlnterlockedExchangeUlong support routine is exported to support existing driver
binaries and is obsolete. Use InteriockedExchange instead.

ExlnterlockedExtendZone
NTSTATUS

ExInterlockedExtendZone(
IN PZONE_HEADER Zone,
IN PVOID Segment,
IN ULONG SegmentSize,
IN PKSPIN_LOCK Lock
) :

The ExlnteriockedExtendZone support routine is exported to support existing driver
binaries and is obsolete. Driver writer should use lookaside lists instead. See Buffer
Management in Chapter 1 for more information.

ExlnterlockedFlushSList
PSINGLE_LIST_ENTRY
ExInterlockedFlushSList (

IN PSLIST_HEADER ListHead
) :

ExlnteriockedFlushSList removes all entries on a sequenced, single-linked list (S-List) in a
synchronized, multiprocessor-safe way.

Parameters
ListHead
Pointer to an S-List header.

Include
ntddk.h

Return Value
If there are entries on the specified S-List, ExlnteriockedFlushSList returns a pointer to the
first entry on the S-List; otherwise, it returns NULL.

Comment
ExlnteriockedFlushSList sets the pointer to the first entry on the specified S-List to NULL.

See Also
ExlnitializeSListHead

100 Part 1 Kernel-Mode Support Routines

ExlnterlockedFreeToZone
PVOID

ExInterlockedFreeToZone(
IN PZONE_HEADER Zone,
IN PVOID Block,
IN PKSPIN_LOCK Lock
) ;

The ExlnterlockedFreeToZone support routine is exported to support existing driver
binaries and is obsolete. Driver writer should use lookaside lists instead. See Buffer
Management in Chapter 1 for more information.

ExlnterlockedlncrementLong
INTERLOCKED_RESULT

ExInterlockedIncrementLong(
IN PLONG Addend,
IN PKSPIN_LOCK Lock
) ;

The ExlnteriockedlncrementLong support routine is exported to support existing driver
binaries and is obsolete. Use Interlockedlncrement instead.

ExlnterlockedlnsertHeadList
P LI ST _ENTRY

ExInterlockedInsertHeadList(
IN PLIST_ENTRY ListHead,
IN PLIST_ENTRY ListEntry,
IN PKSPIN_LOCK Lock
) ;

The ExlnterlockedlnsertHeadList support routine inserts an entry at the head of a doubly
linked list so that access to the list is synchronized in a multiprocessor-safe way.

Parameters
ListHead
Pointer to the head of the doubly linked list into which an entry is to be inserted.

ListEntry
Pointer to the entry to be inserted at the head of the list.

Lock
Pointer to a caller-supplied spin lock used to synchronize access to the list.

Chapter 2 Executive Support Routines 101

Include
wdm. h or ntddk.h

Return Value
ExlnteriockedlnsertHeadList returns a pointer to the entry that was at the head of the
interlocked queue before this entry was inserted. If the queue was empty, it returns NULL.

Comments
Support routines that do interlocked operations are assumed to be incapable of causing a
page fault. That is, neither their code nor any of the data they touch can cause a page fault
without bringing down the system. They use spin locks to achieve atomicity in SMP compu
ters. The caller must provide resident storage for the Lock, which must be initialized with
KelnitializeSpinLock before the initial call to an ExlnteriockedXxx. A caller must not be
holding this spin lock when it calls ExlnterlockedlnsertHeadList.

The caller also must supply resident storage for the interlocked queue. The ListHead must
be initialized with InitializedListHead before the initial call to an Exlnteriocked .. List.

If the caller uses only Exlnterlocked .. List routines to manipulate the list, then these rou
tines can be called from a single IRQL that is <= DIRQL. If other driver routines access the
list using any other routines, such as the noninterlocked InsertHeadList, then callers of
Exlnterlocked .. List must be at <= DISPATCH_LEVEL.

Usually, drivers call ExlnterlockedlnsertTailList to insert an IRP into a driver-managed
interlocked queue. They call ExlnteriockedlnsertHeadList only to requeue an IRP for
a retry.

See Also
ExlnterlockedlnsertTailList, ExlnterlockedRemoveHeadList, InitializeListHead,
KelnitializeSpinLock

ExlnterlockedlnsertTailList
PUST_ENTRY

ExInterlockedInsertTailList<
IN PLIST_ENTRY ListHead,

) ;

IN PLIST_ENTRY ListEntry,
IN PKSPIN_LOCK Lock

The ExlnteriockedlnsertTailList support routine inserts an entry at the tail of a doubly
linked list so access to the list is synchronized in a multiprocessor-safe way.

102 Part 1 Kernel-Mode Support Routines

Parameters
ListHead
Pointer to the head of the doubly linked list into which an entry is to be inserted.

ListEntry
Pointer to the entry to be inserted at the tail of the list.

Lock
Pointer to a caller-supplied spin lock, used to synchronize access to the list.

Include
wdm.h or ntddk.h

Return Value
ExlnteriockedlnsertTailList returns a pointer to the entry that was at the tail of the inter
locked queue before this entry was inserted. If the queue was empty, it returns NULL.

Comments
Support routines that do interlocked operations are assumed to be incapable of causing a
page fault. That is, neither their code nor any of the data they touch can cause a page fault
without bringing down the system. They use spin locks to achieve atomicity in SMP compu
ters. The caller must provide resident storage for the Lock, which must be initialized with
KelnitializeSpinLock before the initial call to an ExlnterlockedXxx. A caller must not be
holding this spin lock when it calls ExlnterlockedlnsertTailList.

The caller also must supply resident storage for the interlocked queue. The ListHead must
be initialized with InitializeListHead before the initial call to an Exlnteriocked •. List
routine.

If the caller uses only Exlnterlocked .• List routines to manipulate the list, then these rou
tines can be called from a single IRQL that is <= DIRQL. If other driver routines access the
list using any other routines, such as the noninterlocked InsertHeadList, then callers of
Exlnteriocked •• List must be at <= DISPATCH_LEVEL.

See Also
ExlnteriockedlnsertHeadList, lnitializeListHead, KelnitializeSpinLock

ExlnterlockedPopEntryList
PSINGLE_LIST_ENTRY

ExInterlockedPopEntryList(
IN PSINGLE_LIST_ENTRY ListHead,
IN PKSPIN_LOCK Lock
) ;

Chapter 2 Executive Support Routines 103

The ExlnterlockedPopEntryList support routine removes an entry from the front of
a simple singly linked list so access to the queue is synchronized in a multiprocessor-safe
manner.

Parameters
ListHead
Pointer to the head of the singly linked list from which an entry is to be removed.

Lock
Pointer to a caller-supplied spin lock.

Include
wdm.h or ntddk.h

Return Value
If the list has no entries, ExlnterlockedPopEntryList returns a NULL pointer. Otherwise,
it returns a pointer to the dequeued entry.

Comments
The Exlnterlocked .. EntryList routines manipulate a simple, singly linked list and
use a spin lock for multiprocessor-safe synchronization. For greater efficiency, use the
Exlnterlocked .. EntrySList routines that manipulate a sequenced, singly linked list (an
S-List), instead of a simple singly linked list.

Drivers that retry I/O operations should use a doubly linked interlocked queue and the Ex
InteriockedlnsertIRemove .. List routines, rather than a singly linked queue or an S-List.

ExlnteriockedPopEntryList removes the first entry from the specified singly linked list.

104 Part 1 Kernel-Mode Support Routines

Support routines that do interlocked operations are assumed to be incapable of causing a
page fault. That is, neither their code nor any of the data they touch can cause a page fault
without bringing down the system. They use spin locks to achieve atomicity in SMP compu
ters. The caller must provide resident storage for the Lock, which must be initialized with
KeInitializeSpinLock before the initial call to an ExInterlockedXxx. A caller must not be
holding this spin lock when it calls ExInteriockedPush/PopEntryList.

The caller also must provide the storage for the interlocked queue. The memory at ListHead
should be zero-initialized before the initial call to ExInterlockedPushEntryList.

Any of the Ex •• Interlocked routines can be called at DIRQL from a device driver's ISR or
SynchCritSection routine(s), provided that other driver routines do not make calls to the
ExInterlockedXxx while running at < DIRQL with the same spin lock. Otherwise, callers of
ExInterlockedPopEntryList must be running at IRQL <= DISPATCH_LEVEL.

See Also
ExInitializeSListHead, ExInterlockedPopEntrySList, ExInterlockedPushEntryList,
KeInitializeSpinLock

ExlnterlockedPopEntrySList
PSINGLE_LIST_ENTRY

ExInterlockedPopEntrySList(
IN PSLIST_HEADER ListHead,
IN PKSPIN_LOCK Lock
) ;

The ExInterlockedPopEntrySList support routine removes the first entry from a
sequenced, singly linked list so access to this queue is synchronized in a multiprocessor
safe manner.

Parameters
ListHead
Pointer to the head of the sequenced, singly linked list from which an entry is to be
removed.

Lock
Pointer to a caller-supplied spin lock.

Include
wdm.h or ntddk.h

Chapter 2 Executive Support Routines 105

Return Value
ExlnterlockedPopEntrySList returns a pointer to the first entry in the list. If the list was
empty, it returns NULL.

Comments
ExInterlockedPopEntrySList removes the entry at the head of the list. Before calling
this routine, the list must be initialized with ExlnitializeSListHead and one or more
caller-allocated entries should be inserted with ExlnterlockedPushEntrySList.

Drivers that retry 110 operations should use a doubly linked interlocked queue and the
ExlnterlockedlnsertIRemove .. List routines, rather than an S-List.

The caller must provide resident storage for the Lock, which must be initialized with
KelnitializeSpinLock before the first call to ExlnterlockedPushEntrySList. A caller
must not be holding this spin lock when it calls ExlnterlockedPush/PopEntrySList.

Callers of ExlnterlockedPopEntrySList can be running at IRQL <= DISPATCH_LEVEL.

See Also
ExlnitializeSListHead, ExlnterlockedRemoveHeadList, ExlnterlockedPushEntrySList,
ExQueryDepthSList, KelnitializeSpinLock

ExlnterlockedPushEntryList
PSINGLE_LIST_ENTRY

ExInterlockedPushEntryList(
IN PSINGLE_LIST_ENTRY ListHead.
IN PSINGLE_LIST_ENTRY ListEntry.
IN PKSPIN_LOCK Lock
) ;

The ExlnterlockedPushEntryList support routine inserts an entry at the head of a singly
linked list so access to this queue is synchronized in a multiprocessor-safe way.

Parameters
ListHead
Pointer to the head of the singly linked list into which the specified entry is to be inserted.

ListEntry
Pointer to the entry to be inserted, which the caller allocated from nonpaged pool.

106 Part 1 Kernel-Mode Support Routines

Lock
Pointer to a caller-supplied spin lock, already initialized with a call to KeInitializeSpin
Lock.

Include
wdm. h or ntddk.h

Return Value
ExInterlockedPushEntryList returns NULL if the list had no entries. Otherwise, it returns
a pointer to the entry that is pushed (the previous list head).

Comments
The ExInterlocked .. EntryList routines manipulate a simple, singly linked list and use
a spin lock for multiprocessor-safe synchronization. For greater efficiency, use the Ex
Interlocked .. EntrySList routines that manipulate a sequenced, singly linked list (an S-List),
rather than a simple singly linked list.

Drivers that retry I/O operations should use a doubly linked interlocked queue and the
ExInterlockedInsertIRemove .. List routines, rather than a singly linked list.

ExInterlockedPushEntrySList inserts a caller-allocated entry at the front of the specified
singly linked list.

Support routines that do interlocked operations are assumed to be incapable of causing a
page fault. That is, neither their code nor any of the data they touch can cause a page fault
without bringing down the system. They use spin locks to achieve atomicity in SMP compu
ters. The caller must provide resident storage for the Lock, which must be initialized with
KeInitializeSpinLock before the first call to ExInterlockedPushEntryList. A caller must
not be holding this spin lock when it calls ExInterlockedPush/PopEntryList.

The caller also must provide resident storage for the head of the interlocked queue. The
memory containing the ListHead should be zero-initialized before the initial call to Ex
InteriockedPushEntryList.

Any of the Ex .. Interlocked routines can be called at DIRQL from a device driver's ISR or
SynchCritSection routine(s), provided that other driver routines do not make calls to the Ex
InteriockedXxx while running at < DIRQL with the same spin lock. Otherwise, callers of
ExInteriockedPushEntryList must be running at IRQL <= DISPATCH_LEVEL.

See Also
ExInitializeSListHead, ExInterlockedInsertTailList, ExInteriockedPushEntrySList,
ExInteriockedPopEntryList, KeInitializeSpinLock

Exlnterlocked PushEntrySList
PSINGLE_LIST_ENTRY

ExInterlockedPushEntrySList(
IN PSLIST_HEADER ListHead.
IN PSINGLE_LIST_ENTRY ListEntry.
IN PKSPIN_LOCK Lock
) ;

Chapter 2 Executive Support Routines 107

The ExlnterlockedPushEntrySList support routine inserts an entry at the head of a se
quenced, singly linked list so access to the queue is synchronized in a multiprocessor-safe
manner.

Parameters
ListHead
Pointer to the head of the sequenced, singly linked list into which the specified entry is to
be inserted. The given list head must be in nonpaged system space and initialized with Ex
InitializeSListHead before the first call to ExlnteriockedPushEntrySList.

ListEntry
Pointer to the caller-allocated entry to be inserted.

Lock
Pointer to a caller-supplied spin lock, which must be initialized with KelnitializeSpinLock
before the first call to ExlnterlockedPushEntrySList.

Include
wdm. h or ntddk. h

Return Value
ExlnterlockedPushEntrySList returns a pointer to the previous first entry in the list, if any.
If the list was empty, it returns NULL.

Comments
ExlnterlockedPushEntrySList inserts ListEntry at the head of the list. Before each call to
this routine, the caller either allocates the entry to be inserted or reinserts an entry obtained
from a preceding call to ExlnterlockedPopEntrySList. All entries in a sequenced, singly
linked interlocked queue must be allocated from nonpaged pool.

Drivers that retry 110 operations should use a doubly linked interlocked queue and the
ExlnterlockedInsertIRemove .. List routines, rather than an S-List.

108 Part 1 Kernel-Mode Support Routines

The caller must provide resident storage for the ListHead and Lock, which must be initia
lized before the first call to ExInterlockedPushSList. A caller must not be holding this
spin lock when it calls ExlnterlockedPush/PopEntrySList routine.

Callers of ExlnterlockedPushEntrySList should be running at IRQL <= DISP ATCH_
LEVEL.

See Also
ExlnitializeSListHead, ExlnterlockedlnsertTailList, ExlnterlockedPopEntrySList,
ExQueryDepthSList, KelnitializeSpinLock

ExlnterlockedRemoveHeadList
P LI ST _ENTRY

ExInterlockedRemoveHeadList<
IN PLIST_ENTRY ListHead.
IN PKSPIN_LOCK Lock
) ;

The ExlnterlockedRemoveHeadList support routine removes an entry from the head of a
doubly linked list so access to this queue is synchronized in a multiprocessor-safe manner.

Parameters
ListHead
Pointer to the head of the doubly linked list from which an entry is to be removed.

Lock
Pointer to a caller-supplied spin lock.

Include
wdm.h or ntddk.h

Return Value
If the list is empty, a NULL pointer is returned. Otherwise, a pointer to the dequeued entry is
returned.

Comments
Support routines that do interlocked operations are assumed to be incapable of causing a
page fault. That is, neither their code nor any of the data they touch can cause a page fault
without bringing down the system. They use spin locks to achieve atomicity in SMP compu
ters. The caller must provide resident storage for the Lock, which must be initialized with

Chapter 2 Executive Support Routines 109

KelnitializeSpinLock before the initial call to an ExlnteriockedXxx. A caller must not be
holding this spin lock when it calls ExlnteriockedRemoveHeadList.

The caller also must supply resident storage for the interlocked queue. The ListHead must
be initialized with InitializeListHead before the initial call to an Exlnterlocked .. List
routine.

If the caller uses only Exlnteriocked .. List routines to manipulate the list, then these rou
tines can be called from a single IRQL that is <= DIRQL. If other driver routines access the
list using any other routines, such as the noninterlocked InsertHeadList, then callers of
Exlnterlocked .. List must be at <= DISPATCH_LEVEL.

See Also
ExlnterlockedlnsertHeadList, ExlnterlockedlnsertTailList, InitializeListHead,
KelnitializeSpinLock

ExlsFuliZone
BOOLEAN

ExIsFulllone(
IN PlONE_HEADER Zone
) ;

The ExIsFullZone support routine is exported to support existing driver binaries and is
obsolete. Driver writer should use lookaside lists instead. See Buffer Management in
Chapter 1 for more information.

ExlsObjectlnFirstZoneSegment
BOOLEAN

ExIsObjectInFirstloneSetment(
IN PlaNE_HEADER Zone.
IN PVOID Object
) ;

The ExIsObjectInFirstZoneSegment support routine is exported to support existing driver
binaries and is obsolete. Driver writer should use lookaside lists instead. See Buffer
Management in Chapter 1 for more information.

ExlsProcessorFeaturePresent
BOOLEAN

ExIsProcessorFeaturePresent(
IN ULONG ProcessorFeature
) ;

110 Part 1 Kernel-Mode Support Routines

The ExIsProcessorFeaturePresent support routine queries for the existence of a specified
processor feature.

Parameters
ProcessorFeature
Specifies one of the following constant values:

PF _FLOATING:...POINT _PRECISION_ERRATA
Pentium processor has divide bug.

PF _FLOATING_POINT _EMULATED
Processor does not have floating point hardware.

PF_COMPARE_EXCHANGE_DOUBLE
Processor has a CMPXCHG8B instruction (8-byte, memory-locked compare and exchange).

PF _MMXjNSTRUCTIONS_AVAILABLE
Processor supports MMX instructions in hardware.

PF _3DNOW jNSTRUCTIONS_AVAILABLE
Processor supports AMD 3DNow instructions.

PF _RDTSCjNSTRUCTION_AVAILABLE
Processor supports a RDTSC instruction (read timestamp counter instruction).

Include
ntddk.h

Return Value
ExIsProcessorFeaturePresent returns TRUE if the specified processor feature is present;
otherwise it returns FALSE.

Comments
Callers of ExIsProcessorFeaturePresent must be running at IRQL PASSIVE_LEVEL.

ExlsResourceAcquiredExclusive
BOOLEAN

ExIsResourceAcqu;redExclus;ve(
IN PERESOURCE Resource
) ;

Chapter 2 Executive Support Routines 111

The ExIsResourceAcquiredExciusive support routine is exported to support existing driver
binaries, and is obsolete. Use ExIsResourceAcquiredExciusiveLite instead.

ExlsResourceAcquiredExclusiveLite
BOOLEAN

ExIsResourceAcquiredExclusiveLite(
IN PERESOURCE Resource
) ;

The ExIsResourceAcquiredExciusiveLite support routine returns whether the current
thread has exclusive access to a given resource.

Parameters
Resource
Pointer to the resource to be queried.

Include
ntddk.h

Return Value
ExIsResourceAcquiredExciusiveLite returns TRUE if the caller already has exclusive
access to the given resource.

Comments
Callers of ExIsResourceAcquiredExclusiveLite must be running at IRQL <= DISPATCH_
LEVEL.

See Also
ExAcquireResourceExclusiveLite, ExIsResourceAcquiredSharedLite, ExTryTo
AcquireResourceExclusiveLite

ExlsResourceAcquiredSharedLite
USHORT

ExIsResourceAcquiredSharedLite(
IN PERESOURCE Resource
) ;

The ExIsResourceAcquiredSharedLite support routine returns whether the current thread
has shared access to a given resource.

112 Part 1 Kernel-Mode Support Routines

Parameters
Resource
Pointer to the resource to be queried.

Include
ntddk.h

Return Value
ExIsResourceAcquiredSharedLite returns the number of times the caller has acquired
shared access to the given resource.

Comments
Callers of ExIsResourceAcquiredSharedLite must be running at IRQL <= DISPATCH_
LEVEL.

See Also
ExAcquireResourceSharedLite, ExAcquireSharedStarveExclusive,
ExAcquireSharedWaitForExclusive, ExIsResourceAcquiredExclusiveLite

ExLocalTimeToSystemTime
VOID

ExLocalTimeToSystemTime(
IN PLARGE_INTEGER Loca7Time,
OUT PLARGE_INTEGER SystemTime
) ;

The ExLocaiTimeToSystemTime support routine converts a system time value for the
current time zone to an unbiased, GMT value.

Parameters
Loca/Time
Pointer to a variable set to the locale-specific time.

System Time
Pointer to the returned value for GMT system time.

Include
ntddk.h

Chapter 2 Executive Support Routines 113

Comments
ExLocalTimeToSystemTime adds the time-zone bias at the current locale to compute the
corresponding GMT system time value.

Callers of ExLocalTimeToSystemTime can be running at any IRQL.

See Also
ExSystemTimeToLocalTime

ExNotifyCallback
VOID

ExNotifyCallback(
IN PCALLBACK-OBJECT Ca77backObject.
IN PVOID Argumentl.
IN PVOID Argument2
) ;

The ExNotifyCallback support routine causes all callback routines registered for the given
object to be called.

Parameters
CallbackObject
Pointer to the callback object for which all registered callback routines will be called.

Argument1
Specifies the parameter that is passed as Argument1 of the callback routine.

A rgument2
Specifies the parameter that is passed.as Argument2 of the callback routine.

Include
ntddk.h

Comments
Driver writers must not call ExNotifyCallback for any of the system-defined callback
objects listed in ExCreateCallback.

The system calls callback routines in order of their registration.

Callers of this routine must be running at IRQL <= DISPATCH_LEVEL. The system calls
all registered callback routines at the caller's IRQL.

114 Part 1 Kernel-Mode Support Routines

See Also
ExCreateCallback, ExRegisterCallback

ExQueryDepthSList
USHORT

ExOueryDepthSList(
IN PSLIST_HEADER SListHead
) ;

The ExQueryDepthSList support routine returns the number of entries currently in a given
sequenced, singly linked list.

Parameters
SListHead
Pointer to the head of the sequenced, singly linked list to be queried, which the caller has
already initialized with ExlnitializeSListHead.

Include
wdm.h or ntddk.h

Return Value
ExQueryDepthSList returns the current number of entries in the S-List.

Comments
Callers of ExQueryDepthSList can be running at IRQL <= DISPATCH_LEVEL.

See Also
ExlnitializeSListHead, ExlnterlockedPushEntrySList, ExlnterlockedPopEntrySList

ExQueueWorkltem
VOID

ExOueueWorkItem(
IN PWORK-OUEUE_ITEM Workltem,
IN WORK_OUEUE_TYPE QueueType
) ;

The ExQueueWorkltem support routine is exported to support existing driver binaries and
is obsolete. Use IoQueue Workltem instead.

ExRaiseAccessViolation
VOID

ExRaiseAccessViolation(
VOID
) ;

Chapter 2 Executive Support Routines 115

The ExRaiseAccessViolation support routine can be used with structured exception
handling to throw a driver-determined exception for a memory access violation that occurs
when a driver processes I/O requests.

Include
ntddk.h

Comments
ExRaiseAccessViolation raises an exception with the exception code set to STATUS_
ACCESS_VIOLATION.

Callers of ExRaiseAccessViolation must be running at IRQL PASSIVE_LEVEL.

Because ExRaiseAccessViolation can only be used at IRQL PASSIVE_LEVEL, only high
level drivers typically use this routine-for example, file system drivers.

See Also
ExRaiseDatatypeMisalignment, ExRaiseStatus, IoAllocateErrorLogEntry,
KeBugCbeckEx

ExRaiseDatatypeMisalignment
VOID

ExRaiseDatatypeMisalignment(
VOID
) ;

The ExRaiseDatatypeMisalignment support routine can used with structured exception
handling to throw a driver-determined exception for a misaligned data type that occurs when
a driver processes I/O requests.

Include
ntddk.h

Comments
ExRaiseDatatypeMisalignment raises an exception with the exception code set to
STATUS_DATATYPE_MISALIGNMENT.

116 Part 1 Kernel-Mode Support Routines

Callers of ExRaiseDatatypeMisalignment must be running at IRQL PASSIVE_LEVEL.

Because ExRaiseDatatypeMisalignment can only be used at IRQL PASSIVE_LEVEL,
only high-level drivers typically use this routine - for example, file system drivers.

See Also
ExRaiseAccess Violation, ExRaiseStatus, IoAllocateErrorLogEntry, KeBugCbeckEx

ExRaiseStatus
VOID

ExRaiseStatus(
IN NTSTATUS Status
) ;

The ExRaiseStatus support routine is called by drivers that supply structured exception
handlers to handle particular errors that occur while they are processing I/O requests.

Parameters
Status
Is one of the system-defined STATUS_XXX values.

Include
wdm.h or ntddk.h

Comments
Highest-level drivers, particularly file systems, can call ExRaiseStatus.

Callers of ExRaiseStatus must be running at IRQL PASSIVE_LEVEL.

See Also
ExRaiseAccess Violation, ExRaiseDatatypeMisalignment, IoAllocateErrorLogEntry,
KeBugCbeckEx

ExRegisterCallback
PVOID

ExRegisterCallback(
IN PCALLBACK-OBJECT Ca77backObject.
IN PCALLBACK-FUNCTION Ca77backFunction.
IN PVOID Ca77backContext
);

Chapter 2 Executive Support Routines 117

The ExRegisterCallback support routine registers a given callback routine with a given
callback object.

Parameters
CallbackObject
Pointer to a callback object obtained from ExCreateCallback.

CallbackFunction
Pointer to a driver callback routine, which must be nonpageable. The callback routine must
conform to the following prototype:

VOID
(*PCALLBACK-FUNCTION) (

IN PVOID CallbackContext,
IN PVOID Argumentl,
IN PVOID Argument2
) ;

The callback routine parameters are as follows:

CallbackContext
Pointer to a driver-supplied context area as specified in the CallbackContext parameter of
ExRegisterCallback.

Argument1
Pointer to a parameter defined by the callback object.

Argument2
Pointer to a parameter defined by the callback object.

CallbackContext
Pointer to a caller-defined structure of data items to be passed as the context parameter of
the callback routine each time it is called. Typically the context is part of the caller's device
object extension.

Include
wdm.h or ntddk. h

Return Value
ExRegisterCallback returns a pointer to a callback registration handle that should be
treated as opaque and reserved for system use. This pointer is NULL if ExRegisterCallback
completes with an error.

118 Part 1 Kernel-Mode Support Routines

Comments
A driver calls ExRegisterCallback to register a callback routine with a specified callback
object.

If the object allows only one registered callback routine, and such a routine is already
registered, ExRegisterCallback returns NULL.

Callers of ExRegisterCallback must save the returned pointer for use later in a call to
ExUnregisterCallback. The pointer is required when removing the callback routine from
the list of registered callback routines for the callback object.

The meanings of Argumentl and Argument2 of the registered callback routine depend on
the callback object and are defined by the component that created it. The following are the
parameters for the system-defined callback objects:

\Callback\SetSystemTime
Argument 1
Not used.

Argument 2
Not used.

\Callback\PowerState
Argument 1
PO_CB_AC_STATUS - Indicates that the system has changed from AlC to battery power,
or vice versa.

PO_CB_SYSTEM_POWER_POLICY - Indicates that the system power policy has
changed.

PO_CB_SYSTEM_STATE_LOCK - Indicates that a system power state change is immi
nent. Drivers in the paging path can register for this callback to receive early warning of
such a change, allowing them the opportunity to lock their code in memory before the power
state changes.

Argument 2
If Argumentl is PO_CB_AC_STATUS, Argument2 contains TRUE if the current power
source is AC and FALSE otherwise.

If Argumentl is PO_CB_SYSTEM_POWER_POLICY, Argument2 is not used.

If Argumentl is PO _ CB _SYSTEM_ST ATE_LOCK, Argument2 contains zero if the system
is about to leave SO and one if the system has just reentered SO.

Callers of this routine must be running at IRQL < DISPATCH_LEVEL.

Chapter 2 Executive Support Routines 119

The system calls registered callback routines at the same IRQL at which the driver that
created the callback called ExNotifyCallback.

See Also
ExCreateCallback, ExNotifyCallback, ExUnregisterCallback

ExReinitializeResourceLite
VOID

ExReinitializeResourceLite(
IN PERESOURCE Resource
) :

The ExReinitializeResourceLite support routine reinitializes an existing resource variable.

Parameters
Resource
Pointer to the caller supplied resource variable to be reinitialized.

Include
ntddk.h

Return Value
ExReinitializeResourceLite returns STATUS_SUCCESS.

Comments
With a single call to ExReinitializeResource, a driver writer can replace three calls:
one to ExDeleteResourceLite, another to ExAllocatePool, and a third to Exlnitialize
ResourceLite. As contention for a resource variable increases, memory is dynamically
allocated and attached to the resource in order to track this contention. As an optimization,
ExReinitializeResourceLite retains and zeroes this previously allocated memory.

The ERESOURCE structure is opaque; that is, the members are reserved for system use.

Callers of ExReinitializeResourceLite must be running at IRQL <= DISPATCH_LEVEL.

See Also
ExAcquireResourceExciusiveLite, ExAcquireResourceSharedLite, Exlnitialize
ResourceLite, ExDeleteResourceLite, ExAcquireSharedStarveExciusive,
ExAcquireSharedWaitForExciusive, ExConvertExciusiveToSharedLite, ExIs
ResourceAcquiredExciusiveLite, ExIsResourceAcquiredSharedLite,
ExReleaseResourceForThreadLite, ExTryToAcquireResourceExciusiveLite

120 Part 1 Kernel-Mode Support Routines

ExReleaseFastMutex
VOID

ExReleaseFastMutex(
IN PFAST_MUTEX FastMutex
) ;

ExReleaseFastMutex releases ownership of a fast mutex that was acquired with Ex
AcquireFastMutex or ExTryToAcquireFastMutex.

Parameters
FastMutex
Pointer to the fast mutex to be released.

Include
wdm.h or ntddk. h

Comments
ExReleaseFastMutex releases ownership of the given fast mutex and re-enables the
delivery of APCs to the current thread.

It is a programming error to call ExReleaseFastMutex with a FastMutex that was acquired
using ExAcquireFastMutexUnsafe.

Callers of ExReleaseFastMutex must be running at IRQL = APC_LEVEL. In most cases
the IRQL will already be set to APC_LEVEL before ExReleaseFastMutex is called. This is
because ExAcquireFastMutex has already set the IRQL to the appropriate value automati
cally. However, if the caller changes the IRQL after ExAcquireFastMutex returns, the
caller must explicitly set the IRQL to APC_LEVEL prior to calling ExReleaseFastMutex.

See Also
ExAcquireFastMutex, ExlnitializeFastMutex, ExTryToAcquireFastMutex

ExReleaseFastMutexUnsafe
VOID

ExReleaseFastMutexUnsafe(
IN PFAST_MUTEX FastMutex
) ;

The ExReleaseFastMutexUnsafe support routine releases ownership of a fast mutex that
was acquired using ExAcquireFastMutexUnsafe.

Parameters
FastMutex
Pointer to the fast mutex to be released.

Include
wdm.h or ntddk. h

Comments

Chapter 2 Executive Support Routines 121

It is a programming error to call ExReleaseFastMutexUnsafe with a FastMutex that was
acquired using ExAcquireFastMutex or ExTryToAcquireFastMutex.

Callers of ExReleaseFastMutexUnsafe must be running at IRQL = APC_LEVEL unless
the caller invokes both ExAcquireFastMutexUnsafe and ExReleaseFastMutexUnsafe
from within a critical section, in which case the caller must be running at IRQL <= APC_
LEVEL.

See Also
ExAcquireFastMutexUnsafe, ExlnitializeFastMutex

ExReleaseResource
VOID

ExReleaseResource(
IN PERESOURCE Resource
) ;

The ExReleaseResource support routine has been superseded by the ExReleaseResource
Lite support routine. ExReleaseResource is exported only to support existing driver bina
ries. Use ExReleaseResourceLite instead.

ExReleaseResourceForThread
VOID

ExReleaseResourceForThreadLite(
IN PERESOURCE Resource.
IN ERESOURCE_THREAD ResourceThreadld
) ;

The ExReleaseResourceForThread support routine is exported to support existing driver
binaries and is obsolete. Use ExReleaseResourceForThreadLite instead.

122 Part 1 Kernel-Mode Support Routines

ExReleaseResourceForThreadLite
VOID

ExReleaseResourceForThreadLite(
IN PERESOURCE Resource.
IN ERESOURCE_THREAD ResourceThreadld
) ;

The ExReleaseResourceForThreadLite support routine releases the input resource of the
indicated thread.

Include
ntddk.h

Parameters
Resource
Pointer to the resource to release.

Resource Threadld
Identifies the thread that originally acquired the resource.

Comments
Callers of ExReleaseResourceForThreadLite must be running at IRQL <= DISPATCH_
LEVEL.

See Also
ExAcquireResourceExclusiveLite, ExAcquireResourceSharedLite, ExAcquireShared
StarveExclusive, ExAcquireSharedWaitForExclusive, ExGetCurrentResourceThread,
ExlnitializeResourceLite, ExReinitializeResourceLite, ExTryToAcquireResource
ExclusiveLite

ExReleaseResourceLite
VOID

ExReleaseResourceLite(
IN PERESOURCE Resource.
) ;

The ExReleaseResourceLite support routine releases a specified executive resource owned
by the current thread.

Parameters
Resource

Chapter 2 Executive Support Routines 123

Pointer to an executive resource owned by the current thread.

Include
ntddk.h

Comments
Callers of ExReleaseResourceLite must be running at IRQL <= DISPATCH_LEVEL.

See Also
ExAcquireResourceExclusiveLite, ExAcquireResourceSharedLite, ExAcquireShared
StarveExclusive, ExAcquireSharedWaitForExclusive, ExGetCurrentResourceThread,
ExlnitializeResourceLite, ExReinitializeResourceLite, ExReleaseResourceLite, ExTry
ToAcquireResourceExclusiveLite

ExSetResourceOwnerPointer
VOID

ExSetResourceOwnerPointer(
IN PERESOURCE Resource,
IN PVOID OwnerPointer
) ;

The ExSetResourceOwnerPointer support routine sets the owner thread pointer for an
executive resource.

Parameters
Resource
Pointer to an executive resource owned by the current thread.

OwnerPointer
Pointer to an owner thread pointer of type ERESOURCE_THREAD (for additional require
ments, see the Comments section).

Include
ntddk.h

124 Part 1 Kernel-Mode Support Routines

Comments
ExSetResourceOwnerPointer, used in conjunction with ExReleaseResourceForThread
Lite, provides a means for one thread (acting as an resource manager thread) to acquire and
release resources for use by another thread (acting as a resource user thread).

After calling ExSetResourceOwnerPointer for a specific resource, the only other routine
that can be called for that resource is ExReleaseResourceForThreadLite.

The resource manager thread acquires ownership of the resource and passes ownership to
the user thread by calling ExSetResourceOwnerPointer. The caller must allocate the
memory for the ERESOURCE_ THREAD value pointed to by OwnerPointer in system
memory, and this memory must remain allocated until ExReleaseResourceForThreadLite
returns. The caller must also set the two low-order bits of the ERESOURCE_ THREAD
value pointed to by OwnerPointer to one-this encoding is used internally by the resource
services to distinguish between owner and thread addresses.

When the user thread is done with the resource, the resource manager thread releases the
user thread's ownership of the resource by calling ExReleaseResourceForThreadLite. The
ResourceThreadld input parameter is set to the value of the OwnerPointer parameter used in
the previous call to ExSetResourceOwnerPointer that gave the worker thread ownership of
the resource.

Callers of ExSetResourceOwnerPointer must be running at IRQL <= DISPATCH_
LEVEL.

See Also
ExReleaseResourceForThreadLite

ExSetTi merResol ution
ULONG

ExSetTimerResolution(
IN ULONG DesiredTime.
IN BOOLEAN SetReso7ution
) ;

More information on ExSetTimerResolution will be provided in a future DDK release.

ExSystemTimeToLocalTime
VOID

ExSystemTimeToLocalTime(
IN PLARGE_INTEGER SystemTime.
OUT PLARGE_INTEGER Loca7Time
) ;

Chapter 2 Executive Support Routines 125

The ExSystemTimeToLocalTime support routine converts a GMT system time value to the
local system time for the current time zone.

Parameters
System Time
Pointer to a variable set to the unbiased, GMT system time.

Loca/Time
Pointer to the returned value for the current locale.

Include
ntddk.h

Comments
ExSystemTimeToLocalTime subtracts the time-zone bias from the GMT system time
value to compute the corresponding time at the current locale.

Callers of ExSystemTimeToLocalTime can be running at any IRQL.

See Also
ExLocalTimeToSystemTime

ExTryToAcquireFastMutex
BOOLEAN

ExTryToAcquireFastMutex(
IN PFAST_MUTEX FastMutex
) ;

The ExTryToAcquireFastMutex support routine acquires the given fast mutex, if possible,
with APCs to the current thread disabled.

Parameters
FastMutex
Pointer to the fast mutex to be acquired if it is not currently owned by another thread.

Include
ntddk.h

126 Part 1 Kernel-Mode Support Routines

Return Value
ExTryToAcquireFastMutex returns TRUE if the current thread is given ownership of the
fast mutex.

Comments
If the given fast mutex is currently unowned, ExTryToAcquireFastMutex gives the caller
ownership with APCs to the current thread disabled until it releases the fast mutex.

Use ExAcquireFastMutex if the current thread must wait on the acquisition of the given
mutex before it can do useful work.

Any fast mutex acquired with ExTryToAcquireFastMutex or ExAcquireFastMutex must
be released with ExReleaseFastMutex.

Callers of ExTryToAcquireFastMutex must be running at IRQL < DISPATCH_LEVEL.

See Also
ExAcquireFastMutex, ExlnitializeFastMutex, ExReleaseFastMutex

ExTryToAcquireResourceExclusiveLite
BOOLEAN

ExTryToAcquireResourceExclusiveLite(
IN PERESOURCE Resource
) ;

The ExTryToAcquireResourceExciusiveLite support routine attempts to acquire the given
resource for exclusive access.

Parameters
Resource
Pointer to the resource to be acquired.

Include
ntddk.h

Return Value
ExTryToAcquireResourceExciusiveLite returns TRUE if the given resource has been
acquired for the caller:.

Chapter 2 Executive Support Routines 127

Comments
Use ExAcquireResourceExciusiveLite if the caller must have exclusive access to the
resource before it can do further useful work.

Callers of ExTryToAcquireResourceExciusiveLite must be running at IRQL <
DISPATCH_LEVEL.

See Also
ExAcquireResourceExciusiveLite, ExAcquireSharedWaitForExciusive, ExIsResource
AcquiredExciusiveLite

ExUnregisterCaliback
VOID

ExUnregisterCallback(
IN PVOID Ca77backRegistration
) ;

The ExUnregisterCallback support routine removes a callback routine previously regis
tered with a callback object from the list of routines to be called during the notification
process.

Parameters
CbRegistration
Is the pointer returned by ExRegisterCallback to identify this registration. This value
should be treated as opaque and reserved for system use.

Include
wdm.h or ntddk.h

Comments
Callers of this routine must be running at IRQL < DISPATCH_LEVEL.

See Also
ExCreateCallback, ExRegisterCallback

ExUuidCreate
NTSTATUS

ExUuidCreate(
OUT UUID *Uuid
) ;

128 Part 1 Kernel-Mode Support Routines

The ExUuidCreate support routine sets a new UUID (GUID) structure.

Parameters
Uuid
Pointer to a caller-allocated UUID (GUID) structure that is set to a new UUID value.

Include
ntddk.h

Return Value
ExUuidCreate returns STATUS_SUCCESS if successful; otherwise, if the system is not
ready to generate a new UUID, it returns STATUS_RETRY.

Comments
A UUID and a GUID are the same data type.

The caller can iteratively attempt to obtain a new UUID value.

This routine must run at IRQL PASSIVE_LEVEL.

InterlockedCompareExchange
LONG

InterlockedCompareExchange(
IN OUT PLONG Destination,
IN LONG Exchange,
IN LONG Comparand
) ;

The InterlockedCompareExchange support routine performs an atomic operation that
compares the input value pointed to by Destination· with the value of Comparand. If the
two compared values are equal, InterlockedCompareExchange sets the output value
pointed to by Destination to the value of Exchange.

Parameters
Destination
Pointer to the input value that is compared with the value of Comparand.

Exchange
The output value pointed to by Destination if the input value pointed to by Destination
equals the value of Comparand.

Chapter 2 Executive Support Routines 129

Comparand
The value that is compared with the input value pointed to by Destination.

Include
wdm.h or ntddk.h

Return Value
InterlockedCompareExchange returns the value pointed to by Destination.

Comments
InterlockedCompareExchange provides a fast, atomic way to synchronize the testing
and updating of a variable that is shared by multiple threads. If the input value pointed to by
Destination equals the value of Comparand, the output value of Destination is set to the
value of Exchange.

InterlockedCompareExchange is designed for speed and, typically, is implemented
inline by a compiler. InteriockedCompareExchange is atomic only with respect to other
InterlockedXxx calls. It does not use a spin lock and can be safely used on pageable data.

Callers of InterlockedCompareExchange can be running at any IRQL.

See Also
ExInterlockedCompareExchange64, InterlockedCompareExchangePointer,
InterlockedDecrement, InteriockedExchange, InteriockedExchangePointer,
InterlockedIncrement

InterlockedCompareExchangePointer
PVOID

InterlockedCompareExchangePointer(
IN OUT PVOID *Destination,
IN PVOID Exchange,
IN PVOID Comparand
) ;

The InteriockedCompareExchangePointer support routine performs an atomic opera
tion that compares the input pointer value pointed to by Destination with the pointer
value Comparand. If the two compared pointer values are equal, InteriockedCompare
ExchangePointer sets the output pointer value pointed to by Destination to the pointer
value of Exchange.

130 Part 1 Kernel-Mode Support Routines

Parameters
Destination
Pointer to the input pointer value compared with the pointer value of Comparand.

Exchange
The output pointer value that Destination points to if the input pointer value of Destination
equals the pointer value of Comparand.

Comparand
The pointer value compared with the input pointer value pointed to by Destination.

Include
wdm.h or ntddk.h

Return Value
InterlockedCompareExchangePointer returns the pointer value pointed to by Destination.

Comments
InterlockedCompareExchangePointer provides a fast, atomic way to synchronize the
testing and updating of a pointer variable that is shared by multiple threads. If the input
value pointed to by Destination equals the value of Comparand, the value pointed to by
Destination is set to the value of Exchange.

InterlockedCompareExchangePointer is designed for speed and, typically, is implemen
ted inline by a compiler. InterlockedCompareExchangePointer is atomic only with re
spect to other InterlockedXxx calls. It does not use a spin lock and can be safely used on
pageable data.

The InterlockedCompareExchangePointer routine is atomic only with respect to other
InterlockedXxx calls.

Callers of InterlockedCompareExchangePointer can be running at any IRQL.

See Also
InterlockedCompareExchange, InterlockedExchange, InterlockedExchangePointer

Interlocked Decrement
LONG

InterlockedDecrement(
IN PLONG Addend
) ;

Chapter 2 Executive Support Routines 131

The InterlockedDecrement support routine decrements a caller supplied variable of type
LONG as an atomic operation.

Parameters
Addend
Pointer to a variable to be decremented.

Include
wdm.h or ntddk.h

Return Value
InterlockedDecrement returns the decremented value.

Comments
InterlockedDecrement should be used instead of ExInteriockedDecrementLong because
it is both more efficient and faster.

InterlockedDecrement is implemented inline by the compiler when appropriate and possible.
It does not require a spin lock and can therefore be safely used on pageable data.

InterlockedDecrement is atomic only with respect to other InterlockedXxx calls.

Callers of InterlockedDecrement can be running at any IRQL.

See Also
InterlockedExchange, InterlockedIncrement, ExlnteriockedAddLargelnteger,
ExlnteriockedAddUlong

Interlocked Exchange
LONG

InterlockedExchange(
I N OUT PLONG Target.
IN LONG Va7ue
) ;

The InterlockedExchange support routine sets an integer variable to a given value as an
atomic operation.

Parameters
Target
Pointer to a variable to be set to the supplied Value as an atomic operation.

132 Part 1 Kernel-Mode Support Routines

Value
Specifies the value to which the variable will be set.

Include
wdm.h or ntddk.h

Return Value
InterlockedExchange returns the value of the variable at Target when the call occurred.

Comments
InterlockedExchange should be used instead of ExlnterlockedExchangeUlong, because it
is both faster and more efficient.

InterlockedExchange is implemented inline by the compiler when appropriate and
possible. It does not require a spin lock and can therefore be safely used on pageable data.

A call to InterlockedExchange routine is atomic only with respect to other InterlockedXxx
calls.

Callers of InterlockedExchange can be running at any IRQL.

See Also
Interlockedlncrement, InterlockedDecrement, ExlnterlockedAddLargelnteger,
ExInterlockedAddUlong

InterlockedExchangeAdd
LONG

InterlockedExchangeAdd(
IN OUT PLONG Addend.
IN LONG Value
) ;

The InterlockedExchangeAdd support routine adds a value to a given integer as an atomic
operation and returns the original value of the given integer.

Parameters
Addend
Pointer to an integer variable.

Value
Is the value to be added to Addend.

Chapter 2 Executive Support Routines 133

Include
wdm.h or ntddk.h

Return Value
InteriockedExchangeAdd returns the original value of the Addend variable when the call
occurred.

Comments
InteriockedExchangeAdd should be used instead of ExlnterlockedAddUlong because it
is both faster and more efficient.

InteriockedExchangeAddis implemented inline by the compiler when appropriate and
possible. It does not require a spin lock and can therefore be safely used on pageable data.

InterlockedExchangeAdd is atomic only with respect to other InteriockedXxx calls.

Callers of InterlockedExchangeAdd can be running at any IRQL.

See Also
Interlockedlncrement, InteriockedDecrement, ExlnteriockedAddLargelnteger,
ExInteriockedAddUlong

Interlocked ExchangePointer
PVOID

InterlockedExchangePointer(
IN OUT PVOID *Target.
IN PVOID Value
) ;

The InterlockedExchangePointer support routine performs an atomic operation that sets a
pointer to a new value.

Parameters
Target
Pointer to a pointer set to the value of Value.

Value
The new value for the pointer pointed to by Target.

Include
wdm.h or ntddk.h

134 Part 1 Kernel-Mode Support Routines

Return Value
InteriockedExchangePointer returns the input value pointed to by Target.

Comments
InterlockedExchangePointer provides a fast, atomic way to synchronize updating a pointer
variable that is shared by multiple threads.

InterlockedExchangePointer is designed for speed and, typically, is implemented
inline by a compiler. InterlockedExchangePointer is atomic only with respect to other
InteriockedXxx calls. It does not use a spin lock and can be safely used on pageable data.

A call to InterlockedExchangePointer is atomic only with respect to other InterlockedXxx
calls.

Callers of InteriockedExchangePointer can be running at any IRQL.

See Also
InteriockedCompareExchange, InterlockedCompareExchangePointer, Interlocked
Exchange

Interlockedlncrement
LONG

InterlockedIncrementC
IN PLONG Addend
) ;

The InteriockedIncrement support routine increments a caller supplied variable as an
atomic operation.

Parameters
Addend
Pointer to a variable of type LONG.

Include
wdm.h or ntddk. h

Return Value
InteriockedIncrement returns the incremented value.

Chapter 2 Executive Support Routines 135

Comments
Interlockedlncrement should be used instead of ExlnteriockedlncrementLong because it
is both more efficient and faster.

Interlockedlncrement is implemented inline by the compiler when appropriate and
possible. It does not require a spin lock and can therefore be safely used on pageable data.

Interlockedlncrement is atomic only with respect to other InterlockedXxx calls.

Callers of Interlockedlncrement can be running at any IRQL.

See Also
InterlockedDecrement, InterlockedExchange, ExlnteriockedAddLargelnteger,
ExlnterlockedAddUlong

PAGED_CODE
VOID PAGED_CODE();

The PAGED_CODE macro ensures that the calling thread is running at an IRQL that is low
enough to permit paging. If the IRQL > APC_LEVEL, PAGED_CODEO causes the system
to ASSERT.

Include
wdm.h or ntddk.h

Comments
A call to this macro should be made at the beginning of every driver routine that either con
tains pageable code or touches pageable code.

The PAGED_CODE macro only checks IRQL at the point the code executes the macro.
If the code subsequently raises IRQL, it will not be detected. Driver writers should use the
driver verifier to detect when the IRQL is raised improperly.

PAGED_CODE only works in checked builds.

ProbeForRead
VOID

ProbeForRead
IN CONST VOID *Address,
IN ULONG Length,
IN ULONG Alignment
) ;

136 Part 1 Kernel-Mode Support Routines

The ProbeForRead support routine probes a structure for read accessibility and ensures
correct alignment of the structure. If the structure is not accessible or has incorrect
alignment, then an exception is raised.

Parameters
Address
Supplies a pointer to the structure to be probed.

Length
Length of structure.

Alignment
Supplies the required alignment of the structure expressed as the number of bytes in the
primitive datatype (e.g., 1 for char, 2 for short, 4 for long, and 8 for quad).

Include
wdm.h or ntddk.h

Comments
Kernel-mode drivers must use ProbeForRead to validate read access to buffers allocated in
user space. It is most commonly used during METHOD_NEITHER I/O to valid the user
buffer pointed to by Irp -> UserBuffer.

Drivers should call ProbeForRead inside a try-except block, so that any exceptions raised
are handled properly, and the driver completes the IRP with an error.

Callers of Probe For Read must be running at IRQL < APC_LEVEL.

See Also
ProbeForWrite

ProbeForWrite
VOID

ProbeForWrite
IN CaNST VOID *Address.
IN ULONG Length.
IN ULONG A7ignment
) ;

The ProbeForWrite support routine probes a structure for write accessibility and ensures
correct alignment of the structure. If the structure is not accessible or has incorrect align
ment, then an exception is raised.

Parameters
Address
Supplies a pointer to the structure to be probed.

Length
Length of structure.

Alignment

Chapter 2 Executive Support Routines 137

Supplies the required alignment of the structure expressed as the number of bytes in the
primitive datatype (e.g., I for char, 2 for short, 4 for long, and 8 for quad).

Include
wdm.h or ntddk.h

Comments
Kernel-mode drivers must use ProbeForWrite to validate write access to buffers allocated
in user space. It is most commonly used during METHOD_NEITHER 110 to valid the user
buffer pointed to by Irp -> UserBuffer.

Drivers should call ProbeForWrite inside a try-except block, so that any exceptions raised
are handled properly, and the driver completes the IRP with an error.

Callers of Probe For Write must be running at IRQL < APC_LEVEL.

See Also
ProbeForRead

139

CHAPTER 3

Hardware Abstraction Layer Routines

References for the routines and macros described in this chapter are in alphabetical order.

For an overview of the functionality of these routines and macros, see Chapter 1, Summary
of Kernel-Mode Support Routines.

AllocateAdapterChannel
NTSTATUS

AllocateAdapterChannel(
IN PDMA_ADAPTER DmaAdapter,
IN PDEVICE_OBJECT DeviceObject,
IN ULONG NumberOfMapRegisters,
IN PDRIVER_CONTROL ExecutionRoutine,
IN PVOID Context
) ;

AllocateAdapterChannel prepares the system for a DMA operation on behalf of the target
device object. As soon as the appropriate DMA channel and/or any necessary map registers
are available, AllocateAdapterChannel calls a driver-supplied routine to carry out an 110
operation through the system DMA controller or a busmaster adapter.

Parameters
DmaAdapter
Points to the DMA_ADAPTER structure returned by IoGetDmaAdapter that represents the
busmaster adapter or DMA controller.

DeviceObject
Points to the device object that represents the target device for a requested DMA operation.

140 Part 1 Kernel·Mode Support Routines

NumberOfMapRegisters
Specifies the number of map registers to be used in the transfer. This value is the lesser of
(the number of map registers needed to satisfy the current transfer request) and (the number
of available map registers returned by IoGetDmaAdapter).

ExecutionRoutine
Points to a driver-supplied AdapterControl routine to be called as soon the system DMA
controller or busmaster adapter is available. This routine is declared as follows:

IO_ALLOCATION_ACTION
(*PDRIVER-CONTROL)(

IN PDEVICE_OBJECT DeviceObject,
IN PIRP Irp,
IN PVOID MapRegisterBase,
IN PVOID Context
) :

Context
Points to the driver-determined context to be passed to the AdapterControl routine.

Include
wdm.h or ntddk.h

Return Value
This routine can return one of the following NTST ATUS values:

Value

STATUS_SUCCESS

STATUS_INSUFFICIENT_RESOURCES

Comments

Meaning

The adapter channel has been allocated.

The NumberOfMapRegisters is larger than the
value returned by IoGetDmaAdapter.

AllocateAdapterChannel is not a system routine that can be called directly by name. This
routine is callable only by pointer from the address returned in a DMA_OPERATIONS
structure. Drivers obtain the address of this routine by calling IoGetDmaAdapter.

This routine reserves exclusive access to a DMA controller channel and/or map registers
for the one or more DMA operations required to satisfy the current IRP's transfer request for
the specified device.

If the system DMA controller or busmaster adapter is already busy or if insufficient resour
ces are available, the driver's request is queued until the controller or adapter is free and
resources are available. Otherwise, the driver-supplied AdapterControl routine is called

Chapter 3 -Hardware Abstraction Layer Routines 141

immediately. Only one such request can be queued for a driver object at anyone time.
Therefore, the driver should not call AllocateAdapterChannel again for another DMA
operation on the same driver object until the AdapterControl routine has completed
execution. In addition, a driver must not call AllocateAdapterChannel from within its
AdapterControl routine.

If AllocateAdapterChannel is called from a driver's StartIo routine to process the same IRP
passed in to the StartIo routine, AllocateAdapterChannel passes that Irp to'the Adapter
Control routine. Otherwise, the Irp has no meaning, and a driver should consider the Irp a
system-reserved parameter to its AdapterControl routine.

Drivers should save the value of MapRegisterBase for use when calling FreeAdapter
Channel.

The return value of the AdapterControl routine depends on whether the device is a bus
master or uses system DMA. Drivers of busmaster devices return DeallocateObject
KeepRegisters; drivers of slave devices return KeepObject.

Callers of AllocateAdapterChannel must be running at IRQL DISPATCH_LEVEL.

See Also
FlushAdapterBuffers, FreeAdapterChannel, FreeMapRegisters, IoGetDmaAdapter,
MapTransfer, ReadDmaCounter, DMA_OPERATIONS

AllocateCommonBuffer
PVOID

AllocateCommonBuffer(
IN PDMA_ADAPTER DmaAdapter.
IN ULONG Length.
OUT PPHYSICAL_ADDRESS Logica7Address.
IN BOOLEAN CacheEnab7ed
) ;

AllocateCommonBuffer allocates memory and maps it so that it is simultaneously
accessible from both the processor and a device for DMA operations.

Parameters
DmaAdapter
Points to the DMA_ADAPTER structure returned by IoGetDmaAdapter that represents the
busmaster adapter or DMA controller.

Length
Specifies the number of bytes of memory to allocate.

142 Part 1 Kernel-Mode Support Routines

Logica/Address
Points to a variable that receives the logical address the device can use to access the
allocated buffer. Use this address rather than calling MmGetPhysicalAddress because
the system can take into account any platform-specific memory restrictions.

CacheEnab/ed
Specifies whether the allocated memory can be cached.

Include
wdm.h or ntddk.h

Return Value
AllocateCommonBuffer returns the base virtual address of the allocated range. If the buffer
cannot be allocated, it returns NULL.

Comments
AllocateCommonBuffer is not a system routine that can be called directly by name. This
routine is callable only by pointer from the address returned in a DMA_OPERATIONS
structure. Drivers obtain the address of this routine by calling IoGetDmaAdapter.

AllocateCommonBuffer supports DMA in which the device and the processor continuously
communicate through system memory, as in a control structure for a busmaster DMA
device.

AllocateCommonBuffer also supports slave devices whose drivers use a system DMA con
troller's autoinitialize mode.

AllocateCommonBuffer does the following:

• Allocates memory that can be reached from both the processor and the device. This
memory appears contiguous to the device.

• Allocates map registers to map the buffer, if required by the system.

• Sets up a translation for the device, including loading map registers if necessary.

To use resident system memory economically, drivers should allocate as few of these buff
ers per device as possible. AllocateCommonBuffer allocates at least a page of memory,
regardless of the requested Length. After a successful allocation requesting fewer than
PAGE_SIZE bytes, the caller can access only the requested Length. After a successful
allocation requesting more than an integral multiple of PAGE_SIZE bytes, any remaining
bytes on the last allocated page are inaccessible to the caller.

Chapter 3 Hardware Abstraction Layer Routines 143

If a driver needs several pages of common buffer space, but the pages need not be contigu
ous, the driver should make several one-page requests to AlIocateCommonBuffer instead
of one large request. This approach conserves contiguous memory.

Drivers typically call AlIocateCommonBuffer as part of device start-up, during their
response to a PnP IRP _MN_START_DEVICE request. After start-up, it is possible that
only one-page requests will succeed, if any.

Callers of AlIocateCommonBuffer must be running at IRQL PASSIVE_LEVEL.

See Also
FreeCommonBuffer, IoGetDmaAdapter, DMA_OPERA TIONS

FlushAdapterBuffers
BOOLEAN

FlushAdapterBuffers(
IN PDMA_ADAPTER DmaAdapter,
IN PMDL Md7.
IN PVOID MapRegisterBase,
IN PVOID CurrentVa,
IN ULONG Length,
IN BOOLEAN WriteToDevice
) ;

FlushAdapterBuffers flushes any data remaining in the system DMA controller's internal
cache or in a busmaster adapter's internal cache at the end of a DMA transfer operation.

Parameters
DmaAdapter
Points to the DMA_ADAPTER structure returned by IoGetDmaAdapter that represents the
busmaster adapter or DMA controller.

Mdl
Points to the MDL that describes the buffer previously passed in the driver's call to Map
Transfer.

MapRegisterBase
Points to the handle passed to the driver's AdapterControl routine by AlIocateAdapter
Channel.

144 Part 1 Kernel·Mode Support Routines

CurrentVa
Points to the current virtual address in the buffer, described by the Mdl, where the 110
operation occurred. This value must be the same as the initial CurrentVa value passed to
MapTransfer.

Length
Specifies the length, in bytes, of the buffer.

Write ToDevice
Specifies the direction of the DMA transfer operation: TRUE for a transfer from a buffer in
system memory to the driver's device.

Include
wdm.h or ntddk.h

Return Value
FlushAdapterBuffers returns TRUE if any data remaining in the DMA controller's or bus
master adapter's internal cache has been successfully flushed into system memory or out to
the device.

Comments
FlushAdapterBuffers is not a system routine that can be called directly by name. This
routine is callable only by pointer from the address returned in a DMA_OPERATIONS
structure. Drivers obtain the address of this routine by calling IoGetDmaAdapter.

To ensure that a DMA transfer is complete, every driver that performs DMA operations
must call FlushAdapterBuffers before completing the IRP that requested the DMA transfer
and before freeing the map registers.

A driver can get the initial CurrentVa for the start of a packet-based DMA transfer by
calling MmGetMdlVirtualAddress. However, the value returned is an index into the Mdl,
rather than a valid virtual address. If the driver must split a large transfer request into more
than one DMA operation, it must update CurrentVa and Length for each DMA operation.

Callers of FlushAdapterBuffers must be running at IRQL <= DISPATCH_LEVEL.

See Also
AllocateAdapterChannel, IoGetDmaAdapter, KeFlushloBuffers, MapTransfer,
MmGetMdlVirtualAddress, DMA_OPERA TIONS

FreeAdapterChannel
VOID

FreeAdapterChannel(
IN PDMA_ADAPTER DmaAdapter
) ;

Chapter 3 Hardware Abstraction Layer Routines 145

FreeAdapterChannel releases the system DMA controller when a driver has completed all
DMA operations necessary to satisfy the current IRP.

Parameters
DmaAdapter
Points to the DMA_ADAPTER structure returned by IoGetDmaAdapter that represents the
busmaster adapter or DMA controller.

Include
wdm.h or ntddk.h

Comments
FreeAdapterChannel is not a system routine that can be called directly by name. This
routine is callable only by pointer from the address returned in a DMA_OPERATIONS
structure. Drivers obtain the address of this routine by calling IoGetDmaAdapter.

After a driver has transferred all the data and called FlushAdapterBuffers, it calls Free
AdapterChannel to release the system DMA controller that was previously allocated with
a call to AllocateAdapterChannel.

FreeAdapterChannel frees any map registers that were allocated by an earlier call to
AllocateAdapterChannel. A driver calls this routine only if its AdapterControl routine
returns KeepObject.

Callers of FreeAdapterChannel must be running at IRQL DISPATCH_LEVEL.

See Also
AllocateAdapterChannel, FlushAdapterBuffers, FreeMapRegisters, IoGetDma
Adapter, MapTransfer, DMA_OPERATIONS

146 Part 1 Kernel-Mode Support Routines

FreeCommonBuffer
VOID

FreeCommonBuffer(
IN PDMA_ADAPTER DmaAdapter,
IN ULONG Length,
IN PHYSICAL_ADDRESS Logica7Address,
IN PVOID Virtua7Address,
IN BOOLEAN CacheEnab7ed
) ;

FreeCommonBuffer frees a common buffer allocated by AllocateCommonBuffer, along
with all resources the buffer uses.

Parameters
DmaAdapter
Points to the DMA_ADAPTER structure returned by IoGetDmaAdapter that represents the
busmaster adapter or DMA controller.

Length
Specifies the number of bytes to deallocate.

LogicaJAddress
Specifies the logical address of the allocated memory range.

VirtualAddress
Points to the corresponding virtual address of the allocated memory range.

CacheEnabJed
Indicates whether the allocated memory is cached.

Include
wdm.h or ntddk.h

Comments
FreeCommonBuffer is not a system routine that can be called directly by name. This
routine is callable only by pointer from the address returned in a DMA_OPERATIONS
structure. Drivers obtain the address of this routine by calling IoGetDmaAdapter.

To release a common buffer, a driver calls FreeCommonBuffer to unmap both its logical
and virtual addresses. The parameters passed to FreeCommonBuffer must match exactly
those passed to and returned from AllocateCommonBuffer. A driver cannot free part of an
allocated common buffer.

Chapter 3 Hardware Abstraction Layer Routines 147

Callers of FreeCommonBuffer must be running at IRQL PASSIVE_LEVEL.

See Also
AllocateCommonBuffer, IoGetDmaAdapter, DMA_OPERATIONS

FreeMapRegisters
VOID

FreeMapRegisters(
IN PDMA_ADAPTER DmaAdapter.
PVOID MapRegisterBase.
ULONG NumberOfMapRegisters
) :

FreeMapRegisters releases a set of map registers that were saved from a call to
AllocateAdapterChannel.

Parameters
DmaAdapter
Points to the DMA_ADAPTER structure returned by IoGetDmaAdapter that represents the
busmaster adapter or DMA controller.

MapRegisterBase
Points to the handle returned by the driver's call to AllocateAdapterChannel.

NumberOfMapRegisters
Specifies the number of map registers to be released. This value must match the number
specified in an earlier call to AllocateAdapterChannel.

Include
wdm.h or ntddk.h

Comments
FreeMapRegisters is not a system routine that can be called directly by name. This routine
is only callable by pointer from the address returned in a DMA_OPERATIONS structure.
Drivers obtain the address of this routine by calling IoGetDmaAdapter.

When the driver of a busmaster device has completed the current packet-based DMA trans
fer request, it calls FreeMapRegisters to release the map registers previously allocated by a
call to AllocateAdapterChannel and retained because its AdapterControl routine returned
DeallocateObjectKeepRegisters. The driver must call FreeMapRegisters after calling
FlushAdapterBuffers.

148 Part 1 Kernel-Mode Support Routines

Callers of FreeMapRegisters must be running at IRQL DISPATCH_LEVEL.

See Also
AllocateAdapterChannel, IoGetDmaAdapter, MapTransfer, DMA_ OPERATIONS

GetDmaAlignment
ULONG

GetDmaAlignment(
IN PDMA_ADAPTER DmaAdapter
) ;

GetDmaAlignment returns the alignment requirements of the DMA system.

Parameters
DmaAdapter
Points to the DMA_ADAPTER structure returned by IoGetDmaAdapter that represents the
busmaster adapter or DMA controller.

Include
wdm.h or ntddk.h

Return Value
GetDmaAlignment returns the alignment requirements of the DMA system.

Comments
GetDmaAlignment is not a system routine that can be called directly by name. This routine
is callable only by pointer from the address returned in a DMA_OPERATIONS structure.
Drivers obtain the address of this routine by calling IoGetDmaAdapter.

A driver can call this routine to determine alignment requirements for DMA buffers it
allocates. The returned value should be used to set the AlignmentRequirement field in the
device object. A driver may need to increase this value because of additional hardware
device restrictions.

Callers of GetDmaAlignment must be running at IRQL PASSIVE_LEVEL.

See Also
IoGetDmaAdapter, DMA_OPERATIONS , DEVICE_OBJECT

GetScatterGatherList
NTSTATUS
GetScatterGatherList

IN PDMA_ADAPTER DmaAdapter,
IN PDEVICE_OBJECT DeviceObject,
IN PMDL Md7,
IN PVOID CurrentVa,
IN ULONG Length,

Chapter 3 Hardware Abstraction Layer Routines 149

IN PDRIVER_LIST_CONTROL ExecutionRoutine,
IN PVOID Context,
IN BOOLEAN WriteToDevice
) ;

GetScatterGatherList prepares the system for a DMA operation on behalf of the target
device object through either the system DMA controller or a busmaster adapter. As soon as
the appropriate DMA channel and any necessary map registers are available, GetScatter
GatherList creates a scatter/gather list, initializes the map registers, and then calls a driver
supplied routine to carry out the I/O operation.

Parameters
DmaAdapter
Points to the DMA_ADAPTER structure returned by IoGetDmaAdapter that represents the
busmaster adapter or DMA controller.

DeviceObject
Points to the device object that represents the target device for the DMA operation.

Mdl
Points to the MDL that describes the buffer at MdlAddress in the current IRP.

CurrentVa
Points to the current virtual address in the MDL for the buffer to be mapped for a DMA
transfer operation.

Length
Specifies the length, in bytes, to be mapped.

150 Part 1 Kernel-Mode Support Routines

ExecutionRoutine
Points to a driver-supplied AdapterControl routine to be called when the system DMA
controller or busmaster adapter is available. This routine is declared as follows:

VOID
(*PDRIVER_LIST_CONTROL)(

IN struct _DEVICE_OBJECT *DeviceObject,
IN struct _IRP *Irp,
IN PSCATTER-GATHER_LIST ScatterGather,
IN PVOID Context
) ;

Context
Points to the driver-determined context passed to the driver's Execution routine when it is
called.

WriteToDevice
Indicates the direction of the DMA transfer: TRUE for a transfer from the buffer to the
device, and FALSE otherwise.

Include
wdm.h or ntddk.h

Return Value
This routine can return one of the following NTSTATUS values:

Value

STATUS_SUCCESS

STATUS_INSUFFICIENT_RESOURCES

Comments

Meaning

The operation succeeded.

The routine could not allocate sufficient memory or the
number of map registers required for the transfer is
larger than the value returned by IoGetDmaAdapter.

The buffer is too small for the requested transfer.

GetScatterGatherList is not a system routine that can be called directly by name. This
routine is callable only by pointer from the address returned in a DMA_OPERATIONS
structure. Drivers obtain the address of this routine by calling IoGetDmaAdapter.

GetScatterGatherList combines the actions of the AIIocateAdapterChannel and Map
Transfer routines for drivers that perform scatter/gather DMA. GetScatterGatherList
determines how many map registers are required for the transfer, allocates the map registers,
maps the buffers for DMA, and fills in the scatter/gather list. It then calls the supplied

Chapter 3 Hardware Abstraction Layer Routines 151

AdapterControl routine, passing a pointer to the scatter/gather list in ScatterGather. The
driver should retain this pointer for use when calling PutScatterGatherList. Note that
GetScatterGatherList does not have the queuing restrictions that apply to Allocate
AdapterChannel.

In its AdapterControl routine, the driver should perform the 110. On return from the driver
supplied routine, GetScatterGatherList keeps the map registers but frees the DMA adapter
structure. The driver must call PutScatterGatherList (which flushes the buffers) before it
can access the data in the buffer.

This routine can handle chained MDLs, provided that the total number of map registers
required by all chained MDLs does not exceed the number available.

Callers of GetScatterGatherList must be running at IRQL DISPATCH_LEVEL.

See Also
IoGetDmaAdapter, PutScatterGatherList, AllocateAdapterChannel, DMA_
OPERATIONS, SCATTER_GATHER_LIST

HalAllocateCommonBuffer
PVOID

HalAllocateCommonBuffer(
IN PADAPTER-OBJECT AdapterObject.
IN ULONG Length.
OUT PPHYSICAL_ADDRESS Logica7Address.
IN BOOLEAN CacheEnab7ed
) :

HalAllocateCommonBufTer is obsolete and is exported only to support existing driver
binaries. See AliocateCommonBuffer instead.

HalAssignSlotResources
NTSTATUS

HalAssignSlotResources(
IN PUNICODE_STRING RegistryPath.
IN PUNICODE_STRING DriverC7assName.
IN PDRIVER-OBJECT DriverObject.
IN PDEVICE_OBJECT DeviceObject.
IN INTERFACE_TYPE BusType.
IN ULONG BusNumber.
IN ULONG S7otNumber.
IN OUT PCM_RESOURCE_LIST *A77ocatedResources
) :

HalAssignSlotResources is obsolete and is exported only to support existing drivers.

152 Part 1 Kernel-Mode Support Routines

Drivers of PnP devices are assigned resources by the PnP Manager, which passes resource
lists with each IRP _MN_START_DEVICE request.

Drivers that must support a legacy device that cannot be enumerated by the PnP Manager
should use IoReportDetectedDevice and IoReportResourceForDetection.

See Also
CM_RESOURCE_LIST, ExFreePool, HalGetBusData, IoAssignResources,
IoReportDetectedDevice, IoReportResourceForDetection

HalExamineMBR
VOID

HalExamineMBR(
IN PDEVICE_OBJECT DeviceObject,
IN ULONG SectorSize,
IN ULONG MBRTypeIdentifier,
OUT PVOID Buffer,
) ;

HalExamineMBR reads the master boot record (MBR) of a disk and returns data from the
MBR if the MBR is of the type specified by the caller.

Parameters
DeviceObject
Points to the device object for the device being examined.

SectorSize
Specifies the minimum number of bytes that an I/O operation can fetch from the device
being examined. If this value is less than 512, HalExamineMBR reads 512 bytes to ensure
that it reads an entire partition table.

MBRTypeldentifier
Specifies the type of MBR that may be on the disk.

Buffer
Points to a buffer that returns data from the MBR. The layout of the buffer depends on the
MBR Typeldentifie r. The caller must deallocate this buffer as soon as possible with ExFree
Pool. This routine returns NULL in Buffer if the MBRTypeldentifier of the disk does not
match that specified by the caller or if there is an error.

Include
ntddk.h

Chapter 3 Hardware Abstraction Layer Routines 153

Comments
Callers of HalExamineMBR must be running at IRQL PASSIVE_LEVEL.

See Also
ExFreePool

HalFreeCommonBuffer
VOID

Hal FreeCommonBuffer(
IN PADAPTER_OBJECT AdapterObject,
IN ULONG Length,
IN PHYSICAL_ADDRESS Logica7Address,
IN PVOID Virtua7Address,
IN BOOLEAN CacheEnab7ed
) ;

HalFreeCommonBuffer is obsolete and is exported only to support existing driver binaries.
See FreeCommonBuffer instead.

HalGetAdapter
PADAPTER_OBJECT

HalGetAdapter(
IN PDEVICE_DESCRIPTION DeviceDescription,
IN OUT PULONG NumberOfMapRegisters
) ;

HalGetAdapter is obsolete and is exported only for existing driver binaries. See
/oGetDmaAdapter instead.

HalGetBusData
ULONG

HalGetBusData(
IN BUS_DATA-TYPE BusDataType,
IN ULONG BusNumber,
IN ULONG S7otNumber,
IN PVOID Buffer,
IN ULONG Length
) ;

HalGetBusData is obsolete and is exported only to support existing drivers.

Drivers should use the PnP Manager's IRP _MN_QVERY_INTERFACE and IRP _MN_
READ_CONFIG requests instead.

154 Part 1 Kernel-Mode Support Routines

See Also
CM_EISA_FUNCTION_INFORMATION, CM_EISA_SLOT_INFORMATION, CM_
MCA_POS_DATA, HalAssignSlotResources, HalGetAdapter, HalGetBusDataBy
Offset, HalGetInterruptVector, HalSetBusData, HalTranslateBusAddress, IoAssign
Resources, PCI_COMMON_CONFIG, PCI_SLOT_NUMBER, IRP _MN_QUERY_
INTERFACE,IRP _MN_READ_CONFIG

HalGetBusDataByOffset
ULONG

HalGetBusDataByOffset(
IN BUS_DATA_TYPE BusDataType,
IN ULONG BusNumber,
IN ULONG S7otNumber,
IN PVOID Buffer,
IN ULONG Offset,
IN ULONG Length
) ;

HaiGetBusData is obsolete and is exported only to support existing drivers.

Drivers should use the PnP Manager's IRP _MN_QUERY_INTERFACE request instead.

See Also
HalAssignSlotResources, HalGetBusData, HalSetBusDataByOffset, HalTranslate
BusAddress, IoAssignResources, PCI_COMMON_CONFIG, PCI_SLOT_NUMBER,
IRP_MN_QUERY_INTERFACE,IRP_MN_READ_CONFIG

HalGetDmaAI ig n mentReq u i rement
ULONG

HalGetDmaAlignmentRequirement(
) ;

HalGetDmaAlignmentRequirement is obsolete and exported only to support existing
drivers. See GetDmaAlignment instead.

HalGetlnterruptVector
ULONG

HalGetInterruptVector(
IN INTERFACE_TYPE InterfaceType,
IN ULONG BusNumber,
IN ULONG BusInterruptLeve7,
IN ULONG Bus Interrupt Vector,

OUT PKIRQL Irq7,
OUT PKAFFINITY Affinity
) ;

Chapter 3 Hardware Abstraction Layer Routines 155

HalGetlnterruptVector is obsolete and is exported only to support existing drivers.

Drivers of PnP devices are assigned resources by the PnP Manager, which passes resource
lists with each IRP _MN_START_DEVICE request.

Drivers that must support a legacy device that cannot be enumerated by the PnP Manager
should use IoReportDetectedDevice and IoReportResourceForDetection.

HalReadDmaCounter
ULONG

Hal ReadDmaCounter(
IN PADAPTER-OBJECT AdapterObject
) ;

HalReadDmaCounter is obsolete and exported only to support existing driver binaries. See
ReadDmaCounter instead.

HalSetBusData
ULONG

HalSetBusData(
IN BUS_DATA_TYPE BusDataType,
IN ULONG BusNumber,
IN ULONG S7otNumber,
IN PVOID Buffer,
IN ULONG Length
) ;

HalSetBusData is obsolete and is exported only to support existing drivers.

Drivers should use the PnP Manager's IRP _MN_QUERY_INTERFACE and IRP _MN_
WRITE_CONFIG requests instead.

HalSetBusData sets bus-configuration data for a given slot or address on a particular bus.

Parameters
BusDataType
Specifies the type of bus data to be set. Currently, its value can be the following: Cmos
or PCIConfiguration. However, additional types of bus configuration will be supported
in future versions of the operating system. The upper bound on the bus types supported is
always MaximumBusDataType.

156 Part 1 Kernel-Mode Support Routines

BusNumber
Specifies the zero-based and system-assigned number of the bus in systems with more than
one bus of the same BusDataType.

SlotNumber
Specifes the logical slot number for the device. When PCIConfiguration is specified, this is
a PCI_SLOT_NUMBER-type value.

Buffer
Points to a caller-supplied buffer containing information specific to BusDataType.

When Cmos is specified, the buffer contains data to be written to CMOS (BusNumber
equals zero) or ECMOS (BusNumber equals one) locations starting with the location
specified by the SlotNumber.

When PCIConfiguration is specified, the buffer contains some or all of the PCI_
COMMON_CONFIG information for the given SlotNumber. The specified Length deter
mines how much information is supplied. Certain members of PC I_ COMMON_CON FIG
have read-only values, and the caller is responsible for preserving the system-supplied
values of read-only members.

Length
Specifies the number of bytes of configuration data in Buffer.

Include
ntddk.h

Return Value
HalSetBusData returns the number of bytes of data successfully set for the given Slot
Number. If the given BusDataType is not valid for the current platform or if the supplied
information is invalid, this routine returns zero.

Comments
Calling HalSetBusDataByOffset with a BusDataType of PCIConfiguration and an input
Offset of zero is the same as calling HalSetBusData.

If the input BusDataType is PCIConfiguration, callers of HalSetBusData can be running
at IRQL <= DISPATCH_LEVEL. Otherwise, callers of HalSetBusData must be running at
IRQL PASSIVE_LEVEL.

Chapter 3 Hardware Abstraction Layer Routines 157

See Also
HalGetBusData, HalGetBusDataByOffset, HalSetBusDataByOffset, PCI_ COMMON_
CONFIG, PCI_SLOT_NUMBER, IRP _MN_QUERY _INTERFACE, IRP _MN_ WRITE_
CONFIG

HalSetBusDataByOffset
ULONG

HalSetBusDataByOffset(
IN BUS_DATA_TYPE BusDataType,
IN ULONG BusNumber,
IN ULONG S7otNumber,
IN PVOID Buffer,
IN ULONG Offset,
IN ULONG Length
) ;

HalSetBusDataByOffset is obsolete and is exported only to support existing drivers.

Drivers should use the PnP Manager's IRP _MN_QUERY_INTERFACE and IRP _MN_
WRITE_CONFIG requests instead.

See Also
HalAssignSlotResources, HalGetBusData, HalGetBusDataByOffset, HalTranslate
BusAddress, IoAssignResources, PCI_COMMON_CONFIG, PCI_SLOT _NUMBER,
IRP _MN_QUERY _INTERFACE, IRP _MN_ WRITE_CONFIG

HalTranslateBusAddress
BOOLEAN

HalTranslateBusAddress(
IN INTERFACE_TYPE InterfaceType,
IN ULONG BusNumber,
IN PHYSICAL_ADDRESS BusAddress,
IN OUT PULONG AddressSpace,
OUT PPHYSICAL_ADDRESS Trans7atedAddress
) ;

HalTranslateBusAddress is obsolete and is exported only to support existing drivers.

The PnP Manager passes lists of raw and translated resources in its IRP _MN_START_
DEVICE request for each device. Consequently, PnP drivers seldom, if ever, need to
translate bus addresses. However, if translation is required, drivers should use the PnP
IRP _MN_QUERY_INTERFACE request to get the standard bus interface.

158 Part 1 Kernel·Mode Support Routines

See Also
HalAssignSlotResources, HalGetBusData, HalGetBusDataByOffset, IoAssign
Resources, MmMaploSpace, IRP _MN_QUERY _INTERFACE

MapTransfer
PHYSICAL_ADDRESS

MapTransfer(
IN PDMA_ADAPTER DmaAdapter,
IN PMDL Md7,
IN PVOID MapRegisterBase,
IN PVOID Current Va,
IN OUT PULONG Length,
IN BOOLEAN WriteToDevice
) ;

Map Transfer sets up map registers for an adapter object to map a DMA transfer from a
locked-down buffer.

Parameters
DmaAdapter
Points to the DMA adapter object returned by IoGetDmaAdapter and previously passed to
AllocateAdapterChannel for the current IRP's transfer request.

Mdt
Points to one of the following: the MDL that describes the buffer at MdlAddress in the
current IRP or the MDL that describes the common buffer set up by the driver of a slave
device (auto-initialize mode).

MapRegisterBase
Points to the handle previously returned by AllocateAdapterChannel for the current IRP.

Current Va
Points to the current virtual address of the data to be transferred for a DMA transfer
operation.

Length
Specifies the length, in bytes, to be mapped. If the driver indicated that its device was a
busmaster with scatter/gather support when it called IoGetDmaAdapter, the value of
Length on return from Map Transfer indicates how many bytes were mapped. Otherwise,
the input and output values of Length are identical.

Chapter 3 Hardware Abstraction Layer Routines 159

Write ToDevice
Indicates the direction of the transfer operation: TRUE for a transfer from the locked-down
buffer to the device.

Include
wdm.h or ntddk.h

Return Value
MapTransfer returns the logical address of the region mapped, which the driver of a bus
master adapter can use. Drivers of devices that use a system DMA controller cannot use this
value and should ignore it.

Comments
Map Transfer is not a system routine that can be called directly by name. This routine is
callable only by pointer from the address returned in a DMA_OPERATIONS structure.
Drivers obtain the address of this routine by calling IoGetDmaAdapter.

The DmaAdapter must have already been allocated as a result of the driver's preceding call
to AllocateAdapterChannel.

The number of map registers that can be set up cannot exceed the maximum returned when
the driver called IoGetDmaAdapter.

A driver can get the initial CurrentVa for the start of a packet-based DMA transfer by
calling MmGetMdlVirtualAddress. However, the value returned is an index into the Mdl,
rather than a valid virtual address. If the driver must split a large transfer request into more
than one DMA operation, it must update CurrentVa and Length for each DMA operation.

The driver of a busmaster device with scatter/gather support can use the returned logical
address and updated Length value to build a scatter/gather list, calling MapTransfer repeat
edly until it has used all available map registers for the transfer operation. However, such a
driver could more simply use the GetScatterGatherList routine.

Callers of MapTransfer must be running at IRQL <= DISPATCH_LEVEL.

See Also
ADDRESS_AND _SIZE_TO_SPAN_PAGES, AllocateCommonBuffer, IoGetDma
Adapter, AllocateAdapterChannel, FlushAdapterBuffers, FreeAdapterChannel,
FreeMapRegisters, KeFlushloBuffers, MmGetMdlVirtualAddress

160 Part 1 Kernel-Mode Support Routines

PutDmaAdapter
VOID
PutDmaAdapter(

PDMA_ADAPTER DmaAdapter
) ;

PutDmaAdapter frees a DMA_ADAPTER structure previously allocated by IoGetDma
Adapter.

Parameters
DmaAdapter
Points to the DMA_ADAPTER structure to be released.

Include
wdm.h or ntddk.h

Comments
PutDmaAdapter is not a system routine that can be called directly by name. This routine
is callable only by pointer from the address returned in a DMA_OPERATIONS structure.
Drivers obtain the address of this routine by calling IoGetDmaAdapter.

PutDmaAdapter frees a DMA adapter object previously allocated by IoGetDmaAdapter.
Drivers should call PutDmaAdapter after completing DMA operations and freeing any
map registers and common buffer allocated with this adapter object. After PutDmaAdap
ter returns, the driver can no longer use the DMA adapter object.

A driver must call PutDmaAdapter when it receives a PnP IRP _MN_STOP _DEVICE
request.

Callers of PutDmaAdapter must be running at IRQL DISPATCH_LEVEL.

See Also
IoGetDmaAdapter, DMA_OPERATIONS

PutScatterGatherList
VOID
PutScatterGatherList(

IN PDMA_ADAPTER DmaAdapter.
IN PSCATTER_GATHER_LIST ScatterGather.
IN BOOLEAN WriteToDevice
) ;

Chapter 3 Hardware Abstraction Layer Routines 161

PutScatterGatherList frees the previously allocated map registers and scatter/gather list
used in scatter/gather DMA.

Parameters
DmaAdapter
Points to the DMA_ADAPTER structure returned by IoGetDmaAdapter that represents the
busmaster adapter or DMA controller.

ScatterGather
Points to a scatter/gather list previously returned by GetScatterGather.

Write ToDe vice
Indicates the direction of the DMA transfer: specify TRUE for a transfer from the buffer to
the device, and FALSE otherwise.

Include
wdm.h or ntddk.h

Return Value
This routine can return the following NTSTATUS value:

Value Meaning

STATUS_SUCCESS The map registers and scatter/gather list were successfully deallocated.

Comments
PutScatterGatherList is not a system routine that can be called directly by name. This
routine is callable only by pointer from the address returned in a DMA_OPERATIONS
structure. Drivers obtain the address of this routine by calling IoGetDmaAdapter.

Drivers should call PutScatterGatherList after completing scatter/gather 110. This routine
flushes the adapter buffers, frees the map registers, and frees the scatter/gather list previous
ly allocated by GetScatterGatherList.

Callers of PutScatterGatherList must be running at IRQL DISPATCH_LEVEL.

See Also
IoGetDmaAdapter, GetScatterGatherList, DMA_OPERA TIONS, SCATTER_
GATHER_LIST

162 Part 1 Kernel-Mode Support Routines

ReadDmaCounter
ULONG

ReadDmaCounter(
IN PDMA_ADAPTER DmaAdapter
) ;

ReadDmaCounter returns the number of bytes remaining to be transferred during the
current slave DMA operation.

Parameters
DmaAdapter
Points to the adapter object previously returned by IoGetDmaAdapter representing the
system DMA controller channel currently in use.

Include
wdm. h or ntddk.h

Return Value
ReadDmaCounter returns the number of bytes remaining to be transferred in the current
DMA operation.

Comments
ReadDmaCounter is not a system routine that can be called directly by name. This routine
is callable only by pointer from the address returned in a DMA_OPERATIONS structure.
Drivers obtain the address of this routine by calling IoGetDmaAdapter.

ReadDmaCounter can be called only by drivers of slave DMA devices. Usually, the caller
is the driver of a slave device that uses a system DMA controller's autoinitialize mode.

Callers of ReadDmaCounter must be running at IRQL <= DISPATCH_LEVEL.

See Also
AlIocateCommonBuffer, IoGetDmaAdapter, FlushAdapterBuffers, MapTransfer

VOID
READ_PORT_BUFFER-UCHAR(
IN PUCHAR Port.
IN PUCHAR Buffer.

IN ULONG Count
) ;

Chapter 3 Hardware Abstraction Layer Routines 163

READ_PORT_BUFFER_UCHAR reads a number of bytes from the specified port address
into a buffer.

Parameters
Port
Points to the port, which must be a mapped memory range in 110 space.

Buffer
Points to a buffer into which an array ofUCHAR values is read.

Count
Specifies the number of bytes to be read into the buffer.

Include
wdm.h or ntddk.h

Comments
The size of the buffer must be large enough to contain at least the specified number of bytes.

Callers ofREAD_PORT_BUFFER_UCHAR can be running at any IRQL, assuming the
Buffer is resident and the Port is resident, mapped device memory.

VOID
READ_PORT_BUFFER-ULONG(
IN PULONG Port.
IN PULONG Buffer.
IN ULONG Count
) ;

READ_PORT_BUFFER_ULONG reads a number ofULONG values from the specified
port address into a buffer.

164 Part 1 Kernel-Mode Support Routines

Parameters
Port
Points to the port, which must be a mapped memory range in 110 space.

Buffer
Points to a buffer into which an array of ULONG values is read.

Count
Specifies the number of ULONG values to be read into the buffer.

Include
wdm.h or ntddk.h

Comments
The size of the buffer must be large enough to contain at least the specified number of
ULONG values.

Callers ofREAD_PORT_BUFFER_ULONG can be running at any IRQL, assuming the
Buffer is resident and the Port is resident, mapped device memory.

READ_PORT_BUFFER_USHORT
VOID

READ_PORT_BUFFER_USHORT(
IN PUSHORT Port.
IN PUSHORT Buffer.
IN ULONG Count
) ;

READ_PORT_BUFFER_USHORT reads a number ofUSHORT values from the specified
port ~address into a buffer.

Parameters
Port
Points to the port, which must be a mapped memory range in 110 space.

Buffer
Points to a buffer into which an array of USHORT values is read.

Count
Specifies the number of USHORT values to be read into the buffer.

Chapter 3 Hardware Abstraction Layer Routines 165

Include
wdm.h or ntddk.h

Comments
The size of the buffer must be large enough to contain at least the specified number of
USHORT values.

Callers ofREAD_PORT_BUFFER_USHORT can be running at any IRQL, assuming the
Buffer is resident and the Port is resident, mapped device memory.

UCHAR
READ_PORT_UCHAR(
IN PUCHAR Port
) ;

READ_PORT_UCHAR reads a byte from the specified port address.

Parameters
Port
Points to the port address, which must be a mapped memory range in I/O space.

Include
wdm.h or ntddk.h

Return Value
READ_PORT_UCHAR returns the byte read from the specified port address.

Comments
Callers of READ_PORT_UCHAR can be running at any IRQL, assuming the Port is
resident, mapped device memory.

READ_PORT_ULONG
ULONG

READ_PORT_ULONG(
IN PULONG Port
) ;

READ_PORT_ULONG reads a ULONG value from the specified port address.

166 Part 1 Kernel-Mode Support Routines

Parameters
Port
Points to the port address, which must be a mapped range in I/O space.

Include
wdm.h or ntddk.h

Return Value
READ_PORT_ULONG returns the ULONG value read from the specified port address.

Comments
Callers of READ_PORT_ULONG can be running at any IRQL, assuming the Port is
resident, mapped device memory.

USHORT
READ_PORT_USHORT(
IN PUSHORT Port
) ;

READ_PORT_USHORT reads a USHORT value from the specified port address.

Parameters
Port
Points to the port address, which must be a mapped range in I/O space.

Include
wdm.h or ntddk.h

Return Value
READ_POR166_USHORT returns the USHORT value read from the specified port
address.

Comments
Callers of READ_PORT_USHORT can be running at any IRQL, assuming the Port is
resident, mapped device memory.

Chapter 3 Hardware Abstraction Layer Routines 167

READ_REGISTER_BUFFER_UCHAR
VOID

READ_REGISTER-BUFFER-UCHAR(
IN PUCHAR Register,
IN PUCHAR Buffer,
IN ULONG Count
) :

READ_REGISTER_BUFFER_UCHAR reads a number of bytes from the specified register
address into a buffer.

Parameters
Register
Points to the register, which must be a mapped range in memory space.

Buffer
Points to a buffer into which an array of UCHAR values is read.

Count
Specifies the number of bytes to be read into the buffer.

Include
wdm.h or ntddk.h

Comments
The size of the buffer must be large enough to contain at least the specified number of bytes.

Callers of READ_REGISTER_BUFFER_UCHAR can be running at any IRQL, assuming
the Buffer is resident and the Register is resident, mapped device memory.

READ_REGISTER_BUFFER_ULONG
VOID

READ_REGISTER-BUFFER-ULONG(
IN PULONG Register,
IN PULONG Buffer,
IN ULONG Count
) :

READ_REGISTER_BUFFER_ULONG reads a number of ULONG values from the
specified register address into a buffer.

168 Part 1 Kernel·Mode Support Routines

Parameters
Register
Points to the register, which must be a mapped range in memory space.

Buffer
Points to a buffer into which an array of ULONG values is read.

Count
Specifies the number of ULONG values to be read into the buffer.

Include
wdm.h or ntddk.h

Comments
The size of the buffer must be large enough to contain at least the specified number of
ULONG values.

Callers of READ _REGIS TER_B UFFER_ ULONG can be running at any IRQL, assuming
the Buffer is resident and the Register is resident, mapped device memory.

READ _REGISTER_BUFFER_ USHORT
VOID

READ_REGISTER_BUFFE~USHORT(

IN PUSHORT Register,
IN PUSHORT Buffer,
IN ULONG Count
) ;

READ_REGISTER_BUFFER_USHORT reads a number of USHORT values from the
specified register address into a buffer.

Parameters
Register
Points to the register, which must be a mapped range in memory space.

Buffer
Points to a buffer into which an array of USHORT values is read.

Count
Specifies the number of USHORT values to be read into the buffer.

Chapter 3 Hardware Abstraction Layer Routines 169

Include
wdm.h or ntddk.h

Comments
The size of the buffer must be large enough to contain at least the specified number of
USHORT values.

Callers of READ_REGISTER_BUFFER_USHORT can be running at any IRQL, assuming
the Buffer is resident and the Register is resident, mapped device memory.

UCHAR
READ_REGISTER_UCHARC
IN PUCHAR Register
) :

READ_REGISTER_UCHAR reads a byte from the specified register address.

Parameters
Register
Points to the register address, which must be a mapped range in memory space.

Include
wdm.h or ntddk. h

Return Value
READ_REGISTER_UCHAR returns the byte read from the specified register address.

Comments
Callers of READ_REGISTER_UCHAR can be running at any IRQL, assuming the Register
is resident, mapped device memory.

READ_REGISTER_ULONG
ULONG

READ_REGISTER-ULONGC
IN PULONG Register
) :

READ_REGISTER_ULONG reads a ULONG value from the specified register address.

170 Part 1 Kernel·Mode Support Routines

Parameters
Register
Points to the register address, which must be a mapped range in memory space.

Include
wdm.h or ntddk.h

Return Value
READ_REGISTER_ULONG returns the ULONG value read from the specified register
address.

Comments
Callers ofREAD_REGISTER_ULONG can be running at any IRQL, assuming the Register
is resident, mapped device memory.

READ _REGISTER_ USHORT
USHORT

READ_REGISTER_USHORT(
IN PUSHORT Register
) ;

READ_REGISTER_USHORT reads a USHORT value from the specified register address.

Parameters
Register
Points to the register address, which must be a mapped range in memory space.

Include
wdm.h or ntddk.h

Return Value
READ_REGISTER_USHORT returns the USHORT value read from the specified register
address.

Comments
Callers ofREAD_REGISTER_USHORTcan be running at any IRQL, assuming the
Register is resident, mapped device memory.

VOID
WRITE_PORT_BUFFER-UCHAR(
IN PUCHAR Port,
IN PUCHAR Buffer,
IN ULONG Count
) ;

Chapter 3 Hardware Abstraction Layer Routines 171

WRITE_PORT_BUFFER_UCHAR writes a number of bytes from a buffer to the speci
fied port.

Parameters
Port
Points to the port, which must be a mapped memory range in 110 space.

Buffer
Points to a buffer from which an array of UCHAR values is to be written.

Count
Specifies the number of bytes to be written to the port.

Include
wdm.h or ntddk. h

Comments
The size of the buffer must be large enough to contain at least the specified number of bytes.

Callers ofWRITE_PORT_BUFFER_UCHAR can be running at any IRQL, assuming the
Buffer is resident and the Port is resident, mapped device memory.

VOID
WRITE_PORT_BUFFER-ULONG(
IN PULONG Port,
IN PULONG Buffer,
IN ULONG Count
) ;

WRITE_PORT_BUFFER_ULONG writes a number o(ULONG values from a buffer to the
specified port address.

172 Part 1 Kernel-Mode Support Routines

Parameters
Port
Points to the port, which must be a mapped memory range in I/O space.

Buffer
Points to a buffer from which an array of ULONG values is to be written.

Count
Specifies the number of ULONG values to be written to the port.

Include
wdm.h or ntddk.h

Comments
The size of the buffer must be large enough to contain at least the specified number of
ULONGs.

Callers of WRITE_PORT_BUFFER_ULONG can be running at any IRQL, assuming the
Buffer is resident and the Port is resident, mapped device memory.

VOID
WRITE_PORT_BUFFE~USHORT(

IN PUSHORT Port,
IN PUSHORT Buffer,
IN ULONG Count
) ;

WRITE_PORT_BUFFER_USHORT writes a number of USHORT values from a buffer to
the specified port address.

Parameters
Port
Points to the port, which must be a mapped memory range in I/O space.

Buffer
Points to a buffer from which an array of USHORT values is to be written.

Count
Specifies the number of USHORT values to be written to the port.

Chapter 3 Hardware Abstraction Layer Routines 173

Include
wdm.h or ntddk.h

Comments
The size of the buffer must be large enough to contain at least the specified number of
USHORTs.

Callers ofWRITE_PORT_BUFFER_USHORT can be running at any IRQL, assuming the
Buffer is resident and the Port is resident, mapped device memory.

WRITE_PORT _ UCHAR
VOID

WRITE_PORT_UCHAR(
IN PUCHAR Port,
IN UCHAR Value
) ;

WRITE_PORT_UCHAR writes a byte to the specified port address.

Parameters
Port
Points to the port, which must be a mapped memory range in I/O space.

Value
Specifies a byte to be written to the port.

Include
wdm.h or ntddk.h

Comments
Callers of WRITE_PORT_UCHAR can be running at any IRQL, assuming the Port is
resident, mapped device memory.

VOID
WRITE_PORT_ULONG(
IN PU LONG Port,
IN ULONG Value
) ;

WRITE_PORT_ULONG writes a ULONG value to the specified port address.

174 Part 1 Kernel-Mode Support Routines

Parameters
Port
Points to the port, which must be a mapped memory range in I/O space.

Value
Specifies a ULONG value to be written to the port.

Include
wdm.h or ntddk.h

Comments
Callers ofWRITE_PORT_ULONG can be running at any IRQL, assuming the Port is
resident, mapped device memory.

WRITE_PORT _USHORT
VOID

WRITE_PORT_USHORT(
IN PUSHORT Port,
IN USHORT Value
) ;

WRITE_PORT_USHORT writes a USHORT value to the specified port address.

Parameters
Port
Points to the port, which must be a mapped memory range in I/O space.

Value
Specifies a USHORT value to be written to the port.

Include
wdm.h or ntddk.h

Comments
Callers of WRITE_PORT_USHORT can be running at any IRQL, assuming the Port is
resident, mapped device memory .

VOID

IN PUCHAR Register.
IN PUCHAR Buffer.
IN ULONG Count
) ;

Chapter 3 Hardware Abstraction Layer Routines 175

WRITE_REGISTER_BUFFER_UCHAR writes a number of bytes from a buffer to the
specified register.

Parameters
Register
Points to the register, which must be a mapped range in memory space.

Buffer
Points to a buffer from which an array of UCHAR values is to be written.

Count
Specifies the number of bytes to be written to the register.

Include
wdm. h or ntddk. h

Comments
The size of the buffer must be large enough to contain at least the specified number of bytes.

Callers ofWRITE_REGISTER_BUFFER_UCHAR can be running at any IRQL, assuming
the Buffer is resident and the Register is resident, mapped device memory.

VOID
WRITE_REGISTER_BUFFER_ULONG(
IN PULONG Register.
IN PULONG Buffer.
IN U LONG Count
) ;

WRITE_REGISTER_BUFFER_ULONG writes a number of ULONG values from a buffer
to the specified register.

176 Part 1 Kernel-Mode Support Routines

Parameters
Register
Points to the register, which must be a mapped range in memory space.

Buffer
Points to a buffer from which an array of ULONG values is to be written.

Count
Specifies the number of ULONG values to be written to the register.

Include
wdm.h or ntddk.h

Comments
The size of the buffer must be large enough to contain at least the specified number of
ULONGs.

Callers ofWRITE_REGISTER_BUFFER_ULONG can be running at any IRQL, assuming
the Buffer is resident and the Register is resident, mapped device memory.

VOID
WRITE_REGISTER_BUFFER_USHORT(
IN PUSHORT Register.
IN PUSHORT Buffer.
IN ULONG Count
) ;

WRITE_REGISTER_BUFFER_USHORT writes a number ofUSHORT values from a
buffer to the specified register.

Parameters
Register
Points to the register, which must be a mapped range in memory space.

Buffer
Points to a buffer from which an array of USHORT values is to be written.

Count
Specifies the number of USHORT values to be written to the register.

Chapter 3 Hardware Abstraction Layer Routines 177

Include
wdm.h or ntddk.h

Comments
The size of the buffer must be large enough to contain at least the specified number of
USHORTs.

Callers of WRITE_REGISTER_BUFFER_USHORT can be running at any IRQL, assuming
the Buffer is resident and the Register is resident, mapped device memory.

WRITE_REGISTER_UCHAR
VOID

WRITE_REGISTER-UCHAR(
IN PUCHAR Register.
IN UCHAR Value
) ;

WRITE_REGISTER_UCHAR writes a byte to the specified address.

Parameters
Register
Points to the register, which must be a mapped range in memory space.

Value
Specifies a byte to be written to the register.

Include
wdm.h or ntddk.h

Comments
Callers of WRITE_REGISTER_ UCHAR can be running at any IRQL, assuming the
Register is resident, mapped device memory.

WRITE_REGISTER_ULONG
VOID

WRITE_REGISTER-ULONG(
IN PULONG Register.
IN ULONG Value
) ;

WRITE_REGISTER_ULONG writes a ULONG value to the specified address.

178 Part 1 Kernel-Mode Support Routines

Parameters
Register
Points to the register which must be a mapped range in memory space.

Value
Specifies a ULONG value to be written to the register.

Include
wdm.h or ntddk.h

Comments
Callers of WRITE_REGISTER_ ULONG can be running at any IRQL, assuming the
Register is resident, mapped device memory.

WRITE_REGISTER_ USHORT
VOID

WRITE_REGISTER-USHORT(
IN PUSHORT Register.
IN USHORT Va 7 ue
) ;

WRITE_REGISTER_USHORT writes a USHORT value to the specified address.

Parameters
Register
Points to the register, which must be a mapped range in memory space.

Value
Specifies a USHORT value to be written to the register.

Include
wdm.h or ntddk.h

Comments
Callers ofWRITE_REGISTER_USHORT can be running at any IRQL, assuming the
Register is resident, mapped device memory.

CHAPTER 4

1/0 Manager Routines

All kernel-mode drivers except video and SCSI miniport drivers and NDIS drivers call
IoXxx routines.

References for the IoXxx routines are in alphabetical order.

For an overview of the functionality of these routines, see Chapter 1, Summary of Kernel
Mode Support Routines.

loAcquireCancelSpinLock
VOID

IoAcqu;reCancelSpinLock(
OUT PKIRQL Irq7
) ;

IoAcquireCancelSpinLock synchronizes cancelable-state transitions for IRPs in a
multiprocessor-safe way.

Parameters
Irql
Points to a variable in which to save the current IRQL for a subsequent call to IoRelease
CancelSpinLock. Usually, the Irql is saved on the stack as a local variable.

Include
wdm.h or ntddk. h

Comments
A driver that uses the I10-manager-supplied device queues in the device object must
be holding the cancel spin lock whenever it changes the cancelable state of an IRP with
IoSetCancelRoutine.

179

180 Part 1 Kernel-Mode Support Routines

A driver that manages its own queue(s) of IRPs does not need to hold the cancel spin lock
when calling IoSetCancelRoutine.

The holder of the cancel spin lock should release it promptly by calling IoReleaseCancel
SpinLock.

A driver-supplied Cancel routine is called with the cancel spin lock held. It must release the
cancel spin lock when it has completed the IRP to be canceled.

Callers of IoAcquireCancelSpinLock must be running at IRQL <= DISP ATCH_
LEVEL.

See Also
IoReleaseCancelSpinlock, IoSetCancelRoutine

loAcquireRemoveLock
This routine is documented in Volume 1 of the Windows 2000 Drivers Development
Reference. Please see IoAcquireRemoveLock in that book for a full reference.

loAcquireRemoveLockEx
This routine is documented in Volume 1 of the Windows 2000 Drivers Development
Reference. Please see IoAcquireRemoveLock in that book for a full reference.

loAdjustPagingPathCount
This routine is documented in Volume 1 of the Windows 2000 Drivers Development
Reference. Please see IoAcquireRemoveLock in that book for a full reference.

loAllocateAdapterChan nel
NTSTATUS

IoAllocateAdapterChannel(
IN PADAPTER_OBJECT AdapterObject,
IN PDEVICE_OBJECT DeviceObject,
IN ULONG NumberOfMapRegisters,
IN PDRIVER-CONTROL ExecutionRoutine,
IN PVOID Context
) ;

IoAIIocateAdapterChannel is obsolete and is exported only to support existing drivers.
Use AIIocateAdapterChannel instead.

Chapter 4 1/0 Manager Routines 181

Return Value
IoAllocateWorkltem returns a pointer to a private 10_ WORKITEM structure. Drivers
should not make any assumptions about the format of this structure nor attempt to access
information contained in this structure. IoAllocate W orkltem can return NULL in the case
of insufficient resources.

Comments
Drivers queue work items allocated by IoAllocateWorkltem with IoQueueWorkltem.

It is the caller's responsibility to free the resources associated with the work item returned
by IoAllocate W orkltem by calling IoFree W orkltem in the callback routine passed to
IoQueue Workltem.

Callers of IoAllocateWorkltem must be running at IRQL <= DISPATCH_LEVEL.

See Also
IoQueue Workltem, IoFree Workltem

loAssignArcName
VOID

IoAssignArcName(
IN PUNICODE_STRING ArcName.
IN PUNICODE_STRING DeviceName
) ;

IoAssignArcName creates a symbolic link between the ARC name of a physical device and
the name of the corresponding device object when it has been created.

Parameters
A reName
Points to a buffer containing the ARC name of the device. The ARC name must be a
Unicode string.

DevieeName
Points to a buffer containing the name of the device object, representing the same device.
The device object name must be a Unicode string.

Include
ntddk.h

182 Part 1 Kernel-Mode Support Routines

Comments
Drivers of hard disk devices need not call this routine. Drivers of other mass-storage de
vices, including floppy, CD_ROM, and tape devices, should call IoAssignArcName during
their initialization.

Callers of IoAssignArcName must be running at IRQL PASSIVE_LEVEL.

See Also
IoCreateDevice

loAssignResources
NTSTATUS

IoAss;gnResources(
IN PUNICODE_STRING RegistryPath.
IN PUNICODE_STRING DriverC7assName OPTIONAL.
IN PDRIVER_OBJECT DriverObject.
IN PDEVICE_OBJECT DeviceObject OPTIONAL.
IN PIO_RESOURCE_REQUIREMENTS_LIST RequestedResources.
IN OUT PCM_RESOURCE_LIST *A77ocatedResources
) ;

loAssignResources is obsolete and is exported only to support existing drivers.

Drivers of PnP devices are assigned resources by the PnP Manager, which passes resource
lists with each IRP _MN_START_DEVICE request.

Drivers that must support a legacy device that cannot be enumerated by the PnP Manager
should use loReportDetectedDevice and loReportResourceForDetection.

loAssignResources takes an input list of requested hardware resources for a driver or device,
claims an available set of hardware resources, such as an interrupt vector, device memory
range and/or I/O port range, and possibly a particular DMA controller channel, in the
\Registry\Hardware\Machine\ResourceMap tree, and returns a list of allocated hardware
resources for the driver or device. As an alternative, drivers of PCI-type devices can call
HalAssignSlotResources.

Parameters
RegistryPath
Points to the \Registry\Machine\System\CurrentControISet\Services\DriverNarne key
or one of its subkeys, depending on whether the input DeviceObject pointer is NULL. If a
driver uses resources in common for all its devices, RegistryPath is the pointer input to its
DriverEntry routine and the DeviceObject pointer must be NULL. A driver that needs
device-specific hardware resources, rather than driver-specific resources in common for all

Chapter 4 I/O Manager Routines 183

its devices, must pass a RegistryPath pointer to an updated, device-specific string naming
a subkey of DriverName, at each call to IoAssignResources with a nonNULL pointer to a
unique DeviceObject.

DriverClassName
Points to a buffered Unicode string that describes the class of driver under which the
driver's configuration information should be stored. A default type Other is used if none
is given, and a new key is created in the registry if a unique name is supplied.

DriverObject
Points to the driver object that was input to the DriverEntry routine.

DeviceObject
This pointer is optional. If it is NULL, the caller-supplied RequestedResources list specifies
resources that the driver itself needs, possibly to control several devices that it supports.
Otherwise, DeviceObject points to the driver-created device object representing a physical
device for which the driver is attempting to claim device-specific hardware resources.

RequestedResources
Points to a caller-supplied IO_RESOURCE_REQUIREMENTS_LIST structure. This struc
ture contains a list of raw hardware resources needed by one or more devices, which the
driver has found by calling HalGetBusData or HalGetBusDataByOffset, by interrogating
its devices, or by some other means. The driver can allocate the structure from paged
memory.

AllocatedResources
Points to the address of a location to receive a pointer to a CM_RESOURCE_LIST
structure, which describes the raw hardware resources allocated for the caller. The caller
is responsible for freeing the buffer.

Include
ntddk.h

Return Value
IoAssignResources returns STATUS_SUCCESS if it claimed a set of the specified hard
ware resources for the caller and returned information in the AllocatedResources buffer.
Otherwise, it returns an error status, resets the pointer at AllocatedResources to NULL, and
logs an error if it finds a resource conflict.

Comments
For most device drivers, calling IoAssignResources after locating the device and getting
whatever configuration information HalGetBusData or HalGetBusDataByOffset can

184 Part 1 Kernel·Mode Support Routines

supply is preferable to making paired calls to IoQueryDeviceDescription and IoReport
ResourceUsage.

Note that IoAssignResources does not handle 10_RESOURCE_DESCRIPTOR entries
with the Type member set to CmResourceTypeDeviceSpecific. Drivers that have hardware
resources of this type can call IoReportResourceUsage to store this configuration informa
tion in the \\Registry\ .. \ResourceMap tree. Otherwise, a successful call to IoAssign
Resources writes the caller's claims on every otlJer type of hardware resource into the
registry \ResourceMap tree.

A driver can supply any number of 10_RESOURCE_LIST elements, each containing 10_
RESOURCE_DESCRIPTOR structures specifying both preferred and alternative hardware
resources the driver can use, if the device or 110 bus does not constrain the driver to using a
fixed range of 110 ports or device memory, a fixed bus-specific interrupt vector, and/or a
particular DMA channel or port number. In particular, drivers of devices that can be config
ured to use alternate sets of hardware resources are expected to take advantage of this
capability, although drivers of PCI-type devices can call HalAssignSlotResources instead.
If IoAssignResources cannot claim a preferred set of resources, it tries an alternative set
and returns the set of resources claimed as soon as it can satisfy the request with a given
alternate resource list.

IoAssignResources automatically searches the registry for resource conflicts between
resources requested and resources claimed by previously installed drivers. It first matches
the preferred entries in the RequestedResources descriptor array against all other resource
lists stored in the registry to determine whether a conflict exists. If it finds a conflict, it then
matches any supplied alternative descriptors for the already claimed resource again, attempt
ing to allocate a set of resources the caller can use.

The caller is responsible for releasing the AllocatedResources buffer, which is pageable,
with ExFreePool after it has consumed the returned information and before the DriverEntry
routine returns control.

If a driver claims resources on a device-specific basis for more than one device, the driver
must call this routine at least once for each such device, and must update the RegistryPath
string to supply a unique subkey name for each call with a unique DeviceObject pointer.

This routine can be called more than once for a given device or driver. If a new list of
RequestedResources is supplied, it will overwrite or, possibly, be appended to the previous
resource list in the registry. However, making a single call for each set of device-specific re
sources makes a driver load much faster than if it calls IoAssignResources many times to
amend or incrementally construct the input RequestedResources for each of its devices. Note
that subsequent calls to IoAssignResources can reassign the caller's previously claimed
resources if that caller does not adjust the input RequestedReources to "fix" its claim on the
resources to be kept.

Chapter 4 1/0 Manager Routines 185

A driver must call IoAssignResources with a value of NULL for the RequestedResources
parameter to erase its claim on resources in the registry if the driver is unloaded.

Callers of IoAssignResources must be running at IRQL PASSIVE_LEVEL.

See Also
IRP _MN_ST ART_DEVICE, IoReportDetectedDevice, IoReportResourceForDetection

loAttachDevice
NTSTATUS

IoAttachDev;ce(
IN PDEVICE_OBJECT SourceDevice,
IN PUNICODE_STRING TargetDevice,
OUT PDEVICE_OBJECT *AttachedDevice
) ;

IoAttachDevice attaches the caller's device object to a named target device object, so that
110 requests bound for the target device are routed first to the caller.

Parameters
SourceDevice
Points to the caller-created device object.

TargetDevice
Points to a buffer containing the name of the device object to which the specified Source
Device is to be attached.

AttachedDevice
Points to caller-allocated storage for a pointer. On return, contains a pointer to the target
device object if the attachment succeeds.

Include
wdm.h or ntddk.h

Return Value
IoAttachDevice can return one of the following NTST ATUS values:

STATUS_SUCCESS
STATUS_INVALID_PARAMETER
STATUS_OBJECT_TYPE_MISMATCH
STATUS_OBJECT_NAME_INVALID
STATUS_INSUFFICIENT_RESOURCES

186 Part 1 Kernel-Mode Support Routines

Comments
IoAttachDevice establishes layering between drivers so that the same IRPs can be sent to
each driver in the chain.

This routine is used by intermediate drivers during initialization. It allows such a driver to
attach its own device object to another device in such a way that any requests being made to
the original device are given first to the intermediate driver.

The caller can be layered only at the top of an existing chain of layered drivers. IoAttach
Device searches for the highest device object layered over TargetDevice and attaches to that
object (that can be the TargetDevice). Therefore, this routine must not be called if a driver
that must be higher-level has already layered itself over the target device.

Note that for file system drivers and drivers in the storage stack, IoAttachDevice opens the
target device with FILE_READ_ATTRIBUTES and then calls IoGetRelatedDeviceObject.
This does not cause a file system to be mounted. Thus, a successful call to IoAttachDevice
returns the device object of the storage driver, not that of the file system driver.

This routine sets the AlignmentRequirement in SourceDevice to the value in the next
lower device object and sets the StackSize to the value in the next-lower-object plus one.

Callers of IoAttachDevice must be running at IRQL PASSIVE_LEVEL.

See Also
IoAttachDeviceToDeviceStack, IoGetRelatedDeviceObject, IoCreateDevice,
IoDetachDevice

loAttachDeviceByPointer
NTSTATUS

IoAttachDeviceByPointer(
IN PDEVICE_OBJECT SourceDevice,
IN PDEVICE_OBJECT TargetDevice
) ;

This routine is obsolete; use IoAttachDeviceToDeviceStack.

loAttachDeviceToDeviceStack
PDEVICE_OBJECT

IoAttachDeviceToDeviceStack(
IN PDEVICE_OBJECT SourceDevice,
IN PDEVICE_OBJECT TargetDevice
) ;

Chapter 4 I/O Manager Routines 187

loAttachDeviceToDeviceStack attaches the caller's device object to the highest device
object in the chain and returns a pointer to the previously highest device object. I/O requests
bound for the target device are routed first to the caller.

Parameters
SourceDevice
Points to the caller-created device object.

TargetDevice
Points to another driver's device object, such as a pointer returned by a preceding call to
loGetDeviceObjectPointer.

Include
wdm.h or ntddk.h

Return Value
loAttachDeviceToDeviceStack returns a pointer to the device object to which the Source
Device was attached. The returned device object pointer can differ from TargetDevice if
TargetDevice had additional drivers layered on top of it.

loAttachDeviceToDeviceStack returns NULL if it could not attach the device object
because, for example, the target device was being unloaded.

Comments
loAttachDeviceToDeviceStack establishes layering between drivers so that the same IRPs
are sent to each driver in the chain.

An intermediate driver can use this routine during initialization to attach its own device
object to another driver's device object. Subsequent I/O requests sent to TargetDevice are
sent first to the intermediate driver.

This routine sets the AlignmentRequirement in SourceDevice to the value in the next
lower device object and sets the StackSize to the value in the next-Iower-object plus one.

A driver writer must take care to call this routine before any drivers that must layer on top
of their driver. loAttachDeviceToDeviceStack attaches SourceDevice to the highest device
object currently layered in the chain and has no way to determine whether drivers are being
layered in the correct order.

A driver that acquired a pointer to the target device by calling loGetDeviceObjectPointer
should call ObDereferenceObject with the file object pointer that was returned by loGet
DeviceObjectPointer to release its reference to the file object before it detaches its own
device object, for example, when such a higher-level driver is unloaded.

188 Part 1 Kernel-Mode Support Routines

Callers of IoAttachDeviceToDeviceStack must be running at IRQL PASSIVE_LEVEL.

See Also
IoAttachDevice, IoDetachDevice, ObDereferenceObject, IoGetDeviceObjectPointer

loBuildAsynchronousFsdRequest
PIRP

IoBuildAsynchronousFsdRequest(
IN ULONG MajorFunction,
IN PDEVICE_OBJECT DeviceObject,
IN OUT PVOID Buffer OPTIONAL,
IN ULONG Length OPTIONAL,
IN PLARGE_INTEGER StartingOffset OPTIONAL,
IN PIO_STATUS_BLOCK IoStatusB7ock OPTIONAL
) ;

IoBuildAsynchronousFsdRequest allocates and sets up an IRP to be sent to lower-level
drivers.

Parameters
MajorFunction
Specifies the major function code to be set in the IRP, one of IRP _MJ_PNP, IRP _MJ_
READ, IRP _MJ_ WRITE, IRP _MJ_FLUSH_BUFFERS, or IRP _MJ_SHUTDOWN.

DeviceObject
Points to the next-lower driver's device object, representing the target device for the read,
write, flush, or shutdown operation.

Buffer
Points to a buffer into which data is read or from which data is written. The value of this
argument is NULL for flush and shutdown requests.

Length
Specifies the length in bytes of Buffer. The value of this argument is zero for flush and shut
down requests.

StarlingOffset
Points to the starting offset on the input/output media. The value of this argument is zero for
flush and shutdown requests.

Chapter 4 I/O Manager Routines 189

loStatusBlock
Points to the address of an 110 status block in which the to-be-called driver(s) return final
status about the requested operation.

Include
wdm. h or ntddk. h

Return Value
10BuildAsynchronousFsdRequest returns a pointer to an IRP or a NULL pointer if the IRP
cannot be allocated.

Comments
Intermediate or highest-level drivers can call 10BuildAsynchronousFsdRequest to set up
IRPs for requests sent to lower-level drivers. Such a driver must set its IoCompletion routine
in the IRP so the IRP can be deallocated with 10Freelrp.

The IRP that gets built contains only enough information to get the operation started and to
complete the IRP. No other context information is tracked because an asynchronous request
is context-independent.

Callers of 10BuildAsynchronousFsdRequest must be running at IRQL <= DISPATCH_
LEVEL.

An intermediate or highest-level driver also can call 10BuildDeviceloControlRequest, 10-
Allocatelrp, or 10BuildSychronousFsdRequest to set up requests it sends to lower-level
drivers. Only a highest-level driver can call 10MakeAssociatedlrp.

See Also
10 _STACK_LOCATION, 10Allocatelrp, 10BuildDeviceloControlRequest, 10Build
SynchronousFsdRequest, 10CallDriver, 10Freelrp, 10MakeAssociatedlrp, 10Set
CompletionRoutine, IRP

loBuildDeviceloControlRequest
PIRP

IoBuildDeviceIoControlRequest(
IN ULONG IoContro7Code.
IN PDEVICE_OBJECT DeviceObject.
IN PVOID InputBuffer OPTIONAL.
IN ULONG InputBufferLength.
OUT PVOID OutputBuffer OPTIONAL.
IN ULONG OutputBufferLength.
IN BOOLEAN Interna7DeviceloContro7.

190 Part 1 Kernel-Mode Support Routines

IN PKEVENT Event.
OUT PIO_STATUS_BLOCK IoStatusB7ock
) ;

IoBuildDeviceIoControlRequest allocates and sets up an IRP for a device control request,
optionally with an 110 buffer if the 110 control code requires the caller to supply an input or
output buffer.

Parameters
10 Con trolCode
Specifies the 10CTL_XXX to be set up. For more information about device-type-specific 110
codes, see Part 2 of this volume.

DeviceObject
Points to the next-lower driver's device object, representing the target device.

InputBuffer
Points to an input buffer to be passed to the lower driver or NULL if the request does not
pass input data to lower driver(s).

InputBufferLength
Specifies the length in bytes of the input buffer. If InputBuffer is NULL, this value must be
zero.

OutputBuffer
Points to an output buffer in which the lower driver is to return data or NULL if the request
does not require lower driver(s) to return data.

OutputBufferLength
Specifies the length in bytes of the output buffer. If OutputBuffer is NULL, this value must
be zero.

In ternalDeviceloControl
If InternalDeviceControl is TRUE the target driver's Dispatch routine for IRP _MJ_
INTERNAL_DEVICE_CONTROL or IRP _MJ_SCSI is called; otherwise, the Dispatch
routine for IRP _MJ_DEVICE_CONTROL is called.

Event
Points to an initialized event object for which the caller provides the storage. The event is
set to the Signaled state when lower driver(s) have completed the requested operation. The
caller can wait on the event object for the completion of the IRP allocated by this routine.

Chapter 4 1/0 Manager Routines 191

loStatusBlock
Specifies an I/O status block to be set when the request is completed by lower drivers.

Include
wdm.h or ntddk. h

Return Value
10BuildDeviceloControiRequest returns a pointer to an IRP with the next-lower driver's
I/O stack location partially set up from the supplied parameters. The returned pointer is
NULL if an IRP cannot be allocated.

Comments
An intermediate or highest-level driver can call 10BuildDeviceloControiRequest to set
up IRPs for requests sent to lower-level drivers. The next-lower driver's I/O stack location
is set up with the given IoControlCode at Parameters.DeviceloControl.loControICode.
Because the caller can wait on the completion of this driver-allocated IRP by calling Ke
WaitForSingleObject on the given Event, the caller need not set an IoCompletion routine
in the IRP before calling 10CallDriver. When the next-lower driver completes this IRP, the
I/O Manager releases it.

IRPs created using loBuildDeviceloControlRequest must be completed by calling 10-
CompleteRequest and not by merely deallocating the IRP with IoFreelrp. IoBuildDevice
IoControlRequest queues the IRPs it creates in the IRP queue of the current thread. Freeing
these IRPs without completing them might result in a system crash when the thread
terminates as the thread attempts to deallocate the IRP's memory.

Callers of IoBuildDeviceloControlRequest must be running at IRQL PASSIVE_LEVEL.

See Also
10 _STACK_LOCATION, IoAllocatelrp, IoBuildAsynchronousFsdRequest, IoBuild
SynchronousFsdRequest, IoCallDriver, IoCompleteRequest, IRP, KeInitializeEvent,
Ke WaitForSingleObject

loBuildPartialMdl
VOID

IoBuildPartialMdl(
IN PMDL SourceMd7.
IN OUT PMDL TargetMd7.
IN PVOID Virtua7Address.
IN ULONG Length
) ;

192 Part 1 Kernel·Mode Support Routines

IoBuildPartialMdl maps a portion of a buffer described by another MDL into an MDL.

Parameters
SourceMdl
Points to an MDL describing the original buffer, of which a subrange is to be mapped.

TargetMdl
Points to a caller-allocated MDL. The MDL must be large enough to map the subrange
specified by VirtualAddress and Length.

VirfualAddress
Points to the base virtual address for the subrange to be mapped in the TargetMdl.

Length
Specifies the length in bytes to be mapped by the TargetMdl. This value, in combination
with VirtualAddress, must specify a buffer that is a proper subrange of the buffer described
by SourceMdl. If Length is zero, the subrange to be mapped starts at VirtualAddress and
includes the remaining range described by the SourceMdl.

Include
wdm. h or ntddk.h

Comments
IoBuildPartialMdl maps a subrange of a buffer currently mapped by SourceMdl. The
VirtualAddress and Length parameters describe the subrange to be mapped from the
SourceMdl into the TargetMdl.

Drivers that must split large transfer requests can use this routine. The caller must release
the partial MDL it allocated when it has transferred all the requested data or completed the
IRP with an error status.

Callers of IoBuildPartialMdl can be running at IRQL <= DISPATCH_LEVEL.

See Also
IoAllocateMdl, IoCallDriver, IoFreeMdl, IoSetCompletionRoutine

loBuildSynchronousFsdRequest
PIRP

IoBuildSynchronousFsdRequest<
IN ULONG MajorFunction,
IN PDEVICE_OBJECT DeviceObject,
IN OUT PVOID Buffer OPTIONAL,
IN ULONG Length OPTIONAL,
IN PLARGE_INTEGER StartingOffset OPTIONAL,
IN PKEVENT Event,
OUT PIO_STATUS_BLOCK IoStatusB7ock
) ;

Chapter 4 va Manager Routines 193

IoBuildSynchronousFsdRequest allocates and builds an IRP to be sent synchronously to
lower driver(s).

Parameters
MajorFunction
Specifies the major function code, one of IRP _MJ_PNP, IRP _MJ_READ, IRP _MJ_
WRITE, IRP _MJ_FLUSH_BUFFERS, or IRP _MJ_SHUTDOWN.

DeviceObject
Points to the next-lower driver's device object representing the target device for the read,
write, flush, or shutdown operation.

Buffer
Points to a buffer containing data to be written when MajorFunction is IRP _MJ_ WRITE,
or is the location to receive data read when MajorFunction is IRP _MJ_READ. This parame
ter must be NULL for the MajorFunction IRP _MJ_FLUSH_BUFFERS or IRP _MJ_
SHUTDOWN.

Length
Specifies the length, in bytes, of Buffer. For devices such as disks, this value must be an
integral of 512. This parameter is required for read/write requests, but must be zero for flush
and shutdown requests.

StartingOffset
Points to the offset on the disk to read/write from/to. This parameter is required for read/
write requests, but must be zero for flush and shutdown requests.

194 Part 1 Kernel-Mode Support Routines

Event
Points to an initialized event object for which the caller provides the storage. The event is
set to the Signaled state when the requested operation completes. The caller can wait on the
event object for the completion of the IRP allocated by this routine.

loStatusBlock
Points to the 110 status block that is set when the IRP is completed by the lower driver(s).

Include
wdm.h or ntddk.h

Return Value
10BuildSynchronousFsdRequest returns a pointer to the IRP or NULL if an IRP cannot be
allocated.

Comments
Intermediate or highest-level drivers can call 10BuildSynchronousFsdRequest to set up
IRPs for requests sent to lower-level drivers, only if the caller is running in a nonarbitrary
thread context and at IRQL PASSIVE_LEVEL.

10BuildSynchronousFsdRequest allocates and sets up an IRP that can be sent to a device
driver to perform a synchronous read, write, flush, or shutdown operation. The IRP contains
only enough information to get the operation started.

The caller can determine when the 110 has completed by calling KeWaitForSingieObject
with the Event. Performing this wait operation causes the current thread to wait. Therefore,
this operation can be requested during the initialization of an intermediate driver or from an
FSD in the context of a thread requesting a synchronous 110 operation. A driver cannot wait
for a nonzero interval on the Event at raised IRQL in an arbitrary thread context.

Because the caller can wait on a given Event, the caller need not set an IoCompletion routine
in the caller-allocated IRP before calling IoCallDriver. When the caller completes the IRP,
the 110 Manager releases it.

IRPs created using 10BuildSynchronousFsdRequest must be completed by calling
10CompieteRequest and not by merely de allocating the IRP with 10Freelrp. 10Build
SynchronousFsdRequest queues the IRPs it creates in the IRP queue of the current thread.
Freeing these IRPs without completing them might result in a system crash when the
thread terminates as the thread attempts to deallocate the IRP's memory.

See Also
IO_STACK_LOCATION, 10Allocatelrp, 10BuildAsynchronousFsdRequest, 10-
CompieteRequest, IRP, KelnitializeEvent, Ke WaitForSingieObject

loCaliDriver
NTSTATUS

IoCallDriver(
IN PDEVICE_OBJECT DeviceObject.
IN OUT PIRP Irp
) ;

Chapter 4 1/0 Manager Routines 195

IoCallDriver sends an IRP to the next-lower-level driver after the caller has set up the I/O
stack location in the IRP for that driver.

Parameters
DeviceObject
Points to the next-lower driver's device object, representing the target device for the
requested I/O operation.

Irp
Points to the IRP.

Include
wdm.h or ntddk.h

Return Value
IoCallDriver returns the NTSTATUS value that a lower driver set in the I/O status block
for the given request or STATUS_PENDING if the request was queued for additional
processing.

Comments
IoCallDriver assigns the DeviceObject input parameter to the device object field of the IRP
stack location for the next lower driver.

An IRP passed in a call to IoCallDriver becomes inaccessible to the higher-level driver,
unless the higher-level driver has set up its IoCompletion routine for the IRP with IoSet
CompletionRoutine. If it does, the IRP input to the driver-supplied IoCompletion routine
has its I/O status block set by the lower driver(s) and all lower-level driver(s)' I/O stack
locations filled with zeros.

Drivers must not use IoCallDriver to pass power IRPs (IRP _MJ_POWER). Use PoCall
Driver instead.

Callers of IoCallDriver must be running at IRQL <= DISPATCH_LEVEL.

196 Part 1 Kernel-Mode Support Routines

See Also
IoAllocateIrp, IoBuildAsynchronousFsdRequest, IoBuildDeviceIoControlRequest,
IoBuildSynchronousFsdRequest, IoSetCompletionRoutine, PoCallDriver

loCancellrp
BOOLEAN

IoCancelIrp(
IN PIRP Irp
) ;

IoCancelIrp sets the cancel bit in a given IRP and calls the cancel routine for the IRP if
there is one.

Parameters
Irp
Points to the IRP to be canceled.

Include
wdm.h or ntddk.h

Return Value
IoCancelIrp returns TRUE if the IRP was canceled and FALSE if the IRP's cancel bit was
set but the IRP was not cancelable.

Comments
If the IRP has a cancel routine, IoCancelIrp sets the cancel bit and calls the cancel routine.

If Irp->CanceIRoutine is NULL, and therefore the IRP is not cancelable, IoCancelIrp sets
the IRP's cancel bit and returns FALSE. The IRP should be canceled at a later time when it
becomes cancelable.

If a driver that does not own the IRP calls IoCancelIrp, the results are unpredictable. The
IRP might be completed with a successful status even though its cancel bit was set.

An intermediate driver should not arbitrarily call IoCancelIrp unless that driver created the
IRP passed in the call. Otherwise, the intermediate driver might cancel an IRP that some
higher-level driver is tracking for purposes of its own.

Callers of IoCancelIrp must be running at IRQL <= DISPATCH_LEVEL.

See Also
IoSetCancelRoutine

loCheckShareAccess
NTSTATUS

IoCheckShareAccess<
IN ACCESS_MASK DesiredAccess,
IN ULONG DesiredShareAccess,
IN OUT PFILE_OBJECT Fi7eObject,
IN OUT PSHARE_ACCESS ShareAccess,
IN BOOLEAN Update
) ;

Chapter 4 1/0 Manager Routines 197

IoCheckShareAccess is called by FSDs or other highest-level drivers to check whether
shared access to a file object is permitted.

Parameters
DesiredAccess
Specifies the desired type(s) of access to the given FileObject for the current open request.
Generally, the value of this parameter is equal to the DesiredAccess passed to the file system
or highest-level driver by the I/O Manager when the open request was made. See IoCreate
File for details.

DesiredShareAccess
Specifies the desired type(s) of shared access to FileObject for the current open request. The
value of this parameter is usually the same as the DesiredAccess passed to the file system or
highest-level driver by the I/O Manager when the open request was made. This value can be
zero, one, or more of the following:

FILE_SHARE_READ
FILE_SHARE_ WRITE
FILE_SHARE_DELETE

FileObject
Points to the file object for which to check access for the current open request.

ShareAccess
Points to the common share-access data structure associated with FileObject. Drivers should
treat this structure as opaque.

Update
Specifies whether to update the share-access status for FileObject. A Boolean value of
TRUE means this routine will update the share access information for the file object if the
open request is permitted.

198 Part 1 Kernel-Mode Support Routines

Include
wdm.h or ntddk.h

Return Value
IoCheckShareAccess returns STATUS_SUCCESS if the requestor's access to the file
object is compatible with the way in which it is currently open. If the request is denied
because of a sharing violation, then STATUS_SHARING_ VIOLATION is returned.

Comments
IoCheckShareAccess checks a file object open request to determine whether the types of
desired and shared accesses specified are compatible with the way in which the file object is
currently being accessed by other opens.

File systems maintain state about files through structures called file control blocks (FCBs).
The SHARE_ACCESS is a structure describing how the file is currently accessed by all
opens. This state is contained in the FCB as part of the open state for each file object. Each
file object should have only one share access structure. Other highest-level drivers might
call this routine to check the access requested when a file object representing such a driver's
device object is opened.

IoCheckShareAccess is not an atomic operation. Therefore, drivers calling this routine
must protect the shared file object passed to IoCheckShareAccess by means of some kind
of lock, such as a mutex or a resource lock, in order to prevent corruption of the shared
access counts.

Callers of IoCheckShareAccess must be running at IRQL PASSIVE_LEVEL.

See Also
IoCreateFile, IoGetRelatedDeviceObject, IoRemoveShareAccess, IoSetShareAccess,
IoUpdateShareAccess

loCompleteRequest
VOID

IoCompleteRequest(
IN PIRP Irp.
IN CCHAR PriorityBoost
) ;

IoCompleteRequest indicates the caller has completed all processing for a given I/O
request and is returning the given IRP to the I/O Manager.

Parameters
Irp
Points to the IRP to be completed.

PriorityBoost

Chapter 4 1/0 Manager Routines 199

Specifies a system-defined constant by which to increment the runtime priority of the origi
nal thread that requested the operation. This value is IO_NO_INCREMENT if the original
thread requested an operation the driver could complete quickly (so the requesting thread
is not compensated for its assumed wait on 110) or if the IRP is completed with an error.
Otherwise, the set of PriorityBoost constants are device-type-specific. See ntddk.h or wdm.h
for these constants.

Include
wdm.h or ntddk.h

Comments
When a driver has finished all processing for a given IRP, it calls IoCompleteRequest. The
110 Manager checks the IRP to determine whether any higher-level drivers have set up an
IoCompletion routine for the IRP. If so, each IoCompletion routine is called, in tum, until
every layered driver in the chain has completed the IRP.

When all drivers have completed a given IRP, the 110 Manger returns status to the original
requestor of the operation. Note that a higher-level driver that sets up a driver-created IRP
must supply an IoCompletion routine to release the IRP it created.

Callers of IoCompleteRequest must be running at IRQL <= DISPATCH_LEVEL.

See Also
IoSetCompletionRoutine

loConnectlnterrupt
NTSTATUS

IoConnectInterruptC
OUT PKINTERRUPT *InterruptObject.
IN PKSERVICE_ROUTINE ServiceRoutine.
IN PVOID ServiceContext.
IN PKSPIN_LOCK SpinLock OPTIONAL.
IN ULONG Vector.
IN KIROL Irq7.
IN KIROL SynchronizeIrq7.
IN KINTERRUPT_MODE InterruptMode.
IN BOOLEAN ShareVector.

200 Part 1 Kernel-Mode Support Routines

IN KAFFINITY ProcessorEnab7eMask,
IN BOOLEAN F70atingSave
) ;

IoConnectInterrupt registers a device driver's interrupt service routine (ISR) to be called
when its device interrupts on any of a given set of processors.

Parameters
InterruptObject
Points to the address of driver-supplied storage for a pointer to a set of interrupt objects.
This pointer must be passed in subsequent calls to KeSynchronizeExecution.

ServiceRoutine
Points to the entry point for the driver-supplied ISR declared as follows:

BOOLEAN
(*PKSERVICE_ROUTINE)(

IN PKINTERRUPT Interrupt,
IN PVOID ServiceContext
) ;

Service Con text
Points to the driver-determined context with which the specified ISR will be called. The
ServiceContext area must be in resident memory: in the device extension of a driver-created
device object, in the controller extension of a driver-created controller object, or in non
paged pool allocated by the device driver. See Basic ISR Functionality in Chapter 8 of the
Kernel-Mode Drivers Design Guide for details.

SpinLock
Points to an initialized spin lock, for which the driver supplies the storage, that will be used
to synchronize access to driver-determined data shared by other driver routines. This para
meter is required if the ISR handles more than one vector or if the driver has more than one
ISR. Otherwise, the driver need not allocate storage for an interrupt spin lock and the input
pointer is NULL.

Vector
Specifies the interrupt vector passed in the interrupt resource at u.Interrupt.Vector.

Irql
Specifies the DIRQL passed in the interrupt resource at u.Interrupt.Level.

Synchronizelrql
Specifies the DIRQL at which the ISR will execute. If the ISR handles more than one
interrupt vector or the driver has more than one ISR, this value must be the highest of the

Chapter 4 1/0 Manager Routines 201

Irql values passed at u.lnterrupt.Level in each interrupt resource. Otherwise, the Irql and
SynchronizeIrql values are identical.

InterruptMode
Specifies whether the device interrupt is LevelSensitive or Latched.

Share Vector
Specifies whether the interrupt vector is sharable.

ProcessorEnableMask
Specifies the set of processors on which device interrupts can occur in this platform. This
value is passed in the interrupt resource at u.lnterrupt.Affinity.

FloatingSave
Specifies whether to save the floating-point stack when the driver's device interrupts. For
X86-based platforms, this value must be set to FALSE.

Include
wdm.h or ntddk.h

Return Value
IoConnectlnterrupt can return one of the following NTSTATUS values:

STATUS_SUCCESS
STATUS_INVALID_PARAMETER
STATUS_INSUFFICIENT_RESOURCES

Comments
A PnP driver should call IoConnectlnterrupt as part of device start-up, before it completes
the PnP IRP _MN_START _DEVICE request.

A driver receives raw and translated hardware resources with the IRP _MN_START_
DEVICE request at Irp->Parameters.StartDevice.AllocatedResources and Irp->
Parameters.StartDevice.AllocatedResourcesTranslated, respectively. To connect its
interrupt, a driver uses the resources at AllocatedResourcesTranslated.List.Partial
ResourceList.PartiaIDescriptors[]. The driver must scan the array of partial descriptors
for resources of type CmResourceTypelnterrupt.

If the driver supplies the storage for the SpinLock, it must call KelnitializeSpinLock before
passing its interrupt spin lock to IoConnectlnterrupt.

On return from a successful call to IoConnectlnterrupt, the caller's ISR can be called if
interrupts are enabled on the driver's device or if ShareVector was set to TRUE.

202 Part 1 Kernel·Mode Support Routines

Callers of loConnectInterrupt must be running at IRQL PASSIVE_LEVEL.

See Also
KelnitializeSpinLock, KeSynchronizeExecution, CM_PARTIAL_RESOURCE_
DESCRIPTOR

loCopyCurrentlrpStackLocationToNext
VOID

IoCopyCurrentIrpStackLocationToNext(
IN PIRP Irp
) ;

loCopyCurrentIrpStackLocationToNext copies the IRP stack parameters from the current
I/O stack location to the stack location of the next-lower driver and allows the current driver
to set an I/O completion routine.

Parameters
Irp
Points to the IRP.

Include
wdm.h or ntddk.h

Comments
A driver calls loCopyCurrentIrpStackLocationToNext to copy the IRP parameters from
its stack location to the next-lower driver's stack location.

After calling this routine, a driver typically sets an I/O completion routine with loSet
CompletionRoutine before passing the IRP to the next-lower driver with loCallDriver.
Drivers that pass on their IRP parameters but do not set an I/O completion routine should
call loSkipCurrentIrpStackLocation instead of this routine.

Callers of loCopyCurrentIrpStackLocationToNext must be running at IRQL <=
DISPATCH_LEVEL.

See Also
10 _STACK_LOCATION, loCallDriver, loSetCompletionRoutine, loSkipCurrentIrp
StackLocation

loCreateControlier
PCONTROLLER_OBJECT

IoCreateController(
IN ULONG Size
) ;

Chapter 4 1/0 Manager Routines 203

IoCreateController allocates memory for and initializes a controller object with a con
troller extension of a driver-determined size.

Parameters
Size
Specifies the number of bytes to be allocated for the controller extension.

Include
ntddk.h

Return Value
IoCreateController returns a pointer to the controller object or a NULL pointer if memory
could not be allocated for the requested device extension.

Comments
A controller object usually represents a physical device controller with attached devices
on which a single driver carries out I/O requests. The controller extension is allocated from
nonpaged pool and is guaranteed to be accessible by any driver routine and in an arbitrary
thread context.

The controller object is used to synchronize I/O operations to target devices for which I/O
requests can come in concurrently to a single, monolithic driver. A driver also might use a
controller object to synchronize operations through device channels.

If IoCreateController returns NULL, the driver should fail device start-up.

Callers of IoCreateController must be running at IRQL PASSIVE_LEVEL.

See Also
CONTROLLER_OBJECT, IoAllocateController, IoFreeController, IoDeleteController

204 Part 1 Kernel-Mode Support Routines

loCreateDevice
NTSTATUS

IoCreateDevice(
IN PDRIVER-OBJECT DriverObject,
IN ULONG DeviceExtensionSize,
IN PUNICODE_STRING DeviceName OPTIONAL,
IN DEVICE_TYPE DeviceType,
IN ULONG DeviceCharacteristics,
IN BOOLEAN Exclusive,
OUT PDEVICE_OBJECT *DeviceObject
) ;

IoCreateDevice allocates memory for and initializes a device object for use by a driver. A
device object represents a physical, virtual, or logical device that the driver is supporting.

Parameters
DriverObject
Points to the driver object for the caller. Each driver receives a pointer to its driver object in
a parameter to its DriverEntry routine. PnP function and filter drivers also receive a driver
object pointer in their AddDevice routines.

DeviceExtensionSize
Specifies the driver-determined number of bytes to be allocated for the device extension of
the device object. The internal structure of the device extension is driver-defined. A driver
uses the device extension to maintain context about the 110 operations on the device
represented by the DeviceObject.

DeviceName
Optionally points to a buffer containing a zero-terminated Unicode string that names the
device object. The string must be a full path name.

Typically, only Physical Device Objects (PDOs), which are created by PnP bus drivers, are
named. PnP function drivers and filter drivers should not specify a DeviceName for a Func
tional Device Object (FDO) or filter device object (filter DO). Naming an FDO or filter DO
bypasses the PnP Manager's security. If a user-mode component needs a symbolic link to

the device, the function or filter driver should register a device interface (see IoRegister
Devicelnterface). If a kernel-mode component needs a legacy device name, the driver must
name the FDO, but naming is not recommended.

De vice Type
Specifies one of the system-defined FILE_DEVICE_XXX constants indicating the type
of device (such as FILE_DEVICE_DISK, FILE_DEVICE_KEYBOARD, etc.) or a driver-

Chapter 4 va Manager Routines 205

defined value for a new type of device. For more information on device types, see Deter
mining Required I/O Support by Device Object Type.

DeviceCharacteristics
Specifies one or more system-defined constants, ORed together, that provide additional
information about the driver's device. The constants include:

FllE_AUTOGENERATED _DEVICE_NAME
Directs the I/O Manager to generate a name for the device, instead of the caller specifying
a DeviceName when calling this routine. The I/O Manager ensures that the name is unique.
This characteristic is typically specified by a PnP bus driver to generate a name for a physi
cal device object (PDO) for a child device on its bus. This characteristic is new for Win
dows 2000 and Windows 98.

FllE_DEVICEJS_MOUNTED
Indicates that a file system is mounted on the device. Drivers should not set this charac
teristic.

FllE_DEVICE_SECURE_ OPEN
(Windows 2000 and Windows NT® SP5 only)

Directs the I/O manager to apply the security descriptor of the device object to relative
opens and trailing filename opens on the device.

FilE_FLOPPY _DISKETTE
Indicates that the device is a floppy disk device.

FllE_READ_ONlY _DEVICE
Indicates that the device is not writeable.

FllE_REMOTE_DEVICE
Indicates that the device is remote.

FilE_REMOVABLE_MEDIA
Indicates that the storage device supports remove able media.

Note that this characteristic indicates removeable media, not a removeable device. For
example, drivers for JAZ drive devices should specify this characteristic but drivers for
PCMCIA flash disks should not.

FllE_ VIRTUAL_VOLUME
Indicates that the volume is virtual. Drivers should not set this characteristic.

FllE_ WRITE_ ONCE_MEDIA
Indicates that the device supports write-once media.

206 Part 1 Kernel-Mode Support Routines

If none of the device characteristics are relevant to your device, specify zero for this
parameter.

Exclusive
Indicates whether the device object represents an exclusive device. That is, only one handle
at a time can send I/O requests to the corresponding device object. If the underlying device
supports overlapped I/O, multiple threads of the same process can send requests through a
single handle.

DeviceObject
Points to the newly created device object if the call succeeds.

Include
wdm.h or ntddk.h

Return Value
IoCreateDevice can return one of the following NTSTATUS values:

STATUS_SUCCESS
STATUS_INSUFFICIENT _RESOURCES
ST ATUS_ OBJECT _NAME_EXISTS
STATUS_OBJECT_NAME_COLLISION

Comments
IoCreateDevice creates a device object and returns a pointer to the object. The caller is
responsible for deleting the object when it is no longer needed by calling IoDeleteDevice.

PnP drivers call this routine to create PDOs, FDOs, and filter DOs. See the Plug and Play,
Power Management, and Setup Design Guide for information about the kinds of PnP drivers
and their associated device objects. Legacy, non-PnP drivers call this routine to create
legacy device objects.

Be careful to specify the DeviceType and DeviceCharacteristics values in the correct
parameters. Both parameters use system-defined FILE_XXX constants and some driver
writers specify the values in the wrong parameters by mistake.

If a PnP function or filter driver for a device sets any of the following DeviceCharacteris~
tics, the PnP Manager propagates the characteristic(s) to the FDO and filter DOs in the
device stack:

FILE_DEVICE_SECURE_OPEN
FILE_FLOPPY _DISKETTE
FILE_READ _ ONL Y _DEVICE

FILE_REMOV ABLE_MEDIA
FILE_ WRITE_ONCE_MEDIA

Chapter 4 I/O Manager Routines 207

This routine allocates space in nonpaged pool for a driver-defined device extension associa
ted with the device object, so that the device extension is accessible to the driver in any exe
cution context and at any IRQL. The returned device extension is initialized with zeros.

The caller is responsible for setting certain fields in the returned device object, such as the
Flags field, and for initializing the device extension with any driver-defined information.
For other operations required on new device objects, see the Plug and Play, Power Manage
ment, and Setup Design Guide or the device-type-specific documentation for your device.

Device objects for disks, tapes, CD ROMs, and RAM disks are given a Volume Parameter
Block (VPB) that is initialized to indicate that the volume has never been mounted on the
device.

If a driver's call to IoCreateDevice returns an error, it should release any resources it allo
cated for that device.

A PnP bus driver calls IoCreateDevice when it is enumerating a new device in response to
an IRP _MN_ QUERY_DEVICE_RELATIONS for BusRelations. A PnP function or filter
driver calls IoCreateDevice in its AddDevice routine.

Callers of IoCreateDevice must be running at IRQL PASSIVE_LEVEL.

See Also
DEVICE_ OBJECT, IoAttachDevice, IoAttachDeviceToDeviceStack, IoCreate
SymholicLink, IoDeleteDevice

loCreateFile
NTSTATUS

IoCreateFile(
OUT PHANDLE Fi7eHand7e,
IN ACCESS_MASK OesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes,
OUT PIO_STATUS_BLOCK IoStatusB7ock,
IN PLARGE_INTEGER A77ocationSize OPTIONAL,
IN ULONG Fi7eAttributes,
IN ULONG ShareAccess,
IN ULONG Disposition,
IN ULONG CreateOptions,
IN PVOID EaBuffer OPTIONAL,
IN ULONG EaLength,
IN CREATE_FILE_TYPE CreateFi7eType,

208 Part 1 Kernel-Mode Support Routines

IN PVOID ExtraCreateParameters OPTIONAL,
IN ULONG Options
) ;

IoCreateFile either causes a new file or directory to be created, or it opens an existing file,
device, directory, or volume, giving the caller a handle for the file object. This handle can
be used by subsequent calls to manipulate data within the file or the file object's state or
attributes.

Parameters
FileHandle
Points to a variable that receives the file handle if the call is successful.

DesiredAccess
Specifies the type of access that the caller requires to the file or directory. The set of system
defined DesiredAccess flags determines the following specific access rights for file objects:

DesiredAccess Flags Meaning

DELETE The file can be deleted.

FILE_READ_DATA Data can be read from the file.

FILE_READ_ATTRIBUTES FileAttributes flags, described later, can be read.

FILE_READ _EA Extended attributes associated with the file can be read. This flag is
irrelevant to device and intermediate drivers.

READ_CONTROL The access control list (ACL) and ownership information associated
with the file can be read.

FILE_WRITE_DATA Data can be written to the file.

FILE_WRITE_ATTRIBUTES FileAttributes flags can be written.

FILE_ WRITE_EA Extended attributes (EAs) associated with the file can be written.
This flag is irrelevant to device and intermediate drivers.

FILE_APPEND_DATA Data can be appended to the file.

WRITE_DAC The discretionary access control list (DACL) associated with the file
can be written.

WRITE_OWNER Ownership information associated with the file can be written.

SYNCHRONIZE The returned FileHandle can be waited on to synchronize with the
completion of an I/O operation.

FILE_EXECUTE Data can be read into memory from the file using system paging
I/O. This flag is irrelevant to device and intermediate drivers.

Callers of IoCreateFile can specify one or a combination of the following, possibly ORed
with additional compatible flags from the preceding DesiredAccess Flags list, for any file
object that does not represent a directory file:

Chapter 4 1/0 Manager Routines 209

DesiredAccess to File Values Maps to DesiredAccess Flags

STANDARD _RIGHTS_READ, FILE_READ _DATA,
FILE_READ _ATTRIBUTES, and FILE_READ _EA

STANDARD_RIGHTS_WRITE, FILE_WRITE_DATA,
FILE_WRITE_ATTRIBUTES, FILE_ WRITE_EA, and
FILE_APPEND_DATA

GENERIC_EXECUTE STANDARD_RIGHTS_EXECUTE, SYNCHRONIZE,
and FILE_EXECUTE. This value is irrelevant to device
and intermediate drivers.

The STANDARD_RIGHTS_XXX are predefined system values used to enforce security on
system objects.

To open or create a directory file, as also indicated with the Create Options parameter,
callers of IoCreateFile can specify one or a combination of the following, possibly ORed
with one or more compatible flags from the preceding DesiredAccess Flags list:

DesiredAccess to Directory Values Meaning

FILE_LIST_DIRECTORY

FILE_TRA VERSE

Files in the directory can be listed.

The directory can be traversed: that is, it can be part of the
pathname of a file.

The FILE_READ_DATA, FILE_ WRITE_DATA, FILE_EXECUTE, and FILE_APPEND_
DATA DesiredAccess flags are incompatible with creating or opening a directory file.

ObjectAttributes
Points to a structure already initialized with InitializeObjectAttributes. Members of this
structure for a file object include the following:

Member Value

ULONG Length

Specifies the number of bytes of ObjectAttributes data supplied. This value must be at
least sizeof(OBJECT_ATTRIBUTES).

PUNICODE_STRING ObjectName

Points to a buffered Unicode string naming the file to be created or opened. This value
must be a fully qualified file specification or the name of a device object, unless it is
the name of a file relative to the directory specified by RootDirectory. For example,
\Device\Floppyl\myfile.dat or \??\B:\myfile.dat could be the fully qualified file
specification, provided that the floppy driver and overlying file system are already
loaded. (Note: \?? replaces \DosDevices as the name of the Win32 object namespace.
\DosDevices will still work, but \?? is translated faster by the object manager.)

Continued

210 Part 1 Kernel·Mode Support Routines

Member Value

HANDLE RootDirectory

Optionally specifies a handle to a directory obtained by a preceding call to 10-
CreateFile. If this value is NULL, the ObjectName member must be a fully qualified
file specification that includes the full path to the target file. If this value is nonNULL,
the ObjectName member specifies a file name relative to this directory.

PSECURITY _DESCRIPTOR SecurityDescriptor

Optionally specifies a security descriptor to be applied to a file. ACLs specified by
such a security descriptor are only applied to the file when it is created. If the value is
NULL when a file is created, the ACL placed on the file is file-system-dependent;
most file systems propagate some part of such an ACL from the parent directory file
combined with the caller's default ACL. Device and intermediate drivers can set this
member to NULL.

PSECURITY _QUALITY_OF _SERVICE SecurityQualityOfService

Specifies the access rights a server should be given to the client's security context. This
. value is non-NULL only when a connection to a protected server is established,

allowing the caller to control which parts of the caller's security context are made
available to the server and whether the server is allowed to impersonate the caller.
Device and intermediate drivers usually set this member to NULL.

ULONG Attributes

Is a set of flags that controls the file object attributes. This value can be zero or
OBJ_CASE_INSENSITIVE, which indicates that name-lookup code should ignore the
case of ObjectName rather than performing an exact-match search. The value
OBJ_INHERIT is irrelevant to device and intermediate drivers.

loStatusBlock
Points to a variable that receives the final completion status and information about the re
quested operation. On return from IoCreateFile, the Information member contains one of
the following values:

FILE_CREATED
FILE_OPENED
FILE_OVERWRITTEN
FILE_SUPERSEDED
FILE_EXISTS
FILE_DOES_NOT_EXIST

AllocationSize
Optionally specifies the initial allocation size in bytes for the file. A nonzero value has no
effect unless the file is being created, overwritten, or superseded.

Chapter 4 va Manager Routines 211

FiieAttributes
Explicitly specified attributes are applied only when the file is created, superseded, or, in
some cases, overwritten. By default, this value is FILE_ATTRIBUTE_NORMAL, which
can be overridden by any other flag or by an ORed combination of compatible flags.
Possible FileAttributes flags include the following:

FileAttributes Flags

FILE_ATTRIBUTE_NORMAL

FILE_A TTRIBUTE_READONL Y

FILE_ATTRIBUTE_HIDDEN

FILE_ATTRIBUTE_SYSTEM

FILE_A TTRIBUTE_ARCHIVE

FILE_A TTRIBUTE_TEMPORARY

FILE_ATTRIBUTE_ATOMIC_ WRITE

ShareAccess

Meaning

A file with standard attributes should be created.

A read-only file should be created.

A hidden file should be created.

A system file should be created.

The file should be marked so that it will be archived.

A temporary file should be created.

An atomic-write file should be created. This flag is
irrelevant to device and intermediate drivers.

A transaction-write file should be created. This flag is
irrelevant to device and intermediate drivers.

Specifies the type of share access that the caller would like to the file, as zero, or as one or a
combination of the following:

ShareAccess Flags Meaning

The file can be opened for read access by other
threads' calls to IoCreateFile.

The file can be opened for write access by other
threads' calls to IoCreateFile.

The file can be opened for delete access by other
threads' calls to IoCreateFile.

Device and intermediate drivers usually set ShareAccess to zero, which gives the caller
exclusive access to the open file.

Disposition
Specifies what to do, depending on whether the file already exists, as one of the following:

Disposition Values Meaning

If the file already exists, replace it with the given file.
If it does not, create the given file.

Continued

212 Part 1 Kernel-Mode Support Routines

Disposition Values

FILE_OVERWRITE

CreateOptions

Meaning

If the file already exists, fail the request and do not
create or open the given file. If it does not, create the
given file.

If the file already exists, open it instead of creating a
new file. If it does not, fail the request and do not
create a new file.

If the file already exists, open it. If it does not, create
the given file.

If the file already exists, open it and overwrite it. If it
does not, fail the request.

If the file already exists, open it and overwrite it. If it
does not, create the given file.

Specifies the options to be applied when creating or opening the file, as a compatible
combination of the following flags:

CreateOptions Flags

FILE_SEQUENTIAL_ONLY

FILE_RAND OM_ACCESS

Meaning

The file being created or opened is a directory file.
With this flag, the Disposition parameter must be set
to one of FILE_CREATE, FILE_OPEN, or FILE_
OPEN_IF. With this flag, other compatible
CreateOptions flags include only the following:
FILE_SYNCHRONOUS_IO_ALERT, FILE_
SYNCHRONOUS_IO_NONALERT, FILE_ WRITE_
THROUGH, FILE_OPEN_FOR_BACKUP _INTENT,
and FILE_OPEN_BY _FILE_ID.

The file being opened must not be a directory file or
this call will fail. The file object being opened can
represent a data file, a logical, virtual, or physical
device, or a volume.

System services, FSDs, and drivers that write data to
the file must actually transfer the data into the file .
before any requested write operation is considered
complete. This flag is automatically set if the
CreateOptions flag FILE_NO_INTERMEDIATE_
BUFFERING is set.

All accesses to the file will be sequential.

Accesses to the file can be random, so no sequential
read-ahead operations should be performed on the file
by FSDs or the system.

Chapter 4 110 Manager Routines 213

CreateOptions Flags Meaning

FILE_NO_INTERMEDIATE_BUFFERING The file cannot be cached or buffered in a driver's
internal buffers. This flag is incompatible with the
DesiredAccess FILE_APPEND _DATA flag.

FILE_SYNCHRONOUS_IO_ALERT All operations on the file are performed
synchronously. Any wait on behalf of the caller is
subject to premature termination from alerts. This
flag also causes the I/O system to maintain the file
position context. If this flag is set, the DesiredAccess
SYNCHRONIZE flag also must be set.

FILE_SYNCHRONOUS_IO_NONALERT All operations on the file are performed
synchronously. Waits in the system to synchronize I/O
queueing and completion are not subject to alerts. This
flag also causes the I/O system to maintain the file
position context. If this flag is set, the DesiredAccess
SYNCHRONIZE flag also must be set.

FILE_CREATE_TREE_CONNECTION Create a tree connection for this file in order to open it
over the network. This flag is irrelevant to device and
intermediate drivers.

FILE_COMPLETE_IF _OPLOCKED Complete this operation immediately with an alternate
success code if the target file is oplocked, rather than
blocking the caller's thread. If the file is oplocked,
another caller already has access to the file over the
network. This flag is irrelevant to device and
intermediate drivers.

FILE_NO _EA_KNOWLEDGE If the extended attributes on an existing file being
opened indicate that the caller must understand EAs
to properly interpret the file, fail this request because
the caller does not understand how to deal with EAs.
Device and intermediate drivers can ignore this flag.

FILE_DELETE_ON_CLOSE Delete the file when the last handle to it is passed to
ZwClose.

FILE_OPEN_BY_FILE_ID The file name contains the name of a device and a 64-
bit ID to be used to open the file. This flag is irrelevant
to device and intermediate drivers.

FILE_OPEN_FOR_BACKUP _INTENT The file is being opened for backup intent, hence, the
system should check for certain access rights and grant
the caller the appropriate accesses to the file before
checking the input DesiredAccess against the file's
security descriptor. This flag is irrelevant to device and
intermediate drivers.

214 Part 1 Kernel-Mode Support Routines

EaBuffer
For device and intermediate drivers, this parameter must be a NULL pointer.

EaLength
For device and intermediate drivers, this parameter must be zero.

CreateFileType
Drivers must set this parameter to CreateFileTypeNone.

ExtraCreateParameters
Drivers must set this parameter to NULL.

Options
Specifies options to be used during the creation of the create request. These options can be
from the following list:

Options Flags

Include
wdm.h or ntddk.h

Return Value

Meaning

Indicates that the parameters for this call should not be
validated before attempting to issue the create request.
Driver writers should use this flag with caution as certain
invalid parameters can cause a system failure.

Indicates that the 110 Manager must check the operation
against the file's security descriptor.

IoCreateFile either returns STATUS_SUCCESS or an appropriate error status. If it returns
an error status, the caller can find additional information about the cause of the failure by
checking the IoStatusBlock.

Comments
There are two alternate ways to specify the name of the file to be created or opened with
IoCreateFile:

1. As a fully qualified pathname, supplied in the ObjectName member of the input Object
Attributes

2. As pathname relative to the directory file represented by the handle in the RootDirectory
member of the input ObjectAttributes

Chapter 4 1/0 Manager Routines 215

Certain DesiredAccess flags and combinations of flags have the following effects:

• For a caller to synchronize an I/O completion by waiting on the returned FileHandle,
the SYNCHRONIZE flag must be set. Otherwise, a caller that is a device or intermediate
driver must synchronize an I/O completion by using an event object.

• If only the FILE_APPEND _DATA and SYNCHRONIZE flags are set, the caller
can write only to the end of the file, and any offset information on writes to the file is
ignored. However, the file will automatically be extended as necessary for this type of
write operation.

• Setting the FILE_WRITE_DATA flag for a file also allows writes beyond the end of the
file to occur. The file is automatically extended for this type of write, as well.

• If only the FILE_EXECUTE and SYNCHRONIZE flags are set, the caller cannot directly
read or write any data in the file using the returned FileHandle: that is, all operations on
the file occur through the system pager in response to instruction and data accesses. De
vice and intermediate drivers should not set the FILE_EXECUTE flag in DesiredAccess.

The ShareAccess parameter determines whether separate threads can access the same file,
possibly simultaneously. Provided that both file openers have the privilege to access a file in
the specified manner, the file can be successfully opened and shared. If the original caller of
IoCreateFile does not specify FILE_SHARE_READ, FILE_SHARE_ WRITE, or FILE_
SHARE_DELETE, no other open operations can be performed on the file: that is, the
original caller is given exclusive access to the file.

In order for a shared file to be successfully opened, the requested DesiredAccess to the file
must be compatible with both the DesiredAccess and ShareAccess specifications of all pre
ceding opens that have not yet been released with ZwClose. That is, the DesiredAccess
specified to IoCreateFile for a given file must not conflict with the accesses that other
openers of the file have disallowed.

The Disposition value FILE_SUPERSEDE requires that the caller have DELETE access to
a existing file object. If so, a successful call to IoCreateFile with FILE_SUPERSEDE on
an existing file effectively deletes that file, and then recreates it. This implies that, if the file
has already been opened by another thread, it opened the file by specifying a ShareAccess
parameter with the FILE_SHARE_DELETE flag set. Note that this type of disposition is
consistent with the POSIX style of overwriting files.

The Disposition values FILE_OVERWRITE_IF and FILE_SUPERSEDE are similar. If
IoCreateFile is called with a existing file and either of these Disposition values, the file will
be replaced.

216 Part 1 Kernel-Mode Support Routines

Overwriting a file is semantically equivalent to a supersede operation, except for the
following:

• The caller must have write access to the file, rather than delete access. This implies that,
if the file has already been opened by another thread, it opened the file with the FILE_
SHARE_WRITE flag set in the input ShareAccess.

• The specified file attributes are logically ORed with those already on the file. This im
plies that, if the file has already been opened by another thread, a subsequent caller of
IoCreateFile cannot disable existing FileAttributes flags but can enable additional flags
for the same file.

The CreateOptions FILE_DIRECTORY_FILE value specifies that the file to be created or
opened is a directory file. When a directory file is created, the file system creates an appro
priate structure on the disk to represent an empty directory for that particular file system's
on-disk structure. If this option was specified and the given file to be opened is not a direc
tory file, or if the caller specified an inconsistent Create Options or Dispostion value, the call
to IoCreateFile will fail.

The Create Options FILE_NO_INTERMEDIATE_BUFFERING flag prevents the file sys
tem from performing any intermediate buffering on behalf of the caller. Specifying this
value places certain restrictions on the caller's parameters to the Zw .. File routines, including
the following:

• Any optional ByteOffset passed to ZwReadFile or ZwWriteFile must be an integral of
the sector size.

• The Length passed to ZwReadFile or ZwWriteFile, must be an integral of the sector
size. Note that specifying a read operation to a buffer whose length is exactly the sector
size might result in a lesser number of significant bytes being transferred to that buffer if
the end of the file was reached during the transfer.

• Buffers must be aligned in accordance with the alignment requirement of the underlying
device. This information can be obtained by calling IoCreateFile to get a handle for the
file object that represents the physical device, and, then, calling ZwQuerylnformation
File with that handle. For a list of the system FILE_XXX_ALIGNMENT values, see
DEVICE_OBJECT in Chapter 12.

• Calls to ZwSetInformationFile with the FileInformationClass parameter set to File
Positionlnformation must specify an offset that is an integral of the sector size.

The Create Options FILE_SYNCHRONOUS_IO_ALERT and FILE_SYNCHRONOUS_
IO_NONALERT, which are mutually exclusive as their names suggest, specify that all 110
operations on the file are to be synchronous as long as they occur through the file object
referred to by the returned FileHandle. All 110 on such a file is serialized across all threads

Chapter 4 VO Manager Routines 217

using the returned handle. With either of these Create Options , the DesiredAccess
SYNCHRONIZE flag must be set so that the I/O Manager will use the file object as a
synchronization object. With either of these CreateOptions set, the I/O Manager maintains
the "file position context" for the file object, an internal, current file position offset. This
offset can be used in calls to ZwReadFile and ZwWriteFile. Its position also can be
queried or set with ZwQuerylnformationFile and ZwSetInformationFile.

Callers of IoCreateFile must be running at IRQL PASSIVE_LEVEL.

See Also
ZwCreateFile

loCreateNotificationEvent
PKEVENT

IoCreateNotificationEvent(
IN PUNICODE_STRING EventName.
OUT PHANDLE EventHand7e
) ;

IoCreateNotificationEvent creates or opens a named notification event used to notify one
or more threads of execution that an event has occurred.

Parameters
EventName
Points to a buffer containing a zero-terminated Unicode string that names the event.

EventHandle
Points to a location in which to return a handle for the event object. The handle includes
bookkeeping information, such as a reference count and security context.

Include
wdm.h or ntddk.h

Return Value
IoCreateNotificationEvent returns a pointer to the created or opened event object or NULL
if the event object could not be created or opened.

Comments
IoCreateNotificationEvent creates and opens the event object if it does not already exist.
IoCreateNotificationEvent sets the state of a new notification event to Signaled. If the
event object already exists, IoCreateNotificationEvent just opens the event object.

218 Part 1 Kernel-Mode Support Routines

When a notification event is set to the Signaled state it remains in that state until it is explic
itly cleared.

Notification events, like synchronization events, are used to coordinate execution. Unlike
a synchronization event, a notification event is not auto-resetting. Once a notification event
is in the Signaled state, it remains in that state until it is explicitly reset (with a call to Ke
ClearEvent or KeResetEvent).

To synchronize on a notification event:

1. Open the notification event with IoCreateNotificationEvent. Identify the event with the
EventName string.

2. Wait for the event to be signaled by calling Ke WaitForSingleObject with the
PKEVENT returned by IoCreateNotificationEvent. More than one thread of execution
can wait on a given notification event. To poll instead of stall, specify a Timeout of zero
to KeWaitForSingleObject.

3. Close the handle to the notification event with ZwClose when access to the event is no
longer needed.

Callers of IoCreateNotificationEvent must be running at IRQL PASSIVE_LEVEL.

See Also
IoCreateSynchronizationEvent, KeClearEvent, KeResetEvent, KeSetEvent,
Ke WaitForSingleObject, RtlInitUnicodeString, ZwClose

loCreateSymbolicLink
NTSTATUS

IoCreateSymbolicLink(
IN PUNICODE_STRING Symbo7icLinkName,
IN PUNICODE_STRING DeviceName
) ;

IoCreateSymbolicLink sets up a symbolic link between a device object name and a
user-visible name for the device.

Parameters
SymbolicLinkName
Points to a buffered Unicode string that is the user-visible name.

DeviceName
Points to a buffered Unicode string that is the name of the driver-created device object.

Chapter 4 I/O Manager Routines 219

Include
wdm. h or ntddk.h

Return Value
IoCreateSymbolicLink returns STATUS_SUCCESS if the symbolic link object was
created.

Comments
PnP drivers do not name device objects and therefore should not use this routine. Instead,
a PnP driver should call IoRegisterDevicelnterface to set up a symbolic link.

Callers of IoCreateSymbolicLink must be running at IRQL PASSIVE_LEVEL.

See Also
IoRegisterDevicelnterface, IoAssignArcName, IoCreateUnprotectedSymbolicLink,
IoDeieteSymboiicLink

loCreateSynchronizationEvent
PKEVENT

IoCreateSynchronizationEvent(
IN PUNICODE_STRING EventName,
OUT PHANDLE EventHand7e
) ;

IoCreateSynchronizationEvent creates or opens a named synchronization event for use in
serialization of access to hardware between two otherwise unrelated drivers.

Parameters
EventName
Points to a buffer containing a zero-terminated Unicode string that names the event.

EventHandle
Points to a location in which to return a handle for the event object.

Include
ntddk.h

Return Value
IoCreateSynchronizationEvent returns a pointer to the created or opened event object or
NULL if the event object could not be created or opened.

220 Part 1 Kernel-Mode Support Routines

Comments
The event object is created if it does not already exist. IoCreateSynchronizationEvent sets
the state of a new synchronization event to Signaled. If the event object already exists, it is
simply opened. The pair of drivers that use a synchronization event call KeWaitForSingle
Object with the PKEVENT pointer returned by this routine.

When a synchronization event is set to the Signaled state, a single thread of execution that
was waiting on the event is released, and the event is automatically reset to the Not-Signaled
state.

To release the event, a driver calls ZwClose with the event handle.

Callers of IoCreateSynchronizationEvent must be running at IRQL PASSIVE_LEVEL.

See Also
IoCreateNotificationEvent, Ke WaitForSingleObject, RtlInitUnicodeString, ZwClose

loCreateUnprotectedSymbolicLink
NTSTATUS

IoCreateUnprotectedSymbolicLink(
IN PUNICODE_STRING Symbo7icLinkName.
IN PUNICODE_STRING DeviceName
) ;

IoCreateUnprotectedSymbolicLink sets up an unprotected symbolic link between a device
object name and a corresponding Win32®-visible name.

Parameters
SymbolicLinkName
Supplies the symbolic link name as a Unicode string.

DeviceName
Supplies the name of the device object to which the symbolic link name refers.

Include
wdm.h or ntddk.h

Return Value
IoCreateUnprotectedSymbolicLink returns the final status of the operation.

Chapter 4 1/0 Manager Routines 221

Comments
PnP drivers do not name device objects and therefore should not use this routine. Instead,
a PnP driver should call IoRegisterDeviceInterface to set up a symbolic link.

IoCreateUnprotectedSymbolicLink can be used by drivers if the user needs to be able to
manipulate the symbolic link. For example, the parallel and serial drivers create unprotected
symbolic links for LPTx and COMx, so that users can manipulate and reassign them by
using the MODE command.

In general, drivers should call this routine instead of IoCreateSymbolicLink if a protected
subsystem lets end users change what a named device references as, for example, when
using LPTI to access a network printer.

Callers of IoCreateUnprotectedSymbolicLink must be running at IRQL P ASSIVE_
LEVEL.

See Also
IoRegisterDeviceInterface, IoAssignArcName, IoCreateSymbolicLink, IoDelete
SymbolicLink

loDeassignArcName
VOID

IoDeassignArcName(
IN PUNICODE_STRING ArcName
) ;

IoDeassignArcName removes a symbolic link between the ARC name for a device and the
named device object. This is generally called if the driver is deleting the device object, for
example, when the driver is unloading.

Parameters
A reName
Points to a buffered Unicode string that is the ARC name.

Include
ntddk.h

Comments
Callers of IoDeassignArcName must be running at IRQL PASSIVE_LEVEL.

222 Part 1 Kernel-Mode Support Routines

See Also
IoAssignArcName

10 DeleteController
VOID

IoDeleteController(
IN PCONTROLLER_OBJECT Contro77erObject
) ;

IoDeleteController removes a given controller object from the system, for example, when
the driver that created it is being unloaded.

Parameters
ControllerObject
Points to the controller object to be released.

Include
ntddk.h

Comments
IoDeleteController deallocates the memory for the controller object, including the con
troller extension.

This routine must be called when a driver that created a controller object is being unloaded
or when the driver encounters a fatal error during device start-up, such as being unable to
properly initialize a physical device.

A driver must release certain resources for which the driver supplied storage in its controller
extension before it calls IoDeleteController. For example, if the driver stores the pointer to
its interrupt object(s) in the controller extension, it must call IoDisconnectInterrupt before
IoDeleteController.

Callers of IoDeleteController must be running at IRQL PASSIVE_LEVEL.

See Also
IoCreateController, IoDisconnectInterrupt

loDeleteDevice
VOID

IoDeleteDevice(
IN PDEVICE_OBJECT DeviceObject
) ;

Chapter 4 I/O Manager Routines 223

IoDeleteDevice removes a device object from the system, for example, when the underlying
device is removed from the system.

Parameters
DeviceObject
Points to the device object to be deleted.

Include
wdm.h or ntddk.h

Comments
When handling a PnP IRP _MN_REMOVE_DEVICE request, a PnP driver calls IoDelete
Device to delete any associated device objects.

A legacy driver should call this routine when it is being unloaded or when its DriverEntry
routine encounters a fatal initialization error, such as being unable to properly initialize a
physical device. This routine also is called when a driver reconfigures its devices dynami
cally. For example, a disk driver called to repartition a disk would call IoDeleteDevice to
tear down the device objects representing partitions to be replaced.

A driver must release certain resources for which the driver supplied storage in its device
extension before it calls IoDeleteDevice. For example, if the driver stores the pointer to its
interrupt object(s) in the device extension, it must call IoDisconnectlnterrupt before
calling IoDeleteDevice.

A driver can call IoDeleteDevice only once for a given device object.

When a driver calls IoDeleteDevice, the I/O Manager deletes the target device object if
there are no outstanding references to it. However, if any outstanding references remain, the
I/O Manager marks the device object as "delete pending" and deletes the device object when
the references are released.

Callers of IoDeleteDevice must be running at IRQL PASSIVE_LEVEL.

See Also
IoCreateDevice, IoDisconnectlnterrupt

224 Part 1 Kernel-Mode Support Routines

loDeleteSymbolicLink
NTSTATUS

IoDeleteSymbolicLink(
IN PUNICODE_STRING Symbo7icLinkName
) ;

IoDeleteSymbolicLink removes a symbolic link from the system.

Parameters
SymbolicLinkName
Points to a buffered Unicode string that is the user-visible name for the symbolic link.

Include
wdm. h or ntddk.h

Return Value
IoDeleteSymbolicLink returns STATUS_SUCCESS if the symbolic link object is deleted.

Comments
Callers of IoDeleteSymbolicLink must be running at IRQL PASSIVE_LEVEL.

See Also
IoCreateSymbolicLink, IoCreateUnprotectedSymbolicLink, IoDeassignArcName

loFreeAdapterChannel
VOID

IoFreeAdapterChannel(
IN PADAPTER_OBJECT AdapterObject
) ;

IoFreeAdapterChannel is obsolete and exported only to support existing drivers. See
FreeAdapterChannel instead.

loFreeControlier
VOID

IoFreeController(
IN PCONTROLLER_OBJECT Contro77erObject
) ;

Chapter 4 I/O Manager Routines 225

IoFreeController releases a previously allocated controller object when the driver has
completed an I/O request.

Parameters
ControllerObject
Points to the driver's controller object, which was allocated for the current I/O operation on
a particular device by calling IoAllocateController.

Include
ntddk.h

Comments
The connection between the current target device object and the controller object is re
leased only if no requests are currently queued to the same device. Otherwise, the driver's
ControllerControl routine is called with the next IRP bound through the device controller
to the target device.

Callers of IoFreeController must be running at IRQL DISPATCH-LEVEL.

See Also
IoAllocateController, IoCreateController, IoDeleteController

loFreelrp
VOID

IoFreelrp(
IN PIRP Irp
) ;

IoFreelrp releases a caller-allocated IRP from the caller's IoCompletion routine.

Parameters
Irp
Points to the IRP that is to be released.

Include
wdm.h or ntddk. h

226 Part 1 Kernel-Mode Support Routines

Comments
This routine is the reciprocal to loAlIocatelrp or loBuildAsynchronousFsdRequest. The
released IRP must have been allocated by the caller.

This routine also releases an IRP allocated with loMakeAssociatedlrp in which the caller
set up its IoCompletion routine that returns STATUS_MORE_PROCESSING_REQUIRED
for the associated IRP.

Callers of loFreelrp must be running at IRQL <= DISPATCH_LEVEL.

See Also
loAlIocatelrp, loBuildAsynchronousFsdRequest, loMakeAssociatedlrp, loSet
CompletionRoutine

loFreeMapRegisters
VOID

IoFreeMapRegisters(
IN PADAPTER_OBJECT AdapterObject,
IN PVOID MapRegisterBase,

. IN ULONG NumberOfMapRegisters
) ;

loFreeMapRegisters is obsolete and exported only to support existing drivers. See Free
Map Registers instead.

loFreeMdl
VOID

IoFreeMdl(
IN PMDL Md7
) ;

loFreeMdl releases a caller-allocated MDL.

Parameters
Mdt
Points to the MDL to be released.

Chapter 4 I/O Manag.er Routines 227

Include
wdm.h or ntddk.h

Comments
If a driver allocates an MDL to describe a buffer, it must explicitly release the MDL when
operations on the buffer are done.

Callers of IoFreeMdl must be running at IRQL <= DISPATCH_LEVEL.

See Also
IoAllocateMdl, IoBuildPartialMdl

loFreeWorkltem
VOID

IoFreeWorkItem(
IN PIO_WORKITEM pIOWorkltem
) ;

IoFree W orkItem frees the specified work item.

Parameters
plOWorkltem
Pointer to a private 10_ WORKITEM structure that was returned by a previous call to
IoAllocate Workltem.

Include
wdm.h or ntddk.h

Comments
Drivers should not make any assumptions about the format of the 10_ WORKITEM struc
ture nor should they attempt to access information that is contained in this private structure.

See Also
IoAllocate Workltem, IoQueue Workltem

228 Part 1 Kernel-Mode Support Routines

loGetAttachedDeviceReference
PDEVICE_OBJECT

IoGetAttachedDeviceReference(
IN PDEVICE_OBJECT DeviceObject
) ;

IoGetAttachedDeviceReference returns a pointer to the highest level device object in a
driver stack and increments the reference count on that object.

Parameters
DeviceObject
Points to the device object for which the topmost attached device object is retrieved.

Include
wdm.h or ntddk.h

Return Value
IoGetAttachedDeviceReference returns a pointer to the highest level device object in
a stack of attached device objects after incrementing the reference count on the object.

Comments
If the device object at DeviceObject has no device objects attached to it, DeviceObject and
the returned pointer are equal.

Device driver writers must ensure that when they have completed all operations that re
quired them to make this call, that they call ObDereferenceObject with the device object
pointer returned by this routine. Failure to do so will prevent the system from freeing or
deleting the device object because of an outstanding reference count.

Callers of this routine must be running at IRQL <= DISPATCH_LEVEL.

See Also
ObDereferenceObject

loGetBootDisklnformation
NTSTATUS
IoGetBootDiskInformation(

IN OUT PBOOTDISK_INFORMATION BootDisklnformation,
IN ULONG Size
) ;

Chapter 4 I/O Manager Routines 229

IoGetBootDiskInformation returns the offset and signature of the boot disk and the system
disk.

Parameters
BootDisklnformation
Pointer to a caller-allocated buffer that is used to output a BOOTDISK_INFORMA TION
structure:

typedef struct _BOOTDISK_INFORMATION
LONGLONG BootPartitionOffset;
LONGLONG SystemPartitionOffset;
ULONG BootDeviceSignature;
ULONG SystemDeviceSignature;

BOOTDISK_INFORMATION, *PBOOTDISK-INFORMATION;

Size
Specifies the size in bytes of a BOOTDISK_INFORMATION structure.

Include
ntddk.h

Return Value
IoGetBootDiskInformation returns one of the following status values:

STATUS_SUCCESS

STATUS_TOO _LATE
The Loader Block has already been freed.

STATUSJNVALID _PARAMETER
The value of Size is less than the size in bytes of a BOOTDISK_INFORMATION structure.

Comments
IoGetBootDiskInformation can be used only by boot drivers that have registered for a
callback after disk devices have started.

loGetConfigurationlnformation
PCONFIGURATION_INFORMATION

IoGetConfigurationInformation(
VOID
) ;

230 Part 1 Kernel·Mode Support Routines

IoGetConfigurationlnformation returns a pointer to the 110 Manager's global configu
ration information structure, which contains the current values for how many physical disk,
floppy, CD-ROM, tape, SCSI HBA, serial, and parallel devices have device objects created
to represent them by drivers as they are loaded.

Include
ntddk.h

Return Value
IoGetConfigurationlnformation returns a pointer to the configuration information
structure. This structure is defined as follows:

typedef struct _CONFIGURATIONAL_INFORMATION{
II
II Each field indicates the total number of physical
II devices of a particular type in the machine. The value
II should be used by the driver to determine the digit
II suffix for device object names. This field must be
II updated as the driver finds new devices of its own.
/!
ULONG DiskCount: II Count of hard disks so far.
ULONG FloppyCount: II Count of floppy drives so far.
ULONG CDRomCount: II Count of CD-ROM drives so far.
ULONG TapeCount: II Count of tape drives so far.
ULONG ScsiPortCount: II Count of HBAs so far.
ULONG SerialCount: II Count of serial ports so far.
ULONG ParallelCount: II Count of parallel ports so far.
II
II The next two fields indicate ownership of
II either of the two 1/0 address spaces
II that are used by WD1003-compatible disk controllers.
II
BOOLEAN AtDiskPrimaryAddressClaimed: 110xlF0-0xlFF
BOOLEAN AtDiskSecondaryAddressClaimed; 110x170-0x17F

CONFIGURATION_INFORMATION.*PCONFIGURATION_INFORMATION

Comments
Certain types of device drivers can use the configuration information structure's values to
construct device object names with appropriate digit suffixes when each driver creates its
device objects. Note that the digit suffix for device object names is a zero-based count,
while the counts maintained in the configuration information structure represent the number
of device objects of a particular type already created. That is, the configuration information
counts are one-based.

Chapter 4 I/O Manager Routines 231

Any driver that calls IoGetConfigurationlnformation must increment the count for its
kind of device in this structure when it creates a device object to represent a physical device.

The system-supplied SCSI port driver supplies the count of SCSI HBAs present in the com
puter. SCSI class drivers can read this value to determine how many HBA-specific miniport
drivers might control a SCSI bus with an attached device of the class driver's type.

The configuration information structure also contains a value indicating whether an already
loaded driver has claimed either of the "AT" disk I/O address ranges.

Callers of IoGetConfigurationlnformation must be running at IRQL PASSIVE_LEVEL.

See Also
HalAssignSlotResources, HalGetBusData, HalGetBusDataByOfTset, IoAssign
Resources, IoQueryDeviceDescription, IoReportResourceUsage

loGetCurrentlrpStackLocation
PIO_STACK-LOCATION

IoGetCurrentIrpStackLocation(
IN PIRP Irp
) ;

IoGetCurrentIrpStackLocation returns a pointer to the caller's stack location in the
given IRP.

Parameters
Irp
Points to the IRP.

Include
wdm.h or ntddk.h

Return Value
The routine returns a pointer to the I/O stack location for the driver.

Comments
Every driver must call IoGetCurrentIrpStackLocation with each IRP it is sent to get any
parameters for the current request. Unless a driver supplies a Dispatch routine for each IRP_
MJ_XXX that driver handles, the driver also must check its I/O stack location in the IRP to
determine what operation is being requested.

232 Part 1 Kernel·Mode Support Routines

Intermediate and highest-level drivers also call IoGetCurrentIrpStackLocation so that
they can copy pertinent data from their own stack location into that of the next-lower driver
whenever they pass a request on to lower drivers.

See Also
10 _STACK_LOCATION, IoCallDriver, IoGetNextIrpStackLocation, IoSetNextIrp
StackLocation

loGetCurrentProcess
PEPROCESS

IoGetCurrentProcess();

Include
wdm.h or ntddk.h

Return Value
IoGetCurrentProcess returns a pointer to the current process.

