
Part of the five-volume
. Networking Services Developer's Reference Ubrary

The essential reference set for developing with
Microsoft® Windows® networking technologies

David Iseminger
Series Editor

Windows® Sockets
andQOS

riifDr I i bra ry

David Iseminger
Series Editor

Windows®Sockets
andQOS

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2000 by Microsoft Corporation; portions © 2000 by David Iseminger.

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or
by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Iseminger, David, 1969-

Networking Services Developer's Reference Library / David Iseminger.
p. cm.

ISBN 0-7356-0993-4
1. Application Software--Development. 2. Microsoft Windows (Computer file). 3.

Computer networks. I. Title.
QA76.76.A65 184 2000
005.4'4769--dc2l 00-020241

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 WCWC 5 4 3 2 1 0

Distributed in Canada by Penguin Books Canada Limited.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further informa
tion about international editions, contact your local Microsoft Corporation office or contact Microsoft
Press International directly at fax (425) 936-7329. Visit our Web site at mspress.microsoft.com.

Intel is a registered trademark of Intel Corporation. Active Directory, BackOffice, FrontPage, Microsoft,
Microsoft Press, MSDN, MS-DOS, Visual Basic, Visual C++, Visual FoxPro, Visual InterDev, Visual
J++, Visual SourceSafe, Visual Studio, Win32, Windows, and Windows NT are either registered trade
marks or trademarks of Microsoft Corporation in the United States and/or other countries. Other product
and company names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, people, and events depicted herein are fictitious.
No association with any real company, organization, product, person, or event is intended or should
be inferred.

Acquisitions Editor: Ben Ryan
Project Editor: Wendy Zucker

Part No. 097-0002783

Acknowledgements
First, thanks to Ben Ryan at Microsoft Press for continuing to share my enthusiasm
about the series. Many thanks to Ben and Steve Guty for also managing the business
details associated with publishing this series. We're just getting started!

Wendy Zucker again kept step with the difficult and tight schedule at Microsoft Press
and orchestrated things in the way only project editors can endure. John Pierce was
also instrumental in seeing the publishing process through completion, many thanks to
both of them. The cool cover art that will continue through the series is directed by Greg
Hickman-thanks for the excellent work. I'm a firm believer that artwork and packaging
are integral to the success of a project.

Thanks also to the marketing team at Microsoft Press that handles this series: Cora
McLaughlin and Cheri Chapman on the front lines and Jocelyn Paul each deserve
recognition for their coordination efforts with MSDN, openness to my ideas and
suggestions, creative marketing efforts, and other feats of marketing ingenuity.

On the Windows SDK side of things, thanks again to Morgan Seeley for introducing me
to the editor at Microsoft Press, and thereby routing this series to the right place.

Thanks also to Margot (Maley) Hutchison for doing all those agent-ish things so well.

Author's Note In Part 2 you'll see some code blocks that have unusual margin
settings, or code that wraps to a subsequent line. This is a result of physical page
constraints of printed material; the original code in these places was indented too much
to keep its printed form on one line. I've reviewed every line of code in this library in an
effort to ensure it reads as well as possible (for example, modifying comments to keep
them on one line, and to keep line-delimited comment integrity). In some places,
however, the word wrap effect couldn't be avoided. As such, please ensure that you
check closely if you use and compile these examples.

v

Contents

Acknowledgements .. iii

Part 1

Chapter 1: Getting Around in the Networking Services Library ... 1
How the Networking Services Library Is Structured .. 2

How the Networking Services Library Is Designed ... 3

Chapter 2: What's In This Volume? .. 5
Winsock ... 6

Quality of Service .. 7

Chapter 3: Using Microsoft Reference Resources .. 9
The Microsoft Developer Network .. 10

Comparing MSDN with MSDN Online ... 11

MSDN Subscriptions ... 13

MSDN Library Subscription .. 13

MSDN Professional Subscription ... 14

MSDN Universal Subscription .. 14

Purchasing an MSDN Subscription .. 14

Using MSDN .. 15

Navigating MSDN ... 16

Quick Tips .. 18

Using MSDN Online .. 20

Navigating MSDN Online ... 22

MSDN Online Features .. 23

MSDN Online Registered Users .. 29

The Windows Programming Reference Series , ... 30

Chapter 4: Finding the Developer Resources You Need .. 31
Developer Support .. 31

Online Resources ... 33

Internet Standards .. 34

Learning Products .. 35

Conferences ... 37

Other Resources .. 37

vi Volume 1 Winsock and QOS

Chapter 5: Writing Great IrDA Applications (with Winsock) .. 39
What Is an Ad-Hoc Networking-Enabled Application? .. 39

What Is IrDA? ... 40

What Is IrDA-C (Previously Known as IrBus)? .. 40

What Is Unique about IrDA? .. 41

IrDA Core Protocols and Services ... 41

Serial IrDA (SIR) Physical Layer (115 Kb/s) ... 41

Fast IrDA (FIR) Physical Layer (4 Mb/s) .. .41

IrLAP Data Link Layer ... 42

IrLMP and TinyTP ... 42

IrCOMM ... 43

IrCOMM Modes .. 44

No IrCOMM Virtual Serial Ports on Windows 2000 .. 45

Windows 2000 Support for IrCOMM Through Winsock .. 45

IrDA and the Windows Sockets API. .. 46

Talking to Non-Windows Devices ... 46

Application Addressing ... 46

Data Transfer and Connection Close ... 47

IrDA and Winsock Reference ... 49

WSAStartup ... 49

af_irda.h ... 49

socket ... 49

SOCKADDR_IRDA Structure .. 50

bind .. 50

listen ... 51

accept. .. 51

send and recv .. 52

closesocket .. 52

getsockopt(" IRLMP _ENUMDEVICES,,) and connectO 52
lAS ... 54

IrCOMM Client ... 57

Windows 2000 IrDA Architecture ... 60

IrDA Hardware Drivers .. 60

Windows 2000 Multiple-Adapter Support ... 61

Contents vii

Part 2

Chapter 6: Winsock 2 API Overview ... 63
Welcome to Windows Sockets 2 .. 63

Using the Windows Sockets 2 API Document .. 63

Overview of Windows Sockets 2 ... 63

Windows Sockets 2 Features ... 64

Conventions for New Functions ... 65

Microsoft Extensions and the Windows Sockets 2 API ... 65

Socket Handles for Windows Sockets 2 .. 65

New Concepts, Additions, and Changes for Windows Sockets 2 66

Windows Sockets 2 Architecture ... 66

Simultaneous Access to Multiple Transport Protocols ... 66

Backward Compatibility for Windows Sockets 1.1 Applications 67

Making Transport Protocols Available to Windows Sockets 69

Layered Protocols and Protocol Chains ... 69

Using Multiple Protocols ... 70

Multiple Provider Restrictions on Select.. ... 71

Function Extension Mechanism .. 72

Debug and Trace Facilities .. 72

Name Resolution ... 73

Overlapped I/O and Event Objects ... 73

Event Objects ... 74

Receiving Completion Indications .. 75

Asynchronous Notification Using Event Objects ... 76

Flow Specification Quality of Service .. 77

QOS Templates , .. 77

Default Values .. 77

Socket Groups ... 77

Shared Sockets ... 77

Enhanced Functionality During Connection Setup and Teardown 78

Extended Byte-Order Conversion Routines .. 79

Support for Scatter/Gather I/O in the APi .. 79

Protocol-Independent Multicast and Multipoint ... 79

Summary of New Socket Options ... 80

Summary of New Socket loct! Opcodes .. 81

Summary of New Functions .. 82

Windows Sockets Programming Considerations ... 85

Deviation from Berkeley Sockets ... , 85

viii Volume 1 Winsock and QOS

Socket Data Type .. 85

Select and FD _ * ... 86

Error Codes-errno, h_errno and WSAGetLastError .. 86

Pointers .. 87

Renamed Functions ... 87

Maximum Number of Sockets Supported .. 87

Include Files ... 88

Return Values on Function Failure .. 88

Service Provided Raw Sockets .. 88

Byte Ordering .. 89

Windows Sockets Compatibility Issues .. 89

Default State for a Socket's Overlapped Attribute ... 90

Windows Sockets 1.1 Blocking Routines and EINPROGRESS 90

Graceful Shutdown, Linger Options, and Socket Closure .. 92

Protocol-Independent Out-of-Band Data ... 93

Summary of Windows Sockets 2 Functions ... 96

Socket Functions ... 96

Microsoft Windows-Specific Extension Functions ... 97

Registration and Name Resolution .. 99

Protocol-Independent Name Resolution ... 100

Name Resolution ModeL .. 100

Summary of Name Resolution Functions .. 103

Name Resolution Data Structures ... 105

Compatible Name Resolution for TCP/IP in the Windows Sockets 1.1 APi 108

Basic Approach for GetXbyY in the APi .. 109

getprotobyname and getprotobynumber Functions in the API 109

getservbyname and getservbyport Functions in the APi 109

gethostbyname Function in the API. .. 110

gethostbyaddr Function in the API. .. 110

gethostname Function in the API. .. 111

Multipoint and Multicast Semantics .. 111

Multipoint Taxonomy ... 111

Windows Sockets 2 Interface Elements for Multipoint and Multicast 112

Attributes in WSAPROTOCOL_INFO Structure .. 113

Flag Bits for WSASocket. ... 113

SIO_MUL TIPOINT _LOOPBACK Command Code for WSAloctl. 114

SIO_MUL TICAST _SCOPE Command Code forWSAloctl 114

Semantics for Joining Multipoint Leaves .. 114

Using WSAJoinLeaf ... 115

Contents ix

Semantic Differences Between Multipoint Sockets and Regular Sockets 116

How Existing Multipoint Protocols Support These Extensions 117

I P Multicast ... 117

ATM Point to Multipoint .. 1.18

Additional Windows Socket Information ... 119

Windows Sockets 2 API Header File-Winsock2.h .. 119

Socket Options Specific to Microsoft Service Providers ... 119

Socket Option for Windows NT 4.0 Only .. 119

Socket Option for Windows NT 4.0 and Windows 95 .. 120

Additional Documentation ... 121

Chapter 7: Error Codes in the Winsock API ... 123
Error Codes .. 123

Chapter 8: Winsock 2 Functions ... 133
Windows Sockets 2 Functions ... 133

Chapter 9: Winsock 2 Structures and Enumerations ... ; 377
Windows Sockets Structures in the APi ... 377

Windows Sockets Enumeration in the APi .. .413

Chapter 10: Winsock 2 SPI Overview ... 415
Welcome to Windows Sockets 2 SPI .. .415

Using the SPI Document ... 415
Overview of the Windows Sockets 2 SPI .. 415

Windows Sockets 2 SPI Features .. 416

Microsoft Extensions and the Windows Sockets 2 SPI417

Socket Handles for the Windows Sockets 2 SPI .. .417

Windows Sockets 2 Architectural Overview ... 418

Windows Sockets 2 as a WOSA Component .. .418

Windows Sockets 2 DLLs .. 419

Function Interface Model ... 419

Naming Conventions ... 420

Windows Sockets 2 Service Providers .. 420

Transport Service Providers420

Namespace Service Providers ... 422

Windows Sockets 2 Identifiers424

Data Transport Providers : .. 424

Transport Division of Responsibilities Between DLL and Service Providers424

Transport Mapping Between API and SPI Functions ... 426

x Volume 1 Winsock and QOS

Function Extension Mechanism in the SPI .. 427

Transport Configuration and Installation .. 428

Name Resolution Providers , .. 429

Name Resolution Model for the SPI .. 429

Name Resolution Division of Responsibilities Between DLL and Service
Providers .. 432

Name Resolution Mapping Between API and SPI Functions 433

Name Resolution Configuration and Installation .. .433

Windows Sockets 2 Transport Provider Requirements ... 434

Service Provider Activation ... 434

Initialization .. 434
Cleanup .. 436

Error Reporting and Parameter Validation .. 436

Byte Ordering Assumptions .. 436

Socket Creation and Descriptor Management.. .. 437
Descriptor Allocation .. 437

Socket Attribute Flags and Modes .. .438

Closing Sockets .. ,· 438

Blocking Operations .. 438

Pseudo vs. True Blocking .. 439

Blocking Hook .. 439

Canceling Blocking Operations .. 440

Event Objects in the Windows Sockets 2 SPI .. 440

Creating Event Objects .. 440

Using Event Objects .. 441

Destroying Event Objects .. 441

Notification of Network Events .. 441
Selects ... 442

Windows Messages ... 442

Event Object Signaling ... 442

Socket Groups in the Windows Sockets 2 SPI .. .442

Socket Group Operations .. 442

Required Socket Grouping Behavior .. .442

Recommended Socket Grouping Behavior ... 442

Quality of Service in the Windows Sockets 2 SPI.. .. .443

Socket Connections on Connection-Oriented Protocols .. 443

Binding to a Local Address .. 443

Protocol Basics: Listen, Connect, Accept .. 443

Determining Local and Remote Names ... 444

Contents xi

Enhanced Functionality at Connect Time .. '"444
Connection Shutdown .. 445

Socket Connections on Connection less Protocols .. 448
Connecting to a Default Peer ... 448
Reconnecting and Disconnecting .. .448
Using Sendto While Connected .. .448

Socket I/O .. 448
Blocking Input/Output ... 449
Nonblocking Input/Output .. .449

Overlapped Input/Output .. 449
Support for Scatter/Gather Input/Output in the SPI .. .453
Out-of-Band Data in the SPI .. 453

Shared Sockets in the SPI .. 455
Multiple Handles to a Single Socket.. .. .456
Reference Counting ... 456
Precedence Guidelines .. 457

Protocol-Independent Multicast and Multipoint in the SPI457
Multipoint Taxonomy and Glossary458
Multipoint Attributes in the WSAPROTOCOL_INFOW Structure459
Multipoint Socket Attributes459
SIO_MULTIPOINT _LOOP BACK loctl .. 460
SIO_MUL TICAST ~SCOPE loctl460
SPI Semantics for JOining Multipoint Leaves .. .460
Using WSPJoinLeaf ... 461
Semantic Differences Between Multipoint Sockets and Regular Sockets
in the SPI .. 462

Socket Options and 10CTLs463
Summary of Socket loctl Opcodes .. .465

Summary of SPI Functions .. 466
Generic Data Transport Functions .. .466
Upcalls Exposed by Windows Sockets 2 DLL ... 468
Installation and Configuration Functions .. 471

Name Resolution Service Provider Requirements .. .471
Summary of Namespace Provider Functions .. 471

Namespace Provider Configuration and Installation .. 472
Namespace Provider Initialization and Cleanup472
Service Installation in the Windows Sockets 2 SPI472
Service Query ... 473
Helper Functions in the SPI ... 473

xii Volume 1 Winsock and QOS

Name Resolution Data Structures in the SPI.474

Compatible Name Resolution for TCP/IP in the Windows Sockets 1.1 SPI 477

Basic Approach for getXbyY in the SPI ... 478

getprotobyname and getprotobynumber Functions in the SPI 478

getservbyname and getservbyport Functions in the SPI 478

gethostbyname Function in the SPI ... 479

gethostbyaddr Function in the SPI ... 479

gethostname Function in the SPI .. .480

Sample Code for a Service Provider .. 480

Additional Windows Sockets 2 SPI Concerns ... 495

Service Provider Ordering ... 495

Windows Sockets SPI Header File - Ws2spLh ... 496

Chapter 11 : Winsock 2 SPI Reference ... 497
Winsock 2 SPI Reference ... 497

Chapter 12: Winsock 2 Protocol-Specific Annex .. 657
Using the Annex .. 657

Overview of Windows Sockets 2 ... 657

Microsoft Extensions and Windows Sockets 2 ... 658

Socket Handles for Windows Sockets 2 .. 658

TCP/IP .. 658

TCP/IP Introduction ... 658

TCP/IP Overview .. 659

TCP/IP Data Structures .. 659

TCP/IP Controls .. 660

UNIX loctls ... 660

TCP/IP Socket Options .. 660

TCP/IP Function Details .. 663

Multicast ... 663

TCP/IP Raw Sockets ... 663

IPv6 Support .. 664

Text Representation of IPv6 Addresses .. 665

TCP/IP Header File ... 666

IPXlSPX ... 666
IPXlSPX Introduction .. 666

IPXlSPX Overview .. 666

AF _I PX Address Family ... 667

IPX Family of Protocol Identifiers ... 667

Broadcast to Local Network ... 668

Contents xiii

All Routes Broadcast. ... 668

Directed Broadcast ... 668

About Media Packet Size ... 669

How Packet Size Affects Protocols .. 669

IPXlSPX Data Structures .. 670

I PXlSPX Controls .. 674

NSPROTO_IPX Socket Options .. 675

DECnet ... 676

DECnet Overview .. 676

DNPROTO_NSP Protocol Family .. 677

AF _DECnet Address Families ... 677

SOCK_SEQPACKET Socket Type .. 678

DECnet Data Structures .. 678

Manifest Constants (Winsock2.h) .. 678

Manifest Constants (Ws2dnet.h) .. 678

Data Structures (Ws2dnet.h) .. 678

DECnet Function Details ... 680

Connections Using AcceptJWSAAcceptJWSPAccept .. 680

Structure Information for BindIWSPBind .. 682

Connections Using ConnectJWSAConnectJWSPConnect 682

Addressing with GetPeerNameIWSPGetPeerName ... 684

Receiving Local Name with getsocknameIWSPGetSockName 684

Using GetsockoptJWSPGetSockOpt .. 685

Using SocketJWSASocketJWSPSocket. ... 686

DECnet Out-of-Band Data ... 686

DECnet-Specific Extended Functions Identifiers .. 686

dnet_addr ... 687

dnet_eof ... 687

dnet_getacc .. 688

dnet_getalias .. 688

dnet_htoa ... 688

dnet_ntoa ... 689

getnodeadd .. 689

getnodebyaddr ... 689

getnodebyname .. 690

getnodename ... 690

DECnet Header File .. 691

Open Systems Interconnection (OSI) ... 691

OSI Introduction .. 691

xiv Volume 1 Winsock and QOS

International Organization for Standardization (lOS) .. 691

OSI Expedited Data ... 692

ISO Qualified Data ... 692

ISO Reset ..•... 692

OSI Quality of Service .. 692

Option Profiles ... 692

Address Format .. ~ 693

OSI Data Structures .. 693

OSI Controls .. 693

loctls ... 694

Socket Options ... 694

OSI Function Specifics .. 695

Quality of Service ... 695

OSI Header File .. 695

ATM-Specific Extensions ... 695

ATM Introduction ... 695

ATM Overview ... 696

ATM Data Structures .. 696

Using the ATM_ADDRESS Structure .. 698

ATM_BLU Structure and Associated Manifest Constants 699

ATM_BHU Structure and Associated Manifest Constants 701

ATM Controls .. 701

ATM Function Specifics .. 702
ATM-Specific Quality of Service Extension .. 702

AAL Parameters ... 703

ATM Traffic Descriptor ... 704

Broadband Bearer Capability ... 705

Broadband High Layer Information .. 706

Broadband Lower Layer Information ... 706

Called Party Number .. 707

Called Party Subaddress ... 707

Calling Party Number ... 707

Calling Party Subaddress .. 708

Quality of Service Parameter ... 708

Transit Network Selection .. 708

Cause ... 709

ATM Header File ... 711

Contents xv

Other Windows Sockets 2 Considerations 711
Secure Sockets Layer (SSL) ... 711
RSVP ... 711

Chapter 13: aos Overview .. 713
QOS Documentation Structure ... 713

Determining Which Discussion Is for You ... 714
Additional Information on QOS .. 715

About Quality of Service 715
Introduction to QOS ... 715

Quality of Service Defined 716
Windows 2000 Quality of Service Defined 716
What QOS Solves .. 716
How Windows 2000 QOS Works ... 718
Windows 98 QOS Notes .. 718

QOS Header Files ... 720
QOS Components ... 720

Application-Driven QOS Components .. 721
Network-Driven QOS Components .. 724
Policy-Driven QOS Components .. 726

RSVP and QOS .. 729

Chapter 14: aos Programming ... 731
Basic QOS Operations ... 731

QOS-Enabling Your Application .. 731
Opening a QOS-Enabled Socket ... 732
Invoking the RSVP SP ... 732

Providing the RSVP SP with QOS-specific Parameters 733
Receiving QOS-Enabled Data ... 734
Sending QOS-Enabled Data .. 735
Closing the QOS Connection 736

QOS Templates 736
Enumerating Available QOS Templates .. 737
Applying a QOS Template ... 737
Installing a QOS Template 738
Removing a QOS Template ... 738
Built-in QOS Templates .. 738

RSVP SP Error Codes .. 739
Error Codes .. 739
Error Values ... 740

xvi Volume 1 Winsock and QOS

Service Types .. 749

Primary Service Types .. 750

BEST EFFORT .. 750

CONTROLLED LOAD .. 750

GUARANTEED .. 750

QUALITATiVE .. 751

Secondary Service Types ... 751
SERVICETYPE_NOTRAFFIC ... 751

SERVICETYPE_GENERAL_INFORMATION ... 752

SERVICETYPE_NOCHANGE ... 752

SERVICE_NO_ TRAFFiC_CONTROL ... 752
SERVICE_NO_QOS_SIGNALING .. 753

Using Service Types ... 753

Directional Implications of Service Types .. 753

Examples of Setting the Service Type ... 754

Using the ProviderSpecific Buffer .. 755

Structure of the ProviderSpecific Buffer ... 755

Use of the ProviderSpecific Buffer as a Receiver .. 755

Use of the ProviderSpecific Buffer as a Sender .. 755

Understanding Traffic Control .. 756

How the RSVP SP Invokes TC .. 756

Using SIO_CHK_QOS ... 757

Disabling Traffic Control ... 758
QOS Events ... 758

Listening for FD_QOS Events ... 759

Using WSAEventSelect or WSAAsyncSelect.. .. 759

Using Overlapped WSAloctl(SIO_GET _QOS) .. 759

QOS Event Codes ... 760

RSVP SP and RSVP .. 761

Basic RSVP Operations .. ; 761

Invoking RSVP ... 761

Using the RSVP _RESERVE_INFO Object.. .. 762

Confirming RSVP Reservations ... 762

Disabling RSVP Signaling .. , 763

RSVP Reservation Styles ... 763

Base RSVP Reservation Styles ... 763

Default RSVP Filter Style Settings ... 764

Overriding Default RSVP Filter Style Settings ... 765

Mapping RSVP SP Parameters to RSVP ... 766

Contents xvii

RSVP PATH and RESV Messages .. 767
Tspec, FlowSpec, and Adspec ... 769

Mapping QOS Call Sequences to RSVP .. 771
Sending Applications .. 771

Receiving Applications ... 775
Receiver Reservation Semantics .. 778

Using WSAConnect to Join Unicast RSVP Sessions .. 778
Using WSAJoinLeaf to Join Multicast RSVP Sessions .. 780
Use of Sendto and WSASendTo by Multicast Senders 781

Using WSAloctl(SIO_SET_QOS) During RSVP Sessions 781

Chapter 15: QOS API Reference .. 783
QOS Functions ... 783
QOS Structures .. 791

QOS Objects " .. "." .. ,.,., ... 798

Chapter 16: Traffic Control API Reference ... 807
Traffic Control Functions .. 807

Entry Points Exposed by Clients of the Traffic Control Interface 829
Traffic Control Structures ... 834
Traffic Control Objects .. 855

Chapter 17: Local Policy Module API Reference ... 859
LPM Functions .. 859
LPM Structures ... 875

Part 3

Index: Networking Services Programming Elements - Alphabetical Listing 879

Part 1

CHAPTER 1

Getting Around in the Networking
Services Library

Networking is pervasive in this digital age in which we live. Information at your fingertips,
distributed computing, name resolution, and indeed the entire Internet-the advent
of which will be ascribed to our generation for centuries to come-imply and require
networking. Everything that has become the buzz of our business and personal lives,
including e-mail, cell phones, and Web surfing, is enabled by the fact that networking
has been brought to the masses (and we've barely scraped the beginning of the trend).
You, the network-enabled Windows application developer, need to know how to lasso
this all-important networking services capability and make it a part of your application.
You've come to the right place.