Comments
In general, highest-level drivers, particularly file systems, are most likely to call this routine.
An intermediate or underlying device driver seldom is called in the context of a thread that
originates the current 110 request that the driver is processing, so it cannot get access to such
a thread's process space.

Callers of IoGetCurrentProcess must be running at IRQL PASSIVE_LEVEL.

See Also
PsGetCurrentThread

loGetDevicelnterfaceAI ias
This routine is documented in Volume 1 of the Windows 2000 Driver Development
Reference. Please see IoGetDeviceInterfaceAlias in that book for a full reference.

loGetDevicelnterfaces
This routine is documented in Volume 1 of the Windows 2000 Driver Development
Reference. Please see IoGetDeviceInterfaces in that book for a full reference.

loGetDeviceObjectPointer
NTSTATUS

IoGetDeviceObjectPointer(
IN PUNICODE_STRING ObjectName.
IN ACCESS_MASK DesiredAccess.
OUT PFILE_OBJECT *Fi7eObject.
OUT PDEVICE_OBJECT *DeviceObject
) ;

Chapter 4 I/O Manager Routines 233

IoGetDeviceObjectPointer returns a pointer to a named device object and corresponding
file object if the requested access to the objects can be granted.

Parameters
ObjectName
Points to a buffer containing a Unicode string that is the name of the device object.

DesiredAccess
Specifies one or more (ORed) system-defined constants, usually FILE_READ_DATA,
(infrequently) FILE_WRITE_DATA, and/or FILE_ALL_ACCESS, requesting access rights
to the object.

FileObject
Points to the file object that represents the corresponding device object to user-mode code if
the call is successful.

DeviceObject
Points to the device object that represents the named logical, virtual, or physical device if
the call is successful.

Include
wdm.h or ntddk.h

Return Value
IoGetDeviceObjectPointer can return one of the following NTSTATUS values:

STATUS_SUCCESS
STATUS_OBJECT_TYPE_MISMATCH
STATUS_INVALID_PARAMETER
STATUS_PRIVILEGE_NOT_HELD
STATUS_INSUFFICIENT_RESOURCES
STATUS_OBJECT_NAME_INVALID

234 Part 1 Kernel-Mode Support Routines

Comments
IoGetDeviceObjectPointer establishes a "connection" between the caller and the next
lower-level driver. A successful caller can use the returned device object pointer to initialize
its own device object(s). It can also be used as as an argument to IoAttachDeviceToDevice
Stack, IoCallDriver, and any routine that creates IRPs for lower drivers. The returned
pointer is a required argument to IoCallDriver.

This routine also returns a pointer to the corresponding file object. When unloading, a driver
can dereference the file object as a means of indirectly dereferencing the device object. To
do so, the driver calls ObDereferenceObject from its Unload routine, passing the file object
pointer returned by GetDeviceObjectPointer. Failure to dereference the device object in a
driver's Unload routine prevents the next-lower driver from being unloaded. However,
drivers that close the file object before the unload process must take out an extra reference
on the device object before dereferencing the file object. Otherwise, dereferencing the file
object can lead to a premature deletion of the device object.

To get a pointer to the highest-level driver in the file system driver stack, a driver must
ensure that the file system is mounted; if it is not, this routine traverses the storage device
stack. To ensure that the file system is mounted on the storage device, the driver must
specify an appropriate access mask, such as FILE_READ_DATA or FILE_ WRITE_
ATTRIBUTES, in the DesiredAccess parameter. Specifying FILE_READ_ATTRIBUTES
does not cause the file system to be mounted.

After any higher-level driver has chained itself over another driver by successfully calling
this routine, the higher-level driver must set the StackSize field in its device object to that of
the next-Iower-Ievel driver's device object plus one.

Callers of IoGetDeviceObjectPointer must be running at IRQL PASSIVE_LEVEL.

See Also
DEVICE_OBJECT, IoAlIocatelrp, IoAttachDevice, IoAttachDeviceToDeviceStack,
ObDereferenceObject, ObReferenceObjectByPointer

loGetDeviceProperty
This routine is documented in Volume 1 of the Windows 2000 Driver Development
Reference. Please see IoGetDeviceProperty in that book for a full reference.

loGetDevice To Verify
PDEVICE_OBJECT

IoGetDeviceToVerify(
IN PETHREAD Thread
) ;

Chapter 4 I/O Manager Routines 235

IoGetDeviceTo Verify returns a pointer to the device object, representing a removable
media device, that is the target of the given thread's I/O request.

Parameters
Thread
Points to the thread for which a highest-level driver is attempting to verify the validity of the
media on which the thread has opened a file.

Include
ntddk.h

Return Value
IoGetDeviceTo Verify returns a pointer to the device object representing a device on which
the media should be verified, or it returns NULL.

Comments
In general, highest-level drivers, particularly file systems, are most likely to call this routine.

An underlying removable-media device driver is responsible for notifying higher-level
drivers, particularly the file system, when the media appears to have changed since the last
access to the target device. For more information about handling removable media, see the
Kernel-Mode Drivers Design Guide.

Callers of IoGetDeviceTo Verify must be running at IRQL PASSIVE_LEVEL.

See Also
IoIsErrorUserlnduced, IoSetHardErrorOrVerifyDevice, PsGetCurrentThread

loGetDmaAdapter
PDMA_ADAPTER

IoGetDmaAdapter(
IN PDEVICE_OBJECT Physica7DeviceObject,
IN PDEVICE_DESCRIPTION DeviceDescription,
IN OUT PULONG NumberOfMapRegisters
) ;

IoGetDmaAdapter returns a pointer to the DMA adapter structure for a physical device
object.

236 Part 1 Kernel-Mode Support Routines

Parameters
PhysicalDeviceObject
Points to the physical device object for the device requesting the DMA adapter structure.

DeviceDescription
Points to a DEVICE_DESCRIPTION structure, which describes the attributes of the
physical device.

NumberOfMapRegisters
Points to, on output, the maximum number of map registers that the driver can allocate for
any DMA transfer operation.

Include
wdm.h or ntddk.h

Return Value
IoGetDmaAdapter returns a pointer to a DMA adapter structure that contains function
pointers to the system-defined set of DMA operations. If an adapter structure cannot be
allocated, the routine returns NULL.

Comments
Before calling this routine, a driver must zero-initialize the structure passed at Device
Description and then supply the relevant information for its device.

When IoGetDmaAdapter returns a valid pointer, a driver can use the pointers to functions
within the DMA_ADAPTER structure to perform subsequent DMA operations.

PnP drivers call IoGetDmaAdapter when handling a PnP IRP _MN_ST ART_DEVICE
request for a device. This IRP includes information about the device's hardware resources
that the driver must supply in the DeviceDescription structure.

In NumberOJMapRegisters, the caller specifies the optimal number of map registers it can
use. On output, the I/O Manager returns the number of map registers it allocated. Drivers
should check the returned value; there is no guarantee a driver will receive the same number
of map registers it requested.

To free the adapter object, the driver should call PutDmaAdapter through the pointer
returned in the DMA_ADAPTER structure.

Drivers must call this routine while running at IRQL PASSIVE_LEVEL.

Chapter 4 I/O Manager Routines 237

See Also
DEVICE_DESCRIPTION, DMA_ADAPTER, PutDmaAdapter

loGetDriverObjectExtension
PVOID

IoGetDriverObjectExtension(
IN PDRIVER-OBJECT DriverObject,
IN PVOID C7ientldentificationAddress
) ;

IoGetDriverObjectExtension retrieves a previously allocated per-driver context area.

Parameters
DriverObject
Specifies the driver object with which the context area is associated.

ClientldentificationAddress
Specifies the unique identifier, provided when it was allocated, of the context area to be
retrieved.

Include
wdm.h or ntddk.h

Return Value
IoGetDriverObjectExtension returns a pointer to the context area, if any or returns NULL.

Comments
Drivers call IoGetDriverObjectExtension to retrieve a pointer to a previously allocated
extension area.

Callers of this routine must be running at IRQL <= DISPATCH_LEVEL.

See Also
IoAllocateDriverObjectExtension

loGetFileObjectGenericMapping
PGENERIC_MAPPING

IoGetFileObjectGenericMapping();

238 Part 1 Kernel·Mode Support Routines

IoGetFileObjectGenericMapping returns information about the mapping between each
generic access right and the set of specific access rights for file objects.

Include
ntddk.h

Return Value
IoGetFileObjectGenericMapping returns a pointer to the generic mapping for file objects.

Comments
The generic mapping structure is defined as follows:

typedef struct _GENERIC_MAPPING
ACCESS_MASK GenericRead;
ACCESS_MASK GenericWrite;
ACCESS_MASK GenericExecute;
ACCESS_MASK GenericAll;

GENERIC_MAPPING;

typedef GENERIC_MAPPING *PGENERIC_MAPPING;

Callers of IoGetFileObjectGenericMapping must be running at IRQL PASSIVE_LEVEL.

See Also
IoCheckShareAccess, IoSetShareAccess, Z wCreateFile

loGetFunctionCodeFromCtlCode
ULONG

IoGetFunctionCodeFromCtlCode(
IN ULONG Contro7Code
) ;

IoGetFunctionCodeFromCtlCode returns the value of the Function in a given IOCTL_
XXX control code.

Parameters
Contro/Code
Points to the IOCTL _XXX (or FSCTL_XXX) in the driver's I/O stack location of the IRP at
Parameters.DeviceIoControl.IoControICode.

Include
wdm.h or ntddk.h

Chapter 4 1/0 Manager Routines 239

Return Value
IoGetFunctionCodeFromCtlCode returns the value of the Function part of the given
IOCTL_XXX code.

Comments
See Defining I/O Control Codes in Chapter 13 for more information about the layout of
IOCTL_XXX codes and using the CTL_CODE macro.

Callers of IoGetFunctionCodeFromCtlCode must be running at IRQL <= DISP ATCH_
LEVEL.

See Also
CTL_ CODE, IoBuildDeviceloControlRequest

loGetlnitialStack
PVOID

IoGetlnitialStack();

IoGetInitialStack returns the base address of the current thread's stack.

Include
ntddk.h

Return Value
IoGetInitialStack returns the initial base address of the current thread's stack.

Comments
Highest-level drivers can call this routine, particularly file systems attempting to determine
whether they've been passed a pointer to a location on the current thread's stack.

Callers of IoGetInitialStack must be running at IRQL < DISPATCH_LEVEL.

See Also
IoGetRemainingStackSize, IoGetStackLimits

loGetNextlrpStackLocation
PIO_STACK_LOCATION

IoGetNextIrpStackLocation(
IN PIRP Irp
) ;

240 Part 1 Kernel·Mode Support Routines

IoGetNextlrpStackLocation gives a higher level driver access to the next-lower driver's
I/O stack location in an IRP so the caller can set it up for the lower driver.

Parameters
Irp
Points to the IRP.

Include
wdm.h or ntddk.h

Return Value
IoGetNextlrpStackLocation returns a pointer to the next-l ower-level driver's I/O stack
location in the given IRP.

Comments
Each driver that passes IRPs on to lower drivers must set up the stack location for the next
lower driver. A driver calls IoGetNextlrpStackLocation to get a pointer to the next-lower
driver's I/O stack location.

If a driver is passing the same parameters that it received to the next-lower driver, such a
driver can call IoCopyCurrentlrpStackLocationToNext or IoSkipCurrentlrpStack
Location instead of getting a pointer to the next-lower stack location and copying the
parameters manually.

Callers of IoGetNextlrpStackLocation must be running at IRQL <= DISPATCH_LEVEL.

See Also
10 _STACK_LOCATION, IoCallDriver, IoGetCurrentlrpStackLocation, IoCopy
CurrentlrpStackLocationToNext, IoSetNextlrpStackLocation, IoSkipCurrent
IrpStackLocation

loGetRelatedDeviceObject
PDEVICE_OBJECT

IoGetRelatedDeviceObject(
IN PFILE_OBJECT Fi7eObject
) ;

Given a file object, IoGetRelatedDeviceObject returns a pointer to the corresponding
device object.

Parameters
FileObject
Points to the file object.

Include
wdm.h or ntddk.h

Return Value

Chapter 4 110 Manager Routines 241

loGetRelatedDeviceObject returns a pointer to the device object.

Comments
When called on a file object that represents the underlying storage device, loGetRelated
DeviceObject returns the highest-level device object in the storage device stack. To obtain
the highest-level device object in the file system driver stack, drivers must call loGet
RelatedDeviceObject on a file object that represents the file system's driver stack, and
the file system must currently be mounted. (Otherwise, the storage device stack is traversed
instead of the file system stack.)

To ensure that the file system is mounted on the storage device, the driver must have
specified an appropriate access mask, such as FILE_READ _DATA or FILE_ WRITE_
ATTRIBUTES, when opening the file or device represented by the file object. Specifying
FILE_READ_ATTRIBUTES does not cause the file system to be mounted.

The caller must be running at IRQL <= DISPATCH_LEVEL. Usually, callers of this routine
are running at IRQL PASSIVE_LEVEL.

See Also
loGetDeviceObjectPointer

loGetRemainingStackSize
ULONG

IoGetRemainingStackSize();

loGetRemainingStackSize returns the current amount of available kernel-mode stack
space.

Include
ntddk.h

242 Part 1 Kernel-Mode Support Routines

Return Value
IoGetRemainingStackSize returns the number of bytes of stack space in the current thread
context.

Comments
Highest-level drivers, such as file systems, can call this routine, particularly drivers that use
recursive code paths. Such a driver would call IoGetRemainingStackSize before launching
a recursion to determine whether it should continue processing on an alternate code path.

Callers of IoGetRemainingStackSize must be running at IRQL < DISPATCH_LEVEL.

See Also
IoGetlnitialStack, IoGetStackLimits

loGetStackLimits
VOID

IoGetStackLimits(
OUT PULONG LowLimit.
OUT PULONG HighLimit
) ;

IoGetStackLimits returns the boundaries of the current thread's stack frame.

Parameters
LowLimit
Points to a caller-supplied variable in which this routine returns the lower offset of the
current thread's stack frame.

HighLimit
Points to a caller-supplied variable in which this routine returns the higher offset of the
current thread's stack frame.

Include
ntddk.h

Comments
Highest-level drivers can call this routine, particularly file systems that have been passed a
pointer to a location on the current thread's stack.

Callers of IoGetStackLimits must be running at IRQL < DISPATCH_LEVEL.

See Also
IoGetlnitialStack, IoGetRemainingStackSize

101 n itial izeDpcReq uest
VOID

IoInitializeDpcRequest(
IN PDEVICE_OBJECT DeviceObject,
IN PIO_DPC_ROUTINE OpcRoutine
) ;

Chapter 4 1/0 Manager Routines 243

IoInitializeDpcRequest registers a driver-supplied DpcForIsr routine when a device driver
initializes.

Parameters
DeviceObject
Points to the device object representing the physical device that generates interrupts.

DpcRoutine
Points to the driver-supplied DpcForIsr routine, which is declared as follows:

VOID
(*PIO_DPC_ROUTINE)(

Include

IN PKDPC Dpe,
IN PDEVICE_OBJECT DeviceObject,
IN PIRP Irp,
IN PVOID Context
) ;

wdm.h or ntddk.h

Comments
IoInitializeDpcRequest associates a driver-supplied DpcForIsr routine with a given device
object so the driver's ISR can call IoRequestDpc to queue the DpcForIsr. This routine com
pletes interrupt-driven 110 operations at a lower IRQL than that of the ISR. For details, see
DpcForlsr Routine and CustomDpc Routines in the Kernel-Mode Drivers Design Guide.

PnP drivers call IoInitializeDpcRequest from the AddDevice routine.

Callers of IoInitializeDpcRequest must be running at IRQL PASSIVE_LEVEL.

It is possible to call KeInitializeDpc to initialize another DPC at IRQL <= DISP ATCH_
LEVEL.

244 Part 1 Kernel-Mode Support Routines

See Also
10RequestDpc, KelnitializeDpc

101 n itial izel rp
VOID

IoInitializelrp(
IN OUT PIRP Irp,
IN USHORT PacketSize,
IN CCHAR StackSize
) ;

lolnitializelrp initializes a given IRP that was allocated by the caller.

Parameters
Irp
Points to the IRP to be initialized.

PacketSize
Specifies the size in bytes of the IRP.

StackSize
Specifies the number of stack locations in the IRP.

Include
wdm.h or ntddk.h

Comments
Drivers use lolnitializelrp to initialize IRPs the driver allocated as raw memory. Drivers
must not call lolnitializelrp on an IRP that was allocated by 10Allocatelrp. Drivers must
not use lolnitializelrp to reinitialize an already initialized IRP. Instead, use 10Reuselrp.

If the driver associates an MDL with the IRP it allocated, the driver is responsible for
releasing the MDL when the IRP is completed.

An intermediate or highest-level driver also can call 10BuildDeviceloControlRequest, 10-
BuildAsynchronousFsdRequest, or 10BuildSynchronousFsdRequest to set up requests it
sends to lower-level drivers. Only a highest-level driver can call 10MakeAssociatedlrp.

Callers oflolnitializelrp must be running at IRQL <= DISPATCH_LEVEL.

Chapter 4 1/0 Manager Routines 245

See Also
IoAllocatelrp, IoAllocateMdl, IoBuildPartialMdl, IoFreelrp, IoFreeMdl, IoReuselrp,
IoSetNextlrpStackLocation, IoSizeOflrp, lRP

10initializeRemoveLock
This routine is documented in Volume 1 of the Windows 2000 Driver Development
Reference. Please see IoInitializeRemoveLock in that book for a full reference.

loin itial izeRemoveLockEx
This routine is documented in the Volume 1 of the Windows 2000 Driver Development
Reference. Please see IoInitializeRemoveLockEx in that book for a full reference.

10initializeTimer
NTSTATUS

IoInitializeTimer(
IN PDEVICE_OBJECT DeviceObject,
IN PIO_TIMER-ROUTINE TimerRoutine,
IN PVOID Context
) ;

IoInitializeTimer sets up a driver-supplied loTi mer routine associated with a given device
object.

Parameters
DeviceObject
Points to a device object representing a device on which I/O operations can time out.

TimerRoutine
Points to the driver-supplied loTimer routine, which is declared as follows:

VOID
(*PIO_TIMER-ROUTINE) (

IN PDEVICE_OBJECT DeviceObject,
IN PVOID Context
) ;

Context
Points to the driver-determined context with which its loTimer routine will be called.

Include
wdm.h or ntddk.h

246 Part 1 Kernel-Mode Support Routines

Return Value
IoInitializeTimer returns STATUS_SUCCESS if the loTimer routine is set up.

Comments
A driver's loTimer routine is called once per second after the driver enables the timer by
calling IoStartTimer.

The driver can disable the timer by calling IoStopTimer and can re-enable it again with
IoStartTimer.

The driver's loTimer routine is called at IRQL DISPATCH_LEVEL and therefore must not
contain pageable code.

When the timer is running, the I/O Manager calls the driver-supplied loTimer routine once
per second. Drivers whose time-out routines should be called at variable intervals or at inter
vals of finer granularity can set up a CustomTimerDpc routine and use the Ke •. Timer rou
tines.

Callers of IoInitializeTimer must be running at IRQL PASSIVE_LEVEL.

See Also
IoStartTimer, IoStopTimer, KelnitializeTimer, KeSetTimer

lolnvalidateDeviceRelations
This routine is documented in Volume 1 of the Windows 2000 Driver Development
Reference. Please see IoInvalidateDeviceRelations in that book for a full reference.

lolnvalidateDeviceState
This routine is documented in Volume 1 of the Windows 2000 Driver Development
Reference. Please see IoInvalidateDeviceState in that book for a full reference.

lolsErrorUserl nd uced
BOOLEAN

IoIsErrorUserInduced(
IN NTSTATUS Status
) ;

IoIsErrorUserlnduced determines whether an I/O error encountered while processing a
request to a removable-media device was caused by the user.

Parameters
Status

Chapter 4 VO Manager Routines 247

Specifies the current NTST ATUS value, usually within the driver's DpcForIsr routine.

Include
wdm.h or ntddk.h

Return Value
lolsErrorUserlnduced returns TRUE if an I/O request failed because of a user-induced
error.

Comments
This routine indicates whether an I/O request failed for one of the following user-correctable
conditions:

STATUS_DEVICE_NOT _READY
STATUS_IO_TIMEOUT
STATUS_MEDIA_ WRITE_PROTECTED
STATUS_NO_MEDIA_IN_DEVICE
STATUS_UNRECOGNIZED_MEDIA
ST ATUS_ VERIFY_REQUIRED
STATUS_ WRONG_VOLUME

If lolsErrorUserInduced returns TRUE, the removable-media driver must call loSet
HardErrorOrVerifyDevice before completing the IRP.

Callers of lolsErrorUserlnduced must be running at IRQL <= DISPATCH_LEVEL.

See Also
loSetHardErrorOrVerifyDevice, loAllocateErrorLogEntry, 10 WriteErrorLogEntry

lolsWdmVersionAvaiiable
BOOLEAN

IoIsWdmVersionAvailable(
IN UCHAR MajorVersion.
IN UCHAR MinorVersion
) ;

lolsWdmVersionAvaiiable checks whether a given WDM version is supported by the
operating system.

248 Part 1 Kernel-Mode Support Routines

Parameters
MajorVersion
Specifies the major version number of WDM that is requested.

MinorVersion
Specifies the minor version number of WDM that is requested.

Include
wdm.h or ntddk.h

Return Value
IoIsWdmVersionAvailable returns TRUE if the version ofWDM that the operating system
provides is greater than or equal to the version number of WDM being requested.

Comments
Callers of this routine must be running at IRQL PASSIVE_LEVEL.

loMakeAssociatedlrp
PIRP

IoMakeAssociatedIrp(
IN PIRP Irp,
IN CCHAR StackSize
) ;

IoMakeAssociatedIrp allocates and initalizes an IRP to be associated with a master IRP
sent to a highest-level driver, allowing the caller to split the original request and send
associated IRPs on to lower-level drivers.

Parameters
Irp
Points to the master IRP that was input to a highest-level driver's Dispatch routine.

StackSize
Specifies the number of stack locations to be allocated for the associated IRP. The value
must be at least equal to the StackSize of the next-lower driver's device object, but the
associated IRP can have an additional stack location for the caller.

Include
ntddk.h

Chapter 4 1/0 Manager Routines 249

Return Value
IoMakeAssociatedlrp returns a pointer to the associated IRP or returns a NULL pointer
if an IRP cannot be allocated.

Comments
Only a highest-level driver can call this routine.

The 110 Manager completes the master IRP automatically when lower drivers have com
pleted all associated IRPs as long as the caller has not set its IoCompletion routine in an
associated IRP and returned STATUS_MORE_PROCESSING_REQUIRED from its
IoCompletion routine. In these circumstances, the caller must explicitly complete the
master IRP when that driver has determined that all associated IRPs were completed.

Only the master IRP is associated with a thread; associated IRPs are not. For this reason, the
110 Manager cannot call Cancel routines for associated IRPs when a thread exits. When the
master IRP's thread exits, the 110 Manager calls the master IRP's cancel routine. The Cancel
routine is responsible for tracking down all associated IRPs and calling IoCancelIrp to
cancel them.

Callers of IoMakeAssociatedlrp must be running at IRQL <= DISPATCH_LEVEL.

See Also
IoAllocatelrp, IoBuildAsynchronousFsdRequest, IoBuildDeviceloControlRequest,
IoBuildSynchronousFsdRequest, IoCallDriver, IoSetCompletionRoutine, IRP

loMapTransfer
PHYSICAL_ADDRESS

IoMapTransfer(
IN PADAPTER_OBJECT AdapterObject.
IN PMDL Md7.
IN PVOID MapRegisterBase.
IN PVOID Current Va.
IN OUT PULONG Length.
IN BOOLEAN WriteToDevice
) ;

IoMapTransfer is obsolete and exported only to support existing drivers. See Map
Transfer instead.

IoMapTransfer sets up a number of map registers (up to the number returned by HalGet
Adapter) for the given adapter object to map a transfer from a locked-down buffer specified
by Mdl, the given CurrentVa into the MDL, Length in bytes to be transferred, and transfer
direction.

250 Part 1 Kernel-Mode Support Routines

Parameters
AdapterObject
Points to the adapter object pointer returned by HalGetAdapter and already passed in a call
to IoAllocateAdapterChannel for the current IRP's transfer request.

Mdl
Points to the MD L describing the buffer either in the current IRP at MdlAddress or the
MDL that the driver of a slave device using auto-initialize mode set up to describe the
driver's common buffer.

MapRegisterBase
Points to the handle returned by IoAllocateAdapterChannel, which the driver already
called for the current IRP.

CurrentVa
Points to the current virtual address in the buffer, described by the Mdl, to be mapped for a
DMA transfer operation.

Length
Specifies the length, in bytes, to be mapped. If the driver indicated that its device was a
busmaster with scatter/gather support when it called HalGetAdapter, the value of Length
on return from IoMapTransfer indicates how many bytes were mapped. Otherwise, the
input and output values of Length are identical.

Write ToDevice
Indicates the direction of the transfer operation: TRUE for a transfer from the locked-down
buffer to the device.

Include
wdm.h or ntddk.h

Return Value
IoMapTransfer returns the logical address of the region mapped, which the driver of a bus
master adapter can use. Drivers of devices that use a system DMA controller cannot use this
value and should ignore it.

Comments
The AdapterObject must have already been allocated to the driver in a preceding call to 10-
AllocateAdapterChannel.

Chapter 4 1/0 Manager Routines 251

The number of map registers that can be set up cannot exceed the maximum returned when
the driver called HalGetAdapter.

The initial CurrentVa for the start of a packet-based DMA transfer can be obtained by
calling MmGetMdlVirtualAddress. However, the value returned is an index into the Mdl,
rather than a valid virtual address. If the driver must split a large transfer request into more
than one DMA operation, CurrentVa and Length must be updated for each DMA operation.

The driver of a busmaster device with scatter/gather support can use the returned logical
address and updated Length value to build a scatter/gather list, calling IoMapTransfer
repeatedly until it has used all available map registers for the transfer operation.

Callers of IoMapTransfer must be running at IRQL <= DISPATCH_LEVEL.

See Also
ADDRESS_AND _SIZE_TO _SPAN_PAGES, HalAllocateCommonBuffer, HalGet
Adapter, IoAllocateAdapterChannel, IoFlushAdapterBuffers, IoFreeAdapterChannel,
IoFreeMapRegisters, KeFlushIoBuffers, MmGetMdlVirtualAddress

loMarklrpPending
VOID

IoMarkIrpPending(
IN OUT PIRP Irp
) ;

IoMarkIrpPending marks the given IRP, indicating that a driver's Dispatch routine re
turned STATUS_PENDING because further processing is required by other driver routines.

Parameters
Irp
Points to the IRP to be marked as pending.

Include
wdm.h or ntddk.h

Comments
Unless a driver calls IoCompleteRequest from its Dispatch routine with a given IRP or
passes the IRP on to lower drivers, it must call IoMarkIrpPending with the IRP. Other
wise, the 110 Manager attempts to complete the IRP as soon as the Dispatch routine returns
control.

252 Part 1 Kernel-Mode Support Routines

If a driver queues incoming IRPs, it should call IoMarklrpPending before it queues each
IRP. Otherwise, an IRP could be dequeued, completed by another driver routine, and freed
by the system before the call to IoMarklrpPending occurs, thereby causing a crash.

Any driver that sets an IoCompletion routine in an IRP and then passes the IRP down to a
lower driver should check the IRP->PendingReturned flag in the IoCompletion routine. If
the flag is set, the IoCompletion routine must call IoMarklrpPending with the IRP. Note,
however, that a driver that passes down the IRP and then waits on an event should not mark
the IRP pending. Instead, its IoCompletion routine should signal the event and return
STATUS_MORE_PROCESSING_REQUIRED.

A routine that calls IoMarklrpPending must return STATUS_PENDING.

Callers of IoMarklrpPending must be running at IRQL <= DISPATCH_LEVEL.

See Also
IoCompieteRequest, IoStartPacket, IRP

loOpenDevicelnterfaceRegistryKey
This routine is documented in Volume 1 of the Windows 2000 Driver Development
Reference. Please see IoOpenDevicelnterfaceRegistryKey in that book for a full reference.

loOpenDeviceRegistryKey
This routine is documented in Volume 1 of the Windows 2000 Driver Development
Reference. Please see IoOpenDeviceRegistryKey in that book for a full reference.

loQueryDeviceDescription
NTSTATUS

IoQueryDeviceDescription(
IN PINTERFACE_TYPE Bus Type OPTIONAL,
IN PULONG BusNumber OPTIONAL,
IN PCONFIGURATION_TYPE Contro77erType OPTIONAL,
IN PULONG Contro77erNumber OPTIONAL,
IN PCONFIGURATION_TYPE Periphera7Type OPTIONAL,
IN PULONG Periphera7Number OPTIONAL,
IN PIO_QUERY_DEVICE_ROUTINE Ca77outRoutine,
IN PVOID Context
) ;

IoQueryDeviceDescription retrieves hardware configuration information about a given
bus, controller or peripheral object, or any combination of these three types from the
\Registry\Machine\Hardware\Description tree.

This routine is obsolete and is exported only to support existing drivers.

Chapter 4 1/0 Manager Routines 253

Drivers that require hardware configuration information should use IoGetDeviceProperty
instead.

Parameters
Bus Type
Specifies the type of bus searched for in the registry's hardware description tree which
can be one of the following values: Internal, Isa, Eisa, MicroChannel TurboChannel,
or PCIBus. However, additional types of buses will be supported in future versions of
the operating system. The upper bound on the types supported is always Maximum
InterfaceType.

BusNumber
Specifies the zero-based and system-assigned number of the bus. This parameter is optional.
If BusType is supplied but no specific BusNumber is specified, information on all buses of
type BusType is returned.

Control/erType
Specifies the type of controller for which to return information. It can be one of the
following: DiskController, TapeController, CdRomController, WormController,
Serial Controller , NetworkController, DisplayController, Parallel Controller ,
PointerController, KeyboardController, AudioController, or OtherController. If no
ControllerType or PeripheralType value is specified, only bus information is returned.

Control/erNumber
Specifies the zero-based number of the controller. This parameter is optional. If Controller
Type is supplied but a specific ControllerNumber is not, information on all controllers of
type ControllerType is returned.

PeripheralType
Specifies the type of peripheral for which to return information. It can be one of the
following: DiskPeripheral, FloppyDiskPeripheral, TapePeripheral, ModemPeripheral,
MonitorPeripheral, PrinterPeripheral, PointerPeripheral, KeyboardPeripheral,
TerminalPeripheral, OtherPeripheral, LinePeripheral, or NetworkPeripheral. If no
peripheral type is specified, only bus information and controller information are returned.

PeripheralNumber
Specifies the zero-based number of the peripheral. This parameter is optional. If Peripheral
Type is supplied but a specific PeripheralNumber is not, information on all peripherals of
type PeripheralType is returned.

254 Part 1 Kernel-Mode Support Routines

Cal/outRoutine
Points to a driver-supplied routine to be called when the requested information has been
located. This routine is declared as follows:

NTSTATUS
(*PIO_QUERY_DEVICE_ROUTINE) (

IN PVOID Context.
IN PUNICODE_STRING PathName.
IN INTERFACE_TYPE BusType.
IN ULONG BusNumber.
IN PKEY_VALUE_FULL_INFORMATION *BusInformation.
IN CONFIGURATION_TYPE ControllerType.
IN ULONG ControllerNumber.
IN PKEY_VALUE_FULL_INFORMATION *ControllerInformation.
IN CONFIGURATION_TYPE PeripheralType.
IN ULONG Peripheral Number.
IN PKEY_VALUE_FULL_INFORMATION *PeripheralInformation
) ;

Context
Points to a context area that is passed to CalloutRoutine.

Include
ntddk.h

Return Value
IoQueryDeviceDescription returns the STATUS_XXX returned by the callout routine.

Comments
This routine queries the registry for description(s) of the given bus type and number, con
troller type and number, and/or peripheral type and number. The information retrieved is
passed to a driver-supplied ConfigCallback routine.

While the bus, controller, and peripheral parameters are each optional, the caller must
supply at least one type parameter.

On entry, the driver's ConfigCallback routine is given pointers to registry keys for bus, con
troller, and/or peripheral information. Each such pointer is actually a pointer to an array of
IO_QUERY_DEVICE_DATA_FORMAT pointers identified as follows:

IoQueryDeviceIdentifier
IoQueryDeviceConfigurationData
IoQueryDeviceComponentInformation

Chapter 4 1/0 Manager Routines 255

When the ConfigCallback routine returns control, these pointers become invalid. The
driver's ConfigCallback routine should save pertinent information about the I/O ports or
device memory, the bus-relative interrupt vector or IRQL, and/or the DMA channel or port,
that is available in the registry for the DriverEntry routine to use in subsequent calls to
HalTranslateBusAddress (and possibly MmMaploSpace), HalGetlnterruptVector,
and/or HalGetAdapter.

As an alternative, a driver can call HalGetBusData or HalGetBusDataByOffset to locate
its device(s) and to retrieve bus-relative configuration information. Then, the driver can call
IoAssignResources, which checks the input resource list against the hardware configuration
information in the registry and also encapsulates most of the functionality of IoReport
ResourceUsage. As an alternative, drivers of PCI-type devices can call HalAssign
SlotResources.

Callers of IoQueryDeviceDescription must be running at IRQL PASSIVE_LEVEL.

See Also
IoGetDeviceProperty, IoGetDmaAdapter, MmMaploSpace

loQueueWorkltem
VOID

IoQueueWorkItem(
IN PIO_WORKITEM pIOWorkltem,
IN PIO_WORKITEM_ROUTINE Routine,
IN WORK_QUEUE_TYPE OueueType,
IN PVOID Context
) ;

IoQueue W orkItem inserts the specified work item into a queue from which a system
worker thread removes the item and gives control to the specified callback routine.

Parameters
plOWorkltem
Points to the 10_ WORKITEM structure returned by a previous call to IoAllocate
WorkItem.

256 Part 1 Kernel-Mode Support Routines

Routine
Points to the routine that will be called to process the work item. This routine will be called
in the context of a system thread. This routine is declared as follows:

VOID
(*PIO_WORKITEM_ROUTINE) (

IN PDEVICE_OBJECT DeviceObject.
IN PVOID Context
) ;

Queue Type
Specifies the type of work queue that the work item should be inserted. QueueType can be
either of the following:

CriticalWorkQueue
Insert the work item into the queue from which a system thread with a real-time priority
attribute will process the work item.

DelayedWorkQueue
Insert the work item into the queue from which a system thread with a variable priority
attribute will process the work item.

The QueueType value HyperCriticalWorkQueue is reserved for system use.

Context
Points to a caller-supplied context area to be passed through to the callback routine.

Include
ntddk.h or wdm.h

Comment
Highest-level drivers can call IoQueueWorkItem.

The callback is run within a system thread context at IRQL PASSIVE_LEVEL. This caller
supplied routine is responsible for calling IoFree W orkItem to reclaim the storage allocated
for the work item.

A driver must not wait for its callback routine to complete an operation if it is already hold
ing one synchronization object and might attempt to acquire another. For example, a driver
should release any currently held semaphores, mutexes, resource variables, and so forth
before it calls IoQueue WorkItem. Releasing synchronization resources before queuing a
synchronous worker-thread operation prevents deadlocks.

Chapter 4 1/0 Manager Routines 257

The value of QueueType determines the runtime priority at which the callback routine is run,
as follows:

• If the callback runs in the system thread with a real-time priority attribute, the callback
routine cannot be preempted except by threads with higher real-time priorities.

• If the callback runs in the system thread with a variable priority attribute, the callback can
be preempted by threads with higher variable and real-time priorities, and the callback is
scheduled to run round-robin with other threads of the same priority for a quantum each.

Threads at either priority remain interruptible.

Callers of IoQueueWorkItem must be running at IRQL <= DISPATCH_LEVEL.

IoQueue WorkItem should be used instead of ExQueue Workltem because IoQueue
WorkItem will ensure that the device object associated with the specified work item is
available for the processing of the work item.

See Also
IoAllocate WorkItem, IoFree WorkItem

loRaiseHardError
VOID

IoRaiseHardError(
IN PIRP Irp,
IN PVPB Vpb OPTIONAL,
IN PDEVICE_OBJECT Rea7DeviceObject
) ;

IoRaiseHardError causes a popup to be displayed that warns the user that a device I/O
error has occurred. The I/O error might indicate that a physical device is failing.

Parameters
Irp
Points to the IRP that failed because of a device I/O error.

Vpb
Points to the volume parameter block (VPB), if any, for the mounted file object. This
parameter is NULL if no VPB is associated with the device object.

RealDeviceObject
Points to the device object that represents the physical device on which the I/O operation
failed.

258 Part 1 Kernel-Mode Support Routines

Include
ntddk.h

Comments
Highest-level drivers, particularly file system drivers, call IoRaiseHardError.

Warning: Because IoRaiseHardError uses a normal kernel APC to create a user popup, a
deadlock can occur if normal kernel APCs are disabled when a device error occurs. For
example:

• An upper-level filter driver calls KeEnterCriticalRegion (which disables normal kernel
APCs) and sends an I/O request to a a file system diiver. The filter driver waits on the
completion of the request by the file system driver before the filter driver calls KeLeave
CriticalRegion (which re-enables normal kernel APCs).

• An error occurs on the file system and the file system driver calls IoRaiseHardError to
report the error to the user. The file system driver waits on the popup.

• Deadlock now exists: The normal kernel APC created by IoRaiseHardError to create
the popup waits for normal kernel APCs to be enabled. The file system waits on the pop
up before it completes the I/O request. The filter driver waits on completion of the I/O
request before it calls KeLeaveCriticalRegion (which re-enables normal kernel APCs).

The behavior of this routine is dependent of the current state of hard errors for the running
thread. If hard errors have been disabled by calling IoSetThreadHardErrorMode, this
routine completes the IRP specified by Irp without transferring any data into user buffers.
In addition, no message is sent to notify the user of this failure.

Callers of IoRaiseHardError must be running at IRQL < DISPATCH_LEVEL.

See Also
IoGetRelatedDeviceObject, IoSetHardErrorOrVerifyDevice, IoSetThreadHard
ErrorMode

loRaiselnformationalHardError
BOOLEAN

IoRaiseInformationalHardError(
IN NTSTATUS ErrorStatus.
IN PUNICODE_STRING String OPTIONAL.
IN PKTHREAD Thread OPTIONAL
) ;

Chapter 4 I/O Manager Routines 259

IoRaiselnformationalHardError sends a popup to the user, warning about a device I/O
error that indicates why a user I/O request failed.

Parameters
ErrorStatus
Identifies the error status (lO_ERR_XXX).

String
Points to a Unicode string, which provides additional information about the error. Some NT
status codes require a string parameter, such as a file or directory name. If the ErrorStatus
does not require a parameter, then String is NULL.

Thread
Points to the thread whose IRP was failed due to the error.

Include
ntddk.h

Return Value
IoRaiselnformationalHardError returns TRUE if the popup was successfully queued.
This routine returns FALSE if popups are disabled for Thread, a pool allocation failed, too
many·popups are already queued, or an equivalent popup is already pending a user response
(such as waiting for the user to press RETURN).

Comments
IoRaiselnformationalHardError takes a system-defined NT error value as a parameter.
Driver writers can use the event log APIs to communicate driver-defined event strings to
the user.

If hard errors have been disabled for this thread, by calling IoSetThreadHardErrorMode,
this routine returns FALSE.

Callers of IoRaiselnformationalHardError must be running at IRQL < DISP ATCH_
LEVEL.

See Also
IoSetHardErrorOrVerifyDevice, IoSetThreadHardErrorMode, PsGetCurrentThread

260 Part 1 Kernel-Mode Support Routines

loRead Partition Table
NTSTATUS

IoReadPartitionTable(
IN PDEVICE_OBJECT DeviceObject,
IN ULONG SectorSize,
IN BOOLEAN ReturnRecognizedPartitions,
OUT struct _DRIVE_LAYOUT_INFORMATION **PartitionBuffer
) ;

IoReadPartitionTable reads a list of partitions on a disk having a specified sector size and
creates an entry in the partition list for each recognized partition.

Parameters
DeviceObject
Points to the device object for the disk whose partitions are to be read.

SectorSize
Specifies the size of the sectors on the disk.

ReturnRecognizedPartitions
Indicates whether only recognized partitions or all partition entries should be returned.

PartitionBuffer
Is a pointer to an uninitialized address. If successful, IoReadPartitionTable allocates the
memory for this buffer from nonpaged pool and returns the drive layout information in it.

Include
ntddk.h

Return Value
This routine returns a value of STATUS_SUCCESS if at least one sector table was read.
Otherwise, it returns an error status and sets the pointer at PartitionBuffer to NULL.

Comments
Disk device drivers call this routine during driver initialization.

It is the responsibility of the caller to deallocate the PartitionBuffer that was allocated by
this routine with ExFreePool.

Chapter 4 1/0 Manager Routines 261

The algorithm used by this routine is determined by the Boolean value ReturnRecognized
Partitions:

• Read each partition table and, for each valid and recognized partition found, fill in a par
tition information entry. Extended partitions are located in order to find other partition
tables, but no entries are built for them.

• Read each partition table and, for each and every entry, fill in a partition information
entry. Extended partitions are located to find each partition on the disk, and entries are
built for these as well.

The drive layout structure contains a variable-sized array of partition information elements,
defined as follows:

typedef struct _DRIVE_LAYOUT_INFORMATION {
ULONG PartitionCount;
ULONG Signature; II of disk
PARTITION_INFORMATION PartitionEntry[l];

DRIVE_LAYOUT_INFORMATION, *PDRIVE_LAYOUT_INFORMATION;

typedef strtuct _PARTITION_INFORMATION {
LARGE_INTEGER StartingOffset;
LARGE_INTEGER PartitionLength;
ULONG HiddenSectors;
ULONG PartitionNumber;
UCHAR PartitionType; II 12-bit FAT etc.
BOOLEAN BootIndicator;
BOOLEAN RecognizedPartition;
BOOLEAN RewritePartition;

} PARTITION_INFORMATION, *PPARTITION_INFORMATION;

For the currently defined PartitionType values, see the Win32 SDK.

Note that disk drivers also use the DRIVE_LAYOUT_INFORMATION structure to return
and set partition information in response to IRP _MJ_DEVICE_CONTROL requests with
the following I/O control codes:

IOCTL_DISK_GET_PARTITION_INFO
IOCTL_DISK_GET_DRIVE_LA YOUT
IOCTL_DISK_SET_DRIVE_LA YOUT

Callers of 10ReadPartitionTabie must be running at IRQL PASSIVE_LEVEL.

See Also
IOCTL_DISK_GET_PARTITION_INFO, IOCTL_DISK_GET_DRIVE_LA YOUT,
IOCTL_DISK_SET _DRIVE_LA YOUT, 10SetPartitionlnformation, 10 Write
Partition Table

262 Part 1 Kernel-Mode Support Routines

loRegisterDevicelnterface
This routine is documented in Volume 1 of the Windows 2000 Driver Development
Reference. Please see IoRegisterDevicelnterface in that book for a full reference.

loReg isterDriverRei n itial ization
VOID

IoRegisterDriverReinitialization(
IN PDRIVER-OBJECT OriverObject,
IN PDRIVER-REINITIALIZE OriverReinitia7izationRoutine,
IN PVOID Context
) ;

IoRegisterDriverReinitialization is called by a driver during its initialization or reinitiali
zation to register its Reinitialize routine to be called again before the driver's and, possibly
the system's, initialization is complete.

Parameters
DriverObject
Points to the driver object that was input to the DriverEntry routine.

DriverReinitializationRoutine
Specifies the entry point for the driver-supplied Reinitialize routine, which is declared as
follows:

VOID
(*PDRIVER-REINITIALIZE)(

IN PDRIVER-OBJECT DriverObject,
IN PVOID Context,
IN ULONG Count
) ;

Context
Points to the context to be passed to the driver's Reinitialize routine.

Include
ntddk.h

Comments
A driver can call this routine only if its DriverEntry routine will return STATUS_
SUCCESS. If the driver-supplied Reinitialize routine must use the registry, the DriverEntry
routine should include a copy of the string to which RegistryPath points as part of the
context passed to the Reinitialize routine in this call.

Chapter 4 I/O Manager Routines 263

If the driver is loaded dynamically, it is possible for this to occur during a normally running
system, so all references to the reinitialization queue must be synchronized.

The Count input to a DriverReinitia/izationRoutine indicates how many times this routine
has been called, including the current call.

The DriverEntry routine can call IoRegisterDriverReinitialization only once. If the
Reinitialize routine should be run again after any other drivers' Reinitialize routines have
returned control, the Reinitialize routine also can call IoRegisterDriverReinitialization as
many times as the driver's Reinitialize routine should be run.

Usually, a driver with a Reinitialize routine is a higher-level driver that controls both PnP
and legacy devices. Such a driver must not only create device objects for the devices that the
PnP Manager detects (and for which the PnP Manager calls the driver's AddDevice routine),
the driver must also create device objects for legacy devices that the PnP Manager does not
detect. A driver can use a Reinitialize routine to create those device objects and layer the
driver over the next-lower driver for the underlying device.

Callers of IoRegisterDriverReinitialization must be running at IRQL PASSIVE_LEVEL.

See Also
DRIVER_OBJECT

loRegisterPlugPlayNotification
This routine is documented in Volume 1 of the Windows 2000 Driver Development
Reference. Please see IoRegisterPlugPlayNotification in that book for a full reference.

loRegisterShutdown Notification
NTSTATUS

IoRegisterShutdownNotification(
IN PDEVICE_OBJECT DeviceObject
) ;

IoRegisterShutdownNotification registers a driver-supplied DispatchShutdown routine
to be called before system shutdown. The driver gains control before the system is fully
shut down.

Parameters
DeviceObject
Points to a device object.

264 Part 1 Kernel-Mode Support Routines

Include
ntddk.h

Return Value
IoRegisterShutdownNotification returns STATUS_SUCCESS when the shutdown routine
is registered.

Comments
Only highest-level drivers chained above an underlying nonmass-storage device can register
a shutdown routine by calling IoRegisterShutdownNotification. For mass-storage drivers,
an FSD handles shutdown requests and calls lower drivers to flush cached or buffered data
out to the device before the system is shut down.

IoRegisterShutdownNotification places the given DeviceObject on the shutdown notifi
cation queue, so that its DispatchShutdown routine can be called before the system shuts
down. A driver can call IoRegisterShutdownNotification multiple times.

The registered DispatchShutdown routine is called before the Power Manager sends an
IRP _MN_SET_POWER request for PowerSystemS5. The DispatchShutdown routine is not
called for transitions to any other power states.

A driver can make no assumptions about the order in which its DispatchShutdown routine
will be called in relation to other such routines or to other shutdown activities.

A PnP driver might register a shutdown routine so that it can do certain tasks before system
shutdown starts, such as locking down code.

Callers of IoRegisterShutdownNotification must be running at IRQL PASSIVE_LEVEL.

See Also
IoUnregisterShutdownNotification

loReleaseCancelSpinLock
VOID

IoReleaseCancelSpinLock(
IN KIROL Irq7
) ;

IoReleaseCancelSpinLock releases the cancel spin lock after the driver has changed the
cancelable state of an IRP. This routine also releases the cancel spin lock from the driver's
Cancel routine.

Parameters
Irql

Chapter 4 I/O Manager Routines 265

Points to the IRQL returned by IoAcquireCancelSpinLock.

Include
wdm. h or ntddk.h

Comments
This routine is a reciprocal to IoAcquireCancelSpinLock.

The holder of the cancel spin lock executes at DISPATCH_LEVEL IRQL after calling
IoAcquireCancelSpinLock. IoReleaseCancelSpinLock restores the original IRQL of its
caller.

Callers of IoReleaseCancelSpinLock must be running at IRQL DISPATCH_LEVEL.

See Also
IoAcquireCancelSpinLock, IoSetCancelRoutine

loReleaseRemoveLock
This routine is documented in Volume 1 of the Windows 2000 Driver Development
Reference. Please see IoReleaseRemoveLock in that book for a full reference.

loReleaseRemoveLockEx
This routine is documented in Volume 1 of the Windows 2000 Driver Development
Reference. Please see IoReleaseRemoveLockEx in that book for a full reference.

loReleaseRemoveLockAndWait
This routine is documented in Volume 1 of the Windows 2000 Driver Development
Reference. Please see IoReleaseRemoveLockAndWait in that book for a full reference.

loReleaseRemoveLockAndWaitEx
This routine is documented in Volume 1 of the Windows 2000 Driver Development
Reference. Please see IoReleaseRemoveLockAndWaitEx in that book for a full reference.

266 Part 1 Kernel-Mode Support Routines

loRemoveShareAccess
VOID

IoRemoveShareAccess(
IN PFILE_OBJECT Fi7eObject,
IN OUT PSHARE_ACCESS ShareAccess
) ;

IoRemoveShareAccess removes the access and share-access information for a given open
instance of a file object.

Parameters
FileObject
Points to the file object, which usually is being closed by the current thread.

ShareAccess
Points to the share-access structure that describes how the open file object is currently being
accessed.

Include
ntddk.h

Comments
This routine is a reciprocal to IoUpdateShareAccess.

IoRemoveShareAccess is not an atomic operation. Therefore, drivers calling this routine
must protect the shared file object passed to IoRemoveShareAccess by means of some kind
of lock, such as a mutex or a resource lock, in order to prevent corruption of the shared
access counts.

Callers of IoRemoveShareAccess must be running at IRQL PASSIVE_LEVEL and in the
context of the thread that requested that the FileObject be closed.

See Also
IoCheckShareAccess, IoSetShareAccess, IoUpdateShareAccess

loReportDetectedDevice
This routine is documented in Volume 1 of the Windows 2000 Driver Development
Reference. Please see IoReportDetectedDevice in that book for a full reference.

Chapter 4 VO Manager Routines 267

loReportResourceForDetection
This routine is documented in Volume 1 of the Windows 2000 Driver Development
Reference. Please see IoReportResourceForDetection in that book for a full reference.

loReportResourceUsage
NTSTATUS

IoReportResourceUsage(
IN PUNICODE_STRING DriverC7assName OPTIONAL,
IN PDRIVER_OBJECT DriverObject,
IN PCM_RESOURCE_LIST DriverList OPTIONAL,
IN ULONG DriverListSize OPTIONAL,
IN PDEVICE_OBJECT DeviceObject,
IN PCM_RESOURCE_LIST DeviceList OPTIONAL,
IN ULONG DeviceListSize OPTIONAL,
IN BOOLEAN OverrideConf7ict,
OUT PBOOLEAN Conf7ictDetected
) ;

IoReportResourceUsage claims hardware resources, such as an interrupt vector, device
memory range or a particular DMA controller channel in the \Registry\Machine\
Hardware\ResourceMap tree, so that a subsequently loaded driver cannot attempt to
use the same resources.

, This routine is obsolete, and is supported only for existing drivers. If a new driver must
support a legacy device that is not PnP-enumerable, the driver should call IoReport
ResourceForDetection to claim resources for the device.

Parameters
DriverClassName
Points to a buffered Unicode String that describes the class of driver under which the
resource information should be stored. A default type Other is used if none is given, and
a new key is created in the registry if a unique name is supplied.

DriverObject
Points to the driver object that was input to the DriverEntry routine.

DriverList
Points to the driver's resource list if the driver claims the same resources for all its devices.
This pointer is NULL if the driver claims resources for its devices separately.

DriverListSize
Specifies the size in bytes of the driver's resource list if the DriverList pointer is nonNULL;
otherwise, zero.

268 Part 1 Kernel-Mode Support Routines

DeviceObject
Points to the driver-created device object representing a device for which the driver is
attempting to claim resources.

DeviceList
Points to the device's resource list, if the driver claims resources separately for each of its
devices.

DeviceListSize
Specifies the size in bytes of the DeviceList if the DeviceList pointer is nonNULL; otherwise
zero.

OverrideConflict
Specifies a Boolean value that indicates whether the information should be written into the
registry even if a conflict is found with another driver ot device. The default value is
FALSE.

ConflictDetected
Points to a Boolean value set to TRUE on return from IoReportResourceUsage if a
previously loaded driver has already claimed a resource specified in the caller's DriverList
or DeviceList.

Include
ntddk.h

Return Value
IoReportResourceUsage can return one of the following:

STATUS_SUCCESS
STATUS_INSUFFICIENT_RESOURCES

Comments
The values supplied in the CM_RESOURCE_LIST must be identical to those found in the
driver's call to IoQueryDeviceDescription, HalGetBusDataByOffset, or HalGetBusData,
not those returned by the driver's calls to HalTranslateBusAddress, HalGetAdapter, or
HalGetlnterruptVector.

This routine automatically searches the configuration registry for resource conflicts between
resources requested and resources claimed by previously installed drivers. The contents of
DriverList or DeviceList are matched against all other resource lists stored in the registry to
determine whether a conflict exists.

Chapter 4 1/0 Manager Routines 269

If no conflict is detected or if Override Conflict is set to TRUE, this routine creates appro
priate entries in the registry ResourceMap that contains the specified resource lists.

If OverrideConflict is set to FALSE, this routine logs an error recording the exact nature
of the conflict that is displayed in the Win32 event viewer. If OverrideConflict is reset to
TRUE, no such error is reported if a resource conflict exists and the caller's resource list is
written into the registry. However, the caller cannot use any resource for which a conflict
was detected.

If a driver claims resources on a device-specific basis for more than one device, the driver
must call this routine for each such device.

This routine can be called more than once for a given device or driver. If a new resource
list is given, it will replace the previous resource list in the registry. A driver must call 10-
ReportResourceUsage with a DriverList or DeviceList CM_RESOURCE_LIST in which
the Count is zero to erase its claim on resources in the registry if the driver is unloaded.

A CM_RESOURCE_LIST contains two variable-sized arrays. Each array has a default size
of one. If either array has more than one element, memory must be allocated dynamically
to contain the additional elements. A side effect of this definition is that only one CM_
PARTIAL_RESOURCE_DESCRIPTOR can be part of each CM_FULL_RESOURCE_
DESCRIPTOR in the list, except for the last full resource descriptor in the CM_
RESOURCE_LIST, which can have additional partial resource descriptors in its array.

As an alternative, a device driver can call HalGetBusDataByOffset or HalGetBusData
to locate its device(s) and to retrieve bus-relative configuration information. Then the driver
can call 10AssignResources, which encapsulates most of the functionality of 10Report
ResourceUsage, allows the caller to specify preferred and alternative resources in a single
IO_RESOURCE_REQUIREMENTS_LIST, and returns a CM_RESOURCE_LIST specify
ing the hardware resources it claimed on behalf of the caller. Drivers of PCI-type devices
can call HalAssignSlotResources, rather than 10ReportResourceUsage or 10Assign
Resources.

Callers of 10ReportResourceUsage must be running at IRQL PASSIVE_LEVEL.

See Also
CM_FULL_RESOURCE_DESCRIPTOR, CM_PARTIAL_RESOURCE_DESCRIPTOR,
CM_RESOURCE_LIST, HalAssignSlotResources, HalGetBusData, HalGetBusDataBy
Offset, 10AssignResources, 10QueryDeviceDescription

loReportTargetDeviceChange
This routine is documented in Volume 1 of the Windows 2000 Driver Development
Reference. Please see /oReportTargetDeviceChange in that book for a full reference.

270 Part 1 Kernel-Mode Support Routines

loReportTargetDeviceChangeAsynchronous
This routine is documented in Volume 1 of the Windows 2000 Driver Development
Reference. Please see IoReportTargetDeviceChangeAsynchronous in that book for a full
reference.

loRequestDeviceEject
This routine is documented in Volume 1 of the Windows 2000 Driver Development
Reference. Please see IoRequestDeviceEject in that book for a full reference.

loRequestDpc
VOID

IoRequestDpc(
IN PDEVICE_OBJECT DeviceObject,
IN PIRP Irp,
IN PVOID Context
) ;

IoRequestDpc queues a driver-supplied DpcForIsr routine from the ISR to complete
interrupt-driven 110 processing at a lower IRQL.

Parameters
DeviceObject
Poin270s to the device object for which the request that caused the interrupt is being
processed.

Irp
Points to the current IRP for the specified device.

Context
Points to a driver-determined context to be passed to the DPC routine.

Include
wdm.h or ntddk.h

Comments
Callers of IoRequestDpc must be running at DIRQL.

Because IoRequestDpc is called from the device driver's ISR, the DIRQL is the
Synchronizelrql value that was specified when the driver called IoConnectInterrupt.

Chapter 4 110 Manager Routines 271

However, it is actually possible to queue a DPC at any IRQL >= DISPATCH_LEVEL
using the Ke .. Dpc routines.

See Also
IoInitializeDpcRequest, KelnitializeDpc, KelnsertQueueDpc

loReuselrp
VOID

IoReuselrp(
IN OUT PIRP Irp,
IN NTSTATUS Status
) ;

IoReuselrp reinitializes an IRP so that it can be reused.

Parameters
Irp
Points to the IRP to be reinitialized for reuse.

Status
Specifies the NTST ATUS value to be set in the IRP after it is reinitialized.

Include
ntddk.h

Comments
Drivers should call IoReuselrp, and not IoInitializelrp, to reinitialize an IRP.

A driver should use IoReuselrp only on IRPs it previously allocated with IoAllocatelrp.
It should not use this routine for IRPs created with IoMakeAssociatedlrp, IoBuild
SynchronousFsdRequest, IoBuildAsynchronousFsdRequest, or IoBuildDevicelo
ControlRequest.

Callers of IoReuselrp must be running at IRQL <= DISPATCH_LEVEL.

See Also
IoInitializelrp, IoAllocatelrp, IoMakeAssociatedlrp, IRP

loSetCancel Routine
PDRIVER_CANCEL

IoSetCancelRoutine(

272 Part 1 Kernel-Mode Support Routines

IN PIRP Irp,
IN PDRIVER_CANCEL Cance7Routine
) ;

IoSetCancelRoutine sets up a driver-supplied Cancel routine to be called if a given IRP is
canceled. This routine can disable the Cancel routine currently set in an IRP.

Parameters
Irp
Points to the IRP being put into or removed from a cancelable state.

CancelRoutine
Specifies the entry point of the caller-supplied Cancel routine to be called if the specified
IRP is canceled or is NULL if the given IRP is being removed from the cancelable state.
This routine is declared as follows:

VOID
(*PDRIVER_CANCEL)(

Include

IN PDEVICE_OBJECT DeviceObject,
IN PIRP Irp
) ;

wdm.h or ntddk.h

Return Value
IoSetCancelRoutine returns the previous value of Irp->CanceIRoutine. If no Cancel
routine was previously set, or if IRP cancellation is already in progress, IoSetCancel
Routine returns NULL.

Comments
A driver must hold the system cancel spin lock when calling this routine if the driver uses
the I10-manager-supplied device queue in the device object. The driver executes at IRQL
DISPATCH_LEVEL after calling IoAcquireCancelSpinLock until it releases the cancel
spin lock with IoReleaseCancelSpinLock.

If the driver manages its own queue(s) of IRPs, then the driver need not hold the cancel spin
lock when calling this routine. IoSetCancelSpinLock uses an interlocked exchange intrinsic
to set the address of the Cancel routine as an atomic operation. Reduced usage of the cancel
spin lock can improve driver performance and overall system performance.

Driver Cancel routines are called at IRQL DISPATCH_LEVEL with the cancel spin lock
held. The Cancel routine must release the cancel spin lock before it returns control.

Chapter 4 1/0 Manager Routines 273

See Also
IoAcquireCancelSpinLock, IoReleaseCancelSpinLock

loSetCompletionRoutine
VOID

IoSetCompletionRoutine(
IN PIRP Irp.
IN PIO_COMPLETION_ROUTINE Comp7etionRoutine.
IN PVOID Context.
IN BOOLEAN InvokeOnSuccess.
IN BOOLEAN InvokeOnError.
IN BOOLEAN InvokeOnCance7
) ;

IoSetCompletionRoutine registers an IoCompletion routine to be called when the next
lower-level driver has completed the requested operation for the given IRP.

Parameters
Irp
Points to the IRP that the driver wants to track.

Completion Routine
Specifies the entry point for the driver-supplied IoCompletion routine to be called when the
next-lower driver completes the packet. This routine is declared as follows:

NTSTATUS
(*PIO_COMPLETION_ROUTINE)(

IN PDEVICE_OBJECT DeviceObject.
IN PIRP Irp.
IN PVOID Context
) ;

Context
Points to a driver-determined context to pass to the IoCompletion routine.

InvokeOnSuccess
Specifies whether the completion routine is called if the IRP is completed with STATUS_
SUCCESS in the 110 status block.

InvokeOnError
Specifies whether the completion routine is called if the IRP is completed with an error
STATUS_XXX in the 110 status block.

274 Part 1 Kernel-Mode Support Routines

InvokeOnCancel
Specifies whether the completion routine is called if the IRP is completed with STATUS_
CANCELLED set in the I/O status block.

Include
wdm.h or ntddk. h

Comments
This routine sets the transfer address of the IoCompletion routine in the given IRP. The
lowest-level driver in a chain of layered drivers cannot call this routine.

IoSetCompletionRoutine registers the specified routine to be called when the next-Iower
level driver has completed the requested operation in any or all of the following ways:

• Successfully

• With an error

• Canceled the IRP

Usually, the I/O status block is set by the underlying device driver. It is read but not altered
by any higher-level drivers' IoCompletion routines.

Higher-level drivers that allocate IRP's with IoAIIocatelrp or IoBuildAsynchronous
FsdRequest must call this routine with all InvokeOnXxx parameters set to TRUE before
passing the driver-allocated IRP to IoCaIlDriver. When the IoCompletion routine is called
with such an IRP, it must free the driver-allocated IRP and any other resources that the
driver set up for the request, such as MDLs with IoBuildPartialMdl. Such a driver should
return STATUS_MORE_PROCESSING_REQUIRED when it calls IoFreelrp to forestall
the I/O Manager's completion processing for the driver-allocated IRP.

Callers of IoSetCompletionRoutine must be running at IRQL <= DISPATCH_LEVEL.

See Also
10 _STACK_LOCATION, IoAIIocatelrp, IoBuildAsynchronousFsdRequest, IRP,
IoBuildPartialMdl, IoFreelrp

loSetDevicelnterfaceState
This routine is documented in Volume 1 of the Windows 2000 Driver Development
Reference. Please see IoSetDevicelnterfaceState in that book for a full reference.

loSetHard ErrorOrVerifyDevice
VOID

IoSetHardErrorOrVerifyDevice(
IN PIRP Irp,
IN PDEVICE_OBJECT DeviceObject
) ;

Chapter 4 I/O Manager Routines 275

IoSetHardErrorOrVerifyDevice must be called before completing an IRP if a removable
media driver's call to IoIsErrorUserlnduced returns TRUE.

Parameters
Irp
Points to the IRP for which the driver encountered a user-induced error.

DeviceObject
Points to the target device to be verified for the I/O operation.

Include
ntddk.h

Comments
A file system driver uses the corresponding file object of the specified device object to send
a popup to the user who can correct the error and retry the operation or cancel it.

Calling IoSetHardErrorOrVerifyDevice ensures that the popup is sent to the user thread
that originally made the I/O request to the target device on which the media might have
changed.

Callers of IoSetHardErrorOrVerifyDevice must be running at IRQL <= DISP ATCH_
LEVEL.

See Also
IoIsErrorUserlnduced, IoRaiseHardError, IoRaiselnformationalHardError

loSetNextlrpStackLocation
VOID

IoSetNextIrpStackLocation(
IN OUT PIRP Irp
) ;

IoSetNextlrpStackLocation sets the IRP stack location in a driver-allocated IRP to that of
the caller.

276 Part 1 Kernel·Mode Support Routines

Parameters
Irp
Points to the IRP whose stack location is to be set.

Include
wdm.h or ntddk.h

Comments
In general, this routine is seldom used by drivers. It is primarily used by drivers that require
their own stack location in an IRP that they have allocated, on their own, to send to another
driver.

10SetNextIrpStackLocation is generally not needed because either:

• The driver received the IRP it is passing from another, higher-level driver, and so it
already owns a stack location,

• Or, the driver allocated the IRP but does not need its own stack location because it can
keep everything that it needs in a context block whose address can be passed to its
10Compietion routine.

Care should be taken if this routine is called, especially when allocating the IRP with 10-
Allocatelrp or 10MakeAssociatedlrp. The writer of the allocating driver must remember
that a caller-specific stack location is not included in the number of stack locations required
by the lower-level drivers to which it sends IRPs with 10CallDriver. A driver must explicit
ly specify a stack location for itself in its call to 10AlIocatelrp or 10MakeAssociatedlrp if
it calls 10SetNextIrpStackLocation with the IRP returned by either routine.

A driver cannot call 10SetNextIrpStackLocation with any IRP it allocates by calling
10BuildAsynchronousFsdRequest, 10BuildDeviceloControlRequest, or 10Build
SynchronousFsdRequest.

Callers of 10SetNextIrpStackLocation must be running at IRQL <= DISPATCH_LEVEL.

See Also
10 _STACK_LOCATION, 10AlIocatelrp, 10BuildAsynchronousFsdRequest, 10Build
DeviceloControlRequest, 10BuildSynchronousFsdRequest, 10CallDriver, 10Set
CompletionRoutine

loSetPartition Information
NTSTATUS

IoSetPartitionlnformation(

IN PDEVICE_OBJECT DeviceObject.
IN ULONG SectorSize.
IN ULONG PartitionNumber.
IN ULONG PartitionType
) :

Chapter 4 VO Manager Routines 277

IoSetPartitionlnformation sets the partition type and number in a partition table entry for a
given disk represented by the device object.

Parameters
DeviceObject
Points to the device object representing the device on which the partition type is to be set.

SectorSize
Specifies the size, in bytes, of sectors on the disk.

PartitionNumber
Specifies the partition number on the device whose partition type is to be set.

Partition Type
Specifies the type for the partition. For the currently defined PartitionType values, see the
Win32 SDK.

Include
ntddk.h

Return Value
If IoSetPartitionlnformation returns STATUS_SUCCESS, the disk driver updates its
notion of the partition type for this partition in its device extension.

Comments
This routine is called when a disk device driver is asked to set the partition type in a parti
tion table entry by an IRP _MJ_DEVICE_CONTROL request. This request is generally
issued by the format utility, which performs I/O control functions on the partition. The dri
ver passes a pointer to the device object representing the physical disk and the number of
the partition associated with the device object that the format utility has open.

This routine is synchronous and must be called by the disk driver's Dispatch routine or by
a driver thread. Thus, all user and file system threads must be prepared to enter a wait state
when issuing the device control request to set the partition type for the device.

This routine assumes the partition number passed in by the disk driver actually exists.

278 Part 1 Kernel·Mode Support Routines

This routine must be called at PASSIVE_LEVEL IRQL because it uses a kernel event object
to synchronize 110 completion on the device. The event cannot be set to the Signaled state
without queuing and executing the 110 system's special kernel APC routine for 110
completion.

See Also
10ReadPartitionTable, 10 WritePartitionTable

loSetShareAccess
VOID

IoSetShareAccess(
IN ACCESS_MASK DesiredAccess.
IN ULONG DesiredShareAccess.
IN OUT PFILE_OBJECT Fi7eObject,
OUT PSHARE_ACCESS ShareAccess
) ;

10SetShareAccess sets the access rights for sharing the given file object.

Parameters
DesiredAccess
Specifies the type of access requested for the FileObject. See 10CreateFile for a complete
list of system-defined DesiredAccess flags.

Des"edShareAccess
Specifies the share access to be set for the file object. This value can be zero, one, or more
of the following:

FILE_SHARE_READ
FILE_SHARE_ WRITE
FILE_SHARE_DELETE

FileObject
Points to the file object whose share access is being set or reset.

ShareAccess
Points to the SHARE_ACCESS structure associated with FileObject. Drivers should treat
this structure as opaque.

Include
wdm.h or ntddk.h

Chapter 4 I/O Manager Routines 279

Comments
Only highest-level kernel-mode drivers should call this routine. The call must occur in the
context of the first thread that attempts to open the FileObject.

This routine sets access and share access information when the FileObject is first opened. It
returns a pointer to the common share-access data structure associated with FileObject.
Callers should save this pointer for later use when updating the access or closing the file.

Generally, FSDs are most likely to call this routine. However, other highest-level drivers
can call loSetShareAccess to control the kind of access allowed to a driver-created device
object associated with the given FileObject.

loSetShareAccess is not an atomic operation. Therefore, drivers calling this routine must
protect the shared file object passed to loSetShareAccess by means of some kind of lock,
such as a mutex or a resource lock, in order to prevent corruption of the shared access
counts.

Callers of loSetShareAccess must be running at IRQL PASSIVE_LEVEL.

See Also
loCreateFile, loCheckShareAccess, loGetFileObjectGenericMapping, loGet
RelatedDeviceObject, loRemoveShareAccess, loUpdateShareAccess

loSetThreadHardErrorMode
BOOLEAN

IoSetThreadHardErrorMode(
IN BOOLEAN Enab7eHardErrors
) ;

loSetThreadHardErrorMode enables or disables hard error reporting for the current
thread.

Parameters
EnableHardErrors
Specifies if hard error reporting to the user should be enabled or disabled for this thread.

Include
ntddk.h

Return Value
loSetThreadHardErrorMode returns TRUE if hard errors were enabled from this thread
before this routine completed execution.

280 Part 1 Kernel-Mode Support Routines

Comments
If hard errors are disabled for a given thread, calls to IoRaiseHardError will not display a
message to the user indicating that a serious error has occurred. In addition, the IRP that is
passed to IoRaiseHardError is completed without any data being copied into user buffers.
Calling IoRaiselnformationalHardError after disabling hard errors causes that routine to
always return FALSE for this thread.

Callers of this routine must be running at IRQL <= DISPATCH_LEVEL.

See Also
IoRaiseHardError, IoRaiselnformationalHardError

loSizeOfl rp
USHORT

IoSizeOfIrp(
IN CCHAR StackSize
) ;

IoSizeOfirp determines the size in bytes for an IRP, given the number of stack locations in
the IRP.

Parameters
StackSize
Specifies the number of stack locations for the IRP.

Include
wdm.h or ntddk. h

Return Value
IoSizeOfirp returns the size, in bytes, of the IRP.

Comments
Callers of IoSizeOfirp can be running at any IRQL level.

The input StackSize value is either that of the next-lower driver's device object or one more
than that value.

See Also
IoAllocatelrp, IoMakeAssociatedlrp

loSkipCurrentlrpStackLocation
VOID

IoSkipCurrentIrpStackLocation(
IN PIRP Irp
) ;

Chapter 4 1/0 Manager Routines 281

IoSkipCurrentIrpStackLocation copies the IRP stack parameters from the current stack
location to the stack location of the next-lower driver and does not allow the current driver
to set an I/O completion routine.

Parameters
Irp
Points to the IRP.

Include
wdm.h or ntddk.h

Comments
A driver calls IoSkipCurrentIrpStackLocation to copy the IRP parameters from its stack
location to the next-lower driver's stack location. The caller of this routine does not set an
I/O completion routine and thus is no longer involved in handling this IRP once it passes the
IRP down the device stack with IoCallDriver.

A driver that calls this routine must not set an I/O completion routine for this IRP. Drivers
that copy their IRP parameters and set a completion routine should call IoCopyCurrentIrp
StackLocationToNext instead of this routine.

Callers of IoSkipCurrentIrpStackLocation must be running at IRQL <= DISPATCH_
LEVEL.

See Also
10 _STACK_LOCATION, IoCallDriver, IoCopyCurrentIrpStackLocationToNext

loStartNextPacket
VOID

IoStartNextPacket(
IN PDEVICE_OBJECT DeviceObject.
IN BOOLEAN Cancelable
) ;

IoStartNextPacket dequeues the next IRP, if any, from the given device object's associated
device queue and calls the driver's Startlo routine.

282 Part 1 Kernel-Mode Support Routines

Parameters
DeviceObject
Points to the device object for which the IRP is to be dequeued.

Cancelable
Specifies whether IRPs in the device queue can be canceled.

Include
wdm.h or ntddk.h

Comments
If there are no IRPs currently in the device queue for the target DeviceObject, this routine
simply returns control to the caller.

If the driver passed a pointer to a cancel routine when it called IoStartPacket, it should pass
TRUE in the Cancelable parameter. If Cancelable is TRUE, the 110 Manager will use the
cancel spin lock to protect the device queue and the current IRP.

Drivers that do not have a StartIo routine cannot call IoStartNextPacket.

Callers of IoStartNextPacket must be running at IRQL DISPATCH_LEVEL. Usually, this
routine is called from a device driver's DpcForIsr or CustomDpc routine, both of which are
run at IRQL DISPATCH_LEVEL.

See Also
DEVICE_OBJECT, IoStartNextPacketByKey, IoStartPacket

loStartNextPacketByKey
VOID

IoStartNextPacketByKey(
IN PDEVICE_OBJECT DeviceObject.
IN BOOLEAN Cancelable.
IN ULONG Key
) ;

IoStartNextPacketByKey dequeues the next packet from the given device object's asso
ciated device queue according to a specified sort-key value and calls the driver's StartIo
routine with that IRP.

Parameters
DeviceObject

Chapter 4 VO Manager Routines 283

Points to the device object for which the IRP is to be dequeued.

Cancelable
Specifies whether IRPs in the device queue can be canceled.

Key
Specifies the sort key that determines which entry to remove from the queue.

Include
wdm.h or ntddk.h

Comments
If there are no IRPs currently in the device queue for the target device object, this routine
simply returns control to the caller.

If the driver passed a pointer to a cancel routine when it called IoStartPacket, it should pass
TRUE in the Cancelable parameter. If Cancelable is TRUE, the I/O Manager will use the
cancel spin lock to protect the device queue and the current IRP.

Drivers that do not have a StartIo routine cannot call IoStartNextPacketByKey.

Callers of IoStartNextPacketByKey must be running at IRQL <= DISPATCH_LEVEL.
Usually, this routine is called from a device driver's DpcForIsr or CustomDpc routine, both
of which are run at IRQL DISPATCH_LEVEL.

See Also
DEVICE_OBJECT, IoStartNextPacket, IoStartPacket

loStartPacket
VOID

IoStartPacket(
IN PDEVICE_OBJECT DeviceObject,
IN PIRP Irp,
IN PULONG Key OPTIONAL,
IN PDRIVER_CANCEL Cance7Function OPTIONAL
) ;

IoStartPacket calls the driver's StartIo routine with the given IRP or inserts the IRP into
the device queue associated with the given device object if the device is already busy.

284 Part 1 Kernel·Mode Support Routines

Parameters
DeviceObject
Points to the target device object for the IRP.

Irp
Points to the IRP to be processed.

Key
Points to a value that det~ines where to insert the packet into the device queue. If this is
zero, the packet is inserted at the tail of the device queue.

CancelFunction
Specifies the entry point for a driver-supplied Cancel routine.

Include
wdm. h or ntddk.h

Comments
If the driver is already busy processing a request for the target device object, then the packet
is queued in the device queue. Otherwise, this routine calls the driver's Startlo routine with
the specified IRP.

If a nonNULL CancelFunction pointer is supplied, it is set in the IRP so the driver's Cancel
routine is called if the IRP is canceled before its completion.

Drivers that do not have a Startlo routine cannot call IoStartPacket.

Callers of IoStartPacket must be running at IRQL <= DISPATCH_LEVEL. Usually, this
routine is called from a device driver's Dispatch routine at IRQL PASSIVE_LEVEL.

See Also
DEVICE_OBJECT, IoMarklrpPending, IoSetCancelRoutine, IoStartNextPacket,
IoStartNextPacketByKey

loStartTimer
VOID

IoStartTimer(
IN PDEVICE_OBJECT DeviceObject
) :

IoStartTimer enables the timer associated with a given device object so the driver-supplied
IoTimer routine is called once per second.

Chapter 4 I/O Manager Routines 285

Parameters
De vice Object
Points to a device object whose timer routine is to be called.

Include
wdm.h or ntddk.h

Comments
The driver must already have set up the IoTimer routine for the DeviceObject by calling
IoInitializeTimer.

Callers of this routine must be running at IRQL <= DISPATCH_LEVEL.

See Also
IoInitiaiizeTimer, IoStopTimer, KelnitializeDpc, KelnitializeTimer, KeSetTimer

loStopTimer
VOID

IoStopTimer(
IN PDEVICE_OBJECT DeviceObject
) ;

IoStopTimer disables the timer for a specified device object so the driver-supplied IoTimer
routine is not called.

Parameters
DeviceObject
Points to the device object with which the IoTimer routine is associated.

Include
wdm.h or ntddk.h

Comments
The driver-supplied IoTimer routine can be re-enabled with a call to IoStartTimer.

Do not call IoStopTimer from within a driver's IoTimer routine.

Callers of this routine must be running at IRQL <= DISPATCH_LEVEL.

286 Part 1 Kernel-Mode Support Routines

See Also
IoInitializeTimer, IoStartTimer

IoU n reg isterPI ug PlayNotification
This routine is documented in Volume 1 of the Windows 2000 Driver Development
Reference. Please see IoUnregisterPlugPlayNotification in that book for a full reference.

loUnregisterShutdownNotification
VOID

IoUnregisterShutdownNotification(
IN PDEVICE_OBJECT DeviceObject
) ;

IoUnregisterShutdownNotification removes a registered driver from the shutdown
notification queue. The driver's DispatchShutdown routine is not called before the Power
Manager sends an IRP _MN_SET_POWER request to shut down the system.

Parameters
De vice Object
Points to the driver's device object.

Include
wdm.h or ntddk.h

Comments
IoUnregisterShutdownNotification can be called by a driver only if that driver previously
called IoRegisterShutdownNotification with the given DeviceObject. This routine is usu
ally called from a driver's Unload routine.

Calling IoUnregisterShutdownNotification cancels all shutdown notifications that have
been registered for the given DeviceObject.Callers of IoUnregisterShutdownNotification
must be running at IRQL PASSIVE_LEVEL.

See Also
IoRegisterShutdownN otification

loUpdateShareAccess
VOID

IoUpdateShareAccess(
IN PFILE_OBJECT Fi7eObject.
IN OUT PSHARE_ACCESS ShareAccess
) ;

Chapter 4 1/0 Manager Routines 287

IoUpdateShareAccess updates the share access for the given file object, usually when the
file is being opened.

Parameters
Fi/eObject
Points to a referenced file object representing the file or associated device object for which
to update the share access.

ShareAccess
Points to the common SHARE_ACCESS structure associated with the FileObject. Drivers
should treat this structure as opaque.

Include
ntddk.h

Comments
IoUpdateShareAccess is not an atomic operation. Therefore, drivers calling this routine
must protect the shared file object passed to IoUpdateShareAccess by means of some kind
of lock, such as a mutex or a resource lock, in order to prevent corruption of the shared
access counts.

Before calling IoUpdateShareAccess, the caller must successfully call IoCheckShare
Access with Update set to False. Such a call to IoCheckShareAccess determines whether
the requested shared access is compatible with the way the file object is currently being ac
cessed by other opens, but it does not update the SHARE_ACCESS structure. IoUpdate
ShareAccess actually updates the SHARE_ACCESS structure associated with the file
object.

Callers of IoUpdateShareAccess must be running at IRQL PASSIVE_LEVEL.

See Also
IoCheckShareAccess, IoRemoveShareAccess, IoSetShareAccess

288 Part 1 Kernel-Mode Support Routines

10 WM IAllocatelnstancelds
NTSTATUS

IoWMIAllocateInstanceIds(
IN GUID *Guid,
IN ULONG InstanceCount,
OUT ULONG *Firstlnstanceld
) ;

10WMIAllocatelnstancelds allocates one or more instance IDs unique to the GUID.

Parameters
Guid
Points to the GUID for which to generate instance identifiers.

InstanceCount
Specifies how many instance identifiers should be provided.

Firstlnstanceld
Points to the first instance identifier that the driver should use.

Include
wdm.h or ntddk.h

Return Value
10 WMIAllocatelnstancelds returns a status from the following list:

STATUS_SUCCESS
Indicates that WMI successfully provided unique instance identifiers for the GUID
specified.

STATUS_UNSUCCESSFUL
Indicates that the WMI services are not available.

STATUSJNSUFFICIENT RESOURCES
Indicates that insufficient resources were available to provide the caller with instance IDs.

Comments
If greater than one instance was requested in InstanceCount and the routine completed
successfully, FirstInstanceId points to the first instance that the caller should use. For each
instance requested beyond one, the caller should increment the value returned in * First
InstanceId. For example, if the caller requested six instances and one was returned as the

Chapter 4 1/0 Manager Routines 289

value of FirstInstanceId, the caller should use the values 1-6 as his unique instance
identifiers.

Callers of this routine must be running at IRQL PASSIVE_LEVEL.

loWMIDeviceObjectToProviderld
ULONG

IoWMIDeviceObjectToProviderId(
IN PDEVICEOBJECT DeviceObject
) ;

10 WMIDeviceObjectToProviderId translates the specified device object into the
corresponding WMI Provider Id.

Parameters
DeviceObject
Points to a device object.

Include
wdm.h or ntddk.h

Return Value
10 WMIDeviceObjectToProviderId returns the WMI Provider Id associated with the
specified device object.

Comments
10 WMIDeviceObjectToProviderld should be used when filling in the ProviderId member
of the WNODE_HEADER structure in those cases when the WNODEHEADER structure is
being initialized as part of a WNODE_EVENT_ITEM or WNODE_EVENT_REFERENCE
structure. (If the WNODE_HEADER is being used for other purposes, Provide rId is
reserved.)

When running on a 32 bit OS, the provider Id and the device object are identical. When
running on a 64 bit OS, 10 WMIDeviceObjectToProviderld will convert the 64 bit device
object to a 32 bit provider ID.

See Also
WNODE_HEADER, WNODE_EVENT_ITEM, WNODE_EVENT_REFERENCE

290 Part 1 Kernel-Mode Support Routines

loWMIRegistrationControl
NTSTATUS

IoWMIRegistrationControl(
IN PDEVICE_OBJECT DeviceObject.
IN ULONG Action
) ;

10 WMIRegistrationControl is used to request WMI action, such as adding or removing a
device object from WMI.

Parameters
DeviceObject
Points to either a device object or the address of a callback function. If the WMIREG_
FLAG_CALLBACK is set in the Action parameter, then DeviceObject should contain a
callback address. Otherwise, DeviceObject contains a device object pointer.

Action
Specifies the action that WMI should take based on the specified value:

Action Action to be taken

WMIREG_ACTION_REGISTER Specifies that WMI should register DeviceObject as a
provider of WMI information.

WMIREG_ACTION_DEREGISTER Specifies that WMI should remove DeviceObject from its
list of WMI providers.

WMCACTION_REREGISTER Specifies that WMI should unregister the device and then
register (reregister) the device. Reregistering the device
will result in WMI sending an IRP _MN_REGINFO to the
device.

WMIREG_ACTION_UPDATE_GUIDS Specifies that WMI should requery the device object for a
new list of GUID identifiers that it provides data for. This
will result in WMI sending an IRP _MN_REGINFO to the
device.

WMIREG_FLAG_CALLBACK Indicates that the value contained at DeviceObject is
actually the address of a callback function. (Note:

Include
wdm.h or ntddk.h

WMIREG_FLAG_CALLBACK is not supported in the
Windows 98 implementation of WMI.)

Chapter 4 I/O Manager Routines 291

Return Value
10 WMIRegistrationControl returns a status code from the following list:

STATUS_SUCCESS
Indicates that WMI completed the action requested without error.

STATUSJNVALlD_PARAMETER
Indicates that the action, specified in Action, was invalid.

STATUS_Xxx
Indicates that the request failed for the reason specified by the NTST A TUS value. See
ntstatus.h for detailed information for the actual status return code.

Comments
Callers of this routine must be running at IRQL PASSIVE_LEVEL.

loWMISuggestlnstanceName
NTSTATUS

loWMISuggestInstanceName(
IN PDEVICE_OBJECT DeviceObject OPTIONAL,
IN PUNICODE_STRING Symbo7icLinkName OPTIONAL,
IN BOOLEAN CombineNames,
OUT PUNICODE_STRING SuggestedlnstanceName
) :

10 WmiSuggestInstanceName is used to request that WMI suggest a base name that a
dri ver can use to build WMI instance names for the device.

Parameters
PhyiscalDeviceObject
If supplied, points to the driver's physical device object.

SymbolicLinkName
If supplied, points to the symbolic link name returned from IoRegisterDevicelnteiface.

CombineNames
If TRUE then the suggested names returned will combine the PhysicalDeviceObject and
SymbolicLinkName information.

292 Part 1 Kernel·Mode Support Routines

SuggestedlnstanceName
A pointer to a buffer which upon successful completion will contain a UNICODE STRING
that contains the suggested instance name. The caller is responsible for freeing this buffer
when it is no longer needed.

Include
wdm.h or ntddk.h

Return Value
10 WMISuggestInstanceName returns a status code from the following list:

STATUS_SUCCESS
Indicates that WMI was able to successfully complete this function.

STATUS_UNSUCCESSFUL
Indicates that the WMI services are not available.

STATUSJNSUFFICIENT _RESOURCES
Indicates that insufficient resources were available to provide the caller with a buffer
containing the UNICODE string.

STATUS_NO_MEMORV
Indicates that insufficient resources were available to provide the caller with a buffer
containing the UNICODE string.

Comments
If CombineNames is TRUE then both PhysicalDeviceObject and SymbolicLinkName must
be specified. Otherwise only one of them should be specified.

loWMIWriteEvent
NTSTATUS

IoWMIWriteEvent(
IN PVOID WnodeEventltem
) ;

10WMIWriteEvent delivers a given event to the user mode WMI components for notifi
cation.

Parameters
WnodeEventltem

Chapter 4 VO Manager Routines 293

Points to a WNODE_EVENT_ITEM structure to be delivered to the user mode WMI com
ponents that requested notification of the event.

Include
wdm.h or ntddk.h

Return Value
IoWMIWriteEvent returns a status code from the following list:

STATUS_SUCCESS
Indicates that WMI has successfully queued the event for delivery to the user mode WMI
components.

STATUS_UNSUCCESSFUL
Indicates that WMI services are unavailable.

STATUS_BUFFER_OVERFLOW
Indicates that the event item specified exceeds the maximum allowed size.

STATUSJNSUFFICENT _RESOURCES
Indicates that insufficient resources were available for WMI to queue the event for delivery.

Comments
The WNODE_EVENT_ITEM structure that is allocated by the caller and passed in Wnode
Event/tem must be allocated from nonpaged pool. If IoWMIWriteEvent returns STATUS_
SUCCESS, the memory for the event item will automatically be freed by the system. If
IOWMIWriteEvent returns anything other than STATUS_SUCCESS, it is the caller's
responsibility to free the buffer.

Drivers should only call IoWMIWriteEvent for events that have been enabled for WMI.
This ensures that there is an event consumer waiting for indication on that event.

Callers of this routine must be running at IRQL < DISPATCH_LEVEL.

See Also
WNODE_EVENT_ITEM, IOWmiDeviceObjectToProviderld

294 Part 1 Kernel-Mode Support Routines

loWriteErrorLogEntry
VOID

IoWriteErrorLogEntry(
IN PVOID E7Entry
) :

10 WriteErrorLogEntry queues a given error log packet to the system error logging thread.

Parameters
EIEntry
Points to the error log packet the driver has allocated with 10AIlocateErrorLogEntry and
filled in.

Include
wdm.h or ntddk.h

Comments
Callers of this routine must be running at IRQL <= DISPATCH_LEVEL.

See Also
10AllocateErrorLogEntry

10 WritePartition Table
NTSTATUS

IoWritePartitionTable(
IN PDEVICE_OBJECT DeviceObject.
IN ULONG SectorSize.
IN ULONG SectorsPerTrack.
IN ULONG NumberOfHeads.
IN struct _DRIVE_LAYOUT_INFORMATION *PartitionBuffer
) :

10 WritePartitionTable writes partition tables from the entries in the partition list buffer for
each partition on the disk represented by the given device object.

Parameters
DeviceObject
Points to the device object representing the disk whose partition tables are to be written.

Chapter 4 VO Manager Routines 295

SectorSize
Specifies the size in bytes of sectors on the device.

SectorsPerTrack
Specifies the track size on the device.

NumberOfHeads
Specifies the number of tracks per cylinder.

Partition Buffer
Points to the drive layout buffer that contains the partition list entries. For more detailed
information about the DRIVE_LAYOUT_INFORMATION structure, see IoRead
PartitionTable.

Include
ntddk.h

Return Value
If all writes are completed without error, IoWritePartitionTable returns STATUS_
SUCCESS.

Comments
IoWritePartitionTable is called when a disk device driver is asked to set the partition type
in a partition table entry or to repartition the disk by an IRP _MJ_DEVICE_CONTROL re
quest. The device control request is generally issued by the format utility, which performs
110 control functions on the partitions and disks in the machine.

To reset a partition type, the driver passes a pointer to the device object representing the
physical disk and the number of the partition associated with the device object that the for
mat utility has open. When a disk is to be repartitioned dynamically, the disk driver must
tear down its set of device objects representing the current disk partitions and create a new
set of device objects representing the new partitions on the disk.

Applications that create and delete partitions and require full descriptions of the system
should call IoReadPartitionTable with ReturnRecognizedPartitions set to FALSE. The
drive layout structure can be modified by the system format utility to reflect a new
configuration of the disk.

296 Part 1 Kernel-Mode Support Routines

10 WritePartitionTable is synchronous. It must be called by the disk driver's Dispatch
routine or by a driver thread. Thus, all user and file system threads must be prepared to enter
a wait state when issuing the device control request to reset partition types for the device.

Callers of this routine must be running at IRQL PASSIVE_LEVEL.

See Also
10CreateDevice, 10ReadPartitionTable, 10SetPartitionlnformation

297

CHAPTER 5

Kernel Routines

All kernel-mode drivers except video and SCSI miniport drivers and NDIS drivers are likely
to call at least some KeXxx routines.

References for the KeXxx routines are in alphabetical order.

For an overview of the functionality of these routines, see Chapter 1, Summary of Kernel
Mode Support Routines.

KeAcquireSpinLock
VOID

KeAcquireSpinLock(
IN PKSPIN_LOCK SpinLock.
OUT PKIRQL 07dlrq7
) ;

KeAcquireSpinLock acquires a spin lock so the caller can synchronize access to shared
data in a multiprocessor-safe way by raising IRQL.

Parameters
SpinLock
Pointer to an initialized spin lock for which the caller provides the storage.

Oldlrql
Pointer to a variable that is set to the current IRQL when this call occurs.

Include
wdm.h or ntddk.h

Comments
The current IRQL is saved in Oldlrql. Then, the current IRQL is reset to DISPATCH_
LEVEL, and the specified spin lock is acquired.

298 Part 1 Kernel-Mode Support Routines

The Oldlrql value must be specified when the spin lock is released with KeRelease
SpinLock.

Spin locks can cause serious problems if not used judiciously. In particular, no deadlock
protection is performed and dispatching is disabled while the spin lock is held. Therefore:

• The code within a critical region guarded by an spin lock must neither be pageable nor
make any references to pageable data.

• The code within a critical region guarded by a spin lock can neither call any external
function that might access pageable data or raise an exception, nor can it generate any
exceptions.

• The caller should release the spin lock with KeReleaseSpinLock as quickly as possible.

Callers of KeAcquireSpinLock must be running at IRQL <= DISPATCH_LEVEL.

See Also
KeAcquireSpinLockAtDpcLevel, KeInitializeSpinLock, KeReleaseSpinLock

KeAcquireSpinLockAtDpcLevel
VOID

KeAcquireSpinLockAtDpcLevel(
IN PKSPIN_LOCK SpinLock
) ;

KeAcquireSpinLockAtDpcLevel acquires a spin lock when the caller is already running at
IRQL DISPATCH_LEVEL.

Parameters
SpinLock
Pointer to an initialized spin lock for which the caller must provide the storage.

Include
wdm.h or ntddk.h

Comments
Drivers call KeAcquireSpinLockAtDpcLevel instead of KeAcquireSpinLock for better
driver performance if and only if they are already running at IRQL DISPATCH_LEVEL.

Chapter 5 Kernel Routines 299

If a driver is running at IRQL < DISPATCH_LEVEL, it should call KeAcquireSpinLock
to have IRQL raised by that routine. KeAcquireSpinLockAtDpcLevel assumes the caller is
already running at IRQL DISPATCH_LEVEL, so no raise is necessary.

The caller should release the spin lock with KeReleaseSpinLockFromDpcLevel as quickly
as possible.

See Also
KeAcquireSpinLock, KeInitializeSpinLock, KeReleaseSpinLock, KeReleaseSpinLock
FromDpcLevel

KeBugCheck
VOID

KeBugCheck(
IN ULONG BugCheckCode
) ;

KeBugCbeck brings down the system in a controlled manner when the caller discovers an
unrecoverable inconsistency that would corrupt the system if the caller continued to run.

Parameters
BugCheckCode
Specifies a value that indicates the reason for the bug check.

Include
ntddk.h

Comments
A bug check is a system-detected error that causes an immediate, controlled shutdown of
the system. Various kernel-mode components perform run-time consistency checking. When
such a component discovers an unrecoverable inconsistency, it causes a bug check to be
generated.

Whenever possible, all kernel-mode components should log an error and continue to run,
rather than calling KeBugCbeck. For example, if a driver is unable to allocate required
resources, it should log an error so that the system continues to run; it must not generate a
bug check. A driver or other kernel-mode component should call this routine only in cases
of a fatal, unrecoverable error that could corrupt the system itself.

When a bug check is unavoidable, most system components call KeBugCheckEx, which
provides more information about the cause of such an inconsistency than KeBugCbeck.

Callers of KeBugCbeck can be running at any IRQL.

300 Part 1 Kernel-Mode Support Routines

See Also
10AlIocateErrorLogEntry, 10 WriteErrorLogEntry, KeBugCheckEx, KeRegisterBug
CheckCallback

KeBugCheckEx
VOID

KeBugCheckEx(
IN ULONG BugCheckCode.
IN ULONG_PTR BugCheckParameterl.
IN ULONG_PTR BugCheckParameter2.
IN ULONG_PTR BugCheckParameter3.
IN ULONG_PTR BugCheckParameter4
) ;

KeBugCheckEx brings down the system in a controlled manner when the caller discovers
an unrecoverable inconsistency that would corrupt the system if the caller continued to run.

Parameters
BugCheckCode
Specifies a value that indicates the reason for the bug check.

BugCheckParameterX
Supply additional information, such as the address and data where a memory-corruption
error occurred, depending on the value of BugCheckCode.

Include
wdm.h or ntddk.h

Comments
A bug check is a system-detected error that causes an immediate, controlled shutdown of
the system. Various kernel-mode components perform run-time consistency checking. When
such a component discovers an unrecoverable inconsistency, it causes a bug check to be
generated.

Whenever possible, all kernel-mode components should log an error and continue to run,
rather than calling KeBugCheck. For example, if a driver is unable to allocate required
resources, it should log an error so that the system continues to run; it must not generate a
bug check. A driver or other kernel-mode component should call this routine only in cases
of a fatal, unrecoverable error that could corrupt the system itself.

Callers of KeBugCheckEx can be running at any IRQL.

Chapter 5 Kernel Routines 301

See Also
10AllocateErrorLogEntry, 10 WriteErrorLogEntry, KeBugCheck, KeRegisterBug
CheckCallback

KeCancelTimer
BOOLEAN

KeCancelTimer(
IN PKTIMER Timer
) ;

KeCancelTimer dequeues a timer object before the timer interval, if any was set, expires.

Parameters
Timer
Pointer to an initialized timer object, for which the caller provides the storage.

Include
wdm.h or ntddk.h

Return Value
If the specified timer object is in the system timer queue, KeCancelTimer returns TRUE.

Comments
If the timer object is currently in the system timer queue, it is removed from the queue. If
a DPC object is associated with the timer, it too is canceled. Otherwise, no operation is
performed.

Callers of this routine must be running at IRQL <= DISPATCH_LEVEL.

See Also
KelnitializeTimer, KeReadStateTimer, KeSetTimer

KeClearEvent
VOID

KeClearEvent(
IN PRKEVENT Event
) ;

KeClearEvent sets the given event to a not signaled state.

302 Part 1 Kernel-Mode Support Routines

Parameters
Event
Pointer to an initialized dispatcher object of type event for which the caller supplies the
storage.

Include
wdm.h or ntddk.h

Comments
Event is set to a not signaled state, meaning its value is set to zero.

For better performance, use KeClearEvent unless the caller uses the value returned by
KeResetEvent to determine what to do next.

Callers of KeClearEvent must be running at IRQL <= DISPATCH_LEVEL.

See Also
KelnitializeEvent, KeReadStateEvent, KeResetEvent, KeSetEvent

KeDelayExecutionThread
NTSTATUS

KeDelayExecutionThread(
IN KPROCESSOR_MODE WaitMode,
IN BOOLEAN A7ertab7e,
IN PLARGE_INTEGER Interva7
) ;

KeDelayExecutionThread routine puts the current thread into an alertable or nonalertable
wait state for a given interval.

Parameters
WaitMode
Specifies the processor mode in which the caller is waiting, which can be either Kernel
Mode or UserMode. Lower-level drivers should specify KernelMode.

Alertable
Specifies TRUE if the wait is alertable. Lower-level drivers should specify FALSE.

Chapter 5 Kernel Routines 303

Interval
Specifies the absolute or relative time, in units of 100 nanoseconds, for which the wait is to
occur. A negative value indicates relative time. Absolute expiration times track any changes
in system time; relative expiration times are not affected by system time changes.

Include
wdm.h or ntddk.h

Return Value
KeDeJayExecutionThread returns one of the following values that describes how the delay
was completed:

STATUS_SUCCESS
The delay completed because the specified interval elapsed.

STATUS_ALERTED
The delay completed because the thread was alerted.

STATUS_USER_APC
A user-mode APC was delivered before the given Interval expired.

Comments
The expiration time is computed and the current thread is put in a wait state. When the
specified interval has passed, the thread exits the wait state and is put in the ready state,
becoming eligible for execution.

The Alertable parameter specifies whether the thread can be alerted and its wait state
consequently aborted. If the value of this parameter is FALSE then the thread cannot be
alerted, no matter what the value of the WaitMode parameter or the origin of the alert. The
only exception to this rule is that of a terminating thread. A thread is automatically made
alertable, for instance, when terminated by a user with a CTRL+C.

If the value of Alertable is TRUE and one of the following conditions is present, the thread
will be alerted:

1. If the origin of the alert is an internal, undocumented kernel-mode routine used to alert
threads.

2. The origin of the alert is a user-mode APC, and the value of the WaitMode parameter is
UserMode.

304 Part 1 Kernel·Mode Support Routines

In the first of these two cases, the thread's wait is satisfied with a completion status of
STATUS_ALERTED; in the second case, it is satisfied with a completion status of
STATUS_USER_APC.

The thread must be alertable for a user-mode APC to be delivered. This is not the case for
kernel-mode APCs. A kernel-mode APC can be delivered and executed even though the
thread is not alerted. Once the APC's execution completes, the thread's wait resumes. A
thread is never alerted, nor is its wait aborted, by the delivery of a kernel-mode APC.

The delivery of kernel-mode APCs to a thread that has called KeDelayExecutionThread
does not depend on whether the thread can be alerted. If the kernel-mode APC is a special
kernel-mode APC, then the APC is delivered provided that IRQL < APC_LEVEL. If the
kernel-mode APC is a normal kernel-mode APC, then the APC is delivered provided that
the following three conditions hold:

1. IRQL < APC_LEVEL.

2. No kernel-mode APC is in progress.

3. The thread is not in a critical section.

If the WaitMode parameter is UserMode, the kernel stack can be swapped out during the
wait. Consequently, a caller must never attempt to pass parameters on the stack when calling
KeDelayExecutionThread using the UserMode argument.

It is especially important to check the return value of KeDelayExecutionThread when the
WaitMode parameter is UserMode or Alertable is TRUE, because KeDelayExecution
Thread might return early with a status of STATUS_USER_APC or STATUS_ALERTED.

All long term waits that can be aborted by a user should be UserMode waits and Alertable
should be set to FALSE.

Where possible, Alertable should be set to FALSE and WaitMode should be set to Kernel
Mode, in order to reduce driver complexity. The principal exception to this is when the wait
is a long term wait.

The expiration time of the delay is expressed as either an absolute time at which the delay is
to expire, or a time relative to the current system time. If the Interval parameter is a negative
value, the expiration time is relative.

Callers of KeDelayExecutionThread must be running at IRQL = PASSIVE_LEVEL.

See Also
KeQuerySystemTime

KeDeregisterBugCheckCallback
BOOLEAN

KeDeregisterBugCheckCallbackC
IN PKBUGCHECK-CALLBACK_RECORD Ca77backRecord
) ;

Chapter 5 Kernel Routines 305

KeDeregisterBugCheckCallback removes a device driver's callback routine from the set
of registered bug-check callbacks.

Parameters
Callback Record
Pointer to the caller-allocated storage containing an initialized bug-check callback record.
This pointer was previously passed in successful calls to KelnitializeCallbackRecord and
KeRegisterBugCheckCallback.

Include
ntddk.h

Return Value
KeDeregisterBugCheckCallback returns TRUE if the caller-supplied bug-check callback
routine will no longer be called if a bug check occurs. If the given callback record was not
registered, it returns FALSE.

Comments
KeDeregisterBugCheckCallback is the reciprocal of KeRegisterBugCheckCallback.

If an unloadable device driver sets up a bug-check callback routine with KeRegisterBug
CheckCallback, that driver's Unload routine must call KeDeregisterBugCheckCallback
before it frees the storage it allocated at CallbackRecord.

Callers of KeDeregisterBugCheckCallback can be running at any IRQL. Usually, a
device driver is running at IRQL PASSIVE_LEVEL in its Unload routine when it calls
KeDeregisterBugCheckCallback.

See Also
KeBugCheck, KeBugCheckEx, KelnitializeCallbackRecord, KeRegisterBugCheck-
Callback '

306 Part 1 Kernel-Mode Support Routines

KeEnterCriticalRegion
VOID

KeEnterCriticalRegion();

KeEnterCriticalRegion disables the delivery of normal kernel APCs temporarily. Special
kernel-mode APCs are still delivered.

Include
ntddk.h

Comments
Highest-level drivers can call this routine while running in the context of the thread that
requested the current 110 operation. Any caller of this routine should call KeLeaveCritical
Region as quickly as possible.

Callers of KeEnterCriticalRegion must be running at IRQL PASSIVE_LEVEL.

See Also
KeLeaveCriticalRegion

KeFlushloBuffers
VOID

KeFlushIoBuffers(
IN PMDL Md7,
IN BOOLEAN ReadOperation,
IN BOOLEAN DmaOperation
) ;

KeFlushIoBuffers flushes the memory region described by an MDL from caches of all
processors.

Parameters
Mdt
Pointer to an MDL that describes the range for the 110 buffer.

ReadOperation
Specifies TRUE if the flush is being performed for a read operation.

DmaOperation
Specifies TRUE for a DMA transfer, FALSE for PIO.

Chapter 5 Kernel Routines 307

Include
wdm.h or ntddk.h

Comments
Drivers call KeFlushloBuffers to maintain data integrity during DMA or PIO device trans
fer operations. Calling this routine affects all processors in the machine.

If ReadOperation is TRUE, the driver is reading information from the device to system
memory, so valid data still might be in the processor instruction and data caches. KeFlush
IoBuffers flushes data from all processors' caches to system memory, including the
processor on which the caller is running.

If ReadOperation is FALSE, the driver is writing data from system memory to a device, so
valid data might be in the processor's data cache but not yet transferred to the device. Ke
FlushloBuffers flushes all processor's data caches, including the processor on which the
caller is running.

As a general rule, drivers should call this routine just before beginning a DMA transfer
operation or immediately following any PIO read operation.

Callers of this routine must be running at IRQL <= DISPATCH_LEVEL.

See Also
FlushAdapterBuffers

KeGetCurrentlrql
KIROL

KeGetCurrentlrql();

KeGetCurrentIrql returns the current IRQL.

Include
wdm.h or ntddk.h

See Also
KeAcquireSpinLockAtDpcLevel, KeLowerlrql, KeRaiselrqI

KeGetCurrentProcessorNumber
ULONG

KeGetCurrentProcessorNumber<);

308 Part 1 Kernel-Mode Support Routines

KeGetCurrentProcessorNumber returns the system-assigned number of the current
processor on which the caller is running.

Include
ntddk.h

Comments
KeGetCurrentProcessorNumber can be called by NT drivers to debug spin lock usage on
SMP machines during driver development. An NT driver also might call KeGetCurrent
ProcessorNumber if it maintained some per-processor data and attempted to reduce cache
line contention.

The number of processors in an SMP machine is a zero-based value.

If the call to KeGetCurrentProcessorNumber occurs at IRQL < DISPATCH_LEVEL, a
processor switch can occur between instructions. Consequently, callers of KeGetCurrent
ProcessorNumber usually run at IRQL >= DISPATCH_LEVEL.

KeGetCu rrentTh read
PRKTHREAD

KeGetCurrentThread();

KeGetCurrentThread identifies the current thread.

Return Value
KeGetCurrentThread returns a pointer to an opaque thread object.

Include
wdm.h or ntddk.h

Comments
A caller of KeGetCurrentThread can use the returned pointer as an input parameter to
KeQueryPriorityThread, KeSetBasePriorityThread, or KeSetPriorityThread. How
ever, the memory containing the thread object is opaque, that is, reserved for exclusive
use by the system.

Callers of KeGetCurrentThread must be running at IRQL <= DISPATCH_LEVEL.

See Also
KeQueryPriorityThread, KeSetBasePriorityThread, KeSetPriorityThread, PsGet
CurrentThread

KeGetDcacheFiliSize
ULONG

KeGetDcacheFillSize();

Chapter 5 Kernel Routines 309

KeGetDcacheFillSize is obsolete. Drivers should call GetDmaAlignment instead.

KelnitializeCallbackRecord
VOID

KeInitializeCallbackRecord(
IN PKBUGCHECK-CALLBACK-RECORD Ca77backRecord
) ;

Device drivers call KelnitializeCallbackRecord to initialize a bug-check callback record
before calling KeRegisterBugCheckCallback.

Parameters
Callback Record
Pointer to a caller-allocated nonpaged buffer, which must be at least sizeof(KBUGCHECK_
CALLBACK_RECORD).

Include
ntddk.h

Comments
Before a device driver calls KeRegisterBugCheckCallback, it must call Kelnitialize
CallbackRecord.

Such a driver must provide resident storage for a bug-check record, which can be in a
device extension, in a controller extension, in nonpaged pool allocated by the driver, or
statically allocated in the driver. The structure and contents of the memory at Callback
Record should be considered opaque, but this record must be preserved unless the driver has
called KeDeregisterBugCheckCaIlback. After this call, the device driver is responsible for
freeing the memory it allocated for the bug-check record if necessary.

Callers of KelnitializeCallbackRecord can be running at any IRQL. Usually, a device
driver is running at IRQL PASSIVE_LEVEL in its DriverEntry routine when it calls
KelnitializeCaIlbackRecord.

See Also
ExAllocatePool, KeDeregisterBugCheckCallback, KeRegisterBugCheckCallback

310 Part 1 Kernel-Mode Support Routines

Kelnitial izeOeviceQueue
VOID

KeInitializeDeviceQueue(
IN PKDEVICE_QUEUE OevieeOueue
) ;

KelnitializeDeviceQueue initializes a device queue object to a not busy state.

Parameters
DeviceQueue
Pointer to a device queue object for which the caller provides the storage.

Include
wdm.h or ntddk.h

Comments
KelnitializeDeviceQueue initializes the specified device queue and sets its state to
not busy.

A driver should call KelnitializeDeviceQueue from its AddDevice routine after creating
the device object for the associated device. Storage for the device queue object must be
resident: in the device extension of a driver..;created device object, in the controller extension
of a driver-created controller object, or in nonpaged pool allocated by the caller.

See Also
KelnsertBy KeyDeviceQueue, KelnsertDeviceQueue, KeRemoveDeviceQueue,
KeRemoveEntryDeviceQueue

Kel n itial izeOpc
VOID

KeIniti al i zeDpc(
IN PRKDPC Ope,
IN PKDEFERRED_ROUTINE OeferredRoutine,
IN PVOID OeferredContext
) ;

KelnitializeDpc initializes a DPC object, setting up a deferred procedure that can be called
with a given context.

Parameters
Ope

Chapter 5 Kernel Routines 311

Pointer to a OPC object for which the caller provides the storage.

OeferredRoutine
Specifies the entry point for a routine to be called when the ope object is removed from the
DPC queue. A DeferredRoutine is declared as follows:

VOID
(*PKDEFERRED_ROUTINE)(

IN PKDPC Dpe,
IN PVOID DeferredContext,
IN PVOID SystemArgumentl;
IN PVOID SystemArgument2
) ;

OeferredContext
Pointer to a caller-supplied context to be passed to the DeferredRoutine when it is called.

Include
wdm.h or ntddk.h

Comments
The caller can queue an initialized OPC with KelnsertQueueDpc. The caller also can set
up a timer object associated with the initialized OPC object and queue the OPC with
KeSetTimer.

Storage for the OPC object must be resident: in the device extension of a driver-created
device object, in the controller extension of a driver-created controller object, or in non
paged pool allocated by the caller.

Callers of this routine must be running at IRQL PASSIVE_LEVEL.

See Also
KelnsertQueueDpc, KeRemoveQueueDpc, KeSetTimer

Keln itial izeEvent
VOID

KeInitializeEvent(
IN PRKEVENT Event,
IN EVENT_TYPE Type,
IN BOOLEAN State
) ;

312 Part 1 Kernel-Mode Support Routines

KelnitializeEvent initializes an event object as a synchronization (single waiter) or
notification type event and sets it to a signaled or not signaled state.

Parameters
Event
Pointer to an event object, for which the caller provides the storage.

Type
Specifies the event type, either NotificationEvent or SynchronizationEvent.

State
Specifies the initial state of the event. TRUE indicates a signaled state.

Include
wdm.h or ntddk.h

Comments
A caller cannot wait at raised IRQL for a nonzero interval on an event object or in a non
arbitrary thread context.

Storage for an event object must be resident: in the device extension of a driver-created
device object, in the controller extension of a driver-created controller object, or in non
paged pool allocated by the caller. If you allocate the event on the stack, you must specify a
KernelMode wait when calling KeWaitForSingleObject, KeWaitForMutexObject, or
Ke WaitForMultipleObjects. During a KernelMode wait, the stack containing the event
will not be paged out.

Drivers typically use a NotificationEvent to wait for an I/O operation to complete. When
a notification event is set to the signaled state, all threads that were waiting on the event
become eligible for execution. The event remains in the signaled state until a thread calls
KeResetEvent or KeClearEvent to set the event in the not-signaled state.

A SynchronizationEvent is also called an autoreset or autoclearing event. When such
an event is set, a single waiting thread becomes eligible for execution. The Kernel automati
cally resets the event to the not-signaled state each time a wait is satisfied. A driver might
use a synchronization event to protect a shared resource that is used in synchronizing the
operations of several threads. Synchronization events are rarely used in a typical driver.

Callers of this routine must be running at IRQL PASSIVE_LEVEL.

See Also
KeClearEvent, KeReadStateEvent, KeResetEvent, KeSetEvent, KeWaitForMultiple
Objects, Ke WaitForSingleObject

KelnitializeMutex
VOID

KeInitializeMutex(
IN PRKMUTEX Mutex,
IN ULONG Level
) ;

Chapter 5 Kernel Routines 313

KelnitializeMutex initializes a mutex object at a given level number, setting it to a signaled
state.

Parameters
Mutex
Pointer to a mutex object, for which the caller provides the storage.

Level
Specifies the level number to be assigned to the mutex.

Include
wdm.h or ntddk.h

Comments
For better performance, use the Ex .. FastMutex routines instead of the Ke .. Mutex.
However, a fast mutex cannot be acquired recursively, as a kernel mutex can.

The mutex object is initialized with the specified Level and an initial state of signaled.

A driver cannot wait at raised IRQL nor in an arbitrary thread context for a nonzero interval
on a mutex object.

Storage for a mutex object must be resident: in the device extension of a driver-created
device object, in the controller extension of a driver-created controller object, or in
nonpaged pool allocated by the caller.

Callers of this routine must be running at IRQL PASSIVE_LEVEL.

See Also
ExlnitializeFastMutex, KeReadStateMutex, KeReleaseMutex, Ke WaitFor
MultipleObjects, Ke WaitForMutexObject, Ke WaitForSingleObject

314 Part 1 Kernel-Mode Support Routines

KelnitializeSemaphore
VOID

KeInitializeSemaphore(
IN PRKSEMAPHORE Semaphore,
I N LONG Count,
IN LONG Limit
) ;

KeInitializeSemaphore initializes a semaphore object with a given count and specifies an
upper limit that the count can attain.

Parameters
Semaphore
Pointer to a dispatcher object of type semaphore, for which the caller provides the storage.

Count
Specifies the initial count value to be assigned to the semaphore. This value must be posi
tive. A nonzero value sets the initial state of the semaphore to signaled.

Limit
Specifies the maximum count value that the semaphore can attain. This value must be posi
tive. It determines how many waiting threads become eligible for execution when the sema
phore is set to the signaled state and can therefore access the resource that the semaphore
protects.

Include
wdm.h or ntddk.h

Comments
The semaphore object is initialized with the specified initial count and limit.

Storage for a semaphore object must be resident: in the device extension of a driver-created
device object, in the controller extension of a driver-created controller object, or in non
paged pool allocated by the caller.

Callers of KeInitializeSemaphore must be running at IRQL PASSIVE_LEVEL.

See Also
KeReadStateSemaphore, KeReleaseSemaphore, Ke WaitForMultipleObjects, Ke Wait
ForSingleObject

Kel n itial izeSpi n Lock
VOID

KeInitializeSpinLock(
IN PKSPIN_LOCK SpinLock
) ;

Chapter 5 Kernel Routines 315

KelnitializeSpinLock initializes a variable of type KSPIN_LOCK.

Parameters
SpinLock
Pointer to a spin lock, for which the caller must provide the storage.

Include
wdm.h or ntddk.h

Comments
This routine must be called before an initial call to KeAcquireSpinLock or to any other
support routine that requires a spin lock as an argument.

Storage for a spin lock object must be resident: in the device extension of a driver-created
device object, in the controller extension of a driver-created controller object, or in non
paged pool allocated by the caller.

Callers of this routine can be running at any IRQL. Usually, a caller is running at IRQL
PASSIVE_LEVEL in an AddDevice routine.

See Also
KeAcquireSpinLock, KeAcquireSpinLockAtDpcLeveJ, KeReJeaseSpinLock

KelnitializeTimer
VOID

KeInitializeTimer(
IN PKTIMER Timer
) ;

KelnitializeTimer initializes a timer object.

Parameters
Timer
Pointer to a timer object, for which the caller provides the storage.

316 Part 1 Kernel-Mode Support Routines

Include
wdm.h or ntddk.h

Comments
The timer object is initialized to a not signaled state.

Storage for a timer object must be resident: in the device extension of a driver-created
device object, in the controller extension of a driver-created controller object, or in non
paged pool allocated by the caller.

KeInitializeTimer can only initialize a notification timer. Use KeInitializeTimerEx to
initialize a notification timer or a synchronization timer.

Callers of KeInitializeTimer should be running at IRQL DISPATCH_LEVEL or lower. It
is best to initialize timers at IRQL PASSIVE_LEVEL.

Use KeSetTimer or KeSetTimerEx to define when the timer will expire.

See Also
KeCancelTimer, KeInitializeTimerEx, KeReadStateTimer, KeSetTimer, KeSet
TimerEx, Ke WaitForMultipleObjects, Ke WaitForSingleObject

KelnitializeTimerEx
VOID

KeInitializeTimerEx(
IN PKTIMER Timer,
IN TIMER_TYPE Type
) ;

KeInitializeTimerEx initializes an extended kernel timer object.

Parameters
Timer
Pointer to a timer object, for which the caller provides the storage.

Type
Specifies the type of the timer object, either NotificationTimer or SynchronizationTimer.

Include
wdm.h or ntddk.h

Chapter 5 Kernel Routines 317

Comments
The timer object is initialized with a not signaled state.

Storage for a timer object must be resident: in the device extension of a driver-created
device object, in the controller extension of a driver-created controller object, or in non
paged pool allocated by the caller.

When a notification timer expires, all waiting threads are released and the timer remains in
the signaled state until it is explicitly reset. When a synchronization timer expires, it is set to
a signaled state until a single waiting thread is released and then the timer is reset to a not
signaled state.

Callers of KelnitializeTimerEx should be running at IRQL DISPATCH_LEVEL or lower.
It is best to initialize timers at IRQL PASSIVE_LEVEL.

Use KeSetTimer or KeSetTimerEx to define when the timer will expire.

See Also
KeCancelTimer, KeReadStateTimer, KeSetTimer, KeSetTimerEx, KeWaitFor
MultipleObjects, Ke WaitForSingleObject

KelnsertByKeyDeviceQueue
BOOLEAN

KeInsertByKeyDeviceQueue(
IN PKDEVICE_QUEUE OeviceQueue,
IN PKDEVICE_QUEUE_ENTRY OeviceQueueEntry,
IN ULONG SortKey
) ;

KelnsertByKeyDeviceQueue acquires the spin lock for the given DeviceQueue and queues
an entry according to the given sort-key value if the device queue is set to a busy state.

Parameters
DeviceQueue
Pointer to a control object of the device queue type for which the caller provides the storage.

DeviceQueueEntry
Pointer to the device queue entry to be inserted into the device queue according to the
specific key value.

SartKey
Specifies the sort-key value that determines the position in the device queue in which to
insert the entry.

318 Part 1 Kernel-Mode Support Routines

Include
wdm.hor ntddk.h

Return Value
If the device queue is empty , FALSE is returned, meaning the DeviceQueueEntry is not
inserted in the device queue.

Comments
The given device queue spin lock is acquired and the state of the device queue is checked.
If the device queue is set to a busy state, the IRP specified by the DeviceQueueEntry is in
serted into the device queue according to its sort key value and the device queue spin lock is
released.

The new entry is positioned in the device queue after any entries in the queue with sort key
values less than or equal to its sort key value and preceding any entries with sort key values
that are greater.

If KelnsertByKeyDeviceQueue returns FALSE, the caller must begin processing the IRP.
A call to KelnsertDeviceQueue or KelnsertByKeyDeviceQueue when the queue is empty
causes the device queue to transition from a not busy state to a busy state.

This routine is for code that queues an 110 request to a device driver.

Callers of KelnsertByKeyDeviceQueue must be running at IRQL DISPATCH_LEVEL.

See Also
KelnitializeDeviceQueue, KelnsertDeviceQueue, KeRemoveDeviceQueue, KeRemove
EntryDeviceQueue

KelnsertDeviceQueue
BOOLEAN

KeInsertOeviceQueue(
IN PKOEVICE_OUEUE OeviceQueue,
IN PKOEVICE_QUEUE_ENTRY OeviceQueueEntry
) ;

KelnsertDeviceQueue acquires the spin lock for the given device queue object and, if the
device queue is set to a busy state, queues the given entry.

Parameters
De vice Queue
Pointer to a control object of type device queue for which the caller provides the storage.

Chapter 5 Kernel Routines 319

DeviceQueueEntry
Pointer to the device queue entry that is to be inserted.

Include
wdm. h or ntddk. h

Return Value
If the device queue is empty , FALSE is returned and the DeviceQueueEntry is not inserted
in the device queue.

Comments
If the device queue is set to a busy state, the specified DeviceQueueEntry is inserted at the
tail of the device queue and the device queue spin lock is released.

If KeInsertDeviceQueue returns FALSE, the entry was not queued and the caller must
begin processing the IRP. A call to KeInsertDeviceQueue or KeInsertByKeyDevice
Queue when the queue is empty causes the device queue to change from a not busy state
to a busy state.

This routine is for code that queues an I/O request to a device driver.

Callers of KeInsertDeviceQueue must be running at IRQL DISPATCH_LEVEL.

See Also
KeInitializeDeviceQueue, KeInsertByKeyDeviceQueue, KeRemoveDeviceQueue,
KeRemoveEntryDeviceQueue

KelnsertQueueDpc
BOOLEAN

KeInsertOueueDpc(
IN PRKDPC Dpc,
IN PVOID SystemArgumentl,
IN PVOID SystemArgument2
) ;

KeInsertQueueDpc queues a DPC for execution when the IRQL of a processor drops
below DISPATCH_LEVEL.

Parameters
Dpc
Pointer to an initialized control object of type DPC for which the caller provides the storage.

320 Part 1 Kernel-Mode Support Routines

SystemArgument1, SystemArgument2
Pointer to a set of two parameters that contain untyped data.

Include
wdm.h or ntddk.h

Return Value
If the specified DPC object is not currently in the queue, KeInsertQueueDpc queues the
DPC and returns TRUE.

Comments
If the specified DPC object is already in the DPC queue, no operation is performed except
to return FALSE. Otherwise, the DPC object is inserted in the DPC queue and a software
interrupt is requested at IRQL DISPATCH_LEVEL on the current processor.

Note that a given DPC object and the function it represents can each be queued for
execution only once at any given moment. If it can make overlapped calls to KeInsert
QueueDpc, particularly in SMP machines, the caller should protect its DPC object with
a spinlock.

The deferred procedure is run when IRQL on the current processor drops below
DISPATCH_LEVEL.

Callers of KeInsertQueueDpc must be running at IRQL >= DISPATCH_LEVEL.

See Also
KeInitializeDpc, KeRemoveQueueDpc

KeLeaveCriticalRegion
VOID

KeLeaveCriticalRegion(
) ;

KeLeaveCriticalRegion re-enables the delivery of normal kernel-modeAPCs that were
disabled by a preceding call to KeEnterCriticalRegion.

Include
ntddk.h

Chapter 5 Kernel Routines 321

Comments
Highest-level drivers can call this routine while running in the context of the thread that
requested the current I/O operation.

Callers of KeLeaveCriticalRegion must be running at IRQL PASSIVE_LEVEL.

See Also
KeEnterCriticalRegion

KeLowerlrql
VOID

KeLowerlrql(
IN KIRQL NewIrq7
) ;

KeLowerlrql restores the IRQL on the current processor to its original value.

Parameters
Newlrql
Specifies the IRQL that was returned from KeRaiselrql.

Include
wdm.h or ntddk.h

Comments
It is a fatal error to call KeLowerlrql using an input Newlrql that was not returned by the
immediately preceding call to KeRaiselrql.

Callers of KeLowerlrql can be running at any IRQL that was passed to KeRaiselrql.

See Also
KeGetCurrentIrql, KeRaiselrql

KePulseEvent
NTSTATUS

KePulseEvent(
IN PRKEVENT Event,
IN KPRIORITY Increment,
IN BOOLEAN Wait
) ;

322 Part 1 Kernel-Mode Support Routines

KePulseEvent atomically sets an event object to a signaled state, attempts to satisfy as
many waits as possible, and then resets the event object to a not signaled state. The previous
signal state of the event object is returned as the function value.

Parameters
Event
Pointer to a dispatcher object of type event.

Increment
Specifies the priority increment that is to be applied if setting the event causes a wait to be
satisfied.

Wait
Specifies a Boolean value that signifies whether the call to KePulseEvent will be immedi
ately followed by a call to one of the kernel-mode wait functions.

Include
ntddk.h

Return Value
The previous signal state of the event object.

Comments
Callers of KePulseEvent must be running at IRQL <= DISPATCH_LEVEL.

See Also
KelnitializeEvent, KeReadStateEvent, KeResetEvent, KeSetEvent

KeQuerylnterruptTime
ULONGLONG
KeQuerylnterruptTime();

KeQuerylnterruptTime returns the current value of the system interrupt-time count.

Include
wdm. h or ntddk.h

Return Value
KeQuerylnterruptTime returns the current interrupt-time count of IOO-nanosecond units.

Chapter 5 Kernel Routines 323

Comments
KeQuerylnterruptTime can be used for performance tuning. This routine returns a finer
grained measurement than calling KeQueryTickCount. A call to KeQuerylnterruptTime
has considerably less overhead than a call to KeQueryPerformanceCounter, as well.

Consequently, interrupt time can be used to measure very fine-grained durations while the
system is running because operations that set or reset the system time have no effect on the
system interrupt time count.

However, power-management state changes do affect the system interrupt time count.
Maintenance of the interrupt time count is suspended during system sleep states. When
a subsequent wake state transition occurs, the system updates the interrupt time count to
compensate for the approximate duration of such a sleep state.

Callers of KeQuerylnterruptTime can be running at any IRQL.

See Also
KeQueryPerformanceCounter, KeQueryTickCount, KeQueryTimelncrement

KeQueryPerformanceCounter
LARGE_INTEGER

KeQueryPerformanceCounter(
IN PLARGE_INTEGER PerformanceFrequency OPTIONAL
) ;

KeQueryPerformanceCounter provides the finest grained running count available in the
system.

Parameters
PerlortnanceFrequency
Specifies an optional pointer to a variable that is to receive the performance counter
frequency.

Include
wdm.h or ntddk.h

Return Value
KeQueryPerformanceCounter returns the performance counter value in units of ticks.

324 Part 1 Kernel-Mode Support Routines

Comments
KeQueryPerformanceCounter always returns a 64-bit integer representing the number of
ticks. Accumulating the count begins when the system is booted. The count is in ticks; the
frequency is reported by PerformanceFrequency if this optional parameter is supplied.

The resolution of the timer used to accumulate the current count can be obtained by speci
fying PerformanceFrequency. For example, if the returned PeiformanceFrequency is
2 million, each tick is 1/2 millionth of a second. Each 1/x millionth increment of the count
corresponds to one second of elapsed time.

KeQueryPerformanceCounter is intended for time-stamping packets or for computing
performance and capacity measurements. It is not intended for measuring elapsed time, for
computing stalls or waits, or for iterations.

Use this routine as infrequently as possible. Depending on the platform, KeQuery
PerformanceCounter can disable system-wide interrupts for a minimal interval. Conse
quently, calling this routine frequently or repeatedly, as in an iteration, defeats its purpose
of returning very fine-grained, running time-stamp information. Calling this routine too
frequently can degrade 110 performance for the calling driver and for the system as a whole.

Callers of KeQueryPerformanceCounter can be running at any IRQL.

See Also
KeQuerylnterruptTime, KeQuerySystemTime, KeQueryTickCount, KeQuery
Timelncrement

KeQueryPriorityThread
KPRIORITY
KeQueryPriorityThread(

IN PRKTHREAD Thread
) ;

KeQueryPriorityThread returns the current priority of a given thread.

Parameters
Thread
Pointer to a dispatcher object of type KTHREAD.

Include
wdm.h or ntddk.h

Chapter 5 Kernel Routines 325

Return Value
KeQueryPriorityThread returns the current priority of the given thread.

Comments
The system-defined range of possible return values runs from zero to 32, inclusive, with
zero designating the lowest possible thread priority.

Callers of KeQueryPriorityThread must be running at IRQL PASSIVE_LEVEL.

See Also
KeGetCurrentThread, KeSetBasePriorityThread, KeSetPriorityThread, PsGetCurrent
Thread

KeQuerySystemTime
VOID

KeQuerySystemTime(
OUT PLARGE_INTEGER Current Time
) ;

KeQuerySystemTime obtains the current system time.

Parameters
CurrentTime
Pointer to the current time on return from KeQuerySystemTime.

Include
wdm.h or ntddk.h

Comments
System time is a count of IOO-nanosecond intervals since January 1, 1601. System time
is typically updated approximately every ten milliseconds. This value is computed for the
GMT time zone. To adjust this value for the local time zone use ExSystemTimeTo
LocalTime.

Callers of KeQuerySystemTime can be running at any IRQL.

See Also
ExSystemTimeToLocalTime, KeQueryPerformanceCounter, KeQueryTickCount,
KeQueryTimelncrement

326 Part 1 Kernel-Mode Support Routines

KeQueryTickCount
VOID

KeOueryTickCount(
OUT PLARGE_INTEGER TickCount
) ;

KeQueryTickCount maintains a count of the interval timer interrupts that have occurred
since the system was booted.

Parameters
TickCount
Pointer to the tick count value on return from KeQueryTickCount.

Include
wdm.h or ntddk.h

Comments
The TickCount value increases by one at each interval timer interrupt while the system is
running.

The preferred method of determining elapsed time is by using TickCount for relative timing
and time stamps.

To determine the absolute elapsed time multiply the returned TickCount by the KeQuery
Timelncrement return value using compiler support for 64-bit integer operations.

Callers of KeQueryTickCount can be running at any IRQL.

See Also
KeQuerylnterruptTime, KeQueryPerformanceCounter, KeQueryTimelncrement

KeQueryTimelncrement
ULONG

KeOueryTimeIncrement();

KeQueryTimelncrement returns the number of IOO-nanosecond units that are added to the
system time each time the interval clock interrupts.

Include
wdm. h or ntddk.h

Chapter 5 Kernel Routines 327

Comments
Callers of KeQueryTimeIncrement can be running at any IRQL.

See Also
KeQueryPerformanceCounter, KeQuerySystemTime, KeQueryTickCount

KeRaiselrql
VOID

KeRaiseIrql(
IN KIROL Newlrq7.
OUT PKIRQL 07dlrq7
) ;

KeRaiseIrql raises the hardware priority to a given IRQL value, thereby masking off
interrupts of equivalent or lower IRQL on the current processor.

Parameters
Newlrql
Specifies the new IRQL to which the hardware priority is to be raised.

Oldlrql
Pointer to the storage for the original (unraised) IRQL value to be used in a subsequent call
to KeLowerIrql.

Include
wdm.h or ntddk.h

Comments
If the new IRQL is less than the current IRQL, a bug check occurs. Otherwise, the current
IRQL is set to the specified value.

Callers of this routine can be running at any IRQL. Any caller should restore the original
IRQL with KeLowerIrql as soon as possible.

A call to KeLowerIrql is valid if it specifies Newlrql <= Currentlrql. A call to KeRaise
Irql is valid if the caller specifies Newlrql >= Currentlrql.

See Also
KeGetCurrentlrql, KeLowerIrql

328 Part 1 Kernel·Mode Support Routines

KeRaiselrqlToDpcLevel
KIROL

KeRaiseIrqlToDpcLevel();

KeRaiselrqlToDpcLevel raises the hardware priority to IRQL DISPATCH_LEVEL,
thereby masking off interrupts of equivalent or lower IRQL on the current processor.

ReturnValue
KeRaiselrqlToDpcLevel returns the IRQL at which the call occurred.

Include
ntddk.h

Comments
Any caller of KeRaiselrqlToDpcLevel should save the returned IRQL value. Every such
caller must restore the original IRQL as quickly as possible by passing this returned IRQL in
a subsequent call to KeLowerlrql.

Callers of KeRaiselrqlToDpcLevel must be running at IRQL <= DISPATCH_LEVEL.
Otherwise, a call to this routine causes a bug check.

See Also
KeGetCurrentIrql, KeLowerlrql, KeRaiselrql

KeReadStateEvent
LONG

KeReadStateEvent(
IN PRKEVENT Event
) ;

KeReadStateEvent returns the current state, signaled or not signaled, of a given event
object.

Parameters
Event
Pointer to an initialized event object for which the caller provides the storage.

Include
ntddk.h

Chapter 5 Kernel Routines 329

Return Value
If the event object is currently set to a signaled state, a nonzero value is returned. Otherwise,
zero is returned.

Comments
It is also possible to read the state of an event from a driver's interrupt service routine at
DIRQL, if the following conditions are met: the driver's event object is resident (probably in
its device extension), and any other function that accesses the event synchronizes its access
with the ISR.

Callers of KeReadStateEvent must be running at IRQL <= DISPATCH_LEVEL.

See Also
KeClearEvent, KeInitializeEvent, KeResetEvent, KeSetEvent

KeReadStateMutex
LONG

KeReadStateMutex(
IN PRKMUTEX Mutex
) ;

KeReadStateMutex returns the current state, signaled or not signaled, of a given mutex
object.

Parameters
Mutex
Pointer to an initialized mutex object for which the caller provides the storage.

Include·
wdm.h or ntddk.h

Return Value
If the return value is one, the state of the mutex object is signaled.

Comments
Callers of KeReadStateMutex must be running at IRQL <= DISPATCH_LEVEL.

See Also
ExInitializeFastMutex, KeInitializeMutex, KeReleaseMutex

330 Part 1 Kernel·Mode Support Routines

KeReadStateSemaphore
LONG

KeReadStateSemaphore(
IN PRKSEMAPHORE Semaphore
) ;

KeReadStateSemaphore returns the current state, signaled or not signaled, of a given
semaphore object.

Parameters
Semaphore
Pointer to an initialized semaphore object for which the caller provides the storage.

Include
wdm.h or ntddk.h

Return Value
If the return value is zero, the semaphore object is set to a not signaled state.

Comments
Callers of KeReadStateSemaphore can be running at any IRQL.

See Also
KelnitializeSemaphore, KeReleaseSemaphore

KeReadStateTimer
BOOLEAN

KeReadStateTimer(
IN PKTIMER Timer
) ;

KeReadStateTimer reads the current state of a given timer object.

Parameters
Timer
Pointer to an initialized timer object, for which the caller provides the storage.

Include
wdm. h or ntddk. h

Chapter 5 Kernel Routines 331

Return Value
If the current state of the timer object is signaled, TRUE is returned.

Comments
Callers of KeReadStateTimer must be running at IRQL <= DISPATCH_LEVEL.

See Also
KeCancelTimer, KelnitializeTimer, KeSetTimer

KeRegisterBugCheckCallback
BOOLEAN

KeRegisterBugCheckCallback(
IN PKBUGCHECK_CALLBACK-RECORD Ca77backRecord.
IN PKBUGCHECK-CALLBACK-ROUTINE Ca77backRoutine.
IN PVOID Buffer.
IN ULONG Length.
IN PUCHAR Component
) ;

Device drivers can call KeRegisterBugCheckCallback to register their bug-check callback
routines. If a system bug check occurs, such a callback usually saves device-state informa
tion to be written into the system crash dump file.

Parameters
CallbackRecord
Pointer to a callback record, already initialized with KelnitializeCallbackRecord, for
which the caller provides nonpaged storage.

CallbackRoutine
Specifies the entry point of the caller-supplied routine to be registered, declared as follows:

VOID
(*PKBUGCHECK-CALLBACK-ROUTINE)

IN PVOID Buffer.
IN ULONG Length
) ;

This caller-supplied routine is responsible for writing driver-determined state information at
Buffer if a bug check occurs.

Buffer
Pointer to a caller-supplied buffer, which must be allocated from nonpaged pool.

332 Part 1 Kernel-Mode Support Routines

Length
Specifies the size in bytes of the caller-allocated buffer.

Component
Pointer to a zero-terminated ANSI string identifying the caller. Usually, this is the name of
the device driver, or possibly of its device.

Include
ntddk.h

Return Value
KeRegisterBugCheckCallback returns TRUE if the caller-supplied routine has been suc
cessfully added to the set of registered bug-check callbacks.

Comments
KeRegisterBugCheckCallback sets up a driver-supplied routine to be called if a bug check
occurs so a device driver can save state information, such as the contents of device registers,
that would not otherwise be saved in a system crash-dump file.

A driver-supplied bug-check callback routine writes whatever information the driver
designer chooses into the memory at Buffer. The format of the data written at Buffer is
driver-determined. This memory cannot be freed unless the driver first calls KeDeregister
BugCheckCallback. Like the driver-allocated memory at Buffer, such a bug-check callback
routine cannot be pageable.

When the callback routine runs, interrupts are disabled. A callback routine cannot allocate
resources, such as memory, because the system is being shut down. A bug-check callback
also cannot use synchronization mechanisms, such as a spin lock. However, it should not
need to acquire synchronization resources because other driver routines are effectively dis
abled while the system is being shut down for a bug check. The callback routine can safely
call the HAL's READ_PORT_XXX and/or READ_REGISTER_XXX to collect state infor
mation from the device and transfer this data to the driver-allocated buffer. It can call any
KeXxx or HalXxx that neither allocates memory nor acquires a synchronization resource.

The given Component string should identify the driver to aid in crash-dump debugging.
During driver development, the Component identifier can be passed to the debugger to select
only that component's dump data for examination. A bug-check callback routine also can be
debugged.

Callers of KeRegisterBugCheckCallback can be running at any IRQL. Usually, a de
vice driver is running at IRQL PASSIVE_LEVEL in its DriverEntry routine when it calls
KeRegisterBugCheckCallback.

Chapter 5 Kernel Routines 333

See Also
ExAllocatePool, KeBugCheck, KeBugCheckEx, KeDeregisterBugCheckCallback,
KelnitializeCallbackRecord

KeReleaseMutex
LONG

KeReleaseMutex(
IN PRKMUTEX Mutex,
IN BOOLEAN Wait
) ;

KeReleaseMutex releases a given mutex object, specifying whether the caller is to call one
of Ke W aitXxx as soon as KeReleaseMutex returns control.

Parameters
Mutex
Pointer to an initialized mutex object for which the caller provides the storage.

Wait
Specifies whether or not the call to KeReleaseMutex is to be immediately followed by a
call to one of KeWaitXxx.

Include
wdm.h or ntddk.h

Return Value
If the return value is zero, the mutex object was released and attained a state of signaled.

Comments
For better performance, use the Ex .. FastMutex routines instead of the Ke •. Mutex. How
ever, a fast mutex cannot be acquired recursively, as a kernel mutex can.

If the mutex object attains a signaled state, an attempt is made to satisfy a wait for the mutex
object.

A mutex object can be released only by the thread currently holding the mutex. If an attempt
is made to release a mutex not held by the thread, a bug check occurs. An attempt to release
a mutex object whose current state is signaled also causes a bug check to occur.

When a mutex object attains a signaled state, it is removed from the list of mutexes held by
that thread. If the thread's owned mutex list does not contain any more entries, the thread's
original priority is restored.

334 Part 1 Kernel-Mode Support Routines

If the value of the Wait parameter is TRUE, the return to the caller is executed without
lowering IRQL or releasing the dispatcher database spin lock. Therefore, the call to
KeReleaseMutex must be followed immediately by a call to one of KeWaitXxx.

This allows the caller to release a mutex and wait as one atomic operation, preventing a
possibly superfluous context switch. However, a caller cannot wait at raised IRQL nor in
an arbitrary thread context for a nonzero interval on a mutex object.

If a mutex is acquired recursively, the holding thread must call KeReleaseMutex as many
times as it acquired the mutex to set it to the signaled state.

Callers of KeReleaseMutex must be running at IRQL PASSIVE_LEVEL.

See Also
ExReleaseFastMutex, ExReleaseFastMutexUnsafe, KelnitializeMutex, KeReadState
Mutex, Ke WaitForMultipleObjects, Ke WaitForMutexObject, Ke WaitForSingleObject

KeReleaseSemaphore
LONG

KeReleaseSemaphore(
IN PRKSEMAPHORE Semaphore,
IN KPRIORITY Increment,
IN LONG Adjustment,
IN BOOLEAN Wait
) ;

KeReleaseSemaphore releases a given semaphore object. This routine supplies a run-time
priority boost for waiting threads. If this call sets the semaphore to the signaled state, the
semaphore count is augmented by the given value. The caller can also specify whether it
will call one of the Ke W aitXxx routines as soon as KeReleaseSemaphore returns control.

Parameters
Semaphore
Pointer to an initialized semaphore object for which the caller provides the storage.

Increment
Specifies the priority increment to be applied if releasing the semaphore causes a wait to be
satisfied.

Adjustment
Specifies a value to be added to the current semaphore count. This value must be positive.

Chapter 5 Kernel Routines 335

Wait
Specifies whether the call to KeReieaseSemaphore is to be followed immediately by a call
to one of the Ke WaitXxx.

Include
wdm.h or ntddk. h

Return Value
If the return value is zero, the previous state of the semaphore object is not signaled.

Comments
Releasing a semaphore object causes the semaphore count to be augmented by the value of
the Adjustment parameter. If the resulting value is greater than the limit of the semaphore
object, the count is not adjusted and an exception, STATUS_SEMAPHORE_COUNT_
EXCEEDED, is raised.

Augmenting the semaphore object count causes the semaphore to attain a signaled state,
and an attempt is made to satisfy as many waits as possible on the semaphore object.

If the value of the Wait parameter is TRUE, the return to the caller is executed without
lowering IRQL or releasing the dispatcher database spin lock. Therefore, the call to
KeReieaseSemaphore must be followed immediately by a call to one of the KeWaitXxx.

This capability allows the caller to release a semaphore and to wait as one atomic operation,
preventing a possibly superfluous context switch. However, the caller cannot wait at raised
IRQL nor in an arbitrary thread context for a nonzero interval on a semaphore object.

Callers of KeReieaseSemaphore must be running at IRQL <= DISPATCH_LEVEL
provided that Wait is set to FALSE. Otherwise, the caller must be running at IRQL
PASSIVE_LEVEL.

See Also
KeInitializeSemaphore, KeReadStateSemaphore, Ke WaitForMultipieObjects,
Ke WaitForSingieObject

KeReleaseSpinLock
VOID

KeReleaseSpinLock(
IN PKSPIN_LOCK SpinLock.
IN KIRQL NewIrq7
) ;

336 Part 1 Kernel-Mode Support Routines

KeReleaseSpinLock releases a spin lock and restores the original IRQL at which the caller
was running.

Parameters
SpinLock
Pointer to a spin lock for which the caller provides the storage.

Newlrql
Specifies the IRQL value saved from the preceding call to KeAcquireSpinLock.

Include
wdm. h or ntddk.h

Comments
This call is a reciprocal to KeAcquireSpinLock. The input Newlrql value must be the
Oldlrql returned by KeAcquireSpinLock.

Callers of this routine are running at IRQL DISPATCH_LEVEL. On return from
KeReleaseSpinLock, IRQL is restored to the Newlrql value.

See Also
KeAcquireSpinLock, KelnitializeSpinLock

KeReleaseSpinLockFromDpcLevel
VOID

KeReleaseSpinLockFromDpcLevel(
IN PKSPIN_LOCK SpinLock
) ;

KeReleaseSpinLockFromDpcLevel releases an executive spin lock.

Parameters
SpinLock
Pointer to an executive spin lock for which the caller provides the storage.

Include
wdm. h or ntddk.h

Chapter 5 Kernel Routines 337

Comments
Drivers call KeReleaseSpinLockFromDpcLevel to release a spin lock acquired by calling
KeAcquireSpinLockAtDpcLevel.

It is an error to call KeReleaseSpinLockFromDpcLevel if the given spin lock was acquired
by calling KeAcquireSpinLock because the caller's original IRQL is not restored, which
can cause deadlocks or fatal page faults.

Callers of KeReleaseSpinLockAtDpcLevel must be running at IRQL
DISPATCH_LEVEL.

See Also
KeAcquireSpinLock, KeAcquireSpinLockAtDpcLevel, KeReleaseSpinLock

KeRemoveByKeyDeviceQueue
PKDEVICE_QUEUE_ENTRY

KeRemoveByKeyDev;ceQueue(
IN PKDEVICE_QUEUE DeviceQueue,
IN ULONG SortKey
) ;

KeRemoveByKeyDeviceQueue removes an entry, selected according to a sort key value,
from a given device queue.

Parameters
DeviceQueue
Pointer to an initialized device queue object for which the caller provides the storage.

SortKey
Specifies the key to be used when searching the DeviceQueue.

Include
wdm.h or ntddk.h

Return Value
KeRemoveByKeyDeviceQueue returns the device queue entry that was removed; returns
NULL if the queue was empty.

Comments
This routine searches for the first entry in the device queue that has a value greater than
or equal to the SortKey. After this entry is found, this routine removes the entry from the

338 Part 1 Kernel-Mode Support Routines

device queue and returns it. If no such entry is found, then the first entry in the queue is
returned. If the device queue is empty, then the device is set to a not busy state and a NULL
pointer is returned.

It is an error to call KeRemoveByKeyDeviceQueue when the the device queue object is set
to a not busy state.

Callers of KeRemoveByKeyDeviceQueue must be running at IRQL DISPATCH_LEVEL.

See Also
KelnitializeDeviceQueue, KelnsertByKeyDeviceQueue, KelnsertDeviceQueue,
KeRemoveDeviceQueue, KeRemoveEntry DeviceQueue

KeRemoveDeviceQueue
PKDEVICE_OUEUE_ENTRY

KeRemoveDev;ceOueue(
IN PKDEVICE_OUEUE OeviceOueue
) ;

KeRemoveDeviceQueue removes an entry from the head of a specified device queue.

Parameters
DeviceQueue
Pointer to an initialized device queue object for which the caller provides the storage.

Include
wdm. h or ntddk. h

Return Value
If the device queue is empty but is set to a busy state, KeRemoveDeviceQueue returns
NULL.

Comments
The specified device queue spin lock is acquired and the state of the device queue is
checked. If the device queue is set to a busy state and an IRP is queued, this routine de
queues the entry and returns a pointer to the IRP. A call to KeRemoveDeviceQueue when
the device queue object is set to a busy state but no IRPs are queued causes a state change
to not busy. The given device queue's spin lock is released.

It is an error to call KeRemoveDeviceQueue when the device queue object is set to a not
busy state.

Chapter 5 Kernel Routines 339

Callers of KeRemoveDeviceQueue must be running at IRQL DISPATCH_LEVEL.

See Also
KelnitializeDeviceQueue, KelnsertByKeyDeviceQueue, KelnsertDeviceQueue,
KeRemoveByKeyDeviceQueue, KeRemoveEntryDeviceQueue

KeRemoveEntryDeviceQueue
BOOLEAN

KeRemoveEntryDev;ceQueue(
IN PKDEVICE_QUEUE DeviceQueue,
IN PKDEVICE_QUEUE_ENTRY DeviceQueueEntry
) ;

KeRemoveEntryDeviceQueue returns whether the specified entry is in the device queue
and removes it, if it was queued, from the device queue.

Parameters
DeviceQueue
Pointer to an initialized device queue object for which the caller provides the storage.

De viceQueueEn try
Pointer to the entry to be removed from the specified DeviceQueue.

Include
wdm.h or ntddk.h

Return Value
If the DeviceQueueEntry is queued, it is removed and KeRemoveEntryDeviceQueue
returns TRUE.

Comments
The IRQL is set to DISPATCH_LEVEL and the DeviceQueue spin lock is acquired.

If the given DeviceQueueEntry is not in the queue, the IRP either is already being processed,
or the IRP has been canceled. In this case, KeRemoveEntryDeviceQueue simply returns
FALSE.

The specified DeviceQueue spin lock is released and IRQL is restored to its previous value.

Callers of KeRemoveEntryDeviceQueue must be running at IRQL <= DISP ATCH_
LEVEL.

340 Part 1 Kernel-Mode Support Routines

See Also
KelnitializeDeviceQueue, KelnsertByKeyDeviceQueue, KelnsertDeviceQueue,
KeRemoveByKeyDeviceQueue, KeRemoveDeviceQueue

KeRemoveQueueDpc
BOOLEAN

KeRemoveQueueDpc(
IN PRKDPC Dpe
) ;

KeRemoveQueueDpc removes a given DPC object from the system DPC queue.

Parameters
Dpe
Pointer to an initialized DPC object that was queued by calling KelnsertQueueDpc.

Include
wdm.h or ntddk.h

Return Value
KeRemoveQueueDpc returns TRUE if the DPC object is in the DPC queue. If the given
DPC object is not currently in the DPC queue, no operation is performed and FALSE is
returned.

Comments
If the given DPC object is currently queued, it is removed from the queue, canceling a call
to the associated DPC routine.

Callers of KeRemoveQueueDpc can be running at any IRQL.

See Also
KelnitiaJizeDpc, KelnsertQueueDpc

KeResetEvent
LONG

KeResetEvent(
IN PRKEVENT Event
) ;

Chapter 5 Kernel Routines 341

KeResetEvent resets a specified event object to a not signaled state and returns the previous
state of that event object.

Parameters
Event
Pointer to an initialized dispatcher object of type event for which the caller provides the
storage.

Include
wdm.h or ntddk.h

Return Value
KeResetEvent returns the previous state of the given Event, nonzero for a signaled state.

Comments
Event is reset to a not signaled state, meaning that its value is set to zero.

Unless the caller uses the value returned by KeResetEvent, setting a given event object to
a not signaled state using KeClearEvent is faster.

Callers of KeResetEvent must be running at IRQL <= DISPATCH_LEVEL.

See Also
KeClearEvent, KeInitializeEvent, KeReadStateEvent, KeSetEvent, Ke WaitFor
MultipieObjects, Ke WaitForSingleObject

KeRestoreFloatingPointState
NTSTATUS

KeRestoreFloatingPointState(
IN PKFLOATING_SAVE F70atSave
) ;

KeRestoreFloatingPointState restores the nonvolatile floating-point context saved by the
preceding call to KeSaveFloatingPointState.

Parameters
FloatSave
Specifies the pointer passed in the preceding call to KeSaveFloatingPointState.

342 Part 1 Kernel-Mode Support Routines

Include
wdm.h or ntddk.h

Return Value
KeRestoreFloatingPointState returns STATUS_SUCCESS.

Comments
KeRestoreFloatingPointState is the reciprocal of KeSaveFloatingPointState.

Any routine that calls KeSaveFloatingPointState must call KeRestoreFloatingPointState
before that routine returns control, and it must be running at the same IRQL as that from
which the preceding call to KeSaveFloatingPointState occurred. Failure to meet either of
these conditions causes a system bug check.

See Also
KeSaveFloatingPointState

KeSaveFloatingPointState
NTSTATUS

KeSaveFloatingPo;ntState(
OUT PKFLOATING_SAVE F70atSave
) ;

KeSaveFloatingPointState saves the nonvolatile floating-point context so the caller can
carry out floating-point operations.

Parameters
FloatSave
Pointer to a caller-allocated resident buffer, which must be at least sizeof(KFLOATING_
SAVE).

Include
wdm.h or ntddk.h

Return Value
KeSaveFloatingPointState returns STATUS_SUCCESS if it saved the current thread's
floating-point context and set up a fresh floating point context for the caller. Otherwise, it
returns one of the following:

Chapter 5 Kernel Routines 343

STATUSJLLEGAL_FLOAT _CONTEXT
The system is configured to use floating point emulation, rather than doing FP operations in
the processors.

STATUSJNSUFFICIENT _RESOURCES
KeSaveFloatingPointState could not allocate sufficient memory to save the current thread's
floating-point context.

Comments
A successful call to KeSaveFloatingPointState allows the caller to carry out floating
point operations of its own, but such a caller must restore the previous nonvolatile
floating-point context as soon as its FP operations are done. Any routine that calls Ke
SaveFloatingPointState must call KeRestoreFloatingPointState before that routine
returns control.

If the call to KeSaveFloatingPointState is successful, the data at FloatSave is opaque to
the caller, which can release the buffer it allocated only after calling KeRestoreFloating
PointState.

For performance reasons, drivers should avoid doing any floating point operations unless
absolutely necessary. The overhead of saving and restoring the current thread's nonvolatile
floating point state degrades the performance of any driver that does floating-point
operations.

Callers of KeSaveFloatingPointState must be running at IRQL <= DISPATCH_LEVEL.

See Also
KeGetCurrentThread, KeRestoreFloatingPointState, PsCreateSystemThread

KeSetBasePriorityThread
LONG

KeSetBasePriorityThread(
IN PRKTHREAD Thread,
IN LONG Increment
) :

KeSetBasePriorityThread sets the run-time priority, relative to the current process, for a
given thread.

Parameters
Thread
Pointer to a dispatcher object of type KTHREAD.

344 Part 1 Kernel-Mode Support Routines

Increment
Is the value to be added to the base priority of the process for the Thread.

Include
ntddk.h

Return Value
KeSetBasePriorityThread returns the previous base priority increment of the given thread.
The previous base priority increment is defined as the difference between the specified
thread's old base priority and the base priority of the thread's process.

Comments
The new base priority is computed by adding the given Increment, which can be a negative
value, to the base priority of the specified thread's process. The resultant value is stored as
the base priority of the specified thread.

Drivers that set up device-dedicated threads with variable priority attributes can call this
routine to set such a thread's priority relative to the system process in which the thread is
created.

The new base priority is restricted to the priority class of the given thread's process.
Therefore, the base priority is not allowed to cross over from a variable priority class to
a real-time priority class or vice versa.

Callers of KeSetBasePriorityThread must be running at IRQL PASSIVE_LEVEL.

See Also
KeGetCurrentThread, KeQueryPriorityThread, KeSetPriorityThread

KeSetEvent
LONG

KeSetEvent(
IN PRKEVENT Event.
IN KPRIORITY Increment.
IN BOOLEAN Wait
) ;

KeSetEvent sets an event object to a signaled state if the event was not already signaled,
and returns the previous state of the event object.

Parameters
Event

Chapter 5 Kernel Routines 345

Pointer to an initialized event object for which the caller provides the storage.

Increment
Specifies the priority increment to be applied if setting the event causes a wait to be
satisfied.

Wait
Specifies whether the call to KeSetEvent is to be followed immediately by a call to a
KeWaitXxx.

Include
wdm.h or ntddk.h

Return Value
If the previous state of the event object was signaled, a nonzero value is returned.

Comments
Calling KeSetEvent causes the event to attain a signaled state, and therefore, an attempt
is made to satisfy as many waits as possible on the event object.

If the Wait parameter is TRUE, the return to the caller is executed without lowering IRQL
or releasing the dispatcher database spin lock. Therefore, the call to KeSetEvent must be
followed immediately by a call to one of the KeWaitXxx.

This allows the caller to set an event and wait as one atomic operation, preventing a possi
bly superfluous context switch. However, the caller cannot wait at raised IRQL nor in an
arbitrary thread context for a nonzero interval on an event object.

If Wait is set to FALSE, the caller can be running at IRQL <= DISPATCH_LEVEL.
Otherwise, callers of KeSetEvent must be running at IRQL PASSIVE_LEVEL and in
a nonarbitrary thread context.

See Also
KeClearEvent, KelnitializeEvent, KeReadStateEvent, KeResetEvent, KeWaitFor
MuItipleObjects, Ke WaitForSingleObject

346 Part 1 Kernel-Mode Support Routines

KeSetlmportanceDpc
VOID

KeSetImportanceDpc(
IN PRKDPC Dpc,
IN KDPC_IMPORTANCE Importance
) ;

KeSetlmportanceDpc controls how a particular DPC is queued and, to some degree, how
soon the D PC routine is run.

Include
ntddk.h

Parameters
Opc
Pointer to the caller's DPC object, already initialized with KeInitializeDpc.

Importance
Specifies one of the following system-defined values:

Lowlmportance
Queue the DPC at the end of the target DPC queue, but do not start running queued DPC
routines immediately.

Mediumlmportance
Queue the DPC at the end of the target DPC queue and start running the queued DPC rou
tines immediately if possible. This is the system-assigned default value for DPC objects.

Highlmportance
Queue the DPC at the front of the target processor's DPC queue and start running the queued
DPC routines immediately if possible.

Comments
KeSetlmportanceDpc can override the kernel-determined order in which DPC objects are
queued for execution. By default, the kernel queues all DPCs at MediumImportance.
Usually, each DPC is queued on the current processor from which the call to KeInsert
QueueDpc occurs or, from a device driver's ISR, the call to IoRequestDpc occurs.

In general, an NT device driver should not call KeSetlmportanceDpc to change the default
priority of a driver-created DPC object that represents a CustomDpc routine queued by the
driver's ISR with KeInsertQueueDpc. MediumImportance ensures that such a driver's
ISR always returns control before that driver's corresponding CustomDpc routine runs in

Chapter 5 Kernel Routines 347

an SMP machine. Otherwise, an NT device driver with such a CustomDpc routine must be
capable of handling the following conditions:

• Resetting a device driver's OPC to Lowlmportance requires that driver's CustomDpc
routine to be capable of handling all post-interrupt processing for more than one execu
tion of the driver's ISR, effectively for any number of interrupts that might occur between
executions of its CustomOpc routine.

• Resetting a device driver's OPC object to Highlmportance on an SMP platform can
cause the driver's ISR and CustomDpc routines to be run simultaneously on different
processors, and the driver cannot determine when such concurrent executions will occur.
Consequently, such a device driver's ISR and CustomOpc routine must be capable of
handling any synchronization problems that might occur due to their concurrent
executions.

Callers of KeSetImportanceDpc can be running at any IRQL.

See Also
IoRequestDpc, KelnitializeDpc, KelnsertQueueDpc, KeSetTargetProcessorDpc,
KeSynchronizeExecution

KeSetTargetProcessorDpc
VOID

KeSetTargetProcessorDpc(
IN PRKDPC Dpc,

IN CCHAR Number
) ;

KeSetTargetProcessorDpc controls on which processor a particular DPC routine
subsequently will be queued.

Parameters
Dpe
Pointer to the caller's OPC object, already initialized with KelnitializeDpc.

Number
Specifies the zero-based number of the target processor on which the OPC should be queued
and executed.

Include
ntddk.h

348 Part 1 Kernel-Mode Support Routines

Comments
KeSetTargetProcessorDpc can be called on SMP platforms to control the target processor
on which the caller's DPC will be queued and, consequently, the target processor on which
the caller's DPC routine will execute.

By default, the kernel queues all DPCs on the current processor from which the call to
KelnsertQueueDpc (or, from NT device drivers, to IoRequestDpc) occurs. On a uni
processor platform, calls to KeSetTargetProcessorDpc have no effect.

Callers of KeSetTargetProcessorDpc can be running at any IRQL.

See Also
IoRequestDpc, KeGetCurrentProcessorNumber, KelnitializeDpc, KelnsertQueueDpc,
KeSetImportanceDpc

KeSetPriorityTh read
KPRIORITY

KeSetPriorityThread(
IN PKTHREAD Thread,
IN KPRIORITY Priority
) ;

KeSetPriorityThread sets the run-time priority of a driver-created thread.

Parameters
Thread
Pointer to the driver-created thread.

Priority
Specifies the priority of the driver-created thread, usually to the real-time priority value,
LOW_REALTIME_PRIORITY. The value LOW_PRIORITY is reserved for system use.

Include
wdm.h or ntddk.h

Return Value
KeSetPriorityThread returns the old priority of the thread.

Chapter 5 Kernel· Routines 349

Comments
If a call to KeSetPriorityThread resets the thread's priority to a lower value, execution of
the thread can be rescheduled even if it is currently running or is about to be dispatched for
execution.

Callers of KeSetPriorityThread must be running at IRQL PASSIVE_LEVEL.

See Also
KeGetCurrentThread, KeQueryPriorityThread, KeSetBasePriorityThread

KeSetTimer
BOOLEAN

KeSetTimer(
IN PKTIMER Timer,
IN LARGE_INTEGER DueTime,
IN PKDPC Dpe OPTIONAL
) ;

KeSetTimer sets the absolute or relative interval at which a timer object is to be set to a sig
naled state and, optionally, supplies a CustomTimerDpc routine to be executed when that
interval expires.

Parameters
Timer
Pointer to a timer object that was initialized with KelnitializeTimer or Kelnitialize
TimerEx.

Due Time
Specifies the absolute or relative time at which the timer is to expire. If the value of the
DueTime parameter is negative, the expiration time is relative to the current system time.
Otherwise, the expiration time is absolute. The expiration time is expressed in system time
units (IOO-nanosecond intervals). Absolute expiration times track any changes in the system
time; relative expiration times are not affected by system time changes.

Dpe
Pointer to a DPC object that was initialized by KelnitializeDpc. This parameter is optional.

Include
wdm.h or ntddk.h

350 Part 1 Kernel-Mode Support Routines

Return Value
If the timer object was already in the system timer queue, KeSetTimer returns TRUE.

Comments
KeSetTimer:

• Computes the expiration time.

• Sets the timer to a not signaled state.

• Inserts the timer object in the system timer queue.

If the timer object was already in the timer queue, it is implicitly canceled before being set
to the new expiration time. A call to KeSetTimer before the previously specified Due Time
has expired cancels both the timer and the call to the Dpc, if any, associated with the
previous call.

If the Dpc parameter is specified, a DPC object is associated with the timer object. When
the timer expires, the timer object is removed from the system timer queue and its state is set
to signaled. If a DPC object was associated with the timer when it was set, the DPC object is
inserted in the system DPC queue to be executed as soon as conditions permit after the timer
interval expires.

The expiration of the timer ultimately depends on the granularity of the system clock. The
value specified for Due Time guarantees that the timer object is set to a signaled state on or
after the given DueTime. However, KeSetTimer cannot override the granularity of the
system clock, whatever the value specified for DueTime.

Only one instantiation of a given DPC object can be queued at any given moment. To
avoid potential race conditions, the DPC passed to KeSetTimer should not be passed to
KelnsertQueueDpc.

A caller cannot wait at raised IRQL nor in an arbitrary thread context for a timer to expire
by calling Ke WaitXxx.

Callers of KeSetTimer can specify one expiration time for a timer. To set a recurring timer
use KeSetTimerEx.

Callers of KeSetTimer must be running at IRQL <= DISPATCH_LEVEL.

See Also
KeCancelTimer, KelnitializeDpc, KelnitializeTimer, KelnitializeTimerEx, KeRead
StateTimer, KeSetTimerEx, Ke WaitForMultipleObjects, Ke WaitForSingleObject

KeSetTimerEx
BOOLEAN

KeSetTi merEx (
IN PKTIMER Timer,
IN LARGE_INTEGER DueTime,
IN LONG Period OPTIONAL,
IN PKDPC Dpc OPTIONAL
) ;

Chapter 5 Kernel Routines 351

KeSetTimerEx sets the absolute or relative interval at which a timer object is to be set to
a signaled state, optionally supplies a CustomTimerDpc routine to be executed when that
interval expires, and optionally supplies a recurring interval for the timer.

Parameters
Timer
Pointer to a timer object that was initialized with KelnitializeTimer or Kelnitialize
TimerEx.

OueTime
Specifies the absolute or relative time at which the timer is to expire. If the value of the
DueTime parameter is negative, the expiration time is relative to the current system time.
Otherwise, the expiration time is absolute. The expiration time is expressed in system
time units (IOO-nanosecond intervals). Absolute expiration times track any changes in
the system time; relative expiration times are not affected by system time changes.

Period
Specifies an optional period for the timer in milliseconds. Must be less than or equal to
MAXLONG.

Ope
Pointer to a DPC object that was initialized by KelnitializeDpc. This parameter is optional.

Include
wdm.h or ntddk.h

Return Value
If the timer object was already in the system timer queue, KeSetTimerEx returns TRUE.

352 Part1 Kernel-Mode Support Routines

Comments
KeSetTimerEx:

• Computes the expiration time.

• Sets the timer to a not signaled state.

• Sets the recurring interval for the timer, if one was specified.

• Inserts the timer object in the system timer queue.

If the timer object was already in the timer queue, it is implicitly canceled before being set
to the new expiration time. A call to KeSetTimerEx before the previously specified Due
Time has expired cancels both the timer and the call to the Dpc, if any, associated with the
previous call.

The expiration of the timer ultimately depends on the granularity of the system clock. The
value specified for Due Time guarantees that the timer object is set to a signaled state on or
after the given Due Time. However, KeSetTimerEx cannot override the granularity of the
system clock, whatever the value specified for DueTime.

If the Dpc parameter is specified, a DPC object is associated with the timer object. When
the timer expires, the timer object is removed from the system timer queue and it is set to a
signaled state. If a DPC object was associated with the timer when it was set, the DPC ob
ject is inserted in the system DPC queue to be executed as soon as conditions permit after
the timer interval expires.

A DPC routine cannot deallocate a periodic timer. A DPC routine can deallocate a non
periodic timer.

Only one instantiation of a given DPC object can be queued at any given moment. To avoid
potential race conditions, the DPC passed to KeSetTimerEx should not be passed to Ke
InsertQueueDpc.

A caller cannot wait at raised IRQL nor in an arbitrary thread context for a timer to expire
by calling KeWaitXxx.

Callers of KeSetTimerEx must be running at IRQL <= DISPATCH_LEVEL.

See Also
KeCancelTimer, KelnitializeDpc, KelnitializeTimer, KelnitializeTimerEx, KeRead
StateTimer, Ke WaitForMultipleObjects, Ke WaitForSingleObject

KeStal1 Execution Processor
VOID

KeStallExecutionProcessor(
IN ULONG MicroSeconds
) ;

Chapter 5 Kernel Routines 353

KeStallExecutionProcessor stalls the caller on the current processor for the given interval.

Parameters
MicroSeconds
Specifies the number of microseconds to stall.

Include
wdm.h or ntddk. h

Comments
KeStallExecutionProcessor is a processor-dependent routine that busy-waits for at least
the specified number of microseconds, but not significantly longer.

This routine is for use by device drivers and other software that must wait for an interval
of less than a clock tick but more than for a few instructions. Drivers that call this routine
should minimize the number of microseconds they specify (no more than 50). If a driver
must wait for a longer interval, it should use another synchronization mechanism.

Callers of KeStallExecutionProcessor can be running at any IRQL.

See Also
KeDelayExecutionThread, Ke WaitForMuItipleObjects, Ke WaitForSingleObject

KeSynchronizeExecution
BOOLEAN

KeSynchronizeExecution(
IN PKINTERRUPT Interrupt,
IN PKSYNCHRONIZE_ROUTINE SynchronizeRoutine,
IN PVOID SynchronizeContext
) ;

KeSynchronizeExecution synchronizes the execution of a given routine with that of the
ISR associated with the given interrupt object pointer.

354 Part 1 Kernel-Mode Support Routines

Parameters
Interrupt
Is a pointer to a set of interrupt objects. This pointer was returned by IoConnectlnterrupt.

Synchron;zeRout;ne
Is the entry point for a caller-supplied SynchCritSection routine whose execution is to
be synchronized with the execution of the ISR associated with the interrupt objects. A
SynchronizeRoutine is declared as follows:

BOOLEAN
(*PKSYNCHRONIZE_ROUTINE) (

IN PVOID SynchronizeContext
) ;

Synchron;zeContext
Pointer to a caller-supplied context area to be passed to the SynchronizeRoutine when it is
called.

Include
wdm. h or ntddk. h

Return Value
KeSynchronizeExecution returns TRUE if the operation succeeds.

Comments
When this routine is called, the following occurs:

1. The IRQL is raised to the Synchronizelrql specified in the call to IoConnectlnterrupt.

2. Access to Synchronize Context is synchronized with the corresponding ISR by acquiring
the associated interrupt object spin lock.

3. The specified SynchronizeRoutine is called with the input pointer to Synchronize Context.

The caller-supplied SynchronizeRoutine runs at DIRQL, so it must execute very quickly.

Callers of KeSynchronizeExecution must be running at IRQL <= DIRQL, that is, less than
or equal to the value of the Synchronizelrql parameter specified when the caller registered
its ISRs with IoConnectlnterrupt.

See Also
IoConnectlnterrupt

KeWaitForMultipleObjects
NTSTATUS

KeWaitForMultipleObjects(
IN ULONG Count.
IN PVOID Object[J.
IN WAIT_TYPE WaitType.
IN KWAIT_REASON WaitReason.
IN KPROCESSOR-MODE WaitMode.
IN BOOLEAN A7ertab7e.
IN PLARGE_INTEGER Timeout OPTIONAL.
IN PKWAIT_BLOCK WaitB70ckArray OPTIONAL
) ;

Chapter 5 Kernel Routines 355

KeWaitForMultipleObjects routine puts the current thread into an alertable or nonalertable
wait state until any or all of a number of dispatcher objects are set to a signaled state
or (optionally) until the wait times out.

Parameters
Count
Specifies the number of objects to be waited on.

Object
Points to an array of pointers to dispatcher objects (events, mutexes, semaphores, threads,
and timers) for which the caller supplies the storage.

WaitType
Specifies either WaitAIl, indicating that all of the specified objects must attain a signaled
state before the wait is satisfied; or WaitAny, indicating that anyone of the objects must
attain a signaled state before the wait is satisfied.

WaitReason
Specifies the reason for the wait. Drivers should set this value to Executive or, if the driver
is doing work on behalf of a user and is running in the context of a user thread, to User
Request.

WaitMode
Specifies whether the caller waits in KernelMode or UserMode. Intermediate and lowest
level drivers should specify KernelMode. The caller must specify KernelMode if the set of
objects waited on includes a mutex.

Alertable
Specifies a Boolean value that indicates whether the thread can be alerted while it is in the
waiting state.

356 Part 1 Kernel·Mode Support Routines

Timeout
Points to an absolute or relative value representing the upper limit for the wait. A negative
value specifies an interval relative to the current system time. The value should be expressed
in units of 100 nanoseconds. Absolute expiration times track any changes in the system
time; relative expiration times are not affected by system time changes.

WaitBlockArray
Points to an optional array of wait blocks that describe the wait operation.

Include
wdm.h or ntddk.h

Return Value
KeWaitForMultipleObjects can return one of the following:

STATUS_SUCCESS
Depending on the specified WaitType, one or all of the dispatcher objects in the Object array
satisfied the wait.

STATUS_ALERTED
The wait is completed because of an alert to the thread.

STATUS_USER_APC
A user APC was delivered to the current thread before the specified Timeout interval
expired.

STATUS_TIMEOUT
A time-out occurred before the specified set of wait conditions was met. This value can
be returned when an explicit time-out value of zero is specified, but the specified set of wait
conditions cannot be met immediately.

If KeWaitForMultipleObjects returns STATUS_SUCCESS and if Wait Any is specified
as the WaitType, KeWaitForMultipleObjects' also returns the zero-based index of the
object that satisfied the wait at NTSTATUS.

Comments
Each thread object has a built-in array of wait blocks that can be used to wait on several
objects concurrently. Whenever possible, the built-in array of wait blocks should be used in
a wait-multiple operation because no additional wait block storage needs to be allocated and
later deallocated. However, if the number of objects that must be waited on concurrently is
greater than the number of built-in wait blocks, use the WaitBlockArray parameter to specify
an alternate set of wait blocks to be used in the wait operation.

Chapter 5 Kernel Routines 357

If the WaitBlockArray parameter is NULL, the Count parameter must be less than or equal
to THREAD_WAIT_OBJECTS or a bug check will occur.

If the WaitBlockArray pointer is nonNULL, the Count parameter must be less than or equal
to MAXIMUM_WAIT_OBJECTS or a bug check will occur.

The current state for each of the specified objects is examined to determine whether the wait
can be satisfied immediately. If the necessary side effects are performed on the objects, an
appropriate value is returned.

If the wait cannot be satisfied immediately and either no time-out value or a nonzero time
out value has been specified, the current thread is put in a waiting state and a new thread is
selected for execution on the current processor. If no Timeout is supplied, the calling thread
will remain in a wait state until the conditions specified by Object and WaitType are
satisfied.

If Timeout is specified, the wait will be automatically satisfied if none of the specified wait
conditions is met when the given interval expires.

A Timeout value of zero allows the testing of a set of wait conditions, conditionally
performing any side effects if the wait can be immediately satisfied, as in the acquisition
of a mutex.

The Alertable parameter specifies whether the thread can be alerted and its wait state
consequently aborted. If the value of this parameter is FALSE then the thread cannot be
alerted, no matter what the value of the WaitMode parameter or the origin of the alert. The
only exception to this rule is that of a terminating thread. A thread is automatically made
alertable, for instance, when terminated by a user with a CTRL+C.

If the value of Alertable is TRUE and one of the following conditions exists, the thread will
be alerted:

1. If the origin of the alert is an internal, undocumented kernel-mode routine used to alert
threads.

2. If the origin of the alert is a user-mode APC and the value of the WaitMode parameter is
UserMode.

In the first of these two cases, the thread's wait is satisfied with a completion status
of STATUS_ALERTED; in the second case, it is satisfied with a completion status of
STATUS_USER_APC.

The thread must be alertable for a user-mode APC to be delivered. This is not the case for
kernel-mode APCs. A kernel-mode APC can be delivered and executed even though the
thread is not alerted. Once the APC's execution completes, the thread's wait will resume.
A thread is never alerted nor is its wait aborted by the delivery of a kernel-mode APC.

358 Part 1 Kernel-Mode Support Routines

The delivery of kernel-mode APCs to a waiting thread does not depend on whether the
thread can be alerted, but it depends on other conditions. If the kernel-mode APC is a
special kernel-mode APC, then the APC is delivered provided that IRQL < APC_LEVEL.
If the kernel-mode APC is a normal kernel-mode APC, then the APC is delivered provided
that the following three conditions hold:

1. IRQL < APC_LEVEL.

2. No kernel APC is in progress.

3. The thread is not in a critical section.

A special consideration applies when the Object parameter passed to KeWaitForMultiple
Objects is a mutex. If the dispatcher object waited on is a mutex, APC delivery is the same
as for all other dispatcher objects during the wait. However, once KeWaitForMultiple
Objects returns with STATUS_SUCCESS and the thread actually holds the mutex, only
special kernel-mode APCs are delivered. Delivery of all other APCs, both kernel-mode and
user-mode, is disabled. This restriction on the delivery of APCs persists until the mutex is
released.

If the WaitMode parameter is UserMode, the kernel stack can be swapped out during the
wait. Consequently, a caller must never attempt to pass parameters on the stack when calling
Ke WaitForMultipleObjects with the UserMode argument. If you allocate the event on the
stack, you must set the WaitMode parameter to KernelMode.

It is especially important to check the return value of KeWaitForMuItipleObjects when the
WaitMode parameter is UserMode or Alertable is TRUE, because KeWaitForMultiple
Objects might return early with a status of STATUS_USER_APC or STATUS_ALERTED.

All long term waits that can be aborted by a user should be UserMode waits and Alertable
should be set to FALSE.

Where possible, Alertable should be set to FALSE and WaitMode should be set to Kernel
Mode, in order to reduce driver complexity. The principal exception to this is when the wait
is a long term wait.

Callers of KeWaitForMultipleObjects can be running at IRQL <= DISPATCH_LEVEL.
However, the caller cannot wait at raised IRQL for a nonzero interval nor in an arbitrary
thread context on any dispatcher object. Therefore callers usually are running at IRQL
PASSIVE_LEVEL. A call while running at IRQL = DISPATCH_LEVEL is valid if and
only if the caller specifies a Timeout of zero. That is, a driver must not wait for a nonzero
interval at IRQL = DISPATCH_LEVEL.

Chapter 5 Kernel Routines 359

See Also
ExlnitializeFastMutex, KelnitializeEvent, KelnitializeMutex, KelnitializeSemaphore,
KelnitializeTimer, Ke WaitForMutexObject, Ke WaitForSingleObject, 3.9.5 Treatment
of Alerts and APes by Threads Waiting on Dispatcher Objects

KeWaitForMutexObject
NTSTATUS

KeWaitForMutexObject(
IN PRKMUTEX Mutex,
IN KWAIT_REASON WaitReason,
IN KPROCESSOR-MODE WaitMode,
IN BOOLEAN A7ertab7e,
IN PLARGE_INTEGER Timeout OPTIONAL
) ;

Ke WaitForMutexObject routine puts the current thread into an alertable or nonalertable
wait state until the given mutex object is set to a signaled state or (optionally) until the wait
times out.

Parameters
Mutex
Pointer to an initialized mutex object for which the caller supplies the storage.

WaitReason
Specifies the reason for the wait, which should be set to Executive. If the driver is doing
work on behalf of a user and is running in the context of a user thread, this parameter should
be set to UserRequest.

WaitMode
The caller must specify KernelMode.

Alertable
Specifies a Boolean value that indicates whether the wait is alertable.

Timeout
Pointer to a time-out value that specifies the absolute or relative time at which the wait is to
be completed (optional). A negative value specifies an interval relative to the current time.
The value should be expressed in units of 100 nanoseconds. Absolute expiration times track
any changes in the system time; relative expiration times are not affected by system time
changes.

360 Part 1 Kernel-Mode Support Routines

Include
wdm.h or ntddk.h

Return Value
KeWaitForMutexObject can return one of the following:

STATUS_SUCCESS
The dispatcher object specified by the Mutex parameter satisfied the wait.

STATUS_ALERTED
The wait was completed because of an alert to the thread.

STATUS_USER_APC
A user APC was delivered to the current thread before the specified Timeout interval
expired.

STATUS_TIMEOUT
A time-out occurred before the mutex was set to a signaled state. This value can be returned
when an explicit time-out value of zero is specified and the specified set of wait conditions
cannot be immediately met.

Comments
KeWaitForMutexObject is a macro that converts to KeWaitForSingleObject, which can
be used instead.

For better performance, use the Ex .. FastMutex routines instead of the Ke .. Mutex. How
ever, a fast mutex cannot be acquired recursively, as a kernel mutex can.

The current state of the given mutex object is examined to determine whether the wait
can be satisfied immediately. If so, the necessary side effects are performed on the mutex.
Otherwise, the current thread is put in a waiting state and a new thread is selected for
execution on the current processor.

The Alertable parameter specifies whether the thread can be alerted and its wait state con
sequently aborted. If the value of this parameter is FALSE then the thread cannot be alerted,
no matter what the value of the WaitMode parameter or the origin of the alert. The only ex
ception to this rule is that of a terminating thread. A thread is automatically made alertable,
for instance, when terminated by a user with a CTRL+C.

If the value of Alertable is TRUE and one of the following conditions is present, the thread
will be alerted:

1. If the origin of the alert is an internal, undocumented kernel-mode routine used to alert
threads.

Chapter 5 Kernel Routines 361

2. The origin of the alert is a user-mode APC, and the value of the WaitMode parameter is
UserMode.

In the first of these two cases, the thread's wait is satisfied with a completion status of
STATUS_ALERTED; in the second case, it is satisfied with a completion status of
STATUS_USER_APC.

The thread must be alertable for a user-mode APC to be delivered. This is not the case for
kernel-mode APCs. A kernel-mode APC can be delivered and executed even though the
thread is not alerted. Once the APC's execution completes, the thread's wait resumes.
A thread is never alerted, nor is its wait aborted, by the delivery of a kernel-mode APC.

The delivery of kernel-mode APCs to a waiting thread does not depend on whether
the thread can be alerted. If the kernel-mode APC is a special kernel-mode APC, then the
APC is delivered provided that IRQL < APC_LEVEL. If the kernel-mode APC is a normal
kernel-mode APC, then the APC is delivered provided that the following three conditions
hold:

1. IRQL < APC_LEVEL.

2. No kernel APC is in progress.

3. The thread is not in a critical section.

Since KeWaitForMutexObject initiates a wait on a mutex object, a special consideration
applies. APC delivery is the same for mutexes as for all other dispatcher objects during
the wait to acquire the mutex. However, once KeWaitForMutexObject returns with
STATUS_SUCCESS and the thread actually holds the mutex, only special kernel-mode
APCs are delivered. Delivery of all other APCs, both kernel-mode and user-mode, is
disabled. This restriction on the delivery of APCs persists until the mutex is released.

If the WaitMode parameter is UserMode, the kernel stack can be swapped out during the
wait. Consequently, a caller must never attempt to pass parameters on the stack when calling
KeWaitForMutexObject using the UserMode argument.

It is especially important to check the return value of Ke WaitForMutexObject when the
WaitMode parameter is UserMode or Alertable is TRUE, because KeWaitForMutex
Object might return early with a status of STATUS_USER_APC or STATUS_ALERTED.

All long term waits that can be aborted by a user should be UserMode waits and Alertable
should be set to FALSE.

Where possible, Alertable should be set to FALSE and WaitMode should be set to Kernel
Mode, in order to reduce driver complexity. The principal exception to this is when the wait
is a long term wait. If no Timeout is supplied, the calling thread remains in a wait state until
the Mutex is signaled.

362 Part 1 Kernel-Mode Support Routines

A Timeout of zero allows the testing of a set of wait conditions and for conditionally per
forming any side effects if the wait can be immediately satisfied, such as acquiring the
Mutex.

Callers of KeWaitForMutexObject must be running at IRQL <= DISPATCH_LEVEL.
Usually, the caller must be running at IRQL = PASSIVE_LEVEL and in a nonarbitrary
thread context. A call while running at IRQL = DISPATCH_LEVEL is valid if and only if
the caller specifies a Timeout of zero. That is, a driver must not wait for a nonzero interval
at IRQL = DISPATCH_LEVEL.

See Also
ExAcquireFastMutex, ExAcquireFastMutexUnsafe, ExInitializeFastMutex,
KeBugCheckEx, KeInitializeMutex, KeReadStateMutex, KeReleaseMutex, 3.9.5
Treatment of Alerts and APCs by Threads Waiting on Dispatcher Objects

KeWaitForSingleObject
NTSTATUS

KeWaitForSingleObject(
IN PYOID Object,
IN KWAIT_REASON WaitReason,
IN KPROCESSOR_MODE WaitMode,
IN BOOLEAN A7ertab7e,
IN PLARGE_INTEGER Timeout OPTIONAL
) ;

KeWaitForSingleObject routine puts the current thread into a wait state until the given
dispatcher object is set to a signaled state or (optionally) until the wait times out.

Parameters
Object
Pointer to an initialized dispatcher object (event, mutex, semaphore, thread, or timer) for
which the caller supplies the storage.

WaitReason
Specifies the reason for the wait. A driver should set this value to Executive, unless it is
doing work on behalf of a user and is running in the context of a user thread, in which case
it should set this value to UserRequest.

WaitMode
Specifies whether the caller waits in KernelMode or UserMode. Lowest-level and inter
mediate drivers should specify KernelMode. If the given Object is a mutex, the caller must
specify KernelMode.

Chapter 5 Kernel Routines 363

A/ertab/e
Specifies a Boolean value that is TRUE if the wait is alertable and FALSE otherwise.

Timeout
Pointer to a time-out value that specifies the absolute or relative time at which the wait is to
be completed (optional). A negative value specifies an interval relative to the current time.
The value should be expressed in units of 100 nanoseconds. Absolute expiration times track
any changes in the system time; relative expiration times are not affected by system time
changes.

Include
wdm.h or ntddk.h

Return Value
Ke WaitForSingleObject can return one of the following:

STATUS_SUCCESS
The dispatcher object specified by the Object parameter satisfied the wait.

STATUS_ALERTED
The wait was completed because of an alert to the thread.

STATUS_USER_APC
A user APC was delivered to the current thread before the specified Timeout interval
expired.

STATUS_TIMEOUT
A time-out occurred before the object was set to a signaled state. This value can be returned
when the specified set of wait conditions cannot be immediately met and Timeout is set
to zero.

Comments
The current state of the specified Object is examined to determine whether the wait can
be satisfied immediately. If so, the necessary side effects are performed on the object.
Otherwise, the current thread is put in a waiting state and a new thread is selected for
execution on the current processor.

The Alertable parameter specifies whether the thread can be alerted and its wait state
consequently aborted. If the value of this parameter is FALSE then the thread cannot be
alerted, no matter what the value of the WaitMode parameter or the origin of the alert. The
only exception to this rule is that of a terminating thread. Under certain circumstances a

364 Part 1 Kernel-Mode Support Routines

terminating thread can be alerted while it is in the process of winding down. A thread is
automatically made alertable, for instance, when terminated by a user with a CTRL+C.

If the value of Alertable is TRUE and one of the following conditions is present, the thread
will be alerted:

1. If the origin of the alert is an internal, undocumented kernel-mode routine used to alert
threads.

2. The origin of the alert is a user-mode APC, and the value of the WaitMode parameter is
UserMode.

In the first of these two cases, the thread's wait is satisfied with a completion status of
STATUS_ALERTED; in the second case, it is satisfied with a completion status of
STATUS_USER_APC.

The thread must be alertable for a user-mode APC to be delivered. This is not the case
for kernel-mode APCs. A kernel-mode APC can be delivered and executed even though the
thread is not alerted. Once the APC's execution completes, the thread's wait resumes. A
thread is never alerted, nor is its wait aborted, by the delivery of a kernel-mode APC.

The delivery of kernel-mode APCs to a waiting thread does not depend on whether the
thread can be alerted. If the kernel-mode APC is a special kernel-mode APC, then the APC
is delivered provided that IRQL < APC_LEVEL. If the kernel-mode APC is a normal
kernel-mode APC, then the APC is delivered provided that the following three condi-
tions hold:

1. IRQL < APC_LEVEL.

2. No kernel APC is in progress.

3. The thread is not in a critical section.

A special consideration applies when the Object parameter passed to Ke WaitForSingle
Object is a mutex. If the dispatcher object waited on is a mutex, APC delivery is the same
as for all other dispatcher objects during the wait. However, once KeWaitForSingleObject
returns with STATUS_SUCCESS and the thread actually holds the mutex, only special
kernel-mode APCs are delivered. Delivery of all other APCs, both kernel-mode and user
mode, is disabled. This restriction on the delivery of APCs persists until the mutex is
released.

If the WaitMode parameter is UserMode, the kernel stack can be swapped out during the
wait. Consequently, a caller must never attempt to pass parameters on the stack when calling
KeWaitForSingleObject using the UserMode argument. If you allocate the event on the
stack, you must set the WaitMode parameter to KernelMode.

Chapter 5 Kernel Routines 365

It is especially important to check the return value of KeWaitForSingleObject when the
WaitMode parameter is UserMode or Alertable is TRUE, because KeWaitForSingleObject
might return early with a status of STATUS_USER_APC or STATUS_ALERTED.

All long term waits that can be aborted by a user should be UserMode waits and Alertable
should be set to FALSE.

Where possible, Alertable should be set to FALSE and WaitMode should be set to Kernel
Mode, in order to reduce driver complexity. The principal exception to this is when the wait
is a long term wait.

If no Timeout is supplied, the calling thread remains in a wait state until the Object is
signalled.

A Timeout of zero allows the testing of a set of wait conditions and for the conditional per
formance of any side effects if the wait can be immediately satisfied, as in the acquisition of
a mutex.

Callers of Ke WaitForSingleObject must be running at IRQL <= DISPATCH_LEVEL.
Usually, the caller must be running at IRQL = PASSIVE_LEVEL and in a nonarbitrary
thread context. A call while running at IRQL = DISPATCH_LEVEL is valid if and only if
the caller specifies a Timeout of zero. That is, a driver must not wait for a nonzero interval
at IRQL = DISPATCH_LEVEL.

See Also
ExInitializeFastMutex, KeBugCheckEx, KeInitializeEvent, KeInitializeMutex, Ke
InitializeSemaphore, KeInitializeTimer, Ke WaitForMuitipleObjects, Ke WaitFor
MutexObject, 3.9.5 Treatment of Alerts and APCs by Threads Waiting on Dispatcher
Objects

367

CHAPTER 6

Memory Manager Routines

References for the MrnXxx routines and macros are in alphabetical order.

For an overview of the functionality of these routines and macros, see Chapter 1, Summary
of Kernel-Mode Support Routines.

ULONG

IN PVOID Va,
IN ULONG Size
) ;

ADDRESS_AND_SIZE_TO_SPAN_PAGES returns the number of pages spanned by the
virtual range defined by a virtual address and the size in bytes of a transfer request.

Parameters
Va
Points to the virtual address that is the base of the range.

Size
Specifies the size in bytes of the transfer request.

Include
wdm.h or ntddk.h

Return Value
ADDRESS_AND_SIZE_TO_SPAN_PAGES returns the number of pages spanned by the
virtual range starting at Va.

368 Part 1 Kernel-Mode Support Routines

Comments
Drivers that make DMA transfers call ADDRESS_AND_SIZE_TO_SPAN_PAGES
to determine whether a transfer request must be split into a sequence of device DMA
operations.

A driver can use the system-defined constant PAGE_SIZE to determine whether the number
of bytes to be transferred is less than the page size of the current platform.

Callers of ADDRESS_AND_SIZE_TO_SPAN_PAGES can be running at any IRQL, but
usually run at IRQL DISPATCH_LEVEL.

See Also
Map Transfer

ARGUMENT _PRESENT
BOOLEAN

IN (CHAR *) ArgumentPointer
) :

ARGUMENT_PRESENT is a macro that takes an argument pointer and returns FALSE if
the pointer is NULL, TRUE otherwise.

Parameters
ArgumentPointer
The value of the pointer argument to be tested.

Include
wdm.h or ntddk.h

Return Value
ARGUMENT_PRESENT returns FALSE if the value of ArgumentPointer is NULL, true
otherwise.

Comments
This macro can be called in conditional code to determine whether an optional argument has
been passed in a call.

Callers of ARGUMENT_PRESENT can be running at any IRQL.

BYTE_OFFSET
ULONG

BYTE_OFFSET<
IN PVOID Va
) ;

Chapter 6 Memory Manager Routines 369

BYTE_OFFSET takes a virtual address and returns the byte offset of that address within
the page.

Parameters
Va
Points to the virtual address.

Include
wdm.h or ntddk.h

Return Value
BYTE_OFFSET returns the offset portion of the virtual address.

Comments
Callers of BYTE_OFFSET can be running at any IRQL.

ULONG
BYTES_TO_PAGES(
IN ULONG Size
) ;

BYTES_TO_PAGES takes the size in bytes of the transfer request and calculates the
number of pages required to contain the bytes.

Parameters
Size
Specifies the size in bytes of the transfer request.

Include
wdm.h or ntddk.h

370 Part 1 Kernel-Mode Support Routines

Return Value
BYTES_TO_PAGES returns the number of pages required to contain the specified number
of bytes.

Comments
The system-defined constant PAGE_SIZE can be used to determine whether a given length
in bytes for a transfer is less than the page size of the current platform.

Callers of BYTES_TO_PAGES can be running at any IRQL.

See Also
ADDRESS_AND_SIZE_TO_SPAN_PAGES

COMPUTE_PAGES_SPANNED
ULONG

COMPUTE_PAGES_SPANNED(
IN PVOID Va,
IN ULONG Size
) ;

Use ADDRESS_AND_SIZE_TO_SPAN_PAGES instead of this macro.

CONTAINING_RECORD
PCHAR

CONTAINING_RECORD(
IN PCHAR Address,
IN TYPE Type,
IN PCHAR Field
) ;

CONTAINING_RECORD returns the base address of an instance of a structure given the
type of the structure and the address of a field within the containing structure.

Parameters
Address
Points to a field in an instance of a structure of type Type.

Type
The name of the type of the structure whose base address is to be returned. For example,
type IRP.

Chapter 6 Memory Manager Routines 371

Field
The name of the field pointed to by Address and which is contained in a structure of
type Type.

Include
wdm. h or ntddk.h

Return Value
Returns the address of the base of the structure containing Field.

Comments
Called to determine the base address of a structure whose type is known when the caller has
a pointer to a field inside such a structure. This macro is useful for symbolically accessing
other fields in a structure of known type.

Callers of CONTAINING_RECORD can be running at any IRQL as long as the structure
is resident. If a page fault might occur, callers must be at or below IRQL APC_LEVEL.

See Also
FIELD_OFFSET

FIELD_OFFSET
LONG

FIELD_OFFSET(
N TYPE Type.
IN PCHAR Field
) ;

FIELD_OFFSET returns the byte offset of a named field in a known structure type.

Parameters
Type
The name of a known structure type containing Field.

Field
The name of a field in a structure of type Type.

Include
wdm.h or ntddk.h

372 Part 1 Kernel·Mode Support Routines

Return Value
Returns the byte offset of the caller supplied Field in the Type structure.

Comments
Used by device driver writers to symbolically determine the offset of a known field in a
known structure type.

Callers of FIELD_OFFSET can be running at any IRQL as long as the structure is resident.
If a page fault could occur, callers must be at or below IRQL APC_LEVEL.

See Also
CONTAINING_RECORD

MmAllocateContiguousMemory
PVOID

MmAllocateContiguousMemory(
IN ULONG NumberOfBytes.
IN PHYSICAL_ADDRESS HfghestAcceptab7eAddress
) ;

MmAllocateContiguousMemory allocates a range of physically contiguous, cache-aligned
memory from nonpaged pool.

Parameters
NumberOfBytes
Specifies the size in bytes of the block of contiguous memory to be allocated.

HighestAcceptableAddress
Specifies the highest valid physical address the driver can use. For example, if a device
can only reference physical memory in the lower 16MB, this value would be set to
OxOOOOOOOOFFFFFF.

Include
ntddk.h

Return Value
MmAllocateContiguousMemory returns the base virtual address for the allocated memory.
If the request cannot be satisfied, NULL is returned.

Chapter 6 Memory Manager Routines 373

Comments
MmAlIocateContiguousMemory can be called to allocate a contiguous block of physical
memory for a long-term internal buffer, usually from the DriverEntry routine.

A device driver that must use contiguous memory should allocate only what it needs during
driver initialization because nonpaged pool is likely to become fragmented as the system
runs. Such a driver must deallocate the memory if it is unloaded. Contiguous allocations are
aligned on an integral multiple of the processor's data-cache-line size to prevent cache and
coherency problems.

Callers of MmAlIocateContiguousMemory must be running at IRQL = P ASSIVE_
LEVEL.

See Also
AlIocateCommonBuffer, KeGetDcacheFillSize, MmAlIocateNonCachedMemory,
MmFreeContiguousMemory

MmAllocateContiguousMemorySpecifyCache
NTKERNELAPI
PVOID
MmAllocateContiguousMemorySpecifyCache

IN SIZE_T NumberOfBytes.
IN PHYSICAL_ADDRESS LowestAcceptab7eAddress.
IN PHYSICAL_ADDRESS HighestAcceptab7eAddress.
IN PHYSICAL_ADDRESS BoundaryAddressMu7tip7e OPTIONAL.
IN MEMORY_CACHING_TYPE CacheType
) ;

MmAlIocateContiguousMemorySpecifyCache allocates a range of physically contiguous,
cache-aligned memory from non-paged pool.

Parameters
NumberOfBytes
Specifies the number of bytes to allocate.

LowestAcceptableAddress
Specifies the lowest valid physical address driver can use.

HighestAcceptableAddress
Specifies the highest valid physical address driver can use.

BoundaryAddressMultiple
If nonzero, this specifies the address multiple the allocated buffer must not cross.

374 Part 1 Kernel-Mode Support Routines

Cache Type
Specifies a MEMORY_CACHING_TYPE value, which indicates the type of caching
allowed for the requested memory. The possible values that drivers can use are as follows.

MmNonCached
The requested memory cannot be cached by the processor.

MmCached
The processor may cache the requested memory.

MmWriteCombined
The requested memory cannot be cached, but can be used as a frame buffer by the video port
driver.

Include
ntddk.h

Return Value
MmAllocateContignonsMemorySpecifyCache returns the base virtual address for
the allocated memory. If the system is unable to allocate the request buffer, the routine
returns NULL.

Comments
Drivers use this routine to allocate memory at initialization. For more information, see
MmAllocateContiguousMemory .

MmAllocateNonCachedMemory
PVOID

MmAllocateNonCachedMemory(
IN ULONG NumberOfBytes
) ;

MmAllocateN onCachedMemory allocates a virtual address range of noncached and cache
aligned memory.

Parameters
NumberOfBytes
Specifies the size in bytes of the range to be allocated.

Include
ntddk.h

Return Value

Chapter 6 Memory Manager Routines 375

If the requested memory cannot be allocated, the return value is NULL. Otherwise, it is the
base virtual address of the allocated range.

Comments
MmAllocateNonCachedMemory can be called from a DriverEntry routine to allocate a
noncached block of virtual memory for various device-specific buffers.

A device driver that must use noncached memory should allocate only what it needs during
driver initialization because nonpaged pool is likely to become fragmented as the system
runs. Such a driver must deallocate the memory if it is unloaded. Noncached allocations are
aligned on an integral multiple of the processor's data-cache-line size to prevent cache and
coherency problems.

Callers of MmAllocateNonCachedMemory must be running at IRQL < DISP ATCH_
LEVEL.

See Also
AllocateCommonBuffer, KeGetDcacheFillSize, MmAllocateContiguousMemory,
MmFreeNonCachedMemory

MmAllocatePagesForMdl
PMDL
MmAllocatePagesForMdl

IN PHYSICAL_ADDRESS LowAddress,
IN PHYSICAL_ADDRESS HighAddress,
IN PHYSICAL_ADDRESS SkipBytes,
IN SIZE_T Tota7Bytes
) ;

MmAllocatePagesForMdl allocates zero-filled, nonpaged, physical memory pages to
anMDL.

Parameters
LowAddress
Specifies the physical address of the start of the first address range from which the allo
cated pages can come. If MmAllocatePagesForMdl can not allocate the requested number
of bytes in the first address range, it iterates through additional address ranges. At each

376 Part 1 Kernel-Mode Support Routines

iteration MmAllocatePagesForMdl adds the value of SkipBytes to the previous start ad
dress to obtain the start of the next address range.

HighAddress
Specifies the physical address of the end of the first address range from which the allocated
pages can come.

SkipBytes
Specifies the number of bytes to skip from the start of the previous address range from
which the allocated pages can come. SkipBytes must be an integer multiple of the page size,
in bytes.

Tota/Bytes
Specifies the total number of bytes to allocate for the MDL.

Include
ntddk.h

Return Value
MmAllocatePagesForMdl returns one of the following:

MOL pointer
The MDL pointer maps a set of physical pages in the specified address range. If the
requested number of bytes is not available, the MDL maps as much physical memory as
is available.

NULL
There are no physical memory pages in the specified address ranges, or there is not enough
virtually-contiguous nonpaged memory for the MDL.

Comments
MmAllocatedPagesForMdl is designed to be used by kernel-mode drivers that achieve
substantial performance gains if physical memory for a device is allocated in a specific
physical address range. A driver for an AGP graphics card is an example of such a driver.

Depending on how much physical memory is currently available in the requested ranges,
MmAllocatedPagesForMdl might return an MDL that maps less memory than was re
quested. The routine returns NULL if no memory was allocated. A client should check
the amount of memory that is actually allocated to the MDL.

Chapter 6 Memory Manager Routines 377

The caller must use MmFreePagesFromMdl to release the memory pages that are
described by an MDL that was created by MmAllocatePagesForMdl. After calling
MmFreePagesFromMdl, the caller must also call ExFreePool to release the memory
allocated for the MDL structure.

MmAllocatePagesForMdl runs at IRQL <= APC_LEVEL.

See Also
MmFreePagesFromMdl, MmMapLockedPages, ExFreePool

MmBuildMdlForNonPagedPool
VOID

MmBu;ldMdlForNonPagedPool(
IN OUT PMDL MemoryDescriptorList
) ;

MmBuildMdlForNonPagedPool fills in the corresponding physical page array of a given
MDL for a buffer in nonpaged system space (pool).

Parameters
MemoryDescriptorList
Points to an MDL that supplies a virtual address, byte offset, and length.

Include
wdm.h or ntddk.h

Comments
The physical page portion of the MDL is updated as the pages are locked in memory. The
input MDL virtual address must be within the nonpaged portion of system space.

Callers of MmBuildMdlForNonPagedPool must be running at IRQL <= DISPATCH_
LEVEL.

See Also
ExAllocatePool, ExAllocatePoolWithTag, IoAllocateMdl, MmCreateMdl,
MmlnitializeMdl, MmIsNonPagedSystemAddressValid, MmMaploSpace,
MmSizeOfMdl

378 Part 1 Kernel-Mode Support Routines

MmCreateMdl
PMDL

MmCreateMdl(
IN PMDL MemoryDescriptorList OPTIONAL,
IN PVOID Base,
IN SIZE_T Length
) :

MmCreateMdl is exported to support existing driver binaries. Callers should use
IoAllocateMdl instead.

MmFreeContiguousMemory
VOID

MmFreeContiguousMemory(
IN PVOID BaseAddress
) :

MmFreeContiguousMemory releases a range of physically contiguous memory that was
allocated with MmAllocateContiguousMemory.

Parameters
BaseAddress
Points to the virtual address of the memory to be freed.

Include
ntddk.h

Comments
This routine is the reciprocal of MmAllocateContiguousMemory, and is usually called
only when a driver is being unloaded. The input BaseAddress must have been returned by
a preceding call to MmAllocateContiguousMemory.

A device driver that must use contiguous memory should allocate only what it needs during
driver initialization because nonpaged pool is likely to become fragmented as the system
runs. Such a driver must deallocate the memory if it is unloaded.

Callers of MmFreeContiguousMemory must be running at IRQL = PASSIVE_LEVEL.

See Also
MmAllocateContiguousMemory

Chapter 6 Memory Manager Routines 379

MmFreeContiguousMemorySpecifyCache
NTKERNELAPI
VOID
MmFreeContiguousMemorySpecifyCache

IN PVOID BaseAddress.
IN SIZE_T NumberOfBytes.
IN MEMORY_CACHING_TYPE CacheType
) ;

MmFreeContiguousMemorySpecifyCacbe frees a buffer allocated by MmAllocate
ContiguousMemorySpecifyCache.

Parameters
BaseAddress
Specifies the base address of the buffer to be freed. Must match the address returned by
MmAllocateContiguousMemorySpecifyCache.

NumberOfBytes
Specifies the size in bytes of the buffer to be freed. Must match the size requested when the
buffer was allocated by MmAllocateContiguousMemorySpecifyCache.

Cache Type
Specifies the cache type of the buffer to be freed. Must match the cache type requested when
the buffer was allocated by MmAllocateContiguousMemorySpecifyCache.

Include
ntddk.h

MmFreeNonCachedMemory
VOID

MmFreeNonCachedMemory(
IN PVOID BaseAddress.
IN SIZE_T NumberOfBytes
) ;

MmFreeNonCachedMemory releases a range of noncached memory that was allocated
with MmAllocateNonCachedMemory.

Parameters
BaseAddress
Points to the virtual address of the memory to be freed.

380 Part 1 Kernel-Mode Support Routines

NumberOfBytes
Specifies the size of the range to be freed. The value must match the size passed in a preced
ing call to MmAllocateNonCachedMemory.

Include
ntddk.h

Comments
This routine is the reciprocal of MmAllocateNonCachedMemory, and is usually called
only when a driver is being unloaded.

A device driver that must use noncached memory should allocate only what it needs during
driver initialization because nonpaged pool is likely to become fragmented as the system
runs. Such a driver must deallocate the memory if it is unloaded.

Callers of MmFreeNonCachedMemory must be running at IRQL < DISPATCH_LEVEL.

See Also
MmAllocateNonCachedMemory

MmFreePagesFromMdl
VOID
MmFreePagesFromMdl (

IN PMDL MemoryDescriptorList
) ;

MmFreePagesFromMdl frees all the physical pages that are described by an MDL that was
created by MmAllocatePagesForMdl.

Parameters
MemoryDescriptorList
Pointer to an MDL that was created by MmAllocatePagesForMdl.

Include
ntddk.h

Comments
MmFreePagesFromMdl can only be used to free the memory pages that are described by
an MDL that was created by MmAllocatePagesForMdl.

Chapter 6 Memory Manager Routines 381

After calling MmFreePagesFromMdl, the caller must also call ExFreePool to release the
memory that was allocated for the MDL structure.

MmFreePagesFromMdl runs at IRQL <= APC_LEVEL.

See Also
ExFreePool, MmAllocatePagesForMdl

MmGetMdlByteCount
ULONG

MmGetMdlByteCount(
IN PMDL Md7
) ;

MmGetMdlByteCount returns the length in bytes of the buffer described by a given MDL.

Parameters
Mdl
Points to an MDL.

Include
wdm.h or ntddk.h

Return Value
MmGetMdlByteCount returns the byte count of the buffer described by Mdl.

Comments
Callers of MmGetMdlByteCount can be running at any IRQL. Usually, callers are running
at IRQL <= DISPATCH_LEVEL.

See Also
MmGetMdlByteOffset

MmGetMdlByteOffset
ULONG

MmGetMdlByteOffset(
IN PMDL Md7
) ;

382 Part 1 Kernel-Mode Support Routines

MmGetMdlByteOffset returns the byte offset within a page of the buffer described by a
givenMDL.

Parameters
Mdl
Points to an MDL.

Include
wdm.h or ntddk.h

Return Value
MmGetMdlByteOffset returns the offset in bytes.

Comments
Callers of MmGetMdlByteOffset can be running at any IRQL. Usually, callers are running
at IRQL <= DISPATCH_LEVEL.

See Also
MmGetMdlByteCount, MmGetMdlVirtualAddress

MmGetMdlPfnArray

MmGetMdlPfnArray (
IN PMDL Md7
) ;

MmGetMdlPfnArray returns a pointer to the beginning of the array of physical page
numbers associated with the MDL.

Parameters
Mdl
Points to an MDL.

Include
ntddk.h or wdm. h

Chapter 6 Memory Manager Routines 383

Return Value
A pointer to the beginning of the array of physical page numbers associated with the MDL.

Comments
Callers of MmGetMdlPfnArray can be running at any IRQL.

MmGetMdlVirtualAddress
PVOID

MmGetMdlVirtualAddress(
IN PMDL Md7
) ;

MmGetMdlVirtualAddress returns the base virtual address of a buffer described by an
MDL. The returned address, used as an index to a physical address entry in the MDL, can be
input to MapTransfer.

Parameters
Mdt
Points to an MDL that describes the buffer for which to return the initial virtual address.

Include
wdm.h or ntddk. h

Return Value
MmGetMdlVirtualAddress returns the starting virtual address of the MDL.

Comments
MmGetMdlVirtualAddress returns a virtual address that is not necessarily valid in the
current thread context. Lower-level drivers should not attempt to use the returned virtual
address to access memory, particularly user-space memory.

Callers of MmGetMdlVirtualAddress can be running at any IRQL. Usually, the caller is
running at IRQL DISPATCH_LEVEL because this routine is commonly called to obtain
the CurrentVa parameter to MapTransfer.

See Also
Map Transfer, MmGetMdlByteOffset, MmIsAddressValid, MmIsNonPagedSystem
Address Valid

384 Part 1 Kernel-Mode Support Routines

MmGetPhysicalAddress
PHYSICAL_ADDRESS

MmGetPhysicalAddress(
IN PVOID BaseAddress
) ;

MmGetPhysicalAddress returns the physical address corresponding to a valid virtual
address.

Parameters
BaseAddress
Points to the virtual address for which to return the physical address.

Include
ntddk.h

Return Value
MmGetPhysicalAddress returns the physical address that corresponds to the given virtual
address.

Comments
Callers of MmGetPhysicalAddress can be running at any IRQL, provided that the Base
Address value is valid.

See Also
MmIsAddressValid, MmIsNonPagedSystemAddress Valid, MmMaploSpace,
MmProbeAndLockPages

MmGetSystemAddressForMdl
PVOID

MmGetSystemAddressForMdl(
IN PMDL Md7
) ;

MmGetSystemAddressForMdl returns a nonpaged system-space virtual address for the
buffer described by the MDL. It maps the physical pages described by a given MDL into
system space, if they are not already mapped to system space. This routine is obsolete in
Microsoft® Windows® 2000, and is replaced by MmGetSystemAddressForMdlSafe.

Parameters
Mdt

Chapter 6 Memory Manager Routines 385

Points to a buffer whose corresponding base virtual address is to be mapped.

Include
wdm.h or ntddk.h

Return Value
MmGetSystemAddressForMdl returns the base system-space virtual address that maps the
physical pages described by the given MDL.

Comments
Drivers of PIa devices call this routine to translate a virtual address range, described by
the MDL at Irp->MdIAddress, for a user buffer to a system-space address range.

A caller running at IRQL DISPATCH_LEVEL must supply an MDL that maps nonpageable
virtual addresses. The input MDL must describe an already locked-down user-space buffer
returned by MmProbeAndLockPages, a locked-down buffer returned by MmBuildMdl
ForNonPagedPool, or system-space memory allocated from nonpaged pool, contiguous
memory, or noncached memory.

The returned base address has the same offset as the virtual address in the MDL.

Callers of MmGetSystemAddressForMdl must be running at IRQL <= DISPATCH_
LEVEL.

Windows 2000 issues a bug check if the attempt to map to system space fails. On Win
dows 98, this routine returns NULL in case of failure.

See Also
MmGetSystemAddressForMdlSafe, MmBuildMdlForNonPagedPool, MmProbeAnd
LockPages

MmGetSystemAddressForMdlSafe
PVOID

MmGetSystemAddressForMdlSafe(
IN PMDL Md7.
IN MM_PAGE_PRIORITY Priority
) ;

386 Part 1 Kernel·Mode Support Routines

MmGetSystemAddressForMdlSafe returns a nonpaged system-space virtual address for
the buffer described by the MDL. It maps the physical pages described by a given MDL into
system space, if they are not already mapped to system space.

Parameters
Mdl
Points to a buffer whose corresponding base virtual address is to be mapped.

Priority
Specifies an MM_P AGE_PRIORITY value which indicates the importance of success under
low available PTE conditions. Possible values include LowPagePriority, Normal
PagePriority, and HighPagePriority.

• LowPagePriority indicates that the mapping request can fail if system is fairly low
on resources. An example of this is a non-critical network connection where the
driver can handle the mapping failure.

• NormalPagePriority indicates that the mapping request can fail if system is very
low on resources. An example of this is a non-critical local file system request.

• HighPagePriority indicates that the mapping request must not fail unless the
system is completely out of resources. An example of this is the paging file path in
a driver.

Include
ntddk.h

Return Value
MmGetSystemAddressForMdlSafe returns the base system-space virtual address that
maps the physical pages described by the given MDL. If the pages are not already mapped
to system space and the attempt to map them fails, NULL is returned.

Comments
Drivers of PIO devices call this routine to translate a virtual address range, described by the
MDL at Irp->MdIAddress, for a user buffer to a system-space address range.

A caller running at IRQL DISPATCH_LEVEL must supply an MDL.that maps nonpage
able virtual addresses. The input MDL must describe an already locked-down user-space
buffer returned by MmProbeAndLockPages, a locked-down buffer returned by MmBuild
MdlForNonPagedPool, or system-space memory allocated from nonpaged pool, contigu
ous memory, or noncached memory.

Chapter 6 Memory Manager Routines 387

The returned base address has the same offset as the virtual address in the MDL.

Callers of MmGetSystemAddressForMdlSafe must be running at IRQL <= DISP ATCH_
LEVEL.

See Also
MmGetSystemAddressForMdl, MmBuildMdlForNonPagedPool, MmProbe
AndLockPages

MmlnitializeMdl
VOID

MmInitializeMdl(
IN PMDL MemoryDescriptorList.
IN PVOID BaseVa.
IN SIZE_T Length
) :

MmlnitializeMdl initializes the header of an MDL.

Parameters
MemoryDescriptorList
Points to the MDL to be initialized.

Base Va
Points to the base virtual address of a buffer.

Length
Specifies the length in bytes of the buffer to be described by the MDL.

Include
wdm.h or ntddk.h

Comments
Callers of MmlnitializeMdl must be running at IRQL <= DISPATCH_LEVEL.

See Also
IoAllocateMdl, IoBuildPartialMdl, IoFreeMdl, MmBuildMdlForNonPagedPool,
MmCreateMdl, MmPrepareMdlForReuse, MmSizeOfMdl

388 Part 1 Kernel-Mode Support Routines

MmlsAddressValid
BOOLEAN

MmIsAddressValid(
IN PVOID Virtua7Address
) ;

MmIsAddressValid checks whether a page fault will occur for a read or write operation at
a given virtual address.

Parameters
VirtualAddress
Points to the virtual address to check.

Include
ntddk.h

Return Value
If no page fault will occur from reading or writing at the given virtual address, MmIs
Address Valid returns TRUE.

Comments
Even if MmIsAddressValid returns TRUE, accessing the address can cause page faults
unless the memory has been locked down or the address is a valid nonpaged pool address.

Callers of MmIsAddressValid must be running at IRQL <= DISPATCH_LEVEL.

See Also
MmProbeAndLockPages

MmlsNonPagedSystemAddressValid
BOOLEAN

MmIsNonPagedSystemAddressValid(
IN PVOID Virtua7Address
) ;

MmIsNonPagedSystemAddressValid is exported to support existing drivers and is
obsolete.

Chapter 6 Memory Manager Routines 389

MmlsThisAnNtAsSystem
BOOLEAN

MmIsThi sAnNtAsSystem();

MmIsThisAnNtAsSystem checks whether the current platform is running a server version
of Windows NT®lWindows® 2000.

Include
ntddk.h

Return Value
If the current platform is a server version of Windows NTlWindows 2000, MmIsThisAn
NtAsSystem returns TRUE.

Comments
Drivers can use this routine during initialization, along with MmQuerySystemSize, for
sizing estimates of how many resources to allocate. For example, if MmIsThisAnNtAs
System returns TRUE, the caller can increase the number of threads or the number of
initially allocated entries for a lookaside list that it creates in medium and large systems.

Callers of MmIsThisAnNtAsSystem must be running at IRQL PASSIVE_LEVEL.

See Also
MmQuerySystemSize, ExlnitializeNPagedLookasideList, ExlnitializePaged
LookasideList

MmLockPagableCodeSection
PVOID

MmLockPagableCodeSection(
IN PVOID AddressWithinSection
) ;

MmLockPagableCodeSection locks a section of driver code, containing a set of driver
routines marked with a special compiler directive, into system space.

Parameters
AddressWithinSection
Is a symbolic address, usually the entry point of a driver routine, within the pageable section
of driver code.

390 Part 1 Kernel-Mode Support Routines

Include
wdm.h or ntddk.h

Return Value
MmLockPagableCodeSection returns a handle for the locked-down section of driver code.
The handle must be passed subsequently to MmLockPagableSectionByHandle or to Mm
UnlockPagablelmageSection.

Comments
This routine and its reciprocal, MmUnlockPagablelmageSection, support drivers that can
do the following:

• Defer loading a subset of driver routines into resident memory until incoming I/O re
quests for the driver's device(s) make it necessary for these routines to process IRPs.

• Make the same subset of driver routines available for paging out when they have com
pleted the processing of I/O requests and no additional requests for the driver's device(s)
are currently expected.

MmLockPagableCodeSection, MmLockPagableSectionByHandle and MmUnlock
PagablelmageSection are intended for use by device and intermediate drivers that have
the following characteristics:

• The driver has code paths that might not be needed while the system is running, but, if
they are needed, the driver's code must be resident because it runs in an arbitrary thread
context and/or at raised IRQL.

• The driver can determine exactly when the pageable-routines should be loaded and when
they can be paged out again.

For example, the system-supplied fault-tolerant disk driver supports the creation of mirror
sets, stripe sets, and volume sets. Yet, a particular machine can be configured only with a
mirror set, only with a stripe set, only with a volume set, or with any combination of these
three possible options. In these circumstances, the system ftdisk driver reduces the size of its
loaded image by marking routines that explicitly support mirror, stripe, and volume sets as
belonging to pageable-code sections. During driver initialization, pageable-code section(s)
are made resident only if the user has configured the disks to have mirror, stripe, and/or
volume sets. If the user repartitions the disks dynamically, the ftdisk driver loads any addi
tional pageable-code sections necessary to support any mirror, stripe, and/or volume sets
that the user requests.

Chapter 6 Memory Manager Routines 391

As other examples, the system-supplied serial and parallel drivers have DispatchCreate and
DispatchClose routines that are called when a particular port is opened for exclusive 110
and when the handle for an opened port is released, respectively. Yet, serial and parallel
110 requests are sporadic, determined by which applications the end user is currently run
ning and which application options the end user is currently exercising. In these circum
stances, the system serial and parallel drivers reduce the sizes of their loaded images by
marking many routines as belonging to a pageable-code section that the DispatchCreate
routine makes resident only when the first port is opened for 110.

Note that each of the preceding system drivers satisfies both criteria for having pageable
sections: the driver has code paths that might not be needed while the system is running and
the driver can determine exactly when its pageable section should be loaded and can be
paged out again.

Note also that calling MmLockPagableCodeSection and MmUnlockPagableImage
Section reduce the size of each driver's loaded image at a cost to the driver's and system's
performance. Drivers of performance-critical devices, such as keyboard and mouse drivers,
and drivers of devices that are constantly in use, such as disk drivers, generally should not
have pageable sections: the loss in performance is simply not worth the temporary reduction
in driver image size.

Because it is an expensive operation to lock down a section, if a pageable-code section is
locked down in more than place by a driver, use MmLockPagableCodeSection for the first
request. Make subsequent lock requests by calling MmLockPagableSectionByHandle
passing the handle returned by MmLockPagableCodeSection. Locking by handle signifi
cantly improves driver performance because the memory manager uses the handle to find
the section rather than searching a loaded module list. A locked down section is unlocked by
calling MmUniockPagableImageSection.

Each driver routine within a pageable code section must be marked with the following
compiler directive, supported by all compilers that are compatible with Windows NT/
Windows 2000:

#pragma alloc_text(PAGExxxx, DriverRoutine)

where xxxx is an optional four-character, unique identifier for the caller's pageable section
and DriverRoutine is an entry point to be included within the pageable-code section. For
compilers that compatible with Windows NTIWindows 2000, the keyword PAGE and the
driver-determined suffix, which can be up to four characters, are case-sensitive, that is,
PAGE must be capitalized.

A single call to MmLockPagableCodeSection in, for example, a driver's DispatchCreate
routine causes the entire section, containing every driver routine marked with the same
PAGExxxx identifier to be locked in system space.

392 Part 1 Kernel-Mode Support Routines

Certain types of driver routines cannot be made part of any driver's pageable section,
including the following:

• Never make an ISR pageable. It is possible for a device driver to receive a spurious
interrupt even if its device is not in use, particularly if the interrupt vector could be
shared. In general, even if a driver can explicitly disable interrupts on its device, an
ISR should not be made pageable.

• Never make a DPC routine pageable if the driver cannot control when the DPC is
queued, such as any DpcForIsr or CustomDpc routine that might be queued from an ISR.
In general, driver routines that run at raised IRQL and that can be called in an arbitrary
thread context or in response to a random external event should not be made pageable.

• Never make the DispatchRead or Dispatch Write routine pageable in any driver that might
be part of the system paging I/O path. The driver of a disk that might contain the system
page file must have DispatchRead and DispatchWrite routines that are resident while the
system is running, as must all drivers layered above such a disk driver.

Note that routines in a pageable section marked with the compiler directive #pragma
alloc_text(PAGExxxx, ...)differ from routines marked with the compiler directive #pragma
alloc_text(INIT, ...). The routines in the INIT section are not pageable and are discarded
as soon as the driver returns from its DriverEntry or its Reinitialize routine, if it has one.

The Memory Manager maintains an internal lock count on any driver's pageable-
section. Calls to MmLockPagableCodeSection increment this count and the reciprocal
MmUnlockPagableImageSection decrements the count. A driver's pageable section is
not available to be paged out unless this count is zero.

Callers of MmLockPagableCodeSection and MmLockPagableDataSection must take
care to use the former for code sections and the latter for data sections. If the incorrect form
of MmLockPagableXxxxSection is used, a fatal error will occur on some platforms.

For more information on creating pageable code sections, see Pageable Code and Data in
the Kernel-Mode Drivers Design Guide.

Callers of MmLockPagableCodeSection run at IRQL PASSIVE_LEVEL.

See Also
MmUnlockPagableImageSection, MmPageEntireDriver, MmResetDriverPaging,
MmLockPagableDataSection, MmLockPagableSectionByHandle

MmLockPagableDataSection
PVOID

MmLockPagableDataSection(
IN PVOID AddressWithinSection
) ;

Chapter 6 Memory Manager Routines 393

MmLockPagableDataSection locks an entire section of driver data into system space.

Parameters
Address WithinSection
Is the symbolic address of one item of data within the page able section.

Include
wdm.h or ntddk.h

Return Value
MmLockPagableDataSection returns a handle to the section. This handle must be passed
subsequently to MmLockPagableSectionByHandle or to MmUnlockPagablelmage
Section.

Comments
This routine, MmLockPagableSectionByHandle and MmUnlockPagablelmageSection
are used by drivers to make data pageable but locked in memory on demand.

Data can be pageable if:

• The data is accessed at <DISPATCH_LEVEL.

• The driver uses the data infrequently and predictably.

Drivers for mixer devices use pageable-data sections. Because the driver uses sufficient
data to make creating a pageable-data section worthwhile and the driver knows when the
data is needed, such a driver uses MmLockPagableDataSection, MmLockPagable
SectionByHandle and MmUnlockPagablelmageSection to bring a data section into
system space when needed and make it available to be paged out when not needed.

A single call to MmLockPagableDataSection causes the entire section, containing the
referenced data, to be locked into system space.

It is an expensive operation to lock down a section. If a pageable-data section is locked
down in more than one place by a driver, use MmLockPagableDataSection for the first
request. Make subsequent lock requests by calling MmLockPagableSectionBy Handle,

394 Part 1 Kernel-Mode Support Routines

passing the handle returned by MmLockPagableDataSection. Locking by handle sig
nificantly improves driver performance. A locked down section is unlocked by calling
MmUnlockPagablelmageSection.

The memory manager maintains a reference count on the handle to a section. A pageable
data section is only available to be paged out when the reference count is zero. Every lock
request increments the count; every unlock request decrements the count. A driver must un
lock a section as many times as it locks a section to insure that such a section will be avail
able to be paged out when the section is not needed. A handle is always valid, no matter
what the count. If the count on a handle is zero and a call is made to MmLockPagable
SectionByHandle, the count is set to one, and if the section has been paged out, it will be
paged in.

Callers of MmLockPagableDataSection and MmLockPagableCodeSection must use the
former for data sections and the latter for code sections. If the incorrect form of MmLock
PagableXxxxSection is used, a fatal error will occur on some platforms.

Data in a pageable-data section is marked by a directive available for compilers that are
compatible with Windows NTlWindows 2000. To create a pageable data section, use
#pragma data_seg ("PAGE"), at the beginning of the data module, and #pragma data_
seg 0 at the end of the module. The keyword PAGE is case-sensitive, that is, PAGE must
be capitalized.

Note that there is also a #pragma data_seg("INIT") that is used to make data discardable
after system initialization. Except for the use of INIT rather than PAGE, the syntax is the
same. However the result is not; use of the PAGE directive makes the data section pageable.
When the INIT directive is used, the data in the section is discarded as soon as the driver
returns from its driver entry routine or its reinitialization routine if the driver has one.

For more information about paging data, see Pageable Code and Data in the Kernel-Mode
Drivers Design Guide.

Callers of MmLockPagableDataSection run at IRQL PASSIVE_LEVEL.

See Also
MmLockPagableCodeSection, MmLockPagableSectionByHandle, MmPageEntire
Driver, MmResetDriverPaging, MmUnlockPagablelmageSection

MmLockPagableSectionByHandle
VOID

MmLockPagableSectionByHandle(
IN PVOID ImageSectionHand7e
) ;

Chapter 6 Memory Manager Routines 395

MmLockPagableSectionByHandle takes a handle returned by MmLockPagableData
Section or MmLockPagableCodeSection. This routine checks to see if the referenced
section is resident in the caller's address space and if so, simply increments a reference
count on the section. If the section is not resident, MmLockPagablelmage pages in the
section, locks it in system space and sets the reference count to one.

Parameters
ImageSectionHandle
Supplies the handle returned by a call to MmLockPagableCodeSection or MmLock
PagableDataSection.

Include
ntddk.h

Comments
If a pageable section is locked down in more than one place by a driver, use MmLock
PagableXxxxSection for the first request. Make subsequent lock requests by calling
MmLockPagableSectionByHandle passing the handle returned by MmLockPagable
XxxxSection. A locked down section is unlocked by calling MmUnlockPagablelmage
Section.

A handle returned from an MmLockPagableXxxxSection is valid until a driver is
unloaded.

Locking by handle significantly improves driver performance. When MmLockPagable
CodeSection or MmLockPagableDataSection is called, the memory manager walks the
entire loaded module list to find the module containing the specified address. This is an ex
pensive operation. Calling MmLockPagablelmageSectionByHandle reduces this burden
because if the caller supplies a handle to the section, the memory manager no longer has to
search.

The memory manager maintains a reference count on the handle to the section. A page-
able section is only available to be paged out when the reference count is zero. Every lock
request increments the count; every unlock request decrements the count. A driver must take
care to unlock a section as many times as it locks a section to insure that such a section will
be eligible to be paged out when the section is not needed. Once a handle is obtained, it is
always valid, no matter what the count until the driver is unloaded. If the count on a handle
is zero and a call is made to MmLockPagableSectionByHandle, the count is set to one,
and if the section has been paged out, it will be paged in.

A driver cannot call MmLockPagableSectionByHandle to lock down user buffers passed
in IRPs. Use MmProbeAndLockPages instead.

396 Part 1 Kernel·Mode Support Routines

For more information about paging code and data, see Pageable Code and Data in the
Kernel-Mode Drivers Design Guide ..

Callers of MmLockPagableSectionByHandle runs at IRQL PASSIVE_LEVEL.

See Also
MmLockPagableDataSection, MmLockPagableCodeSection, MmProbeAndLock
Pages, MmPageEntireDriver, MmResetDriverPaging, MmUnlockPagablelmage
Section

MmMaploSpace
PVOID

MmMapIoSpaceC
IN PHYSICAL_ADDRESS Physica7Address.
IN ULONG NumberOfBytes.
IN MEMORY_CACHING_TYPE CacheEnab7e
) ;

MmMaploSpace maps the given physical address range to nonpaged system space.

Parameters
PhysicalAddress
Specifies the starting physical address of the I/O range to be mapped.

NumberOfBytes
Specifies the number of bytes to be mapped.

CacheEnable
Specifies whether the physical address range can be mapped as cached memory. See
MmAllocateContiguousMemorySpecifyCache for a description of the possible values.

Include
wdm.h or ntddk.h

Return Value
MmMaploSpace returns the base virtual address that maps the base physical address for the
range. If space for mapping the range is insufficient, it returns NULL.

Chapter 6 Memory Manager Routines 397

Comments
A driver must call this routine during device start-up if it receives translated resources of
type CmResourceTypeMemory. MmMaploResource maps the physical address returned
in the resource list to a logical address through which the driver can access device registers.

For example, drivers of PIO devices that allocate long-term 110 buffers can call this routine
to make such a buffer accessible or to make device memory accessible.

Callers of MmMaploSpace must be running at IRQL = PASSIVE_LEVEL.

See Also
HalAllocateCommonBuffer, HalTranslateBusAddress, MmAllocateContiguous
Memory, MmAllocateNonCachedMemory, MmMapLockedPages, MmUnmaploSpace

MmMapLockedPages
PVOID

MmMapLockedPages(
IN PMDL MemoryDescriptorList,
IN KPROCESSOR-MODE AccessMode
) ;

MmMapLockedPages maps physical pages described by a given MDL.

Parameters
MemoryDescriptorList
Points to an MDL that has been updated by MmProbeAndLockPages.

AccessMode
Specifies the access mode in which to map the MDL, either KernelMode or UserMode.
Lower-level drivers should use KernelMode.

Include
wdm.h or ntddk. h

Return Value
For Windows NT 4.0 SP3 and earlier versions, MmMapLockedPages returns the base
virtual address (a page-aligned address) that maps the locked pages for the range described
by the MDL. For versions later than Windows NT 4.0 SP3, MmMapLockedPages returns
the actual virtual address (page-aligned address with offset).

398 Part 1 Kernel-Mode Support Routines

Comments
The MDL in an IRP at Irp->MdIAddress does not necessarily map a buffer for the current
thread when that IRP is processed by lower-level drivers. Therefore, the user-mode virtual
addresses corresponding to the locked-down physical pages can be invisible or invalid.

Callers of MmMapLockedPages must be running at IRQL <= DISPATCH_LEVEL
if AccessMode is KernelMode. Otherwise, the caller must be running at IRQL <
DISPATCH_LEVEL.

See Also
MmGetSystemAddressForMdl, MmGetSystemAddressForMdlSafe, MmProbeAnd
LockPages, MmUnmapLockedPages

MmMapLockedPagesSpecifyCache
NTKERNELAPI
PYOID
MmMapLockedPagesSpecifyCache

IN PMDL MemoryDescriptorList,
IN KPROCESSOR_MODE AccessMode,
IN MEMORY_CACHING_TYPE CacheType,
IN PYOID BaseAddress,
IN ULONG BugCheckOnFai7ure,
IN MM_PAGE_PRIORITY Priority
) ;

Parameters
MemoryDescriptorList
Specifies the MDL to be mapped. The caller must already have probed and locked the MDL
with MmProbeAndLockPages.

AccessMode
Specifies the access mode in which to map the MDL. Either KernelMode or UserMode.

Cache Type
Specifies the type of caching allowed for the MDL. See MmAllocateContiguousMemory
SpecifyCache for a description of the possible values of CacheType.

BaseAddress
If AccessMode = UserMode then this specifies the starting user address to map the MDL
to, or NULL to allow the system to choose the starting address. The system may round down
the requested address to fit address boundary requirements, so callers must check
the return value.

Chapter 6 Memory Manager Routines 399

BugCheckOnFailure
Specifies the behavior of the routine if the MDL cannot be mapped because of low system
resources. If TRUE, the system bug checks. If FALSE, the routine returns NULL.

Priority
Indicates the importance of success when PTEs are scarce. See MmGetSystemAddress
ForMdlSafe for a description of the possible values for Priority.

Include
ntddk.h

Return Value
MmMapLockedPagesSpecifyCacbe returns the starting address of the mapped pages. If
the pages cannot be mapped and BugCheckOnFailure is FALSE, the routine returns NULL.

Comments
If AccessMode is UserMode, then the caller must be running at IRQL <= APC_LEVEL.
If AccessMode is KernelMode, then the caller must be running at IRQL <= DISPATCH_
LEVEL.

MmPageEntireDriver
VOID

MmPageEntireDriver(
IN PVOID AddressWithinSection
) ;

MmPageEntireDriver causes all of a driver's code and data to be made pageable, over
riding the attributes of the various sections that make up the driver's image.

Parameters
Address WithinSection
Points to a symbolic address within the driver, for example, DriverEntry.

Include
wdm.h or ntddk.h

Comments
Use this routine to force a driver to be completely pageable. The driver must not have inter
rupts connected on its device before making this call since as a result of this call, the entire

400 Part 1 Kernel·Mode Support Routines

driver will be marked as pageable. If the driver is pageable, such code as the ISR code may
be paged out after the driver calls MmPageEntireDriver.

MmPageEntireDriver may be called multiple times without intervening calls to Mm
ResetDriverPaging. However, subsequent calls to MmPageEntireDriver do nothing if the
driver's pageable status has not been reset by a call to MmResetDriverPaging.

For more information about paging an entire driver, see Pageable Code and Data in the
Kernel-Mode Drivers Design Guide ..

Callers of MmPageEntireDriver run at IRQL PASSIVE_LEVEL.

See Also
MmResetDriverPaging, MmLockPagableCodeSection, MmLockPagableDataSection,
MmLockPagableSectionByHandle, MmUnlockPagablelmageSection

MmResetDriverPaging
VOID

MmResetDriverPaging(
IN PVOID AddressWithinSection
) ;

MmResetDriverPaging resets the pageable status of a driver's sections to that specified
when the driver was compiled.

Parameters
Address WithinSection
Points to a symbolic address in the driver, for example, DriverEntry.

Include
wdm.h or ntddk.h

Comments
MmResetDriverPaging causes those routines that would not normally be pageable, to be
locked into memory. Hence, image sections such as .text and .data will be locked in memory
if this routine is called.

A driver that calls this routine must do so before enabling interrupts on its device.

A call to MmPageEntireDriver is not a prerequisite to calling this routine. However, calls
to MmResetDriverPaging do nothing if the driver's image-section attributes have never
been overridden by a call to MmPageEntireDriver.

Chapter 6 Memory Manager Routines 401

For more information about paging an entire driver, see Pageable Code and Data in the
Kernel-Mode Drivers Design Guide.<

Callers of MmResetDriverPaging must be running at IRQL PASSIVE_LEVEL.

See Also
MmPageEntireDriver, MmLockPagableCodeSection, MmLockPagableDataSection,
MmLockPagableSectionByHandle, MmUnlockPagablelmageSection

MmPrepareMdlForReuse
VOID

MmPrepareMdlForReuse(
IN PMDL MDL
) ;

MmPrepareMdlForReuse reinitializes a caller-allocated MDL.

Parameters
MDL
Points to the MDL that will be reused.

Include
wdm.h or ntddk.h

Comments
MmPrepareMdlForReuse is called by drivers that allocate a set ofMDLs that they use and
reuse repeatedly. After each call to MmPrepareMdlForReuse, the given MDL must be
reinitialized. Very few drivers call this routine.

Callers of MmPrepareMdlForReuse must be running at IRQL <= DISPATCH_LEVEL.

See Also
IoAllocateMdl, IoBuildPartialMdl, IoFreeMdl, MmCreateMdl, MmlnitializeMdl

MmProbeAndLockPages
VOID

MmProbeAndLockPages(
IN OUT PMDL MemoryDescriptorList,
IN KPROCESSOR_MODE AccessMode,
IN LOCK_OPERATION Operation
) ;

402 Part 1 Kernel-Mode Support Routines

MmProbeAndLockPages probes specified pages, makes them resident, and locks the
physical pages mapped by the virtual address range in memory. The MDL is updated to
describe the physical pages.

Parameters
MemoryDescriptorList
Points to an MDL that supplies a virtual address, byte offset, and length. The physical page
portion of the MDL is updated when the pages are locked in memory.

AccessMode
Specifies the access mode in which to probe the arguments, either KernelMode or
UserMode.

Operation
Specifies the type of operation for which the caller wants the access rights probed and the
pages locked, one of IoReadAccess, IoWriteAccess, or IoModifyAccess.

Include
wdm.h or ntddk.h

Comments
The highest-level driver in a chain of layered drivers that use direct 110 calls this routine.
Drivers that use buffered 110 never call MmProbeAndLockPages.

If this routine fails, an exception is raised. Any driver that calls MmProbeAndLockPages
must handle such an exception.

A lower-level driver cannot attempt to pass such an exception on to a higher-level driver.
It cannot assume anything about a higher-level driver's exception handling capabilities. In
particular, the driver cannot call ExRaiseStatus to pass on such an exception.

Callers of MmProbeAndLockPages must be running at IRQL < DISPATCH_LEVEL for
pageable addresses, or at IRQL <= DISPATCH_LEVEL for nonpageable addresses.

See Also
MmUnlockPages

MmQuerySystemSize
MM_SYSTEM_SIZE

MmQuerySystemSize();

MmQuerySystemSize returns an estimate of the amount of memory in the system.

Chapter 6 Memory Manager Routines 403

Include
wdm.h or ntddk.h

Return Value
MmQuerySystemSize returns one of MmSmallSystem, MmMediumSystem, or
MmLargeSystem.

Comments
This routine can be called during driver initialization to determine how much memory it
is practical to allocate for an internal buffer.

Callers of MmQuerySystemSize must be running at IRQL PASSIVE_LEVEL.

See Also
ExAllocatePool, ExAllocatePoolWithTag, ExlnitializeNPagedLookasideList,
ExlnitializePagedLookasideList, MmIsThisAnNtAsSystem

MmSizeOfMdl
ULONG

MmSizeOfMdl(
IN PVOID Base,
IN SIZE_T Length
) ;

MmSizeOfMdl returns the number of bytes to allocate for an MDL describing a given
address range.

Parameters
Base
Points to the base virtual address for the range.

Length
Supplies the size, in bytes, of the range.

Include
wdm.h or ntddk.h

Return Value
MmSizeOfMdl returns the number of bytes required to contain the MDL.

404 Part 1 Kernel-Mode Support Routines

Comments
The given address range must be locked down if it will be accessed at raised IRQL.

Memory for the MDL itself must be allocated from nonpaged pool if the caller subsequently
passes a pointer to the MDL while running at IRQL >= DISPATCH_LEVEL.

Callers of MmSizeOfMdl run at any IRQL.

See Also
MmCreateMdl, MmInitializeMdl

MmUnlockPages
VOID

MmUnlockPages(
IN PMDL MemoryDescriptorList
) ;

MmUnlockPages unlocks physical pages described by a given MDL.

Parameters
MemoryDescriptorList
Points to an MDL.

Include
wdm.h or ntddk.h

Comments
The memory described by the specified MDL must have been locked previously by a call
to MmProbeAndLockPages. As the pages are unlocked, the MDL is updated.

Callers of MmUnlockPages must be running at IRQL <= DISPATCH_LEVEL.

See Also
MmProbeAndLockPages

MmUnlockPagablelmageSection
VOID

MmUnlockPagableImageSection(
IN PVOID ImageSectionHand7e
) ;

Chapter 6 Memory Manager Routines 405

MmUnlockPagableImageSection releases a section of driver code or driver data, previ
ously locked into system space with MmLockPagableCodeSection, MmLockPagable
DataSection or MmLockPagableSectionByHandle, so the section can be paged out again.

Parameters
ImageSectionHandle
Is the handle returned by a call to MmLockPagableCodeSection or MmLockPagable
DataSection.

Include
wdm. h or ntddk.h

Comments
The handle for a driver's pageable section must not be released if the driver has any out
standing IRPs in its device queue(s) or internal queue(s). A call to MmUnlockPagable
ImageSection restores the pageability of that entire section when there are no more
references to the handle for that section.

The memory manager maintains the reference count on the handle to a section. A page
able section is only available to be paged out when the reference count is zero. Every lock
request increments the count; every unlock request decrements the count. A driver must
unlock a section as many times as it locks a section to make the section available to be
paged out.

A handle is always valid, no matter what the count. If the count on a handle is zero and a
call is made to MmLockPagableSectionByHandle, the count is set to one, and if the sec
tion has been paged out, it will be paged in.

In most cases, MmUnlockPagableImageSection is called before a driver's Unload routine.
That is, a driver with a pageable section is likely to have its DispatchClose and/or Dispatch
Shutdown routine call MmUnlockPagableImageSection before its Unload routine is called.
However, care should be taken in unloadable drivers to release any pageable section before
the driver itself is unloaded from the system.

For more information on paging code and data, see Pageable Code and Data in the Kernel
Mode Drivers Design Guideo<

Callers of MmUnlockPagableImageSection must be running at IRQL PASSIVE_LEVEL.

See Also
MmPageEntireDriver, MmResetDriverPaging, MmLockPagableCodeSection, Mm
LockPagableDataSection, MmLockPagableSectionByHandle

406 Part 1 Kernel-Mode Support Routines

MmUnmaploSpace
VOID

MmUnmapIoSpace(
IN PVOID 8aseAddress,
IN SIZE_T NumberOf8ytes
) :

MmUrunaploSpace unmaps a specified range of physical addresses previously mapped by
MmMaploSpace.

Parameters
BaseAddress
Points to the base virtual address to which the physical pages were mapped.

NumberOfBytes
Specifies the number of bytes that were mapped.

Include
wdm.h or ntddk.h

Comments
If a driver calls MmMaploSpace during device start-up, it must call MmUnmaploSpace
when it receives a PnP stop-device or remove-device IRP for the same device object.

Callers of MmUnmaploSpace must be running at IRQL = PASSIVE_LEVEL.

See Also
MmMaploSpace

MmUnmapLockedPages
VOID

MmUnmapLockedPages(
IN PVOID 8aseAddress,
IN PMDL MemoryDescriptorList
) :

MmUnmapLockedPages releases a mapping set up by a preceding call to MmMap
LockedPages.

Parameters
BaseAddress

Chapter 6 Memory Manager Routines 407

Points to the base virtual address to which the physical pages were mapped.

MemoryDescriptorList
Points to an MDL.

Include
wdm.h or ntddk.h

Comments
Callers of MmUnmapLockedPages must be running at IRQL <= DISPATCH_LEVEL if
the pages were mapped to system space. Otherwise, the caller must be running at IRQL <
DISPATCH_LEVEL.

See Also
MmMapLockedPages

PVOID
PAGE_ALI GN (
IN PVOID Va
) :

PAGE_ALIGN returns a page-aligned virtual address for a given virtual address.

Parameters
Va
Points to the virtual address.

Include
wdm.h or ntddk.h

Return Value
PAGE_ALIGN returns a pointer to the page-aligned virtual address.

408 Part 1 Kernel-Mode Support Routines

Comments
Callers of PAGE_ALIGN can be running at any IRQL.

ULONG_PTR
ROUND_TO_PAGES(
IN ULONG_PTR Size
) ;

ROUND_TO_PAGES takes a size in bytes and rounds it up to the next full page.

Parameters
Size
Specifies the size in bytes to round up to a page multiple.

Include
wdm.h or ntddk.h

Return Value
ROUND_TO_PAGES returns the input size rounded up to a multiple of the page size for the
current platform.

Comments
Callers of ROUND_TO_PAGES can be running at any IRQL.

CHAPTER 7

Object Manager Routines

References for the ObXxx routines are in alphabetical order.

For an overview of the functionality of these routines, see Chapter 1, Summary of Kernel
Mode Support Routines.

ObDereferenceObject
VOID

ObDereferenceObject(
IN PVOID Object
) ;

ObDereferenceObject decrements the given object's reference count and performs
retention checks.

Parameters
Object
Points to the object's body.

Include
wdm.h or ntddk.h

Comments

409

When the reference count for an object reaches zero, a kernel-mode component can remove
the object from the system. However, a driver can remove only those objects that it created,
and a driver should never attempt to remove any object that it did not create.

410 Part 1 Kernel-Mode Support Routines

A named object with the permanent attribute, such as a directory object created to hold a
driver's symbolic link objects, can be deleted as follows:

1. Call ObDereferenceObject.

2. Call the appropriate ZwOpenXxx or ZwCreateXxx to get a handle for the object, if
necessary.

3. Call ZwMakeTemporaryObject with the handle.

4. Call ZwClose with the handle.

Callers of ObDereferenceObject must be running at IRQL <= DISPATCH_LEVEL.

See Also
ZwClose, ZwMakeTemporaryObject

ObGetObjectSecurity
NTSTATUS

ObGetObjectSecurity(
IN PVOID Object.
OUT PSECURITY_DESCRIPTOR *SecurityDescriptor.
OUT PBOOLEAN MemoryA77ocated
) ;

ObGetObjectSecurity gets the security descriptor for a given object.

Parameters
Object
Points to the object.

SecurityDescriptor
Points to a caller-supplied variable that this routine sets to the address of a buffer contain
ing the security descriptor for the given object. If the given object has no security descriptor,
this variable is set to NULL on return from ObGetObjectSecurity.

MemoryAllocated
Points to a caller-supplied variable that this routine sets to TRUE if it allocated a buffer to
contain the security descriptor.

Include
ntddk.h

Chapter 7 Object Manager Routines 411

Return Value
ObGetObjectSecurity either returns STATUS_SUCCESS or an error status, such as
STATUS_INSUFFICIENT_RESOURCES if it could not allocate enough memory to
return the requested information.

Comments
A successful call to ObGetObjectSecurity either returns a self-relative security descriptor
in the buffer at *SecurityDescriptor or it returns NULL at *SecurityDescriptor if the given
object has no security descriptor. For example, any unnamed object, such as an event object,
has no security descriptor.

If ObGetObjectSecurity returns STATUS_SUCCESS, the caller must save the value re
turned at MemoryAllocated. Such a caller must pass MemoryAllocated in a reciprocal call to
ObReieaseObjectSecurity eventually, thereby restoring the reference count on the security
descriptor to its original value and releasing the buffer, if any, that was allocated by ObGet
ObjectSecurity.

Callers of ObGetObjectSecurity must be running at IRQL < DISPATCH_LEVEL.

See Also
ObReferenceObjectByHandie, ObReieaseObjectSecurity

ObReferenceObject
VOID

ObReferenceObject(
IN PVOID Object
) ;

ObReferenceObject increments the reference count to the given object.

Parameter
Object
Points to the object. The caller obtained this parameter either when it created the object or
from a preceding call to ObReferenceObjectByHandie after it opened the object.

Include
wdm. h or ntddk. h

412 Part 1 Kernel-Mode Support Routines

Comments
ObReferenceObject simply increments the pointer reference count for an object, without
making any access checks on the given object, as ObReferenceObjectByHandle and Ob
ReferenceObjectByPointer do.

ObReferenceObject prevents deletion of the object at least until the driver subsequently
calls its reciprocal, ObDereferenceObject, or closes the given object. The caller must
decrement the reference count with ObDereferenceObject as soon as it is done with the
object.

When the reference count for an object reaches zero, a kernel-mode component can remove
the object from the system. However, a driver can remove only those objects that it created,
and a driver should never attempt to remove any object that it did not create.

Callers of ObReferenceObject must be running at IRQL <= DISPATCH_LEVEL.

See Also
ObReferenceObjectByHandle, ObReferenceObjectByPointer, ObDereferenceObject,
ZwClose

ObReferenceObjectByHandle
NTSTATUS

ObReferenceObjectByHandle(
IN HANDLE Handle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_TYPE Object Type OPTIONAL,
IN KPROCESSOR_MODE AccessMode,
OUT PVOID *Object,
OUT POBJECT_HANDLE_INFORMATION Handlelnformation OPTIONAL
) ;

ObReferenceObjectByHandle provides access validation on the object handle, and, if
access can be granted, returns the corresponding pointer to the object's body.

Parameters
Handle
Specifies an open handle for an object.

DesiredAccess
Specifies the requested types of access to the object. The interpretation of this field is
dependent on the object type.

Chapter 7 Object Manager Routines 413

Objecffype
Points to the object type, which can be either of IoFileObjectType or ExEventObjectType.
This parameter can be NULL if AccessMode is KernelMode.

AccessMode
Specifies the access mode to use for the access check. It must be either UserMode or
KernelMode. Lower-level drivers should specify KernelMode.

Object
Points to a variable that receives a pointer to the object's body.

Handlelnformation
Points to a structure that receives the handle attributes and the granted access rights for the
object.

Include
wdm.h or ntddk.h

Return Value
ObReferenceObjectByHandle can return one of the following:

STATUS_SUCCESS
STATUS_OBJECT_TYPE_MISMATCH
STATUS_ACCESS_DENIED
STATUS_INVALID_HANDLE

Comments
A pointer to the object body is retrieved from the object table entry and returned to the caller
by means of the Object parameter.

If the AccessMode parameter is KernelMode, the requested access is always allowed. If
AccessMode is UserMode, the requested access is compared to the granted access for the
object. Only highest-level drivers can safely specify UserMode for the input AccessMode.

If the call succeeds, a pointer to the object body is returned to the caller and the pointer ref
erence count is incremented. Incrementing this count prevents the object from being deleted
while the pointer is being referenced. The caller must decrement the reference count with
ObDereferenceObject as soon as it is done with the object.

Callers of ObReferenceObjectByHandle must be running at IRQL PASSIVE_LEVEL.

See Also
ObDereferenceObject, ObReferenceObject, ObReferenceObjectByPointer

414 Part 1 Kernel-Mode Support Routines

ObReferenceObjectByPointer
NTSTATUS

ObReferenceObjectByPointer(
IN PYOID Object.
IN ACCESS_MASK DesiredAccess.
IN POBJECT_TYPE ObjectType.
IN KPROCESSOR-MODE AccessMode
) ;

ObReferenceObjectByPointer increments the pointer reference count for a given object.

Parameters
Object
Points to the object's body.

DesiredAccess
Specifies a mask representing the requested access to the object.

ObjectType
Points to the object type, which can be either of IoFileObjectType or ExEventObjectType.
This parameter can be NULL if AccessMode is KernelMode.

AccessMode
Indicates the access mode to use for the access check. It must be either UserMode or
KernelMode. Lower-level drivers should specify KernelMode.

Include
wdm.h or ntddk. h

Return Value
ObReferenceObjectByPointer can return one of the following:

STATUS_SUCCESS
STATUS_OBJECT_TYPE_MISMATCH

Comments
Calling this routine prevents the object from being deleted, possibly by another component's
call to ObDereferenceObject or ZwClose. The caller must decrement the reference count
with ObDereferenceObject as soon as it is done with the object.

Callers of ObReferenceObjectByPointer must be running at IRQL <= DISP ATCH_
LEVEL.

Chapter 7 Object Manager Routines 415

See Also
ObDereferenceObject, ObReferenceObject, ObReferenceObjectByHandle, ZwClose

ObReleaseObjectSecurity
VOID

ObReleaseObjectSecurity(
IN PSECURITY_DESCRIPTOR SecurityDescriptor.
IN BOOLEAN MemoryA77ocated
) ;

ObReleaseObjectSecurity is the reciprocal to ObGetObjectSecurity.

Parameters
SecurityDescriptor
Points to the buffered security descriptor to be released. The caller obtained this parameter
from ObGetObjectSecurity

Memory Allocated
Specifies the value also obtained from ObGetObjectSecurity.

Include
ntddk.h

Comments
After a successful call to ObGetObjectSecurity, a driver must call ObReleaseObject
Security eventually.

ObReleaseObjectSecurity releases any resources that were allocated by ObGetObject
Security. It also decrements the reference count on the given security descriptor.

Callers of ObReleaseObjectSecurity must be running at IRQL < DISPATCH_LEVEL.

See Also
ObGetObjectSecurity

CHAPTER 8

Process Structure Routines

References for the PsX.xx routines are in alphabetical order.

For an overview of the functionality of these routines, see Chapter 1, Summary of Kernel
Mode Support Routines.

PsCreateSystemThread
NTSTATUS

PsCreateSystemThread(
OUT PHANDLE ThreadHand7e,
IN ULONG DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes OPTIONAL,
IN HANDLE ProcessHand7e OPTIONAL,
OUT PCLIENT_ID C7ientld OPTIONAL,
IN PKSTART_ROUTINE StartRoutine,
IN PVOID StartContext
) ;

417

PsCreateSystemThread creates a system thread that executes in kernel mode and returns a
handle for the thread.

Parameters
ThreadHandle
Points to a variable that will receive the handle.

DesiredAccess
Specifies the requested types of access to the created thread. This value can be THREAD_
ALL_ACCESS or (ACCESS_MASK) OL for a driver-created thread.

418 Part 1 Kernel-Mode Support Routines

ObjectAttributes
Points to a structure that specifies the object's attributes. OBJ_PERMANENT, OBJ_
EXCLUSIVE, OBJ_OPENIF, and OBJ_OPENLINK are not valid attributes for a thread
object. This value should be NULL for a driver-created thread.

ProcessHandle
Specifies an open handle for the process in whose address space the thread is to be run. The
caller's thread must have PROCESS_CREATE_THREAD access to this process. If this pa
rameter is not supplied, the thread will be created in the initial system process. This value
should be NULL for a driver-created thread.

Clientld
Points to a structure that receives the client identifier of the new thread. This value should be
NULL for a driver-created thread.

StartRoutine
Is the entry point for a driver thread.

StartContext
Supplies a single argument passed to the thread when it begins execution.

Include
wdm. h or ntddk.h

Return Value
PsCreateSystemThread returns STATUS_SUCCESS if the thread was created.

Comments
Drivers that create device-dedicated threads call this routine, either when they initialize
or when 110 requests begin to come in to such a driver's Dispatch routines. For example, a
driver might create such a thread when it receives an asynchronous device control request.

PsCreateSystemThread creates a kernel-mode thread that begins a separate thread of exe
cution within the system. Such a system thread has no TEB or user-mode context and runs
only in kernel mode.

If the input ProcessHandle is NULL, the created thread is associated with the system pro
cess. Such a thread continues running until either the system is shut down or the thread
terminates itself by calling PsTerminateSystemThread.

Driver routines that run in a process context other than that of the system process should
set the OBJ_KERNEL_HANDLE flag within the Attributes parameter of PsCreateSystem
Thread before calling it. This restricts the use of the handle returned by PsCreateSystem-

Chapter 8 Process Structure Routines 419

Thread to processes running in kernel mode and thereby prevents an unintended access
of this handle by the process in whose context the driver is running.

Callers of this routine must be running at IRQL PASSIVE_LEVEL.

See Also
KeSetBasePriorityThread, KeSetPriorityThread, PsTerminateSystemThread, ZwSet
InformationThread

PsGetCurrentProcess
PEPROCESS

PsGetCurrentProcess();

PsGetCurrentProcess returns a pointer to the process of the current thread.

Include
wdm.h or ntddk.h

Comments
Highest-level drivers, file systems in particular, can call this routine. Lower-level drivers
should call IoGetCurrentProcess instead.

PsGetCurrentProcess is the most efficient way to get a pointer to the current process, no
matter what environment is being used.

Callers of PsGetCurrentProcess must be running at IRQL PASSIVE_LEVEL.

See Also
IoGetCurrentProcess, PsGetCurrentThread

PsGetCurrentProcessld
HANDLE

PsGetCurrentProcessld();

PsGetCurrentProcessld identifies the current process.

Include
ntddk.h

Return Value
PsGetCurrentProcessld returns the 4-byte identifier of the current process.

420 Part 1 Kernel-Mode Support Routines

Comments
Highest-level drivers, such as system profilers or IFSs, that register their own callback(s)
with PsSetCreateProcessNotifyRoutine, PsSetCreateThreadNotifyRoutine, and/or
PsSetLoadImageNotifyRoutine are likely to call PsGetCurrentProcessId.

Callers of PsGetCurrentProcessId should treat the returned 10 as a read-only value.

Callers of PsGetCurrentProcessId can be running at any IRQL.

See Also
IoGetCurrentProcess, PsGetCurrentProcess, PsGetCurrentThread, PsGetCurrent
ThreadId, PsSetCreateProcessNotifyRoutine, PsSetCreateThreadNotifyRoutine,
PsSetLoadImageNotifyRoutine

PsGetCurrentThread
PETHREAD

PsGetCurrentThread():

PsGetCurrentThread identifies the current thread.

Include
wdm.h or ntddk.h

Return Value
PsGetCurrentThread returns a pointer to the executive thread object representing the cur
rently executing thread.

Callers of this routine must be running at IRQL <= DISPATCH_LEVEL.

See Also
KeGetCurrentThread, PsCreateSystemThread, PsGetCurrentProcess, PsGetCurrent
ProcessId

PsGetCurrentThreadld
HANDLE

PsGetCurrentThreadld():

PsGetCurrentThreadId identifies the current thread.

Include
ntddk.h

Chapter 8 Process Structure Routines 421

Return Value
PsGetCurrentThreadld returns the 4-byte identifier of the current thread.

Comments
Highest-level drivers, such a system profilers or IFSs, that register their own callback with
PsSetCreateThreadNotifyRoutine are likely to call PsGetCurrentThreadld.

Callers of PsGetCurrentThreadld should treat the returned ID as a read-only value.

Callers of PsGetCurrentThreadld can be running at any IRQL.

See Also
KeGetCurrentThread, PsGetCurrentProcessld, PsGetCurrentThread, PsSetCreate
ThreadNotifyRoutine

PsGetVersion
BOOLEAN

PsGetVers;on(
PULONG MajorVersion OPTIONAL,
PULONG MinorVersion OPTIONAL,
PULONG Bui7dNumber OPTIONAL,
PUNICODE_STRING CSDVersion OPTIONAL
) ;

PsGetVersion returns caller-selected information about the current version of Microsoft
Windows NT®IWindows® 2000.

Parameters
MajorVersion
Points to a caller-supplied variable that this routine sets to the major version of the operating
system. This optional parameter can be NULL.

MinorVersion
Points to a caller-supplied variable that this routine sets to the minor version of the operating
system. This optional parameter can be NULL.

BuildNumber
Points to a caller-supplied variable that this routine sets to the current build number of the
operating system. This optional parameter can be NULL.

422 Part 1 Kernel-Mode Support Routines

CSDVersion
Points to a caller-allocated buffer in which this routine returns the current service-pack
version as a Unicode string only during system driver initialization. This optional parameter
can be NULL.

Include
ntddk.h

Return Value
PsGetVersion returns whether the system is a checked or free build, as follows:

Value

TRUE (1)

FALSE (0)

Comments

Meaning

Checked build of the operating system

Free build of the operating system

PsGetVersion returns the requested information, depending on which optional parameter(s)
the caller supplies.

To retrieve the current service-pack number, it is easier and more efficient to make an appli
cation-level call within the Win32® environment than to call PsGetVersion during system
driver initialization, which then must parse the string it returns at CSDVersion. When the
registry is initialized, a driver cannot obtain this string from PsGetVersion, but must read
the CmCSDVersionString value from the registry.

Callers of PsGetVersion must be running at IRQL PASSIVE_LEVEL.

PsSetCreateProcessNotifyRoutine
NTSTATUS

PsSetCreateProcessNotifyRoutine(
IN PCREATE_PROCESS_NOTIFY_ROUTINE NotifyRoutine.
IN BOOLEAN Remove
) :

PsSetCreateProcessNotifyRoutine registers a driver-supplied callback that is subsequently
notified whenever a process is created or deleted.

Parameters
NotifyRoutine
Specifies the entry point of the caller-supplied process-creation callback.

Remove
Must specify zero.

Include
ntddk.h

Return Value

Chapter 8 Process Structure Routines 423

PsSetCreateProcessNotifyRoutine can return one of the following:

STATUS_SUCCESS
The given NotifyRoutine is now registered with the system.

STATUSJNVALID_PARAMETER
The given NotifyRoutine has already been registered so this is a redundant call, or the system
has reached its limit on registering process-creation callbacks.

Comments
Highest-level drivers can call PsSetCreateProcessNotifyRoutine to set up their process
creation notify routines, declared as follows:

VOID
(*PCREATE_PROCESS_NOTIFY_ROUTINE)

IN HANDLE ParentId,
IN HANDLE ProcessId,
IN BOOLEAN Create
) ;

For example, an IFS or highest-level system-profiling driver might register such a process
creation callback to track the system-wide creation and deletion of processes against the
driver's internal state. Windows 2000 registers up to eight such process-creation callbacks.
Any driver that successfully registers such a callback must remain loaded until the system
itself is shut down.

After such a driver-supplied routine is registered, it is called with Create set to TRUE just
after the initial thread is created within the newly created process designated by the input
Processld handle. The input Parentld handle identifies the parent process of the newly
created process if it inherits open handles from its parent.

Such a driver's process-notify routine is also called with Create set to FALSE, usually
when the last thread within each such process has terminated and the process address space
is about to be deleted. In very rare circumstances, a driver's process-notify routine can be
called only at the destruction of a process in which no thread was ever created.

424 Part 1 Kernel-Mode Support Routines

When it is called, the driver's process-creation notify routine runs at IRQL P ASSIVE_
LEVEL, either in the context of the initial thread within a newly created process or in the
context of a system thread.

Callers of PsSetCreateProcessNotifyRoutine must be running at IRQL P ASSIVE_
LEVEL.

See Also
PsGetCurrentProcessld, PsSetCreateThreadNotifyRoutine, PsSetLoadlmageNotify
Routine

PsSetCreateThreadNotifyRoutine
NTSTATUS

PsSetCreateThreadNotifyRoutine(
IN PCREATE_THREAD_NOTIFY_ROUTINE NotifyRoutine
) ;

PsSetCreateThreadNotifyRoutine registers a driver-supplied callback that is subsequently
notified when a new thread is created and when such a thread is deleted.

Parameter
NotifyRoutine
Specifies the entry point of the caller-supplied thread-creation callback.

Include
ntddk.h

Return Value
PsSetCreateThreadNotifyRoutine either returns STATUS_SUCCESS or it returns
STATUS_INSUFFICIENT_RESOURCES if it failed the callback registration.

Comments
Highest-level drivers can call PsSetCreateThreadNotifyRoutine to set up their thread
creation notify routines, declared as follows:

VOID
(*PCREATE_THREAD_NOTIFY_ROUTINE)

IN HANDLE ProcessId.
IN HANDLE ThreadId.
IN BOOLEAN Create
) ;

Chapter 8 Process Structure Routines 425

For example, an IFS or highest-level system-profiling driver might register such a thread
creation callback to track the system-wide creation and deletion of threads against the
driver's internal state. Windows 2000 registers up to eight such thread-creation callbacks.
Any driver that successfully registers such a callback must remain loaded until the system
itselfis shut down.

After such a driver-supplied thread-creation routine is registered, it is called with Create set
to TRUE whenever a new thread is created. The input Threadld handle identifies the newly
created thread. The input Processld handle identifies the process in which the given thread
was just created. As each such thread is deleted, such a driver's thread-notify routine is
called again with Create set to FALSE.

When it is called, the driver's thread-creation notify routine runs at IRQL P ASSIVE_
LEVEL either in the context of the newly created thread or in the context of the exiting
thread.

Callers ofPsSetCreateThreadNotifyRoutine must be running at IRQL PASSIVE_
LEVEL.

See Also
PsGetCurrentProcessld, PsGetCurrentThreadld, PsSetCreateProcessNotifyRoutine,
PsSetLoadlmageNotifyRoutine

PsSetLoadlmageNotifyRoutine
NTSTATUS

PsSetLoadImageNotifyRoutine(
IN PLOAD_IMAGE_NOTIFY_ROUTINE NotifyRoutine
) ;

PsSetLoadlmageNotifyRoutine registers a driver-supplied callback that is subsequently
notified whenever an image is loaded for execution.

Parameters
NotifyRoutine
Specifies the entry point of the caller-supplied load-image callback.

426 Part 1 Kernel-Mode Support Routines

Include
ntddk.h

Return Value
PsSetLoadlmageNotifyRoutine either returns STATUS_SUCCESS or it returns STATUS_
INSUFFICIENT_RESOURCES if it failed the callback registration.

Comments
Highest-level system-profiling drivers can call PsSetLoadlmageNotifyRoutine to set up
their load-image notify routines, declared as follows:

VOID
(*PLOAD_IMAGE_NOTIFY_ROUTINE) (

IN PUNICODE_STRING FullImageName.
IN HANDLE ProcessId. II where image is mapped
IN PIMAGE_INFO ImageInfo
) ;

After such a driver's callback has been registered, the system calls its load-image notify
routine whenever an executable image is mapped into virtual memory, whether in system
space or user space, before the execution of the image begins. Windows 2000 registers up to
eight such load-image callbacks. Any driver that successfully registers such a callback must
remain loaded until the system itself is shut down.

When the load-image notify routine is called, the input FulllmageName points to a buffered
Unicode string identifying the executable image file. The Processld handle identifies the
process in which the image has been mapped, but this handle is zero if the newly loading
image is a driver. The buffered data at Imagelnfo is formatted as follows:

typedef struct _IMAGE_INFO
union {

} ;

ULONG Properties;
struct {

} ;

ULONG ImageAddressingMode
ULONG SystemModeImage
ULONG ImageMappedToAllPids
ULONG Reserved

PVOID ImageBase;
ULONG ImageSelector;
ULONG ImageSize;
ULONG ImageSectionNumber;

} IMAGE_INFO. *PIMAGE_INFO;

8; Ilcode addressing mode
1; Iisystem mode image
1; Ilmapped in all processes
22;

Chapter 8 Process Structure Routines 427

When such a profiling driver's load-image routine is called, the members of this structure
contain the following information:

ImageAddressingMode
Always set to IMAGE_ADDRESSING_MODE_32BIT.

SystemModelmage
Set either to one for newly loaded kernel-mode components, such as drivers, or to zero for
images that are mapped into user space.

ImageMappedToAllPids and Reserved
Always set to zero.

ImageBase
Set to the virtual base address of the image.

ImageSelector
Always set to zero.

ImageSize
Set to the virtual size, in bytes, of the image.

ImageSectionNumber
Always set to zero.

Callers of PsSetLoadlmageNotifyRoutine must be running at IRQL PASSIVE_LEVEL.

See Also
PsGetCurrentProcessld, PsSetCreateProcessNotifyRoutine, PsSetCreateThread
Notify Routine

PsTermi nateSystemTh read
NTSTATUS

PsTerminateSystemThread(
IN NTSTATUS ExitStatus
) ;

PsTerminateSystemThread terminates a caller-created system thread.

Parameters
Ex;tStatus
Specifies the status of the terminating system thread to the thread creator.

428 Part 1 Kernel-Mode Support Routines

Include
wdm.h or ntddk.h

Return Value
PsTerminateSystemThread returns the STATUS_XXX supplied by the caller-created
thread, usually STATUS_SUCCESS.

Comments
Drivers that create a device-dedicated thread call this routine, either when the driver is un
loaded or when there are no outstanding I/O requests for the driver to process. For such a
driver, PsTerminateSystemThread must be called in the context of the driver's thread; that
is, the driver-created thread must terminate itself by making this call.

Callers of this routine must be running at IRQL PASSIVE_LEVEL.

See Also
PsCreateSystemThread

CHAPTER 9

Run-time Library Routines

References for these routines are in alphabetical order.

For an overview of the functionality of these routines, see Chapter 1, Summary of Kernel
Mode Support Routines.

InitializeListHead
VOID

InitializeListHead(
IN PLIST_ENTRY ListHead
) ;

InitializeListHead initializes any doubly linked, driver-managed interlocked queue or
driver-maintained doubly linked list.

Parameters
ListHead

429

Points to the driver-allocated storage for the head of the interlocked queue or list. For an
interlocked queue, the storage must be resident and the driver also must provide storage for
a spin lock.

Include
wdm.h or ntddk.h

Comments
A driver that sets up internal interlocked queues for IRPs or manages internal linked
lists must call InitializeListHead. A PnP driver should make the call from its AddDevice
routine after creating the relevant device object; other drivers can call from the Driver
Entry routine.

430 Part 1 Kernel-Mode Support Routines

The ListHead of type LIST_ENTRY is doubly linked. Entries in an interlocked queue can
be queued and dequeued by calling ExInteriockedInsert •. List and ExInterlockedRemove
HeadList. Entries can be inserted into and removed from a driver-maintained list with
Insert .. List and Remove .. List.

For an interlocked queue, a driver must provide resident storage: in the device extension of a
driver-created device object, in the controller extension of a driver-created controller object,
or in nonpaged pool allocated by the driver. The driver also must provide storage for a spin
lock, which must be initialized with KeInitializeSpinLock before the driver's initial call to
ExInterlockedXxx with the spin lock.

For a driver-maintained list, the driver must synchronize access to the list so that it is impos
sible for any two routines to be inserting and/or removing entries from the list simultane
ously in SMP machines. Consequently, most drivers use the ExInterlockedXxx routines to
manage the necessary synchronization, rather than setting up a driver-managed list, which
is likely to require spin lock protection anyway.

Callers of InitializeListHead can be running at IRQL >= DISPATCH_LEVEL only if the
caller-allocated storage for ListHead is resident.

See Also
ExInterlockedInsertHeadList, ExInterlockedInsertTailList, ExInteriockedRemove
HeadList, ExInteriockedPopEntryList, ExInteriockedPushEntryList, InsertHeadList,
InsertTailList, IsListEmpty, KeInitializeSpinLock, PopEntryList, PushEntryList,
RemoveEntryList, RemoveHeadList, RemoveTailList

Initial izeObjectAttri butes
VOID

InitializeObjectAttributes(
OUT POBJECT_ATTRIBUTES Initia7izedAttributes,
IN PUNICODE_STRING ObjectName,
IN ULONG Attributes,
IN HANDLE RootDirectory,
IN PSECURITY_DESCRIPTOR SecurityDescriptor
) ;

InitializeObjectAttributes sets up a parameter of type OBJECT_ATTRIBUTES for a
subsequent call to ExCreateCallback or to a ZwCreateXxx or ZwOpenXxx routine.

Parameters
initializedAttributes
Is a pointer to the initialized attributes for the object on return from InitializeObject
Attributes.

Chapter 9 Run-time Library Routines 431

ObjectName
Is the full path name for the object.

Attributes
Is the set of attributes for the object, which can be a combination (ORed) of the following
system-defined values:

OBJ_INHERIT
OBJ_PERMANENT
OBJ_EXCLUSIVE
OBJ_CASE_INSENSITIVE
OBJ_OPENIF

The validity of these values depends on the object type.

RootDirectory
Is a handle for the root directory in which the created object should be placed, in which an
object to be opened is contained, or NULL.

SecurityDescriptor
Is an initialized absolute security descriptor for the object or NULL.

Include
wdm.h or ntddk. h

Comments
Callers of InitializeObjectAttributes must be running at IRQL PASSIVE_LEVEL.

See Also
ExCreateCallback, ZwCreateDirectoryObject, ZwCreateFile, ZwCreateKey, Zw
OpenKey, ZwOpenSection

InsertHeadList
VOID

InsertHeadList(
IN PLIST_ENTRY ListHead,
IN PLIST_ENTRY Entry
) ;

InsertHeadList inserts an entry at the head of a doubly linked, driver-managed list.

432 Part 1 Kernel-Mode Support Routines

Parameters
ListHead
Points to the driver-allocated storage for the head of the list.

The ListHead of type LIST_ENTRY is doubly linked.

Entry
Points to an entry to be inserted in the list.

Include
wdm.h or ntddk.h

Comments
Callers of InsertHeadList can be running at IRQL >= DISPATCH_LEVEL only if the
caller-allocated storage for ListHead is resident and only if pointers to every list entry
remain valid at IRQL >= DISPATCH_LEVEL as well.

See Also
ExInterlockedInsertHeadList, InitializeListHead, InsertTailList, IsListEmpty,
RemoveHeadList, RemoveTailList

I nsertTai I List
VOID

InsertTailList(
IN PLIST_ENTRY ListHead.
IN PLIST_ENTRY Entry
) ;

InsertTailList inserts an entry at the tail of a doubly linked, driver-managed list.

Parameters
ListHead
Points to the driver-allocated storage for the head of the list.

The ListHead of type LIST_ENTRY is doubly linked.

Entry
Points to an entry to be inserted in the list.

Chapter 9 Run-time Library Routines 433

Include
wdm.h or ntddk.h

Comments
Callers of InsertTailList can be running at IRQL >= DISPATCH_LEVEL only if the
caller-allocated storage for ListHead is resident and only if pointers to every list entry
remain valid at IRQL >= DISPATCH_LEVEL as well.

See Also
ExInteriockedInsertTailList, InitializeListHead, InsertHeadList, IsListEmpty,
RemoveHeadList, RemoveTailList

IsListEmpty
BOOLEAN

IsListEmpty(
IN PLIST_ENTRY ListHead
) ;

IsListEmpty indicates whether a doubly linked, driver-maintained list is empty.

Parameters
ListHead
Points to the driver-allocated storage for the head of the list.

The ListHead of type LIST_ENTRY is doubly linked.

Return Value
IsListEmpty returns TRUE if there are currently no entries in the list.

Include
wdm.h or ntddk.h

Comments
Callers of IsListEmpty can be running at IRQL >= DISPATCH_LEVEL only if the caller
allocated storage for ListHead is resident and only if pointers to every list entry remain valid
at IRQL >= DISPATCH_LEVEL as well.

See Also
InitializeListHead, RemoveHeadList, RemoveTailList, RemoveEntryList

434 Part 1 Kernel·Mode Support Routines

PopEntryList
PSINGLE_LIST_ENTRY

PopEntryList(
IN PSINGLE_LIST_ENTRY ListHead
) ;

PopEntryList removes an entry in a singly linked, driver-managed list.

Parameters
ListHead
Points to the driver-allocated storage for the head of the list.

The ListHead of type LIST_ENTRY is singly linked. The ListHead must be initialized to
NULL before entries can be pushed and popped.

Include
wdm.h or ntddk.h

Return Value
PopEntryList returns a pointer to the last-pushed entry (LIFO order) or a NULL pointer if
the list is currently empty.

Comments
Callers of PopEntryList can be running at IRQL >= DISPATCH_LEVEL only if the caller
allocated storage for ListHead is resident and only if pointers to every list entry remain valid
at IRQL >= DISPATCH_LEVEL as well.

See Also
ExlnterlockedPopEntryList, PushEntryList

PushEntryList
VOID

PushEntryL i st(
IN PSINGLE_LIST_ENTRY ListHead.
IN PSINGLE_LIST_ENTRY Entry
) ;

PushEntryList pushes an entry into a singly linked, driver-maintained list.

Parameters
ListHead

Chapter 9 Run-time Library Routines 435

Points to the driver-allocated storage for the head of the list.

The ListHead of type SINGLE_LIST_ENTRY is singly linked. It must be initialized to
NULL before the initial entry is pushed.

Entry
Points to the driver-allocated storage for an entry in the list.

Include
wdm.h or ntddk.h

Comments
Callers of PushEntryList can be running at IRQL >= DISPATCH_LEVEL only if the
caller-allocated storage for ListHead is resident and only if pointers to every list entry
remain valid at IRQL >= DISPATCH_LEVEL as well.

See Also
ExlnteriockedPushEntryList, PopEntryList

RemoveEntryList
VOID

RemoveEntryList(
IN PLIST_ENTRY Entry
) ;

RemoveEntryList resets the links for an entry from a doubly linked, driver-managed list.

Parameters
Entry
Points to the entry.

Include
wdm.h or ntddk.h

Comments
Callers of RemoveEntryList can be running at IRQL >= DISPATCH_LEVEL only if the
caller-allocated storage for Entry is resident.

436 Part 1 Kernel-Mode Support Routines

RemoveEntryList sets the forward and backward links for the entry to each other.

See Also
InitializeListHead, IsListEmpty, RemoveHeadList, RemoveTailList

RemoveHeadList
PUST_ENTRY

RemoveHeadList(
IN PLIST_ENTRY ListHead
) ;

RemoveHeadList removes an entry from the head of a doubly linked list.

Parameters
ListHead
Points to the driver-allocated storage for a doubly linked list with entries of type
LIST_ENTRY.

Include
wdm.h or ntddk.h

Return Value
RemoveHeadList returns a pointer to the entry that was at the head of the list.

Comments
Calling RemoveHeadList with an empty list can cause a system failure. Callers of Remove
HeadList should first call IsListEmpty to determine if the list has any entries.

Callers of RemoveHeadList can be running at IRQL >= nISP ATCH_LEVEL only if
the caller-allocated storage for ListHead is resident and only if pointers to every list entry
remain valid at IRQL >= nISP ATCH_LEVEL as well.

This routine provides no inherent synchronization for the LIST_ENTRY that is being
removed from the list.

See Also
ExInterlockedRemoveHeadList, InitializeListHead, IsListEmpty, RemoveTailList,
RemoveEntryList

RemoveTailList
PLIST_ENTRY

RemoveTa il Lis t (
IN PLIST_ENTRY ListHead
) ;

Chapter 9 Run-time Library Routines 437

RemoveTailList removes an entry from the tail of a doubly linked list.

Parameters
ListHead
Points to the driver-allocated storage for a doubly linked list with entries of type
LIST_ENTRY.

Include
wdm.h or ntddk. h

Return Value
RemoveTailList returns a pointer to the entry that was at the tail of the list.

Comments
Calling RemoveTailList with an empty list can cause a system failure. Callers of Remove
TailList should first call IsListEmpty to determine if the list has any entries.

Callers of RemoveTailList can be running at IRQL >= DISPATCH_LEVEL only if
the caller-allocated storage for ListHead is resident and only if pointers to every list entry
remain valid at IRQL >= DISPATCH_LEVEL as well.

See Also
InitializeListHead, IsListEmpty, RemoveHeadList, RemoveEntryList

RtlAnsiStringToUnicodeSize
ULONG

RtlAnsiStringToUnicodeSize(
IN PANSI_STRING AnsiString
) ;

RtlAnsiStringToUnicodeSize returns the number of bytes required to hold an ANSI string
converted into a Unicode string.

438 Part 1 Kernel-Mode Support Routines

Parameters
AnsiString
Points to a buffer containing the ANSI string.

Return Value
RtlAnsiStringToUnicodeSize returns the necessary size in bytes for a Unicode string
buffer.

Include
wdm.h or ntddk.h

Comments
Callers of RtlAnsiStringToUnicodeSize must be running at IRQL PASSIVE_LEVEL.

See Also
RtlAnsiStringTo UnicodeString

RtlAnsiStringToUnicodeString
NTSTATUS

RtlAnsiStringToUnicodeString(
IN OUT PUNICODE_STRING DestinationString.
IN PANSI_STRING SourceString.
IN BOOLEAN A77ocateDestinationString
) :

RtlAnsiStringToUnicodeString converts the given ANSI source string into a Unicode
string. The translation conforms to the current system locale information.

Parameters
DestinationString
Points to a caller-allocated buffer for a converted Unicode string. If AllocateDestination
String is FALSE, the caller must also allocate a buffer for the Buffer member of
DestinationString to hold the Unicode data. If AllocateDestinationString is TRUE, then
RtlAnsiStringToUnicodeString allocates a Unicode data buffer large enough to hold the
string, and passes a pointer to it in Buffer, and updates the length and maximum length
members of DestinationString accordingly.

SourceString
Points to the ANSI string to be converted to Unicode.

Chapter 9 Run-time Library Routines 439

AllocateDestinationString
Is TRUE if this routine should allocate the buffer space for the destination string. If it does,
the caller must deallocate the buffer by calling RtlFreeUnicodeString.

Include
wdm.h or ntddk.h

Return Value
If the conversion succeeds, RtlAnsiStringToUnicodeString returns STATUS_SUCCESS.
On failure, the routine does not allocate any memory.

Comments
If caller sets AllocateDestinationString to TRUE, the routine replaces the Buffer member of
DestinationString with a pointer to the buffer it allocates. The old value can be overwritten
even when the routine returns an error status code.

Callers of RtlAnsiStringToUnicodeString must be running at IRQL PASSIVE_LEVEL.

See Also
RtlAnsiStringToUnicodeSize, RtlFreeUnicodeString, RtlInitAnsiString, RtlUnicode
StringToAnsiString

RtlAppendUnicodeStringToString
NTSTATUS

RtlAppendUnicodeStringToString(
IN OUT PUNICODE_STRING Destination,
IN PUNICODE_STRING Source
) ;

RtlAppendUnicodeStringToString concatenates two Unicode strings. It copies bytes from
the source up to the length of the destination buffer.

Parameters
Destination
Points to a buffered Unicode string.

Source
Points to the buffered string to be concatenated.

440 Part 1 Kernel-Mode Support Routines

Include
wdm.h or ntddk.h

Return Value
RtlAppendUnicodeStringToString can return one of the following:

STATUS_SUCCESS
The source string was successfully appended to the destination counted string. The destina
tion string length is updated to include the appended bytes.

STATUS_BUFFER_TOO_SMALL
The destination string length is too small to allow the source string to be concatenated.
Accordingly, the destination string length is not updated.

Comments
The Destination and Source buffers must be resident if the caller is running at IRQL >=
DISPATCH_LEVEL.

See Also
RtlAppendUnicodeToString

RtlAppend Unicode ToStri ng
NTSTATUS

RtlAppendUnicodeToString(
IN OUT PUNICODE_STRING Destination,
IN PCWSTR Source
) ;

RtiAppendUnicodeToString concatenates the supplied Unicode string to a buffered
Unicode string. It copies bytes from the source string to the destination string up to the
end of the destination buffer.

Parameters
Destination
Points to the buffered string.

Source
Points to the string to be appended to the Destination string.

Chapter 9 Run-time Library Routines 441

Include
wdm.h or ntddk.h

Return Value
RtlAppendUnicodeToString can return one of the following:

STATUS_SUCCESS
The source string was successfully appended to the destination counted string. The destina
tion string length is updated to include the appended bytes.

STATUS_BUFFER_TOO_SMALL
The destination string length was too small to allow the source string to be appended, so the
destination string length is not updated.

Comments
The Destination buffer must be resident if the caller is running at IRQL >= DISP ATCH_
LEVEL.

See Also
RtlAppendUnicodeStringToString

RtlAreBitsClear
BOOLEAN

RtlAreBitsClear(
IN PRTL_BITMAP BitMapHeader.
IN ULONG Startinglndex.
IN ULONG Length
) ;

RtlAreBitsClear determines whether a given range of bits within a bitmap variable is clear.

Parameters
BitMapHeader
Points to an initialized bitmap header for the caller's bitmap variable.

Startinglndex
Specifies the start of the bit range to be tested. This is a zero-based value indicating the posi
tion of the first bit in the range.

442 Part 1 Kernel-Mode Support Routines

Length
Specifies how many bits to test.

Include
ntddk.h

Return Value
RtlAreBitsClear returns TRUE if Length consecutive bits beginning at Startinglndex
are clear (that is, all the bits from Startinglndex to (Startinglndex + Length) -1). It returns
FALSE if any bit in the given range is set, if the given range is not a proper subset of the
bitmap, or if the given Length is zero.

Comments
Callers of RtlAreBitsClear must be running at IRQL < DISPATCH_LEVEL if the mem
ory containing the bitmap variable or at BitMapHeader is pageable. Otherwise, RtlAreBits
Clear can be called at any IRQL.

See Also
RtlAreBitsSet, RtlCheckBit, RtlClear AUBits, RtlFindClearBits, RtlFindFirstRun
Clear, RtlFindLastBackwardRunClear, RtlFindLongestRunClear, RtlFindNext
ForwardRunClear, RtlInitializeBitMap

RtlAreBitsSet
BOOLEAN

RtlAreBitsSet(
IN PRTL_BITMAP BitMapHeader,
IN ULONG Startinglndex,
IN ULONG Length
) ;

RtlAreBitsSet determines whether a given range of bits within a bitmap variable is set.

Parameters
BitMapHeader
Points to an initialized bitmap header for the caller's bitmap variable.

Startingindex
Specifies the start of the bit range to be tested. This is a zero-based value indicating the posi
tion of the first bit in the range.

Length
Specifies how many bits to test.

Include
ntddk.h

Return Value

Chapter 9 Run-time Library Routines 443

RtlAreBitsSet returns TRUE if Length consecutive bits beginning at Startinglndex are set
(that is, all the bits from Startinglndex to (Startinglndex + Length) -1). It returns FALSE if
any bit in the given range is clear, if the given range is not a proper subset of the bitmap, or
if the given Length is zero.

Comments
Callers of RtlAreBitsSet must be running at IRQL < DISPATCH_LEVEL if the memory
containing the bitmap variable or at BitMapHeader is pageable. Otherwise, RtlAreBitsSet
can be called at any IRQL.

See Also
RtlAreBitsClear, RtlCheckBit, RtlFindSetBits, RtlInitializeBitMap, RtlSetAllBits

RtlCharTolnteger
NTSTATUS

RtlCharToInteger(
IN PCSZ String,
IN ULONG Base OPTIONAL,
IN OUT PULONG Value
) ;

RtiCharToInteger converts a single-byte character to an integer value in the specified base.

Parameters
String
Points to a zero-terminated, single-byte character string.

Base
Specifies decimal, binary, octal, or hexadecimal base.

Value
Points to a location to which the converted value is returned.

444 Part 1 Kernel·Mode Support Routines

Include
ntddk.h

Return Value
RtiCharTolnteger returns STATUS_SUCCESS if the given character is converted. Other
wise, it can return STATUS_INV ALID _PARAMETER.

Comments
RtlCharTolnteger converts ANSI alphanumeric characters.

Callers of RtlCharTolnteger must be running at IRQL PASSIVE_LEVEL.

See Also
RtlInitString, RtlIntegerToUnicodeString

RtlCheckBit
ULONG

Rtl CheckBit(
IN PRTL_BITMAP BitMapHeader,
IN ULONG BitPosition
) ;

RtlCheckBit determines whether a particular bit in a given bitmap variable is clear or set.

Parameters
BitMapHeader
Points to an initialized bitmap header for the caller's bitmap variable.

BitPosition
Specifies which bit to check. This is a zero-based value indicating the position of the bit to
be tested.

Include
ntddk.h

Return Value
RtiCheckBit returns zero if the given bit is clear or one if the given bit is set.

Chapter 9 Run-time Library Routines 445

Comments
Callers of RtlCheckBit must be running at IRQL < DISPATCH_LEVEL if the memory
containing the bitmap variable or at BitMapHeader is pageable. Otherwise, RtlCheckBit
can be called at any IRQL.

See Also
RtlAreBitsClear, RtlAreBitsSet, RtlInitializeBitMap, RtlNumberOfClearBits,
RtlNumberOfSetBits

RtlCheckRegistryKey
NTSTATUS

RtlCheckRegistryKey(
IN ULONG Re7ativeTo,
IN PWSTR Path
) ;

RtlCheckRegistryKey checks for the existence of a given named key in the registry.

Parameters
Relative To
Specifies whether Path is an absolute registry path or is relative to a predefined key path as
one of the following:

Value Meaning

RTL_REGISTRY_ABSOLUTE Path is an absolute registry path.

RTL_REGISTRY _SERVICES Path is relative to \Registry\Machine\System\
CurrentControISet\Services.

RTL_REGISTRY_CONTROL Path is relative to \Registry\Machine\System\
CurrentControISet\Control.

RTL_REGISTRY _WINDOWS_NT Path is relative to \Registry\Machine\software\
Microsoft\ Windows NT\CurrentVersion.

RTL_REGISTRY _DEVICEMAP Path is relative to \Registry\Machine\Hardware\DeviceMap.

RTL_REGISTRY_USER Path is relative to \Registry\User\CurrentUser.

RTL_REGISTRY_OPTIONAL Specifies that the key referenced by this parameter and the
Path parameter are optional.

RTL_REGISTRY_HANDLE Specifies that the Path parameter is actually a registry handle
to use. This value is optional.

446 Part 1 Kernel-Mode Support Routines

Path
Specifies the registry path according to the RelativeTo value. If RTL_REGISTRY_
HANDLE is set, Path is a handle to be used directly.

Include
ntddk.h

Return Value
If the given, named key exists in the registry along the given relative path, RtlCheck
RegistryKey returns STATUS_SUCCESS.

Comments
Callers of RtlCheckRegistryKey must be running at IRQL PASSIVE_LEVEL.

See Also
RtlQuery Registry Values

RtlClearAIiBits
VOID

RtlClearAllBits(
IN PRTL_BITMAP BitMapHeader
) ;

RtlClearAlIBits sets all bits in a given bitmap variable to zero.

Parameters
BitMapHeader
Points to an initialized bitmap header for the caller's bitmap variable.

Include
ntddk.h

Comments
Callers of RtlClearAlIBits must be running at IRQL < DISPATCH_LEVEL if the memory
containing the bitmap variable or at BitMapHeader is pageable. Otherwise, RtlClearAlIBits
can be called at any IRQL.

Chapter 9 Run-time Library Routines 447

See Also
RtlAreBitsClear, RtlAreBitsSet, RtiClearBits, RtlFindSetBits, RtlFindSetBitsAnd
Clear, RtlInitializeBitMap, RtlNumberOfSetBits

RtlClearBits
VOID

RtlClearBits(
IN PRTL_BITMAP BitMapHeader.
IN ULONG Startinglndex.
IN ULONG NumberToC7ear
) ;

RtlClearBits sets all bits in a given range of a given bitmap variable to zero.

Parameters
BitMapHeader
Points to an initialized bitmap header for the caller's bitmap variable.

Startingindex
Specifies the start of the bit range to be cleared. This is a zero-based value indicating the
position of the first bit in the range.

NumberToCiear
Specifies how many bits to clear.

Include
ntddk.h

Comments
RtlClearBits simply returns control if the input NumberToClear is zero. Startinglndex plus
NumberToClear must be less than or equal to sizeof(BitMapHeader->SizeOffiitMap).

Callers of RtlClearBits must be running at IRQL < DISPATCH_LEVEL if the memory
containing the bitmap variable or at BitMapHeader is pageable. Otherwise, RtiClearBits
can be called at any IRQL.

See Also
RtlAreBitsSet, RtlClearAlIBits, RtlFindSetBits, RtlFindSetBitsAndClear, RtlInitialize
BitMap, RtlNumberOfSetBits

448 Part 1 Kernel-Mode Support Routines

RtlCompareMemory
SIZE_T

RtlCompareMemory(
IN CONST VOID *Sourcel.
IN CONST VOID *Source2.
IN SIZE_T Length
) ;

RtlCompareMemory compares blocks of memory and returns the number of bytes that are
equivalent.

Parameters
Source 1
Points to a block of memory to compare.

Source2
Points to a block of memory to compare.

Length
Specifies the number of bytes to be compared.

Include
wdm.h or ntddk.h

Return Value
RtlCompareMemory returns the number of bytes that compare as equal. If all bytes com
pare as equal, the input Length is returned.

Comments
Callers of RtiCompareMemory can be running at any IRQL if both blocks of memory are
resident.

RtlCompareString
LONG

RtlCompareString(
IN PSTRING Stringl.
IN PSTRING String2.
BOOLEAN Caselnsensitive
) ;

RtiCompareString compares two counted strings.

Parameters
String 1
Points to the first string.

String2
Points to the second string.

CaselnSensitive

Chapter 9 Run-time Library Routines 449

If TRUE, case should be ignored when doing the comparison.

Include
ntddk.h

Return Value
RtlCompareString returns a signed value that gives the results of the comparison:

Zero
String 1 equals String2.

<Zero
Stringl is less than String2.

> Zero
String 1 is greater than String2.

Comments
Callers of RtlCompareString must be running at IRQL PASSIVE_LEVEL.

See Also
RtiCompareUnicodeString, RtlEqualString

RtlCompareUnicodeString
LONG

RtlCompareUnicodeString(
IN PUNICODE_STRING Stringl,
IN PUNICODE_STRING String2,
IN BOOLEAN CaselnSensitive
) ;

RtiCompareUnicodeString compares two Unicode strings.

450 Part 1 Kernel-Mode Support Routines

Parameters
String 1
Points to the first string.

String2
Points to the second string.

CaseinSensitive
If TRUE, case should be ignored when doing the comparison.

Include
wdm.h or ntddk.h

Return Value
RtlCompareUnicodeString returns a signed value that gives the results of the comparison:

Zero
String 1 equals String2.

< Zero
String 1 is less than String2.

> Zero
Stringl is greater than String2.

Comments
Callers of RtlCompareUnicodeString must be running at IRQL PASSIVE_LEVEL.

See Also
RtlCompareString, RtlEqualString

RtlConvertLongToLargelnteger
LARGE_INTEGER

RtlConvertLongToLargeInteger(
IN LONG 5ignedlnteger
) ;

RtiConvertLongToLargeInteger converts the input signed integer to a signed large
integer.

Parameters
Signedlnteger
Specifies an integer of type LONG.

Include
wdm.h or ntddk.h

Return Value

Chapter 9 Run-time Library Routines 451

RtlConvertLongToLargelnteger returns the large integer result.

Comments
Callers of RtlConvertLongToLargelnteger can be running at any IRQL.

RtlConvertLongToLuid
LurD

RtlConvertLongToLuid(
LONG Long
) :

RtlConvertLongToLuid converts a long integer to a locally unique identifier (LUID),
which is used by the system to represent a security privilege.

Parameters
Long
Specifies the long integer to convert.

Include
ntddk.h

Return Value
RtiConvertLongToLuid returns the converted LUID.

Comments
RtlConvertLongToLuid is used to convert a system-defined privilege value to the
locally unique identifier (LUID) used by the system to represent that privilege. Drivers
typically pass a LUID to SeSinglePrivilegeCheck which is usually called by network
transport drivers.

Callers of RtlConvertLongToLuid can be running at any IRQL.

452 Part 1 Kernel·Mode Support Routines

See Also
RtlConvertULongToLuid, RtlEqualLuid, SeSinglePrivilegeCheck

RtlConvertUlongToLargelnteger
LARGE_INTEGER

RtlConvertUlongToLargeInteger(
IN ULONG Unsignedlnteger
) ;

RtlConvertUlongToLargelnteger converts the input unsigned integer to a signed large
integer.

Parameters
Unsignedlnteger
Is a value of type ULONG.

Include
wdm.h or ntddk.h

Return Value
RtlConvertUlongToLargelnteger returns the converted large integer.

Comments
Callers of RtlConvertUlongToLargelnteger can be running at any IRQL.

RtlConvertUlongToLuid
LUIO

RtlConvertUlongToLuid(
ULONG U70ng
) ;

RtlConvertUlongToLuid converts an unsigned long integer to a locally unique identifier
(LUID), which is used by the system to represent a security privilege.

Parameters
Ulong
Specifies the unsigned long integer to convert.

Include
ntddk.h

Return Value

Chapter 9 Run-time Library Routines 453

RtlConvertUlongToLuid returns the converted LUID.

Comments
RtlConvertUlongToLuid is used to convert a system-defined privilege value, passed as
a ULONG, to a locally unique identifier (LUID) used by the system to represent that privi
lege. Drivers typically pass a LUID to SeSinglePrivilegeCheck which is usually called by
network transport drivers.

Callers of RtlConvertUlongToLuid can be running at any IRQL.

See Also
RtlConvertLongToLuid, RtlEqualLuid, SeSinglePrivilegeCheck

RtlCopyBytes
VOID

RtlCopyBytes(
IN PVOID Destination,
IN CaNST VOID *Source,
IN SIZE_T Length
) ;

RtlCopyBytes copies a given number of bytes from one location to another.

Parameters
Destination
Points to the destination where the bytes are to be copied.

Source
Points to the memory to be copied.

Length
Specifies the number of bytes to be copied.

Include
wdm.h or ntddk. h

454 Part 1 Kernel-Mode Support Routines

Comments
The (Source + Length) can overlap the Destination range passed to RtlCopyBytes.

Callers of RtlCopyBytes can be running at any IRQL if both memory blocks are resident.
Otherwise, callers must be running at IRQL<DISP ATCH_LEVEL.

See Also
RtlFillMemory, RtlMoveMemory, RtlZeroMemory

RtlCopyMemory
VOID

RtlCopyMemory(
IN VOID UNALIGNED *Destination.
IN CONST VOID UNALIGNED *Source.
IN SIZE_T Length
) ;

Rtl Copy Memory copies the contents of one buffer to another.

Parameters
Destination
Points to the destination of the move.

Source
Points to the memory to be copied.

Length
Specifies the number of bytes to be copied.

Include
wdm.h or ntddk.h

Comments
RtlCopyMemory runs faster than RtlMoveMemory. However, the (Source + Length)
cannot overlap the Destination range passed in to RtlCopyMemory.

Callers of RtlCopyMemory can be running at any IRQL if both memory blocks are
resident. Otherwise, the caller must be running at IRQL < DISPATCH_LEVEL.

See Also
RtlMoveMemory

RtiCopyMemory32
VOID
RtlCopyMemory32 (

VOID UNALIGNED *Destination.
CONST VOID UNALIGNED *Source.
ULONG Length
) :

Chapter 9 Run-time Library Routines 455

RtiCopyMemory32 copies the contents of one memory buffer to another non-overlapping
memory buffer.

Parameters
Destination
Pointer to the memory buffer where the data is copied.

Source
Pointer to the memory buffer from which data is copied.

Length
Specifies the number of bytes to copy.

Include
ntddk.h or wdm.h

Comments
RtiCopyMemory32 is the same as RtlCopyMemory, except that it copies at most 32 bits
at a time.

Callers of RtlCopyMemory can be running at any IRQL if both memory blocks are resi
dent. Otherwise, the caller must be running at IRQL < DISPATCH_LEVEL.

See Also
RtlCopyMemory, RtlMoveMemory

RtlCopyString
VOID

RtlCopyString(
IN OUT PSTRING DestinationString.
IN PSTRING SourceString OPTIONAL
) ;

456 Part 1 Kernel-Mode Support Routines

RtlCopyString copies a source string to a destination string.

Parameters
DestinationString
Points to the destination string buffer.

SourceString
Points to the source string buffer.

Include
ntddk.h

Comments
The DestinationString Length is set to zero if no source string is supplied, but this does not
affect the length of the DestinationString buffer. The MaximumLength and Buffer mem
bers of the DestinationString are not modified by this routine.

The number of bytes copied from the SourceString is either the length of SourceString or the
maximum length of DestinationString, whichever is smaller.

The DestinationString and SourceString buffers must be resident if the caller is running at
IRQL >= DISPATCH_LEVEL.

See Also
RtlCopyUnicodeString

RtlCopyUnicodeString
VOID

RtlCopyUnicodeString(
IN OUT PUNICODE_STRING DestinationString.
IN PUNICODE_STRING SourceString
) ;

RtlCopyUnicodeString copies a source string to a destination string.

Parameters
DestinationString
Points to the destination string buffer.

SourceString
Points to the source string buffer.

Chapter 9 Run-time Library Routines 457

Include
wdm.h or ntddk.h

Comments
If the source string is longer than the destination string, this routine copies bytes from the
source to the end of the destination buffer, effectively truncating the copied source string.

The DestinationString and SourceString buffers must be resident if the caller is running at
IRQL >= DISPATCH_LEVEL.

See Also
RtlCopyString

RtlCreateRegistryKey
NTSTATUS

RtlCreateRegistryKey(
IN ULONG Re7ativeTo,
IN PWSTR Path
) ;

RtlCreateRegistryKey adds a key object in the registry along a given relative path.

Parameters
Re/ativeTo
Specifies whether Path is an absolute registry path or is relative to a predefined key path as
one of the following:

Value Meaning

RTL_REGISTRY_ABSOLUTE Path is an absolute registry path.

RTL_REGISTRY _SERVICES Path is relative to
\Registry\Machine\System\CurrentControISet\Services.

RTL_REGISTRY _CONTROL Path is relative to
\Registry\Machine\System\CurrentControISet\Control.

RTL_REGISTRY _WINDOWS_NT Path is relative to
\Registry\Machine\software\Microsoft\ Windows NT\
CurrentVersion.

RTL_REGISTRY_DEVICEMAP Path is relative to
\Registry\Machine\Hardware\DeviceMap.

RTL_REGISTRY_USER Path is relative to \Registry\User\CurrentUser.

Continued

458 Part 1 Kernel-Mode Support Routines

Value

Path

Meaning

Specifies that the key referenced by this parameter and the
Path parameter are optional.

Specifies that the Path parameter is actually a registry handle
to use. This value is optional.

Specifies the registry path according to the RelativeTo value. If RTL_REGISTRY_
HANDLE is set, Path is a handle to be used directly.

Include
ntddk.h

Return Value
RtlCreateRegistryKey returns STATUS_SUCCESS if the key is created.

Comments
Callers of RtlCreateRegistryKey must be running at IRQL PASSIVE_LEVEL.

See Also
RtlCheckRegistry Key, RtiDeleteRegistryValue, RtlQuery Registry Values, RtlWrite
RegistryValue, ZwEnumerateKey, ZwOpenKey

RtlCreateSecurityDescriptor
NTSTATUS

RtlCreateSecurityDescriptor(
IN OUT PSECURITY_DESCRIPTOR SecurityDescriptor,
IN ULONG Revision
) ;

RtlCreateSecurityDescriptor initializes a new absolute-format security descriptor. On
return, the security descriptor is initialized with no system ACL, no discretionary ACL, no
owner, no primary group, and all control flags set to zero.

Parameters
SecurityDescriptor
Points to the buffer for the security descriptor to be initialized.

Chapter 9 Run-time Library Routines 459

Revision
Specifies the revision level to assign to the security descriptor.

Include
ntddk.h

Return Value
RtiCreateSecurityDescriptor can return one of the following:

STATUS_SUCCESS
The call completed successfully.

STATUS_UN KNOWN_REVISION
The given Revision is not supported.

Comments
In effect, a successful call to this routine initializes a security descriptor without security
constraints.

Callers of RtlCreateSecurityDescriptor must be running at IRQL PASSIVE_LEVEL.

See Also
RtlLengthSecurityDescriptor, RtiSetDaclSecurityDescriptor, RtlValidSecurity
Descriptor

Rtl DeleteRegistryVal ue
NTSTATUS

RtlDeleteRegistryValue(
IN ULONG Re7ativeTo,
IN PCWSTR Path,
IN PCWSTR Va7ueName
) ;

RtlDeleteRegistryValue removes the specified entry name and the associated values from
the registry along the given relative path.

460 Part 1 Kernel-Mode Support Routines

Parameters
Relative To
Specifies whether Path is an absolute registry path or is relative to a predefined key path as
one of the following:

Value Meaning

RTL_REGISTRY_ABSOLUTE Path is an absolute registry path.

RTL_REGISTRY_SERVICES Path is relative to \Registry\Machine\System\
CurrentControISet\Services.

RTL_REGISTRY_CONTROL Path is relative to \Registry\Machine\System\
CurrentControlSet\Control.

RTL_REGISTRY_ WINDOWS_NT Path is relative to \Registry\Machine\software\
Microsoft\ Windows NT\CurrentVersion.

RTL_REGISTRY_DEVICEMAP Path is relative to \Registry\Machine\Hardware\DeviceMap.

RTL...,:.REGISTRY _USER Path is relative to \Registry\User\CurrentUser.

RTL....:.REGISTRY_OPTIONAL Specifies that the key referenced by this parameter and the
Path parameter are optional.

RTL_REGISTRY _HANDLE Specifies that the Path parameter is actually a registry handle
to use. This value is optional.

Path
Specifies the registry path according to the RelativeTo value. If RTL+REGISTRY_
HANDLE is set, Path is a handle to be used directly.

ValueName
Points to the value name to be removed from the registry.

Include
wdm.h or ntddk.h

Return Value
RtlDeleteRegistryValue returns STATUS_SUCCESS if the value entry was deleted.

Callers of RtlDeleteRegistryVaiue must be running at IRQL PASSIVE_LEVEL.

See Also
RtiCheckRegistryKey, RtlQuery RegistryValues, RtlWriteRegistryValue,
ZwEnumerateKey, ZwOpenKey

RtlEnlargedlntegerMultiply
LARGE_INTEGER

RtlEnlargedIntegerMultiply(
IN LONG Multiplicand.
IN LONG Multiplier
) ;

Chapter 9 Run-time Library Routines 461

RtlEnlargedlntegerMultiply is exported to support existing driver binaries and is obsolete.
For better performance, use the compiler support for 64-bit integer operations.

RtlEnlargedUnsignedDivide
ULONG

RtlEnlargedUnsignedDivide(
IN ULARGE_INTEGER Dividend.
IN ULONG Divisor.
IN OUT PULONG Remainder
) ;

RtlEnlargedUnsignedDivide is exported to support existing driver binaries and is obsolete.
For better performance, use the compiler support for 64-bit integer operations.

RtlEnlargedUnsignedMultiply
LARGE_INTEGER

RtlEnlargedUnsignedMultiply(
IN ULONG Multiplicand.
IN ULONG Multiplier
) ;

RtlEnlargedUnsignedMultiply is exported to support existing driver binaries and is obso
lete. For better performance, use the compiler support for 64-bit integer operations.

RtlEqualLuid
BOOLEAN

Rtl Equal Luid(
LUID Luidl.
LUID Luid2
) ;

RtlEqualLuid compares two LUIDs.

Parameters
Luid1
Points to a LUID to compare.

462 Part 1 Kernel-Mode Support Routines

Luid2
Points to a LUID to compare.

Include
ntddk.h

Return Value
RtiEqualLuid returns TRUE if Luidl and Luid2 are equivalent.

Comments
Callers of RtlEqualLuid can be running at any IRQL.

See Also
RtlConvertLongToLuid, RtlConvertULongToLuid, SeSinglePrivilegeCheck

RtlEqualMemory
ULONG

RtlEqualMemory(
CONST VOID *Sourcel,
CONST VOID *Source2,
SIZE_T Length
) ;

RtlEqualMemory compares two blocks of memory to determine whether the specified
number of bytes are identical.

Parameters
Source 1
Points to a caller-allocated block of memory to compare.

Source2
Points to a caller-allocated block of memory that is compared to the block of memory to
which Sourcel points.

Length
Specifies the number of bytes to be compared.

Include
wdm.h or ntddk.h

Chapter 9 Run-time Library Routines 463

Return Value
RtlEqualMemory returns an unsigned value of one if Source} and Source2 are equivalent;
otherwise it returns zero.

Comments
RtlEqualMemory begins the comparison with byte zero of each block.

Callers of RtlEqualMemory can be running at any IRQL if both blocks of memory are
resident.

See Also
RtlCompareMemory

RtlEqualString
BOOLEAN

RtlEqualString(
IN PSTRING Stringl,
IN PSTRING String2,
IN BOOLEAN CaselnSensitive
) ;

RtiEqualString compares two counted strings to determine whether they are equal.

Parameters
String 1
Points to the first string.

String2
Points to the second string.

Casein Sensitive
If TRUE, case should be ignored when doing the comparison.

Include
ntddk.h

Return Value
RtlEqualString returns TRUE if the two strings are equal, otherwise it returns FALSE.

464 Part 1 Kernel-Mode Support Routines

Comments
Callers of RtlEqualString must be running at IRQL PASSIVE_LEVEL.

See Also
RtlEqualUnicodeString

RtlEqualUnicodeString
BOOLEAN

RtlEqualUnicodeString(
IN CONST UNICODE_STRING *Stringl,
IN CONST UNICODE_STRING *String2,
IN BOOLEAN CaselnSensitive
) :

RtIEqualUnicodeString compares two Unicode strings to determine whether they
are equal.

Parameters
String 1
Points to the first Unicode string.

String2
Points to the second Unicode string.

CaseIn Sensitive
If TRUE, case should be ignored when doing the comparison.

Include
wdm.h or ntddk.h

Return Value
RtlEqualUnicodeString returns TRUE if the two Unicode strings are equal.

Comments
Callers of RtlEqualUnicodeString must be running at IRQL PASSIVE_LEVEL.

See Also
RtlEqualString

Rtl ExtendedlntegerM ultiply
LARGE_INTEGER

RtlExtendedIntegerMultiply(
IN LARGE_INTEGER Multiplicand.
IN LONG Multiplier
) ;

Chapter 9 Run-time Library Routines 465

RtlExtendedlntegerMultiply is exported to support existing driver binaries and is obsolete.
For better performance, use the compiler support for 64-bit integer operations.

RtlExtendedLargelntegerDivide
LARGE_I NTEGER

RtlExtendedLargeIntegerD;v;de(
IN LARGE_INTEGER Dividend.
IN ULONG Divisor.
IN OUT PULONG Remainder
) ;

RtlExtendedLargelntegerDivide is exported to support existing driver binaries and is
obsolete. For better performance, use the compiler support for 64-bit integer operations.

RtlExtendedMagicDivide
LARGE_I NTEGER

RtlExtendedMagicDiv;de(
IN LARGE_INTEGER Dividend.
IN LARGE_INTEGER MagicDivisor.
IN CCHAR ShiftCount
) ;

RtlExtendedMagicDivide is exported to support existing driver binaries and is obsolete.
For better performance, use the compiler support for 64-bit integer operations.

Rtl Fill Bytes
VOID

RtlF;llBytes(
PVOID Destination.
SIZE_T Length.
UCHAR Fi 1 1
) ;

RtlFillBytes fills a caller-supplied buffer with the given unsigned character. For better
performance, use RtlFillMemory.

466 Part 1 Kernel-Mode Support Routines

Rtl Fi IIMemory
VOID

Rtl Fill Memory(
IN VOID UNALIGNED *Destination,
IN SIZE_T Length,
IN UCHAR Fi 77
) ;

RtiFillMemory fills a caller-supplied buffer with the given character.

Parameters
Destination
Points to the memory to be filled.

Length
Specifies the number of bytes to be filled.

Fill
Specifies the value to fill the memory.

Include
wdm.h or ntddk.h

Comments
Callers of RtiFillMemory can be running at any IRQL, provided that the Destination buffer
is resident.

See Also
RtlZeroMemory

RtlFindClearBits
ULONG

RtlFindClearBits(
IN PRTL_BITMAP BitMapHeader,
IN ULONG NumberToFind,
IN ULONG Hintlndex
) ;

RtlFindClearBits searches for a range of clear bits of a requested size within a bitmap.

Parameters
BitMapHeader

Chapter 9 Run-time Library Routines 467

Points to an initialized bitmap header for the caller's bitmap variable.

NumberToFind
Specifies how many contiguous clear bits will satisfy this request.

Hintlndex
Specifies a zero-based bit position around which to start looking for a clear bit range of the
given size.

Include
ntddk.h

Return Value
RtlFindClearBits either returns the zero-based starting bit index for a clear bit range of at
least the requested size, or it returns OxFFFFFFFF if it cannot find such a range within the
given bitmap variable.

Comments
For a successful call, the returned bit position is not necessarily equivalent to the given
HintIndex. If necessary, RtlFindClearBits searches the whole bitmap to locate a clear bit
range of the requested size. However, it starts searching for the requested range near Hint
Index, so callers can find such a range more quickly when they can supply appropriate hints
about where to start looking.

Callers of RtlFindClearBits must be running at IRQL < DISPATCH_LEVEL if the mem
ory containing the bitmap variable or at BitMapHeader is pageable. Otherwise, RtiFind
ClearBits can be called at any IRQL.

See Also
RtlAreBitsClear, RtlFindClearBitsAndSet, RtlFindFirstRunClear, RtlFindLongest
RunClear, RtlInitializeBitMap, RtlNumberOfClearBits, RtlFindSetBits

468 Part 1 Kernel-Mode Support Routines

RtlFindClearBitsAndSet
ULONG

RtlFindClearBitsAndSet(
IN PRTL_BITMAP BitMapHeader.
IN ULONG NumberToFind.
IN ULONG Hintlndex
) ;

RtlFindClearBitsAndSet searches for a range of clear bits of a requested size within a
bitmap and sets all bits in the range when it has been located.

Parameters
BitMapHeader
Points to an initialized bitmap header for the caller's bitmap variable.

NumberToFind
Specifies how many contiguous clear bits will satisfy this request.

Hintlndex
Specifies a zero-based bit position around which to start looking for a clear bit range of the
given size.

Include
ntddk.h

Return Value
RtiFindClearBitsAndSet either returns the zero-based starting bit index for a clear bit
range of the requested size that it set, or it returns OxFFFFFFFF if it cannot find such a range
within the given bitmap variable.

Comments
For a successful call, the returned bit position is not necessarily equivalent to the given
Hintlndex. If necessary, RtlFindClearBitsAndSet searches the whole bitmap to locate a
clear bit range of the requested size. However, it starts searching for the requested range
near HintIndex, so callers can have such a range reset more quickly when they can supply
appropriate hints about where to start looking.

Callers of RtlFindClearBitsAndSet must be running at IRQL < DISPATCH_LEVEL if
the memory containing the bitmap variable or at BitMapHeader is pageable. Otherwise,
RtlFindClearBitsAndSet can be called at any IRQL.

Chapter 9 Run-time Library Routines 469

See Also
RtlAreBitsClear, RtlFindClearBits, RtlFindClearRuns, RtlFindFirstRunClear,
RtlFindLastBackwardRunClear, RtlFindLongestRunClear, RtlFindNextForward
RunClear, RtlInitializeBitMap, RtlNumberOfClearBits, RtlSetAllBits, RtlSetBits

Rtl FindClearRuns
ULONG

RtlFindClearRuns(
IN PRTL_BITMAP BitMapHeader.
OUT PRTL_BITMAP_RUN RunArray.
IN ULONG SizeOfRunArray.
IN BOOLEAN LocateLongestRuns
) ;

RtlFindClearRuns finds the specified number of runs of clear bits within a given bitmap
variable.

Parameters
BitMapHeader
Points to an initialized bitmap header for the caller's bitmap variable.

RunArray
Points to the first element in a caller-allocated array for the bit position and length of each
clear run found in the given bitmap variable.

SizeOfRunArray
Specifies the maximum number of clear runs to satisfy this request.

LocateLongestRuns
If TRUE, specifies that the routine is to search the entire bitmap for the longest clear runs it
can find. Otherwise, the routine stops searching when it has found the number of clear runs
specified by SizeOJRunArray.

Include
ntddk.h

Return Value
RtlFindClearRuns returns the number of clear runs found.

470 Part 1 Kernel-Mode Support Routines

Comments
If LocateLongestRuns is TRUE, the clear runs indicated at RunArray are sorted from longest
to shortest. A clear run can consist of a single bit.

Callers of RtlFindClearRuns must be running at IRQL < DISPATCH_LEVEL if the mem
ory containing the bitmap variable or at BitMapHeader is pageable. Otherwise, RtlFind
ClearRuns can be called at any IRQL.

See Also
RtlAreBitsClear, RtlFindClearBits, RtlFindLongestRunClear, RtlFindFirstRunClear,
RtlFindNextForwardRunClear, RtlFindLastBackwardRunClear, RtlInitializeBitMap

RtlFindFirstRunClear
ULONG

RtlFindFirstRunClear(
IN PRTL_BITMAP BitMapHeader,
OUT PULONG Startinglndex
) ;

RtlFindFirstRunClear searches for the initial contiguous range of clear bits within a given
bitmap variable.

Parameters
BitMapHeader
Points to an initialized bitmap header for the caller's bitmap variable.

Startinglndex
Points to a variable in which the starting index of the initial clear run in the bitmap is
returned. This is a zero-based value indicating the bit position of the first clear bit in the
returned range. Its value is meaningless if RtlFindFirstRunClear cannot find a run of
clear bits.

Include
ntddk.h

Return Value
RtlFindFirstRunClear returns either the number of bits in the run beginning at Starting
Index or zero if it cannot find a run of clear bits within the bitmap.

Chapter 9 Run-time Library Routines 471

Comments
RtlFindFirstRunClear sets Startinglndex to OxFFFFFFFF if it cannot find a contiguous
range of clear bits within the given bitmap variable. A returned run can have a single clear
bit. That is, once a clear bit is found, RtlFindFirstRunClear continues searching until it
finds the next set bit and, then, returns the number of clear bits in the run it found.

Callers of RtlFindFirstRunClear must be running at IRQL < DISPATCH_LEVEL if
the memory containing the bitmap variable or at BitMapHeader is pageable. Otherwise,
RtlFindFirstRunClear can be called at any IRQL.

See Also
RtlAreBitsClear, RtlFindClearBits, RtlFindClearRuns, RtlFindFirstRunClear,
RtlFindLastBackwardRunClear, RtlFindLongestRunClear, RtlFindNextForward
RunClear, RtlSetBits, RtlInitializeBitMap, RtlNurnberOfClearBits

RtlFindLastBackwardRunClear
ULONG

RtlFindLastBackwardRunClear(
IN PRTL_BITMAP BitMapHeader.
IN ULONG Fromlndex.
OUT PULONG StartingRunlndex
) ;

RtlFindLastBackwardRunClear searches a given bitmap variable for the preceding clear
run of bits, starting from the specified index position.

Parameters
BitMapHeader
Points to an initialized bitmap header for the caller's bitmap variable.

Fromlndex
Specifies a zero-based bit position at which to start looking for a clear run of bits.

StartingRunlndex
Points to a variable in which the starting index of the clear run found in the bitmap is
returned. This is a zero-based value indicating the bit position of the first clear bit in the run
preceding the given Fromlndex. Its value is meaningless if RtlFindLastBackwardRun
Clear cannot find a run of clear bits.

Include
ntddk.h

472 Part 1 Kernel-Mode Support Routines

Return Value
RtlFindLastBackwardRunClear returns the number of bits in the run beginning at
StartingRunlndex or zero if it cannot find a run of clear bits preceding Fromlndex in
the bitmap.

Comments
Callers of RtlFindLastBackwardRunClear must be running at IRQL < DISPATCH_
LEVEL.

See Also
RtlAreBitsClear, RtlFindClearBits, RtlFindClearRuns, RtlFindFirstRunClear,
RtlFindLastBackwardRunClear, RtlFindLongestRunClear, RtlFindNextFoward
RunClear, RtlInitializeBitMap

RtlFindLeastSignificantBit
CCHAR

) ;

RtlFindLeastSignificantBit(
IN ULONGLONG Set

RtlFindLeastSignificantBit returns the zero-based position of the least significant non-zero
bit in its parameter.

Parameters
Set
The 64-bit value to be searched for its least significant non-zero bit.

Include
ntddk.h

Return Value
The zero-based bit position of the least significant non-zero bit, or -1 if every bit is zero.

See Also
RtlFindMostSignificantBit

RtlFindMostSignificantBit
CCHAR

) ;

RtlFindMostSignificantBit(
IN ULONGLONG Set

Chapter 9 Run-time Library Routines 473

RtlFindMostSignificantBit returns the zero-based position of the most significant non-zero
bit in its parameter.

Parameters
Set
The 64-bit value to be searched for its most significant non-zero bit.

Include
ntddk.h

Return Value
The zero-based bit position of the most significant non-zero bit, or -1 if every bit is zero.

See Also
RtlFindLeastSignificantBit

RtlFindLongestRunClear
ULONG

RtlFindLongestRunClear(
IN PRTL_BITMAP BitMapHeader.
OUT PULONG Startinglndex
) ;

RtlFindLongestRunClear searches for the largest contiguous range of clear bits within a
given bitmap variable.

Parameters
BitMapHeader
Points to an initialized bitmap header for the caller's bitmap variable.

474 Part 1 Kernel-Mode Support Routines

Startinglndex
Points to a variable in which the starting index of the longest clear run in the bitmap is
returned. This is a zero-based value indicating the bit position of the first clear bit in the
returned range.

Include
ntddk.h

Return Value
RtlFindLongestRunClear returns either the number of bits in the run beginning at Starting
Index or zero if it cannot find a run of clear bits within the bitmap.

Comments
RtlFindLongestRunClear sets StartingIndex to OxFFFFFFFF if it cannot find a conti
guous range of clear bits within the given bitmap variable. A returned run can have a single
clear bit.

Callers of RtlFindLongestRunClear must be running at IRQL < DISPATCH_LEVEL
if the memory containing the bitmap variable or at BitMapHeader is pageable. Otherwise,
RtlFindLongestRunClear can be called at any IRQL.

See Also
RtlAreBitsClear, RtlFindClearBits, RtlFindClear Runs, RtlFindFirstRunClear,
RtlFindLastBackwardRunClear, RtlFindLongestRunClear, RtlFindNextForwardRun
Clear, RtlSetBits, RtlInitializeBitMap, RtiNumberOfClearBits

RtlFindNextForwardRunClear
ULONG

RtlFindNextForwardRunClear(
IN PRTL_BITMAP BitMapHeader.
IN ULONG Fromlndex.
OUT PULONG StartingRunlndex
) ;

RtlFindNextForwardRunClear searches a given bitmap variable for the next clear run of
bits, starting from the specified index position.

Parameters
BitMapHeader
Points to an initialized bitmap header for the caller's bitmap variable.

Chapter 9 Run-time Library Routines 475

Fromlndex
Specifies a zero-based bit position at which to start looking for a clear run of bits.

StartingRunlndex
Points to a variable in which the starting index of the clear run found in the bitmap is re
turned. This is a zero-based value indicating the bit position of the first clear bit in the run.
Its value is meaningless if RtlFindNextForwardRunClear cannot find a run of clear bits.

Include
ntddk.h

Return Value
RtlFindNextFowardRunClear returns either the number of bits in the run beginning
at StartingRunlndex or zero if it cannot find a run of clear bits following Fromlndex in
the bitmap.

Comments
Callers of RtlFindNextForwardRunClear must be running at IRQL < DISPATCH_
LEVEL.

See Also
RtlAreBitsClear, RtlFindClearBits, RtlFindClearRuns, RtlFindFirstRunClear,
RtlFindLastBackwardRunClear, RtlFindLongestRunClear, RtlInitializeBitMap

RtlFindSetBits
ULONG

Rtl Fi ndSetBits (
IN PRTL_BITMAP BitMapHeader.
IN ULONG NumberToFind.
IN ULONG Hintlndex
) ;

RtlFindSetBits searches for a range of set bits of a requested size within a bitmap.

Parameters
BitMapHeader
Points to an initialized bitmap header for the caller's bitmap variable.

NumberToFind
Specifies how many contiguous set bits will satisfy this request.

476 Part 1 Kernel-Mode Support Routines

Hintlndex
Specifies a zero-based bit position around which to start looking for a set bit range of the
given size.

Include
ntddk.h

Return Value
RtlFindSetBits either returns the zero-based starting bit index for a set bit range of the
requested size, or it returns OxFFFFFFFF if it cannot find such a range within the given
bitmap variable.

Comments
For a successful call, the returned bit position is not necessarily equivalent to the given
Hintlndex. If necessary, RtlFindSetBits searches the whole bitmap to locate a set bit range
of the requested size. However, it starts searching for the requested range near Hintlndex, so
callers can find such a range more quickly when they can supply appropriate hints about
where to start looking.

Callers of RtlFindSetBits must be running at IRQL < DISPATCH_LEVEL if the memory
containing the bitmap variable or at BitMapHeader is pageable. Otherwise, RtlFindSetBits
can be called at any IRQL.

See Also
RtlAreBitsSet, RtlClearBits, RtlFindClearBits, RtlFindSetBitsAndClear, RtlInitialize
BitMap, RtlNumberOfSetBits

Rtl Fi ndSetBitsAndClear
ULONG

RtlFindSetBitsAndClear(
IN PRTL_BITMAP BitMapHeader,
IN ULONG NumberToFind,
IN ULONG Hintlndex
) ;

RtlFindSetBitsAndClear searches for a range of set bits of a requested size within a bitmap
and clears all bits in the range when it has been located.

Parameters
BitMapHeader
Points to an initialized bitmap header for the caller's bitmap variable.

Chapter 9 Run-time Library Routines 477

NumberToFind
Specifies how many contiguous set bits will satisfy this request.

Hintlndex
Specifies a zero-based bit position around which to start looking for a set bit range of the
given size.

Include
ntddk.h

Return Value
RtlFindSetBitsAndClear either returns the zero-based starting bit index for a set bit range
of the requested size that it cleared, or it returns OxFFFFFFFF if it cannot find such a range
within the given bitmap variable.

Comments
For a successful call, the returned bit position is not necessarily equivalent to the given
Hintlndex. If necessary, RtlFindSetBitsAndClear searches the whole bitmap to locate a
set bit range of the requested size. However, it starts searching for the requested range near
HintIndex, so callers can clear such a range more quickly when they can supply appropriate
hints about where to start looking.

Callers of RtlFindSetBitsAndClear must be running at IRQL < DISPATCH_LEVEL if
the memory containing the bitmap variable or at BitMapHeader is pageable. Otherwise,
RtiFindSetBitsAndClear can be called at any IRQL.

See Also
RtlAreBitsSet, RtlClearAlIBits, RtiClearBits, RtlFindSetBits, RtlInitializeBitMap,
RtlNumberOfSetBits

Rtl FreeAnsiStri ng
VOID

RtlFreeAnsiString(
IN PANSI_STRING AnsiString
) ;

RtlFreeAnsiString releases storage that was allocated by RtlUnicodeStringToAnsiString.

478 Part 1 Kernel·Mode Support Routines

Parameters
AnsiString
Points to the ANSI string buffer previously allocated by RtlUnicodeStringToAnsiString.

Include
wdm. h or ntddk.h

Comments
This routine does not release the Unicode string buffer passed to RtlUnicodeStringToAnsi
String.

Callers of RtlFreeAnsiString must be running at IRQL PASSIVE_LEVEL.

See Also
RtlUnicodeStringToAnsiString

Rtl FreeU n icodeStri ng
VOID

RtlFreeUnicodeString(
IN PUNICODE_STRING UnicodeString
) ;

RtlFreeUnicodeString releases storage that was allocated by RtlAnsiStringToUnicode
String or RtlUpcaseUnicodeString.

Parameters
UnicodeString
Points to the Unicode string buffer previously allocated by RtlAnsiStringToUnicodeString
or RtlUpcaseUnicodeString.

Include
wdm.h or ntddk.h

Comments
This routine does not release the ANSI string buffer passed to RtlAnsiStringToUnicode
String.

Callers of RtlFreeUnicodeString must be running at IRQL PASSIVE_LEVEL.

Chapter 9 Run-time Library Routines 479

See Also
RtlAnsiStringToUnicodeString, RtlUpcaseUnicodeString

RtlGetVersion
NTSTATUS
RtlGetVersion(

IN OUT PRTL_OSVERSIONINFOW 7pVersionlnformation
) ;

RtlGetVersion returns version information about the currently running operating system.

Parameters
/p Version/nformation
Pointer to either an RTL_OSVERSIONINFOW or RTL_OSVERSIONINFOEXW structure
that contains the version information about the currently running operating system. A caller
specifies which input structure is used by setting the dwOSVersionlnfoSize member of the
structure to the size in bytes of the structure that is used.

Include
ntddk.h

Return Value
RtlGetVersion returns STATUS_SUCCESS.

Comments
RtlGetVersion is the kernel-mode equivalent of the user-mode GetVersionEx function in
the Microsoft® Platform SDK. See the example in the Platform SDK that shows how to get
the system version.

When using RtlGetVersion to determine whether a particular version of the operating
system is running, a caller should check for version numbers that are greater than or equal
to the required version number. This ensures that a version test succeeds for later versions
of the operating system.

Because operating system features can be added in a redistributable DLL, checking only
the major and minor version numbers is not the most reliable way to verify the presence of
a specific system feature. A driver should use RtlVerifyVersionlnfo to test for the presence
of a specific system feature.

See Also
RTL_OSVERSIONINFOW, RTL_OSVERSIONINFOEXW, RtlVerifyVersionlnfo

480 Part 1 Kernel-Mode Support Routines

RtlGUIDFromString
NTSTATUS

RtlGUIDFromString(
IN PUNICODE_STRING GuidString,
OUT GUID *Guid
) ;

RtlGUIDFromString converts the given Unicode string to a GUID in binary format.

Parameters
GuidString
Points to the buffered Unicode string to be converted to a GUID.

Guid
Points to a caller-supplied variable in which the GUID is returned.

Include
wdm.h or ntddk.h

Return Value
If the conversion succeeds, RtlGUIDFromString returns STATUS_SUCCESS. Otherwise,
no conversion was done.

Comments
Callers of RtlGUIDFromString must be running at IRQL PASSIVE_LEVEL.

See Also
RtlStringFromGUID

RtlinitAnsiString
VOID

RtlInitAnsiString(
IN OUT PANSI_STRING DestinationString,
IN PCSZ SourceString
) ;

RtIlnitAnsiString initializes a counted ANSI string.

Parameters
DestinationString

Chapter 9 Run-time Library Routines 481

Points to the buffer for a counted ANSI string to be initialized.

SourceString
Points to a zero-terminated string with which to initialize the counted string.

Include
wdm.h or ntddk.h

Comments
The DestinationString is initialized to point to the SourceString. The length and maximum
length for the DestinationString are initialized to the length of the SourceString. If Source
String is NULL, the lengths are zero.

Callers of RtlInitAnsiString can be running at IRQL <= DISPATCH_LEVEL if the
DestinationString buffer is nonpageable. Usually, callers run at IRQL PASSIVE_LEVEL
because most other Rtl .. String routines cannot be called at raised IRQL.

See Also
RtlInitString, RtlInitUnicodeString

RtlinitializeBitMap
VOID

RtlInitializeBitMap(
IN PRTL_BITMAP BitMapHeader.
IN PULONG BitMapBuffer.
IN ULONG SizeOfBitMap
) ;

RtlInitializeBitMap initializes the header of a bitmap variable.

Parameters
BitMapHeader
Points to the bitmap header for which the caller provides storage, which must be at least
sizeof(RTL_BITMAP).

BitMapBuffer
Points to caller-allocated memory for the bitmap itself. The base address of this buffer must
be ULONG-aligned.

482 Part 1 Kernel-Mode Support Routines

SizeOfBitMap
Specifies the number of bits in the bitmap. This value must be an integral multiple of the
number of bits in a ULONG.

Include
ntddk.h

Comments
A driver can use a bitmap variable as an economical way to keep track of a set of reusable
items. For example, file systems use a bitmap variable to track which clusters/sectors on a
disk have already been allocated to hold file data. The system-supplied SCSI port driver
uses a bitmap variable to track which queue tags have been assigned to SRBs.

RtlInitializeBitMap must be called before any other RtlXxx that operates on a bitmap
variable. The BitMapHeader pointer is an input parameter in all subsequent calls to the
RtlXxx that operate on the caller's bitmap variable at BitMapBuffer. The caller is responsible
for synchronizing access to the bitmap variable.

If an already initialized bitmap header is reinitialized, the subsequent call to RtlInitialize
BitMap has no effect on the current contents of the associated bitmap variable.

Callers of RtlInitializeBitMap must be running at IRQL < DISPATCH_LEVEL. Callers
of RtlXxx that operate on an initialized bitmap variable must be running at IRQL <
DISPATCH_LEVEL if the memory containing the bitmap variable or at BitmapHeader
is pageable; otherwise, callers can be running at any IRQL.

See Also
ExlnitializeFastMutex, RtlAreBitsClear, RtlAreBitsSet, RtlCheckBit, RtlClear
AUBits, RtiClearBits, RtlFindClearBits, RtlFindClearBitsAndSet, RtlFindClearRuns,
RtlFindFirstRunClear, RtlFindLastBackwardRunClear, RtlFindLongestRunClear,
RtlFindNextForwardRunClear, RtiFindSetBits, RtlFindSetBitsAndClear, RtlNumber
Of Clear Bits , RtlNumberOfSetBits, RtlSetAUBits, RtlSetBits

RtlinitString
VOID

RtlInitString(
IN OUT PSTRING DestinationString,
IN PCSZ SourceString
) ;

RtlInitString initializes a counted string.

Parameters
DestinationString

Chapter 9 Run-time Library Routines 483

Points to the buffer for a counted string to be initialized.

SourceString
Points to a NUL-terminated string value with which to initialize the counted string.

Include
wdm.h or ntddk.h

Comments
DestinationString is initialized to point to SourceString and the length and maximum length
for the DestinationString are initialized to the length of Source String . The lengths are is zero
if SourceString is NULL.

Callers of RtlInitString can be running at IRQL <= DISPATCH_LEVEL if the
DestinationString buffer is nonpageable. Usually, callers run at IRQL PASSIVE_LEVEL
because most other Rtl .. String routines cannot be called at raised IRQL.

See Also
RtlInitAnsiString, RtlInitUnicodeString

Rtll n itU n icodeStri ng
VOID

RtlInitUnicodeString(
IN OUT PUNICODE_STRING DestinationString.
IN PCWSTR SourceString
) ;

RtlInitUnicodeString initializes a counted Unicode string.

Parameters
DestinationString
Points to the buffer for a counted Unicode string to be initialized.

SourceString
Points to a zero-terminated Unicode string with which to initialize the counted string.

Include
wdm.h or ntddk.h

484 Part 1 Kernel·Mode Support Routines

Comments
DestinationString is initialized to point to SourceString. The length and maximum length
for DestinationString are initialized to the length of SourceString. If SourceString is NULL,
the length is zero.

Callers of RtlInitUnicodeString can be running at IRQL <= DISPATCH_LEVEL if the
DestinationString buffer is nonpageable. Usually, callers run at IRQL PASSIVE_LEVEL
because most other Rtl .. String routines cannot be called at raised IRQL.

See Also
RtlInitAnsiString, RtlInitString

Rtllnt64ToUnicodeString
NTSTATUS
RtlInt64ToUnicodeString (

IN ULONGLONG Value,
IN ULONG Base OPTIONAL,
IN OUT PUNICODE_STRING String
) ;

RtlInt64ToUnicodeString converts a specified unsigned 64-bit integer value to a Unicode
string that represents the value in a specified base.

Parameters
Value
Specifies a 64-bit unsigned integer.

Base
Specifies the following base for the conversion as follows:

Value Base

16 Hexadecimal

8 Octal

2 Binary

o or 10 Decimal

String
Pointer to a Unicode string that represents the value of Value. The caller must allocate the
Unicode string buffer.

Chapter 9 Run-time Library Routines 485

Include
ntddk.h or wdm.h

Return Value
RtlInt64ToUnicodeString returns one of the following values:

STATUS_SUCCESS
STATUS_BUFFER_OVERFLOW
The Unicode string buffer is too small.

STATUSJNVALlD_PARAMETER
The specified code base is not valid.

Comments
Callers of RtlInt64ToUnicodeString must be running at IRQL PASSIVE_LEVEL.

See Also
RtlAppendUnicodeStringToString, RtlUnicodeStringTolnteger

RtlintegerToUnicodeString
NTSTATUS

RtlIntegerToUnicodeString(
IN ULONG Value,
IN ULONG Base OPTIONAL,
IN OUT PUNICODE_STRING String
) ;

RtlIntegerToUnicodeString converts a given unsigned integer value in the specified base
to one or more buffered Unicode characters.

Parameters
Value
Identifies an unsigned integer of type ULONG.

Base
Specifies decimal, binary, octal, or hexadecimal base.

String
Points to a buffer to contain the converted value.

... 486 Part 1 Kernel-Mode Support Routines

Include
wdm.h or ntddk.h

Return Value
If RtlIntegerToUnicodeString succeeds, it returns STATUS_SUCCESS. Otherwise, it
can return STATUS_INVALID_PARAMETER if the given Value is illegal for the specified
base.

Comments
Callers of RtlIntegerToUnicodeString must be running at IRQL PASSIVE_LEVEL.

See Also
RtlUnicodeStringTolnteger, RtlAppendUnicodeStringToString

RtllntPtrToUnicodeString
NTSTATUS
RtlIntPtrToUnicodeString (

PLONG Va 7 ue,
ULONG Base OPTIONAL,
PUNICODE_STRING String
) :

RtlIntPtrToUnicodeString converts a specified PLONO value to a Unicode string that
represents the pointer value in a specified base.

Parameters
Value
Specifies an integer pointer.

Base
Specifies the following base for the conversion:

Value Base

16 Hexadecimal

8 Octal

2 Binary

Oor 10 Decimal

Chapter 9 Run-time Library Routines 487

String
Pointer to a Unicode string that represents the value of Value. The caller must allocate the
Unicode string buffer.

Include
ntddk.h or wdm.h

Comments
Callers of RtlIntPtrToUnicodeString must be running at IRQL PASSIVE_LEVEL.

See Also
RtlAppendUnicodeStringToString, RtlIntegerToUnicodeString, RtlUnicodeStringTo
Integer

Rtl Largel nteger Add
LARGE_INTEGER

RtlLargeIntegerAdd(
IN LARGE_INTEGER Addendl.
IN LARGE_INTEGER Addend2
) ;

RtlLargeIntegerAdd is exported to support existing driver binaries and is obsolete. For
better performance, use the compiler support for 64-bit integer operations.

RtlLargelntegerAnd
VOID

RtlLargeIntegerAnd(
IN OUT LARGE_INTEGER Resu7t.
IN LARGE_INTEGER Source.
IN LARGE_INTEGER Mask
) ;

RtlLargeIntegerAnd is exported to support existing driver binaries and is obsolete. For
better performance, use the compiler support for 64-bit integer operations.

RtlLargelnteger ArithmeticShift
LARGE_INTEGER

RtlLargeIntegerArithmeticShift(
IN LARGE_INTEGER Largelnteger.
IN CCHAR ShiftCount
) ;

488 Part 1 Kernel-Mode Support Routines

RtlLargeIntegerArithmeticShift is exported to support existing driver binaries and is
obsolete. For better performance, use the compiler support for 64-bit integer operations.

Rtl Largel ntegerDivide
LARGE_INTEGER

RtlLargeIntegerDivide(
IN LARGE_INTEGER Dividend,
IN LARGE_INTEGER Divisor,
IN OUT PLARGE_INTEGER Remainder
) ;

RtlLargeIntegerDivide is exported to support existing driver binaries and is obsolete. For
better performance, use the compiler support for 64-bit integer operations.

Rtl Largel ntegerEqualTo
BOOLEAN

RtlLargeIntegerEqualTo(
IN LARGE_INTEGER Operandl,
IN LARGE_INTEGER Operand2
) ;

RtlLargeIntegerEqualTo is exported to support existing driver binaries and is obsolete.
For better performance, use the compiler support for 64-bit integer operations.

Rtl LargelntegerEqualToZero
BOOLEAN

RtlLargeIntegerEqualToZero(
IN LARGE_INTEGER Operand
) ;

RtlLargeIntegerEqualToZero is exported to support existing driver binaries and is ob
solete. For better performance, use the compiler support for 64-bit integer operations.

Rtl LargelntegerGreaterThan
BOOLEAN

RtlLargeIntegerGreaterThan(
IN LARGE_INTEGER Operandl,
IN LARGE_INTEGER Operand2
) ;

RtlLargeIntegerGreaterThan is exported to support existing driver binaries and is ob
solete. For better performance, use the compiler support for 64-bit integer operations.

RtlLargelntegerGreaterThanOrEqualTo
BOOLEAN

RtlLargeIntegerGreaterThanOrEqualTo(
IN LARGE_INTEGER Operandi.
IN LARGE_INTEGER Operand2
) ;

Chapter 9 Run-time Library Routines 489

RtlLargelntegerGreaterThanOrEqualTo is exported to support existing driver bina
ries and is obsolete. For better performance, use the compiler support for 64-bit integer
operations.

RtlLargelntegerGreaterOrEqualToZero
BOOLEAN

RtlLargeIntegerGreaterOrEqualToZero(
IN LARGE_INTEGER Operand
) ;

RtlLargelntegerGreaterOrEqualToZero is exported to support existing driver binaries
and is obsolete. For better performance, use the compiler support for 64-bit integer op
erations.

RtlLargelntegerGreaterThanZero
BOOLEAN

RtlLargeIntegerGreaterThanZero(
IN LARGE_INTEGER Operand
) ;

RtlLargelntegerGreaterThanZero is exported to support existing driver binaries and is
obsolete. For better performance, use the compiler support for 64-bit integer operations.

RtlLargelntegerLessThan
BOOLEAN

RtlLargeIntegerLessThan(
IN LARGE_INTEGER Operandi.
IN LARGE_INTEGER Operand2
) ;

RtlLargelntegerLessThan is exported to support existing driver binaries and is obsolete.
For better performance, use the compiler support for 64-bit integer operations.

490 Part 1 Kernel-Mode Support Routines

RtlLargelntegerLessThanOrEqualTo
BOOLEAN

RtlLargeIntegerLessThanOrEqualTo(
IN LARGE_INTEGER Operandi.
IN LARGE_INTEGER Operand2
) :

RtlLargelntegerLessThanOrEqualTo is exported to support existing driver binaries and is
obsolete. For better performance, use the compiler support for 64-bit integer operations.

RtlLargelntegerLessOrEqualToZero
BOOLEAN

RtlLargeIntegerLessOrEqualToZero(
IN LARGE_INTEGER Operand
) :

RtlLargelntegerLessOrEqualToZero is exported to support existing driver binaries and is
obsolete. For better performance, use the compiler support for 64-bit integer operations.

Rtl Largel ntegerLess ThanZero
BOOLEAN

RtlLargeIntegerLessThanZero(
IN LARGE_INTEGER Operand
) :

RtlLargelntegerLessThanZero is exported to support existing driver binaries and is
obsolete. For better performance, use the compiler support for 64-bit integer operations.

Rtl LargelntegerNegate
LARGE_I NTEGER

RtlLargeIntegerNegate(
IN LARGE_INTEGER Subtrahend
) :

RtlLargelntegerNegate is exported to support existing driver binaries and is obsolete. For
better performance, use the compiler support for 64-bit integer operations.

Rtl Largel ntegerNotEq ualTo
BOOLEAN

RtlLargeIntegerNotEqualTo(
IN LARGE_INTEGER Operand1,
IN LARGE_INTEGER Operand2
) ;

Chapter 9 Run-time Library Routines 491

RtlLargelntegerNotEqualTo is exported to support existing driver binaries and is obsolete.
For better performance, use the compiler support for 64-bit integer operations.

Rtl LargelntegerNotEq ualToZero
BOOLEAN

RtlLargeIntegerNotEqualToZero(
IN LARGE_INTEGER Operand
) ;

RtlLargelntegerNotEqualToZero is exported to support existing driver binaries and is
obsolete. For better performance, use the compiler support for 64-bit integer operations.

Rtl Largel ntegerSh iftLeft
LARGE_INTEGER

RtlLargeIntegerShiftLeft(
IN LARGE_INTEGER Largelnteger,
IN CCHAR ShiftCount
) ;

RtlLargelntegerShiftLeft is exported to support existing driver binaries and is obsolete.
For better performance, use the compiler support for 64-bit integer operations.

RtlLargelntegerShiftRight
LARGE_INTEGER

RtlLargeIntegerShiftRight(
IN LARGE_INTEGER Largelnteger,
IN CCHAR ShiftCount
) ;

RtlLargelntegerShiftRight is exported to support existing driver binaries and is obsolete.
For better performance, use the compiler support for 64-bit integer operations.

492 Part 1 Kernel-Mode Support Routines

RtlLargelntegerSubtract
LARGE_I NTEGER

RtlLargeIntegerSubtract(
IN LARGE_INTEGER Minuend.
IN LARGE_INTEGER Subtrahend
) ;

RtlLargeIntegerSubtract is exported to support existing driver binaries and is obsolete.
For better performance, use the compiler support for 64-bit integer operations.

RtlLengthSecurityDescriptor
ULONG

RtlLengthSecurityDescriptor(
IN PSECURITY_DESCRIPTOR SecurityDescriptor
) ;

RtlLLengthSecurityDescriptor returns the size of a given security descriptor.

Parameters
SecurftyDescnptor
Points to a security descriptor.

Include
ntddk.h

Return Value
RtlLengthSecurityDescriptor returns the size in bytes of the descriptor.

Comments
Callers of RtlLengthSecurityDescriptor must be running at IRQL PASSIVE_LEVEL.

See Also
RtlCreateSecurityDescriptor, RtlSetDaclSecurityDescriptor, RtlValidSecurity
Descriptor

RtlMoveMemory
VOID

RtlMoveMemory(
IN VOID UNALIGNED *Destination,
IN CaNST VOID UNALIGNED *Source,
IN SIZE_T Length
) ;

Chapter 9 Run-time Library Routines 493

RtiMoveMemory moves memory either forward or backward, aligned or unaligned, in
4-byte blocks, followed by any remaining bytes.

Parameters
Destination
Points to the destination of the move.

Source
Points to the memory to be copied.

Length
Specifies the number of bytes to be copied.

Include
wdm.h or ntddk.h

Comments
The (Source + Length) can overlap the Destination range passed in to RtlMoveMemory.

Callers of RtiMoveMemory can be running at any IRQL if both memory blocks are resi
dent. Otherwise, the caller must be running at IRQL < DISPATCH_LEVEL.

See Also
RtlCopyMemory

RtlNum berOfClearBits
ULONG

RtlNumberOfClearBits(
IN PRTL_BITMAP BitMapHeader
) ;

RtlNumberOfClearBits returns a count of the clear bits in a given bitmap variable.

494 Part 1 Kernel-Mode Support Routines

Parameters
BitMapHeader
Points to an initialized bitmap header for the caller's bitmap variable.

Include
ntddk.h

Return Value
RtlNumberOfClearBits returns how many bits currently are clear.

Comments
Callers of RtlNumberOfClearBits must be running at IRQL < DISPATCH_LEVEL if
the memory containing the bitmap variable or at BitMapHeader is pageable. Otherwise,
RtlNumberOfClearBits can be called at any IRQL.

See Also
RtlFindClearBits, RtlFindClearRuns, RtlFindFirstRunClear, RtlFindLastBackward
RunClear, RtlFindLongestRunClear, RtlFindNextForwardRunClear, RtllnitializeBit
Map, RtlNumberOfSetBits

RtlNumberOfSetBits
ULONG

RtlNumberOfSetBits(
IN PRTL_BITMAP BitMapHeader
) ;

RtlNumberOfSetBits returns a count of the set bits in a given bitmap variable.

Parameters
BitMapHeader
Points to an initialized bitmap header for the caller's bitmap variable.

Include
ntddk.h

Return Value
RtlNumberOfSetBits returns how many bits currently are set.

Chapter 9 Run-time Library Routines 495

Comments
Callers of RtiNumberOfSetBits must be running at IRQL < DISPATCH_LEVEL if
the memory containing the bitmap variable or at BitMapHeader is pageable. Otherwise,
RtlNumberOfSetBits can be called at any IRQL.

See Also
RtlFindSetBits, RtlInitializeBitMap, RtlNumberOfClearBits

Rtl PrefixUnicodeString
BOOLEAN

RtlPrefixUnicodeString(
IN PUNICODE_STRING Stringl,
IN PUNICODE_STRING String2,
IN BOOLEAN CaselnSensitive
) ;

RtlPrefixUnicodeString compares two Unicode strings to determine whether one string is a
prefix of the other.

Parameters
String 1
Points to the first string, which might be a prefix of the buffered Unicode string at String2.

String2
Points to the second string.

CaselnSensitive
If TRUE, case should be ignored when doing the comparison.

Include
ntddk.h

Return Value
RtlPrefixUnicodeString returns TRUE if String1 is a prefix of String2.

Comments
Callers of RtlPrefixUnicodeString must be running at IRQL PASSIVE_LEVEL.

496 Part 1 Kernel-Mode Support Routines

See Also
RtlCompareUnicodeString

RtlQueryRegistryValues
NTSTATUS

RtlQueryRegistryValues(
IN ULONG Re7ativeTo.
IN PCWSTR Pa th.
IN PRTL_QUERY_REGISTRY_TABLE OueryTab7e.
IN PVOID Context.
IN PVOID Environment OPTIONAL
) ;

RtlQueryRegistryValues allows the caller to query several values from the registry subtree
with a single call.

Parameters
Relative To
Specifies whether Path is an absolute registry path or is relative to a predefined path as one
of the following:

Value

RTL_REGISTRY _ABSOLUTE

RTL_REGISTRY_SERVICES

RTL_REGISTRY _USER

RTL_REGISTRY _OPTIONAL

Meaning

Path is an absolute registry path.

Path is relative to \Registry\Machine\System\
CurrentControISet\Services.

Path is relative to \Registry\Machine\System\
CurrentControISet\Control.

Path is relative to \Registry\Machine\software\
Microsoft\ Windows NT\CurrentVersion.

Path is relative to \Registry\Machine\Hardware\
DeviceMap.

Path is relative to \Registry\User\CurrentUser.

Specifies that the key referenced by this parameter and the
Path parameter are optional.

Specifies that the Path parameter is actually a registry handle
to use. This value is optional.

Chapter 9 Run-time Library Routines 497

Path
Points to either an absolute registry path or a path relative to the known location specified
by the RelativeTo parameter. Note that the names of keys in such a path must be known
to the caller, including the last key in the path. If the RTL_REGISTRY _HANDLE flag is
specified, this parameter is a registry handle for an already opened key to be queried
directly.

QueryTable
Points to a table of one or more value names and subkey names in which the caller is
interested. Each table entry contains a caller-supplied QueryRootine that will be called for
each value name that exists in the registry. The table must be terminated with a NULL table
entry, which is a table entry with a NULL QueryRoutine and a NULL Name field. The
QueryTable structure is defined as follows:

typedef struct _RTL_QUERY_REGISTRY_TABLE {
PRTL_QUERY_REGISTRY_ROUTINE QueryRoutine;
ULONG Flags;
PWSTR Name;
PVOID EntryContext;
ULONG DefaultType;
PVOID DefaultData;
ULONG DefaultLength;

} RTL_QUERY_REGISTRY_TABLE. *PRTL_QUERY_REGISTRY_TABLE;

This routine is called with the name, type, data, and data length of a registry value. If this
field is NULL, it marks the end of the table.

A caller-supplied QueryRoutine is declared as follows:

NTSTATUS
(*PRTL_QUERY_REGISTRY_ROUTINE)(

IN PWSTR ValueName.
IN ULONG ValueType.
IN PVOID ValueData.
IN ULONG ValueLength.
IN PVOID Context.
IN PVOID EntryContext
) ;

The remaining members of the QueryTable structure include those on the following pages.

498 Part 1 Kernel-Mode Support Routines

Flags
Control how the remaining fields are to be interpreted, as follows:

Value Meaning

RTL_QUERY_REGISTRY_SUBKEY The Name of this table entry is another path to a registry
key, and all following table entries are for that key
rather than the key specified by the Path parameter. This
change in focus lasts until the end of the table or until
another RTL_REGISTRY_SUBKEY or RTL_QUERY_
REGISTRY_TOPKEY entry is seen. Each such entry
must specify a path that is relative to the Path specified
in the call to RtlQueryRegistryValues.

RTL_QUERY_REGISTRY_TOPKEY Resets the current registry key handle to the original
one specified by the RelativeTo and Path parameters.
This is useful for getting back to the original node after
descending into subkeys with the RTL_QUERY_
REGISTRY SUBKEY flag.

RTL_QUERY _REGISTRY _REQUIRED Specifies that this value is required and, if it is not
found, STATUS_OBJECT_NAME_NOT_FOUND is
returned. This is used for a table entry that specifies a
NULL Name so that RtlQueryRegistryValues will
enumerate all of the value names under a key and return
STATUS_OBJECT_NAME_NOT_FOUND only if
there are no value keys under the current key.

RTL_QUERY_REGISTRY_NOVALUE Specifies that even though there is no Name for this
table entry, all the caller wants is a callback: that is, the
caller does not want to enumerate all the values under
the current key. The QueryRoutine is called with
NULL for ValueData, REG_NONE for ValueType, and
zero for ValueLength.

RTL_QUERY_REGISTRY_NOEXPAND Specifies that, if the type of this registry value is
REG_EXPAND_SZ or REG_MULTCSZ, RtlQuery
RegistryValues is not to do any preprocessing of these
registry values before calling the QueryRoutine. By
default, RtlQueryRegistryValues expands environment
variable references into REG_EXPAND _SZ values,
enumerates each zero-terminated string in a REG_
MULTCSZ value, and calls the QueryRoutine once
with each, making it look like there is more than one
REG_SZ value with the same ValueName.

Value

· Chapter 9 Run-time Library Routines 499

Meaning

The QueryRoutine is ignored, and the EntryContext
points to the location to store the value. For zero
terminated strings, EntryContext points to a
UNICODE_STRING structure that describes the
maximum size of the buffer. If the Buffer is NULL, a
buffer is allocated.

This is used to delete value keys after they have been
queried.

This is the name of a Value that the caller queried. If Name is NULL, the Query Routine
specified for this table entry is called for all values associated with the current registry key.

EntryContext
This is an arbitrary 32-bit field that is passed uninterpreted each time the QueryRoutine is
called.

DefaultType
Specifies the REG_XXX type of the data to be queried if Flags is not set with RTL_
REGISTRY_REQUIRED; otherwise, zero.

DefaultData
Points to default value(s) for a named value entry of the DefaultType if it is not already
in the registry under Name and if Flags is not set with RTL_REGISTRY_REQUIRED;
otherwise, NULL.

DefaultLength
If there is no value name that matches the name given by the Name, and the DefauItType
field is not REG_NONE, the QueryRoutine for this table entry is called with the contents
of the following fields as if the value had been found in the registry. If the DefaultType is
REG_SZ, REG_EXPANDSZ, or REG_MULTI_SZ and the DefauItLength is zero, the
value of DefauItLength will be computed based on the length of the Unicode string pointed
to by DefauItData.

Context
Points to a context that is passed, uninterpreted, when each QueryRoutine is called.

Environment
Points to the environment used when expanding variable values in REG_EXPAND _SZ
registry values, or a NULL pointer (optional).

500 Part 1 Kernel-Mode Support Routines

Include
wdm. h or ntddk.h

Return Value
RtlQueryRegistryValues returns STATUS_SUCCESS if the entire QueryTable was
processed successfully. If an error occurs, RtlQueryRegistryValues returns an error status
such as:

STATUS_INVALID_PARAMETER
STATUS_OBJECT_NAME_NOT_FOUND
STATUS_XXX (an error status from a user-supplied QueryRoutine)

Comments
The caller specifies an initial key path and a table. The table contains one or more entries
that describe the key values and subkey names in which the caller is interested. RtlQuery
RegistryValues starts at the initial key and enumerates the entries in the table.

For each entry specifying a value name or subkey name that exists in the registry,
RtlQueryRegistryValues calls the QueryRoutine associated with each table entry. Each
entry's caller-supplied QueryRoutine is passed the value name, type, data, and data length.

When building the QueryTable, be sure to allocate an entry for each value being queried,
plus a NULL entry at the end. Zero the table and then initialize the entries. QueryTable must
be allocated from resident memory (nonpaged pool).

If an error occurs at any stage of processing the QueryTable, RtlQueryRegistryValues
stops processing the table and returns the error status.

Callers of RtlQueryRegistryValues must be running at IRQL PASSIVE_LEVEL.

See Also
RtlZeroMemory, ZwEnumerateKey, ZwOpenKey

Rtl RetrieveU long
VOID

RtlRetrieveUlong(
IN OUT PULONG DestinationAddress.
IN PULONG SourceAddress
) :

RtlRetrieveUlong retrieves a ULONG value from the source address, avoiding alignment
faults. The destination address is assumed to be aligned.

Parameters
DestinationAddress

Chapter 9 Run-time Library Routines 501

Points to a ULONG-aligned location in which to store the ULONG value.

SourceAddress
Points to a location from which to retrieve the ULONG value.

Include
wdm.h or ntddk.h

Comments
Callers of RtlRetrieveUlong can be running at any IRQL if the given addresses are in
nonpaged pool. Otherwise, the caller must be running at IRQL < DISPATCH_LEVEL.

See Also
RtlStoreUlong

Rtl RetrieveUshort
VOID

RtlRetrieveUshort(
IN OUT PUSHORT DestinationAddress,
IN PUSHORT SourceAddress
) ;

RtiRetrieveUshort retrieves a USHORT value from the source address, avoiding alignment
faults.

Parameters
DestinationAddress
Points to a USHORT -aligned location in which to store the value.

SourceAddress
Points to a location from which to retrieve the value.

Include
wdm.h or ntddk.h

502 Part 1 Kernel-Mode Support Routines

Comments
Callers of RtlRetrieveUshort can be running at any IRQL if the given addresses are in non
paged pool. Otherwise, the caller must be running at IRQL < DISPATCH_LEVEL.

See Also
RtlStoreUshort

RtlSetAIiBits
VOID

RtlSetAllBits(

IN PRTL_BITMAP BitMapHeader
) ;

RtlSetAIIBits sets all bits in a given bitmap variable.

Parameters
BitMapHeader
Points to an initialized bitmap header for the caller's bitmap variable.

Include
ntddk.h

Comments
Callers of RtlSetAIIBits must be running at IRQL < DISPATCH_LEVEL if the memory
containing the bitmap variable or at BitMapHeader is pageable. Otherwise, RtlSetAIIBits
can be called at any IRQL.

See Also
RtlAreBitsClear, RtlAreBitsSet, RtlFindClearBits, RtlFindClearBitsAndSet, RtlFind
ClearRuns, RtlFindFirstRunClear, RtlInitializeBitMap, RtlFindLastBackwardRun
Clear, RtlFindLongestRunClear, RtlFindNextForwardRunClear, RtlInitializeBitMap,
RtlSetBits, RtlNumberOfSetBits

RtlSetBits
VOID

RtlSetBits(
IN PRTL_BITMAP BitMapHeader.
IN ULONG Startinglndex.
IN ULONG NumberToSet
) :

Chapter 9 Run-time Library Routines 503

RtlSetBits sets all bits in a given range of a given bitmap variable.

Parameters
BitMapHeader
Points to an initialized bitmap header for the caller's bitmap variable.

Startingindex
Specifies the start of the bit range to be set. This is a zero-based value indicating the position
of the first bit in the range.

NumberToSet
Specifies how many bits to set.

Include
ntddk.h

Comments
RtlSetBits simply returns control if the input NumberToSet is zero. Startinglndex plus
NumberToSet must be less than or equal to sizeof(BitMapHeader->SizeOffiitMap).

Callers of RtlSetBits must be running at IRQL < DISPATCH_LEVEL if the memory
containing the bitmap variable or at BitMapHeader is pageable. Otherwise, RtlSetBits can
be called at any IRQL.

See Also
RtlAreBitsClear, RtlFindClearBitsAndSet, RtlFindClearRuns, RtlFindFirstRunClear,
RtlFindLastBackwardRunClear, RtlFindLongestRunClear, RtlFindNextForwardRun
Clear, RtlInitializeBitMap, RtlSetAIIBits, RtlNumberOfClearBits

504 Part 1 Kernel-Mode Support Routines

RtlSetDaclSecurityDescriptor
NTSTATUS

RtlSetDaclSecurityDescriptor(
IN OUT PSECURITY_DESCRIPTOR SeeurityDeseriptor,
IN BOOLEAN Dae7Present,
IN PACL Dae7 OPTIONAL,
IN BOOLEAN Dae7Defau7ted OPTIONAL
) ;

RtlSetDaclSecurityDescriptor sets the DACL information of an absolute-format security
descriptor. If there is already a DACL present in the security descriptor, it is superseded.

Parameters
SecurityDescriptor
Points to the security descriptor to which the DACL is to be applied.

DaclPresent
If FALSE, indicates that the DaclPresent flag in the security descriptor should be set to
FALSE. In this case, the remaining optional parameters are ignored. Otherwise, the Dacl
Present control flag in the security descriptor is set to TRUE and the remaining optional
parameters are not ignored.

Dacl
Points to the DACL for the security descriptor. If this parameter is NULL, a NULL ACL
is assigned to the security descriptor. A NULL DACL unconditionally grants access. The
DACL is referenced by, but not copied into, the security descriptor.

DaclDefaulted
When set, indicates that the DACL was picked up from some default mechanism rather
than explicitly specified by the caller. This value is set in the DaclDefaulted control flag in
the security descriptor. If this parameter is NULL, the DaclDefaulted flag will be cleared.

Include
ntddk.h

Return Value
RtlSetDaclSecurityDescriptor can return one of the following:

STATUS_SUCCESS
The call completed successfully.

Chapter 9 Run-time Library Routines 505

STATUS_UN KNOWN_REVISION
The revision of the security descriptor is unknown.

STATUSJNVALI0 _SECURITY _DESCR
The security descriptor is not an absolute format security descriptor.

Comments
Callers of RtlSetDaclSecorityDescriptor must be running at IRQL PASSIVE_LEVEL.

See Also
RtlCreateSecorityDescriptor, RtlLengthSecorityDescriptor, RtlValidSecority
Descriptor

RtlStoreUlong
VOID

RtlStoreUlong(
IN PULONG Address.
IN ULONG Value
) :

RtlStoreUlong stores a ULONG value at a particular address, avoiding alignment faults.

Parameters
Address
Points to a location in which to store a given ULONG value.

Value
Specifies a ULONG value to be stored.

Include
wdm.h or ntddk.h

Comments
The caller can be running at any IRQL if Address points to nonpaged pool. Otherwise, the
caller must be running at IRQL < DISPATCH_LEVEL.

See Also
RtlRetrieveUlong

506 Part 1 Kernel-Mode Support Routines

RtlStoreUlonglong
VOID
RtlStoreUlonglong

PULONGLONG Address,
U LONG LONG Va 7 ue
) ;

RtlStoreUlonglong stores a specified ULONGLONG value at a specified memory address,
avoiding memory alignment faults.

Parameters
Address
Pointer to a memory location where the value of Value is stored.

Value
Specifies the ULONGLONG value that is stored.

Include
ntddk.h or wdm.h

Comments
RtlStoreUlonglong avoids memory alignment faults. If the address specified by Address is
not aligned to the storage requirements of a ULONGLONG, RtlStoreUlonglong stores the
bytes of Value beginning at the memory location (PUCHAR)Address.

RtlStoreUlonglong runs at any IRQL if Address points to nonpaged pool; otherwise it must
run at IRQL < DISPATCH_LEVEL.

See Also
RtiStoreUlong, RtlStoreUlongPtr

RtlStoreUlongPtr
VOID
RtlStoreUlongPtr

PULONG_PTR Address,
U LONG_PTR Va 7 ue
) ;

RtiStoreUlongPtr stores a specified ULONG_PTR value at a specified memory location,
avoiding memory alignment faults.

Parameters
Address

Chapter 9 Run-time Library Routines 507

Pointer to a memory location where the value of Value is stored.

Value
Specifies the ULONG_PTR value that is stored.

Include
ntddk.h or wdm. h

Comments
RtlStoreUlongPtr avoids memory alignment faults. If the value of Address is not aligned
to the storage requirements of a ULONG_PTR, RtlStoreUlongPtr stores the bytes of Value
beginning at the memory location (PUCHAR)Address.

RtlStoreUlongPtr runs at any IRQL if Address points to nonpaged pool; otherwise it must
run at IRQL < DISPATCH_LEVEL.

See Also
RtlStoreUlong, RtlStoreUlonglong

RtlStoreUshort
VOID

RtlStoreUshort(
IN PUSHORT Address,
IN USHORT Va 7 ue
) ;

RtiStoreUshort stores a USHORT value at a particular address, avoiding alignment faults.

Parameters
Address
Points to a location in which to store a USHORT value.

Value
Specifies a USHORT value to be stored.

Include
wdm.h or ntddk.h

508 Part 1 Kernel·Mode Support Routines

Comments
The caller can be running at any IRQL if Address points to nonpaged pool. Otherwise, the
caller must be running at IRQL < DISPATCH_LEVEL.

See Also
RtlRetrieveUshort

RtlStringFromGUID
NTSTATUS

RtlStringFromGUID(
IN REFGUID Guid,
OUT PUNICODE_STRING GuidString
) ;

RtlStringFromGUID converts a given GUID from binary format into a Unicode string.

Parameters
Guid
Specifies the binary-format GUID to convert.

GuidString
Points to a caller-supplied variable in which a pointer to the converted GUID string is
returned. RtiStringFromGUID allocates the buffer space for the string, which the caller
must free by calling RtlFreeUnicodeString.

Include
wdm.h or ntddk.h

Return Value
If the conversion succeeds, RtlStringFromGUID returns STATUS_SUCCESS. Otherwise,
no storage was allocated, nor was the conversion performed.

Comments
Callers of RtlStringFromGUID must be running at IRQL PASSIVE_LEVEL.

See Also
RtlGUIDFromString

RtlTimeFieldsToTime
BOOLEAN

RtlTimeFieldsToTime(
IN PTIME_FIELDS TimeFie7ds.
IN PLARGE_INTEGER Time
) ;

Chapter 9 Run-time Library Routines 509

RtlTimeFieldsToTime converts TIME_FIELDS information to a system time value.

Parameters
TimeFie/ds
Points to the following structure, containing the time information to be converted:

typedef struct TIME_FIELDS
CSHORT Year;
CSHORT Month;
CSHORT Day;
CSHORT Hour;
CSHORT Minute;
CSHORT Second;
CSHORT Milliseconds;
CSHORT Weekday;

} TIME_FI ELDS;

Members
Year
Is in the range from 1601 on.

Month
Is in the range from 1 to 12.

Day
Is in the range from 1 to 31.

Hour
Is in the range from 0 to 23.

Minute
Is in the range from 0 to 59.

Second
Is in the range from 0 to 59.

510 Part 1 Kernel·Mode Support Routines

Milliseconds
Is in the range from 0 to 999.

Weekday
Is in the range from 0 to 6 (Sunday to Saturday).

Time
Points to a buffer, which is to contain the converted system time value as a large integer.

Include
wdm.h or ntddk.h

Return Value
RtlTimeFieldsToTime returns TRUE if the input TimeFields data was successfully
converted.

Comments
RtlTimeFieldsToTime ignores the Weekday value in TimeFields.

Callers of RtiTimeFieldsToTime can be running at any IRQL if both input buffers are
resident.

See Also
ExLocalTimeToSystemTime, ExSystemTimeToLocalTime, KeQuerySystemTime,
RtlTimeToTimeFields

RtlTi me To Ti me Fields
VOID

RtlTimeToTimeFields(
IN PLARGE_INTEGER Time,
IN PTIME_FIELDS TimeFie7ds
) ;

RtiTimeToTimeFields converts system time into a TIME_FIELDS structure.

Parameters
Time
Points to a buffer containing the absolute system time as a large integer, accurate to
100-nanosecond resolution.

Chapter 9 Run-time Library Routines 511

TimeFie/ds
Points to a caller-allocated buffer, which must be at least sizeof(TIME_FIELDS), to contain
the returned information.

Include
wdm.h or ntddk. h

Comments
Callers of RtlTimeToTimeFields can be running at any IRQL if both input buffers are
resident.

See Also
ExLocalTimeToSystemTime, ExSystemTimeToLocalTime, KeQuerySystemTime,
RtlTimeFieldsToTime

RtlUlongByteSwap
ULONG
FASTCALL

RtlUlongByteSwap(
IN ULONG Source
) ;

RtlUlongByteSwap converts a ULONG from little-endian to big-endian, and vice versa.

Parameters
Source
ULONG to convert.

Include
wdm.h or ntddk.h

Return Value
The converted ULONG value.

See Also
RtlUlonglongByteSwap, RtlUshortByteSwap

512 Part 1 Kernel·Mode Support Routines

RtlUlonglongByteSwap
ULONGLONG
FASTCALL

RtlUlonglongByteSwap(
IN ULONGLONG Source
) ;

RtlUlonglongByteSwap converts a ULONGLONG from little-endian to big-endian, and
vice versa.

Parameters
Source
ULONGLONG to convert.

Include
wdm.h or ntddk.h

Return Value
The converted ULONGLONG value.

See Also
RtlUlongByteSwap, RtlUshortByteSwap

Rtl U n icodeStringToAnsiSize
ULONG
RtlUnicodeStringToAns;S;ze(

PUNICODE_STRING UnicodeString
) ;

RtlUnicodeStringToAnsiSize returns the number of bytes required for a NULL-terminated
ANSI string that is equivalent to a specified Unicode string.

Parameters
UnicodeString
Pointer to the Unicode string for which to compute the number of bytes required for an
equivalent NULL-terminated ANSI string.

Include
wdm.h

Chapter 9 Run-time Library Routine$ 513

Return Value
If the Unicode string can be translated into an ANSI string using the current system locale
information, RtlUnicodeStringToAnsiSize returns the number of bytes required for an
equivalent NULL-terminated ANSI string. Otherwise, RtlUnicodeStringToAnsiSize
returns zero.

Comments
The Unicode string is interpreted for the current system locale.

RtlUnicodeStringToAnsiSize performs the same operation as RtlxUnicodeStringToAnsi
Size, but executes faster if the system does not use multibyte Gode pages.

RtlUnicodeStringToAnsiSize runs at IRQL PASSIVE_LEVEL.

See Also
RtlxU nicodeStringToAnsiSize

RtlUnicodeStringToAnsiString
NTSTATUS

RtlUnicodeStringToAnsiString(
IN OUT PANSI_STRING DestinationString OPTIONAL.

, IN PUNICODE_STRING SourceString.
IN BOOLEAN A77ocateDestinationString
) ;

RtlUnicodeStringToAnsiString converts a given Unicode string into an ANSI string. The
translation is done in accord with the current system-locale information.

Parameters
DestinationString
Points to a caller-allocated buffer for the ANSI string or is NULL if AliocateDestination
String is set to TRUE. If the translation cannot be done because a character in the Unicode
string does not map to an ANSI character in the current system locale, an error is returned.

SourceString
Points to the Unicode source string to be converted to ANSI.

AllocateDestinationString
TRUE if this routine is to allocate the buffer space for the DestinationString. If it does, the
buffer must be deallocated by calling RtlFreeAnsiString.

514 Part 1 Kernel-Mode Support Routines

Include
wdm.h or ntddk.h

Return Value
If the conversion succeeds, RtlUnicodeStringToAnsiString returns STATUS_SUCCESS.
Otherwise, no storage was allocated, and no conversion was done.