Networking isn't magic, but it can seem that way to those who aren't accustomed to
it (or to the programmer who isn't familiar with the technologies or doesn't know how to
make networking part of his or her application). That's why the Networking Services
Developer's Reference Library isn't just a collection of programmatic reference
information; it would be only half-complete if it were. Instead, the Networking Services
Library is a collection of explanatory and reference information that combine to provide
you with the complete set that you need to create today's network-enabled Windows
application.

The Networking Services Library is the comprehensive reference guide to network
enabled application development. This library, like all libraries in the Windows
Programming Reference Series (WPRS), is designed to deliver the most complete,
authoritative, and accessible reference information available on a given subject of
Windows network programming-without sacrificing focus. Each book in each library is
dedicated to a logical group of technologies or development concerns; this approach has
been taken specifically to enable you to find the information you need quickly, efficiently,
and intuitively.

In addition to its networking services development information, the Networking Services
Library contains tips designed to make your programming life easier. For example,
a thorough explanation and detailed tour of MSDN Online is included, as is a section
that helps you get the most out of your MSDN subscription. Just in case you don't have
an MSDN subscription, or don't know why you should, I've included information about
that too, including the differences between the three levels of MSDN subscription, what
each level offers, and why you'd want a subscription when MSDN Online is available
over the Internet.

2 Volume 1 Winsock and QOS

To ensure that you don't get lost in all the information provided in the Networking
Services Library, each volume's appendixes provide an all-encompassing programming
directory to help you easily find the particular programming element you're looking for.
This directory suite, which covers all the functions, structures, enumerations, and other
programming elements found in network-enabled application development, gets you
quickly to the volume and page you need, saving you hours of time and bucketsful
of frustration.

How the Networking Services Library Is Structured
The Networking Services Library consists of five volumes, each of which focuses on
a particular aspect of network programming. These programming reference volumes
have been divided into the following:

• Volume 1: Winsock and QOS

• Volume 2: Network Interfaces and Protocols

• Volume 3: RPC and WNet

• Volume 4: Remote Access Services

• Volume 5: Routing

Dividing the Networking Services Library into these categories enables you to quickly
identify the Networking Services volume you need, based on your task, and facilitates
your maintenance of focus for that task. This approach enables you to keep one
reference book open and handy, or tucked under your arm while researching that aspect
of Windows programming on sandy beaches, without risking back problems (from toting
around all 3,000+ pages of the Networking Services Library) and without having to
shuffle among multiple less-focused books.

Within the Networking Services Library-and in fact, in a" WPRS Libraries-each
volume has a deliberate structure. This per-volume structure has been'created to further
focus the reference material in a developer-friendly manner, to maintain consistency
within each volume and each Library throughout the series, and to enable you to easily
gather the information you need. To that end, each volume in the Networking Services
Library contains the following parts:

• Part 1: Introduction and Overview

• Part 2: Guides, Examples, and Programmatic Reference

• Part 3: Intelligently Structured Indexes

Chapter 1 Getting Around in the Networking Services Library 3

Part 1 provides an introduction to the Networking Services Library and to the WPRS
(what you're reading now), and a handful of chapters designed to help you get the most
out of networking technologies, MSDN, and MSDN Online. MSDN and WPRS Libraries
are your tools in the developer process; knowing how to use them to their fullest will
enable you to be more efficient and effective (both of which are generally desirable
traits). In certain volumes (where appropriate), I've also provided additional information
that you'll need in your network-enabled development efforts, and included such
information as concluding chapters in Part 1. For example, Volume 3 includes a chapter
that explains terms used throughout the RPC development documentation; by putting
it into Chapter 5 of that volume, you always know where to go when you have a question
about an RPC term. Some of the other volumes in the Networking Services Library
conclude their Part 1 with chapters that include information crucial to their volume's
contents, but I've been very selective about including such information. Publishing
constraints have limited the amount of information I can provide in each volume
(and in the library as a whole), so I've focused on the priority: getting you the most
useful information possible within the number of pages I have to work with.

Part 2 contains the networking reference material particular to its volume. You'll notice
that each volume contains much more than simple collections of function and structure
definitions. A comprehensive reference resource should include information about how
to use a particular technology, as well as definitions of programming elements.
Consequently, the information in Part 2 combines complete programming element
definitions with instructional and explanatory material for each programming area.

Part 3 is a collection of intelligently arranged and created indexes. One of the biggest
challenges of the IT professional is finding information in the sea of available resources
and network programming is probably one of the most complex and involved of any
development discipline. In order to help you get a handle on network programming
references (and Microsoft technologies in general), Part 3 puts all such information into
an understandable, manageable directory (in the form of indexes) that enables you
to quickly find the information you need.

How the Networking Services Library Is Designed
The Networking Services Library (and all libraries in the WPRS) is designed to deliver
the most pertinent information in the most accessible way possible. The Networking
Services Library is also designed to integrate seamlessly with MSDN and MSDN Online
by providing a look and feel consistent with their electronic means of disseminating
Microsoft reference information. In other words, the way a given function reference
appears on the pages of this book has been designed specifically to emulate the way
that MSDN and MSDN Online present their function reference pages.

The reason for maintaining such integration is simple: to make it easy for you to use the
tools and get the ongoing information you need to create quality programs. Providing a
"common interface" among reference resources allows your familiarity with the
Networking Services Library reference material to be immediately applied to MSDN or
MSDN Online, and vice-versa. In a word, it means consistency.

4 Volume 1 Winsock and aos

You'll find this philosophy of consistency and simplicity applied throughout WPRS
publications. I've designed the series to go hand-in-hand with MSDN and MSDN Online
resources. Such consistency lets you leverage your familiarity with electronic reference
material, then apply that familiarity to enable you to get away from your computer if you'd
like, take a book with you, and-in the absence of keyboards and e-mail and upright
chairs-get your programming reading and research done. Of course, each of the
Networking Services Library volumes fits nicely right next to your mouse pad as well,
even when opened to a particular reference page.

With any job, the simpler and more consistent your tools are, the more time you can
spend doing work rather than figuring out how to use your tools. The structure and
design of the Networking Services Library provide you with a comprehensive,
presharpened toolset to build compelling Windows applications.

CHAPTER 2

What's In This Volume?

Volume 1 of the Networking Services Developer's Reference Library focuses on what
many developers think of first when network programming comes to mind: Winsock.
Quality of Service (QOS) is implemented through calls to Winsock functions, so it only
makes sense to keep these two technologies together in one volume-enabling you to
read about a given Winsock function when learning about QOS, then to flip back to the
Winsock. section and get the details on that particular Winsock function. If you've read
through the first chapter in any of the WPRS Libraries (including this one), you'll know
that my primary objective is to ensure that these volumes provide you with the
information you need in as convenient and useful a way as possible. Keeping QOS with
Winsock (in the same volume) is one way I've tried to achieve that objective in this
library. I've also structured other volumes in this library with similar goals toward
cohesiveness and cross-technology referencing.

This volume also has information about how you can use development resources
such as MSDN, MSDN Online, and other developer support resources. This helpful
information is found in various chapters in Part 1 , and those chapters are common to all
WPRS volumes. By including this.information in each library and in each volume, a few
goals of the WPRS are achieved:

• I don't presume you have bought or expect you to have to buy another WPRS Library
to get access to this information. Maybe your primary focus is network programming,
and your budget doesn't allow for you to purchase the Active Directory Developer's
Reference Library. Since I've included this information in this library, you don't have
to.

5

• You can access this important and useful information regardless of which volume you
have in your hand. You don't have to (nor should you have to) fumble with another
physical book to refer to information about how to get the most out of MSDN, or where
to get support for questions you have about a particulafWindows development
problem you're having.

• Each volume becomes more useful, more portable, and more complete in and
of itself. This goal of the WPRS makes it easier for you to grab one of its libraries'
volumes and take it with you, rather than feeling like you must bring multiple volumes
with you to have access to the library's important overview and usability information.

These goals have steered this library's content and choices of included technologies;
I hope you find its information is useful, portable, a good value, and as accessible
as it can be.

6 Volume 1 Winsock and QOS

Part 2 of this volume is broken into two sections:

• Windows Sockets 2

• Quality of Service (OOS)

This distinction between Windows Sockets 2 (Winsock 2) and OOS is achieved by the
focus of the chapters, rather than the introduction of additional partitioning (such as
dividing it into Part 2 and Part 3). This ensures consistency throughout the volumes
in this library and in WPRS libraries in general. I've ensured that the chapter names
clearly identify whether the contents focus on Winsock or OOS.

Winsock
The first collection of chapters in Part 2 describes Windows Sockets 2 (Winsock) and
enables application programmers to create advanced Internet, intranet, and other
network-capable applications that transmit application data across the wire, independent
of the network protocol being used. With Winsock, application programmers are provided
access to advanced Windows networking capabilities such as multicast and OOS. Since
Windows Sockets 2 is a continuation of the previous Windows Sockets programming
standard, Windows Sockets 2 applications have the added feature of backward
compatibility with Windows Sockets 1.1 applications.

Windows Sockets 2 uses the sockets paradigm that was first popularized by Berkeley
Software Distribution (BSD) UNIX. It was later adapted for Microsoft Windows
in Windows Sockets 1.1.

Because Windows Sockets 2 is an interface and not a protocol, it is capable
of discovering and utilizing the communications capabilities of any number of
underlying transport protocols.

The first chapters in Part 2 provide a complete treatment of the following:

• Windows Sockets API

• Windows Sockets SPI

• Windows Sockets Annex

Chapter 2 What's In This Volume? 7

Qual ity of Service
QOS is an industry-wide initiative to enable more efficient use of the network. The IETF
has provided many documents in the form of Internet Drafts and RFCs that outline such
capabilities, including those provided by the Intserv, Diffserv, ISSLL, and RAP IETF
working groups, among others. The goal of QOS is to provide preferential treatment
to certain subsets of data, enabling such data to traverse the traditionally best-effort
Internet or intranet with higher quality transmission service.

QOS in Microsoft Windows 2000 is a collection of components that enable such
differentiation, preferential treatment, and management of higher quality data
transmissions across the network. The collection of QOS components included
in Windows 2000 constitutes the Microsoft Corporation implementation of the IETF
vision of QOS.

The collection of QOSchapters in this volume covers the following information:

• QOS Overview

• Programming QOS

• QOS Functions

• Traffic Control (TC) Reference

• Local Policy Module (LPM) Reference

CHAPTER 3

Using Microsoft Reference
Resources

9

Keeping current with all the latest information on the latest networking technology is like
trying to count the packets going through routers at the MAE-WEST Internet service
exchange by watching their blinking activity lights: It's impossible. Often times,
application developers feel like those routers might feel at a given day's peak activity; too
much information is passing through them, none of which is being absorbed or passed
along fast enough for their boss' liking.

For developers, sifting through all the available information to get to the required
information is often a major undertaking, and can impose a significant amount of
overhead upon a given project. What's needed is either a collection of information that
has been sifted for you, shaking out the information you need the most and putting that
pertinent information into a format that's useful and efficient, or direction on how to sift
the information yourself. The Networking Services Developer's Reference Library does
the former, and this chapter and the next provide you with the latter.

This veritable white noise of information hasn't always been a problem for network
programmers. Not long ago, getting the information you needed was a challenge
because there wasn't enough of it; you had to find out where such information might be
located and then actually get access to that location, because it wasn't at your fingertips
or on some globally available backbone, and such searching took time. In short, the
availability of information was limited.

Today, the volume of information that surrounds us sometimes numbs us; we're
overloaded with too much information, and if we don't take measures to filter out what
we don't need to meet our goals, soon we become inundated and unable to discern
what's "white noise" and what's information that we need to stay on top of our respective
fields. In short, the overload of available information makes it more difficult for us to find
what we really need, and wading through the deluge slows us down.

This fact applies equally to Microsoft's reference material, because there is so much
information that finding what you need can be as challenging as figuring out what to do
with it once you have it. Developers need a way to cut through what isn't pertinent to
them and to get what they're looking for. One way to ensure you can get to the
information you need is to understand the tools you use; carpenters know how to use
nail-guns, and it makes them more efficient Bankers know how to use ten·keys, and it
makes them more adept. If you're a developer of Windows applications, two tools you
should know are MSDN and MSDN Online. The third tool for developers-reference
books from the WPRS---can help you get the most out of the first two.

10 Volume 1 Winsock and aos

Books in the WPRS, such as those found in the Networking Services Developer's
Reference Library, provide reference material that focuses on a given area of Windows
programming. MSDN and MSDN Online, in comparison, contain all of the reference
material that all Microsoft programming technologies have amassed over the past few
years, and create one large repository of information. Regardless of how well such
information is organized, there's a lot of it, and if you don't know your way around,
finding what you need (even though it's in there, somewhere) can be frustrating, time
consuming, and just an overall bad experience.

This chapter will give you the insight and tips you need to navigate MSDN and MSDN
Online and enable you to use each of them to the fullest of their capabilities. Also, other
Microsoft reference resources are investigated, and by the end of the chapter, you'll
know where togo for the Microsoft reference information you need (and how to quickly
and efficiently get there).

The Microsoft Developer Network
MSDN stands for Microsoft Developer Network, and its intent is to provide developers
with a network of information to enable the development of Windows applications. Many
people have either worked with MSDN or have heard of it, and quite a few have one of
the three available subscription levels to MSDN, but there are many, many more who
don't have subscriptions and could use some concise direction on what MSDN can do
for a developer or development group. If you fall into any of these categories, this
section is for you.

There is some clarification to be done with MSDN and its offerings; if you've heard of
MSDN, or have had experience with MSDN Online, you may have asked yourself one of
these questions during the process of getting up to speed with either resource:

• Why do I need a subscription to MSDN if resources such as MSDN Online are
accessible for free over the Internet?

• What is the difference between the three levels of MSDN subscriptions?

• Is there a difference between MSDN and MSDN Online, other than the fact that one is
on the Internet and the other is on a CD? Do their features overlap, separate,
coincide, or what?

If you have asked any of these questions, then lurking somewhere in the back of your
thoughts has probably been a sneaking suspicion that maybe you aren't getting the most
out of MSDN. Maybe you're wondering whether you're paying too much for too little, or
not enough to get the resources you need. Regardless, you want to be in the know and
not in the dark. By the end of this chapter, you'll know the answers to all these questions
and more, along with some effective tips and hints on how to make the most effective
use of MSDN and MSDN Online.

Chapter 3 Using Microsoft Reference Resources 11

Comparing MSDN with MSDN Online
Part of the challenge of differentiating between MSDN and MSDN Online comes with
determining which has the features you need. Confounding this differentiation is the fact
that both have some content in common, yet each offers content unavailable with the
other. But can their difference be boiled down? Yes, if broad strokes and some
generalities are used:

• MSDN provides reference content and the latest Microsoft product software, all
shipped to its subscribers on CD or DVD.

• MSDN Online provides reference content and a development community forum, and
is available only over the Internet.

Each delivery mechanism for the content that Microsoft is making available to Windows
developers is appropriate for the medium, and each plays on the strength of the medium
to provide its "customers" with the best possible presentation of material. These
strengths and medium considerations enable MSDN and MSDN Online to provide
developers with different feature sets, each of which has its advantages.

MSDN is perhaps less "immediate" than MSDN Online because it gets to its subscribers
in the form of CDs or DVDs that come in the mail. However, MSDN can sit in your
CD/DVD drive (or on your hard drive), and isn't subject to Internet speeds or failures.
Also, MSDN has a software download feature that enables subscribers to automatically
update their local MSDN content over the Internet, as soon as it becomes available,
without having to wait for the updateCD/DVD to come in the mail. The interface with
which MSDN displays its material-which looks a whole lot like a specialized browser
window-is also linked to the Internet as a browser-like window. To further coordinate
MSDN with the immediacy of the Internet, MSDI\1 Online has a section of the site
dedicated to MSDN subscribers that enable subscription material to be updated (on their
local machines) as soon as it's available.

MSDN Online has lots of editorial and technical columns that are published directly to
the site, and are tailored (not surprisingly) to the issues and challenges faced by
developers of Windows applications or Windows-based Web sites. MSDN Online also
has a customizable interface (somewhat similar to MSN.com) that enables visitors to
tailor the information that's presented upon visiting the site to the areas of Windows
development in which they are most interested. However, MSDN Online, while full of
up-to-date reference material and extensive online developer community content,
doesn't come with Microsoft product software, and doesn't reside on your local machine.

Because it's easy to confuse the differences and similarities between MSDN and MSDN
Online, it makes sense to figure out a way to quickly identify how and where they depart.
Figure 3-1 puts the differences-and similarities-between MSDN and MSDN Online
into a quickly identifiable format.

12 Volume 1 Winsock and QOS

Figure 3-1: The similarities and differences in coverage between MSDN and
MSDN Online.

One feature you'll notice is shared between MSDN and MSDN Online is the interface
they are very similar. That's almost certainly a result of attempting to ensure that
developers' user experience with MSDN is easily associated with the experience had on
MSDN Online, and vice-versa.

Chapter 3 Using Microsoft Reference Resources 13

Remember, too, that if you are an MSDN subscriber, you can still use MSDN Online and
its features. So it isn't an "either/or" question with regard to whether you need an MSDN
subscription or whether you should use MSDN Online; if you have an MSDN
subscription, you will probably continue to use MSDN Online and the additional features
provided with your MSDN subscription.

MSDN Subscriptions
If you're wondering whether you might benefit from a subscription to MSDN, but you
aren't quite sure what the differences between its subscription levels are, you aren't
alone. This section aims to provide a quick guide to the differences in subscription levels,
and even provides an estimate for what each subscription level costs.

The three subscription levels for MSDN are: Library, Professional, and Universal. Each
has a different set of features. Each progressive level encompasses the lower level's
features, and includes additional features. In other words, with the Professional
subscription, you get everything provided in the Library subscription plus additional
features; with the Universal subscription, you get everything provided in the Professional
subscription plus even more features.

MSDN Library Subscription
The MSDN Library subscription is the basic MSDN subscription. While the Library
subscription doesn't come with the Microsoft product software that the Professional and
Universal subscriptions provide, it does come with other features that developers may
find necessary in their development effort. With the Library subscription, you get the
following:

• The Microsoft reference library, including SDK and DDK documentation, updated
quarterly

• Lots of sample code, which you can cut-and-paste into your projects, royalty free

• The complete Microsoft Knowledge Base-the collection of bugs and workarounds

• Technology specifications for Microsoft technologies

• The complete set of product documentation, such as Microsoft Visual Studio,
Microsoft Office,and others

• Complete (and in some cases, partial) electronic copies of selected books and
magazines

• Conference and seminar papers-if you weren't there, you can use MSDN's notes

In addition to these items, you also get:

• Archives of MSDN Online columns

• Periodic e-mails from Microsoft chock full of development-related information

• A subscription to MSDN News, a bi-monthly newspaper from the MSDN folks

• Access to subscriber-exclusive areas and material on MSDN Online

14 Volume 1 Winsock and QOS

MSDN Professional Subscription
The MSDN Professional subscription is a superset of the Library subscription. In addition
to the features outlined in the previous section, MSDN Professional subscribers get the
following:

• Complete set of Windows operating systems, including release versions of
Windows 95, Windows 98, and Windows NT 4 Server and Workstation.

• Windows SDKs and DDKs in their entirety

• International versions of Windows operating systems (as chosen)

• Priority technical support for two incidents in a development and test environment

MSDN Universal Subscription
The MSDN Universal subscription is the all-encompassing version of the MSDN
subscription. In addition to everything provided in the Professional subscription,
Universal subscribers get the following:

• The latest version of Visual Studio, Enterprise Edition

• The Microsoft BackOffice test platform, which includes all sorts of Microsoft product
software incorporated in the BackOffice family, each with a special 10-connection
license for use in the development of your software products

• Additional development tools, such as Office Developer, Microsoft FrontPage, and
Microsoft Project

• Priority technical support for two additional incidents in a development and test
environment (for a total of four incidents)

Purchasing an MSDN Subscription
Of course, all the features that you get with MSDN subscriptions aren't free. MSDN
subscriptions are one-year subscriptions, which are current as of this writing. Just as
each MSDN subscription escalates in functionality of incorporation of features, so does
each escalate in price. Please note that prices are subject to change.

The MSDN Library subscription has a retail price of $199, but if you're renewing an
existing subscription you get a $100 rebate in the box. There are other perks for existing
Microsoft customers, but those vary. Check out the Web site for more details.

The MSDN Professional subscription is a bit more expensive than the Library, with a
retail price of $699. If you're an existing customer renewing your subscription, you again
get a break in the box, this time in the amount of a $200 rebate. You also get that break
if you're an existing Library subscriber who's upgrading to a Professional subscription.

The MSDN Universal subscription takes a big jump in price, sitting at $2,499. If you're
upgrading from the Professional subscription, the price drops to $1,999, and if you're
upgrading from the Library subscription level, there's an in-the-box rebate for $200.

Chapter 3 Using Microsoft Reference Resources 15

As is often the case, there are academic and volume discounts available from various
resellers, including Microsoft, so those who are in school or in the corporate environment
can use their status (as learner or learned) to get a better deal-and in most cases, the
deal is in fact much better. Also, if your organization is using lots of Microsoft products,
whether or not MSDN is a part of that group, ask your purchasing department to look into
the Microsoft Open License program; the Open License program gives purchasing
breaks for customers who buy lots of products. Check out www.microsoft.com//icensing
for more details. Who knows, if your organization qualifies you could end up getting an
engraved pen from your purchasing department, or if you're really lucky maybe even a
plaque of some sort for saving your company thousands of dollars on Microsoft products.

You can get MSDN subscriptions from a number of sources, including online sites
specializing in computer-related information, such as www.iseminger.com (shameless
self-promotion, I know), or from your favorite online software site. Note that not all
software resellers carry MSDN subscriptions; you might have to hunt around to find one.
Of course, if you have a local software reseller that you frequent, you can check out
whether they carry MSDN subscriptions.

As an added bonus for owners of this Networking Services Developer's Reference
Library, in the back of Volume 1, you'll find a $200 rebate good toward the purchase of
an MSDN Universal subscription. For those of you doing the math, that means you
actually make money when you purchase the Networking Services Developer's
Reference Library and an MSDN Universal subscription. With this rebate, every
developer in your organization can have the Networking Services Developer's Refence
Library on their desk and the MSDN Universal subscription on thier desktop, and still
come out $50 ahead. That's the kind of math even accountants can like.

Using MSDN
MSDN subscriptions come with an installable interface, and the Professional and
Universal subscriptions also come with a bunch of Microsoft product software such as
Windows platform versions and BackOffice applications. There's no need to tell you how
to use Microsoft product software, but there's a lot to be said for providing some quick
but useful guidance on getting the most out of the interface to present and navigate
through the seemingly endless supply of reference material provided with any MSDN
subscription.

To those who have used MSDN, the interface shown in Figure 3-2 is likely familiar; it's
the navigational front-end to MSDN reference material.

The interface is familiar and straightforward enough, but if you don't have a grasp on its
features and navigation tools, you can be left a little lost in its sea of information. With a
few sentences of explanation and some tips for effective navigation, however, you can
increase its effectiveness dramatically.

16 Volume 1 Winsock and QOS

Navigating MSDN
One of the primary features of MSDN-and to many, its primary drawback-is the sheer
volume of information it contains, over 1.1 GB and growing. The creators of MSDN likely
realized this, though, and have taken steps to assuage the problem. Most of those steps
relate to enabling developers to selectively navigate through MSDN's content.

Office Developer Documentation
Windows CE Documentation
Platform SDK

Windows Resource Kits
Tools and Technologies
Knowledge 8 ase
Technical Articles

Welcome to the October 1999
release of the MSDN Library.

The MSDN Library is the essential reference for developers, with
more than a gigabyte of technical programming information,
including sample code, documentation, technical articles, the
Microsoft Developer Knowledge Base, and anything else you
might need to develop solutions that implement Microsoft
technology.

4 DN6·'."·"4i'14'6.
Dr. GUI introduces the October 1999 release of the MSDN Library. The
good doctor examines new Library content, including articles and
documentation about Windows 2000, Windows CE, Office 2000, and
databases and data access, plus several new technical article sample
suites .

• hEdlt§"'),".''';''.
Read through this document for summaries of what's new and follow
the links to the new titles.

Figure 3-2: The MSDN interface.

Basic navigation through MSDN is simple and is a lot like navigating through Microsoft
Windows Explorer and its folder structure. Instead of folders, MSDN has books into
which it organizes its topics; expand a book by clicking the + box to its left, and its
contents are displayed with its nested books or reference pages, as shown in Figure 3-3.
If you don't see the left pane in your MSDN viewer, go to the View menu and select
Navigation Tabs and they'll appear.

The four tabs in the left pane of MSDN-increasingly referred to as property sheets
these days-are the primary means of navigating through MSDN content. These four
tabs, in coordination with the Active Subset drop-down box above the four tabs, are the
tools you use to search through MSDN content. When used to their full extent, these
coordinated navigation tools greatly improve your MSDN experience.

i
[±J • Welcome to the MSDN Library
!±l • Visual Studio 6.0 Documentation
r±l • Office Developer Documentation

f±l • Windows CE Documentation
B ();lj Plallorm SDK

!±l • Getting Started
ftl • Design Strategies and Standards

!±l • Base Services
ttl • Component Services

!B • Data Access Services
!£l • Graphics and Ml..Iltimedia Services
ttl • Management Services
!±l • Messaging and Collaboration Services
El ('QJ Networking and DirectOf'y Services

ttl Active Dir8ctol'y. ADSL and Directory Services

Chapter 3 Using Microsoft Reference Resources 17

Purpose

MADCAP, or Multicast Address
Dynamic Client Allocation
Protocol, is a technology
aimed at making it easy for
clients to renew and release
Multicast addresses! enabling
clients to dynamically
Ilconnect" and IIdisconnect"
from multicast network
transmissions.

The development of
standards for MADCAP is
ongoing) and falls under the
Multicast Address Allocation
(malloc) Working Group at the
IETF,

Overview

General
information
about
MADCAP,

Reference

Documentation
of MADCAP
functions and
structures.

Feedback

Make error
reports and
feature
requests
directly to
Microsoft.

Figure 3-3: Basic navigation through MSDN.

The Active Subset drop-down box is a filter mechanism; choose the subset of MSDN
information you're interested in working with from the drop-down box, and the
information in each of the four Navigation Tabs (including the Contents tab) limits the
information it displays to the information contained in the selected subset. This means
that any searches you do in the Search tab, and in the index presented in the Index tab,
are filtered by their results and/or matches to the subset you define, greatly narrowing
the number of potential results for a given inquiry. This enables you to better find the
information you're really looking for. In the Index tab, results that might match your
inquiry but aren't in the subset you have chosen are grayed out (but still selectable). In
the Search tab, they simply aren't displayed.

MSDN comes with the following predefined subsets (these subsets are subject to
change, based on documentation updates and TOC reorganizations):

Entire Collection Platform SDK, Networking Services
MSDN, Books and Periodicals Platform SDK, Security
MSDN, Content on Disk 2 only Platform SDK, Tools and Languages
(CD only - not in DVD version) Platform SDK, User Interface Services

MSDN, Content on Disk 3 only Platform SDK, Web Services
(CD only - not in DVD version) Platform SDK, Win32 API

MSDN, Knowledge Base Repository 2.0 Documentation
MSDN, Technical Articles and Visual Basic Documentation

Backgrounders Visual C++ Documentation

18 Volume 1 Winsock andQOS

Office Developer Documentation
Platform SDK, BackOffice
Platform SDK, Base Services
Platform SDK, Component Services
Platform SDK, Data Access Services
Platform SDK, Getting Started
Platform SDK, Graphics and
Multimedia Services

Platform SDK, Management Services
Platform SDK, Messaging and
Collaboration Services

Visual C++, Platform SDK and
WinCE Docs

Visual C++, Platform SDK, and
Enterprise Docs

Visual FoxPro Documentation
VisuallnterDev Documentation
Visual J++ Documentation
Visual SourceSafe Documentation
Visual Studio Product Documentation
Windows CE Documentation

As you can see, these filtering options essentially mirror the structure of information
delivery used by MSDN. But what if you are interested in viewing the information in a
handful of these subsets? For example, what if you want to search on a certain keyword
through the Platform SDK's ADSI, Networking Services, and Management Services
subsets, as well as a little section that's nested way into the Base Services subset?
Simple-you define your own subset by choosing the View menu, and then selecting the
Define Subsets menu item. You're presented with the window shown in Figure 3-4.

Defining a subset is easy; just take the following steps:

1. Choose the information you want in the new subset; you can choose entire subsets or
selected books/content within available subsets.

2. Add your selected information to the subset you're creating by clicking the Add button.

3. Name the newly created subset by typing in a name in the Save New Subset As box.
Note that defined subsets (including any you create) are arranged in alphabetical
order.

You can also delete entire subsets from the MSDN installation. Simply select the subset
you want to delete from the Select Subset To Display drop-down box, and then click the
nearby Delete button.

Once you have defined a subset, it becomes available in MSDN just like the predefined
subsets, and filters the information available in the four Navigation Tabs, just like the
predefined subsets do.

Quick Tips
Now that you know how to navigate MSDN, there are a handful of tips and tricks that you
can use to make MSDN as effective as it can be.

Use the Locate button to get your bearings. Perhaps it's human nature to need to
know where you are in the grand scheme of things, but regardless, it can be bothersome
to have a reference page displayed in the right pane (perhaps jumped to from a search),
without the Contents tab in the left pane being synchronized in terms of the reference
page's location in the information tree. Even if you know the general technology in which
your reference page resides, it's nice to find out where it is in the content structure.

Chapter 3 Using Microsoft Reference Resources 19

This is easy to fix. Simply click the Locate button in the navigation toolbar and all will be
synchronized.

Componenl Services
D ala Access Services
Graphics and M ullimedia S
M anagemenl Services

Figure 3-4: The Define Subsets window.

Use the Back button just like a browser. The Back button in the navigation toolbar
functions just like a browser's Back button; if you need information on a reference page
you viewed previously, you can use the Back button to get there, rather than going
through the process of doing another search.

Define your own subsets, and use them. Like I said at the beginning of this chapter,
the volume of information available these days can sometimes make it difficult to get our
work done. By defining subsets of MSDN that are tailored to the work you do, you can
become more efficient.

Use an underscore at the beginning of your named subsets. Subsets in the Active
Subset drop-down box are arranged in alphabetical order, and the drop-down box shows
only a few subsets at a time (making it difficult to get a grip on available subsets, I think).
Underscores come before letters in alphabetical order, so if you use an underscore on all
of your defined subsets, you get them placed at the front of the Active Subset listing of
available subsets. Also, by using an underscore, you can immediately see which subsets
you've defined, and which ones come with MSDN-it saves a few seconds at most, but
those seconds can add up.

20 Volume 1 Winsock and QOS

Using MSDN Online
MSDN underwent a redesign in December of 1999, aimed at streamlining the
information provided, jazzing things up with more color, highlighting hot new
technologies, and various other improvements. Despite its visual overhaul, MSDN Online
still shares a lot of content and information delivery similarities with MSDN, and those
similarities are by design; when you can go from one developer resource to another and
immediately work with its content, your job is made easier. However, MSDN Online is
different enough that it merits explaining in its own right-it's a different delivery medium,
and can take advantage of the Internet in ways that MSDN simply cannot.

If you've used MSN's home page before (www.msn.com). you're familiar with the fact
that you can customize the page to your liking; choose from an assortment of available
national news, computer news, local news, local weather, stock quotes, and other
collections of information or news that suit your tastes or interests. You can even insert a
few Web links and have them readily accessible when you visit the site. The MSDN
Online home page can be customized in a similar way, but its collection of headlines,
information, and news sources are all about development. The information you choose
specifies the information you see when you go to the MSDN Online home page, just like
the MSN home page.

There are a couple of ways to get to the customization page; you can go to the MSDN
Online home page (msdn.microsoft.com) and click the Personalize This Site button near
the top of the page, or you can go there directly by pointing your browser to
msdn. microsoft. com/msdn-online/start/custom. However you get there, the page you'll
see is shown in Figure 3-5.

As you can see from Figure 3-5, there are lots of technologies to choose from (many
more options can be found when you scroll down through available technologies). If
you're interested in Web development, you can select the checkbox at the left of the
page next to Standard Web Development, and a predefined subset of Web-centered
technologies is selected. For technologies centered more on Network Services, you can
go through and choose the appropriate technologies. If you want to choose all the
technologies in a given technology group more quickly, click the Select All button in the
technology's shaded title area.

You can also choose which tab is selected by default in the home page that MSDN
Online presents to you, which is convenient for dropping you into the category of MSDN
Online information that interests you most. All five of the tabs available on MSDN
Online's home page are available for selection; those tabs are the following:

• Features

• News

• Columns

• Technical Articles

• Training & Events

Select or clear the check boxes
below to choose a pre-set
template of information for that
technology

D Database
DevelopmenVAdministration

D Database Web Development

D Office!VBA Developer

D Standard Web Development

D Windows Development

Chapter 3 Using Microsoft Reference Resources 21

Personalize the information that appears on your MSDN Online home page.

Select your preferences from the sections below) then return here and choose Save, (Yes) we
know it's a lot of choices, There's a lot of information on this site.) You can update your choices
at any time by visiting this Personalization page,

Figure 3-5: The MSDN Online Personalize Page.

Once you've defined your profile-that is, customized the MSDN Online content you
want to see-MSDN Online shows you the most recent information pertinent to your
profile when you go to MSDN Online's home page, with the default tab you've chosen
displayed upon loading of the MSDN Online home page.

Finally, if you want your profile to be available to you regardless of which computer
you're using, you can direct MSDN Online to store your profile. Storing a profile for
MSDN Online results in your profile being stored on MSDN Online's server, much like
roaming profiles in Windows 2000, and thereby makes your profile available to you
regardless of the computer you're using. The option of storing your profile is available
when you customize your MSDN Online home page (and can be done any time
thereafter). The storing of a profile, however, requires that you become a registered
member of MSDN Online. More information about becoming a registered MSDN Online
user is provided in the section titled MSDN Online Registered Users.

22 Volume 1 Winsock andQOS

Navigating MSDN Online
Once you're done customizing the MSDN Online home page to get the information
you're most interested in, navigating through MSDN Online is easy. A banner that sits
just below the MSDN Online logo functions as a navigation bar, with drop-down menus
that can take you to the available areas on MSDN Online, as Figure 3-6 illustrates.

I±I MSDN Training
ttl Products
I±I Partnering
!±I International
I±I ~1\1 links

• IT Professionals

~ MSDN Flash
(e-newsletter)

~ Send Us
Your Feedback

tI! Site Guide

Learn about the new features, bug fixes! and other
improvements to the Microsoft XML parser coming in
Windows 2000) in this column by Charlie Heinemann of
the Microsoft XML team, Charlie also explains why the
new version of the parser is better equipped for server

a

XMl

Yisual Studio

DLl Help
Database

Figure 3-6: The MSDN Online Navigation Bar with Its Drop-Down Menus.

Following is a list of available menu categories, which groups the available sites and
features within MSDN Online:

Home

Magazines

Libraries

Developer Centers

Resources

Downloads

Search MSDN

The navigation bar is available regardless of where you are in MSDN Online, so the
capability to navigate the site from this familiar menu is always available, leaving you a
click away from any area on MSDN Online. These menu categories create a functional
and logical grouping of MSDN Online's feature offerings.

Chapter 3 Using Microsoft Reference Resources 23

MSDN Online Features
Each of MSDN Online's seven feature categories contains various sites that comprise
the features available to developers visiting MSDN Online.

Home is already familiar; clicking on Home in the navigation bar takes you to the MSDN
Online home page that you've (perhaps) customized, showing you all the latest
information about technologies that you've indicated you're interested in reading about.

Magazines is a collection of columns and articles that comprise MSDN Online's
magazine section, as well as online versions of Microsoft's magazines such as MSJ,
MIND, and the MSDN Show (a Webcast feature introduced with the December 1999
remodeling of MSDN Online). The Magazines feature of MSDN Online can be linked to
directly at msdn.microsoft.comlresourceslmagazines.asp. The Magazines home page is
shown in Figure 3-7.

Voices •

MSJ •

MIND.

MSDN Ne. spaper •

MSDN sho «I<

Magazines
Print and online publications for current information on all types of development,

MSJ is the magazine that brings developers monthly features on the most important tools and
technologies such as XML) Windows 2000! ATL) MFC) Windows eE) DirectX) C++) as well as monthly
columns on visual programming! Win 32) COM! debugging! security, and more.

Microsoft Internet Developer (MIND)

MIND is the monthly magazine for Internet and intranet developers that covers tools and technologies
including. XML! Visual Basic! scripting! ADO! SQL Server! IIS) and anything else a developer might need
to build an interactive or e-commerce site,

f'lSDN News

The MSDN News is a printed newspaper! published bi-monthly for the developer audience, The
newspaper features new technical articles and ongoing columns! including the popular "Ask Dr. GUI/' as
well as a regular series of posters, Subscriptions are free to MSDN subscribers,

The !'ISDN Show

This regular Webcast brings you inside Microsoft to talk with developers and planners about our hottest
new technologies, The segments range from broad overviews to down-and-dirty coding) with some
news and entertainment mixed in! too,

Figure 3-7: The Magazines Home Page.

For those of you familiar with the Voices feature section that formerly found its home on
the MSDN Online navigation banner, don't worry; all content formerly in the Voices
section is included the Magazines section as asubsite (or menu item, if you prefer) of
the Magazines site. For those of you who aren't familiar with the Voices subsite, you'll

24 Volume 1 Win sock and QOS

find a bunch of different articles or "voices" there, each of which adds its own particular
twist on the issues that face developers. Both application and Web developers can get
their fill of magazine-like articles from the sizable list of different articles available (and
frequently refreshed) in the Voices subsite. With the combination of columns and online
developer magazines offered in the Magazines section, you're sure to find plenty of
interesting insights.

Libraries is where the reference material available on MSDN Online lives. The Libraries
site is divided into two sections: Library and Web Workshop. This distinction divides the
reference material between Windows application development and Web development.
Choosing Library from the Libraries menu takes you to a page through which you can
navigate in traditional MSDN fashion, and gain access to traditional MSDN reference
material. The Library home page can be linked to directly at msdn.microsoft.comllibrary.
Choosing Web Workshop takes you to a site that enables you to navigate the Web
Workshop in a slightly different way, starting with a bulieted list of start points, as shown
in Figure 3-8. The Web Workshop home page can be linked to directly at
msdn. microsoft. comlworkshop.

ESSENTIALS.

Component Development.

Content Be Component Delivery >I>

Data Access & Databases ..

Design"

DHTML, HTML & ess ..
Langu.ages Be Development Tools.

Mess.3ging & Collaboration ..

Networking, Protocols ,.
& Data Formats

Reusing Browser Technolog'1' >110

Security Be Cr';o'ptogr.aphl' ,.

Server Technologies to

Stre.aming 8! Interactive Media <t

'Web Content Management >110

XML (ExtenSible Markup Language) •

This section contains
information you'll need to
create components for your
Web pages, using either
ActiveX or DHTML seriptlet
technology) as well as related
information about COM)

ActiveX Scripting, Active
Documents) and offline
browsing,

Welcome

The MSDN Online Web
Workshop provides the latest
information about Internet
technologies J including
reference material and in
depth articles on all aspects
of Web site design and
development. Choose the
categories on the left to
navigate via content listings.
Use the index to look up
keywords J and the search
page for specific queries.
Check our What's New page
for updates.

The MSDN Online team

© 1999 Microsoft Corporation. All rights reser ... ed. Terms of use,

Figure 3-8: The Web Workshop Home Page.

Chapter 3 Using Microsoft Reference Resources 25

Developer Centers is a hub from which developers who are interested in a particular
area of development-such as Windows 2000, SQL Server, or XML-can go to find
focused Web site centers within MSDN Online. Each developer center is dedicated to
providing all sorts of information associated with its area of focus. For example, the
Windows 2000 developer center has information about what's new with Windows 2000,
including newsgroups, specifications, chats, knowledge base articles, and news, among
others. At publication time, MSDN Online had the following developer centers:

• Microsoft Windows 2000

• Microsoft Exchange

• Microsoft SQL Server

• Microsoft Windows Media

• XML
In addition to these developer centers is a promise that new centers would be added to
the site in the future. To get to the Developer Centers home page directly, link to
msdn. microsoft. comlresourcesldevcenters. asp. Figure 3-9 shows the Developer Centers
home page.

Microsoft W'indowS' ~
2000

Microsoft Ex'Change +

Microsoft SQL Server 'i>

Microsoft Windo· s ..
Media

XML ~

MSDN Developer Centers
MSDN Developer Centers provide access to all the developer resources MSDN has to offer for specific
products and technologies. From the Developer Centers you can also find the latest links to all the best
new technical articles} downloads, samples, product news, and more. While we'll be adding more
Developer Centers to the site in the future, you can visit the following Developer Centers today:

2000

• Microsoft Exchange

• Microsoft SQL Server

• Microsoft WindolNs r</iedia

• XML

Figure 3-9: The Developer Centers Home Page.

26 Volume 1 Winsock and QOS

Resources is a place where developers can go to take advantage of the online forum of
Windows andWeb developers, in which ideas or techniques can be shared, advice can
be found or given (through MHM, or Members Helping Members), and the MSDN User
Group Program can be joined or perused to find a forum to voice their opinions or chat
with other developers. The Resources site is full of all sorts of useful stuff, including
featured books, a DLL help database, online chats, case studies, and more. The
Resources home page can be linked to directly at msdn.microsoft.com/resources. Figure
3·10 provides a look at the Resources home page.

DLL Help Database •

MSDN Online Support •

Newsgroups ..

Peer Journal ..

Members Helping •
Members

MSDN User Group ..
Program

MSDN Online Chats ..

MSDN Training •

Events ..

De eloper Books

Additional MSDN Online Resources
MSDN Online is about more than just technical articles and documentation. Check out the wide variety
of resources we offer to help you get your job done,

The DLL Help Database

Microsoft's DLL Help database provides a searchable database of information about file versions that
ship with a selected set of Microsoft products,

MSDN Online Support

MSDN Online Support offers a large variety of technical resources~ including the Microsoft Knowledge
Base.: service packs~ hotfixes, and tools; and Support Web Casts, live pre!;entations by Support
professionals,

Newsgroups

MSDN Online provides access to selected developer-focused public newsgroups through our browser
based newsreader, Microsoft's public newsgroups allow you to interact with the Microsoft developer
community and MVPs (Most Valuable Professionals), Public newsgroups are a great way to solve
technical problems~ learn more about a specific product or technology, or keep up with the latest buzz
in the developer community, Microsoft employees do not monitor Microsoft's public newsgroups,

Peer Journal
Microsoft's collection of code) tips, and articles written by your developer peers,

Figure 3-10: The Resources Home Page.

The Downloads site is where developers can find all sorts of useable items fit to be
downloaded, such as tools, samples, images, and sounds. The Downloads site is also
where MSDN subscribers go to get their subscription content updated over the Internet
to the latest and greatest releases, as described previously in this chapter in the Using
MSDN section. The Downloads home page can be linked to directly at
msdn.microsoft.com/downloads. The Downloads home page is shown in Figure 3-11.

Service Packs

Samples ..

Tools ,.

Beta and Pre ... ie"" •
Releases

Images

Sounds 4<

Development ..
Kit, (SDK,)

MSDN Subscriber •
Downloads

Chapter 3 Using Microsoft Reference Resources 27

Welcome to the MSDN Online Downloads Area

Service Packs

Service Packs and product updates provide bug fixes and address other issues that customers have
discovered since a product's release.

Samples

In this section) you will find a great variety of samples that demonstrate ways to use the latest and
gre_atest Microsoft technologies to make your applications .the best they can be, All samples have code
that can be downloaded! most can be browsed online! and many have live demonstration pages,
Choose from the Table of Contents to find samples focused on a particular product or technology.
Entries prefixed with ~ are for users registered with Visual Studio only. To get access to these, register
your product today,

Tools

Want to tryout some great new products? Check out our tools area, where users can download more
than 40 trial, beta, and full versions of the latest developer products.

Visit the Visual Studio Solutions Center for sample solutions designed to help you learn and understand
end-to-end application architecture and design.

Beta amlPrelliew Releases

Figure 3-11: The Downloads Home Page.

The Search MSDN site on MSDN Online has been improved over previous versions,
and includes the capability to restrict searches to either library (Library or Web
Workshop), as well as other fine-tune search capabilities. The Search MSDN home page
can be linked to directly at msdn.microsoft.com/search. The Search MSDN home page is
shown in Figure 3-12.

There are two other destinations within MSDN Online of specific interest, neither of
which is immediately reachable through the MSDN navigation bar. The first is the MSDN
Online Member Community home page, and the otheris the Site Guide.

28 Volume 1 Winsock and aos

Figure 3-12: The Search MSDN Home Page.

The MSDN Online Member Community home page can be directly reached at
msdn.microsoft.com/community. Many of the features found in the Resources
navigation menu are actually subsites of the Community page. Of course, becoming a
member of the MSDN Online member community requires that you register (see the next
section for more details on joining), but doing so enables you to get access to Online
Special Interest Groups (OSIGs) and other features reserved for registered members.
The Community page is shown in Figure 3-13.

Another destination of interest on MSDN Online that isn't displayed on the navigation
banner is the Site Guide. The Site Guide is just what its name suggests-a guide to the
MSDN Online site that aims at helping developers find items of interest, and includes
links to other pages on MSDN Online such as a recently posted files listing, site maps,
glossaries, and other useful links. The Site Guide home page can be linked to directly at
msdn. microsoft. com/siteguide.

Your Membership ..

OSIGs ..

Peer Journal.

Case Studies.

Downloads.

Members Helping ..
Members

Offers ..

Training.

MSDN Stores.

Chapter 3 Using Microsoft Reference Resources 29

Welcome to the MSDN Online Member Community
Updated October 14, 1999

With an MSDN Online membership, developers can easily access technical
information, tools, and a community of developers ready to help solve the
toughest challenges, nOif.1 and take advantage of member benefits.

Online Special-Interest Groups

Access the information you need, when you need it, with
(OSIGs), Web-based access to relevant news-groups, sorted by product,

make it easy for you to get information you need to do your job; Take advantage
of special offers, find useful links, and stay up to date with the latest product and
technology news.

Members Helping Members

Helping (MHM) is a networking and support tool that helps
developers get connected) solve problems) and gain recognition within the
developer community. Get answers quickly by searching the MHM database for
people who can answer your technical questions, Or) register as a volunteer and
help other developers when they need it. up now!

Roaming Profiles

Figure 3-13: The MSDN Online Member Community Home Page.

MSDN Online Registered Users
You may have noticed that some features of MSDN Online-such as the capability to
create a store profile of the entry ticket to some community features-require you to
become a registered user. Unlike MSDN subscriptions, becoming a registered user of
MSDN Online won't cost you anything more but a few minutes of registration time.