Comments
Callers of RtUnicodeStringToAnsiString must be running at IRQL PASSIVE_LEVEL.

See Also
RtlAnsiStringTo U nicodeString, RtlFreeAnsiString

RtlUnicodeStringTolnteger
NTSTATUS

RtlUnicodeStringToInteger(
IN PUNICODE_STRING String,
IN ULONG Base OPTIONAL,
OUT PULONG Value
) ;

RtlUnicodeStringTolnteger converts a Unicode string representation of an integer into its
integer equivalent.

Parameters
String
Points to the Unicode string to be converted to its integer equivalent.

Base
An optional argument that indicates the base of the number expressed as a Unicode string.

Value
Points to caller supplied storage of type ULONG. RtlUnicodeStringTolnteger returns the
integer conversion results in Value.

Include
wdm. h or ntddk.h

Chapter 9 Run-time Library Routines 515

Return Value
If the conversion is successful, RtiUnicodeStringTolnteger returns STATUS_SUCCESS
and Value is set to the integer equivalent of the Unicode string. Otherwise, the Value is set
to 0, and RtiUnicodeStringTolnteger returns STATUS_INVALID_PARAMETER.

Comments
If the first character of the string is a "-", the sign of the output Value is negative, otherwise
if the first character is a "+" or there is no sign character, the sign of Value is positive.

If no Base is supplied, RtlUnicodeStringTolnteger checks for a leading character to indi
cate the base of the number. An "x" indicates the string is to be converted as a hexadecimal
integer; an "0" indicates the string is to be converted as an octal integer; a "b" indicates
the string is to be converted as a binary integer. Otherwise, RtlUnicodeStringTolnteger
assumes the number is to be converted as a base 10 integer.

Callers of RtlUnicodeStringTolnteger must be running at IRQL PASSIVE_LEVEL.

See Also
RtlIntegerToUnicodeString

RtlUpcaseUnicodeChar
WCHAR

RtlUpcaseUn;codeChar(
IN WCHAR SourceCharacter
) :

RtlUpcaseUnicodeChar converts the specified Unicode character to uppercase.

Parameters
SourceCharacter
Specifies the character to convert.

Include
ntddk.h

Return Value
RtlUpcaseUnicodeChar returns the uppercase version of the specified Unicode character.

Comments
Callers of RtlUpcaseUnicodeChar must be running at IRQL PASSIVE_LEVEL.

516 Part 1 Kernel-Mode Support Routines

See Also
RtiUpcaseUnicodeString, RtlUpperChar

RtlUpcaseUnicodeString
NTSTATUS

RtlUpcaseUnicodeString(
IN OUT PUNICODE_STRING DestinationString OPTIONAL.
IN PCUNICODE_STRING SourceString.
IN BOOLEAN A77ocateDestinationString
) ;

RtlUpcaseUnicodeString converts a copy of the source string to upper case and writes the
converted string in the destination buffer.

Parameters
DestinationString
Points to a caller-allocated buffer for the converted Unicode string or is NULL if Allocate
DestinationString is set to TRUE.

SourceString
Points to the source Unicode string to be converted to upper case.

A lIocateDestinationString
TRUE if RtiUpcaseUnicodeString is to allocate the buffer space for the DestinationString.
If it does, the buffer must be deallocated by calling RtlFreeUnicodeString.

Include
ntddk.h

Return Value
If the operation succeeds, RtlUpcaseUnicodeString returns STATUS_SUCCESS. Other
wise, no storage was allocated, and no conversion was done.

Comments
Callers of RtlUpcaseUnicodeString must be running at IRQL PASSIVE_LEVEL.

See Also
RtlFreeUnicodeString, RtlUpcaseUnicodeChar

RtlUpperChar
CHAR

RtlUpperChar(
IN CHAR Character
) ;

Chapter 9 Run-time Library Routines 517

RtlUpperChar converts the specified character to uppercase.

Parameters
Character
Specifies the character to convert.

Include
ntddk.h

Return Value
RtlUpperChar returns the uppercase version of the specified character or returns the value
specified by the caller for Character if the specified character cannot be converted.

Comments
RtlUpperChar returns the input Character unconverted if it is the lead byte of a multibyte
character or if the uppercase equivalent of Character is a double-byte character. To convert
such characters, use RtlUpcaseUnicodeChar.

Callers of RtlUpperChar must be running at IRQL PASSIVE_LEVEL.

See Also
RtlUpcaseUnicodeChar, RtlUpperString

RtlUpperString
VOID

RtlUpperString(
IN OUT PSTRING DestinationString,
IN PSTRING SourceString
) ;

RtlUpperString copies the given SourceString to the DestinationString buffer, converting it
to uppercase.

518 Part 1 Kernel-Mode Support Routines

Parameters
DestinationString
Points to the buffer for the converted destination string.

SourceString
Points to the source string to be converted to uppercase.

Include
ntddk.h

Comments
The MaximumLength and Buffer fields of DestinationString are not modified by this
routine.

The number of bytes copied from SourceString is either the Length of SourceString or the
MaximumLength of DestinationString, whichever is smaller.

Callers of RtlUpperString must be running at IRQL PASSIVE_LEVEL.

See Also
RtiUpperChar

RtlUshortByteSwap
USHORT

RtlUshortByteSwap(
IN USHORT Source
) ;

RtlUshortByteSwap converts a USHORT from little-endian to big-endian, and vice versa.

Parameters
Source
USHORT to convert.

Include
wdm.h or ntddk.h

Return Value
The converted USHORT value.

See Also
RtlUlongByteSwap, RtlUlonglongByteSwap

RtlValidSecurityDescriptor
BOOLEAN

RtlValidSecurityDescriptor(
IN PSECURITY_DESCRIPTOR SecurityDescriptor
) ;

Chapter 9 Run-time Library Routines 519

RtlValidSecorityDescriptor checks a given security descriptor's validity.

Parameters
SecurityDescriptor
Points to the security descriptor to be checked.

Include
ntddk.h

Return Value
RtlValidSecorityDescriptor returns TRUE if the given descriptor is valid.

Comments
Callers of RtlValidSecorityDescriptor must be running at IRQL PASSIVE_LEVEL.

See Also
RtlCreateSecorityDescriptor, RtlLengthSecorityDescriptor, RtlSetDaciSecority
Descriptor

RtlVerifyVersionlnfo
NTSTATUS
RtlVerifyVersionInfo(

IN PRTL_OSVERSIONINFOEXW Version Info.
IN ULONG TypeMask.
IN ULONGLONG ConditionMask
) ;

RtlVerifyVersionInfo compares a specified set of operating system version requirements to
the corresponding attributes of the currently running version of the operating system.

520 Part 1 Kernel-Mode Support Routines

Parameters
Versionlnfo
Pointer to an RTL_OSVERSIONINFOEXW structure that specifies the operating system
version requirements to compare to the corresponding attributes of the currently running
version of the operating system.

TypeMask
Specifies which members of Versionlnfo to compare with the corresponding attributes of the
currently running version of the operating system. TypeMask is set to a logical OR of one or
more of the following values:

Value

VER_BUILDNUMBER

VER_MAJORVERSION

VER_MINORVERSION

VER_PLATFORMID

VER_SERVICEPACKMAJOR

VER_SERVICEPACKMINOR

VER_SUITENAME

VER_PRODUCT_TYPE

ConditionMask

Corresponding Member

dwBuildNumber

dwMajor Version

dwMinorVersion

dwPlatformld

wServicePackMajor

wServicePackMinor

wSuiteMask

wProductType

Specifies how to compare each Versionlnfo member. To set the value of ConditionMask, a
caller should use the VER_SET _ CONDITION macro:

VER_SET_CONDITION (
IN OUT ULONGLONG ConditionMask,
IN ULONG TypeBitMask,
IN UCHAR ComparisonType
) ;

The value of ConditionMask is created in the following way:

• Initialize the value of ConditionMask to zero.

• Call VERSION_SET_CONDITION once for each Versionlnfo member specified by
TypeMask.

• Set the TypeBitMask and ComparisonType parameters for each call to VERSION_
SET_CONDITION as follows:

Chapter 9 Run-time Library Routines 521

TypeBitMask
Indicates the Versionlnfo member for which the comparison type is set. TypeBitMask can be
one of the following values:

Value

VER_BUILDNUMBER

VER_MAJORVERSION

VER_MINORVERSION

VER_PLATFORMID

VER_SERVICEPACKMAJOR

VER_SERVICEPACKMINOR

VER_SUITENAME

VER_PRODUCT_TYPE

ComparisonType

Corresponding Member

dwBuildNumber

dwMajorVersion

dwMinorVersion

dwPlatformld

wServicePackMajor

wServicePackMinor

wSuiteMask

wProductType

Specifies the comparison type that RtlVerifyVersionlnfo uses to compare the Versionlnfo
member specified by TypeBitMask with the corresponding attribute of the currently running
operating system.

For all values of TypeBitMask other than VER_SUITENAME, ComparsionType is set to
one of the following values:

Value

VER_EQUAL

VER_GREATER

VER_GREATER_EQUAL

VER_LESS

VER_LESS_EQUAL

Meaning

The current value must be equal to the specified value.

The current value must be greater than the specified value.

The current value must be greater than or equal to the specified
value.

The current value must be less than the specified value.

The current value must be less than or equal to the specified
value.

If TypeBitMask is set to VER_SUITENAME, ComparisonType is set to of one the following
values:

Value Meaning

All product suites specified in the wSuiteMask member must be
present in the current system.

At least one of the specified product suites must be present in
the current system.

522 Part 1 Kernel-Mode Support Routines

Include
ntddk.h

Return Value
RtlVerifyVersionlnfo returns one of the following status values:

STATUS_SUCCESS

STATUSJNVALlD_PARAMETER
The input parameters are not valid.

STATUS_REVISION_MISMATCH
The specified version does not match the currently running version of the operating system.

Comments
RtlVerifyVersionlnfo enables a driver to easily verify the presence of a required set of
operating system attributes. RtlVerifyVersionlnfo is the kernel-mode equivalent of the
user-mode VerifyVersionlnfo function in the Platform SDK. See the example in the
Platform SDK that shows how to verify t~e system version.

Typically, RtlVerifyVersionlnfo returns STATUS_SUCCESS only if all comparisons
succeed. However, the major version, minor version, and service pack version are tested in
a sequential manner in the following way:

• If the major version exceeds the minimum required, then the minor version and service
pack version are not tested. For example, if the current major version is 6.0, a test for a
system greater than or equal to version 5.1 service pack 1 succeeds. The minor version
and service pack version are not tested.

• If the minor version exceeds the minimum required, then the service pack version is not
tested. For example, if the current major version is 5.2, a test for a system version
greater than or equal to version 5.1 service pack 1 succeeds. The service pack version is
not tested.

• If the major service pack version exceeds the minimum required, then the minor service
pack version is not tested.

To verify a range of system versions, a driver can call RtlVerifyVersionlnfo twice, once
to verify a lower-bound on the system version and once to verify an upper-bound on the
system version.

See Also
RtlGetVersion, RTL_OSVERSIONINFOW, RTL_OSVERSIONINFOEXW

RtlVolumeDevice ToDosName
NTSTATUS
RtlVolumeDeviceToDosName(

IN PVOID Vo7umeDeviceObject.
OUT PUNICODE_STRING DosName
) ;

Chapter 9 Run-time Library Routines 523

RtlVolumeDeviceToDosName returns the MS-DOS® path for a specified device object that
represents a file system volume.

Parameters
VolumeDeviceObject
Pointer to a device object that represents a file system volume.

DosName
Pointer to a Unicode string containing the MS-DOS path of the volume device object
specified by VolumeDeviceObject.

Include
ntddk.h

Return Value
RtlVolumeDeviceToDosName returns STATUS_SUCCESS or an appropriate error status.

Comments
RtlVolumeDeviceToDosName allocates the Unicode string buffer for the MS-DOS path
from the memory pool. After the buffer is no longer required, a caller of this routine should
use ExFreePool to free it.

RtlWriteRegistryVal ue
NTSTATUS

RtlWriteRegistryValue(
IN ULONG Re7ativeTo.
IN PCWSTR Path.
IN PCWSTR Va 7 ueName.
IN ULONG Va7ueType.
IN PVOID Va7ueData.
IN ULONG Va 7 ueLength
) ;

524 Part 1 Kernel-Mode Support Routines

RtlWriteRegistryValue writes caller-supplied data into the registry along the specified
relative path at the given value name.

Parameters
Relative To
Specifies whether Path is an absolute registry path or is relative to a predefined path as one
of the following:

Value

RTL_REGISTRY _ABSOLUTE

RTL_REGISTRY _SERVICES

RTL_REGISTRY _DEVICEMAP

RTL_REGISTRY _USER

RTL_REGISTRY _OPTIONAL

Path

Meaning

Path is an absolute registry path.

Path is relative to \Registry\Machine\System\
CurrentControISet\Services.

Path is relative to \Registry\Machine\System\
CurrentControlSet\Control.

Path is relative to \Registry\Machine\software\
Microsoft\ Windows NT\CurrentVersion.

Path is relative to \Registry\Machine\Hardware\DeviceMap.

Path is relative to \Registry\User\CurrentUser.

Specifies that the key referenced by this parameter and the
Path parameter are optional.

Optional; specifies that the Path parameter is actually a
registry handle to use.

Points to either an absolute registry path or a path relative to the known location specified
by the RelativeTo parameter. If the RTL_REGISTRY _HANDLE flag is specified, this para
meter is a registry handle for an already opened key to be used directly.

ValueName
Points to the name of a subkey or value entry to be written into the registry.

Value Type
Points to the value type, identified by the ValueName parameter, to be placed in the registry.

ValueData
Points to the name of a subkey or values for its value entries (or both) to be written into the
registry.

ValueLength
Specifies the number of bytes of ValueData to be written into the registry.

Chapter 9 Run-time Library Routines 525

Include
wdm.h or ntddk.h

Return Value
RtlWriteRegistryValue returns the status of the operation, either STATUS_SUCCESS or
an error status.

Comments
Callers of RtlWriteRegistryValue must be running at IRQL PASSIVE_LEVEL.

See Also
RtlCheckRegistry Key, RtlCreateRegistry Key, RtlDeleteRegistry Value, RtlQuery
RegistryValues, ZwOpenKey

RtlxU n icodeStringToAnsiSize
ULONG
RtlxUnicodeStringToAns;S;ze(

PUNICODE_STRING UnicodeString
) ;

RtlxUnicodeStringToAnsiSize returns the number of bytes required for a NULL
terminated ANSI string that is equivalent to a specified Unicode string.

Parameters
UnicodeString
Pointer to the Unicode string for which to compute the number of bytes required for an
equivalent NULL-terminated ANSI string.

Include
wdm.h

Return Value
If the Unicode string can be translated into an ANSI string using the current system locale
information, RtlxUnicodeStringToAnsiSize returns the number of bytes required for an
equivalent NULL-terminated ANSI string. Otherwise, it returns zero.

Comments
The Unicode string is interpreted for the current system locale.

526 Part 1 Kernel-Mode Support Routines

RtlxUnicodeStringToAnsiSize runs at IRQL PASSIVE_LEVEL.

See Also
RtlUnicodeStringToAnsiSize

RtlZeroBytes
VOID

RtlZeroBytes(
PVOID Destination,
SIZE_T Length
) ;

RtlZeroBytes fills a block of memory with zeros, given a pointer to the block and the
length, in bytes, to be filled. For better performance, use RtlZeroMemory.

RtlZeroMemory
VOID

RtlZeroMemory(
IN VOID UNALIGNED *Destination,
IN SIZE_T Length
) ;

RtlZeroMemory fills a block of memory with zeros, given a pointer to the block and the
length, in bytes, to be filled.

Parameters
Destination
Points to the memory to be filled with zeros.

Length
Specifies the number of bytes to be zeroed.

Include
wdm.h or ntddk.h

Comments
Callers of RtlZeroMemory can be running at any IRQL if the Destination block is in
nonpaged pool. Otherwise, the caller must be running at IRQL < DISPATCH_LEVEL.

See Also
RtlFillMemory

C HAP T E RIO

Security Reference Monitor Routines

Generally, higher-level drivers, particularly network drivers, call these routines.

References for the SeXxx routines are in alphabetical order. For an overview of the func
tionality of these routines, see Chapter 1, Summary of Kernel-Mode Support Routines.

SeAccessCheck
BOOLEAN

SeAccessCheck(
IN PSECURITY_DESCRIPTOR SecurityDescriptor,
IN PSECURITY_SUBJECT_CONTEXT SubjectSecurityContext,
IN BOOLEAN SubjectContextLocked,
IN ACCESS_MASK DesiredAccess,
IN ACCESS_MASK Previous7yGrantedAccess,
OUT PPRIVILEGE_SET *Privi7eges OPTIONAL,
IN PGENERIC_MAPPING GenericMapping,
IN KPROCESSOR-MODE AccessMode,
OUT PACCESS_MASK GrantedAccess,
OUT PNTSTATUS AccessStatus
) ;

527

SeAccessCheck determines whether the requested access rights can be granted to an object
protected by a security descriptor and an object owner.

Parameters
SecurityDescriptor
Points to the security descriptor protecting the object being accessed.

SubjectSecurityContext
Points to the subject's captured security context.

528 Part 1 Kernel-Mode Support Routines

SubjectContextLocked
Indicates whether the user's subject context is locked, so that it does not have to be locked
again.

DesiredAccess
Specifies the access mask for rights that the caller is attempting to acquire.

PreviouslyGrantedAccess
Specifies the access rights already granted, for example, as a result of holding a privilege.

Privileges
Points to a caller-supplied variable to be set to the address of buffered privileges that will
used as part of the access validation, or this parameter can be NULL. Such a buffer, if any,
must be released by the caller with ExFreePool when the caller has consumed this infor
mation.

GenericMapping
Points to the generic mapping associated with this object type.

AccessMode
Specifies the access mode to be used in the check, one of UserMode or KernelMode.

GrantedAccess
Points to a returned access mask indicating the granted access.

AccessStatus
Points to the status value indicating why access was denied.

Include
ntddk.h

Return Value
If access is allowed, SeAccessCheck returns TRUE.

Comments
Network transport drivers call this routine.

SeAccessCheck might perform privilege tests for SeTakeOwnershipPrivilege and/or Se
SecurityPrivilege, depending on the accesses being requested. It might perform additional
privilege testing in future releases of the operating system.

Chapter 10 Security Reference Monitor Routines 529

This routine also might check whether the subject is the owner of the object in order to grant
WRITE_DAC access.

If this routine returns FALSE, the caller should use the returned AccessStatus as its return
value. That is, the caller should avoid hardcoding a return value of STATUS_ACCESS_
DENIED or any other specific STATUS_XXX value.

Callers of this routine must be running at IRQL PASSIVE_LEVEL.

See Also
ExFreePool, IoGetFileObjectGenericMapping, Se ValidSecurityDescriptor

SeAssignSecurity
NTSTATUS

SeAssignSecurity(
IN PSECURITY_DESCRIPTOR ParentDescriptor OPTIONAL,
IN PSECURITY_DESCRIPTOR Exp7icitDescriptor OPTIONAL,
OUT PSECURITY_DESCRIPTOR *NewDescriptor,
IN BOOLEAN IsDirectoryObject,
IN PSECURITY_SUBJECT_CONTEXT SubjectContext,
IN PGENERIC_MAPPING GenericMapping,
IN POOL_TYPE Poo7Type
) ;

SeAssignSecurity builds a self-relative security descriptor for a new object, given the
security descriptor of its parent directory and any originally requested security for the object.

Parameters
ParentDescriptor
Points to a buffer containing the security descriptor of the parent directory, if any, contain
ing the new object being created. ParentDescriptor can be NULL, or have a NULL system
access control list (SACL) or a NULL discretionary access control list (DACL).

ExpiicitDescriptor
Points to a buffer containing the security descriptor specified by the user that is applied
to the new object. ExplicitDescriptor can be NULL, or have a NULL SACL or a NULL
DACL.

NewDescriptor
Receives a pointer to the returned security descriptor for which this routine allocates a buffer
according to the given PoolType. The buffer is allocated from the paged memory pool.

530 Part 1 Kernel-Mode Support Routines

IsDirectoryObject
Specifies whether the new object is a directory object. TRUE indicates the object contains
other objects.

SubjectContext
Points to a buffer containing the security context of the subject creating the object. This is
used to retrieve default security information for the new object, such as the default owner,
the primary group, and discretionary access control.

GenericMapping
Points to an array of access mask values denoting the mapping between each generic right to
non generic rights.

Poo/Type
Specifies the pool type to use when allocating a new security descriptor. Currently, Pool
Type is not used.

Include
ntddk.h

Return Value
SeAssignSecurity can return one of the following:

STATUS_SUCCESS
The assignment was successful.

STATUSJNVALlD_OWNER
The SID provided for the owner of the target security descriptor is not one the caller is
authorized to assign as the owner of an object.

STATUS_PRIVILEGE_NOT _HELD
The caller does not have the privilege (SeSecurityPrivilege) necessary to explicitly assign
the specified system ACL.

Comments
Network transport drivers call this routine.

The final security descriptor returned to the caller may contain a mix of information, some
explicitly provided from the new object's parent.

SeAssignSecurity assumes privilege checking has not been performed. This routine per
forms privilege checking.

Chapter 10 Security Reference Monitor Routines 531

The assignment of system and discretionary ACLs is governed by the logic illustrated in the
following table:

Explicit (nondefault)
A CL specified

Explicit default ACL
specified No ACL specified

Inheritable ACL Assign specified ACL Assign inherited ACL Assign inherited ACL
from parent

No inheritable ACL Assign specified ACL Assign default ACL Assign no ACL
from parent

An explicitly specified ACL, whether a default ACL or not, can be empty or null. The caller
must be a kernel-mode client or be appropriately privileged to explicitly assign a default or
nondefault system ACL.

The assignment of the new object's owner and group is governed by the following logic:

• If the passed security descriptor includes an owner, it is assigned as the new
object's owner. Otherwise, the caller's token is considered to determine the owner.
Within the token, the default owner, if any, is assigned. Otherwise, the caller's user
ID is assigned.

• If the passed security descriptor includes a group, it is assigned as the new object's
group. Otherwise, the caller's token is considered to determine the group. Within
the token, the default group, if any, is assigned. Otherwise, the caller's primary
group ID is assigned.

Callers of SeAssignSecority must be running at IRQL PASSIVE_LEVEL.

See Also
IoGetFileObjectGenericMapping, SeDeassignSecority

SeAssignSecurityEx
NTSTATUS
SeAssignSecurityEx (

IN PSECURITY_DESCRIPTOR ParentDescriptor OPTIONAL,
IN PSECURITY_DESCRIPTOR Exp7icitDescriptor OPTIONAL,
OUT PSECURITY_DESCRIPTOR *NewDescriptor,
IN GUID *ObjectType OPTIONAL,
IN BOOLEAN IsDirectoryObject,
IN ULONG AutolnheritF7ags,
IN PSECURITY_SUBJECT_CONTEXT SubjectContext,
IN PGENERIC_MAPPING GenericMapping,
IN POO L_ TY P E Poo-7 Type
) ;

532 Part 1 Kernel-Mode Support Routines

SeAssignSecurityEx builds a self-relative security descriptor for a new object given
the following optional parameters: a security descriptor of the object's parent directory, an
explicit security descriptor for the object, and the object type.

Parameters
ParentDescriptor
Pointer to a security descriptor of the parent object that contains the new object being
created. ParentDescriptor can be NULL, or have a NULL system access control list (SACL)
or a NULL discretionary access control list (DACL).

ExplicitDescriptor
Pointer to an explicit security descriptor that is applied to the new object. ExplicitDescriptor
can be NULL, or have a NULL SACL or a NULL DACL.

NewDescriptor
Pointer to a new security descriptor. SeAssignSecurityEx allocates the buffer for the new
security descriptor from the paged memory pool.

ObjectType
Pointer to a GUID for the type of object being created. If the object does not have a GUID,
ObjectType must be set to NULL.

IsDirectoryObject
Specifies whether the new object is a directory object. If IsDirectoryObject is set to TRUE,
the new object is a directory object, otherwise the new object is not a directory object.

AutolnheritFlags
Specifies the type of automatic inheritance that is applied to access control entries (ACE)
in the access control lists (ACL) specified by ParentDescriptor. AutolnheritFlags also con
trols privilege checking, owner checking, and setting a default owner and group for New
Descriptor. AutolnheritFlags must be set to a logical OR of one or more of the following
values:

Value Meaning

ACEs in the DACL of ParentDescriptor are inherited by
NewDescriptor, in addition to explicit ACEs specified by
ExplicitDescriptor.

ACEs in the SACL of ParentDescriptor are inherited by
NewDescriptor, in addition to explicit ACEs specified by
ExplicitDescriptor.

Value

SEF _DEFAULT_DESCRIPTOR_
FOR_OBJECT

SEF _AVOID_PRIVILEGE_
CHECK

SEF _AVOID_OWNER_CHECK

SEF _DEFAULT_OWNER_
FROM_PARENT

SEF _DEFAULT_GROUP_
FROM_PARENT

Chapter 10 Security Reference Monitor Routines 533

Meaning

ExplicitDescriptor is the default descriptor for the object type
specified by ObjectType. ExplicitDescriptor is not used if
ACEs are inherited from ParentDescriptor.

Privilege checking is not done. This flag is useful with
automatic inheritance because it avoids privilege checking on
each child that needs to be updated.

Owner checking is not done.

If an owner is specified by ExplicitDescriptor, this flag is not
used, and the owner of NewDescriptor is set to the owner
specified by ExplictDescriptor.

If an owner is not specified by ExplicitDescriptor, this flag is
used in the following way: If the flag is set, the owner of
NewDescriptor is set to the owner of ParentDescriptor.
Otherwise, the owner of NewDescriptor is set to the owner
specified by the SubjectContext.

If a group is specified by ExplicitDescriptor, this flag is not
used, and the group of NewDescriptor is set to the group
specified by ExplictDescriptor.

If a group is not specified by ExplicitDescriptor, this flag is
used in the following way: If the flag is set, the group of
NewDescriptor is set to the group of ParentDescriptor.
Otherwise, the group of NewDescriptor is set to the group
specified by the SubjectContext.

The assignment of system and discretionary ACLs is described in the following table:

Non-default explicit
descriptor(l)

Default explicit
descriptor(2)

ACL is inherited from Assign both inherited and Assign inherited ACL.
parent descriptor(3). explicit ACLs(5)(6).

ACL is not inherited Assign non-default ACL. Assign default ACL.
from parent
descriptor(4).

Assignment Notes

NULL explicit
descriptor

Assign inherited ACL.

Assign no ACL.

1. The SEF _DEFAULT_DESCRIPTOR_FOR_OBJECT flag is not specified.

2. The SEF _DEFAULT_DESCRIPTOR_FOR_OBJECT flag is specified.

3. The auto inherit flag for an ACL is specified (SEF _DACL_AUTO_INHERIT or
SEF _SACL_AUTO_INHERIT).

534 Part 1 Kernel-Mode Support Routines

4. The automatic inherit flag for an ACL is not specified.

5. ACEs with the INHERITED_ACE bit set in their AceFlags member are not copied to the
assigned security descriptor.

6. ACEs that are inherited from the parent descriptor are appended after the ACEs specified
by the explicit descriptor.

SubjectContext
Pointer to a security context of the subject that is creating the object. SubjectContext is used
to retrieve default security information for the new object, including the default owner, the
primary group, and discretionary access control.

GenericMapping
Pointer to an array of access mask values that specify the mapping between each generic
rights to object-specific rights.

PoolType
Specifies the type of memory pool for NewDescriptor. Currently, PoolType is not used.

Include
ntddk.h

Return Value
SeAssignSecurityEx returns one of the following values:

STATUS_SUCCESS
The assignment was successful.

STATUSJNVALID_OWNER
The SID provided as the owner of the new security descriptor is not a SID that the caller is
authorized to assign as the owner of an object.

STATUS_PRIVILEGE_NOT _HELD
The caller does not have the privilege (SeSecurityPrivilege) necessary to explicitly assign
the specified SACL.

Comments
SeAssignSecurityEx extends the basic operation of SeAssignSecurity in the follow
ing ways:

Chapter 10 Security Reference Monitor Routines 535

• ObjectType optionally specifies an object type. Object-specific inheritance is controlled
by the following members of an object-specific ACE: Flags, InheritedObjectType, and
Header.AceFlags.

• AutolnheritFlags specifies the type of automatic inheritance of ACEs that is used. Auto
InheritFlags also controls privilege checking, owner checking, and setting a default
owner and group for NewDescriptor.

For more information on security and access control, see the documentation on these topics
in the Platform SDK.

SeAssignSecurityEx runs at IRQL PASSIVE_LEVEL.

See Also
SeAssignSecurity, SeDeassignSecurity

SeDeassignSecurity
NTSTATUS

SeDeass;gnSecurity(
IN OUT PSECURITY_DESCRIPTOR *SecurityDescriptor
) ;

SeDeassignSecurity deallocates the memory associated with a security descriptor that was
assigned using SeAssignSecurity.

Parameters
Securl~Descrlptor

Points to the buffered security descriptor being released.

Include
ntddk.h

Return Value
If the deallocation succeeds, SeDeassignSecurity returns STATUS_SUCCESS.

Comments
Callers of SeDeassignSecurity must be running at IRQL PASSIVE_LEVEL.

See Also
SeAssignSecurity

536 Part 1 Kernel-Mode Support Routines

SeSinglePrivilegeCheck
BOOLEAN

SeSinglePrivilegeCheck(
LUID Privi7egeVa7ue,
KPROCESSOR_MODE PreviousMode
) ;

SeSinglePrivilegeCheck checks for the passed privilege value in the context of the current
thread.

Parameters
Privilege Value
Specifies the value of the privilege being checked.

PreviousMode
Specifies the previous execution mode, one of UserMode or KernelMode.

Include
ntddk.h

Return Value
SeSinglePrivilegeCheck returns TRUE if the current subject has the required privilege.

Comments
Network transport drivers call this routine.

If PreviousMode is KernelMode, the privilege check always succeeds. Otherwise, this
routine uses the token of the user-mode thread to determine whether the current (user-mode)
thread has been granted the given privilege.

Callers of SeSinglePrivilegeCheck must be running at IRQL PASSIVE_LEVEL.

See Also
RtlConvertLongToLuid, RtlConvertUlongToLuid, RtlEqualLuid, Se ValidSecurity
Descriptor

Se Val idSecurityDescriptor
BOOLEAN

SeValidSecurityDescriptor(
IN ULONG Length,

Chapter 10 Security Reference Monitor Routines 537

IN PSECURITY_DESCRIPTOR SecurityDescriptor
) ;

SeValidSecurityDescriptor returns whether a given security descriptor is structurally valid.

Parameters
Length
Specifies the size in bytes of the given security descriptor.

SecurityDescriptor
Points to the self-relative security descriptor, which must be buffered somewhere in system
space.

Include
ntddk.h

Return Value
Se ValidSecurityDescriptor returns TRUE if the buffered security descriptor is structurally
valid.

Comments
Se ValidSecurityDescriptor does not enforce policy. It simply checks that the given secu
rity descriptor data is formatted correctly. In particular, it checks the revision information,
self relativity, owner, alignment, and, if available, SID, group, DACL, ACL, and/or SACL
do not overflow the given Length. Consequently, callers of SeVaiidSecurityDescriptor
cannot assume that a returned TRUE implies that the given security descriptor necessarily
has valid contents.

If SeValidSecurityDescriptor returns TRUE, the given security descriptor can be passed
on to another kernel-mode component because it is structurally valid. Otherwise, passing a
structurally invalid security descriptor to be manipulated by another kernel-mode component
can cause undefined results or even a system bugcheck.

538 Part 1 Kernel-Mode Support Routines

To validate a security descriptor that was passed in from user mode, call RtlValidSecurity
Descriptor rather than Se ValidSecurityDescriptor.

Callers of SeValidSecurityDescriptor must be running at IRQL PASSIVE_LEVEL.

See Also
RtlValidSecurityDescriptor

CHAPTER 11

ZwXxx Routines

Device and intermediate drivers might call some ZwXxx routines, which this chapter
describes in compressed form: that is, information relevant to device and intermediate
drivers is covered here.

References for the ZwXxx routines are in alphabetical order.

For an overview of the functionality of these routines, see Chapter 1, Summary of Kernel
Mode Support Routines.

ZwClose
NTSTATUS

ZwClose(
IN HANDLE Handle
) ;

539

ZwClose closes object handles. A named object is not actually deleted until all of its valid
handles are closed and no referenced pointers remain.

Parameters
Handle
Is a valid handle for an open object.

Include
wdm.h or ntddk.h

540 Part 1 Kernel·Mode Support Routines

Return Value
ZwClose can return one of the following:

STATUS_SUCCESS
STATUS_OBJECT_TYPE_MISMATCH
STATUS_ACCESS_DENIED
STATUS_INVALID_HANDLE

Comments
ZwClose is a generic routine that operates on any type of object.

Closing an open handle for an object causes that handle to become invalid. The reference
count for the object handle is decremented and object retention checks are performed.

Any handle obtained from one of the ZwCreateXxx routines should eventually be released
by calling ZwClose. Each such handle is created on a process-specific basis, so a driver
must use each handle it creates in the context of a thread running in the appropriate process.
For example, a handle returned by ZwCreateKey to a DriverEntry routine, which executes
in a system process, cannot be subsequently used by the same driver's DispatchXxx routines,
which usually execute either in the context of the thread issuing the current I/O request or,
for lower-level drivers, in an arbitrary thread context.

Callers of ZwClose must be running at IRQL PASSIVE_LEVEL.

See Also
ZwCreateDirectoryObject, ZwCreateFile, ZwCreateKey, ZwOpenKey, ZwOpen
Section

ZwCreateDirectory'Object
NTSTATUS

ZwCreateDirectoryObject(
OUT PHANDLE DirectoryHand7e.
IN ACCESS_MASK DesiredAccess.
IN POBJECT-ATTRIBUTES ObjectAttributes
) ;

ZwCreateDirectoryObject creates or opens a directory object, which is a container for
other objects.

Parameters
DirectoryHandle
Points to a variable that receives the directory object handle if the call is successful.

Chapter 11 ZwXxx Routines 541

DesiredAccess
Specifies the type of access that the caller requires to the directory object. This value is
compared with the granted access on an existing directory object. A caller can specify one
or a combination of the following:

DesiredAccess Flags

DIRECTORY_QUERY

DIRECTORY_TRAVERSE

DIRECTORY _CREATE_OBJECT

DIRECTORY_CREATE_SUBDIRECTORY

DIRECTORY _ALL_ACCESS

ObjectAttributes

Meaning

Query access to the directory object

Name-lookup access to the directory object

Name-creation access to the directory object

Subdirectory-creation access to the directory object

All of the preceding

Points to a structure that specifies the object's attributes, which has already been initialized
with InitializeObjectAttributes.

Include
wdm.h or ntddk.h

Return Value
ZwCreateDirectoryObject can return one of the following values:

STATUS_SUCCESS
STATUS_ACCESS_DENIED
STATUS_ACCESS_ VIOLATION
STATUS_DATATYPE_MISALIGNMENT

Comments
A directory object is a container for other objects. Note that file system directories are not
represented by directory objects, but rather by file objects.

Directory objects are an integral part of the system's object management and are manipu
lated indirectly as a result of other operations. For example, when a device object is created,
its name is inserted in a directory object and the pointer counts of both the directory object
and the named device object are incremented. Any named object's header contains a pointer
to the directory object containing that object's name.

Drivers that create a set of device objects might set up a directory object when they
initialize. For example, a disk driver might use this technique to group the device object
representing a physical disk and the device objects representing partitions on that disk in
a driver-created directory object.

542 Part 1 Kernel-Mode Support Routines

Before the DriverEntry routine returns control, such a driver calls ZwMakeTemporary
Object if its directory object was initialized with the permanent attribute, and ZwClose to
release the directory object created to hold such a group of related device objects.

If a directory object was initialized as temporary and its handle count becomes zero, the
directory object's name is deleted. Name deletion occurs for a temporary object when the
last handle to the object has been closed. A driver also can delete a directory object it creates
when the object is no longer needed by using this technique.

Callers of ZwCreateDirectoryObject must be running at IRQL PASSIVE_LEVEL.

See Also
InitializeObjectAttributes, ObDereferenceObject, ZwClose, ZwMakeTemporary
Object

ZwCreateFile
NTSTATUS

ZwCreateFile(
OUT PHANDLE Fi7eHand7e.
IN ACCESS_MASK DesiredAccess.
IN POBJECT_ATTRIBUTES ObjectAttributes.
OUT PIO_STATUS_BLOCK IoStatusB7ock.
IN PLARGE_INTEGER A77ocationSize OPTIONAL.
IN ULONG Fi7eAttributes.
IN ULONG ShareAccess.
IN ULONG CreateDisposition.
IN ULONG CreateOptions.
IN PVOID EaBuffer OPTIONAL.
IN ULONG EaLength
) ;

ZwCreateFile either causes a new file or directory to be created, or it opens an existing file,
device, directory, or volume, giving the caller a handle for the file object. This handle can
be used by subsequent calls to manipulate data within the file or the file object's state or at
tributes. For example, a driver might call this routine during initialization to open a file of
microcode for its device.

Parameters
FileHandle
Points to a variable that receives the file handle if the call is successful.

Chapter 11 ZwXxx Routines 543

DesiredAccess
Specifies the type of access that the caller requires to the file or directory. The set of system
defined DesiredAccess flags determines the following specific access rights for file objects:

DesiredAccess Flags Meaning

DELETE The file can be deleted.

FILE_READ_DATA Data can be read from the file.

FILE_READ_ATTRIBUTES FileAttributes flags, described later, can be read.

FILE_READ _EA Extended attributes associated with the file can be read. This flag is
irrelevant to device and intermediate drivers.

READ_CONTROL The access control list (ACL) and ownership information asso-
ciated with the file can be read.

FILE_WRITE_DATA Data can be written to the file.

FILE_ WRITE_ATTRIBUTES FileAttributes flags can be written.

FILE_ WRITE_EA Extended attributes (EAs) associated with the file can be written.
This flag is irrelevant to device and intermediate drivers.

FILE_APPEND _DATA Data can be appended to the file.

WRITE_DAC The discretionary access control list (DACL) associated with the
file can be written.

WRITE_OWNER Ownership information associated with the file can be written.

SYNCHRONIZE The returned FileHandle can be waited on to synchronize with the
completion of an 110 operation.

FILE_EXECUTE Data can be read into memory from the file using system paging
110. This flag is irrelevant to device and intermediate drivers.

Callers of ZwCreateFile can specify one or a combination of the following, possibly ORed
with additional compatible flags from the preceding DesiredAccess Flags list, for any file
object that does not represent a directory file:

DesiredAccess to File Values Maps to DesiredAccess Flags

GENERIC_READ STANDARD_RIGHTS_READ, FILE_READ_DATA, FILE_
READ_ATTRIBUTES, and FILE_READ_EA

GENERIC_WRITE STANDARD_RlGHTS_ WRITE, FILE_ WRITE_DATA,
FILE_ WRITE_ATTRIBUTES, FILE_ WRITE_EA, and FILE_
APPEND_DATA

GENERIC_EXECUTE STANDARD_RIGHTS_EXECUTE, SYNCHRONIZE, and
FILE_EXECUTE. This value is irrelevant to device and inter
mediate drivers.

544 Part 1 Kernel-Mode Support Routines

The STANDARD_RIGHTS_XXX are predefined system values used to enforce security on
system objects.

To open or create a directory file, as also indicated with the Create Options parameter,
callers of ZwCreateFile can specify one or a combination of the following, possibly ORed
with one or more compatible flags from the preceding DesiredAccess Flags list:

DesiredAccess to Directory
Values

FILE_LIST_DIRECTORY

FILE_ TRA VERSE

Meaning

Files in the directory can be listed.

The directory can be traversed: that is, it can be part of the
pathname of a file.

The FILE_READ _DATA, FILE_WRITE_DATA, FILE_EXECUTE, and FILE_APPEND_
DATA DesiredAccess flags are incompatible with creating or opening a directory file.

ObjectAttributes
Points to a structure already initialized with InitializeObjectAttributes. Members of this
structure for a file object include the following:

Member

ULONG Length

PUNICODE_STRING
ObjectName

HANDLE RootDirectory

Value

Specifies the number of bytes of ObjectAttributes data supplied.
This value must be at least sizeof (OBJECT_ATTRIBUTES).

Points to a buffered Unicode string naming the file to be created
or opened. This value must be a fully qualified file specification or
the name of a device object, unless it is the name of a file relative
to the directory specified by RootDirectory. For example,
\Device\Floppyl\myfile.dat or \??\B:\myfile.dat could be the
fully qualified file specification, provided that the floppy driver
and overlying file system are already loaded. (Note: \?? replaces
\DosDevices as the name of the Win32® object namespace.
\DosDevices will still work, but \?? is translated faster by the
object manager.)

Optionally specifies a handle to a directory obtained by a
preceding call to ZwCreateFile. If this value is NULL, the
ObjectName member must be a fully qualified file specification
that includes the full path to the target file. If this value is
nonNULL, the ObjectName member specifies a file name
relative to this directory.

Member

PSECURITY _DESCRIPTOR
SecurityDescriptor

PSECURITY _QUALITY_
OF_SERVICE
SecurityQualityOfService

ULONG Attributes

loStatusBlock

Chapter 11 ZwXxx Routines 545

Value

Optionally specifies a security descriptor to be applied to a file.
ACLs specified by such a security descriptor are only applied to
the file when it is created. If the value is NULL when a file is
created, the ACL placed on the file is file-system-dependent; most
file systems propagate some part of such an ACL from the parent
directory file combined with the caller's default ACL. Device and
intermediate drivers can set this member to NULL.

Specifies the access rights a server should be given to the client's
security context. This value is nonNULL only when a connection
to a protected server is established, allowing the caller to control
which parts of the caller's security context are made available to
the server and whether the server is allowed to impersonate the
caller. Device and intermediate drivers usually set this member
to NULL.

Is a set of flags that controls the file object attributes. This value
can be zero or OBJ_CASE_INSENSITIVE, which indicates that
name-lookup code should ignore the case of ObjectName rather
than performing an exact-match search. The value OBJ_INHERIT
is irrelevant to device and intermediate drivers.

Points to a variable that receives the final completion status and information about the
requested operation. On return from ZwCreateFile, the Information member contains one
of the following values:

FILE_CREATED
FILE_OPENED
FILE_OVERWRITTEN
FILE_SUPERSEDED
FILE_EXISTS
FILE_DOES_NOT_EXIST

AllocationSize
Optionally specifies the initial allocation size in bytes for the file. A nonzero value has no
effect unless the file is being created, overwritten, or superseded.

FileAttributes
Explicitly specified attributes are applied only when the file is created, superseded, or, in
some cases, overwritten. By default, this value is FILE_ATTRIBUTE_NORMAL, which

546 Part 1 Kernel·Mode Support Routines

can be overridden by any other flag or by an ORed combination of compatible flags.
Possible FileAttributes flags include the following:

FileAttributes Flags

FILE_ATTRIBUTE_NORMAL

FILE_ATTRIBUTE_READONL Y

FILE_ATTRIBUTE_HIDDEN

FILE_ATTRIBUTE_SYSTEM

FILE_ATTRIBUTE_ARCHIVE

FILE_ATTRIBUTE_TEMPORARY

FILE_ATTRIBUTE_ATOMIC_ WRITE

ShareAccess

Meaning

A file with standard attributes should be created.

A read-only file should be created.

A hidden file should be created.

A system file should be created.

The file should be marked so that it will be archived.

A temporary file should be created.

An atomic-write file should be created. This flag is
irrelevant to device and intermediate drivers.

A transaction-write file should be created. This flag is
irrelevant to device and intermediate drivers.

Specifies the type of share access that the caller would like to the file, as zero, or as one or
a combination of the following:

ShareAccess Flags Meaning

The file can be opened for read access by other
threads' calls to ZwCreateFile.

The file can be opened for write access by other
threads' calls to ZwCreateFile.

The file can be opened for delete access by other
threads' calls to ZwCreateFile.

Device and intermediate drivers usually set ShareAccess to zero, which gives the caller
exclusive access to the open file.

CreateDisposition
Specifies what to do, depending on whether the file already exists, as one of the following:

CreateDispostion Values

FILE_CREATE

Meaning

If the file already exists, replace it with the given file.
If it does not, create the given file.

If the file already exists, fail the request and do not
create or open the given file. If it does not, create the
given file.

CreateDispostion Values

FILE_OVERWRITE

CreateOptions

Chapter 11 ZwXxx Routines 547

Meaning

If the file already exists, open it instead of creating a
new file. If it does not, fail the request and do not
create a new file.

If the file already exists, open it. If it does not, create
the given file.

If the file already exists, open it and overwrite it. If it
does not, fail the request.

If the file already exists, open it and overwrite it. If it
does not, create the given file.

Specifies the options to be applied when creating or opening the file, as a compatible
combination of the following flags:

CreateOptions Flags

FILE_SEQUENTIAL_ONLY

FILE_RANDOM_ACCESS

Meaning

The file being created or opened is a directory file.
With this flag, the CreateDisposition parameter must
be set to one of FILE_CREATE, FILE_OPEN, or
FILE_ OPEN_IF. With this flag, other compatible
CreateOptions flags include only the following:
FILE_SYNCHRONOUS_IO_ALERT,
FILE_SYNCHRONOUS_IO_NONALERT,
FILE_WRITE_THROUGH,
FILE_OPEN_FOR_BACKUP _INTENT, and
FILE_ OPEN_BY _FILE_ID.

The file being opened must not be a directory file or
this call will fail. The file object being opened can
represent a data file, a logical, virtual, or physical
device, or a volume.

System services, FSDs, and drivers that write data to
the file must actually transfer the data into the file
before any requested write operation is considered
complete. This flag is automatically set if the
CreateOptions flag FILE_NO _INTERMEDIATE_
BUFFERING is set.

All accesses to the file will be sequential.

Accesses to the file can be random, so no sequential
read-ahead operations should be performed on the file
by FSDs or the system.

Continued

548 Part 1 Kernel-Mode Support Routines

CreateOptions Flags Meaning

FILE_NO_INTERMEDIATE_ The file cannot be cached or buffered in a driver's
BUFFERING internal buffers. This flag is incompatible with the

DesiredAccess FILE_APPEND _DATA flag.

FILE_SYNCHRONOUS_IO_ALERT All operations on the file are performed
synchronously. Any wait on behalf of the caller is
subject to premature termination from alerts. This
flag also causes the I/O system to maintain the file
position context. If this flag is set, the DesiredAccess
SYNCHRONIZE flag also must be set.

FILE_SYNCHRONOUS_IO_NONALERT All operations on the file are performed
synchronously. Waits in the system to synchronize
I/O queueing and completion are not subject to alerts.
This flag also causes the I/O system to maintain the
file position context. If this flag is set, the Desired
Access SYNCHRONIZE flag also must be set.

FILE_CREATE_TREE_CONNECTION Create a tree connection for this file in order to open
it over the network. This flag is irrelevant to device
and intermediate drivers.

FILE_COMPLETE_IF _OPLOCKED Complete this operation immediately with an alternate
success code if the target file is oplocked, rather than
blocking the caller's thread. If the file is oplocked,
another caller already has access to the file over the
network. This flag is irrelevant to device and
intermediate drivers.

FILE_NO_EA_KNOWLEDGE If the extended attributes on an existing file being
opened indicate that the caller must understand EAs
to properly interpret the file, fail this request because
the caller does not understand how to deal with EAs.
Device and intermediate drivers can ignore this flag.

FILE_DELETE_ON_CLOSE Delete the file when the last handle to it is passed to
ZwClose.

FILE_OPEN_BY _FILE_ID The file name contains the name of a device and a 64-
bit ID to be used to open the file. This flag is
irrelevant to device and intermediate drivers.

FILE_OPEN_FOR_BACKUP _INTENT The file is being opened for backup intent, hence,
the system should check for certain access rights and
grant the caller the appropriate accesses to the file
before checking the input DesiredAccess against the
file's security descriptor. This flag is irrelevant to
device and intermediate drivers.

Chapter 11 ZwXxx Routines 549

EaBuffer
For device and intermediate drivers, this parameter must be a NULL pointer.

EaLength
For device and intermediate drivers, this parameter must be zero.

Include
wdm.h or ntddk. h

Return Value
ZwCreateFile either returns STATUS_SUCCESS or an appropriate error status. If it returns
an error status, the caller can find more information about the cause of the failure by
checking the IoStatusBlock.

Comments
There are two alternate ways to specify the name of the file to be created or opened with
ZwCreateFile:

1. As a fully qualified pathname, supplied in the ObjectName member of the input Object
Attributes

2. As pathname relative to the directory file represented by the handle in the RootDirectory
member of the input ObjectAttributes

Certain DesiredAccess flags and combinations of flags have the following effects:

• For a caller to synchronize an 110 completion by waiting on the returned FileHandle,
the SYNCHRONIZE flag must be set. Otherwise, a caller that is a device or intermediate
driver must synchronize an 110 completion by using an event object.

• If only the FILE_APPEND _DATA and SYNCHRONIZE flags are set, the caller
can write only to the end of the file, and any offset information on writes to the file is
ignored. However, the file will automatically be extended as necessary for this type of
write operation.

• Setting the FILE_WRITE_DATA flag for a file also allows writes beyond the end of the
file to occur. The file is automatically extended for this type of write, as well.

• If only the FILE_EXECUTE and SYNCHRONIZE flags are set, the caller cannot directly
read or write any data in the file using the returned FileHandle: that is, all operations on
the file occur through the system pager in response to instruction and data accesses.
Device and intermediate drivers should not set the FILE_EXECUTE flag in Desired
Access.

550 Part 1 Kernel-Mode Support Routines

The ShareAccess parameter determines whether separate threads can access the same file,
possibly simultaneously. Provided that both file openers have the privilege to access a file in
the specified manner, the file can be successfully opened and shared. If the original caller of
ZwCreateFile does not specify FILE_SHARE_READ, FILE_SHARE_ WRITE, or FILE_
SHARE_DELETE, no other open operations can be performed on the file: that is, the origi
nal caller is given exclusive access to the file.

In order for a shared file to be successfully opened, the requested DesiredAccess to the file
must be compatible with both the DesiredAccess and ShareAccess specifications of all pre
ceding opens that have not yet been released with ZwClose. That is, the DesiredAccess
specified to ZwCreateFile for a given file must not conflict with the accesses that other
openers of the file have disallowed.

The CreateDispostion value FILE_SUPERSEDE requires that the caller have DELETE
access to a existing file object. If so, a successful call to ZwCreateFile with FILE_
SUPERSEDE on an existing file effectively deletes that file, and then recreates it. This
implies that, if the file has already been opened by another thread, it opened the file by
specifying a ShareAccess parameter with the FILE_SHARE_DELETE flag set. Note that
this type of disposition is consistent with the POSIX style of overwriting files.

The CreateDisposition values FILE_OVERWRITE_IF and FILE_SUPERSEDE are similar.
If ZwCreateFile is called with a existing file and either of these CreateDisposition values,
the file will be replaced.

Overwriting a file is semantically equivalent to a supersede operation, except for the
following:

• The caller must have write access to the file, rather than delete access. This implies that,
if the file has already been opened by another thread, it opened the file with the FILE_
SHARE_WRITE flag set in the input ShareAccess.

• The specified file attributes are logically ORed with those already on the file. This im
plies that, if the file has already been opened by another thread, a subsequent caller of
ZwCreateFile cannot disable existing FileAttributes flags but can enable additional flags
for the same file. Note that this style of overwriting files is consistent with MS-DOS®,
Windows® 3.1, and with OS/2.

The Create Options FILE_DIRECTORY_FILE value specifies that the file to be created or
opened is a directory file. When a directory file is created, the file system creates an appro
priate structure on the disk to represent an empty directory for that particular file system's
on-disk structure. If this option was specified and the given file to be opened is not a direc
tory file, or if the caller specified an inconsistent Create Options or CreateDispostion value,
the call to Z wCreateFile will fail.

Chapter 11 ZwXxx Routines 551

The CreateOptions FILE_NO_INTERMEDIATE_BUFFERING flag prevents the file
system from performing any intermediate buffering on behalf of the caller. Specifying this
value places certain restrictions on the caller's parameters to other Zw .. File routines,
including the following:

• Any optional ByteOffset passed to ZwReadFile or ZwWriteFile must be an integral of
the sector size.

• The Length passed to ZwReadFile or ZwWriteFile, must be an integral of the sector
size. Note that specifying a read operation to a buffer whose length is exactly the sector
size might result in a lesser number of significant bytes being transferred to that buffer if
the end of the file was reached during the transfer.

• Buffers must be aligned in accordance with the alignment requirement of the underlying
device. This information can be obtained by calling ZwCreateFile to get a handle for the
file object that represents the physical device, and, then, calling ZwQueryInformation
File with that handle. For a list of the system FILE_XXX_ALIGNMENT values, see
DEVICE_OBJECT in Chapter 12.

• Calls to ZwSetlnformationFile with the FileInformationClass parameter set to File
PositionInformation must specify an offset that is an integral of the sector size.

The Create Options FILE_SYNCHRONOUS_IO_ALERT and FILE_SYNCHRONOUS_
IO_NONALERT, which are mutually exclusive as their names suggest, specify that all
I/O operations on the file are to be synchronous as long as they occur through the file object
referred to by the returned FileHandle. All I/O on such a file is serialized across all
threads using the returned handle. With either of these Create Options , the DesiredAccess
SYNCHRONIZE flag must be set so that the I/O Manager will use the file object as a
synchronization object. With either of these CreateOptions set, the I/O Manager maintains
the "file position context" for the file object, an internal, current file position offset. This
offset can be used in calls to ZwReadFile and ZwWriteFile. Its position also can be queried
or set with ZwQueryInformationFile and ZwSetlnformationFile.

Callers of ZwCreateFile must be running at IRQL PASSIVE_LEVEL.

See Also
InitializeObjectAttributes, DEVICE_OBJECT, IO_STATUS_BLOCK, ZwClose,
ZwReadFile, ZwQueryInformationFile, ZwSetlnformationFile, ZwWriteFile

552 Part 1 Kernel-Mode Support Routines

ZwCreateKey
NTSTATUS

ZwCreateKey(
OUT PHANDLE KeyHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes,
IN ULONG Titlelndex,
IN PUNICODE_STRING Class OPTIONAL,
IN ULONG CreateOptions,
OUT PULONG Disposition OPTIONAL
) ;

ZwCreateKey opens an existing key or creates a new key in the registry.

Parameters
KeyHandle
Points to a returned handle for a newly created or existing key if this call is successful.

DesiredAccess
Specifies the type of access that the caller requires to the key. The set of system-defined
DesiredAccess flags determines the following specific access rights for key objects:

DesiredAccess Flags Meaning

KEY_QUERY_ VALUES Value entries for the key can be read.

KEY _SET _ V ALUE Value entries for the key can be written.

KEY_CREATE_SUB_KEY Subkeys for the key can be created.

KEY_ENUMERATE_SUB_KEYS All subkeys for the key can be read.

KEY_NOTIFY This flag is irrelevant to device and intermediate drivers, and
to other kernel-mode code.

KEY _ CREATE_LINK A symbolic link to the key can be created. This flag is
irrelevant to device and intermediate drivers.

Callers of ZwCreateKey can specify one or a compatible combination of the following for
any key object:

DesiredAccess to Key Values

KEY_WRITE

Maps to DesiredAccess Flags

STANDARD_RIGHTS_READ, KEY_QUERY_ VALUES,
KEY_ENUMERATE_SUB_KEYS, and KEY_NOTIFY

STANDARD _RIGHTS_WRITE, KEY _SET_ VALUE, and
KEY_CREATE_SUBKEY

DesiredAccess to Key Values

Chapter 11 ZwXxx Routines 553

Maps to DesiredAccess Flags

KEY_READ. This value is irrelevant to device and
intermediate drivers.

STANDARD_RIGHTS_ALL, KEY_QUERY_ VALUES,
KEY_SET_ VALUE, KEY_CREATE_SUB_KEY,
KEY_ENUMERATE_SUBKEY, KEY_NOTIFY and
KEY _CREATE_LINK

The STANDARD_RIGHTS_XXX are predefined system values used to enforce security on
system objects.

ObjectAttributes
Points to the initialized object attributes of the key being opened or created. An Object
Name string for the key must be specified. If a RootDirectory handle also is supplied, the
given name is relative to the key represented by the handle. Any given name must be within
the object name space allocated to the registry, meaning that all names must begin with
\Registry. RootHandle, if present, must be a handle to the root directory object, to
\Registry, or to a key under \Registry.

Titlelndex
Device and intermediate drivers should set this parameter to zero.

Class
Points to the object class of the key. To the Configuration Manager, this is just a Unicode
string.

Create Options
Specifies options to be applied when creating a key, as a compatible combination of the
following:

Value

REG_OPTION_ VOLATILE

Meaning

Key is not to be stored across boots.

Key is preserved when the system is rebooted.

The created key is a symbolic link. This value is irrelevant to
device and intermediate drivers.

REG_OPTION_BACKUP _RESTORE Key is being opened or created with special privileges
allowing backup/restore operations. This value is irrelevant
to device and intermediate drivers.

554 Part 1 Kernel-Mode Support Routines

Disposition
Points to a variable that receives a value indicating whether a new key was created in the
\Registry tree or an existing one opened:

Value

REG_CREATED_NEW_KEY

REG_OPENED _EXISTING_KEY

Include
wdm.h or ntddk.h

Return Value

Meaning

A new key object was created.

An existing key object was opened.

ZwCreateKey returns STATUS_SUCCESS if the given key was created or opened.

Comments
If the key specified by ObjectAttributes does not exist, an attempt is made to create it. For
this attempt to succeed, the new key must be a direct subkey of the key referred to by Key
Handle, and the given KeyHandle must have been opened for KEY_CREATE_SUB_KEY
access.

If the specified key already exists, it is opened and its value is not affected in any way.

The security attributes specified by ObjectAttributes when a key is created determine
whether the specified DesiredAccess is granted on subsequent calls to ZwCreateKey and
ZwOpenKey.

Callers of ZwCreateKey must be running at IRQL PASSIVE_LEVEL.

See Also
InitializeObjectAttributes, ZwClose, ZwDeleteKey, ZwEnumerateKey, ZwEnumerate
ValueKey, ZwFlushKey, ZwOpenKey, ZwQueryValueKey, ZwSetValueKey

ZwDeleteKey
NTSTATUS

ZwDeleteKey(
IN HANDLE KeyHand7e
) ;

ZwDeleteKey deletes an open key from the registry.

Parameters
KeyHandle

Chapter 11 ZwXxx Routines 555

Is a handle returned by a successful call to ZwCreateKey or ZwOpenKey.

Include
wdm.h or ntddk. h

Return Value
ZwDeleteKey can return one of the following values:

STATUS_SUCCESS
STATUS_ACCESS_DENIED
STATUS_INVALID_HANDLE

Comments
The key must have been opened for DELETE access for a deletion to succeed; the Desired
Access value KEY _ALL_ACCESS includes DELETE access. The actual storage for the key
is deleted when the last handle to the key is closed.

A call to ZwDeleteKey causes the KeyHandle to become invalid.

Callers of ZwDeleteKey must be running at IRQL PASSIVE_LEVEL.

See Also
ZwClose, ZwCreateKey, ZwOpenKey

ZwEnumerateKey
NTSTATUS

ZwEnumerateKey(
IN HANDLE KeyHand7e.
IN ULONG Index.
IN KEY_INFORMATION_CLASS KeyInformationC7ass.
OUT PVOID Key Information.
IN ULONG Length.
OUT PULONG Resu7tLength
) ;

ZwEnumerateKey returns information about the subkeys of an open key.

556 Part 1 Kernel·Mode Support Routines

Parameters
KeyHandle
Is the handle, returned by a successful call to ZwCreateKey or ZwOpenKey, of the key
whose subkeys are to be enumerated.

Index
Specifies the zero-based index of the subkey for which the information is requested.

KeylnformationClass
Specifies the type of information returned in the KeyInformation buffer as one of the follow
ing system-defined values:

KeyBasicInformation
KeyNodeInformation
KeyFullInformation

Keylnformation
Points to a caller-allocated buffer to receive the requested data.

Length
Is the size in bytes of the KeyInformation buffer, which the caller should set according to the
given KeyInformationClass.

ResultLength
Points to the number of bytes actually returned to KeyInformation or, if the input Length is
too small, points to the number of bytes required for the available information.

Include
wdm.h or ntddk.h

Return Value
ZwEnnmerateKey returns STATUS_SUCCESS, together with the name of the Index
subkey to the given KeyInformation buffer. Otherwise, ZwEnumerateKey can return one
of the following:

STATUS_NO _MORE_ENTRIES
STATUS_BUFFER_ TOO _SMALL

Chapter 11 ZwXxx Routines 557

Comments
The KeyHandle passed to ZwEnumerateKey must have been opened with the KEY_
ENUMERATE_SUB_KEY DesiredAccess flag set for this call to succeed. See ZwCreate
Key for a description of possible values for DesiredAccess.

The Index parameter is simply a way to select among subkeys of the key referred to by
the KeyHandle. Two calls to ZwEnumerateKey with the same Index are not guaranteed to
return the same result.

Note that callers of the Rtl •. Registry routines are required to provide the name of the key.
Drivers can call ZwEnumerateKey to get unknown names of the subkeys for a key with a
known name.

Callers of ZwEnumerateKey must be running at IRQL PASSIVE_LEVEL.

See Also
KEY_BASIC_INFORMATION, KEY _FULL_INFORMATION, KEY _NODE_
INFORMATION, RtlCheckRegistryKey, RtlCreateRegistryKey, RtlDeleteRegistry
Value, RtlQueryRegistryValues, RtlWriteRegistryValue, ZwCreateKey,
ZwEnumerate ValueKey, ZwOpenKey

ZwEnumerateValueKey
NTSTATUS

ZwEnumerateValueKey(
IN HANDLE KeyHand7e,
IN ULONG Index.
IN KEY_VALUE_INFORMATION_CLASS KeyVa7ueInformationC7ass,
OUT PVOID KeyVa7ueInformation,
IN ULONG Length,
OUT PULONG Resu7tLength
) ;

ZwEnumerateValueKey returns information about the value entries of an open key.

Parameters
KeyHandle
Is the handle, returned by a successful call to ZwCreateKey or ZwOpenKey, of the key
whose value entries are to be enumerated.

Index
Specifies the zero-based index of a sub key for which the value information is requested.

558 Part 1 Kernel·Mode Support Routines

Key Valuelnformation Class
Specifies the type of information returned in the Key ValueInformation buffer as one of the
following:

Key V alueBasicInformation
Key V alueFullInformation
Key V aluePartialInformation

KeyValuelnformation
Points to a caller-allocated buffer to receive the requested data.

Length
Is the size in bytes of the KeyValueInformation buffer, which the caller should set according
to the given KeyValueInformationClass.

ResultLength
Points to number of bytes actually returned to Key ValueInformation or, if the input Length is
too small, points to the number of bytes required for the available information.

Include
wdm.h or ntddk.h

Return Value
ZwEnumerateValueKey returns STATUS_SUCCESS, together with the name of the Index
subkey to the given KeyValueInformation buffer. Otherwise, ZwEnumerateValueKey can
return one of the following:

STATUS_NO_MORE_ VALUES
STATUS_BUFFER_TOO_SMALL
STATUS_INVALID_PARAMETER

Comments
The KeyHandle passed to ZwEnumerate ValueKey must have been opened with the KEY_
QUERY _ VALUES DesiredAccess flag set for this call to succeed. See ZwCreateKey for a
description of possible values for DesiredAccess.

The Index is simply a way to select among subkeys with value entries. Two calls to Zw
EnumerateValueKey with the same Index are not guaranteed to return the same results.

Callers of ZwEnumerateValueKey must be running at IRQL PASSIVE_LEVEL.

See Also
ZwClose, ZwCreateKey, ZwOpenKey, ZwQueryValueKey

ZwFlushKey
NTSTATUS

ZwFlushKey(
IN HANDLE KeyHand7e
) ;

ZwFlushKey forces a registry key to be committed to disk.

Parameters
KeyHand/e

Chapter 11 ZwXxx Routines 559

Is the handle, returned by a successful call to ZwCreateKey or ZwOpenKey, of the key to
be flushed.

Include
ntddk.h

Return Value
ZwFlushKey returns STATUS_SUCCESS if the key information was transferred to disk.

Comments
Changes made by ZwCreateKey or ZwSetValueKey can be flushed to disk with ZwFlush
Key. This routine does not return to its caller until any changed data associated with the
given KeyHandle has been written to permanent store.

Note This routine can flush the entire registry. Accordingly, it can generate a great deal of
110. Since the system automatically flushes key changes every few seconds, it is seldom
necessary to call ZwFlushKey.

Callers of ZwFlushKey must be running at IRQL PASSIVE_LEVEL.

See Also
ZwCreateKey, ZwOpenKey, ZwSetValueKey

ZwMakeTemporaryObject
NTSTATUS

ZwMakeTemporaryObject(
IN HANDLE Handle
) ;

ZwMakeTemporaryObject changes the attributes of an object to make it temporary.

560 Part 1 Kernel-Mode Support Routines

Parameters
Handle
Specifies an open handle for an object.

Include
wdm.h or ntddk.h

Return Value
ZwMakeTemporaryObject can return one of the following:

STATUS_SUCCESS
STATUS_ACCESS_DENIED
STATUS_INVALID_HANDLE

Comments
ZwMakeTemporaryObject is a generic routine that operates on any type of object.

Making an object temporary causes the permanent flag of the associated object to be
cleared. A temporary object has a name only as long as its handle count is greater than zero.
When the handle count reaches zero, the system deletes the object name and adjusts the
pointer count for the object appropriately.

Callers of ZwMakeTemporaryObject must be running at IRQL PASSIVE_LEVEL.

See Also
InitializeObjectAttributes, ZwClose, ZwCreateDirectoryObject, ZwCreateFile

ZwMapViewOfSection
NTSTATUS

ZwMapViewOfSection(
IN HANDLE SectionHand7e,
IN HANDLE ProcessHand7e,
IN OUT PVOID *BaseAddress,
IN ULONG ZeroBits,
IN ULONG CommitSize,
IN OUT PLARGE_INTEGER SectionOffset OPTIONAL,
IN OUT PSIZE_T ViewSize,
IN SECTION_INHERIT InheritDisposition,
IN ULON,G A77ocationType,
IN ULONG Protect
) ;

Chapter 11 ZwXxx Routines 561

ZwMapViewOfSection maps a view of a section into the virtual address space of a subject
process.

Parameters
SectionHandle
Is the handle returned by a successful call to ZwOpenSection.

ProcessHandle
Is the handle of an opened process object, representing the process for which the view
should be mapped.

BaseAddress
Points to a variable that will receive the base address of the view. If the initial value of this
argument is nonNULL, the view is allocated starting at the specified virtual address rounded
down to the next 64-kilobyte address boundary.

ZeroBits
Specifies the number of high-order address bits that must be zero in the base address of
the section view. The value of this argument must be less than 21 and is used only when the
operating system determines where to allocate the view, as when BaseAddress is NULL.

CommitSize
Specifies the size, in bytes, of the initially committed region of the view. CommitSize is
only meaningful for page-file backed sections. For mapped sections, both data and image
are always committed at section creation time. This parameter is ignored for mapped files.
This value is rounded up to the next host-page-size boundary.

SectionOffset
Points to the offset, in bytes, from the beginning of the section to the view. If this pointer
is nonNULL, the given value is rounded down to the next allocation granularity size
boundary.

ViewSize
Points to a variable that will receive the actual size, in bytes, of the view. If the value of
this parameter is zero, a view of the section will be mapped starting at the specified section
offset and continuing to the end of the section. Otherwise, the initial value of this argument
specifies the size of the view, in bytes, and is rounded up to the next host page-size
boundary.

InheritDispostion
Specifies how the view is to be shared by a child process created with a create process
operation. Device and intermediate drivers should set this parameter to zero.

562 Part 1 Kernel-Mode Support Routines

Allocation Type
A set of flags that describes the type of allocation to be performed for the specified region of
pages.

Protect
Specifies the protection for the region of initially committed pages. Device and intermediate
drivers should set this value to P AGE_READ WRITE.

Include
wdm.h or ntddk.h

Return Value
ZwMap ViewOfSection can return one of the following:

STATUS_SUCCESS
STATUS_ACCESS_DENIED
STATUS_INVALID_HANDLE

Comments
Several different views of a section can be concurrently mapped into the virtual address
space of a process. Likewise, several different views of a section can be concurrently
mapped into the virtual address space of several processes.

If the specified section does not exist or the access requested is not allowed, ZwMap View
OfSection returns an error.

Callers of ZwMap ViewOfSection must be running at IRQL PASSIVE_LEVEL.

See Also
ZwOpenSection, ZwUnmap ViewOfSection

ZwOpenFile
NTSTATUS
ZwOpenFile(

OUT PHANDLE Fi7eHand7e,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes,
OUT PIO_STATUS_BLOCK IoStatusB7ock,
IN ULONG ShareAccess,
IN ULONG OpenOptions
) ;

Chapter 11 ZwXxx Routines 563

ZwOpenFile opens an existing file, device, directory, or volume, and returns a handle for
the file object.

Parameters
FileHandle
Pointer to a handle for the opened file.

DesiredAccess
Specifies the type of required access to the file.

ObjectAttributes
Pointer to a structure that a caller initializes with InitializeObjectAttributes.

loStatusBlock
Pointer to a structure that contains information about the requested operation and the final
completion status.

ShareAccess
Specifies the type of share access for the file.

Open Options
Specifies the options to be applied when opening the file.

Include
ntddk.h

Return value
ZwOpenFile either returns STATUS_SUCCESS or an appropriate error status. If it returns
an error status, the caller can get more information about the error by checking status infor
mation returned in IoStatusBlock.

Comments
ZwOpenFile provides a subset of the functionality provided by ZwCreateFile.

See Also
InitializeObjectAttributes, ZwCreateFile

564 Part 1 Kernel-Mode Support Routines

ZwOpenKey
NTSTATUS

ZwOpenKey(
OUT PHANDLE KeyHand7e,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes
) ;

ZwOpenKey opens an existing key in the registry.

Parameters
KeyHandle
Points to a returned handle for the key specified in ObjectAttributes if this call is successful.

DesiredAccess
Specifies the access rights desired to the key. See ZwCreateKey for a description of pos
sible values for this parameter.

ObjectAttributes
Points to the initialized object attributes of the key being opened. See the description of
ZwCreateKey for more information.

Include
wdm.h or ntddk. h

Return Value
ZwOpenKey returns STATUS_SUCCESS if the given key was opened. Otherwise, it can
return an error status, including the following:

ST ATUS_INV ALID _HANDLE
ST ATUS_ACCESS_DENIED

Comments
ZwOpenKey or ZwCreateKey must be called before any of the Zw ... Key routines that
require an input KeyHandle.

If the specified key does not exist or the DesiredAccess requested is not allowed, ZwOpen
Key returns an error status, and the KeyHandle remains invalid.

ZwOpenKey ignores the security information in the input ObjectAttributes. Access rights
for a key object can be set only when the key is created.

Chapter 11 ZwXxx Routines 565

Callers of ZwOpenKey must be running at IRQL PASSIVE_LEVEL.

See Also
InitializeObjectAttributes, ZwCreateKey, ZwDeleteKey, ZwEnumerateKey, Zw
Enumerate Value Key , ZwFlushKey, ZwQuery Key, ZwQueryValueKey, ZwSet
ValueKey

ZwOpenSection
NTSTATUS

ZwOpenSection(
OUT PHANDLE SectionHand7e.
IN ACCESS_MASK DesiredAccess.
IN POBJECT_ATTRIBUTES ObjectAttributes
) ;

ZwOpenSection opens a handle for an existing section object.

Parameters
SectionHandle
Points to a variable that will receive the section object handle if this call is successful.

DesiredAccess
Specifies a mask representing the requested access to the object. The set of system-defined
DesiredAccess flags relevant to device and intermediate drivers are the following:

DesiredAccess Flags

SECTION_MAP _WRITE

SECTION_MAP _READ

Meaning

A mapped view can be written.

A mapped view can be read.

A caller can specify SECTION_ALL_ACCESS, which sets all of the defined flags ORed
with the system-defined STANDARD_RIGHTS_REQUIRED.

ObjectAttributes
Points to the initialized object attributes of the section to be opened.

Include
wdm.h or ntddk.h

566 Part 1 Kernel-Mode Support Routines

Return Value
ZwOpenSection can return one of the following:

STATUS_SUCCESS
ST ATUS_ACCESS_DENIED
ST ATUS_INV ALID _HANDLE

Comments
If the specified section does not exist or the access requested is not allowed, the operation
fails.

Callers of ZWOpenSection must be running at PASSIVE_LEVEL.

See Also
InitializeObjectAttributes, ZwMap ViewOfSection, ZwUnmap ViewOfSection

ZwOpenSymbolicLinkObject
NTSTATUS

ZwOpenSymbolicLinkObject(
OUT PHANDLE LinkHand7e,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes
) ;

ZwOpenSymbolicLinkObject returns a handle to an existing symbolic link.

Parameters
LinkHand/e
Points to a returned handle for the symbolic link object specified in ObjectAttributes if the
call was successful.

DesiredAccess
Specifies the type of access that the caller requires to the key. This is most commonly
GENERIC_READ access such that the returned handle can be used with ZwQuery
SymbolicLinkObject.

ObjectAttributes
Points to the initialized object attributes for the symbolic link being opened. An Object
Name string for the symbolic link must be specified.

Include
ntddk.h

Return Value

Chapter 11 ZwXxx Routines 567

ZwOpenSymbolicLinkObject returns STATUS_SUCCESS if the symbolic link was
opened.

Comments
Callers of this routine must be running at IRQL PASSIVE_LEVEL.

See Also
InitializeObjectAttributes, ZwQuerySymbolicLinkObject

ZwQuerylnformationFile
NTSTATUS

ZwQueryInformationFile(
IN HANDLE Fi7eHand7e,
OUT PIO_STATUS_BLOCK IoStatusB7ock,
OUT PVOID Fi7elnformation,
IN ULONG Length,
IN FILE_INFORMATION_CLASS Fi7elnformationC7ass
) ;

ZwQuerylnformationFile returns various kinds of information about a given file object.

Parameters
FileHandle
Is the handle returned by a successful call to ZwCreateFile.

loStatusBlock
Points to a variable that receives the final completion status and information about the
operation.

Filelnformation
Points to a caller-allocated buffer or variable that receives the desired information about the
file. The contents of Filelnformation are defined by the FilelnformationClass parameter,
described later.

Length
Specifies the size in bytes of Filelnformation, which the caller should set according to the
given Filelnfo rmation Class .

568 Part 1 Kernel-Mode Support Routines

Fileln formation Class
Specifies the type of information to be returned about the file. Device and intermediate
drivers can specify any of the following:

FilelnformationClass Value

FileBasicInformation

FileStandardlnformation

FilePositionlnformation

FileAlignmentlnformation

FileNamelnformation

Include
wdm.h or ntddk.h

Return Value

Meaning

Return FILE_BASIC_INFORMATION about the file. The caller
must have opened the file with the DesiredAccess FILE_READ_
ATTRIBUTES flag set.

Return FILE_STANDARD_INFORMATION about the file. The
caller can query this information as long as the file is open, without
any particular requirements for DesiredAccess.

Return FILE_POSITION_INFORMATION abou.t the file. The
caller must have opened the file with the DesiredAccess FILE_
READ_DATA or FILE_WRITE_DATA flag set and with either
of the CreateOptions FILE_SYNCHRONOUS_IO_ALERT or
FILE_SYNCHRONOUS_IO_NONALERT.

Return FILE_ALIGNMENT _INFORMATION about the file. The
caller can query this information as long as the file is open, without
any particular requirements for DesiredAccess. This information is
useful if the file was opened with the CreateOptions
FILE_NO_INTERMEDIATE_BUFFERING flag set.

Return FILE_NAME_INFORMATION about the file. This might
include the full file path or only a portion of the path. See the com
ments below for details on the file name syntax.

ZwQueryInformationFile returns STATUS_SUCCESS or an appropriate error status. It
also returns the number of bytes actually written to the given Filelnformation buffer in the
Information member of IoStatusBlock.

Comments
ZwQueryInformationFile returns information about the given file. Note that it returns
zero in any member of a FILE_XXX_INFORMATION structure that is not supported by a
particular device or file system. For example, the FAT file system does not support file
creation times, so ZwQueryInformationFile sets the CreationTime member of returned
FILE_BASIC_INFORMATION to zero for files on a FAT partition.

Chapter 11 ZwXxx Routines 569

Callers of ZwQuerylnformationFile must be running at IRQL PASSIVE_LEVEL.

When FilelnformationClass equals FileNamelnformation, the file name is returned in the
FILE_NAME_INFORMATION structure. The precise syntax of the file name depends on a
number of factors:

If the file was opened by submitting a full path and file name to ZwCreateFile, then
ZwQuerylnformationFile returns that full path and file name.

If the ObjectAttributes->RootDirectory handle was opened by name in a call to Zw
CreateFile, and subsequently the file was opened by ZwCreateFile relative to this root
directory handle, then the full path and file name are returned.

If the ObjectAttributes->RootDirectory handle was opened by file ID (using the FILE_
OPEN_BY _FILE_ID flag) in a call to ZwCreateFile, and subsequently the file was opened
by ZwCreateFile relative to this root directory handle, then only the relative path will be
returned.

However, if the user has BYPASS_TRAVERSE_PRIVILEGE, the full path and file name
will be returned in all cases.

If only the relative path is returned, the file name string will not begin with a backslash.

If the full path and file name are returned, the string will begin with a single backslash,
regardless of its location. Thus the file C:\dir J\dir2'{zlename. ext will appear as \dir J\dir2\
filename.ext, while the file \VierverVihare\dirJ\dir2V'ilename.ext will appear as Vierver\
share\dir J\dir2V'ilename. ext.

See Also
FILE_ALIGNMENT_INFORMATION, FILE_BASIC_INFORMATION, FILE_
NAME_INFORMATION, FILE_POSITION_INFORMATION, FILE_STANDARD_
INFORMATION, ZwCreateFile, ZwSetInformationFile

ZwQueryKey
NTSTATUS

ZwQueryKeyC
IN HANDLE KeyHand7e,
IN KEY_INFORMATION_CLASS KeyInformationC7ass,

OUT PVOID Key Information,
IN ULONG Length,
OUT PULONG Resu7tLength
) ;

ZwQueryKey provides data about the class of a key, and the number and sizes of its
subkeys.

570 Part 1 Kernel-Mode Support Routines

Parameters
KeyHandle
Is the handle, returned by a successful call to ZwCreateKey or ZwOpenKey, of the key to
be queried.

KeylnformationClass
Specifies the type of information returned in the buffer as one of the following:

Key BasicInformation
Key FullInformation
KeyN odeInformation

Keylnformation
Points to a caller-allocated buffer to receive the requested data.

Length
Is the size in bytes of the Keylnformation buffer, which the caller should set according to the
given KeylnformationClass.

ResultLength
Points to number of bytes actually returned to Keylnformation or, if the input Length is too
small, points to the number of bytes required for the available information.

Include
wdm.h or ntddk.h

Return Value
ZwQueryKey returns STATUS_SUCCESS if it returned the requested information in the
Keylnformation buffer. Otherwise, ZwQueryKey can return one of the following:

STATUS_BUFFER_TOO_SMALL
STATUS_INVALID_PARAMETER

Comments
The KeyHandle passed to ZwQueryKey must have been opened with the KEY_QUERY_
KEY DesiredAccess flag set for this call to succeed. See ZwCreateKey for a description of
possible values for DesiredAccess.

ZwQueryKey returns information about the size of the value entries, the number of sub
keys, the length of their names, and the size of their value entries that its caller can use to
allocate buffers for registry data.

Chapter 11 ZwXxx Routines 571

For example, a successful caller of ZwQueryKey might allocate a buffer for a subkey, call
ZwEnumerateKey to get the name of the subkey, and pass that name to an Rtl •• Registry
routine.

Callers of ZwQueryKey must be running at IRQL PASSIVE_LEVEL.

See Also
KEY_BASIC_INFORMATION, KEY _FULL_INFORMATION, KEY _NODE_
INFORMATION, ZwClose, ZwEnumerateKey, ZwOpenKey

ZwQuerySymbolicLinkObject
NTSTATUS

ZwQuerySymbolicLinkObject(
IN HANDLE LinkHand7e.
IN OUT PUNICODE_STRING LinkTarget.
OUT PULONG ReturnedLength OPTIONAL
) ;

ZwQuerySymbolicLinkObject returns a Unicode string containing the target of the
symbolic link.

Parameters
LinkHandle
Specifies a valid handle to an open symbolic link object obtained by calling ZwOpen
SymbolicLinkObject.

LinkTarget
Points to an initialized Unicode string that contains the target of the symbolic link, specified
by LinkHandle, if the call was successful.

ReturnedLength
Optionally, points to a unsigned long integer that on input contains the maximum number
of bytes to copy into the Unicode string at LinkTarget. On output, the unsigned long integer
contains the length of the Unicode string naming the target of the symbolic link.

Include
ntddk.h

572 Part 1 Kernel·Mode Support Routines

Return Value
ZwOpenSymbolicLinkObject returns either STATUS_SUCCESS to indicate the routine
completed without error or STATUS_BUFFER_TOO_SMALL if the Unicode string pro
vided at LinkTarget is too small to hold the returned string.

Comments
Before calling this routine, driver writers must ensure that the Unicode string at LinkTarget
has been properly initialized and a buffer for the string has been allocated. The Maximum
Length and Buffer members of the Unicode string must be set before calling ZwQuery
SymbolicLinkObject or the call will fail.

If ZwQuerySymbolicLinkObject returns STATUS_BUFFER_TOO_SMALL drivers
should examine the value returned at ReturnedLength. The number returned in this variable
indicates the maximum length that the Unicode string for the target of the symbolic link.

Callers of this routine must be running at IRQL PASSIVE_LEVEL.

See Also
ZwOpenSymbolicLinkObject

ZwQueryValueKey
NTSTATUS

ZwOueryValueKey(
IN HANDLE KeyHand7e,
IN PUNICODE_STRING Va7ueName,
IN KEY_VALUE_INFORMATION_CLASS KeyVa7uelnformationC7ass,
OUT PVOID KeyVa7uelnformation,
IN ULONG Length,
OUT PULONG Resu7tLength
) ;

ZwQueryValueKey returns the value entries for an open registry key.

Parameters
KeyHandle
Is the handle, returned by a successful call to ZwCreateKey or ZwOpenKey, of key for
which value entries are to be read.

ValueName
Points to the name of the value entry for which the data is requested.

Chapter 11 ZwXxx Routines 573

KeyValuelnformationClass
Specifies the type of information requested as one of the following:

Key V alueBasicInformation
Key V alueFulllnformation
Key V aluePartialInformation

KeyValuelnformation
Points to a caller-allocated buffer to receive the requested data.

Length
Is the size in bytes of the KeyValuelnformation buffer, which the caller should set according
to the given KeyValuelnformationClass.

ResultLength
Points to number of bytes actually returned to KeyValuelnformation or, if the input Length
is too small, points to the number of bytes required for the available information.

Include
wdm.h or ntddk. h

Return Value
ZwQueryValueKey returns STATUS_SUCCESS if it returned the requested information
in the KeyValuelnformation buffer. Otherwise, ZwQueryValueKey can return one of the
following:

STATUS_BUFFER_TOO_SMALL
STATUS_INVALID_PARAMETER
STATUS_OBJECT_NAME_NOT_FOUND

Comments
The KeyHandle passed to ZwQueryValueKey must have been opened with the KEY_
QUERY_VALUES DesiredAccess flag set for this call to succeed. See ZwCreateKey
for a description of possible values for DesiredAccess.

Callers of ZwQueryValueKey must be running at IRQL PASSIVE_LEVEL.

See Also
KEY _V ALUE_BASIC_INFORMATION, KEY _ V ALUE_FULL_INFORMATION,
KEY _ V ALUE_PARTIAL_INFORMATION, ZwCreateKey, ZwEnumerate ValueKey,
ZwOpenKey

574 Part 1 Kernel-Mode Support Routines

ZwReadFile
NTSTATUS

ZwReadFile(
IN HANDLE Fi7eHand7e,
IN HANDLE Event OPTIONAL,
IN PIO_APC_ROUTINE ApcRoutine OPTIONAL,
IN PVOID ApcContext OPTIONAL,
OUT PIO_STATUS_BLOCK IoStatusB7ock,
OUT PVOID Buffer,
IN ULONG Length,
IN PLARGE_INTEGER ByteOffset OPTIONAL,
IN PULONG Key OPTIONAL
) ;

Data can be read from an opened file using ZwReadFile.

Parameters
FileHandle
Specifies the handle returned by a successful call to ZwCreateFile.

Event
Specifies an optional handle for an event to be set to the signaled state after the read opera
tion completes. Device and intermediate drivers should set this parameter to NULL.

ApcRoutine
Device and intermediate drivers should set this pointer to NULL.

ApcContext
Device and intermediate drivers should set this pointer to NULL.

loStatusBlock
Pointer to a variable that receives the final completion status and information about the
requested read operation.

Buffer
Pointer to a caller-allocated buffer that receives the data read from the file.

Length
Specifies the size in bytes of the given Buffer. A successful call to ZwReadFile returns the
given number of bytes from the file, unless this routine reaches the end of file first.

Chapter 11 ZwXxx Routines 575

ByteOffset
Pointer to a variable that specifies the starting byte offset in the file where the read opera
tion will begin. If an attempt is made to read beyond the end of the file, ZwReadFile returns
an error.

If the call to ZwCreateFile set either of the CreateOptions flags FILE_SYNCHRONOUS_
10_ALERT or FILE_SYNCHRONOUS_IO_NONALERT, the 110 Manager maintains the
current file position. If so, the caller of ZwReadFile can specify that the current file position
offset be used instead of an explicit ByteOffset value. This specification can be made by
using one of the following methods:

• Specify the system-defined value FILE_USE_FILE_POINTER_POSITION.

• Pass a NULL pointer for ByteOffset.

ZwReadFile updates the current file position by adding the number of bytes read when
it completes the read operation, if it is using the current file position maintained by the 110
Manager.

Even when the 110 Manager is maintaining the current file position, the caller can reset this
position by passing an explicit ByteOffset value to ZwReadFile. Doing this automatically
changes the current file position to that ByteOffset value, performs the read operation, and
then updates the position according to the number of bytes actually read. This technique
gives the caller atomic seek-and-read service.

Key
Device and intermediate drivers should set this pointer to NULL.

Include
wdm.h or ntddk. h

Return Value
ZwReadFile either returns STATUS_SUCCESS or the appropriate error status. The
number of bytes actually read from the file is returned in the Information member of the
IoStatusBlock.

Comments
Callers of ZwReadFile must have already called ZwCreateFile with the DesiredAccess flag
FILE_READ_DATA set, either explicitly or by setting this flag using GENERIC_READ.

576 Part 1 Kernel-Mode Support Routines

If the preceding call to ZwCreateFile set the CreateOptions flag FILE_NO_
INTERMEDIATE_BUFFERING, certain restrictions on the parameters to ZwReadFile
are enforced. See ZwCreateFile for specifics.

ZwReadFile begins reading from the given ByteOffset or the current file position into the
given Buffer. It terminates the read operation under one of the following conditions:

• The buffer is full because the number of bytes specified by the Length parameter has been
read. Therefore, no more data can be placed into the buffer without an overflow.

• The end of file is reached during the read operation, so there is no more data in the file to
be transferred into the buffer.

If the caller opened the file with the DesiredAccess SYNCHRONIZE flag set, the caller can
wait for this routine to set the given FileHandle to the signaled state.

Drivers should call ZwReadFile in the context of the system process in three cases:

1. The driver creates the file handle that it passes to ZwReadFile.

2. ZwReadFile notifies the driver of 110 completion by means of an event created by the
driver.

3. ZwReadFile notifies the driver of 110 completion by means of an APC callback routine
that the driver passes to ZwReadFile.

File and event handles are only valid in the process context where the handles are created.
Therefore, to avoid security holes, the driver should create any file or event handle that it
passes to ZwReadFile in the context of the system process instead of the process context
that the driver is in.

Likewise, ZwReadFile should be called in the context of the system process if it notifies the
driver of 110 completion by means of an APC, because APCs are always fired in the context
of the thread issuing the 10 request. If the driver calls ZwReadFile in the context of a pro
cess other than the system process, the APC could be delayed indefinitely, or it might not
fire at all.

Callers of ZwReadFile must be running at IRQL PASSIVE_LEVEL.

See Also
KelnitializeEvent, ZwCreateFile, ZwQuerylnformationFile, ZwSetlnformationFile,
ZwWriteFile

ZwSetlnformation Fi Ie
NTSTATUS

ZwSetInformationFile(
IN HANDLE Fi7eHand7e,
OUT PIO_STATUS_BLOCK IoStatusB7ock,
IN PVOID Fi7elnformation,
IN ULONG Length,
IN FILE_INFORMATION_CLASS Fi7elnformationC7ass
) :

Chapter 11 ZwXxx Routines 577

ZwSetlnformationFile changes various kinds of information about a given file object.

Parameters
FileHandle
Is the handle returned by a successful call to ZwCreateFile.

loStatusBlock
Points to a variable that receives the final completion status and information about the
operation.

Filelnformation
Points to a buffer or variable containing the information to be set for the file. The contents of
Filelnformation are defined by the FilelnformationClass parameter, described later. Setting
any member of the structure in this buffer or variable to zero tells ZwSetInformationFile to
leave the current information about the file for that member unchanged.

Length
Specifies the size in bytes of Filelnformation, which the caller should set according to the
given FilelnformationClass.

Filelnforma tion Class
Specifies the type of information to be reset for the file. Device and intermediate drivers,
can specify any of the following:

FileInformationClass Value Meaning

FileBasicInformation Change FILE_BASIC_INFORMATION about the file. The caller
must have opened the file with the DesiredAccess FILE_ WRITE_
ATTRIBUTES flag set.

FileDispositionInformation Usually, sets DeleteFile in FILE_DISPOSITION_INFORMATION
to TRUE, so the file can be deleted when ZwClose is called to
release the last open handle for the file object. The caller must have
opened the file with the DesiredAccess DELETE flag set.

Continued

578 Part 1 Kernel-Mode Support Routines

FilelnformationClass Value Meaning

FilePositionlnformation Change the current FILE_POSITION_INFORMATION for the
file. The caller must have opened the file with the DesiredAccess
FILE_READ_DATA or FILE_WRITE_DATA flag set and with
either of the CreateOptions FILE_SYNCHRONOUS_IO_ALERT
or FILE_SYNCHRONOUS_IO_NONALERT.

FileEndOfFilelnformation Change the current FILE_END _OF_FILE_INFORMATION for
the file: either truncate or extend the amount of valid data in the
file by moving the current end-of-file position. The caller must
have opened the file with the DesiredAccess FILE_WRITE_DATA
flag set.

Include
ntddk.h

Return Value
ZwSetlnformationFile returns STATUS_SUCCESS or an appropriate error status. It also
returns the number of bytes set on the file in the Information member of IoStatusBlock.

Comments
ZwSetlnformationFile changes information about a file. It ignores any member of a
FILE_XXX_INFORMATION structure that is not supported by a particular device or file
system. For example, the FAT file system does not support file-creation times, so ZwSet
InformationFile ignores the CreationTime member of the FILE_BASIC_INFORMATION
structure when it is called to change basic file information for files on a FAT partition.

A caller that sets FilelnformationClass to FileDispositionInformation can pass the File
Handle subsequently to ZwClose but to no other Zw .. File routine. On return from ZwSet
InformationFile, the file has been marked for deletion. It is a programming error to attempt
any subsequent operation on the open file except closing it.

If the caller sets FilelnformationClass to FilePositionInformation and the preceding call
to ZwCreateFile set the Create Options flag FILE_NO_INTERMEDIATE_BUFFERING,
certain restrictions on the input FILE_POSITION_INFORMATION CurrentByteOffset are
enforced. See ZwCreateFile for specifics.

If the caller sets FilelnformationClass to FileEndOfFileInformation and the input FILE_
END_OF _FILE_INFORMATION EndOfFile value specifies an offset beyond the current
end-of-file mark, ZwSetlnformationFile extends the file and writes pad bytes of zeroes
between the old and new end-of-file marks.

Chapter 11 ZwXxx Routines 579

Callers of ZwSetInformationFile must be running at IRQL PASSIVE_LEVEL.

See Also
FILE_BASIC_INFORMATION, FILE_DISPOSITION_INFORMATION, FILE_
END_OF _FILE_INFORMATION, FILE_POSITION_INFORMATION, ZwCreateFile,
ZwQuerylnformationFile

ZwSetl nformation Th read
NTSTATUS

ZwSetInformationThread(
IN HANDLE ThreadHand7e.
IN THREADINFOCLASS ThreadlnformationC7ass.
IN PVOID Threadlnformation.
IN ULONG ThreadlnformationLength
) ;

ZwSetInformationThread can be called to set the priority of a thread for which the caller
has a handle.

Parameters
ThreadHandle
Is the open handle for a thread.

ThreadlnformationClass
Is one of the system-defined values ThreadPriority or ThreadBasePriority.

Threadlnformation
Points to a variable specifying the information to be set. If ThreadlnformationClass is
ThreadPriority, this value must be > LOW_PRIORITY and <= HIGH_PRIORITY. If
ThreadlnformationClass is ThreadBasePriority, this value must fall within the system's
valid base priority range and the original priority class for the given thread: that is, if a
thread's priority class is variable, that thread's base priority cannot be reset to a real-time
priority value and vice versa.

ThreadlnformationLength
Is the size in bytes of Threadlnformation, which must be at least sizeof(KPRIORITY).

Include
ntddk.h

580 Part 1 Kernel-Mode Support Routines

Return Value
ZwSetlnformationThread returns STATUS_SUCCESS or an error status, such as
STATUS_INFO _LENGTH_MISMATCH or ST ATUS_INV ALID _PARAMETER.

Comments
ZwSetlnformationThread can be called by higher-level drivers to set the priority of a
thread for which they have a handle.

The caller must have THREAD_SET_INFORMATION access rights for the given thread in
order to call this routine.

Usually, device and intermediate drivers that set up driver-created threads call KeSetBase
PriorityThread or KeSetPriorityThread from their driver-created threads, rather than Zw
SetlnformationThread. However, a driver can call ZwSetlnformationThread to raise the
priority of a driver-created thread before that thread is run.

Callers of ZwSetlnformationThread must be running at IRQL PASSIVE_LEVEL.

See Also
KeSetBasePriorityThread, KeSetPriorityThread, PsCreateSystemThread

ZwSetValueKey
NTSTATUS

ZwSetValueKey(
IN HANDLE KeyHand7e,
IN PUNICODE_STRING Va7ueName,
IN ULONG Tit7elndex OPTIONAL,
IN ULONG Type,
IN PVOID Data,
IN ULONG DataSize
) ;

ZwSetValueKey replaces or creates a value entry for a key in the registry.

Parameters
KeyHandle
Is the handle, returned by a successful call to ZwCreateKey or ZwOpenKey, of key for
which a value entry is to be written in the registry.

Chapter 11 ZwXxx Routines 581

ValueName
Points to the name of the value entry for which the data is to be written. This parameter
can be a NULL pointer if the value entry has no name. If a name string is specified and the
given name is not unique relative to its containing key, the data for an existing value entry
is replaced.

Titlelndex
Device and intermediate drivers should set this parameter to zero.

Type
Specifies the type of the data to be written for ValueName. System-defined types include the
following:

REG_BINARY

REG_DWORD

REG_DWORD_LITTLE_
ENDIAN

REG_DWORD_BIG_
ENDIAN

REG_EXPAND_SZ

REG_MULTCSZ

REG_NONE

REG_SZ

REG_RESOURCE_LIST

REG_RESOURCE_
REQUIREMENTS_LIST

REG_FULL_RESOURCE_
DESCRIPTOR

Value

Binary data in any fonn.

A 4-byte numerical value.

A 4-byte numerical value whose least significant byte is at the lowest
address, which is identical to type REG_DWORD.

A 4-byte numerical value whose least significant byte is at the highest
address.

A zero-tenninated Unicode string, containing unexpanded references
to environment variables, such as "%PATH%".

A Unicode string naming a symbolic link; this type is irrelevant to
device and intennediate drivers.

An array of zero-terminated strings, tenninated by another zero.

Data with no particular type.

A zero-tenninated Unicode string.

A device driver's list of hardware resources, used by the driver or one
of the physical devices it controls, in the \ResourceMap tree.

A device driver's list of possible hardware resources it or one of the
physical devices it controls can use, from which the system writes a
subset into the \ResourceMap tree.

A list of hardware resources that a physical device is using, detected
and written into the \HardwareDescription tree by the system.

Device drivers need not, and should not attempt to, call ZwSetValueKey directly to
write value entries in a subkey of the \Registry .. \ResourceMap key. Only the system
can write value entries to the \Registry .. \HardwareDescription tree.

582 Part 1 Kernel-Mode Support Routines

Data
Points to a caller-allocated buffer containing the data for the value entry.

DataSize
Specifies the size in bytes of the Data buffer. If Type is any of the REG_XXX_SZ, this value
must include the terminating zeroes).

Include
wdm.h or ntddk.h

Return Value
ZwSetValueKey can return one of the following:

STATUS_SUCCESS
STATUS_ACCESS_DENIED
STATUS_INVALID_HANDLE

Comments
The KeyHandle passed to ZwSetValueKey must have been opened with the KEY_SET_
VALUE DesiredAccess flag set for this call to succeed. See ZwCreateKey for a description
of possible values for DesiredAccess.

If the given key has no existing value entry with a name matching the given ValueName,
ZwSetValueKey creates a new value entry with the given name. If a matching value entry
name exists, this routine overwrites the original value entry for the given ValueName. Thus,
ZwSetValueKey preserves a unique name for each value entry of any particular key. While
each value entry name must be unique to its containing key, many different keys in the
registry can have value entries with the same names.

Callers of ZwSetValueKey must be running at IRQL PASSIVE_LEVEL.

See Also
HalAssignSlotResources, IoAssignResources, IoQueryDeviceDescription, IoReport
ResourceUsage, ZwClose, ZwCreateKey, ZwFlushKey, ZwOpenKey

ZwUnmapViewOfSection
NTSTATUS

ZwUnmapViewOfSection(
IN HANDLE ProcessHand7e.
IN PVOID BaseAddress
) ;

Chapter 11 ZwXxx Routines 583

ZwUnmap ViewOfSection unmaps a view of a section from the virtual address space of a
subject process.

Parameters
ProcessHandle
Specifies an open handle of the process that was passed in a preceding call to
ZwMap ViewOfSection.

BaseAddress
Points to the base virtual address of the view that is to be unmapped. This value can be any
virtual address within the view.

Include
wdm.h or ntddk.h

Return Value
ZwUnmap ViewOfSection can return one of the following:

STATUS_NORMAL
STATUS_INVALID_PARAMETER
STATUS_NO_ACCESS

Comments
The entire view of the section specified by the BaseAddress parameter is unmapped from
the virtual address space of the specified process.

The virtual address region occupied by the view is no longer reserved and is available to
map other views or private pages. If the view was also the last reference to the underlying
section, then all committed pages in the section are decommitted and the section is deleted.

Callers of ZwUnmap ViewOfSection must be running at IRQL PASSIVE_LEVEL.

See Also
ZwMap ViewOfSection, ZwOpenSection

584 Part 1 Kernel-Mode Support Routines

ZwWriteFile
NTSTATUS

ZwWri teFil e (
IN HANDLE Fi7eHand7e.
IN HANDLE Event OPTIONAL.
IN PIO_APC_ROUTINE ApcRoutine OPTIONAL.
IN PVOID ApcContext OPTIONAL.
OUT PIO_STATUS_BLOCK IoStatusB7ock.
IN IPVO I D Buffer.
IN ULONG Length.
IN PLARGE_INTEGER ByteOffset OPTIONAL.
IN PULONG Key OPTIONAL
) ;

Data can be written to an open file using ZwWriteFile.

Parameters
FileHandle
Specifies the handle returned by a successful call to ZwCreateFile.

Event
Specifies an optional handle for an event to be set to the signaled state after the write opera
tion completes. Device and intermediate drivers should set this parameter to NULL.

ApcRoutine
Device and intermediate drivers should set this pointer to NULL.

ApcContext
Device and intermediate drivers should set this pointer to NULL.

loStatusBlock
Pointer to a variable that receives the final completion status and information about the
requested write operation.

Buffer
Pointer to a caller-allocated buffer containing the data to be written to the file.

Length
Specifies the size in bytes of the given Buffer. A successful call to ZwWriteFile transfers
the given number of bytes to the file. If necessary, the length of the file is extended.

Chapter 11 ZwXxx Routines 585

ByteOffset
Pointer to a variable that specifies the starting byte offset in the file where the write opera
tion will begin. If a given Length and ByteOffset specify a write operation past the current
end-of-file mark, ZwWriteFile automatically extends the file and updates the end-of-file
mark; any bytes that are not explicitly written between such old and new end-of-file marks
are defined to be zero.

If the call to ZwCreateFile set only the DesiredAccess flag FILE_APPEND_DATA, Byte
Offset is ignored. Data in the given Buffer, for Length bytes, is written starting at the current
end of file.

If the call to ZwCreateFile set either of the Create Options flags, FILE_SYNCHRONOUS_
10_ALERT or FILE_SYNCHRONOUS_IO_NONALERT, the 110 Manager maintains the
current file position. If so, the caller of ZwWriteFile can specify that the current file posi
tion offset be used instead of an explicit ByteOffset value. This specification can be made by
using one of the following methods:

• Specify the system-defined value FILE_USE_FILE_POINTER_POSITION.

• Pass a NULL pointer for ByteOffset.

ZwWriteFile updates the current file position by adding the number of bytes written when
it completes the write operation, if it is using the current file position maintained by the 110
Manager.

Even when the 110 Manager is maintaining the current file position, the caller can reset this
position by passing an explicit ByteOffset value to ZwWriteFile. Doing this automatically
changes the current file position to that ByteOffset value, performs the write operation, and
then updates the position according to the number of bytes actually written. This technique
gives the caller atomic seek-and-write service.

It is also possible to cause a write operation to start at the current end of file by specifying
FILE_ WRITE_TO_END_OF _FILE for the ByteOffset parameter even if the 110 Manager is
not maintaining the current file position.

Key
Device and intermediate drivers should set this pointer to NULL.

Include
wdm.h or ntddk.h

Return Value
ZwWriteFile either returns STATUS_SUCCESS or an appropriate error status. The number
of bytes actually written to the file is returned in the Information member of IoStatusBlock.

586 Part 1 Kernel-Mode Support Routines

Comments
Callers of ZwWriteFile must have already called ZwCreateFile with the DesiredAccess
flags FILE_WRITE_DATA and/or FILE_APPEND_DATA set, either explicitly or by
setting these flags with GENERIC_WRITE. Note that having only FILE_APPEND_DATA
access to a file does not allow the caller to write anywhere in the file except at the current
end-of-file mark, while having FILE_WRITE_DATA access to a file does not preclude
the caller from writing to or beyond the end of a file.

If the preceding call to ZwCreateFile set the CreateOptions flag FILE_NO_
INTERMEDIATE_BUFFERING, certain restrictions on the parameters to ZwWriteFile
are enforced. See ZwCreateFile for specifics.

ZwWriteFile begins writing data from the given Buffer at the given ByteOffset in the file,
at the current file position within the file, or at the end-of-file mark. It terminates the write
operation when it has written Length bytes to the file, extending the length of the file if
necessary, and resetting the end-of-file mark.

If the caller opened the file with the DesiredAccess SYNCHRONIZE flag set, the caller
can wait for this routine to set the given FileHandle to the signaled state.

Drivers should call ZwWriteFile in the context of the system process in three cases:

1. The driver creates the file handle that it passes to ZwWriteFile.

2. ZwWriteFile notifies the driver of I/O completion by means of an event created by the
driver.

3. ZwWriteFile notifies the driver of I/O completion by means of an APC callback routine
that the driver passes to ZwWriteFile.

File and event handles are only valid in the process context where the handles are created.
Therefore, to avoid security holes, the driver should create any file or event handle that it
passes to ZwWriteFile in the context of the system process instead of the process context
that the driver is in.

Likewise, ZwWriteFile should be called in the context of the system process if it notifies
the driver of I/O completion by means of an APC, because APCs are always fired in the
context of the thread issuing the I/O request. If the driver calls ZwWriteFile in the context
of a process other than the system process, the APC could be delayed indefinitely, or it
might not fire at all.

Callers of ZwWriteFile must be running at IRQL PASSIVE_LEVEL.

See Also
KeInitializeEvent, ZwCreateFile, ZwQuery InformationFile, ZwReadFile,
ZwSetlnformationFile

587

C HAP T E R 1 2

System Structures

This chapter describes system structures and objects that are parameters to more than
one support routine or standard driver routine. It also describes some bus-type-specific and
device-type-specific configuration structures that the system defines for the convenience
of driver writers.

Other system-defined structures are described in the context of the support routines in
preceding chapters, in particular those structures that are relevant only to a single support
routine or pair of support routines.

typedef struct _STRING
USHORT Length;
USHORT MaximumLength;
PCHAR Buffer;

} STRING *PANSI_STRING;

The STRING structure defines a counted string used for ANSI strings.

Members
Length
The length in bytes of the string stored in Buffer.

MaximumLength
The maximum length in bytes of Buffer.

Buffer
Points to a buffer used to contain a string of characters.

Include
wdm.h or ntddk.h

588 Part 1 Kernel-Mode Support Routines

Comments
The STRING structure is used to pass ANSI strings.

If the string is NULL terminated, Length does not include the trailing NULL.

The MaximumLength is used to indicate the length of Buffer so that if the string is passed
to a conversion routine such as RtiUnicodeStringToAnsiString the returned string does not
exceed the buffer size.

See Also
OEM_STRING, UNICODE_STRING, RtlAnsiStringToUnicodeSize, RtlAnsiStringTo
UnicodeString, RtlFreeAnsiString, RtlInitAnsiString, RtlUnicodeStringToAnsiString

typedef struct _CM_EISA_FUNCTION_INFORMATION
ULONG Compressedld;
UCHAR IdSlotFlagsl;
UCHAR IdSlotFlags2;
UCHAR MinorRevision;
UCHAR MajorRevision;
UCHAR Selections[26];
UCHAR FunctionFlags;
UCHAR TypeString[80];
EISA_MEMORY_CONFIGURATION EisaMemory[9];
EISA_IRQ_CONFIGURATION Eisalrq[7];
EISA_DMA_CONFIGURATION EisaDma[4];
EISA-PORT_CONFIGURATION EisaPort[20];
UCHAR InitializationData[60];
CM_EISA_FUNCTION_INFORMATION, *PCM_EISA_FUNCTION_INFORMATION;

CM_EISA_FUNCTION_INFORMATION defines detailed EISA configuration informa
tion returned by HalGetBusData for the input BusDataType EisaConfiguration, or by
HalGetBusDataByOffset for the input BusDataType EisaConfiguration and the Offset
zero, assuming the caller-allocated Buffer is of sufficient Length.

Members
Compressedld
The EISA compressed identification of the device at this slot. The value is identical to the
Compressedld member of the CM_EISA_SLOT _INFORMATION structure.

Chapter 12 System Structures 589

IdSIotFlags1
The EISA slot identification flags.

IdSIotFlags2
The EISA slot identification flags.

MinorRevision
Information supplied by the manufacturer.

MajorRevision
Information supplied by the manufacturer.

Selections[26]
The EISA selections for the device.

FunctionFlags
Indicates which of the members has available information. Callers can use the following
system-defined masks to, determine whether a particular type of configuration information
can be or has been returned by HalGetBusData or HalGetBusDataByOffset:

EISA_FUNCTION_ENABLED
EISA_FREE_FORM_DATA
EISA_HAS_PORT _INIT _ENTRY
EISA_HAS_PORT_RANGE
EISA_HAS_DMA_ENTRY
EISA_HAS_IRQ_ENTRY
EISA_HAS_MEMORY _ENTRY
EISA_HAS_TYPE_ENTRY
EISA_HAS_INFORMATION

The EISA_HAS_INFORMATION mask is a combination of the following:

EISA_HAS_PORT_RANGE
EISA_HAS_DMA_ENTRY
EISA_HAS_IRQ_ENTRY
EISA_HAS_MEMORY _ENTRY
EISA_HAS_ TYPE_ENTRY

TypeString[80]
Specifies the type of device.

590 Part 1 Kernel-Mode Support Routines

EisaMemory[9]
Describes the EISA device memory configuration information, defined as follows:

typedef struct _EISA-MEMORY_CONFIGURATION
EISA_MEMORY_TYPE ConfigurationByte;
UCHAR DataSize;
USHORT AddressLowWord;
UCHAR AddressHighByte;
USHORT MemorySize;

} EISA_MEMORY_CONFIGURATION. *PEISA_MEMORY_CONFIGURATION;

Eisalrq[7]
Describes the EISA interrupt configuration information, defined as follows:

typedef struct _EISA_IRa_CONFIGURATION {
EISA_IRa_DESCRIPTOR ConfigurationByte;
UCHAR Reserved;

} EISA_IRa_CONFIGURATION. *PEISA_IRa_CONFIGURATION;

EisaDma[4]
Describes the EISA DMA configuration information, defined as follows:

typedef struct _EISA_DMA_CONFIGURATION {
DMA_CONFIGURATION_BYTE0 ConfigurationByte0;
DMA_CONFIGURATION_BYTEI ConfigurationBytel;

} EISA_DMA_CONFIGURATION. *PEISA_DMA_CONFIGURATION;

EisaPort[20]
Describes the EISA device port configuration information, defined as follows:

typedef struct _EISA_PORT_CONFIGURATION
EISA_PORT_DESCRIPTOR Configuration;
USHORT PortAddress;

} EISA_PORT_CONFIGURATION. *PEISA_PORT_CONFIGURATION;

InitializationData[60]
Vendor-supplied, device-specific initialization data, if any.

Include
wdm.h or ntddk.h

Comments
The information returned by HalGetBusData or HalGetBusDataByOffset in CM_EISA_
FUNCTION_INFORMATION and/or in the CM_EISA_SLOT_INFORMATION header
immediately preceding it is read-only.

Chapter 12 System Structures 591

See Also
CM_EISA_SLOT_INFORMATION, HalGetBusData, HalGetBusDataByOfTset

typedef struct _CM_EISA_SLOT_INFORMATION
UCHAR ReturnCode:
UCHAR ReturnFlags:
UCHAR MajorRevision:
UCHAR MinorRevision:
USHORT Checksum:
UCHAR NumberFunctions:
UCHAR FunctionInformation:
ULONG Compressedld:
CM_EISA_SLOT_INFORMATION, *PCM_EISA_SLOT_INFORMATION:

CM_EISA_SLOT_INFORMATION defines EISA configuration header information
returned by HalGetBusData for the input BusDataType EisaConfiguration, or by Hal
GetBusDataByOfTset for the input BusDataType EisaConfiguration and the Offset zero,
assuming the caller-allocated Buffer is of sufficient Length.

Members
ReturnCode
Contains a status code if an error occurs when the EISA BIOS is queried. Possible status
codes include the following:

EISA_INVALID_SLOT
EISA_INV ALID _FUNCTION
EISA_INV ALID _CONFIGURATION
EISA_EMPTY _SLOT
EISA_INVALID_BIOS_CALL

ReturnFlags
The return flags.

MajorRevision
Information supplied by the manufacturer.

MinorRevision
Information supplied by the manufacturer.

Checksum
The checksum value, allowing validation of the configuration data.

592 Part 1 Kernel-Mode Support Routines

NumberFunctions
The number at this slot.

Functionlnformation
Whether there is available CM_EISA_FUNCTION_INFORMATION for this slot.

Compressedld
The EISA compressed identification of the device at this slot. This value is identical to the
CompressedId member of the CM_EISA_FUNCTION_INFORMATION structure. This
member can be read to determine whether the caller should call HalGetBusData or Hal
GetBusDataByOffset again with sufficient buffer space to get more detailed CM_EISA_
FUNCTION_INFORMATION for a device it supports.

Include
wdm.h or ntddk.h

Comments
The information returned by HalGetBusData or HalGetBusDataByOffset in CM_EISA_
SLOT_INFORMATION and in CM_EISA_FUNCTION_INFORMATION immediately
following it is read-only.

The driver of an EISA device might call HalGetBusData or HalGetBusDataByOffset
for each slot on each EISA bus in the system, requesting only CM_EISA_SLOT_
INFORMATION in order to find the device(s) it supports by examining the returned
CompressedId values. Then, such a driver could allocate sufficient buffer space to call
HaIGetBusData(ByOffset) again for CM_EISA_SLOT_INFORMATION and CM_
EISA_FUNCTION_INFORMATION at slots where its device(s) can be found.

See Also
CM_EISA_FUNCTION_INFORMATION, HalGetBusData, HalGetBusDataByOffset

typedef struct _CM_FLOPPY_DEVICE_DATA {
USHORT Version;
USHORT Revision;
CHAR Size[8];
ULONG MaxDensity;
ULONG MountDensity;
II
II New data fields for version >= 2.0
II
UCHAR StepRateHeadUnloadTime;

UCHAR HeadLoadTime;
UCHAR MotorOffTime;
UCHAR SectorLengthCode;
UCHAR SectorPerTrack;
UCHAR ReadWriteGapLength;
UCHAR DataTransferLength;
UCHAR FormatGapLength;
UCHAR FormatFillCharacter;
UCHAR HeadSettleTime;
UCHAR MotorSettleTime;
UCHAR MaximumTrackValue;
UCHAR DataTransferRate;

} CM_FLOPPY_DEVICE_DATA. *PCM_FLOPPY_DEVICE_DATA;

Chapter 12 System Structures 593

CM_FLOPPY _DEVICE_DATA defines a device-type-specific data record that is stored
in the \\Registry\Machine\Hardware\Description tree for a floppy controller if the system
can collect this information during the boot process.

Members
Version
The version number of this structure.

Revision
The revision of this structure.

Size[8]
The floppy disk density size.

MaxDensity
The maximum density.

MountDensity
The mount density.

StepRateHeadUnloadTime
The step rate head unload time in milliseconds.

HeadLoadTime
The head load time in milliseconds.

MotorOffTime
The motor off time in seconds.

594 Part 1 Kernel-Mode Support Routines

SectorLengthCode
Indicates the sector size as an exponent in the formula «2**code) * 128).

SectorPerTrack
The number of sectors per track.

ReadWriteGapLength
The read/write gap length, in bytes.

DataTransferLength
The data transfer length, in bytes, not including the synchronization field.

FormatGapLength
The format gap length, in bytes.

FormatFiliCharacter
The format fill character.

HeadSettleTime
The head settle time in milliseconds.

MotorSettleTime
The motor settle time in milliseconds.

MaximumTrackValue
The maximum track number on the media. Track numbers are zero-based values.

DataTransferRate
The value written to the Datarate register before accessing the media.

Include
wdm.h or ntddk.h

See Also
IoQueryDeviceDescription, IoReportResourceUsage, CM_P ARTIAL_RESOURCE_
DESCRIPTOR

CM_FULL_RESOURCE_DESCRIPTOR
typedef struct _CM_FULL_RESOURCE_DESCRIPTOR

INTERFACE_TYPE InterfaceType;
ULONG BusNumber;
CM_PARTIAL_RESOURCE_LIST PartialResourceList;

Chapter 12 System Structures 595

} CM_FULL_RESOURCE_DESCRIPTOR, *PCM_FULL_RESOURCE_DESCRIPTOR;

A CM_FULL_RESOURCE_DESCRIPTOR structure specifies a set of system hardware
resources of various types, assigned to a device that is connected to a specific bus. This
structure is contained within a CM_RESOURCE_LIST structure.

Members
Interface Type
Specifies the type of bus to which the device is connected. This must be one of the types
defined by INTERFACE_TYPE, in wdm.h or ntddk.h. (Not used by WDM drivers.)

BusNumber
The system-assigned, driver-supplied, zero-based number of the bus to which the device is
connected. (Not used by WDM drivers.)

Partial ResourceList
A CM_PARTIAL_RESOURCE_LIST structure.

Include
wdm.h or ntddk.h

See Also
CM_RESOURCE_LIST, CM_PARTIAL_RESOURCE_LIST

typedef struct _CM_INT13_DRIVE_PARAMETER {
USHORT DriveSelect;
ULONG MaxCylinders;
USHORT SectorsPerTrack;
USHORT MaxHeads;
USHORT NumberDrives;

} CM_INT13_DRIVE_PARAMETER, *PCM_INT13_DRIVE_PARAMETER;

CM_INT13_DRIVE_PARAMETER defines a device-type-specific data record that is
stored in the \\Registry\Machine\Hardware\Description tree for a disk controller if the
system can collect this information during the boot process.

596 Part 1 Kernel-Mode Support Routines

Members
DriveSelect
The drive selected value.

MaxCylinders
The maximum number of cylinders.

SectorsPerTrack
The number of sectors per track.

MaxHeads
The maximum number of heads.

NumberDrives
The number of drives.

Include
wdm.h or ntddk.h

See Also
IoQueryDeviceDescription, IoReportResourceUsage

CM KEYBOARD_DEVICE_DATA
typedef struct _CM_KEYBOARD_DEVICE_DATA {

USHORT Version;
USHORT Revision;
UCHAR Type;
UCHAR Subtype;
USHORT KeyboardFlags;
CM_KEYBOARD_DEVICE_DATA. *PCM_KEYBOARD_DEVICE_DATA;

CM_KEYBOARD_DEVICE_DATA defines a device-type-specific data record that is
stored in the \\Registry\Machine\Hardware\Description tree for a keyboard peripheral
if the system can collect this information during the boot process.

Members
Version
The version number of this structure.

Chapter 12 System Structures 597

Revision
The revision of this structure.

Type
The type of the keyboard.

Subtype
The subtype of the keyboard.

Keyboard Flags
Defined by x86 BIOS INT 16h, function 02 as:

Bit Defined As

7 Insert on.

6 Caps Lock on.

5 NumLockon.

4 Scroll Lock on.

3 Alt Key is down.

2 Ctrl Key is down.

1 Left shift key is down.

0 Right shift key is down.

Include
wdm.h or ntddk.h

See Also
IoQueryDeviceDescription, IoReportResourceUsage, CM_P ARTIAL_RESOURCE_
DESCRIPTOR

typedef struct _CM_MCA_POS_DATA {
USHORT Adapterld;
UCHAR PosDatal;
UCHAR PosData2;
UCHAR PosData3;
UCHAR PosData4;

} CM_MCA_POS_DATA, *PCM_MCA_POS_DATA;

CM_MCA_POS_DATA defines IBM-compatible MCA POS configuration information
for a slot.

598 Part 1 Kernel-Mode Support Routines

Include
wdm.h or ntddk.h

See Also
HalGetBusData, HalGetBusDataByOffset

typedef struct _CM_PARTIAL_RESOURCE_DESCRIPTOR
UCHAR Type;
UCHAR ShareDisposition;
USHORT Flags;
union {

struct {
PHYSICAL_ADDRESS Start;
ULONG Length;

} Generic;
struct {

PHYSICAL_ADDRESS Start;
ULONG Length;

} Port;
struct {

ULONG Level;
ULONG Vector;
ULONG Affinity;

Interrupt;
struct {

PHYSICAL_ADDRESS Start;
ULONG Length;

} Memory;
struct {

ULONG Channel;
ULONG Port;
ULONG Reserved!;

} Dma;
struct {

ULONG Data[3];
} DevicePrivate;
struct {

ULONG Start;
ULONG Length;
ULONG Reserved;

BusNumber;
struct {

ULONG DataSize;
ULONG Reserved!;

u;

ULONG Reserved2;
} DeviceSpecificData;

Chapter 12 System Structures 599

The CM_PARTIAL_RESOURCE_DESCRIPTOR structure specifies one or more system
hardware resources, of a single type, assigned to a device. This structure is used to create an
array within a CM_PARTIAL_RESOURCE_LIST structure.

Members
Type
Identifies the resource type. The constant value specified for Type indicates which structure
within the u union is valid, as indicated in the following table. (These flags are used within
both CM_PARTIAL_RESOURCE_DESCRIPTOR and IO_RESOURCE_DESCRIPTOR
structures, except where noted.)

Type Value

CmResourceTypePort

CmResourceTypelnterrupt

CmResourceTypeMemory

CmResourceTypeDma

CmResourceTypeDevicePrivate

CmResourceTypeBusNumber

CmResourceTypeDeviceSpecific

CmResourceTypePcCardConfig

CmResourceTypeMfCardConfig

CmResourceTypeConfigData

CmResourceTypeNonArbitrated

ShareDisposition

u Member Substructure

u.Port

u.Interrupt

u.Memory

u.Dma

u.DevicePrivate

u.BusNumber

u.DeviceSpecificData (Not used within
IO_RESOURCE_DESCRIPTOR.)

u.DevicePrivate

u.DevicePrivate

Reservedfor system use.

Not used.

Indicates whether the described resource can be shared. Valid constant values are listed in
the following table.

Value

CmResourceShareDeviceExclusive

CmResourceShareDriverExclusive

CmResourceShareShared

Definition

The device requires exclusive use of the resource.

The driver requires exclusive use of the resource.
(Not supported for WDM drivers.)

The resource can be shared without restriction.

600 Part 1 Kernel-Mode Support Routines

Flags
Contains bit flags that are specific to the resource type, as indicated in the following table.
Flags can be OR'ed together as appropriate.

Resource Type Flag

CmResourceTypePort

CM_RESOURCE_PORT _MEMORY

CM_RESOURCE_PORT_10_BIT_
DECODE

CM_RESOURCE_PORT_12_BIT_
DECODE

CmResourceTypePort

CM_RESOURCE_PORT_16_BIT_
DECODE

CM_RESOURCE_PORT_POSITIVE_
DECODE

CM_RESOURCE_PORT_PASSIVE_
DECODE

CM_RESOURCE_PORT_ WINDOW_
DECODE

CmResourceTypelnterrupt

CM_RESOURCE_INTERRUPT_LEVEL_
SENSITIVE

CM_RESOURCE_INTERRUPT_
LATCHED

CmResourceTypeMemory

CM_RESOURCE_MEMORY_READ_
WRITE

CM_RESOURCE_MEMORY_READ_
ONLY

CM_RESOURCE_MEMORY _ WRITE_
ONLY

CM_RESOURCE_MEMORY_
PREFETCHABLE

Definition

The device is accessed in
memory address space.

The device is accessed in 10
address space.

The device decodes 10 bits of the
port address.

The device decodes 12 bits of the
port address.

The device decodes 16 bits of the
port address.

The device uses "positive
decode" instead of "subtractive
decode". (In general, PCI devices
use positive decode and ISA
buses use subtractive decode.)

The device decodes the port but
the driver does not use it.

Reserved for system use.

The IRQ line is level-triggered.
(These IRQs are usually
shareable.)

The IRQ line is edge-triggered.

The memory range is readable
and writable.

The memory range is read-only.

The memory range is write-only.

The memory range is pre
fetchable.

Resource Type Flag

CM_RESOURCE_MEMORY _
COMBINEDWRITE

CM_RESOURCE_MEMORY _24

CM_RESOURCE_MEMORY_
CACHEABLE

CmResourceTypeDma

CM_RESOURCE_DMA_8

CM_RESOURCE_DMA_16

CmResourceTypeDma

u.Generic
Not used.

u.Port

CM_RESOURCE_DMA_32

CM_RESOURCE_DMA_8_AND_16

CM_RESOURCE_DMA_BUS_MASTER

CM_RESOURCE_DMA_TYPE_A

CM_RESOURCE_DMA_TYPE_B

CM_RESOURCE_DMA_TYPE_F

Chapter 12 System Structures 601

Definition

Combined-write caching is
allowed.

The device uses 24-bit
addressing.

The memory range is cacheable.

8-bit DMA channel

16-bit DMA channel

32-bit DMA channel

8-bit and 16-bit DMA channel

The device supports bus master
DMA transfers.

Type A DMA

TypeBDMA

TypeFDMA

Specifies a range of I/O port addresses, using the following members:

Start
For raw resources: Bus-relative physical address of the lowest of a range of contiguous
I/O port addresses allocated to the device.

For translated resources: System physical address of the lowest of a range of contiguous I/O
port addresses allocated to the device.

Length
The length, in bytes, of the range of allocated I/O port addresses.

u.lnterrupt
Specifies an interrupt vector and level, using the following members:

Level
For raw resources: The device's bus-specific IRQL (if appropriate for the platform and bus).

For translated resources: The DIRQL assigned to the device.

602 Part 1 Kernel-Mode Support Routines

Vector
For raw resources: The device's bus-specific interrupt vector (if appropriate for the platform
and bus).

For translated resources: The global system vector assigned to the device.

Affinity
A bit mask value indicating the set of processors the device can interrupt. If the device can
interrupt any processor, set this to -1.

u.Memory
Specifies a range of memory addresses, using the following members:

Start
For raw resources: Bus-relative physical address of the lowest of a range of contiguous
memory addresses allocated to the device.

For translated resources: System physical address of the lowest of a range of contiguous
memory addresses allocated to the device.

Length
The length, in bytes, of the range of allocated memory addresses.

u.Dma
Specifies a DMA setting, using one of the following members:

Channel
The number of the DMA channel on a system DMA controller that the device can use.

Port
The number of the DMA port that an MeA-type device can use.

Reserved1
Not used.

u. DevicePrivate
Reserved for system use.

u.BusNumber
Specifies bus numbers, using the following members:

Start
The lowest-numbered of a range of contiguous buses allocated to the device.

Length
The number of buses allocated to the device.

Reserved
Not used.

u.DeviceSpecificData

Chapter 12 System Structures 603

Specifies the size of a device-specific, private structure that is appended to the end of the
CM_PARTIAL_RESOURCE_DESCRIPTOR structure. If u.DeviceSpecificData is used,
the CM_PARTIAL_RESOURCE_DESCRIPTOR structure must be the last one in the CM_
PARTIAL_RESOURCE_LIST array.

DataSize
The number of bytes appended to the end of the CM_PARTIAL_RESOURCE_
DESCRIPTOR structure.

Reserved 1
Not used.

Reserved2
Not used.

Examples of device-specific structures include:

CM_FLOPPY _DEVICE_DATA
CM_KEYBOARD_DEVICE_DATA
CM_SCSI_DEVICE~DAT A
CM_SERIAL_DEVICE_DATA

Include
wdm.h or ntddk.h

Comments
A CM_PARTIAL_RESOURCE_DESCRIPTOR structure can describe either a raw (bus
relative) resource or a translated (system physical) resource, depending on the routine or IRP
with which it is being used (see See Also).

See Also
CM_RESOURCE_LIST, CM_FULL_RESOURCE_DESCRIPTOR,
CM_P ARTIAL_RESOURCE_LIST, CM_FLOPPY _DEVICE_DATA, CM_KEYBOARD_
DEVICE_DATA, CM_SCSI_DEVICE_DATA, CM_SERIAL_DEVICE_DAT A,
IoConnectInterrupt, IoGetDeviceProperty, IoReportResourceForDetection,
IO_RESOURCE_DESCRIPTOR, IRP _MN_START_DEVICE

604 Part 1 Kernel-Mode Support Routines

typedef struct _CM_PARTIAL_RESOURCE_LIST
USHORT Version;
USHORT Revision;
ULONG Count;
CM_PARTIAL_RESOURCE_DESCRIPTOR PartialDescriptors[l];

} CM_PARTIAL_RESOURCE_LIST, *PCM_PARTIAL_RESOURCE_LIST;

The CM_PARTIAL_RESOURCE_LIST structure specifies a set of system hardware
resources, of various types, assigned to a device. This structure is contained within a CM_
FULL_RESOURCE_DESCRIPTOR structure.

Members
Version
The version number of this structure. This value should be 1.

Revision
The revision of this structure. This value should be 1.

Count
The number of elements contained in the PartialDescriptors array. For WDM drivers, this
value is always 1.

Partial Descriptors
An array of CM_PARTIAL_RESOURCE_DESCRIPTOR structures.

Include
wdm.h or ntddk.h

See Also
CM_FULL_RESOURCE_DESCRIPTOR, CM_PARTIAL_RESOURCE_DESCRIPTOR

typedef struct _CM_RESOURCE_LIST {
ULONG Count;
CM_FULL_RESOURCE_DESCRI PTOR L i st[1] ;
CM_RESOURCE_LIST, *PCM_RESOURCE_LIST;

The CM_RESOURCE_LIST structure specifies all of the system hardware resources
assigned to a device.

Members
Count

Chapter 12 System Structures 605

The number of elements contained in the List array. For WDM drivers, this value is
always 1.

List
An array of CM_FULL_RESOURCE_DESCRIPTOR structures.

Include
wdm.h or ntddk.h

Comments
The CM_RESOURCE_LIST structure defines the format used to store device resource lists
in the registry. For more information about hardware resource allocation, see Hardware
Resources in the Plug and Play, Power Management, and Setup Design Guide.

See Also
CM_RESOURCE_LIST, CM_FULL_RESOURCE_DESCRIPTOR, CM_PARTIAL_
RESOURCE_LIST, CM_FLOPPY _DEVICE_DATA, CM_KEYBOARD _DEVICE_
DATA, CM_SCSI_DEVICE_DATA, CM_SERIAL_DEVICE_DATA,
IoConnectInterropt, IoGetDeviceProperty, IoReportResoorceForDetection,
IRP _MN_START_DEVICE

typedef struct _CM_SCSI_DEVICE_DATA
USHORT Version;
USHORT Revision;
UCHAR Hostldentifier;

} CM_SCSI_DEVICE_DATA. *PCM_SCSI_DEVICE_DATA;

CM_SCSI_DEVICE_DATA defines a device-type-specific data record that is stored in the
\\Registry\Machine\Hardware\Description tree for a SCSI HBA if the system can collect
this information during the boot process.

Members
Version
The version number of this structure.

606 Part 1 Kernel-Mode Support Routines

Revision
The revision for this structure.

Hostldentifier
The SCSI bus identifier used by the ARC firmware.

Include
wdm.h or ntddk.h

See Also
IoQueryDeviceDescription, IoReportResourceUsage, CM_PARTIAL_RESOURCE_
DESCRIPTOR

typedef struct _CM_SERIAL_DEVICE_DATA {
USHORT Versi on; ,
USHORT Revision;
ULONG BaudClock;

} CM_SERIAL_DEVICE_DATA, *PCM_SERIAL_DEVICE_DATA;

CM_SERIAL_DEVICE_DATA defines a device-type-specific data record that is stored in
the \\Registry\Machine\Hardware\Description tree for a serial controller if the system can
collect this information during the boot process.

Members
Version
The version number of this structure.

Revision
The revision of this structure.

BaudClock
The clock baud rate, in MHz, at which data is transferred.

Include
wdm.h or ntddk.h

See Also
IoQueryDeviceDescription, IoReportResourceUsage, CM_P ARTIAL_RESOURCE_
DESCRIPTOR

Chapter 12 System Structures 607

CONTROLLER_OBJECT
A controller object represents a hardware adapter or controller with homogenous devices
that are the actual targets for 110 requests. A controller object can be used to synchronize a
device driver's 110 to the target devices through its hardware adapter/controller.

A controller object is partially opaque. Driver writers must knOw'1 about a certain field
associated with the controller object because their drivers access this field through the con
troller object pointer returned by IoCreateController. The following field in a controller
object is accessible to the creating driver.

Accessible Fields
PVOID ControlierExtension
Points to the controller extension. The structure and contents of the controller extension
are driver-defined. The size is driver-determined, specified in the driver's call to IoCreate
Controller. Usually, drivers maintain common state about 110 operations in the controller
extension and device-specific state about 110 for a target device in the corresponding
device extension.

Include
ntddk.h

Comments
Most driver routines that process IRPs are given a pointer. to the target device object. Con
sequently, device drivers that use controller objects frequently store the controller object
pointer returned by IoCreateController in each device extension.

Note that a controller object has no name so it cannot be the target of an 110 request, and
higher-level drivers cannot connnect or attach their device objects to a device driver's con
troller object.

Undocumented fields within a controller object should be considered inaccessible. Drivers
with dependencies on object field locations or access to undocumented fields might not
remain portable and interoperable with other drivers over time.

See Also
IoCreateController

608 Part 1 Kernel-Mode Support Routines

DEVICE_DESCRIPTION
typedef struct _DEVICE_DESCRIPTION

ULONG Version;
BOOLEAN Master;
BOOLEAN ScatterGather;
BOOLEAN DemandMode;
BOOLEAN AutoInitialize;
BOOLEAN Dma32BitAddresses;
BOOLEAN IgnoreCount;
BOOLEAN Reservedl;
BOOLEAN Dma64BitAddresses;
ULONG BusNumber;
ULONG DmaChannel;
INTERFACE_TYPE InterfaceType;
DMA_WIDTH DmaWidth;
DMA_SPEED DmaSpeed;
ULONG MaximumLength;
ULONG DmaPort;
DEVICE_DESCRIPTION, *PDEVICE_DESCRIPTION;

DEVICE_DESCRIPTION describes the attributes of the physical device for which a driver
is requesting a DMA object.

Members
Version
Specifies the version of this structure. Must be DEVICE_DESCRIPTION_ VERSION or, if
the IgnoreCount field is TRUE, must be DEVICE_DESCRIPTION_ VERSIONl.

Master
Indicates whether the device runs as a busmaster adapter (TRUE) or a slave DMA device
(FALSE).

ScatterGather
Indicates whether the device supports scatter/gather DMA.

DemandMode
Indicates whether to use the system DMA controller's demand mode. Not used for busmaster
DMA.

Autoinitialize
Indicates whether to use the system DMA controller's autoinitialize mode. Not used for bus
masterDMA.

Chapter 12 System Structures 609

Dma32BitAddresses
Specifies the use of 32-bit addresses for DMA operations.

IgnoreCount
Indicates whether to ignore the DMA controller's transfer counter. Set to TRUE if the
DMA controller in this platform does not maintain an accurate transfer counter, and there
fore requires a workaround. If TRUE, Version must be set to DEVICE_DESCRIPTION_
VERSIONl.

Reserved1
Reserved for system use. Must be FALSE.

Dma64BitAddresses
Specifies the use of 64-bit addresses for DMA operations.

BusNumber
Specifies the system-assigned value for the 110 bus. Not used by WDM drivers.

DmaChannel
Specifies the channel number to which a slave device is attached.

InterfaceType
Specifies the type of 110 bus involved in the DMA operation.

DmaWidth
Specifies the DMA data size for system DMA. Possible values are Width8Bits, Width-
16Bits, and Width32Bits. Not used for busmaster DMA.

DmaSpeed
Specifies one of the following speeds for system DMA: Compatible, TypeA, TypeB,
TypeC, or TypeF. Not used for busmaster DMA.

MaximumLength
Specifies the maximum number of bytes the device can handle in each DMA operation.

DmaPort
Specifies the Microchannel-type bus port number. This parameter is obsolete, but is retained
in the structure for compatibility with legacy drivers.

Include
wdm.h or ntddk.h

610 Part 1 Kernel-Mode Support Routines

Comments
Drivers of devices that use DMA to transfer data use this structure to pass device infor
mation when requesting a DMA object. A driver should first zero-initialize the structure,
then fill in the information for its device.

The InterfaceType specifies the bus interface. At present, its value can be one of the
following: Internal, Isa, Eisa, or PCIBus. Additional types of buses will be supported in
future versions of the operating system. The upper bound on the types of buses supported
is always MaximumInterfaceType.

Setting Version to DEVICE_DESCRIPTION_ VERSIONI and IgnoreCount to TRUE
indicates that the current platform's DMA controller cannot be relied on to maintain an
accurate transfer counter. In platforms with such a DMA controller, the system ignores the
DMA counter but must take extra precautions to maintain data integrity during transfer
operations. Using this workaround to compensate for a deficient DMA controller degrades
the speed of DMA transfers.

A driver should specify TypeF as the DmaSpeed value only if the machine's ACPI BIOS
supports it.

See Also
IoGetDmaAdapter

DEVICE_OBJECT
A device object represents a logical, virtual, or physical device for which a loaded driver
handles 110 requests. Every kernel-mode driver must call IoCreateDevice one or more
times from its AddDevice routine to create its device object(s).

A device object is partially opaque. Driver writers must know about certain fields and
system-defined symbolic constants associated with device objects because their drivers
must access these fields through the device object pointer returned by IoCreateDevice
and passed to most standard driver routines. The following fields in device objects are
accessible to drivers.

Accessible Fields
PDRIVER_ OBJECT DriverObject
Points to the driver object, representing the driver's loaded image, that was input to the
DriverEntry and AddDevice routines.

PDEVICE_ OBJECT NextDevice
Points to the next device object, if any, created by the same driver. The 110 Manager updates
this list at each successful call to IoCreateDevice. A driver that is being unloaded must

Chapter 12 System Structures 611

walk the list of its device objects and delete them. A driver that re-creates its device objects
dynamically also uses this field.

PIRP Currentlrp
Points to the current IRP if the driver has a Startlo routine whose entry point was set in the
driver object and if the driver is currently processing IRP(s). Otherwise, this field is NULL.

ULONG Flags
Device drivers OR this field in their newly created device objects with one or more of the
following system-defined values:

Value Description

DO_BUFFERED_IO or DO_DlRECT_IO Higher-level drivers OR the field with the same value as
the next-lower driver, except possibly for highest-level
drivers.

DO_BUS_ENUMERATED_DEVICE Bus drivers set this flag in the PD~ of each device
they enumerate. This flag pertains only to the PD~;
it must not be set in an FDO or filter DO. Therefore,
higher-level drivers layered over a bus driver must not
propagate this value up the device stack.

DO_DEVICE_INITIALIZING The I/O Manager sets this flag when it creates the
device object.

DO_ VERIFY_VOLUME

A device function or filter driver clears the flag in its
AddDevice routine, after attaching the device object to
the device stack, establishing the device power state,
and ORing the field with one of the power flags (if
necessary). The PnP Manager checks that the flag is
clear after return from AddDevice.

Drivers of devices that require inrush current when
powering on must set this flag. A driver cannot set both
this flag and DO_POWER_PAGABLE.

Windows® 2000 drivers that are pageable, are not part
of the paging path, and do not require inrush current
must set this flag. The system calls such drivers at IRQL
PASSIVE_LEVEL. Drivers cannot set both this flag
and DO_POWER_INRUSH.

All WDM and Windows 98 drivers must set DO_
POWER_PAGABLE.

Removable-media drivers set this flag while processing
transfer requests. Such drivers should also check for
this flag in the target for a transfer request before
transferring any data; see the Kernel-Mode Drivers
Design Guide for details.

612 Part 1 Kernel-Mode Support Routines

ULONG Characteristics
Set when a driver calls 10CreateDevice with one of the following values, as appro
priate: FILE_REMOV ABLE_MEDIA, FILE_READ _ONL Y _DEVICE, FILE_FLOPPY_
DISKETTE, FILE_ WRITE_ONCE_MEDIA, FILE_DEVICE_SECURE_OPEN
(Windows® 2000 and Windows NT® SP5 only).

PVOID DeviceExtension
Points to the device extension. The structure and contents of the device extension are driver
defined. The size is driver-determined, specified in the driver's call to 10CreateDevice.
Most driver routines that process IRPs are given a pointer to the device object so the device
extension is usually every driver's primary global storage area and frequently a driver's only
global storage area for objects, resources, and any state the driver maintains about the 110
requests it handles.

DEVICE_TYPE DeviceType
Set when a driver calls 10CreateDevice as appropriate for the type of underlying device.
A driver writer can define a new FILE_DEVICE_XXX with a value in the customer range
32768 to 65535 if none of the system-defined values describes the type of the new device.
For a list of the system-defined values, see the FILE_DEVICE_XXX in Determining
Required I/O Support by Device Object Type.

CCHAR StackSize
Specifies the minimum number of stack locations in IRPs to be sent to this driver. 10-
CreateDevice sets this field to one in newly created device objects; lowest-level drivers
can therefore ignore this field. The 110 manager automatically sets the StackSize field in
a higher-level driver's device object to the appropriate value if the driver calls loAttach
Device or loAttachDeviceToDeviceStack. Only a higher-level driver that chains itself over
another driver with loGetDeviceObjectPointer must explicitly set the value of StackSize
in its own device object(s) to (1 + the StackSize value of the next-lower driver's device
object).

ULONG AlignmentRequirement
Some higher-level drivers, such as a class driver layered over a corresponding port driver,
that call 10GetDeviceObjectPointer reset this field in their device objects to the value of
the next-lower driver's device object. Other higher-level drivers set this field at the discre
tion of the driver designer or leave it as set by the 110 Manager. Each device driver sets this
field in its newly created device object(s) to the greater of (the alignment requirement of the
device -1) or (the initialized value of this field), which can be one of the following system
defined values:

FILE_BYTE_ALIGNMENT
FILE_WORD _ALIGNMENT
FILE_LONG_ALIGNMENT

FILE_QUAD_ALIGNMENT
FILE_aCTA_ALIGNMENT
FILE_32_BYTE_ALIGNMENT
FILE_64_BYTE_ALIGNMENT
FILE_128_BYTE_ALIGNMENT
FILE_512_BYTE_ALIGNMENT

Include
wdm.h or ntddk.h

Comments

Chapter 12 System Structures 613

The DeviceType range 0 to 32767 is reserved for use by Microsoft®.

Undocumented fields within a device object should be considered inaccessible. Drivers with
dependencies on object field locations or access to undocumented fields might not remain
portable and interoperable with other drivers over time.

The system-supplied video port driver sets up the fields of the device objects it creates
on behalf of video miniport drivers. For more information about these video drivers, see the
Graphics Drivers Design Guide.

The system-supplied SCSI port driver sets up the fields of the device objects it creates
on behalf of HBA miniport drivers. For more information about these SCSI drivers, see the
Kernel-Mode Drivers Design Guide and Part 3 of this volume.

The system-supplied NDIS library sets up the fields of the device objects it creates on
behalf of netcard drivers. For more information about NDIS drivers, see the Network
Drivers Design Guide.

See Also
DRIVER_OBJECT, IoAttachDevice, IoAttachDeviceToDeviceStack, IoCreateDevice,
IoDeieteDevice, IoGetDeviceObjectPointer

typedef struct _DMA_ADAPTER
USHORT Version;
USHORT Size;
PDMA_OPERATIONS DmaOperations;

DMA_ADAPTER describes a system-defined interface to a DMA controller for a given
device. A driver calls IoGetDmaAdapter to obtain this structure.

614 Part 1 Kernel-Mode Support Routines

Members
Version
Specifies the version of this structure.

Size
Specifies the size, in bytes, of this structure.

DmaOperations
Points to a DMA_OPERATIONS structure that contains pointers to DMA adapter functions.

Include
wdm. h or ntddk.h

Comments
Drivers for devices that use DMA to transfer data use this structure to obtain the addresses
of functions that enable use of a DMA controller.

See Also
IoGetDmaAdapter, DMA_ OPERATIONS

DMA_ OPERATIONS
typedef struct _DMA_OPERATIONS

ULONG Size;
PPUT_DMA_ADAPTER PutDmaAdapter;
PALLOCATE_COMMON_BUFFER AllocateCommonBuffer;
PFREE_COMMON_BUFFER FreeCommonBuffer;
PALLOCATE_ADAPTER-CHANNEL AllocateAdapterChannel;
PFLUSH_ADAPTER_BUFFERS FlushAdapterBuffers;
PFREE_ADAPTER_CHANNEL FreeAdapterChannel;
PFREE_MAP_REGISTERS FreeMapRegisters;
PMAP_TRANSFER MapTransfer;
PGET_DMA_ALIGNMENT GetDmaAlignment;
PREAD_DMA_COUNTER ReadDmaCounter;
PGET_SCATTER-GATHER_LIST GetScatterGatherList;
PPUT_SCATTER-GATHER-LIST PutScatterGatherList;
DMA_OPERATIONS, *PDMA_OPERATIONS ;

DMA_ OPERATIONS provides a table of pointers to functions that control the operation of
a DMA controller.

Members
Size

Chapter 12 System Structures 615

Specifies the size, in bytes, of the DMA_ OPERATIONS structure.

PutDmaAdapter
Points to a system-defined routine to free a DMA_ADAPTER structure. See PutDma
Adapter for further information.

AllocateCommonBuffer
Points to a system-defined routine to allocate a physically contiguous DMA buffer. See
AllocateCommonBuffer for further information.

FreeCommonBuffer
Points to a system-defined routine to free a physically contiguous DMA buffer previously
allocated by AllocateCommonBuffer. See FreeCommonBuffer for further information.

AllocateAdapterChannel
Points to a system-defined routine to allocate a channel for DMA operations. See Allocate
AdapterChanneI for further information.

FI ushAdapterBuffers
Points to a system-defined routine to flush data from the system or busmaster adapter's
internal cache after a DMA operation. See FlushAdapterBuffers for further information.

FreeAdapterChannel
Points to a system-defined routine to free a channel previously allocated for DMA opera
tions by AllocateAdapterChannel. See FreeAdapterChanneI for further information.

FreeMapRegisters
Points to a system-defined routine to free map registers allocated for DMA operations. See
FreeMapRegisters for further information.

MapTransfer
Points to a system-defined routine to begin a DMA operation. See MapTransfer for further
information.

GetDmaAlignment
Points to a system-defined routine to obtain the DMA alignment requirements of the con
troller. See GetDmaAlignment for further information.

616 Part 1 Kernel-Mode Support Routines

ReadDmaCounter
Points to a system-defined routine to obtain the current transfer count for a DMA operation.
See ReadDmaCounter for further information.

GetScatterGatherList
Points to a system-defined routine that allocates map registers and creates a scatter/gather
list for DMA. See GetScatterGatherList for further information.

PutScatterGatherList
Points to a system-defined routine that frees map registers and a scatter/gather list after a
DMA operation is complete. See PutScatterGatherList for further information.

Include
wdm. h or ntddk. h

Comments
All members of this structure, with the exception of Size, are pointers to functions that
drivers use to undertake DMA operations for their device. Drivers obtain these pointers by
calling IoGetDmaAdapter.

See Also
AllocateAdapterChannel, AllocateCommonBuffer, FreeAdapterChannel,
FreeCommonBuffer, FreeMapRegisters, FlushAdapterBuffers, GetDmaAlignment,
GetScatterGatherList, IoGetDmaAdapter, MapTransfer, PutDmaAdapter,
PutScatterGatherList, ReadDmaCounter

DRIVER_OBJECT
Each driver object represents the image of a loaded kernel-mode driver. A pointer to the
driver object is an input parameter to a driver's DriverEntry, AddDevice, and optional
Reinitialize routines and to its Unload routine, if any.

A driver object is partially opaque. Driver writers must know about certain fields of a driver
object to initialize a driver and to unload it if the driver is unloadable. The following fields
in the driver object are accessible to drivers.

Accessible Fields
PDEVICE_OBJECT DeviceObject
Points to the device object(s) created by the driver. This field is automatically updated when
the driver calls IoCreateDevice successfully. A driver can this field and the NextDevice

Chapter 12 System Structures 617

field of the DEVICE_OBJECT to step through a list of all the device objects that the driver
created.

PUNICODE_STRING HardwareDatabase
Points to the \Registry\Machine\Hardware path to the hardware configuration information
in the registry.

PFAST JO _DISPATCH FastloDispatch
Points to a structure defining the driver's fast I/O entry points. This field is used only by
FSDs and network transport drivers.

PDRIVERJNITIALIZE Driverlnit
Is the entry point for the DriverEntry routine, which is set up by the I/O Manager.
A DriverEntry routine is declared as follows:

NTSTATUS
(*PDRIVER_INITIALIZE) (

IN PDRIVER_OBJECT DriverObject.
IN PUNICODE_STRING RegistryPath
) ;

PDRIVER_ STARTIO DriverStartlo
Is the entry point for the driver's StartIo routine, if any, which is set by the DriverEntry
routine when the driver initializes. If a driver has no StartIo routine, this field is NULL.
A StartIo routine is declared as follows:

VOID
(*PDRIVER_STARTIO) (

IN PDEVICE_OBJECT DeviceObject.
IN PIRP Irp
) ;

PDRIVER_UNLOAD DriverUnload
Is the entry point for the driver's Unload routine, if any, which is set by the DriverEntry
routine when the driver initializes. If a driver has no Unload routine, this field is NULL.
An Unload routine is declared as follows:

VOID
(*PDRIVER_UNLOAD) (

IN PDRIVER-OBJECT DriverObject
) ;

PDRIVER_DISPATCH MajorFunction[IRP _MJ_MAXIMUM_FUNCTION+ 1]
Is an array of one or more entry points for the driver's Dispatch routines. Each driver must
set at least one Dispatch entry point in this array for the IRP _MJ _XXX requests that the

618 Part 1 Kernel·Mode Support Routines

driver handles. Any driver can set as many separate Dispatch entry points as the IRP _MJ_
XXX codes that the driver handles. Each Dispatch routine is declared as follows:

NTSTATUS
(*PDRIVER_DISPATCH) (

Include

IN PDEVICE_OBJECT DeviceObject.
IN PIRP Irp
) ;

wdm.h or ntddk.h

Comments
Each kernel-mode driver's initialization routine should be named DriverEntry so the
system will load the driver automatically. If this routine's name is something else, the driver
writer must define the name of the initialization routine for the linker; otherwise, the OS
loader or I/O Manager cannot find the driver's transfer address. The names of other standard
driver routines can be chosen at the discretion of the driver writer.

A driver must set its Dispatch entry point(s) in the driver object that is passed in to the
DriverEntry routine when the driver is loaded. A device driver must set one or more
Dispatch entry points for the IRP _MJ_XXX that any driver of the same type of device is
required to handle. A higher-level driver must set one or more Dispatch entry points for all
the IRP _MJ_XXX that it must pass on to the underlying device driver. Otherwise, a driver is
not sent IRPs for any IRP _MJ_XXX for which it does not set up a Dispatch routine in the
driver object. For more information about the set of IRP _MJ_XXX that drivers for different
types of underlying devices are required to handle, see IRP Function Codes and IOCTLS.

The DriverEntry routine also sets the driver's Startlo and/or Unload entry points, if any,
in the driver object.

The HardwareDatabase string can be used by device drivers to get hardware configuration
information from the registry when the driver is loaded. A driver is given read-only access
to this string.

The RegistryPath input to the DriverEntry routine points to the \Registry\Machine\
System\CurrentControlSet\Services\DriverName key, where the value entry of Driver
Name identifies the driver. As for the HardwareDatabase in the input driver object, a
driver is given read-only access to this string.

Undocumented fields within a driver object should be considered inaccessible. Drivers with
dependencies on object field locations or access to undocumented fields might not remain
portable and interoperable with other drivers over time.

See Also
IoCreateDevice, IoDeleteDevice

FILE_ALIGNMENT _INFORMATION
typedef struct _FILE_ALIGNMENT_INFORMATION

ULONG AlignmentRequirement;
} FILE_ALIGNMENT_INFORMATION;

Members
AlignmentRequirement

Chapter 12 System Structures 619

Is the buffer alignment required by the underlying device. For a list of system-defined
values, see DEVICE_OBJECT.

Include
wdm.h or ntddk.h

See Also
DEVICE_OBJECT, ZwQuerylnformationFile, ZwSetlnformationFile

FILE_BASIC _INFORMATION
typedef struct FILE_BASIC_INFORMATION

LARGE_INTEGER CreationTime;
LARGE_INTEGER LastAccessTime;
LARGE_INTEGER LastWriteTime;
LARGE_INTEGER ChangeTime;
ULONG FileAttributes;
FILE_BASIC_INFORMATION, *PFILE_BASIC_INFORMATION;

Members
CreationTime
The time that the file was created.

LastAccessTime
The last time that the file was accessed.

LastWriteTime
The last time that the file was written to.

620 Part 1 Kernel-Mode Support Routines

ChangeTime
The last time the file was changed.

FileAttributes
The file attributes, which can be any valid combination of the following:

FILE_A TTRIBUTE_READONL Y
FILE_ATTRIBUTE_HIDDEN
FILE_ATTRIBUTE_SYSTEM
FILE_ATTRIBUTE_DIRECTORY
FILE_A TTRIBUTE_ARCHIVE
FILE_ATTRIBUTE_NORMAL
FILE_A TTRIBUTE_ TEMPORARY
FILE_ATTRIBUTE_ATOMIC_WRITE
FILE_A TTRIBUTE_XACTION_ WRITE
FILE_ATTRIBUTE_ COMPRESSED
FILE_ATTRIBUTE_HAS_EMBEDDING

Include
wdm.h or ntddk.h

Comments
FILE_ATTRIBUTE_NORMAL can neither be set nor returned in combination with any
other attributes. All other FileAttributes values override this attribute.

All dates and times are in system-time format. Absolute system time is the number of
100-nanosecond intervals since the start of 1601.

See Also
KeQuerySystemTime, ZwCreateFile, ZwQuerylnformationFile, ZwSetInformationFile

FILE_DISPOSITION_INFORMATION
typedef struct _FILE_DISPOSITION_INFORMATION {

BOOLEAN DeleteFile:
} FILE_DISPOSITION_INFORMATION;

Members
DeleteFile
If set to TRUE, delete the file when it is closed.

Chapter 12 System Structures 621

Include
wdm.h or ntddk.h

Comments
The caller must have DELETE access to a given file in order to call ZwSetInformationFile
with DeleteFile set to TRUE in this structure. Subsequently, the only legal operation by
such a caller is to close the open file handle.

A file marked for deletion is not actually deleted until all open handles for the file object
have been closed and the link count for the file is zero.

See Also
ZwClose, ZwSetInformationFile

typedef struct _FILE_END_OF_FILE_INFORMATION
LARGE_INTEGER EndOfFile;

} FILE_END_OF_FILE_INFORMATION;

Members
EndOfFile
The absolute new end of file position as a byte offset from the start of the file.

Include
wdm.h or ntddk. h

Comments
EndOfFile specifies the byte offset to the end of the file. Because this value is zero-based, it
actually refers to the first free byte in the file: that is, it is the offset to the byte immediately
following the last valid byte in the file.

See Also
ZwQuerylnformationFile, ZwSetInformationFile

typedef struct _FILE_FS_DEVICE_INFORMATION
DEVICE_TYPE DeviceType;
ULONG Characteristics;

} FILE_FS_DEVICE_INFORMATION, *PFILE_FS_DEVICE_INFORMATION;

622 Part 1 Kernel-Mode Support Routines

FILE_FS_DEVICE_INFORMATION provides file system device information about the
type of device object associated with a file object.

Members
DeviceType
Set when a driver calls IoCreateDevice as appropriate for the type of underlying device.
A driver writer can define a new FILE_DEVICE_XXX with a value in the customer range
32768 to 65535 if none of the system-defined values describes the type of a new device.
For a list of the system-defined values, see Determining Required I/O Support by Device
Object Type.

Characteristics
The device characteristics. For a description of relevant values, see DEVICE_OBJECT.

Include
wdm.h or ntddk.h

See Also
DEVICE_OBJECT

typedef struct _FILE_FULL_EA_INFORMATION
ULONG NextEntryOffset;
UCHAR Flags;
UCHAR EaNameLength;
USHORT EaValueLength;·
CHAR EaName[1];

} FILE_FULL_EA_INFORMATION, *PFILE_FULL_EA_INFORMATION;

FILE_FULL_EA_INFORMATION provides extended attribute information. This structure
is used primarily by network drivers.

Members
NextEntryOffset
The offset of the next FILE_FULL_EA_INFORMATION-type entry. This member is zero
if no other entries follow this one.

Flags
Can be zero or can be set with FILE_NEED _EA, indicating that the file to which the EA
belongs cannot be interpreted without understanding the associated extended attributes.

Chapter 12 System Structures 623

EaNameLength
The length in bytes of the EaName array. This value does not include a zero-terminator to
EaName.

EaValueLength
The length in bytes of each EA value in the array.

EaName
An array of characters naming the EA for this entry.

Include
wdm.h or ntddk.h

Comments
This structure is longword-aligned. If a set of FILE_FULL_EA_INFORMATION entries
is buffered, NextEntryOffset value in each entry, except the last, falls on a longword
boundary.

The value(s) associated with each entry follows the EaName array. That is, an EA's values
are located at EaName + (EaNameLength + 1).

See Also
ZwCreateFile

typedef struct _FILE_NAME_INFORMATION
ULONG FileNameLength;
WCHAR FileName[l];
FILE_NAME_INFORMATION, *PFILE_NAME_INFORMATION;

FILE_NAME_INFORMATION provides file system device information about the name of
a file object.

Members
FileNameLength
Specifies the length of the file name string.

FileName
Specifies the first character of the file name string. This is followed in memory by the re
mainder of the string. (See ZwQuerylnformationFile for details on the syntax of this file
name string.)

624 Part 1 Kernel-Mode Support Routines

Include
ntddk.h

See Also
ZwQuerylnformationFile

To user-mode protected subsystems, a file object represents an open instance of a file, de
vice, directory, or volume. To device and intermediate drivers, a file object usually repre
sents a device object.

A file object is partially opaque. Certain types of drivers, such as FSDs and network trans
port drivers, use some of the fields of file objects. The following fields in file objects are
accessible to drivers.

Accessible Fields
PDEVICE_OBJECT DeviceObject
Points to the device object on which the file is opened.

PVOID FsContext
Points to whatever optional state a driver maintains about the file object; otherwise, NULL.

PVOID FsContext2
Points to whatever additional state a driver maintains about the file object; otherwise,
NULL.

UNICODE_STRING FileName
Is the name of the file opened on the device, or the Length of the string is zero if the device
represented by DeviceObject is being opened.

Include
wdm.h or ntddk.h

Comments
Drivers can use the FsContext fields to maintain driver-determined state about an open file
object. A driver cannot use these fields of a file object unless it is accessible in the driver's
110 stack location of an IRP.

Chapter 12 System Structures 625

The remaining fields in a file object are opaque. They are reserved for use by the 110
Manager and file systems.

Undocumented fields within a file object should be considered inaccessible. Drivers with
dependencies on object field locations or access to undocumented fields might not remain
portable and interoperable with other drivers over time.

A higher-level driver that successfully calls IoGetDeviceObjectPointer during initialization
is given a pointer to the file object that represents the next-lower driver's device object in
user mode. Such a higher-level driver should save the returned file object pointer. To release
its reference to this file object, for example when the driver is being unloaded, the driver
must call ObDereferenceObject with this file object pointer.

See Also
DEVICE_OBJECT, IoGetDeviceObjectPointer, ObDereferenceObject

typedef struct FILE_POSITION_INFORMATION {
LARGE_INTEGER CurrentByteOffset;

} FILE_POSITION_INFORMATION. *PFILE_POSITION_INFORMATION;

Members
CurrentByteOffset
The byte offset of the current file pointer.

Include
wdm.h or ntddk.h

Comments
FILE_READ_DATA or FILE_WRITE_DATA access to the file is required to change this
information about the file, and the file must be opened for synchronous 110.

If the file was opened or created with the FILE_NO_INTERMEDIATE_BUFFERING
option, the value of CurrentByteOffset must be an integral multiple of the sector size of the
underlying device.

See Also
ZwCreateFile, ZwSetlnformationFile

626 Part 1 Kernel·Mode Support Routines

FILE_STANDARD _INFORMATION
typedef struct FILE_STANDARD_INFORMATION {

LARGE_INTEGER AllocationSize;
LARGE_INTEGER EndOfFile;
ULONG NumberOfLinks;

BOOLEAN DeletePending;
BOOLEAN Directory;

} FILE_STANDARD_INFORMATION, *PFILE_STANDARD_INFORMATION;

Members
AliocationSize
The file allocation size in bytes. Usually, this value is a multiple of the sector or cluster size
of the underlying physical device.

EndOfFile
The end of file location as a byte offset.

NumberOfLinks
The number of hard links to the file.

DeletePending
The delete pending status. TRUE indicates that a file deletion has been requested.

Directory
The file directory status. TRUE indicates the file object represents a directory.

Include
wdm. h or ntddk.h

Comments
EndOfFile specifies the byte offset to the end of the file. Because this value is zero-based, it
actually refers to the first free byte in the file: that is, it is the offset to the byte immediately
following the last valid byte in the file.

See Also
ZwCreateFile, ZwQuerylnformationFile, ZwSetlnformationFile

IO_RESOURCE_DESCRIPTOR
typedef struct _IO_RESOURCE_DESCRIPTOR

UCHAR Option;
UCHAR Type;
UCHAR ShareDisposition;
UCHAR Spare!;
USHORT Fl ags;
USHORT Spare2;
union {

struct {
ULONG Length;
ULONG Alignment;
PHYSICAL_ADDRESS MinimumAddress;
PHYSICAL_ADDRESS MaximumAddress;
Port;

struct {
ULONG Length;
ULONG Alignment;
PHYSICAL_ADDRESS MinimumAddress;
PHYSICAL_ADDRESS MaximumAddress;
Memory;

struct {
ULONG MinimumVector;
ULONG MaximumVector;
Interrupt;

struct {
ULONG MinimumChannel;
ULONG MaximumChannel;
Dma;

struct {
ULONG Length;
ULONG Alignment;
PHYSICAL_ADDRESS MinimumAddress;
PHYSICAL_ADDRESS MaximumAddress;
Generic;

struct {
ULONG Data[3];

} DevicePrivate;
struct {

ULONG Length;
ULONG MinBusNumber;
ULONG MaxBusNumber;
ULONG Reserved;
BusNumber;

Chapter 12 System Structures 627

628 Part 1 Kernel-Mode Support Routines

struct {

u;

ULONG Priority;
ULONG Reserved1;
ULONG Reserved2;
ConfigData;

IO_RESOURCE_DESCRIPTOR, *PIO_RESOURCE_DESCRIPTOR;

An IO_RESOURCE_DESCRIPTOR structure describes a range of raw hardware resources,
of one type, that can be used by a device. An array of IO_RESOURCE_DESCRIPTOR
structures is contained within each IO_RESOURCE_LIST structure.

Members
Option
Specifies whether this resource description is required, preferred, or alternative. One of the
following values must be used:

Value

o
Definition

The specified resource range is required, unless alternative
ranges are also specified.

The specified resource range is preferred to any alternative
ranges.

IO_RESOURCE_ALTERNATIVE The specified resource range is an alternative to the

IO_RESOURCE_DEFAULT

Type

range preceding it. For example, if one IO_RESOURCE_
DESCRIPTOR structure specifies IRQ 5, with 10_
RESOURCE_PREFERRED set, and the next structure
specifies IRQ 3, with IO_RESOURCE_ALTERNATIVE set,
the PnP Manager assigns IRQ 3 to the device only if IRQ 5
is unavailable. (Multiple alternatives can be specified for
each resource. Both IO_RESOURCE_ALTERNATIVE and
IO_RESOURCE_PREFERRED can be set, indicating a
preferred alternative.)

Not used.

Identifies the resource type. For a list of valid values, see the Type member of the
CM_PARTIAL_RESOURCE_DESCRIPTOR structure.

ShareDisposition
Indicates whether the described resource can be shared. For a list of valid values, see the
ShareDisposition member of the CM_P ARTIAL_RESOURCE_DESCRIPTOR structure.

Chapter 12 System Structures 629

Flags
Contains bit flags that are specific to the resource type. For a list of valid flags, see the Flags
member of the CM_PARTIAL_RESOURCE_DESCRIPTOR structure.

u.Port
Specifies a range of 110 port addresses, using the following members:

Length
The length, in bytes, of the range of assignable 110 port addresses.

Alignment
The alignment, in bytes, that the assigned starting address must adhere to. The assigned
starting address must be devisable by Alignment.

MinimumAddress
The minimum bus-relative 110 port address that can be assigned to the device.

MaximumAddress .
The maximum bus-relative 110 port address that can be assigned to the device.

u.Memory
Specifies a range of memory addresses, using the following members:

Length
The length, in bytes, of the range of assignable memory addresses.

Alignment
The alignment, in bytes, that the assigned starting address must adhere to. The assigned
starting address must be devisable by Alignment.

MinimumAddress
The minimum bus-relative memory address that can be assigned to the device.

MaximumAddress
The maximum bus-relative memory address that can be assigned to the device.

u.lnterrupt
Specifies an interrupt vector range, using the following members:

MinimumVector
The minimum bus-relative vector that can be assigned to the device.

630 Part 1 Kernel-Mode Support Routines

MaximumVector
The maximum bus-relative vector that can be assigned to the device.

u.Dma
Specifies a DMA setting, using one of the following members:

MinimumChannel
The minimum bus-relative DMA channel that can be assigned to the device.

MaximumChannel
The maximum bus-relative DMA channel that can be assigned to the device.

u.Generic
Not used.

u.DevicePrivate
Reserved for system use.

u.BusNumber
Specifies bus numbers, using the following members:

Length
The number of bus numbers required.

MinBusNumber
The minimum bus-relative bus number that can be assigned to the device.

MaxBusNumber
The maximum bus-relative bus number that can be assigned to the device.

Reserved
Not used.

u.ConfigData
Reserved for system use.

Include
wdm.h or ntddk.h

See Also
CM_P ARTIAL_RESOURCE_DESCRIPTOR, 10 _RESOURCE_LIST, 10 _RESOURCE_
REQUIREMENTS_LIST, IoConnectlnterrupt

typedef struct _IO_RESOURCE_LIST
USHORT Version;
USHORT Revision;
ULONG Count;
IO_RESOURCE_DESCRIPTOR Descriptors[l];
IO_RESOURCE_LIST, *PIO_RESOURCE_LIST;

Chapter 12 System Structures 631

An IO_RESOURCE_LIST structure describes a range of raw hardware resources, of various
types, that can be used by a device. The resources specified represent a single, acceptable
resource configuration for a device. An array of IO_RESOURCE_LIST structures is con
tained within each IO_RESOURCE_REQUIREMENTS_LIST structure.

Members
Version
The version number of this structure. This value should be 1.

Revision
The revision of this structure. This value should be 1.

Count
The number of elements in the Descriptors array.

Descriptors
An array of IO_RESOURCE_DESCRIPTOR structures.

Include
wdm.h or ntddk.h

See Also
IO_RESOURCE_DESCRIPTOR, IO_RESOURCE_REQUIREMENTS_LIST

IO_RESOURCE_REQUIREMENTS_LIST
typedef struct _IO_RESOURCE_REOUIREMENTS_LIST

ULONG ListSize;
INTERFACE_TYPE InterfaceType; II unused for WDM
ULONG BusNumber; II unused for WDM
ULONG SlotNumber;
ULONG Reserved[3];
ULONG AlternativeLists;
IO_RESOURCE_LIST List[l];

} IO_RESOURCE_REOUIREMENTS_LIST, *PIO_RESOURCE_REOUIREMENTS_LIST;

632 Part 1 Kernel·Mode Support Routines

An IO_RESOURCE_REQUIREMENTS_LIST structure describes sets of resource con
figurations that can be used by a device. Each configuration represents a range of raw
resources, of various types, that can be used by a device.

Members
ListSize
The total number of bytes that constitute the IO_RESOURCE_REQUIREMENTS_LIST
structure, its IO_RESOURCE_LIST array, and the latter's IO_RESOURCE_DESCRIPTOR
array.

Interface Type
Specifies an interface type. This must be one of the types defined by INTERFACE_TYPE,
in wdm.h or ntddk.h. (Not used by WDM drivers.)

BusNumber
A system-assigned, zero-based bus number. (Not used by WDM drivers.)

SlotNumber
A system slot number. (Not used by WDM drivers.)

Reserved
Not used.

AlternativeLists
The number of elements in the List array.

List
An array of IO_RESOURCE_LIST structures.

Include
wdm.h or ntddk.h

See Also
IO_RESOURCE_DESCRIPTOR, IO_RESOURCE_LIST, IRP _MN_FILTER_
RESOURCE_REQUIREMENTS, IRP _MN_ QUERY _RESOURCE_REQUIREMENTS

typedef struct _IO_STACK_LOCATION
UCHAR MajorFunction;
UCHAR MinorFunction;
UCHAR Flags;

UCHAR Control;
II

Chapter 12 System Structures 633

II The following parameters depend on the IRP_MJ_XXX that is set
II in MajorFunction. This declaration shows examples for IRP_MJ_READ,
II IRP_MJ_WRITE, and IRP_MJ_DEVICE_CONTROL or, possibly,
II IRP_MJ_INTERNAL_DEVICE_CONTROL requests, as well as for IRP_MJ_SCSI,
II which is equivalent to IRP_MJ_INTERNAL_DEVICE_CONTROL.
II For other IRP_MJ_XXX, see the structure definition.
II
union {

struct
ULONG Length;
ULONG Key;
LARGE_INTEGER ByteOffset;
Read;

struct {
ULONG Length;
ULONG Key;
LARGE_INTEGER ByteOffset;
Write;

struct
ULONG OutputBufferLength;
ULONG InputBufferLength;
ULONG IoControlCode;
PVOID Type3InputBuffer;

} DeviceIoControl;

struct
struct _SCSI_REQUEST_BLOCK *Srb;

} Scs i ;

} Parameters;
PDEVICE_OBJECT DeviceObject;
PFILE_OBJECT FileObject;

Each 110 stack location in a given IRP has some common members and some request-type
specific members. The following summarizes the general structure of every stack location.

634 Part 1 Kernel-Mode Support Routines

Members
MajorFunction
Is the IRP _MJ_XXX telling the driver what I/O operation is requested.

MinorFunction
Is a subfunction code for MajorFunction. The PnP Manager, the Power Manager, file
system drivers, and SCSI class drivers set this member for some requests.

Flags
Is set with request-type-specific values and used almost exclusively by file system drivers.
However, removable-media device drivers check whether this member is set with SL_
OVERRIDE_ VERIFY_VOLUME for read requests to determine whether to continue the
read operation even if the device object's Flags is set with DO_ VERIFY_VOLUME. Inter
mediate drivers layered over a removable-media device driver must copy this member into
the I/O stack location of the next-lower driver in all incoming IRP _MJ_READ requests.

Control
Drivers can check this member to determine whether it is set with SL_PENDING_
RETURNED. Drivers have read-only access to this member.

Parameters.Xxx
Depends on the value of MajorFunction. For more detailed information about which
IRP _MJ_XXX different types of drivers must handle, and for the Parameters.Xxx for each
IRP _MJ_XXX, see IRP Function Codes and IOCTLs of this manual.

DeviceObject
Is a pointer to the driver-created device object representing the target physical, logical, or
virtual device for which this driver is to handle the IRP.

FileObject
Is a pointer to the file object, if any, associated with DeviceObject.

Include
wdm.h or ntddk.h

Comments
Every higher-level driver is responsible for setting up the I/O stack location for the next
lower driver in each IRP.

In some cases, a higher-level driver layered over a mass-storage device driver is responsible
for splitting up large transfer requests for the underlying device driver. In particular, SCSI

Chapter 12 System Structures 635

class drivers must check the Parameters.Read.Length and Parameters.Write.Length,
determine whether the size of the requested transfer exceeds the underlying HBA's transfer
capabilities, and, if so, split the Length of the original request into a sequence of partial
transfers to satisfy the original IRP.

A higher-level driver's call to loCallDriver sets up the DeviceObject pointer to the next
lower-level driver's target device object in the I/O stack location of the lower driver. The
I/O Manager passes each higher-level driver's IoCompletion routine a pointer to its own
DeviceObject when or if the IoCompletion routine is called on completion of the IRP.

If a higher-level driver allocates IRPs to make requests of its own, its IoCompletion
routine is passed a NULL DeviceObject pointer if that driver neither allocates a stack loca
tion for itself nor sets up the DeviceObject pointer in its own stack location of the newly
allocated IRP.

See Also
loCallDriver, loGetCurrentIrpStackLocation, loGetNextIrpStackLocation, loSet
CompletionRoutine, loSetNextIrpStackLocation, IO_STATUS_BLOCK, IRP

typedef struct _IO_STATUS_BLOCK
NTSTATUS Status;
ULONG Information;
IO_STATUS_BLOCK, *PIO_STATUS_BLOCK;

The I/O status block in the IRP is set to indicate the final status of a given request before a
driver calls IoCompleteRequest with the IRP.

Members
Status
Is the completion status, either STATUS_SUCCESS if the requested operation was com
pleted successfully or an informational, warning, or error STATUS_XXX value.

Information
Is set to a request-dependent value. For example, on successful completion of a transfer
request, this is set to the number of bytes transferred. If a transfer request is completed with
another STATUS_XXX, this member is set to zero. See Input and Output Parameters/or
Common I/O Requests in Chapter 13 of this volume for more request-specific information.

Include
wdm.h or ntddk.h

636 Part 1 Kernel-Mode Support Routines

Comments
Unless a driver completes an IRP with an error from its Dispatch routine for that IRP _MJ_
XXX, the lowest-level driver in the chain frequently sets the 110 status block in an IRP to the
values that are returned to the original requestor of the 110 operation.

The 10Compietion routine(s) of higher-level drivers usually check the 110 status block
in IRPs completed by lower drivers. By design, the 110 status block in an IRP is the only
information passed back from the underlying device driver to all higher-level drivers' 10-
Completion routines.

See Also

IRP

10 _STACK_LOCATION, IoCompleteRequest, IoSetCompletionRoutine, IRP

typedef struct _IRP {

PMDL MdlAddress;
ULONG Flags;
union {

struct _IRP *MasterIrp;

PVOID SystemBuffer;
AssociatedIrp;

IO_STATUS_BLOCK IoStatus;
KPROCESSOR_MODE RequestorMode;
BOOLEAN PendingReturned;

BOOLEAN Cancel;
KIROL Cancellrql;

PDRIVER-CANCEL Cancel Routine;
PVOID UserBuffer;
union {

struct {

union
KDEVICE_OUEUE_ENTRY DeviceOueueEntry;
struct {

} ;

PVOID DriverContext[4];
} ;

PETHREAD Thread;

LIST_ENTRY ListEntry;

Overlay;

} Tail;
IRP. *PIRP;

Chapter 12 System Structures 637

In addition to the request-specific parameters in each driver's 110 stack location in an IRP,
drivers also can use the following members of the IRP structure for various purposes.

Members
MdlAddress
Points to an MDL describing a user buffer for an IRP _MJ_READ or IRP _MJ_ WRITE
request if the driver set up its device object(s) for direct 110. Drivers that handle IRP _MJ_
INTERNAL_DEVICE_CONTROL requests also use this field if the 110 control code was
defined with METHOD_DIRECT. For more information about 10CTLs, see IRP Function
Codes and IOCTLs.

Flags
File system drivers use this field, which is read-only for all drivers. Network and, possibly,
highest-level device drivers also might read this field, which can be set with one or more of
the following system-defined masks:

IRP _NOCACHE
IRP _PAGING_IO
IRP _MOUNT_COMPLETION
IRP _SYNCHRONOUS_API
IRP _ASSOCIATED _IRP
IRP _BUFFERED _10
IRP _DEALLOCATE_BUFFER
IRP _INPUT_OPERATION
IRP _SYNCHRONOUS_PAGING_IO
IRP _CREATE_OPERATION
IRP _READ_OPERATION

638 Part 1 Kernel-Mode Support Routines

IRP _WRITE_OPERATION
IRP _CLOSE_OPERATION
IRP _DEFER_IO_COMPLETION

Associatedlrp.Masterlrp
Points to the master IRP in an IRP that was created by a highest-level driver's call to
10MakeAssociatedlrp.

Associatedlrp.SystemBuffer
Points to a system-space buffer for one of the following:

1. A transfer request to a driver that set up its device object(s) requesting buffered I/O

2. An IRP _MJ_DEVICE_CONTROL request

3. An IRP _MJ_INTERNAL_DEVICE_CONTROL request with an I/O control code that
was defined with METHOD_BUFFERED

In any case, the underlying device driver usually transfers data to or from this buffer.

loStatus
Is the I/O status block in which a driver stores status and information before calling 10-
CompleteRequest.

RequestorMode
Indicates the execution mode of the original requestor of the operation, one of UserMode or
KernelMode.

Pending Returned
If set to TRUE, a driver has marked the IRP pending. Each IoCompletion routine should
check the value of this flag. If the flag is TRUE, and if the IoCompletion routine will not
return STATUS_MORE_PROCESSING_REQUIRED, the routine should call 10Mark
IrpPending to propagate the pending status to drivers above it in the device stack.

Cancel
If set to TRUE, the IRP either is or should be cancelled.

Cancellrql
Is the IRQL at which a driver is running when 10AcquireCancelSpinLock is called.

Cancel Routine
Is the entry point for a driver-supplied Cancel routine to be called if the IRP is cancelled.
NULL indicates that the IRP is not currently cancelable.

Chapter 12 System Structures 639

UserBuffer
Contains the address of an output buffer if the major function code in the I/O stack location
is IRP _MJ_INTERNAL_DEVICE_CONTROL and the I/O control code was defined with
METHOD_NEITHER.

Tail.Overlay.DeviceQueueEntry
If IRPs are queued in the device queue associated with the driver's device object, this field
links IRPs in the device queue. These links can be used only while the driver is processing
the IRP.

Tail.Overlay.DriverContext
If IRPs are not queued in the device queue associated with the driver's device object, this
field can be used by the driver to store up to four pointers. This field can be used only while
the driver owns the IRP.

Tail.Overlay.Thread
Is a pointer to the caller's thread control block. Higher-level drivers that allocate IRPs for
lower-level removable-media drivers must set this field in the IRPs they allocate. Otherwise,
the FSD cannot determine which thread to notify if the underlying device driver indicates
that the media requires verification.

Tail.Overlay.ListEntry
If a driver manages its own internal queue(s) of IRPs, it uses this field to link one IRP to the
next. These links can be used only while the driver is holding the IRP in its queue or is pro
cessing the IRP.

Include
wdm. h or ntddk.h

Comments
Undocumented members of the IRP are reserved, used only by the I/O Manager or, in some
cases, by FSDs.

Each IRP also has one or more I/O stack locations for the driver(s) that process the re
quest. A driver must call IoGetCurrentIrpStackLocation to get a pointer to its own stack
location in each IRP. Higher-level drivers must call IoGetNextIrpStackLocation to get a
pointer to the next-lower driver's stack location so the higher-level driver can set it up
before calling IoCallDriver with the IRP.

While a higher-level driver might check the value of the Cancel Boolean in an IRP, that
driver cannot assume the IRP will be completed with STATUS_CANCELLED by a lower
level driver even if the value is TRUE.

640 Part 1 Kernel·Mode Support Routines

See Also
IoCreateDevice, IoGetCurrentlrpStackLocation, IoGetNextlrpStackLocation,
IoSetCancelRoutine, IoSetNextlrpStackLocation, 10 _STACK_LOCATION,
10_STATUS_BLOCK

KEY _BASIC_INFORMATION
typedef struct ~KEY_BASIC_INFORMATION {

LARGE_INTEGER LastWriteTime;
ULONG Titlelndex;
ULONG NameLength;
WCHAR Name[l]; II Variable-length string
KEY_BASIC_INFORMATION. *PKEY_BASIC_INFORMATION;

KEY _BASIC_INFORMATION defines a subset of the full information available for a
registry key.

Members
LastWriteTime
The last time the key or any of its values changed.

Titlelndex
Device and intermediate drivers should ignore this member.

NameLength
Specifies the size in bytes of the following name.

Name
A string of Unicode characters naming the key. The string is not null-terminated.

Include
wdm.h or ntddk. h

See Also
ZwEnumerateKey, ZwQueryKey

typedef _KEY_FULL_INFORMATION {
LARGE_INTEGER LastWriteTime;
ULONG Titlelndex;
ULONG ClassOffset;

ULONG C1assLength;
ULONG SubKeys;
ULONG MaxNameLen;
ULONG MaxC1assLen;
ULONG Values;
ULONG MaxVa1ueNameLen;
ULONG MaxVa1ueDataLen;
WCHAR C1 ass[1];
KEY_FULL_INFORMATION; PKEY_FULL_INFORMATION

Chapter 12 System Structures 641

KEY _FULL_INFORMATION defines the information available for a registry key,
includeing information about its subkeys and the maximum length for their names and
value entries. This information can be u641ed to size buffers to get the names of subkeys
and their value entries.

Members
LastWriteTime
Specifies the last time the key or any of its values changed.

Titlelndex
Device and intermediate drivers should ignore this member.

ClassOffset
Specifies the offset from the start of this structure to the Class member.

ClassLength
Specifies the number of bytes in the Class name.

SubKeys
Specifies the number of subkeys for the key.

MaxNameLen
Specifies the maximum length in bytes of any name for a subkey.

MaxClassLen
Specifies the maximum length in bytes for a Class name.

Values
Specifies the number of value entries.

MaxValueNameLen
Specifies the maximum length in bytes of any value entry name.

642 Part 1 Kernel-Mode Support Routines

MaxValueDataLen
Specifies the maximum length in bytes of any value entry data field.

Class[1]
A string of Unicode characters naming the class of the key.

Include
wdm.h or ntddk.h

See Also
ZwEnumerateKey, ZwQueryKey

typedef struct _KEY_NODE_INFORMATION
LARGE_INTEGER LastWriteTime;
ULONG Titlelndex;
ULONG ClassOffset;
ULONG ClassLength;
ULONG NameLength;
WCHAR Name[l]; II Variable-length string
KEY_NODE_INFORMATION. *PKEY_NODE_INFORMATION;

KEY_NODE_INFORMATION defines basic information available for a registry (sub)key.

Members
LastWriteTime
Specifies the last time the key or any of its values changed.

Titlelndex
Device and intermediate drivers should ignore this member.

ClassOffset
Specifies the offset from the start of this structure to the class name string, which is located
immediately following the Name string.

ClassLength
Specifies the number of bytes in the class name string.

NameLength
Specifies the size in bytes of the following name.

Chapter 12 System Structures 643

Name
A string of Unicode characters naming the key.

Include
wdm.h or ntddk.h

See Also
ZwEnumerateKey, ZwQueryKey

KEY _ VALUE_BASIC_INFORMATION
typedef struct _KEY_VALUE_BASIC_INFORMATION

ULONG Titlelndex;
ULONG Type;
ULONG NameLength;
WCHAR Name[l]; II Variable size
KEY_VALUE_BASIC_INFORMATION. *PKEY_VALUE_BASIC_INFORMATION;

KEY _ V ALUE_BAS IC_INFORMATION defines a subset of the full information available
for a value entry of a registry key.

Members
Titlelndex
Device and intermediate drivers should ignore this member.