Some features of MSDN Online require registration before you can take advantage of
their offerings. For example, becoming a member of an OSIG requires registration. That
feature alone is enough to register; rather than attempting to call your developer buddy
for an answer to a question (only to find out that she's on vacation for two days, and your
deadline is in a few hours), you can go to MSDN Online's Community site and ferret
through your OSIG to find the answer in a handful of clicks. Who knows; maybe your
developer buddy will begin calling you with questions-you don't have to tell her where
you're getting all your answers.

30 Volume 1 Winsock and QOS

There are a number of advantages to being a registered user, such as the choice to
receive newsletters right in your inbox if you want to. You can also get all sorts of other
timely information, such as chat reminders that let you know when experts on a given
subject will be chatting in the MSDN Online Community site. You can also sign up to get
newsletters based on your membership in various OSIGs-again, only if you want to. It's
easy for me to suggest that you become a registered user for MSDN Online-I'm a
registered user, and it's a great resource.

The Windows Programming Reference Series
The WPRS provides developers with timely, concise, and focused material on a given
topic, enabling developers to get their work done as efficiently as possible. In addition to
providing reference material for Microsoft technologies, each Library in the WPRS also
includes material that helps developers get the most out of its technologies, and
provides insights that might otherwise be difficult to find.

The WPRS currently includes the following libraries:

• Microsoft Win32 Developer's Reference Library

• Active Directory Developer's Reference Library

• Networking Services Developer's Reference Library

In the near future (subject, of course, to technology release schedules, demand, and
other forces that can impact publication decisions), you can look for these prospective
WPRS Libraries that cover the following material:

• Web Technologies Library

• Web Reference Library

• MFC Developer's Reference Library

• Com Developer's Reference Library

What else might you find in the future? Planned topics such as a Security Library,
Programming Languages Reference Library, BackOffice Developer's Reference Library,
or other pertinent topics that developers using Microsoft products need in order to get
the most out of their development efforts, are prime subjects for future membership in
the WPRS. If you have feedback you want to provide on such libraries, or on the WPRS
in general, you can send email towinprs@microsoft.com.

If you're sending mail about a particular library, make sure you put the name of the
library in the subject line. For example, e-mail about the Networking Services
Developer's Reference Library would have a subject line that reads "Networking
Services Developer's Reference Library." There aren't any guarantees that you'll get a
reply, but I'll read all of the mail and do what I can to ensure your comments, concerns,
or (especially) compliments get to the right place.

CHAPTER 4

Finding the Developer Resources
You Need

Networking is complex, and its resource information vast. With all the resources
available for developers of network-enabled applications, and the answers they can
provide to questions or problems that developers face every day, finding the developer
information you need can be a challenge. To address that problem, this chapter is
designed to be your one-stop resource to find the developer resources you need,
making the job of actually developing your application just a little easier.

31

Microsoft provides plenty of resource material through MSDN and MSDN Online, and the
WPRS provides a great filtered version of focused reference material and development
knowledge. However, there is a lot more information to be had. Some of that information
comes from Microsoft, some of it from the general development community, and yet
more information comes from companies that specialize in such development services.
Regardless of which resource you choose, in this chapter you can find out what your
development resource options are, and be more informed about the resources that are
available to you.

Microsoft provides developer resources through a number of different media, channels,
and approaches. The extensiveness of Microsoft's resource offerings mirrors the fact
that many are appropriate under various circumstances. For example, you wouldn't go to
a conference to find the answer to a specific development problem in your programming
project; instead, you might use one of the other Microsoft resources.

Developer Support
Microsoft's support sites cover a wide variety of support issues and approaches,
including all of Microsoft's products, but most of those sites are not pertinent to
developers. Some sites, however, are designed for developer support; the Product
Services Support page for developers is a good central place to find the support
information you need. Figure 4-1 shows the Product Services Support page for
developers, which can be reached at www.microsoft.comlsupport/customerldeve/op.htm.

Note that there are a number of options for support from. Microsoft, including everything
from simple online searches of known bugs in the Knowledge Base to hands-on
consulting support from Microsoft Consulting Services, and everything in between.
The Web page displayed in Figure 4-1 isa good starting point from which you can
find out more information about Microsoft's support services.

32 Volume 1 Winsock and QOS

Whether you are a Software or Web Developer! developing or porting
commercial applications to run on Microsoft platforms requires a unique
level of support to ensure those applications optimize both current and
emerging technologies, Microsoft provides access to a wide range of
product and application development expertise to help developers
accelerate the development cycle and produce successful applications,
This includes the Microsoft Developer Network (MSDNTM) - a specially
dedicated Web site packed with news) resources and technical services.

Go to Support Phone Numbers Click here

PREMIER SUPPORT FOR DEYELOPERS
For large organi2ations developing products using Microsoft technologies
who require a direct! proactive ar.d mar.aged support relatior.ship with
Microsoft! Premier Support offers comprehensive and flexible high-end
support,

Click here for detail,

PROFESSIONAL SUPPORT FOR DEYELOPERS
Professional Support for Developers provides information services and
incident-based support to h create and enhance your software

Figure 4-1: The Product Services Support page for developers.

Premier Support from Microsoft provides extensive support for developers, and
includes different packages geared toward specific Microsoft customer needs. The
packages of Premier Support that Microsoft provides are:

• Premier Support for Enterprises

• Premier Support for Developers

• Premier Support for Microsoft Certified Solution Providers

• Premier Support for OEMs

If you're a developer, you could fall into any of these categories. To find out more
information about Microsoft's Premier Support, contact them at (800) 936-2000.

Priority Annual Support from Microsoft is geared toward developers or organizations
that have more than an occasional need to call Microsoft with support questions and
need priority handling of their support questions or issues. There are three packages
of Priority Annual Support offered by Microsoft.

Chapter 4 Finding the Developer Resources You Need 33

• Priority Comprehensive Support

• Priority Developer Support

• Priority Desktop Support

The best support option for you as a developer is the Priority Developer support. To
obtain more information about Priority Developer Support, call Microsoft at
(800) 936-3500.

Microsoft also offers a Pay-Per-Incident Support option so you can get help if there's just
one question that you must have answered. With Pay-Per-Incident Support, you call a toll
free number and provide your Visa, MasterCard, or American Express account number,
after which you receive support for your incident. In loose terms, an incident is a problem
or issue that can't be broken down into subissues or subproblems (that is, it can't be
broken down into smaller pieces). The number to call for Pay-Per-Incident Support
is (800) 936-5800.

Note that Microsoft provides two priority technical support incidents as part of the MSDN
Professional subscription, and provides four priority technical support incidents as part
of the MSDN Universal subscription.

You can also submit questions to Microsoft engineers through Microsoft's support Web
site, but if you're on a time line you might want to rethink this approach and consider
going to MSDN Online and looking into the Community site for help with your
development question. To submit a question to Microsoft engineers online,
go to support. microsoft. comlsupportlwebresponse. asp.

Online Resources
Microsoft also provides extensive developer support through its community of
developers found on MSDN Online. At MSDN Online's Community site, you will find
OSIGs that cover all sorts of issues in an online, ongoing fashion. To get to MSDN
Online's Community site, simply go to msdn.microsoft.comlcommunity.

Microsoft's MSDN Online also provides its Knowledge Base online, which is part of the
Personal Support Center on Microsoft's corporate site. You can search the Knowledge
Base online at support.microsoft.comlsupportlsearch.

Microsoft provides a number of newsgroups that developers can use to view
information on newsgroup-specific topics, providing yet another developer resource for
information about creating Windows applications. To find out which newsgroups are
available and how to get to them, go to support.microsoft.comlsupportlnews.

The following newsgroups will probably be of particular interest to readers of the
Microsoft Active Directory Developer's Reference Library.

• microsoft. public. win2000. *

• microsoft. public. msdn. general

• microsoft.pubHc.platformsdk.active.directory

• microsoft.pubHc.platformsdk.adsi

34 Volume 1 Win sock and QOS

• microsoft.public.platformsdk.disLsvcs

• microsoft.public. vb. *

• microsoft.public. vc. *
• microsoft.public. vstudio. *microsoft.public.cert. *

• microsoft.public.certification. *

Of course, Microsoft isn't the only newsgroup provider on which newsgroups pertaining
to developing on Windows are hosted. Usenet has all sorts of newsgroups-too many to
list-that host ongoing discussions pertaining to developing applications on the Windows
platform. You can access newsgroups on Windows development just as you access any
other newsgroup; generally, you'll need to contact your ISP to find out the name of the
mail server and then use a newsreader application to visit, read, or post to the
Usenet groups.

For network developers with a taste for Winsock (and OOS) programming, another site
of interest is www.stardust.com. which is chock full of up-to-date information about
Winsock development and other network-related information. There's other information
about network programming on the site, so it's worth a look.

Internet Standards
Many of the network protocols and services implemented in Windows platforms conform
to one or more Internet standards recommendations that have gone through a process
of review and comments. One especially useful source of information about such
standards, recommendations, and ongoing comment periods is the Internet Engineering
Task Force, or IETF. Rather than go into some long-winded (page-eating) explanation
of what the IETF is, does, and stands for, let me simply say that this is the place where
networking protocols and other various Internet-related services are often born,
scrutinized, recast, commented upon, and although not standardized or implemented,
recommended in a final form called a request for comment, or RFC, even though it's
essentially a standard by the time it gets to RFC stage.

If you want to get a clear technical picture of a given technology or protocol, or if you're
inclined to comment on the creation and subsequent scrutiny of such things, the place
you should go is www.ietf.org.This site can tell you all you want to know about the
goings on of the IETF, their (non-profit) mission, their Working Groups, and all the
information you might ever want about almost anything that has to do with networking
recommendations.

If you're curious about a given protocol or networking technology, and want to find an
unadulterated (albeit technical) version of its explanation, this is a great place to go.
It's a virtual hangout for the brightest people in networking, and it's worth a look or two,
even just for the sake of satisfying curiosity.

Chapter 4 Finding the Developer Resources You Need 35

Learning Products
Microsoft provides a number of products that enable developers to get versed in
the particular tasks or tools that they need to achieve their goals (or to finish their tasks).
One product line that is geared toward developers is called the Mastering series, and its
products provide comprehensive, well-structured interactive teaching tools for a wide
variety of development topics.

The Mastering Series from Microsoft contains interactive tools that group books and CDs
together so that you can master the topic in question, and there are products available
based on the type of application you're developing. To obtain more information about the
Mastering series of products, or to find out what kind of offerings the Mastering series
has, check out msdn.microsoft.com/mastering.

Other learning products are available from other vendors as well, such as other
publishers, other application providers that create tutorial-type content and applications,
and companies that issue videos (both taped and broadcast over the Internet)
on specific technologies. For one example of a company that issues technology-based
instructional or overview videos, take a look at www.compchannel.com.

Another way of learning about development in a particular language (such as C++,
FoxPro, or Microsoft Visual Basic), for a particular operating system, or for a particular
product (such as Microsoft SOL Server or Microsoft Commerce Server) is to read the
preparation materials available for certification as a Microsoft Certified Solutions
Developer (MCSD). Before you get defensive about not having enough time to get
certified, or not having any interest in getting your certification (maybe you do-there are
benefits, you know), let me just state that the point of the journey is not necessarily to
arrive. In other words, you don't have to get your certification for the preparation
materials to be useful; in fact, the materials might teach you things that you thought you
knew well but actually didn't know as well as you thought you did. The fact of the matter
is that the coursework and the requirements to get through the certification process are
rigorous, difficult, and quite detail-oriented. If you have what it takes to get your
certification, you have an extremely strong grasp of the fundamentals (and then some) of
application programming and the developer-centric information about Windows
platforms.

You are required to pass a set of core exams to get an MCSD certification, and then
you must choose one topic from many available electives exams to complete your
certification requirements. Core exams are chosen from among a group of available
exams; you must pass a total of three exams to complete the core requirements. There
are ''tracks'' that candidates generally choose which point their certification in a given
direction, such as C++ development or Visual Basic development. The core exams and
their exam numbers (at the time of publication) are as follows.

36 Volume 1 Winsock and QOS

Desktop Applications Development (one required):

• Designing and Implementing Desktop Applications with Visual C++ 6.0 (70-016)

• Designing and Implementing Desktop Applications with Visual FoxPro 6.0 (70-156)

• DeSigning and Implementing Desktop Applications with Visual Basic 6.0 (70-176)

Distributed Applications Development (one required):

• Designing and Implementing Distributed Applications with Visual C++ 6.0 (70-015)

• DeSigning and Implementing Distributed Applications with Visual FoxPro 6.0 (70-155)

• Designing and Implementing Distributed Applications with Visual Basic 6.0 (70-175)

Solutions Architecture:

• Analyzing Requirements and Defining Solution Architectures (70-100)

Elective exams enable candidates to choose from a number of additional exams
to complete their MCSD exam requirements. The following MCSD elective exams are
available:

• Any Desktop or Distributed exam not used as a core requirement

• Designing and Implementing Data Warehouses with Microsoft Sal Server 7.0
(70-019)

• Developing Applications with C++ Using the Microsoft Foundation Class Library
(70-024)

• Implementing OLE in Microsoft Foundation Class Applications (70-025)

• Implementing a Database Design on Microsoft Sal Server 6.5 (70-027)

• Designing and Implementing Databases with Microsoft Sal Server 7.0 (70-029)

• DeSigning and Implementing Web Sites with Microsoft FrontPage 98 (70-055)

• Designing and Implementing Commerce Solutions with
Microsoft Site Server 3.0, Commerce Edition (70-057)

• Application Development with Microsoft Access for Windows 95 and the
Microsoft Access Developer's Toolkit (70-069)

• Designing and Implementing Solutions with Microsoft Office 2000 and
Microsoft Vi$ual Basic for Applications (70-091)

• Designing and Implementing Database Applications with Microsoft Access 2000
(70-097) .

• Designing and Implementing Collaborative Solutions with Microsoft Outlook 2000 and
Microsoft Exchange Server 5.5 (70-105)

• DeSigning and Implementing Web Solutions with Microsoft Visual InterDev 6.0
(70-152)

• Developing Applications with Microsoft Visual Basic 5.0 (70-165)

Chapter 4 Finding the Developer Resources You Need 37

The good news is that because there are exams you must pass to become certified,
there are books and other material out there to teach you how to meet the knowledge
level necessary to pass the exams. That means those resources are available to you
regardless of whether you care about becoming an MCSD.

The way to leverage this information is to get study materials for one or more of these
exams and go through the exam preparation material (don't be fooled by believing that if
the book is bigger, it must be better, because that certainly isn't always the case.) Exam
preparation material is available from sUch publishers as Microsoft Press, IDG, Sybex, and
others. Most exam preparation texts also have practice exams that let you assess your
grasp on the material. You might be surprised how much you learn, even though you may
have been in the field working on complex projects for some time.

Exam requirements, as well as the exams themselves, can change over time; more
electives become available, exams based on previous versions of software are retired,
and so on. You should check the status of individual exams (such as whether one of the
exams listed has been retired) before moving forward with your certification plans. For
more information about the certification process, or for more information about the
exams, check out Microsoft's certification web site at www.microsoft.comltrain_cert/dev.

Conferences
Like any industry, Microsoft and the development industry as a whole sponsor
conferences on various topics throughout the year and around the world. There are
probably more conferences available than anyone human could possibly attend and still
maintain his or her sanity, but often a given conference is geared toward a focused topic,
so choosing to focus on a particular development topic enables developers to winnow
the number of conferences that apply to their efforts and interests.

MSDN itself hosts or sponsors almost one hundred conferences a year (some of them
are regional, and duplicated in different locations, so these could be considered one
conference that happens multiple times). Other conferences are held in one central
location, such as the big one-the Professional Developers Conference (PDC).
Regardless of which conference you're looking for, Microsoft has provided a central site
for event information, enabling users to search the site for conferences, based on many
different criteria. To find out what conferences or other events are going on in your area
of interest of development, go to events.microsoft.com.

Other Resources
Other resources are available for developers of Windows applications, some of which
might be mainstays for one developer and unheard of for another. The list of developer
resources in this chapter has been geared toward getting you more than started with
finding the developer resources you need; it's geared toward getting you 100 percent of
the way, but there are always exceptions.

38 Volume 1 Winsockand QOS

Perhaps you're just getting started and you want more hands-on instruction than MSDN
Online or MeSD preparation materials provide. Where can you go? One option is to
check out your local college for instructor-led courses. Most community colleges offer
night classes, and increasingly, community colleges are outfitted with pretty nice
computer labs that enable you to get hands-on development instruction and experience
without having to work on a 386/20.

There are undoubtedly other resources that some people know about that have been
useful, or maybe invaluable. If you know of a resource that should be shared, send me
e-mail atwinprs@microsoft.com. and who knows----maybe someone else will benefit
from your knowledge.

If you're sending mail about a particularly useful resource, simply put "Resources" in the
subject line. There aren't any guarantees that you'll get a reply, but I'll read all of the mail
and do what I can to ensure that your resource idea gets considered.

CHAPTER 5

Writing Great IrDA Applications
(with Winsock)

39

This chapter provides overview and programming information about infrared technology,
which is standardized by the Infrared Data Association (IrDA), a non-profit organization
based in Walnut Creek, California. This chapter discusses how to use IrDA technology
with Microsoft Windows applications (and therefore, with Winsock). IrDA is becoming
increasingly popular as the digital revolution takes its networking capabilities into the
wireless world, so IrDA information seemed especially useful for the Networking
Services Developer's Reference Ubrary.

A great resource for all things related to infrared networking technology is www.irda.org.
Another great resource for finding out about how Microsoft uses (and exposes) IrDA
technology can be found at www.microsoft.comlhwdevlinfrared.

What Is an Ad-Hoc Networking-Enabled Application?
Imagine the following Windows application: two notebook computers are placed beside
each other. A computer icon appears on both desktops with the name of the peer
computer below it. Open one of the icons to display a folder with the contents of the peer
computer's desktop. Drag and drop between your desktop and the open folder to move
files between the two computers.

Imagine that the only configuration this application required was a checkbox for the user
to enable or disable it. Imagine that several similar applications could be running at the
same time without interfering with each other.

Imagine that this application could run on millions of existing notebook computers at
transfer speeds of up to 4 Mb/s. Imagine that instances of the application, regardless of
the speed of the underlying hardware, would work with all other instances at a common
fastest speed.

Imagine that the other notebook computer in this example was a digital still camera, a
handheld personal computer, a data capture device, or an electronic commerce device.

As a bonus, assume that the two computers did not need to be cabled together.

This application is possible today under Windows 2000, Windows 98, and Windows CE.
The underlying technology is based on inexpensive, widely available, short-range
infrared transceivers that adhere to the IrDA standards. IrDA standards also enable
communications between non-Windows devices and Windows applications; these
standards are freely available from the IrDA website at www.irda.org.

40 Volume 1 Winsock and aos

What Is IrDA?
IrDA is an international organization that creates and promotes interoperable, low cost,
infrared data interconnection standards that support a walk-up, point-to-point
user model.

IrDA is a protocol suite designed to support transmission of data between two devices
over short-range point-to-point infrared at speeds between 9.6Kbps and 4Mbps.

IrDA is that small semi-transparent red window that you may have wondered about on
your notebook computer.

Over the last three years, the members of the IrDA have been very successful at getting
IrDA hardware deployed in a large number of new notebook computers. One of the
reasons for this has been the simplicity and low cost of IrDA hardware. Unfortunately,
until recently, the hardware has not been available for applications programmers to use
because of a lack of suitable protocol drivers.

Microsoft Windows CE 1.0 was the first Windows operating system to provide built-in
IrDA support. Windows 2000 and Windows 98 now also include support for the same
IrDA programming APls that have enabled file sharing applications and games on
Windows CE.

IrDA implementations are becoming available on several popular embedded operation
systems.

SIR and FIR IrDA hardware can easily be added to a desktop computer by attaching a
dongle to a serial port (SIR) or by adding a card and a dongle (FIR). In the future, USB
attached FIR IrDA devices will be available.

What Is IrDA-C (Previously Known as IrBus)?
IrDA-C is a standard from the IrDA organization that is intended to support low speed
wireless PC peripheral devices such as keyboards and joysticks. IrDA-C is a low speed
(75 Kb/s shared among several devices), low latency, unreliable, long distance (20 feet),
wide angle, multiple device protocol. IrDA-C is a PC-peripheral style bus protocol, and is
not exposed to the application developer. In this chapter, the term "lrDA" refers to the
IrDA 1.1 protocols, which are also known as IrDA-D.

IrDA-C does not interoperate with IrDA-D. The IrDA-C specification includes a
mechanism that could allow IrDA-C and IrDA-D to share hardware, but this mechanism
is incompatible with the IrDA protocols in Windows 2000 and Windows CE because of
performance enhancements in these implementations of the IrDA-D protocols. IrDA-C
and IrDA-D can still exist in the same device, but must be physically separate.

Chapter 5 Writing Great IrDA Applications (with Winsock) 41

What Is Unique about IrDA?
IrDA is uniquely suited to ad-hoc point-to-point networking:

IrCA is a great non-cable. Mismatched connectors and wiring are impossible with IrDA.
Speed and configuration parameters are transparently negotiated at connect time and a
common set is used for the connection. IrDA at 4 Mb/s is compatible with 9.6 Kb/s IrDA.
Additionally, the IrDA connector is completely sealed, inexpensive, and available from
multiple vendors.

Common user-space APls. The combination of IrDA and Windows Sockets presents
the application programmer with a powerful yet simple Win32 user-space API that
exposes multiple, fully error-corrected data streams. Serial and parallel ports are the only
other point-to-point technologies that have a commonly available user space API. IrDA
defines rich functionality that does not exist with serial and parallel cables. IrDA borrows
from the very successful clienVserver connection and programming model defined by the
TCP/IP family of protocols and the Winsock APls.

Open protocols support non-Windows devices. Winsock exposes the IrDA TinyTP
protocol to the application writer. A non-Windows device that implements the TinyTP
protocol will be able to easily exchange data with Windows applications.

IrDA and Winsock support the implementation of easy to use, zero configuration, always
works data sharing applications-ad-hoc point-to-point networking.

IrDA Core Protocols and Services
The core IrDA services are similar to those exposed by the popular TCP protocol.
Applications running on two different machines are able to easily open multiple reliable
connections between themselves for the purpose of sending and receiving data. Like
TCP, client applications connect to a server application by specifying a device
(TCP host) address and an application (TCP port) address.

SeriallrDA (SIR) Physical Layer (115 Kb/s)
The SIR specification defines a short-range infrared asynchronous serial transmission
mode with one start bit, eight data bits and one stop bit. The maximum data rate is
115.2Kbps (half duplex). The primary benefit of this scheme is that existing serial
hardware can be used very cheaply. This is one of the reasons for the widespread
availability of IrDA.

Fast IrDA (FIR) Physical Layer (4 Mb/s)
The FIR specification defines short-range low power operation at 4Mpbs (half duplex).
All FIR devices are also required to support SIR operation.

42 Volume 1 Winsock and QOS

IrLAP Data Link Layer
Data rates are negotiated and changed during IrLAP connection establishment.
This is completely transparent to the application.

IrLAP defines two protocols. The first is a discovery protocol that is used directly by an
application to learn about currently visible devices, their nicknames and device (MAC)
addresses. Discovery is an area where IrDA differs from other common bus or
networking protocols. It is not expected that clients have advance knowledge of the
device addresses of servers-they simply ask for a list of who is visible and then
select one.

The information returned from a discovery is a list of device MAC addresses, human
readable device nicknames, and a bitmask of hints that suggest the nature of peer
devices. MAC addresses are randomly generated 32-bit values.

The IrLAP data link protocol is based on the widely implemented HDLC data link
protocol. IrLAP provides a simple reliable connection between two devices. If the HDLC
connection is broken for any reason, an error is quickly reported back to applications.

IrLMP and TinyTP
The IrLMP and TinyTP layers add multiple session support to IrLAP. In theory, this
support exists to allow multiple applications to have multiple concurrent connections
active. While this operation is fully supported, often only one application can be active at
once. IrLMP and TinyTP still provide significant value in that they allow multiple
applications to be listening for incoming connections without interfering with each other.
A single application might also choose to open a control connection and a data
connection at the same time. This is made possible by the IrLMP and TinyTP layers.

IrLMP and TinyTP also add per-connection flow control to the flow control provided by
the single IrLAP connection. This allows an application to offer data in large blocks to the
IrDA stack and allow the stack to send it at optimal speeds. It is not necessary for the
application to be concerned about lost data or flow control.

Winsock exposes the TinyTP service interface to application programs.

IrLMP includes a directory services protocol, Information Advertising Service (lAS), that
runs directly on top of IrLMP. lAS is commonly used to map an ASCII service name to a
LSAP-SEL. LSAP-SEL is a protocol element used to select one from possibly many
applications running on the server. The service name is a friendlier abstraction that is
exposed to applications. Non-Windows devices must be aware of the conventions used
by Windows. These are described below.

IrLMP defines a mode of service called exclusive mode. In this mode, only a single
IrLMP connection is supported and the flow control features of IrLAP are used. TinyTP is
not used. Exclusive mode is used by the IrLPT protocol that talks to IrLPT printers.
(See Figure 5-1.)

Chapter 5 Writing Great IrDA Applications (with Winsock) 43

lAS (Directory! SAP Data SAPs

Figure 5-1: Core IrDA Protocols.

IrCOMM

WjnsQck

~--- LSAP-SEL +!IJltI.C

Nickn:lme;
Hint:;

IrCOMM was the most frequently used programming interface for IrDA on Windows 95.
Windows 98 continues to support IrCOMM, but Winsock is the strategic interface for
IrDA on all Windows platforms. There are several reasons behind this decision.

IrCOMM is a family of protocols that run on top of the core IrDA protocol suite. IrCOMM
supports the emulation of a peer device connected via a serial or parallel cable. This
emulation is from the perspective of applications that are accessing serial and parallel
ports through the operating system API.

An IrCOMM implementation generally takes the form of a system installable serial port
driver. Rather than talking to real serial hardware, it uses the services exported by the
core IrDA protocols.

The basic mechanism of IrCOMM serial-connected device emulation is to convert
RS-232 serial line state change requests generated by one application into protocol
messages that are communicated tothe peer application through the native serial API.

In the case of modems, some of line state change protocol messages correspond to
established· conventions for relaying state changes on the analog side of the modem
back to the computer (drop DCD to signal a line carrier drop). Other line state changes
are used to stop the computer from overrunning buffers in the modem (CTS, RTS).

44 Volume 1 Winsock and QOS

When two systems are connected together via an RS-232 cable (no modems), ad-hoc
application conventions are used to map line state changes into bi-directional flow
control and application specific signaling. The Windows 95 Direct Cable Connect feature
is an example of such an application.

The use of line state changes to implement flow control is largely a legacy application to
application concept. The underlying IrDA protocols fully support flow control between
systems; even an IrDA modem could dispense with lead state changes and Simply use
the underlying IrDA protocol flow control mechanisms to stop the computer from sending
more data.

IrCOMM Modes
IrCOMM is actually a family of protocols. Only 9 Wire Mode supports the propagation of
line state change information. The IrLPT protocol is used to talk to printers. 3 Wire Raw
Mode and IrLPT run the core IrDA stack in exclusive mode, which precludes other
applications from using the stack at the same time. 3 Wire Cooked Mode uses the
services of IrLMP and TinyTP, does not preclude other applications from using the stack,
and does not propagate line state change information. 9 Wire Mode is like 3 Wire
Cooked Mode but also supports line state change messages.

In order to achieve IrCOMM communication, a common mode must be negotiated at
IrCOMM connection setup time.

Virtual Serial Port

IrCOMM {

IrDA

Figure 5-2: IrCOMM Internal Architecture.

The philosophy behind IrCOMM was to support IrDA modems and legacy applications
built on the serial API. In practice, because the serial API was the most commonly
available IrDA user space API, new IrDA applications were designed around IrCOMM.

Chapter 5 Writing Great IrDA Applications (with Winsock) 45

IrCOMM runs on top of a reliable protocol layer, but session establishment and release
services are not exposed through the serial API. Additionally, the underlying IrDA
connection can be broken and re-established without this information being
communicated to the application through the serial API. The result of this is that IrCOMM
is not a reliable protocol in practice, and IrCOMM applications must be prepared to add
yet anther layer of reliability.

No IrCOMM Virtual Serial Ports on Windows 2000
Windows 2000 does not expose IrCOMM virtual serial ports. There are several reasons
for this. .
Many customers have difficulty with the concept of virtual ports. This is especially
confusing when the SIR IrDA hardware itself may need to be configured on a real serial
port, and then the customer must further configure their application to use a virtual
serial port.

Multiple applications cannot share a virtual serial port. This is particularly troublesome if,
for example, an IrCOMM-based application opens the single virtual serial port and holds
it open until system shutdown. An example of this would be an IrTran-P file transfer
application running as a background service. No other IrDA application or driver will be
able to run on that system, even though the underlying IrDA protocols provide support to
allow multiple applications to be waiting for incoming connections, and allow clients to
select a target application at connect time through established protocol mechanisms.

Windows 2000's support for multiple concurrent adapters and IrDA connections to
different devices cannot be well supported under an API. and protocol that assumes only
a single device connection.

The complexity and various modes of IrCOMM make real world interoperability a very
tough problem.

Windows 2000 Support for IrCOMM Through Winsock
In order to support certain legacy IrDA devices, including IrTran-P based cameras,
Windows 2000 implements a subset of the IrCOMM protocol, but exposes this protocol
through the Winsock API rather than through the serial API. In particular, only 9 Wire
Mode IrCOMM is supported, and line state change information is not supported.
Windows 2000 only advertises that it supports the IrCOMM 9 Wire Mode. Devices must
be able to initiate the IrDA connection, and not to expect Windows to initiate the
connection as a side-effect of discovering new devices. IrCOMM through Winsock
programming details are found later in this chapter.

The fundamental limitation of the IrCOMM protocol, that you cannot have multiple
servers listening for incoming connections, is still exposed in this implementation. If one
application is listening for incominglrCOMM connections, another application trying to
do so will get an error from Winsock. For this reason it is recommended that all new
applications either avoid IrCOMM or support multiple mode concurrently.

46 Volume 1 Winsock and QOS

IrDA and the Windows Sockets API
Good Winsock applications are critical to the easy-to-use, zero-configuration, always
works IrDA vision. IrDA and Winsock present a unique opportunity for applications that
can fill the ever-increasing need for simple data exchange between Windows and non
Windows devices.

Talking to Non-Windows Devices
The Winsock programming API adds only a basic application-level naming convention
(supported through lAS) to the IrDA specified protocol suite. A device that implements
the core IrDA protocol and adheres to the simple naming conventions should be able to
interoperate easily with Windows.

Devices are free to implement the required functionality of a Winsock client or server, or
both. Client and server refer only to who initiates the connection. Once a connection is
established, data can be reliably exchanged in both directions. Since server side
functionality requires slightly more IrDA stack functionality, Windows will often be the
server. It is up to the application writer to choose the trigger that initiates the IrDA
connection. The connection can be driven from a user initiated action, or can be the
result of discovering a device in a discovery polling loop. The application programmer is
completely unconstrained as to client/server roles and connection establishment.

Devices that are battery constrained should refrain from continuous polling to drive
connection initiation.

Either side can close the connection, although this is generally coordinated by
application level protocols. A receiver will receive all data that has been sent to Winsock
by the peer application before it receives notification of the peer connection closure. If
the connection closes abortively, both sides of the connection will receive an error
through Winsock. It is always possible to tell the difference between graceful closes and
abortive closes.

Well-designed servers can often support multiple incoming connections concurrently,
although there is no requirement that simple servers implement this.

Application Addressing
Application level addressing is the ability of a client application to request a connection
to a particular server application (actually to a particular socket, or communications
endpoint). Multiple server applications can be waiting concurrently for incoming
connections without interfering with one another.

The actual protocol, IrLMP, directly supports the concept of application level addressing
through an 8-bit protocol field called an LSAP-SEL.

Chapter 5 Writing Great IrDA Applications (with Winsock) 47

Since LSAP-SELs are only 8 bits wide and no authority coordinates this space, using a
well-known LSAP-SEL to identify an application is not recommended. Windows uses the
GetValueByClass lAS service to map an ASCII service name to an LSAP-SEL at
connect time. This means that a server can register itself with an ASCII name, and a
client can connect to this server by using the same name.

Non-Windows devices can connect to a Windows server by performing an lAS
GetValueByClass query on the attribute IrDA:TinyTP:LsapSel with the desired service
name as the class. The result of this query will be an LSAP-SEL, which the device can
then use to initiate a TinyTP connection. The correct server will receive the incoming
connection. The actual LSAP-SELs used in this scheme may change every time a server
is restarted.

Non-Windows devices can support an inbound connection from a Windows system by
supporting the same query initiated by the Windows side.

Figure 5-3: Application Addressing.

Data Transfer and Connection Close
Once a connection is established, Winsock sendO and recvO calls translate into TinyTP
sends and receives. Even though IrLAP itself is half-duplex, the application is not aware
of this. SendO and recvO can be called at the same time, on the same connection, on
two different threads.

The stack manages TinyTP credits on behalf of the application. When the peer stops
issuing TinyTP credits, the sender will block in the sendO call. A non-Windows device is
required to issue TinyTP credits as it is able to consume new data. Windows will stop
issuing credits when the receiver stops calling recvO to consume data.

48 Volume 1 Winsock and QOS

A Winsock application can send a large buffer of data on a sendO call and the stack will
segment it as required. Applications will get substantially higher performance if they pass
in at least 8 kB of data on a single sendO call.

IrDA through Winsock supports the SOCK_STREAM data stream semantics, which
means that any notion of message boundaries is not preserved. Applications commonly
add a length field to the head of messages to pass this information to a peer.

When one side of a connection is closed with the closesocketO call, all data that was
previously sent will be delivered to the peer. When the peer has consumed all data, the
next recvO call it issues will return with a length of zero, indicating a normal socket close.
Any error that prevents data from being sent correctly will result in a Winsock error being
returned to the application.

Peer IrDA Device (Client)

socketO
socAet handle

Protocol

getso ckopt(EN UM ...) --++-__ ~~:Ji!..Jl~ildW1.itk.._-!~
device list 4---!e---'-"-''''''I:<''''''''' '''''''''''''''"-----/

connect(name) --to+---'=W~-~"""'"--"""'-~

Windows

socketO
socAet handle

bind(name)

Ok/error

listen()

Ok/error

acceptO

Ok/error

OKierror.....--I4----~..liilbu.ll.l.i~-----I_____JIo_ new socmt handle

TTP-DAT NCREDITS sendOlrecv 0 -to~-~.t.t-~~~~~~-..... f4--1 ... recv Olsen dO

clo sesocketO _____JIo_ recv 0 len = 0

.....-- clo sesocketO

Figure 5-4: WinsockllrDA Protocol Mapping.

Chapter 5 Writing Great IrDA Applications (with Winsock) 49

IrDA and Winsock Reference
This section explains how common Windows Sockets 2 functions are used when
working with IrDA development. Note that this section is not a replacement of these
functions' programmatic reference information found in Part 2 of this volume; these
entries merely serve to specifically address IrDA-specific applications of these
applications. For complete reference information on Windows Sockets 2 functions,
see Chapter 8.

WSAStartup
Call the WSAStartup function before making any other IrDA function calls:

afJrda.h
This header file must be included by Windows Sockets applications to support IrDA.
There are several incompatible versions of aUrda.h that have been distributed with
Windows CE and Windows 95 Ir3.0 DDKs and SDKs. A common aUrda.h that supports
all three platforms is available with the Windows 2000 IrDA DDK. This file may continue
to evolve as the APls of the systems grow closer together.

In order to compile for one of the target platforms, one of the following must be defined:

socket
The Windows Sockets socket function is used to create a connection endpoint of type
SOCKET. This is nothing more than an application anchor for future references to a
connection. The connection is not yet established. Both clients and servers begin all
communication by opening a socket:

50 Volume 1 Winsock and QOS

SOCKADDRJRDA Structure
The following SOCKADDR structure is used for AF _IRDA sockets:

The irdaAddressFamily member is always AF _IRDA.

Server applications use the irdaServiceName member to specify their well-known
service name in a bind function call. The irdaDevicelD member is ignored by the server
application.

Client applications fill in all members. The irdaDevicelD member is filled in with the
device address of the device that the client wishes to use a connect function call to
connect to. This address is returned from a previous discovery operation initiated by a
getsockopt function call with the IRLMP _ENUMDEVICES option. The
irdaServiceName member is initialized to the well-known value that the server specified
in its bind function call.

It is an error for an IrDA application to issue a connect function call after issuing a
bind call.

bind
The bind function is used by server applications to register that they wish to receive
incoming connections that are addressed to a specified service name on the specified
socket. The bind function associates a server socket with an application level address:

A Windows Sockets bind function call causes the stack to generate a new local LSAP
SEL and to add it to the lAS database associated with the service name supplied in the
SOCKADDR_IRDA structure.

Chapter 5 Writing Great IrDA Applications (with Winsock) 51

listen
The listen function is used by server applications to place the stack into a mode where it
will receive incoming connections on that socket. The listen function does not block. The
backlog parameter tells the stack how many inbound connections to accept on behalf of
the application before the application is able to further process (accept) these
connections:

accept
Once a server application has put its server socket into listen mode, it then calls the
accept function and blocks until an incoming connection is received. An unusual
characteristic of the accept function is that it returns a new socket. The reason for this is
that the server application may with to continue accepting new inbound connections. To
support this, the server typically creates a new thread to handle the new connection, and
then blocks again on another accept call. There is no requirement that a simple server
support multiple connections, and it is free to ignore the old listening socket until it is
done with the newly created socket. The SOCKADDR_IRDAstructure passed to the
accept function is filled in with the peer's addresses, and can usually be ignored:

52 Volume 1 Winsock and aos

send and recv
These function calls are used to transfer data. A recv function call blocks until there is
data available, and a send function call normally does not block. The send function can
block if the peer is not receiving data (has stopped calling recv). The send call unblocks
when the peer resumes recvs. A recv of length zero has the special meaning that the
client has performed a graceful close on the socket. The application can assume that it
has received all data that was sent by the peer. If any unrecoverable protocol error
occurs during the connection, send or recv returns an error code and the connection
is aborted:

closesocket
The closesocket function initiates a graceful close on the connection and releases the
socket handle:

getsockopt(" IRLMP _ENUMDEVICES,,) and connect()
This is the function used to perform a discovery. Before a connection can be initiated, a
device address must be obtained by doing a discovery operation. An extension to the
Windows Sockets getsockopt function call returns a list of all currently visible IrDA
devices. A device address returned from this list is copied into a SOCKADDR_IRDA
structure to be used by the connect function call.

Chapter 5 Writing Great IrDA Applications (with Winsock) 53

Discovery can be run in one of two ways. Performing a getsockopt function call with the
IRLMP _ENUMDEVICES option will cause a single discovery to be run on each idle
adapter. The list of discovered devices and cached devices (on active adapters) is
returned immediately. The following code demonstrates this:

(continued)

54 Volume 1 Winsock and QOS

(continued)

It is also possible to run a lazy discovery-the application will not be notified until the
discovered device list changes from the last discovery run by the stack.

lAS
Limited access to the lAS database is available through Winsock, but this is not normally
used by applications. It exists to support connections to non-Windows devices that are
not compliant with.the WinsockllrDA conventions.

This structure is used with the IRLMP _lAS_SET setsockopt option to manage the local
lAS database:

Chapter 5 Writing Great IrDA Applications (with Winsock) 55

This structure is used with the IRLMP _lAS_QUERY getsockopt option to query a peer's
lAS database:

The following code shows the steps necessary to build a server that listens for incoming
IrCOMM connections:

(continued)

56 Volume 1 Winsock and QOS

(continued)

Chapter 5 Writing Great IrDA Applications (with Winsock) 57

IrCOMM Client
The following code shows the steps necessary to build a client that connects via 9 Wire
IrCOMM:

(continued)

58 Volume 1 Winsock and QOS

(continued)

Chapter 5 Writing Great IrDA Applications (with Winsock) 59

60 Volume 1 Winsock and QOS

Windows 2000 IrDA Architecture
Windows 2000 provides some unique support for IrDA

IrDA Hardware Drivers
SIR UART based serial adapters are supported by the Windows 2000 component
IrSIR.SYS. IrSIR uses the services of the Windows NT serial driver SERIAL.SYS or a
SERIAL.SYS-compatible serial driver to communicate with the IrDA hardware. Built-in
SIR hardware should expose itself through the system BIOS as Plug and Play Id
PNP0510 or PNP0511.

FIR IrDA hardware must be exposed as an NDIS4.0 miniport driver. FIR drivers can
expose as many NDIS adapters as the driver can support. Each adapter is a unique IrDA
transceiver that can support a unique instance of IrlAP. FIR hardware should have a
unique Plug and Play ID and have an associated vendor-supplied driver. FIR hardware
that is also compatible with SIR can also expose an alias Plug and Play ID of PNP0510
or PNP0511 to allow SIR-only operation using IrSIR.

IrDA.SYS

Figure 5-5: Windows 2000 IrDA Architecture.

Chapter 5 Writing Great IrDA Applications (with Winsock) 61

Windows 2000 Multiple-Adapter Support
The Windows 2000 IrDA stack supports concurrent operation of several NDIS4.0
FIR/SIR miniport adapters. This support allows a single server to support multiple
inbound connections in a way that is transparent to both client and server applications.

An adapter is defined as the hardware/software needed to support a single IrLAP
connection.

Since IrDA is not a routable protocol, multiple-adapters support is limited to connections
to a single server by multiple clients. Peer devices cannot talk to each other through
the server.

Each adapter and IrLAP instance will have a unique IrDA MAC address (DeviceID).

Discovery operations are run on every idle adapter in sequence. A global list of
discovered devices is returned. Cached discovery information is maintained on a
per-lrLAP instance and returned for each adapter that has a connection active.

The Windows 2000 IrDA stack maintains a mapping between device address and last
seen adapter. When a connection is requested to a peer device, the stack routes the
connection to the correct adapter. Incoming connections are delivered to a single
listening transport endpoint. The listening client will not receive any per-adapter
information. The mapping between the new connection and the adapter is maintained by
the IrDA stack.

Part 2 63

CHAPTER 6

Winsock 2 API Overview

Welcome to Windows Sockets 2
This chapter describes the Windows Sockets 2 Application Programming Interface (API).
It consists, primarily, of information from the Windows Sockets 2 API specification, but
also includes additional information. The information in this document is not presented in
exactly the same way as in the specification.

Using the Windows Sockets 2 API Document
This document provides the online material needed to create a Windows Sockets
application for Microsoft Windows® operating systems, using the Microsoft
implementation of Windows Sockets 2. It is intended as a reference tool and outlines the
functions in the Windows Sockets API.

You should be familiar with Win32® programming concepts to make the best use of this
document. Thus, you may want to refer to other references that provide a more
systematic guide to writing Windows Sockets applications.

Note This documentation is intended for application developers. If you are developing a
transport or service provider, see the Service Provider Documentation in Chapters 10
and 11 of this volume.

Overview of Windows Sockets 2
Windows Sockets 2 uses the sockets paradigm that was first popularized by Berkeley
Software Distribution (BSD) UNIX. It was later adapted for Microsoft Windows in
Windows Sockets 1 .1.

One of the primary goals of Windows Sockets 2 has been to provide a protocol
independent interface fully capable of supporting emerging networking capabilities, such
as real-time multimedia communications.

Windows Sockets 2 is an interface, not a protocol. As an interface, it is used to discover
and utilize the communications capabilities of any number of underlying transport
protocols. Because it is not a protocol, it does not in any way affect the bits on the wire,
and does not need to be utilized on both ends of a communications link.

Windows Sockets programming previously centered around TCP/IP. Some of the
programming practices that worked with TCP/IP do not work with every protocol. As a
result, the Windows Sockets 2 API added new functions where necessary to handle
several protocols.

64 Volume 1 Winsock and QOS

Windows Sockets 2 has changed its architecture to provide easier access to multiple
transport protocols. Following the Windows Open System Architecture (WOSA) model,
Windows Sockets 2 now defines a standard service provider interface (SPI) between the
application programming interface (API), with its functions exported from WS2_32.dll and
the protocol stacks. Consequently, Windows Sockets 2 support is not limited to TCP/IP
protocol stacks as is the case for Windows Sockets 1.1. For more information, see
Windows Sockets 2 Architecture.

There are new challenges in developing Windows Sockets 2 applications. When sockets
only supported TCP/IP, a developer could create an application that supported only two
socket types: connection less and connection-oriented. Connectionless protocols used
SOCK_DGRAM sockets and connection-oriented protocols used SOCK_STREAM
sockets. Now, these are just two of the many new socket types. Additionally, developers
can no longer rely on socket type to describe all the essential attributes of a transport
protocol.

Windows Sockets 2 Features
Windows Sockets 2 extends functionality in a number of areas.

Features

Access to protocols other
than TCP/IP

Overlapped I/O with
scatter/gather

Protocol-independent
name resolution facilities

Protocol-independent
multicast and multipoint

Quality of service (QOS)

Other frequently requested
extensions

Description

Windows Sockets 2 allows an application to use the
familiar socket interface to achieve simultaneous access to
a number of installed transport protocols.

Windows Sockets 2 incorporates the overlapped paradigm
for socket I/O and incorporates scatter/gather capabilities
as well, following the model established in Win32
environments.

Windows Sockets 2 includes a standardized set of
functions for querying and working with the myriad name
resolution domains that exist today (for example DNS,
SAP, and X.SOO).

Windows Sockets 2 applications discover what type of
multipoint or multicast capabilities a transport provides and
use these facilities in a generic manner.

Window Sockets 2 establishes conventions that
applications use to negotiate required service levels for
parameters such as bandwidth and latency. Other QOS
related enhancements include mechanisms for network
specific QOS extensions.

Windows Sockets 2 incorporates shared sockets and
conditional acceptance; exchange of user data at
connection setup/teardown time; and protocol-specific
extension mechanisms.

Chapter 6 Winsock 2 API Overview 65

Conventions for New Functions
Windows Sockets 2, with its expanded scope, takes the socket paradigm beyond the
original design. As a result, a number of new functions have been added. These have
been assigned names that begin with WSA. In all but a few instances, these new
functions are expanded versions of existing functions from BSD sockets.

The new functions are described in the reference section of the document, following the
conventions of the Platform SDK. The new functions are also listed in Summary of New
Functions.

Microsoft Extensions and the Windows Sockets 2 API
The Windows Sockets 2 specification defines an extension mechanism that exposes
advanced transport functionality to application programs. For more information, see
Function Extension Mechanism.

The following Microsoft-specific extensions were added to Windows Sockets 1.1. They
are also available in Windows Sockets 2.

AcceptEx
GetAcceptExSockaddrs
TransmitFile
WSARecvEx

These functions are not exported from the WS2_32.dll; they are exported from
Mswsock.dll.

An application written to use the Microsoft-specific extensions to Windows Sockets does
not run correctly over a Windows Sockets service provider that does not support those
extensions.

Socket Handles for Windows Sockets 2
A socket handle can optionally be a file handle in Windows Sockets 2. It is possible to
use socket handles with ReadFile, WriteFile, ReadFileEx, WriteFileEx,
DuplicateHandle, and other Win32 functions. Not all transport service providers support
this option. For an application to run over the widest possible number of service
providers, it should not assume that socket handles are file handles.