Type
Specifies the system-defined type for the registry value in the Data member, which is one of
the following:

REG_BINARY

REG_DWORD

REG_DWORD_LITTLE_
ENDIAN

REG_DWORD_BIG_ENDIAN

Value

Binary data in any form

A 4-byte numerical value

A 4-byte numerical value whose least significant byte is at the
lowest address

A 4-byte numerical value whose least significant byte is at the
highest address

A zero-terminated Unicode string, containing unexpanded
references to environment variables, such as "%PATH%"

A Unicode string naming a symbolic link. This type is irrelevant to
device and intermediate drivers

Continued

644 Part 1 Kernel·Mode Support Routines

REG XXXType

REG_MULTCSZ

REG_NONE

REG_SZ

REG_RESOURCE_LIST

REG_RESOURCE_
REQUIREMENTS_LIST

REG~ULL_RESOURCE_

DESCRIPTOR

NameLength

Value

An array of zero-terminated strings, terminated by another zero

Data with no particular type

A zero-terminated Unicode string

A device driver's list of hardware resources, used by the driver or
one of the physical devices it controls, in the \ResourceMap tree

A device driver's list of possible hardware resources it or one of
the physical devices it controls can use, from which the system
writes a subset into the \ResourceMap tree

A list of hardware resources that a physical device is using, de
tected and written into the \HardwareDescription tree by the
system

Specifies the size in bytes of the following value entry name.

Name
A string of Unicode characters naming a value entry of the key.

Include
wdm. h or ntddk.h

See Also
ZwEnumerate Value Key , ZwQueryValueKey

typedef struct _KEY_VALUE_FULL_INFORMATION
ULONG Titlelndex;
ULONG Type;
ULONG DataOffset;
ULONG DataLength;
ULONG NameLength;
WCHAR Name[l]; II Variable size
KEY_VALUE_FULL_INFORMATION, *PKEY_VALUE_FULL_INFORMATION;

KEY _ V ALUE_FULL_INFORMATION defines information available for a value entry of a
registry key.

Members
Titlelndex
Device and intermediate drivers should ignore this member.

Chapter 12 System Structures 645

Type
Specifies the system-defined type for the registry value(s) following the Name member. For
a summary of these types, see KEY_ VALUE_BASIC_INFORMATION.

DataOffset
Specifies the offset from the start of this structure to the data immediately following the
Name string.

DataLength
Specifies the number of bytes of registry information for the value entry identified
by Name.

NameLength
Specifies the size in bytes of the following value entry name.

Name
A string of Unicode characters naming a value entry of the key.

Include
wdm.h or ntddk.h

See Also
KEY_ VALUE_BASIC_INFORMATION, ZwEnumerateValueKey, ZwQueryValueKey

typedef struct _KEY_VALUE_PARTIAL_INFORMATION
ULONG Titlelndex;
ULONG Type;
ULONG DataLength;
UCHAR Data[l]; II Variable size

} KEY_VALUE_PARTIAL_INFORMATION, *PKEY_VALUE_PARTIAL_INFORMATION;

KEY _ V ALUE_P ARTIAL_INFORMATION defines a subset of the value information
available for a value entry of a registry key.

Members
Titlelndex
Device and intermediate drivers should ignore this member.

646 Part 1 Kernel-Mode Support Routines

Type
Specifies the system-defined type for the registry value in the Data member. For a summary
of these types, see KEY _ V ALUE_BAS IC_INFORMATION .

DataLength
The size in bytes of the Data member.

Data
A value entry of the key.

Include
wdm.h or ntddk.h

See Also
KEY_ VALUE_BASIC_INFORMATION, ZwEnumerateValueKey, ZwQueryValueKey

typedef struct _STRING
USHORT Length;
USHORT MaximumLength;
PCHAR Buffer;
STRING *POEM_STRING;

The STRING structure defines a counted string used for OEM strings.

Members
Length
Specifies the length in bytes of the string stored in Buffer.

MaximumLength
Specifies the maximum length in bytes of Buffer.

Buffer
Points to a buffer used to contain a string of characters.

Include
ntddk.h

Comments
The STRING structure is used to pass OEM strings.

Chapter 12 System Structures 647

If the string is NULL terminated, Length does not include the trailing NULL.

See Also
ANSI_STRING, UNICODE_STRING, RtiAnsiStringToUnicodeSize, RtiAnsiStringTo
UnicodeString, RtiFreeAnsiString, RtlInitAnsiString, RtlUnicodeStringToAnsiString

PCI_ COMMON_ CON FIG
typedef struct _PCI_COMMON_CONFIG

USHORT VendorID;
USHORT DeviceID;
USHORT Command;
USHORT Status;
UCHAR RevisionID;
UCHAR Proglf;
UCHAR SubClass;
UCHAR BaseClass;
UCHAR CacheLineSize;
UCHAR LatencyTimer;
UCHAR HeaderType;
UCHAR BIST;
union {

struct _PCI_HEADER_TYPE_0 {

} u;

ULONG BaseAddresses[PCI_TYPE0_ADDRESSES];
ULONG Reservedl[2];
ULONG ROMBaseAddress;
ULONG Reserved2[2];
UCHAR InterruptLine;
UCHAR InterruptPin;
UCHAR MinimumGrant;
UCHAR MaximumLatency;
type0;

UCHAR DeviceSpecific[192];
PCI_COMMON_CONFIG, *PPCI_COMMON_CONFIG;

PCI_COMMON_CONFIG defines standard PCI configuration information returned
by HalGetBusData or HalGetBusDataByOffset for the input BusDataType PCI
Configuration, assuming the caller-allocated Buffer is of sufficient Length.

Members
VendorlD
Identifies the manufacturer of the device. This must be a value allocated by the PCI SIG.

648 Part 1 Kernel-Mode Support Routines

DevicelD
Identifies the particular device. This value is assigned by the manufacturer.

Command
Accesses the PCI device's control register. Writing a zero to this register renders the device
logically disconnected from the PCI bus except for configuration access. Otherwise, the
functionality of the register is device-dependent. Possible system-defined bit encodings for
this member include:

PCI_ENABLE_IO_SPACE
PCI_ENABLE_MEMORY _SPACE
PCI_ENABLE_BUS_MASTER
PCI_ENABLE_SPECIAL_CYCLES
PCI_ENABLE_ WRITE_AND _VALIDATE
PCI_ENABLE_ VGA_COMPATIBLE_PALETTE
PCI_ENABLE_P ARITY
PCI_ENABLE_ WAIT_CYCLE
PCI_ENABLE_SERR
PCI_ENAB~E_FAST _BACK_TO _BACK

Status
Accesses the PCI device's status register. The functionality of this register is device
dependent. Possible system-defined bit encodings for this member include:

PCI_STATUS_FAST_BACK_TO_BACK II read-only
PCI_STATUS_DATA_PARITY_DETECTED
PCI_STATUS_DEVSEL 112 bits wide
PCI_ST ATUS_SIGNALED _TARGET_ABORT
PCI_ST ATUS_RECEIVED _TARGET_ABORT
PCI_STATUS_RECEIVED _MASTER_ABORT
PCI_STATUS_SIGNALED_SYSTEM_ERROR
PCI_STATUS_DETECTED_PARITY_ERROR

RevisionlD
Specifies the revision level of the device described by the DeviceID member. This value is
assigned by the manufacturer.

Proglf
Identifies the register-level programming interface, if any, for the device, according to the
PCI classification scheme.

SubClass
Identifies the subtype, if any, of the device, according to the PCI classification scheme.

Chapter 12 System Structures 649

BaseClass
Identifies type of the device, according to the PCI classification scheme.

CacheLineSize
Contains the system cache line size in 32-bit units. This member is relevant only for PCI
busmaster devices. The system determines this value during the boot process.

LatencyTimer
Contains the value of the latency timer in units of PCI bus clocks. This member is relevant
only for PCI busmaster devices. The system determines this value during the boot process.

HeaderType
The system ORs the value of this member with PCI_MULTIFUNCTION, if appropriate to
the device. The value of this member indicates the PCI_HEADER_TYPE_O layout that
follows.

BIST
Zero indicates that the device does not support built-in self test. Otherwise, the device
supports built-in self test according to the PCI standard.

u.typeO
Drivers call HalAssignSlotResources to configure these values and to get back the bus
relative values passed to other configuration routines.

OeviceSpecific
Contains any device-specific initialization information that is available.

Include
wdm.h or ntddk.h

Comments
Certain members of this structure have read-only values, so attempts to reset them are
ignored. These members include the following: VendorID, DeviceID, RevisionID, ProgIf,
SubClass, BaseClass, HeaderType, InterruptPin, MinimumGrant, and Maximum
Latency.

Other members are provisionally read-only: that is, the system initializes them to their
correct values, so drivers can safely treat them as read-only. However, they can be reset if a
busmaster driver finds it necessary. These members include the following: CacheLineSize
and LatencyTimer.

650 Part 1 Kernel-Mode Support Routines

See Also
HalAssignSlotResources, HalGetBusData, HalGetBusDataByOffset, HalSetBusData,
HalSetBusDataByOffset

typedef struct _PCl_SLOT_NUMBER
union {

struct {
ULONG DeviceNumber:5;
ULONG FunctionNumber:3;
ULONG Reserved:24;
bits;

ULONG AsULONG;
u;

PCl_SLOT_NUMBER, *PPCl_SLOT_NUMBER;

PCl_SLOT_NUMBER defines the format of the Slot parameter to the Hal .. BusData
routines when they are called with the BusDataType value PCIConfiguration.

Members
u.bits
Specifies the particular device on a multifunction adapter at the given slot that is being
configured. The DeviceNumber indicates the logical slot number for the adapter; the
FunctionNumber indicates the particular device on that adapter.

u.AsULONG
Species the logical slot number of the device being configured.

Include
wdm.h or ntddk.h

Comments
Drivers of PCl devices can call HalGetBusData or HalGetBusDataByOffset more than
once for the same slot number to get the configuration information for their device(s).

For example, a driver might search for devices it supports on all PCl buses in the
machine first, and then call HaIGetBusData(ByOffset) again to request more configura
tion information about devices of interest. Such a driver could code a loop that calls Hal
GetBusData(ByOffset) with an input Buffer of sufficient Length only to contain enough
of the PCl_COMMON_CONFlG to determine the VendorID and DeviceID of each PCl
device. After finding the Slot numbers for any promising PCl devices, the driver would call

Chapter 12 System Structures 651

HalGetBusData or HalGetBusDataByOffset one or more times with additional buffer
space to get the information needed to configure its device(s).

See Also
HalAssignSlotResources, HalGetBusData, HalGetBusDataByOffset, HalSetBusData,
HalSetBusDataByOffset, PCI_COMMON_CONFIG

Specifies the type of system memory to allocate. May be one of the following values:

Paged Pool
Paged pool, which is pageable system memory. Paged pool can only be allocated and
accessed at IRQL <= DISPATCH_LEVEL.

PagedPoolCacheAligned
Paged pool, aligned on processor cache boundaries.

NonPagedPool
Non-paged pool, which is non-page able system memory. Non-paged pool can be accessed
from any IRQL, but it is a scarce resource and drivers should allocate it only when nec
essary.

The system can only allocate buffers larger than PAGE_SIZE from non-paged pool in
multiples of PAGE_SIZE. Requests for buffers larger than PAGE_SIZE. but not a P AGE_
SIZE multiple, waste non-pageable memory.

NonPagedPoolMustSucceed
Non-paged pool that the system reserves for emergency allocations. Drivers must only
allocate memory from this pool to avert a system crash.

NonPagedPoolCacheAligned
Non-paged pool, aligned on processor cache boundaries.

NonPagedPoolCacheAlignedMustS
The cache-aligned equivalent of NonPagedPoolMustSucceed.

When the system allocates a buffer from pool memory bigger than PAGE_SIZE, it aligns
the buffer on a page boundary. Memory requests smaller than (or equal to) PAGE_SIZE are
not necessarily aligned on page boundaries, but always fit within a single page, and are
aligned on an 8-byte boundary.

652 Part 1 Kernel-Mode Support Routines

See Also
ExAllocatePool, ExAllocatePoolWithTag, ExAllocatePoolWithQuota, ExAllocatePool
WithQuotaTag, ExAllocatePoolWithTagPriority

RTL_ OSVERSIONINFOW
typedef struct _OSVERSIONINFOW

ULONG dwOSVersionlnfoSize;
ULONG dwMajorVersion;
ULONG dwMinorVersion;
ULONG dwBuildNumber;
ULONG dwPlatformld;
WCHAR szCSDVersion[128];
RTL_OSVERSIONINFOW;

II Maintenance string for PSS usage

The RTL_OSVERSIONINFOW structure contains operating system version information.
The information includes major and minor version numbers, a build number, a platform
identifier, and descriptive text about the operating system. The RTL_OSVERSIONINFOW
structure is used with RtlGetVersion.

Members
dwOSVersionlnfoSize
Specifies the size in bytes of an RTL_OSVERSIONINFOW structure. This member must be
set before the structure is used with RtlGetVersion.

dwMajorVersion
Identifies the major version number of the operating system. For example, for Windows
NT 4, the major version number is four and for Windows 2000 the major version number
is five.

dwMinorVersion
Identifies the minor version number of the operating system. For example, for Windows
2000, the minor version number is zero.

dwBuildNumber
Identifies the build number of the operating system.

dwPlatformld
Identifies the operating system platform. For Microsoft® Win32® on Windows NT/
Windows 2000, RtlGetVersion returns the value VER_PLATFORM_ WIN32_NT.

Chapter 12 System Structures 653

szCSDVersion
Contains a null-terminated string, such as "Service Pack 3", which indicates the latest
Service Pack installed on the system. If no Service Pack has been installed, the string is
empty.

Include
ntddk.h

See Also
RTL_ OSVERSIONINFOEXW, RtlGetVersion, RtlVerifyVersionlnfo

RTL_ OSVERSIONINFOEXW
typedef struct _OSVERSIONINFOEXW

ULONG dwOSVersionlnfoSize;
ULONG dwMajorVersion;
ULONG dwMinorVersion;
ULONG dwBuildNumber;
ULONG dwPlatformld;
WCHAR szCSDVersion[128];
USHORT wServicePackMajor;
USHORT wServicePackMinor;
USHORT wSuiteMask;
UCHAR wProductType;
UCHAR wReserved;
RTL_OSVERSIONINFOEXW;

II Maintenance string for PSS usage

The RTL_OSVERSIONINFOEXW structure contains operating system version informa
tion. The information includes major and minor version numbers, a build number, a platform
identifier, and information about product suites and the latest Service Pack installed on the
system. This structure is used with RtlGetVersion and RtlVerifyVersionlnfo.

Members
dwOSVersionlnfoSize
Specifies the size in bytes of an RTL_OSVERSIONINFOEXW structure. This member
must be set before the structure is used with RtlGetVersion.

dwMajorVersion
Identifies the major version number of the operating system. For example, for Windows
2000, the major version number is five.

654 Part 1 Kernel·Mode Support Routines

dwMinorVersion
Identifies the minor version number of the operating system. For example, for Windows
2000, the minor version number is zero.

dwBuildNumber
Identifies the build number of the operating system.

dwPlatformld
Identifies the operating system platform. For Win32 on Windows NTlWindows 2000,
RtlGetVersion returns the value VER_PLATFORM_ WIN32_NT.

szCSDVersion
Contains a null-terminated string, such as "Service Pack 3", which indicates the latest
Service Pack installed on the system. If no Service Pack has been installed, the string
is empty.

wServicePackMajor
Identifies the major version number of the latest Service Pack installed on the system. For
example, for Service Pack 3, the major version number is three. If no Service Pack has been
installed, the value is zero.

wServicePackMinor
Identifies the minor version number of the latest Service Pack installed on the system. For
example, for Service Pack 3, the minor version number is zero.

wSuiteMask
Identifies the product suites available on the system. This member is a logical OR of zero or
more of the following values:

Value

VER_SUITE_BACKOFFICE

VER_SUITE_DATACENTER

VER_SUITE_ENTERPRISE

VER_SUITE_SMALLBUSINESS

VER_SUITE_SMALLBUSINESS_
RESTRICTED

VER_SUITE_TERMINAL

wProductType

Meaning

Microsoft BackOffice® components are installed.

Windows 2000 Datacenter Server is installed.

Windows 2000 Advanced Server is installed.

Microsoft Small Business Server is installed.

Microsoft Small Business Server is installed with the
restrictive client license in force.

Terminal Services are installed.

Indicates additional information about the system. This member can be one of the following
values:

Chapter 12 System Structures 655

Value Meaning

VER_NT_ WORKSTATION

VER_NT _DOMAIN_CONTROLLER

VER_NT_SERVER

Windows 2000 Professional

Windows 2000 domain controller

Windows 2000 Server

wReserved
Reserved for future use.

Include
ntddk.h

See Also
RTL_OSVERSIONINFOW, RtlGetVersion, RtlVerifyVersionlnfo

SCATTER_ GATHER_LIST
typedef struct _SCATTER_GATHER-LIST

ULONG NumberOfElements;
ULONG_PTR Reserved;
SCATTER-GATHER_ELEMENT Elements[];
SCATTER_GATHER_LIST. *PSCATTER-GATHER_LIST;

The SCATTER_GATHER_LIST structure describes a scatter/gather list for DMA.

Members
NumberOfElements
Specifies the number of elements in the Elements array.

Reserved
Reserved for future use.

Elements[]
Specifies an array of scatter/gather elements that comprise a scatter/gather list. Each element
is of type SCATTER_GATHER_ELEMENT, defined as follows:

typedef struct _SCATTER_GATHER-ELEMENT {
PHYSICAL_ADDRESS Address;
ULONG Length;
ULONG_PTR Reserved;

} SCATTER_GATHER_ELEMENT. *PSCATTER_GATHER-ELEMENT;

656 Part 1 Kernel-Mode Support Routines

Include
wdm.h or ntddk.h

Comments
For drivers that perform scatter/gather 110, the GetScatterGatherList routine creates a
SCATTER_GATHER_LIST structure and passes this structure to the driver's Adapter
Control routine.

Each entry in the Elements array consists of the length of a physically contiguous scatter/
gather region and its starting physical address.

See Also
GetScatterGatherList, PutScatterGatherList

UNICODE_STRING
typedef struct _UNICODE_STRING

USHORT Length;
USHORT MaximumLength;
PWSTR Buffer;

} UNICODE_STRING *PUNICODE_STRING;

The UNICODE_STRING structure is used to define UNICODE strings.

Members
Length
The length in bytes of the string stored in Buffer.

MaximumLength
The maximum length in bytes of Buffer.

Buffer
Points to a buffer used to contain a string of wide characters.

Include
wdm.h or ntddk.h

Comments
The STRING structure is used to pass UNICODE strings.

If the string is NULL terminated, Length does not include the trailing NULL.

Chapter 12 System Structures 657

The MaximumLength is used to indicate the length of ButTer so that if the string is passed
to a conversion routine such as RtlUnicodeStringToAnsiString the returned string does not
exceed the buffer size.

See Also
OEM_STRING, ANSI_STRING, RtiAnsiStringToUnicodeSize, RtlAnsiStringTo
UnicodeString, RtiFreeAnsiString, RtlInitAnsiString, RtlUnicodeStringToAnsiString

659

C HAP T E R 1 3

IRP Function Codes and IOCTLs

Each driver-specific I/O stack location in every IRP has a major function code (lRP _MJ_
XXX) that tells the driver what operation it or the underlying device driver should carry out
to satisfy the I/O request. Each kernel-mode driver must set up one or more Dispatch entry
points for a required subset of system-defined major function codes that are set in the I/O
stack location(s) of IRPs.

The subset of major function codes that a driver must handle depends on the nature of its
device. That is, the IRP _MJ_XXX requests sent to a keyboard driver are necessarily some
what different from those sent to a disk driver.

Every higher-level driver must set up the appropriate I/O stack location in IRPs for the next
lower-level driver and call IoCallDriver either with each input IRP or with a driver-created
IRP if the higher-level driver holds on to the input IRP. Consequently, every intermediate
driver must supply a Dispatch entry point for each major function code that the underlying
device driver handles. Otherwise, a new intermediate driver will "break the chain" whenever
an application or still higher-level driver attempts to send an I/O request, which is valid but
unsupported by the new intermediate driver, down to the underlying device driver.

File system drivers also handle a required subset of system-defined IRP _MJ_XXX, some
with subordinate IRP _MN_XXX.

This chapter summarizes the basic I/O requests sent to the system device and intermediate
drivers so that driver designers can determine which major function codes their new drivers
must handle. For the most common IRP _MJ_XXX handled by device and intermediate
drivers, this chapter summarizes general information about each request. It also discusses
the definition of I/O control codes for device-type-specific, device-specific, and driver
specific device I/O control requests.

Determining Required 1/0 Support by Device Object Type
Every kernel-mode driver must set an appropriate value in the Type field of its device
objects when they are created. This value determines which IRP _MJ_XXX a device or
intermediate driver must handle.

660 Part 1 Kernel-Mode Support Routines

The system device and intermediate drivers set one of the following system-defined
constants in the Type fields of their respective device objects:

FILE_DEVICE_BEEP
FILE_DEVICE_CD_ROM
FILE_DEVICE_CONTROLLER
FILE_DEVICE_DISK
FILE_DEVICE_INPORT_PORT
FILE_DEVICE_KEYBOARD
FILE_DEVICE_MIDI_IN
FILE_DEVICE_MIDI_OUT
FILE_DEVICE_MOUSE
FILE_DEVICE_NULL
FILE_DEVICE_PARALLEL_PORT
FILE_DEVICE_PRINTER
FILE_DEVICE_SCANNER
FILE_DEVICE_SERIAL_MOUSE_PORT
FILE_DEVICE_SERIAL_PORT
FILE_DEVICE_SCREEN
FILE_DEVICE_SOUND
FI LE_DEV I CE_ TAPE
FILE_DEVICE_UNKNOWN
FILE_DEVICE_VIDEO
FILE_DEVICE_VIRTUAL_DISK
FILE_DEVICE_WAVE_IN
FILE_DEVICE_WAVE_OUT
FILE_DEVICE_8042_PORT
FILE_DEVICE_MASS_STORAGE
FILE_DEVICE_KS
FILE_DEVICE_CHANGER
FILE_DEVICE_DVD
FILE_DEVICE_BATTERY

The FILE_DEVICE_Xxx constants are defined in ntddk.h and wdm.h.

The FILE_DEVICE_DISK specification covers both floppy and fixed-disk devices, as well
as disk partitions.

Intermediate drivers usually set the Type fields of their respective device objects to that of
the underlying device. For example, the system supplied fault-tolerant disk driver,ftdisk, has
device objects of type FILE_DEVICE_DISK; it does not define new FILE_DEVICE_XXX
values for the mirror sets, stripe sets, and volume sets it manages.

File system and network drivers set other system-defined FILE_DEVICE_XXX in the Type
fields of their respective device objects.

FILE_DEVICE_XXX values in the range 0-32767 are reserved to Microsoft®. All driver
writers must use one of these system-defined constants for new drivers when the underlying
device corresponds to a type in the preceding list.

Chapter 13 IRP Function Codes and IOClls 661

However, a driver designer can define another FILE_DEVICE_XXX for a new kind
of device. Values in the range 32768-65535 are available for Microsoft customers who
develop new kinds of kernel-mode drivers.

Input and Output Parameters for Common 1/0 Requests
Drivers handle IRPs set with some or all of the following major function codes:

IRP_MJ_CREATE
IRP_MJ_CLEANUP
IRP_MJ_CLOSE
I RP _MJ_PNP
IRP_MJ_POWER
IRP_MJ_READ
I RP _MJ_WRITE
IRP_MJ_FLUSH_BUFFERS
IRP_MJ_SHUTDOWN
IRP_MJ_DEVICE_CONTROL Ilwith device-type-specific

II(public) I/O control codes
IRP_MJ_INTERNAL_DEVICE_CONTROL !/with device-specific

liar driver-specific 1/0 control codes

As a general rule, an intermediate driver must handle at least the same IRP _MJ_XXX as
the next-lower driver. That is, an intermediate driver must provide a Dispatch entry point for
every IRP _MJ~ that the 110 Manager or a higher-level driver might send to the under
lying device.

The specific operations a driver carries out for a given IRP _MJ_XXX depends somewhat
on the underlying device, particularly for IRP _MJ_DEVICE_CONTROL and IRP _MJ_
INTERNAL_DEVICE_CONTROL requests. However, the 110 Manager defines the pa
rameters and 110 stack location contents for each major function code that it sets in IRPs.

The rest of this section summarizes request-specific information about parameters for the
IRP _MJ_XXX that device and intermediate drivers handle, as well as general information
about what kinds of drivers must handle each type of request and how they satisfy each
type of request. See also System Structures for more information about the IRP, 110 stack
location, and 110 status block structures.

The input and output parameters described in this section are the function-specific parame
ters in the IRP.

Drivers that have Cancel routines also must handle cleanup requests.

Input Parameters
None

662 Part 1 Kernel-Mode Support Routines

Output Parameters
None

When Sent
Receipt of this request indicates that the handle for the file object, representing the target
device object, is being released.

Operation
If the driver's device objects were set up as exclusive, thereby allowing only a single thread
to use the device at any given time, the driver completes every IRP currently queued to the
target device object with STATUS_CANCELLED set in each IRP's 110 status block. Oth
erwise, the driver must cancel and complete any currently queued IRPs for the holder of the
file object handle that is being released. After canceling outstanding IRPs in the queue, the
driver completes the cleanup IRP with STATUS_SUCCESS set in its 110 status block.

Every driver must handle close requests, with the possible exception of a driver whose
device cannot be disabled or removed from the machine without bringing down the system.
A disk driver whose device holds the system page file is an example of such a driver. Note
that the driver of such a device also cannot be unloaded dynamically.

Input Parameters
None

Output Parameters
None

When Sent
Receipt of this request indicates that the handle of the file object that represents the target
device object has been released.

Operation
Many device and intermediate drivers merely set STATUS_SUCCESS in the 110 status
block of the IRP and complete the close request. However, what a given driver does on
receipt of a close request depends on the driver's design. In general, a driver should undo
whatever actions it takes on receipt of the create request. Device drivers whose device
object(s) are exclusive, such as a serial driver, also can reset the hardware on receipt of
a close request.

Chapter 13 IRP Function Codes and IDCTls 663

IRP _MJ_CREATE
Every kernel-mode driver must handle create requests.

Input Parameters
None

Output Parameters
None

When Sent
Receipt of this request indicates that a user-mode protected subsystem, possibly on behalf
of an application, has requested a handle for the file object that represents the target device
object, or that a higher-level driver is connecting or attaching its device object to the target
device object.

Operation
Many device and intermediate drivers merely set STATUS_SUCCESS in the I/O status
block of the IRP and complete the create request. However, what a given driver does on
receipt of a create request depends on the driver's design. For example, a driver with
pageable-image sections, like the system serial driver, maps in its paged-out code and
allocates any resources necessary to handle subsequent I/O requests for the user-mode
thread that is attempting to open the device for I/O.

Every driver whose device objects are of the same type is required to support this request.
Every higher-level driver usually passes these requests on to an underlying device driver.
Each device driver of a given type is assumed to support this request and a device-type
specific set of system-defined (also called public) I/O control codes (IOCTL_XXX) that
determine what the driver does on receipt of this request.

Input Parameters
Depending on the I/O control code at Parameters.DeviceloControl.loControICode in the
driver's I/O stack location of the IRP, can be one of the following:

1. Caller-supplied data in the buffer at Irp->Associatedlrp.SystemBuffer, together with
the buffer's size in the I/O stack location at Parameters.DeviceloControl.lnput
BufferLength and/or a pointer to an additional input buffer in the I/O stack location
at Parameters.DeviceloControl. Type3InputBuffer.

664 Part 1 Kernel-Mode Support Routines

2. Caller-supplied data in the buffer described by the MDL at Irp->MdIAddress, with
the buffer's size in the I/O stack location at Parameters.DeviceloControl.lnputBuffer
Length if the lowest-level driver's device uses DMA or PIO and if the requested opera
tion requires the transfer of a large amount of data quickly.

3. Parameters.DeviceloControI.OutputBufferLength in the I/O stack location of the IRP
indicates the size in bytes of the buffer into which the driver transfers data.

Output Parameters
Also determined by the I/O control code in the I/O stack location of the IRP

Data can be written into the buffer at Irp->Associatedlrp.SystemBuffer or, using DMA
or PIO, into the buffer described by the MDL at Irp->MdIAddress, as long as the transfer
does not exceed the buffer's size.

When Sent
Any time following the successful completion of a create request

A user-mode thread has called the Microsoft® Win32® DeviceloControl function, or a
higher-level kernel-mode driver has set up the request. Possibly, a user-mode driver has
called DeviceloControl, passing in a driver-defined (also called private) I/O control code,
to request device- or driver-specific support from a closely coupled, kernel-mode device
driver.

Operation
On receipt of a device I/O control request, a higher-level driver usually passes the IRP on
to the next-lower driver. However, there are some exceptions to this practice. For example,
a class driver that has stored configuration information obtained from the underlying port
driver might complete certain 10CTL_XXX requests without passing the IRP down to the
corresponding port driver.

On receipt of a device I/O control request, a device driver examines the 1/0 control code
to determine how to satisfy the request. For most public I/O control codes, device drivers
transfer a small amount of data to or from the buffer at Irp->Associatedlrp.SystemBuffer.

Drivers of devices with internal caches for data and drivers that maintain internal buffers for
data must handle this request.

Chapter 13 IRP Function Codes and IOCTls 665

Input Parameters
None

Output Parameters
None

When Sent
Receipt of a flush request indicates that the driver should flush the device's cache or its
internal buffer, or, possibly, should discard the data in its internal buffer.

Operation
The driver transfers any data currently cached in the device or held in the driver's internal
buffer(s) before completing the flush request. The driver of an input-only device that buffers
data internally might simply discard the currently buffered device data before completing
the flush IRP, depending on the nature of its device.

In general, any replacement for an existing driver that supports internal device control re
quests should handle this request. Such a driver also should support at least the same set of
internal 110 control codes as the driver it replaces. Otherwise, existing higher-level drivers
might not work with the new driver.

Drivers that replace certain lower-level system drivers are required to handle this request.
For example, a replacement for the system parallel port driver must continue to support ex
isting parallel class drivers. Note that certain system drivers that handle this request cannot
be replaced, in particular, the system-supplied SCSI and video port drivers.

Input Parameters
Depending on the 110 control code at Parameters.DeviceloControl.loControlCode in the
110 stack location of the IRP, can be one of the following:

1. Caller-supplied data in the buffer at Irp->Associatedlrp.SystemBuffer, together
with the buffer's size in the 110 stack location at Parameters.DeviceloControl.lnput
BufferLength and/or a pointer to an additional input buffer in the 110 stack location at
Parameters.DeviceloControl. Type3InputBuffer.

2. Caller-supplied data in the buffer described by the MDL at Irp->MdIAddress, with
the buffer's size in the 110 stack location at Parameters.DeviceloControl.lnputBuffer
Length if the lowest-level driver's device uses DMA or PIO and if the requested op
eration requires the transfer of a large amount of data quickly.

666 Part 1 Kernel-Mode Support Routines

3. Parameters.DeviceloControl.OutputBufferLength in the I/O stack location of the IRP
indicates the size in bytes of the buffer into which the driver transfers data.

Output Parameters
Also determined by the I/O control code in the I/O stack location of the IRP

Data can be written into the buffer at Irp->Associatedlrp.SystemBuffer or, using DMA
or PIO, into the buffer described by the MDL at Irp->MdIAddress, as long as the transfer
does not exceed the buffer's size.

When Sent
Any time after the successful completion of a create request.

For this request, the 1/0 control code (lOCTL_INTERNAL_XXX) has been defined for
communication between paired and layered kernel-mode drivers, such as one or more class
drivers layered over a port driver. The higher-level driver sets up IRPs with device- or
driver-specific I/O control codes, requesting support from the next-lower driver.

Operation
The requested operation is device- or driver-specific.

For general information about I/O control codes for IRP _MJ_DEVICE_CONTROL or IRP_
MJ_INTERNAL_DEVICE_CONTROL requests, see IR_MJ_ WRITE.

All drivers must be prepared to receive IRP _MJ_PNP requests.

Input Parameters
Depends on the value at MinorFunction in the current I/O stack location of the IRP.
Every IRP _MJ_PNP request specifies a minor function code that identifies the requested
PnP action.

Output Parameters
Depends on the value at MinorFunction in the current I/O stack location of the IRP.

When Sent
The PnP Manager sends IRP _MJ _PNP requests during enumeration, resource rebalanc
ing, and any other time plug-and-play activity occurs on the system. Drivers can also send
certain IRP _MJ _PNP requests, depending on the minor function code.

Chapter 13 IRP Function Codes and IOClls 667

Operation
See Plug and Play IRPs in Volume 1 of the Windows 2000 Driver Development Reference
for detailed information about IRP _MJ_PNP requests.

All drivers must be prepared to receive IRP _MJ_POWER requests.

Input Parameters
Depends on the value at MinorFunction in the current I/O stack location of the IRP.
Every IRP _MJ_POWER request specifies a minor function code that identifies the
requested power action.

Output Parameters
Depends on the value at MinorFunction in the current I/O stack location of the IRP.

When Sent
The Power Manager or a driver can send IRP _MJ_POWER requests at any time the
operating system is running.

Operation
See I/O Request for Power Management Volume 1 of the Windows 2000 Driver
Development Reference for detailed information about IRP _MJ_POWER requests.

Every device driver that transfers data from its device to the system must handle read
requests, as must any higher-level driver layered over such a device driver.

Input Parameters
The driver's I/O stack location in the IRP indicates how many bytes to transfer at
Parameters.Read.Length.

Some drivers use the value at Parameters.Read.Key to sort incoming read requests into a
driver-determined order in the device queue or in a driver-managed internal queue of IRPs.
Certain types of drivers also use the value at Parameters.Read.ByteOffset, which indicates
the starting offset for the transfer operation.

668 Part 1 Kernel-Mode Support Routines

Output Parameters
Depending on whether the underlying device driver sets up the target device object's
Flags with DO_BUFFERED_IO or with DO_DIRECT_IO, data is transferred into one
of the following:

• The buffer at Irp->AssociatedIrp.SystemBuffer if the driver uses buffered I/O

• The buffer described by the MDL at Irp->MdIAddress if the underlying device driver
uses direct I/O (DMA or PIO)

When Sent
Any time following the successful completion of a create request.

Possibly, a user-mode application or Win32® component with a handle for the file object
representing the target device object has requested a data transfer from the device. Possibly,
a higher-level driver has created and set up the read IRP.

Operation
On receipt of a read request, a higher-level driver sets up the I/O stack location in the
IRP for the next-lower driver, or it creates and sets up additional IRP(s) for one or more
lower drivers. It can set up its loCompletion routine, which is optional for the input IRP but
required for driver-created·I&Ps, by calling IoSetCompletionRoutine. Then, the driver
passes the request on to the next-lower driver with IoCallDriver.

On receipt of a read request, a device driver transfers data from its device to system mem
ory. The device driver sets the Information field of the I/O status block to the number of
bytes transferred when it completes the IRP.

Drivers of mass-storage devices that have internal caches for data must handle this request.
Drivers of mass-storage devices and intermediate drivers layered over them also must han
dle this request if an underlying driver maintains internal buffers for data.

Input Parameters
None

Output. Parameters
None

Chapter 13 IRP Function Codes and IOClls 669

When Sent
Receipt of a shutdown request indicates that a file system driver is sending notice that the
system is being shut down. .

One or more file system drivers can send such a lower-level driver more than one shutdown
request when a user logs off or when the system is being shut down for some other reason.

Operation
The driver must complete the transfer of any data currently cached in the device or held
in the driver's internal buffer(s) before completing the shutdown request.

Every device driver that transfers data from the system to its device must handle write
requests, as must any higher-level driver layered over such a device driver.

Input Parameters
The driver's 110 stack location in the IRP indicates how many bytes to transfer at
Parameters.Write.Length.

Some drivers use the value at Parameters.Write.Key to sort incoming write requests into
a driver-determined order in the device queue or in a driver-managed internal queue of IRPs.
Certain types of drivers also use the value at Parameters.Write.ByteOffset, which indi
cates the starting offset for the transfer operation.

Depending on whether the ·underlying device driver sets up the target device object's
Flags with DO_BUFFERED_IO or with DO_DIRECT_10, data is transferred from one
of the following:

• The buffer at Irp->Associatedlrp.SystemBuffer if the driver uses buffered 110

• The buffer described by the MDL at Irp->MdIAddress if the underlying device driver
uses direct 110 (DMA or PIO)

Output Parameters
None

When Sent
Any time following the successful completion of a create request.

Possibly, a user-mode application or Win32 component with a handle for the file object
representing the target device object has requested a data transfer to the device. Possibly,
a higher-level driver has created and set up the write IRP.

670 Part 1 Kernel-Mode Support Routines

Operation
On receipt of a write request, a higher-level driver sets up the I/O stack location in the
IRP for the next-lower driver, or it creates and sets up additional IRP(s) for one or more
lower drivers. It can set up its IoCompletion routine, which is optional for the input IRP but
required for driver-created IRPs, by calling IoSetCompietionRoutine. Then, the driver
passes the request on to the next-lower driver with IoCallDriver.

On receipt of a write request,. a device driver transfers data from system memory to its
device. The device driver sets the Information field of the I/O status block to the number
of bytes transferred when it completes the IRP.

Defining I/O Control Codes
All system-defined I/O control codes for IRP _MJ_DEVICE_CONTROL requests can be
considered public in the sense that they are exported to one or more user-mode protected
subsystems that run on top of the NT executive. As public device I/O control codes, some
are also assumed to be exported to user-mode applications native to a protected subsystem,
particularly to Win32 applications.

For a new kind of device, the driver's designer can define a public set of I/O control codes
for IRP _MJ_DEVICE_CONTROL requests. However, since such a set of codes should be
generally useful to other drivers of similar devices in the future, public I/O control codes
must have the approval of and must be built into the system by Microsoft Corporation.

For new devices or for common kinds of devices with special features, driver designers
also can define a set of I/O control codes for IRP _MJ_INTERNAL_DEVICE_CONTROL
requests. Such a set of internal I/O control codes can be used by paired kernel-mode drivers
to control the underlying device.

For example, kernel-mode drivers designed to the class/port model might use such a set
of internal I/O control codes to take advantage of the special features of a particular device
or type of device. The system-defined SCSI class/port interface uses this technique to define
a SCSI-specific set of requests that class drivers send down to the system SCSI port driver,
which transforms them into OS-independent SCSI requests for HBA-specific miniport
drivers.

When it is sent a device control request, a class driver sets up the next-lower port driver's
I/O stack location in the IRP and passes the request on to the underlying device driver, like
any other higher-level driver.

A class driver also can allocate IRPs for I/O control requests and send them to the under
lying port driver as follows:

1. Call IoBuildDeviceIoControlRequest to allocate an IRP with the major function code
IRP _MJ_DEVICE_CONTROL or IRP _MJ_INTERNAL_DEVICE_CONTROL.

Chapter 13 IRP Function Codes and IOClls 671

2. Set up the port driver's I/O stack location in the IRP with the IOCTL_XXX and appropri
ate parameters.

3. Note that parameters for a system-defined I/O control code almost never include an em
bedded pointer to avoid synchronization problems and possible access violations. With
the exception of certain SCSI requests, the buffers at Irp->Associatedlrp.SystemBuffer,
at Irp->MdIAddress, and/or at Parameters.DeviceloControI.Type3InputBuffer in the
I/O stack location of the IRP neither have a pointer to another data buffer nor contain a
structure with such a pointer for the public and system-defined internal I/O control codes.

4. Nevertheless, a pair of class/port drivers that define internal I/O control codes can pass an
embedded pointer to driver-allocated memory from the higher-level driver to the device
driver. Such a pair of class/port drivers is responsible for ensuring that only one driver at
a time can access the qata and that their private data buffer is accessible in an arbitrary
thread context by the port driver.

5. Call IoSetCompletionRoutine with the IRP, as necessary, so that the class driver can
determine how the corresponding port driver handled a given request, reuse the IRP to
send another request, or dispose of a driver-created IRP when the port driver completes
a requested operation.

6. Call IoCallDriver to pass the request on to the port driver.

By calling the GDI function EngDeviceloControl, a display driver also can send privately
defined, device-specific I/O control requests, as well as system-defined public I/O control
requests, through the system video port driver down to the corresponding adapter-specific
video miniport driver.

With a call to DeviceloControl, a user-mode VDD can send I/O control requests to the
corresponding kernel-mode driver for an MS-DOS®-application-dedicated device.

For more information about the functionality of video miniport drivers and display drivers,
see the Graphics Drivers Design Guide. For additional VDD details see Virtual Device
Drivers in the online DDK.

Figure 13.1 illustrates the layout of I/O control codes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
C C
0

Requireo
u Trans-

m Device Type s Function Code fer m Access t Type 0 0
n m

Figure 13.1 110 Control Code Layout

672 Part 1 Kernel·Mode Support Routines

Designers of drivers for a new FILE_DEVICE_XXX type of device must set the Common
flag at bit 31 in the private 110 control codes they define. Those who define a private set of
110 control codes for IRP _MJ_DEVICE_CONTROL or IRP _MJ_INTERNAL_DEVICE_
CONTROL requests also must set the Custom flag at bit 13 in the 110 control codes they
define.

All system-defined 110 control codes have both these C flags cleared.

Driver writers can use the system-supplied macro CTL_CODE to set up new 110 control
codes. To define an 110 control code, follow these guidelines for using CTL_CODE:

• Choose a descriptive constant name of the form 10CTL_Device_Function, where Device
indicates the type of device and Function indicates the operation.

• Supply the following parameters to the CTL_ CODE macro in the following order:

1. DeviceType matches that set in the Type field of the driver's device objects.

2. FunctionCode is in the range Ox800 to Oxfff for private 110 control codes defined by
customers of Microsoft. Values in the range OxOOO to Ox7ff are reserved by Microsoft
for public 110 control codes. The CTL_CODE macro automatically sets the Custom
flag at bit 13 for values in the range Ox800 to Oxfff.

3. TransferType indicates how data is passed to the driver as one of the following
system-defined constants:

• METHOD_BUFFERED if the driver transfers small amounts of data for
the request. With this method, IRPs containing the 110 control code will
supply a pointer to the buffer into which or from which to transfer data at
Irp->Associatedlrp.SystemBuffer. Most 110 control codes for device and
intermediate drivers use this TransferType value.

• METHOD_IN_DIRECT if the underlying device driver will read a large amount of
data for the request using DMA or PIO and must transfer the data quickly. With this
method, IRPs containing the 110 control code will supply a pointer to an MDL, des
cribing the output buffer at Irp->MdIAddress.

• METHOD_OUT_DlRECT if the underlying device driver will write a large amount
of data to the device for the request using DMA or PIO and must transfer the data
quickly. With this method, IRPs containing the 110 control code will supply a
pointer to an MDL, describing the data buffer, at Irp->MdIAddress.

Chapter 13 IRP Function Codes and IOClls 673

• METHOD _NEITHER if the driver can be sent such a request only while it is
running in the context of the thread that originates the 110 control request. Only a
highest-level kernel-mode driver is guaranteed to meet this condition, so this value
is seldom used for the I/O control codes passed to device drivers. With this method,
the highest-level driver must detennine whether to set up buffered or direct access
to user data on receipt of the request, possibly must lock down the user buffer, and
must wrap its access to the user buffer in a structured exception handler. Otherwise,
the originating user-mode caller might change the buffered data out from under the
driver or the caller could be swapped out just as the driver is accessing the user
buffer.

4. RequiredAccess indicates the type of access that must be requested when the caller
opens the file object representing the device (see the IRP _MJ_CREATE request in
Input and Output Parameters for Common I/O Requests). In other words, the I/O
Manager will create IRPs and call the driver with a given 110 control code only if the
caller has requested the necessary access rights for the driver to perform the requested
operation. RequiredAccess can be one of the following system-defined constants:

• FILE_ANY _ACCESS if the driver can carry out the requested operation for any
caller that has a handle for the file object representing the target device object.

• FILE_READ_DATA if the driver can carry out the requested operation only for
a caller with read access rights. With this required access, the underlying device
driver transfers data from the device to system memory.

• FILE_WRITE_DATA if tne driver can carry out the requested operation only for
a caller with write access rights. With this required access, the underlying device
driver transfers data from system memory to its device.

• (FILE_READ_DATA I FILE_WRITE_DATA) if the caller must have both read
and write access rights. With this required access, the underlying device driver
transfers data between system memory and the device.

Most public I/O control requests sent to device drivers are assigned FILE_ANY _ACCESS
as their RequiredAccess value, particularly those sent to drivers of exclusive devices and
those that are buffered by the 110 Manager or a higher-level driver. Many internal 110
control requests for system-supplied drivers also specify this type of RequiredAccess.

However, for certain types of tlevices, the public 110 control codes require the caller to have
read access rights, write access rights, or both.

674 Part 1 Kernel-Mode Support Routines

For example, the definition of the public 110 control code IOCTL_DISK_SET_
PARTITION_INFO shows that this 110 request can be sent to a disk driver and to all drivers

layered above the disk driver only if the caller has both read and write access rights, as
shown by the following definition:

#define IOCTL_DISK_SET_PARTITION_INFO\
CTL_CODECIOCTL_DISK_BASE. 0x008. METHOD_BUFFERED.\

FILE_READ_DATA I FILE_WRITE_DATA)

Driver designers who want to define a set of public control codes must consult with Micro
soft Corporation to have new codes added to the system header files. Private 110 control
codes should be defined in the driver(s)' device-specific header files.

Device-type-specific I/O Requests
The remaining chapters in this document summarize the device-type-specific 110 requests
handled by the system drivers of the most common kinds of devices.

Any new kernel-mode driver must handle the same set of 110 requests as a system-supplied
driver if the new driver meets any of the following conditions:

• The new driver will replace a system driver for the same type of device.

• The new driver is for another device of a type already in the system.

• The new driver is an intermediate driver to be layered between two system drivers.

Such a new driver must handle every IRP _MJ_XXX that the system-supplied driver(s)
handle. In most cases, a new device driver should also handle the same set of IOCTL_XXX
for IRP _MJ_DEVICE_CONTROL requests, even if the new driver must emulate the behav
ior of the corresponding system-supplied driver. Otherwise, the new driver might "break"
user-mode applications that expect these kinds of requests to be honored.

The remainder of this document also supplies tips about the NTSTATUS values that drivers
can set in the 110 status block of IRPs, set as necessary in an error log packet, and return for
specific requests. These tips for selecting request-specific NTSTATUS values do not include
STATUS_PENDING, which any driver can return for an IRP it has marked as pending
(IoMarkIrpPending) and not yet completed. Use this information to decide on the appro
priate status values to be returned by new drivers for similar types of devices, or as an aid
in determining the appropriate status values to be returned by the driver for a new type of
device.

Chapter 13 IRP Function Codes and IOCTLs 675

For more information about the following kinds of drivers and the requests that each is
required to support, see the following topics in the online DDK:

• Serial Devices and Drivers

• Parallel Devices and Drivers

• Storage Drivers

• Microsoft Windows® 2000 Input Architecture

• Supporting USB Devices

• The IEEE 1394 Driver Stack

• Access Attribute Memory of a PCMCIA Device

• System Management Bus Driver Clients

For all other types of drivers, consult the documentation for the appropriate driver type.

PAR T 2

Serial and Parallel Drivers

Chapter 1 Serial Driver Reference 679

Chapter 2 Serenum Driver Reference 717

Chapter 3 Parport Driver Reference 721

Chapter 4 Parclass Driver Reference 755

CHAPTER 1

Serial Driver Reference

This chapter describes the following topics about Serial, the Microsoft® Windows® 2000
system function driver for COM ports:

• Serial Major I/O Requests

• Serial Device Control Requests

• Serial Internal Device Control Requests

679

Serial is a function driver for legacy COM ports and Plug and Play COM ports. Serial is
also a lower-level device filter driver for Plug and Play devices that require a 16550 UART
compatible interface, but are not attached to a COM port.

Serial implements the Serial service, and its executable image is serial.sys.

See the following for more information about Serial operation:

• Serial Devices and Drivers in the online DDK

• Data definitions in the include file %install directory%\inc\ntddser.h in the
Windows 2000 DDK

• Sample code in the %user install directory%\srcV<:erneNerial directory in the
Windows 2000 DDK

• Microsoft Win32® Communications API

Notes
1. This chapter describes Serial's operation as a function driver for COM ports. Serial's

operation as a lower-level device filter driver is identical to its operation as a function
driver.

680 Part 2 Serial and Parallel Drivers

2. Serial supports interfaces that are compatible with a 16550 UART. The device control
signals and registers that are specified in this chapter are compatible with a 16550 UART
interface. Examples of these device control signals and registers include: the ready to
send control signal, the clear to send control signal, the line control register, and the
modem status register.

3. This chapter does not duplicate the extensive information provided in the Microsoft
Platform SDK about operating a COM port. For more information about the operation
of Serial device control requests, see the corresponding documentation for the Win32
Communications API in the Platform SDK.

Serial Major 1/0 Requests
This section describes the Serial-specific operation of the following major I/O requests that
Serial supports:

IRP _MJ_CLEANUP
IRP _MJ_CLOSE
IRP_MJ_CREATE
IRP _MJ_DEVICE_CONTROL
IRP _MJ_FLUSH_BUFFERS
IRP _MJ_INTERNAL_DEVICE_CONTROL
IRP_MJ_PNP
IRP _MJ_POWER
IRP _MJ_QUERY_INFORMATION
IRP _MJ_READ
IRP _MJ_SET_INFORMATION
IRP _MJ_SYSTEM_CONTROL
IRP _MJ_ WRITE

This section does not describe the driver-generic operation of these requests. See the
following for more information on Serial's generic handling of these requests:

• IRP Function Codes and IOCTLs

• Sample code in the %user install directory%\5rc~ernefuerial directory in the
Windows 2000 DDK

IRP _MJ_CREATE

Operation
The IRP _MJ_CREATE request opens a COM port. A COM port must be opened before it
can be used. Only one client can have a COM port open at the same time.

1/0 Status Block
The Information field is set to zero.

The Status field is set to one of the following values:

STATUS_SUCCESS

STATUS_ACCESS_DENIED
The device is already open.

STATUS_DELETE_PENDING
Serial is in the process of removing the device.

STATUSJNSUFFICIENT _RESOURCES

Chapter 1 Serial Driver Reference 681

The device is not in a Plug and Play Started state, or the driver could not allocate an internal
data structure.

STATUS_NOT _A_DIRECTORY

STATUS_PENDING
Serial queued the request for later processing.

STATUS_SHAREDJRQ_BUSY
The interrupt assigned to the device is in use by another open device.

IRP _MJ_DEVICE_CONTROL

Operation
Serial supports the following device control requests:

IOCTL_SERIAL_CLEAR_STATS
IOCTL_SERIAL_CLR_DTR
IOCTL_SERIAL_CLR_RTS
IOCTL_SERIAL_CONFIG_SIZE
IOCTL_SERIAL_ GET_BAUD _RATE
IOCTL_SERIAL_GET_CHARS
IOCTL_SERIAL_ GET _ COMMSTATUS
IOCTL_SERIAL_GET _DTRRTS
IOCTL_SERIAL_GET_HANDFLOW
IOCTL_SERIAL_ GET _LINE_CONTROL
IOCTL_SERIAL_GET_MODEM_CONTROL
IOCTL_SERIAL_ GET_MODEMSTATUS
10 CTL_S ERIAL_ GET_PROPERTIES
IOCTL_SERIAL_ GET_STATS

682 Part 2 Serial and Parallel Drivers

IOCTL_SERIAL_GET_ TIMEOUTS
IOCTL_SERIAL_GET_ WAIT_MASK
IOCTL_SERIAL_IMMEDIATE_CHAR
IOCTL_SERIAL_LSRMST_INSERT
IOCTL_SERIAL_PURGE
IOCTL_SERIAL_RESET _DEVICE
IOCTL_SERIAL_SET_BAUD _RATE
IOCTL_SERIAL_SET_BREAK_OFF
IOCTL_SERIAL_SET_BREAK_ON
IOCTL_SERIAL_SET_CHARS
IOCTL_SERIAL_SET _DTR
IOCTL_SERIAL_SET _FIFO_CONTROL
IOCTL_SERIAL_SET_HANDFLOW
IOCTL_SERIAL_SET _LINE_CONTROL
IOCTL_SERIAL_SET_MODEM_CONTROL
IOCTL_SERIAL_SET _QUEUE_SIZE
IOCTL_SERIAL_SET_RTS
IOCTL_SERIAL_SET _ TIMEOUTS
IOCTL_SERIAL_SET _ WAIT_MASK
IOCTL_SERIAL_SET _XOFF
IOCTL_SERIAL_SET _XON
IOCTL_SERIAL_ WAIT_ON_MASK
IOCTL_SERIAL_XOFF _COUNTER

No other device control requests are supported.

For a description of the device control requests, see Serial Device Control Requests.

IRP_MJ_FLUSH_BUFFERS
Operation

The IRP _MJ_FLUSH_BUFFER request flushes the internal write buffer.

Serial queues and starts processing write and flush requests in the order in which the
requests are received. Serial completes a flush request after it calls IoCompleteRequest for
all write requests that it received before a flush request. However, completion of the flush
request does not indicate that all the previously started write requests are completed by other
drivers in the device stack. For example, a filter driver might still be processing a write
request. A client must check that a write request is completed by all drivers in the device
stack before the client attempts to free or reuse a write request's IRP.

Chapter 1 Serial Driver Reference 683

Status 1/0 Block
The Information member is set to zero.

The Status member is set to one of the following status values:

STATUS_SUCCESS

STATUS_CANCEllED
A client canceled the request. Serial also cancels a request if a device error occurs and Serial
is configured to cancel a request if there is a device error.

STATUS_DELETE_PENDING
The driver is in the process of removing the device.

STATUS_PENDING
Serial queued the request for later processing.

Serial supports the following internal device control requests:

IOCTL_SERIAL_INTERNAL_BASIC_SETTINGS
IOCTL_SERIAL_INTERNAL_CANCEL_ W AIT_ WAKE
IOCTL_SERIAL_INTERNAL_DO_ WAIT_WAKE
IOCTL_SERIAL_INTERNAL_RESTORE_SETTINGS

No other internal device control requests are supported.

For a description of the internal device control requests, see Serial Internal Device Control
Requests.

Serial supports the following Plug and Play requests:

IRP _MN_CANCEL_REMOVE_DEVICE
IRP _MN_CANCEL_STOP _DEVICE
IRP _MN_FIL TER_RESOURCE_REQUIREMENTS
IRP_MN_QUERY_CAPABILITIES
IRP _MN_QUERY _DEVICE_RELATIONS
IRP_MN_QUERY_ID
IRP_MN_QUERY_PNP_DEVICE_STATE
IRP _MN_QUERY _REMOVE_DEVICE
IRP _MN_QUERY _RESOURCE_REQUIREMENTS x
IRP _MN_QUERY _STOP_DEVICE

684 Part 2 Serial and Parallel Drivers

IRP _MN_REMOVE_DEVICE
IRP _MN_START_DEVICE
IRP _MN_STOP _DEVICE
IRP _MN_SURPRISE_REMOV AL

Serial sends all other Plug and Play requests down the device stack without further processing.

Serial performs the following Serial-specific processing for Plug and Play requests:

IRP _MN_QUERY JD (type BusQueryHardwardlDs)
If a COM port is on a mUltiport ISA card, Serial appends L"*PNP0502" to the string of
hardware IDs.

IRP _MN_FIL TER_RESOURCE_REQUIREMENTS
COM ports on a multi port ISA card share the same interrupt status register and the same
interrupt.

For a description of the generic operation of Plug and Play requests, see Plug and Play IRPs
in Volume 1 of the Windows 2000 Driver Development Reference.

Serial supports the following power requests:

IRP _MN_QUERY_POWER
IRP _MN_SET_POWER

Serial sends all other power requests down the device stack to be completed by a lower-level
driver.

Serial is the default power policy owner for a serial device stack that uses Serial as a func
tion driver or a lower-level filter driver.

For more information on the generic operation of these requests, see I/O Request for Power
Management in Volume 1 of the Windows 2000 Driver Development Reference.

IRP _MJ_QUERY _INFORMATION

Operation
The IRP _MJ_QUERY_INFORMATION request queries the end-of-file information for
a COM port. Serial supports .requests of type FileStandardInformation and FilePosition
Information.

The standard file information is always set to zero or FALSE, as appropriate. The position
information is always set to zero.

Input

Chapter 1 Serial Driver Reference 685

The Parameters.QueryFile.FileInformationClass is set to FileStandardInformation or
FilePositionInformation.

Output
FileStandardlnformation
The AssociatedIrp.SystemBuffer member points to a client-allocated FILE_STANDARD_
INFORMATION structure that Serial uses to output standard information.

FilePositionlnformation
The AssociatedIrp.SystemBuffer member points to a client-allocated FILE_POSITION_
INFORMATION structure that Serial uses to output position information.

Status 1/0 Block
If the request is successful, the Information member is set to zero.

The Status member is set to one of the following status values:

STATUS_SUCCESS

STATUS_CANCEllED
A client canceled the request. Serial also cancels a request if a device error occurs and Serial
is configured to cancel a request if there is a device error.

STATUS_DELETE_PENDING
Serial is in the process of removing the device.

STATUSJNVALlD_PARAMETER
The requested information is not supported.

STATUS_PENDING
Serial queued the request for later processing.

IRP _MJ_READ

Operation
The IRP _MJ_READ request copies bytes from a COM port to a client-allocated output
buffer.

A client can use timeout events to terminate a read request. Note, however, that when a
COM port is opened, the timeout settings for the device are undefined. A kernel-mode client
can use an IOCTL_SERIAL_INTERNAL_BASIC_SETTINGS to set timeout parameters to

686 Part 2 Serial and Parallel Drivers

Input

zero (no timeout events are used). User-mode and kernel-mode clients can use an IOCTL_
SERIAL_SET_TIMEOUTS request to set timeout parameters.

For more information on read and write timeouts, see Read and Write Timeouts for a COM
Port in Part 2, "Serial and Parallel Drivers," of the Kernel-Mode Drivers Design Guide.

The Parameters.Read.Length member is set to the number of bytes to copy to the client's
output buffer.

Output
The AssociatedIrp.SystemBuffer member points to a client-allocated buffer that Serial
uses to output data.

Status 1/0 Block
The Information member is set to the number of bytes copied to the client's output buffer.

The Status member is set to one of the following values:

STATUS_SUCCESS

STATUS_CANCEllED
A client canceled the r~quest. Serial also cancels a request if a device error occurs and Serial
is configured to cancel a request if there is a device error.

STATUS_DELETE_PENDING
Serial is in the process of removing the device.

STATUS_PENDING
Serial queued the request for later processing.

STATUS_ TIMEOUT
The time to complete the request exceeded the total timeout value or the interval timeout
value.

IRP _MJ_SET_INFORMATION

Operation
The IRP_MJ_SET_INFORMATION request sets the end-of-file information on a COM
port. Serial supports requests of type FileEndOfFileInformation and FileAllocation
Information.

Input

Chapter 1 Serial Driver Reference 687

A client can not set file information.

The Parameters.SetFile.FileInformationClass member is set to FileEndOfFile
Information or FileAllocationInformation.

Status 1/0 Block
If the request is successful, the Information member is set to zero.

The Status member is set to one of the following status values:

STATUS_SUCCESS

STATUS_CANCEllED
A client canceled the request. Serial also cancels a request if a device error occurs and Serial
is configured to cancel a request if there is a device error.

STATUS_DELETE_PENDING
Serial is in the process of removing the device.

STATUSJNVALID _PARAMETER
The specified end-of-file information is not supported.

STATUS_PENDING
Serial queued the request for later processing.

IRP_MJ_SYSTEM_CONTROL
Operation

Serial supports the following WMI requests:

IRP_MN_QUERY_ALL_DATA
IRP _MN_QUERY_DATA_BLOCK
IRP _MN_REGINFO

No other WMI requests or non-WMI system control requests are supported. If Serial does
not support a WMI request, it skips the current stack location, and sends the request down
the device stack.

688 Part 2 Serial and Parallel Drivers

Serial registers the following WMI GUIDS:

Serial WMI GUID

SERIAL_PORT_ WMCNAME_GUID

SERIAL_PORT_ WMCCOMM_GUID

SERIAL_PORT_ WMCHW _GUID

SERIAL_PORT_ WMCPERF _GUID

SERIAL_PORT_ WMCPROPERTIES_GUID

Associated Data Structure

USHORT followed by a WCSTR

SERIAL_ WMCCOMM_DATA

SERIAL_ WMCHW _DATA

SERIAL_ WMCPERF _DATA

WMCSERIAL_PORT_PROPERTIES

The WMI name is the port name of the COM port, which is the value of the entry value
PortName under the Plug and Play registry key for the device.

When called
WMI sends an IRP _MN_REGINFO request to Serial after Serial calls 10 WMIRegistration
Control to update WMI registration information. Serial updates WMI registration informa
tion when a Plug and Play COM port is started and removed.

At the request of a WMI client, the WDM provider sends an IRP _MN_ QUERY _DAT A_
BLOCK or an IRP _MN_QUERY_ALL_DATA request to obtain WMI data.

1/0 Status Block
If the request is supported by the driver, the Status field is set to one of the following
values:

STATUS_SUCCESS

STATUS_BUFFER_TOO_SMALL
The size in bytes of the output buffer is less than the size in bytes of the requested WMI data
block.

STATUS _ WMI_ GUID _NOT _FOUND
The data block GUID is not valid.

STATUS_ WMIJNSTANCE_NOT _FOUND
The WMI context is not valid.

If Serial does not handle the request, the Status member is set to STATUS_INVALID_
DEVICE_REQUEST.

Chapter 1 Serial Driver Reference 689

IRP _MJ_WRITE

Operation

Input

The IRP _MJ_ WRITE request copies data to a COM port from a client-provided input
buffer.

A client can use timeout events to terminate a write request. Note, however, that when a
COM port is opened, the timeout events set on a device are undefined. A kernel-mode client
can use an IOCTL_SERIAL_INTERNAL_BASIC_SETTINGS to set timeout parameters to
zero (no timeout events are used) and an IOCTL_SERIAL_SET_TIMEOUTS request to set
timeout parameters. For more information on read and write timeouts, see Read and Write
Timeouts for a COM port in Part 2, "Serial and Parallel Drivers," of the Kernel-Mode
Drivers Design Guide.

The Parameters.Write.Length member is set to the number of bytes to copy from a client
allocated input buffer to a COM port.

The AssociatedIrp.SystemBuffer member points to a client-allocated input buffer from
which Serial copies data to the COM port.

Status 1/0 Block
The Information member is set to the number of bytes actually copied from the client's
input buffer to the COM port.

The Status member is set to one of the following values:

STATUS_SUCCESS

STATUS_CANCELLED
A client canceled the request. Serial also cancels a request if a device error occurs and Serial
is configured to cancel a request if there is a device error.

STATUS_DELETE_PENDING
Serial is in the process of removing the device.

STATUS_PENDING
Serial queued the request for later processing.

STATUS_TIMEOUT
The total time allowed for the write request was exceeded.

690 Part 2 Serial and Para"el Drivers

Serial Device Control Requests
This section describes the following device control requests that Serial supports:

IOCTL_SERIAL_CLEAR_STATS
IOCTL_SERIAL_CLR_DTR
IOCTL_SERIAL_CLR_RTS
IOCTL_SERIAL_CONFIG_SIZE
IOCTL_SERIAL_GET_BAUD_RATE
IOCTL_SERIAL_GET_CHARS
IOCTL_SERIAL_GET_COMMSTATUS
IOCTL_SERIAL_GET _DTRRTS
IOCTL_SERIAL_GET_HANDFLOW
IOCTL_SERIAL_GET_LINE_ CONTROL
IOCTL_SERIAL_GET_MODEM_CONTROL
IOCTL_SERIAL_ GET _MODEMST ATUS
IOCTL_SERIAL_GET_PROPERTIES
IOCTL_SERIAL_GET _STATS
IOCTL_SERIAL_GET_TIMEOUTS
IOCTL_SERIAL_GET_ WAIT_MASK
IOCTL_SERIAL_IMMEDIATE_CHAR
IOCTL_SERIAL_LSRMST_INSERT
IOCTL_SERIAL_PURGE
IOCTL_SERIAL_RESET_DEVICE
IOCTL_SERIAL_SET_BAUD_RATE
IOCTL_SERIAL_SET_BREAK_OFF
IOCTL_SERIAL_SET_BREAK_ON
IOCTL_SERIAL_SET_CHARS
IOCTL_SERIAL_SET _DTR
IOCTL_SERIAL_SET _FIFO_CONTROL
IOCTL_SERIAL_SET_HANDFLOW
IOCTL_SERIAL_SET _LINE_CONTROL
IOCTL_SERIAL_SET_MODEM_CONTROL
IOCTL_SERIAL_SET _QUEUE_SIZE
IOCTL_SERIAL_SET_RTS
IOCTL_SERIAL_SET _TIMEOUTS
IOCTL_SERIAL_SET _ WAIT_MASK
IOCTL_SERIAL_SET_XOFF
IOCTL_SERIAL_SET :XON
IOCTL_SERIAL_ WAIT_ON_MASK
IOCTL_SERIAL_XOFF _COUNTER

No other device control codes are supported.

Chapter 1 Serial Driver Reference 691

Status 1/0 Block
The Information member is set to a request-specific value or to zero.

The Status member is set to a request-specific status value or to one of the following
generic status values:

STATUS_SUCCESS

STATUS_BUFFER_SIZE_ TOO_SMAll
The input or the output buffer is too small to hold the required information.

STATUS_CANCEllED
The client canceled the request. For all control codes other than IOCTL_SERIAL_GET_
COMMSTATUS, Serial also cancels a request if a device error occurs and Serial is con
figured to cancel a request if there is a device error.

STATUS_DELETE_PENDING
There was an unrecoverable hardware error, or a Plug and Play remove or surprise remove
operation is in progress.

STATUSJNVALID _DEVICE_REQUEST
The COM port is not open.

STATUSJNVALlD_PARAMETER
The request parameters are not valid.

STATUS_PENDING
Serial queued the request for later processing.

STATUS_Xxx
An internal operation returned an NTST A TUS error status value.

If Serial does not support a device control request, it sets the Information member to zero
and the Status member to STATUS_INVALID_PARAMETER.

IOCTL_SERIAL_ CLEAR_STATS

Operation
The IOCTL_SERIAL_CLEAR_STATS request clears the performance statistics for a
COMport.

To obtain the performance statistics, a client can use an IOCTL_SERIAL_GET_STATS
request.

692 Part 2 Serial and Parallel Drivers

Status 1/0 Block
The Information field is set to zero.

The Status field is set to one of the generic status values.

IOCTL_SERIAL_CLR_DTR

Operation
The IOCTL_SERIAL_CLR_DTR request clears the data terminal ready control signal
(DTR).

If the handshake flow control of the device is configured to automatically use DTR, a client
cannot clear or set DTR.

To set DTR, a client can use an IOCTL_SERIAL_SET J)TR request.

Status 1/0 Block
The Information member is set to zero.

The Status member is set to one of the generic status values. A status of STATUS_
INV ALID _PARAMETER indicates that the handshake flow control of the device is set to
automatically use DTR.

IOCTL_SERIAL_CLR_RTS

Operation
The IOCTL_SERIAL_CLR_RTS request clears the request to send control signal (RTS).

If the handshake flow control of the device is configured to automatically use RTS, a client
cannot clear or set RTS.

To set RTS, a client can use an IOCTL_SERIAL_SET_RTS request.

Status 110 Block
The Information member is set to zero.

The Status member is set to one of the generic status values. A status of ST A TUS_
INV ALID _PARAMETER indicates that the handshake flow control of the device is set to
automatically use RTS.

Chapter 1 Serial Driver Reference 693

IOCTL_SERIAL_CONFIG_SIZE

Operation

Input

The IOCTL_SERIAL_CONFIG_SIZE request returns information about configuration size.

Serial always returns zero.

This request is obsolete and should not be used by new Microsoft® Windows® 2000 drivers.

The Parameters.DeviceIoControl.OutputBufferLength is set to the size in bytes of a
ULONG.

Output
The AssociatedIrp.SystemBuffer member points to a client-allocated ULONG buffer that
Serial uses to output configuration size information.

Status 1/0 Block
The Information member is set to the size in bytes of a ULONG.

The Status member is set to one of the generic status values.

IOCTL_SERIAL_ GET _BAUD _RATE

Operation

Input

The IOCTL_SERIAL_GET_BAUD_RATE request returns the baud rate that is currently set
for a COM port.

To set the baud rate, a client can use an IOCTL_SERIAL_SET_BAUD_RATE request.

For more information on the baud rates that the driver supports, see the baud rate constants
SERIAL_BAUD_075 through SERIAL_BAUD_115200, which are defined in the include
file ntddser.h in the Windows 2000 DDK.

The Parameters.DeviceIoControl.OutputBufferLength member is set to the size in bytes
of a SERIAL_BAUD_RATE structure.

Output
The AssociatedIrp.SystemBuffer member points to a client-allocated SERIAL_BAUD_
RATE structure that Serial uses to output the baud rate information.

694 Part 2 Serial and Parallel Drivers

Status 1/0 Block
If the request is successful, the Information member is set to the size in bytes of a
SERIAL_BAUD_RATE structure. Otherwise, the Information member is set to zero.

The Status member is set to one of the generic status values.

IOCTL_SERIAL_GET _CHARS

Operation

Input

The IOCTL_SERIAL_GET_CHARS request returns the special characters that Serial uses
with handshake flow control.

To set special characters, a client can use an IOCTL_SERIAL_SET_CHARS request.

The Parameters.DeviceIoControI.OutputBufferLength member is set to the size in bytes
of a SERIAL_CHARS structure.

Output
The AssociatedIrp.SystemBuffer member points to a client-allocated SERIAL_CHARS
structure that Serial uses to output the special characters.

Status 1/0 Block
If the request is successful, the Information member is set to the size in bytes of SERIAL_
CHARS. Otherwise, the Information member is set to zero.

The Status member is set to one of the generic status values.

IOCTL_SERIAL_ GET _COMMSTATUS

Operation

Input

The IOCTL_SERIAL_GET_COMMSTATUS request returns information about the com
munication status of a COM port.

The Parameters.DeviceIoControl.OutputBufferLength is set to the size in bytes of a
SERIAL_STATUS structure.

Chapter 1 Serial Driver Reference 695

Output
The AssociatedIrp.SystemBuffer points to a client-allocated SERIAL_STATUS structure
that Serial uses to output communication status information.

Status 1/0 Block
If the request is successful, the Information member is set to the size in bytes of a
SERIAL_STATUS structure. Otherwise, the Information member is set to zero.

The Status member is set to one of the generic status values.

IOCTL_SERIAL_GET _DTRRTS

Operation

Input

The IOCTL_SERIAL_GET_DTRRTS request returns information about the data terminal
ready control signal (DTR) and the request to send control signal (RTS).

The Parameters.DeviceIoControl.OutputBufferLength member is set to the size in bytes
ofa ULONG.

Output
The AssociatedIrp.SystemBuffer points to a client-allocated ULONG buffer that Serial
uses to output information about the DTR and RTS. The ULONG buffer is set to a logical
OR of zero or more of the following flags:

SERIAL_DTR_STATE
Indicates that DTR is set.

SERIAL_RTS_STATE
Indicates that RTS is set.

Status 1/0 Block
If the request is successful, the Information member is set to the size in bytes of a ULONG.
Otherwise, the Information member is set to zero.

The Status member is set to one of the generic status values.

696 Part 2 Serial and Parallel Drivers

IOCTL_SERIAL_GET _HANDFLOW

Operation

Input

The IOCTL_SERIAL_GET_HANDFLOW request returns information about the configu
ration of the handshake flow control set for a COM port.

To set the configuration of the handshake flow control, a client can use an IOCTL_
SERIAL_SET _HAND FLOW request.

For more information on settings for handshake flow control, see the handshake flow control
parameters SERIAL_DTR_MASK through SERIAL_FLOW _INV ALID, which are defined
in the include file ntddser.h in the Windows 2000 DDK.

The Parameters.DeviceIoControl.OutputBufferLength is set to the size in bytes of a
SERIAL_HANDFLOW structure.

Output
The AssociatedIrp.SystemBuffer points to a client-allocated SERIAL_HANDFLOW
structure that Serial uses to output information about the configuration of handshake flow
control.

Status 1/0 Block
If the request is successful, the Information member is set to the size in bytes of a
SERIAL_HANDFLOW structure. Otherwise, the Information member is set to zero.

The Status member is set to one of the generic status values.

IOCTL_SERIAL_ GET _LINE_CONTROL

Operation
The IOCTL_SERIAL_GET_LINE_CONTROL request returns information about the line
control set for a COM port. The line control parameters include the number of stop bits, the
number of data bits, and the parity.

To configure the line control, a client can use an IOCTL_SERIAL_SET_LINE_CONTROL
request.

For information on valid line control register settings, see the constants SERIAL_5_
DATA through SERIAL_PARITY_MASK, which are defined in the include file %install
directory%\src~ernel\serial.h in the Windows 2000 DDK.

Input

Chapter 1 Serial Driver Reference 697

The Parameters.DeviceIoControi.OutputBufferLength is set to the size in bytes of a
SERIAL_LINE_ CONTROL structure.

Output
The AssociatedIrp.SystemBuffer points to a client-allocated SERIAL_LINE_CONTROL
structure that Serial uses to output information about the line control configuration.

Status 1/0 Block
If the request is successful, the Information member is set to the size in bytes of a
SERIAL_LINE_CONTROL structure. Otherwise, the Information member is set to zero.

The Status member is set to one of the generic status values.

IOCTL_SERIAL_ GET _MODEM_CONTROL

Operation

Input

The IOCTL_SERIAL_GET_MODEM_CONTROL request returns the value of the modem
control register.

To set the modem control register, a client can use an IOCTL_SERIAL_SET_MODEM_
CONTROL request.

For information on modem control register settings, see the constants SERIAL_MCR_DTR
through SERIAL_MCR_LOOP, which are defined in the include file %install directory%\
srcV<;ernel)\serial\serial.h in the Windows 2000 DDK.

The Parameters.DeviceIoControi.OutputBufferLength is set to the size in bytes of a
ULONG.

Output
The AssociatedIrp.SystemBuffer points to a client-allocated ULONG buffer that Serial
uses to output the value of the modem control register.

Status 1/0 Block
If the request is successful, the Information member is set to the size in bytes of a ULONG.
Otherwise, the Information member is set to zero.

The Status member is set to one of the generic status values.

698 Part 2 Serial and Parallel Drivers

IOCTL_SERIAL_ GET _MODEMSTATUS

Operation

Input

The IOCTL_SERIAL_GET_MODEMSTATUS request updates the modem status, and
returns the value of the modem status register before the update.

The Parameters.DeviceIoControl.OutputBufferLength is set to the size in bytes of a
ULONG.

Output
The AssociatedIrp.SystemBuffer points to a client-allocated ULONG buffer that Serial
uses to output the value of the modem status register.

Status 1/0 Block
If the request is successful, the Information member is set to the size in bytes of a ULONG.
Otherwise, the Information member is set to zero.

The Status member is set to one of the generic status values.

IOCTL_SERIAL_ GET_PROPERTIES

Operation

Input

The IOCTL_SERIAL_GET_PROPERTIES request returns information about the
capabilities of a COM port.

The Parameters.DeviceIoControl.OutputBufferLength is set to the size in bytes of a
SERIAL_ COMMPROP structure.

Output
The AssociatedIrp.SystemBuffer points to a client-allocated SERIAL_COMMPROP
structure that Serial uses to output information about the capabilities of the COM port.

Status I/O Block
If the request is successful, the Information member is set to the size in bytes of a
SERIAL_COMMPROP structure. Otherwise, the Information member is set to zero.

The Status member is set to one of the generic status values.

Chapter 1 Serial Driver Reference 699

IOCTL_SERIAL_GET_STATS

Operation

Input

The IOCTL_SERIAL_GET_STATS request returns information about the performance
of a COM port. The statistics include the number of characters transmitted, the number of
characters received, and useful error statistics. The driver continuously increments perfor
mance values.

To reset the performance values to zero, a client can use an IOCTL_SERIAL_CLEAR_
ST ATS request.

The Parameters.DeviceIoControl.OutputBufferLength member is set to the size in bytes
of a SERIALPERF _ST ATS structure.

Output
The AssociatedIrp.SystemBuffer member points to a client-allocated SERIALPERF_
ST ATS structure that Serial uses to output performance information.

Status 1/0 Block
If the request succeeds, the Information member is set to the size in bytes of a
SERIALPERF _ST ATS structure. Otherwise, the Information member is set to zero.

The Status member is set to one of the generic status values.

IOCTL_SERIAL_GET _ TIMEOUTS

Operation

Input

The IOCTL_SERIAL_GET_TIMEOUTS request returns the timeout values that Serial uses
with read and write requests.

To set timeouts, a client can use an IOCTL_SERIAL_SET _ TIMEOUTS request.

For more information on timeouts, see Read and Write Timeouts for a COM Port in Part 2,
"Serial and Parallel Drivers," of the Kernel-Mode Drivers Design Guide.

The Parameters.DeviceIoControl.OutputBufferLength is set to the size in bytes of a
SERIAL_TIMEOUTS structure.

700 Part 2 Serial and Parallel Drivers

Output
The AssociatedIrp.SystemBuffer points to a client-allocated SERIAL_TIMEOUTS
structure that Serial uses to output information about read and write timeout values.

Status 1/0 Block
If the request is successful, the Information member is set to the size in bytes of a
SERIAL_TIMEOUTS structure. Otherwise, the Information member is set to zero.

The Status member is set to one of the generic status values.

IOCTL_ SERIAL_GET _WAIT _MASK

Operation

Input

The IOCTL_SERIAL_GET_ WAIT_MASK request returns the event wait mask that is
currently set on a COM port.

A client can wait on the wait events SERIAL_EV _RXCHAR through SERIAL_EV _
EVENT2 that are defined in the include file ntddser.h in the Windows 2000 DDK.

To set an event wait mask, a client can use an IOCTL_SERIAL_SET_ WAIT_MASK
request. To wait for the occurrence of a wait event, a client uses an IOCTL_SERIAL_
WAIT_ON_MASK request.

The Parameters.DeviceIoControl.OutputBufferLength is set to the size in bytes of a
ULONG.

Output
The AssociatedIrp.SystemBuffer points to a client-allocated ULONG buffer that Serial
uses to output the wait mask. The wait mask is zero or a logical OR of one or more of the
wait events SERIAL_EV _RXCHAR through SERIAL_EV _EVENT2 that are defined in the
include file ntddser.h in the Windows 2000 DDK.

Status 1/0 Block
If the request is successful, the Information member is set to the size in bytes of a ULONG.
Otherwise, the Information member is set to zero.

The Status member is set to one of the generic status values.

Chapter 1 Serial Driver Reference 701

IOCTL_SERIAL_IMMEDIATE_ CHAR

Operation

Input

The IOCTL_SERIAL_IMMEDIATE_CHAR request causes a specified character to be
transmitted as soon as possible. The immediate character request completes immediately
after any other write that might be in progress. Only one immediate character request can
be pending at a time.

The AssociatedIrp.SystemBuffer points to the UCHAR value to transmit immediately.

The Parameters.DeviceIoControl.InputBufferLength is set to the size in bytes of an
UCHAR.

Status 1/0 Block
If the request is successful, the Information member is set to the size in bytes of a UCHAR.
Otherwise, Information is set to zero.

The Status member is set to one of generic status values. A status of STATUS_INVALID_
PARAMETER indicates that a previous immediate character request is pending.

IOCTL_SERIAL_LSRMST _INSERT

Operation
The IOCTL_SERIAL_LSRMST_INSERT request enables or disables the insertion of infor
mation about line status and modem status in the receive data stream. If LSRMST insertion
is enabled, the driver inserts event information for the supported event types. The event
information includes an event header followed by event-specific data. The event header
contains a client-specified escape character and a flag that identifies the event. The driver
supports the following event types:

SERIAL_LSRMST _LSR_DATA
A change occurred in the line status. Serial inserts an event header followed by the event
specific data, which is the value of the line status register followed by the character present
in the receive hardware when the line-status change was processed.

SERIAL_LSRMST _LSR_NODATA
A line status change occurred, but no data was available in the receive buffer. Serial inserts
an event header followed by the event-specific data, which is the value of the line status
register when the line status change was processed.

702 Part 2 Serial and Parallel Drivers

Input

SERIAL_LSRMST _MST
A change occurred in the modem status. Serial inserts an event header followed by the
event-specific data, which is the value of the modem status register when the modem-status
change was processed.

SERIAL_LSRMST _ESCAPE
Indicates that the next character in the receive data stream, which was received from the
device, is identical to the client-specified escape character. Serial inserts an event header.
There is no event-specific data.

The AssociatedIrp.SystemBuffer member points to a client-allocated UCHAR that is used
to input an escape character. If the escape character is nonNULL, insertion is enabled, and
the serial driver uses the specified escape character. Otherwise, insertion is disabled.

The Parameters.DeviceIoControl.InputBufferLength is set to the size in bytes of a
UCHAR.

Status 1/0 Block
If the request is successful, the Information member is set to the size in bytes of a UCHAR.
Otherwise, Information is set to zero.

The Status member is set to one of the generic status values. A status of STATUS_
INV ALID _PARAMETER indicates that the specified escape character is the same as the
XON or the XOFF character, or that error replacement is enabled with handshake flow
control.

IOCTL_SERIAL_PURGE

Operation

Input

The IOCTL_SERIAL_PUROE request cancels the specified requests and deletes data
from the specified buffers. The purge request can be used to cancel all read requests and
write requests and to delete all data from the read buffer and the write buffer.

The completion of the purge request does not indicate that the requests cancelled by the
purge request are completed. A client must verify that the purged requests are completed
before the client frees or reuses the corresponding IRPs.

The AssociatedIrp.SystemBuffer member points to a client-allocated ULONO that is used
to input a purge mask. The client sets the purge mask to a logical OR of one or more of the
following purge flags:

SERIAL_PURGE_RXABORT
Purges all read requests.

SERIAL_PURGE_RXCLEAR
Purges the receive buffer, if one exists.

SERIAL_PURGE_ TXABORT
Purges all write requests.

SERIAL_PURGE_ TXCLEAR
Purges the write buffer, if one exists.

Chapter 1 Serial Driver Reference 703

The Parameters.DeviceIoControl.InputBufferLength is set to the size in bytes of a
ULONG.

Status 1/0 Block
If the request is successful, the Information member is set to the size in bytes of a ULONG.
Otherwise, the Information member is set to zero.

The Status member is set to one of the generic status values. A status of STATUS_
INV ALID _PARAMETER indicates that the purge mask is not valid.

IOCTL_SERIAL_RESET _DEVICE

Operation
The IOCTL_SERIAL_RESET_DEVICE request resets a COM port.

Status 1/0 Block
The Information member is set to zero.

The Status member is set to one of the generic status values.

IOCTL_SERIAL_SET _BAUD_RATE

Operation
The IOCTL_SERIAL_SET_BAUD_RATE request sets the baud rate on a COM port. Serial
verifies the specified baud rate.

To obtain the baud rate, a client can use an IOCTL_SERIAL_GET_BAUD_RATE request.

For more information on the baud rates that the driver supports, see the baud rate constants
SERIAL_BAUD_075 through SERIAL_BAUD_115200, which are defined in the include
file ntddser.h in the Windows 2000 DDK.

704 Part 2 Serial and Parallel Drivers

Input
The AssociatedIrp.SystemBuffer member points to a SERIAL_BAUD_RATE structure
that a client allocates and sets to input the baud rate.

The Parameters.DeviceIoControl.InputBufferLength member is set to the size in bytes of
a SERIAL_BAUD_RATE structure.

Status 1/0 Block
The Information member is set to zero.

The Status member is set to one of the generic status values.

IOCTL_SERIAL_SET _BREAK_OFF

Operation
The IOCTL_SERIAL_SET_BREAK_OFF request sets the line control break signal
inactive.

To set the line control break signal active, a client can use an IOCTL_SERIAL_SET_
BREAK_ON request.

Status I/O Block
The Information member is set to zero.

The Status member is to one of the generic status values.

IOCTL_SERIAL_SET _BREAK_ON

Operation
The IOCTL_SERIAL_SET_BREAK_ON request sets the line control break signal active.

To set the line control break signal inactive, a client can use an IOCTL_SERIAL_SET_
BREAK_OFF request.

Status 1/0 Block
The Information member is set to zero.

The Status member is set to one of the generic status values.

Chapter 1 Serial Driver Reference 705

IOCTL_SERIAL_SET _CHARS

Operation

Input

The IOCTL_SERIAL_GET_CHARS request sets the special characters that Serial uses for
handshake flow control. Serial verifies the specified special characters.

To obtain the special characters, a client can use an IOCTL_SERIAL_GET_CHARS
request.

The AssociatedIrp.SystemBuffer member points to a client-allocated SERIAL_CHARS
structure that is used to input special characters.

The Parameters.DeviceIoControl.InputBufferLength member is set to the size in bytes
of a SERIAL_CHARS structure.

Status 1/0 Block
The Information member is set to zero.

The Status member is set to one of the generic values. A status of STATUS_INVALID_
PARAMETER indicates that XoffChar equals XonChar, or that one of them equals the
handshake flow control escape character.

IOCTL_SERIAL_SET _DTR

Operation
The IOCTL_SERIAL_SET_DTR request sets DTR.

If the handshake flow control of the device is configured to automatically use DTR, a client
can not clear or set DTR.

To clear DTR, a client can use an IOCTL_SERIAL_CLR_DTR request.

Status 1/0 Block
The Information member is set to zero.

The Status member is set to one of the generic values. A status of STATUS_INVALID_
PARAMETER indicates that the handshake flow control of the device is set to automatically
useDTR.

706 Part 2 Serial and Parallel Drivers

IOCTL_SERIAL_SET _FIFO_CONTROL

Operation

Input

The IOCTL_SERIAL_SET_INFO_CONTROL request sets the FIFO control register
(FeR). Serial does not verify the specified FIFO control information.

The AssociatedIrp.SystemBuffer member points to a client-allocated ULONG that is used
to input FIFO control information.

The Parameters.DeviceIoControi.InputBufferLength is set to the size in bytes of a
ULONG.

Status 1/0 Block
The Information member is set to zero.

The Status member is set to one of the generic status values.

IOCTL_SERIAL_SET _HANDFLOW

Operation

Input

The IOCTL_SERIAL_SET_HANDFLOW request sets the configuration of handshake flow
control. Serial verifies the specified handshake flow control information.

To obtain handshake flow control information, a client can use an IOCTL_SERIAL_GET_
HANDFLOW request..

For more information on settings for handshake flow control, see the handshake flow control
parameters SERIAL_DTR_MASK through SERIAL_FLOW _INV ALID, which are defined
in the include file ntddser.h in the Windows 2000 DDK.

The AssociatedIrp.SystemBuffer points to a client-allocated SERIAL_HANDFLOW struc
ture that is used to input the handshake flow control information.

The Parameters.DeviceIoControi.InputBufferLength is set to the size in bytes of a
SERIAL_HANDFLOW structure.

Status 1/0 Block
The Information member is set to zero.

The Status member is set to one of the generic values. A status of STATUS _INV ALID_
PARAMETER indicates the specified handshake flow control is not valid.

Chapter 1 Serial Driver Reference 707

IOCTL_SERIAL_SET_LINE_CONTROL

Operation

Input

The IOCTL_SERIAL_SET_LINE_CONTROL request sets the line control register (LCR).
The line control register controls the data size, the number of stop bits, and the parity.

To obtain the value of the line control register, a client can use an IOCTL_SERIAL_GET_
LINE_CONTROL request.

For information on valid line control register settings, see the constants SERIAL_5_DATA
through SERIAL_PARITY _MASK, which are defined in the include file %install
directory%~rcVcernel\serial.h in the Windows 2000 DDK.

The AssociatedIrp.SystemBuffer points to a client-allocated SERIAL_LINE_CONTROL
structure that is used to input line control information.

The Parameters.DeviceIoControl.InputBufferLength is set to the size in bytes of a
SERIAL_LINE_ CONTROL structure.

Status I/O Block
The Information member is set to zero.

The Status member is set to one of the generic status values. A status of STATUS_
INV ALID _PARAMETER indicates that the specified line control information is not valid.

IOCTL_SERIAL_SET _MODEM_CONTROL

Operation

Input

The IOCTL_SERIAL_SET_MODEM_CONTROL request sets the modem control register.
Parameter checking is not done.

To obtain the value of the modem control register, a client can use an IOCTL_SERIAL_
GET_MODEM_CONTROL request.

For information on modem control register settings, see the constants SERIAL_MCR_DTR
through SERIAL_MCR_LOOP, which are defined in the include file %install
directory%~rcVcernel\serial\serial.h in the Windows 2000 DDK.

The AssociatedIrp.SystemBuffer points to a client-allocated ULONG that is used to input
modem control information.

708 Part 2 Serial and Parallel Drivers

The Parameters.DeviceIoControl.InputBufferLength is set to the size in bytes of a
ULONG.

Status 1/0 Block
The Information member is set to zero.

The Status member is set to one of the generic status values.

IOCTL_SERIAL_SET _QUEUE_SIZE

Operation

Input

The IOCTL_SERIAL_SET_QUEUE_SIZE request sets the size of the internal receive
buffer. If the requested size is greater than the current receive buffer size, a new receive
buffer is created. Otherwise, the receive buffer is not changed.

The AssociatedIrp.SystemBuffer points to a client-allocated SERIAL_QUEUE_SIZE
structure that is used to input a receive buffer size.

The Parameters.DeviceIoControl.InputBufferLength is set to the size in bytes of a
SERIAL_ QUEUE_SIZE structure.

Status 1/0 Block
The Information member is set to zero.

The Status member is set to one of the generic status values.

IOCTL_SERIAL_SET _RTS

Operation
The IOCTL_SERIAL_SET_RTS request sets RTS.

If a handshake flow control of the device is configured to automatically use RTS, a client
can not clear or set R TS.

A client can use an IOCTL_SERIAL_CLR_RTS request to clear RTS.

Status 1/0 Block
The Information member is set to zero.

The Status member is set to one of the generic status values. A status of STATUS_
INV ALID _PARAMETER indicates that the handshake flow control of the device is set
to automatically use RTS.

Chapter 1 Serial Driver Reference 709

IOCTL_SERIAL_SET _ TIMEOUTS

Operation

Input

The IOCTL_SERIAL_SET_TIMEOUTS request sets the timeout values that the driver uses
with read and write requests.

To obtain the timeout values, a client can use an IOCTL_SERIAL_ GET _ TIME OUTS
request.

For more information on timeouts, see Read and Write Timeouts for a COM Port in Part 2,
"Serial and Parallel Drivers," of the Kernel-Mode Drivers Design Guide.

The AssociatedIrp.SystemBuffer points to a client-allocated SERIAL_TIMEOUTS
structure that is used to input read and write timeout values.

The Parameters.DeviceIoControl.OutputBufferLength is set to the size in bytes of
a SERIAL_TIMEOUTS structure.

Status 1/0 Block
The Information member is set to zero.

The Status member is set to one of the generic status values. A status of STATUS_
INV ALID _PARAMETER indicates that the read timeout values exceed the maximum
permitted values.

IOCTL_SERIAL_SET _WAIT_MASK

Operation
The IOCTL_SERIAL_SET_ WAIT_MASK request configures Serial to notify a client after
the occurrence of anyone of a specified set of wait events.

A client can wait on the events SERIAL_EV _RXCHAR through SERIAL_EV _EVENT2,
which are defined in the include file ntddser.h in the Windows 2000 DDK. A client specifies
wait events by setting an input event wait mask to a logical OR of one or more of the event
flags. A client can clear all wait events by setting the input event wait mask to zero.

A client uses an IOCTL_SERIAL_ W AIT_ON_MASK request to wait for the occurrence
of a wait event. If a wait-on-mask request is already pending when a set-wait-mask request
is processed, the pending wait-on-event request is completed with a status of STATUS_
SUCCESS and the output wait event mask is set to zero.

710 Part 2 Serial and Parallel Drivers

Input
The AssociatedIrp.SystemBuffer points to a ULONG buffer that the client allocates and
sets to an event wait mask. The wait mask is set to zero or a logical OR of one or more of
the event flags.

The Parameters.DeviceIoControl.InputBufferLength is set to the size in bytes of a
ULONG.

Status 1/0 Block
The Information member is set to zero.

The Status member is set to one of the generic status values. A status of STATUS_
INV ALID _PARAMETER indicates that the input wait mask is not valid.

IOCTL_SERIAL_SET _XOFF

Operation
The IOCTL_SERIAL_SET _XOFF request emulates the reception of an XOFF character.
The request stops reception of data. If automatic XON/XOFF flow control is not set, then
a client must use a subsequent IOCTL_SERIAL_SET_XON request to restart reception
of data.

Status 1/0 Block
The Information member is set to zero.

The Status member is set to one of the generic status values.

IOCTL_SERIAL_SET _XON

Operation
The IOCTL_SERIAL_SET_XON request emulates the reception ofaXON character, which
restarts reception of data.

Status 1/0 Block
The Information member is set to zero.

The Status member is set to one of the generic status values.

Chapter 1 Serial Driver Reference 711

IOCTL_ SERIAL_WAIT _ON_MASK

Operation

Input

The IOCTL_SERIAL_ W AIT_ON_MASK request is used to wait for the occurrence of any
wait event specified by using an IOCTL_SERIAL_SET_ WAIT_MASK request. A wait-on
mask request is completed after one of the following events occurs:

• A wait event occurs that was specified by the most recent set-wait-mask request.

• An IOCTL_SERIAL_SET_ WAIT_MASK request is received while a wait-on-mask
request is pending. The driver completes the pending wait-on-mask request with a status
of STATUS_SUCCESS and the output wait mask is set to zero.

A client can wait on the events SERIAL_EV _RXCHAR through SERIAL_EV _EVENT2,
which are defined in the include file ntddser.h in the Windows 2000 DDK.

The Parameters.DeviceIoControl.OutputBufferLength member is set to the size in bytes
ofa ULONG.

Output
AssociatedIrp.System buffer points to a ULONG buffer that holds an event wait mask. The
event wait mask indicates which wait events occurred. The event wait mask is set to zero or
a logical OR of one or more of the wait mask flags.

Status 1/0 Block
The Information member is set to zero.

The Status member is set to one of the generic status values. A status of STATUS_
INVALID_PARAMETER indicates that no wait events are set, or a wait-on-mask request
is already pending.

IOCTL_SERIAL_XOFF _COUNTER

Operation
The IOCTL_SERIAL_XOFF _COUNTER request sets an XOFF counter. An XOFF counter
request supports clients that use software to emulate hardware handshake flow control.

712 Part 2 Serial and Parallel Drivers

Input

An XOFF counter request is synchronized with write requests. The driver sends a specified
XOFF character, and completes the request after one of the following events occurs:

• A write request is received.

• A timer expires (a timeout value is specified by the XOFF counter request).

• Serial receives a number of characters that is greater than or equal to a count specified by
the XOFF counter request.

For more information about the operation of an XOFF counter, see the description of
the SERIAL_XOFF _COUNTER structure in the include file ntddser.h in the Windows 2000
DDK.

The AssociatedIrp.SystemBuffer points to a client-allocated SERIAL_XOFF _COUNTER
structure that is used to input XOFF counter information.

The Parameters.DeviceIoControl.InputBufferLength is set to the size in bytes of a
SERIAL_XOFF _COUNTER structure.

Status 1/0 Block
The Information member is set to zero.

The Status member is set to one of the generic status values or to one of the following
request-specific values:

STATUSJNVALlD_PARAMETER
The count value specified for the XOFF counter request is less than zero.

STATUS_ SERIAL_MORE_ WRITES
A write request was received.

STATUS_SERIAL_COUNTER_ TIMEOUT

Serial Internal Device Control Requests
This section describes the following internal device control requests that Serial supports:

IOCTL_SERIAL_INTERNAL_BASIC_SETTINGS
IOCTL_SERIAL_INTERNAL_ CANCEL_ WAIT _WAKE
IOCTL_SERIAL_INTERNAL_DO_ W AIT_ WAKE
IOCTL_SERIAL_INTERNAL_RESTORE_SETTINGS

No other internal device control requests are supported.

Chapter 1 Serial Driver Reference 713

These requests are provided for trusted kernel-mode drivers.

Status 110 Block
The setting of the status I/O block members is request-specific. If Serial does not support
the request, it sets the Information member to zero and the Status member to STATUS_
INV ALID _PARAMETER.

IOCTL_SERIAL_INTERNAL_BASIC_SETTINGS

Operation

Input

The IOCTL_SERIAL_INTERNAL_BASIC_SETTINGS request sets a COM port to a basic
operating mode. Serial's basic operating mode reads and writes one byte at a time, and does
not use handshake flow control or timeouts. The basic operation mode is suitable for use by
a driver that uses a subset of the 16550 UART interface. Examples of such drivers include a
mouse driver or a graphics pad driver for older hardware that use a 16450 UART.

The IOCTL_SERIAL_INTERNAL_BASIC_SETTINGS request returns the operating
mode settings that are in use just before Serial sets the basic operation mode. A client uses
an IOCTL_SERIAL_INTERNAL_RESTORE_SETTINGS request to restore a previous
operating mode. A client should treat the operating mode settings as opaque. Serial does not
verify the settings when the settings are restored. Note also that a replacement driver for
Serial might implement a different set of basic settings.

The Parameters.DeviceIoControl.OutputBufferLength is set to the size in bytes of a
SERIAL_BASIC_SETTINGS structure.

Output
The AssociatedIrp.SystemBuffer points to a client-allocated SERIAL_BASIC_
SETTINGS structure that Serial uses to output the current configuration.

Status 1/0 Block
If the request is successful, the Information member is set to the size in bytes of SERIAL_
BASIC_SETTINGS. Otherwise, the Information member is set to zero.

The Status member is set to one of the following values:

STATUS_SUCCESS
STATUS_BUFFER_TOO_SMALL
The value of Parameters.DeviceIoControl.OutputLength is less than the size in bytes of a
SERIAL_BASIC_SETTINGS structure.

714 Part 2 Serial and Parallel Drivers

STATUS_CANCEllED

STATUS_DELETE_PENDING

STATUS_PENDING

IOCTL_ SERIAL_INTERNAL_ CANCEL_ WAIT _ WAKE

Operation
The IOCTL_SERIAL_INTERNAL_CANCEL_ WAIT _WAKE request disables the
wait/wake operation of a COM port.

Status 1/0 Block
The Information member is set to zero.

The Status member is set to one of the following status values:

STATUS_SUCCESS

STATUS_CANCEllED

STATUS_DELETE_PENDING

STATUS_PENDING

IOCTL_SERIAL_INTERNAL_DO_ WAIT_WAKE

Operation
The IOCTL_SERIAL_INTERNAL_DO_ WAIT_WAKE request enables the wait/wake
operation of a COM port.

Status 1/0 Block
The Information member is set to zero.

The Status member is set to one of the following status values:

STATUS_SUCCESS

STATUS_CANCEllED

STATUS_DELETE_PENDING

STATUS_PENDING

Chapter 1 Serial Driver Reference 715

IOCTL_SERIAL_INTERNAL_RESTORE_SETTINGS

Operation

Input

The IOCTL_SERIAL_INTERNAL_RESTORE_SETTINGS request restores the specified
operating mode of a COM port. The specified operating mode should be a mode that was
returned by an IOCTL_SERIAL_INTERNAL_BASIC_SETTINGS request. The operating
mode settings should be treated as opaque. Serial does not verify the settings when the set
tings are restored. Note also that a replacement for Serial might implement a different set
of parameters.

The AssociatedIrp.SystemBuffer points to a client-allocated SERIAL_BASIC_
SETTINGS structure that is used to input operating mode settings. The client should
use settings that were returned by an IOCTL_SERIAL_INTERNAL_BASIC_
SETTINGS request.

The Parameters.DeviceIoControl.OutputBufferLength is set to the size in bytes of a
SERIAL_BASIC_SETTINGS structure.

Status 1/0 Block
If the request is successful, the Information member is set to the size in bytes of SERIAL_
BASIC_SETTINGS structure. Otherwise, the Information member is set to zero.

The Status member is set to one of the following values:

STATUS_SUCCESS
STATUS_BUFFER_TOO_SMAll
The Parameters.DeviceIoControl.InputLength is less than the size in bytes of a
SERIAL_BASIC_SETTINGS structure.

STATUS_CANCEllED
STATUS_DELETE_PENDING
STATUS_PENDING

CHAPTER 2

Serenum Driver Reference

This chapter describes the following topics about Serenum, a Microsoft® Windows® 2000
system filter driver for RS-232 ports:

• Serenum Device Control Requests

• Serenum Internal Device Control Requests

Serenum is a Plug and Play upper-level device filter driver that enumerates the following
device types:

• Plug and Play serial devices that comply with Plug and Play External COM Device
Specification, Version 1.00, February 28, 1995

717

• Pointer devices that comply with legacy mouse detection in Windows NT® 4 and earlier

Serenum is used with Serial, the Windows 2000 system function driver for COM ports. The
combined operation of Serial and Serenum acts as a Plug and Play bus driver for a RS-232
port. Serenum can also be used with other RS-232 port drivers.

Serenum implements the Serenum service, and its executable image is serenum.sys.

See the following topics for more information about Serenum operation:

• Serial Devices and Drivers in the online DDK

• Data definitions in the include file %install directory%\inc\ntddkser.h in the
Windows 2000 DDK

• Sample code in the %user install directory%'vsrcV<:ernel\serenum directory in the
Windows 2000 DDK

• Include file %install directory%'vsrcV<:ernel\serial\serial.h in the Windows 2000 DDK

718 Part 2 Serial and Parallel Drivers

Serenum Device Control Requests
This section describes the following device control requests that Serenum supports for a
filter device object, or filter DO:

IOCTL_SERENUM_PORT_DESC
IOCTL_SERENUM_GET_PORT_NAME

For all other device control requests, Serenum skips the current IRP stack location, and
sends the request down the device stack without further processing.

If Serenum receives a device control request for a physical device object, it routes the
request to the filter DO.

IOCTL_SERENUM_PORT _DESC

Operation

Input

The IOCTL_SERENUM_PORT _DESC request returns a description of the RS-232 port
associated with a filter DO.

Parameters.DeviceIoControl.InputBufferLength and Parameters.DeviceIoControl.
OutputBufferLength are set to the size in bytes of a SERENUM_PORT_DESC structure.

The AssociatedIrp.SystemBuffer member is set to a pointer to a client -allocated buffer that
is used to input and output a SERENUM_PORT_DESC structure. The client must set the
Size member of the input structure to the size in bytes of a SERENUM_PORT_DESC
structure.

Output
The AssociatedIrp.SystemBuffer member points to the client -allocated buffer that
Serenum uses to output a SERENUM_PORT_DESC structure. Serenum sets the follow
ing members:

PortHandle
Specifies a pointer to the filter DO.

PortAddress
Specifies the base physical address of the RS-232 port.

Status 1/0 Block
If the request is successful, the Information member is set to the size in bytes of a
SERENUM_PORT _DESC structure.

Chapter 2 Serenum Driver Reference 719

The Status member is set to one of the following values:

STATUS_SUCCESSSTATUS_DELETE_PENDING
STATUSJNVALlD_PARAMETER
Parameters.DeviceIoControI.InputBufferLength, Parameters.DeviceIoControl.
OutputBufferLength, or the Size member of the input structure is not equal to the size
in bytes of a SERENUM_PORT_DESC structure.

IOCTL_SERENUM_GET _PORT_NAME

Operation

Input

The IOCTL_SERENUM_GET_PORT_NAME request returns the value of the PortName
(or Identifer) entry value for the RS-232 port.

The Parameters.DeviceIoControl.OutputBufferLength member is set to the size in bytes
of a client-allocated output buffer.

Output
The AssociatedIrp.SystemBuffer member points to a client-allocated buffer that Serenum
uses to output the port name. The port name is a zero-terminated Unicode string.

Status 1/0 Block
If the request is successful, the Information member is set to the size in bytes of the zero
terminated Unicode string that is returned in the client's output buffer.

The Status member is set to one of the following values:

STATUS_SUCCESS
STATUS_BUFFER_TOO_SMALL
The output buffer is too small to hold the port name string.

STATUS_UNSUCCESSFUL
An error occurred when opening the registry key for the device or reading the PortName (or
Identifier) entry value.

720 Part 2 Serial and Parallel Drivers

Serenum Internal Device Control Requests
This section describes the following internal device control requests that Serenum supports
for a physical device object, or PD~:

Serenum sends all other internal device control requests down the device stack of the filter
DO associated with the PDO. Serenum performs no further processing of the request. The
request is completed by a lower-level driver in the device stack of the filter DO.

If Serenum receives an internal device control request for a filter DO, Serenum sends the
request down the device stack of the filter DO without further processing.

IOCTL_INTERNAL_SERENUM_REMOVE_SELF

Operation
The IOCTL_INTERNAL_SERENUM_REMOVE_SELF request invalidates the bus rela
tions of the filter DO associated with a target PDO. (Physically, this request invalidates the
bus relations of the RS-232 port that the target device is attached to.)

Status 1/0 Block
The Status member is set to one of the following values:

STATUS_SUCCESS

STATUS_DELETE_PENDING

CHAPTER 3

Parport Driver Reference

This chapter includes the following topics about Parport, the Microsoft® Windows® 2000
system driver for parallel ports:

• Parport Major 110 Requests

• Parport Internal Device Request Control Requests

• Parport Data types

• Parport Callback Routines

Parport is a function driver for parallel port controllers, commonly referred to as parallel
ports. The interface class of a parallel port is GUID_PARALLEL_CLASS. The Parport
service is in the Parallel arbitrator group of services. The executable image of Parport is
parport.sys.

For more information on Parport operation, see:

• Parallel Devices and Drivers in the online DDK

• Sample code in the %install directory%\src'kernefyJarport directory in the
Windows 2000 DDK

• Include files %install directory%\inc\ddk\parallel.h and %install directory%\
inc\ntddpar.h in the Windows 2000 DDK

Parpart Major 1/0 Requests

721

This section describes the Parport-specific handling of the following major 110 requests that
Paport supports:

IRP _MJ_CLEANUP
IRP _MJ_CLOSE

722 Part 2 Serial and Parallel Drivers

IRP _MJ_CREATE
IRP _MJ_INTERNAL_DEVICE_CONTROL
IRP_MJ_PNP
IRP _MJ_POWER
IRP _MJ_SYSTEM_CONTROL

See the following topics for more information on Parpart's generic handling of these major
110 requests:

• IRP Function Codes and 10CTLs

• Sample Parclass code in the %install directory%\srcVcernefyJarclass directory of the
Windows 2000 DDK

• Plug and Play IRPs in Volume 1

• I/O Requests for Power Management in Volume 1

• WMIIRPs in the online DDK

IRP _MJ_CREATE

Operation
The IRP _MJ _CREATE request opens a parallel port. Parpart increments the count of open
files on a parallel port. A parallel port is a shared device.

Note that Parclass opens each parallel port after the port's interface is enabled. Parport regis
ters and enables an GUID_PARALLEL_CLASS interface for each parallel port that is enu
merated in the system.

1/0 Status Block
The Information member is set to zero.

The Status member is set to one of the following:

STATUS_SUCCESS

STATUS_DELETE_PENDING
The device is in a Plug and Play surprised-removed state.

IRP _MJ_INTERNAL_DEVICE_CONTROL

Operation

Chapter 3 Parport Driver Reference 723

Parport supports the following internal device control requests:

IOCTL_INTERNAL_DESELECT _DEVICE
IOCTL_INTERNAL_ GET _MORE_P ARALLEL_PORT _INFO
IOCTL_INTERNAL_ GET _P ARALLEL_PNP _INFO
IOCTL_INTERNAL_ GET _PARALLEL_PORT _INFO
IOCTL_INTERNAL_INIT_1284_3_BUS
IOCTL_INTERNAL_P ARALLEL_ CLEAR_ CHIP ~ODE
IOCTL_INTERNAL_P ARALLEL_ CONNECT_INTERRUPT
IOCTL_INTERNAL_P ARALLEL_DISCONNECT _INTERRUPT
IOCTL_INTERNAL_P ARALLEL_PORT _ALLOCATE
IOCTL_INTERNAL_P ARALLEL_PORT _FREE
IOCTL_INTERNAL_P ARALLEL_SET _ CHIP_MODE
IOCTL_INTERNAL_RELEASE_P ARALLEL_PORT _INFO
IOCTL_INTERNAL_SELECT_DEVICE

No other internal device control requests are supported.

For more information on these internal device control requests, see Parport Internal Device
Control Requests in this chapter.

1/0 Status Block
The values of the status block members are request-specific. If the request is not sup
ported, the Information member is set to zero and the Status member is set to STATUS_
INV ALID _PARAMETER.

Parport Internal Device Control Requests
This section describes the following topics:

IOCTL_INTERNAL_DESELECT_DEVICE
IOCTL_INTERNAL_ GET _MORE_P ARALLEL_PORT _INFO
IOCTL_INTERNAL_ GET _P ARALLELYNP _INFO
IOCTL_INTERNAL_ GET _PARALLEL_PORT _INFO
IOCTL_INTERNAL_INIT_1284_3_BUS
IOCTL_INTERNAL_PARALLEL_CLEAR_CHIP _MODE
IOCTL_INTERNAL_PARALLEL_CONNECT_INTERRUPT
IOCTL_INTERNAL_P ARALLEL_DISCONNECT _INTERRUPT

724 Part 2 Serial and Parallel Drivers

IOCTL_INTERNAL_P ARALLEL_PORT _ALLOCATE
IOCTL_INTERNAL_P ARALLEL_PORT _FREE
IOCTL_INTERNAL_P ARALLEL_SET _CHIP _MODE
IOCTL_INTERNAL_RELEASE_PARALLEL_PORT_INFO
IOCTL_INTERNAL_SELECT_DEVICE

No other internal device control requests are supported. If the request is not supported, the
Information member is set to zero and the Status member is set to ST ATUS_INV ALID_
PARAMETER.

IOCTL_INTERNAL_DESELECT _DEVICE

Operation

Input

The IOCTL_INTERNAL_DESELECT_DEVICE request deselects an IEEE 1284.3 daisy
chain device or an IEEE 1284 end-of-chain device on a parallel port. The client should have
the port allocated. In addition to deselecting a device, the client can also free the port.

The AssociatedIrp.SystemBuffer member points to a PARALLEL_1284_COMMAND
structure that the client allocates to input IEEE 1284.3 command information. The client can
free the port by not setting the PAR_HAVE_PORT_KEEP _PORT flag in the Command
Flags member.

The Parameters.DeviceIoControl.InputBufferLength member specifies the size in bytes
of the PARALLEL_1284_COMMAND structure.

Status 1/0 Block
The Information member is set to zero.

The Status member is set to one of the following values:

STATUS_SUCCESS

STATUS_BUFFER_TOO_SMAll
The value of the Parameters.DeviceIoControl.InputBufferLength member is less than the
size in bytes of a PARALLEL_1284_COMMAND structure.

STATUS_DELETE_PENDING
The device is in a Plug and Play surprised-removed state.

STATUSJNVALID _PARAMETER
The specified device is not flagged internally as an end-of-chain device, and the specified ID
value is greater than the number of existing daisy-chain devices.

Chapter 3 Parport Driver Reference 725

STATUS_UNSUCCESSFUL
The device state is invalid and unknown.

IOCTl_INTERNAl_GET _MORE_PARAllEL_PORT _INFO

Operation

Input

The IOCTL_INTERNAL_GET_MORE_PARALLEL_PORT_INFO request returns infor
mation about a parallel port. This information supplements the information that a client
obtains by using an IOCTL_INTERNAL_GET_PARALLEL_PORT_INFO request. The
port information includes the type of system interface, the bus number, and the interrupt
resources used by the parallel port.

The Parameters.DeviceIoControl.OutputBufferLength member is set to the size in bytes
of a MORE_PARALLEL_PORT _INFORMATION structure

Output
The AssociatedIrp.SystemBuffer member points to a MORE_PARALLEL_PORT_
INFORMATION structure that the client allocates to output parallel port information.

Status 1/0 Block.
If the request succeeds, the Information member is set to the size in bytes of the MORE_
PARALLEL_PORT_INFORMATION structure. Otherwise; the Information member is set
to zero.

The Status member is set to one of the following values:

STATUS_SUCCESS
STATUS_BUFFER_TOO_SMAll
The value of the Parameters.DeviceIoControl.OutputBufferLength member is less than
the size in bytes of a MORE_PARALLEL_PORT_INFORMATION structure.

STATUS_DELETE_PENDING
The device is in a Plug and Play surprised-removed state.

IOCTl_INTERNAl_GET _PARAllEl_PNP _INFO

Operation
The IOCTL_INTERNAL_GET_PARALLEL_PNP _INFO request returns Plug and Play
information about a parallel port.

726 Part 2 Serial and Parallel Drivers

Input
The Parameters.DeviceIoControI.OutputBufferLength member is set to the size in bytes
of a PARALLEL_PNP _INFORMATION structure.

Output
The AssociatedIrp.SystemBuffer member points to a P ARALLEL_PNP _INFORMATION
structure that the client allocates to output Plug and Play information.

Status 1/0 Block
The Information member is set to zero.

The Status member is set to one of the following values:

STATUS_SUCCESS
STATUS_BUFFER_TOO_SMAll
The value of Parameters.DeviceIoControI.OutputBufferLength is less than the size in
bytes of a P ARALLEL_PNP _INFORMATION structure.

STATUS_DELETE_PENDING
The device is in a Plug and Play surprised-removed state.

IOCTL_INTERNAL_ GET _PARALLEL_PORT _INFO

Operation

Input

The IOCTL_INTERNAL_GET_PARALLEL_PORT_INFO request returns information
about a parallel port. The information specifies the resources assigned to the parallel port
and the capabilities of the parallel port. The structure also contains pointers to callback
routines that a kernel-mode driver can use to operate the parallel port.

The Parameters.DeviceIoControI.OutputBufferLength member is set to the size in bytes
of a PARALLEL_PORT_INFORMATION structure.

Output
The AssociatedIrp.SystemBuffer member points to a PARALLEL_PORT_
INFORMATION structure that the client allocates to output the parallel port information.

Chapter 3 Parport Driver Reference 727

Status 110 Block
If this request succeeds, the Information member is set to the size in bytes of a
PARALLEL_PORT_INFORMATION structure. Otherwise, the Information member
is set to zero.

The Status member is set to one of the following values:

STATUS_SUCCESS
STATUS_BUFFER_TOO_SMAll
The value of the Parameters.DeviceIoControl.OutputBufferLength member is less than
the size in bytes of a PARALLEL_PORT_INFORMATION structure.

STATUS_DELETE_PENDING
The device is in a Plug and Play surprised-removed state.

IOCTL_INTERNAL_INIT _1284_3_BUS

Operation
The IOCTL_INTERNAL_INIT_1284_3_BUS request initializes and assigns an IEEE
1284.3 device ID to all the devices that are attached to the port. A port can have up to four
daisy-chain devices and one end-of-chain device attached. Daisy-chain device IDs are
integers with a range of zero to three. An end-of-chain device has an ID of four.

Note that this request is included primarily for test purposes.

Status 110 Block
The Information member is set to zero.

The Status member is set to one of the following values:

STATUS_SUCCESS
STATUS_DELETE_PENDING
The device is in a Plug and Play surprised-removed state.

IOCTL_INTERNAL_PARALLEL_ CLEAR_CHIP _MODE

Operation
The IOCTL_INTERNAL_PARALLEL_CLEAR_CHIP _MODE request clears the
operating mode of a parallel port. To clear the mode, the operating mode specified by this

728 Part 2 Serial and Parallel Drivers

Input

request must match the current operating mode. The clear request works in conjunction
with the set mode request. To set a new operating mode, the current operating mode must
first be cleared.

Note that a kernel-mode driver can also clear the operating mode of the parallel port by
using the ClearChipMode callback routine and can set the operating mode by using the
TrySetChipMode callback routine.

The AssociatedIrp.SystemBuffer member points to a PARALLEL_CHIP_MODE struc
ture that the client allocates to input chip mode information. The client sets the ModeFlags
member to the current operating mode.

The request sets the Parameters.DeviceIoControl.InputBufferLength member to the size
in bytes of a PARALLEL_CHIP_MODE structure.

Status 1/0 Block
The Information member is set to zero.

The Status member is set to one of the following values:

STATUS_SUCCESS
STATUS_BUFFER_TOO_SMAll
The value of the Parameters.DeviceIoControl.InputBufferLength member is less than the
size in bytes of a PARALLEL_CHIP_MODE structure.

STATUS_DELETE_PENDING
The device is in a Plug and Play surprised-removed state.

STATUSj NVALI D_DEVICE_STATE
The specified operating mode is not the same as the current operating mode of the
parallel port.

IOCTL_INTERNAL_PARALLEL_CONNECT _INTERRUPT

Operation
The IOCTL_INTERNAL_PARALLEL_CONNECT _INTERRUPT request connects an
optional interrupt service routine and an optional deferred port check routine to a parallel
port. This request can only be used by kernel-mode drivers.

Input

Chapter 3 Parport Driver Reference 729

Note that Microsoft does not recommend using a client-supplied interrupt routine. Using a
client-supplied interrupt routine might cause system instability. By default, the connection
of an interrupt service routine is disabled. The design for using interrupts in a Plug and Play
environment and in an IEEE 1284.3 daisy-chain environment is still under development.

The connect interrupt request returns information that the driver can use in the context of a
driver-specific ISR. The information includes a pointer to the interrupt object and pointers to
callback routines that allocate and free the parallel port at IRQL DIRQL.

Parport maintains a list of the ISRs that are connected to a parallel port. Parport calls all the
connected ISRs after an interrupt on the parallel port.

Parport also maintains a list of optional deferred port check routines that are connected to a
parallel port. Parport calls all deferred port check routines after the parallel port is freed and
there are no requests queued on the parallel port work queue. Parport allocates the parallel
port before calling the deferred port check routines, and then frees the parallel port after all
the port check routines return.

The connect interrupt request is enabled by the registry entry value EnableConnect
Interruptloctl under the Plug and Play registry key for the parallel port device. The type
of the entry value is REG_DWORD and the default value is OxO (disabled).

The AssociatedIrp.SystemBuffer member points to a PARALLEL_INTERRUPT_
SERVICE_ROUTINE structure that the client allocates to input interrupt service informa
tion. Note that Parport uses the same memory buffer, but casts it to a different data type to
output information.

The Parameters.DeviceIoControl.InputBufferLength member is set to the size in bytes of
a PARALLEL_INTERRUPT_SERVICE_ROUTINE structure.

The Parameters.DeviceIoControl.OutputBufferLength member is set to the size in bytes
of a PARALLEL_INTERRUPT_INFORMATION structure.

Output
The AssociatedIrp.SystemBuffer member points to a PARALLEL_INTERRUPT_
INFORMATION structure that Parport uses to output parallel interrupt information.

Status 1/0 Block
If the request is successful, the Information member is set to the size in bytes of a
PARALLEL_INTERRUPT_INFORMATION structure. Otherwise, the Information
member is set to zero.

730 Part 2 Serial and Parallel Drivers

The Status member is set to one of the following values:

STATUS_SUCCESS
STATUS_BUFFER_TOO_SMAll
At least one of the following is true:

The value of the Parameters.DeviceloControl.lnputBufferLength member is less than the
size in bytes of a PARALLEL_INTERRUPT_SERVICE_ROUTINE structure.

The value of the Parameters.DeviceloControi.OuputBufferLength member is less than
the size in bytes of a PARALLEL_INTERRUPT_INFORMATION structure.

STATUS_DELETE_PENDING
The device is in a Plug and Play surprised-removed state.

STATUSJNSUFFICIENT _RESOURCES
Parport could not allocate a dynamic data structure.

STATUS_UNSUCCESSFUL
The connect interrupt request is disabled.

IOCTL_INTERNAL_PARALLEL_DISCONNECT _INTERRUPT

Operation

Input

The IOCTL_INTERNAL_PARALLEL_DISCONNECT_INTERRUPT request disconnects
an interrupt service routine (and an optional deferred port check service routine) that was
connected by using an IOCTL_INTERNAL_PARALLEL_CONNECT_INTERRUPT re
quest. This request is only used by kernel-mode drivers.

Note that Microsoft does not recommend using a client-supplied interrupt routine. Using a
client-supplied interrupt routine might cause system instability. By default, the connection
of an interrupt service routine is disabled. The design for using interrupts in a Plug and Play
environment and in an IEEE 1284.3 daisy-chain environment is still under development.

The Associatedlrp.SystemBuffer member points to a PARALLEL_INTERRUPT_
SERVICE_ROUTINE structure that the client allocates for the input of interrupt service
information.

The Parameters.DeviceloControi.lnputBufferLength member is set to the size in bytes of
a PARALLEL_INTERRUPT_SERVICE_ROUTINE structure.

Chapter 3 Parport Driver Reference 731

Status 1/0 Block
The Information member is set to zero.

The Status member is set to one of the following values:

STATUS_SUCCESS
STATUS_BUFFER_TOO_SMALL
The value of the Parameters.DeviceIoControl.InputBufferLength member is less than the
size in bytes of a PARALLEL_INTERRUPT_SERVICE_ROUTINE structure.

STATUSJNVALlD_PARAMETER
The specified interrupt service routine is not connected.

IOCTL_INTERNAL_PARALLEL_PORT _ALLOCATE

Operation
The IOCTL_INTERNAL_PARALLEL_PORT_ALLOCATE request allocates a parallel
port. Before using a parallel port, a client must first allocate the port. If the port is already
allocated, Parport marks the allocate request as pending, and adds the allocate request to
the parallel port work queue.

Status 1/0 Block
The Information member is set to zero.

The Status member is set to one of the following values:

STATUS_SUCCESS
STATUS_CANCEllED
STATUS_DELETE_PENDING
The device is in a Plug and Play surprised-removed state.

STATUS_PENDING
The request was added to the work queue of the parallel port.

IOCTL_INTERNAL_PARALLEL_PORT _FREE

Operation
The IOCTL_INTERNAL_PARALLEL_PORT_FREE request frees a parallel port. A client
must free a parallel port after it is finished using the parallel port. If there are no requests

732 Part 2 Serial and Parallel Drivers

pending on the port's work queue, Parport calls the deferred port check routines that were
connected by IOCTL_INTERNAL_PARALLEL_CONNECT_INTERRUPT requests.

Status 1/0 Block
The Information member is set to zero.

The Status member is set to one of the following values:

STATUS_SUCCESS
STATUS_DELETE_PENDING
The device is in a Plug and Play surprised-removed state.

IOCTL_INTERNAL_PARALLEL_SET _CHIP _MODE

Operation

Input

The IOCTL_INTERNAL_PARALLEL_SET_CHIP _MODE request sets the operating
mode of a parallel port.

To set the operating mode, the operating mode must first be cleared. A client can use an
IOCTL_INTERNAL_PARALLEL_CLEAR_CHIP _MODE request to clear the mode.
Note that a kernel-mode driver can also use the ClearChipMode callback routine to clear
the mode.

The AssociatedIrp.SystemBuffer member points to a PARALLEL_CHIP_MODE structure
that the client allocates to input chip mode information. The client sets the ChipMode
member to the requested operating mode. For more information on the operating modes, see
the ECR modes that are defined in % Windows 2000 install directory%\incV1dk\parallel.h

The Parameters.DeviceIoControl.InputBufferLength member is set to the size, in bytes,
of a PARALLEL_CHIP_MODE structure.

Status 1/0 Block
The Information member is set to zero.

The Status member is set to one of the following values:

STATUS_SUCCESS
STATUS_BUFFER_TOO_SMAll
The value of the Parameters.DeviceIoControl.InputBufferLength member is less than the
size, in bytes, of a PARALLEL_CHIP_MODE structure.

Chapter 3 Parport Driver Reference 733

STATUS_DELETE_PENDING
The device is in a Plug and Play surprised-removed state.

STATUSJNVALID _DEVICE_STATE
The mode is not cleared.

STATUS_NO _SUCH_DEVICE
The requested operating mode is not valid.

IOCTL_INTERNAL_RELEASE_PARALLEL_PORT _INFO

Operation
The IOCTL_INTERNAL_RELEASE_PARALLEL_PORT_INFO request returns
STATUS_SUCCESS without further processing.

Status 1/0 Block
The Information member is set to zero.

The Status member is set to one of the following values:

STATUS_SUCCESS

STATUS_DELETE_PENDING
The device is in a Plug and Play surprised-removed state.

IOCTL_INTERNAL_SELECT _DEVICE

Operation

Input

The IOCTL_INTERNAL_SELECT_DEVICE request allocates a port and selects an IEEE
1284.3 daisy-chain device or an IEEE 1284 end-of-chain device on a parallel port. If the
client already allocated the parallel port, then it can request Parport to only select the device.
If the parallel port is not allocated and cannot immediately be allocated, the select device
request is added to the work queue of the parallel port.

The AssociatedIrp.SystemBuffer points to a PARALLEL_1284_COMMAND structure
that the client allocates to input select device information.

The Parameters.DeviceIoControi.InputBufferLength member specifies the size in bytes
of a PARALLEL_1284_COMMAND structure.

734 Part 2 Serial and Parallel Drivers

Status 1/0 Block
The Information member is set to zero.

The Status member is set to one of the following values:

STATUS_SUCCESS

STATUS_BUFFER_TOO_SMAll
The value of the Parameters.DeviceIoControl.InputBufferLength member is less than the
size in bytes of a PARALLEL_1284_COMMAND structure.

STATUS_CANCEllED
The client does not have the port allocated and the select request is canceled before the port
driver attempts to allocate the port.

STATUS_DELETE_PENDING
The device is in a Plug and Play surprised-removed state.

STATUSJNVALlD_PARAMETER
The specified device is not flagged internally as an end-of-chain device and the value of the
ID member of the input structure is greater than the number of existing daisy-chain devices.

STATUS_PENDING
The client does not have the port allocated and there are other requests pending on the port
work queue. The select request is added to the port work queue.

IOCTL_INTERNAL_Xxx

Operation
Internal device control requests that are not documented in this chapter are completed
without further processing.

Status 1/0 Block
The Information member is set to zero.

The Status member is set to STATUS_INVALID_PARAMETER.

Chapter 3 Parport Driver Reference 735

Parport Data Types
This section describes the following data types that Parport uses to input and output
infonnation:

MORE_PARALLEL_PORT jNFORMATION
Specifies infonnation about the system interface and the interrupt that support the operation
of a parallel port.

PARALLEL_1284_COMMAND
Specifies information that a client uses to select and deselect an IEEE 1284.3 device or an
IEEE 1284 end-of-chain device.

PARALLEL_CHIP _MODE
Specifies the operating mode of a parallel port.

PARALLEL_PNP jNFORMATION
Specifies information about the capabilities of a parallel port.

PARALLEL_PORT jNFORMATION
Specifies infonnation about the resources assigned to a parallel port and the capabilities of
a parallel port. The structure also contains pointers to callback routines that a kernel-mode
driver can use to operate the parallel port.

PARALLELjNTERRUPTjNFORMATION
Specifies infonnation that a kernel-mode driver can use in the context of an ISR that the
driver connects to a parallel port.

PARALLELjNTERRUPT _SERVICE_ROUTINE
Specifies interrupt services that a kernel-mode driver can connect to the operation of a
parallel port.

typedef struct _MORE_PARALLEL_PORT_INFORMATION
INTERFACE_TYPE InterfaceType;
ULONG BusNumber;
ULONG InterruptLevel;
ULONG InterruptVector;
KAFFINITY InterruptAffinity;
KINTERRUPT_MODE InterruptMode;

} MORE_PARALLEL_PORT_INFORMATION, *PMORE_PARALLEL_PORT_INFORMATION;

736 Part 2 Serial and Parallel Drivers

The MORE_PARALLEL_PORT_INFORMATION structure specifies information about
the system interface and the parallel port interrupt.

Members
Interface Type
Specifies the interface type associated with the parallel port.

BusNumber
Specifies the bus number for the interface.

InterruptLevel
Specifies the interrupt level for the parallel port.

InterruptVector
Specifies the interrupt vector for the parallel port.

InterruptAffinity
Specifies the interrupt affinity value.

InterruptMode
Specifies the interrupt mode.

Include
parallel.h

Comments
An IRP _MN_START_DEVICE request from the Plug and Play Manager passes a
translated resource list that contains the information in a MORE_PARALLEL_PORT_
INFORMATION structure. Parport saves the information, in the extension of the device
object that represents the parallel port, and returns the information in response to an
IOCTL_INTERNAL_GET _MORE_PARALLEL_PORT_INFO request.

See Also
PARALLEL_PORT_INFORMATION, IOCTL_INTERNAL_GET_PARALLEL_
PNP _INFO, IOCTL_INTERNAL_ GET _MORE_P ARALLEL_PORT _INFO,
IOCTL_INTERNAL_ GET _PARALLEL_PORT _INFO

Chapter 3 Parport Driver Reference 737

PARALLEL_1284_ COMMAND
typedef struct _PARALLEL_1284_COMMAND

UCHAR ID;
UCHAR Port;
ULONG CommandFlags;

PARALLEL_1284_COMMAND, *PPARALLEL_1284_COMMAND;

The PARALLEL_1284_COMMAND structure specifies information that a client uses to
select and deselect an IEEE 1284.3 daisy-chain device or an IEEE 1284 end-of-chain
device.

Members
10
Specifies the IEEE 1284.3 device ID. Parport assigns integer IDs to daisy-chain devices in
a range of zero to three.

Port
Reserved (set to zero).

Command Flags
Specifies a bitwise OR of zero or more of the following flags:

PAR_END_OF _CHAIN_DEVICE
Specifies an end-of-chain device.

PAR_HAVE_PORT_KEEP_PORT
Specifies that the client has the port allocated, and makes a request to keep the port
allocated.

Include
parallel.h

Comments
A parallel port supports the connection of zero to four IEEE 1284.3 daisy-chain devices and
a single IEEE 1284 end-of-chain device. The end-of-chain device must be an IEEE 1284
device but does not have to be an IEEE 1284.3 device. Parport assigns integer IDs to daisy
chain devices in a range of zero to three.

738 Part 2 Serial and Parallel Drivers

See Also
IOCTL_INTERNAL_DESELECT_DEVICE, IOCTL_INTERNAL_SELECT_DEVICE,
DeselectDevice, TrySelectDevice

PARALLEL_CHIP _MODE
typedef struct _PARALLEL_CHIP_MODE

UCHAR ModeFlags;
BOOLEAN success;

} PARALLEL_CHIP_MODE, *PPARALLEL_CHIP_MODE;

The PARALLEL_CHIP _MODE structure specifies the operating mode of a parallel port.

Members
ModeFlags
Specifies an operating mode of a parallel port (an EPP or ECP mode).

Success
Not used.

Include
parallel.h

Comments
A client uses a PARALLEL_CHIP _MODE structure with internal device control requests to
set and clear the operating mode of a parallel port.

See Also
IOCTL_INTERNAL_PARALLEL_CLEAR_CHIP _MODE, IOCTL_INTERNAL_
PARALLEL_SET _CHIP _MODE

typedef struct _PARALLEL_PNP_INFORMATION
PHYSICAL_ADDRESS OriginalEcpController;
PUCHAR EcpController;
ULONG SpanOfEcpControll er;
U LONG PortNumber;
ULONG
PPARALLEL_SET_CHIP_MODE
PPARALLEL_CLEAR_CHIP_MODE
ULONG

HardwareCapabilities;
TrySetChipMode;
ClearChipMode;
FifoDepth;

ULONG
PHYSICAL_ADDRESS
ULONG
ULONG
PPARALLEL_TRY_SELECT_ROUTINE
PPARALLEL_DESELECT_ROUTINE
PVOID
ULONG
PWSTR

Chapter 3 Parport Driver Reference 739

FifoWidth;
EppControllerPhysicalAddress;
SpanOfEppController;
Ieee1284_3DeviceCount;
TrySelectDevice;
DeselectDevice;
Context;
CurrentMode;
PortName; II symbolic link name

II for legacy device object

The P ARALLEL_PNP _INFORMATION structure specifies information about the
capabilities of a parallel port.

Members
Origi nal EcpControlier
Specifies the base physical address that Parport uses to control the ECP operation of the
parallel port.

EcpControlier
Pointer to the I/O port resource that is used to control the port in ECP mode.

SpanOfEcpControlier
Specifies the size in bytes of the I/O port resource.

PortNumber
Not used.

HardwareCapabilities
Specifies the hardware capabilities of the parallel port. The following capabilities can be set
using a bitwise OR of the following constants:

PPT _1284_3 _PRESENT
PPT_BYTE_PRESENT
PPT _ECP _PRESENT
PPT _EPP _32_PRESENT
PPT _EPP _PRESENT
PT_NO_HARDW ARE_PRESENT

TrySetChipMode
Pointer to a callback routine that a kernel-mode driver can use to change the operating mode
of the parallel port.

740 Part 2 Serial and Parallel Drivers

ClearChipMode
Pointer to a callback routine that a kernel-mode driver can use to clear the operating mode of
the parallel port,

FifoDepth
Specifies the size in bytes of the hardware FIFO.

FifoWidth
Specifies the width, in bits, of the FIFO (number of bits handled in parallel).

EppControllerPhysicalAddress
Not used.

SpanOfEppControlier
Not used.

leee1284_3DeviceCount
Specifies the number of daisy-chain devices currently on the parallel port. A range of zero to
four such devices can be simultaneously connected to a parallel port.

TrySelectDevice
Pointer to a callback routine that a kernel-mode driver can use to try to select an IEEE
1284.3 device.

DeselectDevice
Pointer to a callback routine that a kernel-mode driver can use to deselect an IEEE 1284.3
device.

Context
Pointer to the extension of the device object that represents the parallel port.

CurrentMode
The current operating mode of the parallel port.

PortName
The symbolic link name of the parallel port.

Include
parallel.h

See Also
IOCTL_INTERNAL_ GET _P ARALLEL_PNP _INFO

Chapter 3 Parport Driver Reference 741

typedef struct _PARALLEL_paRT_INFORMATION
PHYSICAL_ADDRESS OriginalController;
PUCHAR Controller;
ULONG SpanOfController;
PPARALLEL_TRY_ALLOCATE_ROUTINE TryAllocatePort
PPARALLEL_FREE_ROUTINE FreePort
PPARALLEL_OUERY_WAITERS_ROUTINE OueryNumWaiters
PVOID Context

PARALLEL_paRT_INFORMATION. *PPARALLEL_PORT_INFORMATION;

The PARALLEL_PORT_INFORMATION structure specifies information about the resour
ces that are assigned to a parallel port. The structure also contains pointers to callback rou
tines that a kernel-mode driver can use to operate the parallel port.

Members
Original Controller
Specifies the bus relative base I/O address of the parallel port registers.

Controller
Pointer to the system-mapped base I/O location of the parallel port registers.

SpanOfControlier
Specifies the size in bytes of the I/O space allocated to the parallel port.

Try AllocatePort
Pointer to a callback routine that a kernel-mode driver can use to try to allocate the parallel
port.

FreePort
Pointer to a callback routine that that a kernel-mode driver can use to free the parallel port.

QueryNumWaiters
Pointer to a callback routine that a kernel-mode driver can use to determine the number of
requests on the work queue of the parallel port.

Context
Pointer to the device extension of the device object that represents a parallel port.

Include
parallel.h

742 Part 2 Serial and Parallel Drivers

Comments
An IRP _MN_START_DEVICE request from the PnP Manager passes a translated
resource list that contains the port information in a PARALLEL_PORT_INFORMATION
structure. Parport saves the information in the extension of the device object that represents
the parallel port and returns the information in response to an IOCTL_GET_PARALLEL_
PORT_INFO request.

See Also
IOCTL_INTERNAL_ GET _PARALLEL_PORT _INFO

PARALLEL_INTERRUPT _INFORMATION
typedef struct _PARALLEL_INTERRUPT_INFORMATION {

PKINTERRUPT InterruptObject;
PPARALLEL_TRY_ALLOCATE_ROUTINE TryAllocatePortAtlnterruptLevel;
PPARALLEL_FREE_ROUTINE FreePortFromlnterruptLevel;
PVO I D Context;

PARALLEL_INTERRUPT_INFORMATION. *PPARALLEL_INTERRUPT_INFORMATION;

The PARALLEL_INTERRUPT_INFORMATION structure specifies information that a
kernel-mode driver can use in the context of an ISR that the driver connects to a parallel
port.

Members
InterruptObject
Pointer to the parallel port interrupt object.

Try AllocatePortAtlnterruptLevel
Pointer to a callback routine that a kernel-mode driver can use to try to allocate the parallel
port at IRQL DIRQL.

FreePortFromlnterruptLevel
Pointer to a callback routine that a kernel-mode driver can use to free the parallel port at
IRQLDIRQL.

Context
Pointer to the extension of the device object that represents the parallel port.

Include
parallel.h

Chapter 3 Parport Driver Reference 743

Comments
A kernel-mode driver can use the parallel interrupt information in the context of an ISR.
A driver connects an interrupt service routine using an IOCTL_INTERNAL_PARALLEL_
CONNECT_INTERRUPT request.

See Also
IOCTL_INTERNAL_PARALLEL_CONNECT_INTERRUPT

PARALLEL_INTERRUPT _SERVICE_ROUTINE
typedef struct _PARALLEL_INTERRUPT_SERVICE_ROUTINE {

.PKSERVICE_ROUTINE InterruptServiceRoutine;

.PVOID InterruptServiceContext;

.PPARALLEL_DEFERRED_ROUTINE DeferredPortCheckRoutine;

.PVOID DeferredPortCheckContext;
} PARALLEL_INTERRUPT_SERVICE_ROUTINE, *PPARALLEL_INTERRUPT_SERVICE_ROUTINE;

A PARALLEL_INTERRUPT_SERVICE_ROUTINE structure specifies interrupt services
that a kernel-mode driver can connect to the operation of a parallel port.

Members
I nterruptServiceRouti ne
Pointer to an interrupt service routine.

I nterruptServiceContext
Pointer to a context for the interrupt service routine.

DeferredPortCheckRoutine
Pointer to an optional deferred port check routine:

VOID
(*DeferredPortCheckRoutine) (

IN PVOID DeferredContext
) ;

Parameters
DeferredContext
Pointer to a context for the deferred port check routine.

DeferredPortCheckContext
Pointer to an optional context for the deferred port check routine.

744 Part 2 Serial and Parallel Drivers

Include
parallel.h

Comments
A kernel-mode driver can connect a device-specific interrupt service routine and a deferred
port check routine to the parallel port.

See Also
IOCTL_INTERNAL_PARALLEL_CONNECT_INTERRUPT

Parport Callback Routines
This section describes the Parport callback routines that a kernel-mode driver can use to
operate a parallel port. Note that most of the Parport callback routines have equivalent
device control requests, which are preferred over using the following callback routines:

ClearChipMode
Clears the operating mode of a parallel port.

DeselectDevice
Deselects an IEEE 1284.3 daisy-chain device or an IEEE 1284 end-of-chain device. A caller
can also specify that Parport free the parallel port.

FreePort
Frees a parallel port.

FreePortFromlnterruptLevel
Frees a parallel port at IRQL DIRQL.

QueryNumWaiters
Returns the number of requests queued on the work queue of a parallel port.

Try AllocatePort
Allocates a parallel port.

Try AliocatePortAtlnterruptLevel
Allocates a parallel port at IRQL DIRQL.

TrySelectDevice
Selects an IEEE 1284.3 daisy-chain device or an IEEE 1284 end-of-chain device on a
parallel port.

TrySetChipMode
Sets the operating mode of a parallel port.

ClearChipMode
NTSTATUS
(*ClearChipMode)

IN PDEVICE_EXTENSION Extension.
IN UCHAR ChipMode

Chapter 3 Parport Driver Reference 745

The ClearChipMode callback routine clears the operating mode of a parallel port.

Parameters
Extension
Pointer to the extension of the device object that represents the parallel port.

ChipMode
Specifies the current operating mode of the parallel port.

For more information on operating modes, see the ECR modes defined in % Windows 2000
DDK install directory%\incV1dk\parallel.h.

Include
parallel.h

Return Value
STATUS_SUCCESS

STATUSJNVALID _DEVICE_STATE
The specified mode does not match the current mode.

Comments
A kernel-mode driver uses an IOCTL_INTERNAL_GET_PARALLEL_PORT_INFO
request to obtain the ClearChipMode pointer.

The ClearChipMode callback routine clears the operating mode of the parallel port.
A caller uses ClearChipMode in conjunction with TrySetChipMode.

To set a mode, a caller must first clear the current mode.

To clear the current mode, a caller must specify the same mode that was used to set the
current mode.

746 Part 2 Serial and Parallel Drivers

See Also
IOCTL_INTERNAL_P ARALLEL_ CLEAR_ CHIP_MODE, IOCTL_INTERNAL_
PARALLEL_SET _CHIP _MODE, TrySetChipMode

DeselectDevice
NTSTATUS
PptDeselectDevice(

IN PVOID Context.
IN PVOID Dese7ectCommand

The DeselectDevice callback routine deselects an IEEE 1284.3 daisy-chain device or an
IEEE 1284 end-of-chain device. A caller can also specify that Parport free the parallel port.

Parameters
Context
Pointer to the extension of the device object that represents the parallel port.

DeseiectCommand
Pointer to a PARALLEL_1284_COMMAND structure. The caller specifies the following
parameters:

ID
Specifies the 1284.3 device ID.

CommandFlags
Specifies a bitwise OR of zero or more of the following flags:

Value

PAR_END_OF _CHAIN_DEVICE

PAR_HA VE_PORT_KEEP _PORT

Include
parallel.h

Return Value
STATUS_SUCCESS

Description

Specifies an end-of-chain device.

Specifies that the port be kept allocated.

STATUSJNVALID _PARAMETER
The specified device ID is invalid.

STATUS_UNSUCCESSFUL
Parport could not deselect the device.

Comments

Chapter 3 Parport Driver Reference 747

A kernel-mode driver uses an IOCTL_INTERNAL_GET_PARALLEL_PORT_INFO
request to obtain the DeselectDevice pointer.

A kernel-mode driver can use an IOCTL_INTERNAL_DESELECT_DEVICE request or
a DeselectDevice call to deselect a device on a parallel port. To deselect a device, a caller
should have the port allocated. If the caller does not set the PAR_HAVE_PORT_KEEP_
PORT flag, Parport frees the port after deselecting the device.

DeSelectDevice runs in the caller's thread at IRQL <= DISPATCH_LEVEL.

See Also
IOCTL_INTERNAL_SELECT _DEVICE, TrySelectDevice

FreePort
VOID
(*FreePort)(

IN PVOID Context

The FreePort callback routine frees a parallel port.

Parameters
Context
Pointer to the device extension of the device object that represents the parallel port.

Include
parallel.h

Comments
A kernel-mode driver uses an IOCTL_INTERNAL_GET_PARALLEL_PORT_INFO
request to obtain the FreePort pointer.

748 Part 2 Serial and Parallel Drivers

The driver should allocate a'parallel port before freeing it. A driver can use QueryNum
Waiters to determine the number of clients that are waiting to allocate the parallel port,
and Try AllocatePort to try to allocate the parallel port.

FreePort runs in the caller's thread at the IRQL of the caller.

See Also
FreePortFromlnterruptLevel, QueryNum Waiters, Try AllocatePort, Try AllocatePort
AtlnterruptLevel

FreePortFromlnterruptLevel
VOID
(*FreePortFromInterruptLevel)(

IN PVOID Context

The FreePortFromlnterruptLevel callback routine frees a parallel port at IRQL DIRQL.

Parameters
Context
Pointer to the extension of the device object that represents the parallel port.

Include
parallel.h

Comments
A kernel-mode driver connects an interrupt service routine by using an IOCTL_
INTERNAL_PARALLEL_CONNECT_INTERRUPT to obtain a FreePortFrom
InterruptLevel pointer.

The driver should allocate the port before freeing it. A driver can use Try AllocatePortAt
InterruptLevel to try to allocate the port at IRQL DIRQL.

If there are no requests on the work queue, FreePortFromlnterruptLevel immediately
frees the port; otherwise, it queues a deferred procedure call that frees the port at a later
time.

FreePortFromlnterruptLevel runs at IRQL DIRQL.

See Also
Try AllocatePortAtlnterruptLevel

QueryNumWaiters
ULONG
(*OueryNumWaiters)(

IN PVOID Extension
)

Chapter 3 Parport Driver Reference 749

The QueryNumWaiters callback routine returns the number of requests that are queued on
the work queue of a parallel port.

Parameters
Extension
Pointer to the device extension of the device object that represents the parallel port.

Include
parallel.h

Return Value
Number of requests that are queued on the work queue of the parallel port.

Comments
A kernel-mode driver uses an IOCTL_INTERNAL_GET_PARALLEL_PORT_INFO
request to obtain the QueryNumWaiters pointer.

A driver can use QueryNum Waiters to adjust its use of the parallel port based on the
number of other clients that are waiting for access to the parallel port. Note that Parport
queues only allocate and select requests.

QueryNum Waiters runs in the caller's thread at an IRQL <= DISPATCH_LEVEL.

See Also
FreePort, Try AllocatePort

Try AliocatePort
BOOLEAN
(*TryAllocatePort)(

IN PVOID Context

The TryAllocatePort callback routine is a non-blocking routine that a kernel-mode driver
can use to allocate a parallel port.

750 Part 2 Serial and Parallel Drivers

Parameters
Context
Pointer to the extension of the device object that represents the parallel port.

Include
parallel.h

Return Value
TRUE
The port was allocated.

FALSE
The port was not allocated.

Comments
A kernel-mode driver sends an IOCTL_INTERNAL_GET_PARALLEL_PORT_INFO
request to obtain the Try AllocatePort pointer.

A driver can use TryAllocatePort to allocate a parallel port instead of using an IOCTL_
INTERNAL_PARALLEL_PORT_ALLOCATE request. TryAllocatePort is non-blocking,
does not queue a port allocate request, and returns immediately.

If a client uses only TryAllocatePort to attempt to allocate a port for which other clients
are contending, Parport might never allocate the port to the client. To ensure success, a
client must use a port allocate request. Parport queues, and subsequently processes, port
allocate requests and device select requests in the order in which the requests are received.

TryAllocatePort runs in the caller's thread at an IRQL <= DISPATCH_LEVEL.

See Also
FreePort, FreePortFromlnterruptLevel, QueryNum Waiters, Try AllocatePortAt
InterruptLevel

Try AliocatePortAtl nterruptLevel
BOOLEAN
(*TryAllocatePortAtInterruptLevel)(

IN PVOID Context

The Try AllocatePortAtInterruptLevel callback routine allocates a parallel port at IRQL
DIRQL.

Parameters
Context

Chapter 3 Parport Driver Reference 751

Pointer to the extension of the device object that represents the parallel port.

Include
parallel.h

Return Value
TRUE
The port was allocated.

FALSE
The port was not allocated.

Comments
A kernel-mode driver sends an IOCTL_INTERNAL_GET_PARALLEL_PORT_INFO
request to obtain the TryAllocatePortAtlnterruptLevel pointer.

Try AllocatePortAtlnterruptLevel is non-blocking, does not queue an allocate request,
and returns immediately.

A driver uses Try AllocatePortAtlnterruptLevel in conjunction with an ISR. If the
driver does not have a port allocated when the driver's ISR is called, the driver can use
Try AllocatePortAtlnterruptLevel.

See Also
FreePort, FreePortFromlnterruptLevel, QueryNum Waiters, Try AllocatePort

TrySelectDevice
NTSTATUS
(*TrySelectDev;ce)(

IN PVOID Context.
IN PVOID TrySe7ectCommand

The TrySelectDevice callback routine selects an IEEE 1284.3 daisy-chain device or an
IEEE 1284 end-of-chain device on a parallel port.

752 Part 2 Serial and Parallel Drivers

Parameters
Context
Pointer to the extension of the device object that represents the parallel port.

TrySelectCommand
Pointer to a PARALLEL_1284_COMMAND structure. The caller specifies the following
parameters:

ID
Specifies the 1284.3 device ID.

CommandFlags
Specifies a bitwise OR of zero or more of the following flags:

Value

PAR_END_OF _CHAIN_DEVICE

PAR_HAVE_PORT_KEEP _PORT

Include
parallel.h

Return Value
STATUS_SUCCESS

STATUSJNVALlD_PARAMETER
The device ID is not valid.

STATUS_PENDING

Description

Specifies an end-of-chain device.

Specifies that the caller has the port allocated
and to keep the port allocated.

The caller did not specify PAR_HAVE_PORT_KEEP _PORT, and the port is already
allocated.

STATUS_UNSUCCESSFUL
The caller has allocated the port, but Parport could not select the device.

Comments
A kernel-mode driver uses an IOCTL_INTERNAL_GET_PARALLEL_PORT_INFO
request to obtain the TrySelectDevice pointer.

A kernel-mode driver can use an IOCTL_INTERNAL_SELECT_DEVICE request or Try
SelectDevice to select a device on a parallel port. Parport queues a select request if the

Chapter 3 Parport Driver Reference 753

parallel port is already allocated. However, TrySelectDevice does not queue a select
request, and the routine returns immediately if the port cannot be allocated.

If a client uses only TrySelectDevice to attempt to select a device, and other clients are con
tending for the port, Parport might never allocate the port to the client. To ensure success, a
client must use a select device request. Parport queues, and subsequently processes, port al
locate requests and device select requests in the order in which the requests are received.

TrySelectDevice runs in the caller's thread at IRQL <= DISPATCH_LEVEL.

See Also
PARALLEL_PNP _INFORMATION, IOCTL_INTERNAL_SELECT_DEVICE

TrySetChipMode
NTSTATUS
(*TrySetChipMode)

IN PDEVICE_EXTENSION Extension,
IN UCHAR ChipMode

The TrySetChipMode callback routine sets the operating mode of a parallel port.

Members
Extension
Pointer to the extension of the device object that represents the parallel port.

ChipMode
Specifies the operating mode of the parallel port. (For more information on operating
modes, see the ECR modes defined in %Windows 2000 DDK install directory%\inc\ddk\
parallel. h.).

Include
parallel.h

Return Value
STATUS_SUCCESS

STATUSJNVALlD_DEVICE_STATE
The mode is not cleared.

STATUS _NO _SUCH_DEVICE
The specified operating mode is not valid.

754 Part 2 Serial and Parallel Drivers

Comments
A kernel-mode driver uses an IOCTL_INTERNAL_GET_PARALLEL_PORT_INFO
request to obtain the TrySetChipMode pointer.

The TrySetChipMode callback routine sets the operating mode of a parallel port. A caller
uses TrySetChipMode in conjunction with ClearChipMode.

To set a new mode, a caller must first clear the current mode.

To clear the current mode, a caller must specify the same mode that was used to set the
current mode.

See Also
ClearChipMode, IOCTL_INTERNAL_PARALLEL_CLEAR_CHIP _MODE, IOCTL_
INTERNAL_PARALLEL_SET_CHIP _MODE

CHAPTER 4

Parclass Driver Reference

This chapter describes the following topics about Parclass, the Windows® 2000 system
class driver for parallel devices that are attached to parallel ports:

• Parclass Major I/O Requests

• Parclass Device Control Requests

• Parclass Internal Device Control Requests

• Parclass Data types

• Parclass Callback Routines

755

Parclass creates and administers a bus for all Plug and Play parallel devices that are attached
to parallel ports. The Parclass service, which is part of the extended base group of services,
depends on the Parport service. The executable image of the Parclass is parallel.sys.

For more information on Parclass and Parport, see:

• Parallel Devices and Drivers in the online DDK

• Sample code in the %install directory%\src~ernel\parclass directory in the
Windows 2000 DDK

• Sample code in the %install directory%\src~ernel\parport directory in the
Windows 2000 DDK

• Include files %install directory%\incV1dk\parallel.h and %install
directory%\inc\ntddpar.h in the Windows 2000 DDK

756 Part 2 Serial and Parallel Drivers

Parclass Major 1/0 Requests
This section describes the Parclass-specific handling of the following I/O requests that
Parclass supports:

IRP _MJ_CLEANUP
IRP _MJ_CLOSE
IRP _MJ_CREATE
IRP _MJ_DEVICE_CONTROL
IRP _MJ_INTERNAL_DEVICE_CONTROL
IRP_MJ_QUERY_INFORMATION
IRP_MJ_PNP
IRP _MJ_POWER
IRP _MJ_READ
IRP _MJ_SYSTEM_CONTROL
IRP _MJ_ WRITE

See the following topics for information about Parclass's generic handling of these I/O
requests:

• IRP Function Codes and 10CTLs

• Sample Parclass code in the %install directory%\src,*ernelyJarclass directory in the
Windows 2000 DDK

• Plug and Play IRPs in Volume 1

• I/O Requests for Power Management in Volume 1

• WMIIRPs in the online DDK

IRP _MJ_CREATE

Operation
The IRP _MJ _ CREATE request opens a parallel device. The following Parclass-specific
considerations apply to opening a parallel device:

• Parallel devices are exclusive devices. Parclass fails an IRP _MJ_CREATE request if a
device is already open.

• A kernel-mode driver that connects to a parallel port or attaches an FDO to a Parclass
PD~ must open the Parclass PD~ before the driver can send read, write, or device
control requests to the parallel device.

Chapter 4 Parclass Driver Reference 757

Status 1/0 Block
• The Information member is set to zero.

• The Status member is set to one of the following values:

STATUS_SUCCESS

STATUS_ACCESS_DENIED
The device is already open.

STATUS_DELETE_PENDING

STATUS_DEVICE_REMOVED

STATUSJNVALlD_DEVICE_REQUEST
There is no hardware present.

IRP _MJ_DEVICE_CONTROL

Operation
Parclass supports the following major device control requests:

IOCTL_IEEE1284_GET_MODE
IOCTL_IEEE1284_NEGOTIATE
IOCTL_PAR_GET_DEFAULT_MODES
IOCTL_P AR_ GET _DEVICE_CAPS
IOCTL_PAR_QUERY_DEVICE_ID
IOCTL_PAR_ QUERY _DEVICE_ID _SIZE
IOCTL_P AR_ QUERY_INFORMATION
IOCTL_P AR_ QUERY _RA W _DEVICE_ID
IOCTL_P AR_SET _INFORMATION
IOCTL_PAR_SET_READ_ADDRESS
IOCTL_PAR_SET_ WRITE_ADDRESS
IOCTL_SERIAL_GET_ TIMEOUTS
IOCTL_SERIAL_SET_ TIMEOUTS

No other device control requests are supported.

For more information on the device control requests that Parclass supports, see Parclass
Device Control Requests.

758 Part 2 Serial and Parallel Drivers

Status 1/0 Block
The values of the status block members are request-specific. If the request is not supported,
the Status member is set to STATUS_INVALID_PARAMETER.

IRP _MJ_INTERNAL_DEVICE_CONTROL

Operation
Parclass supports the following internal device control requests:

IOCTL_INTERNAL_DISCONNECT_IDLE
IOCTL_INTERNAL_LOCK_PORT
IOCTL_INTERNAL_P ARCLASS_ CONNECT
IOCTL_INTERNAL_P ARCLASS _DISCONNECT
IOCTL_INTERNAL_PARDOT3_CONNECT
IOCTL_INTERNAL_P ARDOT3_DISCONNECT
IOCTL_INTERNAL_UNLOCK_PORT

No other internal device control requests are supported.

For more information, see Parclass Internal Device Control Requests in this chapter.

Status 1/0 Block
The status block values are specific to each request. If an internal device control request is
not supported, the Status member is set to STATUS_INVALID_PARAMETER.

IRP _MJ_QUERV _INFORMATION

Operation

Input

The IRP _MJ _ QUERY_INFORMATION request returns file information for a parallel
device.

Parclass supports queries for the following types of information:

• FileStandardInformation

• FilePositionInformation

The Parameters.QueryFile.FileInformationClass member is set to FileStandard
Information or FilePositionInformation.

Chapter 4 Parclass Driver Reference 759

FileStandardlnformation Request
The AssociatedIrp.SystemBuffer member points to a FILE_STANDARD_
INFORMATION structure that the client allocates for output of file information.

The Parameters.QueryFile.Length member is set to the size in bytes of a FILE_
STANDARD_INFORMATION structure.

FilePositionlnformation Request
AssociatedIrp.SystemBuffer points to a FILE_POSITION_INFORMATION structure that
the client allocates for output of file information.

The Parameters.SetFile.Length member is set to the size in bytes of a FILE_POSITION_
INFORMATION structure.

Output
AssociatedIrp.SystemBuffer points to the requested information.

FileStandardlnformation Request Type
Sets the following members in the FILE_STANDARD _INFORMATION structure:

• AllocationSize.QuadPart set to zero.

• EndOfFile is set to the value of the AllocationSize member.

• NumberOfLinks is set to zero.

• DeietePending is set to FALSE.

• Directory is set to FALSE.

FilePositionlnformation Request Type
Sets the CurrentByteOffset.QuadPart member of a FILE_POSITION_INFORMATION
structure to zero.

Status 1/0 Block
If the request succeeds, the Information member is set to the size in bytes of the structure
associated with the type of request. Otherwise, the Information member is set to zero.

The Status member is set to one of the following status values:

STATUS_SUCCESS

760 Part 2 Serial and Parallel Drivers

STATUS_BUFFER_TOO_SMAll
The size in bytes of the structure specified by the input parameter is less than the size in
bytes of the structure associated with the request type.

STATUS_DEVICE_REMOVED

STATUSJNVALlD_PARAMETER
The specified type of information is not valid.

IRP _MJ_READ

Operation

Input

The IRP _MJ _READ request transfers data from a parallel device to the client. Parclass uses
the read protocol set for the parallel device. The default read protocol is NIBBLE_MODE.
A client can negotiate a read protocol by using an IOCTL_IEEE1284_NEGOTIATE
request.

Parclass sets a cancel routine for the read request, marks the read request as pending, and
queues the read request on a work queue. The read request is held on the work queue in a
state that can be canceled until the read request is either completed or canceled by the client.

The Parameters.Read.Length member points to the number of bytes to read from the
parallel device.

Output
The AssociatedIrp.SystemBuffer member points to a read buffer that the client allocates
for the read data. The buffer must be large enough to hold the requested number of bytes.

Status 1/0 Block
The Information member is set to the number of bytes actually read from the parallel
device.

The Status member is set to one of the following status values:

STATUS_SUCCESS

STATUS_DELETE_PENDING

STATUS_CANCEllED

STATUS_PENDING
The request is queued on a work queue for the parallel deviCe.

Chapter 4 Parclass Driver Reference 761

STATUSJNVALlD_PARAMETER
The Parameters.Write.ByteOffset member is not zero. Note that both read and write
requests use this member.

IRP _MJ_WRITE

Operation

Input

The IRP _MJ _ WRITE request transfers data from the client to the parallel device.

Parclass transfers data from the client to the parallel device by using the write protocol that
is set for the parallel device. The default write protocol is CENTRONICS_MODE. A client
can negotiate a write protocol by using an IOCTL_IEEE1284_NEGOTIATE request.

Parclass sets a cancel routine for the write request, marks the write request as pending, and
queues the write request on a work queue. The write request is held in a state that can be
canceled until the request is either completed or canceled.

The AssociatedIrp.SystemBuffer points to a write buffer that the client allocates for write
data. The buffer must be large enough to hold the requested number of bytes to write to the
parallel device.

The Parameters.Write.Length member points to the number of bytes to write to the paral
lel device.

Status 1/0 Block
The Information member is set to the number of bytes actually written to the parallel
device.

The Status member is set to STATUS.,-SUCCESS or one or the following values:

STATUS_DELETE_PENDING

STATUS_CANCEllED

STATUS_PENDING
The request is queued on a work queue for the parallel device.

STATUSJNVALID _PARAMETER
The Parameters.Write.ByteOffset member is not zero.

762 Part 2 Serial and Parallel Drivers

Parclass Device Control Requests
This section describes the following topics:

IOCTL_IEEEI284_GET_MODE
IOCTL_IEEEI284_NEGOTIATE
IOCTL_PAR_GET_DEFAULT_MODES
IOCTL_P AR_ GET _DEVICE_CAPS
IOCTL_P AR_IS_PORT_FREE
IOCTL_P AR_ QUERY _DEVICE_ID
IOCTL_PAR_ QUERY _DEVICE_ID _SIZE
IOCTL_PAR_QUERY_INFORMATION
IOCTL_P AR_ QUERY _RA W _DEVICE_ID
IOCTL_P AR_SET _INFORMATION
IOCTL_P AR_SET _READ _ADDRESS
IOCTL_PAR_SET_ WRITE_ADDRESS
IOCTL_SERIAL_ GET _ TIME OUTS
IOCTL_SERIAL_SET_ TIMEOUTS

No other device control requests are supported by Parclass. Parclass completes unsupported
device control requests with a status of STATUS_INVALID_PARAMETER.

IOCTL_IEEE1284_ GET_MODE

Operation

Input

The IOCTL_IEEEI284_GET_MODE request returns the IEEE 1284 read and write proto
cols that are currently set for the parallel device. For information on the communication
modes that Parclass supports, see the modes NONE through ECP _ANY that are defined in
%install directory%\inc\ntddpar.h.

The Parameters.DeviceloControl.OutputBufferLength member is set to the size in bytes
of a PARCLASS_NEGOTIATION_MASK structure.

Output
The Associatedlrp.SystemBuffer member points to a PARCLASS_NEGOTIATION_
MASK structure that the client allocates to output mode information. Parclass specifies the
read (reverse) protocol in the usReadMask member and the write (forward) protocol in
the usWriteMask member.

Chapter 4 Parclass Driver Reference 763

1/0 Status Block
If the request is successful, the Information member is set to the size in bytes of a
P ARCLASS_NEGOTIATION_MASK. Otherwise, the Information member is set to zero.

The Status field is set to one of the following status values:

STATUS_SUCCESS
STATUS_BUFFER_TOO_SMALL
The value of Parameters.DeviceIoControl.OutputBufferLength is less than the size in
bytes of a PARCLASS_NEGOTIATION_MASK structure.

IOCTL_IEEE1284_NEGOTIATE

Operation

Input

The IOCTL_IEEE1284_NEGOTIATE request sets the read and write protocols that are
used for a parallel device. Parclass negotiates with the parallel device to determine the
fastest mode that the device supports from among the modes that are specified by the client.
Parclass sets the default read and write modes to the negotiated modes. For information on
the communication modes that Parclass supports, see the modes NONE through ECP _ANY
defined in %install directory%\inc'ntddpar.h.

The AssociatedIrp.SystemBuffer member points to a PARCLASS_NEGOTIATION_
MASK structure that the client allocates for the input and output of mode information. The
client sets the usReadMask and usWriteMask members.

The Parameters.DeviceIoControl.InputBufferLength member is set to the size in bytes
of a PARCLASS_NEGOTIATION_MASK structure.

Output
The AssociatedIrp.SystemBuffer points to the PARCLASS_NEGOTIATION_MASK
structure that Parclass uses to output mode information. Parclass sets the usReadMask and
usWriteMask members to the negotiated modes.

1/0 Status Block
If request is successful, the Information member is set to the size in bytes of a
PARCLASS_NEGOTIATION_MASK structure. Otherwise the Information field
is set to zero.

764 Part 2 Serial and Parallel Drivers

The Status field is set to one of the following status values:

STATUS_SUCCESS
STATUSJNVALlD_PARAMETER
The value of the Parameters.DeviceIoControl.InputBufferLength member is less than the
size in bytes of a PARCLASS_NEGOTIATION_MASK.

IOCTL_PAR_GET _DEFAULT_MODES

Operation

Input

The IOCTL_PAR_GET_DEFAULT_MODES request returns the default write (forward)
and read (reverse) IEEE 1284 protocols. The default write protocol is CENTRONICS_
MODE; the default read protocol is NIBBLE. For information on the communication modes
that Parclass supports, see the modes NONE through ECP _ANY defined in %install
directory%\inc'ntddpar. h.

The value of the Parameters.DeviceIoControl.OutputBufferLength member is set to the
size in bytes of a PARCLASS_NEGOTIATION_MASK structure.

Output
The AssociatedIrp.SystemBuffer member points to a PARCLASS_NEGOTIATION_
MASK structure that the client allocates to output mode information. Parclass sets the
usReadMask member and the usWriteMask member. The default write mode is
CENTRONICS_MODE; the default read mode is NIBBLE.

1/0 Status Block
If the request is successful, the Information member is set to the size in bytes of a
PARCLASS_NEGOTIATION_MASK structure. Otherwise, Information is set to zero.

The Status field is set to one of the following status values:

STATUS_SUCCESS
STATUS_BUFFER_TOO_SMALL
The value of the Parameters.DeviceIoControl.OutputBufferLength is less than the size in
bytes of a PARCLASS_NEGOTIATION_MASK structure.

Chapter 4 Parclass Driver Reference 765

IOCTL_PAR_ GET _DEVICE_CAPS

Operation

Input

The IOCTL_PAR_GET_DEVICE_CAPS request does the following:

• Returns the operating protocols that the parallel device supports

• Specifies the protocols that Parclass must not use with a device

The AssociatedIrp.SystemBuffer member points to a USHORT buffer that the client
allocates to input and output mode information. The request sets the input buffer to a logical
OR of the modes that Parclass must not use with a parallel device.

The Parameters.DeviceIoControl.OutputBufferLength member is set to the size in bytes
ofa USHORT.

Output
AssociatedIrp.SystemBuffer points to the USHORT buffer that Parclass uses to output
mode information. Parclass sets the buffer to indicate which operating protocols the parallel
device supports.

I/O Status Block
The Information field is set to the size in bytes of a USHORT.

The Status field is set to one of the following values:

STATUS_SUCCESS
STATUS_BUFFER_TOO_SMALL
The Parameters.DeviceIoControl.OutputBufferLength field is less than the size in bytes
ofa USHORT.

IOCTL_PAR_IS_PORT _FREE

Operation
The IOCTL_PAR_IS_PORT_FREE request determines if a parallel port is free at the time
Parclass processes the request. This request is provided primarily for user-mode clients.

The request is processed immediately after the I/O Manager calls Parclass's dispatch routine
for device control requests. Note, however, that the status of the port can change between

766 Part 2 Serial and Parallel Drivers

the time that Parclass completes the request and the time that control returns to a user-mode
client.

Kernel-mode clients can directly determine if a parallel port is free by calling Parport's Try
AlIocatePort callback routine.

Output
The AssociatedIrp.SystemBuffer member points to a BOOLEAN buffer that the client
allocates to output the status of the port. If the port is free, Parclass sets the buffer to TRUE,
otherwise it sets the buffer to FALSE.

1/0 Status Block
The Information member is set to the size in bytes of a BOOLEAN.

The Status member is set to one of the following values:

STATUS_SUCCESS
STATUS_BUFFER_TOO_SMALL
The Parameters.DeviceIoControl.OutputBufferLength member is less than the size in
bytes of a BOOLEAN.

IOCTL_PAR_QUERV _DEVICE_ID

Operation

Input

The IOCTL_PAR_QUERY_DEVICE_ID request returns the IEEE 1284 device ID.

The Parameters.DeviceIoControl.OutputBufferLength member specifies the size in
bytes of the output buffer that can hold both the device ID and a NULL terminator. A client
can use IOCTL_PAR_QUERY_DEVICE_ID_SIZE to determine the required buffer size.
A device ID can be up to 64 KB in size.

Output
The AssociatedIrp.SystemBuffer member points to a buffer that the client allocates to out
put the device ID. The buffer contains the device ID and a NULL terminator.

1/0 Status Block
If the request is successful, the Information member is set to the size in bytes of a buffer
that holds both the device ID and a NULL terminator. Otherwise, the Information member
is set to zero.

Chapter 4 Parclass Driver Reference 767

The Status member is set to one of the following status values:

STATUS_SUCCESS
ST ATUSJO _DEVICE_ERROR
STATUS_BUFFER_TOO_SMALL

IOCTL_PAR_QUERY _DEVICE_ID_SIZE

Operation
The IOCTL_PAR_QUERY_DEVICE_ID_SIZE returns the size in bytes of a buffer that can
hold a device's IEEE 1284 device ID and a NULL terminator.

Output
The AssociatedIrp.SystemBuffer member points to a P AR_DEVICE_ID _SIZE_
INFORMATION structure that the client allocates to output the device ID size information.
Parclass sets the DeviceIdSize member of the output structure to the size in bytes of a buffer
that can hold the device ID and a NULL terminator.

1/0 Status Block
If the request is successful, the Information member is set to the size in bytes of a P AR_
DEVICE_ID_SIZE_INFORMATION structure. Otherwise, the Information member is
set to zero.

The Status member is set to one of the following status values:

STATUS_SUCCESS
STATUS JO _DEVICE_ERROR

IOCTL_PAR_QUERY _INFORMATION

Operation

Input

The IOCTL_PAR_QUERY_INFORMATION request returns the status of an IEEE 1284
end-of-chain device.

The Parameters.DeviceIoControl.OutputBufferLength member is set to the size in bytes
of a PAR_QUERY_INFORMATION structure.

768 Part 2 Serial and Parallel Drivers

Output
The AssociatedIrp.SystemBuffer member points to a PAR_QUERY_INFORMATION
structure that the client allocates to output status information. Parclass sets the Status mem
ber to a logical OR of one or more of the following operating conditions:

PARALLEL_BUSY
PARALLEL_NOT_CONNECTED
PARALLEL_OFF _LINE
P ARALLEL_P APER_EMPTY
P ARALLEL_POWER_ OFF
PARALLEL_SELECTED

Status 1/0 Block
If the request is successful, the Information member is set to the size in bytes of a P AR_
QUERY_INFORMATION structure. Otherwise, the Information is set to zero.

The Status member is set to one of the following status values:

STATUS_SUCCESSFUL
STATUS_BUFFER_TOO_SMALL
The value of the Parameters.DeviceIoControl.OutputBufferLength member is less than
the size in bytes of a PAR_QUERY_INFORMATION structure.

STATUS_CANCELLED
STATUS_PENDING
The request is queued on a work queue for the parallel device.

IOCTL_PAR_ QUERY _RAW _DEVICE_ID

Operation
The IOCTL_PAR_QUERY _RAW _DEVICE_ID request performs the same operation as the
IOCTL_PAR_QUERY _DEVICE_ID request.

IOCTL_PAR_SET _INFORMATION

Operation
The IOCTL_P AR_SET _INFORMATION request resets and initializes a parallel device.

Input

Chapter 4 Parclass Driver Reference 769

The Associatedlrp.SystemBuffer member points to a PAR_SET_INFORMATION
structure that the client allocates to input set information. The request sets the Init member
to PARALLEL_INIT.

The Parameters.DeviceloControl.lnputBufferLength member is set to the size in bytes of
a PAR_SET_INFORMATION structure.

Status 1/0 Block
The Information member is set to zero.

The Status member is set to one of the following status values:

STATUS_SUCCESS

STATUS_CANCELLED

STATUS_BUFFER_TOO_SMALL
Parameters.DeviceloControl.lnputBufferLength is less than the size in bytes of a
PAR_SET _INFORMATION structure.

STATUS_DEVICE_NOT _CONNECTED

STATUS_DEVICE_OFF _LINE

STATUS_DEVICE_PAPER_EMPTY

STATUS_DEVICE_POWERED _OFF

STATUSJNVALID _PARAMETER
The request does not specify PARALLEL_INIT.

STATUS_PENDING
The request is queued on a work queue for the parallel device.

IOCTL_PAR_SET_READ_ADDRESS
Operation

Input

The IOCTL_PAR_SET_READ_ADDRESS request sets an ECP or EPP read address
(channel) for a parallel device. Parclass queues this request on a work queue for the paral
lel device.

The Associatedlrp.SystemBuffer member points to a UCHAR buffer that the client allo
cates to input a read address. The request sets the buffer to an ECP or EPP read address.

770 Part 2 Serial and Parallel Drivers

Parameters.DeviceIoControl.InputBufferLength member is set to the size in bytes of
a UCHAR.

Status 1/0 Block
The Information member is set to zero.

The Status member is set to one of the following values:

STATUS_SUCCESS

STATUS_CANCELLED

STATUSJNVALlD_PARAMETER
Parameters.DeviceIoControl.InputBufferLength is less than the size in bytes of
a UCHAR.

STATUS_PENDING
The request is queued on a work queue for the parallel device.

IOCTL_PAR_SET _WRITE_ADDRESS

Input

The IOCTL_PAR_SET_ WRITE_ADDRESS request sets an ECP or EPP write address
(channel) for the parallel device. Parclass queues this request on a work queue for the
parallel device.

The AssociatedIrp.SystemBuffer member points to a UCHAR buffer that the client allo
cates to inputa write address. The client sets the buffer to an ECP or EPP write address.

Parameters.DeviceIoControl.lnputBufferLength member is set to the size in bytes of
a UCHAR.

Status 1/0 Block
The Information field is set to zero.

The Status field is set to one of the following values:

STATUS_SUCCESS

STATUS_CANCELLED

STATUSJNVALlD_PARAMETER
Parameters.DeviceIoControI.lnputBufferLength is less than the size in bytes of
aUCHAR.

Chapter 4 Parclass Driver Reference 771

STATUS_PENDING
The request is queued on a work queue for the parallel device.

STATUS_UNSUCCESSFUL

IOCTL_SERIAL_GET _ TIMEOUTS

Operation

Input

The IOCTL_SERIAL_GET_TIMEOUTS request returns the current setting of the timeout
value that Parclass uses with write requests. Parclass does not queue a get timeouts request.
The write timeout value is used with SPP and SW _ECP modes.

A client uses an IOCTL_SERIAL_SET_TIMEOUTS request to set timeouts.

The Parameters.DeviceIoControl.OutputBufferLength field is set to the size in bytes of
a SERIAL_ TIMEOUTS structure.

Output
The AssociatedIrp.SystemBuffer points to a SERIAL_ TIME OUTS structure that the client
allocates to output timeout information. Parclass sets the WriteTotalTimeoutConstant
member to the timeout value in milliseconds.

Status 1/0 Block
If the request is successful, the Information member is set to the size in bytes of a
SERIAL_ TIMEOUTS structure. Otherwise, the Information member is set to zero.

The Status member is set to one of the following values:

STATUS_SUCCESS
STATUS_BUFFER_TOO_SMALL
The value of the Parameters.DeviceIoControl.OutputBufferLength member is less than
the size in bytes of a SERIAL_ TIMEOUTS structure.

IOCTL_SERIAL_SET _ TIMEOUTS

Operation
An IOCTL_SERIAL_SET_TIMEOUTS request resets the timeout value that Parclass uses
with write requests. The write timeout value is used with SPP and SW _ECP modes. Parclass
queues a set timeout request on a work queue for the parallel device.

772 Part 2 Serial and Parallel Drivers

Input

A client uses an IOCTL_SERIAL_GET_TIMEOUTS to obtain the timeout values.

The AssociatedIrp.SystemBuffer points to a SERIAL_TIMEOUTS structure that the client
allocates to input timeout information. The client sets the WriteTotalTimeoutConstant
member to a value in milliseconds.

The Parameters.DeviceIoControl.OutputBufferLength field is set to the size in bytes of
a SERIAL_ TIMEOUTS structure.

Status 1/0 Block
The Information member is set to zero.

The Status member is set to one of the following values:

STATUS_SUCCESS
STATUS_BUFFER_TOO_SMALL
The value of the Parameters.DeviceIoControl.InputBufferLength member is less than the
size in bytes of a SERIAL_ TIMEOUTS structure.

STATUSJNVALlD_PARAMETER
The requested timeout value is less than two seconds.

STATUS_PENDING
The request is queued on a work queue for the parallel device.

Parclass Internal Device Control Requests
This section describes the following topics:

IOCTL_INTERNAL_DISCONNECT_IDLE
IOCTL_INTERNAL_LOCK_PORT
IOCTL_INTERNAL_P ARCLASS_ CONNECT
IOCTL_INTERNAL_P ARCLASS_DISCONNECT
IOCTL_INTERNAL_P ARDOT3 _CONNECT
IOCTL_INTERNAL_P ARDOT3 _DISCONNECT
IOCTL_INTERNAL_UNLOCK_PORT

No other internal device control requests are supported by Parclass. Parclass completes
unsupported internal device control requests with a status of STATUS_INVALID_
PARAMETER.

IOCTL_INTERNAL_DISCONNECT _IDLE

Operation

Chapter 4 Parclass Driver Reference 773

The IOCTL_INTERNAL_DISCONNECT_IDLE request disconnects the IEEE 1284
operating modes that are set for a parallel device. Parclass sets the default operating mode
to IEEE 1284-compatible.

Status 1/0 Block
The Information member is set to zero.

The Status member is set to one of the following values:

STATUS_SUCCESS

STATUS_DELETE_PENDING

STATUS_DEVICE_REMOVED

STATUS_PENDING
The request is queued on a work queue for the parallel device.

IOCTL_INTERNAL_LOCK_PORT

Operation
The IOCTL_INTERNAL_LOCK_PORT request locks a parallel port for the exclusive
use of a parallel device. This request also selects the parallel device. If a client has locked
the port, Parclass does not automatically free the port just before completing requests that
require that the parallel port to be allocated. A client must unlock the port to permit other
clients to access parallel devices on the parallel port.

Status 1/0 Block
The Information field is set to zero.

The Status field is set to one of the following values:

STATUS_SUCCESS

STATUS_DELETE_PENDING

STATUS_DEVICE_REMOVED

774 Part 2 Serial and Parallel Drivers

STATUS_PENDING
The request is queued on a work queue for the parallel device.

STATUS_UNSUCCESSFUL

IOCTL_INTERNAL_PARCLASS_CONNECT

Operation

Input

The IOCTL_INTERNAL_PARCLASS_CONNECT request returns information about the
parallel port and the callback routines that Parclass provides. Typically, a client first uses a
connect request to obtain connect information, and then uses a lock port request to allocate
exclusive use of the parallel port for a parallel device. Parclass does not queue this request.

The value of the Parameters.DeviceIoContr~I.OutputBufferLength member is set to the
size in bytes of a P ARCLASS_INFORMATION structure.

Output
The AssociatedIrp.SystemBuffer member points to a PARCLASS_INFORMATION
structure that the client allocates to output Parclass information.

Status 1/0 Block
If the request is successful, the Information member is set to the size in bytes of a
P ARCLASS_INFORMATION structure. Otherwise, the Information member is set to zero.

The Status member is set to one of the following values:

STATUS_SUCCESS

STATUS_BUFFER_TOO_SMAll
The value of the Parameters.DeviceIoControI.OutputBufferLength member is less than
the size in bytes of a P ARCLASS_INFORMATION structure.

STATUS_DELETE_PENDING

STATUS_DEVICE_REMOVED

IOCTL_INTERNAL_PARCLASS_DISCONNECT

Operation
The IOCTL_INTERNAL_P ARCLASS_DISCONNECT request disconnects a client from a
parallel device.

Chapter 4 Parclass Driver Reference 775

Status 1/0 Block
The Information member is set to zero.

The Status member is set to one of the following status values:

STATUS_SUCCESS

STATUS_DELETE_PENDING

STATUS_DEVICE_REMOVED

IOCTL_INTERNAL_PARDOT3_CONNECT

Operation
The IOCTL_INTERNAL_PARDOT3_CONNECT request supports the IEEE 1284.3
connect datalink service defined in IEEE P 1284.3, Draft 4.91, May 27, 1998.

The operation of this request will be described in a future release of the Windows
2000DDK.

IOCTL_INTERNAL_PARDOT3_DISCONNECT

Operation
The IOCTL_INTERNAL_PARDOT3_DISCONNECTrequest supports the IEEE 1284.3
disconnect data link service defined in IEEE P 1284.3, Draft 4.91, May 27, 1998.

The operation of this request will be described in a future release of the Windows
2000DDK.

IOCTL_INTERNAL_UNLOCK_PORT

Operation
The IOCTL_INTERNAL_LOCK_PORT request unlocks a parallel port that was locked by
an IOCTL_INTERNAL_LOCK_PORT request.

Status 1/0 Block
The Information member is set to zero.

776 Part 2 Serial and Parallel Drivers

The Status member is set to one of the following values:

STATUS_SUCCESS

STATUS_DELETE_PENDING

STATUS _DEVICE_REMOVED

STATUS_PENDING
The request is queued on a work queue for the parallel device.

Parclass Data Types
This section describes the following data types that Parclass uses to input and output
information:

PAR_ QU ERY JNFORMATION
Specifies the operating status of the parallel port.

PAR_SETJNFORMATION
Specifies an initial operating status for the parallel port.

PARClASSJNFORMATION
Specifies information about the parallel port, callback routines to operate the parallel port,
and callbacks to read and write a parallel device.

PARClASS_NEGOTIATION_MASK
Specifies the read and write protocols that a client selects for a parallel device.

PAR_QUERY _INFORMATION
typedef struct _PAR_OUERY_INFORMATION{

UCHAR Status;
} PAR_OUERY_INFORMATION, *PPAR_OUERY_INFORMATION;

The PAR_QUERY_INFORMATION structure specifies the operating status of a parallel
port.

Members
Status
Specifies the operating status of a parallel port. The value of Status is a logical OR of one or
more of the following values:

PARALLELJNIT
PARALLEL_AUTOFEED
PARALLEL_PAPER_EMPTY
PARALLEL_OFF _LINE
PARALLEL_POWER_ OFF
PARALLEL_NOT_CONNECTED
PARALLEL_BUSY
PARALLEL_SELECTED

Include
ntddpar.h

Comments

Chapter 4 Parclass Driver Reference 777

This structure is used with an IOCTL_PAR_QUERY_INFORMATION request.

See Also
IOCTL_P AR_ QUERY_INFORMATION, IOCTL_P AR_SET _INFORMATION, P AR_
SET_INFORMATION

typedef struct _PAR-SET_INFORMATION{
UCHAR Init;

} PAR-SET_INFORMATION, *PPAR-SET_INFORMATION;

The PAR_SET_INFORMATION structure specifies the initial operating status of a parallel
port.

Members
Init
Specifies the operating status of the parallel port. Must be set to P ARALLEL_INIT.

Include
ntddpar.h

Comments
This structure is used with an IOCTL_PAR_SET_INFORMATION request.

778 Part 2 Serial and Parallel Drivers

See Also
IOCTL_PAR_QUERY_INFORMATION, IOCTL_PAR_SET_INFORMATION, PAR_
QUERY_INFORMATION

PARCLASS_INFORMATION
typedef struct _PARCLASS_INFORMATION {

PUCHAR Controller;
ULONG SpanOfController;
PDETERMINE_IEEE_MODES DetermineleeeModes;
PNEGOTIATE_IEEE_MODE NegotiateleeeMode;
PTERMINATE_IEEE_MODE TerminateleeeMode;
PPARALLEL_IEEE_FWD_TO_REV IeeeFwdToRevMode;
PPARALLEL_IEEE_REV_TO_FWD IeeeRevToFwdMode;
PPARALLEL_READ Parallel Read;
PPARALLEL_WRITE ParallelWrite;
PVOID ParclassContext;
ULONG HardwareCapabilities;
ULONG FifoDepth;
U LONG Fi foWi dth;

PARCLASS_INFORMATION, *PPARCLASS_INFORMATION;

The PARCLASS_INFORMATON structure contains information about a parallel port,
pointers to callback routines to operate a parallel port, and pointers to callback routines to
read and write to a parallel device.

Members
Controller
Specifies the base I/O address allocated to a parallel port.