Windows Sockets 2 has expanded certain functions that transfer data between sockets
using handles. The functions offer advantages specific to sockets for transferring data
and include WSARecv, WSASend, and WSADuplicateSocket.

66 Volume 1 Winsock and QOS

New Concepts, Additions, and Changes for Windows
Sockets 2

This section summarizes Windows Sockets 2 and describes the major changes and
additions it contains. Windows Sockets 2 differs from Windows Sockets 1.1 in several
ways, particularly in architecture. The new architecture, discussed in Windows Sockets 2
Architecture, provides the foundation for many of the new concepts that have been
incorporated into Windows Sockets 2.

An overview of the additions and changes in Windows Sockets 2 follows the discussion
of the new architecture.

Many of the functions in Windows Sockets 2 are the same as in the other versions of
sockets. However, there are several new functions, which are summarized in Summary
of New Functions. For detailed information on how to use a specific function or feature,
refer to the Reference section.

Windows Sockets 2 Architecture
A number of Windows Sockets 2 features required substantial change in the Windows
Sockets architecture. The resulting architecture is considerably different from previous
versions, but the benefits are numerous. Foremost among these is Simultaneous Access
to Multiple Transport Protocols, explained in detail in the following section.

Other features include the adoption of protocol-independent name resolution facilities,
provisions for layered protocols and protocol chains, and a different mechanism for
Windows Sockets service providers to offer extended, provider-specific functionality.

Simultaneous Access to Multiple Transport Protocols
In order to provide simultaneous access to multiple transport protocols, the architecture
has changed for Windows Sockets 2. With Windows Sockets 1.1, the vendor of the
TCP/IP protocol stack supplies the DLL that implements the Windows Sockets interface.
The interface between the Windows Sockets DLL and the underlying stack was both
unique and proprietary. Windows Sockets 2 changes this model. It defines a standard
Service Provider Interface (SPI) between the Windows Sockets DLL and protocol stacks.
In this way, a single Windows Sockets DLL can simultaneously access multiple stacks
from different vendors. Furthermore, Windows Sockets 2 support is not limited to TCP/IP
protocol stacks as it is in Windows Sockets 1 .1 .

The Windows Open System Architecture (WOSA)-compliant Windows Sockets 2
architecture is shown in Figure 6-1.

Windows
Sockets 2 API

Windows Sockets 2

Windows
Sockets 2
Application

Transport
Functions

Transport SPI ---------

Transport
Service
Provider

Transport
Service
Provider

Chapter 6 Winsock 2 API Overview 67

Windows
Sockets 2

Application

Name Space
Functions

Windows Sockets 2
--------- Name Space SPI

Name Space
Service
Provider

Name Space
Service
Provider

Figure 6-1: Windows Sockets 2 Architecture.

With the Windows Sockets 2 architecture, it is not necessary or desirable, for stack
vendors to supply their own implementation of WS2_32.dll, since a single WS2_32.dll
must work across all stacks. The WS2_32.dll and compatibility shims should be viewed
in the same way as an operating system component.

Backward Compatibility for Windows Sockets 1.1 Applications
Windows Sockets 2 is backward compatible with Windows Sockets 1.1 on two levels:
source and binary. This maximizes interoperability between Windows Sockets
applications of any version and Windows Sockets implementations of any version. It also
minimizes problems for users of Windows Sockets applications, network stacks, and
service providers. Current Windows Sockets 1.1-compliant applications operate on a
Windows Sockets 2 implementation without modification of any kind, as long as at least
one TCP/IP service provider is properly installed.

Source Code Compatibility
Source code compatibility in Windows Sockets 2 means, with few exceptions, that all the
Windows Sockets 1.1 functions are preserved in Windows Sockets 2. Windows Sockets
1.1 applications that use blocking hooks should be modified since blocking hooks are no
longer supported in Windows Sockets 2. (For more information, see Windows Sockets
1.1 Blocking Routines and EINPROGRESS.)

EXisting Windows Sockets 1.1 application source code can easily be moved to the
Windows Sockets 2 system by including the new header file, Winsock2.h, and
performing a straightforward relink with the appropriate Windows Sockets 2 libraries.

68 Volume 1 Win sock and QOS

Application developers are encouraged to view this as the first step in a full transition to
Windows Sockets 2 because there are numerous ways in which a Windows Sockets 1.1
application can be improved by exploring and using the new functionality in Windows
Sockets 2.

Binary Compatibility
A major design goal for Windows Sockets 2 was to enable existing Windows Sockets 1 .1
applications to work, unchanged at a binary level, with Windows Sockets 2. Since
Windows Sockets 1.1 applications are TCP/IP-based, binary compatibility implies that
TCP/IP-based Windows Sockets 2 Transport and Name Resolution Service Providers
are present in the Windows Sockets 2 system. In order to enable Windows Sockets 1.1
applications in this scenario, the Windows Sockets 2 system has an additional shim
component supplied with it: a Version 1.1-compliant Winsock.dll.

Installation guidelines for Windows Sockets 2 ensure there is no negative impact to
existing Windows Sockets-based applications on an end-user system with the
introduction of any Windows Sockets 2 components. (See Figure 6-2.)

Windows
Sockets 2

Application

Windows
Sockets 1.1
Application

WINSOCK.DLL (16 bit)
WSOCK32.DLL (32 bit)

WS2_32.DLL (32 bit)

~~---~----.--"~~---~-------

Windows
Sockets 1.1 API

Windows
Sockets 2 API

Windows
Sockets 2 SPI's

,-----------,

TCP/IP
Transport
Service
Provider

TCP/IP-based
Namespace

Service
Provider
e.g.DNS

Figure 6-2: Windows Sockets 1.1 Compatibility Architecture.

Chapter 6 Winsock 2 API Overview 69

Important To obtain information about the underlying TCP/IP stack, Windows Sockets
1.1 applications currently use certain members of the WSAData structure (obtained
through a call to WSAStartup). These members include: IMAXSOCKETS,
IMAXUDPDG, and LPVENDORINFO.

While Windows Sockets 2 applications ignore these values (since they cannot uniformly
apply to all available protocol stacks), safe values are supplied to avoid breaking
Windows Sockets 1.1 applications.

Making Transport Protocols Available to Windows Sockets
A transport protocol must be properly installed on the system and registered with
Windows Sockets to be accessible to an application. The Ws2_32.dll exports a set of
functions to facilitate the registration process. This includes creating a new registration
and removing an existing one.

When new registrations are created, the caller (that is, the stack vendor's installation
script) supplies one or more filled in WSAPROTOCOL_INFO structures containing a
complete set of information about the protocol. (See the Welcome To Windows Sockets
2 SPI for information on how this is accomplished.) Any transport stack installed in this
manner is referred to as a Windows Sockets service provider.

The Windows Sockets 2 SDK includes a small Windows applet, Sporder.exe, that allows
the user to view and modify the order in which service providers are enumerated. By
using this Sporder.exe, a user can manually establish a particular TCP/IP protocol stack
as the default TCP/IP provider if more than one such stack is present.

The Sporder.exe applet exports functions from Sporder.dll to reorder the service
providers. As a result, installation applications can use the interface of Sporder.dll to
programmatically reorder service providers to suit their needs.

Layered Protocols and Protocol Chains
Windows Sockets 2 incorporates the concept of a layered protocol. A layered protocol is
one that implements only higher-level communications functions while relying on an
underlying transport stack for the actual exchange of data with a remote endpoint. An
example of this type of layered protocol is a security layer that adds a protocol to the
socket connection process in order to perform authentication and establish an encryption
scheme. Such a security protocol generally requires the services of an underlying and
reliable transport protocol such as TCP or SPX.

The term base protocol refers to a protocol, such as TCP or SPX, that is fully capable of
performing data communications with a remote endpoint. A layered protocol is a protocol
that cannot stand alone, while a protocol chain is one or more layered protocols strung
together and anchored by a base protocol.

70 Volume 1 Winsock and OOS

You can create a protocol chain if you design the layered protocols to support the
Windows Sockets 2 SPI at both their upper and lower edges. A special
WSAPROTOCOL_INFO structure refers to the protocol chain as a whole and describes
the explicit order in which the layered protocols are joined. This is shown in Figure 6-3.
Since only base protocols and protocol chains are directly usable by applications, they
are the only ones listed when the installed protocols are enumerated with the
WSAEnumProtocols function.

API

WS2 32.DLL
SPI

!
Layered Protocol

SPI

Layered Protocol

SPI

Base Protocol

Figure 6-3: Layered Protocol Architecture.

Using Multiple Protocols
An application uses the WSAEnumProtocols function to determine which transport
protocols and protocol chains are present, and to obtain information about each as
contained in the associated WSAPROTOCOL_INFO structure.

In most instances, there is a single WSAPROTOCOL_INFO structure for each protocol
or protocol chain. However, some protocols exhibit multiple behaviors. For example, the
SPX protocol is message oriented (that is, the sender's message boundaries are
preserved by the network), but the receiving socket can ignore these message
boundaries and treat them as a byte stream. Thus, two different WSAPROTOCOL_
INFO structure entries could exist for SPX-one for each behavior.

Chapter 6 Winsock 2 API Overview 71

In Windows Sockets 2, several new address family, socket type, and protocol values
appear. Windows Sockets 1.1 supported a single address family (AF _INET) comprising
a small number of well-known socket types and protocol identifiers. Windows Sockets 2
retains the existing address family, socket type, and protocol identifiers for compatibility
reasons, but it also supports new transport protocols with new media types.

A Windows Sockets 2 clearinghouse allows protocol stack vendors to obtain unique
identifiers for new address families, socket types, and protocols. FTP and World Wide
Web servers supply current identifier/value mappings and use email to request allocation
of new ones. This is the World Wide Web URL for the Windows Sockets 2 Identifier
Clearinghouse:

New, unique identifiers are not necessarily well known, but this should not pose a
problem. Applications that need to be protocol-independent are encouraged to select a
protocol on the basis of its suitability rather than the values assigned to their sockeLtype
or protocol parameters. Protocol suitability is indicated by the communications attributes,
such as message-versus-byte stream, and reliable-versus-unreliable, that are contained
in the protocol WSAPROTOCOL_INFO structure. Selecting protocols on the basis of
suitability as opposed to well-known protocol names and socket types lets protocol
independent applications take advantage of new transport protocols and their associated
media types, as they become available.

The server half of a client/server application benefits by establishing listening sockets on
all suitable transport protocols. Then, the client can establish its connection using any
suitable protocol. For example, this would let a client application be unmodified whether
it was running on a desktop system connected through LAN or on a laptop using a
wireless network.

Multiple Provider Restrictions on Select
The select function is used to determine the status of one or more sockets in a set. For
each socket, the caller can request information on read, write, or error status. A set of
sockets is indicated by an FD_SET structure.

Windows Sockets 2 allows an application to use more than one service provider, but the
select function is limited to a set of sockets associated with a single service provider.
This does not in any way restrict an application from having multiple sockets open
through multiple providers.

There are two ways to determine the status of a set of sockets that spans more than one
service provider:

• Using the WSAWaitForMultipleEvents or WSAEventSelect functions when
blocking semantics are employed

• Using the WSAAsyncSelect function when nonblocking operations are employed.

72 Volume 1 Winsock and QOS

When an application needs to use blocking semantics on a set of sockets that spans
multiple providers, WSA WaitForMultipleEvents is recommended. The application can
also use the WSAEventSelect function, which allows the FD_XXX network events (see
WSAEventSelect) to associate with an event object and be handled from within the
event object paradigm (described in Overlapped 110 and Event Objects).

The WSAAsyncSelect function is recommended when non blocking operations are
preferred. This function is not restricted to a single provider because it takes a socket
descriptor as an input parameter.

Function Extension Mechanism
The Windows Sockets .dll, WS2_32.dll, is no longer supplied by each individual stack
vendor. As a result, it is no longer possible for a stack vendor to offer extended
functionality by just adding entry points to the WS2_32.dll. To overcome this limitation,
Windows Sockets 2 takes advantage of the new WSAloctl function to accommodate
service providers who want to offer provider-specific functionality extensions. This
mechanism assumes, of course, that an application is aware of a particular extension
and understands both the semantics and syntax involved. Such information would
typically be supplied by the service provider vendor.

In order to invoke an extension function, the application must first ask for a pOinter to the
desired function. This is done through the WSAloctl function using the
SIO_GET _EXTENSION_FUNCTION_POINTER command code. The input buffer to the
WSAloctl function contains an identifier for the desired extension function while the
output buffer contains the function pointer itself. The application can then invoke the
extension function directly without passing through the Ws2_32.dll.

The identifiers assigned to extension functions are globally unique identifiers (GUIDs)
that are allocated by service provider vendors. Vendors who create extension functions
are urged to publish full details about the function including the syntax of the function
prototype. This makes it possible for common and popular extension functions to be
offered by more than one service provider vendor. An application can obtain the function
pOinter and use the function without needing to know anything about the particular
service provider that implements the function.

Debug and Trace Facilities
Windows Sockets 2 application developers need to isolate bugs in:

• The application.

• The Ws2_32.dll or one of the compatibility shim .dlls.

• The service provider. Windows Sockets 2 addresses this need through a specially
devised version of the Ws2_32.dll and a separate debug/trace .dll. This combination
allows all procedure calls across the Windows Sockets 2 API or SPI to be monitored
and, to some extent, controlled.

Chapter 6 Winsock 2 API Overview 73

Developers can use this mechanism to trace procedure calls, procedure returns,
parameter values, and return values. Parameter values and return values can be altered
on procedure call or procedure return. If desired, a procedure call can be prevented or
redirected. With access to this level of information and control, a developer can isolate
any problem in the application, Ws2_32.dll, or service provider.

The Windows Sockets 2 SDK includes the debug Ws2_32.dll, a sample debug/trace .dll,
and a document containing a detailed description of the components. The sample
debug/trace .dll is provided in both source and object form. Developers are free to use
the source to develop versions of the debug/trace .dll that meet their specific needs.

Name Resolution
Windows Sockets 2 includes provisions for standardizing the way applications access
and use the various network name resolution services. Windows Sockets 2 applications
do not need to be aware of the widely differing interfaces associated with name services
such as DNS, NIS, X.500, SAP, and others. An introduction to this topic and the details
of the functions are currently located in Protocol-Independent Name Resolution.

Overlapped 1/0 and Event Objects
Windows Sockets 2 introduces overlapped I/O and requires that all transport providers
support this capability. Overlapped I/O follows the model established in Win32 and can
be performed only on sockets created through the WSASocket function with the
WSA_FLAG_OVERLAPPED flag set or sockets created through the socket function.

Note Creating a socket with the overlapped attribute has no impact on whether a
socket is currently in blocking or nonblockingmode. Sockets created with the overlapped
attribute can be used to perform overlapped I/O~doing so does not change the blocking
mode of a socket. Since overlapped I/O operations do not block, the blocking mode of a
socket is irrelevant for these operations.

For receiving, applications use the WSARecv or WSARecvFrom functions to supply
buffers into which data is to be received. If one or more buffers are posted prior to the
time when data has been received by the network, that data could be placed in the
user's buffers immediately as it arrives. Thus, it can avoid the copy operation that would
otherwise occur at the time the recv or recvfrom function is invoked. If data is already
present when receive buffers are posted, it is copied immediately into the user's buffers.

If data arrives when no receive buffers have been posted by the application, the network
resorts to the familiar synchronous style of operation. That is, the incoming data is
buffered internally until the application issues a receive call and thereby supplies a buffer
into which the data can be copied. An exception to this is when the application uses
setsockopt to set the size of the receive buffer to zero. In this instance, reliable
protocols would only allow data to be received when application buffers had been posted
and data on unreliable protocols would be lost.

74 Volume 1 Winsock and QOS

On the sending side, applications use WSASend or WSASendTo to supply pOinters to
filled buffers and then agree not to disturb the buffers in any way until the network has
consumed the buffer's contents.

Overlapped send and receive calls return immediately. A return value of zero indicates
that the I/O operation was completed immediately and that the corresponding completion
indication already occurred. That is, the associated event object has been signaled, or a
completion routine has been queued and will be executed when the calling thread gets
into the alertable wait state.

A return value of SOCKET_ERROR coupled with an error code of WSA_IO_PENDING
indicates that the overlapped operation has been successfully initiated and that a
subsequent indication will be provided when send buffers have been consumed or when
a receive operation has been completed. However, for sockets that are byte-stream
style, the completion indication occurs whenever the incoming data is exhausted,
regardless of whether the buffers are full. Any other error code indicates that the
overlapped operation was not successfully initiated and that no completion indication will
be forthcoming.

Both send and receive operations can be overlapped. The receive functions can be
invoked several times to post receive buffers in preparation for incoming data, and the
send functions can be invoked several times to queue multiple buffers to send. While the
application can rely upon a series of overlapped send buffers being sent in the order
supplied, the corresponding completion indications might occur in a different order.
Likewise, on the receiving side, buffers can be filled in the order they are supplied, but
the completion indications might occur in a different order.

Canceling individual overlapped operations pending on a given socket is impossible.
However, the closesocket function can be called to close the socket and eventually
discontinue all pending operations.

The deferred completion feature of overlapped I/O is also available for WSAloctl, which
is an enhanced version of ioctlsocket.

Event Objects
Introducing overlapped I/O requires a mechanism for applications to unambiguously
associate send and receive requests with their subsequent completion indications. In
Windows Sockets 2, this is Elccomplished with event objects that are modeled after
Win32 events. Windows Sockets event objects are fairly simple constructs that can be
created and closed, set and cleared, and waited upon and polled. Their prime utility is
the ability of an application to block and wait until one or more event objects become set.

Applications use WSACreateEvent to obtain an event object handle that can then be
supplied as a required parameter to the overlapped versions of send and receive calls
(WSASend, WSASendTo, WSARecv, WSARecvFrom).The event object, Which is
cleared when first created, is set by the transport providers when the associated
overlapped I/O operation has completed (either successfully or with errors). Each event
object created by WSACreateEvent shoUld have a matching WSACloseEvent to
destroy it.

Chapter 6 Winsock 2 API Overview 75

Event objects are also used in WSAEventSelect to associate one or more FD_XXX
network events with an event object. This is described in Asynchronous Notification
Using Event Objects.

In 32-bit environments, event object-related functions, including WSACreateEvent,
WSACloseEvent, WSASetEvent, WSAResetEvent, and WSAWaitForMultipleEvents
are directly mapped to the corresponding native Win32 functions, using the same
function name, but without the WSA prefix.

Receiving Completion Indications
Several options are available for receiving completion indications, thus providing
applications with appropriate levels of flexibility. These include: waiting (or blocking) on
event objects, polling event objects, and socket I/O completion routines.

Blocking and Waiting for Completion Indication
Applications can block while waiting for one or more event objects to become set using
the WSAWaitForMultipleEvents function. In Win32 implementations, the process or
thread truly blocks. Since Windows Sockets 2 event objects are implemented as Win32
events, the native Win32 function, WaitForMultipleObjects can also be used for this
purpose. This is especially useful if the thread needs to wait on both socket and non
socket events.

Polling for Completion Indication
Applications that prefer not to block can use the WSAGetOverlappedResult function to
poll for the completion status associated with any particular event object. This function
indicates whether or not the overlapped operation has completed, and if completed,
arranges for the WSAGetLastError function to retrieve the error status of the
overlapped operation.

Using Socket I/O Completion Routines
The functions used to initiate overlapped I/O (WSASend, WSASendTo, WSARecv,
WSARecvFrom) all take IpCompletionRoutine as an optionalinput parameter. This is a
pointer to an application-specific function that is called after a successfully initiated
overlapped I/O operation completes (successfully or otherwise). The completion routine
follows the same rules as stipulated for Win32 file I/O completion routines. That is, the
completion routine is not invoked until the thread is in an alertable wait state, such as
when the function WSAWaitForMultipleEvents is invoked with the FALERTABLE flag
set. An application that uses the completion routine option for a particular overlapped I/O
request may not use the wait option of WSAGetOverlappedResult for that same
overlapped I/O request.

The transports allow an application to invoke send and receive operations from within
the context of the socket I/O completion routine and guarantee that, for a given socket,
I/O completion routines will not be nested. This permits time-sensitive data transmissions
to occur entirely within a preemptive context.

76 Volume 1 Winsock and QOS

Summary of Overlapped Completion Indication Mechanisms
The particular overlapped I/O completion indication to be used for a given overlapped
operation is determined by whether the application supplies a pointer to a completion
function, whether a WSAOVERLAPPED structure is referenced, and by the value of the
hEvent member within the WSAOVERLAPPED structure (if supplied). The following
table summarizes the completion semantics for an overlapped socket and shows the
various combinations of IpOverlapped, hEvent, and IpCompletionRoutine:

IpOverlapped hEvent IpCompletionRoutine Completion Indication

NULL Not Ignored
applicable

!NULL NULL NULL

!NULL !NULL NULL

!NULL Ignored !NULL

Operation completes
synchronously. It behaves as if
it were a non-overlapped
socket.

Operation completes
overlapped, but there is no
Windows Sockets 2-supported
completion mechanism. The
completion port mechanism (if
supported) can be used in this
case. Otherwise, there is no
completion notification.

Operation completes
overlapped, notification by
signaling event object.

Operation completes
overlapped, notification by
scheduling completion routine.

Asynchronous Notification Using Event Objects
The WSAEventSelect and WSAEnumNetworkEvents functions are provided to
accommodate applications such as daemons and services that have no user interface
(and hence do not use Windows handles). The WSAEventSelect function behaves
exactly like the WSAAsyncSelect function. However, instead of causing a Windows
message to be sent on the occurrence of an FD_XXX network event (for example,
FD_READ and FD_WRITE), an application-designated event object is set.

Also, the fact that a particular FD_XXX network event has occurred is remembered by
the service provider. The application can call WSAEnumNetworkEvents to have the
current contents of the network event memory copied to an application-supplied buffer
and to have the network event memory automatically cleared. If needed, the application
can also deSignate a particular event object that is cleared along with the network event
memory.

Chapter 6 Win sock 2 API Overview 77

Flow Specification Quality of Service
Quality of Service is implemented in Windows 2000 through various Windows 2000 QOS
components. For details and implementation guidelines, see the separate section under
the Networking Services node of the Platform SDK titled Quality of Service.

QOS Templates
For details about QOS templates, see the chapters later in this volume that address
QOS, or see the Platform SDK section titled Quality of Service.

Default Values
For details and implementation guidelines about Quality of Service, the FLOWSPEC
structure, and FLOWSPEC's default values, see the separate section under the
Networking Services node of the Platform SDK titled Quality of Service. The
FLOWSPEC structure is defined in the Quality of Service section's reference section.

Socket Groups
All use of Socket Groups is reserved.

Shared Sockets
The WSADuplicateSocket function is introduced to enable socket sharing across
processes. A source process calls WSADuplicateSocket to obtain a special
WSAPROTOCOL_INFO structure for a target process identifier. It uses some
interprocess communications (IPC) mechanism to pass the contents of this structure to a
target process. The target process then uses the WSAPROTOCOL_INFO structure in a
call to WSPSocket. The socket descriptor returned by this function will be an additional
socket descriptor to an underlying socket which thus becomes shared. Sockets can be
shared among threads in a given process without using the WSADuplicateSocket
function because a socket descriptor is valid in all threads of a process.

The two (or more) descriptors that reference a shared socket can be used independently
as far as I/O is concerned. However, the Windows Sockets interface does not implement
any type of access control, so the processes must coordinate any operations on a
shared socket. A typical example of sharing sockets is to use one process for creating
sockets and establishing connections. This process then hands off sockets to other
processes that are responsible for information exchange.

The WSADuplicateSocket function creates socket descriptors and not the underlying
socket. As a result, all the states associated with a socket are held in common across all
the descriptors. For example, a setsockopt operation performed using one descriptor is
subsequently visible using a getsockopt from any or all descriptors. A process can call
closesocket on a duplicated socket and the descriptor will become deallocated. The
underlying socket, however, remains open until closesocket is called with the last
remaining descriptor.