SpanOfControlier
Specifies the range in bytes of I/O address space allocated to a parallel port.

DetermineleeeModes
Pointer to a callback routine that determines which IEEE protocols a parallel device
supports.

NegotiateleeeMode
Pointer to a callback routine that negotiates the fastest protocol that Parc1ass supports from
among those specified by the caller.

TerminateleeeMode
Pointer to a callback routine that terminates the current IEEE mode and sets the mode to
IEEE_COMPATIBILITY.

Chapter 4 Parclass Driver Reference 779

leeeFwdToRevMode
Pointer to a callback routine that changes the transfer mode from forward to reverse.

leeeRevToFwdMode
Pointer to a callback routine that changes the transfer mode from reverse to forward.

Parallel Read
Pointer to a callback routine that a client can use to read from a parallel device.

ParalielWrite
Pointer to a callback routine that a client can use to write to a parallel device.

ParclassContext
Pointer to the device extension of a parallel device object.

HardwareCapabilities
Specifies which hardware capabilities are present. HardwareCapabilities is a logical OR of
one or more of the following values:

PPT _NO _HARDWARE_PRESENT
PPT_ECP_PRESENT
PPT_EPP_PRESENT
PPT_EPP_32_PRESENT
32-bit reads and writes are supported.

PPT_BYTE_PRESENT
PPT _BIDLPRESENT
PPT _1284_3_PRESENT

FifoDepth
Specifies the size in bytes of the ECP FIFO.

FifoWidth
Species the width in bits of the ECP FIFO.

Include
parallel.h

Comments
An upper-level kernel-mode driver can obtain this information from Parclass using an
IOCTL_INTERNAL_PARCLASS_CONNECT request. A driver uses this information to

780 Part 2 Serial and Parallel Drivers

operate a parallel port and to read and write a parallel device. The callback routines can only
be used by a driver that holds a lock on the parallel port. A driver obtains a lock by using
an IOCTL_INTERNAL_LOCK_PORT request and releases the lock by using IOCTL_
INTERNAL_UNLOCK_PORT.

PARCLASS _NEGOTIATION_MASK
typedef struct _PARCLASS_NEGOTIATION_MASK {

USHORT usReadMask;
USHORT usWriteMask;

PARCLASS_NEGOTIATION_MASK, *PPARCLASS_NEGOTIATION_MASK;

The PARCLASS_NEGOTIATION_MASK structure specifies the read and write protocols
that a driver selects for a parallel device.

Members
usReadMask
Specifies the read protocols.

usWriteMask
Specifies the write protocols.

Include
ntddpar.h

Comments
A client specifies a set of requested protocols by setting a logical OR of the constants that
represent each protocol. Parclass selects the fastest protocol that it supports from among
those specified by the client. See the operating modes NONE through ECP _ANY that are
defined in %install directory%\inc\ntddpar.h.

See Also
IOCTL_IEEE1284_GET_MODE, IOCTL_IEEE1284_NEGOTIATE

Parclass Callback Routines
This section describes the following Parclass callback routines that an upper-level kernel
mode driver can use to operate a parallel-port:

Chapter 4 Parclass Driver Reference 781

DetermineleeeModes
Determines which IEEE protocols a parallel device supports.

leeeFwdToRevMode
Changes the transfer mode from forward to reverse.

leeeRevToFwdMode
Changes the transfer mode from reverse to forward.

NegotiateleeeMode
Selects the fastest forward and reverse protocol that Parclass supports from among those
specified by the caller. NegotiateleeeMode also connects the transfer mode specified by
the caller.

Parallel Read
Reads data from a parallel device.

ParalielWrite
Writes data to a parallel device.

TerminateleeeMode
Terminates the current IEEE operating mode and sets the mode to
IEEE_COMPATIBILITY.

Determ i neleeeModes
USHORT
(*DetermineleeeModes)

IN PDEVICE_EXTENSION Extension

The DetermineleeeModes callback routine determines which IEEE protocols a parallel
device supports.

Parameters
Extension
Pointer to a extension of a device object that represents a parallel device.

Include
funcdecl.h

782 Part 2 Serial and Parallel Drivers

Return Value
The return value indicates which protocols a parallel device supports. The return value is a
logical OR of one or more of the following constants:

BOUNDED_ECP

ECP _HW_NOIRQ

EPP_HW

EPP_SW

ECP_SW

IEEE_COMPATIBILITY

CENTRONICS

NONE
These constants represent the protocols that Parclass supports. The protocols are listed in
order of decreasing data transfer rate.

Comments
The DetermineIeeeModes callback routine runs in the caller's thread at the IRQL of the
caller.

See Also
IeeeRevToFwdMode, IeeeRevToFwdMode, NegotiateIeeeMode, TerminateIeeeMode

leeeFwdToRevMode
NTSTATUS
(*IeeeFwdToRevMode)(

IN PDEVICE_EXTENSION Extension

The IeeeFwdToRevMode callback routine changes the transfer mode from forward to
reverse.

Parameters
Extension
Pointer to an extension of a device object that represents a parallel device.

Include
funcdecl.h

Return Value
STATUS_SUCCESS
STATUS_Xxx

Chapter 4 Parclass Driver Reference 783

An internal operation resulted in an NTST A TUS error.

Comments
If the device is connected and in the reverse mode, the IeeeFwdToRevMode callback rou
tine returns without further processing. Otherwise, IeeeFwdToRevMode puts the device
into reverse mode and connects a previously negotiated reverse protocol. The Negotiate
IeeeMode callback routine can be used to negotiate the reverse protocol.

IeeeFwdToRevMode runs in the caller's thread at the IRQL of the caller.

See Also
DetermineIeeeModes, IeeeRevToFwdMode, NegotiateIeeeMode, TerminateIeeeMode

leeeRevToFwdMode
NTSTATUS
(*IeeeRevToFwdMode)(

IN PDEVICE_EXTENSION Extension

The IeeeRevToFwdMode callback routine changes the transfer mode from reverse to
forward.

Parameters
Extension
Pointer to an extension of a device object that represents a parallel device.

Include
funcdecl.h

Return Value
STATUS_SUCCESS

784 Part 2 Serial and Parallel Drivers

STATUS_Xxx
An internal operation resulted in an NTST A TUS error.

Comments
If the device is connected and in the forward mode, the IeeeRevToFwdMode callback
routine returns without further processing. Otherwise, IeeeRevToFwdMode puts a device in
the forward mode and connects a previously negotiated forward protocol. The Negotiate
IeeeMode callback routine can be used to negotiate a forward protocol.

IeeeRevToFwdMode runs in the caller's thread at the IRQL of the caller.

See Also
DetermineleeeModes, IeeeFwdToRevMode, NegotiateleeeMode, TerminateleeeMode

NegotiateleeeMode
NTSTATUS
(*NegotiateIeeeMode)(

IN PDEVICE_EXTENSION Extension,
IN USHORT ModeMaskFwd,
IN USHORT ModeMaskRev,
IN PARALLEL_SAFETY ModeSafety,
IN BOOLEAN IsForward

The NegotiateleeeMode callback routine selects the fastest forward and reverse protocols
that Parc1ass supports from among those specified by the caller. NegotiateleeeMode also
connects the transfer mode specified by the caller.

Parameters
Extension
Pointer to the extension of a device object that represents a parallel device.

ModeMaskFwd
Specifies the forward protocols. ModeMaskFwd is a logical OR of the constants which
represent the protocols that Parc1ass supports.

ModeMaskRev
Specifies the reverse protocols. ModeMaskRev is a logical OR of the constants which
represent the protocols that Parc1ass supports.

ModeSafety
Specifies the safety mode. Must be set to SAFE_MODE.

Chapter 4 Parclass Driver Reference 785

/sForward
Specifies whether to connect the forward or the reverse protocol that the routine negotiates.
If IsForward is TRUE, the forward protocol is connected. Otherwise, the reverse protocol is
connected.

Include
funcdecl.h

Return Value
STATUS_SUCCESSFUL

STATUS _DEVICE_PROTOCOL_ERROR
An IEEE mode is already set on the device.

STATUS_Xxx
An internal operation resulted in an NTSTATUS error.

Comments
The NegotiateleeeMode callback routine selects the fastest forward and reverse protocols
that Parc1ass supports from among those specified in the forward and reverse mode masks.
NegotiateleeeMode also connects the transfer mode specified by the caller.

NegotiateleeeMode runs in the caller's thread at the IRQL of the caller.

See Also
DetermineleeeModes, IeeeFwdToRevMode, IeeeRevToFwdMode, TerminateleeeMode

Parallel Read
NTSTATUS
(*ParallelRead)(

IN PDEVICE_EXTENSION Extension.
IN PVOID Buffer.

IN ULONG NumBytesToRead.
OUT PULONG NumBytesRead.
IN UCHAR Channel

The ParallelRead callback routine reads data from a parallel device.

786 Part 2 Serial and Para"el Drivers

Parameters
Extension
Pointer to the extension of a device object that represents a parallel device.

Buffer
Pointer to a read buffer that the caller allocates.

NumBytesToRead
Specifies the number of bytes to read.

NumBytesRead
Specifies the number of bytes that were actually copied from the parallel device to the
caller's read buffer.

Channel
Not used.

Include
funcdecl.h

Return Value
STATUS_SUCCESS
STATUS_Xxx
An internal operation resulted in an NTST ATUS error.

Comments
A client can use the ParallelRead callback routine to read from a parallel device. A client
can only use this routine if it has a lock on a parallel port. A client obtains a lock on a paral
lel port by using an IOCTL_INTERNAL_LOCK_PORT request.

ParallelRead runs in the caller's thread at the IRQL of the caller.

See Also
ParallelWrite

ParalielWrite
NTSTATUS
(*ParallelWrite)(

IN PDEVICE_EXTENSION Extension,
OUT PVOID Buffer,
IN ULONG NumBytesToWrite,
OUT PULONG NumBytesWritten,
IN UCHAR Channel

Chapter 4 Parclass Driver Reference 787

The ParallelWrite callback routine writes data to a parallel device.

Parameters
Extension
Pointer to the extension of a device object that represents a parallel device.

Buffer
Pointer to a write buffer that the caller allocates.

NumBytesToWrite
Specifies the number of bytes to copy from the write buffer to the parallel device.

NumBytes Written
Specifies the number of bytes that were actually copied from the caller's write buffer to the
parallel device.

Channel
Not used.

Include
funcdecl.h

Return Value
STATUS_SUCCESS
STATUS_Xxx
An internal operation resulted in an NTST A TUS error.

788 Part 2 Serial and Parallel Drivers

Comments
A client can use the ParallelWrite callback routine to write to a parallel device. A client can
only use this routine if it has a lock on a parallel port. A client obtains a lock on a parallel
port by using an IOCTL_INTERNAL_LOCK_PORT request.

ParallelWrite runs in the caller's thread at the IRQL of the caller.

See Also
ParallelRead

Term i nateleeeMode
NTSTATUS
(*TerminateIeeeMode)(

IN PDEVICE_EXTENSION Extension

The TerminateIeeeModes callback routine terminates the current IEEE operating mode and
sets the mode to IEEE_COMPATIBILITY.

Parameters
Extension
Pointer to the extension of the parallel device object.

Include
funcdecl.h

Return Value
STATUS_SUCCESS

Comments
The TerminateIeeeModes callback routine runs in the caller's thread at the IRQL of the
caller.

See Also
DetermineIeeeModes, NegotiateIeeeMode

PAR T 3

Drivers for Input Devices

Chapter 1 HID 1/0 Requests 791

Chapter 2 HID Support Routines for Clients 811

Chapter 3 HID Structures for Clients 855

Chapter 4 HID Support Routines for MiniDrivers 871

Chapter 5 HID Structures for MiniDrivers 873

Chapter 6 Kbdclass Driver Reference 877

Chapter 7 Mouclass Driver Reference 893

Chapter 8 18042prt Driver Reference 905

Chapter 9 Kbfiltr Driver Reference 931

Chapter 10 Moufiltr Driver Reference 939

791

CHAPTER 1

HID 1/0 Requests

This chapter describes I/O control codes serviced by the Microsoft-supplied HID class
driver and by the vendor-supplied HID minidrivers.

1/0 Requests Serviced by HID Class Driver
Although user applications can communicate with the HID class driver using the API ex
posed by hid.dll, kernel-mode clients must send device control IRPs directly to the class
driver. The following section lists the IOCTL codes that the HID class driver recognizes.

Kernel-mode clients build a device control IRP by calling IoBuildDeviceloControlRequest
with arguments that specify the I/O control code and the device object of the top-level
collection.

IoBuildDeviceloControlRequest stores the device object for the top-level collection in the
DeviceObject member of the current I/O stack location of the IRP.

The Irp.loStatus block is handled differently by each IOCTL. The Status member of
Irp.loStatus is set by the HID class driver in every case, but the Information member
might either be set by the class driver or in the lower-level drivers. When data is transferred
between the drivers and the hardware device, the lower level drivers record the number of
bytes transferred in Information, but this value might be overridden by the class driver. See
the IoStatus section under each IOCTL for a description of how the value of this field is
determined for that IOCTL.

10CTL_HID_GET _POLL_FREQUENCY _MSEC

Operation

Input

Gets the current polling frequency of a top level collection.

Parameters.DeviceIoControl.OutputBufferLength in the I/O stack location of the IRP
indicates the size in bytes of the output buffer, which must be >= sizeof(ULONG).

792 Part 3 Drivers for Input Devices

Output
Irp->AssociatedIrp.SystemBuffer points to a buffer that will receive the polling frequency.

1/0 Status Block
The HID class driver sets the following fields of Irp.IoStatus:

• Information is set to sizeof(ULONG) if the polling frequency is successfully retrieved.

• Status is set to STATUS_SUCCESS if the transfer completed without error. Otherwise,
it is set to an appropriate NTST ATUS error code.

IOCTL_HID_SET _POLL_FREQUENCY _MSEC

Operation

Input

Sets the polling frequency of a top level collection.

Clients that do irregular, opportunistic reads on the polled device must furnish a polling
interval of zero. In such cases, IOCTL_HID _SET _POLL_FREQUENCY _MSEC does not
actually change the polling frequency of the device, but if the report data is not stale when
the client does a read, the read is completed immediately with the latest report data for the
indicated collection. If the report data is stale, it is refreshed immediately, without waiting
for the expiration of the polling interval, and the read is completed with the new data.

If the value for the polling interval provided in the IRP is not zero, then it must be
>= MIN_POLL_INTERV AL_MSEC and <= MAX_POLL_INTERV AL_MSEC.

Parameters.DeviceIoControl.InputBufferLength in the 110 stack location of the IRP
indicates the size in bytes of the input buffer, which must be >= sizeof(ULONG).

Irp->Associatedlrp.SystemBuffer contains the new polling interval.

Output
None.

1/0 Status Block
The HID class driver sets the following field of Irp.IoStatus. Status is set to STATUS_
SUCCESS if the transfer completed without error. Otherwise, it is set to an appropriate
NTST ATUS error code.

Chapter 1 HID 1/0 Requests 793

IOCTL_GET _NUM_DEVICE_INPUT _BUFFERS

Operation

Input

Retrieves the size of the report input queue for a top level collection.

The report input queue is implemented as a ring buffer. Therefore, if the underlying HID
device transmits data to the linked HID class/miniclass drivers faster than the client can
retrieve the HID reports, device data can be lost. The size of the report input queue can be
tuned using IOCTL_SET_NUM_DEVICE_INPUT_BUFFERS.

Parameters.DeviceIoControi.OutputBufferLength in the I/O stack location of the IRP
indicates the size in bytes of the output buffer, which must be >= sizeof(ULONG).

Output
Irp->AssociatedIrp.SystemBuffer points to a buffer that will receive the size of the report
input queue. The size of the buffer is sizeof(ULONG).

1/0 Status Block
The HID class driver sets the following fields of Irp.IoStatus:

• Information is set to sizeof(ULONG) if the size of the report input queue is successfully
retrieved.

• Status is set to STATUS_SUCCESS if the transfer completed without error. Otherwise,
it is set to an appropriate NTST A TUS error code.

IOCTL_SET _NUM_DEVICE_INPUT _BUFFERS

Operation

Input

Sets the size of the report input queue for a top level collection.

The report input queue is implemented as a ring buffer. Therefore, if the underlying HID
device transmits data to the linked HID class-miniclass drivers faster than the client can
retrieve the HID reports, device data can be lost. The size of the report input queue can be
tuned using IOCTL_SET_NUM_DEVICE_INPUT_BUFFERS.

Parameters.DeviceIoControI.InputBufferLength in the I/O stack location of the IRP
indicates the size in bytes of the input buffer, which must be >= sizeof(ULONG).

794 Part 3 Drivers for Input Devices

Irp->AssociatedIrp.SystemBuffer points to a buffer that will receive the new size of the
report input queue. The size of the buffer is sizeof(ULONG).

Output
None.

1/0 Status Block
The HID class driver sets the following field of Irp.IoStatus. Status is set to ST ATUS_
SUCCESS if the transfer completed without error. Otherwise, it is set to an appropriate
NTST ATUS error code.

IOCTL_HID_GET _COLLECTION_INFORMATION

Operation

Input

Retrieves the collection information for a top level collection, where "collection infor
mation" is defined to be the general properties of a collection contained in the HID_
COLLECTION_INFORMATION structure.

Among other uses, the information provided in HID_COLLECTION_INFORMATION
includes the required buffer size for the collection descriptor in its DescriptorSize member.
Drivers must provide a buffer of this size when retrieving the collection descriptor with
IOCTL_HID _GET _COLLECTION_DESCRIPTOR.

Parameters.DeviceIoControl.OutputBufferLength in the 110 stack location of the
IRP indicates the size in bytes of the output buffer, which must be >= sizeof(HID_
COLLECTION_INFORMATION).

Output
Irp->AssociatedIrp.SystemBuffer points to a buffer that will receive the collection infor
mation. This data will be formatted in the client-supplied buffer as a HID_COLLECTION_
INFORMATION structure.

1/0 Status Block
The HID class driver sets the following fields of Irp.IoStatus:

• Information is set to sizeof(HID_COLLECTION_INFORMATION) if the data was
retrieved successfully.

• Status is set to STATUS_SUCCESS if the transfer completed without error. Otherwise,
it is set to an appropriate NTST ATUS error code.

Chapter 1 HID 1/0 Requests 795

IOCTL_HID _GET _COLLECTION_DESCRIPTOR

Operation

Input

Retrieves the collection descriptor for a top level collection.

The collection descriptor contains the preparsed data for this collection that was extracted
from the HID device's report descriptor when the device was started.

Kernel-mode clients must allocate a buffer from nonpaged pool of size large enough to hold
the collection descriptor. The size of the descriptor can be obtained using IOCTL_HID_
GET_COLLECTION_INFORMATION.

Parameters.DeviceIoControi.OutputBufferLength in the I/O stack location of the IRP
indicates the size in bytes of the output buffer.

Output
Irp->UserBuffer points to a buffer that will receive the collection descriptor. The collection
descriptor will be formatted in the client-supplied buffer as a HIDP _COLLECTION_DESC
structure.

1/0 Status Block
The HID class driver sets the following fields of Irp.IoStatus:

• Information is set to the number of bytes of preparsed data successfully retrieved. If
client-supplied buffer was not large enough to store the preparsed data, then Information
is set to the size in bytes of the buffer required to hold all of the preparsed data.

• Status is set to STATUS_SUCCESS if the preparsed data was retrieved without error.
Otherwise, it is set to an appropriate NTSTATUS error code. If the client-supplied output
buffer is not large enough to hold the preparsed data, then status is set to STATUS_
INV ALID_B UFFER_S IZE.

IOCTL_HID_FLUSH_QUEUE

Operation
Dequeues all of the unparsed input reports from a top level collection's report input queue.

Input
None.

796 Part 3 Drivers for Input Devices

Output
None.

1/0 Status Block
The HID class driver sets the following fields of Irp.IoStatus:

• Status is set to STATUS_SUCCESS if the transfer completed without error. Otherwise,
it is set to an appropriate NTST A TUS error code.

IOCTL_HID_GET_FEATURE

Operation

Input

Retrieves a feature report for a top level collection.

Parameters.DeviceIoControl.OutputBufferLength in the 110 stack location of the IRP
indicates the size in bytes of the output buffer, which must be >= sizeof(HID_XFER_
PACKET).

Output
Irp->MdIAddress points to the buffer that will receive the feature report.

1/0 Status Block
The HID class driver sets the following fields of Irp.IoStatus:

• Information is set to the number of bytes transferred from the device.

• Status is set to STATUS_SUCCESS if the transfer completed without error. Otherwise,
it is set to an appropriate NTSTATUS error code.

IOCTL_HID_SET_FEATURE

Operation
Sets a feature report for a top level collection.

Input

Chapter 1 HID I/O Requests 797

Parameters.DeviceloControl.lnputBufferLength in the I/O stack location of the IRP
indicates the size in bytes of the output buffer, which must be >= sizeof(HID_XFER_
PACKET).

Output
Irp->SystemBuffer points to the buffer that contains the feature report.

1/0 Status Block
The HID class driver sets the following fields of Irp.loStatus:

• Status is set to STATUS_SUCCESS if the transfer completed without error. Otherwise,
it is set to an appropriate NTST A TUS error code.

IOCTL_GET_PHYSICAL_DESCRIPTOR

Operation

Input

Requests that the HID device associated with a top level collection provide information
about which physical body part is used to control the device.

Parameters.DeviceloControI.OutputBufferLength in the I/O stack location of the IRP
indicates the size in bytes of the output buffer.

Output
Irp->MdIAddress must point to the buffer that will receive the physical descriptor.

1/0 Status Block
The HID class driver sets the following field of Irp.loStatus. Status is set to STATUS_
SUCCESS if the transfer completed without error. Otherwise, it is set to an appropriate
NTST ATUS error code.

IOCTL_HID_GET_HARDWARE_ID

Operation
Requests that the HID class driver retrieve the hardware ID from the registry for the HID
device associated with a top level collection.

798 Part 3 Drivers for Input Devices

Input
Parameters.DeviceIoControl.OutputBufferLength in the 110 stack location of the IRP
indicates the size in bytes of the output buffer.

Output
Irp->MdIAddress points to a buffer to receive the number of device input buffers.

1/0 Status Block
The HID class driver sets the following fields of Irp.IoStatus:

• Information is set to the number of bytes of registry information retrieved when the
IOCTL succeeds.

• Status is set to STATUS_SUCCESS if the transfer completed without error. Otherwise,
it is set to an appropriate NTST ATUS error code.

IOCTL_HID_ GET _MANUFACTURER_STRING

Operation

Input

Requests that the HID class driver instruct the mini driver to send a Get String Descriptor
request to the device associated with a top level collection, in order to retrieve the human
readable (or "friendly") name for the device's manufacturer.

Parameters.DeviceIoControl.OutputBufferLength in the 110 stack location of the IRP
indicates the size in bytes of the output buffer.

Output
Irp->MdIAddress points to a buffer to receive the manufacturer ID.

1/0 Status Block
The HID class driver sets the following fields of Irp.IoStatus:

• Information is set to the number of bytes transferred from the device.

• Status is set to STATUS_SUCCESS if the transfer completed without error. Otherwise,
it is set to an appropriate NTSTATUS error code.

Chapter 1 HID I/O Requests 799

IOCTL_HID_GET _PRODUCT_STRING

Operation

Input

Requests that the HID class driver instruct the minidriver to send a Get String Descriptor
request to the device associated with a top level collection, in order to retrieve the human
readable (or "friendly") name for the device's product ID.

Parameters.DeviceIoControl.OutputBufferLength in the I/O stack location of the IRP
indicates the size in bytes of the output buffer.

Output
Irp->MdIAddress points to a buffer to receive the product ID string.

110 Status Block
The HID class driver sets the following fields of Irp.IoStatus:

• Information is set to the number of bytes transferred from the device.

• Status is set to STATUS_SUCCESS if the transfer completed without error. Otherwise,
it is set to an appropriate NTST A TUS error code.

IOCTL_HID _GET _ SERIALNUMBER_ STRING

Operation

Input

Requests that the HID class driver instruct the minidriver to send a Get String Descriptor
request to the device associated with a top level collection, in order to retrieve the human
readable (or "friendly") name for the device's serial number.

Parameters.DeviceIoControl.OutputBufferLength in the I/O stack location of the IRP
indicates the size in bytes of the output buffer.

Output
Irp->MdIAddress points to a buffer to receive the serial number string.

800 Part 3 Drivers for Input Devices

1/0 Status Block
The HID class driver sets the following fields of Irp.IoStatus:

• Information is set to the number of bytes transferred from the device.

• Status is set to STATUS_SUCCESS if the transfer completed without error. Otherwise,
it is set to an appropriate NTSTATUS error code.

10CTL_HID _GET _INDEXED _STRING

Operation

Input

Requests that the HID class driver instruct the mini driver to send a Get String Descriptor
request to the device associated with a top level collection, in order to retrieve the human
readable (or "friendly") string at the indicated index in the device's string descriptor.

Parameters.DeviceIoControl.InputBufferLength in the I/O stack location of the IRP in
dicates the size in bytes of the input buffer at the location pointed to by Irp->Associated
Irp.SystemBuffer. The input buffer must be >= sizeof(ULONG) and it should contain the
index of the string to be retrieved.

Parameters.DeviceIoControl.OutputBufferLength in the I/O stack location of the IRP
indicates the size in bytes of the output buffer.

Output
Irp->MdIAddress points to a buffer to receive the retrieved string.

1/0 Status Block
The HID class driver sets the following fields of Irp.IoStatus:

• Information is set to the number of bytes transferred from the device.

• Status is set to STATUS_SUCCESS if the transfer completed without error. Otherwise,
it is set to an appropriate NTST A TUS error code.

110 Requests Serviced by HID Minidrivers
HID minidrivers support only one IRP major function code, IRP _MJ_INTERNAL_
DEVICE_CONTROL. The HID class driver and the HID mini driver communicate through
IRP _MJ_INTERNAL_DEVICE_CONTROL IOCTLs.

Chapter 1 HID 1/0 Requests 801

Only the HID class driver sends 110 requests to the HID minidriver. Other drivers
communicate with the device through the interface presented by the HID class driver.

HID mini drivers must support each IOCTL documented below.

IOCTL_GET_PHYSICAL_DESCRIPTOR

Operation

Input

Requests the device provide information about which physical body part is used to control
the HID device.

Parameters.DeviceIoControi.InputBufferLength is set to the length of the system
resident buffer at Irp->UserBuffer.

Output
Miniclass drivers that complete the request to get the physical descriptor copy the results
into the user buffer at Irp->UserBuffer with the physical descriptor.

1/0 Status Block
Miniclass drivers that carry out the 110 to the device set the following fields of Irp.IoStatus:

• Information is set to the number of bytes transferred from the device.

• Status is set to STATUS_SUCCESS if the transfer completed without error. Otherwise,
it is set to an appropriate NTST A TUS error code.

Miniclass drivers that call other drivers with this IRP to carry out the 110 to their device
should ensure that the Information field of the status block is correct and not alter the
contents of the Status field.

IOCTL_HID _ACTIVATE_DEVICE

Operation

Input

Makes the device ready for 110 operations.

Parameters.DeviceIoControi.Type3InputBuffer contains the collection identifier, as a
ULONG value, of the collection to be made ready.

802 Part 3 Drivers for Input Devices

Output
None.

1/0 Status Block
Miniclass drivers that carry out the 110 to the device set the following fields of Irp.IoStatus:

• Information is set to zero.

• Status is set to STATUS_SUCCESS if the transfer completed without error. Otherwise,
it is set to an appropriate NTSTATUS error code.

Miniclass drivers that call other drivers with this IRP to carry out the 110 to their device
should ensure that the Information field of the status block is zero and not alter the contents
of the Status field.

IOCTL_HID _DEACTIVATE_DEVICE

Operation

Input

Causes the device to cease operations and terminate all outstanding 110 requests.

Parameters.DeviceIoControI. Type3InputBuffer contains the collection identifier, as a
ULONG value, of the collection that is ceasing operations.

Output
None.

1/0 Status Block
Miniclass drivers that carry out the 110 to the device set the following fields of Irp.IoStatus:

• Information is set to zero.

• Status is set to STATUS_SUCCESS if the transfer completed without error. Otherwise,
it is set to an appropriate NTSTATUS error code.

Miniclass drivers that call other drivers with this IRP to carry out the 110 to their device
should ensure that the Information field of the status block is zero and must not alter the
contents of the Status field.

Chapter 1 HID 1/0 Requests 803

IOCTL_HID_ GET _DEVICE_ATTRIBUTES

Operation

Input

Retrieves information for the system-supplied class driver for a HID device in a system
defined format.

Parameters.DeviceIoControl.InputBufferLength contains the length, in bytes, of the
system-resident buffer at Irp->UserBuffer. The buffer supplied is in the form of a HID_
DEVICE_ATTRIBUTES structure.

Output
Before completing the request, the miniclass driver must fill in the following information in
the HID_DEVICE_ATTRIBUTES structure at Irp->UserBuffer:

I/O Status Block

IOCTL_HID_ GET _DEVICE_DESCRIPTOR

Operation

Input

Retrieves the device's HID descriptor.

Parameters.DeviceIoControl.OutputBufferLength contains the length of the system
resident buffer provided at Irp->UserBuffer.

Output
The miniclass driver fills in the class driver-supplied system-resident buffer provided at
Irp->UserBuffer with the device descriptor.

1/0 Status Block
Miniclass drivers that carry out the 110 to the device set the following fields of Irp.IoStatus:

• Information is set to the number of bytes transferred from the device.

• Status is set to STATUS_SUCCESS if the transfer completed without error. Otherwise,
it is set to an appropriate NTST A TUS error code.

804 Part 3 Drivers for Input Devices

Minic1ass drivers that call other drivers with this IRP to carry out the 110 to their device
should ensure that the Information field of the status block is correct and not alter the
contents of the Status field.

IOCTL_HID_GET_FEATURE

Operation

Input

Obtains a feature report from the device.

Irp->UserBuffer points to a HID_XFER_PACKET structure that contains the parameters
and pointer to a buffer for obtaining the feature report. The following members are used:

• reportBuffer points to a resident buffer that the minic1ass driver uses to return the
feature packet.

• reportBufferLen contains the length of the buffer provided at reportBuffer.

• reportId contains the report identifier, for this collection, of the feature report to be
retrieved.

Output
Minic1ass drivers fill in the Irp->UserBuffer->reportBuffer with the feature report
obtained from the device.

1/0 Status Block
Minic1ass drivers that carry out the 110 to the device set the following fields of Irp.IoStatus:

• Information is set to the number of bytes transferred from the device.

• Status is set to STATUS_SUCCESS if the transfer completed without error. Otherwise,
it is set to an appropriate NTSTATUS error code.

Minic1ass drivers that call other drivers with this IRP to carry out the 110 to their device
should ensure that the Information field of the status block is correct and not alter the
contents of the Status field.

Chapter 1 HID 1/0 Requests 805

IOCTL_HID _GET _INDEXED_STRING

Operation

Input

Requests that the HID minidriver retrieve a particular human-readable string from the string
descriptor of the device. The mini driver must send a Get String Descriptor request to the
device, in order to retrieve the string descriptor, then it must extract the string at the indi
cated index from the string descriptor and return it in the output buffer indicated by the IRP.

IOCTL_HID_GET_INDEXED_STRING uses two input buffers.

Parameters.DeviceIoControl.OutputBufferLength in the I/O stack location of the IRP
indicates the size in bytes of the output buffer at the location pointed to by Irp->Mdl
Address.

Parameters.DeviceIoControl. Type3InputBuffer in the I/O stack location of the IRP
contains the language ID of the string to be retrieved in its most significant two bytes and
the string index in its least significant two bytes.

Output
Irp->MdIAddress points to a buffer to receive the retrieved string. Note that unlike most
device control IRPs for HID minidrivers, this IRP does not use METHOD _NEITHER buff
ering. In particular, it must be distinguished from IOCTL_HID_GET_STRING whose
output buffer is identified by Irp->UserBuffer.

1/0 Status Block
The HID class driver sets the following fields of Irp.IoStatus:

• Information is set to the number of bytes transferred from the device.

• Status is set to STATUS_SUCCESS if the transfer completed without error. Otherwise,
it is set to an appropriate NTST ATUS error code.

IOCTL_HID_GET _REPORT_DESCRIPTOR

Operation

Input

Obtains the report descriptor for the HID device.

Parameters.DeviceIoControI.OutputBufferLength specifies the length, in bytes, of the
locked-down buffer at Irp->UserBuffer.

806 Part 3 Drivers for Input Devices

Output
The minic1ass driver fills the buffer at Irp->UserBuffer with the report descriptor.

1/0 Status Block
Minic1ass drivers that carry out the 110 to the device set the following fields of Irp.IoStatus:

• Information is set to the number of bytes transferred from the device.

• Status is set to STATUS_SUCCESS if the transfer completed without error. Otherwise,
it is set to an appropriate NTST A TUS error code.

Otherwise, the minic1ass driver should ensure that the Information field of the status block
is correct in the completed IRP but the minic1ass driver should not alter the contents of the
Status field.

IOCTL_HID_GET _STRING

Operation

Input

Requests that the HID minidriver retrieve a human-readable string for either the manufac
turer ID, the product ID, or the serial number from the string descriptor of the device. The
minidriver must send a Get String Descriptor request to the device, in order to retrieve the
string descriptor, then it must extract the string at the appropriate index from the string de
scriptor and return it in the output buffer indicated by the IRP. Before sending the Get String
Descriptor request, the minidriver must retrieve the appropriate index for the manufacturer
ID, the product ID or the serial number from the device extension of a top level collection
associated with the device.

IOCTL_HID_GET_STRING makes use of two input buffers.

Parameters.DeviceIoControl.OutputBufferLength in the 110 stack location of the IRP
indicates the size in bytes of the locked-down output buffer at Irp->UserBuffer.

Parameters.DeviceIoControl. Type3InputBuffer in the 110 stack location of the IRP
contains a composite value. The two most significant bytes contain the language ID of the
string to be retrieved. The two least significant bytes contain one of the following three
constant values:

HID_STRING_ID_IMANUFACTURER
HID _STRING_ID _IPRODUCT
HID _STRING_ID _ISERIALNUMBER

Chapter 1 HID VO Requests 807

The HID minidriver must determine which of these three constants is present in the lower
two bytes of the input buffer, then it must retrieve the corresponding string index from the
device descriptor. Device descriptor information is stored in the device extension of a top
level collection associated with the device.

It is important not to confuse these three constants with the actual string indices of the IDs.
These constants represent the offsets in the device descriptor where the corresponding string
indices can be found.

For example, HID_STRING_ID_IMANUFACTURER indicates the location in the device
descriptor where the index for the manufacturer ID is found. This index, in tum, serves as an
offset into the string descriptor where the human-readable form of the manufacturer ID
is located.

Output
The miniclass driver fills the buffer at Irp->UserBuffer with the requested string.

1/0 Status Block
Miniclass drivers that carry out the I/O to the device set the following fields of Irp.IoStatus:

• Information is set to the number of bytes transferred from the device.

• Status is set to STATUS_SUCCESS if the transfer completed without error. Otherwise,
it is set to an appropriate NTST A TUS error code.

Otherwise, the miniclass driver should ensure that the Information field of the status block
is correct in the completed IRP but the miniclass driver must not alter the contents of the
Status field.

IOCTL_HID _READ _REPORT

Operation

Input

Return a report from the device into a class driver-supplied buffer.

Parameters.DeviceIoControI.InputBufferLength contains the size of the buffer provided
at Irp->UserBuffer.

Output
The miniclass driver fills the system-resident buffer pointed to by Irp->UserBuffer with the
report data retrieved from the device.

808 Part 3 Drivers for Input Devices

1/0 Status Block
Miniclass drivers that carry out the I/O to the device set the following fields of Irp.IoStatus:

• Information is set to the number of bytes transferred from the device.

• Status is set to STATUS_SUCCESS if the transfer completed without error. Otherwise,
it is set to an appropriate NTST ATUS error code.

Miniclass drivers that call other drivers with this IRP to carry out the I/O to their device
should ensure that the Information field of the status block is correct and not alter the con
tents of the Status field.

IOCTL_HID_SET _FEATURE

Operation

Input

Sends a feature report packet to a HID device.

Irp->UserBuffer points to a HID_XFER_PACKET structure the contains the parameters
and a pointer to a buffer containing the feature report. The following members are used:

• reportBuffer points to a buffer containing the report to send to the device.

• reportBufferLen contains the length, in bytes, of the buffer provided at reportBuffer.

• reportId contains the report identifier, for this collection, of the feature report to be
retrieved.

Output
None

1/0 Status Block
Miniclass drivers that carry out the I/O to the device set the following fields of Irp.IoStatus:

• Information is set to the number of bytes transferred to the device.

• Status is set to STATUS_SUCCESS if the transfer completed without error. Otherwise,
it is set to an appropriate NTST A TUS error code.

Miniclass drivers that call other drivers with this IRP to carry out the I/O should ensure that
the Information field of the status block is correct and not alter the contents of the Status
field.

Chapter 1 HID 1/0 Requests 809

IOCTL_HID _WRITE_REPORT

Operation

Input

Transmits a class driver-supplied report to the device.

Irp->UserBuffer points to a HID _XFER_P ACKET structure the contains the parameters
and report to be transmitted to the device. The following members are used:

• reportBuffer points to a resident buffer containing the data to be sent to the device.

• reportBufferLen contains the length of the buffer provided at reportBuffer.

• reportId contains the report identifier, for this collection, of the report data to be written
to the device.

Output
None

1/0 Status Block
Miniclass drivers that carry out the 110 to the device set the following fields of Irp.IoStatus:

• Information is set to the number of bytes transferred to the device.

• Status is set to STATUS_SUCCESS if the transfer completed without error. Otherwise,
it is set to an appropriate NTST A TUS error code.

Miniclass drivers that call other drivers with this IRP to carry out the 110 should ensure that
the Information field of the status block is correct and not alter the contents of the Status
field.

811

CHAPTER 2

HID Support Routines for Clients

Human input device (HID) clients can call the following routines to support HID devices.

This chapter covers routines for both user mode and kernel mode clients. As a general rule,
user mode clients may call any routine in this chapter. However, kernel mode clients may
only call routines that begin with the prefix HidP. See the individual routine comments to
determine the availability of a routine.

Routines in this chapter are listed in alphabetical order.

HidD_FlushQueue
BOOLEAN

HidD_FlushQueue(
IN HANDLE HidDeviceObject
) ;

HidD _Flush Queue causes a HID drivers to delete all pending information from an input
queue of a HID device.

Parameters
HidDeviceObject
Specifies the open handle of a HID device for which the queue is to be flushed.

Return Value
HidD_FlushQueue returns TRUE if the routine completed without error.

Comments
Only user mode clients can call HidD _Flush Queue.

812 Part 3 Drivers for Input Devices

HidD _FreePreparsedData
BOOLEAN

HidD_FreePreparsedData<
IN PHIDP_PREPARSED_DATA PreparsedData
) ;

HidD _FreePreparsedData releases the resources allocated to hold preparsed data for the
HID device.

Parameters
PreparsedData
Points to a buffer, returned from HidD_GetPreparsedData, that is to be freed.

Return Value
HidD _FreePreparsedData returns TRUE if the buffer was freed successfully. If FALSE is
returned it indicates that the buffer was not a preparsed data buffer.

Comments
Only user mode clients can call HidD _FreePreparsedData.

See Also
HidD _ GetPreparsedData

HidD _ GetAttributes
BOOLEAN

HidD_GetAttributes<
IN HANDLE HidDeviceObject,
OUT PHIDD_ATTRIBUTES Attributes
) ;

HidD _ GetAttributes retrieves device attributes for the specified HID device.

Parameters
HidDeviceObject
Specifies the open handle of a HID device for which the attributes are retrieved.

Attributes
Points to a caller-allocated HIDD_ATTRIBUTES structure that is filled with the attribute
information for the HID device specified by HidDeviceObject.

Chapter 2 HID Support Routines for Clients 813

Return Value
HidD_GetAttributes returns TRUE if the attribute structure provided in Attributes was
filled without error.

Comments
Only user mode clients can call HidD _ GetAttributes.

See Also
HIDD_ATTRIBUTES

HidD _ GetConfiguration
BOOLEAN

HidD_GetConfiguration(
IN HANDLE HidDeviceObject.

, IN PHIDD_CONFIGURATION Configuration.
IN ULONG ConfigurationLength
) ;

HidD_GetConfiguration is not currently implemented and is reserved for future use.

HidD_GetFeature
BOOLEAN

HidD_GetFeature(
IN HANDLE HidDeviceObject.
OUT PVOID ReportBuffer.
IN ULONG ReportBufferLength
) ;

HidD _ GetFeature retrieves a feature report from a given HID device.

Parameters
HidDeviceObject
Specifies an open handle to a HID device from which to retrieve the feature report.

ReportBuffer
Points to a caller-allocated buffer to hold the feature report from the device.

ReportBufferLength
Specifies the length, in bytes, of the buffer at ReportBuffer.

814 Part 3 Drivers for Input Devices

Return Value
HidD_GetFeature returns TRUE if the operation completed without error.

Comments
To retrieve a feature report, the caller must allocate a buffer that is one byte larger than the
length of the feature report being retrieved. Before calling this routine, the caller must set
the first byte in the buffer to be the report ID of the feature report to be retrieved.

Only user mode clients can call HidD_GetFeature.

See Also
HidD _SetFeature

HidD_GetHidGuid
VOID

HidD_GetHidGuid(
OUT LPGUID HidGuid
) ;

HidD_GetHidGuid returns the OUID associated with HID devices.

Parameters
HidGuid
Points to a variable to hold the OUID that is associated with all HID devices.

Comments
Only user mode clients can call HidD _ GetHidGuid.

HidD_GetlndexedString
BOOLEAN

HidD_GetIndexedString(
IN HANDLE HidDeviceObject,
IN ULONG Stringlndex,
OUT PVOID Buffer,
IN ULONG BufferLength
) ;

HidD _ GetlndexedString retrieves an embedded string from a device. The string is selected
by a given index value.

Parameters
HidDeviceObject

Chapter 2 HID Support Routines for Clients 815

Specifies an open handle to a HID device from which to retrieve the embedded string.

Stringlndex
Specifies the device-specific index of the embedded string to retrieve.

Buffer
Points to a caller-allocated buffer that, on successful return, contains the embedded string
retrieved from the device.

BufferLength
Specifies the length, in bytes, of the caller-allocated buffer provided at Buffer.

Return Value
HidD_GetlndexedString returns TRUE if the routine completed without error.

Comments
Only user mode clients can call HidD_GetlndexedString.

See Also
HidD _ GetManufacturerString, HidD _ GetPhysicalDescriptor, HidD _ GetProduct
String, HidD _ GetSerialNumberString

HidD _ GetManufacturerString
BOOLEAN

HidD_GetManufacturerString(
IN HANDLE HidDeviceObject.
OUT PVOID Buffer.
IN ULONG BufferLength
) ;

HidD _ GetManufacturerString retrieves the device-defined embedded string that identifies
the manufacturer of a given HID device.

Parameters
HidDeviceObject
Specifies an open handle to a HID device from which to retrieve the manufacturer string.

816 Part 3 Drivers for Input Devices

Buffer
Points to a caller-allocated buffer that, on successful return, contains the embedded string
retrieved from the device.

BufferLength
Specifies the length, in bytes, of the caller-allocated buffer provided at Buffer.

Return Value
HidD_GetManufacturerString returns TRUE if the routine completed without error.

Comments
Only user mode clients can call HidD_GetManufacturerString.

See Also
HidD _ GetlndexedString, HidD _ GetPhysicalDescriptor, HidD _ GetProductString,
HidD _ GetSerialNumberString

HidD_GetNumlnputBuffers
BOOLEAN

HidD_GetNumInputBuffers(
IN HANDLE HidDeviceObject.
OUT PULONG NumberBuffers
) ;

HidD _ GetNumInputBuffers retrieves the current size of the ring buffer in the HID class
driver which stores packets from a HID device.

Parameters
HidDeviceObject
Specifies an open handle to a HID device from which to retrieve the ring buffer size.

NumberBuffers
Points to a caller-allocated variable that, on return, contains the maximum number of
packets the ring buffer holds.

Return Value
HidD_GetNumInputBuffers returns TRUE if the routine completed without error.

Chapter 2 HID Support Routines for Clients 817

Comments
Only user mode clients can call HidD_GetNumlnputBuffers.

See Also
HidD _SetNumlnputBuffers

H idD _ GetPhysical Descriptor
BOOLEAN

HidD_GetPhysicalDescriptor(
IN HANDLE HidDeviceObject,
OUT PVOID Buffer,
IN ULONG BufferLength
) ;

HidD _ GetPhysicalDescriptor retrieves a device-defined embedded string that identifies the
physical device. The contents of this string are device-specific.

Parameters
HidDeviceObject
Specifies an open handle to a HID device from which to retrieve the physical descriptor.

Buffer
Points to a caller allocated buffer that, on successful completion, contains the requested
descriptor.

BufferLength
Specifies the length, in bytes, of the buffer at Buffer.

Return Value
HidD_GetPhysicalDescriptor returns TRUE if the routine completed without error.

Comments
Only user mode clients can call HidD_GetPhY,sicaIDescriptor.

See Also
HidD _ GetlndexedString, HidD _ GetManufacturerString, HidD _ GetProductString,
HidD _ GetSerialNumberString

818 Part 3 Drivers for Input Devices

HidD_GetPreparsedData
BOOLEAN

HidD_GetPreparsedData(
IN HANDLE HidDeviceObject,
OUT PHIDP_PREPARSED_DATA *PreparsedData
) ;

HidD _ GetPreparsedData retrieves preparsed data that is used to describe the data returned
from a HID device.

Parameters
HidDeviceObject
Specifies the open handle of a HID device from which the preparsed data is to be retrieved.

PreparsedData
Points to a variable to hold the address of a routine-allocated buffer containing the preparsed
data from the device.

Return Value
HidD_GetPreparsedData returns TRUE if the routine completed without error.

Comments
Only user mode clients can call HidD_GetPreparsedData.

When the preparsed data returned by this routine is no longer needed, clients should call
HidD _FreePreparsedData to free the buffer allocated for the preparsed data.

See Also
HidD _FreePreparsedData

HidD_GetProductString
BOOLEAN

HidD_GetProductString(
IN HANDLE HidDeviceObject,
OUT PVOID Buffer,
IN ULONG BufferLength
) ;

HidD _ GetProductString retrieves a device-defined embedded string that identifies the
manufacturer's product. The contents of this string are manufacturer-determined.

Parameters
HidDeviceObject

Chapter 2 HID Support Routines for Clients 819

Specifies the open handle of a HID device from which the embedded product string is to be
retrieved.

Buffer
Points to a caller allocated buffer that, on successful completion, contains the requested
string.

BufferLength
Specifies the length, in bytes, of the buffer at Buffer.

Return Value
HidD_GetProductDescriptor returns TRUE if the routine completed without error.

Comments
Only user mode clients can call HidD _ GetProductString.

See Also
HidD _ GetIndexedString, HidD _ GetManufacturerString, HidD _ GetPhysical.
Descriptor, HidD _ GetSerialNumberString

HidD_GetSerialNumberString
BOOLEAN

HidD_GetSerialNumberString(
IN HANDLE HidDeviceObject,
OUT PVOID Buffer,
IN ULONG BufferLength
) ;

HidD_GetSerialNumberString retrieves a device-defined embedded string that contains
the serial number of the device. The contents of this string are manufacturer-determined.

Parameters
HidDeviceObject
Specifies the open handle to a HID device from which the embedded serial number string is
to be retrieved.

820 Part 3 Drivers for Input Devices

Buffer
Points to a caller allocated buffer that, on successful completion, contains the requested
string.

BufferLength
Specifies the length, in bytes, of the buffer at Buffer.

Return Value
HidD_GetSerialNumberString returns TRUE if the routine completed without error.

Comments
Only user mode clients can call HidD _ GetSerialNumberString.

See Also
HidD _ GetlndexedString, HidD _ GetManufacturerString, HidD _ GetPhysical
Descriptor, HidD _ GetProductString

HidD _SetConfiguration
BOOLEAN

HidD_SetConfiguration(
IN HANDLE HidDeviceObject.
IN PHIDD_CONFIGURATION Configuration.
IN ULONG ConfigurationLength
) ;

HidD _SetConfiguration is not currently implemented and is reserved for future use.

HidD _SetConfiguration sets a specified configuration on a HID device.

Parameters
HidDeviceObject
Specifies the open handle of a HID device for which the configuration is to be set.

Configuration
Points to a caller-allocated buffer that contains the new configuration for the HID device.

Configuration Length
Specifies the length, in bytes, of the buffer specified at Configuration.

Chapter 2 HID Support Routines for Clients 821

Return Value
HidD _SetConfiguration returns TRUE if the routine completed without error. If FALSE
is returned, either HidD _ GetConfiguration was not called before this routine or the device
returned an error.

Comments
Only user mode clients can call HidD _SetConfiguration.

The buffer specified at Configuration must contain the configuration information re
trieved from HidD _ GetConfiguration after being adjusted for the new settings. Failure
to call HidD _ GetConfiguration first and using the data returned will cause HidD_
SetConfiguration to fail.

See Also
HidD _ GetConfiguration

HidD_SetFeature
BOOLEAN

HidD_SetFeature(
IN HANDLE HidDeviceObject.
IN PVOID ReportBuffer.
IN ULONG ReportBufferLength
) ;

HidD_SetFeature sends a feature report to a given HID device.

Parameters
HidDeviceObject
Specifies an open handle to a HID device from which to retrieve the feature report.

ReportBuffer
Points to a caller-allocated buffer to hold the feature report for the device.

ReportBufferLength
Specifies the length, in bytes, of the buffer at ReportBuffer.

Return Value
HidD _SetFeature returns TRUE if the operation completed without error.

822 Part 3 Drivers for Input Devices

Comments
Before calling this routine, the caller can set the first byte of the buffer to prepare a specific
report ID of the feature report being sent.

Only user mode clients can call HidD _SetFeature.

See Also
HidD _ GetFeature

HidD_SetNumlnputBuffers
BOOLEAN

HidD_SetNumlnputBuffers(
IN HANDLE HidDeviceObject.
OUT ULONG NumberBuffers
) ;

HidD _SetNumInputBuffers sets the maximum number of packets that the HID class driver
ring buffer holds for the given device.

Parameters
HidDe vice Object
Specifies an open handle to a HID device on which to set the maximum ring buffer size.

NumberBuffers
Specifies the maximum number of buffers that the HID class driver should maintain for data
from this device.

Return Value
HidD _SetNumInputBuffers returns TRUE if the operation completed without error.

Comments
If HidD _SetNumInputBuffers returns FALSE and GetLastError indicates that an in
valid parameter was supplied, the number of input buffers specified was below the minimum
number allowed by the HID class driver.

See Also
HidD _ GetNumInputBuffers

HidP _GetButtonCaps
NTSTATUS

HidP_GetButtonCaps(
IN HIDP_REPORT_TYPE ReportType,
OUT PHIDP_BUTTON_CAPS ButtonCaps,
IN OUT PULONG ButtonCapsLength,
IN PHIDP_PREPARSED_DATA PreparsedData
) ;

Chapter 2 HID Support Routines for Clients 823

HidP _GetButtonCaps returns the capabilities for all buttons for a given top level
collection.

Parameters
ReportType
Specifies the type of report for which to retrieve the button capabilities. This parameter must
be one of the following:

HidPJnput
Specifies that HidP _GetButtonCaps return the button capabilities for all input reports.

HidP _Output
Specifies that HidP _ GetButtonCaps return the button capabilities for all output reports.

HidP _Feature
Specifies that HidP _ GetButtonCaps return the button capabilities for all feature reports.

ButtonCaps
Points to a caller-allocated buffer that will contain, on return, an array of HIDP _BUTTON_
CAPS structures that contain information for all buttons on the HID device.

ButtonCapsLength
Specifies the length on input, in array elements, of the buffer provided at ButtonCaps.
On output, this parameter is set to the actual number of elements that were returned by this
routine, in the buffer provided at ButtonCaps if the routine completed without error.

The correct length necessary to retrieve the button capabilities can be found in the capability
data returned for the device by HidP _ GetCaps.

PreparsedData
Points to the preparsed data returned for the device when top-level collection information
was obtained at initialization.

824 Part 3 Drivers for Input Devices

Return Value
HidP _GetButtonCaps returns one of the following HIDP _XXX status codes:

HIDP _STATUS_SUCCESS
Indicates that the routine completed successfully.

HIDP _STATUSJNVALlD_PREPARSED_DATA
Indicates the preparsed HID device data provided at PreparsedData is malformed.

Comments
This routine will retrieve the capability data for all buttons in the top level collection with
out regard to the usage, usage page, or link collection. To retrieve button capabilities for a
specific usage, usage page, or link collection use HidP _ GetSpecificButtonCaps instead.

Callers of this routine must be running at IRQL PASSIVE_LEVEL.

See Also
HidP _GetSpecificButtonCaps, HidP _GetCaps, HIDP _BUTTON_CAPS

HidP _GetButtons
NTSTATUS

HidP_GetButtons<
IN HIDP_REPORT_TYPE ReportType.
IN USAGE UsagePage.
IN USHORT LinkCo77ection
OUT USAGE *UsageList,
IN OUT UlONG *UsageLength,

OPT! ONAl,

IN PHIDP_PREPARSED_DATA PreparsedData.
IN PCHAR Report,
IN UlONG ReportLength
) ;

HidP _ GetButtons takes a report from a HID device and returns the current state of the
buttons in that report.

Parameters
ReportType
Specifies the type of report, provided at Report, from which to retrieve the buttons. This
parameter must be one of the following values:

HidP Jnput

Specifies that the device data report provided at Report is an input report.

Chapter 2 HID Support Routines for Clients 825

HidP _Output
Specifies that the device data report provided at Report is an output report.

HidP _Feature
Specifies that the device data report provided at Report is a feature report.

UsagePage
Specifies the usage page of the buttons for which to retrieve the current state.

LinkCol/ection
Optionally specifies a link collection identifier used to retrieve only specific button states. If
this value is nonzero, only buttons that are part of the given link collection will be returned.

UsageList
Points to a caller-allocated buffer that contains, on return, the usages of all buttons that are
pressed which belong to the usage page specified in UsagePage.

UsageLength
Is the length, in array elements, of the buffer provided at UsageList. On return this parame
ter is set to the number of button states that were set by this routine into the buffer provided
at UsageList. If the error HIDP _STATUS_BUFFER_TOO_SMALL was returned, this pa
rameter will contain the number of array elements required to hold all button data requested.

The maximum number of buttons that can ever be returned for a given type of report can be
obtained by calling HidP _MaxUsageListLength.

PreparsedData
Points to the preparsed data returned for the device when collection information was ob
tained at initialization.

Report
Points to the device data that contains the button states to be retrieved.

ReportLength
Is the length, in bytes, of the buffer provided at Report.

Return Value
HidP _GetButtons returns a HIDP _xxx status code from the following list:

HIDP_STATUS_SUCCESS
Indicates that the routine completed successfully.

826 Part 3 Drivers for Input Devices

HIDP JNVALlD_REPORT _TYPE
Indicates that the value specified in ReportType was invalid.

HIDP _STATUS_BUFFER_ TOO _SMALL
Indicates that the buffer provided at UsageList is too small to hold the data retrieved. The
correct length to retrieve all usages can be found in the capability data returned by HidP _
GetCaps.

HIDP JNVALlD_REPORT_LENGTH
Indicates that the report length provided in ReportLength is not the expected length of a
report of the type specified in ReportType.

HIDP _STATUSjNVALlD_PREPARSED_DATA
Indicates the preparsed HID device data provided at PreparsedData is malformed.

HIDP _STATUSjNCOMPATIBLE_REPORTjD
Indicates that the buttons states specified by the parameter UsagePage is known, but cannot
be found in the data provided at Report.

HIDP _STATUS_USAGE_NOT _FOUND
Indicates that button states specified by the parameter UsagePage cannot be found in any
data report for the HID device.

Comments
Callers of this routine must be running at IRQL <= DISPATCH_LEVEL.

See Also
HidP _GetCaps, HidP _MaxUsageListLength

HidP _GetButtonsEx
NTSTATUS

HidP_GetButtonsEx(
IN HIDP_REPORT_TYPE ReportType.
IN USHORT LinkCo77ection.
OUT PUSAGE_AND_PAGE ButtonList.
IN OUT ULONG *UsageLength.
IN PHIDP_PREPARSED_DATA PreparsedData.
IN PCHAR Report,
IN ULONG ReportLength
) ;

Chapter 2 HID Support Routines for Clients 827

HidP _ GetButtonsEx takes a report from a HID device and returns the current state of all
the buttons in the given data report.

Parameters
ReportType
Specifies the type of report, provided at Report, from which to retrieve the button states.
This parameter must be one of the following values:

HidPJnput
Specifies that the device data report provided at Report is an input report.

HidP _Output
Specifies that the device data report provided at Report is an output report.

HidP _Feature
Specifies that the device data report provided at Report is a feature report.

LinkCol/ection
Optionally specifies a link collection identifier used to retrieve only specific button states. If
this value is nonzero, only buttons that are part of the given link collection will be returned.

ButtonList
Points to a caller-allocated buffer that contains, on return, the usage and usage page values
of each button that is down.

UsageLength
Is the length, in array elements, of the buffer provided at UsageList. On return this parame
ter is set to the number of button states that were set by this routine into the buffer provided
at UsageList. If the error HIDP _STATUS_BUFFER_TOO_SMALL was returned, this pa
rameter will contain the number of array elements required to hold all button data requested.

The maximum number of buttons that can ever be returned for a given type of report can
be obtained by calling HidP _MaxUsageListLength or by passing zero as the UsagePage
member in ButtonList.

PreparsedData
Points to the preparsed data returned for the device when collection information was
obtained at initialization.

Report
Points to the device data that contains the button states to be retrieved.

828 Part 3 Drivers for Input Devices

ReportLength
Is the length, in bytes, of the buffer provided at Report.

Return Value
HidP _GetButtonsEx returns a HIDP _xxx status code from the following list:

HIDP _STATUS_SUCCESS
Indicates that the routine completed successfully.

HIDP JNVALlD_REPORT _TYPE
Indicates that the value specified in ReportType was invalid.

HIDP _STATUS_BUFFER_TOO_SMALL
Indicates that the buffer provided at UsageList is too small to hold the data retrieved. The
correct length to retrieve all usages can be found in the capability data returned by HidP _
GetCaps.

HIDP JNVALID _REPORT_LENGTH
Indicates that the report length provided in ReportLength is not the expected length of a
report of the type specified in ReportType.

HIDP _STATUSJNVALID _PREPARSED _DATA
Indicates the preparsed HID device data provided at PreparsedData is malformed.

HIDP _STATUS_USAGE_NOT_FOUND
Indicates that no buttons could be found for this HID device.

Comments
Callers of this routine must be running at IRQL <= DISPATCH_LEVEL.

See Also
HidP _GetCaps, HidP _MaxUsageListLength, USAGE_AND_PAGE

HidP _GetCaps
NTSTATUS

HidP_GetCaps(
IN PHIDP_PREPARSED_DATA PreparsedData,
OUT PHIDP_CAPS Capabilities
) ;

Chapter 2 HID Support Routines for Clients 829

HidP _GetCaps returns the capabilities of a HID device based on the given preparsed data.

Parameters
PreparsedData
Points to a caller-allocated buffer that holds the top level collection description retrieved
from the HID device.

Capabilities
Points to a caller-allocated buffer that, on return, contains the parsed capability information
for this HID device.

Return Value
HidP _Get Caps returns HIDP _STATUS_SUCCESS if the routine completed parsing of
the data successfully. HIDP _STATUS_INVALID_PREPARSED_DATA is returned if the
preparsed data pointed to by PreparsedData is malformed.

Comments
Drivers obtain the top level collection data used at PreparsedData by calling HidD_Get
PreparsedData.

For kernel mode clients, the caller-allocated buffer supplied at PreparsedData must be
allocated from nonpaged pool.

Callers of this routine must be running at IRQL PASSIVE_LEVEL.

See Also
HidD _ GetPreparsedData, HIDP _CAPS

HidP _GetLinkColiectionNodes
NTSTATUS

HidP_GetLinkCollectionNodes(
OUT PHIDP_LINK-COLLECTION_NODE LinkCo77ectionNodes.
IN OUT PULONG LinkCo77ectionNodesLength.
IN PHIDP_PREPARSED_DATA PreparsedData
) ;

HidP _GetLinkCollectionNodes returns an array of LINK_COLLECTION_NODE
structures that describes the relationships and layout of the link collections within this top
level collection.

830 Part 3 Drivers for Input Devices

Parameters
LinkCol/ectionNodes
Points to a caller-allocated array of HIDP _LINK_COLLECTION_NODE structures in
which HidP _GetLinkCollectionNodes returns an entry for each collection within the top
level collection.

LinkCol/ectionNodesLength
Specifies, on input, the length, in array elements, of the buffer provided at Link
CollectionNodes. On output, this parameter is set to the number of entries in the array
at LinkCollectionNodes that were initialized.

PreparsedData
Points to the preparsed data returned for the device when top-level collection information
was obtained at initialization.

Return Value
HidP _GetLinkCollectionNodes returns one of the following HIDP _XXX status codes:

HIDP _STATUS_SUCCESS
Indicates that the routine completed successfully.

HIDP _STATUS_BUFFER_ TOO_SMALL
Indicates that the buffer provided at LinkCollectionNodes is too small to hold all entries for
the link collection nodes. LinkCollectionNodesLength is set to the length, in array elements,
required to hold the link collection nodes information.

Comments
The length of the buffer required, in array elements, for an entire link collection node
array is found in the HIDP _CAPS structure member NumberLinkCollectionNodes. Clients
obtain HIDP _CAPS information by calling HidP _GetCaps.

For information on the relationships of link collections described by the data returned from
this routine, see HIDP _LINK_COLLECTION_NODE.

Callers of this routine must be running at IRQL <= DISPATCH_LEVEL.

See Also
HidP _GetCaps, HIDP _CAPS, HIDP _LINK_COLLECTION_NODE

HidP _GetScaledUsageValue
NTSTATUS

HidP_GetScaledUsageValue(
IN HIDP_REPORT_TYPE ReportType.
IN USAGE UsagePage.
IN USHORT LinkCo77ection OPTIONAL.
IN USAGE Usage.
OUT PLONG UsageVa7ue.
IN PHIDP_PREPARSED_DATA PreparsedData.
IN PCHAR Report.
IN ULONG ReportLength
) ;

Chapter 2 HID Support Routines for Clients 831

HidP _GetScaJedUsageVaJue returns the signed result of a value, adjusted for the scaling
factor, retrieved from a report packet from the device.

Parameters
ReportType
Specifies the type of report, provided at Report, from which to retrieve the scaled value.
This parameter must be one of the following values:

HidPJnput
Specifies that the report provided at Report is an input report.

HidP _Output
Specifies that the report provided at Report is an output report.

HidP _Feature
Specifies that the report provided at Report is an feature report.

UsagePage
Specifies the usage page of the value to be retrieved.

LinkCol/ection
Optionally specifies the link collection identifier of the value to be retrieved.

Usage
Specifies the usage of the scaled valued to retrieve.

UsageVa/ue
Points to a variable, that on return from this routine, holds the scaled value retrieved from
the device report.

832 Part 3 Drivers for Input Devices

PreparsedData
Points to the preparsed data for the device.

Report
Points to a caller-allocated buffer that contains device report data.

ReportLength
Specifies the length, in bytes, of the report data provided at Report.

Return Value
HidP _GetScaledUsageValue returns one of the following HIDP _XXX status codes:

HIDP _STATUS_SUCCESS
Indicates that the routine completed successfully.

HIDP _STATUSjNVALlD_REPORT_TYPE
Indicates that the value specified in ReportType is invalid.

HIDP _STATUSjNVALID _REPORT_LENGTH
Indicates that the report length provided in ReportLength is not the expected length of a
report of the type specified in ReportType.

HIDP_STATUS_BAD_LOG_PHY_VALUES
Indicates that the device has returned an illegal logical and physical value preventing scal
ing. To retrieve the values returned by the device call HidP _GetUsageValue instead.

HIDP _STATUS_NULL
Indicates the current state of the scaled value data from the device is less than the logical
minimum or is greater than the logical maximum but the scaled value has a NULL state.

HIDP _STATUS_VALUE_OUT_OF _RANGE
Indicates the current state of the scaled value data from the device is less than the logical
minimum or is greater than the logical maximum.

HIDP _STATUSjNCOMPATIBLE_REPORT jD
Indicates that the value specified by the parameters Usage, UsagePage, and optionally Link
Collection is known, but cannot be found in the data provided at Report.

HIDP _STATUS_USAGE_NOT _FOUND
Indicates that the data specified by the values provided at Usage, UsagePage, and optionally
LinkCollection cannot be found in any data report.

Chapter 2 HID Support Routines for Clients 833

Comments
The caller-allocated buffers supplied at PreparsedData, Usage Value, and Report must be
allocated from non-paged pool. .

Callers who wish to obtain all data for a usage that contains multiple data items for a
single usage, that corresponds to a HID byte array, must call HidP _GetUsageValueArray
instead.

Callers of this routine must be running at IRQL <= DISPATCH_LEVEL.

See Also
HidP _GetUsageValue

HidP _ GetSpecificButtonCaps
NTSTATUS

HidP_GetSpecificButtonCaps(
IN HIDP_REPORT_TYPE ReportType,
IN USAGE UsagePage,
IN USHORT LinkCo77ection,
IN USAGE Usage,
OUT PHIDP_BUTTON_CAPS ButtonCaps,
IN OUT PULONG ButtonCapsLength,
IN PHIDP_PREPARSED_DATA PreparsedData
) ;

HidP _ GetSpecificButtonCaps retrieves the capabilities for all buttons in a specific type of
report that meet the search criteria.

Parameters
ReportType
Specifies the type of report for which to retrieve the button capabilities. This parameter must
be one of the following values:

HidP Jnput
Specifies that HidP _ GetSpecificButtonCaps return the button capabilities for all input
reports.

HidP _Output
Specifies that HidP _ GetSpecificButtonCaps return the button capabilities for all output
reports.

834 Part 3 Drivers for Input Devices

HidP _Feature
Specifies that HidP _GetSpecificButtonCaps return the button capabilities for all feature
reports.

UsagePage
Specifies a usage page identifier to use as a search criteria. If this parameter is nonzero, then
only buttons that specify this usage page will be retrieved.

LinkCol/ection
Specifies a link collection identifier to use as a search criteria. If this parameter is nonzero,
then only buttons that are part of this link collection will be retrieved.

Usage
Specifies a usage identifier to use as a search criteria. If this parameter is nonzero, then only
buttons that specify this usage will be retrieved.

Button Caps
Points to a caller-allocated buffer that will contain, on return, an array of HIDP _BUTTON_
CAPS structures that contain information for all buttons that meet the search criteria.

Button Caps Length
Specifies the length on input, in array elements, of the buffer provided at ButtonCaps. On
output, this parameter is set to the actual number of elements that were set by this routine,
into the buffer provided at Button Caps .

The correct length necessary to retrieve the button capabilities can be found in the capability
data returned for the device by HidP _GetCaps.

PreparsedData
Points to the preparsed data returned for the device when top level collection information
was obtained at initialization.

Return Value
HidP _ GetSpecificButtonCaps returns one of the following HIDP _XXX status codes:

HIDP _STATUS_SUCCESS
Indicates that the routine completed successfully.

HIDP _STATUSJNVALlD_PREPARSED_DATA
Indicates the preparsed HID device data provided at PreparsedData is malformed.

Chapter 2 HID Support Routines for Clients 835

Comments
HidP _ GetSpecificButtonCaps is used as a search routine to retrieve button capability
data for buttons that meet given search criteria as opposed to HidP _ GetButtonCaps which
returns the capability data for all buttons on the device. Calling HidP _ GetSpecificButton
Caps specifying zero for UsagePage, Usage, and LinkCollection is functionally equivalent
to calling HidP _ GetButtonCaps.

Callers of this routine must be running at IRQL PASSIVE_LEVEL.

See Also
HidP _GetButtonCaps, HidP _GetCaps, HIDP _BUTTON_CAPS

HidP _GetSpecificValueCaps
NTSTATUS

HidP_GetSpecificValueCapsC
IN HIDP_REPORT_TYPE ReportType,
IN USAGE UsagePage,
IN USHORT LinkCo77ection,
IN USAGE Usage,
OUT PHIDP_VALUE_CAPS Va7ueCaps,
IN OUT PULONG Va7ueCapsLength,
IN PHIDP_PREPARSED_DATA PreparsedData
) :

HidP _ GetSpecific Value Caps retrieves the capabilities for all values in a specific type of
report that meet the search criteria.

Parameters
ReportType
Specifies the type of report for which to retrieve the value capabilities. This parameter must
be one of the following values:

HidPJnput
Specifies that HidP _ GetSpecific ValueCaps return the value capabilities for all input
reports.

HidP _Output
Specifies that HidP _ GetSpecific V alueCaps return the value capabilities for all output
reports.

HidP _Feature
Specifies that HidP _ GetSpecific ValueCaps return the value capabilities for all feature
reports.

836 Part 3 Drivers for Input Devices

UsagePage
Specifies a usage page identifier to use as a search criteria. If this parameter is nonzero, then
only values that specify this usage page will be retrieved.

LinkCol/ection
Specifies a link collection identifier to use as a search criteria. If this parameter is nonzero,
then only values that are part of this link collection will be retrieved.

Usage
Specifies a usage identifier to use as a search criteria. If this parameter is nonzero, then only
buttons that specify this value will be retrieved.

ValueCaps
Points to a caller-allocated buffer that will contain, on return, an array of HIDP _ V ALUE_
CAPS structures that contain information for all values that meet the search criteria.

ValueCapsLength
Specifies the length on input, in array elements, of the buffer provided at ValueCaps. On
output, this parameter is set to the actual number of elements that were set by this routine,
into the buffer provided at Value Caps .

The correct length necessary to retrieve the value capabilities can be found in the capability
data returned for the device by HidP _ GetCaps.

PreparsedData
Points to the preparsed data returned for the device when top level collection information
was obtained at initialization.

Return Value
HidP _GetSpecificValueCaps returns a HIDP _xxx status code from the following list:

HIDP _STATUS_SUCCESS
Indicates that the routine completed successfully.

HIDP _STATUSJNVALlD_PREPARSED_DATA
Indicates the preparsed HID device data provided at PreparsedData is malformed.

Comments
HidP _ GetSpecific V alueCaps is used as a search routine to retrieve button capability data
for buttons that meet given search criteria as opposed to HidP _GetValueCaps which re
turns the capability data for all buttons on the device. Calling HidP _ GetSpecific ValueCaps

Chapter 2 HID Support Routines for Clients 837

specifying zero for UsagePage, Usage, and LinkCollection is functionally equivalent to
calling HidP _ GetValueCaps.

Callers of this routine must be running at IRQL PASSIVE_LEVEL.

See Also
HidP _GetCaps, HidP _GetValueCaps, HIDP _ VALUE_CAPS

HidP _GetUsageValue
NTSTATUS

HidP_GetUsageValue(
IN HIDP_REPORT_TYPE ReportType,
IN USAGE UsagePage,
IN USHORT LinkCo77ection,
IN USAGE Usage,
OUT PULONG UsageVa7ue,
IN PHIDP_PREPARSED_DATA PreparsedData,
IN PCHAR Report,
IN ULONG ReportLength
) ;

HidP _GetUsageValue returns a value from a device data report given a selected search
criteria.

Parameters
ReportType
Specifies the type of report, provided at Report, from which to retrieve the value. This
parameter must be one of the following values:

HidPJnput
Specifies that the device data report provided at Report is an input report.

HidP _Output
Specifies that the device data report provided at Report is an output report.

HidP _Feature
Specifies that the device data report provided at Report is a feature report.

UsagePage
Specifies the usage page identifier of the value to retrieve.

LinkCol/ection
Optionally specifies the link collection identifier of the value to be retrieved.

838 Part 3 Drivers for Input Devices

Usage
Specifies the usage of the scaled valued to retrieve.

UsageVa/ue
Points to a variable, that on return from this routine, holds the value retrieved from the
device report.

PreparsedData
Points to the preparsed data returned for the device when collection information was
obtained at initialization.

Report
Points to the device data that contains the value to be retrieved.

ReportLength
Is the length, in bytes, of the buffer provided at Report.

Return Value
HidP _GetUsageValue returns a HIDP _xxx status code from the following list:

HIDP _STATUS_SUCCESS
Indicates that the routine completed successfully.

HIDP _STATUSjNVALlD_PREPARSED_DATA
Indicates the preparsed HID device data provided at PreparsedData is malformed.

HIDP _STATUSjNVALlD_REPORT_TYPE
Indicates that the value specified in ReportType was invalid.

HIDP _STATUSjNVALlD_REPORT_LENGTH
Indicates that the report length provided in ReportLength is not the expected length of a
report of the type specified in ReportType.

HIDP _STATUS_USAGE_NOT _FOUND
Indicates that the usage specified by the values provided at Usage, UsagePage, and op
tionally, LinkCollection could not be found in the report data provided.

HIDP _STATUSjNCOMPATIBLE_REPORTjD
Indicates that the value specified by the parameters Usage, UsagePage, and optionally
LinkCollection is known, but cannot be found in the data provided at Report.

Chapter 2 HID Support Routines for Clients 839

HIDP _STATUS_USAGE_NOT _FOUND
Indicates that the data specified by the values provided at Usage, UsagePage, and optionally
LinkCollection cannot be found in any data report.

Comments
This routine does not sign the value. To have the sign bit automatically applied, use the
routine HidP _GetScaledUsageValue instead. For manually assigning the sign bit, the posi
tion of the sign bit can be found in the HIDP _ VALUE_CAPS structure for this value.

Callers who wish to obtain all data for a usage that contains multiple data items for a
single usage, that corresponds to a HID byte array, must call HidP _GetUsageValueArray
instead.

Callers of this routine must be running at IRQL <= DISPATCH_LEVEL.

See Also
HidP _GetScaledUsageValue, HIDP _VALUE_CAPS

HidP _GetUsageValueArray
NTSTATUS

HidP_GetUsageValueArray(
IN HIDP_REPORT_TYPE ReportType,
IN USAGE UsagePage,
IN USHORT LinkCo77ection OPTIONAL,
IN USAGE Usage,
OUT PCHAR UsageVa7ue,
IN USHORT UsageVa7ueByteLength,
IN PDIP_PREPARSED_DATA PreparsedData,
IN PCHAR Report,
IN ULONG ReportLength
) ;

HidP _GetUsageValueArray returns the device data for a usage that contains multiple data
items for a single usage.

Parameters
ReportType
Specifies the type of report, provided at Report, from which to retrieve the values. This
parameter must be one of the following values:

HidP-'nput
Specifies that the device data report provided at Report is an input report.

840 Part 3 Drivers for Input Devices

HidP _Output
Specifies that the device data report provided at Report is an output report.

HidP _Feature
Specifies that the device data report provided at Report is a feature report.

UsagePage
Specifies the usage page identifier of the data to be retrieved.

LinkCol/ection
Optionally specifies the link collection identifier of the data to be retrieved.

Usage
Specifies the usage identifier of the valued to retrieve.

Usage Value
Points to a caller-allocated buffer that contains, on output, the data from the device. The
correct length for this buffer can be found by multiplying the ReportCount and BitSize
fields of the HIDP _ VALUE_CAPS structure for this value and rounding the resultant value
up to the nearest byte.

Usage ValueByteLength
Specifies the length, in bytes, of the buffer at Usage Value.

PreparsedData
Points to the preparsed data returned for the device when collection information was
obtained at initialization.

Report
Points to the device data that contains the data to be retrieved.

ReportLength
Is the length, in bytes, of the buffer provided at Report.

ReturnValue
HidP _GetUsageValueArray returns a HIDP _XXX status code from the following list:

HIDP _STATUS_SUCCESS
Indicates that the routine completed successfully.

Chapter 2 HID Support Routines for Clients 841

HIDP _STATUSjNVALlD_PREPARSED_DATA
Indicates the preparsed HID device data provided at PreparsedData is malformed.

HIDP _STATUSjNVALlD_REPORT_TYPE
Indicates that the value specified in ReportType was invalid.

HIDP _STATUSjNVALlD_REPORT_LENGTH
Indicates that the report length provided in ReportLength is not the expected length of a
report of the type specified in ReportType.

HIDP _STATUS_NOT _VALUE_ARRAY
Indicates that the requested usage has only one data item. To retrieve the data, clients should
call HidP _ GetUsage Value or HidP _ GetScaledUsage Value instead.

HIDP _STATUS_BUFFER_TOO_SMALL
Indicates that the buffer provided at Usage Value is too small to hold the data requested. The
correct length to retrieve all data for this usage can be found by multiplying the values in
BitSize and ReportCount, from the HIDP _VALUE_CAPS structure for this value, together
and round the resultant value up to the nearest byte.

HIDP _STATUSjNCOMPATIBLE_REPORT jD
Indicates that the value specified by the parameters Usage, UsagePage, and optionally Link
Collection is known, but cannot be found in the data provided at Report.

HIDP _STATUS_USAGE_NOT _FOUND
Indicates that the data specified by the values provided at Usage, UsagePage, and optionally
LinkCollection cannot be found in any data report for this top-level collection.

Comments
When HidP _ GetUsage ValueArray retrieves the data, it will fill in the buffer in little
endian order beginning with the least significant bit of the data for this usage. The data is
filled in without regard to byte alignment and is shifted such that the least significant bit
is placed as the 1 st bit of the given buffer.

Callers of this routine must be running at IRQL <= DISPATCH_LEVEL.

See Also
HidP _GetScaledUsageValue, HidP _GetUsageValue

842 Part 3 Drivers for Input Devices

HidP _GetValueCaps
NTSTATUS

HidP_GetValueCaps(
IN HIDP_REPORT_TYPE ReportType,
OUT PHIDP_VALUE_CAPS Va7ueCaps,
IN OUT PULONG Va7ueCapsLength,
IN PHIDP_PREPARSED_DATA PreparsedData
) ;

HidP _GetValueCaps retrieves the capabilities of all values for a given top level collection.

Parameters
ReportType
Specifies the type of report for which to retrieve the value capabilities. This parameter must
be one of the following values:

HidP Jnput
Specifies that HidP _GetUsages return the value capabilities for all input reports.

HidP _Output
Specifies that HidP _ GetUsages return the value capabilities for all output reports.

HidP _Feature
Specifies that HidP _GetUsages return the value capabilities for all feature reports.

Va/ueCaps
Points to a caller-allocated buffer that will contain, on return, an array of HIDP _V ALUE_
CAPS structures that contain information for all values in the top level collection.

Va/ueCapsLength
Specifies the length on input, in array elements, of the buffer provided at ValueCaps. On
output, this parameter is set to the actual number of elements that were set by this routine,
into the buffer provided at Value Caps .

The correct length necessary to retrieve the value capabilities can be found in the capability
data returned for the device by HidP _ GetCaps.

PreparsedData
Points to the preparsed data returned for the device when collection information was
obtained at initialization.

Chapter 2 HID Support Routines for Clients 843

Return Value
HidP _GetValueCaps returns a HIDP _xxx status code from the following list:

HIDP _STATUS_SUCCESS
Indicates that the routine completed successfully.

HIDP _STATUSJNVALlD_PREPARSED_DATA
Indicates the preparsed HID device data provided at PreparsedData is malformed.

Comments
This routine will retrieve the capability data for all values in the top level collection without
regard to the usage, usage page, or link collection of the value. To retrieve value capabilities
for a specific usage, usage page, or link collection use HidP _ GetSpecific ValueCaps
instead.

Callers of this routine must be running at IRQL <= DISPATCH_LEVEL.

See Also
HidP _GetCaps, HidP _GetSpecificValueCaps, HIDP _VALUE_CAPS

HidP _MaxUsageListLength
ULONG

HidP_MaxUsageListLength(
IN HIDP_REPORT_TYPE ReportType,
IN USAGE UsagePage OPTIONAL,
IN PHIDP_PREPARSED_DATA PreparsedData
) ;

HidP _MaxUsageListLength returns the maximum number of buttons that can be returned
from a given report type for the top level collection.

Parameters
ReportType
Specifies the report type for which to get a maximum usage count. ReportType must be one
of the following values:

HidPJnput
Specifies that HidP _MaxUsageListLength should return the maximum number of buttons
for an input report.

844 Part 3 Drivers for Input Devices

HidP _Output
Specifies that HidP _MaxUsageListLength should return the maximum number of buttons
for an output report.

HidP _Feature
Specifies that HidP _MaxUsageListLength should return the maximum number of buttons
for an feature report.

UsagePage
Optionally specifies a usage page identifier to use as a search criteria. If this parameter is
zero, the routine returns the number of buttons for the entire top-level collection regardless
of usage page.

PreparsedData
Points to the preparsed data returned for the device when collection information was
obtained at initialization.

Return Value
HidP _MaxUsageLength returns the maximum number of buttons, that are of the given
usage page, that will be returned in a given report type. If the buffer provided at Preparsed
Data or the value of ReportType is invalid, zero is returned.

Comments
Callers of this routine must be running at IRQL PASSIVE_LEVEL.

HidP _SetButtons
NTSTATUS

HidP_SetButtons(
IN HIDP_REPORT_TYPE ReportType,
IN USAGE UsagePage,
IN USHORT LinkCo77ection OPTIONAL,
IN PUSAGE UsageList,
IN OUT PULONG UsageLength,
IN PHIDP_PREPARSED_DATA PreparsedData,
IN OUT PCHAR Report,
IN ULONG ReportLength
) ;

HidP _SetButtons sets takes an array of button state data and sets the button data in a given
report.

Parameters
ReportType

Chapter 2 HID Support Routines for Clients 845

Specifies the type of report provided at Report. ReportType must be one of the following
values:

HidPJnput
Specifies that the report is an input report.

HidP _Output
Specifies that the report is an output report.

HidP _Feature
Specifies that the report is a feature report.

UsagePage
Specifies the usage page identifier of the buttons to be set in the report.

LinkCol/ection
Optionally specifies a link collection identifier to distinguish between buttons. If this pa
rameter is zero, LinkCollection is ignored.

UsageList
Points to a caller-allocated buffer that contains an array of button data to be set in the report
provided at Report.

UsageLength
Specifies the length, in array elements, of the buffer provided at UsageList. If an error is
returned by this routine, this parameter contains the position in the array provided at Usage
List where the error was encountered. All previous array entries were successfully set in the
report provided at Report.

PreparsedData
Points to the preparsed data returned for the device when collection information was
obtained at initialization.

Report
Points to a caller-allocated buffer for a report that contains the buttons to be set.

ReportLength
Specifies the length, in bytes, of the buffer provided at Report.

846 Part 3 Drivers for Input Devices

Return Value
HidP _SetButtons returns a HIDP _xxx status code from the following list:

HIDP _STATUS_SUCCESS
Indicates that the routine completed successfully.

HIDP _STATUSjNVALlD_REPORT_TYPE
Indicates that the report type value provided at ReportType was invalid.

HIDP _STATUSjNVALlD_REPORT_LENGTH
Indicates that the report length provided at ReportLength does not match the expected report
length for a report of type specified in ReportType.

HIDP _STATUSj NVALI D_PREPARSED_DATA
Indicates the preparsed HID device data provided at PreparsedData is malformed.

HIDP _STATUS_BUFFER_TOO_SMALL
Indicates that the buffer provided at Report was of insufficient size to store all of the buttons
being set. This error is also returned when the report does not have enough locations to set
all of the buttons. It is necessary to split this request into two reports.

HIDP _STATUSjNCOMPATIBLE_REPORTjD
Indicates that the button, at the array element specified on return in UsageLength, is a
valid button but could not be set in the report provided at Report because of previous buttons
already set in that report. A new report would need to be allocated for this button.

HIDP _STATUS_USAGE_NOT _FOUND
Indicates that the button, at the array element specified on return in UsageLength, is not a
valid button for this device and could not be set.

Comments
Callers of this routine must be running at IRQL <= DISPATCH_LEVEL.

See Also
HidP _ GetButtons

HidP _SetScaledUsageValue
NTSTATUS

HidP_SetScaledUsageValue(
IN HIDP_REPORT_TYPE ReportType,
IN USAGE UsagePage,
IN USHORT LinkCo77ection OPTIONAL,
IN USAGE Usage,
IN LONG UsageVa7ue,
IN PHIDP_PREPARSED_DATA PreparsedData,
IN OUT PCHAR Report,
IN ULONG ReportLength
) ;

Chapter 2 HID Support Routines for Clients 847

HidP _SetScaledUsage Value takes a signed physical (scaled) number and converts it to the
logical, or device, representation and inserts it in a given report.

Parameters
ReportType
Specifies the type of report provided at Report. ReportType must be one of the following
values:

HidPJnput
Specifies that the report is an input report.

HidP _Output
Specifies that the report is an output report.

HidP _Feature
Specifies that the report is a feature report.

UsagePage
Specifies the usage page identifier of the value to be set in the report.

LinkCol/ection
Optionally specifies a link collection identifier to distinguish between values that have
the same usage page and usage identifiers. If this parameter is zero, LinkCollection will
be ignored.

Usage
Specifies the usage identifier of the value to be set in the report.

848 Part 3 Drivers for Input Devices

Usage Value
Specifies the physical, or scaled, value to be set in the value for the given report.

PreparsedData
Points to the preparsed data returned for the device when collection information was
obtained at initialization.

Report
Points to a caller-allocated buffer for a report that contains the scaled value to be set.

ReportLength
Is the size, in bytes, of the buffer provided at Report.

Return Value
HidP _SetScaledUsageValue returns a HIDP _xxx status code from the following list:

HIDP _STATUS_SUCCESS
Indicates that the routine completed successfully.

HIDP _STATUSjNVALlD_PREPARSED_DATA
Indicates the preparsed HID device data provided at PreparsedData is malformed.

HIDP _STATUSjNVALlD_REPORT _LENGTH
Indicates that the report length provided in ReportLength was not the size expected for a
report of the report type specified in ReportType.

HI DP_STATUS_BAD_LOG_PHY_VALUES
Indicates that the device has an illegal logical or physical value preventing scaling. To set
the value call HidP _SetUsage Value instead.

HIDP _STATUS_NULL
Indicates the given state of the scaled value data from the device is less than the physical
minimum or is greater than the physical·maximum and the scaled value has a NULL state.

HIDP_STATUS_VALUE_OUT_OF_RANGE
Indicates the current state of the scaled value data from the device is less than the physical
minimum or is greater than the physical maximum.

HIDP _STATUSjNCOMPATIBLE_REPORTjD
Indicates that the value specified by the parameters Usage, UsagePage, and optionally Link
Collection is known, but cannot be set in the data provided at Report because it conflicts
with data already in that report. A new report would need to be allocated for this data.

Chapter 2 HID Support Routines for Clients 849

HIDP _STATUS_USAGE_NOT_FOUND
Indicates that the usage specifies by the values provided at Usage, UsagePage, and
optionally LinkCollection could not be found in the report data provided.

Comments
This routine automatically handles the setting of the signed bit in the data to be sent to
the device.

Callers of this routine must be running at IRQL <= DISPATCH_LEVEL.

See Also
HidP _SetUsage Value

HidP _SetUsageValue
NTSTATUS

HidP_SetUsageValue(
IN HIDP_REPORT_TYPE ReportType,
IN USAGE UsagePage,
IN USHORT LinkCo77ection,
IN USAGE Usage,
IN ULONG UsageVa7ue,
IN PHIDP_PREPARSED_DATA PreparsedData,
IN OUT PCHAR Report,
IN ULONG ReportLength
) ;

HidP _SetUsage Value sets a value in a given report.

Parameters
ReportType
Specifies the type of report provided at Report. ReportType must be one of the following
values:

HidP Jnput
Specifies that the report is an input report.

HidP _Output
Specifies that the report is an output report.

HidP _Feature
Specifies that the report is a feature report.

850 Part 3 Drivers for Input Devices

UsagePage
Specifies the usage page identifier of the value to be set in the report.

LinkCol/ection
Optionally specifies a link collection identifier to distinguish between values that share the
same usage page and usage identifier. If this parameter is zero, LinkCollection is ignored.

Usage
Specifies the usage identifier of the value to be set in the report.

Usage Value
Specifies the data that is to be set in the value for the report provided at Report.

PreparsedData
Points to the preparsed data returned for the device when collection information was
obtained at initialization.

Report
Points to a caller-allocated buffer for a report that contains the value to be set.

ReportLength
Specifies the length, in bytes, of the buffer provided at Report.

Return Value
HidP _SetUsageValue returns a HIDP _xxx status code from the following list:

HIDP _STATUS_SUCCESS
Indicates that the routine completed successfully.

HIDP _STATUSjNVALlD_REPORT_TYPE
Indicates that the report type value provided at ReportType was invalid.

HIDP _STATUSjNVALlD_REPORT_LENGTH
Indicates that the report length provided at ReportLength does not match the expected report
length for a report of the type specified in ReportType.

HIDP _STATUSjNVALlD_PREPARSED_DATA
Indicates the preparsed HID device data provided at PreparsedData is malformed.

Chapter 2 HID Support Routines for Clients 851

HIDP _STATUS_USAGE_NOT _FOUND
Indicates that no value that matches the given usage, usage page, and link collection could
be found in this report.

HIDP _STATUSJNCOMPATIBLE_REPORT JD
Indicates that the value specified by the parameters Usage, UsagePage, and optionally Link
Collection is known, but cannot be set in the data provided at Report. A new report would
need to be allocated for this value.

HIDP _STATUS_USAGE_NOT_FOUND
Indicates that the value specified by the parameters Usage, UsagePage, and optionally Link
Collection could not be set in the report because it is invalid.

Comments
This routine does not automatically handle the sign bit. Callers must either manually set
the sign bit, at the position provided in the HIDP _VALUE_CAPS structure for this value,
or call HidP _SetScaledUsage Value.

Callers of this routine must be running at IRQL <= DISPATCH_LEVEL.

See Also
HidP _SetScaledUsageValue, HIDP _VALUE_CAPS

HidP _SetUsageValueArray
NTSTATUS

HidP_SetUsageValueArray(
IN HIDP_REPORT_TYPE ReportType,
IN USAGE UsagePage,
IN USHORT LinkCo77ection OPTIONAL,
IN USAGE Usage,
IN PCHAR UsageVa7ue,
IN USHORT UsageVa7ueByteLength,
IN PHIDP_PREPARSED_DATA PreparsedData,
OUT PCHAR Report,
IN ULONG ReportLength
) ;

HidP _SetUsage ValueArray sets a series of values into a report for a usage which has more
than one data item for the single usage.

852 Part 3 Drivers for Input Devices

Parameters
ReportType
Specifies the type of report provided at Report. ReportType must be one of the following
values:

HidPJnput
Specifies that the report is an input report.

HidP _Output
Specifies that the report is an output report.

HidP _Feature
Specifies that the report is a feature report.

UsagePage
Specifies the usage page identifier of the data items to be set in the report.

LinkCol/ection
Optionally specifies the link collection identifier of the data items to be set in the report.

Usage
Specifies the usage identifier of the data items to be set in the report.

Usage Value
Points to a caller-allocated buffer that contains the data to be set in the report provided
at Report. The correct length for this buffer can be found by multiplying the ReportCount
and BitSize fields of the HIDP _ V ALUE_CAPS structure for this value and rounding the
resultant value up to the nearest byte.

Usage ValueByteLength
Specifies the length, in bytes, of the buffer provided at Usage Value.

PreparsedData
Points to the preparsed data returned for the device when collection information was
obtained at initialization.

Report
Points to a caller-allocated buffer for a report to hold the data items for transmission to
the device.

ReportLength
Specifies the length, in bytes, of the buffer provided at Report.

Chapter 2 HID Support Routines for Clients 853

Return Value
HidP _SetUsageValueArray returns a HIDP _xxx status code from the following list:

HIDP _STATUS_SUCCESS
Indicates that the routine completed successfully.

HIDP _STATUSjNVALlD_PREPARSED_DATA
Indicates the preparsed HID device data provided at PreparsedData is malformed.

HIDP _STATUSjNVALlD_REPORT_TYPE
Indicates that the report type value provided at ReportType was invalid.

HIDP _STATUSjNVALID _REPORT_LENGTH
Indicates that the report length provided at ReportLength does not match the expected report
length for a report of type specified in ReportType.

HIDP _STATUS_NOT_VALUE_ARRAY
Indicates that the requested usage has only one data item. To set the data, clients should call
HidP _SetUsage Value or HidP _SetScaledUsage Value instead.

HIDP _STATUSjNCOMPATIBLE_REPORTjD
Indicates that the data items specified by the parameters Usage, UsagePage, and optionally
LinkCollection is known, but cannot be set in the data provided at Report. A new report
would need to be allocated for this value.

HIDP _STATUS_ USAGE_NOT _FOUND
Indicates that the data items specified by the parameters Usage, UsagePage, and optionally
LinkCollection could not be set in the report because a usage matching those parameters
could not be found for this top-level collection.

Comments
Callers of this routine must be running at IRQL <= DISPATCH_LEVEL.

See Also
HidP _SetScaledUsageValue, HidP _SetUsageValue

HidP _ TransiateUsagesTol8042ScanCodes
This routine is to be determined.

854 Part 3 Drivers for Input Devices

HidP _UsageListDifference
NTSTATUS

HidP_UsageListDifference(
IN PUSAGE PreviousUsageList.
IN PUSAGE CurrentUsageList.
OUT PUSAGE BreakUsageList.
OUT PUSAGE MakeUsageList.
IN ULONG UsageListLength
) ;

HidP _UsageListDifference compares and provides the differences between two lists of
buttons.

Parameters
PreviousUsageList
Points to the older button list to be used for comparison.

CurrentUsageList
Points to the newer button list to be used for comparison.

BreakUsageList
Points to a caller-allocated buffer that, on return, contains the buttons that are set in the
older list, provided at PreviousUsageList, but not set in the new list, provided at Current
UsageList.

Make UsageL ist
Points to a caller-allocated buffer that, on return, contains the buttons that are set in the new
list, provided at CurrentUsageList, but not set in the old list, provided at PreviousUsageList.

UsageListLength
Specifies the length, in array elements, of the buffers provided at CurrentUsageList and
PreviousUsageList.

Return Value
HidP _UsageListDifference returns HIDP _STATUS_SUCCESS.

Comments
Callers of this routine must be running at IRQL PASSIVE_LEVEL.

855

CHAPTER 3

HID Structures for Clients

This chapter describes system-defined structures specific to Human Input Device (HID)
drivers and clients. See Part 1 for information about general system-defined structures that
are not described here. See Chapter 4 for system structures specific to USB client drivers.

Drivers can use only those members of structures that are described here. All undocumented
members of these structures are reserved for system use.

HID_COLLECTION_INFORMATION
typedef struct _HID_COLLECTION_INFORMATION {

ULONG DescriptorSize
BOOLEAN Polled;

HID_COLLECTION_INFORMATION, *PHID_COLLECTION_INFORMATION

Members
DescriptorSize
Is the size, in bytes, required to hold a collection descriptor for this device.

Polled
Indicates that this device is on a non-USB bus and the data is provided in a polled manner.

Comments
This structure is used by kernel mode HID clients to retrieve general information about a top
level collection. For detailed information the collection descriptor must be consulted.

856 Part 3 Drivers for Input Devices

HIDP _COLLECTION_DESC
typedef struct _HIDP_COLLECTION_DESC

USAGE UsagePage;
USAGE Usage;
UCHAR CollectionNumber;
UCHAR Reserved [15]; II Must be zero
USHORT InputLength;
USHORT OutputLength;
USHORT FeatureLength;
USHORT PreparsedDataLength;
PHIDP_PREPARSED_DATA PreparsedData;

HIDP_COLLECTION_DESC, *PHIDP_COLLECTION_DESC;

HIDP _COLLECTION_DESC is used by HID clients to hold information about a HID
collection descriptor.

Members
UsagePage
The page value that, when prefixed to the usage id, defines the usage for the collection.

Usage
The usage id for the collection. A value which, together with UsagePage, uniquely describes
the use of the collection ..

Collection Number
A number assigned to the collection by the HID class driver, and used by the class driver to
uniquely identify the collection.

InputLength
Length of all input reports.

OutputLength
Length of all output reports.

FeatureLength
Length of all feature reports.

PreparsedDataLength
Length of the preparsed data pointed to by PreparsedData.

PreparsedData
Points to a buffer containing the preparsed report descriptor data for this collection. Indi
vidual values can be extracted from the preparsed data by passing this buffer to the kernel

Chapter 3 HID Structures for Clients 857

mode HID parser routines (HidP _Xxx) in HIDPARSE.SYS. For further details see HID
Support Routines for Clients.

Comments
This structure is used by kernel mode HID clients to retrieve the collection descriptor for
a top level collection.

The lengths of all input, output, and feature reports are normalized by the collection they
belong to. For example, although a collection can have many feature items and, therefore,
potentially many feature reports, the length of of a feature report is always FeatureLength.
FeatureLength is the length of the longest feature report belonging to the collection.
Feature items that require reports smaller than FeatureLength still produce reports of length
FeatureLength. Unused space in such reports is zero-filled.

Kernel-mode clients must obtain preparsed data using IOCTL_HID_GET_COLLECTION_
DESC. The HID support routine HidD_GetPreparsedData available to user-mode clients
for acquiring preparsed data is not available in kernel mode. User-mode clients must use
HidD _ GetPreparsedData to obtain preparsed data.

HIDD_ATTRIBUTES
typedef struct _HIDD_ATTRIBUTES

ULONG Size;
USHORT VendorID;
USHORT ProductID;
USHORT VersionNumber;

} HIDD_ATTRIBUTES. *PHIDD_ATTRIBUTES;

HIDD _ATTRIBUTES is used by HID clients to obtain vendor identifying information about
a given HID device.

Members
Size
Is the size of the HIDD_ATTRIBUTES structure, in bytes. Before using this structure with a
system routine that uses this structure, the caller must set this field to the size of the structure
as such:

sizeof(HIDD_ATTRIBUTES)

VendorlD
Specifies the vendor identifier assigned to a given HID device.

ProductlD
Specifies the product identifier assigned to a given HID device.

858 Part 3 Drivers for Input Devices

VersionNumber
Specifies the manufacturer's revision number for a given HID device.

Comments
This structure is used by clients when calling HidD_GetAttributes to obtain vendor identi
fying information reported by the device to the system HID components.

See Also
HidD _ GetAttributes

HIDD_CONFIGURATION
This structure is to be determined.

HIDP _BUTTON_CAPS
typedef struct _HIDP_BUTTON_CAPS
{

USAGE UsagePage;
UCHAR ReportID;

USHORT
USHORT
USAGE
USAGE
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN

union

struct
{

BitField;
LinkCollection;
LinkUsage;
LinkUsagePage;
IsRange;
IsStringRange;
IsDesignatorRange;
IsAbsolute;

USAGE UsageMin,
USHORT StringMin,
USHORT DesignatorMin,
Range;

UsageMax;
StringMax;
DesignatorMax;

struct
{

USAGE Usage;
USHORT Stringlndex
USHORT Designatorlndex

} NotRange;
} ;

HIDP_BUTTON_CAPS, *PHIDP_BUTTON_CAPS;

Chapter 3 HID Structures for Clients 859

HIDP _BUTTON_CAPS is used by HID clients to hold the capability data for a button on a
HID device.

Members
Usage Page
Specifies the usage page identifier for this button.

ReportlD
Specifies the identifier of the report to which this button belongs.

BitField
Is the bitfield, as defined by the HID specification, that describes the behavior of this
button. This is the raw data for the bitfield found after the main item in the HID descriptor.
The bit meanings from this bitfield are further parsed into BOOLEAN values elsewhere in
this structure.

LinkColiection
Specifies a unique identifier to identify the link collection in which this control is
contained. A value of zero in this member indicates that the control is contained in the top
level collection. This value of this member is also the index into an array of HIDP _LINK_
COLLECTION_NODE structures returned from HidP _GetLinkCollectionNodes.

LinkUsage
Specifies the usage identifier for the link collection that this button belongs to. If Link
Collection is zero, this member is the usage identifier for the top level collection.

LinkUsagePage
Specifies the usage page identifier for the link collection that this button belongs to. If Link
Collection is zero, this member is the usage page identifier for the top level collection.

IsRange
Specifies, if TRUE, that this button has a range of usage identifiers that span the values
between Range.UsageMin and Range.UsageMax. If this member is FALSE, the single
usage identifier for this button is provided in NotRange.Usage.

860 Part 3 Drivers for Input Devices

IsStringRange
Specifies, if TRUE, that this button has a range of string index identifiers that span the
values between Range.StringMin and Range.StringMax. If this member is FALSE, the
single string index identifier for this button is provided in NotRange.StringIndex.

IsDesignatorRange
Specifies, if TRUE, that this button has a range of designator identifiers that span the values
between Range.DesignatorMin and Range.DesignatorMax. If this member is FALSE, the
single designator identifier for this button is provided in NotRange.DesignatorIndex.

IsAbsolute
Specifies, if TRUE, that this button provides absolute data and not the change in state from
the last value.

Range.UsageMin
Specifies the lower value of a range of usage identifiers that is bounded at the upper edge by
Range.UsageMax.

Range.UsageMax
Specifies the upper value of a range of usage identifiers that is bounded at the lower edge by
Range.UsageMin.

Range.StringMin
Specifies the lower value of a range of string identifiers that is bounded at the upper edge by
Range.StringMax.

Range.StringMax
Specifies the upper value of a range of string identifiers that is bounded at the lower edge by
Range.StringMin.

Range.DesignatorMin
Specifies the lower value of a range of designator identifiers that is bounded at the upper
edge by Range.DesignatorMax.

Range.DesignatorMax
Specifies the upper value of a range of designator identifiers that is bounded at the lower
edge by Range.DesignatorMin.

NotRange.Usage
Specifies the usage identifier for this button.

NotRange.Stringldentifier
Specifies a string index identifier for this button.

Chapter 3 HID Structures for Clients 861

NotRange.Designatorldentifier
Specifies a designator identifier for this button.

Comments
HIDP _BUTTON_CAPS is used by HID to deliver and hold capability information about
buttons for a HID top level collection. To obtain the button capability, clients call HidP_
GetButtonCaps and HidP _ GetSpecificButtonCaps. Callers of those routines allocate
buffers of HIDP _BUTTON_CAPS structures to be used as a parameter to those routines.
The correct length of the buffers required can be found in the HIDP _CAPS structure that
is filled in by HidP _ GetCaps.

See HIDP _VALUE_CAPS for information on structures that hold capability information
about non-button data.

See Also
HidP _ GetButtonCaps, HidP _ GetCaps, HidP _ GetSpecificButtonCaps, HIDP _CAPS

HIDP _CAPS
typedef struct _HIDP_CAPS {

USAGE Usage;
USAGE UsagePage ;
USHORT InputReportByteLength
USHORT Output Report Byte Length ;
USHORT FeatureReportByteLength ;

USHORT NumberLinkCollectionNodes
USHORT NumberlnputButtonCaps ;
USHORT NumberlnputValueCaps ;
USHORT NumberOutputButtonCaps ;
USHORT NumberOutputValueCaps ;
USHORT NumberFeatureButtonCaps ;
USHORT NumberFeatureValueCaps ;

} HIDP_CAPS, *PHIDP_CAPS ;

HIDP _CAPS is used by HID clients to hold the capabilities of a HID device.

Members
Usage
Specifies the specific class of functionality that this device provides. This value is de
pendent and specific to the value provided in UsagePage. For example, a keyboard could
have a UsagePage of HID_US AGE_ PAGE_GENERIC and a Usage of HID_US AGE_
GENERIC_KEYBOARD.

862 Part 3 Drivers for Input Devices

Usage Page
Specifies the usage page identifier for this top-level collection.

InputReportByteLength
Specifies the maximum length, in bytes, of an input report for this device including the
report ID which is unilaterally prepended to the device data.

OutputReportByteLength
Specifies the maximum length, in bytes, of an output report for this device including the
report ID which is unilaterally prepended to the device data.

FeatureReportByteLength
Specifies the maximum length, in bytes, of a feature report for this device including the
report ID which is unilaterally prepended to the device data.

NumberLinkCollectionNodes
Specifies the number ofHIDP _LINK_COLLECTION_NODE structures that are returned
for this top-level collection by HidP _GetLinkCollectionNodes.

NumberlnputButtonCaps
Specifies the number of input buttons.

NumberlnputValueCaps
Specifies the number of input values.

NumberOutputButtonCaps
Specifies the number of output buttons.

NumberOutputValueCaps
Specifies the number of output values.

NumberFeatureButtonCaps
Specifies the number of feature buttons.

NumberFeatureValueCaps
Specifies the number of feature values.

Comments
HIDP _CAPS holds the parsed capabilities and data maximums returned for a device from
HidP _ GetCaps.

See Also
HidP _GetCaps, HidP _GetLinkCollectionNodes

typedef struct _HIDP_LINK_COLLECTION_NODE {
USAGE LinkUsage;
USAGE LinkUsagePage;
USHORT Parent;
USHORT NumberOfChildren;
USHORT NextSibling;
USHORT FirstChild;

Chapter 3 HID Structures for Clients 863

HIDP _LINK_COLLECTION_NODE structures hold descriptive data about each link
collection that is part of a top level collection.

Members
LinkUsage
Specifies the usage identifier for the link collection described by this structure.

LinkUsagePage
Specifies the usage page identifier for the link collection described by this structure.

Parent
Specifies the index, into the array of HIDP _LINK_COLLECTION_NODE structures re
turned by HidP _GetLinkCollectionNodes, of the parent of this link collection. If the link
collection has no parent, this value will be zero.

NumberOfChiidren
Specifies the number of link collections that are contained within the link collection
described by this structure.

NextSibling
Specifies the index, into an array of HIDP _LINK_COLLECTION_NODE structures re
turned by HidP _GetLinkCollectionNodes, of the next link collection that is at the same
level in the hierarchy of link collections as this link collection.

864 Part 3 Drivers for Input Devices

FirstChiid
Specifies the index, into an array of HIDP _LINK_COLLECTION_NODE structures re
turned by HidP _ GetLinkCollectionNodes, of the first link collection that is a child of this
collection that is not a sibling of another link collection at the same level.

Comments
Top Level Collection Link Collection A

Link Collection B Link Collection D A'----n Link Collection C

~ r

Figure 3.1 Link Collection Nodes

A HIDP _LINK_COLLECTION_NODE structure corresponds to a HID-defined link col
lection and describes each subcollection in a top-level collection. A top-level collection can
have any number of subcollections or none. Defined relationships among link collections
depend on their positions in a top level collection as well as their position among other
link collections. At most, a link collection can have the following relationships to other link
collections within the same top-level collection:

• One parent

• Any number of children

• A sibling

• A first child

A top level collection can have zero or more children, of which only one can be considered a
first child. Consider the preceding diagram as an example of a top level collection with link
collections.

The top level collection has a total of four link collections contained within it. However, it
does not have four children. The top level collection has one child, link collection A.

Link collection A has two children, link collection B and link collection D. Assuming the
collection is parsed from left to right in the above diagram, link collection B is encountered
first. This makes it the first child of link collection A for the time being. Ignoring for
the moment that link collection B has children, link collection D is encountered next. Link

Chapter 3 HID Structures for Clients 865

collection B now becomes the sibling of link collection D and D now becomes the first child
of A. Siblings are defined as the next link collection encountered that is not a child of a dif
ferent parent link collection. Link collection C is a child of link collection B. This makes
link collection B the parent of C in the same manner as A is the parent of B.

A first child, the member FirstChiid in a HIDP _LINK_COLLECTION_NODE structure,
is a link collection that is the last child encountered for a specific parent link collection and
no collection claims it as a sibling. In the preceding example, link collection D is the first
child of link collection A because no collection has it as a sibling. In the same manner, link
collection C is the first child of B.

The next sibling, the member NextSibling in a HIDP _LINK_COLLECTION_NODE
structure, is the link collection that just previous in the order of parsing. In the example. the
next sibling for link collection D is link collection B. Link collections B and A have no next
sibling.

When HidP _GetLinkCollectionNodes returns an array of HIDP _LINK_COLLECTION_
NODE structures it uses the members of each structure to describe the relationships of the
link collections. When an index is returned in a structure it is the index into the array such
that it can be used to retrieve the link collection data for that relationship. The link collection
index is the same value as is found in the LinkCollection member of the HIDP _ V ALUE_
CAPS and HIDP _BUTTON_CAPS structures.

The following code is an example of using a link collection node index to find the first child
of link collection seven:

HIDP_LINK-COLLECTION_NODE Collection[10]
HIDP_LINK_COLLECTION_NODE Nodel ;

Nodel = Collection[Collection.FirstChild[7]]

See Also
HidP _GetLinkCollectionNodes, HIDP _BUTTON_CAPS, HIDP _ VALUE_CAPS

HIDP _VALUE_CAPS
typedef struct _HIDP_VALUE_CAPS {

USAGE UsagePage;
UCHAR ReportID;

USHORT BitField;
USHORT LinkCollection;
USAGE LinkUsage;
USAGE LinkUsagePage;
BOOLEAN IsRange;
BOOLEAN IsStringRange;

866 Part 3 Drivers for Input Devices

BOOLEAN IsDesignatorRange;
BOOLEAN IsAbsolute;
BOOLEAN HasNull;

USHORT BitSize;
USHORT ReportCount;

LONG
LONG
union
{

struct
{

LogicalMin.
Physical Min.

USAGE UsageMin.
USHORT StringMin.
USHORT DesignatorMin.

} Range;
struct

{

USAGE Usage;

LogicalMax;
PhysicalMax;

UsageMax;
StringMax;
DesignatorMax;

USHORT Stringlndex;
USHORT Designatorlndex;

} NotRange;
} ;

HIDP_VALUE_CAPS. *PHIDP_VALUE_CAPS;

HIDP _VALUE_CAPS is used by HID clients to hold the capability data for a value from a
HID device.

Members
UsagePage
Specifies the usage page identifier for this value.

ReportlD
Specifies the report ID in which this value is contained.

BitField
Is the bitfield, as defined by the HID specification, that describes the behavior of this value.
This is the raw data for the bitfield found after the main item in the HID descriptor. The bit
meanings from this bitfield are further parsed into BOOLEAN values elsewhere in this
structure.

Chapter 3 HID Structures for Clients 867

LinkColiection
Specifies a unique identifier to distinguish two controls, within a collection, that have the
same usage page and usage identifiers.

LinkUsage
Specifies the usage identifier for the link collection that this value belongs to. If Link
Collection is zero, this member is the usage identifier for the top level collection.

LinkUsagePage
Specifies the usage page identifier for the link collection that this value belongs to. If Link
Collection is zero, this member is the usage page identifier for the top level collection.

IsRange
Specifies, if TRUE, that this value has a range of usage identifiers that span the members
Range.UsageMin and Range.UsageMax. If this member is FALSE, the single usage iden
tifier for this value is provided in NotRange.Usage.

IsStringRange
Specifies, if TRUE, that this value has a range of string index identifiers that span the mem
bers Range.StringMin and Range.StringMax. If this member is FALSE, the single string
index identifier for this value is provided in NotRange.StringIndex.

IsDesignatorRange
Specifies, if TRUE, that this value has a range of designator identifiers that span the
members Range.DesignatorMin and Range.DesignatorMax. If this member is FALSE,
the single designator identifier for this value is provided in NotRange.DesignatorIndex.

IsAbsolute
Specifies, if TRUE, that this value provides absolute data as opposed to the change from the
last value.

HasNull
Specifies that this value has a condition where the data in this value is not meaningful.
When this occurs, HIDP _STATUS_NULL is returned when the value is retrieved.

BitSize
Specifies the number of bits dedicated within a report to a single instance of this value. If
ReportCount is greater than one, this bit size is size of each data item, not the size of all
data items.

ReportCount
Specifies the number of data items that the usage identifier, described by this structure,
contains.

868 Part 3 Drivers for Input Devices

LogicalMin
Specifies the lowest, or minimum, signed number that this value will report.

LogicalMax
Specifies the highest, or maximum, signed number that this value will report.

PhysicalMin
Specifies the lowest, or minimum, signed number that this value will report after scaling is
applied to the logical value.

Physical Max
Specifies the highest, or maximum, number that this value will report after scaling is applied
to the logical value.

Range.UsageMin
Specifies the lower value of a range of usage identifiers that is bounded at the upper edge by
Range.UsageMax.

Range.UsageMax
Specifies the upper value of a range of usage identifiers that is bounded at the lower edge by
Range.UsageMin.

Range.StringMin
Specifies the lower value of a range of string identifiers that is bounded at the upper edge by
Range.StringMax.

Range.StringMax
Specifies the upper value of a range of string identifiers that is bounded at the lower edge by
Range.StringMin.

Range.DesignatorMin
Specifies the lower value of a range of designator identifiers that is bounded at the upper
edge by Range.DesignatorMax.

Range.DesignatorMax
Specifies the upper value of a range of designator identifiers that is bounded at the lower
edge by Range.DesignatorMin.

NotRange.Usage
Specifies the usage identifier for this value.

Chapter 3 HID Structures for Clients 869

NotRange.Stri ngldentifier
Specifies a string index identifier for this value.

NotRange.Designatorldentifier
Specifies a designator identifier for this value.

Comments
HIDP _VALUE_CAPS is used by HID to deliver and hold capability information about
values in a HID top-level collection. HID clients that use the HidP _Xxx routines allocate an
array of these structures as a buffer for HidP _GetValueCaps and HidP _GetSpecificValue
Caps to obtain information about values in a top level collection.

See HIDP _BUTTON_CAPS for information on structures that hold capability information
about button data.

USAGE 17

Data Item Data Item Data Item Data Item Data Item

Figure 3.2 Usage Arrays

The member ReportCount indicates how many data items are present for each usage that
is described by an instance of this structure.

In Figure 3.2, an example usage layout is given. In this case the device has reported that
for usage 17, it has five data items each six bits long. ReportCount for this structure would
equal 5.

If ReportCount is equal to one, clients access the data for the usage by calling HidP _ Get
UsageValue or HidP _GetScaledUsageValue. However, if ReportCount is greater than
one, then HidP _ GetUsage Value and HidP _ GetScaledUsage Value will not return data
except for the first item. Clients should call HidP _GetUsageValueArray instead.

See Also
HidP _ GetSpecific ValueCaps, HidP _ GetUsage Value, HidP _ GetUsage ValueArray,
HidP _ GetValueCaps

870 Part 3 Drivers for Input Devices

typedef struct _USAGE_AND_PAGE {
USAGE Usage;
USAGE UsagePage;
USAGE_AND_PAGE, *PUSAGE_AND_PAGE;

USAGE_AND _PAGE is used by HID clients when obtaining the status of buttons to hold
the usage page and usage of a button that is down.

Members
Usage
Specifies the usage identifier within the usage page specified by UsagePage of a button that
is down.

UsagePage
Specifies the usage page identifier of a button that is down.

Comments
Clients use USAGE_AND _PAGE with HidP _ GetButtonsEx to obtain both the usage page
and usage identifiers of each button that is down.

See Also
HidP _ GetButtonsEx

CHAPTER 4

HID Support Routines for MiniDrivers

Human input device (HID) minidrivers can call the following routines to support HID
devices.

Routines in this chapter are listed in alphabetic order.

HidRegisterMinidriver
NTSTATUS

HidRegisterMinidriver(
IN PHID_MINIDRIVER_REGISTRATION MinidriverRegistration
) ;

871

HidRegisterMinidriver is called by HID minidrivers, during their initialization, to register
with the HID class services.

Parameters
MinidriverRegistration
Points to a caller-allocated buffer that contains an initialized HID_MINIDRIVER_
REGISTRATION structure for the mini driver.

Return Value
HidRegisterMinidriver returns one of the following NTSTATUS codes:

STATUS_SUCCESS
Indicates that the routine completed without error and the mini driver is now registered
with the HID class driver.

STATUSJNSUFFICIENT_RESOURCES
Indicates that there was insufficient memory for the system to register the minidriver.

872 Part 3 Drivers for Input Devices

STATUS_REVISION_MISMATCH
Indicates that the HID revision number provided in MinidriverRegistration->Revision is not
supported by this version of the HID class driver.

Comments
Before calling this routine, minidrivers must initialize all fields of the HID_
MINIDRIVER_REGISTRATION structure that is provided at MinidriverRegistration.
See HID_MINIDRIVER_REGISTRATION for details on these fields.

Callers of this routine must be running at IRQL < DISPATCH_LEVEL.

See Also
HID_MINIDRIVER_REGISTRATION

873

CHAPTER 5

HID Structures for Minidrivers

This chapter describes system-defined structures specific to Windows® Driver Model
(WDM) Human Input Device (HID) minidrivers. See Part 1 for information about general
operating system-defined structures that are not described here. See HID Structures for
Clients for system structures specific to USB client drivers.

Drivers can use only those members of structures that are described here. All undocumented
members of these structures are reserved for system use.

Structures described in this chapter are in alphabetical order.

HID _DEVICE_ATTRIBUTES
typedef struct _HID_DEVICE_ATTRIBUTES {

ULONG Size;
USHORT VendorID;
USHORT
USHORT

ProductID;
VersionNumber;

HID_DEVICE_ATTRIBUTES is the HID class driver-defined structure used to hold
information about a HID device.

Members
Size
Contains the size of the structure. This field should be treated as read-only when using this
structure to complete an IOCTL_HID_GET_DEVICE_ATTRIBUTES request.

VendorlD
Specifies the manufacturer-determined identification value for the HID device.

874 Part 3 Drivers for Input Devices

ProductlD
Specifies the manufacturer-determined product identification value.

VersionNumber
Specifies the manufacturer-determined version number for the HID device.

Comments
HID_DEVICE_ATTRIBUTES is typically used in conjunction with an 110 control request
to a miniclass driver to obtain the attribute information. Miniclass drivers fill in the Vendor
ID, ProductID, and VersionNumber members of this structure to complete an 10CTL_
HID_GET_DEVICE_ATTRIBUTES request from the system-supplied class driver.

HID_DEVICE_EXTENSION
typedef struct _HID_DEVICE_EXTENSION {

PDEVICE_OBJECT PhysicalDeviceObject;
PDEVICE_OBJECT NextDeviceObject;
PVOID MiniDeviceExtension;
HID_DEVICE_EXTENSION, *PHID_DEVICE_EXTENSION;

HID_DEVICE_EXTENSION is the HID class-defined structure that is used by all mini
drivers for their device extension in their functional device object.

Members
PhysicalDeviceObject
Points to the physical device object for this HID minidriver.

NextDeviceObject
Points to the next device object in the chain of drivers of which the minidriver is a part.

MiniDeviceExtension
Points to the minidriver-specific portion of the device extension.

Comments
A HID minidriver functional device object's device extension will always be in a format
corresponding to this structure. When the device extension is initialized for the device ob
ject, the members of this structure will be initialized by the class driver. The minidriver can
use the memory pointed to by MiniDeviceExtension for its own device-specific data area.
Minidrivers should only reference and not change any of the data except in the memory at
MiniDeviceExtension.

Chapter 5 HID Structures for Minidrivers 875

When a miniclass driver sends an IRP to a lower driver in its chain, it should use the device
object at NextDeviceObject as the target device object in a call to IoCallDriver. The device
object pointed to by PhysicalDeviceObject should be used as a reference only, as it points
to the PDO for this device, not necessarily to the next device object in the chain of drivers.
Other drivers may be layered above the physical device object pointed to by Physical
DeviceObject. As such, NextDeviceObject will always point to the top of the stack that
the minidriver should send its IRPs to.

HID _MINI DRIVER_REGISTRATION
typedef struct ~HID_MINIDRIVER-REGISTRATION

ULONG Revision;
PDRIVER_OBJECT DriverObject;
PUNICODE_STRING RegistryPath;
ULONG DeviceExtensionS;ze;
BOOLEAN DevicesArePolled;

HID_MINIDRIVER_REGISTRATION. *PHID~MINIDRIVER_REGISTRATION;

HID _MINIDRIVER_REGISTRATION is used by HID minidrivers to describe the
minidriver when registered with the HID class driver.

Members
Revision
Specifies the HID version that this minidriver supports.

DriverObject
Points to the DRIVER_OBJECT for the minidriver.

RegistryPath
Points to the registry path for the minidriver.

DeviceExtensionSize
Specifies the length, in bytes, that the minidriver requests for a device extension.

DevicesArePolied
Specifies that the devices on the bus that this minidriver supports must be polled in order to
obtain data from the device.

Comments
Miniclass drivers fill in an instance of this structure to be used as a parameter to Hid
RegisterMinidriver. The structure must be zero-initialized before clients set members of

876 Part 3 Drivers for Input Devices

this structure. Clients should set the members DriverObject and RegistryPath to the driver
object and registry path parameters that are passed to the mini driver as system-supplied
parameters to its DriverEntry routine. Revision should be set to HID_REVISION.

See Also
HidRegisterMinidriver

ypedef struct _HID_X FER-PACKET {
PUCHAR reportBuffer;
ULONG reportBufferLen;
UCHAR reportld;
HID_XFER-PACKET, *PHID_XFER_PACKET;

This structure is used by HID miniclass drivers to obtain the parameters and settings for data
transfer requests from the class driver.

Members
reportBuffer
Points to a buffer that is provided to the miniclass driver to transfer data.

reportBufferLen
Specifies the length of the buffer at reportBuffer.

reportld
Optionally specifies the report ID of the report contained at reportBuffer.

Comments
This structure is used by the HID class driver to submit write report and set feature requests
to HID miniclass drivers. For information on when this structure is used, see I/O Requests
Serviced by HID Minidrivers in Chapter 1.

877

CHAPTER 6

Kbdclass Driver Reference

This chapter includes the following topics about Kbdclass, the Microsoft® Windows® 2000
system class driver for device class GUID_CLASS_KEYBOARD:

• Kbdclass Major I/O Requests

• Kbdclass Device Control Requests

• Kbdclass Class Service Callback Routine

Windows 2000 uses Kbdclass as the class driver for all keyboard devices installed in a
system. The Windows 2000 Win32® subsystem opens all keyboard devices for its exclusive
use. Applications cannot open the keyboard devices operated by Kbdclass.

Kbdclass can work in combination with an optional upper-level keyboard filter driver
for a PS/2-style keyboard device. Kbfiltr, a sample upper-level keyboard filter driver in the
Windows 2000 DDK, demonstrates how to customize the operation of a keyboard device.

For more information on Kbdclass, see the following topics:

• Keyboard and Mouse Drivers for Non-HID Devices in the online DDK

• Include file ntddkbd.h in the %user's install path%\inc directory in the Windows 2000
DDK

• Sample code in the %user's install path%\src\input directory in the Windows 2000 DDK

Note
Kbdclass supports legacy devices and Plug and Play devices. As appropriate, this material
distinguishes between the operation of Kbdclass for a legacy device and a Plug and Play
device. If no distinction is made, the description applies to both legacy and Plug and
Play devices.

878 Part 3 Drivers for Input Devices

Kbdclass Major 1/0 Requests
This section describes the Kbdclass-specific operation of the following major I/O requests
that Kbdclass supports:

IRP _MJ _CLEANUP
IRP _MJ_CLOSE
IRP _MJ_CREATE
IRP _MJ_DEVICE_CONTROL
IRP _MJ_FLUSH_BUFFERS
IRP _MJ_INTERNAL_DEVICE_CONTROL
IRP_MJ_PNP
IRP _MJ_POWER
IRP _MJ_READ
IRP _MJ_SYSTEM_CONTROL

For more information on the generic operation of these requests, see IRP Function Codes
and IOCTLs in Part 1.

IRP _MJ_CLOSE
Operation
The IRP _MJ _CLOSE request closes a keyboard device.

Plug and Play Operation
Kbdclass sends the request down the driver stack and clears the file that is permitted read
access to the device. If there is a grandmaster device, Kbdclass sends a close request to all
the function device objects that are associated with the subordinate class device objects.

Legacy Operation
Kbdclass sends an IOCTL_INTERNAL_KEYBOARD_DISABLE request to the port
driver. Kbdclass also clears the file that is permitted read access to the device.

1/0 Status Block
Plug and Play Operation
The Information member is set to zero.

The Status member is set to STATUS_SUCCESS or to the status returned by the function
driver for the IRP _MJ_CLOSE request.

Legacy Operation
The Information member is set to zero.

The Status member is set to STATUS_SUCCESS or to the status returned by the port driver
for the IOCTL_INTERNAL_KEYBOARD_DISABLE request.

IRP _MJ_CREATE
Operation

Chapter 6 Kbdclass Driver Reference 879

The IRP _MJ _CREATE request opens a file on a keyboard device.

Plug and Play Operation
If the device has been started, Kbdclass sends the IRP _MJ _CREATE request down the
driver stack. If the device is not started, Kbdclass completes the request without sending
the request down the driver stack. Kbdclass sets the trusted file that is permitted read access
to the device. If there is a grandmaster device, Kbdclass sends a create request to all the
keyboard devices that are associated with the subordinate class device objects.

Legacy Operation
Kbdclass sends a synchronous IOCTL_INTERNAL_KEYBOARD_ENABLE request down
the device stack.

1/0 Status Block
Plug and Play Operation
The Information member of the IRP is set to zero.

The Status member is set to one of the following values:

• STATUS_SUCCESS

• STATUS_UNSUCCESFUL The device is not started.

• STATUS_Xxx A lower-level driver returns an error status.

Legacy Operation
The Information member is set to zero.

The Status member is set to STATUS_SUCCESS or to the status returned by the port driver
for an IOCTL_INTERNAL_KEYBOARD _ENABLE request.

Kbdclass supports the following device control requests:

IOCTL_KEYBOARD _QUERY_ATTRIBUTES
IOCTL_KEYBOARD _QUERY _INDICATOR_TRANSLATION
IOCTL_KEYBOARD _QUERY_INDICATORS
IOCTL_KEYBOARD_QUERY_TYPEMATIC
IOCTL_KEYBOARD_SET_INDICATORS

880 Part 3 Drivers for Input Devices

For most other device control requests, Kbdclass skips the current IRP stack location and
sends the request down the stack to be completed by a lower-level driver. If Kbdclass does
not support the request, it completes the request with a status of STATUS_INVALID_
DEVICE_REQUEST.

For more information on device control requests, see Kbdclass Device Control Requests.

IRP_MJ_FLUSH_BUFFERS
Operation
The IRP _MJ_FLUSH_BUFFERS request clears the internal data queue.

1/0 Status Block
The Information member is zero.

The Status member is set to one of the following values:

STATUS_SUCCESS
STATUS_NOT_SUPPORTED
The target device is associated with a subordinate class device that does not support flushing
the internal data queue.

IRP _MJ_INTERNAL_DEVICE_CONTROL
Operation
Kbdclass skips the current IRP stack location and sends the internal device control request
down the device stack to be completed by a lower-level driver.

IRP_MJ_PNP
Kbdclass processes the following Plug and Play requests:

IRP _MN_ QUERY _PNP _DEVICE_STATE
IRP _MN_QUERY _REMOVE_DEVICE
IRP _MN_ QUERY _STOP _DEVICE
IRP _MN_REMOVE_DEVICE
IRP _MN_START_DEVICE
IRP _MN_SURPRIZE_REMOV AL
IRP _MN_STOP _DEVICE

For all other Plug and Play requests, Kbdclass copies the current IRP stack location and
sends the request down the device stack without further processing.

For more information on the generic operation of these requests, see Plug and Play IRPs in
Volume 1 of the Windows 2000 Driver Development Reference.

Chapter 6 Kbdclass Driver Reference 881

1/0 Status Block
Under normal operation the status block values are specific to the minor function request. If
an IRP _MJ _PNP request is sent in error to a legacy device, Kbdclass completes the request
with a status of STATUS_NOT_SUPPORTED.

IRP _MJ_POWER
Kbdclass supports the following power requests:

IRP _MN_SET_POWER
IRP _MN_QUERY _POWER
IRP _MN_ WAIT_WAKE

For all other power requests, Kbdclass copies the current IRP stack location, requests the
next power request, and sends the request down the device stack.

For more information on the generic operation of these requests, see I/O Request for Power
Management in Volume 1 of the Windows 2000 Driver Development Reference.

Status 1/0 Block
Under normal operation the status block values are specific to the minor function request.
If a power request is sent in error to a grandmaster device or a legacy device, Kbdclass com
pletes the request with a status of STATUS_NOT_SUPPORTED.

IRP _MJ_READ
Operation
The IRP _MJ_READ request transfers zero or more KEYBOARD_INPUT_DATA struc
tures from Kbdclass's intemaldata queue to the Win32 subsystem buffer. If there is no data
in the data queue, a read request remains pending until it is completed or canceled.

Kbdclass completes a read request and does not send the request down the device stack.

A read request can be canceled. If a cleanup is in progress when a read request is received,
no action is taken. '

Note that a read request can be completed successfully only if the request was made by
a trusted subsystem. Kbdclass performs a privilege check to enforce this restriction. The
Win32 subsystem is currently the only trusted subsystem.

882 Part 3 Drivers for Input Devices

Input
Parameters.Read.Length member specifies the size in bytes of zero or more
KEYBOARD_INPUT_DATA structures:

typedef struct KEYBOARD_INPUT_DATA {
USHORT Unitld; II zero-based unit number of the keyboard port
USHORT MakeCode; II the make scan code (key depression)
USHORT Flags; II indicates a break (key release) and

II other scan-code info
USHORT Reserved;
ULONG Extralnformation; II device-specific additional

II information for the event
KEYBOARD_INPUT_DATA, *PKEYBOARD_INPUT_DATA;

Output
The AssociatedIrp.SystemBuffer member points to the output buffer that is allocated by
the Win32 subsystem to output the requested number of KEYBOARD_INPUT_DATA
structures.

1/0 Status Block
The Information member specifies the number of bytes that are transferred to the Win32
subsystem output buffer. The number of bytes that are transferred is the smallest of the re
quested number of bytes and the number of bytes currently in the internal data queue.

The Status member is set to one of the following values:

STATUS_SUCCESS
At least one KEYBOARD_INPUT_DATA structure was transferred.

STATUS_BUFFER_TOO_SMALL
The number of requested bytes is not an integer multiple of the size in bytes of a
KEYBOARD_INPUT_DATA structure.

STATUS_PRIVILEGE_NOT _HELD
The requesting subsystem does not have read privileges.

STATUS_CANCELLED
The request was canceled before the transfer actually took place.

IRP_MJ_SVSTEM_CONTROL
Kbdc1ass supports the following Windows Management Instrumentation (WMI) system
control requests:

IRP _MN_REGINFO
IRP_MN_QUERY_DATA_BLOCK

IRP _MN_CHANGE_SINGLE_INSTANCE
IRP _MN_CHANGE_SINGLE_ITEM

Chapter 6 Kbdclass Driver Reference 883

For all other system control requests, Kbdclass skips the current IRP stack location and
sends the request down the device stack without further processing.

Kbdclass calls WmiSystemControl to process WMI requests. Kbdclass registers two types
of WMI data blocks: one type holds a pointer to a class device object, the other indicates
whether or not the class device supports a wait/wake operation. Wait/wake operation can be
enabled or disabled. If wait/wake operation is supported and enabled, the device wakes the
system after a wake event occurs. If wait/wake operation is not supported or disabled, the
device cannot wake the system.

When Called
Kbdclass updates WMI registration information after the device is started and removed.
The driver calls the 10 WMIRegistrationControl routine to update WMI registration
information.

At the request of a WMI client, the WDM provider sends one of the following requests:

• An IRP _MN_QUERY_DATA_BLOCK request to obtain data in one of Kbdclass's data
blocks.

• An IRP _MN_CHANGE_SINGLE_Xxx request to change the data in one of Kbdclass's
data blocks.

1/0 Status Block
If the request is handled by the driver, the Status member is set to one of the following
values:

STATUS_SUCCESS

STATUSjNVALlD_DEVICE_REQUEST

STATUS_WMLGUID_NOT_FOUND
The requested data block is not valid.

STATUS_ WMljNSTANCE_NOT _FOUND
The WMI context is not valid.

If the request is not handled by the driver and sent down the stack, the Status member is set
by a lower-level driver.

884 Part 3 Drivers for Input Devices

Kbdclass Device Control Requests
This section describes the following device control requests that Kbdclass supports:

IOCTL_KEYB OARD_QUERY_ATTRIB UTES
IOCTL_KEYBOARD _QUERY _INDICA TOR_TRANSLATION
IOCTL_KEYBOARD _ QUERY_INDICATORS
IOCTL_KEYBOARD_QUERY_TYPEMATIC
IOCTL_KEYBOARD _SET_INDICATORS
IOCTL_KEYBOARD _SET _ TYPEMATIC

Kbdclass changes these device control requests into internal device control request and
sends the changed request down the device stack.

Kbdclass also sends a number of other device control requests for Plug and Play devices
down the device stack without changing the request to an internal device control request.
For a list of these requests, see IOCTL_KEYBOARD_SET_TYPEMATIC.

Filter drivers between the class and function drivers can filter device control requests either
before they send the request down the device stack or after the lower-level drivers complete
the request.

If Kbdclass does not support the request, it completes the request with a status of STATUS_
INV ALID _DEVICE_REQUEST.

Input and Output
The Parameters.DeviceIoControICode.IoControICode member specifies the control code.

The AssociatedIrp->SystemBuffer member is used for request -specific input and output.

The Parameters.DeviceIoControl.InputBufferLength member is used to input the
request-specific size of the input buffer.

The Parameters.DeviceIoControl.OutputBufferLength member is used to input the
request-specific size of the output buffer.

1/0 Status Block
Usually, the Information member is set to zero or to the number of bytes returned in the
output buffer. Information can also return request-specific values or pointers.

The Status member is set to a request-specific value. Status is set to STATUS_INVALID_
DEVICE_REQUEST if Kbdclass does not support the request.

IOCTL_KEYBOARD_QUERY _ATTRIBUTES
Operation

Chapter 6 Kbdclass Driver Reference 885

The IOCTL_KEYBOARD_QUERY_ATTRIBUTES request returns information about the
keyboard attributes.

Kbdclass copies the current stack location, sets the MajorFunction member of the new
stack location to IRP _MJ_INTERNAL_DEVICE_CONTROL, and sends this request down
the device stack.

For more information on this request, see the description of this request in I8042prt
Keyboard Internal Device Control Requests in Chapter 8.

Input
The Parameters.DeviceIoControl.InputBufferLength member is set to zero or a value
greater than or equal to the size in bytes of a KEYBOARD_UNIT_ID_PARAMETER.
A value of zero specifies a default unit ID of zero.

The AssociatedIrp.SystemBuffer member points to a client-allocated buffer that is
used to input and output information. On input, AssociatedIrp.SystemBuffer points to
a KEYBOARD_UNIT_ID_PARAMETER structure. The client sets the Unitld member
of the input structure.

The Parameters.DeviceIoControl.OutputBufferLength member specifies the size in
bytes of the output buffer, which must be greater than or equal to the size in bytes of a
KEYBOARD_ATTRIBUTES structure.

Output
AssociatedIrp.SystemBuffer points to a client-allocated buffer that the lower-level drivers
use to output a KEYBOARD_ATTRIBUTES structure.

1/0 Status Block
If the request is successful, the Information member is set to the size in bytes of a
KEYBOARD_ATTRIBUTES structure, otherwise Information is set to zero.

The Status member is set to one of the following values:

STATUS_SUCCESS
STATUSJNVALlD_PARAMETER
The Unitld value is not valid.

STATUS_BUFFER_TOO_SMALL
The value of Parameters.DeviceIoControl.lnputBufferLength or Parameters.DeviceIo
Control.OutputBufferLength is not valid.

886 Part 3 Drivers for Input Devices

IOCTL_KEYBOARD_QUERY _INDICATORS
Operation
The IOCTL_KEYBOARD_QUERY_INDICATORS request returns information on the
keyboard indicators.

Kbdclass copies the current stack location, sets the MajorFunction member of the new
stack location to IRP _MJ_INTERNAL_DEVICE_CONTROL, and sends this request down
the device stack.

Input
The Parameters.DeviceIoControi.InputBufferLength member is set to zero or a value
greater than or equal to the size in bytes of a KEYBOARD_UNIT _ID _PARAMETER.
A value of zero specifies a default unit ID of zero.

The AssociatedIrp.SystemBuffer member points to a client-allocated buffer that is
used to input and output information. On input, AssociatedIrp.SystemBuffer points to
a KEYBOARD_UNIT_ID_PARAMETER structure. The client sets the UnitId member
of the input structure.

The Parameters.DeviceIoControl.OutputBufferLength member specifies the size in
bytes of the output buffer, which must be greater than or equal to the size in bytes of a
KEYBOARD _INDICATOR_PARAMETERS structure.

Output
AssociatedIrp.SystemBuffer points to a client-allocated buffer that the lower-level drivers
use to output a KEYBOARD_INDICATOR_PARAMETERS structure.

1/0 Status Block
If the request is successful, the Information member is set to the size in bytes of a
KEYBOARD _INDICATOR_PARAMETERS structure.

The Status member is set to one the following values:

STATUS_SUCCESS
STATUSJNVALID _PARAMETER
The UnitId value is not valid.

STATUS_BUFFER_TOO_SMALL
The output buffer cannot hold the KEYBOARD_INDICATOR_PARAMETERS structure.

Chapter 6 Kbdclass Driver Reference 887

IOCTL_KEYBOARD _QUERY _INDICATOR_TRANSLATION
Operation
The IOCTL_KEYBOARD_QUERY _INDICATOR_TRANSLATION request returns
information on the mapping between scan codes and indicators.

Kbdclass copies the current stack location, sets the MajorFunction member of the new
stack location to IRP _MJ_INTERNAL_DEVICE_CONTROL, and sends this request down
the device stack.

Input
The Parameters.DeviceIoControl.InputBufferLength member is set to zero or a value
greater than or equal to the size in bytes of a KEYBOARD_UNIT_ID_PARAMETER.
A value of zero specifies a default unit ID of zero.

The AssociatedIrp.SystemBuffer member points to a client-allocated buffer that is
used to input and output information. On input, AssociatedIrp.SystemBuffer points to
a KEYBOARD_UNIT_ID_PARAMETER structure. The client sets the Unitld member
of the input structure.

The Parameters.DeviceIoControl.OutputBufferLength member specifies the size in
bytes of a client-allocated output buffer, which must be greater than or equal to the size
in bytes of a KEYBOARD_INDICATOR_TRANSLATION structure. (Note that this
structure includes an array of INDICATOR_LIST members and that the number of
members in this array is device-specific.)

Output
AssociatedIrp.SystemBuffer points to a client-allocated buffer that the lower-level drivers
use to output a KEYBOARD_INDICATOR_TRANSLATION structure.

1/0 Status Block
If the request is successful, the Information member is set to the number of bytes of trans
lation data in the KEYBOARD _INDICATOR_TRANSLATION structure.

The Status member is set to one of the following values:

STATUS_SUCCESS
STATUSjNVALID _PARAMETER
The UnitId value is not valid.

STATUS_BUFFER_TOO_SMALL
The output buffer cannot hold the KEYBOARD _INDICATOR_TRANSLATION data.

STATUS_NOT_SUPPORTED
The target device is associated with a subordinate class device.

888 Part 3 Drivers for Input Devices

IOCTL_KEYBOARD_QUERY _ TYPEMATIC
Operation
The IOCTL_KEYBOARD_QUERY_TYPEMATIC request returns the typematic settings.

Kbdclass copies the current stack location, sets the MajorFunction member of the new
stack location to IRP _MJ_INTERNAL_DEVICE_CONTROL, and sends this request down
the device stack.

Input
The Parameters.DeviceloControl.lnputBufferLength member is set to zero or a value
greater than or equal to the size in bytes of a KEYBOARD_UNIT_ID_PARAMETER. A
value of zero specifies a default unit ID of zero.

The Associatedlrp.SystemBuffer member points to a client-allocated buffer that is
used to input and output information. On input, Associatedlrp.SystemBuffer points to a
KEYBOARD_UNIT_ID_PARAMETER structure. The client sets the UnitId member
of the input structure.

Output
AssociatedIrp.SystemBuffer points to the client-allocated buffer that the lower-level
drivers use to output a KEYBOARD_TYPEMATIC_PARAMETERS structure.

1/0 Status Block
If the request is successful, the Information member is set to the number of bytes of a
KEYBOARD _ TYPEMATIC_P ARAMETERS structure.

The Status member is set to one of the following values:

STATUS_SUCCESS
STATUSJNVALID _PARAMETER
The Unitld value is not valid.

STATUS_BUFFER_TOO_SMALL
The output buffer cannot hold the KEYBOARD_TYPEMATIC_PARAMETERS data.

IOCTL_KEYBOARD _SET_INDICATORS
Operation
The IOCTL_KEYBOARD_SET_INDICATORS request sets the keyboard indicators.

Kbdclass copies the current stack location, sets the MajorFunction member of the new
stack location to IRP _MJ_INTERNAL_DEVICE_CONTROL, and sends this request down
the driver stack.

Chapter 6 Kbdclass Driver Reference 889

If there is a grandmaster device, Kbdclass normally sets the keyboard indicators of all
the subordinate class devices to a global setting. This operation is controlled by the registry
entry value SendOutputToAIIPorts under the key HKLM\Services\CurrentControISet\
Kbdclass\Parameters. If SendOutputToAIIPorts is nonzero, Kdbclass sets all subordi
nate class devices to a gobal setting. Otherwise, Kbdclass sets only the device whose unit
ID is zero.

Input
The Parameters.DeviceIoControl.InputBufferLength member specifies the size in bytes
of a KEYBOARD _INDICATOR_PARAMETER structure.

The AssociatedIrp.SystemBuffer member points to a client-allocated KEYBOARD_
INDICATOR_PARAMETERS structure. The client sets the UnitId and LedFlags
members.

1/0 Status Block
The Information member is set to zero.

The Status member is set to one of the following values:

STATUS_SUCCESS

STATUS_BUFFER_TOO_SMALL
The value of Parameters.DeviceIoControI.InputBufferLength is less than the size in
bytes of a KEYBOARD_INDICATOR_PARAMETER structure.

STATUSJNVALID _PARAMETER
The UnitId value is invalid.

STATUSJO _TIMEOUT
The requested operation timed out on the device.

IOCTL_KEYBOARD _SET _ TYPEMATIC
Operation
The IOCTL_KEYBOARD_SET_TYPEMATIC request sets the typematic parameters.

Kbdclass copies the current stack location, sets the MajorFunction member of the new
stack location to IRP _MJ_INTERNAL_DEVICE_CONTROL, and sends this request down
the device stack.

Note that if there is a grandmaster device, Kbdclass normally sets the typematic settings
of all the subordinate class devices to the same global setting. This operation is controlled by
the grandmaster's registry entry value SendOutputToAIIPorts under the key HKLM\
Services\CurrentControISet\Kbdclass\Parameters.

890 Part 3 Drivers for Input Devices

Input
The Parameters.DeviceIoControl.InputBufferLength member is set to a value greater
than or equal to the size in bytes of a KEYBOARD_TYPEMATIC_PARAMETERS
structure.

The AssociatedIrp.SystemBuffer member points to a client-allocated KEYBOARD_
TYPEMATIC_PARAMETERS structure. The client sets the Unitld, Rate, and Delay
member values.

1/0 Status Block
The Information member is set to zero.

The Status member is set to one of the following values:

STATUS_SUCCESS

STATUS_BUFFER_TOO_SMALL
Parameters.DeviceIoControl.InputBufferLength is less than the size in bytes of a
KEYBOARD _ TYPEMATIC_PARAMETERS structure.

STATUSJNVALlD_PARAMETER
The UnitId value is invalid.

STATUSJO_TIMEOUT
The operation timed out.

IOCTL_Xxx
The following control requests are not changed to internal device control requests. Kbdclass
skips the current IRP stack location and sends these requests down the device stack to be
completed by the lower-level drivers:

IOCTL_GET_SYS_BUTTON_CAPS
IOCTL_GET_SYS_BUTTON_EVENT
IOCTL_HID_GET_DRIVER_CONFIG
IOCTL_HID _SET_DRIVER_CONFIG
IOCTL_HID _ GET_POLL_FREQUENCY _MSEC
IOCTL_HID _SET _POLL_FREQUENCY _MSEC
IOCTL_ GET _NUM_DEVICE_INPUT _BUFFERS
IOCTL_SET _NUM_DEVICE_INPUT _BUFFERS
IOCTL_HID_GET_COLLECTION_INFORMATION
IOCTL_HID_GET_COLLECTION_DESCRIPTOR
IOCTL_HID_FLUSH_QUEUE
IOCTL_HID _SET_FEATURE

IOCTL_HID_GET_FEATURE
IOCTL_GET_PHYSICAL_DESCRIPTOR
IOCTL_HID_GET_HARDW ARE_ID
IOCTL_HID_GET_MANUFACTURER_STRING
IOCTL_HID_GET_PRODUCT_STRING
IOCTL_HID _GET _SERIALNUMBER_STRING
IOCTL_HID_GET_INDEXED_STRING

Kbdclass Class Service Callback Routine

Chapter 6 Kbdclass Driver Reference 891

This section describes KeyboardClassServiceCallback, the keyboard class service callback
routine.

Kbdclass uses an IOCTL_INTERNAL_KEYBOARD_CONNECT request to connect its
class service callback to a keyboard device.

KeyboardClassServiceCallback
VOID

KeyboardClassServiceCallback
IN PDEVICE_OBJECT DeviceObject.
IN PKeyboard_INPUT_DATA InputDataStart.
IN PKeyboard_INPUT_DATA InputDataEnd.
IN OUT PULONG InputDataConsumed
) ;

The KeyboardClassServiceCallback routine is the class service callback that is provided
by Kbdclass. A function driver calls the class service callback in its ISR dispatch completion
routine. The class service callback transfers input data from the input data buffer of a device
to the class data queue.

Parameters
DeviceObject
Pointer to the class device object.

InputDataStart
Pointer to the first keyboard data packet (KEYBOARD_INPUT_DATA structure) in the
port device's input buffer.

InputDataEnd
Pointer to the keyboard data packet that immediately follows the last data packet in the port
device's input data buffer.

InputDataConsumed
Pointer to the number of keyboard data packets that are transferred by the routine.

892 Part 3 Drivers for Input Devices

Include
kbdclass.h

Comments
KeyboardClassServiceCallback transfers input data from the input buffer of the device
to the class data queue. This routine is called by the ISR dispatch completion routine of the
function driver.

KeyboardClassServiceCallback can be supplemented by a filter service callback that
is provided by an upper-level keyboard filter driver. A filter service callback filters the
keyboard data that is transferred to the class data queue. For example, the filter service
callback can delete, transform, or insert data. Kbfiltr, the sample filter driver in the
Microsoft® Windows® 2000 DDK, includes KbFilter_ServiceCallback, which is a
template for a keyboard filter service callback.

KeyboardClassServiceCallback runs in kernel mode at IRQL DISPATCH_LEVEL.

893

CHAPTER 7

Mouclass Driver Reference

This chapter includes the following topics about Mouclass, the Microsoft® Windows® 2000
system class driver for device class GUID_CLASS_MOUSE:

• Mouclass Major I/O Requests

• Mouclass Device Control Requests

• Mouclass Class Service Callback Routine .

Windows 2000 uses Mouclass as the class driver for all mouse devices installed in a
system. The Windows 2000 Win32® subsystem opens all mouse devices for its exclusive
use. Applications can not open the mouse devices opened by Mouclass.

Mouclass can work in combination with an optional upper-level mouse filter driver for
a PS/2-style mouse device. Moufiltr, a sample upper-level mouse filter driver in the Win
dows 2000 DDK, can be used to customize the operation of a mouse device.

For more information on Mouclass, see the following topics:

• Keyboard and Mouse Drivers forNon-HID Devices in the online DDK

• Include file ntddkbd.h in the %user's install path%\inc directory of the Windows
2000DDK

• Sample code in the %user's install path%\src\input directory of the Windows 2000 DDK

Note
Mouclass supports legacy devices and Plug and Play devices. When appropriate, this mate
rial distinguishes between the operation of Mouclass for a legacy device and a Plug and Play
device. If no distinction is made, the description applies to both legacy and Plug and Play
devices.

894 Part 3 Drivers for Input Devices

Mouclass Major 1/0 Requests
This section describes Mouclass-specific operation of the following major I/O requests:

IRP _MJ_CLEANUP
IRP _MJ_CLOSE
IRP _MJ_CREATE
IRP _MJ_DEVICE_CONTROL
IRP _MJ_FLUSH_BUFFERS
IRP _MJ_INTERNAL_DEVICE_CONTROL
IRP_MJ_PNP
IRP _MJ_POWER
IRP _MJ_READ
IRP _MJ_SYSTEM_CONTROL

For more information about how Mouclass handles the generic operation of these requests,
see IRP Function Codes and IOCTLs in Part 1 of this volume.

IRP _MJ_CLOSE
Plug and Play Operation
Mouclass sends the request down the device stack and clears the "trusted" file that is
permitted read access to the device. If there is a grandmaster device, Mouclass sends a
request to close to all the ports associated with the subordinate class devices.

Legacy Operation
Mouclass sends an IOCTL_INTERNAL_MOUSE_DISABLE request to the port driver.
Mouclass also clears the "trusted" file that is permitted read access to the device.

110 Status Block
Plug and Play Operation
The Information member is set to zero.

Mouclass sets the Status member to STATUS_SUCCESS or to the status returned by the
function driver for the IRP _MJ_CLOSE request.

Legacy Operation
The Information member is set to zero.

The Status member is set to STATUS_SUCCESS or to the status returned by the port driver
for the IOCTL_INTERNAL_MOUSE_DISABLE request.

IRP _MJ_CREATE
Operation

Chapter 7 Mouclass Driver Reference 895

The IRP _MJ _CREATE request opens a file on mouse device.

Plug and Play Operation
If the device is started, Mouclass sends the IRP _MJ _ CREA TE request down the device
stack. If the device is not started, Mouclass completes the request without sending the re
quest down the driver stack. Mouclass sets the "trusted" file that is permitted read access
to the device. If there is a grandmaster device, Mouclass sends a create request to all the
mouse devices associated with the subordinate class device objects.

Legacy Operation
Mouclass sends a synchronous IOCTL_INTERNAL_MOUSE_ENABLE request down the
device stack.

1/0 Status Block
Plug and Play Operation
The Information member of the IRP is set to zero.

The Status member is set to one of the following values:

STATUS_SUCCESS
STATUS_UNSUCCESFUL
The device is not started.

STATUS_Xxx
A lower-level driver returned an error status.

Legacy Operation
The Information member is set to zero.

The Status member is set to STATUS_SUCCESS or the status returned by a lower-level
driver for the IOCTL_INTERNAL_MOUSE_ENABLE request.

Mouclass supports the following major device control request:

IOCTL_MOUSE_ QUERY_ATTRIBUTES

For most other device control requests, Mouclass skips the current IRP stack location
and sends the request down the device stack to be completed by a lower-level driver. If

896 Part 3 Drivers for Input Devices

Mouclass does not support the request, Mouclass completes the request with a status
of STATUS_INV ALID_DEVICE_REQUEST.

For more information on device control requests, see Mouclass Device Control Requests.

IRP_MJ_FLUSH_BUFFERS
Operation
The IRP _MJ_FLUSH_BUFFERS request clears the internal data queue.

1/0 Status Block
The Information member is set to zero.

The Status member is set to one of the following values:

STATUS_SUCCESS
STATUS_NOT_SUPPORTED
The target device is associated with a subordinate class device that does not support flushing
the internal data queue.

IRP _MJ_INTERNAL_DEVICE_CONTROL
Operation
Mouclass skips the current IRP stack location and sends the internal device control request
down the device stack to be completed by a lower-level driver.

IRP_MJ_PNP
Operation
Mouclass processes the following Plug and Play requests:

IRP _MN_REMOVE_DEVICE
IRP _MN_START_DEVICE
IRP _MN_STOP _DEVICE

For all other Plug and Play requests, Mouclass copies the current IRP stack location and
sends the request down the device stack without further processing.

For more information on the generic operation of these requests, see Plug and Play IRPs in
Volume 1 of the Windows 2000 Driver Development Reference.

Chapter 7 Mouclass Driver Reference 897

1/0 Status Block
Under normal operation the status block values are specific to the minor function request.
If a Plug and Play request is sent in error to a legacy device, Mouclass completes the request
with a status of STATUS_NOT_SUPPORTED.

IRP _MJ_POWER
Operation
Mouclass supports the following power requests and, as appropriate, sends them down the
device stack:

IRP _MN_SET_POWER
IRP _MN_QUERY_POWER
IRP _MN_ WAIT_WAKE

For all other power requests, Mouclass copies the current IRP stack location, requests the
next power request, and sends the request down the device stack.

For more information on the generic operation of these requests, see I/O Request for Power
Management in Volume 1 of the Windows 2000 Driver Development Reference.

Status 1/0 Block
Under normal operation the status block values are specific to the minor function request.
If a power request is sent in error to a grandmaster device or a legacy device, Mouclass
completes the request with a status of STATUS_NOT_SUPPORTED.

IRP _MJ_READ
Operation
The IRP _MJ_READ request transfers zero or more MOUSE_INPUT_DATA structures
from the internal data queue to the Win32 subsystem buffer. If there is no data in the data
queue, a read request remains pending until it is completed or canceled.

The read request is not sent down the device stack and is completed by Mouclass.

A read request can be canceled. A read request is not executed if a cleanup is in progress
when the request is received.

Note that a read request can be completed successfully only if it is made by a trusted sub
system. The Win32 subsystem is currently the only trusted subsystem. Mouclass performs a
privilege check to enforce this restriction.

Input
Parameters.Read.Length member specifies the size in bytes of zero or more of
MOUSE_INPUT_DATA structures:

898 Part 3 Drivers for Input Devices

typedef struct MOUSE_INPUT_DATA {
USHORT Unitld; II zero-based unit number of the mouse port
USHORT Flags; II indicator flags
union {

ULONG Buttons; II transition state of the mouse buttons
struct {

USHORT ButtonFlags; II transition state of mouse buttons
USHORT ButtonData; II data for flags (such as amount

II of movement if MOUSE_WHEEL is set)
} ;

} ;

ULONG RawButtons; II the raw state of the mouse buttons.
II currently not used by the Win32 subsystem

LONG LastX; II the signed relative or absolute motion
II in the X direction

LONG LastY; II the signed relative or absolute motion
II in the Y direction

ULONG Extralnformation; II device-specific information
II for the event

MOUSE_INPUT_DATA. *PMOUSE_INPUT_DATA

Output
The AssociatedIrp.SystemBuffer member points to an output buffer that is allocated by the
Win32 subsystem to output the requested number of MOUSE_INPUT_DATA structures.

1/0 Status Block
The Information member specifies the number of bytes transferred to the Win32 subsystem
buffer. The number of bytes that are transferred is the smallest of the requested number of
bytes and the number of bytes currently in the data queue.

The Status member is set to one of the following values:

STATUS_SUCCESS
At least one MOUSE_INPUT_DATA structure was transferred.

STATUS_BUFFER_TOO_SMALL
The number of requested bytes is not an integer multiple of the size in bytes of a MOUSE_
INPUT_DATA structure.

STATUS_PRIVILEGE_NOT _HELD
The requesting subsystem does not have read privileges.

STATUS_CANCELLED
The request was canceled before the transfer actually took place.

IRP_MJ_SVSTEM_CONTROL
Operation

Chapter 7 Mouclass Driver Reference 899

Mouclass supports the following Windows Management Instrumentation (WMI) minor
functions:

IRP _MN_REGINFO
IRP_MN_QVERY_DATA_BLOCK
IRP _MN_CHANGE_SINGLE_INSTANCE
IRP _MN_CHANGE_SINGLE_ITEM

For all other system control requests, Mouclass skips the current IRP and sends the request
down the device stack to be completed by a lower-level driver.

Mouclass calls WmiSystemControl to process WMI requests. Mouclass registers two
types of WMI data blocks: one type holds a pointer to a class device object, the other type
indicates whether or not the class device supports a wait/wake operation. Wait/wake opera
tion can be enabled or disabled. If wait/wake operation is supported and enabled, the device
wakes the system after a wake event occurs. If wait/wake operation is not supported or
disabled, the device can not wake the system.

When Called
Mouclass receives an IRP _MN_REGINFO request after it calls 10 WMIRegistration
Control to update registration information. Mouclass updates registration information
when a device is started or removed.

At the request of a WMI client, the WDM provider sends one of the following requests to
Mouclass:

• An IRP _MN_QVERY_DATA_BLOCK request to obtain the data in one of registered
data blocks.

• An IRP _MN_CHANGE_SINGLE_Xxx request to change the data in one of registered
data blocks.

1/0 Status Block
If the request is handled by the driver, the Status member is set to one of the following
values:

STATUS_SUCCESS

STATUSJNVALID _DEVICE_REQUEST

STATUS_WMLGUID_NOT_FOUND
The requested data block is not valid.

900 Part 3 Drivers for Input Devices

STATUS_ WMIJNSTANCE_NOT _FOUND
The WMI context is not valid.

Mouclass Device Control Requests
This section describes the following device control request that Mouclass supports:

IOCTL_MOUSE_ QUERY_ATTRIBUTES

Mouclass changes this device control request into an internal device control request and
sends the changed request down the device stack.

Mouclass also sends a number of other device control requests for Plug and Play devices
down the device stack without changing the request to an internal device control request.
For a list of these requests, see IOCTL_Xxx Device Control Requests.

Filter drivers between the class and function drivers can filter these requests before they
send the request down the device stack or after the lower-level drivers complete the request.

If Mouclass does not support the request, it completes the request with a status of STATUS_
INV ALID_DEVICE_REQUEST.

IOCTL_MOUSE_QUERV _ATTRIBUTES
Operation
The IOCTL_MOUSE_QUERY_ATTRIBUTES request returns information about the
mouse attributes.

Mouclass copies the current stack location, sets the MajorFunction member of the new
stack location to IRP _MJ_INTERNAL_DEVICE_CONTROL, and sends this request down
the device'stack.

For more information on this request, see I8042prt Mouse Internal Device Control Requests
in Chapter 8.

Input
The Parameters.DeviceloControi.InputBufferLength member is set to zero or a value
greater than or equal to the size in bytes of a MOUSE_UNIT_ID_PARAMETER. A value
of zero specifies a default unit ID of zero.

The Associatedlrp.SystemBuffer member points to a client-allocated buffer that is used
to input and output information. On input, Associatedlrp.SystemBuffer points to a
MOUSE_UNIT_ID_PARAMETER structure. The client sets the Unitld member of the
input structure.

Chapter 7 Mouclass Driver Reference 901

The Parameters.DeviceIoControl.OutputBufferLength member specifies the size in
bytes of an output buffer, which must be greater than or equal to the size in bytes of a
MOUSE_ATTRIBUTES structure.

Output
AssociatedIrp.SystemBuffer points to the client-allocated buffer that the lower-level
drivers use to output a MOU.SE_ATTRIBUTES structure.

1/0 Status Block
The Information member is set to the number of bytes of attribute data that are returned if
the request is successful.

The Status member is set to one of the following values:

STATUS_SUCCESS
STATUSJNVALlD_PARAMETER
The UnitId value is invalid.

STATUS_BUFFER_TOO_SMALL
The Parameters.DeviceIoControl.InputBufferLength value is greater than zero but less
than the size in bytes of a MOUSE_UNIT_ID_PARAMETER structure.

STATUS_NOT_SUPPORTED
The target device is associated with a subordinate class device.

IOCTL_Xxx Device Control Requests
Mouclass skips the current IRP stack and sends the following control requests down the
device stack to be completed by a lower-level driver:

IOCTL_GET_SYS_BUTTON_CAPS
IOCTL_GET_SYS_BUTTON_EVENT
IOCTL_HID_GET_DRIVER_CONFIG
IOCTL_HID _SET_DRIVER_CONFIG
IOCTL_HID _GET _POLL_FREQUENCY _MSEC
IOCTL_HID _SET _POLL_FREQUENCY _MSEC
IOCTL_ GET _NUM_DEVICE_INPUT _BUFFERS
IOCTL_SET_NUM_DEVICE_INPUT_BUFFERS
IOCTL_HID_GET_COLLECTION_INFORMATION
IOCTL_HID_GET_COLLECTION_DESCRIPTOR
IOCTL_HID YLUSH_ QUEUE
IOCTL_HID _SET_FEATURE
IOCTL_HID _ GET_FEATURE
IOCTL_GET_PHYSICAL_DESCRIPTOR

902 Part 3 Drivers for Input Devices

IOCTL_HID_GET_HARDWARE_ID
IOCTL_HID_GET_MANUFACTURER_STRING
IOCTL_HID_GET_PRODUCT_STRING
IOCTL_HID_GET_SERIALNUMBER_STRING
IOCTL_HID _GET_INDEXED _STRING

Mouclass Class Service Callback Routine
This section describes MouseClassServiceCallback, the mouse class service callback
routine.

Mouclass uses an IOCTL_INTERNAL_MOUSE_CONNECT request to connect its class
service callback to a mouse device.

MouseClassServiceCallback
VOID

MouseClassServiceCallback
IN PDEVICE_OBJECT DeviceObject,
IN PMOUSE_INPUT_DATA InputDataStart,
IN PMOUSE_INPUT_DATA InputDataEnd,
IN OUT PULONG InputDataConsumed
) ;

The MouseClassServiceCallback routine is the class service callback that is provided by
Mouclass. A function driver calls the class service callback in its ISR dispatch completion
routine. The class service callback transfers input data from the input data buffer of a device
to the class data queue.

Parameters
DeviceObject
Pointer to the class device object.

InputDataStart
Pointer to the first mouse data packet, a MOUSE_INPUT_DATA structure, in the port
device's input buffer.

InputDataEnd
Pointer to the mouse data packet that immediately follows the last data packet in the port
device's input data buffer.

InputDataConsumed
Pointer to the number of mouse data packets that are transferred by the routine.

Chapter 7 Mouclass Driver Reference 903

Include
mouclass.h

Comments
MouseClassServiceCallback transfers input data from the input buffer of the device to
the class data queue. This routine is called by the ISR dispatch completion routine of the
function driver.

MouseClassServiceCallback can be supplemented by a filter service callback that is
provided by an upper-level mouse filter driver. A filter service callback can filter the mouse
data that is transferred to the class data queue. For example, the filter service callback can
delete, transform, or insert data. Moufiltr, the sample filter driver in the Microsoft® Win
dows® 2000 DDK, includes MouFilter_ServiceCallback, which is a template for a filter
service callback.

MouseClassServiceCallback runs in kernel mode at IRQL DISPATCH_LEVEL.

905

CHAPTER 8

18042prt Driver Reference

This chapter includes the following topics about 18042prt, the Microsoft® Windows® 2000
system function driver for a PS/2-style keyboard device and a PS/2-style mouse device:

• 18042prt Keyboard Major 110 Requests

• 18042prt Keyboard Internal Device Control Requests

• 18042prt Mouse Major 110 Requests

• 18042prt Mouse Internal Device Control Requests

• 18042prt Keyboard Callback Routines

• 18042prt Mouse Callback Routines

Note that the operational constraints of I8042prt do not apply to Sermouse, the Windows
2000 system function driver for a serial mouse.

For more information on I8042prt operation, see the following topics:

• Keyboard and Mouse Drivers for Non-HID Devices in the online DDK

• Include files ntddkbd.h and ntddmou.h in the %user's install path%\inc directory in the
Windows 2000 DDK

• Sample code in the %user's install path%\src\input directory in the Windows 2000 DDK

18042prt Keyboard Major 1/0 Requests
This section describes the I8042prt-specific operation of the following major I/O requests
that I8042prt supports for a keyboard device:

IRP _MJ_CLOSE
IRP_MJ_CREATE
IRP_MJ_PNP

906 Part 3 Drivers for Input Devices

IRP _MJ_POWER
IRP _MJ_SYSTEM_CONTROL

For information on how I8042prt handles the generic operation of these requests, see IRP
Function Codes and IOCTLs in Part 1.

IRP _MJ_CREATE
Operation
The IRP _MJ _CREATE request opens a file on a keyboard device.

Note that Kbdclass uses an IOCTL_INTERNAL_KEYBOARD_CONNECTrequest to
connect to a device before Kbdclass can open the device. There can be only one connection
to the device. For more information, see Open and Close a Keyboard and Mouse Device in
Part 4 in the Kernel-Mode Drivers Design Guide.

I8042prt completes the IRP _MJ_CREATE request.

1/0 Status Block
The Information member is set to zero.

The Status member is set to one of the following status codes:

STATUS_SUCCESS

STATUSJNVALID _DEVICE_STATE
The keyboard class service is not connected.

STATUS_NO _SUCH_DEVICE
The keyboard device is not present.

IRP _MJ_DEVICE_CONTROL
I8042prt supports the following device control requests for a keyboard device:

IOCTL_GET_SYS_BUTTON_CAPS
IOCTL_GET_SYS_BUTTON_EVENT

These requests are used exclusively by the Power Manager. No other device control requests
are supported.

If the device is in a Plug and Play stopped state or removed state, or a request is not
supported, I8042prt completes the request with a status of STATUS_INVALID_DEVICE_
REQUEST.

IRP _MJ_INTERNAL_DEVICE_CONTROL
I8042prt supports the following internal device control requests:

Chapter 8 18042prt Driver Reference 907

IOCTL_INTERNAL_I8042_CONTROLLER_ WRITE_BUFFER
IOCTL_INTERNAL_I8042_HOOK_KEYBOARD
IOCTL_INTERNAL_I8042_KEYBOARD _START_INFORMATION
IOCTL_INTERNAL_I8042_KEYBOARD _ WRITE_BUFFER
IOCTL_INTERNAL_KEYBOARD_CONNECT
IOCTL_INTERNAL_KEYBOARD _DISCONNECT
IOCTL_KEYBOARD _QUERY _ATTRIBUTES
IOCTL_KEYBOARD_QUERY_INDICATOR_TRANSLATION
IOCTL_KEYBOARD _QUERY_INDICATORS
IOCTL_KEYBOARD_QUERY_TYPEMATIC
IOCTL_KEYBOARD _SET_INDICATORS
IOCTL_KEYBOARD _SET _ TYPEMATIC

For more information on these requests, see I8042prt Keyboard Internal Device Control
Requests.

I8042prt completes all other requests with a status of STATUS_INVALID_DEVICE_
REQUEST.

IRP_MJ_PNP
Operation
I8042prt processes the following Plug and Play requests for a keyboard device:

IRP _MN_CANCEL_REMOVE_DEVICE
IRP _MN_CANCEL_STOP _DEVICE
IRP _MN_FILTER_RESOURCE_REQUIREMENTS
IRP _MN_ QUERY _PNP _DEVICE_STATE
IRP _MN_QUERY_REMOVE_DEVICE
IRP _MN_QUERY_STOP _DEVICE
IRP _MN_REMOVE_DEVICE
IRP _MN_START_DEVICE

For all other Plug and Play requests, I8042prt skips the current IRP stack and sends the
request down the device stack.

For more information on the generic operation of these requests, see Plug and Play IRPs.

1/0 Status Block
The status block values are function-specific.

IRP _MJ_POWER
Operation
I8042prt processes the following power request for a keyboard device:

908 Part 3 Drivers for Input Devices

For all other power requests, I8042prt skips the current IRP stack, requests the next power
IRP, and sends the request down the device stack.

For more information on th~ generic operation of these requests, see I/O Requests for Power
Management in Volume 1 of the Windows 2000 Driver Development Reference.

Status 1/0 Block
The status block values are function-specific.

IRP_MJ_SYSTEM_CONTROL
Operation
I8042prt supports the following Windows® Management Instrumentation (WMI) system
control requests for a keyboard device:

IRP _MN_REGINFO
IRP _MN_QVERY_DATA_BLOCK

For all other system control requests, I8042prt skips the current IRP stack location, and
sends the request down the device stack to be completed by a lower-level driver.

I8042prt calls WmiSystemControl to process WMI requests. I8042prt registers the WMI
data block that contains a KEYBOARD_PORT_ WMI_STD_DATA structure.

When Called
The WDM provider sends an IRP _MN_REGINFO request after a driver calls IoWMI
RegistrationControl to update WMI registration information-see Dp WmiQueryReginfo
in Part 8. The port driver updates WMI registration information when the device is started
and removed.

At the request of a WMI client, the WDM provider sends an IRP _MN_QVERY_
DATA_BLOCK request to the port driver to obtain a data block containing a keyboard
KEYBOARD_PORT_ WMI_STD_DATA structure.

1/0 Status Block
If the request is handled by I8042prt, the Status member is set to one of the following
values:

STATUS_SUCCESS

STATUSJNVALlD_DEVICE_REQUEST

STATUS_ WMC GUID _NOT_FOUND
The data block GVID is not valid.

STATUS_ WMIJNSTANCE_NOT _FOUND
The WMI context is not valid.

Chapter 8 18042prt Driver Reference 909

18042prt Keyboard Internal Device Control Requests
This section describes the following internal device control requests that I8042prt supports
for a keyboard device:

IOCTL_INTERNAL_I8042_CONTROLLER_ WRITE_BUFFER
IOCTL_INTERNAL_I8042_HOOK_KEYBOARD
IOCTL_INTERNAL_I8042_KEYBOARD _START_INFORMATION
IOCTL_INTERNAL_I8042_KEYBOARD _ WRITE_BUFFER
IOCTL_INTERNAL_KEYBOARD_CONNECT
IOCTL_INTERNAL_KEYBOARD _DISCONNECT
IOCTL_KEYBOARD_QUERY_ATTRIBUTES
IOCTL_KEYBOARD _QUERY _INDICATOR_TRANSLATION
IOCTL_KEYBOARD _QUERY_INDICATORS
IOCTL_KEYBOARD_QUERY_TYPEMATIC
IOCTL_KEYBOARD_SET_INDICATORS
IOCTL_KEYBOARD _SET _ TYPEMATIC

I8042prt completes all other internal device control with a status of STATUS_INVALID_
DEVICE_REQUEST.

IOCTL_INTERNAL_IS042_CONTROLLER_ WRITE_BUFFER
Operation
The IOCTL_INTERNAL_I8042_CONTROLLER_ WRITE_BUFFER request is not
supported.

Status 110 Block
The Status member is set to STATUS_NOT_SUPPORTED.

IOCTL_INTERNAL_IS042_HOOK_KEYBOARD
Operation
The IOCTL_INTERNAL_I8042_HOOK_KEYBOARD request adds the following callback
routines to I8042prt's operation:

• An optional initialization callback routine that I8042prt calls when it initializes a
keyboard

• An optional callback routine into I8042prt's interrupt service routine

910 Part 3 Drivers for Input Devices

These optional callback routines are added by an upper-level filter driver for the keyboard
device.

After I8042prt receives an IOCTL_INTERNAL_KEYBOARD _CONNECT request, it
sends a synchronous IOCTL_INTERNAL_I8042_HOOK_KEYBOARD request to the top
of the keyboard device stack. When the upper-level filter driver receives this request, the
filter driver sets the keyboard IsrRoutine member and the keyboard InitializationRoutine
member of the INTERNAL_I8042_HOOK_KEYBOARD structure passed with the request.

Input
The Parameters.DeviceIoControl.Type3InputBuffer points to an INTERNAL_I8042_
HOOK_KEYBOARD structure. This structure includes:

• The InitializationRoutine member that points to a callback routine that is called by
I8042prt's initialization service routine

• The IsrRoutine member that points to a callback routine that is called by I8042prt's
interrupt service routine

1/0 Status Block
The Status member is set to one of the following values:

STATUS_SUCCESS

STATUSJNVALID _PARAMETER
Parameters.DeviceIoControl. Type3InputBuffer is less than the size in bytes of an
INTERNAL_I8042_HOOK_KEYBOARD structure.

IOCTL_INTERNAL_IS042_KEYBOARD _START_INFORMATION
Operation
The IOCTL_INTERNAL_I8042_KEYBOARD _START _INFORMATION request passes a
pointer to a keyboard interrupt object. I8042prt sends this request synchronously to the top
of the device stack after the keyboard interrupt object is created. Upper-level filter drivers
that need to synchronize their callback operation with the keyboard interrupt service routine
(ISR) can use the pointer to the keyboard interrupt object. For more information on this
request, see Synchronize the Operation of a Filter Driver with a Device IS Interrupt Service
Routine in Part 4 in the Kernel-Mode Drivers Design Guide.

Input
The AssociatedIrp.SystemBuffer points to a buffer allocated by I8042prt to input an
INTERNAL_I8042_START _INFORMATION structure.

The Parameters.DeviceIoControl.InputBufferLength specifies the size in bytes of an
INTERNAL_I8042_START _INFORMATION structure.

Chapter 8 .18042prt Driver Reference 911

Status 1/0 Block
The Information member is set to zero.

The Status member is set to STATUS_SUCCESS.

IOCTL_INTERNAL_IS042_KEYBOARD _WRITE_BUFFER
Operation
The IOCTL_INTERNAL_IS042_KEYBOARD_ WRITE_BUFFER request writes data to
the iS042 controller to control operation of a keyboard device. A filter driver can use this
request to control the operation of a keyboard.

IS042prt synchronizes write buffer requests and other keyboard requests that write to
the iS042 controller, including IOCTL_KEYBOARD_SET_INDICATORS and IOCTL_
KEYBOARD_SET_TYPEMATIC. IS042prt synchronizes the actual write of data with
the keyboard ISR.

Input
The Parameters.DeviceIoControl.InputBufferLength is set to the number of bytes in the
input buffer, which must be greater than one.

The Parameters.DeviceIoControl. Type3InputBuffer points to a client-allocated buffer to
input the data to write to an iS042 controller.

Status 1/0 Block
The Status member is set to one of the following values:

STATUS_SUCCESS

STATUS_DEVICE_NOT _READY
The keyboard interrupt is not initialized.

STATUSJNVALID _PARAMETER
The input parameters are not valid.

STATUSJO_TIMEOUT
The request timed out.

IOCTL_INTERNAL_KEYBOARD_CONNECT
Operation
The IOCTL_INTERNAL_KEYBOARD_CONNECTrequest connects the Kbdclass service
to the keyboard device.

After IS042prt receives a keyboard connect request, it sends a synchronous IOCTL_
INTERNAL_IS042_HOOK_KEYBOARD request to the top of keyboard device stack. The

912 Part 3 Drivers for Input Devices

connect request is completed after the IOCTL_INTERNAL_I8042_HOOK_KEYBOARD
request is completed.

For more information, see Connect a Class Service Callback and a Filter Service Callback
to a Device in the online DDK.

Input
The Parameters.DeviceIoControl. Type3InputBuffer points to a CONNECT_DATA
structure. This structure includes a pointer to a device object and a pointer to a class service
callback routine. The connect data is set by Kbdclass and can be filtered (reset) by a filter
driver below Kbdclass in the device stack.

The Parameters.DeviceIoControl.InputBufferLength specifies the size in bytes of a
CONNECT_DATA structure.

1/0 Status Block
The Information member is set by the port driver.

The Status member is set to one of the following values:

STATUS_SUCCESS

STATUSJNVALID _PARAMETER
Parameters.DeviceIoControl.InputBufferLength is less than the size in bytes of a
CONNECT_DATA structure.

STATUS_SHARING_ VIOLATION
The port driver is already connected.

IOCTL_INTERNAL_KEYBOARD_DISCONNECT
Operation
The IOCTL_INTERNAL_KEYBOARD_DISCONNECT request is not implemented.

Note that the Plug and Play Manager can dynamically add and remove Plug and Play
devices.

1/0 Status Block
The Status member is set to STATUS_NOT_IMPLEMENTED.

IOCTL_KEYBOARD_QUERY _ATTRIBUTES
Operation
The IOCTL_KEYBOARD_QUERY_ATTRIBUTES request returns information about the
keyboard attributes.

Chapter 8 18042prt Driver Reference 913

Input
The Parameters.DeviceIoControl.OutputBufferLength member is set to a value greater
than or equal to the size in bytes of a KEYBOARD_ATTRIBUTES structure.

Output
AssociatedIrp.SystemBuffer points to a client-allocated buffer that I8042prt uses to output
a KEYBOARD_ATTRIBUTES structure.

I/O Status Block
If the request is successful, the Information member is set to the size in bytes of a
KEYBOARD_ATTRIBUTES structure. Otherwise the Information member is set to zero.

The Status member is set to one of the following values:

STATUS_SUCCESS
STATUS_BUFFER_TOO_SMALL
Parameters.DeviceIoControl.OutputBufferLength is less than the size in bytes of a
KEYBOARD_ATTRIBUTES structure.

IOCTL_KEYBOARD_QUERY _INDICATORS
Operation
The IOCTL_KEYBOARD_QUERY_INDICATORS request returns information about the
keyboard indicators.

Input
The Parameters.DeviceIoControl.OutputBufferLength is set to a value greater than or
equal to the size in bytes of a KEYBOARD_INDICATOR_PARAMETERS structure.

Output
AssociatedIrp.SystemBuffer points to a client-allocated buffer that I8042prt uses to output
a KEYBOARD _INDICATOR_PARAMETERS structure.

1/0 Status Block
If the request is successful, the Information member is set to the size in bytes of a KEY
BOARD_INDICATOR_PARAMETERS structure. Otherwise, Information is set to zero.

The Status member is set to one the following values:

STATUS_SUCCESS
STATUS_BUFFER_TOO_SMALL
Parameters.DeviceIoControl.OutputBufferLength is less than the size in bytes of a
KEYBOARD _INDICATOR_PARAMETERS structure.

914 Part 3 Drivers for Input Devices

IOCTL_KEYBOARD _QUERY _INDICATOR_TRANSLATION
Operation
The IOCTL_KEYBOARD_QUERY _INDICATOR_TRANSLATION request returns
information about the mapping between scan codes and keyboard indicators.

Input
The Parameters.DeviceIoControl.OutputBufferLength is set to a value greater
than or equal to the size in bytes of a device-specific KEYBOARD _INDICATOR_
TRANSLATION structure. This structure includes a variable-sized array of
INDICATOR_LIST members that is device-specific.

Output
AssociatedIrp.SystemBuffer points to a client-allocated buffer that I8042prt uses to
output a KEYBOARD_INDICATOR_TRANSLATION structure. This structure includes
a variable-sized array of INDICATOR_LIST members that is device-specific.

1/0 Status Block
If the request is successful, the Information member is set to the size in bytes of the device
specific KEYBOARD_INDICATOR_TRANSLATION structure. Otherwise, Information
is set to zero.

The Status member is set to one of the following values:

STATUS_SUCCESS
STATUS_BUFFER_TOO_SMALL
Parameters.DeviceIoControl.OutputBufferLength is less than the size in bytes of the
device-specific KEYBOARD _INDICATORS_TRANSLATION structure.

IOCTL_KEYBOARD _QUERY _ TYPEMATIC
Operation
The IOCTL_KEYBOARD_QUERY_TYPEMATIC request returns the keyboard typematic
settings.

Input
The Parameters.DeviceIoControl.OutputBufferLength member is set to a value greater
than or equal to the size in bytes of a KEYBOARD _ TYPEMATIC_P ARAMETERS
structure.

Output
AssociatedIrp.SystemBuffer points to a client-allocated output buffer that I8042prt uses to
output a KEYBOARD_TYPEMATIC_PARAMETERS structure.

Chapter 8 18042prt Driver Reference 915

1/0 Status Block
If the request is successful, the Information member is set to the size in bytes of a
KEYBOARD_TYPEMATIC_PARAMETERS structure. Otherwise, Information is set
to zero.

The Status member is set to one of the following values:

STATUS_SUCCESS

STATUS_BUFFER_TOO_SMALL
Parameters.DeviceIoControl.OutputBufferLength is less than the size in bytes of a
KEYBOARD _ TYPEMATIC_PARAMETERS structure.

IOCTL_KEYBOARD _SET_INDICATORS
Operation
The IOCTL_KEYBOARD _SET_INDICATORS request sets the keyboard indicators.

Input
The AssociatedIrp.SystemBuffer member points to a client -allocated buffer to input a
KEYBOARD_INDICATORS_PARAMETERS structure. The client sets the indicator
parameters in this structure.

The Parameters.DeviceIoControl.InputBufferLength member is set to a value greater
than or equal to the size in bytes of a KEYBOARD_INDICATORS_PARAMETERS
structure.

1/0 Status Block
The Information member is set to zero.

The Status member is set to one of the following values:

STATUS_SUCCESS

STATUS_DEVICE_NOT _READY

STATUSJNVALID _PARAMETER
Parameters.DeviceIoControl.InputBufferLength is less than the size in bytes of a
KEYBOARD_INDICATORS_PARAMETERS structure, or the specified indicator
parameters are invalid.

STATUSJO_ TIMEOUT
The request timed out.

916 Part 3 Drivers for Input Devices

IOCTL_KEYBOARD _SET _ TYPEMATIC
Operation
The IOCTL_KEYBOARD_SET_TYPEMATIC request sets the keyboard typematic
settings.

Input
The AssociatedIrp.SystemBuffer member points to a client-allocated buffer to input a
KEYBOARD_TYPEMATIC_PARAMETERS structure. The client sets the typematic
parameters in this structure.

The Parameters.DeviceIoControl.InputBufferLength member is set to a value greater
than or equal to the size in bytes of a KEYBOARD_TYPEMATIC_PARAMETERS
structure.

1/0 Status Block
The Information member is set to zero.

The Status member is set to one of the following values:

STATUS_SUCCESS

STATUS_DEVICE_NOT _READY

STATUSjNVALlD _PARAMETER
Parameters.DeviceIoControl.InputBufferLength is less than the size in bytes of a
KEYBOARD_TYPEMATIC_PARAMETERS structure, or the specified typematic set
tings are invalid.

STATUSjO_ TIMEOUT
The request timed out.

18042prt Mouse Major 1/0 Requests
This section describes the 18042prt-specific operation of the following major I/O requests
for a mouse device:

IRP _MJ_CLOSE
IRP _MJ_CREATE
IRP _MJ_DEVICE_CONTROL
IRP _MJ_INTERNAL_DEVICE_CONTROL
IRP_MJ_PNP
IRP _MJ_POWER
IRP _MJ_SYSTEM_CONTROL

For the generic operation of these requests, see IRP Function Codes and IOCTLs.

IRP _MJ_CREATE
Operation

Chapter 8 18042prt Driver Reference 917

The IRP _MJ _CREATE request opens a file on a mouse device.

Note that Mouc1ass uses an IOCTL_INTERNAL_MOUSE_CONNECT request to connect
to a mouse device before Mouc1ass can open the device. There can be only one connection
to the device. For more information, see Open and Close a Keyboard and Mouse Device, in
Part 4 in the Kernel-Mode Drivers Design Guide.

IS042prt completes the IRP _MJ_CREATE request.

1/0 Status Block
The Information member is set to zero.

The Status member is set to one of the following values:

STATUS_SUCCESS

STATUSJNVALlD_DEVICE_STATE
The Mouc1ass service is not connected.

STATUS_NO _SUCH_DEVICE
The device is not present.

IS042prt does not support any device control requests for a mouse device.

IS042prt completes all device control requests with a status of STATUS_INVALID_
DEVICE_REQUEST.

IRP _MJ_INTERNAL_DEVICE_CONTROL
IS042prt supports the following internal device control requests for a mouse device:

IOCTL_INTERNAL_IS042_HOOK_MOUSE
IOCTL_INTERNAL_IS042_MOUSE_START_INFORMATION
IOCTL_INTERNAL_IS042_MOUSE_ WRITE_BUFFER
IOCTL_INTERNAL_MOUSE_CONNECT
IOCTL_INTERNAL_MOUSE_DISCONNECT
IOCTL_MOUSE_QUERY_ATTRIBUTES

IS042prt completes all other internal device control requests with a status of STATUS_
INVALID_DEVICE_REQUEST.

918 Part 3 Drivers for Input Devices

IRP _MJ_PNP
I8042prt processes the following Plug and Play requests for a mouse device:

IRP _MN_CANCEL_REMOVE_DEVICE
IRP _MN_CANCEL_STOP _DEVICE
IRP _MN_FIL TER_RESOURCE_REQUIREMENTS
IRP_MN_QUERY_PNP_DEVICE_STATE
IRP _MN_QUERY _REMOVE_DEVICE
IRP _MN_QUERY _STOP_DEVICE
IRP _MN_REMOVE_DEVICE
IRP _MN_START_DEVICE

For all other Plug and Play requests, I8042prt skips the current IRP stack and sends the
request down the device stack.

For more information on the generic operation of these requests, see Plug and Play IRPs in
Volume 1 of Windows 2000 Driver Development Reference.

1/0 Status Block
The values of the status block members are function-specific.

IRP _MJ_POWER
Operation
I8042prt processes the following power request for a mouse device:

IRP _MN_SET _POWER

For all other power requests, I8042prt skips the current IRP stack, requests the next power
IRP, and sends the request down the device stack.

For more information on the generic operation of these requests, see I/O Requests for Power
Management in Volume 1 of Windows 2000 Driver Development Reference.

Status 1/0 Block
The values of the status block members are function-specific.

IRP_MJ_SYSTEM_CONTROL
Operation
I8042prt supports the following Windows® Management Instrumentation (WMI) system
control requests for a mouse device:

IRP _MN_REOINFO
IRP_MN_QUERY_DATA_BLOCK

Chapter 8 18042prt Driver Reference 919

For all other system control requests, I8042prt skips the current IRP stack location and sends
the request down the device stack to be completed by a lower-level driver.

I8042prt calls WmiSystemControl to process WMI requests. I8042prt registers a WMI data
block that contains a POINTER_PORT_ WMI_STD_DATA structure.

When Called
The WDM provider sends an IRP _MN_REOINFO request after the port driver calls
10 WMIRegistrationControl to update WMI registration information-see Dp WmiQuery
Reginfo in Part 8. I8042prt updates WMI registration information when the device is started
and removed.

At the request of a WMI client, the WDM provider sends an IRP _MN_QUERY_DATA_
BLOCK request to I8042prt. This request obtains a WMI data block containing a
POINTER_PORT_ WMI_STD_DATA structure.

1/0 Status Block
If I8042prt handles the request, the Status member is set to one of the following values:

STATUS_SUCCESS

STATUS_INVALlD_DEVICE_REQUEST

STATUS_ WML GUID_NOT _FOUND
The data block OUID is not valid.

STATUS_ WMIJNSTANCE_NOT _FOUND
The WMI context is not valid.

18042prt Mouse Internal Device Control Requests
I8042prt supports the following internal device control requests for a mouse device:

IOCTL_INTERNAL_I8042_HOOK_MOUSE
IOCTL_INTERNAL_I8042_MOUSE_START_INFORMATION
IOCTL_INTERNAL_I8042_MOUSE_ WRITE_BUFFER
IOCTL_INTERNAL_MOUSE_CONNECT
IOCTL_INTERNAL_MOUSE_DISCONNECT
IOCTL_MOUSE_ QUERY_ATTRIBUTES

I8042prt completes all other device control requests with a status of STATUS_INVALID_
DEVICE_REQUEST.

920 Part 3 Drivers for Input Devices

IOCTL_INTERNAL_IS042_HOOK_MOUSE
Operation
The IOCTL_INTERNAL_I8042_HOOK_MOUSE request adds an optional callback routine
into the interrupt service routine that I8042prt provides for a mouse device.

The optional callback routine is provided by an optional upper-level filter driver for the
mouse device.

After I8042port receives an IOCTL_INTERNAL_MOUSE_CONNECT request request, it
sends a synchronous IOCTL_INTERNAL_I8042_HOOK_MOUSE request to the top of the
keyboard device stack. When the upper-level filter driver receives this request, the filter
driver sets the mouse IsrRoutine member of the INTERNAL_I8042_HOOK_MOUSE
structure that is passed with the request.

Input
The Parameters.DeviceloControl. Type3InputBuffer points to an INTERNAL_I8042_
HOOK_MOUSE structure. This structure includes an IsrRoutine member that points to a
callback that is called by the interrupt service routine that I8042prt provides for a mouse
device.

1/0 Status Block
The Status member is set to one of the following values:

STATUS_SUCCESS

STATUSJNVALID _PARAMETER
Parameters.DeviceloControl.Type3InputBuffer is less than the size in bytes of an
INTERNAL_I8042_HOOK_MOUSE structure.

IOCTL_INTERNAL_IS042_MOUSE_START _INFORMATION
Operation
The IOCTL_INTERNAL_I8042_MOUSE_START_INFORMATION request passes a
pointer to a mouse interrupt object. I8042prt sends this request synchronously to the top of
the device stack after the mouse interrupt object is created. Upper-level filter drivers that
need to synchronize their callback operation with the mouse ISR can use the pointer to the
mouse interrupt object. For more information on this request, see Synchronize the Operation
of a Filter Driver with a Device's ISR in Part 4 in the Kernel-Mode Drivers Design Guide.

Chapter 8 18042prt Driver Reference 921

Input
The Associatedlrp.SystemBuffer points to an input buffer allocated by IS042prt to input
an INTERNAL_IS042_START_INFORMATION structure.

The Parameters.DeviceloControi.InputBufferLength specifies the size in bytes of an
INTERNAL_IS042_START _INFORMATION structure.

Status 1/0 Block
The Information member is set to zero.

The Status member is set to STATUS_SUCCESS.

IOCTL_INTERNAL_IS042_MOUSE_WRITE_BUFFER
Operation
The IOCTL_INTERNAL_IS042_MOUSE_ WRITE_BUFFER request writes data to the
iS042 controller to control operation of a mouse device. An upper-level filter driver can use
this request to control the operation of a mouse.

IS042prt synchronizes write buffer requests with one another. I8042prt synchronizes the
actual write of data with the mouse ISR.

Input
The Parameters.DeviceloControi.InputBufferLength is set to the number of bytes in the
input buffer, which must be greater than one.

The Parameters.DeviceloControi.Type3InputBuffer points to a client-allocated buffer to
input the data to write to an iS042 controller.

Status 1/0 Block
The Status member is set to one of the following values:

STATUS_SUCCESS

STATUS_DEVICE_NOT _READY
The mouse interrupt is not initialized.

STATUSJNVALlD_PARAMETER
The input parameters are not valid.

STATUSJO_TIMEOUT
The request timed out.

922 Part 3 Drivers for Input Devices

IOCTL_INTERNAL_MOUSE_CONNECT
Operation
The IOCTL_INTERNAL_MOUSE_CONNECT request connects the Mouclass service to a
mouse device.

After I8042prt receives a mouse connect request, it sends a synchronous INTERNAL_
IS042_HOOK_MOUSE request to the top of mouse device stack. The connect request is
completed after the INTERNAL_IS042_HOOK_MOUSE request is completed.

For more information, see Connect a Class Service Callback and a Filter Service Callback
to a Device in Part 4 in the Kernel-Mode Drivers Design Guide.

Input
The Parameters.DeviceIoControl. Type3InputBuffer points to a CONNECT_DATA
structure. This structure includes a pointer to a device object and a pointer to a mouse class
service callback routine. The connect data is set by the class service and can be filtered
(reset) by filter drivers.

The Parameters.DeviceIoControl.lnputBufferLength specifies the size in bytes of a
CONNECT_DATA structure.

1/0 Status Block
The Information member is set by the port driver.

The Status member is set to one of the following values:

STATUS_SUCCESS

STATUSJNVALlD_PARAMETER
Parameters.DeviceIoControl.InputBufferLength is less than the size in bytes of a
CONNECT_DATA structure.

STATUS_SHARING_ VIOLATION
The port driver is already connected.

IOCTL_INTERNAL_MOUSE_DISCONNECT
Operation
The IOCTL_INTERNAL_MOUSE_DISCONNECT request is not implemented.

Note that the Plug and Play Manager can dynamically add and remove Plug and Play
devices.

1/0 Status Block
The Status member is set to STATUS_NOT_IMPLEMENTED.

IOCTL_MOUSE_ QUERY _ATTRIBUTES
Operation

Chapter 8 18042prt Driver Reference 923

The IOCTL_MOUSE_ QUERY _ATTRIBUTES request returns information about the
mouse attributes.

Input
The Parameters.DeviceIoControi.OutputBufferLength member is set to a value greater
than or equal to the size in bytes of a MOUSE_ATTRIBUTES structure.

Output
AssociatedIrp.SystemBuffer points to a client-allocated output buffer that I8042prt uses to
output a MOUSE_ATTRIBUTES structure.

1/0 Status Block
If the request is successful, the Information member is set to the size in bytes of a
MOUSE_ATTRIBUTES structure. Otherwise, the Information member is set to zero.

The Status member is set to one of the following values:

STATUS_SUCCESS
STATUS_BUFFER_TOO_SMALL
Parameters.DeviceIoControi.OutputBufferLength is less than the size in bytes of a
MOUSE_ATTRIBUTES structure.

18042prt Keyboard Callback Routines
This section describes the following keyboard callback routines that I8042prt supports:

• Callbacks that an upper-level keyboard filter driver can provide to supplement the
operation of I8042prt:

• Keyboard InitializationRoutine

• Keyboard IsrRoutine

• Callbacks that I8042prt provides that an upper-level keyboard filter driver can use:

• Keyboard IsrWritePort

• QueueKeyboardlnput

I8042prt uses an IOCTL_INTERNAL I8042_HOOK_KEYBOARD request to add, or hook,
the filter driver callbacks into the operation of I8042prt. The hook request also passes
pointers to the I8042prt keyboard callbacks to the filter driver.

924 Part 3 Drivers for Input Devices

Keyboard InitializationRoutine
NTSTATUS

(*InitializationRoutine)(
IN PVOID Initia7izationContext.
IN PVOID SynchFuncContext.
IN PI8042_SYNCH_READ_PORT ReadPort.
IN PI8042_SYNCH_WRITE_PORT WritePort.
OUT PBOOLEAN TurnTrans7ationOn
) ;

The keyboard InitializationRoutine callback routine supplements the default initialization
of a keyboard device by 18042prt.

Parameters
/nitializationContext
Pointer to the filter device object of the driver that supplies the callback routine.

SynchFuncContext
Pointer to the context for the routines pointed to by ReadPort and Writeport.

ReadPort
Pointer to a routine that reads from the port.

WritePort
Pointer to a routine that writes to the port.

Turn Trans/ationOn
Specifies whether to tum translation on or off. If TranslationOn is TRUE, translation is
turned on; otherwise, translation is turned off.

Include
ntdd8042.h

Return Value
The keyboard InitializationRoutine callback returns an appropriate NTST A TUS code.

Comments
An upper-level keyboard filter driver can provide a keyboard InitializationRoutine callback
routine.

If an upper-level keyboard filter driver supplies an initialization callback, 18042prt calls
the filter initialization callback when 18042prt initializes the keyboard. Default keyboard ini
tialization includes the following operations: reset the keyboard, set the typematic rate and
delay, and set the light-emitting diodes (LED).

Chapter 8 18042prt Driver Reference 925

The keyboard InitializationRoutine callback runs in kernel mode at IRQL DISP ATCH_
LEVEL.

See Also
KbFilter _InitializationRoutine

Keyboard IsrRoutine
(*IsrRoutine)(

IN PVOID IsrContext.
IN PKEYBOARD_INPUT_DATA Currentlnput.
IN POUTPUT_PACKET CurrentOutput.
IN OUT UCHAR StatusByte.
IN PUCHAR DataByte.
OUT PBOOLEAN ContinueProcessing.
IN PKEYBOARD_SCAN_STATE ScanState
) ;

The keyboard IsrRoutine callback routine customizes the operation of a keyboard ISR.

Parameters
IsrContext
Pointer to the filter device object of the driver that supplies a callback routine.

Currentlnput
Pointer to the input KEYBOARD_DATA_INPUT structure that is being constructed by
the ISR.

Curren tOut put
Pointer to the array of bytes that is being written to the hardware device.

StatusByte
Specifies the status byte that is read from I/O port 60 when an interrupt occurs.

DataByte
Specifies the data byte that is read from I/O port 64 when an interrupt occurs.

ContinueProcessing
Specifies whether processing in the ISR will continue after this routine completes.

ScanState
Specifies the keyboard scan state.

Include
ntdd8042.h

926 Part 3 Drivers for Input Devices

Return Value
The keyboard IsrRoutine callback returns TRUE if the interrupt service routine should
continue; otherwise it returns FALSE.

Comments
A keyboard IsrRoutine callback routine is not needed if the default operation of 18042prt's
ISR is sufficient.

An upper-level keyboard filter driver can provide a keyboard IsrRoutine callback.
18042prt's ISR calls the callback after it validates the interrupt and reads the scan code.

The keyboard IsrRoutine callback runs in kernel mode at the IRQL of the 18042prt's
keyboard ISR.

See Also
KbFilter_IsrHook

Keyboard IsrWritePort
VOID
(*IsrWritePort)(

IN PVOID Context,
IN UCHAR Value
)

The keybC?,ard IsrWritePort callback routine writes data to a keyboard device. 18042prt
provides this routine.

Parameters
Context
Pointer to the function device object that represents a keyboard device.

Value
Specifies the data to write to a keyboard device.

Include
ntdd8042.h

Comments
The keyboard IsrWritePort callback routine should only be called by a keyboard
IsrRoutine callback routine. 18042prt calls the keyboard IsrRoutine callback in its key
board ISR.

Chapter 8 18042prt Driver Reference 927

I8042prt passes a pointer to the keyboard IsrWritePort callback routine in the IsrWrite
Port member of the INTERNAL_I8042_HOOK_KEYBOARD structure that I8042prt uses
with an IOCTL_INTERNAL_I8042_HOOK_KEYBOARD request.

See Also
18042prt Callbacks that Filter Drivers Can Use in the online DDK, INTERNAL_I8042_
HOOK_KEYBOARD

QueueKeyboardlnput
(*QueueKeyboardInput)(

IN PVOID Context
) ;

The QueueKeyboardlnput callback routine queues a keyboard input data packet for
processing by the ISR DPC of the keyboard. I8042prt provides this routine.

Parameters
Context
Pointer to the function device object that represents a keyboard device.

Include
ntdd8042.h

Comments
The QueueKeyboardlnput callback routine should only be called by a keyboard
IsrRoutine callback routine. 18042prt calls the keyboard IsrRoutine callback in its key
board ISR. I8042prt passes a pointer to the callback in the QueueKeyboardlnput member
of the INTERNAL_I8042_HOOK_KEYBOARD structure that 18042prt uses with an
IOCTL_INTERNAL_I8042_HOOK_KEYBOARD request.

See Also
18042prt Callbacks that Filter Drivers Can Use in the online DDK

18042prt Mouse Callback Routines
This section describes the following mouse callback routines that 18042prt supports:

• Callbacks that an upper-level mouse filter driver can provide to supplement the operation
of I8042prt:

• Mouse IsrRoutine

928 Part 3 Drivers for Input Devices

• Callbacks that IS042prt provides that an upper-level mouse filter driver can use:

• Mouse IsrWritePort

• QueueMouselnput

IS042prt uses an IOCTL_INTERNAL_IS042_HOOK_MOUSE request to add, or hook, the
filter driver callbacks into the operation of IS042prt. The hook request also passes pointers
to the IS042prt mouse callbacks to the filter driver.

Mouse IsrRoutine
BOOLEAN

(*IsrRoutine)(
IN PVOID IsrContext.
IN PMOUSE_INPUT_DATA Currentlnput.
IN POUTPUT_PACKET CurrentOutput.
IN UCHAR StatusByte.
IN OUT PUCHAR Byte.
OUT PBOOLEAN ContinueProcessing.
IN PMOUSE_STATE MouseState.
IN PMOUSE_RESET_SUBSTATE ResetSubState
)

The mouse IsrRoutine routine customizes the operation of the mouse ISR.

Parameters
IsrContext
Pointer to the filter device object of the driver that supplies this callback routine.

Currentlnput
Pointer to the input MOUSE_DATA_INPUT structure being constructed by the ISR.

CurrentOutput
Pointer to the array of bytes being written to the hardware device.

StatusByte
Specifies a status byte that is read from I/O port 60 when the interrupt occurs.

Byte
Specifies a data byte that is read from I/O port 64 when the interrupt occurs.

ContinueProcessing
Specifies a flag indicating whether processing in the ISR will continue after this routine
completes.

MouseState
Specifies the mouse state.

ResetSubState
Specifies a mouse substate.

Include
ntdd8042.h

Return Value

Chapter 8 18042prt Driver Reference 929

The mouse IsrRoutine callback routine returns TRUE if the interrupt service routine should
continue; otherwise it returns FALSE.

Comments
A mouse IsrRoutine callback routine is not needed if the default operation of I8042prt is
sufficient.

An upper-level keyboard filter driver can provide a mouse IsrRoutine callback. After the
I8042prt's mouse ISR validates the interrupt, it calls the IsrRoutine callback.

The mouse IsrRoutine routine runs in kernel mode at the IRQL of I8042prt's mouse ISR.

See Also
MouFilter_IsrHook

Mouse IsrWritePort
VOID
(* I s rWritePort)(

IN PVOID Context,
IN UCHAR Value
)

The mouse IsrWritePort callback routine writes data to a mouse device. I8042prt provides
this routine.

Parameters
Context
Pointer to the function device object that represents a mouse device.

Value
Specifies the data to write to a mouse device.

Include
i8042prt.h

930 Part 3 Drivers for Input Devices

Comments
The mouse IsrWritePort callback routine should only be called by a mouse IsrRoutine
callback routine. IS042prt calls the mouse IsrRoutine callback in its mouse ISR. IS042prt
passes a pointer to this callback in the IsrWritePort member of an INTERNAL_IS042_
HOOK_MOUSE structure that IS042prt uses with an IOCTL_INTERNAL_IS042_HOOK_
MOUSE request.

See Also
18042prt Callbacks that Filter Drivers Can Use in the online DDK

QueueMouselnput
(*OueueMousePacket)(

IN PYOID Context
) ;

The QueueMouseInput callback routine queues a mouse input data packet for processing
by the device's ISR deferred procedure call (DPC). IS042prt provides this routine.

Parameters
Context
Pointer to the function device object that represents a mouse device.

Include
ntdd8042prt.h

Comments
The QueueMouseInput callback routine should only be called by a mouse IsrRoutine
callback routine. IS042prt calls the mouse IsrRoutine callback in its mouse ISR. IS042prt
passes a pointer to the callback in the QueueMouseInput member of an INTERNAL_
IS042_HOOK_MOUSE structure that IS042prt uses with an IOCTL_INTERNAL_IS042_
HOOK_MOUSE request.

See Also
18042prt Callbacks that Filter Drivers Can Use in the online DDK

CHAPTER 9

Kbfiltr Driver Reference

This chapter includes the following topics about Kbfiltr, the sample upper-level keyboard
filter driver in the Microsoft® Windows® 2000 DDK:

• Kbfiltr Internal Device Control Requests

• Kbfiltr Callback Routines

Kbfiltr is designed to be used with Kbdclass, the Windows 2000 system class driver for
keyboard devices, and I8042prt, the Windows 2000 function driver for a PS/2-style key
board. Kbfiltr demonstrates how to filter 110 requests and how to add callback routines
that modify the operation of Kbdclass and IS042prt.

See the following topics for more information about Kbfiltr operation:

• Keyboard and Mouse Drivers for Non-HID Devices in the online DDK

• Include file %user's install path%\inc\ntddkbd.h in the Windows 2000 DDK

931

• Sample Kbfiltr source code in the %user's install directory%\src\input'J(bfiltr directory in
the Windows 2000 DDK

Kbfiltr Internal Device Control Requests
This section describes the operation of the following internal device control requests:

IOCTL_INTERNAL_IS042_HOOK_KEYBOARD
IOCTL_INTERNAL_KEYBOARD _CONNECT
IOCTL_INTERNAL_KEYBOARD _DISCONNECT

For all other device control requests, Kbfiltr skips the current IRP stack and sends the
request down the device stack without further processing.

932 Part 3 Drivers for Input Devices

IOCTL_INTERNAL_IS042_HOOK_KEYBOARD
Operation
The IOCTL_INTERNAL_IS042_HOOK_KEYBOARD request does the following:

• Adds an initialization callback to IS042prt's keyboard initialization routine

• Adds an ISR callback to IS042prt's interrupt service routine

The initialization and ISR callbacks are optional and are provided by an upper-level filter
driver for a PS/2-style keyboard device.

After IS042prt receives an IOCTL_INTERNAL_KEYBOARD_CONNECT request, it sends
a synchronous IOCTL_INTERNAL_IS042_HOOK_KEYBOARD request to the top of the
keyboard device stack.

After Kbfiltr receives the hook keyboard request, Kbfiltr filters the request in the following
manner:

• Saves the upper-level information passed to Kbfiltr, which includes the context of an
upper-level device object, a pointer to an initialization callback, and a pointer to an ISR
callback

• Replaces the upper-level information with its own

• Saves the context of IS042prt and pointers to callbacks that the Kbfiltr ISR callback
can use

For more information on this request and the callback routines, see the following topics:

• Operation of Non-HID Keyboard and Mouse Drivers in the online DDK

• I8042prt Callback Routines

• Kbfiltr Callback Routines

Input
The Parameters.DeviceIoControl.InputBufferLength member is set to a value greater
than or equal to the size in bytes of an INTERNAL_IS042_HOOK_KEYBOARD structure.

The Parameters.DeviceIoControl.Type3InputBuffer points to an INTERNAL_IS042_
HOOK_KEYBOARD structure. This structure includes the following members:

Initialization Routine
Pointer to an optional callback routine that is called by IS042prt when it initializes a key
board device.

Chapter 9 Kbfiltr Driver Reference 933

IsrRoutine
Pointer to an optional callback routine that is called by the interrupt service routine of
18042prt.

1/0 Status Block
The Status member is set to one of the following values:

STATUS_SUCCESS

STATUSJNVALID _PARAMETER
Parameters.DeviceloControl.lnputBufferLength is less than the size in bytes of an
INTERNAL_I8042_HOOK_KEYBOARD structure.

IOCTL_INTERNAL_KEYBOARD_CONNECT
Operation
The IOCTL_INTERNAL_KEYBOARD_CONNECTrequest connects the Kbdclass service
to the keyboard device. Kbdclass sends this request down the keyboard device stack before
it opens the keyboard device.

After Kbfiltr received the keyboard connect request, Kbfiltr filters the connect request in the
following way:

• Saves a copy of Kbdclass's CONNECT_DATA structure that is passed to the filter driver
by Kbdclass

• Substitutes its own connect information for the class driver connect information

• Sends the IOCTL_INTERNAL_KEYBOARD_CONNECT request down the device
stack

If the request is not successful, Kbfiltr completes the request with an appropriate error
status.

Kbfiltr provides a template for a filter service callback that can supplement the operation
of KeyboardClassServiceCallback, the Kbdclass class service callback. The filter service
callback can filter the input data that is transferred from the device input buffer to the class
data queue.

For more information on the connection of the Kbdclass service, see the following topics:

• Connect a Class Service Callback and a Filter Service Callback to a Device in the
online DDK

• Kbdclass Callback Routines

• Kbfiltr Callback Routines

934 Part 3 Drivers for Input Devices

Input
The Parameters.DeviceIoControl.InputBufferLength member is set to a value greater
than or equal to the size in bytes of a CONNECT_DATA structure.

The Parameters.DeviceIoControl.Type3InputBuffer member points to a CONNECT_
DATA structure that is allocated and set by Kbdclass.

Output
The Parameters.DeviceIoControl. Type3InputBuffer member points to a CONNECT_
DATA structure that is set by Kbfiltr.

1/0 Status Block
The Information member is set to zero.

The Status member is set to one of the following values:

STATUS_SUCCESS

STATUSJNVALlD_PARAMETER
Parameters.DeviceIoControl.InputBufferLength is less that the size in bytes of a
CONNECT_DATA structure.

STATUS_SHARING_ VIOLATION
Kbfiltr is already connected (the filter driver supports only one connect request).

IOCTL_INTERNAL_KEYBOARD_DISCONNECT
Operation
The IOCTL_INTERNAL_KEYBOARD_DISCONNECT request is completed with a status
of STATUS_NOT_IMPLEMENTED. Note that a Plug and Play keyboard can be added or
removed by the Plug and Play Manager.

1/0 Status Block
The Status member is set to STATUS_NOT_IMPLEMENTED.

Kbfiltr Callback Routines
This section describes the following Kbfiltr callback routines:

• KbFilter _InitializationRoutine

• KbFilter_IsrHook

• KbFilter _Service Callback

KbFilter _Initialization Routine
NTSTATUS

KbFilter_InitializationRoutine(
IN PDEVICE_OBJECT DeviceObject.
IN PVOID SynchFuncContext.
IN PI8042_SYNCH_READ_PORT ReadPort.
IN PI8042_SYNCH_WRITE_PORT WritePort.
OUT PBOOLEAN TurnTrans7ationOn
) :

Chapter 9 Kbfiltr Driver Reference 935

The KbFilter _InitializationRoutine routine is a temp ate for a keyboard Initialization
Routine callback routine that supplements the default initialization of a keyboard device
by I8042prt.

Parameters
DeviceObject
Pointer to the device object that is the context for this routine.

SynchFuncContext
Pointer to the context for the routines pointed to by ReadPort and Writeport.

ReadPort
Pointer to a routine that reads from the port.

WritePort
Pointer to a routine that writes to the port.

Turn Trans/ationOn
Specifies whether to tum translation on or off. If TranslationOn is TRUE, translation is
turned on; otherwise, translation is turned off.

Include
kbfiltr.h

Return Value
KbFilter _InitializationRoutine returns an appropriate NTST ATUS code.

Comments
KbFilter_InitializationRoutine is not needed if 18042prt's default initialization of a
keyboard is sufficient.

18042prt calls KbFilter_InitializationRoutine when it initializes the keyboard. Default
keyboard initialization includes the following operations: reset the keyboard, set the type
matic rate and delay, and set the light-emitting diodes (LED).

936 Part 3 Drivers for Input Devices

KbFilter_InitializationRoutine runs in kernel mode at IRQL DISPATCH_LEVEL.

See Also
Keyboard InitializationRoutine

KbFilter _lsrHook
KbFilter_IsrHook(

IN PDEVICE_OBJECT DeviceObject,
IN PKEYBOARD_INPUT_DATA Currentlnput,
IN POUTPUT_PACKET CurrentOutput,
IN OUT UCHAR StatusByte,
IN PUCHAR DataByte,
OUT PBOOLEAN ContinueProcessing,
IN PKEYBOARD_SCAN_STATE ScanState
) :

The KbFilter_IsrHook routine is a template for a keyboard IsrRoutine callback routine
that customizes the operation of I8042prt's keyboard ISR.

Parameters
DeviceObject
Pointer to the filter device object of the driver that supplies this callback routine.

Currentlnput
Pointer to the input KEYBOARD_DATA_INPUT structure that is being constructed by
the ISR.

CurrentOutput
Pointer to the array of bytes that is being written to the hardware device.

StatusByte
Specifies the status byte that is read from I/O port 60 when an interrupt occurs.

DataByte
Specifies the data byte that is read from I/O port 64 when an interrupt occurs.

ContinueProcessing
Specifies whether processing in the ISR will continue after this routine completes.

ScanState
Specifies the keyboard scan state.

Include
kbfiltr.h

Chapter 9 Kbfiltr Driver Reference 937

Return Value
KbFilter_IsrHook returns TRUE if the interrupt service routine should continue; otherwise
it returns FALSE.

Comments
This callback is not needed if the default operation of 18042prt is sufficient.

18042prt's keyboard ISR calls KbFilter_IsrHook after it validates the interrupt and reads
the scan code.

KbFilter_IsrHook runs in kernel mode at the IRQL of 18042prt's keyboard ISR.

KbFilter _ ServiceCall back
VOID

KbFilter_ServiceCallback(
IN PDEVICE_OBJECT DeviceObject.
IN PKEYBOARD_INPUT_DATA InputDataStart.
IN PKEYBOARD_INPUT_DATA InputDataEnd.
IN OUT PULONG InputDataConsumed
) ;

The KbFilter _Service Callback routine is a template for a filter service callback that
supplements the operation of KeyboardClassServiceCallback.

Parameters
DeviceObject
Pointer to the class device object.

InputDataStart
Pointer to the first keyboard data packet (a KEYBOARD_INPUT_DATA structure) in the
port device's input buffer.

InputDataEnd
Pointer to the keyboard data packet that immediately follows the last data packet in the port
device's input data buffer.

InputDataConsumed
Pointer to the number of keyboard data packets that are transferred by the routine.

Include
kbfiltr.h

938 Part 3 Drivers for Input Devices

Comments
The ISR dispatch completion routine of the function driver calls KbFilter_Service
Callback, which then calls KeyboardClassServiceCallback. The filter service callback
can be configured to modify the input data that is transferred from the device's input buffer
to the class data queue. For example, the callback can delete, transform, or insert data.

KbFilter_ServiceCallback runs in kernel mode at IRQL DISPATCH_LEVEL.

C HAP T E RIO

Moufiltr Driver Reference

This chapter includes the following topics about Moufiltr, the sample upper-level mouse
filter driver in the Microsoft® Windows® 2000 DDK:

• Moufiltr Internal Device Control Requests

• Moufiltr Callback Routines

939

Moufiltr is designed to be used with Mouclass, the Windows 2000 system class driver for
mouse devices, and I8042prt, the Windows 2000 function driver for a PS/2-style mouse.
Moufiltr demonstrates how to filter 110 requests and add callback routines that modify the
operation of Mouclass and I8042prt.

See the following topics for more information about Moufiltr operation:

• Keyboard and Mouse Drivers for Non-HID Devices in the online DDK

• Include file %user's install path%\inc\ntddmou.h in the Windows 2000 DDK

• Sample Moufiltr source code in the %user's install directory%\src\input\Moufiltr
directory in the Windows 2000 DDK

Moufiltr Internal Device Control Requests
This section describes the operation of the following internal device control requests that
Moufiltr supports:

IOCTL_INTERNAL_I8042_HOOK_MOUSE
IOCTL_INTERNAL_MOUSE_CONNECT
IOCTL_INTERNAL_MOUSE_DISCONNECT

For all other requests, Moufiltr skips the current IRP stack and sends the request down the
device stack without further processing.

940 Part 3 Drivers for Input Devices

IOCTL_INTERNAL_IS042_HOOK_MOUSE
Operation
The IOCTL_INTERNAL_I8042_HOOK_MOUSE request adds an ISR callback to
18042prt's interrupt service routine for a PS/2-style mouse. The ISR callback is optional
and is provided by an upper-level mouse filter driver.

18042prt sends this request after it receives an IOCTL_INTERNAL_MOUSE_CONNECT
request. 18042prt sends a synchronous IOCTL_INTERNAL_I8042_HOOK_MOUSE
request to the top of the mouse device stack.

After Moufiltr receives the hook mouse request, it filters the request in the following way:

• Saves the upper-level information passed to Moufiltr, which includes the context of an
upper-level device object and a pointer to an ISR callback

• Replaces the upper-level information with its own

• Saves the context of 18042prt and pointers to callbacks that the Moufiltr ISR callback
routine can use

For more information on this request and the callback routines, see the following topics:

• Operation of Non-HID Keyboard and Mouse Drivers in the online DDK

• I8042prt Mouse Callback Routines

• Moufiltr Callback Routines

Input
The Parapteters.DeviceIoControl.InputBufferLength member is set to a value greater
than or equal to the size in bytes of an INTERNAL_I8042_HOOK_MOUSE structure.

The Parameters.DeviceIoControl. Type3InputBuffer points to an INTERNAL_I8042_
HOOK_MOUSE structure that is allocated and set initially by 18042prt.

1/0 Status Block
The Status member is set to one of the following values:

STATUS_SUCCESS

STATUSJNVALlD_PARAMETER
Parameters.DeviceIoControl.InputBufferLength is less than the size in bytes of an
INTERNAL_I8042_HOOK_MOUSE structure.

IOCTL_INTERNAL_MOUSE_CONNECT
Operation

Chapter 10 Moufiltr Driver Reference 941

The IOCTL_INTERNAL_MOUSE_CONNECT request connects Mouclass service to a
mouse device. Mouclass sends this request down the device stack before it opens a mouse
device.

After Moufiltr receives the mouse connect request, it filters the request in the following
manner:

• Saves a copy of CONNECT_DATA structure that was passed to Moufiltr

• Substitutes its own connect information for the class driver connect information

• Sends the IOCTL_INTERNAL_MOUSE_CONNECT request down the device stack

If the request is not successful, Moufiltr completes the request with an appropriate error
status.

Moufiltr provides a template for a filter service callback that can supplement the operation
of MouseClassServiceCallback, the Mouclass service callback. The filter service callback
can filter the input data that is transferred from the device input buffer to the class driver
data queue.

For more information on the connection of the Kbdclass service, see the following topics:

• Connect a Class Service Callback and a Filter Service Callback to a Device in the
online DDK

• 18042prt Mouse Callback Routines

• Moufiltr Callback Routines

Input
The Parameters.DeviceIoControl.InputBufferLength member is set to a value greater
than or equal to the size in bytes of a CONNECT_DATA structure.

The Parameters.DeviceIoControl. Type3InputBuffer member points to a CONNECT_
DATA structure that is allocated and set by Mouclass.

Output
The Parameters.DeviceIoControl. Type3InputBuffer member points to a CONNECT_
DATA structure that is set by Moufiltr.

1/0 Status Block
The Information member is set to zero.

942 Part 3 Drivers for Input Devices

The Status member is set to one of the following values:

STATUSJNVALlD_PARAMETER
Parameters.DeviceIoControI.InputBufferLength is less than the size in bytes of a
CONNECT_DATA structure.

STATUS_SHARING_ VIOLATION
Moufiltr is already connected (a filter driver supports only one connect request).

IOCTL_INTERNAL_MOUSE_DISCONNECT
Operation
The IOCTL_INTERNAL_MOUSE_DISCONNECT request is completed by Moufiltr
with an error status of STATUS_NOT_IMPLEMENTED. (Note that a Plug and Play mouse
device can be added or removed by the Plug and Play Manager.)

1/0 Status Block
The Status member is set to STATUS_NOT_IMPLEMENTED.

Moufiltr Callback Routines
This section describes the following Moufiltr callback routines:

• MouFiIter_IsrHook

• MouFiIter _Service Callback

MouFilter _lsrHook
BOOLEAN

MouFilter_IsrHook(
IN PDEVICE_OBJECT DeviceObject.
IN PMOUSE_INPUT_DATA Currentlnput.
IN POUTPUT_PACKET CurrentOutput.
IN UCHAR StatusByte.
IN OUT PUCHAR DataByte.
OUT PBOOLEAN ContinueProcessing.
IN PMOUSE_STATE MouseState.
IN PMOUSE_RESET_SUBSTATE ResetSubState
) ;

MouFiIter_IsrHook is a template for a mouse IsrRoutine callback routine that customizes
the operation of I8042prt's mouse ISR.

Parameters
DeviceObject

Chapter 10 Moufiltr Driver Reference 943

Pointer to the filter device object of the driver that supplies this callback routine.

Currentlnput
Pointer to the input MOUSE_DATA_INPUT structure being constructed by the ISR.

CurrentOutput
Pointer to the array of bytes being written to the hardware device.

StatusByte
Specifies a status byte that is read from I/O port 60 when the interrupt occurs.

DataByte
Specifies a data byte that is read from I/O port 64 when the interrupt occurs.

ContinueProcessing
Specifies a flag indicating whether processing in the ISR will continue after this routine
completes.

MouseState
Specifies the mouse state.

ResetSubState
Specifies a mouse substate.

Include
moufiltr.h

Return Value
MouFilter_IsrHook returns TRUE if the interrupt service routine should continue; other
wise it returns FALSE.

Comments
A MouFilter_IsrHook callback routine is not needed if the default operation of 18042prt is
sufficient.

18042prt's ISR calls MouFilter_IsrHook after it validates the interrupt.

MouFilter_IsrHook runs in kernel mode at the IRQL of 18042prt's ISR for mouse device.

944 Part 3 Drivers for Input Devices

Mou Fi Iter _ ServiceCallback
VOID

MouFilter_ServiceCallback(
IN PDEVICE_OBJECT DeviceObject.
IN PMOUSE_INPUT_DATA InputDataStart.
IN PMOUSE_INPUT_DATA InputDataEnd.
IN OUT PULONG InputDataConsumed
) ;

MouFilter_ServiceCallback is a template for a filter service callback that supplements
MouseClassServiceCallback.

Parameters
DeviceObject
Pointer to the class device object.

InputDataStart
Pointer to the first mouse data packet (a MOUSE_INPUT_DATA structure) in the input
data buffer of the port device.

InputDataEnd
Pointer to the mouse data packet immediately following the last mouse data packet in the
port device's input data buffer.

InputDataConsumed
Pointer to the number of mouse data packets that are transferred by the routine.

Include
moufiltr.h

Comments
The ISR DPC of 18042prt calls MouFilter_ServiceCallback, which then calls Mouse
ClassServiceCallback. A filter service callback can be configured to modify the input data
that is transferred from the device's input buffer to the class data queue. For example, the
callback can delete, transform, or insert data.

MouFilter_ServiceCallback runs in kernel mode at IRQL DISPATCH_LEVEL.

PAR T 4

USB Drivers

Chapter 1 1/0 Requests for USB Client Drivers 947

Chapter 2 USB Client Support Routines 953

Chapter 3 USB Structures 975

CHAPTER 1

1/0 Requests for USB Client Drivers

Input

Windows Driver Model (WDM) clients of the Universal Serial Bus (USB) driver stack
communicate to the USB driver stack, by submitting an IRP with major code IRP _MJ_
INTERNAL_DEVICE_CONTROL, and one of the following minor codes:

IOCTL_INTERNAL_USB_SUBMIT_URB
IOCTL_INTERNAL_USB_GET_PORT_STATUS
IOCTL_INTERNAL_USB_RESET_PORT
IOCTL_INTERNAL_USB_GET_ROOTHUB_PDO
IOCTL_INTERNAL_USB_ENABLE_PORT
IOCTL_INTERNAL_USB_GET_HUB_COUNT
IOCTL_INTERNAL_USB_CYCLE_PORT
IOCTL_INTERNAL_USB_GET_HUB_NAME
IOCTL_INTERNAL_USB_GET_BUS_INFO
IOCTL_INTERNAL_USB_GET_CONTROLLER_NAME

Drivers can use this request to submit an URB to the bus driver.

Parameters.Others.Argumentl points to the URB, a variable-length structure. The
UrbHeader.Function member of the URB specifies the URB type, and the UrbHeader.
Length member specifies the size in bytes of the URB. The length of URB, as well as the
meaning of any additional members depends on the value of UrbHeader.Function. See
URB in Chapter 3 for details.

Output
Parameters.Others.Argumentl points to the URB structure. The UrbHeader.Status
contains a USB status code for the requested operation. Any additional output depends
on the UrbHeader.Function member of the URB submitted. See URB for details.

947

948 Part 4 USB Drivers

1/0 Status Block
The lower-level drivers will set Irp->IoStatus.Status to STATUS_SUCCESS if the URB
can be successfully processed. Otherwise, the bus driver will set it to the appropriate error
condition, such as STATUS_INVALID_PARAMETER, or STATUS_INSUFFICIENT_
RESOURCES.

See Also
URB

Input

Drivers can use this request to reset the port associated to a PDO. This IOCTL must be sent
at an IRQL of PASSIVE_LEVEL.

None.

Output
None.

I/O Status Block

Input

The bus or port driver sets Irp->IoStatus.Status to STATUS_SUCCESS or the appropriate
error status.

This I/O request queries the status of the PDO. This IOCTL must be sent at an IRQL of
PASSIVE_LEVEL.

Parameters.Others.Argumentl should be a pointer to a ULONG to be filled in with the
port status flags.

Output
Parameters.Others.Argumentl points to a ULONG that has the port status flags filled in.
The flags can be one or both of USBP _PORT_ENABLED, USBP _PORT_CONNECTED.

1/0 Status Block
The bus or port driver sets Irp->IoStatus.Status to STATUS_SUCCESS or the appropriate
error status.

Input

Chapter 1 1/0 Requests for USB Client Drivers 949

This I/O request re-enables the port associated with a PDO. This IOCTL must be sent at an
IRQL of PASSIVE_LEVEL.

None.

Output
None.

1/0 Status Block
The bus or port driver sets Irp->IoStatus.Status to STATUS_SUCCESS or the appropriate
error status.

Operation
This request may fail if the device is attached to a hub other than the root hub. In that case,
a driver may use IOCTL_INTERNAL_USB_RESET_PORT to re-enable the port.

IOCTL_INTERNAL_ USB _GET _HU B _COUNT

Input

This I/O request is used internally by the hub driver. Do not use this request.

This I/O request simulates a device unplug and re-plug on the port associated with the PDO.
This IOCTL must be sent at an IRQL of PASSIVE_LEVEL.

None.

Output
None.

1/0 Status Block
The bus or port driver sets Irp->IoStatus.Status to STATUS_SUCCESS or the appropriate
error status.

950 Part 4 USB Drivers

Input

This I/O request is used internally by the hub driver. Do not use this request.

Drivers can use this request to get the device name of the USB hub. This IOCTL must be
sent at an IRQL of PASSIVE_LEVEL.

Parameters.DeviceloControl.OutputBufferLength is the length of the buffer (in bytes)
passed in the Irp->Associatedlrp.SystemBuffer field.

Irp->Associatedlrp.SystemBuffer points to a USB_ROOT_HUB_NAME structure.

Output
Irp->Associatedlrp.SystemBuffer is filled with the root hub's symbolic name.

1/0 Status Block
A lower-level driver sets Irp->IoStatus.Status to STATUS_SUCCESS or the appropriate
error status. It will set Irp->IoStatus.lnformation to number of bytes required to hold the
USB_ROOT_HUB_NAME structure. If the request fails, the driver can use this information
to resubmit the request with a big enough buffer.

See Also
USB_ROOT_HUB_NAME

Input

This I/O request queries the bus driver for certain bus information. This IOCTL must be sent
at an IRQL of PASSIVE_LEVEL.

Parameters.Others.Argumentl should be a pointer to a PUSB_BUS_NOTIFICATION
structure.

Output
Parameters.Others.Argumentl points to a PUSB_BUS_NOTIFICATION structure that has
the TotalBandwidth, ConsumedBandwidth, and ControllerNameLength fields filled in.

Chapter 1 1/0 Requests for USB Client Drivers 951

1/0 Status Block
The bus or port driver sets Irp->IoStatus.Status to STATUS_SUCCESS or the appropriate
error status.

IOCTL_INTERNAL_ USB_GET _CONTROLLER_NAME

Input

This I/O request queries the bus driver for the device name of the USB host controller. This
IOCTL must be sent at an IRQL of PASSIVE_LEVEL.

Parameters.Others.Argumentl should be a pointer to a USB_HUB_NAME structure that
will be filled in with the name of the host controller.

Parameters.Others.Argument2 should be a ULONG specifying the length of the buffer (in
bytes) in Parameters.Others.Argumentl.

Output
The bus driver will fill the buffer pointed to by Parameters.Others.Argument2 with the
host controller device name. It will be filled only up to the length specified in Parameters.
Others.Argumentl.

1/0 Status Block
The bus or port driver sets Irp->IoStatus.Status to STATUS_SUCCESS or the appropriate
error status.

See Also
USB_HUB_NAME

CHAPTER 2

USB Client Support Routines

Universal Serial Bus (USB) client drivers can call the following routines on Windows
Driver Model (WDM) platforms. These routines assist a client driver in communicating
with the USB driver stack.

Routines are described in alphabetical order.

ULONG
GET_ISO_URB_SIZE(

IN ULONG NumberOfPackets
) ;

GET_ISO_URB_SIZE returns the number of bytes required to hold an isochronous
transfer request.

Parameters
NumberOfPackets

953

Specifies the number of isochronous transfer packets that will be part of the transfer request.

Return Value
GET_ISO_URB_SIZE returns the number of bytes required to hold an isochronous request
with the given NumberOfPackets.

Comments
Callers of this routine must be running at IRQL <= DISPATCH_LEVEL.

See Also
URB, _URB_ISOCH_TRANSFER, USBD_ISO_PACKET_DESCRIPTOR

954 Part 4 USB Drivers

ULONG

IN U LONG Tota 7 Interfaces.
IN ULONG Tota7Pipes
) ;

GET_SELECT_CONFIGURATION_REQUEST_SIZE returns the number of bytes
required to create a select configuration URB.

Parameters
Totallnterfaces
Specifies how many interfaces the configuration has.

Tota/Pipes
Specifies how many endpoints (pipes) the configuration has.

Return Value
GET_SELECT_ CONFIGURA TION_REQUEST_SIZE returns the number of bytes
required to hold a select configuration request with the given number of pipes and
interfaces.

Comments
Callers of this routine must be running at IRQL <= DISPATCH_LEVEL.

See Also
URB, UsbBuildSeiectConfigurationRequest, USBD _ CreateConfigurationRequest

GET _SELECT _INTERFACE_REQUEST _SIZE
ULONG

IN ULONG Tota7Pipes
) ;

GET_SELECT_INTERFACE_REQUEST_SIZE returns the number of bytes required to
create a select interface URB.

Parameters
Tota/Pipes
Specifies the total number of endpoints (pipes) the interface has.

Chapter 2 USB Client Support Routines 955

Return Value
GET_SELECT_INTERFACE_REQUEST_SIZE returns the number of bytes required
to hold an URB to select a new setting for an interface with the given number of pipes.

Comments
Callers of this routine must be running at IRQL <= DISPATCH_LEVEL.

See Also
URB, UsbBuildSelectInterfaceRequest

ULONG
GET_USBD_INTERFACE_SIZE(

IN ULONG Tota7Endpoints
) ;

GET_USBD_INTERFACE_SIZE returns the number of bytes required to hold a
USBD _INTERFACE_INFORMATION interface descriptor with its associated end
point descriptors.

Parameters
Tota/Endpoints
Specifies the total number of endpoints (pipes) the interface has.

Return Value
GET_USBD_INTERFACE_SIZE returns the number of bytes required to hold a USBD_
INTERFACE_INFORMATION structure describing the interface and a USBD _PIPE_
INFORMATION structure for each endpoint in the interface.

Comments
Callers of this routine must be running at IRQL <= DISPATCH_LEVEL.

See Also
USBD _INTERFACE_INFORMATION, USBD _PIPE_INFORMATION

956 Part 4 USB Drivers

UsbBuildFeatureRequest
VOID

UsbBuildFeatureRequest(
IN OUT PURB Urb.
IN USHORT Op.
IN USHORT FeatureSe7ector.
IN USHORT Index.
IN 'PURB Link OPTIONAL
) ;

UsbBuildFeatureRequest formats an URB with the parameters necessary to request that a
feature be turned on or off on a USB device.

Parameters
Urb
Points to an URB to be formatted as a feature request to a device.

Op
Specifies one of the following operation codes:

URB_FUNCTION_SET _FEATURE_TO _DEVICE
Sets a USB-defined feature, specified by FeatureSelector, on a device.

URB_FUNCTION_SET _FEATURE_ TOJNTERFACE
Sets a USB-defined feature, specified by FeatureSelector, on an interface for a device.

URB_FUNCTION_SET _FEATURE_ TO_ENDPOINT
Sets a USB-defined feature, specified by FeatureSelector, on an endpoint for an interface on
a USB device.

URB_FUNCTION_SET_FEATURE_TO_OTHER
Sets a USB-defined feature, specified by FeatureSelector, on a device-defined target on a
USB device.

URB_FUNCTION_CLEAR_FEATURE_ TO_DEVICE
Clears a USB-defined feature, specified by FeatureSelector, on a device.

URB_FUNCTION_CLEAR_FEATURE_ TO JNTERFACE
Clears a USB-defined feature, specified by FeatureSelector, on an interface for a device.

URB_FUNCTION_CLEAR_FEATURE_ TO_ENDPOINT
Clears a USB-defined feature, specified by F eatureSelector, on an endpoint, for an interface,
on a USB device.

Chapter 2 USB Client Support Routines 957

URB_FUNCTION_CLEAR_FEATURE_ TO_OTHER
Clears a USB-defined feature, specified by FeatureSelector, on a device defined target on a
USB device.

FeatureSelector
Specifies the USB-defined feature code that should be set or cleared on the target as
specified by Op.

Index
For a feature request for an endpoint or interface, specifies the index of the endpoint or
interface within the configuration descriptor. For the device, this must be zero.

Link
Points to an caller-initialized URB. Link becomes the subsequent URB in a chain of requests
with Urb being its predecessor.

Comments
Callers of this routine must be running at IRQL <= DISP ATCR_LEVEL.

See Also
URB,_URB_CONTROL_FEATURE_REQUEST

UsbBuildGetDescriptorRequest
VOID

UsbBuildGetDescriptorRequest(
IN OUT PURB Urb,
IN USHORT Length.
IN UCHAR DescriptorType.
IN UCHAR Index,
IN USHORT LanguageId,
IN PVOID TransferBuffer OPTIONAL,
IN PMDL TransferBufferMDL OPTIONAL.
IN ULONG TransferBufferLength,
IN PURB Link OPTIONAL
) ;

UsbBuildGetDescriptorRequest formats an URB with the parameters necessary to obtain
descriptor information from the host controller driver (RCD).

958 Part 4 USB Drivers

Parameters
Urb
Points to an URB to be formatted for a get descriptor request to the RCD. The caller must
allocate nonpaged pool for this URB.

Length
Specifies the size, in bytes, of the URB.

DescriptorType
Specifies one of the following values:

USB_DEVICE_DESCRIPTOR_TYPE
USB_CONFIGURATION_DESCRIPTOR_TYPE
USB_STRING_DESCRIPTOR_TYPE

Index
Specifies the device-defined index of the descriptor that is to be retrieved.

Languageld
Specifies the language ID of the descriptor to be retrieved when USB_STRING_
DESCRIPTOR_TYPE is set in DescriptorType. This parameter must be 0 for any other
value in DescriptorType.

TransferBuffer
Points to a resident buffer to receive the descriptor data or is NULL if an MDL is supplied in
TransferBufferMDL.

TransferBufferMdl
Points to an MDL that describes a resident buffer to receive the descriptor data or is NULL
if a buffer is supplied in TransferBuffer.

TransferBufferLength
Specifies the length of the buffer specified in TransferBuffer or described in
TransferBufferMDL.

Link
Points to an caller-initialized URB. Link becomes the subsequent URB in a chain of requests
with Urb being its predecessor.

Chapter 2 USB Client Support Routines 959

Comments
When USB_CONFIGURATION_DESCRIPTOR_TYPE is specified for DescriptorType, all
interface, endpoint, class-specific, and vendor-specific descriptors for the configuration also
are retrieved. The caller must allocate a buffer large enough to hold all of this information or
the data is truncated without error.

Callers of this routine must be running at IRQL <= DISPATCH_LEVEL.

See Also
URB, USB_DEVICE_DESCRIPTOR

UsbBuildGetStatusRequest
VOID

UsbBuildGetStatusRequest(
IN OUT Urb.
IN USHORT Gp.
IN USHORT Index.
IN PVOID TransferBuffer OPTIONAL.
IN PMDL TransferBufferMDL.
IN PURB Link
) ;

UsbBuildGetStatusRequest formats an URB to obtain status from a device, interface,
endpoint, or other device-defined target on a USB device.

Parameters
Urb
Points to an URB to be formatted as an status request.

Op
Specifies one of the following values:

URB_FUNCTION_GET_STATUS_FROM_DEVICE
Retrieves status from a USB device.

URB_FUNCTION_GET_STATUS_FROMJNTERFACE
Retrieves status from an interface on a USB device.

URB_FUNCTION_GET _STATUS_FROM_ENDPOINT
Retrieves status from an endpoint for an interface on a USB device.

960 Part 4 USB Drivers

URB_FUNCTION_GET_STATUS_FROM_OTHER
Retrieves status from a device-defined target on a USB device.

Index
Specifies the device-defined index, returned by a successful configuration request, if the
request is for an endpoint or interface. Otherwise, Index must be zero.

TransferBuffer
Points to a resident buffer to receive the status data or is NULL if an MDL is supplied in
TransferBufferMDL.

TransferBufferMDL
Points to an MDL that describes a resident buffer to receive the status data or is NULL if a
buffer is supplied in TransferBuffer.

Link
Points to an caller-initialized URB. Link becomes the subsequent URB in a chain of requests
with Urb being its predecessor.

Comments
Callers of this routine must be running at IRQL <= DISPATCH_LEVEL.

See Also
URB, _URB_CONTROL_GET_STATUS_REQUEST

UsbBuildlnterruptOrBulkTransferRequest
VOID

UsbBu;ldGetInterruptOrBulkTransferRequest(
IN OUT PURB Urb,
IN USHORT Length,
IN USBD_PIPE_HANDLE PipeHand7e,
IN PVOID TransferBuffer OPTIONAL,
IN PMDL TransferBufferMDL OPTIONAL,
IN ULONG TransferBufferLength,
IN ULONG TransferF7ags,
IN PURB Link
) ;

UsbBuildInterruptOrBulkTransferRequest formats an URB to send or receive data on a
bulk pipe, or to receive data from an interrupt pipe.

Parameters
Urb

Chapter 2 USB Client Support Routines 961

Points to an URB to be formatted as an interrupt or bulk transfer request.

Length
Specifies the size, in bytes, of the URB.

PipeHandle
Specifies the handle for this pipe returned by the RCD when a configuration was selected.

TransferBuffer
Points to a resident buffer for the transfer or is NULL if an MDL is supplied in Transfer
BufferMDL. The contents of this buffer depend on the value of TransferFlags. If USBD_
TRANSFER_DIRECTION_IN is specified, this buffer will contain data read from the
device on return from the RCD. Otherwise, this buffer contains driver-supplied data to be
transferred to the device.

TransferBufferMdl
Points to an MDL that describes a resident buffer or is NULL if a buffer is supplied in
TransferBuffer. The contents of the buffer depend on the value of TransferFlags. If USBD_
TRANSFER_DIRECTION_IN is specified, the described buffer will contain data read from
the device on return from the RCD. Otherwise, the buffer contains driver-supplied data to
be transferred to the device. The MDL must be allocated from nonpaged pool.

TransferBufferLength
Specifies the length, in bytes, of the buffer specified in TransferBuffer or described in
TransferBufferMDL.

TransferFlags
Specifies zero, one, or a combination of the following flags:

USBD_ TRANSFER_DIRECTIONJN
Is set to request data from a device. To transfer data to a device, this flag must be clear. The
flag must be set if the pipe is an interrupt transfer pipe.

USBD_SHORT_TRANSFER_OK
Can be used if USBD_TRANSFER_DIRECTION_IN is set. If set, directs the RCD not
to return an error if a packet is received from the device that is shorter than the maximum
packet size for the endpoint. Otherwise, a short request is returns an error condition.

962 Part 4 USB Drivers

Link
Points to an caller-initialized URB. Link becomes the subsequent URB in a chain of requests
with Urb being its predecessor.

Comments
Callers of this routine must be running at IRQL <= DISPATCH_LEVEL.

See Also
URB, USB_DEVICE_DESCRIPTOR

UsbBuildSelectConfigurationRequest
VOID

UsbBuildSelectConfigurationRequest(
IN PURB Urb,
IN USHORT Length,
IN PUSB_CONFIGURATION_DESCRIPTOR ConfigurationDescriptor
) ;

UsbBuildSelectConfigurationRequest formats an URB with the parameters necessary to
select a configuration on a USB device.

Parameters
Urb
Points to an URB to be formatted as a select configuration request.

Length
Specifies the size, in bytes, of the URB.

ConfigurationDescriptor
Points to an initialized USB configuration descriptor that identifies the configuration to be
set on the device. If NULL, the device will be set into its unconfigured state.

Comments
Callers of this routine must be running at IRQL <= DISPATCH_LEVEL.

See Also
URB, _URB_SELECT_CONFIGURATION, USB_CONFIGURATION_DESCRIPTOR

UsbBuildSelectlnterfaceRequest
VOID

UsbBu;ldSelectInterfaceRequest(
IN PURB Urb,
IN USHORT Length,

Chapter 2 USB Client Support Routines 963

IN USBD_CONFIGURATION_HANDLE ConfigurationHand7e,
IN UCHAR InterfaceNumber,
IN UCHAR A7ternateSetting
) :

UshBuildSelectlnterfaceRequest formats an URB with the parameters necessary to select
an alternate setting for an interface on a USB device.

Parameters
Urb
Points to an URB that is to be formatted as a select interface request.

Length
Specifies the size, in bytes, of the URB. The URB_FUNCTION_SELECT_INTERFACE
URB has a variable length. Clients can use the GET _SELECT_INTERFACE_REQUEST_
SIZE macro to determine the URB length.

ConfigurationHandle
Specifies the handle for this interface returned by the RCD when a configuration was
selected.

InterfaceNumber
Is the device-defined identifier for this interface specified in the descriptor for this interface.

AlternateSetting
Is the device-defined identifier of the alternate setting that this interface should now use.

Comments
Callers of this routine must be running at IRQL <= DISP ATCR_LEVEL.

See Also
URB, _URB_SELECT_INTERFACE

964 Part 4 USB Drivers

UsbBuildVendorRequest
VOID

UsbBuildVendorRequest(
IN PURB Urb,
IN USHORT Function,
IN USHORT Length,
IN ULONG TransferF7ags,
IN UCHAR ReservedBits,
IN UCHAR Request,
IN USHORT Value,
IN USHORT Index,
IN PVOID TransferBuffer OPTIONAL,
IN PMDL TransferBufferMDL OPTIONAL,
IN ULONG TransferBufferLength,
IN PURB Link OPTIONAL,
) ;

UsbBuildVendorRequest formats an URB to send a vendor or class-specific command to a
USB device, interface, endpoint, or other device-defined target.

Parameters
Urb
Points to an URB that is to be formatted as a vendor or class request.

Function
Must be set to one of the following values:

URB_FUNCTION_ VENDOR_DEVICE
Indicates the URB is a vendor-defined request for a USB device.

URB_FUNCTION_ VENDORJNTERFACE
Indicates the URB is a vendor-defined request for an interface on a USB device.

URB_FUNCTION_ VENDOR_ENDPOINT
Indicates the URB is a vendor-defined request for an endpoint, in an interface, on a USB
device.

URB_FUNCTION_ VENDOR_OTHER
Indicates the URB is a vendor-defined request for a device-defined target.

URB_FUNCTION_CLASS_DEVICE
Indicates the URB is a USB-defined class request for a USB device.

Chapter 2 USB Client Support Routines 965

URB_FUNCTION_ CLASSJNTERFACE
Indicates the URB is a USB-defined class request for an interface on a USB device.

URB_FUNCTION_CLASS_ENDPOINT
Indicates the URB is a USB-defined class request for an endpoint, in an interface, on a USB
device.

URB_FUNCTION_CLASS_OTHER
Indicates the URB is a USB-defined class request for a device-defined target.

Length
Specifies the length, in bytes, of the URB.

TransferFlags
Specifies zero, one, or a combination of the following flags:

USBD_ TRANSFER_DIRECTIONJN
Is set to request data from a device. To transfer data to a device, this flag must be clear. The
flag must be set if the pipe is an interrupt transfer pipe.

USBD_SHORT_TRANSFER_OK
Can be used if USBD _TRANSFER_DIRECTION_IN is set. If set, directs the RCD not
to return an error if a packet is received from the device that is shorter than the maximum
packet size for the endpoint. Otherwise, a short request is returns an error condition.

ReservedBits
Specifies a value, from 4 to 31 inclusive, that becomes part of the request type code in the
USB-defined setup packet. This value is defined by USB for a class request or the vendor
for a vendor request.

Request
Specifies the USB or vendor-defined request code for the device, interface, endpoint, or
other device-defined target.

Value
Is a value, specific to Request, that becomes part of the USB-defined setup packet for the
target. This value is defined by the creator of the code used in Request.

Index
Specifies the device-defined identifier if the request is for an endpoint, interface, or device
defined target. Otherwise, Index must be O.

966 Part 4 USB Drivers

TransferBuffer
Points to a resident buffer for the transfer or is NULL if an MDL is supplied in Transfer
BufferMDL. The contents of this buffer depend on the value of TransferFlags. If USBD_
TRANSFER_DIRECTION_IN is specified, this buffer will contain data read from the
device on return from the RCD. Otherwise, this buffer contains driver-supplied data to
be transferred to the device.

TransferBufferMdl
Points to an MDL that describes a resident buffer or is NULL if a buffer is supplied in
TransferBuffer. The contents of the buffer depend on the value of TransferFlags. If USBD_
TRANSFER_DIRECTION_IN is specified, the described buffer will contain data read from
the device on return from the RCD. Otherwise, the buffer contains driver-supplied data to
be transferred to the device. The MDL must be allocated from nonpaged pool.

TransferBufferLength
Specifies the length, in bytes, of the buffer specified in TransferBuffer or described in
TransferBufferMDL.

Link
Points to an caller-initialized URB. Link becomes the subsequent URB in a chain of requests
with Urb being its predecessor.

Comments
Callers of this routine must be running at IRQL <= DISP ATCR_LEVEL.

See Also
URB, _URB_CONTROL_ VENDOR_OR_CLASS_REQUEST

USBD_CreateConfigurationRequest
PURB

USBD_CreateConfigurationRequest<
IN PUSB_CONFIGURATION_DESCRIPTOR ConfigurationDescriptor,
IN OUT PUSHORT Siz
) ;

This routine is exported to support existing driver binaries and is obsolete. Use
USBD _ CreateConfigurationRequestEx instead.

Chapter 2 USB Client Support Routines 967

USBD_CreateConfigurationRequestEx
PURB

USBD_CreateConfigurationRequestEx(
IN PUSB_CONFIGURATION_DESCRIPTOR ConfigurationDescriptor.
IN PUSBD_INTERFACE_LIST_ENTRY InterfaceList
) ;

USBD _ CreateConfigurationRequestEx allocates and formats an URB to select a
configuration for a USB device.

Parameters
Configuration Descriptor
Points to a configuration descriptor, that includes all interface, endpoint, vendor, and class
specific descriptors, retrieved from a USB device.

interfaceList
Points to the first element, in a variable-length array of the following structures, that
describes interfaces to be made part of the configuration request:

typedef struct _USBD_INTERFACE_LIST_ENTRY {
PUSB_INTERFACE_DESCRIPTOR InterfaceDescriptor;
PUSBD_INTERFACE_INFORMATION Interface;

} USBD_INTERFACE_LIST_ENTRY. *PUSBD_INTERFACE_LIST_ENTRY;

Members
InterfaceDescri ptor
Points to a interface descriptor returned from the device as part of a configuration descriptor.

Interface
Points to memory containing information about the interface and all of the endpoints
associated with that interface.

Return Value
USBD _ CreateConfigurationRequestEx returns an URB that can be sent to the host
controller driver (RCD) to set the device in a configured state. The routine allocates memory
for this URB that the caller must free when finished with the URB.

Comments
If an interface descriptor is returned in a configuration descriptor, but the caller does not
include an entry in the array pointed to by InterfaceList, the RCD will ignore that interface
and will not initialize the interface.

968 Part 4 USB Drivers

Before the caller submits the URB returned by this routine, it can override the default
settings for the interface(s) or endpoint(s) contained in the interface information structure(s).
InteifaceList[xJ->Interface, filled in on return from USBD_CreateConfigurationRequest
Ex, points to a USBD _INTERFACE_INFORMATION structure. This structure contains
members that can select alternate interface and endpoint settings at device-configuration
time. See USBD _INTERFACE_INFORMATION for details on these members.

After all operations with this URB have been completed, the caller must free the
memory allocated by this routine for the URB. Failure to do so will result in a memory
leak condition.

Callers of this routine can be running at IRQL <= DISPATCH_LEVEL if the memory
pointed to by ConfigurationDescriptor and InteifaceList are allocated from nonpaged pool.
Otherwise, callers must be running at IRQL < DISPATCH_LEVEL.

See Also
USBD_INTERFACE_INFORMATION, _URB_SELECT_CONFIGURATION

USBD _ GetlnterfaceLength
ULONG

USBD_GetInterfaceLength(
IN PUSB_INTERFACE_DESCRIPTOR InterfaceDescriptor.
IN PUCHAR BufferEnd
) ;

USBD_GetInterfaceLength obtains the length of a given interface descriptor, including the
length of all endpoint descriptors contained within the interface.

Parameters
interfaceDescriptor
Points to a interface descriptor for which to obtain the length.

BufferEnd
Points to the position within a buffer at which to stop searching for the length of the inter
face and associated endpoints.

Return Value
USBD _ GetlnterfaceLength returns the length, in bytes, of the interface descriptor and all
associated endpoint descriptors contained within the interface.

Chapter 2 USB Client Support Routines 969

Comments
Callers can use this routine to obtain the length of an interface and associated endpoints
that are contained within another buffer. For example, a caller could specify a location
inside of a larger buffer for InteljaceDescriptor and the beginning of a location of another
interface descriptor for BufferEnd. This will cause the routine to search only from the
beginning of the interface descriptor specified by InteljaceDescriptor until either it finds
another interface descriptor or it reaches the position specified by End.

Callers of this routine must be running at IRQL PASSIVE_LEVEL.

USBD_GetUSBDIVersion
VOID

USBD_GetUSBDIVersionC
OUT PUSBD_VERSION_INFORMATION Versionlnformation
) ;

USBD_GetUSBDIVersion returns version information about the host controller driver
(HCD) that controls the clients USB device.

Parameters
Versionlnformation
Points to caller-allocated memory for the following structure, that on return from the
routine, contains version information about the HCD:

typedef struct _USBD_VERSION_INFORMATION
ULONG USBDI_Version;
ULONG Supported_USB_Version;

USBD_VERSION_INFORMATION. *PUSBD_VERSION_INFORMATION;

Members
USBDI_ Version
Specifies the version, as a binary-coded decimal (BCD) number, of the HCD.

Supported_USB_ Version
Specifies the revision, as a BCD number, of the USB specification that this version of the
HCD supports.

Comments
Callers of this routine can be running at IRQL <= DISPATCH_LEVEL if the memory for
Versionlnformation is allocated from nonpaged pool. Otherwise, callers must be running at
IRQL < DISPATCH_LEVEL.

970 Part 4 USB Drivers

USBD_ParseConfigurationDescriptor
PUSB_INTERFACE_DESCRIPTOR

USBD_ParseConfigurationDescriptor(
IN PUSB_CONFIGURATION_DESCRIPTOR ConfigurationDescriptor,
IN UCHAR InterfaceNumber,
IN UCHAR A7ternateSetting
) :

This routine is exported to support existing driver binaries and is obsolete. Use USBD_
ParseConfigurationDescriptorEx instead.

USB 0 _ParseConfigu ration DescriptorEx
PUSB_INTERFACE_DESCRIPTOR

USBD_ParseConfigurationDescriptorEx(
IN PUSB_CONFIGURATION_DESCRIPTOR ConfigurationDescriptor,
IN PVOID StartPosition,
IN LONG InterfaceNumber,
IN LONG A7ternateSetting,
IN LONG InterfaceC7 ass,
IN LONG InterfaceSubC7ass,
IN LONG InterfaceProtoco7
) :

USBD _ParseConfigurationDescriptorEx searches a given configuration descriptor and
returns a pointer to an interface that matches the given search criteria.

Parameters
Configuration Descriptor
Points to a USB configuration descriptor that contains the interface for which to search.

StartPosition
Points to the address within the configuration descriptor, provided at Configuration
Descriptor, to begin searching from. To search from the beginning of the configuration
descriptor, the parameters ConfigurationDescriptor and StartPosition must be the same
address.

InterfaceNumber
Specifies the device-defined index of the interface to be retrieved. This should be set to -1 if
it should not be a search criteria.

Chapter 2 USB Client Support Routines 971

AlternateSetting
Specifies the device-defined alternate-setting index of the interface to be retrieved. If the
caller does not wish the alternate setting value to be a search criteria, this parameter should
be set to-1.

InterfaceClass
Specifies the device- or USB-defined identifier for the interface class of the interface to be
retrieved. If the caller does not wish the interface class value to be a search criteria, this
parameter should be set to -1.

InterfaceSubClass
Specifies the device- or USB-defined identifier for the interface subclass of the interface
to be retrieved. If the caller does not wish the interface subclass value to be a search criteria,
this parameter should be set to -1.

InterfaceProtocol
Specifies the device- or USB-defined identifier for the interface protocol of the interface
to be retrieved. If the caller does not wish the interface protocol value to be a search criteria,
this parameter should be set to -1.

Return Value
USBD _ParseConfigurationDescriptorEx returns a pointer to the first interface de
scriptor that matches the given search criteria. If no interface matches the search criteria,
it returns NULL.

Comments
Callers can specify more than one of the search criteria (InterfaceNumber, AlternateSetting,
InterfaceClass, InterfaceSubClass, and InterfaceProtocol) when using this routine to find an
interface within a configuration descriptor.

When this routine parses the configuration descriptor looking for the interface descriptor
that matches the search criteria, it returns the first match, terminating the search. Callers
should specify as many search criteria as are necessary to find the desired interface.

Callers of this routine must be running at IRQL <= DISPATCH_LEVEL.

See Also
USB_CONFIGURATION_DESCRIPTOR

972 Part 4 USB Drivers

USB D _ParseDescri ptors
PUSB_COMMON_DESCRIPTOR

USBD_ParseDescriptors(
IN PVOID DescriptorBuffer,
IN ULONG Tota7Length,
IN PVOID StartPosition,
IN LONG DescriptorType
) ;

USBD _ParseDescriptors searches a given configuration descriptor and returns a pointer to
the first descriptor that matches the search criteria.

Parameters
DescriptorBuffer
Points to a configuration descriptor that contains the descriptor for which to search.

Tota/Length
Specifies the size, in bytes, of the buffer pointed to by DescriptorBuffer.

StartPosition
Points to the address within the configuration descriptor, provided at DescriptorBuffer,
to begin searching from. To search from the beginning of the configuration descriptor, the
parameters DescriptorBuffer and StartPosition must be the same address.

DescriptorType
Specifies the descriptor type code as assigned by USB. The following values are valid for
USB-defined descriptor types:

USB_STRING_DESCRIPTOR_ TYPE
Specifies that the descriptor being searched for is a string descriptor.

USBJNTERFACE_DESCRIPTOR_ TYPE
Specifies that the descriptor being searched for is an interface descriptor.

USB_ENDPOINT _DESCRIPTOR_TYPE
Specifies that the descriptor being searched for is an endpoint descriptor.

Chapter 2 USB Client Support Routines 973

Return Value
USBD _ParseDescriptors returns a pointer to the following structure that is the head of the
first descriptor that matches the given search criteria, or NULL is returned if no match is
found:

typedef struct _USB_CaMMON_DESCRIPTOR
UCHAR bLength;
UCHAR bDescriptorType;

USB_COMMON_DESCRIPTOR, *PUSB_COMMON_DESCRIPTOR;

Members
bLength
Specifies the entire length of the descriptor, not this structure.

bDescriptorType
Specifies the descriptor type code, as assigned by USB, for this descriptor.

Comments
This structure is used to hold a portion of a descriptor, so that the caller of USBD_
ParseDescriptors can determine the correct structure to use to access the remaining data
in the descriptor. Every descriptor type has these fields at the beginning of the data and
callers can use the bLength and bDescriptorType members to correctly identify the type
of this descriptor.

Comments
When this routine parses the configuration descriptor looking for the descriptor that matches
the search criteria, it returns the first match, terminating the search.

Callers of this routine can be running at IRQL <= DISPATCH_LEVEL.

USBD _RegisterHcFilter
VOID

USBD_RegisterHcFilter(
PDEVICE_OBJECT DeviceObject,
PDEVICE_OBJECT Fi7terDeviceObject
) ;

USBD_RegisterHcFilter is called by USB bus filter drivers to register their device objects
with the host controller driver.

974 Part 4 USB Drivers

Parameters
DeviceObject
Points to the device object that is the current top of the stack as reported by IoAttach
DeviceToDeviceStack.

FilterDeviceObject
Points to the filter device object created by the filter driver for its operations.

Comments
USB bus filter drivers must call this routine after attaching their device object to the device
object stack for the host controller driver.

Callers of this routine must be running at IRQL PASSIVE_LEVEL.

See Also
IoAttachDeviceToDeviceStack

975

CHAPTER 3

USB Structures

URB

This chapter describes system-defined structures used by Universal Serial Bus (USB) client
drivers on Windows® Driver Model (WDM) platforms. See Part 1 for information about
system-defined structures that are not described here.

Drivers can use only those members of structures that are described here. All undocumented
members of these structures are reserved for system use.

Transfer buffers that are members of structures defined here must be nonpageable memory.

Structures described in this chapter are in alphabetical order.

typedef struct _URB {
union {

}

struct _URB_HEADER UrbHeader;
struct _URB_SELECT_INTERFACE UrbSelectlnterface;
struct _URB_SELECT_CONFIGURATION UrbSelectConfiguration;
struct _URB_PIPE_REQUEST UrbPipeRequest;
struct _URB_FRAME_LENGTH_CONTROL UrbFrameLengthControl;
struct _URB_GET_FRAME_LENGTH UrbGetFrameLength;
struct _URB_SET_FRAME_LENGTH UrbSetFrameLength;
struct _URB_GET_CURRENT_FRAME_NUMBER UrbGetCurrentFrameNumber;
struct _URB_CONTROL_TRANSFER UrbControlTransfer;
struct _URB_BULK-OR_INTERRUPT_TRANSFER UrbBulkOrlnterruptTransfer;
struct _URB_ISOCH_TRANSFER UrbIsochronousTransfer;
struct _URB_CONTROL_DESCRIPTOR_REQUEST UrbControlDescriptorRequest;
struct _URB_CONTROL_GET_STATUS_REQUEST UrbControlGetStatusRequest;
struct _URB_CONTROL_FEATURE_REQUEST UrbControlFeatureRequest;
struct _URB_CONTROL_SYNC_FRAME_REQUEST UrbControlSyncFrameRequest;
struct _URB_CONTROL_VENDOR-OR-CLASS_REQUEST UrbControlVendorClassRequest;
struct _URB_CONTROL_GET_INTERFACE_REQUEST UrbControlGetlnterfaceRequest;
struct _URB_CONTROL_GET_CONFIGURATION_REQUEST UrbControlGetConfigurationRequest;

URB, *PURB ;

976 Part 4 USB Drivers

USB client drivers set up USB request blocks (URB) to send requests to the host controller
driver. The URB structure defines a format for all possible commands that can be sent to a
USB device.

Members
UrbHeader
Defines the format for requests that do not require additional structure data.

UrbSelectlnterface
Defines the format of a select interface command for a USB device.

UrbSelectConfiguration
Defines the format of a select configuration command for a USB device.

UrbPipeRequest
Defines the format for a command to reset a stalled pipe on a USB device.

UrbFrameLengthControl
Defines the format for a command to take or release control of the frame length on a USB
bus.

UrbGetFrameLength
Defines the format for a command to get the current frame length on a USB bus.

UrbSetFrameLength
Defines the format for a command to alter the frame length on a USB bus.

UrbGetCurrentFrameNumber
Defines the format for a command to get the current frame number on a USB bus.

UrbControlTransfer
Defines the format for a command to transmit or receive data on a control pipe.

UrbBulkOrlnterruptTransfer
Defines the format for a command to transmit or receive data on a bulk pipe, or to receive
data from an interrupt pipe.

UrblsochronousTransfer
Defines the format of an isochronous transfer to a USB device.

Chapter 3 USB Structures 977

UrbControlDescriptorRequest
Defines the format for a command to retrieve or set descriptor(s) on a USB device.

UrbControlGetStatusRequest
Defines the format for a command to get status from a device, interface, or endpoint.

UrbControlFeatureRequest
Defines the format for a command to set or clear USB-defined features on a device,
interface, or endpoint.

UrbControlSyncFrameRequest
Defines the format for a command to get the frame number of an isochronous pattern
transfer.

UrbControlVendorClassRequest
Defines the format for a command to send or receive a vendor or class-specific request on a
device, interface, endpoint, or other device-defined target.

UrbControlGetlnterfaceRequest
Defines the format for a command to get the current alternate interface setting for a selected
interface.

UrbControlGetConfigurationRequest
Defines the format for a command to get the current configuration for a device.

Comments
For information on the function codes to set in each structure see _URB_HEADER.

See Also
_URB_HEADER, _URB_SELECT_INTERFACE, _URB_SELECT_CONFIGURATION,
_URB_PIPE_REQUEST, _URB_FRAME_LENGTH_CONTROL,
_URB_GET_FRAME_LENGTH, _URB_SET_FRAME_LENGTH,
_URB_GET_CURRENT_FRAME_NUMBER, _URB_CONTROL_TRANSFER,
_URB_BULK_OR_INTERRUPT_TRANSFER, _URB_ISOCH_TRANSFER,
_URB_CONTROL_DESCRIPTOR_REQUEST,
_URB_CONTROL_GET_STATUS_REQUEST,
_URB_CONTROL_FEATURE_REQUEST,
_URB_CONTROL_ VENDOR_OR_CLASS_REQUEST,
_URB_CONTROL_GET_INTERFACE_REQUEST,
_URB_CONTROL_GET_CONFIGURATION_REQUEST

978 Part 4 USB Drivers

struct _URB_BULK_OR-INTERRUPT_TRANSFER
struct _URB_HEADER Hdr;
USBD_PIPE_HANDLE PipeHandle;

} ;

ULONG TransferFlags;
ULONG TransferBufferLength;
PVOID TransferBuffer;
PMDL TransferBufferMDL;
struct _URB *UrbLink;

USB client drivers set up this structure to transmit or receive data on a bulk pipe, or receive
data on an interrupt pipe.

Members
Hdr
Specifies the URB header information. Hdr.Functio~ must be URB_FUNCTION_
BULK_OR_INTERRUPT_TRANSFER, and Hdr.Length must be sizeof(_URB_BULK_
OR_INTERRUPT_TRANSFER).

PipeHandle
Specifies the handle for this pipe returned by the host controller driver when a configuration
was selected.

TransferFlags
Specifies zero, one, or a combination of the following flags:

USBD _ TRANSFER_DIRECTIONJN
Is set to request data from a device. To transfer data to a device, this flag must be clear. The
flag must be set if the pipe is an interrupt transfer pipe.

USBD_SHORT_TRANSFER_OK
Can be used if USBD _ TRANSFER_DIRECTION_IN is set. If set, directs the host
controller driver not to return an error if a packet is received from the device shorter than
the maximum packet size for the endpoint. Otherwise, a short request is returns an error
condition.

Chapter 3 USB Structures 979

TransferBufferLength
Specifies the length, in bytes, of the buffer specified in TransferBuffer or described in
TransferBufferMDL. The host controller driver returns the number of bytes sent to or read
from the pipe in this member.

TransferBuffer
Points to a resident buffer for the transfer or is NULL if an MDL is supplied in Transfer
BufferMDL. The contents of this buffer depend on the value of TransferFlags. If USBD_
TRANSFER_DIRECTION_IN is specified this buffer will contain data read from the device
on return from the host controller driver. Otherwise, this buffer contains driver-supplied data
for transfer to the device.

TransferBufferM DL
Points to an MDL that describes a resident buffer or is NULL if a buffer is supplied in
TransferBuffer. The contents of the buffer depend on the value of TransferFlags. If
USBD_TRANSFER_DIRECTION_IN is specified, the described buffer will contain data
read from the device on return from the host controller driver. Otherwise, the buffer contains
driver-supplied data for transfer to the device. This MDL must be allocated from nonpaged
pool.

UrbLink
Points to a caller-initialized URB. UrbLink becomes the subsequent URB in a chain of
requests with this URB being the predecessor.

Comments
Drivers can use the UsbBuildlnterruptOrBulkTransferRequest service routine to format
this URB.Buffers specified in TransferBuffer or described in TransferBufferMDL must
be nonpageable.

Other fields that are part of this structure, but not described here, should be treated as
opaque and considered reserved for system use.

See Also
URB, _URB_HEADER

980 Part 4 USB Drivers

_URB_CONTROL_DESCRIPTOR_REQUEST
struct _URB_CONTROL_DESCRIPTOR_REQUEST

struct _URB_HEADER Hdr;

ULONG TransferBufferLength
PVOID TransferBuffer ;
PMDL TransferBufferMDL
struct _URB *UrbLink ;

UCHAR Index ;
UCHAR DescriptorType
USHORT LanguageId ;

USB client drivers set up this structure to get or set descriptors on a USB device.

Members
Hdr
Specifies the URB header information. Hdr.Function must be one of URB_FUNCTION_
GET_DESCRIPTOR_FROM_XXX or URB_FUNCTION_SET_DESCRIPTOR_FROM_
XXX, and Hdr.Length must be sizeofCURB_CONTROL_DESCRIPTOR_REQUEST).

TransferB ufferLength
Specifies the length, in bytes, of the buffer specified in TransferBuffer or described in
TransferBufferMDL. The host controller driver returns the number of bytes sent to or read
from the pipe in this member.

TransferBuffer
Points to a resident buffer for the transfer or is NULL if an MDL is supplied in Transfer
BufferMDL.

TransferBufferMDL
Points to an MDL that describes a resident buffer or is NULL if a buffer is supplied in
TransferBuffer.This MDL must be allocated from nonpaged pool.

UrbLink
Points to an caller-initialized URB. UrbLink becomes the subsequent URB in a chain of
requests with this URB being the predecessor.

Chapter 3 USB Structures 981

Index
Specifies the device-defined index of the descriptor that is being retrieved or set.

DescriptorType
Indicates what type of descriptor is being retrieved or set. One of the following values must
be specified:

USB_DEVICE_DESCRIPTOR_TYPE
USB_CONFIGURATION_DESCRIPTOR_TYPE
USB_STRING_DESCRIPTOR_TYPE

Languageld
Specifies the language ID of the descriptor to be retrieved when USB_STRING_
DESCRIPTOR_TYPE is set in DescriptorType. This member must be set to zero for
any other value in DescriptorType.

Comments
Drivers can use the UsbBuildGetDescriptorRequest service routine to format this URB. If
the caller passes a buffer too small to hold all of the data, the bus driver truncates the data to
fit in the buffer without error.

When the caller requests the device descriptor, the bus driver returns a USB_DEVICE_
DESCRIPTOR data structure.

When the caller requests a configuration descriptor, the bus driver returns the configuration
descriptor in a USB_CONFIGURATION_DESCRIPTOR structure, followed by the inter
face and endpoint descriptors for that configuration. The driver can access the interface and
endpoint descriptors as USB_INTERFACE_DESCRIPTOR, and USB_ENDPOINT_
DESCRIPTOR structures. The bus driver also returns any class-specific or device-specific
descriptors. The system provides the USBD _ParseConfigurationDescriptorEx and USBD_
ParseDescriptors service routines to find individual descriptors within the buffer.

When the caller requests a string descriptor, the bus driver returns a USB_STRING_
DESCRIPTOR structure. The string itself is found in the variable-length bString member
of the string descriptor.

Other fields that are part of this structure, but not described here, should be treated as
opaque and considered reserved for system use.

See Also
URB, _URB_HEADER

982 Part 4 USB Drivers

struct _URB_CONTROL_FEATURE_REQUEST
struct _URB_HEADER Hdr;

struct _URB *UrbLink

USHORT FeatureSelector
USHORT Index ;

USB client drivers set up this structure to set or clear features on a device, interface, or
endpoint.

Members
Hdr
Specifies the URB header information. Hdr.Function must be one ofURB_FUNCTION_
SET_FEATURE_TO_XXX or URB_FUNCTION_CLEAR_FEATURE_TO_XXX, and
Hdr.Length must be sizeof(_URB_CONTROL_FEATURE_REQUEST).

UrbLink
Points to an caller-initialized URB. UrbLink becomes the subsequent URB in a chain of
requests with this URB being the predecessor.

FeatureSelector
Is the USB-defined feature code to be cleared or set. Using a feature code that is invalid,
cannot be set, or cannot be cleared will cause the target to stall.

Index
Specifies the device-defined index, returned by a successful configuration request, if the
request is for an endpoint or interface. Otherwise, Index must be zero.

Comments
Drivers can use the UsbBuildFeatureRequest service routine to format this URB.

Other fields that are part of this structure but not described here should be treated as opaque
and considered reserved for system use.

See Also
URB, _URB_HEADER

struct _URB_CONTROL_GET_CONFIGURATION_REQUEST {
struct _URB_HEADER Hdr;

}

ULONG TransferBufferLength;
PVOID TransferBuffer;
PMDL TransferBufferMDL;
struct _URB *UrbLink;

Chapter 3 USB Structures 983

USB client drivers set up this structure to retrieve the current configuration for a device.

Members
Hdr
Specifies the URB header information. Hdr.Function must be URB_FUNCTION_
GET_CONFIGURATION, and Hdr.Length must be sizeof(_URB_CONTROL_GET_
CONFIGURATION_REQUEST).

TransferBufferLength
Must be 1. This member specifies the length, in bytes, of the buffer specified in Transfer
Buffer or described in TransferBufferMDL.

TransferBuffer
Points to a resident buffer for the transfer or is NULL if an MDL is supplied in Transfer
BufferMDL. The bus driver returns a single byte that specifies the index of the current
configuration.

TransferBufferMDL
Points to an MDL that describes a resident buffer or is NULL if a buffer is supplied in
TransferBuffer. The bus driver returns a single byte that specifies the index of the current
configuration. This MDL must be allocated from nonpaged pooL

UrbLink
Points to an caller-initialized URB. UrbLink becomes the subsequent URB in a chain of
requests with this URB being the predecessor.

Comments
Other fields that are part of this structure but not described here should be treated as opaque
and considered reserved for system use.

984 Part 4 USB Drivers

See Also
URB, _URB_HEADER

struct _URB_CONTROL_GET_INTERFACE_REQUEST
struct _URB_HEADER Hdr;

ULONG TransferBufferLength
PVOID TransferBuffer ;
PMDL TransferBufferMDL
struct _URB *UrbLink ;

USHORT Interface;

USB client drivers set up this structure to retrieve the current alternate interface setting for a
interface in the current configuration.

Members
Hdr
Specifies the URB header information. Hdr.Function must be URB_FUNCTION_GET_
INTERFACE, and Hdr.Length must be sizeofC_URB_CONTROL_GET_INTERFACE_
REQUEST).

TransferBufferLength
Must be 1. This member specifies the length, in bytes, of the buffer specified in Transfer
Buffer or described in TransferBufferMDL. The host controller driver returns the number
of bytes sent to or read from the pipe in this member.

TransferBuffer
Points to a resident buffer for the transfer or is NULL if an MDL is supplied in Transfer
BufferMDL. The bus driver returns a single byte specifying the index of the current
alternate setting for the interface.

TransferBufferMDL
Points to an MDL that describes a resident buffer or is NULL if a buffer is supplied in
TransferBuffer. The bus driver returns a single byte specifying the index of the current
alternate setting for the interface. This MDL must be allocated from nonpaged pool.

Chapter 3 USB Structures 985

UrbLink
Points to an caller-initialized URB. UrbLink becomes the subsequent URB in a chain of
requests with this URB being the predecessor.

Index
Specifies the device-defined index of the interface descriptor being retrieved.

Comments
Other fields that are part of this structure but not described here should be treated as opaque
and considered reserved for system use.

See Also
URB, _URB_HEADER

struct _URB_CONTROL_GET_STATUS_REQUEST
struct _URB_HEADER Hdr;

ULONG TransferBufferLength
PVOID TransferBuffer ;
PMDL TransferBufferMDL
struct _URB *UrbLink ;

USHORT Index

USB client drivers set up this structure to retrieve status from a device, interface, endpoint,
or other device-defined target.

Members
Hdr
Specifies the URB header information. Hdr.Function must be URB_FUNCTION_
GET_STATUS, and Hdr.Length must be sizeof(_URB_CONTROL_GET_STATUS_
REQUEST).

986 Part 4 USB Drivers

TransferBufferLength
Must be 1. This member specifies the length, in bytes, of the buffer specified in Transfer
Buffer or described in TransferBufferMDL. The host controller driver returns the number
of bytes sent to or read from the pipe in this member.

TransferBuffer
Points to a resident buffer for the transfer or is NULL if an MDL is supplied in Transfer
BufferMDL. The bus driver returns a single byte specifying the index of the current
alternate setting for the interface.

TransferBufferMDL
Points to an MDL that describes a resident buffer or is NULL if a buffer is supplied in
TransferBuffer. The bus driver returns a single byte specifying the index of the current
alternate setting for the interface. This MDL must be allocated from nonpaged pool.

UrbLink
Points to an caller-initialized URB. UrbLink becomes the subsequent URB in a chain of
requests with this URB being the predecessor.

Index
Specifies the device-defined index, returned by a successful configuration request, if the
request is for an endpoint or interface. Otherwise, Index must be zero.

Comments
Drivers can use the UsbBuildGetStatusRequest service routine to format this URB.

Other fields that are part of this structure but not described here should be treated as opaque
and considered reserved for system use.

See Also
URB, _URB_HEADER

struct _URB_CONTROL_TRANSFER {
struct _URB_HEADER Hdr;
USBD_PIPE_HANDLE PipeHandle;
ULONG TransferFlags;
ULONG TransferBufferLength;
PVOID TransferBuffer;
PMDL TransferBufferMDL;

Chapter 3 USB Structures 987

struct _URB *UrbLink;

UCHAR SetupPacket[8];
}

USB client drivers set up this structure to transfer data to or from a control pipe.

Members
Hdr
Specifies the URB header information. Hdr.Function must be URB_FUNCTION_
CONTROL_TRANSFER, and Hdr.Length must be sizeof(_URB_CONTROL_
TRANSFER).

PipeHandle
Specifies the handle for this pipe returned by the host controller driver when a configuration
was selected.

TransferFlags
Specifies zero, one, or a combination of the following flags:

USBD _ TRANSFER_DIRECTIONJN
Is set to request data from a device. To transfer data to a device, this flag must be clear. The
flag must be set if the pipe is an interrupt transfer pipe.

USBD_SHORT_TRANSFER_OK
Can be used ifUSBD_TRANSFER_DIRECTION_IN is set. If set, directs the host
controller driver not to return an error if a packet is received from the device shorter than
the maximum packet size for the endpoint. Otherwise, a short request is returns an error
condition.

TransferBufferLength
Specifies the length, in bytes, of the buffer specified in TransferBuffer or described in
TransferBufferMDL. The host controller driver returns the number of bytes sent to or read
from the pipe in this member.

TransferBuffer
Points to a resident buffer for the transfer or is NULL if an MDL is supplied in Transfer
BufferMDL. The contents of this buffer depend on the value of TransferFlags. If USBD_
TRANSFER_DIRECTION_IN is specified this buffer will contain data read from the device
on return from the host controller driver. Otherwise, this buffer contains driver-supplied data
for transfer to the device.

988 Part 4 USB Drivers

TransferBufferMDL
Points to an MDL that describes a resident buffer or is NULL if a buffer is supplied in
TransferBuffer. The contents of the buffer depend on the value of TransferFlags. If
USBD_TRANSFER_DIRECTION_IN is specified, the described buffer will contain data
read from the device on return from the host controller driver. Otherwise, the buffer contains
driver-supplied data for transfer to the device. This MDL must be allocated from nonpaged
pool.

UrbLink
Points to an caller-initialized URB. UrbLink becomes the subsequent URB in a chain of
requests with this URB being the predecessor.

SetupPacket
Is a USB-defined request setup packet. The format of a USB request setup packet is found in
the USB core specification.

Comments
Other fields that are part of this structure but not described here should be treated as opaque
and considered reserved for system use.

See Also
URB, _URB_HEADER

struct _URB_CONTROL_VENDOR_OR_CLASS_REQUEST
struct _URB_HEADER Hdr;

} ;

ULONG TransferFlags
ULONG TransferBufferLength
PVOID TransferBuffer ;
PMDL TransferBufferMDL
struct _URB *UrbLink ;

UCHAR RequestTypeReservedBits;
UCHAR Request;
USHORT Value;
USHORT Index;

Chapter 3 USB Structures 989

USB client drivers set up this structure to issue a vendor or class-specific command to a
device, interface, endpoint, or other device-defined target.

Members
Hdr
Specifies the URB header information. Hdr.Function must be one of URB_FUNCTION_
CLASS_XXX or URB_FUNCTION_ VENDOR_XXX GET_STATUS, and Hdr.Length
must be sizeof{_URB_CONTROL_ VENDOR_OR_CLASS_REQUEST).

TransferFlags
Specifies zero, one, or a combination of the following flags:

USBD _ TRANSFER_DIRECTIONJN
Is set to request data from a device. To transfer data to a device, this flag must be clear.
The flag must be set if the pipe is an interrupt transfer pipe.

USBD_SHORT_TRANSFER_OK
Can be used if USBD_TRANSFER_DIRECTION_IN is set. If set, directs the host con
troller driver not to return an error if a packet is received from the device shorter than the
maximum packet size for the endpoint. Otherwise, a short request is returns an error
condition.

TransferBufferLength
Specifies the length, in bytes, of the buffer specified in TransferBuffer or described in
TransferBufferMDL. The host controller driver returns the number of bytes sent to or
read from the pipe in this member.

TransferBuffer
Points to a resident buffer for the transfer or is NULL if an MOL is supplied in Transfer
BufferMDL. The contents of this buffer depend on the value of TransferFlags. If USBD_
TRANSFER_DIRECTION_IN is specified this buffer will contain data read from the device
on return from the host controller driver. Otherwise, this buffer contains driver-supplied data
for transfer to the device.

TransferBufferMDL
Points to an MOL that describes a resident buffer or is NULL if a buffer is supplied in
TransferBuffer. The contents of the buffer depend on the value of TransferFlags. If
USBD_TRANSFER_DIRECTION_IN is specified, the described buffer will contain data
read from the device on return from the host controller driver. Otherwise, the buffer contains
driver-supplied data for transfer to the device. This MOL must be allocated from non-
paged pool.

990 Part 4 USB Drivers

UrbLink
Points to a caller-initialized URB. UrbLink becomes the subsequent URB in a chain of
requests with this URB being the predecessor.

RequestTypeReservedBits
Specifies a value, from 4 to 31 inclusive, that becomes part of the request type code in the
USB-defined setup packet. This value is defined by USB for a class request or the vendor
for a vendor request.

Request
Specifies the USB or vendor-defined request code for the device, interface, endpoint, or
other device-defined target.

Value
Is a value, specific to Request, that becomes part of the USB-defined setup packet for the
target. This value is defined by the creator of the code used in Request.

Index
Specifies the device-defined index, returned by a successful configuration request, if the
request is for an endpoint or interface. Otherwise, Index must be zero.

Comments
Drivers can use the UsbBuildVendorRequest service routine format this URB.

Other fields that are part of this structure but not described here should be treated as opaque
and considered to be reserved for system use.

See Also
URB, _URB_HEADER

struct _URB_FRAME_LENGTH_CONTROL
struct _URB_HEADER Hdr;

} ;

USB client drivers set up this structure to take or release control of the frame length on
the bus.

Members
Hdr

Chapter 3 USB Structures 991

Specifies the URB header information. Hdr.Function must be either URB_FUNCTION_
TAKE_FRAME_LENGTH_CONTROL or URB_FUNCTION_RELEASE_FRAME_
LENGTH_CONTROL, and Hdr.Length must be sizeof{_URB_FRAME_LENGTH_
CONTROL).

Comments
Only one client can have control of frame length at any time. To take control of the frame
length, a driver sets Hdr.Function to URB_FUNCTION_TAKE_FRAME_LENGTH_
CONTROL. When a client, who has taken control of the frame length, is ready to release
control, it must release control it by sending this URB with Hdr.Function set to URB_
FUNCTION_RELEASE_FRAME_LENGTH_CONTROL.

See Also
URB, _URB_HEADER

struct _URB_GET_CURRENT_FRAME_NUMBER {
struct _URB_HEADER Hdr;
ULONG FrameNumber :

USB client drivers set up this structure to retrieve the current frame length on the bus.

Members
Hdr
Specifies the URB header information. Hdr.Function must be URB_FUNCTION_GET_
FRAME_LENGTH, and Hdr.Length must be sizeof{_URB_GET_CURRENT_FRAME_
NUMBER).

FrameNumber
Contains the current frame number, on the USB bus, on 'return from the host controller
driver.

See Also
URB, _URB_HEADER

992 Part 4 USB Drivers

struct _URB_GET_FRAME_LENGTH {
struct _URB_HEADER Hdr;
ULONG FrameLength
ULONG FrameNumber ;

}

USB client drivers set up this structure to retrieve the current frame length on the bus.

Members
Hdr
Specifies the URB header information. Hdr.Function must be URB_FUNCTION_GET_
FRAME_LENGTH, and Hdr.Length must be sizeof(_URB_GET_FRAME_LENGTH).

FrameLength
Contains the length of each bus frame in USB-defined bit times.

FrameNumber
Contains the earliest bus frame number that the frame length can be altered on return from
the host controller driver.

Comments
Client drivers must request and be granted sole control of frame length on the bus before
submitting an URB of this type. Clients can take control of frame length settings by sub
mitting an URB using _URB_FRAME_LENGTH_CONTROL as the data structure.

See Also
URB, _URB_HEADER, _URB_FRAME_LENGTH_CONTROL

struct _URB_HEADER {
USHORT Length ;
USHORT Function ;

USBD_STATUS Status

USB client drivers set up this structure to provide basic information about the request being
sent to the host controller driver.

Members
Length

Chapter 3 USB Structures 993

Specifies the length, in bytes, of the URB. For URB requests that use data structures other
than _URB_HEADER, this member must be set to the length of the entire URB request
structure, not the _URB_HEADER size.

Function
Specifies a numeric code indicating the requested operation for this URB. One of the
following value must be set:

URB_FUNCTION_SELECT _CONFIGURATION
Indicates to the host controller driver that a configuration is to be selected. If set, the URB
is used with _URB_SELECT_CONFIGURATION as the data structure.

URB_FUNCTION_SELECT JNTERFACE
Indicates to the host controller driver that an alternate interface setting is being selected
for an interface. If set, the URB is used with _URB_SELECT_INTERFACE as the data
structure.

URB_FUNCTION_ABORT _PIPE
Indicates that all outstanding requests for a pipe should be canceled. If set, the URB is used
with _URB_PIPE_REQUEST as the data structure.

URB_FUNCTION_ TAKE_FRAME_LENGTH_ CONTROL
Indicates that the client is requesting sole control of the frame length for the USB bus. If set,
the URB is used with _URB_FRAME_LENGTH_CONTROL as the data structure.

URB_FUNCTION_RELEASE_FRAME_LENGTH_ CONTROL
Indicates that the client is releasing control of the frame length on the USB bus. If set, the
URB is used with _URB_FRAME_LENGTH_CONTROL as the data structure.

URB_FUNCTION_ GET _FRAME_LENGTH
Requests the current frame length on the USB bus. If set, the URB is used with _URB_
GET _FRAME_LENGTH as the data structure.

URB_FUNCTION_SET _FRAME_LENGTH
Alters the current frame length on the USB bus. If set, the URB is used with _URB_SET_
FRAME_LENGTH as the data structure.

URB_FUNCTION_GET _CURRENT _FRAME_NUMBER
Requests the current frame number from the host controller driver. If set, the URB is used
with _URB_GET_CURRENT_FRAME_NUMBER as the data structure.

994 Part 4 USB Drivers

URB_FUNCTION_ CONTROL_TRANSFER
Transfers data to or from a control pipe. If set, the URB is used with _URB_CONTROL_
TRANSFER as the data structure.

URB_FUNCTION_BULK_ ORJNTERRUPT _TRANSFER
Transfers data from a bulk pipe or interrupt pipe or to an bulk pipe. If set, the URB is used
with _URB_BULK_OR_INTERRUPT_TRANSFER as the data structure.

URB_FUNCTIONJSOCH_ TRANSFER
Transfers data to or from an isochronous pipe. If set, the URB is used with _URB_ISOCH_
TRANSFER as the data structure.

URB_FUNCTION_RESET _PIPE
Causes a stall condition on an endpoint to be cleared. If set, the URB is used with _ URB_
PIPE_REQUEST as the data structure.

URB_FUNCTION_ GET _DESCRIPTOR_FROM_DEVICE
Retrieves the device descriptor from a specific USB device. If set, the URB is used with
_URB_CONTROL_DESCRIPTOR_REQUEST as the data structure.

URB_FUNCTION_ GET _DESCRIPTOR_FROM_ENDPOINT
Retrieves the descriptor from an endpoint on an interface for a USB device. If set, the URB
is used with _URB_CONTROL_DESCRIPTOR_REQUESTas the data structure.

URB_FUNCTION_SET _DESCRIPTOR_TO _DEVICE
Sets a device descriptor on a device. If set, the URB is used with _URB_CONTROL_
DESCRIPTOR_REQUEST as the data structure.

URB_FUNCTION_SET _DESCRIPTOR_TO _ENDPOINT
Sets an endpoint descriptor on an endpoint for an interface. If set, the URB is used with
_URB_CONTROL_DESCRIPTOR_REQUEST as the data structure.

URB_FUNCTION_SET _FEATURE_TO _DEVICE
Sets a USB-defined feature on a device. If set, the URB is used with _URB_CONTROL_
FEATURE_REQUEST as the data structure.

URB_FUNCTION_SET _FEATURE_TO JNTERFACE
Sets a USB-defined feature on an interface for a device. If set, the URB is used with _ URB_
CONTROL_FEATURE_REQUEST as the data structure.

URB_FUNCTION_SET_FEATURE_TO_ENDPOINT
Sets a USB-defined feature on an endpoint for an interface on a USB device. If set, the URB
is used with _URB_CONTROL_FEATURE_REQUEST as the data structure.

Chapter 3 USB Structures 995

URB_FUNCTION_SET_FEATURE_TO_OTHER
Sets a USB-defined feature on a device-defined target on a USB device. If set, the URB is
used with _URB_CONTROL_FEATURE_REQUEST as the data structure.

URB_FUNCTION_ CLEAR_FEATURE_ TO _DEVICE
Clears a USB-defined feature on a device. If set, the URB is used with _URB_CONTROL_
FEATURE_REQUEST as the data structure.

URB_FUNCTION_ CLEAR_FEATURE_ TOJNTERFACE
Clears a USB-defined feature on an interface for a device. If set, the URB is used with
_URB_CONTROL_FEATURE_REQUEST as the data structure.

URB_FUNCTION_ CLEAR_FEATURE_ TO_ENDPOINT
Clears a USB-defined feature on an endpoint, for an interface, on a USB device. If set, the
URB is used with _URB_CONTROL_FEATURE_REQUEST as the data structure.

URB_FUNCTION_ CLEAR_FEATURE_ TO_OTHER
Clears a USB-defined feature on a device defined target on a USB device. If set, the URB
is used with _ URB _ CONTROL_FEATURE_REQUEST as the data structure.

URB_FUNCTION_ GET _STATUS_FROM_DEVICE
Retrieves status from a USB device. If set, the URB is used with _URB_CONTROL_GET_
STATUS_REQUEST as the data structure.

URB_FUNCTION_GET_STATUS_FROMJNTERFACE
Retrieves status from an interface on a USB device. If set, the URB is used with _URB_
CONTROL_GET_STATUS_REQUEST as the data structure.

URB_FUNCTION_ GET _STATUS_FROM_ENDPOINT
Retrieves status from an endpoint for an interface on a USB device. If set, the URB is used
with _URB_CONTROL_GET_STATUS_REQUEST as the data structure.

URB_FUNCTION_ GET _STATUS_FROM_ OTHER
Retrieves status from a device-defined target on a USB device. If set, the URB is used with
_URB_CONTROL_GET_STATUS_REQUEST as the data structure.

URB_FUNCTION_ VENDOR_DEVICE
Sends a vendor-specific command to a USB device. If set, the URB is used with _URB_
CONTROL_ VENDOR_OR_CLASS_REQUEST as the data structure.

URB_FUNCTION_ VENDORJNTERFACE
Sends a vendor-specific command for an interface on a USB device. If set, the URB is used
with _URB_CONTROL_ VENDOR_OR_CLASS_REQUEST as the data structure.

996 Part 4 USB Drivers

URB_FUNCTION_ VENDOR_ENDPOINT
Sends a vendor-specific command for an endpoint on an interface on a USB device. If set,
the URB is used with _URB_CONTROL_ VENDOR_OR_CLASS_REQUEST as the data
structure.

URB_FUNCTION_VENDOR_OTHER
Sends a vendor-specific command to a device-defined target on a USB device. If set, the
URB is used with _URB_CONTROL_ VENDOR_OR_CLASS_REQUEST as the data
structure.

URB_FUNCTION_ CLASS_DEVICE
Sends a USB-defined class-specific command to a USB device. If set, the URB is used with
_URB_CONTROL_ VENDOR_OR_CLASS_REQUEST as the data structure.

URB_FUNCTION_CLASSJNTERFACE
Sends a USB-defined class-specific command to an interface on a USB device. If set, the
URB is used with _URB_CONTROL_ VENDOR_OR_CLASS_REQUEST as the data
structure.

URB_FUNCTION_CLASS_ENDPOINT
Sends a USB-defined class-specific command to an endpoint, on an interface, on a USB
device. If set, the URB is used with _URB_CONTROL_ VENDOR_OR_CLASS_
REQUEST as the data structure.

URB_FUNCTION_CLASS_OTHER
Sends a USB-defined class-specific command to a device defined target on a USB device.
If set, the URB is used with _URB_CONTROL_ VENDOR_OR_CLASS_REQUEST as the
data structure.

URB_FUNCTION_GET_CONFIGURATION
Retrieves the current configuration on a USB device. If set, the URB is used with _URB_
CONTROL_GET_CONFIGURATION_REQUEST as the data structure.

URB_FUNCTION_GET JNTERFACE
Retrieves the current settings for an interface on a USB device. If set, the URB is used with
_URB_CONTROL_GET_INTERFACE_REQUEST as the data structure.

Status
Contains a USB_STATUS_XXX code on return from the host controller driver.

Chapter 3 USB Structures 997

Comments
The _URB_HEADER structure is a member of all USB requests that are part of the URB
structure. The _URB_HEADER structure is used to provide common information about
each request to the host controller driver.

Other fields that are part of this structure but not described here should be treated as opaque
and considered to be reserved for system use.

See Also
URB, _URB_SELECT_INTERFACE, _URB_SELECT_CONFIGURATION,
_URB_PIPE_REQUEST, _URB_FRAME_LENGTH_CONTROL,
_URB_GET_FRAME_LENGTH, _URB_SET_FRAME_LENGTH,
_URB_GET_CURRENT_FRAME_NUMBER, _URB_CONTROL_TRANSFER,
_URB_BULK_OR_INTERRUPT_TRANSFER, _URB_ISOCH_TRANSFER,
_URB_CONTROL_DESCRIPTOR_REQUEST, _URB_CONTROL_GET_STATUS_
REQUEST, _URB_CONTROL_FEATURE_REQUEST, _URB_CONTROL_ VENDOR_
OR_CLASS_REQUEST, _URB_CONTROL_GET_INTERFACE_REQUEST,
_URB_CONTROL_GET_CONFIGURATION_REQUEST

_ URB _ISOCH_ TRANSFER
struct _URB_ISOCH_TRANSFER {

struct _URB_HEADER Hdr;
USBD_PIPE_HANDLE PipeHandle;
ULONG TransferFlags;

} ;

ULONG TransferBufferLength;
PVOID TransferBuffer;
PMDL TransferBufferMDL;

ULONG StartFrame;
ULONG NumberOfPackets;
ULONG ErrorCount;
USBD_ISO_PACKET_DESCRIPTOR IsoPacket[l];

USB client drivers set up this structure to send data to or retrieve data from an isochronous
transfer pipe.

Members
Hdr
Specifies the URB header information. Hdr.Function must be URB_FUNCTION_ISOCH_
TRANSFER, and Hdr.Length must be the size of this variable-length data structure.

998 Part 4 USB Drivers

PipeHandle
Specifies the handle for this pipe returned by the host controller driver when a configuration
was selected.

TransferFlags
Specifies zero, one, or a combination of the following flags:

USBD _ TRANSFER_DIRECTIONJN
Is set to request data from a device. To transfer data to a device, this flag must be clear. The
flag must be set if the pipe is an interrupt transfer pipe.

USBD_SHORT_TRANSFER_OK
Can be used if USBD _TRANSFER_DIRECTION_IN is set. If set, directs the host
controller driver not to return an error if a packet is received from the device shorter than
the maximum packet size for the endpoint. Otherwise, a short request is returns an error
condition.

USBDJSO_TRANSFER_ASAP
Causes the transfer to begin on the next frame, if no transfers have been submitted to the
pipe since the pipe was opened or last reset. Otherwise, the transfer will begin on the first
frame following all currently queued requests for the pipe. The actual frame that the transfer
begins on will be adjusted for bus latency by the host controller driver.

TransferBufferLength
Specifies the length, in bytes, of the buffer specified in TransferBuffer or described in
TransferBufferMDL. The host controller driver returns the number of bytes sent to or read
from the pipe in this member.

TransferBuffer
Points to a resident buffer for the transfer or is NULL if an MDL is supplied in Transfer
BufferMDL. The contents of this buffer depend on the value of TransferFlags. If USBD_
TRANSFER_DIRECTION_IN is specified this buffer will contain data read from the device
on return from the host controller driver. Otherwise, this buffer contains driver-supplied data
for transfer to the device.

TransferBufferM DL
Points to an MDL that describes a resident buffer or is NULL if a buffer is supplied in
TransferBuffer. The contents of the buffer depend on the value of TransferFlags. If
USBD_TRANSFER_DIRECTION_IN is specified, the described buffer will contain data
read from the device on return from the host controller driver. Otherwise, the buffer contains
driver-supplied data for transfer to the device. This MDL must be allocated from non-
paged pool.

Chapter 3 USB Structures 999

StartFrame
Specifies the frame number the transfer should begin on. This variable must be within a
system-defined range of the current frame. The range is specified by the constant USBD_
ISO_START_FRAME_RANGE.

If START_ISO_TRANSFER_ASAP is set in TransferFlags, this member contains the
frame number that the transfer began on, when the request is returned by the host controller
driver. Otherwise, this member must contain the frame number that this transfer will
begin on.

NumberOfPackets
Specifies the number of packets described by the boundless array member IsoPacket.

ErrorCount
Contains the number of packets that completed with an error condition on return from the
host controller driver.

IsoPacket
Contains a variable-length array of USB D_ISO_PACKET_DESCRIPTOR structures that
describe each transfer packet of the isochronous transfer.

Comments
Each entry in the IsoPacket member array specifies an offset and a length within the
transfer buffer for the request. If IsoPacket has n entries, the host controller transfers use
n frames to transfer data, transferring IsoPacket[i].Length bytes beginning at an offset of
IsoPacket[i].Offset.

Drivers can use the GET_ISO_URB_SIZE macro to determine the size needed to hold the
entire URB.

Other fields that are part of this structure but not described here should be treated as opaque
and considered to be reserved for system use.

See Also
URB, _URB_HEADER, USBD_ISO_PACKET_DESCRIPTOR

struct _URB_PIPE_REQUEST
struct _URB_HEADER Hdr;
USBD_PIPE_HANDLE PipeHandle

}

USB client drivers set up this structure to clear a stall condition on an endpoint.

1000 Part 4 USB Drivers

Members
Hdr
Specifies the URB header information. Hdr.Function must be URB_FUNCTION_RESET_
PIPE or URB_FUNCTION_ABORT_PIPE, and Hdr.Length must be sizeof(_URB_PIPE_
REQUEST).

PipeHandle
Specifies the handle for this pipe returned by the host controller driver when a configuration
was selected.

Comments
Other fields that are part of this structure but not described here should be treated as opaque
and considered to be reserved for system use.

See Also
URB, _URB_HEADER

_URB_SELECT_CONFIGURATION
struct _USB_SELECT_CONFIGURATION {

struct _URB_HEADER Hdr;
PUSB_CONFIGRUATION_DESCRIPTOR ConfigurationDescriptor
USB_CONFIGURATION_HANDLE ConfigurationHandle
USBD_INTERFACE_INFORMATION Interface ;

USB client drivers set up this structure to select a configuration for a USB device.

Members
Hdr
Specifies the URB header information. Hdr.Function must be URB_FUNCTION_
SELECT_CONFIGURATION, and Hdr.Length must be the size of the entire URB.

Configuration Descriptor
Points to an initialized USB configuration descriptor that identifies the configuration to
be used on the device. If this member is NULL, the device will be set into an unconfigured
state.

Configuration Handle
Contains a handle that is used to access this configuration on return from the host controller
driver. USB client drivers must treat this member as opaque.

Chapter 3 USB Structures 1001

Interface
Specifies a variable length array of USBD _INTERFACE_INFORMATION structures,
each describing an interface supported by the configuration being selected.

Before the request is sent to the host controller driver, the driver may select an alternate
setting for one or more of the interfaces contained in this array by setting members of the
USBD _INTERFACE_INFORMATION structure for that interface.

On return from the host controller driver, this member contains a USBD_INTERFACE_
INFORMATION structure with data about the capabilities and format of the endpoints
within that interface.

Comments
An URB_FUNCTION_SELECT _CONFIGURATION URB consists of a _URB
SELECT_CONFIGURATION structure followed by a sequence of variable-length
USB_INTERFACE_INFORMATION structures. Drivers can use the USBD_Create
ConfigurationRequestEx service routine to allocate the URB.

Other fields that are part of this structure but not described here should be treated as opaque
and considered to be reserved for system use.

See Also
URB, _URB_HEADER, USBD_INTERFACE_INFORMATION

struct _URB_SELECT_INTERFACE {

}

struct _URB_HEADER Hdr;
USBD_CONFIGURATION_HANDLE ConfigurationHandle
USBD_INTERFACE_INFORMATION Interface ;

USB client drivers set up this structure to select an alternate setting for a interface in the
current configuration on a USB device.

Members
Hdr
Specifies the URB header information. Hdr.Function must be URB_FUNCTION_
SELECT_INTERFACE, and Hdr.Length must be the size of the entire URB.

Configuration Handle
Specifies the handle for the configuration that this interface belongs to, returned by the host
controller driver when a configuration was selected.

1002 Part 4 USB Drivers

Interface
A variable-length structure that specifies the interface and the new alternate setting for that
interface. See USBD _INTERFACE_INFORMATION for information on the members that
are used to control those settings. On successful completion of processing this URB, the bus
driver returns an array of handles for each pipe on this interface in the Interface.Pipes array
member.

Comments
Drivers can use the GET_SELECT_INTERFACE_REQUEST_SIZE macro to determine the
size of this URB, and the UsbBuildSeiectInterfaceRequest routine to format the URB.

Other fields that are part of this structure but not described here should be treated as opaque
and considered to be reserved for system use.

See Also
URB, _URB_HEADER, USBD_INTERFACE_INFORMATION

struct _URB_SET_FRAME_LENGTH
struct _URB_HEADER Hdr;
LONG FrameLengthDelta ;

USB client drivers set up this structure to change the frame length on the bus.

Members
Hdr
Specifies the URB header information. Hdr.Function must be URB_FUNCTION_SET_
FRAME_LENGTH, and Hdr.Length must be sizeofC_URB_SET_FRAME_LENGTH).

FrameLengthDelta
Specifies the number of USB-defined bit times to be added or subtracted from the current
frame length. The maximum increase or decrease per URB is one.

Comments
Sending this request to the host controller driver before being granted control of frame
length for the bus will cause an error to be returned. To take control of the frame length, an
URB must first be sent with the function, URB_FUNCTION_TAKE_FRAME_LENGTH_
CONTROL. See _URB_FRAME_LENGTH_CONTROL for the data structure used to
obtain or release control of frame length on the bus.

Chapter 3 USB Structures 1003

See Also
URB, _URB_HEADER, _URB_FRAME_LENGTH_CONTROL

USB_CONFIGURATION_DESCRIPTOR
typedef struct _USB_CONFIGURATION_DESCRIPTOR

UCHAR bLength ;
UCHAR bDescriptorType ;
USHORT wTotalLength ;
UCHAR bNumlnterfaces

UCHAR iConfiguration
UCHAR bmAttributes ;
UCHAR MaxPower ;
USB_CONFIGURATION_DESCRIPTOR, *PUSB_CONFIGURATION_DESCRIPTOR ;

USB client drivers use this structure to hold a USB-defined configuration descriptor.

Members
bLength
Specifies the length, in bytes, of this structure.

bDescriptorType
Must be set to USB_CONFIGURATION_DESCRIPTOR_TYPE.

wTotalLength
Specifies the total length, in bytes, of all data for the configuration. The length includes
all interface, endpoint, class, or vendor-specific descriptors returned with the configuration
descriptor.

bNumlnterfaces
Specifies the total number of interfaces supported by this configuration.

iConfiguration
Specifies the device-defined index of the string descriptor for this configuration.

1004 Part 4 USB Drivers

bmAttributes
Specifies a bitmap to describe behavior of this configuration. The bits are described and set
in little-endian order.

Bit Meaning

0-4

5

Reserved.

Is set if this configuration supports remote wakeup.

6

7

Is set if this configuration is self-powered and does not use power from the
bus.

Is set if this configuration is powered by the bus.

MaxPower
Specifies the power requirements of this device in two rnA units. This field is valid only if
bit seven is set in bmAttributes.

Comments
If wTotalLength is greater than the buffer size provided in the URB to hold all descriptors
(interface, endpoint, class, and vendor-defined) retrieved, incomplete data will be returned.
In order to retrieve complete descriptors, the request will need to be re-sent with a larger
buffer.

If bmAttributes bits six and seven are both set, then the device is powered both by the bus
and a source external to the bus.

Other fields that are part of this structure but not described here should be treated as opaque
and considered to be reserved for system use.

See Also
U sbBuildGetDescriptorRequest, USBD _ CreateConfigurationRequest

USB_DEVICE_DESCRIPTOR
typedef struct _USB_DEVICE_DESCRIPTOR

UCHAR bLength ;
UCHAR bDescriptorType
USHORT bcdUSB ;
UCHAR bDeviceClass ;
UCHAR bDeviceSubClass
UCHAR bDeviceProtocol
UCHAR bMaxPacketSize0
USHORT idVendor ;

USHORT idProduct ;
USHORT bcdDevice ;
UCHAR iManufacturer
UCHAR iProduct ;
UCHAR iSerialNumber
UCHAR bNumConfigurations
USB_DEVICE_DESCRIPTOR. *PUSB_DEVICE_DESCRIPTOR

Chapter 3 USB Structures 1005

This structure is used by USB client drivers to hold a USB-defined device descriptor.

Members
bLength
Specifies the length, in bytes, of this descriptor.

bDescriptorType
Must be set to USB_DEVICE_DESCRIPTOR_TYPE.

bcdUSB
Identifies the version of the USB specification that this descriptor structure complies with.
This value is a binary-coded decimal number.

bDeviceClass
Is the class code of the device as assigned by the USB specification group.

bDeviceSubClass
Is the subclass code of the device as assigned by the USB specification group.

bDeviceProtocol
Is the protocol code of the device as assigned by the USB specification group.

bMaxPacketSizeO
Specifies the maximum packet size, in bytes, for endpoint zero of the device. The value
must be set to 8, 16, 32, or 64.

idVendor
Is the vendor identifier for the device as assigned by the USB specification committee.

idProduct
Is the product identifier. This value is assigned by the manufacturer and is device-specific.

bcdDevice
Identifies the version of the device. This value is a binary-coded decimal number.

1006 Part 4 USB Drivers

iManufacturer
Specifies a device-defined index of the string descriptor that provides a string containing the
name of the manufacturer of this device.

iProduct
Specifies a device-defined index of the string descriptor that provides a string that contains a
description of the device.

iSerialNumber
Specifies a device-defined index of the string descriptor that provides a string that contains a
manufacturer-determined serial number for the device.

bNumConfigurations
Specifies the total number of possible configurations for the device.

Comments
This structure is used to hold a retrieved USB-defined device descriptor. This informa
tion can then be used to further configure or retrieve information about the device. Device
descriptors are retrieved by submitting a get descriptor URB.

The iManufacturer, iProduct, and iSerialNumber values when returned from the host
controller driver contain index values into an array of string descriptors maintained by the
device. To retrieve these strings a string descriptor request can be sent to the device using
these index values.

See Also
U sbBuildGetDescriptorRequest, _ URB_ CONTROL_DESCRIPTOR_REQUEST

typedef struct _USB_ENDPOINT_DESCRIPTOR {
UCHAR bLength ;
UCHAR bDescriptorType ;
UCHAR bEndpointAddress ;
UCHAR bmAttributes ;
USHORT wMaxPacketSize ;
UCHAR blnterval ;
USB_ENDPOINT_DESCRIPTOR. *PUSB_ENDPOINT_DESCRIPTOR ;

This structure is used by USB client drivers to hold a USB-defined endpoint descriptor.

Members
bLength
Specifies the length, in bytes, of this descriptor.

bDescriptorType
Must be set to USB_ENDPOINT_DESCRIPTOR_ TYPE.

bEndpointAddress

Chapter 3 USB Structures 1007

Specifies the USB-defined endpoint address. The four low-order bits specify the endpoint
number. The high-order bit specifies the direction of data flow on this endpoint: 1 for in, 0
for out.

bmAttributes
The two low-order bits specify the endpoint type, one of USB_ENDPOINT_ TYPE_
CONTROL, USB_ENDPOINT_TYPE_ISOCHRONOUS, USB_ENDPOINT_TYPE_
BULK, USB_ENDPOINT_TYPE_INTERRUPT.

wMaxPacketSize
Specifies the maximum packet size that ca~ be sent from or to this endpoint.

blnterval
For interrupt endpoints, blnterval specifies the polling interval, in frames.

USB_INTERFACE_DESCRIPTOR
typedef struct _USB_INTERFACE_DESCRIPTOR

UCHAR bLength ;
UCHAR bDescriptorType ;
UCHAR bInterfaceNumber ;
UCHAR bAlternateSetting
UCHAR bNumEndpoints ;
UCHAR bInterfaceClass ;
UCHAR bInterfaceSubClass
UCHAR bInterfaceProtocol
UCHAR iInterface ;
USB_INTERFACE_DESCRIPTOR, *PUSB_INTERFACE_DESCRIPTOR ;

This structure is used by USB client drivers to hold a USB-defined interface descriptor.

1008 Part 4 USB Drivers

Members
bLength
Specifies the length, in bytes, of this descriptor.

bDescriptorType
Specifies the descriptor type. bDescriptor must be set to USB_INTERFACE_
DESCRIPTOR_TYPE.

blnterfaceNumber
Specifies the index number of this interface.

bAlternateSetting
Specifies the index number of this alternate setting of the interface.

bNumEndpoints
Specifies the number of endpoints that are used by the interface, excluding the default status
endpoint.

blnterfaceClass
Is the class code of the device as assigned by the USB specification group.

blnterfaceSubClass
Is the subclass code of the device as assigned by the USB specification group.

bl nterfaceProtocol
Is the protocol code of the device as assigned by the USB specification group.

ilnterface
Specifies the index of a string descriptor that describes the interface. iInterface must be set
to Oxl.

typedef struct _USB_HUB_NAME {
ULONG ActualLength;
WCHAR HubName[l];

} USB_HUB_NAME, *PUSB_HUB_NAME;

This structure stores the hub's symbolic device name.

Chapter 3 USB Structures 1009

Members
Actual Length
Size of the entire data structure in bytes.

HubName
A pointer to this field will point to the Unicode string containing the hub's symbolic device
name.

See Also
IOCTL_INTERNAL_USB_GET_CONTROLLER_NAME

typedef struct _USB_ROOT_HUB_NAME
ULONG ActualLength;
WCHAR RootHubName[l];
USB_ROOT_HUB_NAME, *PUSB_ROOT_HUB_NAME;

This structure stores the root hub's symbolic device name.

Members
ActualLength
Size of the entire data structure in bytes.

RootHubName
A pointer to this field will point to the Unicode string containing the root hub's symbolic
device name.

See Also
IOCTL_INTERNAL_USB_GET_HUB_NAME

USB_STRING_DESCRIPTOR
typedef struct _USB_STRING_DESCRIPTOR {

UCHAR bLength ;
UCHAR bDescriptorType ;
WCHAR bString[l] ;
USB_STRING_DESCRIPTOR, *PUSB_STRING_DESCRIPTOR

This structure is used by USB client drivers to hold a USB-defined string descriptor.

1010 Part 4 USB Drivers

Members
bLength
Specifies the length, in bytes, of the descriptor.

bDescriptorType
Must always be USB_STRING_DESCRIPTOR_TYPE.

bString
Points to a client-allocated buffer that contains, on return from the host controller driver, a
Unicode string with the requested string descriptor.

Comments
This structure is used to hold a device, configuration, interface, class, vendor, endpoint, or
device string descriptor. The string descriptor provides a human-readable description of the
component.

Strings returned in bString are in Unicode format and the contents of the strings are device
defined.

See Also
U sbBuildGetDescriptorRequest, _ URB _ CONTROL_DESCRIPTOR_REQUEST

USBD_INTERFACE_INFORMATION
typedef struct _USBD_INTERFACE_INFORMATION

USHORT Length ;
UCHAR InterfaceNumber ;
UCHAR AlternateSetting
UCHAR Class;
UCHAR SubClass
UCHAR Protocol

USBD_INTERFACE_HANDLE InterfaceHandle
ULONG NumberOfPipes ;
USBD_PIPE_INFORMATION Pipes[l] ;
USBD_INTERFACE_INFORMATION. *PUSBD_INTERFACE_INFORMATION;

USB client drivers use this structure to hold information about an interface for a
configuration on a USB device.

Members
Length
Specifies the length, in bytes, of this structure.

InterfaceNumber
Is the device-defined index identifier for this interface.

AlternateSetting

Chapter 3 USB Structures 1011

Specifies a device-defined index identifier that indicates which alternate setting this
interface is using, should use, or describes.

Class
Is a USB-assigned identifier to specify a USB-defined class that this interface conforms to.

SubClass
Is a USB-assigned identifier to specify a USB-defined subclass that this interface conforms
to. This code is specific to the code in Class.

Protocol
Is a USB-assigned identifier to specify a USB-defined protocol that this interface conforms
to. This code is specific to the codes in Class and SubClass.

InterfaceHandle
Is a host controller driver-defined handle that is used to access this interface. This field
should be treated as opaque.

NumberOfPipes
Specifies the number of pipes (endpoints) in this interface.

Pipelnformation
Is a variable length array of USBD _PIPE_INFORMATION structures to describe each pipe
in the interface.

Comments
Members that are part of this structure, but not described here, should be treated as opaque
and considered to be reserved for system use.

See Also
USBD_PIPE_INFORMATION

1012 Part 4 USB Drivers

typedef struct _USBD_INTERFACE_LIST_ENTRY
PUSB_INTERFACE_DESCRIPTOR InterfaceDescriptor;
PUSBD_INTERFACE_INFORMATION Interface;
USBD_INTERFACE_LIST_ENTRY. *PUSBD_INTERFACE_LIST_ENTRY;

USB client drivers use this structure to create an array of interfaces to be inserted into a
configuration request.

Members
InterfaceDescriptor
Points to a USB_INTERFACE_DESCRIPTOR structure that describes the interface to be
added to the configuration request.

Interface
Points to a USBD _INTERFACE_INFORMATION structure that describes the properties
and settings of the interface pointed to by InterfaceDescriptor.

Comments
This structure is used by USB clients with the routine USBD _ CreateConfiguration
RequestEx. Clients allocate an array of these structures, one for each interface to be con
figured. Clients must also allocate a NULL entry in the array to be used as a terminator
before calling USBD _ CreateConfigurationRequestEx.

See Also
USBD _ CreateConfigurationRequestEx

typedef struct _USBD_PIPE_INFORMATION
USHORT MaximumPacketSize
UCHAR EndpointAddress ;
UCHAR Interval ;
USBD_PIPE_TYPE PipeType
USBD_PIPE_HANDLE PipeHandle
ULONG MaximumTransferSize

Chapter 3 USB Structures 1013

This structure is used by USB client drivers to hold information about a pipe from a specific
interface.

Members
MaximumPacketSize
Specifies the maximum packet size, in bytes, that this pipe handles.

EndpointAddress
Specifies the bus address for this pipe.

Interval
Specifies a polling period for this pipe in milliseconds. This value is only valid if PipeType
is set to UsbdPipeTypeInterrupt.

PipeType
Specifies what type of transfers this pipe uses. This value must be one of the following:

UsbdPipeTypeControl
Specifies that this pipe is a control pipe.

UsbdPipeTypelsochronous
Specifies that this pipe uses isochronous transfers.

UsbdPipeTypeBulk
Specifies that this pipe uses bulk transfers.

UsbdPipeTypelnterrupt
Specifies that this pipe uses interrupt transfers. A value will be set in Interval to indicate
how often this pipe is polled for new data.

PipeHandle
Specifies a host controller driver-defined handle that is used to access this pipe. This field
should be treated as opaque.

MaximumTransferSize
Specifies the maximum size, in bytes, for a transfer request on this pipe.

Comments
Members that are part of this structure, but not described here, should be treated as opaque
and considered to be reserved for system use.

1014 Part 4 USB Drivers

USBD _ISO _PACKET _DESCRIPTOR
typedef struct _USBD_ISO_PACKET_DESCRIPTOR

ULONG Offset ;
ULONG Length ;
USBD_STATUS Status
USBD_ISO_PACKET_DESCRIPTOR. *PUSBD_ISO_PACKET_DESCRIPTOR ;

This structure is used by USB client drivers to describe an isochronous transfer packet.

Members
Offset
Specifies the offset, in bytes, of the buffer for this packet from the beginning of the entire
isochronous transfer buffer.

Length
Contains the number of bytes read (on return from the host controller driver) or the number
of bytes to write to the isochronous pipe.

Status
Contains the status, on return from the host controller driver, of this transfer packet.

Comments
This structure is used as part of an isochronous transfer request to the host controller driver
using _ URB _ISOCH_ TRANSFER. The Offset member contains the offset from the begin
ning of the TransferBuffer or TransferBufferMDL members of the _URB_ISOCH_
TRANSFER structure.

See Also
_ URB_ISOCH_ TRANSFER

PAR T 5

IEEE 1394 Drivers

Chapter 1 IEEE 1394 Bus 1/0 Requests 1017

Chapter 2 IEEE 1394 Structures 1069

1017

CHAPTER 1

IEEE 1394 Bus 1/0 Requests

An IEEE 1394 device driver must communicate with its device by submitting IRPs down
the device stack to the 1394 bus driver.

To use these I/O requests, include the header file J394.h, which is shipped with the
Windows® 2000 DDK.

IOCTL_CLASS_1394

Input

A IEEE 1394 driver uses the IRP _MJ_DEVICE_CONTROL IRP, with IoControlCode
IOCTL_CLASS_1394, to communicate with the bus driver. The driver has access to all
operations provided by the IEEE 1394 bus and its host controller through this request.

Parameters->Others.Argumentsl points to an IRB structure. The FunctionNumber
member of the IRB specifies the type of request. The u member of the IRB is a union
that specifies the request-type-specific parameters of the request. The parameters and
their meaning are documented below with each request.

Output
Parameters->Others.Argumentsl points to the IRB structure passed as input. As part of
completing the request, the bus driver fills in certain members of the u member with infor
mation for the driver. The returned information is documented below with each request.

1/0 Status Block
The information the bus driver returns in the I/O Status Block is documented below with
each request.

1018 Part 5 IEEE 1394 Drivers

REQUEST_ALLOCATE_ADDRESS_RANGE
The REQUEST_ALLOCATE_ADDRESS_RANGE request allocates addresses in the
computer's IEEE 1394 address space.

The relevant members of the IRB for this request are:

typedef struct _IRB {
ULONG FunctionNumber;

union {
struct {

PMDL
ULONG
ULONG
ULONG
ULONG
ULONG
PVOID
PVOID
ADDRESS_OFFSET
PSLIST_HEADER
PKSPIN_LOCK
ULONG
PADDRESS_RANGE
HANDLE

Mdl:
fulFlags;
nLength;
MaxSegmentSize;
fulAccessType;
fulNotificationOptions;
Callback;
Context:
Required13940ffset;
FifoSListHead;
FifoSpinLock;
AddressesReturned;
p1394AddressRange;
hAddressRange:

PVOID DeviceExtension;

} u;
I RB;

} AllocateAddressRange;

IRB Input
FunctionNumber
REQUEST _ALLOCATE_ADDRESS_RANGE

u.AllocateAddressRange.Mdl
If non-NULL, pointer to the MDL that describes the application's buffer where asynchro
nous operations are to be read, written, or locked. If the driver specifies u.AllocateAddress
Range.Mdl, then u.AllocateAddressRange.FifoSListHead and u.AllocateAddressRange.
FifoSpinLock must be NULL.

Chapter 1 IEEE 1394 Bus 1/0 Requests 1019

u.AllocateAddressRange.nLength
Specifies the number of the IEEE 1394 addresses to allocate.

u.AllocateAddressRange.MaxSegmentSize
Specifies the maximum size for each range of addresses the bus driver allocates. Use zero
to indicate that the driver does not have a required maximum segment size. This member is
ignored if u.AllocateAddressRange.Required13940ffset is non-NULL.

u.AllocateAddressRange.fuIFlags
Specifies whether the array entries in p1394AddressRange use big-endian byte order. If the
caller specifies BIG_ENDIAN_ADDRESS_RANGE, the array entries will be in big-endian
byte order (the native byte order of the IEEE 1394 protocol), even if the local host is a little
endian machine.

u.AllocateAddressRange.fuIAccessType
Specifies access type using one or more of the following flags.

Access

ACCESS_FLAGS_TYPE_READ

ACCESS_FLAGS_TYPE_ WRITE

ACCESS_FLAGS_TYPE_LOCK

ACCESS_FLAGS_TYPE_
BROADCAST

Description

Allocated addresses can be read.

Allocated addresses can be written to.

Allocated addresses can be the target of a lock operation.

Allocated addresses can receive asynchronous I/O requests
from any node on the bus. (By default, only the device
driver's device can send requests to the allocated addresses).

u.AllocateAddressRange.fuINotificationOptions
If the device driver requests that the bus driver handle each request, and notifies the device
driver upon completion, this specifies which asynchronous I/O request types will trigger the
bus driver to the notify the device driver upon completion. See the Comments section for
more details. The driver may specify one or more of the NOTIFY _FLAGS_AFTER_XXX
flags.

Flag Description

NOTIFY _FLAGS_NEVER No notification.

NOTIFY _FLAGS_AFTER_READ Notify the device driver after carrying out an asynchronous
read operation.

NOTIFY _FLAGS_AFTER_ WRITE Notify the device driver after carrying out an asynchronous
write operation.

NOTIFY _FLAGS_AFTER_LOCK Notify the device driver after carrying out an asynchronous
lock operation.

1020 Part 5 IEEE 1394 Drivers

u.AllocateAddressRange.Callback
Pointer to a device driver callback routine. If the device driver specifies that the bus driver
notify the device driver for each asynchronous I/O request, u.AllocateAddressRange.
Callback points to the device driver's notification routine, which must have the following
prototype.

VOID DriverNotificationRoutine(IN PNOTIFICATION_INFO);

If the device driver specifies that it receives no notification, and submits this request at
raised IRQL through the port driver's physical mapping routine, then u.AllocateAddress
Range.Callback points to the device driver's allocation completion routine, which must
have the following prototype.

VOID AllocationCompletionRoutine(IN PVOID);

Drivers that do not request notification, and submit this request in the normal way at
PASSIVE_LEVEL, must set this member to NULL.

u.AllocateAddressRange.Context
Pointer to any context data that that the device driver wants to pass for this set of addresses.
If the provided callback (see previous) is a notification routine, the bus driver passes
u.AllocateAddressRange.Context within the NOTIFICATION_INFO the parameter. If
the callback is an allocation completion routine, the bus driver passes u.AllocateAddress
Range.Context as the sole parameter to the routine.

u.AllocateAddressRange.Required13940ffset
Specifies a hard-coded address in the computer's IEEE 1394 address space. The bus driver
allocates the addresses beginning at u.AllocateAddressRange.Required13940ffset. If
no specific address is required, the driver should fill in each member of the ADDRESS_
OFFSET with zero. The bus driver then chooses the addresses to allocate.

u.AllocateAddressRange.FifoSListHead
If non-NULL, specifies a properly initialized (for example, by ExlnitializeSListHead)
interlocked, singly-linked list of ADDRESS_FIFO elements. Each ADDRESS_FIFO
contains an MDL. As the bus driver handles each incoming write request to the allocated
addresses, it pops off the first element on the list and writes incoming data to the MDL.
It then calls the driver's notification routine.

Each MDL provided must only span one page in memory. The driver can add or remove
elements from the ADDRESS_FIFO list by using ExlnterlockedPushEntrySList and
ExlnteriockedPopEntrySList.

If this member is non-NULL, the Mdl member of u.AllocateAddress range must be
NULL, the fulNotificationFlags member must be NOTIFY _FLAGS_AFTER_ WRITE (no
other flags must be specified), and the driver must provide a spin lock in FifoSpinLock.

Chapter 1 IEEE 1394 Bus 1/0 Requests 1021

u.AllocateAddressRange.FifoSpinLock
If non-NULL, specifies a properly initialized spin lock (for example, by KeInitializeSpin
Lock). The spin lock will be used to serialize access to the SList provided in u.Allocate
AddressRange.FifoSListHead.

The u.AllocateAddressRange.FifoSpinLock member is non-NULL if and only if
u.AllocateAddressRange.FifoSListHead is non-NULL as well.

u.AllocateAddressRange.p1394AddressRange
Pointer to an array of ADDRESS_RANGE structures. The array must be large enough to
hold the maximum number of structures the bus driver can return.

If the driver specifies a required address offset, or if the driver does not provide any backing
store, the bus driver only returns one address range. If the driver provides backing store in
u.AllocateAddressRange.Mdl the bus driver segments the allocated addresses along
physical memory boundaries. If the MaxSegmentSize of u.AllocateAddressRange is 0,
or if MaxSegmentSize is bigger than the page size, the driver can use the ALLOCATE_
AND_SIZE_TO_SPAN_PAGES macro to determine the worst case. Otherwise, the maxi
mum number of addresses ranges returned by the bus driver is u.AllocateAddressRange.
nLengthlu.MaxSegmentSize.

u.AllocateAddressRange.DeviceExtension
Reserved.

IRB Output
u.AllocateAddressRange.AddressesReturned
Specifies the number of ADDRESS_RANGE structures returned in the p1394Address
member.

u.AllocateAddressRange.p1394AddressRange
If the request is successful, this points to an array of ADDRESS_RANGE structures that
describe the set of address ranges allocated to fulfill this request.

u.AllocateAddressRange.hAddressRange
If the request is successful, this specifies the handle to use when freeing the allocated
address ranges with the REQUEST_FREE_ADDRESS_RANGE request.

1/0 Status Block
The bus driver sets Irp->IoStatus.Status to STATUS_SUCCESS on success, or the
appropriate error code on failure.

1022 Part 5 IEEE 1394 Drivers

Operation
If the driver provides an address in u.AllocateAddressRange.Required13940ffset, the bus
driver allocates one contiguous range of addresses, beginning at that address. Otherwise, the
bus driver allocates several ranges of addresses to fulfill the request.

Asynchronous I/O packets sent to the allocated address range are received by the bus driver.
What the bus driver does with the packet depends on settings in the IRB when it is
submitted.

Settings for u.AllocateAddressRange

Mdl non-NULL, and fulNotificationFlags
is NOTIFY _FLAGS_NEVER

Mdl non-NULL, and one or more of
NOTIFY _FLAGS_APTER_XXX are
specified. (FifoSListHead and
FifoSpinLock must be NULL.)

FifoSListHead and FifoSpinLock non
NULL, and the only notification flag is
NOTIFY _FLAGS_AFTER_ WRITE. (Mdl
must be NULL.)

Bus driver action upon receiving a request packet

The bus driver transparently handles the request packet
by reading or writing data using the MDL. The device
driver receives no notification.

For this setting, the bus driver allocates the address range
asynchronously. Upon completion, it calls the allocation
completion routine that the driver passed
in u.AllocateAddressRange.Callback. As a parameter,
it passes u.AllocateAddressRange.Context.

This form of REQUEST_ALL OCATE_AD DRESS_
RANGE can only be submitted in the normal way at
IRQL PASSIVE_LEVEL. At raised IRQL, the driver
can submit the IRB directly to the port driver through
a special interface. See below for details.

The bus driver handles the request packet by reading or
writing data using the MDL. After each request type
specified by NOTIFY _FLAGS_AFTER_XXX, the bus
driver calls the driver's notification routine (passed in
u.AllocateAddressRange.Callback), and passes a
description of the operation in NOTIFICATION_INFO.
See NOTIFICATION_INFO in Chapter 2 for details.

Drivers can submit this form of REQUEST_
ALLOCATE_ADDRESS_RANGE at any IRQL.

The bus driver acquires the spin lock, pops the first
element off the list, and uses the MDL to handle the
request packet. It then calls the driver's notification
routine (passed in u.AllocateAddressRange.
Callback), and passes a description of the operation in
NOTIFICATION_INFO. See NOTIFICATIONJNFO in
Chapter 2 for details.

Drivers can submit this form of REQUEST_
ALLOCATE_ADDRESS_RANGE at any IRQL.

Chapter 1 IEEE 1394 Bus va Requests 1023

Settings for u.AllocateAddressRange Bus driver action upon receiving a request packet

Mdl, FifoSListHead, and FifoSpinLock
NULL.

The bus driver passes the request packet in the
NOTIFICATION_INFO parameter of the driver's
notification routine (passed in u.AllocateAddress
Range.Callback). The device driver must provide
the response packet. See NOTIFICATION_INFO in
Chapter 2.

The NOTIFY _FLAGS_XXX flags are ignored. The
bus driver ignores the setting of u.AllocateAddress
Range.MaxSegmentSize, and always returns a
contiguous range of addresses.

Drivers can submit this setting of REQUEST_
ALLOCATE_ADDRESS_RANGE at any IRQL.

REQUEST_ALLOCATE_ADDRESS_RANGE can be submitted through IoCallDriver
at any IRQL, with one exception. If the driver receives no notification (u.AlIocateAddress
Range.Mdl is non-NULL and u.AlIocateAddressRange.fulNotificationFlags is NOTIFY_
FLAGS_NEVER), then the request can only be submitted through IoCallDriver at
PASSIVE_LEVEL.

In this specific circumstance, the driver can submit the request through an alternative
method, the port driver's physical mapping routine. The device driver can hand off the IRB
directly to the physical mapping routine. Drivers can get a pointer to the physical mapping
routine by submitting the REQUEST_GET_LOCAL_HOST_INFO bus request with nLevel
= GET_PHYS_ADDR_ROUTINE. See GET_LOCAL_HOST_INF04 in Chapter 2 for
details.

The following table explains how to submit the request at different IRQLs.

Notification?

yes

no

DISPATCH_LEVEL

IoCallDriver

Port driver's physical
mapping routine

Below DISPATCH_LEVEL

IoCallDriver

IoCallDriver

The REQUEST_ASYNC_LOCK request performs an asynchronous lock operation to the
device specified.

1024 Part 5 IEEE 1394 Drivers

The relevant members of the IRB for this request are:

typedef struct _IRB {
ULONG FunctionNumber;

union

} u;
IRB;

IRB Input

struct
IO_ADDRESS
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
PVOID
ULONG
UCHAR
UCHAR
UCHAR
ULONG

AsyncLock;

FunctionNumber
REQUEST_ASYNC_LOCK.

DestinationAddress;
nNumberOfArgBytes;
nNumberOfDataBytes;
fulTransactionType;
ful Fl ags;
Arguments[2];
DataValues[2];
pBuffer;
ulGeneration;
chPriority;
nSpeed;
tCode;
Reserved;

u.AsyncLock.DestinationAddress
Specifies the 1394 64-bit destination address for this read operation. The driver only needs
to fill in the IA_Destination_Offset member of u.AsyncLock.DestinationAddress; the bus
driver will fill in the IA_Destination_ID member. See IO_ADDRESS for the structure
description.

u.AsyncLock.nNumberOfArgBytes
Specifies the number of argument bytes used in performing this lock operation. May be
zero, 4 or 8. See the u.AsyncLock.fuITransactionType member for details.

Chapter 1 IEEE 1394 Bus 1/0 Requests 1025

u.AsyncLock.nNumberOfDataBytes
Specifies the number of data bytes used in performing this lock operation. May be 4 or 8.
See the u.AsyncLock.fuITransactionType member for details.

u.AsyncLock.fuITransactionType
Specifies which atomic transaction to execute on the 1394 node. The following function
types are supported:

fulTransactionType

LOCK_TRANSACTION_
MASK_SWAP

LOCK_TRANSACTION_
COMPARE_SWAP

LOCK_TRANSACTION_
FETCH_ADD

LOCK_TRANSACTION_
LITTLE_ADD

LOCK_TRANSACTION_
BOUNDED_ADD

LOCK_TRANSACTION_
WRAP_ADD

u.AsyncLock.fuIFlags

Description

For each bit in the original value and the matching argument, reset
the bit to be the same as the corresponding bit in the data value. The
nNumberOfArgBytes and nNumberOIDataBytes members of
u.AsyncLock must be the same.

If the original value and argument match, replace the original value
with the data value. The nNumberOfArgBytes and
nNumberOIDataBytes members of u.AsyncLock must be
the same.

Add the data value to the original value. Big-endian addition is
performed. The argument value is not used and the nNumber
OfArgBytes member of u.AsyncLock must be zero.

Add the data value to the original value. Little-endian addition is
performed. The argument value is not used and the nNumber
OfArgBytes member of u.AsyncLock must be zero.

If the original value and the argument differ, add the data value to
the original value. The nNumberOfArgBytes and nNumber
OIDataBytes members of u.AsyncLock must be the same.

If the original value and the argument differ, add the data value to
original'value. Otherwise, replace the original value with the data
value. The nNumberOfArgBytes and nNumberOIDataBytes
members of u.AsyncLock must be the same.

Not currently used. Drivers should set this to zero.

u.AsyncLock.Arguments
Specifies the arguments used in this lock operation.

u.AsyncLock.DataValues
Specifies the data values used in this lock operation.

1026 Part 5 IEEE 1394 Drivers

u.AsyncLock.pBuffer
Pointer to a buffer that receives lock data values which are returned from the node. The size
of the buffer must be at least equal to the u.AsyncLock.nNumberOIDataBytes member.

u.AsyncLock.uIGeneration
Specifies the bus reset generation as known by the device driver who submitted this asyn
chronous request. If the generation count specified does not match the actual generation of
the bus, then this request is returned with an error.

u.AsyncLock.chPriority
Reserved.

u.AsyncLock.nSpeed
Reserved.

u.AsyncLock. tCode
Reserved.

u.AsyncLock. Reserved
Reserved.

IRB Output
u.AsyncLock.pBuffer
Pointer to a buffer that the bus driver has filled in with the lock data values returned from
the node.

1/0 Status Block
If successful, the bus driver sets Irp->IoStatus.Status to STATUS_SUCCESS. If u.Async
Lock.ulGeneration does not match the current bus reset generation count, the bus driver
sets Irp->IoStatus.Status as STATUS_INVALID_GENERATION.

Operation
An asynchronous lock request performs an atomic operation in the node's address space.
The value of the u.AsyncLock.fuITransactionType member determines the operation per
formed. The original value at the location given by the u.AsyncLock.DestinationAddress
and the argument (in u.AsyncLock.Arguments) are compared, and depending on the out
come and the transaction type, the data value in u.AsyncLock.Data Values is used to update
the original value. The new value stored at the destination address is returned in the buffer
pointed to by u.AsyncLock.pBuffer.

Chapter 1 IEEE 1394 Bus VO Requests 1027

The REQUEST_ASYNC_READ request performs an asynchronous read operation to the
device specified.

The relevant members of the IRB for this request are:

typedef struct _IRB {
ULONG FunctionNumber:

union

} u;
} IRB:

IRB Input

struct
IO_ADDRESS
ULONG
ULONG
ULONG
PMDL
ULONG
UCHAR
UCHAR
UCHAR
ULONG
ULONG

} AsyncRead:

FunctionNumber
REQUEST_ASYNC_READ.

DestinationAddress;
nNumberOfBytesToRead;
nBlockSize;
ful Fl ags;
Mdl;
ulGeneration;
chPriority:
nSpeed:
tCode:
Reserved;
ElapsedTime:

u.AsyncRead.DestinationAddress
Specifies the 1394 64-bit destination address for this read operation. The driver only needs
to fill in the IA_Destination_OfTset member of DestinationAddress; the bus driver will fill
in the IA_Destination_ID member. See 10_ADDRESS for the structure description.

u.AsyncRead.nNumberOfBytesToRead
Specifies the number of bytes to be read from the 1394 node.

1028 Part 5 IEEE 1394 Drivers

u.AsyncRead.nBlockSize
Specifies the size of each individual block within the data stream that is read as a whole
from the 1394 node. If this parameter is zero, the maximum packet size for the device and
speed selected is used to issue these read requests.

u.AsyncRead.fuIFlags
Specifies any non-default settings for this operation. The following flags are provided:

Flag

ASYNC_FLAGS_
NONINCREMENTING

ASYNC_FLAGS_PING

u.AsyncRead.Mdl

Description

When the bus driver splits the request into blocks, begin the
operation for each block at the same address, rather than treating
each block as consecutive sections of the device's address space.
Used only in asynchronous requests larger than u.AsyncRead.
nBlockSize or the maximum packet size for the current speed

The bus driver returns the elapsed time of the operation in
u.AsyncRead.ElapsedTime.

Pointer to an MDL that describes the device driver's buffer, which receives data from the
1394 node.

u.AsyncRead.uIGeneration
Specifies the bus reset generation as known by the device driver that submits this asynch
ronous request. If the generation count specified does not match the actual generation of
the bus, this request is returned with an error of STATUS_INVALID_GENERATION.

u.AsyncRead.chPriority
Reserved.

u.AsyncRead.nSpeed
Reserved.

u.AsyncRead.tCode
Reserved.

u.AsyncRead.Reserved
Reserved.

IRB Output
u.AsyncRead.ElapsedTime

Chapter 1 IEEE 1394 Bus 1/0 Requests 1029

If the driver specifies the ASYNC_FLAGS_PING flag, the bus driver returns the time
required, in nanoseconds, to complete the read request.

1/0 Status Block
If successful, the bus driver sets Irp->IoStatus.Status to STATUS_SUCCESS. If u.Async
Lock.ulGeneration does not match the current bus reset generation count, the bus driver
sets Irp->IoStatus.Status as STATUS_INVALID_GENERATION.

Operation
A REQUEST_ASYNC_READ request will read from the device's address space, beginning
at the AddressOffset member of u.AsyncRead.DestinationAddress. The buffer will be
broken up into blocks, and one block will be read per transaction. If the ASYNC_FLAGS_
NONINCREMENTING flag is set, the driver reads each block beginning at u.AsyncRead.
DestinationAddress; otherwise it will read each block from successive regions in the de
vice's memory address space.

The IEEE 1394-1995 Specification constrains the size of reads to be ASYNC_PA YLOAD_
xxx_RATE, where xxx is the approximate connection speed in megabits per second. (The
speeds allowed at the time of this writing are 100,200, and 400 Mb/s.) If the block size
exceeds the maximum payload size, the payload size will be used as the block size.

The size of packets may also be constrained by the device itself. The device reports the
maximum packet size in the MAX_REC field of its configuration ROM. If this value is
smaller than requested block size and the maximum payload size, the bus driver uses this
as the block size.

REQUEST _ASVNC_STREAM
The REQUEST_ASYNC_STREAM request writes packets to an isochronous channel,
during the asynchronous phase of the IEEE 1394 bus.

The relevant members of the IRB for this request are:

typedef struct _IRB {
ULONG FunctionNumber;

1030 Part 5 IEEE 1394 Drivers

union {

} u;
I RB;

IRB Input

struct
ULONG
ULONG
PMDL
ULONG
ULONG
ULONG
ULONG
UCHAR

AsyncStream;

nNumberOfBytesToStream;
fulFlags;
Mdl;
ulTag;
nChannel ;
ulSynch;
Reserved;
nSpeed;

FunctionNumber
REQUEST_ASYNC_STREAM.

u.AsyncStream.nNumberOfBytesToStream
Specifies the number of bytes to write.

u.AsyncStream. fulFlags
Reserved. Drivers must set this to zero.

u.AsyncStream.Mdl
Specifies the source buffer.

u.AsyncStream.uITag
Specifies the Tag field for any packets generated from this request.

u.AsyncStream.nChannel
Specifies the channel to which the data will be written.

u.AsyncStream.uISynch
Specifies the Sy field for any packets generated from this request.

u.AsyncStream.Reserved
Reserved.

Chapter 1 IEEE 1394 Bus 1/0 Requests 1031

u.AsyncStream.nSpeed
Specifies the transfer rate. The possible speed values are SPEED_FLAGS_xxx, where xxx
is the (approximate) transfer rate in megabits per second. At the time of this writing, existing
hardware currently supports transfer rates of 100,200, and 400 Mb/sec.

110 Status Block
The bus driver sets Irp->IoStatus.Status to STATUS_SUCCESS on success, or the appro
priate error code on failure.

Operation
Since the packet is sent during the asynchronous phase of the bus cycle, it does not have a
guaranteed bandwidth and, therefore, it lacks a guaranteed delivery time.

REQUEST _ASVNC _ WRITE
The REQUEST_ASYNC_ WRITE request performs an asynchronous write operation to the
device specified.

The relevant members of the IRB for this request are:

typedef struct _IRB {
ULONG FunctionNumber;

union

u;

} IRB;

struct {
IO_ADDRESS
ULONG
ULONG
ULONG
PMDL
ULONG
UCHAR
UCHAR
UCHAR
ULONG

} AsyncWrite;

DestinationAddress;
nNumberOfBytesToWrite;
nBlockSize;
ful Fl ags;
Mdl;
ulGeneration;
chPriority;
nSpeed;
tCode;
Reserved;

1032 Part 5 IEEE 1394 Drivers

IRB Input
FunctionNumber
REQUEST _ASYNC_ WRITE

u.AsyncWrite.DestinationAddress
Specifies the 1394 64-bit destination address for this read operation. The driver only must
fill in the IA_Destination_Offset member ofu.AsyncWrite.DestinationAddress; the bus
driver will fill in the IA_Destination_ID member. See IO_ADDRESS for the structure
description.

u.AsyncWrite.nNumberOfBytesToWrite
Specifies the number of bytes to write to the 1394 node.

u.AsyncWrite.nBlockSize
Specifies the size of each individual block within the data stream that is written as a whole
to the node. If this parameter is zero, then the maximum packet size for the speed selected is
used in breaking up these write requests.

u.AsyncWrite.fuIFlags
Specifies any non-default settings for this operation. The following flags are provided:

Flag

ASYNC_FLAGS
NONINCREMENTING

Description

Do not increment 1394 address during asynchronous operation.
This flag is set only in large asynchronous requests (that is,
those greater than asynchronous packet size).

Always return success from the write operation, whether the
write succeeds or fails.

Use the bit-wise operator OR to combine the settings.

u.AsyncWrite.Mdl
Pointer to an MDL that describes the device driver's buffer, which receives data from the
1394 node.

u.AsyncWrite.uIGeneration
Specifies the bus reset generation as known by the device driver that submitted this asyn
chronous request. If the generation count specified does not match the actual generation of
the bus, this request is returned with an error.

u.AsyncWrite.chPriority
Reserved.

u.AsyncWrite.nSpeed
Reserved.

u.AsyncWrite.tCode
Reserved.

u.AsyncWrite.Reserved
Reserved.

1/0 Status Block

Chapter 1 IEEE 1394 Bus 1/0 Requests 1033

If successful, the bus driver sets Irp->IoStatus.Status to STATUS_SUCCESS. If u.Async
Lock.ulGeneration does not match the current bus reset generation count, the bus driver
sets Irp->IoStatus.Status to STATUS_INVALID_GENERATION.

Operation
The REQUEST_ASYNC_ WRITE request writes the data buffer into the device's ad-
dress space, beginning at the u.AsyncWrite.AddressOffset member of u.AsyncWrite.
DestinationAddress. The buffer is broken up into blocks, and one block is written for each
transaction. If the ASYNC_FLAGS_NONINCREMENTING flag is set, the bus driver will
write each block beginning at u.AsyncWrite.DestinationAddress, otherwise it will write
the buffer to consecutive addresses in the memory space of the device.

The IEEE 1394-1995 Specification constrains the size of write operations to be ASYNC_
PAYLOAD _xxx_RATE, where xxx is the approximate connection speed in megabits per
second. (The speeds allowed at the time of this writing are 100,200, and 400 Mb/s.). If
the block size exceeds the maximum payload size, the payload size will be used as the
block size.

The size of packets may also be constrained by the device itself. The device reports the
maximum packet size in the MAX_REC field of its configuration ROM. If this value is
smaller than requested block size and the maximum payload size, the bus driver uses this
as the block size.

The ASYNC_FLAGS_NO_STATUS flag should only be set if the driver has a higher-level
error recovery protocol, and should only be used for quadlet-sized writes.

The REQUEST_BUS_RESET request initiates an IEEE 1394 bus reset.

1034 Part 5 IEEE 1394 Drivers

The relevant members of the IRB for this request are:

typedef struct _IRB {
ULONG FunctionNumber;

union {

} u;
} I RB;

IRB Input

struct {
ULONG

BusReset;
ful Fl ags;

FunctionNumber
REQUEST_BUS_RESET.

u.BusReset.fuIFlags
Specifies flags for the bus reset. Set the flag BUS_RESET_FLAGS_FORCE_ROOT to
make the local node the root node.

REQUEST _BUS_RESET _NOTIFICATION
The REQUEST_BUS_RESET_NOTIFICATION request registers (or de-registers) a
notification routine to be executed for IEEE 1394 bus resets.

The relevant members of the IRB for this request are:

typedef struct _IRB {
ULONG FunctionNumber;

union {
struct

ULONG fulFlags;

} u;
} I RB;

PBUS_BUS_RESET_NOTIFICATION ResetRoutine;
PVOID -ResetContext;

BusResetNotification;

IRB Input
FunctionNumber
REQUEST _BUS_RESET _NOTIFICATION.

u.BusResetNotification.fuIFlags

Chapter 1 IEEE 1394 Bus 1/0 Requests 1035

Specifies whether a callback should be registered or deactivated. Use REGISTER_
NOTIFICATION_ROUTINE to register ResetRoutine as the callback. Use
DEREGISTER_NOTIFICATION_ROUTINE to deactivate any previously registered
callback.

u.BusResetNotification.ResetRoutine
Pointer to the notification routine for bus resets. The notification routine parameters follow
this prototype:

void BusResetNotificationRoutine(IN PVOID Context);

u.BusResetNotification.ResetContext
Specifies the argument to be passed to the notification routine.

110 Status Block
The bus driver sets Irp->IoStatus.Status to STATUS_SUCCESS on success, or the
appropriate error code on failure.

Operation
The notification routine is called at DISPATCH_LEVEL.

REQUEST_CONTROL
The REQUEST_CONTROL request submits a vendor-specific control request to the port
driver.

The relevant members of the IRB for this request are:

typedef struct _IRB {
ULONG FunctionNumber;

union {

1036 Part 5 IEEE 1394 Drivers

u;
IRB;

IRB Input

struct {
ULONG
PMDL
ULONG
PMDL
ULONG
ULONG

} Control;

ulIoControlCode;
pInBuffer;
ulInBufferLength;
pOutBuffer;
ulOutBufferLength;
BytesReturned;

FunctionNumber
REQUEST_CONTROL.

u.Control.ulloControICode
Specifies the control code used in this request. Vendors should make these control codes
unique, so that they do not overlap.

u.Control.plnBuffer
Pointer to an MDL that describes the input buffer. The input buffer contains user-defined
information.

u.Control.ullnBufferLength
Specifies the length of the input buffer.

u.Control.pOutBuffer
Pointer to an MDL that describes the output buffer. The output buffer contains user-defined
information.

u.Control.uIOutBufferLength
Specifies the length of the output buffer.

IRB Output
u.Control.pOutBuffer
The bus driver puts the output of the control request in the buffer described by this MDL.

u.Control.BytesReturned
The length of any data that is returned in pOutBuffer.

Chapter 1 IEEE 1394 Bus 1/0 Requests 1037

1/0 Status Block
The bus driver sets Irp->IoStatus.Status to STATUS_SUCCESS on success, or the
appropriate error code on failure.

Operation
Vendors interested in defining their own control codes for their host controller should
contact Microsoft for a unique IoControlCode. This ensures that the IoControlCode
will not overlap with the control codes used by other hardware and software vendors.

Drivers that submit this request must be running at an IRQL of PASSIVE_LEVEL.

REQUEST_FREE_ADDRESS_RANGE
The REQUEST_FREE_ADDRESS_RANGE request releases a 1394 address allocated by
REQUEST_ALLOCATE_ADDRESS_RANGE.

The relevant members of the IRB for this request are:

typedef struct _IRB {
ULONG FunctionNumber;

union {

} u;
} IRB;

IRB Input

struct {
ULONG
PADDRESS_RANGE
PHANDLE
PVOID

} FreeAddressRange;

nAddressesToFree;
p1394AddressRange;
pAddressRange;
Reserved;

FunctionNumber
REQUEST_FREE_ADDRESS_RANGE.

u. FreeAddressRange. nAddressesToFree
Specifies the number of entries in pAddressRange.

1038 Part 5 IEEE 1394 Drivers

u.FreeAddressRange.p1394AddressRange
Specifies a pointer to an array of ADDRESS_RANGE data structures to be released. These
address ranges were returned in a prior successful call to AllocateAddressRange.

u.FreeAddressRange.pAddressRange
Pointer to the array of handles to free. These handles were returned in a prior successful call
to AllocateAddressRange.

110 Status Block
The bus driver sets Irp->IoStatus.Status to STATUS_SUCCESS on success, or the appro
priate error code on failure.

REQUEST_GET _ADDR_FROM_DEVICE_ OBJECT
The REQUEST_GET_ADDR_FROM_DEVICE_OBJECT request returns a 1394 node
address.

The relevant members of the IRB for this request are:

typedef struct _IRB {
ULONG FunctionNumber;

union
struct

ULONG fulFlags;
NodeAddress;

Get1394AddressFromDeviceObject;

u;

I RB;

IRB Input
FunctionNumber
REQUEST_GET_ADDR_FROM_DEVICE_OBJECT.

u.Get1394AddressFromDeviceObject.fuIFlags
Specifies which device's node address we are querying. Zero indicates the calling device.
USE_LOCAL_NODE indicates the local host controller.

Chapter 1 IEEE 1394 Bus VO Requests 1039

IRB Output
u.Get1394AddressFromDeviceObject.NodeAddress '
Contains the NODE_ADDRESS structure describing the device's node address.

1/0 Status Block
The bus driver sets Irp->IoStatus.Status to STATUS_SUCCESS on success, or the appro
priate error code on failure.

REQUEST_GET_CONFIGURATION_INFO
The REQUEST_GET_CONFIGURATION_INFO request retrieves configuration infor
mation for a device. This information is gathered from the device's IEEE 1394 standard
configuration ROM.

The relevant members of the IRB for this request are:

typedef struct _IRB {
ULONG FunctionNumber;

union {
struct {

PCONFIG_ROM
ULONG
PVOID
IO_ADDRESS
ULONG
PVOID
IO_ADDRESS
ULONG
PTEXTUAL_LEAF
ULONG
PTEXTUAL_LEAF

ConfigRom;
UnitDirectoryBufferSize;
UnitDirectory;
UnitDirectoryLocation;
UnitDependentDirectoryBufferSize;
UnitDependentDirectory;
UnitDependentDirectoryLocation;
VendorLeafBufferSize;
VendorLeaf;
Model LeafBufferSize;
Model Leaf;

} GetConfigurationlnformation;

u;

I RB;

1040 Part 5 IEEE 1394 Drivers

IRB Input
FunctionNumber
REQUEST_GET_CONFIGURATION_INFO.

u.GetConfigurationlnformation.ConfigRom
Pointer to the buffer that the bus driver will use to store a copy of the device's configuration
ROM. The configuration ROM is defined by the IEEE 1394 Specification.

u.GetConfigurationlnformation.UnitDirectoryBufferSize
Specifies the size of the buffer pointed to by the UnitDirectory member of u.Get
ConfigurationInformation. If the UnitDirectoryBufferSize, UnitDependentDirectory
BufferSize, VendorLeafBufferSize, and ModelLeafBufferSize members of u.Get
ConfigurationInformation are all zero, on completion the bus driver fills in this member
with the minimum buffer size needed to hold all the information.

u.GetConfigurationlnformation.UnitDirectory
Pointer to where the bus driver will return the unit directory. See the IEEE 1394-1995
Specification for a description of the internals of the unit directory.

u.GetConfigurationlnformation.UnitDependentDirectoryBufferSize
Specifies the size of the buffer pointed to by UnitDependentDirectory member of
u.GetConfigurationInformation. If the UnitDirectoryBufferSize, UnitDependent
DirectoryBufferSize, VendorLeafBufferSize, and ModelLeafBufferSize members of
u.GetConfigurationInformation are all zero, on completion the bus driver fills in this
member with the minimum buffer size needed to hold all the information.

u.GetConfigurationlnformation.UnitDependentDirectory
Pointer to a buffer that will receives the unit dependent directory, as defined by the IEEE
1394-1995 Specification. See the specification for a description of the internals of the unit
directory.

u.GetConfigurationlnformation.VendorLeafBufferSize
Specifies the size of the buffer pointed to by Vendor Leaf member of u.GetConfiguration
Information. If the UnitDirectoryBufferSize, UnitDependentDirectoryBufferSize,
VendorLeafBufferSize, and ModelLeafBufferSize members of u.GetConfiguration
Information are all zero, on completion the bus driver fills in this member with the
minimum buffer size needed to hold all the information.

u.GetConfigurationlnformation.VendorLeaf
Pointer to a buffer to receive the vendor leaf TEXTUAL_LEAF structure, which describes
the device vendor.

Chapter 1 IEEE 1394 Bus 1/0 Requests 1041

u.GetConfigurationlnformation.ModeILeafBufferSize
Specifies the size of the buffer pointed to by ModelLeaf member of u.GetConfiguration
Information. If the UnitDirectoryBufferSize, UnitDependentDirectoryBufferSize,
VendorLeamufferSize, and ModelLeamufferSize members of u.GetConfiguration
Information are all zero, on completion the bus driver fills in this member with the
minimum buffer size needed to hold all the information.

u.GetConfigurationlnformation.ModeILeaf
Pointer to a buffer to receive the model leaf TEXTUAL_LEAF structure, which describes
the device model type.

IRB Output
u.GetConfigurationlnformation.ConfigRom
If successful, the bus driver returns the configuration ROM in this buffer. If the Unit
DirectoryBufferSize, UnitDependentDirectoryBufferSize, VendorLeamufferSize,
and ModelLeamufferSize members of u.GetConfigurationInformation are all zero,
the bus driver does not use this member.

u.GetConfigurationlnformation.UnitDirectoryBufferSize
If the device driver passed zero for the UnitDirectoryBufferSize, UnitDependent
DirectoryBufferSize, VendorLeamufferSize, and ModelLeaffiufferSize members of
u.GetConfigurationInformation, the bus driver returns the size of the unit directory in
this member.

u.GetConfigurationlnformation.UnitDirectory
The bus driver returns the unit directory in this buffer, up the number of bytes specified by
the device driver in u.GetConfigurationInformation.UnitDirectoryBufferSize.

u.GetConfigurationlnformation.UnitDirectoryLocation
Specifies the address in the device's memory space where the unit directory begins. This
parameter is useful when pointers are embedded within the unit directory, as these pointers
are expressed in quadlet offsets from the current position. Only the IA_Destination_ Offset
member of the 10_ADDRESS data structure is valid.

u.GetConfigurationlnformation.UnitDependentDirectoryBufferSize
If the device driver passed zero for the UnitDirectoryBufferSize, UnitDependent
DirectoryBufferSize, VendorLeamufferSize, and ModelLeaffiufferSize members of
u.GetConfigurationInformation, the bus driver returns the size of the unit dependent
directory in this member.

1042 Part 5 IEEE 1394 Drivers

u.GetConfigurationlnformation.UnitDependentDirectory
The bus driver returns the unit dependent directory in this buffer, up the number of bytes
specified by the device driver in u.GetConfigurationlnformation.UnitDependent-
Directory BufferSize. .

u.GetConfigurationlnformation.UnitDependentDirectoryLocation
Specifies the 48-bit address where the unit-dependent directory begins. This parameter is
useful when pointers are embedded in the unit-dependent directory, since these pointers are
expressed in quadlet offsets from the current position. See 10_ADDRESS for the structure
description.

u.GetConfigurationlnformation.VendorLeafBufferSize
If the device driver passed zero for the UnitDirectoryBufferSize, UnitDependent
DirectoryBufferSize, VendorLeafBufferSize, and ModelLeafBufferSize members
of u.GetConfigurationlnformation, the bus driver returns the size of the vendor leaf
in this member.

u.GetConfigurationlnformation.VendorLeaf
The bus driver returns the unit directory in this buffer, up the number of bytes specified by
the device driver in u.GetConfigurationlnformation. VendorLeafBufferSize.

u.GetConfigurationlnformation.ModeILeafBufferSize
If the device driver passed zero for the UnitDirectoryBufferSize, UnitDependent
DirectoryBufferSize, VendorLeafBufferSize, and ModelLeafBufferSize members
of u.GetConfigurationlnformation, the bus driver returns the size of the model leaf
in this member.

u.GetConfigurationlnformation.ModeILeaf
The bus driver returns the unit directory in this buffer, up the number of bytes specified by
the device driver in u.GetConfigurationlnformation.ModeILeafBufferSize.

1/0 Status Block
The bus driver sets Irp->IoStatus.Status to STATUS_SUCCESS on success, or the
appropriate error code on failure.

REQUEST_GET_GENERATION_COUNT
The REQUEST_GET_GENERATION_COUNT request retrieves the current bus reset
generation. This count is incremented every time the bus is reset. This generation count
must be passed in each asynchronous read, write, and lock request that a device driver
submits to the 1394 bus driver.

Chapter 1 IEEE 1394 Bus VO Requests 1043

The relevant members of the IRB for this request are:

typedef struct _IRB {
ULONG FunctionNumber:

union
struct

ULONG GenerationCount:
GetGenerationCount:

u:
I RB:

IRB Input
FunctionNumber
REQUEST_GET_GENERATION_COUNT.

IRB Output
u.GetGenerationCount.GenerationCount
Specifies the current generation count.

1/0 Status Block
The bus driver sets Irp->IoStatus.Status to STATUS_SUCCESS on success, or the
appropriate error code on failure.

The REQUEST_GET_LOCAL_HOST_INFO request returns information about the local
node's host controller.

The relevant members of the IRB for this request are:

typedef struct _IRB {
ULONG FunctionNumber:

union
struct {

ULONG nLevel:

1044 Part 5 IEEE 1394 Drivers

PVOID Information;
} GetLocalHostInformation;

} u;
IRB;

IRB Input
FunctionNumber
REQUEST_GET_LOCAL_HOST_INFO.

u.GetLocaIHostlnformation.nLevel
Specifies what level of information is desired from this call. The following flags are
provided.

Flag

GET_HOST_UNIQUE_ID

GET_HOST_CAPABILITIES

GET_POWER_SUPPLIED

GET_PHYS_ADDR_ROUTINE

Description

Requests the port driver to return the 64-bit unique identifier.

Requests the port driver to return the host controller's capability
flags.

Requests the port driver to return the bus' power characteristics.

Requests the port driver to return the host controller's physical
address mapping function.

Requests the port driver to return the host controller's
configuration ROM.

Requests the port driver to return the speed or topology maps
from the host controller's CSR. See the IEEE 1394
Specification for a description of CSRs.

u.GetLocaIHostlnformation.lnformation
Pointer to an information block to be filled in, depending on what level of information is
desired. Each block has its own particular structure:

Flag

GET_HOST_UNIQUE_ID

GET_HOST_CAPABILITIES

GET_POWER_SUPPLIED

GET_PHYS~DDR_ROUTINE

GET_HOST_CONFIG_ROM

GET_HOST_CSR_CONTENTS

Structure

GET J-OCAL_HOST _INFO 1

GET _LOCAL_HOST_INF02

GET_LOCAL_HOST_INF03

GET_LOCAL_HOST_INF04

GET_LOCAL_HOST_INF05

GET_LOCAL_HOST_INF06

Chapter 1 IEEE 1394 Bus I/O Requests 1045

IRB Output
u.GetLocal Hostlnformation.l nformation
Pointer to the information block, with the requested information filled in.

1/0 Status Block
The bus driver sets Irp->IoStatus.Status to STATUS_SUCCESS on success, or the appro
priate error code on failure.

REQUEST_GET _SPEED_BETWEEN_DEVICES
The REQUEST_GET_SPEED_BETWEEN_DEVICES request returns the maximum
(simultaneous) transfer speed that can be used from one source device to a set of destination
devices.

The relevant members of the IRB for this request are:

typedef struct _IRB {
ULONG FunctionNumber;

union

u;

I RB;

struct
ULONG fulFlags;
ULONG ulNumberOfDestinations;
PDEVICE_OBJECT hDestinationDeviceObjects[64];
ULONG fulSpeed;

GetMaxSpeedBetweenDevices;

IRB Input
FunctionNumber
REQUEST_GET _SPEED _BETWEEN_DEVICES

u.GetMaxSpeedBetweenDevices.fuIFlags
Specifies the source device. Zero indicates the calling device. USE_LOCAL_NODE
indicates the computer itself.

1046 Part 5 IEEE 1394 Drivers

u.GetMaxSpeedBetweenDevices.uINumberOfDestinations
Specifies the number of destination devices.

u.GetMaxSpeedBetween Devices.h DestinationDeviceObjects
Pointer to an array of the device objects of the destination devices.

IRS Output
u.GetMaxSpeedBetweenDevices.fuISpeed
Specifies the maximum possible transaction speed between the source device and the set of
destination devices. The value returned is the maximum speed supported by all the devices
simultaneously. The possible speed values are SPEED_FLAGS_xxx, where xxx is the (ap
proximate) transfer rate in megabits per second. At the time of this writing, existing hard
ware supports transfer rates of 100, 200, and 400 Mb/sec.

110 Status Block
If successful, the bus driver sets Irp->IoStatus.Status to STATUS_SUCCESS.

REQUEST_GET_SPEED_TOPOLOGY_MAPS
The REQUEST_GET_SPEED_TOPOLOGY_MAPS request returns the IEEE 1394 bus
speed and topology maps. On Windows 2000, this request is obsolete.

The relevant members of the IRB for this request are:

typedef struct _IRB {
ULONG FunctionNumber;

union

} u;
I RB;

IRS Input

struct {
PSPEED_MAP SpeedMap;
PTOPOLOGY_MAP TopologyMap;

} GetSpeedTopologyMaps;

Function Number
REQUEST_GET _SPEED_TOPOLOGY _MAPS.

IRB Output
u.GetSpeedTopologyMaps.SpeedMap

Chapter 1 IEEE 1394 Bus 1/0 Requests 1047

Pointer to the bus' SPEED_MAP structure. This member is filled on completion.

u.GetSpeedTopologyMaps. TopologyMap
Pointer to the bus' TOPOLOGY_MAP structure. The topology map will be in big-endian,
irrespective of the byte order of the local node. This member is filled on completion.

1/0 Status Block
The bus driver sets Irp->IoStatus.Status to STATUS_SUCCESS on success, or the
appropriate error code on failure.

Operation
On Windows 2000, use GET_LOCAL_HOST_INFO with u.GetLocaIHostInformation.
nLevel = GET _HOST_CSR_CONTENTS.

REQUEST _ISOCH_ALLOCATE_BANDWIDTH
The REQUEST _ISOCH_ALLOCATE_BANDWIDTH request allocates isochronous
bandwidth to be used in subsequent operations.

The relevant members of the IRB for this request are:

typedef struct _IRB {
ULONG FunctionNumber;

union

} u;
IRB;

struct
ULONG nMaxBytesPerFrameRequested;
ULONG fulSpeed;
HANDLE hBandwidth;
ULONG BytesPerFrameAvailable;
ULONG SpeedSelected;

} IsochAllocateBandwidth;

1048 Part 5 IEEE 1394 Drivers

IRB Input
FunctionNumber
REQUEST _ISOCH_ALLOCATE_BANDWIDTH

u.lsochAllocateBandwidth.nMaxBytesPerFrameRequested
Specifies the bandwidth requested, in bytes per isochronous frame. If the host controller is
configured to strip away the packet headers, the device driver does not need to include the
packet header size in the number of bytes requested. The driver also does not need to round
the value up to the nearest quadlet.

u.lsochAllocateBandwidth.fuISpeed
Specifies the connection speed to use in allocating bandwidth. The possible speed values are
SPEED_FLAGS_xxx, where xxx is the (approximate) transfer rate in megabits per second.
Currently, existing hardware supports transfer rates of 100, 200, and 400 Mb/sec.

IRB Output
u.lsochAllocateBandwidth.hBandwidth
Specifies the handle to use to refer to the bandwidth resource.

u.lsochAllocateBandwidth.BytesPerFrameAvailable
Specifies the bytes per frame that are available after the allocation attempt. Drivers should
not rely on this bandwidth being available, since another device may allocate or deallocate
bandwidth at any time. The bus driver fills in this member, even if the request fails.

u.lsochAllocateBandwidth.SpeedSelected
Specifies the actual speed selected in allocating bandwidth. The value is one of SPEED_
FLAGS_xxx (see the fulSpeed member description above).

1/0 Status Block
If the bus driver successfully allocates the bandwidth, it sets Irp->IoStatus.Status to
STATUS_SUCCESS. If it defers the request, it returns STATUS_PENDING. Otherwise
it sets the appropriate error status.

Operation
Once the device driver no longer needs allocated bandwidth, it must deallocate it with the
REQUEST _ISOCH_FREE_BANDWIDTH request.

On Windows 98 RTM, the caller must be running at IRQL PASSIVE_LEVEL. On
Windows 98 SPl, Windows 2000, or later, this request may be submitted at all IRQL
levels.

Chapter 1 IEEE 1394 Bus va Requests 1049

The REQUEST _ISOCH_ALLOCATE_ CHANNEL request allocates an isochronous
channel to be used in subsequent operations.

The relevant members of the IRB for this request are:

typedef struct _IRB {
ULONG FunctionNumber;

union
struct

ULONG
ULONG
LARGE_INTEGER

nRequestedChannel ;
Channel;
ChannelsAvailable;

IsochAllocateChannel;

} u;

I RB;

IRB Input
FunctionNumber
REQUEST _ISOCH_ALLOCATE_ CHANNEL

u.lsochAllocateChannel.nRequestedChannel
Specifies the particular channel to allocate, or ISOCH_ANY_CHANNEL for an arbitrary
channel. Most drivers should use ISOCH_ANY_CHANNEL.

IRB Output
u.lsochAllocateChannel.Channel
Specifies the channel allocated, if the request succeeds.

u.lsochAllocateChannel.ChannelsAvailable
Specifies a bitmap of the available isochronous channels after the channel allocation
attempt. Drivers should not rely on this information, since another device may allocate
or deallocate channels at any time. The bus driver fills in this member, even if the
request fails.

1050 Part 5 IEEE 1394 Drivers

1/0 Status Block
The bus driver sets Irp->IoStatus.Status to STATUS_SUCCESS if it successfully allocates
the channel, or otherwise to the appropriate error status.

Operation
Once a channel is no longer needed, it should be deallocated using the REQUEST _ISOCH_
FREE_CHANNEL request.

Drivers that submit this request must be running at an IRQL of PASSIVE_LEVEL.

REQUEST _ISOCH_ALLOCATE_RESOU RCES
The REQUEST _ISOCH_ALLOCATE_RESOURCES request allocates a resource handle
for transactions over a given isochronous channel. The device driver will use the resource
handle to attach and detach data buffers for isochronous transactions on that channel.

The relevant members of the IRB for this request are:

typedef struct _IRB {
ULONG FunctionNumber;

union
struct

ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
HANDLE

fulSpeed;
ful Fl ags;
nChannel ;
nMaxBytesPerFrame;
nNumberOfBuffers;
nMaxBufferSize;
nQuadletsToStrip;
hResource;

} IsochAllocateResources;

} u;

} IRB;

IRB Input
FunctionNumber

Chapter 1 IEEE 1394 Bus 1/0 Requests 1051

REQUEST _ISOCH_ALLOCATE_RESOURCES

u.lsochAllocateResources.fuISpeed
Specifies the connection speed to use for communication on the channel. The possible
speed values are SPEED_FLAGS_xxx, where xxx is the (approximate) transfer rate in
megabits per second. Currently, existing hardware supports transfer rates of 100, 200,
and 400 Mb/sec.

u.lsochAllocateResources.fuIFlags
Specifies how the bus driver should use any buffers attached to the resource handle. Many
of the flags specify how the bus driver should configure the IEEE host controller for DMA
from or to attached buffers.

Flag

RESOURCE_BUFFERS_CIRCULAR

RESOURCE_STRIP _ADDITIONAL_
QUADLETS

Description

Attached buffers will be used to read data from an
isochronous channel. Set this if the resource handle will
be used in a REQUEST_ISOCR_LISTEN request.

Attached buffers will be used to write data to an
isochronous channel. Set this if the resource handle will
be used in a REQUEST_ISOCR_TALK request.

When the host controller uses up the current supply of
attached buffers, it will continue the operation beginning
again with the first buffer attached. When the
isochronous transaction is in progress, the device driver
must not attach or detach buffers on the resource handle.

The bus driver will configure the host controller to strip
additional quadlets from incoming isochronous packets.
The number of quadlets to be stripped is specified in
nQuadletsToStrip.

The bus driver will configure the host controller to
synchronize the beginning of the isochronous
transaction to the CYCLE_TIME specified in the
StartTime member of the request's IRB. See
REQUEST _ISOCR_LISTEN or REQUEST_
IS OCR_TALK.

Used to switch to packet-based transfer, rather than the
default. The default is stream-based transfer, unless the
host controller only supports packet-based DMA.