78 . Volume1 .. Winsock and QOS

Notification on shared sockets is subject to the usual constraints of the
WSAAsyncSelect and WSAEventSelect functions. Issuing either of these calls using
any of the shared descriptors cancels any previous event registration for the socket,
regardless of which descriptor was used to make that registration. Thus, for example, it
would not be possible to have process A receive FD_READ events and process B
receive FD_WRITE events. For situations when such tight coordination is required, it is
suggested that developers use threads instead of separate processes.

Enhanced Functionality During Connection Setup and Teardown
The WSAAccept function lets an application obtain caller information such as caller
identifier and aos before deciding whether to accept an incoming connection request.
This is done with a callback to an application-supplied condition function.

User-to-user data specified by parameters in the WSAConnect function and the
condition function of WSAAccept can be transferred to the peer during connection
establishment, provided this feature is supported by the service provider.

It is also possible (for protocols that support this) to exchange user data between the
endpoints at connection teardown time. The end that initiates the teardown can call the
WSASendDisconnect function to indicate that no more data be sent and to initiate the
connection teardown sequence. For certain protocols, part of teardown is the delivery of
disconnect data from the teardown initiator. After receiving notice that the remote end
has initiated teardown (typically by the FD_CLOSE indication), the
WSARecvDisconnect function can be called to receive the disconnect data, if any.

To illustrate how disconnect data can be used, consider the following scenario. The
client half of a clienVserver application is responsible for terminating a socket
connection. Coincident with the termination, it provides (using disconnect data) the total
number of transactions it processed with the server. The server in turn responds with the
cumulative total of transactions that it has processed with all clients. The sequence of
calls and indications might occur as follows.

Client side

(1) Invoke WSASendDiscorinect to
. conclude session and supply transaction
total.

Server side

(2) Get FD_CLOSE, recv with a return
value of zero, or WSAEDISCON error
return from WSARecv indicating graceful
shutdown in progress.

(3) Invoke WSARecvDisconnect to get
client's transaction total.

Client side

(6) Receive FD_CLOSE indication.

(7) Invoke WSARecvDisconnect to
receive and store cumulative grand total of
transactions.

(8) Invoke closesocket

Chapter 6 Winsock 2 API Overview 79

Server side

(4) Compute cumulative grand total of all
transactions.

(5) Invoke WSASendDisconnect to
transmit grand total.

(Sa) Invoke closesocket.

Note Step (Sa) must follow step (5), but has no timing relationship with
step (6), (7), or (8).

Extended Byte-Order Conversion Routines
Windows Sockets 2 does not assume that the network byte order for all protocols is the
same. A set of conversion routines is supplied for converting 16-bit and 32-bit quantities
to and from network byte order. These routines take as an input parameter the socket
handle that has a WSAPROTOCOL_INFO structure associated with it. The
NetworkByteOrdermember of the WSAPROTOCOL_INFO structure specifies the
desired network byte order (currently either big-end ian or little-endian).

Support for Scatter/Gather I/O in the API
The WSASend, WSASendTo, WSARecv, and WSARecvFrom functions all take an
array of application buffers as input parameters and can be used for scatter/gather (or
vectored) I/O. This can be very useful in instances where portions of each message
being transmitted consist of one or more fixed-length header components in addition to
message body. Such header components need not be concatenated by the application
into a single contiguous buffer prior to sending. Likewise on receiving, the header
components can be automatically split off into separate buffers, leaving the message
body pure.

When receiving into multiple buffers, completion occurs as data arrives from the network,
regardless of whether all the supplied buffers are utilized. .

Protocol-Independent Multicast and Multipoint
Windows Sockets 2 provides a generic method for utilizing the multipoint and multicast
capabilities of transports. This generic method implements these features just as it
allows the basic data transport capabilities of numerous transport protocols to be
accessed. The term multipoint is used hereafter to refer to both multicast and multipoint
communications.

80 Volume 1 Winsock and QOS

Current multipoint implementations (for example, IP multicast, ST-II, T.120, and ATM
UNI) vary widely. How nodes join a multipoint session, whether a particular node is
designated as a central or root node, and whether data is exchanged between all nodes
or only between a root node and the various leaf nodes differ among implementations.
The WSAPROTOCOL_INFO structure for Windows Sockets 2 is used to declare the
various multipoint attributes of a protocol. By examining these attributes, the programmer
knows what conventions to follow with the applicable Windows Sockets 2 functions to set
up, utilize, and tear down multipoint sessions.

Following is a summary of the features of Windows Sockets 2 that support multipoint.

• Two-attribute bits in the WSAPROTOCOL_INFO structure.

• Four flags defined for the dwFlags parameter of the WSASocket function.

• One function, WSAJoinLeaf, for adding leaf nodes into a multipoint session

• Two WSAloctl command codes for controlling multipoint loopback and establishing
the scope for multicast transmissions. (The latter corresponds to the IP multicast
time-to-live or TTL parameter.)

Note The inclusion of these multipoint features in Windows Sockets 2 does not
preclude an application from using an existing protocol-dependent interface, such as the
Deering socket options for I P multicast.

See Multipoint and Multicast Semantics for detailed information on how the various
multipoint schemes are characterized and how the applicable features of Windows
Sockets 2 are utilized.

Summary of New Socket Options
The new socket options for Windows Sockets 2 are summarized in the following table.
See getsockopt and setsockopt for detailed information on these options. The other
new protocol-specific socket options can be found in the Protocol-specific Annex (a
separate document included with the Platform SDK).

Value

SO_GROUP _ID

SO_GROUP_
PRIORITY

SO_MAX_MSG
SIZE

Type

GROUP

int

int

Meaning

Reserved.

Reserved.

Maximum outbound (send)
size of a message for
message-oriented socket
types. There is no provision
for finding out the maximum
inbound message size. Has
no meaning for stream
oriented sockets.

Default Note

NULL Get only

°
Implementation Get only
dependent

Chapter 6 Winsock 2 API Overview 81

Value Type Meaning Default Note

SO_PROTOCOL_ structure Description of protocol Protocol Get only
INFO WSAPROTO information for protocol that is dependent

COL_INFO bound to this socket.

PVD_CONFIG char FAR * An opaque data structure Implementation
object containing configuration dependent
information of the service
provider.

Summary of New Socket loctl Opcodes
The new socket ioctl opcodes for Windows Sockets 2 are summarized in the following
table. See WSAloctl for detailed information on these opcodes. The WSAloctl function
also supports all the ioctl opcodes specified in ioctlsocket. The other new protocol
specific ioctl opcodes can be found in the Protocol-specific Annex (a separate document
included with the Platform SDK).

Opcode Input Type Output Type Meaning

SIO_ASSOCIATE_
HANDLE

SIO_ENABLE_
CIRCULAR_QUEUEING·

SIO_FIND_ROUTE

SIO_GET _BROADCAST_
ADDRESS

SIO_GET _GROUP _QOS

SIO_MUL TIPOINT_
LOOPBACK

Companion <not used>
API
dependent

<not used> <not used>

Structure <not used>
SOCKADDR

<not used> <not used>

<not used> Structure
SOCKADDR

<not used> QOS

<not used> QOS

BOOL<not used>

Associate the socket with the
specified handle of a
companion interface.

Circular queuing is enabled.

Request the route to the
specified address to be
discovered.

Discard current contents of
the sending queue.

Retrieve the protocol-specific
broadcast address to be used
in sendto/WSASendTo.

Retrieve current flow
specification(s) for the socket.

Reserved.

Control whether data sent in a
multipoint session will also be
received by the same socket
on the local host.

(continued)

82 Volume 1 Winsock and QOS

(continued)

Opcode InputTyp~ Output Type Meaning

SIO_MUL TICAST _SCOPE int <not used> Specify the scope over which
multicast transmissions will
occur.

SIO_SET _QOS QOS <not used> Establish new flow
specification(s) for the socket.

SIO_SET _GROUP _QOS QOS <not used> Reserved.

S I O_T RAN SLATE_ int Companion API Obtain a corresponding
HANDLE dependent handle for socket s that is

valid in the context of a
companion interface.

SIO_ROUTING - SOCKADDR SOCKADDR Obtain the address of local
INTERFACE_QUERY interface which should be

used to send to the specified
address.

SIO_ROUTING SOCKADDR <not used> Request notification of
_INTERFACE_CHANGE changes in information

reported through
SIO_ROUTING -
INTERFACE_QUERY for the
specified address.

SIO_ADDRESS - <not used> SOCKET_ Obtain the list of addresses to
LIST_QUERY ADDRESS_ which application can bind.

LIST

SIO_ADDRESS - <not used> <not used> Request notification of
LIST_CHANGE changes in information

reported through
SIO_ADDRESS_LlST _
QUERY

Summary of New Functions
The new API functions for Windows Sockets 2 are summarized in the table on the
following page,

Data Transport Functions
Function

WSAAccept1

WSACloseEvent

WSAConnect 1

WSACreateEvent

WSADuplicateSocket

WSAEnumNetworkEvents

WSAEnumProtocols

WSAEventSelect

WSAGetOverlappedResult

WSAGetQOSByName

WSAHtonl

WSAHtons

WSAloctl1

WSAJoinLeaf1

WSANtohl

WSANtohs

WSAProviderConfigChange

WSARecv1

WSARecvDisconnect

WSARecvFrom 1

WSAResetEvent

WSASend1

WSASendDisconnect

Chapter 6 Winsock 2 API Overview 83

Description

An extended version of accept which allows for
conditional acceptance.

Destroys an event object.

An extended version of connect which allows for
exchange of connect data and QOS specification.

Creates an event object.

Creates a new socket descriptor for a shared socket.

Discovers occurrences of network events.

Retrieves information about each available protocol.

Associates network events with an event object.

Gets completion status of overlapped operation.

Supplies QOS parameters based on a well-known
service name.

Extended version of htonl.

Extended version of htons.

Overlapped-capable version of ioctlsocket.

Joins a leaf node into a multipoint sess.ion.

Extended version of ntohl.

Extended version of ntohs.

Receive notifications of service providers being
installed/removed.

An extended version of recv which accommodates
scatter/gather I/O, overlapped sockets, and provides
the flags parameter as IN OUT.

Terminates reception on a socket and retrieves the
disconnect data, if the socket is connection-oriented.

An extended version of recvfrom which
accommodates scatter/gather I/O, overlapped
sockets, and provides the flags parameter as IN OUT.

Resets an event object.

An extended version of send which accommodates
scatter/gather I/O and overlapped sockets.

Initiates termination of a socket connection and
optionally sends disconnectdata.

(continued)

84 Volume 1 Winsock and QOS

(continued)

Function

WSASendTo1

WSASetEvent

WSASocket

WSAWaitForMultipleEvents 1

Description

An extended version of sendto which accommodates
scatter/gather I/O and overlapped sockets.

Sets an event object.

An extended version of socket which takes a
WSAPROTOCOL_INFO structure as input and allows
overlapped sockets to be created.

Blocks on multiple event objects.

Name Registration and Resolution Functions
Function Description

WSAAddressToString

WSAEnumNameSpaceProviders

WSAGetServiceClasslnfo

WSAGetServiceClassNameByClassld

WSAlnstallServiceClass

WSALookupServiceBegin

WSALookupServiceEnd

WSALookupServiceNext

WSARemoveServiceClass

WSASetService

WSAStringToAddress

Converts an address structure into a human
readable numeric string.

Retrieves the list of available Name
Registration and Resolution service
providers.

Retrieves all of the class-specific information
pertaining to a service class.

Returns the name of the service associated
with the given type.

Creates a new new service class type and
stores its class-specific information.

Initiates a client query to retrieve name
information as constrained by a
WSAQUERYSET data structure.

Finishes a client query started by
WSALookupServiceBegin and frees
resources associated with the query.

Retrieves the next unit of name information
from a client query initiated by
WSALookupServiceBegin.

Permanently removes a service class type.

Registers or removes from the registry a
service instance within one or more
namespaces.

Converts a human-readable numeric string
to a socket address structure suitable for
passing to Windows Sockets routines.

1 The routine can block if acting on a blocking socket.

Chapter 6 Winsock 2 API Overview 85

Windows Sockets Programming Considerations
This section provides programmers with important information on a number of topics. It
is especially pertinent to those who are porting socket applications from UNIX®-based
environments or who are upgrading their Windows Sockets 1.1 applications to Windows
Sockets 2.

Deviation from Berkeley Sockets
There are a few limited instances where Windows Sockets has had to divert from strict
adherence to the Berkeley conventions, usually due to implementation difficulties in the
Microsoft® Windows environment.

Socket Data Type
A new data type, SOCKET, has been defined. This is needed because a Windows
Sockets application cannot assume that socket descriptors are equivalent to file
descriptors as they are in UNIX. Furthermore, in UNIX, all handles, including socket
handles, are small, non-negative integers, and some applications make assumptions
that this will be true. Windows Sockets handles have no restrictions, other than that the
value INVALID_SOCKET is not a valid socket. Socket handles may take any value in the
range 0 to INVALlD_SOCKET-1.

Because the SOCKET type is unsigned, compiling existing source code from, for
example, a UNIX environment may lead to compiler warnings about signed/unsigned
data type mismatches.

This means, for example, that checking for errors when the socket and accept routines
return should not be done by comparing the return value with -1, or seeing if the value is
negative (both common, and legal, approaches in BSD). Instead, an application should
use the manifest constant INVALID_SOCKET as defined in Winsock.h. For example:

Typical BSD.Style

Preferred Style

86 Volume 1 Winsock and QOS

Select and FD _ *
8ecausea socket is no longer represented by the UNIX-style small non-negative integer,
the implementation of the select function was changed in Windows Sockets. Each set of
sockets is still represented by the FD_SET type, but instead of being stored as a bitmask
the set is implemented as an array of sockets. To avoid potential problems, applications
must adhere to the use of the FD_XXX macros to set, initialize, clear, and check the
FD_SET structures.

Error Codes-errno, h_errno and WSAGetLastError
Error codes set by Windows Sockets are not made available through the ermo variable.
Additionally, for the getXbyY class of functions, error codes are not made available
through the h_ermo variable. Instead, error codes are accessed by using the
WSAGetLastError function. This function is provided in Windows Sockets as a
precursor (and eventually an alias) for the Win32 function GetLastError. This is
intended to provide a reliable way for a thread in a multithreaded process to obtain per
thread error information.

For compatibility with BSD, an application may choose to include a line of the form:

This allows networking code which was written to use the global ermo to work correctly
in a single-threaded environment. There are, obviously, some drawbacks. If a source file
includes code which inspects ermo for both socket and nonsocket functions, this
mechanism cannot be used. Furthermore, it is not possible for an application to assign a
new value to ermo. (In Windows Sockets the function WSASetLastError may be used
for this purpose.)

Typical BSD Style

Preferred Style

Although error constants consistent with Berkeley Sockets 4.3 are provided for
compatibility purposes, applications should, where possible, use the WSA error code
definitions. This is because error codes returned by certain Windows Sockets routines
fall into the standard range of error codes as defined by Microsoft® C®. A better version
of the preceding source code fragment is shown on the following page.

Chapter 6 Winsock 2 API Overview 87

This specification defines a recommended set of error codes, and lists the possible
errors that can be returned as a result of each function. It may be the case in some
implementations that other Windows Sockets error codes are returned in addition to
those listed, and applications should be prepared to handle errors other than those
enumerated under each function description. However Windows Sockets does not return
any value that is not enumerated in the table of legal Windows Sockets errors given in
the section Error Codes.

Pointers
All pOinters used by applications with Windows Sockets should be FAR although this is
only relevant to 16-bit applications and meaningless in a 32-bit. To facilitate this, data
type definitions such as lPHOSTENl are provided.

Renamed Functions
In two cases it was necessary to rename functions that are used in Berkeley Sockets in
order to avoid clashes with other Win32 API functions.

Close and Closesocket
Sockets are represented by standard file descriptors in Berkeley Sockets, so the close
function can be used to close sockets as well as regular files. While nothing in the
Windows Sockets prevents an implementation from using regular file handles to identify
sockets, nothing requires it either. Sockets must be closed by using the closesocket
routine. Using the close routine to close a socket is incorrect and the effects of doing so
are undefined by this specification.

loctl and loctisocketIWSAlocti
Various C language run-time systems use the IOCTl routine for purposes unrelated to
Windows Sockets. As a consequence, the ioctlsocket function and the WSAloctl
function were defined to handle socket functions that were performed by IOCll and
fcntl in the Berkeley Software Distribution.

Maximum Number of Sockets Supported
The maximum number of sockets supported by a particular Windows Sockets service
provider is implementation specific. An application should make no assumptions about
the availability of a certain number of sockets. For more information on this topic see
WSAStartup.

The maximum number of sockets that an application can actually use is independent of
the number of sockets supported by a particular implementation. The maximum number
of sockets that a Windows Sockets application can use is determined at compile time by

88 Volume 1 Winsock and aos

the manifest constant FD_SETSIZE. This value is used in constructing the FD_SET
structures used in select. The default value in Winsock2.h is 64. If an application is
designed to be capable of working with more than 64 sockets, the implementer should
define the manifest FD_SETSIZE in every source file before including Winsock2.h. One
way of doing this may be to include the definition within the compiler options in the
makefile. For example, you could add "-DFD_SETSIZE=128" as an option to the
compiler command line for Microsoft C. It must be emphasized that defining
FD_SETSIZE as a particular value has no effect on the actual number of sockets
provided by a Windows Sockets service provider.

Include Files
A number of standard Berkeley include files are supported for ease of porting existing
source code based on Berkeley sockets. However, these Berkeley header files merely
include the Winsock2.h include file, and it is therefore sufficient (and recommended) that
Windows Sockets application source files just include Winsock2.h.

Return Values on Function Failure
The manifest constant SOCKET_ERROR is provided for checking function failure.
Although use of this constant is not mandatory, it is recommended. The following
example illustrates the use of the SOCKET_ERROR constant.

Typical BSD Style

Preferred Style

Service Provided Raw Sockets
The Windows Sockets specification does not mandate that a Windows Sockets service
provider support raw sockets, that is, sockets of type SOCK_RAW. However, service
providers are encouraged to supply raw socket support. A Windows Sockets-compliant
application that wishes to use raw sockets should attempt to open the socket with the
socket call, and if it fails either attempt to use another socket type or indicate the failure
to the user.

Chapter 6 Winsock 2 API Overview 89

Byte Ordering
Care must always be taken to account for any differences between the byte ordering
used by Intel® architecture and the byte ordering used on the wire by individual transport
protocols. Any reference to an address or port number passed to or from a Windows
Sockets routine must be in the network order for the protocol being utilized. In the case
of IP, this includes the IP address and port parameters of a SOCKADDR_IN structure
(but not the sin_family parameter).

Consider an application that normally contacts a server on the TCP port corresponding
to the time service, but provides a mechanism for the user to specify an alternative port.
The port number returned by getservbyname is already in network order, which is the
format required for constructing an address so that no translation is required. However, if
the user elects to use a different port, entered as an integer, the application must convert
this from host to TCP/IP network order (using the WSAHtons function) before using it to
construct an address. Conversely, if the application were to display the number of the
port within an address (returned by getpeername for example), the port number must be
converted from network to host order (using WSANtohs) before it can be displayed.

Since the Intel and Internet byte orders are different, the conversions described in the
preceding are unavoidable. Application writers are cautioned that they should use the
standard conversion functions provided as part of Windows Sockets rather than writing
their own conversion code since future implementations of Windows Sockets are likely to
run on systems for which the host order is identical to the network byte order. Only
applications that use the standard conversion functions are likely to be portable.

Windows Sockets Compatibility Issues
Windows Sockets 2 continues to support all of the Windows Sockets 1.1 semantics and
function calls except for those dealing with psuedo-blocking. Since Windows Sockets 2
runs only in 32-bit, preemptively scheduled environments, there is no need to implement
the psuedo-blocking found in Windows Sockets 1.1. This means that the
WSAEINPROGRESS error code will never be indicated and that the following Windows
Sockets 1.1 functions are not available to Windows Sockets 2 applications:

• WSACancelBlockingCall

• WSAlsBlocking

• WSASetBlockingHook

• WSAUnhookBlockingHook

Windows Sockets 1.1 programs that are written to utilize psuedo-blocking will continue to
operate correctly since they link to either Winsock.dll or Wsock32.dll. Both continue to
support the complete set of Windows Sockets 1.1 functions. In order for programs to
become Windows Sockets 2 applications, some code modification must occur. In most
cases, the judicious use of threads can be substituted to accommodate processing that
was being accomplished with a blocking hook function.

90 Volume 1 Winsock and QOS

Default State for a Socket's Overlapped Attribute
The socket function created sockets with the overlapped attribute set by default in the
first Wsock32.dll, the 32-bit version of Windows Sockets 1.1. In order to insure backward
compatibility with currently deployed Wsock32.dll implementations, thiswill continue to
be the case for Windows Sockets 2 as well. That is, in Windows Sockets 2 sockets
created with the socket function will have the overlapped attribute. However, in order to
be more compatible with the rest of the Win32 API, sockets created with WSASocket
will not, default, have the overlapped attribute. This attribute will only be applied if the
WSA_FLAG_OVERLAPPED bit is set.

Windows Sockets 1.1 Blocking Routines and EINPROGRESS
One major issue in porting applications from a Berkeley sockets environment to a
Windows environment involves blocking; that is, invoking a function that does not return
until the associated operation is completed. A problem arises when the operation takes
an arbitrarily long time to complete: an example is a recv, which might block until data
has been received from the peer system. The default behavior within the Berkeley
sockets model is for a socket to operate in blocking mode unless the programmer
explicitly requests that operations be treated as nonblocking. Windows Sockets 1.1
environments could not assume preemptive scheduling. Therefore, it was strongly
recommended that programmers use the nonblocking (asynchronous) operations if at all
possible with Windows Sockets 1.1. Because this was not always possible, the psuedo
blocking facilities described in the following were provided.

Note Windows Sockets 2 only runs on preemptive 32-bit operating systems where
deadlocks are not a problem. Programming practices recommended for Windows
Sockets 1.1 are not necessary in Windows Sockets 2.

Even on a blocking socket, some functions-bind, getsockopt, and getpeername for
example-complete immediately. There is no difference between a blocking and a
non blocking operation for those functions. Other operations, such as recv, can complete
immediately or take an arbitrary time to complete, depending on various transport
conditions. When applied to a blocking socket, these operations are referred to as
blocking operations. All routines that can block are listed with an asterisk in the
preceding and following tables.

With 16-bit Windows Sockets 1.1, a blocking operation that cannot complete immediately
is handled by psuedo-blocking as follows.

The service provider initiates the operation, then enters a loop in which it dispatches any
Windows messages (yielding the processor to another thread, if necessary), and then
checks for the completion of the Windows Sockets function. If the function has
completed, or if WSACancelBlockingCall has been invoked, the blocking function
completes with an appropriate result.

Chapter 6 Winsock 2 API Overview 91

A service provider must allow installation of a blocking hook function that does not
process messages in order to avoid the possibility of re-entrant messages while a
blocking operation is outstanding. The simplest such blocking hook function would return
FALSE. If a Windows Sockets DLL depends on messages for internal operation, it can
execute PeekMessage(hMyWnd ...) before executing the application blocking hook so
that it can get its messages without affecting the rest of the system.

In a 16-bit Windows Sockets 1.1 environment, if a Windows message is received for a
process for which a blocking operation is in progress, there is a risk that the application
will attempt to issue another Windows Sockets call. Because of the difficulty in managing
this condition safely, Windows Sockets 1.1 does not support such application behavior.
An application is not permitted to make more than one nested Windows Sockets function
call. Only one outstanding function call is allowed for a particular task. The only
exceptions are two functions that are provided to assist the programmer in this situation:
WSAlsBlocking and WSACancelBlockingCall.

The WSAlsBlocking function can be called at any time to determine whether or not a
blocking Windows Sockets 1.1 call is in progress. Similarly, the
WSACancelBlockingCall function can be called at any time to cancel an in-progress
blocking call. Any other nesting of Windows Sockets functions fails with the error
"WSAEINPROGRESS".

It should be emphasized that this restriction applies to both blocking and nonblocking
operations. For Windows Sockets 2 applications that negotiate version 2.0 or higher at
the time of calling WSAStartup, no restriction on the nesting of operations exits.
Operations can become nested under rare circumstances, such as during a WSAAccept
conditional-acceptance callback, or if a service provider in turn invokes a Windows
Sockets 2 function.

Although this mechanism is sufficient for simple applications, it cannot support the
complex message-dispatching requirements of more advanced applications (for
example, those using the MDI model). For such applications, the Windows Sockets API
includes the function WSASetBlockingHook, which allows the application to specify a
speCial routine which can be called instead of the default message dispatch routine
described in the preceding.

The Windows Sockets provider calls the blocking hook only if all of the following are true:

• The routine is one that is defined as being able to block.

• The specified socket is a blocking socket.

• The request cannot be completed immediately.

(A socket is set to blocking by default, but the IOCTL FIONBIO or the WSAAsyncSelect
function set a socket to non blocking mode.)

The blocking hook is never called and the application does notneed to be concerned
with the re-entrancy issues the blocking hook can introduce, if an application follows the
guidelines on the following page.

92 Volume 1 Winsock and QOS

• It uses only non blocking sockets.

• It uses the WSAAsyncSelect and/or the WSAAsyncGetXByY routines instead of
select and the getXbyY routines.

If a Windows Sockets 1.1 application invokes an asynchronous or nonblocking operation
that takes a pointer to a memory object (a buffer or a global variable, for example) as an
argument, it is the responsibility of the application to ensure that the object is available to
Windows Sockets throughout the operation. The application must not invoke any
Windows function that might affect the mapping or address viability of the memory
involved.

Graceful Shutdown, Linger Options, and Socket Closure
The following material is provided as clarification for the subject of shutting down socket
connections closing the sockets. It is important to distinguish the difference between
shutting down a socket connection and clOSing a socket.

Shutting down a socket connection involves an exchange of protocol messages between
the two endpoints, hereafter referred to as a shutdown sequence. Two general classes
of shutdown sequences are defined: graceful and abortive (also called hard). In a
graceful shutdown sequence, any data that has been queued but not yet transmitted can
be sent prior to the connection being closed. In an abortive shutdown, any unsent data is
lost. The occurrence of a shutdown sequence (graceful or abortive) can also be used to
provide an FD_CLOSE indication to the associated applications signifying that a
shutdown is in progress.

Closing a socket, on the other hand, causes the socket handle to become deallocated so
that the application can no longer reference or use the socket in any manner.

In Windows Sockets, both the shutdown function, and the WSASendDisconnect
function can be used to initiate a shutdown sequence, while the closesocket function is
used to deallocate socket handles and free up any associated resources. Some amount
of confusion arises, however, from the fact that the closesocket function implicitly
causes a shutdown sequence to occur if it has not already happened. In fact, it has
become a rather common programming practice to rely on this feature and to use
closesocket to both initiate the shutdown sequence and deallocate the socket handle.

To facilitate this usage, the sockets interface provides for controls by way of the socket
option mechanism that allow the programmer to indicate whether the implicit shutdown
sequence should be graceful or abortive, and also whether the closesocket function
should linger (that is not complete immediately) to allow time for a graceful shutdown
sequence to complete. These important distinctions and the ramifications of using
closesocket in this manner are still not widely understood.

By establishing appropriate values for the socket options SO_LINGER and
SO_DONTLINGER, the types of behavior on the following page can be obtained with the
closesocket function.

Chapter 6 Winsock 2 API Overview 93

• Abortive shutdown sequence, immediate return from closesocket.

• Graceful shutdown, delaying return until either shutdown sequence completes or a
specified time interval elapses. If the time interval expires before the graceful
shutdown sequence completes, an abortive shutdown sequence occurs, and
closesocket returns.

• Graceful shutdown, immediate return-allowing the shutdown sequence to complete
in the background. Although this is the default behavior, the application has no way of
knowing when (or whether) the graceful shutdown sequence actually completes.

One technique that can be used to minimize the chance of problems occurring during
connection teardown is to avoid relying on an implicit shutdown being initiated by
closesocket. Instead, use one of the two explicit shutdown functions, shutdown or
WSASendDisconnect. This in turn causes an FD_CLOSE indication to be received by
the peer application indicating that all pending data has been received. To illustrate this,
the following table shows the functions that would be invoked by the client and server
components of an application, where the client is responsible for initiating a graceful
shutdown.

Client side

(1) Invokes shutdown(s, SD_SEND) to
signal end of session and that client has
no more data to send.

(5a) Gets FD_READ and calls recv to
get any response data sent by server.

(5) Receives FD_CLOSE indication.

(6) Invokes closesocket.

Server side

(2) Receives FD_CLOSE, indicating graceful
shutdown in progress and that all data has
been received.

(3) Sends any remaining response data.

(4) Invokes shutdown(s, SD_SEND) to
indicate server has no more data to send.

(4a) Invokes closesocket.

Note The timing sequence is maintained from step (1) to step (6) between the client
and the server, except for steps (4a) and (5a), which only have local timing significance
in the sense that step (5) follows step (5a) on the client side while step (4a) follows step
(4) on the server side, with no timing relationship with the remote party.

Protocol-Independent Out-ot-Band Data
The stream socket abstraction includes the notion of out of band (008) data. Many
protocols allow portions of incoming data to be marked as special in some way, and
these special data blocks can be delivered to the user out of the normal sequence.
Examples include expedited data in X.25 and other OSI protocols, and urgent data in

94 Volume 1 Winsock and QOS

BSD Unix's use of TCP. The next section describes OOB data handling in a protocol
independent manner. A discussion of OOB data implemented using TCP urgent data
follows it. In the each discussion, the use of recv also implies recvfrom, WSARecv, and
WSARecvFrom, and references to WSAAsyncSelect also apply to WSAEventSelect.

Protocol Independent OOB Data
OOB data is a logically independent transmission channel associated with each pair of
connected stream sockets. OOB data may be delivered to the user independently of
normal data. The abstraction defines that the OOB data facilities must support the
reliable delivery of at least one OOB data block at a time. This data block can contain at
least one byte of data, and at least one OOB data block can be pending delivery to the
user at anyone time. For communications protocols that support in-band signaling (such
as TCP, where the urgent data is delivered in sequence with the normal data), the
system normally extracts the OOB data from the normal data stream and stores it
separately (leaving a gap in the normal data stream). This allows users to choose
between receiving the OOB data in order and receiving it out of sequence without having
to buffer all the intervening data. It is possible to peek' at out-of-band data.

A user can determine if there is any OOB data waiting to be read using the ioctlsocket
SIOCATMARK function. For protocols where the concept of the position of the OOB
data block within the normal data stream is meaningful such as TCP, a Windows
Sockets service provider maintains a conceptual marker indicating the position of the last
byte of OOB data within the normal data stream. This is not necessary for the
implementation of the ioctlsocket(SIOCATMARK) functionality-the presence or
absence of OOB data is all that is required.

For protocols where the concept of the position of the OOB data block within the normal
data stream is meaningful, an application might process out-of-band data inline, as part
of the normal data stream. This is achieved by setting the socket option SO_OOBINLINE
with setsockopt. For other protocols where the OOB data blocks are truly independent
of the normal data stream, attempting to set SO_OOBINLINE will result in an error. An
application can use the SIOCATMARK ioctlsocket command to determine whether
there is any unread OOB data preceding the mark. For example, it can use this to
resynchronize with its peer by ensuring that all data up to the mark in the data stream is
discarded when appropriate.

With SO_OOBINLINE disabled (the default setting):

• Windows Sockets notifies an application of an FD_OOB event, if the application
registered for notification with WSAAsyncSelect, in exactly the same way FD_READ
is used to notify of the presence of normal data. That is, FD_OOB is posted when
OOB data arrives with no OOB data previously queued. The FD_OOB is also posted
when data is read using the MSG_OOB flag while some OOB data remains queued
after the read operation has returned. FD_READmessages are not posted for
OOB data.

• Windows Sockets returns from select with the appropriate exceptfds socket set if
OOB data is queued on the socket.

Chapter 6 Winsock 2 API Overview 95

• The application can call recv with MSG_OOB to read the urgent data block at any
time. The block of OOB data jumps the queue.

• The application can call recv without MSG_OOB to read the normal data stream. The
OOB data block does not appear in the data stream with normal data. If OOB data
remains after any call to recv, Windows Sockets notifies the application with FD_OOB
or with exceptfds when using select.

• For protocols where the OOB data has a position within the normal data stream, a
single recv operation does not span that position. One recv returns the normal data
before the mark, and a second recv is required to begin reading data after the mark.

With SO_OOBINLINE enabled:

• FD_OOB messages are not posted for OOB data. OOB data is treated as normal for
the purpose of the select and WSAAsyncSelect functions, and indicated by setting
the socket in readfds or by sending an FD_READ message respectively.

• The application can not call recv with the MSG_OOB flag set to read the OOB data
block. The error code WSAEINVAL is returned.

• The application can call recv without the MSG_OOB flag set. Any OOB data is
delivered in its correct order within the normal data stream. OOB data is never mixed
with normal data. There must be three read requests to get past the OOB data. The
first returns the normal data prior to the OOB data block, the second returns the OOB
data, the third returns the normal data following the OOB data. In other words, the
OOB data block boundaries are preserved.

The WSAAsyncSelect routine is particularly well suited to handling notification of the
presence of out-of-band-data when SO_OOBINLINE is off.

OOB Data in rep
Important The following discussion of out-of-band data, implemented using TCP
urgent data, follows the model used in the Berkeley software distribution. Users and
implementers should be aware that:

• There are, at present, two conflicting interpretations of RFC 793 (where the concept is
introduced).

• The implementation of OOB data in the Berkeley Software Distribution (BSD) does
not conform to the Host Requirements laid down in RFC 1122.

Specifically, the TCP urgent pointer in BSD pOints to the byte after the urgent data byte,
and an RFC-compliant TCP urgent pointer points to the urgent data byte. As a result, if
an application sends urgent data from a BSD"compatible implementation to an
RFC-1122 compatible implementation, the receiver reads the wrong urgent data byte
(it reads the byte located after the correct byte in the data stream as the urgent
data byte).

96 Volume 1 Win sock and aos

To minimize interoperability problems, applications writers are advised not to use OOB
data unless this is required to interoperate with an existing service. Windows Sockets
suppliers are urged to document the OOB semantics (BSD or RFC 1122) that their
product implements.

Arrival of a TCP segment with the URG (for urgent) flag set indicates the existence of a
single byte of OOB data within the TCP data stream. The OOB data block is one byte in
size. The urgent pointer is a positive offset from the current sequence number in the
TCP header that indicates the location of the OOB data block (ambiguously, as noted in
the preceding). It might, therefore, point to data that has not yet been received.

If SO_OOBINLINE is disabled (the default) when the TCP segment containing the byte
pointed to by the urgent painter arrives, the OOB data block (one byte) is removed from
the data stream and buffered. If a subsequent TCP segment arrives with the urgent flag
set (and a new urgent pointer), the OOB byte currently queued can be lost as it is
replaced by the new OOB data block (as occurs in Berkeley Software Distribution). It is
never replaced in the data stream, however.

With SO_OOBINLINE enabled, the urgent data remains in the data stream. As a result,
the OOB data block is never lost when a new TCP segment arrives containing urgent
data. The existing OOB data "mark" is updated to the new position.

Summary of Windows Sockets 2 Functions
The following tables summarize the functions included in Windows Sockets 2, separated
into two groups: Berkeley-style functions, and Microsoft Windows-specific Extension
functions that have been ratified as part of the Windows Sockets 2 specification. These
tables do not include the Windows Sockets functions known that are used with
Registration and Name Resolution.

Socket Functions
The Windows Sockets specification includes all the following Berkeley-style socket
routines that were part of the Windows Sockets 1.1 API.

Routine

accept1

bind

closesocket

connect1

Meaning

An incoming connection is acknowledged and associated with an
immediately created socket. The original socket is returned to the
listening state.

Assigns a local name to an unnamed socket.

Removes a socket from the per-process object reference table. Only
blocks if SO_LINGER is set with a nonzero time-out on a blocking
socket.

Initiates a connection on the specified socket.

Routine

getpeername
getsockname

getsockopt
htonl2

htons2

ineCaddr2

ineCntoa2

ioctlsocket
listen
ntohl2

ntohs2

recv1

recvfrom1

select1

send1

sendto1

setsockopt
shutdown

socket

Chapter 6 Winsock 2 API Overview 97

Meaning

Retrieves the name of the peer connected to the specified socket.

Retrieves the local address to which the specified socket is bound.

Retrieves options associated with the specified socket.

Converts a 32-bit quantity from host-byte order to network-byte
order.

Converts a 16-bit quantity from host-byte order to network-byte
order.

Converts a character string representing a number in the Internet
standard "." notation to an Internet address value.

Converts an Internet address value to an ASCII string in "." notation
that is, "a.b.c.d".

Provides control for sockets.

Listens for incoming connections on a specified socket.

Converts a 32-bit quantity from network-byte order to host-byte
order.

Converts a 16-bit quantity from network byte order to host byte
order.

Receives data from a connected or unconnected socket.

Receives data from either a connected or unconnected socket.

Performs synchronous I/O multiplexing.

Sends data to a connected socket.

Sends data to either a connected or unconnected socket.

Stores options associated with the specified socket.

Shuts down part of a full-duplex connection.

Creates an endpoint for communication and returns a socket
descriptor.

1 The routine can block if acting on a blocking socket.

2 The routine is retained for backward compatibility with Windows Sockets 1.1, and should only be used
for sockets created with AF _INET address family.

Microsoft Windows-Specific Extension Functions
The Windows Sockets specification provides a number of extensions to the standard set
of Berkeley Sockets routines. Principally, these extended functions allow message or
function-based, asynchronous access to network events, as well as enable overlapped
I/O. While use of this extended API set is not mandatory for socket-based programming
(with the exception of WSAStartup and WSACleanup), it is recommended for
conformance with the Microsoft Windows programming paradigm. For features
introduced in Windows Sockets 2, please see New Concepts, Additions and Changes for
Windows Sockets 2.

98 Volume 1 Winsock and QOS

Routine

WSAAccept1

WSAAsyncGetHostByAddr2,3

WSAAsyncGetHostByName2, 3

WSAAsyncGetProtoByName2, 3

WSAAsyncGetProtoByNumber2, 3

WSAAsyncGetServByName2, 3

WSAAsyncGetServByPort2, 3

WSAAsyncSelect3

WSACancelAsyncRequest2, 3

WSACleanup

WSACloseEvent

WSAConnect 1

WSACreateEvent

WSADuplicateSocket

WSAEnumNetworkEvents

WSAEnumProtocols

WSAEventSelect

WSAGetLastError3

WSAGetOverlappedResult

WSAGetQOSByName

WSAHtonl

WSAHtons

WSAloctl1

WSAJoinLeaf1

WSANtohl

WSANtohs

Meaning

An extended version of accept, which allows for
conditional acceptance.

A set of functions that provide asynchronous
versions of the standard Berkeley getXbyY
functions. For example, the
WSAAsyncGetHostByName function provides
an asynchronous, message-based
implementation of the standard Berkeley
gethostbyname function.

Performs asynchronous version of select.

Cancels an outstanding instance of a
WSAAsyncGetXByY function.

Signs off from the underlying Windows
Sockets .dll.

Destroys an event object.

An extended version of connect which allows for
exchange of connect data and OOS
specification.

Creates an event object.

Allows an underlying socket to be shared by
creating a virtual socket.

Discovers occurrences of network events.

Retrieves information about each available
protocol.

Associates network events with an event object.

Obtains details of last Windows Sockets error.

Gets completion status of overlapped operation.

Supplies·OOS parameters based on a well
known service name.

Extended version of htonl.

Extended version of htons.

Overlapped-capable version of IOCTL.

Adds a multipoint leaf to a multipoint session.

Extended version of ntohl.

Extended version of ntohs.

Routine

WSAProviderConfigChange

WSARecv1

WSARecvFrom 1

WSAResetEvent

WSASend1

WSASendTo1

WSASetEvent

WSASetLastError3

WSASocket

WSAStartup3

WSAWaitForMultipleEvents 1

Chapter 6 Winsock 2 API Overview 99

Meaning

Receives notifications of service providers being
installed/removed.

An extended version of recv which
accommodates scatter/gather I/O, overlapped
sockets and provides the flags parameter
as in, out.
An extended version of recvfrom which
accommodates scatter/gather I/O, overlapped
sockets and provides the flags parameter
as in, out.

Resets an event object.

An extended version of send which
accommodates scatter/gather I/O and
overlapped sockets.

An extended version of sendto which
accommodates scatter/gather I/O and
overlapped sockets.

Sets an event object.

Sets the error to be returned by a subsequent
WSAGetLastError.

An extended version of socket which takes a
WSAPROTOCOL_INFO structure as input and
allows overlapped sockets to be created.

Initializes the underlying Windows Sockets .dll.

Blocks on multiple event objects.

1 The routine can block if acting on a blocking socket.

2 The routine is always realized by the name resolution provider associated with the default TCP/IP
service provider. if any.

3 The routine was originally a Windows Sockets 1.1 function

Registration and Name Resolution
Windows Sockets 2 includes a new set of API functions that standardize the way
applications access and use the various network naming services. When using these
new functions, Windows Sockets 2 applications need not be cognizant of the widely
differing protocols associated with name services such asDNS, NIS, X.500, SAP, etc.
To maintain full backward compatibility with Windows Sockets 1.1 ,all of the existing
getXbyY and asynchronous WSAAsyncGetXbyY database lookup functions continue to
be supported, but are implemented in the Windows Sockets service provider interface in
terms of the new name resolution capabilities. For more information, see the
getservbyname and getservbyport functions. Also, see Compatible Name Resolution
for TCPIIP in the Windows Sockets 1.1 SPI.

100 Volume 1 Winsock and QOS

Protocol-Independent Name Resolution
In developing a protocol-independent client/server application, there are two basic
requirements that exist with respect to name resolution and registration:

• The ability of the server half of the application (service) to register its existence within
(or become accessible to) one or more namespaces.

• The ability of the client application to find the service within a namespace and obtain
the required transport protocol and addressing information.

For those accustomed to developing TCP/IP-based applications, this may seem to
involve little more than looking up a host address and then using an agreed-upon port
number. Other networking schemes however, allow the location of the service, the
protocol used for the service, and other attributes to be discovered at run-time. To
accommodate the broad diversity of capabilities found in existing name services, the
Windows Sockets 2 interface adopts the model described in the following.

Name Resolution Model
A namespace refers to some capability to associate (as a minimum) the protocol and
addressing attributes of a network service with one or more human-friendly names.
Many namespaces are currently in wide use, including the Internet's Domain Name
System (DNS), the bindery and Netware Directory Services (NDS) from Novell®, X.SOO,
etc. These namespaces vary widely in how they are organized and implemented. Some
of their properties are particularly important to understand from the perspective of
Windows Sockets name resolution.

Types of Namespaces
There are three different types of namespaces in which a service could be registered:

• Dynamic

• Static

• Persistent

Dynamic namespaces allow services to register with the namespace on the fly, and for
clients to discover the available services at run-time. Dynamic namespaces frequently
rely on broadcasts to indicate the continued availability of a network service. Examples
of dynamic namespaces include the SAP namespace used within a Netware®
environment and the NBP names pace used by Appletalk®.

Static namespaces require all of the services to be registered ahead of time, that is,
when the namespace is created. The DNS is an example of a static namespace.
Although there is a programmatic way to resolve names, there is no programmatic way
to register names.

Persistent namespaces allow services to register with the namespace on the fly. Unlike
dynamic namespaces however, persistent namespaces retain the registration
information in non-volatile storage where it remains until such time as the service

Chapter 6 Win sock 2 API Overview 101

requests that it be removed. Persistent namespaces are typified by directory services
such as X.SOO and the NDS (Netware Directory Service). These environments allow the
adding, deleting, and modification of service properties. In addition, the service object
representing the service within the directory service could have a variety of attributes
associated with the service. The most important attribute for client applications is the
service's addressing information.

Namespace Organization
Many namespaces are arranged hierarchically. Some, such as X.SOO and NDS, allow
unlimited nesting. Others allow services to be combined into a single level of hierarchy or
group. This is typically referred to as a workgroup. When constructing a query, it is often
necessary to establish a context point within a namespace hierarchy from which the
search will begin.

Namespace Provider Architecture
Naturally, the programmatic interfaces used to query the various types of namespaces
and to register information within a namespace (if supported) differ widely. A namespace
provider is a locally-resident piece of software that knows how to map between the
Windows Sockets namespace SPI and some existing namespace (which could be
implemented locally or be accessed through the network). Figure 6-4 shows the
namespace provider architecture.

Transport _______ _ _ _________ Name Space

SPI

I
Transport
Service
Provider

Ir
Transport
Service
Provider

Name
Space

Provider

Figure 6-4: Namespace Provider Architecture.

Name
Space

Provider

Locally
Implemented
Name Space

SPI

Local NS
Interface

Note that it is possible for a given namespace, say DNS, to have more than one
namespace provider installed on a given machine.

As mentioned above, the generic term service refers to the server-half of a client/server
application. In Windows Sockets, a service is associated with a service class, and each
instance of a particular service has a service name which must be unique within the
service class. Examples of service classes include FTP Server, Sal Server, XYZ Corp.
Employee Info Server, etc. As the example attempts to illustrate, some service classes
are well known while others are unique and specific to a particular vertical application.

102 Volume 1 Winsock and QOS

In either case, every service class is represented by both a class name and a class
identifier. The class name does not necessarily need to be unique, but the class
identifier must be. Globally Unique Identifiers (GUIDs) are used to represent service
class identifiers. For well-known services, class names and class identifiers (GUIDs)
have been pre-allocated, and macros are available to convert between, for example,
TCP port numbers (in host-byte order) and the corresponding class identifier GUIDs. For
other services, the developer chooses the class name and uses the Uuidgen.exe utility
to generate a GUID for the class identifier.

The notion of a service class exists to allow a set of attributes to be established that are
held in common by all instances of a particular service. This set of attributes is provided
at the time the service class is defined to Windows Sockets, and is referred to as the
service class schema information. When a service is installed and made available on a
host machine, that service is considered instantiated, and its service name is used to
distinguish a particular instance of the service from other instances which may be known
to the namespace.

Note that the installation of a service class only needs to occur on machines where the
service executes, not on all of the clients which may utilize the service. Where possible,
the Ws2_32.dll provides service class schema information to a namespace provider at
the time an instantiation of a service is to be registered or a service query is initiated.
The Ws2_32.dll does not, of course, store this information itself, but attempts to retrieve
it from a namespace provider that has indicated its ability to supply this data. Since there
is no guarantee that the Ws2_32.dll can supply the service class schema, names pace
providers that need this information must have a fallback mechanism to obtain it through
names pace-specific means.

As noted above, the Internet has adopted what can be termed a host-centric service
model. Applications needing to locate the transport address of a service generally must
first resolve the address of a specific host known to host the service. To this address
they add in the well-known port number and thus create a complete transport address.
To facilitate the resolution of host names, a special service class identifier has been pre
allocated (SVCID_HOSTNAME). A query that specifies SVCID_HOSTNAME as the
service class and uses the host name the service instance name will, if the query is
successful, return host address information.

In Windows Sockets 2, applications that are protocol-independent should avoid the need
to comprehend the internal details of a transport address. Thus, the need to