1052 Part 5 IEEE 1394 Drivers

u.lsochAllocateResources.nChannel
Specifies the isochronous channel for all transactions involving the resource handle
allocated by this request.

u.lsochAllocateResources.nMaxBytesPerFrame
Specifies the expected maximum isochronous frame size while transmitting and receiving
on the channel.

u.lsochAllocateResources.nNumberOfBuffers
Specifies one more than the maximum expected number of buffers that are attached to
the resource handle at any given time. If the RESOURCE_BUFFERS_CIRCULAR flag is
specified, then nNumberOffiuffers specifies the total number of buffers attached to the
resource handle, instead of the average number at any given time.

u.lsochAllocateResources.nMaxBufferSize
Specifies the maximum size of the buffers that are attached to the resource handle.

u.lsochAllocateResources.nQuadletsToStrip
Specifies the number of quadlets to strip from the beginning of every packet in an
incoming isochronous stream. This parameter is ignored unless the device driver sets the
RESOURCE_STRIP _ADDITIONAL_QUADLETS flag in fulFlags.

IRB Output
u.lsochAllocateResources.hResource
Specifies the resource handle the device driver uses to attach or detach data buffers for
isochronous transactions on the channel specified in nChannel.

1/0 Status Block
The bus driver sets Irp->IoStatus.Status to STATUS_SUCCESS, if it processes the request
successfully, or to the appropriate error code.

Operation
Not all RESOURCE_XXX flags are supported. Some require hardware support from
the IEEE 1394 host controller. The device driver can use the REQUEST_GET_LOCAL_
HOST_INFO request, with nLevel = GET_HOST_CAPABILITIES, to determine which
RESOURCE_XXX flags are supported. The bus driver returns a pointer to a GET_
LOCAL_HOST_INF02 structure, whose HostCapabilities member contains flags

Chapter 1 IEEE 1394 Bus I/O Requests 1053

that determine which flags the host controller supports. The following table lists which
RESOURCE_XXX flags require hardware support, and the corresponding HostCapabilities
flag the driver should check:

RESOURCE_XXX flags

RESOURCE_STRIP _ADDITIONAL_
QUADLETS

RESOURCE_SYNCH_ON_TIME

HostCapabilities flag

HOST_INFO _SUPPORTS_ISOCH_STRIPPING

HOST_INFO_SUPPORTS_START_ON_
CYCLE

HOST_INFO_PACKET_BASED

The default method of transmission for isochronous reads is stream-based: data is read until
it fills the buffer, and then the bus driver begins filling the next buffer. If the RESOURCE_
USE_PACKET_BASED flag is set, the bus driver uses a packet-based method of storing
data: each packet is put in its own buffer and no attempt is made to fill each buffer. A par
ticular host controller may only support packet-based or stream-based reads. Drivers should
use the REQUEST_GET_LOCAL_HOST_INFO request to determine what the host con
troller supports.

Not all host controllers automatically strip off the packet header. Use the REQUEST_
GET _LOCAL_HOST _INFO request to determine if the host controller automatically strips
the packet header. This request will also determine if the host controller can be configured to
strip quadlets from the beginning of each packet. Many host controllers can be configured
to automatically strip off the packet header. Try setting the RESOURCE_STRIP _
ADDITIONAL_QUADLETS flag and setting nQuadletsToStrip to 1.

Set the RESOURCE_SYNCH_ON_TIME to synchronize the beginning of I/O to the
StartTime member of the REQUEST_ISOCH_LISTEN or REQUEST_ISOCH_ TALK
request. Use the REQUEST_GET_LOCAL_HOST_INFO request to determine if the host
controller supports synchronization on an isochronous cycle time. Additional synchroniza
tion options can be set with each buffer attached; see the ISOCH_DESCRIPTOR member
of the REQUEST _ISOCH_ATT ACH_BUFFERS for details.

Drivers that submit this request must be running at an IRQL of PASSIVE_LEVEL.

The REQUEST_ISOCH_ATTACH_BUFFERS request attaches an array of buffers to an
isochronous resource handle.

1054 Part 5 IEEE 1394 Drivers

The relevant members of the IRB for this request are:

typedef struct _IRB {
ULONG FunctionNumber;

union

u;

I RB;

IRB Input

struct {
HANDLE
ULONG
PISOCH_DESCRIPTOR

} IsochAttachBuffers;

hResource;
nNumberOfDescriptors;
pIsochDescriptor;

FunctionNumber
REQUEST_ISOCH_ATTACH_BUFFERS

u.lsochAttachBuffers.hResource
Specifies the resource handle to attach buffers to.

u.lsochAllocateResources.nNumberOfDescriptors
Specifies the number of elements in the pIsochDescriptor array.

u.lsochAllocateResources.plsochDescriptor
Pointer to an array of ISOCH_DESCRIPTOR structures that describe the buffers to be
attached, and the parameters that specify how each buffer is to be used.

I/O Status Block
The bus driver sets Irp->IoStatus.Status to STATUS_SUCCESS, if it processes the request
successfully, or to the appropriate error code.

Operation
Once a buffer is no longer in use, the device driver can detach it from the resource handle by
using the REQUEST_ISOCH_DETACH_BUFFERS request.

Chapter 1 IEEE 1394 Bus 1/0 Requests 1055

REQUEST _ISOCH_DETACH_BUFFERS
The REQUEST_ISOCR_DETACR_BUFFERS request detaches an array of buffers from an
isochronous resource handle.

The relevant members of the IRB for this request are:

typedef struct _IRS {
ULONG FunctionNumber;

union

u;

IRS;

struct {
HANDLE
ULONG
PISOCH_DESCRIPTOR

} IsochDetachSuffers;

IRB Input
FunctionNumber

hResource;
nNumberOfDescriptors;
pIsochDescriptor;

REQUEST_IS OCR_DETACR_B UFFERS

u.lsochAttachBuffers.hResource
Specifies the resource handle to detach buffers from.

u.lsochAllocateResources.nNumberOfDescriptors
Specifies the number of elements in the pIsochDescriptor array.

u.lsochAllocateResources.plsochDescriptor
Pointer to an array of ISOCR_DESCRIPTOR structures that describe the buffers to be
detached. The device driver should use the same ISOCR_DESCRIPTOR structure for a
buffer that it used to attach the buffer.

1/0 Status Block
The bus driver sets Irp->IoStatus.Status to STATUS_SUCCESS, if it processes the request
successfully, or to the appropriate error code.

1056 Part 5 IEEE 1394 Drivers

The REQUEST _ISOCH_FREE_BANDWIDTH request releases isochronous bandwidth
that was allocated through a REQUEST_ISOCH_ALLOCATE_BANDWIDTH request.

The relevant members of the IRB for this request are:

typedef struct _IRB {
ULONG FunctionNumber;

union
struct

HANDLE hBandwidth;
} IsochFreeBandwidth;

} u;
I RB;

IRB Input
FunctionNumber
REQUEST _IS OCH_FREE_B AND WIDTH

u.lsochFreeBandwidth.hBandwidth
Specifies the bandwidth handle to release.

1/0 Status Block
If successful, the bus driver sets Irp->IoStatus.Status to STATUS_SUCCESS, and the
isochronous bandwidth is returned to the pool of available bandwidth.

Operation
Drivers that submit this request must be running at an IRQL of PASSIVE_LEVEL.

Chapter 1 IEEE 1394 Bus 110 Requests 1057

The REQUEST_ISOCH_FREE_CHANNEL request releases an isochronous channel that
was allocated through a REQUEST _ISOCH_ALLOCATE_ CHANNEL request.

The relevant members of the IRB for this request are:

typedef struct _IRB {
ULONG FunctionNumber:

union
struct

ULONG nChannel :
IsochFreeChannel:

u:
I RB:

IRB Input
FunctionNumber
REQUEST _ISOCH_FREE_ CHANNEL

u.lsochFreeChannel.nChannel
Specifies which allocated channel to release.

1/0 Status Block
If successful, the bus driver sets Irp->IoStatus.Status to STATUS_SUCCESS, and the
isochronous channel is returned to the pool of available channels.

Operation
Drivers that submit this request must be running at an IRQL of PASSIVE_LEVEL.

1058 Part 5 IEEE 1394 Drivers

REQUEST _ISOCH FREE_RESOURCES
The REQUEST _ISOCH_FREE_RESOURCES request releases the resource handle that was
allocated through the REQUEST _ISOCH_ALLOCATE_RESOURCES request.

The relevant members of the IRB for this request are:

typedef struct _IRB {
ULONG FunctionNumber;

union {
struct

HANDLE hResource;
IsochFreeResources;

u;

IRB;

IRB Input
FunctionNumber
REQUEST _IS OCH_FREE_RES OURCES

u.lsochFreeResources.hResource
Specifies the resource handle to release.

1/0 Status Block
The bus driver sets Irp->IoStatus.Status to STATUS_SUCCESS on success. All isochro
nous buffers that were attached to this resource must be detached prior to issuing this call. If
a device driver attempts to free a resource handle with isochronous buffers still attached to
it, the handle is not freed and the bus driver returns STATUS_INVALID_PARAMETER
instead.

Operation
Drivers that submit this request must be running at an IRQL of PASSIVE_LEVEL.

Chapter 1 IEEE 1394 Bus 110 Requests 1059

The device driver issues a REQUEST_ISOCH_LISTEN request to read from an isochro
nous channel.

The relevant members of the IRB for this request are:

typedef struct _IRB {
ULONG FunctionNumber;

union {

} u;
} IRB;

IRB Input

struct {
HANDLE
ULONG
CYCLE_TIME

IsochListen;

hResource;
fulFlags;
StartTime

FunctionNumber
REQUEST_ISOCH_LISTEN

u.lsochListen.hResource
Specifies the resource handle to use in reading data.

u.lsoch Listen.fulFlags
Reserved. Device drivers must set this to zero.

u.lsochListen.StartTime
Specifies the cycle time to begin reading data. This member is used only if the driver
specified the RESOURCE_SYNCH_ON_TIME flag when it allocated the resource handle
passed in u.IsochListen.hResource. (The timing resolution is per isochronous cycle, so
the Cycle Offset member of StartTime is not used.)

1060 Part 5 IEEE 1394 Drivers

1/0 Status Block
The bus driver sets Irp->IoStatus.Status to STATUS_SUCCESS when it has successfully
processed the request, or to the appropriate error code.

Operation
The bus driver completes this request once it has successfully scheduled the isochronous
listen operation. It does not wait for the data transfer to finish, or even begin, before it
completes the request.

Listening on a channel may begin immediately, or it may be synchronized to an event.
If the driver set the RESOURCE_SYNCH_ON_TIME flag on the REQUEST_ISOCH_
ALLOCATE_RESOURCES request that returned the resource handle, then the listen will
begin on the cycle count specified in StartTime. Additional synchronization options may be
set for each buffer within that buffer's ISOCH_DESCRIPTOR structure.

REQUEST _ISOCH_QUERY _CYCLE_TIME
The ISOCH_QUERY _CURRENT_CYCLE_TIME request returns the current isochronous
cycle time.

The relevant members of the IRB for this request are:

typedef struct _IRB {
ULONG FunctionNumber;

union
struct

u;
I RB;

CYCLE_TIME CycleTime;
IsochQueryCurrentCycleTime;

IRB Input
FunctionNumber
REQUEST _ISOCH_ QUERY _ CYCLE_TIME

IRB Output
u.lsochQueryCurrentCycleTime.CycleTime

Chapter 1 IEEE 1394 Bus I/O Requests 1061

On success, specifies the current isochronous cycle time. See the CYCLE_TIME entry for
details.

1/0 Status Block
If successful, the bus driver sets Irp->IoStatus.Status to STATUS_SUCCESS.

REQUEST _ISOCH_QUERY _RESOURCES
The ISOCH_QUERY_RESOURCES request returns the bandwidth and channels currently
available on the IEEE 1394 bus.

The relevant members of the IRB for this request are:

typedef struct _IRB {
ULONG FunctionNumber;

union
struct

ULONG
ULONG
LARGE_I NTEGER

fulSpeed;
BytesPerFrameAvailable;
ChannelsAvailable;

IsochQueryResources;

} u;

IRB;

IRB Input
FunctionNumber
REQUEST _ISOCH_ QUERY_RESOURCES

u.lsochQueryResources.fulSpeed
Specifies the speed flag to use in allocating bandwidth. The possible speed values are
SPEED_FLAGS_xxx, where xxx is the approximate transfer rate in megabits per second.
Currently, existing hardware supports transfer rates of 100, 200, and 400 MBps.

1062 Part 5 IEEE 1394 Drivers

IRB Output
u.lsochQueryResources.BytesPerFrameAvailable
On success, specifies the returned available bandwidth as expressed in bytes per isochronous
frame.

u.lsochQueryResources.ChannelsAvailable
On success, points to a bitmap of available channels.

1/0 Status Block
On success, the bus driver sets Irp->IoStatus.Status to STATUS_SUCCESS.

Operation
The information returned by this request should not be relied upon; a node on the bus may
request or release channels or bandwidth at any time.

Drivers that submit this request must be running at an IRQL of PASSIVE_LEVEL.

REQUEST _ISOCH_SET _CHANNEL_BANDWIDTH
The REQUEST_ISOCH_SET_CHANNEL_BANDWIDTH request resets the bandwidth on
an already-allocated bandwidth handle.

The relevant members of the IRB for this request are:

typedef struct _IRB {
ULONG FunctionNumber;

union {
struct {

HANDLE hBandwidth;
ULONG nMaxBytesPerFrame;

} u;
I RB;

} IsochSetChannelBandwidth;

IRB Input
FunctionNumber
REQUEST _ISOCH_SET _CHANNEL_BANDWIDTH

u.lsochSetChanneIBandwidth.hBandwidth
Bandwidth handle to reset.

Chapter 1 IEEE 1394 Bus I/O Requests 1063

u.lsochSetChanneIBandwidth.nMaxBytesPerFrame
Specifies the new bandwidth for hBandwidth.

1/0 Status Block
If the bus driver successfully resets the bandwidth on hBandwidth, the bus driver sets Irp->
IoStatus.Status to STATUS_SUCCESS.

Operation
This request does not require the caller to know the bandwidth that was allocated when a
handle was generated. REQUEST _ISOCH_SET_CHANNEL_BANDWIDTH can be used
to readjust the bandwidth on a bandwidth handle whose bytes per frame setting is unknown.
Despite its name, this request does not involve isochronous channels in any way.

Drivers that submit this request must be running at an IRQL of PASSIVE_LEVEL.

The IsochStop request stops all isochronous operations on an isochronous channel.

The relevant members of the IRB for this request are:

typedef struct _IRB {
ULONG FunctionNumber;

union {

} u;
I RB;

IRB Input

struct {
HANDLE
ULONG

IsochStop;

hResource;
ful Fl ags;

FunctionNumber
REQUEST_ISOCH_STOP

1064 Part 5 IEEE 1394 Drivers

u.lsochStop.hResource
Specifies the resource handle for the channel on which to stop isochronous operations.

u.lsochStop.fuIFlags
Reserved. Device drivers should set this member to zero.

1/0 Status Block
On success, the bus driver sets Irp->IoStatus.Status to STATUS_SUCCESS.

The REQUEST _ISOCH_ TALK request begins data transfer on a isochronous channel.

The relevant members of the IRB for this request are:

typedef struct _IRB {
ULONG FunctionNumber;

union

} u;

I RB;

IRS Input

struct {
HANDLE
ULONG
CYCLE_TIME

IsochTalk;

FunctionNumber
REQUEST _ISOCH_ TALK

u.lsochTalk.hResource

hResource;
fulFlags;
StartTime;

Specifies the resource handle to use for this operation. Resources are acquired through the
REQUEST_ISOCH_ALLOCATE_RESOURCES request.

u.lsochTalk.fulFlags
Reserved. Drivers should set this to zero.

Chapter 1 IEEE 1394 Bus I/O Requests 1065

u.lsochTalk.StartTime
Specifies the cycle time to begin operation. This member is used only if the driver specified
the RESOURCE_SYNCH_ON_TIME flag when it allocated the resource handle passed in
u.IsochTalk.hResource. (The timing resolution is per isochronous cycle, so the Cycle
Offset member of StartTime is not used.)

1/0 Status Block
The bus driver sets Irp->IoStatus.Status to STATUS_SUCCESS when the listening
operation has begun, or to the appropriate error status.

Operation
Talking on a channel may begin immediately, or it may be synchronized to an event.
If the driver set the RESOURCE_SYNCH_ON_TIME flag on the REQUEST_ISOCH_
ALLOCATE_RESOURCES request that returned the resource handle, then the write
operation will begin on the specified cycle count. Additional synchronization options
can be set for each buffer in the ISOCH_DESCRIPTOR structure.

If successful, the request returns a STATUS_SUCCESS value. The call returns immediately,
and does not wait for any synchronization events. The bus driver calls the callback the driver
provides in ISOCH_DESCRIPTOR to signal that it has finished processing an attached
buffer.

The REQUEST_SEND_PHY_CONFIG_PACKET request sends a Phy configuration packet
to the bus. A raw packet is sent out, with no checks performed.

The relevant members of the IRB for this request are:

typedef struct _IRB {
ULONG FunctionNumber;

union {

u;

I RB;

struct
PHY_CONFIGURATION_PACKET

SendPhyConfigurationPacket;
PhyConfigurationPacket;

1066 Part 5 IEEE 1394 Drivers

IRB Input
FunctionNumber
REQUEST_SEND~PRY_CONFIG_PACKET.

u.SendPhyConfigurationPacket.PhyConfigurationPacket
Pointer to the PRY _ CONFIGURATION_PACKET structure.

1/0 Status Block
The bus driver sets Irp->IoStatus.Status to STATUS_SUCCESS on success, or the appro
priate error code on failure.

Operation
The packet is sent to all nodes on the bus. See the IEEE 1394 Specification for a description
of Phy packets.

REQUEST_SET _DEVICE_XMIT _PROPERTIES
The REQUEST_SET_DEVICE_XMIT_PROPERTIES request sets the maximum speed that
is used to transmit requests to a particular device.

The relevant members of the IRB for this request are:

typedef struct _IRB {
ULONG FunctionNumber;

union {
struct {

ULONG
ULONG

fulSpeed;
fulPriority;

SetDeviceXmitProperties;

} u;
I RB;

IRB Input
FunctionNumber
REQUEST_SET_DEVICE_XMIT_PROPERTIES.

Chapter 1 IEEE 1394 Bus 1/0 Requests 1067

u.SetDeviceXmitProperties.fuISpeed
Specifies the maximum speed for transactions to the device. The possible speed values are
SPEED_FLAGS_xxx, where xxx is the (approximate) transfer rate in megabits per second.
At the time of this writing, the existing hardware supports transfer rates of 100, 200, and
400 Mb/sec.

u.SetDeviceXmitProperties.fuIPriority
Reserved.

1/0 Status Block
The bus driver sets Irp->IoStatus.Status to STATUS_SUCCESS on success, or the
appropriate error code on failure.

Operation
By default, the maximum permitted transmission speed is the physical maximum. A driver
should use this request to lower the maximum permitted speed.

REQUEST _SET _LOCAL_HOST _PROPERTIES
The REQUEST_SET_LOCAL_HOST_PROPERTIES request sets properties of the
local host.

The relevant members of the IRB for this request are:

typedef struct _IRB {
ULONG FunctionNumber;

union {
struct {

ULONG nLevel;
PVOID Information;

} u;
IRB;

GetLocalHostInformation;

IRB Input
FunctionNumber
REQUEST _SET _LOCAL_HOST _PROPERTIES.

1068 Part 5 IEEE 1394 Drivers

u.GetLocaIHostlnformation.n Level
Specifies the request level. Currently the only supported option is SET_LOCAL_HOST_
PROPERTIES_GAP _COUNT.

u.GetLocaIHostlnformation.lnformation
Pointer to arguments for the u.GetLocalHostlnformation.nLevel option. For u.GetLocal
Hostlnformation.nLevel equal to SET_LOCAL_HOST_PROPERTIES_GAP _COUNT,
u.GetLocalHostlnformation.lnformation must point to this structure:

struct _SET_LOCAL_HOST_PROPS2 {
ULONG GapCountLowerBound;

} SET_LOCAL_HOST_PROPS2. *PSET_LOCAL_HOST_PROPS2;

GapCountLowerBound sets a lower bound on the value the bus will use for its gap count.
See the IEEE 1394-1995 Specification for a description of the gap count.

1/0 Status Block
The bus driver sets Irp->IoStatus.Status to STATUS_SUCCESS on success, or the appro
priate error code on failure.

CHAPTER 2

IEEE 1394 Structures

This chapter describes structures used by IEEE 1394 device drivers.

To use these structures, include the 1394.h header file that is shipped with the Win
dows® 2000 DDK.

ADDRESS_FIFO
typedef struct _ADDRESS_FIFO

SINGLE_LIST_ENTRY FifoList; II Singly linked list
PMDL Fi foMdl ; II Mdl for this FIFO element

ADDRESS_FIFO, *PADDRESS_FIFO;

The ADDRESS_FIFO structure is an entry in a singly-linked list of MDLs used by the
REQUEST _ALLOCATE_ADDRESS_RANGE IEEE 1394 bus request.

Members
FifoList
Specifies the rest of the list.

FifoMdl
Specifies the MDL for this entry of the list.

ADDRESS_OFFSET
typedef struct _ADDRESS_OFFSET {

USHORT Off_High;
ULONG Off_Low;

} ADDRESS_OFFSET, *PADDRESS_OFFSET;

1069

The ADDRESS_OFFSET structure specifies the 48-bit address within a device's IEEE 1394
address space.

1070 Part 5 , IEEE 1394 Drivers

Members
Off_High
Specifies the high order offset for a IEEE 1394 address.

Off_Low
Specifies the low order offset for a IEEE 1394 address.

ADDRESS_RANGE
typedef struct _ADDRESS_RANGE

USHORT AR_Off_High;
USHORT AR-Length;
ULONG AR_Off_Low;

ADDRESS_RANGE. *PADDRESS_RANGE;

The ADDRESS_RANGE structure describes a range in a IEEE 1394 device's address space.

Members
AR_ Offset_High
Specifies the high order bits of the 1394 address within the buffer.

AR_Length
Specifies the length, in bytes, of a 1394 address buffer.

AR_ Offset_Low
Specifies the low order bits of the 1394 address within the buffer.

typedef struct _CON FIG_ROM
{

ULONG CR_Info;
ULONG CR_Signiture;
ULONG CR_BusInfoBlockCaps;
ULONG CR_Node_UniqueID[2J;
ULONG CR-Root_Info;

II Other information may be provided by vendor
CON FIG_ROM. *PCONFIG_ROM;

The CONFIG_ROM structure is used to contain the first 24 bytes of a IEEE 1394 device's
configuration ROM.

Members
CRJnfo
Specifies the first 4 bytes of the configuration ROM.

CR_Signiture

Chapter 2 IEEE 1394 Structures 1071

Specifies a signature that will be the same for all 1394 devices.

CR_BuslnfoBlockCaps
Specifies the bus capabilities of the device.

CR_Node_ UniquelD
Specifies the node's 64-bit vendor-assigned unique ID.

CR_RootJnfo
Specifies the first 4 bytes of the root directory information.

Context
See the IEEE 1394-1995 Specification for more details about the layout of the standard
configuration ROM.

CYCLE_TIME
typedef struct _CYCLE_TIME

ULONG CL_CycleOffset:12;
ULONG CL_CycleCount:13;
ULONG CL-SecondCount:7;

CYCLE_TIME, *PCYCLE_TIME;

The CYCLE_TIME structure contains the IEEE 1394 isochronous cycle time.

Members
CycleOffset
Specifies the number of clock ticks (based on a 24.576 MHz clock) since the current
isochronous cycle began.

CycleCount
Specifies the number of isochronous cycles in the current second.

SecondCount
Specifies the number of seconds. This count wraps to zero every 128 seconds.

1072 Part 5 IEEE 1394 Drivers

Comments
The layout of this structure matches that of the CYCLE_TIME register in the IEEE 1394-
1995 Specification.

typedef struct _GET_LOCAL_HOST_INFOI {
LARGE_INTEGER UniqueId;

} GET_LOCAL_HOST_INFOl, *PGET_LOCAL_HOST_INFOl;

The GET_LOCAL_HOST_INFOI structure contains the data returned by a REQUEST_
GET _LOCAL_HOST _INFO request using u.GetLocalHostlnformation.nLevel GET_
HOST_UNIQUE_ID.

Members
Uniqueld
The bus driver fills in this member with the IEEE 1394 globally unique device ID for the
host controller.

typedef struct _GET_LOCAL_HOST_INF02 {
ULONG HostCapabilities;
ULONG MaxAsyncReadRequest;
ULONG MaxAsyncWriteRequest;

GET_LOCAL_HOST_INF02, *PGET_LOCAL_HOST_INF02;

The GET_LOCAL_HOST_INF02 structure contains the data returned by a REQUEST_
GET _LOCAL_HOST _INFO request using u.GetLocalHostlnformation.nLevel GET_
HOST_CAPABILITIES.

Members
HostCapabilities
Flag

HOST_INFO_SUPPORTS_ISOCH_
STRIPPING

Description

The host controller supports packet-based
isochronous transactions.

The host controller supports stream-based
isochronous transactions.

The host controller supports configurable stripping
of header information.

Flag

HOST_INFO_SUPPORTS_START_ON
CYCLE

HOST_INFO_SUPPORTS_RETURNING_
ISO_HDR

HOST_INFO_SUPPORTS_ISO_HDR_
INSERTION

MaxAsyncReadRequest

Chapter 2 IEEE 1394 Structures 1073

Description

The host controller supports synchronizing start on
specific isochronous cycle times.

The host controller does not automatically strip off
the isochronous packet header.

The host controller supports the DESCRIPTOR_
HEADER_SCATTER_GATHER flag in ISOCH_
DESCRIPTOR.

The bus driver fills in this member with the maximum size asynchronous read request that
the host controller supports.

MaxAsyncWriteRequest
The bus driver fills in this member with the maximum size asynchronous write request that
the host controller supports.

Comments
Port drivers that return the HOST_INFO_PACKET_BASED flag support the Isoch
AllocateResources request's RESOURCE_USE_PACKET_BASED flag. Port drivers that
return the HOST_STREAM_PACKET_BASED flag support stream-based I/O. If the host
controller does not support stream-based I/O, the driver must use packet-based I/O, and set
the RESOURCE_USE_PACKET_BASED flag when issuing the REQUEST _ISOCH_
ALLOCATE_RESOURCES.

Some host controllers automatically strip the packet header off an isochronous packet.
If a host controller does not automatically strip the header, the port driver will return the
HOST_INFO_SUPPORTS_ISO_HDR flag. Some host controllers allow a driver to con
figure the host controller to strip off a given number of quadlets; for such controllers the
port driver will return the HOST_INFO_SUPPORTS_ISOCH_STRIPPING flag. The driver
should check this flag before calling REQUEST_ISOCH_ALLOCATE_RESOURCES with
the RESOURCE_STRIP _ADDITIONAL_QUADLETS flag.

If a host controller supports synchronizing REQUEST_ISOCH_LISTEN and REQUEST_
ISOCH_ TALK requests to the isochronous cycle time, the port driver will return the
HOST_INFO_SUPPORTS_START_ON_CYCLE. Drivers should check this flag before
attempting to issue an REQUEST _IS OCH_ALLOCATE_RES OURCES request using the
RESOURCE_SYNCH_ON_TIME flag, or before attaching a buffer whose ISOCH_
DESCRIPTOR has the DESCRIPTOR_SYNCH_ON_TIME flag set.

1074 Part 5 IEEE 1394 Drivers

typedef struct _GET_LOCAL_HOST_INF03 {
ULONG deciWattsSupplied;
ULONG Voltage; II x10 -> +3.3 == 33

II +5.0 == 50,+12.0 == 120
II etc.

} GET_LOCAL_HOST_INF03, *PGET_LOCAL_HOST_INF03;

The GET_LOCAL_HOST_INF03 structure contains the data returned by a REQUEST_
GET _LOCAL_HOST _INFO request using u.GetLocaIHostlnformation.nLevel = GET_
POWER_SUPPLIED.

Members
deciWattsSupplied
Specifies the wattage supplied, in tenths of a watt.

Voltage
Specifies the voltage, in tenths of a volt.

typedef struct _GET_LOCAL_HOST_INF04 {
PPORT_PHYS_ADDR_ROUTINE PhysAddrMappingRoutine;
PVOID Context;

GET_LOCAL_HOST_INF04, *PGET_LOCAL_HOST_INF04;

The GET_LOCAL_HOST_INF04 structure contains the data returned by a REQUEST_
GET _LOCAL_HOST _INFO request using u.GetLocaIHostlnformation.nLevel = GET_
PHYS_ADDR_ROUTINE.

Members
PhysAddrMappingRoutine
Pointer to the physical address mapping routine, which is of type:

NTSTATUS
PhysAddrMappingRoutine

) ;

IN PVOID Context,
IN OUT PIRB Irb

The physical mapping routine is invoked on an REQUEST_ALLOCATE_ADDRESS_
RANGE IRB.1t fills in the u.AllocateAddressRange.pAddressRange member with the

Chapter 2 IEEE 1394 Structures 1075

physical addresses that the u.AllocateAddressRange.Mdl member of the IRB are mapped
to. The proper value for the Context parameter is the Context member below.

Context
Specifies the argument that should be passed as the Context argument of the physical
address mapping routine.

typedef struct _GET_LOCAL_HOST_INF05 {
PVOID ConfigRom;
ULONG ConfigRomLength;

} GET_LOCAL_HOST_INF05, *PGET_LOCAL_HOST_INF05;

The GET_LOCAL_HOST_INF05 structure contains the data returned by a REQUEST_
GET_LOCAL_HOST_INFO request using u.GetLocalHostlnformation.nLevel = GET_
HOST_CONFIG_ROM.

Members
ConfigRom
Pointer to the beginning of the buffer to be filled with the local host's configuration ROM.

ConfigRomLength
Specifies the length of the buffer pointed to by ConfigRom.

Comments
When submitted in a REQUEST_GET_LOCAL_HOST_INFO request, if the Config
RomLength is smaller than the size of the Configuration ROM, a status code of STATUS_
INVALID_BUFFER_SIZE is returned. In this case, the correct buffer size will be filled in
the ConfigRomLength member.

typedef struct _GET_LOCAL_HOST_INF06 {
ADDRESS_OFFSET CsrBaseAddress;
ULONG CsrDataLength;
PVOID CsrDataBuffer;

} GET_LOCAL_HOST_INF06, *PGET_LOCAL_HOST_INF06;

The GET_LOCAL_HOST_INF06 structure contains the data returned by a REQUEST_
GET _LOCAL_HOST _INFO request using u.GetLocalHostlnformation.nLevel = GET_
HOST_CSR_CONTENTS.

1076 Part 5 IEEE 1394 Drivers

Members
CsrBaseAddress
Specifies the base address to examine in the CSR. CsrBaseAddress.Off_High must be
INITIAL_REGISTER_SP ACE_HI. The possible values of CsrBaseAddress.Off_Low are:

CsrBaseAddress.OfCLow

TOPOLOGY _MAP_LOCATION

CsrDataLength

Type of Data

The current speed map. The bus driver converts this from
big-endian to machine-native format before it returns the
data.

The current topology map. The bus driver converts this
from big-endian to machine-native format before it returns
the data.

Specifies the length in bytes of the buffer that CsrDataBuffer points to.

CsrDataBuffer
Pointer to the buffer where the bus driver returns the requested CSR data.

Comments
When submitted in a REQUEST_GET_LOCAL_HOST_INFO request, if the CsrData
Length is smaller than the size of the requested data, STATUS_INVALID_BUFFER_SIZE
is returned. In this case, the correct buffer size will be filled in the CsrDataLength member.

10_ADDRESS
typedef struct _IO_ADDRESS {

NODE_ADDRESS IA_Destination_ID;
ADDRESS_OFFSET IA_Destination_Offset;

la_ADDRESS, *PIO_ADDRESS;

The IO_ADDRESS structure specifies the 1394 64-bit destination address for read, write
and lock operations.

Members
IA_DestinationJD
Pointer to the destination node address.

IA_Destination_ Offset
Specifies the index of the 1394 address within the address array.

IRB
typedef struct _IRB {

ULONG FunctionNumber;
ULONG Flags;

}

ULONG BusReserved[IRB_BUS_RESERVED_SZ];
ULONG PortReserved[IRB_PORT_RESERVED_SZ];
union {

u;

Chapter 2 IEEE 1394 Structures 1077

Drivers use this structure to pass requests to IEEE 1394 bus driver.

Members
FunctionNumber
Determines the type of request. Each request type is documented under the value of
FunctionNumber in IEEE 1394 Bus I/O requests.

Flags
Reserved. Drivers must set this member to zero.

BusReserved
Reserved.

Port Reserved
Reserved.

U

Specifies a union of structures, one for each value of FunctionNumber. The applicable
submembers of u for each request are described with each request type inChapter 1, IEEE
1394 Bus I/O Requests.

FunctionNumber

REQUEST_ALLOCATE_ADDRESS_RANGE

REQUEST_ASYNC_LOCK

REQUEST_ASYNC_READ

REQUEST_ASYNC_STREAM

REQUEST_ASYNC_ WRITE

REQUEST_BUS_RESET

Associated member

AllocateAddressRange

AsyncLock

AsyncRead

AsyncStream

AsyncWrite

BusReset

Continued

1078 Part 5 IEEE 1394 Drivers

FunctionNumber

REQUEST_BUS_RESET_NOTIFICATION

REQUEST_CONTROL

REQUEST_ISOCH_ALLOCATE_BANDWIDTH

REQUEST_ISOCH_ALLOCATE_CHANNEL

REQUEST_ISOCH_ALLOCATE_RESOURCES

REQUEST_ISOCH_ATTACH_BUFFERS

REQUEST_ISOCH_DETACH_BUFFERS

REQUEST_ISOCH_FREE_BANDWIDTH

REQUEST_ISOCH_FREE_CHANNEL

REQUEST_ISOCH_FREE_RESOURCES

REQUEST _ISOCH_LISTEN

REQUEST_ISOCH_QUERY _CYCLE_TIME

REQUEST_IS OCH_QUERY_RES OURCES

REQUEST_ISOCH_SET_CHANNEL_BANDWIDTH

REQUEST_ISOCH_STOP

REQUEST_ISOCH_TALK

REQUEST_FREE_ADDRESS_RANGE

REQUEST_GET_ADDR_FROM_DEVICE_OBJECT

REQUEST_GET_CONFIGURATION_INFO

REQUEST_GET_GENERATION_COUNT

REQUEST_GET_LOCAL_HOST_INFO

REQUEST_GET_SPEED_BETWEEN_DEVICES

REQUEST_GET_SPEED_TOPOLOGY_MAPS

REQUEST_SEND_PHY_CONFIG_PACKET

REQUEST_SET_LOCAL_HOST_PROPERTIES

REQUEST_SET _DEVICE_XMIT _PROPERTIES

Comments

Associated member

BusResetN otification

Control

IsochAllocateBandwidth

IsochAllocateChannel

IsochAllocateResources

IsochAttachB uffers

IsochDetachB uffers

IsochFreeBandwidth

IsochFreeChannel

IsochFreeResources

IsochListen

IsochQueryCurrentCycleTime

IsochQueryResources

IsochSetChannelBandwidth

IsochStop

IsochTalk

FreeAddressRange

Getl394AddressFromDeviceObject

GetConfigurationInformation

GetGenerationCount

GetLocalHostlnformation

GetMaxSpeedBetweenDevices

GetSpeedTopology Maps

SendPhyConfigurationPacket

SetLocalHostProperties

SetDeviceXmitProperties

The Parameters->Others.Argumentsl member of an IOCTL_CLASS_1394 IRP points to
an IRB structure. The bus driver uses the IRB to determine the type of request made by the
device driver, and also to return the results of the operation. See Chapter 1, IEEE 1394 Bus
liD Requests for a description of the behavior of each request.

Chapter 2 IEEE 1394 Structures 1079

ISOCH_DESCRIPTOR
typedef struct _ISOCH_DESCRIPTOR

ULONG fulFlags;
PMDL Mdl ;
ULONG ulLength;
ULONG nMaxBytesPerFrame;
ULONG ulSynch;
ULONG ulTag;
CYCLE_TIME CycleTime;
PBUS_ISOCH_DESCRIPTOR_ROUTINE Callback;
PVOID Contextl;
PVOID Context2;
NTSTATUS status;
ULONG DeviceReserved[8];
ULONG BusReserved[8];
ULONG PortReserved[16];

} ISOCH_DESCRIPTOR, *PISOCH_DESCRIPTOR;

The ISOCH_DESCRIPTOR structure describes a buffer to be attached or detailed from
a resource handle, using the REQUEST_ISOCH_ATTACH_BUFFERS and REQUEST_
ISOCH_DETACH_BUFFERS requests.

Members
fulFlags
Specifies various flags for this isochronous descriptor:

Flag

DESCRIPTOR_SYNCH_
ON_SY

DESCRIPTOR_SYNCH_
ON_TAG

DES CRIPTOR_S YNCH_
ON_TIME

DESCRIPTOR_USE_SY _
TAG_IN_FIRST

Isochronous
Transaction Description

Listen The host controller waits for a particular Sy value
that is embedded in the isochronous packet header
before continuing to read data. The Sy value is
specified in ulSynch.

Listen The host controller waits for a particular Tag value
that is embedded in the isochronous packet header
before continuing to read data. The tag value is
specified in ulTag.

Listen, Talk The host controller waits for a particular isochro
nous cycle time before continuing the operation.
The cycle time is specified in the CycieTime
member.

Listen Synchronization on the Sy or Tag members occurs
only for the first packet received.

Continued

1080 Part 5 IEEE 1394 Drivers

Flag

DESCRIPTOR_ TIME_
STAMP _ON_COMPLETION

DESCRIPTOR_PRIORITY -
TIME_DELIVERY

DESCRIPTOR_HEADER_
SCATTER_GATHER

Mdl

Isochronous
Transaction

Listen, Talk

Talk

Talk

Description

Once the host controller completes its DMA to or
from this buffer, store the cycle time in the Cycle
Time member of the ISOCH_DESCRIPTOR.

If the local host controller is not ready for a write,
do not retry the write later. (The default behavior
is to retry until the host controller is ready.)

The host controller treats the data in this buffer as
a sequence of headers. The host controller will
prepend a header from this buffer to each packet it
assembles from the data in the next buffer
attached.

Specifies the MDL representing a buffer in which the data is, or will be, contained.

ulLength
Specifies the length of the Mdl.

nMaxBytesPerFrame
Specifies the maximum bytes contained in each isochronous frame. On writes, the data in
the buffer will be split into isochronous packets of this size.

ulSynch
For IsochTalk requests, this member specifies the Sy field of the outgoing packet. For
REQUEST_ISOCH_LISTEN requests, if the DESCIPTOR_SYNCH_ON_SY flag is set,
this member specifies the value the host controller will match against the Sy field in
isochronous packet headers.

ulTag
For IsochTalk requests, this member specifies the Tag field of the outgoing packet. For
REQUEST_ISOCH_LISTEN requests, if the DESCIPTOR_SYNCH_ON_SY flag is set,
this member specifies the value the host controller will match against the Tag field in
isochronous packet headers.

CycleTime
If the DESCRIPTOR_SYNCH_ON_TIME flag is set, this member specifies the isochronous
cycle time to synchronize on. (The timing resolution is per isochronous cycle. The Cycle
Offset member of the cycle time is not used.) If the DESCRIPTOR_TIME_STAMP _ ON_
COMPLETION flag is set, the bus driver will fill this member with the isochronous cycle
time on completion of the operation that used this buffer.

Chapter 2 IEEE 1394 Structures 1081

Callback
Pointer to a callback routine. If non-NULL, the bus driver calls this routine when DMA
to the buffer has completed. The callback executes at IRQL DISPATCH_LEVEL. The call
back is of the following type:

void Callback(IN PVOID Contextl, IN PVOID Context2);

Context1
Specifies the first parameter when the bus driver calls the routine passed in Callback.

Context2
Specifies the second parameter when the bus driver calls the routine passed in Callback.

status
Specifies the final status of the operation on this buffer. The bus driver fills in status when
D MA to or from this buffer is finished.

DeviceReserved
Reserved.

BusReserved
Reserved.

PortReserved
Reserved.

Comments
Not all DESCRIPTOR_XXX flags are supported on all hardware. The device driver can
use the REQUEST_GET _LOCAL_HOST _INFO request, with nLevel = GET_HOST_
CAPABILITIES, to determine which DESCRIPTOR_XXX flags are supported. The
bus driver returns a pointer to a GET_LOCAL_HOST_INF02 structure, whose Host
Capabilities member contains flags that determine which flags the host controller supports.
The following table lists which DESCRIPTOR_XXX flags require hardware support, and
the corresponding HostCapabilities flag the driver should check:

DESCRIPTOR_XXX flags

DESCRIPTOR_HEADER_SCATTER_
GATHER

HostCapabilities

HOST_INFO_SUPPORTS_START_ON_
CYCLE

HOST_INFO_SUPPORTS_ISO_HDR_
INSERTION

1082 Part 5 IEEE 1394 Drivers

If the driver sets the DESCRIPTOR_HEADER_SCATTER_GATHER flag, the host con
troller will combine the data of the buffer specified in Mdl with the data of the next buffer
attached. (Subsequent buffers are unaffected.) Each frame of the buffer will be prepended to
a frame of the next buffer (in the order the data in the buffer is split into frames), and sent as
the data of the next isochronous packet. The number of frames of each buffer must match,
or the bus driver returns STATUS_INVALID_PARAMETER for the next REQUEST_
ISOCH_ATTACH_BUFFER request.

The DESCRIPTOR_HEADER_SCATTER_GATHER flag is not supported on Windows
98. It is supported on Windows 2000, and later.

typedef struct _NODE_ADDRESS
USHORT NA_Node_Number:6;
USHORT NA_Bus_Number:10;

NODE_ADDRESS, *PNODE_ADDRESS;

II Bits 10-15
I I Bits 0-9

The NODE_ADDRESS structure specifies the 10-bit bus number and 6-bit node number
that serve as the node address for a 1394 node.

Members
NA_Node_Number
Specifies the 6-bit node number.

NA_Bus_Number
Specifies the 10-bit bus number.

NOTIFICATION_INFO
typedef struct _NOTIFICATION_INFO

PMDL Mdl ;
ULONG ulOffset;
ULONG nLength;
ULONG fulNotificationOptions;
PVOID Context;
PADDRESS_FIFO Fifo;
PVOID RequestPacket;
PMDL ResponseMdl ;
PVOID * ResponsePacket;
PULONG ResponseLength;
PKEVENT * ResponseEvent;

NOTIFICATION_INFO, *PNOTIFICATION_INFO;

Chapter 2 IEEE 1394 Structures 1083

The bus driver passes NOTIFICATION_INFO to pass information to the driver-provided
notification routine for a driver-allocated address range in the computer's IEEE 1394 address
space. The bus driver calls the notification routine when it receives an asynchronous I/O
request packet for that address.

Members
Mdl
If non-NULL, Mdl specifies the MDL for the allocated address range.

ulOffset
Specifies the byte offset with the MDL that corresponds to the address that received a re
quest packet. Only used when Mdl is non-NULL.

nLength
Specifies the number of bytes affected by the request packet. Only used when Mdl is
non-NULL.

fulNotificationOptions
Specifies which type of event triggered the bus driver to call the notification routine. The
possible events the bus driver can return are: NOTIFY _FLAGS_AFTER_READ, NOTIFY_
FLAGS_AFTER_ WRITE, or NOTIFY _FLAGS_AFTER_LOCK. Only used when Mdl is
non-NULL.

Context
Pointer to specific context data for this allocated address range. The driver supplies this
data through the u.AllocateAddressRange.Context member of the IRB for the original
REQUEST ..:...ALLOCATE_ADDRESS_RANGE request.

Fifo
Pointer to the ADDRESS_FIFO structure containing the FIFO element just completed. Only used
if the driver submitted an ADDRESS_FIFO list in the original REQUEST_ALLOCATE_
ADDRESS_RANGE request.

RequestPacket
If non-NULL, RequestPacket points to the original request packet. The bus driver only
supplies this if the device driver did not supply an MDL or an ADDRESS_FIFO list in the
original REQUEST_ALLOCATE_ADDRESS_RANGE request.

ResponseMdl
If non-NULL, ResponseMdl points to an uninitialized MDL. The driver must initialize this
MDL for a non-page able buffer, and fill the buffer with the response packet. The bus driver

1084 Part 5 IEEE 1394 Drivers

only supplies this if the device driver did not supply an MDL or an ADDRESS_FIFO list in
the original REQUEST_ALLOCATE_ADDRESS_RANGE request.

ResponsePacket
If non-NULL, ResponsePacket points to a memory location that the driver fills in with a
pointer to the beginning of its response packet. The bus driver only supplies this if the de
vice driver did not supply an MDL or an ADDRESS_FIFO list in the original REQUEST_
ALLOCATE_ADDRESS_RANGE request.

ResponseLength
If non-NULL, ResponseLength points to a memory location that the driver fills in with
the length of its response packet. The bus driver only supplies this if the device driver did
not supply an MDL or an ADDRESS_FIFO list in the original REQUEST_ALLOCATE_
ADDRESS_RANGE request.

ResponseEvent
If non-NULL, ResponseEvent points to a memory location that the driver fills in with the
kernel event the bus driver should use to signal that it has completed sending the response
packet. The bus driver only supplies this if the device driver did not supply an MDL or an
ADDRESS_FIFO list in the original REQUEST_ALLOCATE_ADDRESS_RANGE
request.

Comments
When a driver allocates an address range on the computer's IEEE 1394 address space, it
may require the bus driver to notify it for some or all request packets sent to the allocated
addresses. As part of the original allocate request, the driver may either require the bus
driver to forward each packet to the driver for handling, or it may require the bus driver
to handle the packet and merely notify the device driver when it has finished. See
REQUEST_ALLOCATE_ADDRESS_RANGE in Chapter 1 for details.

If the device driver provides no backing store, the bus driver forwards each packet to
the device driver to handle. The bus driver passes NULL for Mdl, and passes the packet
in RequestPacket. The bus driver also passes pointers to memory locations that the device
driver must fill in with the buffer for the response packet (in ResponsePacket), the buffer
length (in ResponseLength), and an MDL for the buffer (in ResponseMdl). The bus
driver also supplies a memory location the driver can use to pass a kernel event object in
ResponseEvent. If the device driver provides an event object, the bus driver will use it to
signal the driver when it has finished sending the response packet.

The request packet is in whatever form returned by the host controller, and the response
packet must be in the same form. This makes it difficult to write portable code that does
not depend on the host controller.

Chapter 2 IEEE 1394 Structures 1085

If the driver provides backing store in the original allocate address range request, the bus
driver uses the driver's notification routine to signal that it has completed reading or writing
data from the backing store. It passes the MDL of the backing store in the Mdl member, and
the starting location and size within the associated buffer in ulOffset and nLength. The bus
driver also passes the type of event that led to notification in fulNotificationOptions.

If the device driver is using a linked list of ADDRESS_FIFO's as backing store, the bus
driver returns the list element it popped off in Fifo.

typedef struct _PHY_CONFIGURATION_PACKET
ULONG PCP_Phys_ID:6; II Byte 0 - Bits 0-5
ULONG PCP_Packet_ID:2; II Byte 0 - Bits 6-7
ULONG PCP_Gap_Count:6; II Byte - Bits 0-5
ULONG PCP_Set_Gap_Count:l; II Byte - Bit 6
ULONG PCP_Force_Root:l; II Byte - Bit 7
ULONG PCP_Reservedl:8; II Byte 2 - Bits 0-7
ULONG PCP_Reserved2:8; II Byte 3 - Bits 0-7
ULONG PCP_Inverse; II Inverse quadlet

} PHY_CONFIGURATION_PACKET. *PPHY_CONFIGURATION_PACKET;

The PRY_CONFIGURATION_PACKET structure contains a raw PRY configuration
packet. See the IEEE 1394 specification for details.

Members
PCP_PhysJD
Specifies the node address of the root.

PCP _PacketJD
This member must be PRY_PACKET_ID_CONFIGURATION to indicate it is a PRY
configuration packet.

PCP _Gap_Count
If the PCP _Set_Gap_Count bit is set, the PRY register gap_count field is set to this value.

PCP _Set_Gap_Count
If this bit is set, the PRY register gap_count field is set to PCP _Gap_Count.

PCP _Force_Root
If set, the caller will become the root node.

PCP _Reserved 1
Reserved.

1086 Part 5 IEEE 1394 Drivers

SELF

PCP _Reserved2
Reserved.

PCP Jnverse
Specifies the logical inverse of the first quadlet of the packet.

10 -
typedef struct _SELF_ID {

ULONG SID_Phys_ID:6; II Byte o - Bits 0-5
ULONG SID_Packet_ID:2; II Byte o - Bits 6-7
ULONG SID_Gap_Count:6; II Byte 1 - Bits 0-5
ULONG SID_Link_Active:1; II Byte 1 - Bit 6
ULONG SID_Zero:1; II Byte 1 - Bit 7
ULONG SID_Power_Class:3; II Byte 2 - Bits 0-2
ULONG SID_Contender:1; II Byte 2 - Bit 3
ULONG SID_Delay:2; II Byte 2 - Bits 4-5
ULONG SID_Speed:2; II Byte 2 - Bits 6-7
ULONG SID_More_Packets:1; II Byte 3 - Bit 0
ULONG SID_Initiated_Rst:1; II Byte 3 - Bit 1
ULONG SID_Port3: 2; II Byte 3 - Bits 2-3
ULONG SID_Port2: 2; II Byte 3 - Bits 4-5
ULONG SID_Port1:2; II Byte 3 - Bits 6-7

SELF_ID. *PSELF_ID;

The SELF _ID structure contains a raw packet zero self-ID packet. See the IEEE 1394
specification for details.

SID_PhysJD
Specifies the device node number.

SID _PacketJD
Must be PRY _PACKET_ID _SELF _ID.

SID_Gap_Count
Specifies the current value of the node's PRY_CONFIGURATION register's gap_count
member.

SID _Link_Active
One if the device's link and transaction layers are active, zero otherwise.

SID_Zero
Always zero.

Chapter 2 IEEE 1394 Structures 1087

SID_Power _Class
The possible power classes are:

POWER_ CLASS_NOT _NEED _NOT_REPEAT
POWER_CLASS_SELF _POWER_PROVIDE_15W
POWER_CLASS_SELF _POWER_PROVIDE_30W
POWER_CLASS_SELF _POWER_PRO VIDE_ 45W
POWER_CLASS_MA YBE_POWERED_UPTO_l W
POWER_ CLASS_IS_POWERED _ UPTO _1 W _NEEDS_2W
POWER_ CLASS_IS_POWERED _ UPTO _1 W.:.-NEEDS_5W
POWER_ CLASS_IS_POWERED _ UPTO _1 W _NEEDS_9W

SID_Contender
One if this node is a contender for bus or isochronous resource manager, zero otherwise.

SID_Delay
Currently always zero.

SID_More_Packets
One if this packet will be followed by SELF _ID _MORE packets, zero otherwise.

SID Jnitiated_Rst
One if this node initiated the most recent bus reset, zero otherwise.

SID_PorU

SID_Port2
SID_porta
Specifies port status. Possible values are:

SELF _ID_CONNECTED_TO_CHILD
SELF _ID _CONNECTED_TO _PARENT
SELF _ID_NOT_CONNECTED
SELF _ID_NOT_PRESENT

typedef struct _SELF_ID_MORE {
ULONG SID_Phys_ID:6;
ULONG SID_Packet_ID:2;
ULONG SID_PortA:2;
ULONG
ULONG
ULONG
ULONG

SID_Reserved2:2;
SID_Sequence:2;
SID_One:1;
SID_Reserved1:1;

II Byte 0 - Bits 0-5
II Byte 0 - Bits 6-7
II Byte 1 - Bits 0-1
II Byte 1 - Bits 2-3
II Byte 1 - Bits 4-5
II Byte 1 - Bit 6
II Byte 1 - Bit 7

1088 Part 5 IEEE 1394 Drivers

ULONG SID_PortE:2; II Byte 2 - Bits 0-1
ULONG SID_PortD:2; II Byte 2 - Bits 2-3
ULONG SID_PortC:2; II Byte 2 - Bits 4-5
ULONG SID_PortB:2; II Byte 2 - Bits 6-7
ULONG SID_More_Packets:1; II Byte 3 - Bit 0
ULONG SID_Reserved3:1; II Byte 3 - Bit 1
ULONG SID_PortH:2; II Byte 3 - Bits 2-3
ULONG SID_PortG:2; II Byte 3 - Bits 4-5
ULONG SID_PortF:2; II Byte 3 - Bits 6-7

SELF_ID_MORE. *PSELF_ID_MORE;

The SELF _ID _MORE structure contains a raw packet one, two, or three self-ID packet. See
the IEEE 1394 Specification for details.

Members
SID_PhysJD
Specifies the device node number.

SID_PacketJD
Must be PRY _PACKET_ID _SELF _ID.

SID_PortA

SID_Porta

SID_Porte

SID_PortD

SID_PortE

SID_PortF

SID_PortG

SID_PortH
Specifies port status. Possible values are:

SELF _ID_CONNECTED_TO_CRILD
SELF _ID_CONNECTED_TO_PARENT
SELF _ID _NOT_CONNECTED
SELF _ID_NOT_PRESENT

SID _Reserved1

SID _Reserved2

SID _Reserved3
Reserved.

Chapter 2 IEEE 1394 Structures 1089

SI~_Sequence

Specifies the packet number in sequence (the first SELF _ID_MORE packet is packet zero).

SID_One
Always a 1.

SID_Mare_Packets
One if this packet will be followed by more SELF _ID_MORE packets, zero otherwise.

SPEED_MAP
typedef struct _SPEED_MAP

USHORT SPD_Length;
USHORT SPD_CRC;
ULONG SPD_Generation;
UCHAR SPD_Speed_Code[4032];

SPEED_MAP. *PSPEED_MAP;

The SPEED_MAP structure is used to store a IEEE 1394 bus speed map. It describes the
maximum speed obtainable by the devices on the bus.

Members
SPO_Length
Specifies the number of quadlets in the speed map.

SPO_CRC
Specifies the CRC value for the speed map.

SPO _Generation
Specifies the bus reset generation for which the speed map was created.

SPO_Speed_Code
Specifies an array of speed codes. Currently, the possible values are:

SCODE_I00_RATE
SCODE_200_RATE
SCODE_400_RATE

Comments
All data will be in big -endian format.

1090 Part 5 IEEE 1394 Drivers

typedef struct _TEXTUAL_LEAF
{

USHORT
USHORT TL_Length;
ULONG TL_Spec_Id;
ULONG TL_Language_Id;
UCHAR TL_Data;

TEXTUAL_LEAF, *PTEXTUAL_LEAF;

The TEXTUAL_LEAF structure describes the device description that can be stored in the
Configuration ROM of devices that satisfy the PC 98 or PC 99 specifications.

Members
TL_CRC
Specifies the CRC of the text string.

TL_Length
Specifies the length of the text string, in bytes.

TL_SpecJd
Specifies which specification describes the meaning of the TL_Language_ID member.

TL_LanguageJd
Specifies the language of the TL_Data member.

TL_Data
Specifies a vendor-specified textual description of the device.

TOPOLOGY_MAP
typedef struct _TOPOLOGY_MAP

USHORT TOP_Length;
USHORT TOP_CRC;
ULONG TOP_Generation;
USHORT TOP_Node_Count;
USHORT TOP_Self_ID_Count;
SELF_ID TOP_Self_ID_Array[];

TOPOLOGY_MAP, *PTOPOLOGY_MAP;

The TOPOLOGY_MAP structure is used to store an IEEE 1394 bus topology map. The
relations between devices are found in the port members of the entries in TOP _Self_ID_
Array.

Members
TOP_Length
Specifies the length in quadlets of the topology map.

TOP_CRC
Specifies the CRC value for the topology map.

TOP_Generation

Chapter 2 IEEE 1394 Structures 1091

Specifies the bus reset generation for which the topology map was created.

TOP _Node_Count
Specifies the number of nodes in the topology map.

TOP _SelfJD_Count
Specifies the number of entries in TOP _Self_ID_Array.

TOP _SelfJD_Array
Pointer to an array of SELF _ID and SELF _ID_MORE structures (the two structures are the
same size).

Comments
All data will be in big -endian format.

PAR T 6

PCMCIA Drivers

Chapter 1 PCMCIAJNTERFACE_STANDARD Interface Memory
Card Routines 1095

CHAPTER 1

PCMCIA_INTERFACE_STANDARD Interface
Memory Card Routines

1095

This chapter describes the PCMCIA_INTERFACE_STANDARD interface routines pro
vided by the Microsoft® Windows® 2000 system PCMCIA bus driver. PCMCIA memory
card drivers can call these routines to perform the following operations:

• Modify the attributes of the memory window that is mapped by the PCMCIA bus driver

• Set the Vpp (secondary power source) level for the device

• Determine if the card memory is write-protected

To obtain pointers to these interface routines, a driver sends the PCMCIA bus driver an
IRP _MJ_PNP request that specifies a IRP _MN_QUERY_INTERFACE minor function. The
bus driver returns the interface information in a PCMCIA_INTERFACE_ST ANDARD
structure:

typedef struct _PCMCIA_INTERFACE_STANDARD
USHORT Size;
USHORT Version;
PINTERFACE_REFERENCE InterfaceReference;
PINTERFACE_DEREFERENCE InterfaceDereference;
PVOID Context;
PPCMCIA_MODIFY_MEMORY_WINDOW Modi fyMemoryWi ndow;
PPCMCIA_SET_VPP SetVpp;
PPCMCIA_IS_WRITE_PROTECTED IsWriteProtected;

} PCMCIA_INTERFACE_STANDARD;

For more information on how to obtain a PCMCIA_INTERFACE_STANDARD interface,
see PCMICA_INTERFACE_STANDARD Interface for Memory Cards in the Kernel-Mode
Drivers Design Guide in the online DDK.

The routines in this chapter are listed in alphabetical order.

1096 Part 6 PCMCIA Drivers

PCMCIA_IS_ WRITE_PROTECTED
BOOLEAN
(*PPCMCIA_IS_WRITE_PROTECTED)

IN PVOID Context
) ;

The PCMCIA_IS_ WRITE_PROTECTED interface routine returns the write-protect
condition of a PCMCIA memory card.

Parameters
Context
Pointer to the context for the interface routine.

Include
ntddpcm.h

Return Value
The PCMCIA_IS_ WRITE_PROTECTED interface routine returns TRUE if the memory
card is write-protected, otherwise it returns FALSE.

Comments
A caller must set the Context parameter to the context that is specified by the PCMCIA bus
driver. The PCMCIA bus driver returns the context for the interface routines in the Context
member of the same PCMCIA_INTERFACE_STANDARD structure that contains the
pointers to the interface routines. If the Context parameter is not valid, system behavior is
not defined, and the system might halt.

Callers of this routine must be running at IRQL <= DISPATCH_LEVEL. To maintain
overall system performance, it is recommended that drivers call this routine at IRQL <
DISPATCH_LEVEL.

See Also
PCMCIA_MODIFY _MEMORY_WINDOW, PCMCIA_SET_ VPP

Chapter 1 PCMCIAJNTERFACE_STANDARD Interface Memory Card Routines 1097

PCMCIA_MODIFY _MEMORY _WINDOW
BOOLEAN
(*PPCMCIA_MODIFY_MEMORY_WINDOW)

IN PVOID Context,
IN PHYSICAL_MEMORY HostBase,
IN PHYSICAL_MEMORY CardBase,
IN BOOLEAN Enable,
IN ULONG WindowSize,
IN UCHAR AccessSpeed,
IN UCHAR BusWidth,
IN BOOLEAN AttributeMemory
) ;

The PCMCIA_MODIFY _MEMORY_WINDOW interface routine sets the attributes of a
memory window for a PCMCIA memory card. The memory window is mapped by the
PCMCIA bus driver.

Parameters
Context
Pointer to the context for the interface routine.

HostBase
Specifies the physical memory window to map. HostBase is the base address for the
memory card in the system's physical address space.

Card Base
Specifies the byte offset in the PCMCIA card's memory where the memory mapping begins.

Enable
Specifies permission to access the memory window. If Enable is TRUE, memory access is
permitted, otherwise memory access is not permitted.

WindowSize
Specifies the size, in bytes, of the memory window that is mapped. The value of Window
Size cannot exceed the memory window granted to the driver in its assigned resources. If
the value of Enable is TRUE and the value of WindowSize is zero, the size of the memory
window granted to the driver in its assigned resources is used. If Enable is FALSE,
WindowSize is not used.

1098 Part 6 PCMCIA Drivers

AccessSpeed
Specifies the access speed of the PCMCIA card. The value of AccessSpeed is encoded
as specified by the PC Card Standard, Release 6.1. If Enable is FALSE, AccessSpeed is
not used.

BusWidth
Specifies the width of bus access to the PCMCIA memory card. Bus Width must be one of
the following values:

PCMCIA_MEMORY _881T _ACCESS

PCMCIA_MEMORY _1681T _ACCESS
If Enable is FALSE, Bus Width is not used.

AttributeMemory
Must be FALSE.

Include
ntddpcm.h

Return Value
The PCMCIA_MODIFY _MEMORY _WINDOW interface routine returns TRUE if the
memory window is successfully enabled or disabled, as specified by the Enable parameter.

Comments
A caller must set the Context parameter to the context that is specified by the PCMCIA bus
driver. The PCMCIA bus driver returns the context for the interface routines in the Context
member of the same PCMCIA_INTERF ACE_STANDARD structure that contains the
pointers to the interface routines. If the Context parameter is not valid, system behavior is
not defined, and the system might halt.

Callers of this routine must be running at IRQL <= DISPATCH_LEVEL. To maintain
overall system performance, it is recommended that drivers call this routine at IRQL <
DISPATCH_LEVEL.

See Also
PCMCIA_IS_ WRITE_PROTECTED, PCMCIA_SET_ VPP, PCMCIA_INTERFACE_
STANDARD

Chapter 1 PCMCIAJNTERFACE_STANDARD Interface Memory Card Routines 1099

BOOLEAN
(*PPCMCIA_SET_VPP)
IN PVOID Context,
IN UCHAR VppLeve7
) ;

The PCMCIA_SET_ VPP interface routine sets the power level of the Vpp PCMCIA pin
(secondary power source).

Parameters
Context
Pointer to the context for the interface routine.

VppLevel
Specifies the voltage level to set on the Vpp pin. VppLevel must be one of the following
values:

PCMCIA_ VPP _OV
Specifies that the voltage on the Vpp pin be set to zero volts and that the Vpp pin be
disabled.

PCMCIA_ VPP _12V
Specifies that the voltage on the Vpp pin be set to twelve volts.

PCMCIA_ VPP JS_ VCC
Specifies that the voltage on the Vpp pin be set to equal the voltage on the Vcc (primary
card power) pin.

Include
ntddpcm.h

Return Value
The PCMCIA_SET_ VPP interface routine returns TRUE after the requested voltage
level is set.

Comments
The PCMCIA_SET_ VPP interface routine returns control to the caller after the requested
voltage is established in a stable state for the card.

1100 Part 6 PCMCIA Drivers

A caller must set the Context parameter to the context that is specified by the PCMCIA bus
driver. The PCMCIA bus driver returns the context for the interface routines in the Context
member of the same PCMCIA_INTERFACE_STANDARD structure that contains the
pointers to the interface routines. If the Context parameter is not valid, system behavior is
not defined, and the system might halt.

Callers of this routine can run at IRQL <= DISPATCH_LEVEL. To maintain overall system
performance, it is recommended that drivers call this routine at IRQL <
DISPATCH_LEVEL.

See Also
PCMCIA_IS_ WRITE_PROTECTED, PCMCIA_MODIFY _MEMORY_WINDOW

PAR T 7

5MB Client Drivers

Chapter 1 5MB IOCTLS 1103

Chapter 2 5MB Structures 1107

1103

CHAPTER 1

5MB IOCTLS

This chapter describes the internal 110 control codes defined for Windows 2000 System
Management Bus (SMB) drivers. Windows 98 does not provide support for 5MB drivers.

An 5MB miniport driver or a client of such a driver can send IRP _MJ_INTERNAL_
DEVICE_CONTROL requests that specify the following 110 control codes:

5MB_BUS_REQUEST
5MB_REGISTER_ALARM_NOTIFY
5MB_DEREGISTER_ALARM_NOTIFY

When the 5MB class driver receives the IRP that contains the IOCTL, it either performs
the requested action or calls the miniport driver to perform the action.

Drivers that send or handle IRPs that contain these IOCTLs must include the header
file 5mb.h.

5MB_BUS_REQUEST

Operation

Input

The class driver performs the requested action. If the device is idle, the class driver starts 110
on the device. Otherwise, the driver puts the request in the device 110 queue, where it might
be handled by the miniport driver.

Irp->Parameters.DeviceIoControl.Type3InputBuffer points to an 5MB_REQUEST
structure that describes the 110 request.

Irp->Parameters.DeviceIoControl.InputBufferLength specifies the length of the
5MB_REQUEST structure.

Output
None.

1104 Part 7 5MB Client Drivers

1/0 Status Block
IoStatus.Status is set as follows:

Set to

STATUS_SUCCESS

STATUS_PENDING

STATUS_BUFFER_TOO_SMALL or
STATUS_INVALID_PARAMETER.

If

The operation succeeded.

The operation has been queued.

An error occurred.

IoStatus.Information is set to the size of the returned 5MB_REQUEST structure when
the IRP completes. If the IRP is pending, Information is set to zero. If the input buffer is
too small, Information is set to the required length of the input buffer.

See Also
5MB_REQUEST

5MB_DEREGISTER_ALARM_NOTIFY

Operation

Input

The 5MB class driver deletes the requested alarm notification.

Parameters.DeviceIoControl. Type3InputBuffer points to a handle previously returned by
5MB_REGISTER_ALARM_NOTIFY.

Parameters.DeviceIoControl.InputBufferLength specifies the size of the handle.

Output
None.

1/0 Status Block
IoStatus.Status is set to STATUS_SUCCESS if the operation succeeded, or to an error
status such as STATUS_INVALID_PARAMETER otherwise.

See Also
5MB_REGISTER_ALARM_NOTIFY

Chapter 1 5MB IOCllS 1105

5MB_REGISTER_ALARM_NOTIFY

Operation

Input

The 5MB class driver registers an alarm notification function for alarms that occur within
a specified range of bus addresses.

When the miniport driver calls 5mbClassAlarm to notify the 5MB class driver that a device
has signaled an alarm, the class driver calls the notification function.

Parameters.DeviceloControl. Type3InputBuffer points to an 5MB _REGISTER_ALARM
structure.

Parameters.DeviceloControl.lnputBufferLength specifies the length of the 5MB_
REGISTER_ALARM structure.

Parameters.DeviceloControl.OutputBufferLength specifies the number of bytes allo
cated for the returned handle (sizeof(PVOID».

Output
Irp->UserBuffer points to a handle to be used when unregistering the alarm.

1/0 Status Block
IoStatus.Status is set to STATUS_SUCCESS if the operation succeeded, or to an error
status such as STATUS_INVALID_PARAMETER or STATUS_INSUFFICIENT_
RESOURCES otherwise.

IoStatus.lnformation is set to the length of the handle returned in Irp->UserBuffer.

See Also
5MB_REGISTER_ALARM, 5MB_DEREGISTER_ALARM_NOTIFY

1107

CHAPTER 2

5MB Structures

This chapter describes structures used by Windows 2000 5MB miniport clients, 5MB
miniport drivers, their support routines, and related IOCTLs. The following structures are
described in alphabetical order:

5MB_CLASS
5MB_REGISTER_ALARM
5MB_REQUEST

These structures are defined in the header file 5mb.h.

typedef struct _SMB_CLASS
USHORT MajorVersion;
USHORT
PVOID
PDEVICE_OBJECT
PDEVICE_OBJECT
PDEVICE_OBJECT
PIRP
PSMB_REQUEST
5MB_RESET _DEVI CE
5MB_START_IO

MinorVersion;
Miniport;
DeviceObject;
PD~;

LowerDeviceObject;
Currentlrp;
CurrentSmb;
ResetDevice;
Startlo;

5MB_STOP_DEVICE StopDevice;
} 5MB_CLASS, *PSMB_CLASS;

5MB_CLASS contains data shared by the 5MB class driver and a miniport driver.

1108 Part 7 5MB Client Drivers

Members
MajorVersion
Major version number of the class driver. Must be 5MB_CLASS_MAJOR_ VERSION.

MinorVersion
Minor version number of the class driver. Must be 5MB_CLASS_MINOR_ VERSION.

Miniport
Pointer to extension data for the mini port driver.

DeviceObject
Pointer to the functional device object (FDO) for the miniport driver.

PD~

Pointer to the physical device object (PDO) for the miniport driver.

LowerDeviceObject
Pointer to the next lower device object in the device stack.

Currentlrp
Pointer to the current IRP request, if any; otherwise, NULL.

CurrentSmb
Pointer to the current 5MB_REQUEST in the current IRP request, if any; otherwise, NULL.

ResetDevice
Pointer to the miniport driver's 5mbMiniResetDevice routine.

Startlo
Pointer to the miniport driver's 5mbMiniStartIo routine.

StopDevice
Pointer to the miniport driver's 5mbMiniStopDevice routine.

Comments
The class driver passes this structure in calls to the miniport driver's 5mbMiniInitialize
Miniport routine.

The miniport driver passes this structure in calls to any of the class driver's routines.

typedef struct
UCHAR
UCHAR

MinAddress;
MaxAddress;

5MB_ALARM_NOTIFY NotifyFunction;
PVOID NotifyContext;
5MB_REGISTER_ALARM, *PSMB_REGISTER_ALARM;

Chapter 2 5MB Structures 1109

5MB_REGISTER_ALARM provides information required by the 5MB class driver to
register an alarm notification function.

Members
MinAddress
Specifies the lower limit of a range of bus addresses to which the notification function
applies.

MaxAddress
Specifies the upper limit of a range of bus addresses to which the notification function
applies.

NotifyFunction
Points to a notification function to be called when a miniport driver calls 5mbClassAlarm
to report an alarm. The function is declared as follows:

VOID
(*SMB_ALARM_NOTIFY) (

PVOID Context,
UCHAR Address,
USHORT Data
) ;

Context
Context information passed through from the miniport driver.

Address
Bus address of the device that signaled the alarm.

Data
Alarm data passed through from the miniport driver.

NotifyContext
Points to the context data to be passed to the notification function.

1110 Part 7 5MB Client Drivers

Comments
An 5MB miniport driver or the client of a miniport driver passes this structure when it
requests alarm notification through the 5MB_REGISTER_ALARM_NOTIFY 10CTL.

The values in MinAddress and MaxAddress define a range of bus addresses. If a device
within the range signals an alarm, the 5MB class driver calls the notification function.

See Also
5MB_REGISTER_ALARM_NOTIFY

typedef struct
UCHAR Status;
UCHAR Protocol;
UCHAR Address;
UCHAR Command;
UCHAR BlockLength;
UCHAR Data[SMB_MAX_DATA_SIZE];
5MB_REQUEST. *PSMB_REQUEST;

5MB_REQUEST provides information required to perform a specific 110 request on an
5MB device.

Members
Status
Completion status of the 5MB request.

Protocol
Specifies the bus protocol that applies to the current request. Possible values are:

5MB_ WRITE_QUICK
5MB_READ_QUICK
5MB_SEND_BYTE
5MB_RECEIVE_BYTE
5MB_ WRITE_BYTE
5MB_READ_BYTE
5MB_ WRITE_WORD
5MB_READ_ WORD
5MB_ WRITE_BLOCK
5MB_READ_BLOCK
5MB_PROCESS_CALL

Chapter 2 5MB Structures 1111

Address
Bus address of the device to which this request applies.

Command
Device-specific command to perform.

BlockLength
Number of bytes of data to which this request applies. This value is input for a write request
and output for a read request.

Data
Array of data input or returned by this request.

Comments
Each client of an 5MB miniport driver should define command codes that apply to its
device.

See Also
5MB_BUS_REQUEST

PAR T 8

WMI Kernel-Mode Data Providers

Chapter 1 WMllRPs 1115

Chapter 2 WMI Library Support Routines 1139

Chapter 3 WMI Library Callback Routines 1145

Chapter 4 WMI Structures 1157

Chapter 5 WMI Event Trace Structures 1179

1115

CHAPTER 1

WMllRPs

This chapter describes the Windows Management Instrumentation IRPs that are part of
the WMI extensions to WDM. All WMI IRPs use the major code IRP _MJ_SYSTEM_
CONTROL and a minor code that indicates the specific WMI request. The WMI kernel
mode component can send WMI IRPs any time following a driver's successful registration
as a supplier of WMI data. WMI IRPs typically get sent when a user-mode data consumer
has requested WMI data.

All drivers must set a dispatch table entry point that can be used by a DispatchSystem
Control routine to handle WMI requests. If a driver registers as a WMI data provider by
calling 10 WMIRegistrationControl, it must handle such requests in one of the follow
ing ways:

• Call the kernel-mode WMI library routines declared in the wmilib.h header file. Drivers
can use these routines only if they base static instance names on a single base name string
or the device instance ID of a PD~. Drivers that use dynamic instance names can not use
the WMI library routines.

• Process and complete any request that was tagged with a pointer to the driver's device
object. Such a request is passed by the driver in its call to 10WMIRegistrationControi.
Other IRP _MJ_SYSTEM_CONTROL requests must be forwarded to the next-lower
driver.

The WMI library routines simplify the handling of WMI requests. Instead of processing
each WMI request, a driver calls WmiSystemControl with a pointer to its device object,
the IRP, and a WMILIB_CONTEXT structure. This WMILIB_CONTEXT structure
contains pointers to a set of DpWmiXxx callback routines that are defined by the driver.
The WMI library validates the IRP parameters and calls the driver provided DpWmiXxx
routine for driver-specific processing. WMI library then packages any output in an
appropriate WNODE_XXX structure. The output and status are returned to the caller.
Drivers that use dynamic instance names must handle WMI requests by filling in the
WNODE_XXX structure directly.

1116 Part 8 WMI Kernel-Mode Data Providers

Drivers that do not register as WMI data providers must forward all WMI requests to the
next-lower driver.

For information about registering as a WMI data provider, handling WMI IRPs, and using
the WMI kernel-mode library routines, see the Kernel-Mode Drivers Design Guide in the
online DDK.

All drivers that support WMI must handle this IRP.

When Sent

Input

WMI sends this IRP to change all data items in a single instance of a data block.

WMI sends this IRP at IRQL PASSIVE_LEVEL in an arbitrary thread context.

Parameters.WMI.Providerld points to the device object of the driver that should respond
to the request. This pointer is found in the driver's 110 stack location in the IRP.

Parameters. WMI.DataPath points to a GUID that identifies the data block associated with
the instance to be changed.

Parameters.WMI.BufferSize indicates the size of the nonpaged buffer at Parameters.
WMI.Buffer.

Parameters.WMI.Buffer points to a WNODE_SINGLE_INSTANCE structure that identi
fies the instance and specifies new data values.

Output
None.

1/0 Status Block
If the driver handles the IRP by calling WmiSystemControl, WMI sets Irp->IoStatus.
Status and Irp->IoStatus.lnformation in the 110 status block.

Otherwise, the driver sets Irp->IoStatus.Status to STATUS_SUCCESS or to an appro
priate error status such as the following:

STATUS_ WMI_INSTANCE_NOT _FOUND
STATUS_WMI_GUID_NOT_FOUND
STATUS_ WMI_READ_ONLY
STATUS_ WMI_SET_FAILURE

On success, the driver sets Irp->IoStatus.lnformation to zero.

Chapter 1 WMllRPs 1117

Operation
A driver that handles WMI IRPs by calling WMI library support routines calls WmiSystem
Control with a pointer to its WMILIB_CONTEXT structure, a pointer to its device object,
and a pointer to the IRP. WmiSystemControl calls the driver's DpWmiSetDataBlock
routine, or returns STATUS_ WMI_READ_ONLY to the caller if the driver does not define
an entry point for such a routine.

A driver that handles an IRP _MN_CHANGE_SINGLE_INSTANCE request does so only
if the device object pointer at Parameters.WMI.Providerld matches the pointer passed by
the driver in its call to IoWMIRegistrationControl. Otherwise, the driver forwards the
request to the next-lower driver.

If the driver handles the request, it first checks the GUID at Parameters.WMI.DataPath
to determine whether it identifies a data block supported by the driver. If not, the driver fails
the IRP and returns STATUS_ WMI_GUID_NOT_FOUND.

If the driver supports the data block, it checks the input WNODE_SINGLE_INSTANCE at
Parameters.WMI.Buffer for the instance name, as follows:

• IfWNODE_FLAG_STATIC_INSTANCE_NAMES is set in WnodeHeader.Flags, the
driver uses Instancelndex as an index into the driver's list of static instance names for
that block. WMI obtains the index from registration data provided by the driver when it
registered the block.

• IfWNODE_FLAG_STATIC_INSTANCE_NAMES is clear in WnodeHeader.Flags,
the driver uses the offset at OffsetlnstanceName to locate the instance name string in the
input WNODE_SINGLE_INSTANCE. OffsetlnstanceName is the offset in bytes from
the beginning of the structure to a USHORT which is the length of the instance name
string in bytes (not characters), including the NUL terminator if present, followed by
the instance name string in Unicode.

If the driver cannot locate the specified instance, it must fail the IRP and return a STATUS_
WMI_INSTANCE_NOT_FOUND. In the case of an instance that has a dynamic instance
name, this status indicates that the driver does not "own" the instance. WMI can therefore
continue to query other data providers and return an appropriate error to the data consumer
if another provider finds the instance but cannot handle the request for some other reason.

If the driver locates the instance and can handle the request, it sets the read/write data items
in the instance to the values in the WNODE_SINGLE_INSTANCE, leaving any read-only
items unchanged. If the entire data block is read-only, the driver should fail the IRP and
return STATUS_ WMI_READ_ONLY.

If the instance is valid but the driver cannot handle the request, it can return any appropriate
error status.

1118 Part 8 WMI Kernel-Mode Data Providers

See Also
Dp WmiSetDataBlock, 10 WMIRegistrationControl, WMILIB _CONTEXT, WmiSystem
Control, WNODE_SINGLE_INSTANCE

All drivers that support WMI must handle this IRP.

When Sent

Input

WMI sends this IRP to change a single data item in a single instance of a data block.

WMI sends this IRP at IRQL PASSIVE_LEVEL in an arbitrary thread context.

Parameters.WMI.Providerld points to the device object of the driver that should respond
to the request. This pointer is located in the driver's 110 stack location in the IRP.

Parameters. WMI.DataPath points to a GUID that identifies the data block to be set.

Parameters. WMI.BufferSize indicates the size of the nonpaged buffer at
Parameters. WMI.Buffer.

Parameters.WMI.Buffer, points to a WNODE_SINGLE_ITEM structure that identifies the
instance of the data block, the ID of the item to set, and a new data value.

Output
None.

1/0 Status Block
If the driver handles the IRP by calling WmiSystemControl, WMI sets Irp->loStatus.
Status and Irp->loStatus.lnformation in the 110 status block.

Otherwise, the driver sets Irp->loStatus.Status to STATUS_SUCCESS or to an appro
priate error status such as the following:

ST ATUS_ WMI_INST ANCE_NOT _FOUND
STATUS_ WMI_INSTANCE_ID _NOT_FOUND
STATUS_ WMI_GUID_NOT_FOUND
STATUS_WMI_READ_ONLY
STATUS_ WMI_SET_FAILURE

On success, a driver sets Irp->loStatus.lnformation to zero.

Chapter 1 WMllRPs 1119

Operation
A driver that handles WMI IRPS by calling WMI library support routines calls Wmi
SystemControl with a pointer to its WMILIB_CONTEXT structure, a pointer to its device
object, and a pointer to the IRP. WmiSystemControl calls the driver's DpWmiSetDataltem
routine, or returns STATUS_ WMI_READ_ONLY to the caller if the driver does not define
an entry point for such a routine.

A driver should handles an IRP _MN_CHANGE_SINGLE_ITEM request only if
Parameters.WMI.ProviderId points to the same device object as the pointer that the
driver passed to IoWMIRegistrationControl. Otherwise, the driver forwards the request
to the next-lower driver.

Before handling a request, the driver determines whether Parameters.WMI.DataPath
points to a GUID that the driver supports. If it does not, the driver fails the IRP and returns
STATUS_ WMI_GUID_NOT_FOUND.

If the driver supports the data block, it checks the input WNODE_SINGLE_ITEM structure
that Parameters.WMI.Buffer points to for the instance name, as follows:

• IfWNODE_FLAG_STATIC_INSTANCE_NAMES is set in WnodeHeader.Flags, the
driver uses InstanceIndex as an index into the driver's list of static instance names for
that block. WMI obtains the index from registration data provided by the driver when it
registered the block.

• If WNODE_FLAG_STATIC_INSTANCE_NAMES is clear in WnodeHeader.Flags,
the driver uses the offset at OffsetlnstanceName to locate the instance name string in
the input WNODE_SINGLE_ITEM. OffsetlnstanceName is the offset in bytes from the
beginning of the structure to a USHORT which is the length of the instance name string
in bytes (not characters). This length includes the NULL terminator if present, followed
by the instance name string in Unicode.

If the driver cannot locate the specified instance, it must fail the IRP and return STATUS_
WMI_INSTANCE_NOT_FOUND. In the case of an instance with a dynamic instance
name, this status indicates that the driver does not "own" the instance. WMI can therefore
continue to query other data providers and return an appropriate error to the data consumer
if another provider finds the instance but cannot handle the request for some other reason.

If the driver locates the instance and can handle the request, it sets the data item in the in
stance to the value in the WNODE_SINGLE_ITEM . .If the data item is read-only, the driver
leaves the item unchanged, fails the IRP and returns STATUS_ WMI_READ_ONLY.

If the instance is valid but the driver cannot handle the request, it can return any appropriate
error status.

1120 Part 8 WMI Kernel·Mode Data Providers

See Also
DpWmiSetDataltem, IoWMIRegistrationControl, WMILIB_CONTEXT, WmiSystem
Control, WNODE_SINGLE_ITEM

IRP _MN DISABLE_COLLECTION
Any WMI driver that registers one or more of its data blocks as expensive to collect must
handle this IRP.

When Sent

Input

WMI sends this IRP to request the driver to stop accumulating data for a data block that the
driver registered as expensive to collect and for which data collection has been enabled.

WMI sends this IRP at IRQL PASSIVE_LEVEL in an arbitrary thread context.

Parameters.WMI.ProviderId points to the device object of the driver that should respond
to the request. This pointer is located in the driver's I/O stack location in the IRP.

Parameters.WMI.DataPath points to a GUID that identifies the data block for which data
accumulation should be stopped.

Output
None.

1/0 Status Block
If the driver handles the IRP by calling WmiSystemControl, WMI sets Irp->IoStatus.
Status and Irp->IoStatus.lnformation in the I/O status block.

Otherwise, the driver sets Irp->IoStatus.Status to STATUS_SUCCESS or to an appro
priate error status such as the following:

STATUS_ WMI_GUID_NOT_FOUND
STATUS_INV ALID_DEVICE_REQUEST

On success, a driver sets Irp->IoStatus.lnformation to zero.

Operation
A driver registers a data block as expensive to collect by setting WMIREG_FLAG_
EXPENSIVE in the Flags member of the WMIREGGUID or WMIGUIDREGINFO
structure that the driver passes to WMI when it registers or updates the data block.
A driver need not accumulate data for such a block until it receives an explicit request
to enable collection.

Chapter 1 WMllRPs 1121

A driver that handles WMI IRPs by calling WMI library support routines calls Wmi
System Control with a pointer to its WMILIB_CONTEXT structure, a pointer to its device
object, and a pointer to the IRP. WmiSystemControl calls the driver's DpWmiFunction
Control routine, or simply returns STATUS_SUCCESS to the caller if the driver does not
define an entry point for such a routine.

A driver handles an IRP _MN_DISABLE_COLLECTION request only if Parameters.
WMI.ProviderId points to the same device object as the pointer that the driver passed to
10WMIRegistrationControi. Otherwise, the driver forwards the request to the next-lower
driver.

Before handling the request, the driver determines whether Parameters.WMI.Data
Path points to a GUID that the driver supports. If not, the driver fails the IRP and returns
STATUS_ WMI_GUID_NOT_FOUND. If the data block is valid but was not registered
with WMlREG_FLAG_EXPENSIVE, the driver can return STATUS_SUCCESS and
take no further action.

It is unnecessary for the driver to check whether data collection is already disabled because
WMI sends a single disable request for the data block when the last data consumer disables
collection for that block. WMI will not send another disable request without an intervening
request to enable.

See Also
Dp WmiFunctionControl, 10 WMIRegistrationControl, IRP _MN_ENABLE_
COLLECTION, WMILIB_CONTEXT, WMlREGGUID, WMIGUIDREGINFO,
WmiSystemControl

Any WMI driver that registers one or more event blocks must handle this IRP.

When Sent

Input

WMI sends this IRP to inform the driver that a data consumer has requested no further
notification of an event.

WMI sends this IRP at IRQL PASSIVE_LEVEL in an arbitrary thread context.

Parameters.WMI.Providerld points to the device object of the driver that should respond
to the request. This pointer is located in the driver's 110 stack location in the IRP.

Parameters. WMI.DataPath points to a GUID that identifies the event block to disable.

1122 Part 8 WMI Kernel-Mode Data Providers

Output
None.

1/0 Status Block
If the driver handles the IRP by calling WmiSystemControl, WMI sets Irp->loStatus.
Status and Irp-> 10Status.lnformation in the I/O status block.

Otherwise, the driver sets Irp->loStatus.Status to STATUS_SUCCESS or to an appro
priate error status such as the following:

STATUS_ WMI_GUID_NOT_FOUND
STATUS_INV ALID _DEVICE_REQUEST

On success, a driver sets Irp->loStatus.lnformation to zero.

Operation
A driver that handles WMI IRPs by calling WMI library support routines calls Wmi
SystemControl with a pointer to its WMILIB_CONTEXT structure, a pointer to its device
object, and a pointer to the IRP. WmiSystemControl calls the driver's DpWmiFunction
Control routine, or simply returns STATUS_SUCCESS to the caller if the driver does not
define an entry point for such a routine.

A driver handles an IRP _MN_DISABLE_EVENTS request only if Parameters.WMI.
Providerld points to the same device object as the pointer that the driver passed to 10WMI
RegistrationControl. Otherwise, the driver forwards the request to the next-lower driver.

Before handling a request, the driver determines whether Parameters.WMI.DataPath
points to a GUID the driver supports. If not, the driver fails the IRP and returns STATUS_
WMI_GUID_NOT_FOUND.

If the driver supports the event block, it disables the event for all instances of that block.

It is unnecessary for the driver to check whether events are already disabled for the event
block because WMI sends a single disable request for that event block when the last data
consumer disables the event. WMI will not send another disable request without an inter
vening request to enable.

For details about defining event blocks, see the Kernel-Mode Drivers Design Guide in the
online DDK.

See Also
Dp WmiFunctionControl, 10 WMIRegistrationControl, IRP _MN_ENABLE_EVENTS,
WMILIB_CONTEXT, WmiSystemControl

Chapter 1 WMllRPs 1123

Any WMI driver that registers one or more of its data blocks as expensive to collect must
handle this IRP.

When Sent

Input

WMI sends this IRP to request the driver to start accumulating data for a data block that the
driver registered as expensive to collect.

WMI sends this IRP at IRQL PASSIVE_LEVEL in an arbitrary thread context.

Parameters. WMI.Provider Id points to the device object of the driver that should respond
to the request. This pointer is located in the driver's I/O stack location in the IRP.

Parameters. WMI.DataPath points to a GUID that identifies the data block for which data
is accumulated.

Output
None.

1/0 Status Block
If the driver handles the IRP by calling WmiSystemControl, WMI sets Irp->IoStatus.
Status and Irp-> IoStatus.lnformation in the I/O status block.

Otherwise, the driver sets Irp->IoStatus.Status to STATUS_SUCCESS or to an appro
priate error status such as the following:

STATUS_ WMI_GUID_NOT_FOUND
ST ATUS_INV ALID _DEVICE_REQUEST

On success, a driver sets Irp->IoStatus.lnformation to zero.

Operation
A driver registers a data block as expensive to collect by setting WMIREG_FLAG_
EXPENSIVE in the Flags member of the WMIREGGUID or WMIGUIDREGINFO
structure. The driver passes these structures to WMI when it registers or updates the data
block. A driver need not accumulate data for such a block until it receives an explicit
request to start data collection.

A driver that handles WMI IRPs by calling WMI library support routines calls WmiSystem
Control with a pointer to its WMILIB_CONTEXT structure, a pointer to its device object,
and a pointer to the IRP. WmiSystemControl calls the driver's DpWmiFunctionControl

1124 Part 8 WMI Kernel-Mode Data Providers

routine, or simply returns STATUS_SUCCESS to the caller if the driver does not define an
entry point for such a routine.

A driver handles an IRP _MN_ENABLE_COLLECTION request only if Parameters.
WMI.Providerld points to the same device object as the pointer that the driver passed to
10WMIRegistrationControi. Otherwise, the driver forwards the request to the next-lower
driver.

Before handling a request, the driver should make sure that Parameters.WMI.DataPath
points to a GUID that the driver supports. If it does not, the driver should fails the IRP and
return STATUS_ WMI_GUID_NOT_FOUND. If the data block is valid but was not regis
tered with WMlREG_FLAG_EXPENSIVE, the driver can return STATUS_SUCCESS
and take no further action.

If the block is valid and was registered with WMlREG_FLAG_EXPENSIVE, the driver
enables data collection for all instances of that data block.

It is unnecessary for the driver to check whether data collection is already enabled for
the data block. WMI sends only a single request to enable a data block after the first data
consumer enables the block. WMI will not send another request to enable without an
intervening disable request.

See Also
Dp WmiFunctionControl, 10 WMIRegistrationControl, IRP _MN_DISABLE_
COLLECTION, WMILIB_CONTEXT, WMIREGGUID, WmiSystemControl

Any WMI driver that registers one or more event blocks must handle this IRP.

When Sent

Input

WMI sends this IRP to inform the driver that a data consumer has requested notification of
an event.

WMI sends this IRP at IRQL PASSIVE_LEVEL in an arbitrary thread context.

Parameters.WMI.Providerld points to the device object of the driver that should respond
to the request. This pointer is located in the driver's 110 stack location in the IRP.

Parameters.WMI.DataPath points to a GUID that identifies the event block to enable.

Parameters. WMI.BufferSize indicates the size of the nonpaged buffer at Parameters.
WMI.Buffer, which must be greater than or equal to the sizeof(WNODE_HEADER).

Chapter 1 WMllRPs 1125

A driver that does not register trace blocks (WMIREG_FLAG_TRACED_GUID) can ignore
this parameter.

Parameters.WMI.Buffer points to a WNODE_HEADER that indicates whether the event
should be traced (WMI_FLAGS_TRACED_GUID) and provides a handle to the system
logger. A driver that does not register trace blocks (WMIREG_FLAG_TRACED_GUID)
can ignore this parameter.

Output
None.

1/0 Status Block
If the driver handles the IRP by calling WmiSystemControl, WMI sets Irp->IoStatus.
Status and Irp-> IoStatus.lnformation in the I/O status block.

Otherwise, the driver sets Irp->IoStatus.Status to STATUS_SUCCESS or to an appro
priate error status such as the following:

STATUS_ WMI_GUID_NOT_FOUND
STATUS _INV ALID _DEVICE_REQUEST

On success, a driver sets Irp->IoStatus.lnformation to zero.

Operation
A driver that handles WMI IRPs by calling WMI library support routines calls Wmi
SystemControl with a pointer to its WMILIB_CONTEXT structure, a pointer to its device
object, and a pointer to the IRP. WmiSystemControl calls the driver's DpWmiFunction
Control routine, or simply returns STATUS_SUCCESS to the caller if the driver does not
define an entry point for such a routine.

A driver handles an IRP _MN_ENABLE_EVENTS request only if Parameters.WMI.
Providerld points to the same device object as the pointer that the driver passed to
IoWMIRegistrationControl. Otherwise, the driver forwards the request to the next
lower driver.

Before the driver handles the request, it should determine whether Parameters.WMI.Data
Path points to a GUID that the driver supports. If not, the driver fails the IRP and returns
STATUS_ WMI_GUID_NOT_FOUND.

If the driver supports the event block, it enables the event for all instances of that data block.

It is unnecessary for the driver to check whether events are already enabled for the event
block because WMI sends a single request to enable for the event block when the first data
consumer enables the event. WMI will not send another request to enable without an inter
vening disable request.

1126 Part 8 WMI Kernel-Mode Data Providers

A driver that registers trace blocks (WMIREG_FLAG_TRACED_GUID) must also deter
mine whether to send the event to WMI or to the system logger for tracing. If tracing is
requested, Parameters. WMI.Buffer points to a WNODE_HEADER structure in which
Flags is set withWNODE_FLAG_TRACED_GUID and HistoricalContext contains a
handle to the logger.

For details about defining event blocks, sending events, and tracing, see the Kernel-Mode
Drivers Design Guide in the online DDK.

See Also
Dp WmiFunctionControl, 10 WMIRegistrationControl, IRP _MN_DISABLE_EVENTS,
WMILIB_CONTEXT, WmiSystemControl, WNODE_EVENT_ITEM, WNODE_
HEADER

All drivers that support methods within data blocks must handle this IRP.

When Sent

Input

WMI sends this IRP to execute a method associated with a data block.

WMI sends this IRP at IRQL PASSIVE_LEVEL in an arbitrary thread context.

WMI will send an IRP _MN_QUERY_SINGLE_INSTANCE prior to sending an IRP _MN_
EXECUTE_METHOD. If a driver supports IRP _MN_EXECUTE_METHOD it must have a
IRP _MN_QUERY_SINGLE_INSTANCE handler for the same data block whose method is
being executed.

Parameters.WMI.Providerld points to the device object of the driver that should respond
to the request. This pointer is located in the driver's 110 stack location in the IRP.

Parameters. WMI.DataPath points to a GUID that identifies the data block associated with
the method to execute.

Parameters.WMI.BufferSize indicates the size of the nonpaged buffer at Parameters.
WMI.Buffer which must be >= sizeof(WNODE_METHOD _ITEM) plus the size of any
output data for the method.

Parameters.WMI.Buffer points to a WNODE_METHOD_ITEM structure in which
MethodID indicates the identifier of the method to execute and DataBlockOffset indicates
the offset in bytes from the beginning of the structure to the first byte of input data, if any.
Parameters. WMI.Buffer->SizeDataBlock indicates the size in bytes of the input
WNODE_METHOD_ITEM including input data, or zero if there is no input.

Chapter 1 WMllRPs 1127

Output
If the driver handles WMI IRPs by calling WmiSystemControl, WMI fills in the WNODE_
METHOD_ITEM with data returned by the driver's DpWmiExecuteMethod routine.

Otherwise, the driver fills in the WNODE_METHOD_ITEM structure that Parameters.
WMI.Buffer points to as follows:

• Updates WnodeHeader.BufferSize with the size of the output WNODE_METHOD_
ITEM, including any output data.

• Updates SizeDataBlock with the size of the output data, or zero if there is no output data.

• Checks Parameters. WMI.Buffersize to determine whether the buffer is large enough
to receive the output WNODE_METHOD_ITEM including any output data. If the
buffer is not large enough, the driver fills in the needed size in a WNODE_TOO_
SMALL structure pointed to by Parameters.WMI.Buffer. If the buffer is smaller than
sizeof(WNODE_TOO_SMALL), the driver fails the IRP and returns STATUS_
BUFFER_TOO _SMALL.

• Writes output data, if any, over input data starting at DataBlockOffset. The driver must
not change the input value of DataBlockOffset.

1/0 Status Block
If the driver handles the IRP by calling WmiSystemControl, WMI sets Irp->IoStatus.
Status and Irp-> IoStatus.Information in the I/O status block.

Otherwise, the driver sets Irp->IoStatus.Status to STATUS_SUCCESS or to an appro
priate error status such as the following:

STATUS_BUFFER_TOO_SMALL
STATUS_ WMI_GUID_NOT_FOUND
ST ATUS_ WMI_INST ANCE_NOT _FOUND
STATUS_ WMI_ITEM_ID_NOT_FOUND

On success, a driver sets Irp->IoStatus.Information to the number of bytes written to the
buffer at Parameters. WMI.Buffer.

Operation
A driver that handles WMI IRPs by calling WMI library support routines calls WmiSystem
Control with a pointer to its WMILIB_CONTEXT structure, a pointer to its device object,
and a pointer to the IRP. WmiSystemControl calls the driver's DpWmiExecuteMethod
routine, or returns STATUS_INVALID_DEVICE_REQUEST to the caller if the driver
does not define an entry point for such a routine.

1128 Part 8 WMI Kernel-Mode Data Providers

A driver handles an IRP _MN_EXECUTE_METHOD request only if Parameters.WMI.
ProviderId points to the same device object as the pointer that the driver passed to IoWMI
RegistrationControl. Otherwise, the driver forwards the request to the next-lower driver.

Before handling the request, the driver determines whether Parameters.WMI.Data-
Path points to a GUID supported by the driver. If not, the driver fails the IRP and returns
STATUS_ WMI_GUID_NOT_FOUND.

If the driver supports the data block, it checks the input WNODE_METHOD _ITEM at
Parameters.WMI.Buffer for the instance name, as follows:

• IfWNODE_FLAG_STATIC_INSTANCE_NAMES is set in WnodeHeader.Flags, the
driver uses InstanceIndex as an index into the driver's list of static instance names for
that block. WMI obtains the index from registration data that was provided by the driver
when it registered the block.

• If WNODE_FLAG_ST ATIC_INST ANCE_NAMES is clear in WnodeHeader .Flags,
the driver uses the offset at OffsetlnstanceName to locate the instance name string in the
input WNODE_METHOD_ITEM. OffsetlnstanceName is the offset in bytes from the
beginning of the structure to a USHORT which is the length of the instance name string
in bytes (not characters), including the NUL terminator if present, followed by the
instance name string in Unicode.

If the driver cannot locate the specified instance, it must fail the IRP and return ST A TUS_
WMCINSTANCE_NOT_FOUND. In the case of a driver with a dynamic instance name,
this status indicates that the driver does not "own" the instance. WMI can therefore continue
to query other data providers and return an appropriate error to the data consumer if another
provider finds the instance but cannot handle the request for some other reason.

The driver then checks the method ID in the input WNODE_METHOD_ITEM to determine
whether it is a valid method for that data block. If not, the driver fails the IRP and returns
STATUS_ WMI_ITEM_ID_NOT_FOUND.

If the method generates output, the driver should check the size of the output buffer in
Parameters. WMI.BufferSize before performing any operation that might have side effects
or that should not be performed twice. For example, if a method returns the values of a
group of counters and then resets the counters, the driver should check the buffer size (and
fail the IRP if the buffer is too small) before resetting the counters. This ensures that WMI
can safely resend the request with a larger buffer.

If the instance and method ID are valid and the buffer is adequate in size, the driver executes
the method. If SizeDataBlock in the input WNODE_METHOD _ITEM is non-zero, the
driver uses the data starting at DataBlockOffset as input for the method.

If the method generates output, the driver writes the output data to the buffer starting at
DataBlockOffset and sets SizeDataBlock in the output WNODE_METHOD_ITEM to the

Chapter 1 WMllRPs 1129

number of bytes of output data. If the method has no output data, the driver sets SizeData
Block to zero. The driver must not change the input value of DataBlockOffset.

If the instance is valid but the driver cannot handle the request, it can return any appropriate
error status.

See Also
Dp WmiExecuteMethod, 10 WMIRegistrationControl, WMILIB_ CONTEXT,
WmiSystemControl, .WNODE_METHOD _ITEM

IRP_MN_QUERV_ALL_DATA
All drivers that support WMI must handle this IRP.

When Sent

Input

WMI sends this IRP to query for all instances of a given data block.

WMI sends this IRP at IRQL PASSIVE_LEVEL in an arbitrary thread context.

Parameters.WMI.Providerld in the driver's 110 stack location in the IRP points to the
device object of the driver that should respond to the request.

Parameters.WMI.DataPath points to a GUID that identifies the data block.

Parameters. WMI.BufferSize indicates the maximum size of the nonpaged buffer at
Parameters.WMI.Buffer, which receives output data from the request. The buffer size
must be greater than or equal to sizeof(WNODE_ALL_DAT A) plus the sizes of instance
names and data for all instances to be returned.

Output
If the driver handles WMI IRPs by calling WmiSystemControl, WMI fills in a WNODE_
ALL_DATA by calling the driver's DpWmiQueryDataBlock routine once for each block
registered by the driver.

Otherwise, the driver fills in a WNODE_ALL_DATA structure at
Parameters.WMI.Buffer as follows:

• Sets WnodeHeader.BufferSize to the number of bytes of the entire WNODE_ALL_
DATA to be returned, sets WnodeHeader.Timestamp to the value returned by
KeQuerySystemTime, and sets WnodeHeader.Flags as appropriate for the data to
be returned.

• Sets InstanceCount to the number of instances to be returned.

1130 Part 8 WMI Kernel-Mode Data Providers

• If the block uses dynamic instance names, sets OffsetlnstanceN ameOffsets to the offset in
bytes from the beginning of the WNODE_ALL_DATA to an array of offsets to dynamic
instance names.

• If all instances are the same size:

• Sets WNODE_FLAG_FIXED_INSTANCE_SIZE in WnodeHeader.Flags and sets
FixedInstanceSize to that size, in bytes.

• Writes instance data starting at DataBlockOffset, with padding so that each instance is
aligned to an 8-byte boundary. For example, if FixedInstanceSize is 6, the driver adds
2 bytes of padding between instances.

• If instances vary in size:

• Clears WNODE_FLAG_FIXED_INSTANCE_SIZE in WnodeHeader.Flags and
writes an array of InstanceCount OFFSETINSTANCEDATAANDLENGTH
structures starting at OffsetInstanceDataAndLength. Each OFFSETINSTANCE
DATA-ANDLENGTH structure specifies the offset in bytes from the beginning of the
WNODE_ALL_DATA structure to the beginning of the data for each instance, and
the length of the data. DataBlockOffset is not used.

• Writes instance data following the last element of the OffsetInstanceDataAndLength
array, plus padding so that each instance is aligned to an 8-byte boundary.

• If the block uses dynamic instance names, writes the instance names at the offsets
specified in the array at OffsetInstanceNameOffsets, with each dynamic name string
aligned to a USHORT boundary.

If the buffer at Parameters.WMI.Buffer is too small to receive all of the data, a driver
fills in the needed size in a WNODE_TOO_SMALL structure at Parameters.WMI.Buffer.
If the buffer is smaller than sizeof(WNODE_TOO_SMALL), the driver fails the IRP and
returns STATUS_BUFFER_TOO_SMALL.

1/0 Status Block
If the driver handles the IRP by calling WmiSystemControl, WMI sets Irp->IoStatus.
Status and Irp->IoStatus.Information in the I/O status block.

Otherwise, the driver sets Irp->IoStatus.Status to STATUS_SUCCESS or to an appro
priate error status such as the following:

STATUS_BUFFER_TOO_SMALL
STATUS_ WMI_GUID _NOT_FOUND

Chapter 1 WMllRPs 1131

On success, a driver sets Irp->loStatus.lnformation to the number of bytes written to the
buffer at Parameters. WMI.Buffer.

Operation
A driver that handles WMI IRPs by calling WMI library support routines calls Wmi
System Control with a pointer to its WMILIB_CONTEXT structure, a pointer to its
device object, and a pointer to the IRP. WmiSystemControl calls the driver's DpWmi
QueryDataBlock routine.

A driver handles an IRP _MN_QUERY_ALL_DATA request only ifParameters.WMI.
Providerld points to the same device object that the driver passed to 10WMIRegistration
Control. Otherwise, the driver forwards the request to the next-lower driver.

Before handling the request, the driver determines whether Parameters.WMI.Data
Path points to a GUID that the driver supports. If not, the driver fails the IRP and returns
STATUS_ WMI_GUID_NOT_FOUND.

If the driver supports the data block, it fills in a WNODE_ALL_DATA structure at
Parameters.WMI.Buffer with data for all instances of that data block.

See Also
Dp WmiQueryDataBlock, 10 WMIRegistrationControl, KeQuerySystemTime,
WMILIB_CONTEXT, WmiSystemControl, WNODE_ALL_DATA

All drivers that support WMI must handle this IRP.

When Sent

Input

WMI sends this IRP to query for a single instance of a given data block.

WMI will send an IRP _MN_QUERY_SINGLE_INSTANCE prior to sending an IRP _MN_
EXECUTE_METHOD. If a driver supports IRP _MN_EXECUTE_METHOD it must have a
IRP _MN_QUERY_SINGLE_INSTANCE handler-for the same data block whose method is
being executed.

WMI sends this IRP at IRQL PASSIVE_LEVEL in an arbitrary thread context.

Parameters.WMI.Providerld points to the device object of the driver that should respond
to the request. This pointer is located in the driver's I/O stack location in the IRP.

Parameters.WMI.DataPath points to a GUID that identifies the data block to query.

1132 Part 8 WMI Kernel-Mode Data Providers

Parameters. WMI.BufferSize indicates the maximum size of the nonpaged buffer at
Parameters.WMI.Buffer, which points to a WNODE_SINGLE_INSTANCE structure
that identifies the instance to query.

Output
If the driver handles WMI IRPs by calling WmiSystemControl, WMI fills in a WNODE_
SINGLE_INSTANCE structure with data provided by the driver's DpWmiQueryDataBlock
routine.

Otherwise, the driver fills in the WNODE_SINGLE_INST ANCE structure at Parameters.
WMI.Buffer as follows:

• Updates WnodeHeader.BufferSize with the size in bytes of the output WNODE_
SINGLE_INSTANCE, including instance data.

• Sets SizeDataBlock to the size in bytes of the instance data.

• Writes the instance data to Parameters.WMI.Buffer starting at DataBlockOffset.
The driver must not change the input value of DataBlockOffset.

If the buffer at Parameters. WMI.Buffer is too small to receive all of the data, the driver
fills in the needed size in a WNODE_TOO_SMALL structure at Parameters.WMI.Buffer.
If the buffer is smaller than sizeof(WNODE_TOO_SMALL), the driver fails the IRP and
returns STATUS_BUFFER_TOO_SMALL.

1/0 Status Block
If the driver handles the IRP by calling WmiSystemControl, WMI sets Irp->IoStatus.
Status and Irp-> IoStatus.lnformation in the I/O status block.

Otherwise, the driver sets Irp->IoStatus.Status to STATUS_SUCCESS or to an appro
priate error status such as the following:

STATUS_BUFFER_TOO_SMALL
STATUS_ WMI_GUID_NOT_FOUND
STATUS_ WMI_INSTANCE_NOT _FOUND

On success, a driver sets Irp->IoStatus.lnformation to the number of bytes written to the
buffer at Parameters. WMI.Buffer.

Operation
A driver that handles WMI IRPs by calling WMI library support routines calls Wmi
SystemControl with a pointer to its WMILIB_CONTEXT structure, a pointer to its device

Chapter 1 WMllRPs 1133

object, and a pointer to the IRP. WmiSystemControi calls the driver's DpWmiQueryData
Block routine.

A driver handles an IRP _MN_QUERY _SINGLE_INSTANCE request only if Parameters.
WMI.Providerld points to the same device object as the pointer that the driver passed in its
call to IoWMIRegistrationControl. Otherwise, the driver forwards the request to the next
lower driver.

Before handling the request, the driver determines whether Parameters. WMI.Data
Path points to a GUID that the driver supports. If not, the driver fails the IRP and returns
STATUS_ WMI_GUID_NOT_FOUND.

If the driver supports the data block, it checks the input WNODE_SINGLE_INSTANCE at
Parameters. WMI.Buffer for the instance name, as follows:

• IfWNODE_FLAG_STATIC_INSTANCE_NAMES is set in WnodeHeader.Fiags, the
driver uses Instancelndex as an index into the driver's list of static instance names for
that block. WMI obtains the index from registration data provided by the driver when it
registered the block.

• If WNODE_FLAG_STATIC_INSTANCE_NAMES is clear in WnodeHeader.Fiags,
the driver uses the offset at OffsetlnstanceName to locate the instance name string in the
input WNODE_SINGLE_INSTANCE. OffsetlnstanceName is the offset in bytes from
the beginning of the structure to a USHORT which is the length of the instance name
string in bytes (not characters), including the NULL terminator if present, followed by the
instance name string in Unicode.

If the driver cannot locate the specified instance, it must fail the IRP and return STATUS_
WMI_INSTANCE_NOT_FOUND. In the case of an instance with a dynamic instance
name, this status indicates that the driver does not "own" the instance. WMI can therefore
continue to query other data providers and return an appropriate error to the data consumer
if another provider finds the instance but cannot handle the request for some other reason.

If the driver locates the instance and can handle the request, it fills in the WNODE_
SINGLE_INSTANCE structure at Parameters.WMI.Buffer with data for the instance.

If the instance is valid but the driver cannot handle the request, it can return any appropriate
error status.

See Also
DpWmiQueryDataBlock, IoWMIRegistrationControi, WMILIB_CONTEXT,
WmiSystemControi, WNODE_SINGLE_INSTANCE

1134 Part 8 WMI Kernel·Mode Data Providers

All drivers that support WMI must handle this IRP.

When Sent

Input

WMI sends this IRP to query or update a driver's registration information after the driver has
called 10 WMIRegistrationControl.

WMI sends this IRP at IRQL PASSIVE_LEVEL in the context of a system thread.

Parameters.WMI.Providerld points to the device object of the driver that should respond
to the request. This pointer is located in the driver's I/O stack location in the IRP.

Parameters.WMI.DataPath is set to WMIREGISTER to query registration information or
WMIUPDATE to update it.

Parameters. WMI.BufferSize indicates the maximum size of the nonpaged buffer at
Parameters.WMI.Buffer. The size must be greater than or equal to the total of (sizeof
(WMIREGINFO) + (GuidCount * sizeof(WMIREGGUID», where GuidCount is the
number of data blocks and event blocks being registered by the driver, plus space for
static instance names, if any.

Output
If the driver handles WMI IRPs by calling WmiSystemControi, WMI gets registration
information for a driver's data blocks by calling its DpWmiQueryReginfo routine.

Otherwise, the driver fills in a WMIREGINFO structure at Parameters.WMI.Buffer as
follows:

• Sets BufferSize to the size in bytes of the WMIREGINFO structure plus associated
registration data.

• If the driver handles WMI requests on behalf of another driver, sets NextWmiReglnfo to
the offset in bytes from the beginning of this WMIREGINFO to the beginning of another
WMIREGINFO structure that contains registration information from the other driver.

• Sets RegistryPath to the registry path that was passed to the driver's DriverEntry
routine.

• If Parameters.WMI.Datapath is set to WMIREGISTER, sets MofResourceName
to the offset from the beginning of this WMIREGINFO to a counted Unicode string that
contains the name of the driver's MOF resource in its image file.

Chapter 1 WMllRPs 1135

• Sets GuidCount to the number of data blocks and event blocks to register or update.

• Writes an array of WMIREGGUID structures, one for each data block or event block
exposed by the driver, at WmiRegGuid.

The driver fills in each WMIREGGUID structure as follows:

• Sets Guid to the GUID that identifies the block.

• Sets Flags to provide information about instance names and other characteristics of the
block. For example, if a block is being registered with static instance names, the driver
sets Flags with the appropriate WMIREG_FLAG_INST ANCE_XXX flag.

If the block is being registered with static instance names, the driver:

• Sets InstanceCount to the number of instances.

• Sets one of the following members to an offset in bytes to static instance name data for
the block:

• If the driver sets Flags with WMIREG_FLAG_INSTANCE_LIST, it sets Instance
NameList to an offset to a list of static instance name strings. WMI specifies instances
in subsequent requests by index into this list.

• If the driver sets Flags with WMIREG_FLAG_INST ANCE_BASENAME, it sets
BaseNameOffset to an offset to a base name string. WMI uses this string to generate
static instance names for the block.

• If the driver sets Flags with WMIREG_FLAG_INSTANCE_PDO, it sets Pdo to an
offset to a pointer to the PD~ passed to the driver's AddDevice routine. WMI uses the
device instance path of the PD~ to generate static instance names for the block.

• Writes the instance name strings, the base name string, or a pointer to the PD~ at the
offset indicated by InstanceNameList, BaseName, or PD~, respectively.

If the driver handles WMI registration on behalf of another driver (such as a miniclass or
miniport driver), it fills in another WMIREGINFO structure with the other driver's registra
tion information and writes it at NextWmiRegInfo in the previous structure.

If the buffer at Parameters. WMI.Buffer is too small to receive all of the data, a driver
writes the needed size in bytes as a ULONG to Parameters.WMI.Buffer and fails the IRP
and returns STATUS_BUFFER_TOO_SMALL.

1136 Part 8 WMI Kernel-Mode Data Providers

1/0 Status Block
If the driver handles the IRP by calling WmiSystemControl, WMI sets Irp->IoStatus.
Status and Irp->IoStatus.lnformation in the I/O status block.

Otherwise, the driver sets Irp->IoStatus.Status to STATUS_SUCCESS or to an appro
priate error status such as the following:

On success, a driver sets Irp->IoStatus.lnformation to the number of bytes written to the
buffer at Parameters. WMI.Buffer.

Operation
A driver that handles WMI IRPs by calling WMI library support routines calls Wmi
SystemControl with a pointer to its WMILIB_CONTEXT structure, a pointer to its
device object, and a pointer to the IRP. WmiSystemControl calls the driver's DpWmi
QueryReginfo routine.

A driver handles an IRP _MN_REGINFO request only ifParameters.WMI.Provider-
Id points to the same device object as the pointer that the driver passed to IoWMI
RegistrationControl. Otherwise, the driver forwards the request to the next-lower driver.

Before handling the request, the driver checks Parameters.WMI.DataPath to determine
whether WMI is querying registration information (WMIREGISTER) or requesting an
update (WMIUPDATE).

WMI sends this IRP with WMIREGISTER after a driver calls IoWMIRegistrationControl
with WMIREG_ACTION_REGISTER or WMIREG_ACTION_REREGISTER. In re
sponse, a driver should fill in the buffer at Parameters.WMI.Buffer with the following:

• A WMIREGINFO structure that indicates the driver's registry path, the name of its MOF
resource, and the number of blocks to register.

• One WMIREGGUID structure for each block to register. If a block is to be regis
tered with static instance names, the driver sets the appropriate WMIREG_FLAG_
INSTANCE_XXX flag in the WMIREGGUID structure for that block.

• Any strings WMI needs to generate static instance names.

WMI sends this IRP with WMIUPDATE after a driver calls IoWmiRegistrationControl
with WMIREG_ACTION_UPDATE_GUID. In response, a driver should fill in the buffer at
Parameters.WMI.Buffer with a WMIREGINFO structure as follows:

• To remove a block, the driver sets WMIREG_FLAG_REMOVE_GUID in its
WMIREGGUID structure.

Chapter 1 WMllRPs 1137

• To add or update a block (for example, to change its static instance names), the driver
clears WMIREG_FLAG_REMOVE_GUID and provides new or updated registration
values for the block.

• To register a new or existing block with static instance names, the driver sets the appro
priate WMIREG_FLAG_INSTANCE_XXX and supplies any strings WMI needs to
generate static instance names.

A driver can use the same WMIREGINFO structures to remove, add, or update blocks as
it used initially to register all of its blocks, changing only the flags and data for the blocks
to be updated. If a WMIREGGUID in such a WMIREGINFO structure matches exactly
the WMIREGGUID passed by the driver when it first registered that block, WMI skips
the processing involved in updating the block.

WMI does not send an IRP _MN_REGINFO request after a driver calls 10WMI
RegistrationControl with WMIREG_ACTION_DEREGISTER, because WMI requires
no further information from the driver. A driver typically deregisters its blocks in response
to an IRP _MN_REMOVE_DEVICE request.

See Also
Dp WmiQueryReglnfo, 10 WMIRegistrationControl, WMILIB_ CONTEXT,
WMIREGGUID, WMlREGINFO, WmiSystemControl

CHAPTER 2

WMI Library Support Routines

This chapter describes the WMI library support routines that a driver can call to handle
WMI IRPs. For information about handling WMI IRPs, see the Kernel-Mode Drivers
Design Guide in the online DDK.

For information about WMI library callback routines, see Chapter 3.

WmiCompleteRequest
NTSTATUS

WmiCompleteRequest(
IN PDEVICE_OBJECT DeviceObject,
IN PIRP Irp,
IN NTSTATUS Status,
IN ULONG BufferUsed,
IN CCHAR PriorityBoost
) ;

1139

WmiCompleteRequest indicates that a driver has finished processing a WMI request in a
DpWmiXxx routine.

Parameters
DeviceObject
Points to the driver's device object.

Irp
Points to the IRP.

Status
Specifies the status to return for the IRP.

1140 Part 8 WMI Kernel-Mode Data Providers

BufferUsed
Specifies the number of bytes needed in the buffer passed to the driver's DpWmiXxx
routine. If the buffer is too small, the driver sets Status to STATUS_BUFFER_TOO_
SMALL and sets BufferUsed to the number of bytes needed for the data to be returned.
If the buffer passed is large enough, the driver sets BufferUsed to the number of bytes
actually used.

PriorityBoost
Specifies a system-defined constant by which to increment the runtime priority of the
original thread that requested the operation. WMI calls IoCompleteRequest with
PriorityBoost when it completes the IRP.

Return Value
WmiCompleteRequest returns the value that was passed to it in the Status parameter
unless Status was set to STATUS_BUFFER_TOO_SMALL.. If the driver set Status equal
to STATUS_BUFFER_TOO_SMALL, WmiCompleteRequest builds a WNODE_TOO_
SMALL structure and returns STATUS_SUCCESS. The return value from WmiComplete
Request should be returned by the driver in its DpWmiXxx routine.

Comments
A driver calls WmiCompleteRequest from a DpWmiXxx routine after it finishes all
other processing in that routine, or after the driver finishes all processing for a pending IRP.
WmiCompleteRequest fills in a WNODE_XXX with any data returned by the driver and
calls IoCompleteRequest to complete the IRP.

A driver should always return the return value from WmiCompleteRequest in its
DpWmiXxx routine.

A driver must not call WmiCompleteRequest from its DpWmiQueryReglnfo routine.

Callers ofWmiCompleteRequest must be running at IRQL <= DISPATCH_LEVEL.

See Also
Dp WmiExecuteMethod, Dp WmiFunctionControl, Dp WmiQueryDataBlock, Dp Wmi
QueryReginfo, Dp WmiSetDataBlock, Dp WmiSetDataltem, IoCompleteRequest,
WmiSystemControl

WmiFireEvent
NTSTATUS

WmiFireEvent(
IN PDEVICE_OBJECT DeviceObject,
IN LPGUID Guid,
IN ULONG Instancelndex,
IN ULONG EventDataSize,
IN PVOID EventData
) ;

Chapter 2 WMI Library Support Routines 1141

WmiFireEvent sends an event to WMI for delivery to data consumers that have requested
notification of the event.

Parameters
DeviceObject
Points to the driver's device object.

Guid
Points to the GUID that represents the event block.

Instancelndex
If the event block has multiple instances, specifies the index of the instance.

EventDataSize
Specifies the number of bytes of data at EventData. If no data is generated for an event,
EventData must be zero.

EventData
Points to a driver-allocated nonpaged buffer containing data generated by the driver for the
event. If no data is generated for an event, EventData must be NULL. WMI frees the buffer
without further intervention by the driver.

Return Value
WmiFireEvent propagates the status returned by IoWmiWriteEvent, or returns STATUS_
INSUFFICIENT_RESOURCES if it could not allocate memory for the event.

1142 Part 8 WMI Kernel·Mode Data Providers

Comments
A driver calls WmiFireEvent to send an event to WMI for delivery to all data consumers
that have requested notification of the event. All parameters passed to WmiFireEvent must
be allocated from nonpaged pool.

The driver sends an event only if it has been previously enabled by the driver's DpWmi
FunctionControl routine, which WMI calls to process an IRP _MN_ENABLE_EVENT
request.

The driver writes any data associated with the event to the buffer at EventData. WMI fills in
a WNODE_SINGLE_INSTANCE structure with the data and calls IoWmiWriteEvent to
deliver the event.

Callers of WmiFireEvent must be running at IRQL <= DISPATCH_LEVEL.

See Also
Dp WmiFunctionControl, IRP _MN_ENABLE_EVENTS, WmiSystemControl

WmiSystemControl
NTSTATUS

WmiSystemControl(
IN PWMILIB_CONTEXT WmiLiblnfo,
IN PDEVICE_OBJECT DeviceObject,
IN PIRP Irp,
OUT PSYSCTL_IRP_DISPOSITION IrpDisposition
) ;

..

WmiSystemControl is a dispatch routine for drivers that use WMI library support routines
to handle WMI IRPs.

Parameters
WmiLiblnfo
Points to a WMILIB_CONTEXT structure that contains registration information for a
driver's data blocks and event blocks and defines entry points for the driver's WMI library
callback routines.

De vice Object
Points to the driver's device object.

Irp
Points to the IRP.

Chapter 2 WMI Library Support Routines 1143

IrpDisposition
After WmiSystemControl returns, IrpDisposition indicates how the IRP was handled:

IrpProcessed
The IRP was processed and possibly completed. If the driver's DpWmiXxx routine called by
WMISystemControl did not complete the IRP, the driver must call WmiCompleteRequest
to complete the IRP after WmiSystemControl returns.

IrpNotCompleted
The IRP was processed but not completed, either because WMI detected an error and set
up the IRP with an appropriate error code, or processed an IRP _MN_REGINFO request.
The driver must complete the IRP by calling IoCompleteRequest.

IrpNotWmi
The IRP is not a WMI request (that is, WMI does not recognize the IRP's minor code). If the
driver handles IRP _MJ_SYSTEM_CONTROL requests with this IRP _MN_XXX, it should
handle the IRP; otherwise the driver should forward the IRP to the next lower driver.

IrpForward
The IRP is targeted to another device object (that is, the device object pointer at
Parameters. WMI.ProviderId in the IRP does not match the pointer passed by the driver
in its call to IoWMIRegistrationControl). The driver must forward the IRP to the next
lower driver.

Return Value
WmiSystemControl returns STATUS_SUCCESS or one of the following error codes:

STATUS_INV ALID_DEVICE_REQUEST
ST ATUS_ WMI_ GUID _NOT_FOUND
STATUS_ WMI_INSTANCE_NOT _FOUND

Comments
When a driver receives an IRP _MJ_SYSTEM_CONTROL request with a WMI IRP minor
code, it calls WmiSystemControl with a pointer to the driver's WMILIB_CONTEXT struc
ture, a pointer to its device object, and a pointer to the IRP. The WMILIB_CONTEXT
structure contains registration information for the driver's data blocks and event blocks and
defines entry points for its WMI library callback routines.

WmiSystemControl confirms that the IRP is a WMI request and determines whether the
block specified by the request is valid for the driver. If so, it processes the IRP by calling the
appropriate DpWmiXxx entry point in the driver's WMILIB_CONTEXT structure. WMI is
running at IRQL PASSIVE_LEVEL when it calls the driver's DpWmiXxx routine.

1144 Part 8 WMI Kernel-Mode Data Providers

Callers of WmiSystemControl must be running at IRQL PASSIVE_LEVEL.

A driver must be running at IRQL PASSIVE_LEVEL when it forwards an IRP _MJ_
SYSTEM_CONTROL request to the next-lower driver.

See Also
Dp WmiExecuteMethod, Dp WmiFunctionControl, Dp WmiQueryDataBlock, Dp WmiQuery
Reg info , DpWmiSetDataBlock, DpWmiSetDataltem, WMILIB_CONTEXT

1145

CHAPTER 3

WMI Library Callback Routines

This describes required and optional routines that a driver must implement to handle WMI
IRPs by calling WMI library support routines. A driver sets entry points to its DpWmiXxx
routines in the WMILIB_CONTEXT structure the driver passes to WmiSystemControl.

A driver's DpWmiXxx routines can have any names chosen by the driver writer.

For information about WMI library support routines, see Chapter 2. For information about
handling WMI IRPs, see the Kernel-Mode Drivers Design Guide in the online DDK.

DpWmiExecuteMethod
NTSTATUS

DpWmiExecuteMethod(
IN PDEVICE_OBJECT DeviceObject,
IN PIRP Irp,
IN ULONG Guidlndex,
IN ULONG Instancelndex,
IN ULONG Methodld,
IN ULONG InBufferSize,
IN ULONG OutBufferSize,
IN OUT PUCHAR Buffer
) ;

A driver's DpWmiExecuteMethod routine executes a method associated with a data block.
This routine is optional.

Parameters
DeviceObject
Points to the driver's device object.

Irp
Points to the IRP.

1146 Part 8 WMI Kernel-Mode Data Providers

Guidlndex
Specifies the data block by its index into the list of GUIDs provided by the driver in the
WMILIB_CONTEXT structure it passed to WmiSystemControl.

Instancelndex
If the block specified by Guidlndex has multiple instances, Instancelndex specifies the
instance.

Methodld
Specifies the ID of the method to execute. The driver defines the method ID as an item in a
data block.

InBufferSize
Indicates the size in bytes of the input data. If there is no input data, InBuJferSize is zero.

OutBufferSize
Indicates the number of bytes available in the buffer for output data.

Buffer
Points to a buffer that holds the input data and receives the output data, if any, from the
method. If the buffer is too small to receive all of the output, the driver returns STATUS_
BUFFER_TOO_SMALL and calls WmiCompleteRequest with the size required.

Return Value
DpWmiExecuteMethod returns STATUS_SUCCESS or an appropriate error code such as
the following:

STATUS_BUFFER_TOO_SMALL
ST ATUS_INV ALID _DEVICE_REQUEST
ST ATUS_ WMI_INST ANCE_NOT _FOUND
STATUS_ WMI_ITEM_ID_NOT_FOUND

Comments
WMI calls a driver's DpWmiExecuteMethod routine after the driver calls WmiSystem
Control in response to an IRP _MN_EXECUTE_METHOD request.

If a driver does not implement a DpWmiExecuteMethod routine, it must set ExecuteWmi
Method to NULL in the WMILIB_CONTEXT the driver passes to WmiSystemControl. In
this case, WMI returns STATUS_INVALID_DEVICE_REQUEST to the caller in response
to any IRP _MN_EXECUTE_METHOD request.

If the method generates output, the driver should check the size of the output buffer in
OutBuJferSize before performing any operation that might have side effects or that should

Chapter 3 WMI Library Callback Routines 1147

not be performed twice. For example, if a method returns the values of a group of counters
and then resets the counters, the driver should check the buffer size (and possibly return
STATUS_BUFFER_TOO_SMALL) before resetting the counters. This ensures that WMI
can safely re-send the request with a larger buffer.

After executing the method and writing output, if any, to the buffer, the driver calls Wmi
CompleteRequest to complete the request.

This routine can be pageable.

See Also
IRP _MN_EXECUTE_METHOD, WMILIB_CONTEXT, WmiCompleteRequest,
WmiSystemControl

DpWmiFunctionControl
NTSTATUS

DpWmiFunctionControl(
IN PDEVICE_OBJECT DeviceObject,
IN PIRP Irp,
IN ULONG Guidlndex,
IN WMIENABLEDISABLECONTROL Function,
IN BOOLEAN Enable
) ;

A driver's DpWmiFunctionControl routine enables or disables notification of events. It also
enables or disables data collection for data blocks that the driver registered as expensive to
collect. This routine is optional.

Parameters
DeviceObject
Points to the driver's device object.

Irp
Points to the IRP.

Guidlndex
Specifies the block by its index into the list of GUIDs provided by the driver in the
WMILIB_CONTEXT structure it passed to WmiSystemControl.

Function
Specifies WmiEventControl to enable or disable an event, or WrniDataBlockControl to
enable or disable data collection for a block that was registered as expensive to collect

1148 Part 8 WMI Kernel-Mode Data Providers

(that is, a block for which the driver set WMIREG_FLAG_EXPENSIVE in Flags of the
WMIGUIDREGINFO structure used to register the block).

Enable
Specifies TRUE to enable the event or data collection, or FALSE to disable it.

Return Value
DpWmiFunctionControl returns STATUS_SUCCESS or an appropriate error status such as:

STATUS_WMI_GUID_NOT_FOUND
STATUS_INV ALID_DEVICE_REQUEST

Comments
WMI calls a driver's DpWmiFunctionControl routine after the driver calls WmiSystem
Control in response to one of the following requests:

IRP _MN_ENABLE_COLLECTION
IRP _MN_DISABLE_COLLECTION
IRP _MN_ENABLE_EVENTS
IRP _MN_DISABLE_EVENTS

If a driver does not implement a DpWmiFunctionControl routine, it must set Wmi
FunctionControl to NULL in the WMILIB_CONTEXT the driver passes to WmiSystem
Control. WMI returns STATUS_SUCCESS to the caller.

It is unnecessary for the driver to check whether events or data collection are already en
abled for a block because WMI sends a single enable request when the first data consumer
enables the block, and sends a single disable request when the last data consumer disables
the block. WMI will not call DpWmiFunctionControl to enable a block without an inter
vening call to disable it.

After enabling or disabling the event or data collection for the block, the driver calls
WmiCompleteRequest to complete the request.

This routine can be pageable.

See Also
IRP _MN_ENABLE_COLLECTION, IRP _MN_DISABLE_COLLECTION, IRP _MN_
ENABLE_EVENTS, IRP_MN_DISABLE_EVENTS, WMILIB_CONTEXT, Wmi
System Control

DpWmiQueryDataBlock
NTSTATUS

DpWmiQueryDataBlock(
IN PDEVICE_OBJECT DeviceObject,
IN PIRP Irp,
IN ULONG Guidlndex,
IN ULONG Instancelndex,
IN ULONG InstanceCount,
IN OUT PULONG InstanceLengthArray,
IN ULONG BufferAvail,
OUT PUCHAR Buffer
) ;

Chapter 3 WMI Library Callback Routines 1149

A driver's DpWmiQueryDataBlock routine returns either a single instance or all instances of
a data block. This routine is required.

Parameters
DeviceObject
Points to the driver's device object.

Irp
Points to the IRP.

Guidlndex
Specifies the data block by its index into the list of GUIDs provided by the driver in the
WMILIB_CONTEXT structure it passed to WmiSystemControl.

Instancelndex
If DpWmiQueryDataBlock is called in response to an IRP _MN_QUERY_SINGLE_
INSTANCE request, Instancelndex specifies the instance to be queried. If DpWmiQuery
DataBlock is called in response to an IRP _MN_QUERY_ALL_DATA REQUEST,
Instancelndex is zero.

InstanceCount
If DpWmiQueryDataBlock is called in response to an IRP _MN_QUERY_SINGLE_
INSTANCE request, InstanceCount is 1. If Dp WmiQueryDataBlock is called in response
to an IRP _MN_QUERY_ALL_DATA REQUEST, InstanceCount is the number of
instances to be returned.

1150 Part 8 WMI Kernel-Mode Data Providers

InstanceLengthArray
Points to an array of ULONGs that indicate the length of each instance to be returned. If the
buffer at Buffer is too small to receive all of the data, the driver sets InstanceLengthArray
to NULL.

BufferA vail
Specifies the maximum number of bytes available to receive data in the buffer at Buffer.

Buffer
Points to the buffer to receive instance data. If the buffer is large enough to receive all
of the data, the driver writes instance data to the buffer with each instance aligned on an
8-byte boundary. If the buffer is too small to receive all of the data, the driver calls
WmiCompleteRequest with BufferUsed set to the size required.

Return Value
DpWmiQueryDataBlock returns STATUS_SUCCESS or an error status such as the
following:

STATUS_BUFFER_TOO_SMALL
STATUS_ WMI_GUID_NOT_FOUND
STATUS_ WMI_INSTANCE_NOT _FOUND

If the driver cannot complete the request immediately, it can return STATUS_PENDING.

Comments
WMI calls a driver's DpWmiQueryDataBlock routine after the driver calls WmiSystem
Control in response to an IRP _MN_QUERY_DATA_BLOCK or IRP _MN_QUERY_
ALL_DATA request.

After writing instance data to the buffer, the driver calls WmiCompleteRequest to com
plete the request.

This routine can be pageable.

See Also
IRP _MN_QUERY_ALL_DATA, IRP _MN_QUERY_SINGLE_INSTANCE, WMILIB_
CONTEXT, WmiCompleteRequest, WmiSystemControl

OpWmiQueryReginfo
NTSTATUS

DpWmiQueryReginfo(
IN PDEVICE_OBJECT DeviceObject.
OUT PULONG RegF7ags.
OUT PUNICODE_STRING InstanceName.
OUT PUNICODE_STRING *RegistryPath.
OUT PUNICODE_STRING MofResourceName.
OUT PDEVICE_OBJECT *Pdo
) ;

Chapter 3 WMI Library Callback Routines 1151

A driver's DpWmiQueryReginfo routine provides information about the data blocks and
event blocks to be registered by a driver. This routine is required.

Parameters
DeviceObject
Points to the driver's device object.

RegFlags
Indicates common characteristics of all blocks being registered. Any flag set in RegFlags
is applied to all blocks. A driver can supplement RegFlags for a given block by setting
Flags in the block's WMIGUIDREGINFO structure. For example, a driver might clear
WMIREG_FLAG_EXPENSIVE in RegFlags, but set it in Flags to register a given block
as expensive to collect.

The driver sets one of the following flags in RegFlags:

WMIREG_FLAGJNSTANCE_BASENAME
Requests WMI to generate static instance names from a base name provided by the driver at
the InstanceName. WMI generates instance names by appending a counter to the base name.

WMIREG_FLAGJNSTANCE_PDO
Requests WMI to generate static instance names from the device instance ID for the PD~.
If the driver sets this flag, it must also set Pdo to the PD~ passed to the driver's AddDevice
routine. WMI generates instance names from the device instance path of the PD~. Using the
device instance path as a base for static instance names is efficient because such names are
guaranteed to be unique. WMI automatically supplies a "friendly" name for the instance as
an item in a data block that can be queried by data consumers.

1152 Part 8 WMI Kernel-Mode Data Providers

A driver might also set one or more of the following flags in RegFlags, but more typically
would set them in Flags of a block's WMIGUIDREGINFO structure:

WMIREG_FLAG_EVENT _ONLY _GUID
The blocks can be enabled or disabled as events only, and cannot be queried or set. If this
flag is clear, the blocks can also be queried or set.

WMIREG_FLAG_EXPENSIVE
Requests WMI to send an IRP _MN_ENABLE_COLLECTION request the first time a data
consumer opens a data block and an IRP _MN_DISABLE_COLLECTION request when the
last data consumer closes the data block. This is recommended if collecting such data affects
performance, because a driver need not collect the data until a data consumer explicitly
requests it by opening the block.

WMIREG_FLAG_REMOVE_ GUID
Requests WMI to remove support for the blocks. This flag is valid only in response to a
request to update registration information (IRP _MN_REGINFO with DataPath set to
WMIUPDATE).

InstanceName
Points to a single counted Unicode string that serves as the base name for all instances of all
blocks to be registered by the driver. WMI frees the string with ExFreePool. If WMIREG_
FLAG_INSTANCE_BASENAME is clear, InstanceName is ignored.

RegistryPath
Points to a counted Unicode string that specifies the registry path passed to the driver's
DriverEntry routine.

MofResourceName
Points to a single counted Unicode string that indicates the name of the MOF resource
attached to the driver's binary image file. Typically this string would be a static defined by
the driver. WMI makes a copy of this string after the driver returns from this routine. This
string can be dynamically allocated by the driver. In the case of an allocated string, the
driver is responsible for freeing the string which should be done after WmiSystemControl
returns. If the driver does not have a MOF resource attached, it can leave MofResourceName
unchanged.

Pdo
Points to the physical device object (PDO) passed to the driver's AddDevice routine.
IfWMIREG_FLAG_INSTANCE_PDO is set, WMI uses the device instance path of this
PD~ as a base from which to generate static instance names. If WMIREG_FLAG_
INSTANCE_PDO is clear, WMI ignores Pdo.

Chapter 3 WMI Library Callback Routines 1153

Return Value
DpWmiQueryReginfo always returns STATUS_SUCCESS

Comments
WMI calls a driver's DpWmiQueryReginfo after the driver calls WmiSystemControl
in response to an IRP _MN_REGINFO request. WMI sends this IRP after a driver calls
IoWMIRegistrationControl with WMIREG_ACTION_REGISTER, WMIREG_
ACTION_REREGISTER, or WMIREG_ACTION_UPDATE.

WMI does not send an IRP _MN_REGINFO request after a driver calls IoWMI
RegistrationControl with WMIREG_ACTION_DEREGISTER, because WMI requires
no further information from the driver. A driver typically deregisters its blocks in response
to an IRP _MN_REMOVE_DEVICE request.

The driver provides new or updated registration information about individual blocks, or
indicates blocks to remove, in the WMILIB_CONTEXT structure it passes to WmiSystem
Control. After the initial call, which establishes the driver's registry path and MOF resource
name, a driver's DpWmiQueryReginfo routine can change flags common to all of a driver's
blocks, provide a different base name string used to generate instance names, or change the
basis for instance names from a string to the device instance path of the PD~.

The driver must not return STATUS_PENDING or block the request. The driver must
not complete the request by calling WmiCompleteRequest from its DpWmiQueryReginfo
routine or by calling IoCompleteRequest after WmiSystemControl returns.

This routine can be pageable.

See Also
IoWMIRegistrationControl,IRP _MN_REGINFO, WMILIB_CONTEXT,
WMIGUIDREGINFO, WmiSystemControl

DpWmiSetDataBlock
NTSTATUS

DpWmiSetDataBlock(
IN PDEVICE_OBJECT DeviceObject,
IN PIRP Irp,
IN ULONG Guidlndex,
IN ULONG Instancelndex,
IN ULONG BufferSize,
IN PUCHAR Buffer
) ;

A driver's DpWmiSetDataBlock routine changes all data items in a single instance of a data
block. This routine is optional.

1154 Part 8 WMI Kernel-Mode Data Providers

Parameters
DeviceObject
Points to the driver's device object.

Irp
Points to the IRP.

Guidlndex
Specifies the data block by its index into the list of GUIDs provided by the driver in the
WMILIB_CONTEXT structure it passed to WmiSystemControl.

Instancelndex
If the block specified by Guidlndex has multiple instances, Instancelndex specifies the
instance.

BufferSize
Specifies the size in bytes of the buffer at Buffer.

Buffer
Points to a buffer that contains new values for the instance.

Return Value
DpWmiSetDataBlock returns STATUS_SUCCESS or an appropriate error status such as the
following:

STA TUS_ WMI_INST ANCE_NOT _FOUND
-STATUS_WMI_GUID_NOT_FOUND
STATUS_ WMI_READ_ONLY
STATUS_ WMI_SET_FAILURE

If the driver cannot complete the request immediately, it can return STATUS_PENDING.

Comments
WMI calls a driver's DpWmiSetDataItem routine after the driver calls WmiSystemControl
in response to an IRP _MN_CHANGE_SINGLE_INSTANCE request. If a driver does not
implement a DpWmiSetDataItem routine, it must set SetWmiDataBlock to NULL in the
WMILIB_CONTEXT the driver passes to WmiSystemControl. WMI returns STATUS_
READ_ONLY to the caller.

This routine can be pageable.

Chapter 3 WMI Library Callback Routines 1155

See Also
IRP _MN_ CHANGE_SINGLE_INSTANCE, WMILIB_CONTEXT, WmiSystemControl

DpWmiSetDataltem
NTSTATUS

DpWmiSetDataltem(
IN PDEVICE_OBJECT DeviceObject,
IN PIRP Irp,
IN ULONG Guidlndex,
IN ULONG Instancelndex,
IN ULONG Dataltemld,
IN ULONG BufferSize,
IN PUCHAR Buffer
) ;

A driver's DpWmiSetDataltem changes a single data item in an instance of a data block.
This routine is optional.

Parameters
DeviceObject
Points to the driver's device object.

Irp
Points to the IRP.

Guidlndex
Specifies the data block by its index into the list of GUIDs provided by the driver in the
WMILIB_CONTEXT structure it passed to WmiSystemControl.

Instancelndex
If the block specified by Guidlndex has multiple instances, Instancelndex specifies the
instance.

Dataltemld
Specifies the ID of the data item to set.

BufferSize
Specifies the size in bytes of the buffer at Buffer.

Buffer
Points to a buffer that contains the new value for the data item.

1156 Part 8 WMI Kernel-Mode Data Providers

Return Value
DpWmiSetDataItem returns STATUS_SUCCESS or an appropriate error code such as the
following:

ST ATUS_ WMI_INST ANCE_NOT _FOUND
STA TUS_ WMI_INSTANCE_ID _NOT_FOUND
STATUS_WMI_GUID_NOT_FOUND
STATUS_WMI_READ_ONLY
STATUS_ WMI_SET_FAILURE

Comments
WMI calls a driver's DpWmiSetDataItem routine after the driver calls WmiSystemControl
in response to an IRP _MN_CHANGE_SINGLE_ITEM request.

If a driver does not implement a DpWmiSetDataItem routine, it must set SetWmiData
Item to NULL in the WMILIB_CONTEXT the driver passes to WmiSystemControl. WMI
returns STATUS_READ_ONLY to the caller.

This routine can be pageable.

See Also
IRP _MN_CHANGE_SINGLE_ITEM, WMILIB_CONTEXT, WmiSystemControl

CHAPTER 4

WMI Structures

This describes, in alphabetic order, the structures that are used to pass WMI information
between WMI and drivers that are kernel-mode data providers.

WMILIB_CONTEXT
typedef struct _WMILIB_CONTEXT

ULONG GuidCount;
PWMIGUIDREGINFO GuidList;
PWMI_OUERY_REGINFO OueryWmiReglnfo;
PWMI_OUERY_DATABLOCK OueryWmiDataBlock;
PWMI_SET_DATABLOCK SetWmiDataBlock;
PWMI_SET_DATAITEM SetWmiDataltem;
PWMI_EXECUTE_METHOD ExecuteWmiMethod;
PWMI_FUNCTION_CONTROL WmiFunctionControl;

} WMILIB_CONTEXT, *PWMILIB_CONTEXT;

A WMILIB_CONTEXT structure provides registration information for a driver's data
blocks and event blocks and defines entry points for the driver's WMI library callback
routines.

Members
GuidCount
Specifies the number of blocks registered by the driver.

GuidList

1157

Points to an array of GuidCount WMIGUIDREGINFO structures that contain registration
information for each block.

QueryWmiReglnfo
Points to the driver's DpWmiQueryReginfo routine, which is a required entry point for
drivers that call WMI library support routines.

1158 Part 8 WMI Kernel-Mode Data Providers

QueryWmiDataBlock
Points to the driver's DpWmiQueryDataBlock routine, which is a required entry point for
drivers that call WMI library support routines.

SetWmiDataBlock
Points to the driver's DpWmiSetDataBlock routine, which is an optional entry point for
drivers that call WMI library support routines. If the driver does not implement this routine,
it must set this member to NULL. In this case, WMI returns STATUS_ WMI_READ_ONLY
to the caller in response to any IRP _MN_CHANGE_SINGLE_INSTANCE request.

SetWmi Dataltem
Points to the driver's DpWmiSetDataItem routine, which is an optional entry point for
drivers that call WMI library support routines. If the driver does not implement this routine,
it must set this member to NULL. In this case, WMI returns STATUS_ WMI_READ_
ONLY to the caller in response to any IRP _MN_CHANGE_SINGLE_ITEM request.

ExecuteWmiMethod
Points to the driver's DpWmiExecuteMethod routine, which is an optional entry point
for drivers that call WMI library support routines. If the driver does not implement this
routine, it must set this member to NULL. In this case, WMI returns STATUS_INV ALID_
DEVICE_REQUEST to the caller in response to any IRP _MN_EXECUTE_METHOD
request.

Wmi FunctionControl
Points to the driver's DpWmiFunctionControl routine, which is an optional entry point for
drivers that call WMI library support routines. If the driver does not implement this routine,
it must set this member to NULL. In this case, WMI returns STATUS_SUCCESS to the
caller in response to any IRP _MN_ENABLE_XXX or IRP _MN_DISABLE_XXX request.

Comments
A driver that handles WMI IRPs by calling WMI library support routines stores an
initialized WMILIB_CONTEXT structure (or a pointer to such a structure) in its device
extension. A driver can use the same WMILIB_CONTEXT structure for multiple device
objects if each device object supplies the same set of data blocks.

When the driver receives an IRP _MJ_SYSTEM_CONTROL request, it calls WmiSystem
Control with a pointer to its WMILIB_CONTEXT structure, a pointer to its device object,
and a pointer to the IRP. WmiSystemControl determines whether the IRP contains a WMI
request and, if so, handles the request by calling the driver's appropriate DpWmiXxx
routine.

Memory for this structure can be allocated from paged pool.

Chapter 4 WMI Structures 1159

See Also
Dp WmiExecuteMethod, Dp WmiFunctionControl, Dp WmiQueryReginfo,
Dp WmiQueryDataBlock, Dp WmiSetDataBlock, Dp WmiSetDataltem, WMIGUIDREGINFO,
WmiSystemControl

WMIGUIDREGINFO
typedef struct {

LPCGUID Guid;
ULONG InstanceCount;
ULONG Flags;

} WMIGUIDREGINFO, *PWMIGUIDREGINFO;

A WMIGUIDREGINFO structure contains registration information for a given data block or
event block exposed by a driver that uses the WMI library support routines.

Members
Guid
Points to the GUID that identifies the block. The memory that contains the GUID can be
paged unless it is also used to call WmiFireEvent.

InstanceCount
Specifies the number of instances defined for the block.

Flags
Indicates characteristics of the block. WMI ORs Flags with the flags set by the driver in the
RegFlags parameter of its DpWmiQueryReginfo routine, which apply to all of the data
blocks and event blocks registered by the driver. Flags therefore supplements the driver's
default settings for a given block.

A driver might set the following flag in Flags:

WMIREG_FLAGJNSTANCE_PDO
Requests WMI to generate static instance names from the device instance ID for the PDO. If
this flag is set, the Pdo parameter of the driver's DpWmiQueryReginfo routine points to the
PD~ passed to the driver's AddDevice routine. WMI generates instance names from the
device instance path of the PD~. Using the device instance path as a base for static instance
names is efficient because such names are guaranteed to be unique. WMI automatically
supplies a "friendly" name for the instance as an item in a data block that can be queried by
data consumers.

1160 Part 8 WMI Kernel-Mode Data Providers

A driver might also set one or more of the following flags:

WMIREG_FLAG_EVENT _ONLY _GUID
The block can be enabled or disabled as an event only, and cannot be queried or set. If this
flag is clear, the block can also be queried or set.

WMIREG_FLAG_EXPENSIVE
Requests WMI to send an IRP _MN_ENABLE_COLLECTION request the first time a data
consumer opens the data block and an IRP _MN_DISABLE_COLLECTION request when
the last data consumer closes the data block. This is recommended if collecting such data
affects performance, because a driver need not collect the data until a data consumer ex
plicitly requests it by opening the block.

WMIREG_FLAG_REMOVE_GUID
Requests WMI to remove support for this block. This flag is valid only in response to a
request to update registration information (lRP _MN_REGINFO with DataPath set to
WMIUPDATE).

Comments
A driver that handles WMI IRPs by calling WMI library support routines builds An array of
WMIGUIDREGINFO structures, one for each data block and event block to be registered.
The driver sets the GuidList member of its WMILIB_CONTEXT structure to point to the
first WMIGUIDREGINFO in the series.

Memory for this structure can be allocated from paged pool.

See Also
DpWmiQueryReginJo, IRP _MN_DISABLE_COLLECTION, IRP _MN_ENABLE_
COLLECTION, IRP _MN_REGINFO, WmiFireEvent, WMILIB_CONTEXT

WMIREGGUID
typedef struct

GUID Guid;
ULONG Flags;
ULONG InstanceCount;
union {

} ;

ULONG InstanceNameList;
ULONG BaseNameOffset;
U LONG_PTR Pdo;
ULONG_PTR Instancelnfo;

WMIREGGUID. *PWMIREGGUID

Chapter 4 WMI Structures 1161

A WMIREGGUID contains new or updated registration information for a data block or
event block.

Members
Guid
Specifies the GUID that represents the block to register or update.

Flags
Indicates characteristics of the block to register or update.

If a block is being registered with static instance names, a driver sets one of the following
flags:

WMIREG_FLAGJNSTANCE_LlST
Indicates that the driver provides static instance names for this block in a static list following
the WMIREGINFO structure in the buffer at IrpStack->Parameters.WMI. Buffer. If this
flag is set, InstanceNameList is the offset in bytes from the beginning of the WMIREG
INFO structure that contains this WMIREGGUID to a contiguous series of InstanceCount
counted UNICODE strings.

WMIREG_FLAGJNSTANCE_BASENAME
Requests WMI to generate static instance names from a base name provided by the driver
following the WMIREGINFO structure in the buffer at IrpStack->Parameters.WMI.
Buffer. WMI generates instance names by appending a counter to the base name. If this flag
is set, BaseNameOffset is the offset in bytes from the beginning of the WMIREGINFO
structure that contains this WMIREGGUID to a single counted UNICODE string that serves
as the base name.

WMIREG_FLAGJNSTANCE_PDO
Requests WMI to generate static instance names from the device instance ID for the PD~.
If this flag is set, Instancelnfo points to the PD~ passed to the driver's AddDevice routine.
WMI generates instance names from the device instance path of the PD~. Using the device
instance path as a base for static instance names is efficient because such names are guaran
teed to be unique. WMI automatically supplies a "friendly" name for the instance as an item
in a data block that can be queried by data consumers.

If a block is being registered with dynamic instance names, WMIREG_FLAG_
INSTANCE_LIST, WMIREG_FLAG_INSTANCE_BASENAME, and WMIREG_
FLAG_INSTANCE_PDO must be clear.

1162 Part 8 WMI Kernel-Mode Data Providers

A driver might also set one or more of the following flags:

WMIREG_FLAG_EVENT _ONLY _GUID
The block can be enabled or disabled as an event only, and cannot be queried or set. If this
flag is clear, the block can also be queried or set.

WMIREG_FLAG_EXPENSIVE
Requests WMI to send an IRP _MN_ENABLE_COLLECTION request the first time a
data consumer opens the data block and an IRP _MN_DISABLE_COLLECTION request
when the last data consumer closes the data block. This is recommended if collecting such
data affects performance, because a driver need not collect the data until a data consumer
explicitly requests it by opening the block.

WMIREG_FLAG_REMOVE_ GUID
Requests WMI to remove support for this block. This flag is valid only in response to a
request to update registration information (IRP _MN_REGINFO with DataPath set to
WMIUPDATE).

WMIREG_FLAG_ TRACED _ GUID
The block can be written only to a log file and can be accessed only through user-mode
routines declared in evntrace.h. Only NT kernel-mode data providers set this flag.

WMIREG_FLAG_ TRACE_ CONTROL_ GUID
The GUID acts as the control GUID for enabling or disabling the trace GUIDs associated
with it in the MOF file. This flag is valid only if WMIREG_FLAG_TRACED_GUID is also
set. Only NT kernel-mode data providers set this flag.

InstanceCount
Specifies the number of static instance names to be defined for this block. If the block is
being registered with dynamic instance names, WMI ignores InstanceCount.

InstanceNameList
Indicates the offset in bytes from the beginning of the WMIREGINFO structure that
contains this WMIREGGUID to a contiguous series of InstanceCount counted Unicode
strings. This member is valid only if WMIREG_FLAG_INSTANCE_LIST is set in Flags. If
the block is being registered with dynamic instance names, WMI ignores Instance
NameList.

BaseNameOffset
Indicates the offset in bytes from the beginning of the WMIREGINFO structure that con
tains this WMlREGGUID to a single counted UNICODE string that serves as a base for

Chapter 4 WMI Structures 1163

WMI to generate static instance names. This member is valid only if WMIREG_FLAG_
INSTANCE_BASENAME is set in Flags. If the block is being registered with dynamic
instance names, WMI ignores BaseNameOffset.

Pdo
Points to the physical device object (PDO) passed to the driver's AddDevice routine. WMI
uses the device instance path of this PD~ as a base from which to generate static instance
names. This member is valid only if WMIREG_FLAG_INSTANCE_PDO is set in Flags. If
the block is being registered with dynamic instance names, WMI ignores Pdo.

Instancelnfo
Reserved for use by WMI.

Comments
A driver builds one or more WMIREGGUID structures in response to an IRP _MN_
REGINFO request to register or update its blocks. The driver passes an array of such
structures at the WmiRegGuid member of a WMIREGINFO structure, which the driver
writes to the buffer at IrpStack->Parameters.WMI.Buffer.

A driver can register or update a block with either static or dynamic instance names. Static
instance names provide best performance; however, dynamic instance names are preferred
for data blocks if the number of instances or instance names change frequently. For more
information about instance names, see the Kernel-Mode Drivers Design Guide in the
online DDK.

See Also
IRP _MN_REGINFO, WMIREGINFO

WMIREGINFO
typedef struct

ULONG BufferSize;
ULONG NextWmiReglnfo;
ULONG RegistryPath;
ULONG MofResourceName;
ULONG GuidCount;
WMIREGGUIDW WmiRegGuid[];

} WMIREGINFO, *PWMIREGINFO;

A WMIREGINFO structure contains information provided by a driver to register or update
its data blocks and event blocks.

1164 Part 8 WMI Kernel-Mode Data Providers

Members
BufferSize
Indicates the total size of the WMI registration data associated with this WMIREGINFO
structure, calculated as follows: (sizeof(WMIREGINFO) + (GuidCount * sizeof
(WMIREGGUID) + additionaldata). Additional data might include items such as the
MOF resource name, registry path, and static instance names for blocks.

NextWmiReglnfo
If a driver handles WMI requests on behalf of another driver, as a class driver might
on behalf of a miniclass driver, NextWmiReglnfo indicates the offset in bytes from the
beginning of this WMIREGINFO to the next WMIREGINFO structure that contains WMI
registration information for the other driver. Otherwise, NextWmiRegInfo is zero.

RegistryPath
Indicates the offset in bytes from the beginning of this structure to a counted Unicode string
that specifies the registry path passed to the driver's DriverEntry routine. The string must
be aligned on a USHORT boundary. This member should be set only in response to a WMI
registration request (IRP _MN_REGINFO with DataPath set to WMIREGISTER).

MofResourceName
Indicates the offset in bytes from the beginning of this structure to a counted Unicode string
that specifies the name of the MOF resource in the driver's image file. The string must be
aligned on a USHORT boundary. This member should be set only in response to a WMI
registration request (IRP _MN_REGINFO with DataPath set to WMIREGISTER).

GuidCount
Indicates the number of WMIREGGUID structures in the array at WmiRegGuid.

WmiRegGuid
Is an array of GuidCount WMIREGGUID structures.

Comments
In response to a registration request (IRP _MN_REGINFO with DataPath set to
WMIREGISTER), a driver builds at least one WMIREGINFO structure and writes
the WMIREGINFO structure to the buffer at IrpStack->Parameters.WMI.Buffer.
The WMIREGINFO structure contains an array of WMIREGGUID structures, one for
each data block or event block exposed by the driver.

If the driver handles WMI requests on behalf of another driver, it builds another
WMIREGINFO containing an array of WMIREGGUID structures for each block exposed
by the other driver, sets the NextWmiReglnfo member of the first WMIREGINFO to an

Chapter 4 WMI Structures 1165

offset in bytes from the beginning of the first WMIREGINFO to the beginning of the next
WMIREGINFO in the buffer, and writes both structures to the buffer. The driver indicates
the total size of both WMIREGINFO structures and associated data when calls IoComplete
Request to complete the IRP.

A driver can use the same WMIREGINFO structure(s) to remove or update blocks in
response to an update request (IRP _MN_REGINFO with DataPath set to WMIUPDATE).
IfWMIREG_FLAG_REMOVE_GUID is set in the Flags member of a WMIREGGUID,
WMI removes that block from the list of blocks previously registered by the driver. If
WMIREG_FLAG_REMOVE_GUID is clear, WMI updates registration information for that
block only if other WMIREGGUID members have changed-otherwise, WMI does not
change to its registration information for that block.

See Also
IoCompleteRequest, IRP _MN_REGINFO, WMIREGGUID

typedef struct tagWNODE_ALL_DATA
struct _WNODE_HEADER WnodeHeader;
ULONG DataBlockOffset;
ULONG InstanceCount;
ULONG OffsetlnstanceNameOffsets;
union {

ULONG FixedlnstanceSize;
OFFSETINSTANCEDATAANDLENGTH OffsetlnstanceDataAndLength[];

} ;

A WNODE_ALL_DATA structure contains data for all instances of a data block or event
block.

Members
WnodeHeader
Is a WNODE_HEADER structure that contains information common to all WNODE_XXX
structures, such as the buffer size, the GUID that represents a data block associated with a
request, and flags that provide information about the WNODE_XXX data being passed or
returned.

DataBlockOffset
Indicates the offset in bytes from the beginning of the WNODE_ALL_DATA structure to
the beginning of data for the first instance.

1166 Part 8 WMI Kernel-Mode Data Providers

InstanceCount
Indicates the number of instances whose data follows the fixed members of the WNODE_
ALL_DATA in the buffer at IrpStack->Parameters.WMI.Buffer.

OffsetlnstanceNameOffsets
Indicates the offset in bytes from the beginning of the WNODE_ALL_DATA to an array
of offsets to dynamic instance names. Each instance name must be aligned on a USHORT
boundary. If all instances to be returned have static instance names, WMI ignores Offset
InstanceNameOffsets.

FixedlnstanceSize
Indicates the size of each instance to be returned if all such instances are the same size. This
member is valid only if the driver sets WNODE_FLAG_FIXED_INSTANCE_SIZE in
WnodeHeader .Flags.

OffsetlnstanceDataAndLength
If instances to be returned vary in size, OffsetlnstanceDataAndLength is an array of
InstanceCount OFFSETINSTANCEDATAANDLENGTH structures that specify the offset
in bytes from the beginning of the WNODE_ALL_DATA to the beginning of each instance
and its length. OFFSETINSTANCEDATAANDLENGTH is defined as follows:

typedef struct {
ULONG OffsetInstanceData;
ULONG LengthInstanceData;

OFFSETINSTANCEDATAANDLENGTH, *POFFSETINSTANCEDATAANDLENGTH

OffsetlnstanceData
Indicates the offset in bytes from the beginning of the WNODE_ALL_DATA to the
instance data.

LengthlnstanceData
Indicates the length in bytes of the instance data.

Each instance must be aligned on a USHORT boundary. The OffsetlnstanceDataAnd
Length member is valid only if the driver clears WNODE_FLAG_FIXED_INSTANCE_
SIZE in WnodeHeader.Flags.

Comments
A driver fills in a WNODE_ALL_DATA structure in response to an IRP _MN_QUERY_
ALL_DATA request. A driver might also generate a WNODE_ALL_DATA as an event.

After filling in the fixed members of the structure, a driver writes instance data and
dynamic instance names (if any) at DataBlockOffset and OffsetlnstanceNameOffsets,
respectively, in the buffer at IrpStack->Parameters.WMI.Buffer. IfWNODE_FLAG_

Chapter 4 WMI Structures 1167

FIXED_INSTANCE_SIZE is clear, the first offset follows the last element of the Offset
InstanceDataAndLength array, plus padding so the data begins on an 8-byte boundary.

Instance names must be USHORT aligned. Instance data must be QUADWORD aligned.

See Also
IRP_MN_QUERY_ALL_DATA, WNODE_EVENT_ITEM, WNODE_HEADER

typedef struct tagWNODE_EVENT_ITEM
struct _WNODE_HEADER WnodeHeader;
II Rest of WNODE data indicated by flags in WnodeHeader

WNODE_EVENT_ITEM, *PWNODE_EVENT_ITEM;

A WNODE_EVENT_ITEM contains data generated by a driver for an event.

WnodeHeader
Is a WNODE_HEADER structure that contains information common to all WNODE_XXX
structures, such as the buffer size, the GUID that represents a data block associated with a
request, and flags that provide information about the WNODE_XXX data being passed or
returned.

Comments
A WNODE_EVENT_ITEM contains whatever data the driver determines is appropriate for
an event, in a WNODE_XXX structure that is appropriate for that data.

A driver generates only events that it has previously enabled in response to an IRP _MN_
ENABLE_EVENTS request. To generate an event, a driver calls IoWMIWriteEvent and
passes a pointer to the WNODE_EVENT _ITEM. WMI queues the event for delivery to all
data consumers registered for that event.

For best performance, events should be small in size. However, if the amount of data for an
event exceeds the maximum size defined in the registry, a driver can pass a WNODE_
EVENT_REFERENCE, which WMI uses to query for the related WNODE_EVENT_
ITEM. For more information about defining and generating WMI events, see the Kernel
mode Drivers Design Guide in the online DDK.

See Also
IoWMIWriteEvent, IRP_MN_ENABLE_EVENTS, WNODE_ALL_DATA, WNODE_
EVENT_REFERENCE, WNODE_HEADER, WNODE_SINGLE_INSTANCE, WNODE_
SINGLE_ITEM

1168 Part 8 WMI Kernel-Mode Data Providers

typedef struct tagWNODE_EVENT_REFERENCE
struct _WNODE_HEADER WnodeHeader;
GUID TargetGuid;
ULONG TargetDataBlockSize;
union

} ;

ULONG Targetlnstancelndex;
WCHAR TargetlnstanceName[];

A WNODE_EVENT _REFERENCE contains information that WMI can use to query for an
event that exceeds the event size limit set in the registry.

Members
WnodeHeader
Is a WNODE_HEADER structure that contains information common to all WNODE_XXX
structures, such as the buffer size, the GUID that represents a data block associated with a
request, and flags that provide information about the WNODE_XXX data being passed or
returned.

TargetGuid
Indicates the GUID that represents the event to query.

TargetDataBlockSize
Indicates the size of the event.

Targetlnstancelndex
Indicates the index into the driver's list of static instance names for the event. This member
is valid only if the event block was registered with static instance names and WNODE_
FLAGS_STATIC_INSTANCE_NAMES is set in WnodeHeader.Flags.

TargetlnstanceName
Indicates the dynamic instance name of the event as a counted Unicode string. This member
is valid only ifWNODE_FLAGS_STATIC_INSTANCE_NAMES is clear in Wnode
Header.Flags and the event block was registered with dynamic instance names.

Comments
If the amount of data for an event exceeds the maximum size set in the registry, a driver can
generate a WNODE_EVENT_REFERENCE that specifies a WNODE_EVENT_ITEM that

Chapter 4 WMI Structures 1169

WMI can query to obtain the event. For more information about defining and generating
WMI events, see the Kernel-Mode Drivers Design in the online DDK.

See Also
WNODE_EVENT_ITEM, WNODE_HEADER

typedef struct _WNODE_HEADER
ULONG BufferSize;
UINT_PTR ProviderId;
union {

} ;

ULONG64 HistoricalContext;
struct {

} ;

ULONG Version;
ULONG Linkage;

union {

} ;

HANDLE KernelHandle;
LARGE_INTEGER TimeStamp;

GUID Guid;
ULONG ClientContext;
ULONG Flags;

WNODE_HEADER, *PWNODE_HEADER;

A WNODE_HEADER is the first member of all other WNODE---XXX structures. It contains
information common to all such structures.

Members
BufferSize
Specifies the size in bytes of the nonpaged buffer to receive any WNODE_XXX data to
be returned, including this WNODE_HEADER, additional members of a WNODE_XXX
structure of the type indicated by Flags, and any WMI- or driver-determined data that
accompanies that structure.

Providerld
Reserved for WMI.

HistoricalContext
Reserved for WMI.

1170 Part 8 WMI Kernel-Mode Data Providers

Version
Reserved for WMI.

Linkage
Reserved for WMI.

TimeStamp
Indicates the system time a driver collected the WNODE_XXX data, in units of 100 nano
seconds since 11111601. A driver can call KeQuerySystemTime to obtain this value. If the
block is to be written to a log file (WNODE_FLAG_LOG_ WNODE), an NT driver might
also set WNODE_FLAG_VSE_TIMESTAMP in Flags to request the system logger to leave
the value of TimeStamp unchanged.

KernelHandle
Reserved for WMI.

Guid
Indicates the GVID that represents the data block associated with the WNODE_XXX to be
returned.

ClientContext
Reserved for WMI.

Flags
Indicates the type of WNODE_XXX structure that contains the WNODE_HEADER:

WNODE_FLAG_ALL_DATA
The rest of a WNODE_ALL_DATA structure follows the WNODE_HEADER in the buffer.

WMI sets this flag in the WNODE_HEADER it passes with an IRP _MN_QVERY _ALL_
DATA request.

A driver sets this flag in the WNODE_HEADER of an event that consists of all instances of
a data block. If the data block size is identical for all instances, a driver also sets WNODE_
FLAG_FIXED _INSTANCE_SIZE.

WNODE_FLAG_EVENT JTEM
A driver sets this flag to indicate that the WNODE_XXX structure was generated as an
event. This flag is valid only ifWNODE_FLAG_ALL_DATA, WNODE_FLAG_
SINGLE_INSTANCE, or WNODE_FLAG_SINGLE_ITEM is also set.

WNODE_FLAG_EVENT_REFERENCE
The rest of a WNODEJ;VENT_REFERENCE structure follows the WNODE_HEADER in
the buffer.

Chapter 4 WMI Structures 1171

A driver sets this flag when it generates an event that is larger than the maximum size
specified in the registry for an event. WMI uses the information in the WNODE_EVENT_
REFERENCE to request the event data and schedules such a request according to the value
of WNODE_FLAG_SEVERITY _MASK.

WNODE_FLAG_METHODJTEM
The rest of a WNODE_METHOD_ITEM structure follows the WNODE_HEADER in the
buffer.

WMI sets this flag in the WNODE_HEADER it passes with an IRP _MN_EXECUTE_
METHOD request.

WNODE_FLAG_SINGLEJNSTANCE
The rest of a WNODE_SINGLE_INSTANCE structure follows the WNODE_HEADER in
the buffer.

WMI sets this flag in the WNODE_HEADER it passes with a request to query or change an
instance.

A driver sets this flag in the WNODE_HEADER of an event that consists of a single
instance of a data block.

WNODE_FLAG_SINGLEJTEM
The rest of a WNODE_SINGLE_ITEM structure follows the WNODE_HEADER in the
buffer.

WMI sets this flag in the WNODE_HEADER it passes with a request to change an item.

A driver sets this flag in the WNODE_HEADER of an event that consists of a single data
item.

WNODE_FLAG_ TOO_SMALL
The rest of a WNODE_TOO_SMALL structure follows the WNODE_HEADER in the
buffer.

A driver sets this flag when it passes a WNODE_TOO_SMALL, indicating that the buffer is
too small for all of the WNODE_XXX data to be returned.

In addition, Flags might be set with one or more of the following flags that provide
additional information about the WNODE_XXX:

WNODE_FLAG_FIXED JNSTANCE_SIZE
All instances of a data block are the same size. This flag is valid only if WNODE_FLAG_
ALL_DATA is also set.

1172 Part 8 WMI Kernel-Mode Data Providers

WNODE_FLAGJNSTANCES_SAME
The number of instances and the dynamic instance names in a WNODE_ALL_DATA to
be returned are identical to those returned from the previous WNODE_ALL_DATA query.
This flag is valid only ifWNODE_FLAG_ALL_DATA is also set. This flag is ignored for
data blocks registered with static instance names.

For optimized performance, a driver should set this flag if it can track changes to the number
or names of its data blocks. WMI can then skip the processing required to detect and update
dynamic instance names.

WNODE_FLAG_STATICJNSTANCE_NAMES
The WNODE_XXX data to be returned does not include instance names.

WMI sets this flag before requesting WNODE_XXX data for data blocks registered with
static instance names. After receiving the returned WNODE_XXX from the driver, WMI
fills in the static instance names specified at registration before passing the returned
WNODE_XXX to a data consumer.

WNODE_FLAG_PDOJNSTANCE_NAMES
Static instance names are based on the device instance ID of the PD~ for the device.
A driver requests such names by setting WMIREG_FLAG_INSTANCE_PDO in the
WMIREGGUID it uses to register the block.

WMI sets this flag before requesting WNODE_XXX data for data blocks registered with
PDO-based instance names.

WNODE_FLAG_SEVERITY _MASK
The driver-determined severity level of the event associated with a returned WNODE_
EVENT_REFERENCE, with OxOO indicating the least severe and Oxff indicating the most
severe level.

WMI uses the value of this flag to prioritize its requests for the event data.

WNODE_FLAG_USE_ TIMESTAMP
The system logger should not modify the value of TimeStamp set by the driver.

An NT driver might also set Flags to one or more of the following values for event blocks to
be written to a system log file:

WNODE_FLAG_LOG_ WNODE
An event block is to be sent to the system logger. The event header is a standard WNODE_
HEADER structure. If the driver clears WNODE_FLAG_TRACED_GUID, the block will

Chapter 4 WMI Structures 1173

also be sent to WMI for delivery to any data consumers that have enabled the event. The
driver must allocate the WNODE_XXX from pool memory. WMI frees the memory after
delivering the event to data consumers.

WNODE_FLAG_ TRACED _ GUID
An event block is to be sent only to the system logger. It does not get sent to WMI data
consumers. The event header is an EVENT_TRACE_HEADER structure, declared in
evntrace.h, instead of a WNODE_HEADER. The driver must allocate memory for the
WNODE_XXX and free it after IoWMIWriteEvent returns. The driver can allocate such
memory either from the stack or, to minimize the overhead of allocating and freeing the
memory, from the driver's thread local storage if the driver creates and maintains its own
thread pool.

WNODE_FLAG_ USE_ GUID _PTR
The Guid member points to a GUID in memory, rather than containing the GUID itself.
The system logger dereferences the pointer before passing the data to the consumer. This
flag is valid only if WNODE_FLAG_LOG_ WNODE or WNODE_FLAG_TRACED_
GUID are also set.

WNODE_FLAG_USE_MOF _PTR
Data that follows the fixed members of a WNODE_XXX structure consists of an array of
MOF _FIELD structures, defined in evntrace.h, that contain pointers to data and sizes rather
than the data itself. The array can contain up to MAX_MOF _FIELD elements. The system
logger dereferences the pointers before passing the data to the consumer This flag is valid
only for blocks registered with WMIREG_FLAG_TRACED_GUID.

Comments
In an IRP _MN_CHANGE_XXX or IRP _MN_EXECUTE_METHOD request, BufferSize
in the IRP indicates the maximum size in bytes of the output buffer, while BufferSize in the
input WNODE_HEADER for such a request indicates the size in bytes of the input data in
the buffer.

See Also
IoWMIWriteEvent, KeQuerySystemTime, WNODE_ALL_DATA, WNODE_
EVENT_ITEM, WNODE_EVENT_REFERENCE, WNODE_METHOD_ITEM,
WNODE_SINGLE_INST ANCE, WNODE_SINGLE_ITEM, WNODE_ TOO_SMALL

1174 Part 8 WMI Kernel-Mode Data Providers

typedef struct tagWNODE_METHOD_ITEM
struct _WNODE_HEADER WnodeHeader;
ULONG OffsetlnstanceName;
ULONG Instancelndex;
ULONG Methodld;
ULONG DataBlockOffset;
ULONG SizeDataBlock;
UCHAR VariableData[];

WNODE_METHOD_ITEM, *PWNODE_METHOD_ITEM;

A WNODE_METHOD _ITEM indicates a method associated with an instance of a data
block and contains any input data for the method.

Members
WnodeHeader
Is a WNODE_HEADER structure that contains information common to all WNODE_XXX
structures, such as the buffer size, the GUID that represents a data block associated with a
request, and flags that provide information about the WNODE_XXX data being passed or
returned.

OffsetlnstanceName
Indicates the offset in bytes from the beginning of this structure to the dynamic instance
name of this instance, aligned on a USHORT boundary. This member is valid only if
WNODE_FLAG_STATIC_INSTANCE_NAMES is clear in WnodeHeader.Flags. If the
data block was registered with static instance names, WMI ignores OffsetlnstanceName.

Instancelndex
Indicates the index of this instance into the driver's list of static instance names for this data
block. This member is valid only if the data block was registered with static instance names
and WNODE_FLAG_STATIC_INSTANCE_NAME is set in WnodeHeader.Flags. If the
data block was registered with dynamic instance names, WMI ignores Instancelndex.

Methodld
Specifies the ID of the method to execute.

DataBlockOffset
Indicates the offset from the beginning of an input WNODE_METHOD _ITEM to input data
for the method, or the offset from the beginning of an output WNODE_METHOD_
ITEM to output data from the method.

Chapter 4 WMI Structures 1175

SizeDataBlock
Indicates the size of the input data in an input WNODE_METHOD _ITEM, or zero if there
is no input. In an output WNODE_METHOD_ITEM, SizeDataBlock indicates the size of
the output data, or zero if there is no output.

VariableData
Contains additional data, including the dynamic instance name if any, and the input for or
output from the method aligned on an 8-byte boundary.

Comments
WMI passes a WNODE_METHOD _ITEM with an IRP _MN_EXECUTE_METHOD
request to specify a method to execute in an instance of a data block, plus any input data
required by the method.

If a method generates output, a driver overwrites the input data with the output at Data
BlockOffset in the buffer at IrpStack->Parameters.WMI.Buffer, and sets SizeDataBlock
in the WNODE_METHOD_ITEM to specify the size of the output data.

See Also
WNODE_HEADER

typedef struct tagWNODE_SINGLE_INSTANCE {
struct _WNODE_HEADER WnodeHeader;
ULONG OffsetlnstanceName;
ULONG Instancelndex;
ULONG DataBlockOffset;
ULONG SizeDataBlock;
UCHAR VariableData[];

WNODE_SINGLE_INSTANCE. *PWNODE_SINGLE_INSTANCE;

A WNODE_SINGLE_INST ANCE contains values for all data items in one instance of a
data block.

Members
WnodeHeader
Is a WNODE_HEADER structure that contains information common to all WNODE_XXX
structures, such as the buffer size, the GUID that represents a data block associated with a
request, and flags that provide information about the WNODE_XXX data being passed or
returned.

1176 Part 8 WMI Kernel-Mode Data Providers

OffsetlnstanceName
Indicates the offset from the beginning of this structure to the dynamic instance name of this
instance, aligned on a USHORT boundary. This member is valid only if WNODE_FLAG_
STATIC_INSTANCE_NAMES is clear in WnodeHeader.Flags. If the data block was
registered with static instance names, WMI ignores OffsetlnstanceName.

Instancelndex
Indicates the index of an instance registered with static instance names. This member is
valid only ifWNODE_FLAG_STATIC_INSTANCE_NAME is set in WnodeHeader.
Flags. If the data block was registered with dynamic instance names, WMI ignores
InstanceIndex.

DataBlockOffset
Indicates the offset from the beginning of this structure to the beginning of the instance.

SizeDataBlock
Indicates the size of the data block for this instance.

VariableData
Contains additional data, including the dynamic instance name if any, padding so the
instance begins on an 8-byte boundary, and the instance of the data block to be returned.

Comments
WMI passes a WNODE_SINGLE_INSTANCE with an IRP _MN_CHANGE_SINGLE_
INSTANCE request to set read-write data items in an instance of a data block. A driver can
ignore values passed for read-only data items in the instance.

A driver fills in a WNODE_SINGLE_INSTANCE in response to an IRP _MN_QUERY_
SINGLE_INSTANCE request or to generate an event that consists of a single instance.

See Also
WNODE_EVENT_ITEM, WNODE_HEADER

typedef struct tagWNODE_SINGLE_ITEM
struct _WNODE_HEADER WnodeHeader;
ULONG OffsetInstanceName;
ULONG InstanceIndex;
ULONG ltemId;
ULONG DataBlockOffset;

ULONG SizeDataltem;
UCHAR VariableData[];

} WNODE_SINGLE_ITEM, *PWNODE_SINGLE_ITEM;

Chapter 4 WMI Structures 1177

A WNODE_SINGLE_ITEM contains the value of a single data item in an instance of a data block.

Members
WnodeHeader
Is a WNODE_HEADER structure that contains information common to all WNODE_XXX
structures, such as the buffer size, the GUID that represents a data block associated with a
request, and flags that provide information about the WNODE_XXX data being passed or
returned.

OffsetlnstanceName
Indicates the offset from the beginning of this structure to the dynamic instance name, if
any, aligned on a USHORT boundary. This member is valid only ifWNODE_FLAG_
STATIC_INSTANCE_NAMES is clear in WnodeHeader.Flags. If the data block was
registered with static instance names, WMI ignores OffsetInstanceName.

Instancelndex
Indicates the index into the driver's list of static instance names of this instance. This
member is valid only if the data block was registered with static instance names and
WNODE_FLAG_STATIC_INSTANCE_NAME is set in WnodeHeader.Flags. If the
data block was registered with dynamic instance names, WMI ignores InstanceIndex.

Itemld
Specifies the ID of the data item to set.

DataBlockOffset
Indicates the offset from the beginning of this structure to the new value for the data item.

SizeDataltem
Indicates the size of the data item.

VariableData
Contains additional data, including the dynamic instance name if any, padding so the data
value begins on an 8-byte boundary, and the new value for the data item.

Comments
WMI passes a WNODE_SINGLE_ITEM with an IRP _MN_CHANGE_SINGLE_ITEM
request to set the value of a data item in an instance of a data block.

1178 Part 8 WMI Kernel-Mode Data Providers

A driver builds a WNODE_SINGLE_ITEM to generate an event that consists of a single
data item.

See Also
WNODE_EVENT_ITEM, WNODE_HEADER

typedef struct tagWNODE_TOO_SMALL
struct _WNODE_HEADER WnodeHeader;
ULONG SizeNeeded;

} WNODE_TOO_SMALL, *PWNODE_TOO_SMALL;

A WNODE_TOO_SMALL indicates the size of the buffer needed to receive output from a
request.

Members
WnodeHeader
Is a WNODE_HEADER structure that contains information common to all WNODE_XXX
structures, such as the buffer size, the GUID that represents a data block associated with a
request, and flags that provide information about the WNODE_XXX data being passed or
returned.

SizeNeeded
Specifies the size of the buffer needed to receive all of the WNODE_XXX data to be
returned.

Comments
When the buffer for a WMI request is too small to receive all of the data to be returned,
a driver fills in a WNODE_TOO_SMALL structure to indicate the required buffer size.
WMI can then increase the buffer to the recommended size and issue the request again. A
driver is responsible for managing any side effects caused by handling the same request
more than once.

See Also
WNODE_HEADER

CHAPTER 5

WMI Event Trace Structures

This section describes the structure that is used to send WMI events to the WMI event
logger.

typedef struct _EVENT_TRACE_HEADER
USHORT Size;
UCHAR HeaderType;
UCHAR MarkerFlags;
union {

} ;

ULONG Version;
struct {

UCHAR Type;
UCHAR Level;
USHORT Version;

Class;

ULONGLONG ThreadId;
LARGE_INTEGER TimeStamp;
union {

} ;

GUID Guid;
ULONGULONG GuidPtr;

union {
struct {

} ;

ULONG ClientContext;
ULONG Flags;

struct {

} ;

ULONG KernelTime;
ULONG UserTime;

ULONG64 ProcessorTime;
EVENT_TRACE_HEADER; *PEVENT_TRACE_HEADER;

1179

1180 Part 8 WMI Kernel-Mode Data Providers

An EVENT_TRACE_HEADER structure is used to pass a WMI event to the WMI event
logger. It is overlaid on the WNODE_HEADER portion of the WNODE_EVENT_ITEM
passed to IoWMIFireEvent. Information contained in the EVENT_TRACE_HEADER is
written to the WMI log file.

Members
Size
Specifies the size in bytes of this structure. This value should be set to - SIZEOF(EVENT_
TRACE_HEADER) plus the size of any driver data appended to the end of this structure.
(Note: The size of this member is smaller than the size of the Size member of the WNODE_
HEADER structure on which this structure is overlaid.)

HeaderType
Reserved for internal use.

MarkerFlags
Reserved for internal use.

Version
Drivers can use this member to store version information. This information is not interpreted
by the event logger.

Class
Type
Trace event type. This can be one of the predefined EVENT _ TRACE_ TYPE_Xxx values
contained in evntrace.h or can be a driver defined value. Callers are free to define private
event types with values greater than the reserved values in evntrace.h.

Level
Trace instrumentation level. A driver defined value meant to represent the degree of detail
of the trace instrumentation. Drivers are free to give this value meaning. This value should
be zero by default. More information on how consumers can request different levels of trace
information will be provided in a future version of the documentation.

Version
Version of trace record. Version information that can be used by the driver to track different
event formats.

Threadld
Reserved for internal use.

Chapter 5 WMI Event Trace Structures 1181

TimeStamp
Indicates the time the driver event occurred. This time is indicated in units of 100 nano
seconds since 111/1601. If the WNODE_FLAG_USE_TIMESTAMP is set in Flags, the
system logger will leave the value of TimeStamp unchanged. Otherwise, the system logger
will set the value of TimeStamp at the time it receives the event. A driver can call
KeQuerySystemTime to set the value of TimeStamp.

Guid
Indicates the GUID that identifies the data block for the event.

GuidPtr
If the WNODE_FLAG_USE_GUID_PTR is set in Flags, GuidPtr points to the GUID that
identifies the data block for the event.

ClientContext
Reserved for internal use.

Flags
Provides information about the structure's contents. For information on EVENT_TRACE_
HEADER Flags values, see the Flags description in WNODE_HEADER in Chapter 4.

KernelTime
Reserved for internal use.

UserTime
Reserved.

ProcessorTime
Reserved for internal use.

Comments
A driver which supports trace events will use this structure to report events to the WMI
event logger. Trace events should not be reported until the driver receives a request to
enable events and the control GUID is one the driver supports. The driver should initialize
an EVENT_TRACE_HEADER structure, fill in any user defined event data at the end and
pass a pointer to the EVENT_TRACE_HEADER to IoWmiWriteEvent.. The driver
should continue reporting trace events until it receives a request to disable the control GUID
for the trace events.

See Also
WNODE_HEADER, WNODE_EVENT_ITEM, IoWMIWriteEvent

Part No. 097-0002734

Driver Development
Reference Volume 2

The essential reference to kernel-mode drivers

Developing reliable drivers-the most essential part of any
operating system-requires good documentation. Open
this volume to get complete, authoritative reference
information about kernel-mode drivers, including drivers
for input devices, devices that use serial and parallel ports,
and devices that use USB, IEEE 1394, and PCMCIA ports.

mspress.microsoft.com

Part No. 097-0002734

Driver Development
Reference Volume 2

The essential reference to kernel-mode drivers

Developing reliable drivers-the most essential part of any
operating system-requires good documentation. Open
this volume to get complete, authoritative reference
information about kernel-mode drivers, including drivers
for input devices, devices that use serial and parallel ports,
and devices that use USB, IEEE 1394, and PCMCIA ports.

mspress.microsoft.com

.icrosott~
-~---- _.- -_ .. - -~--------:

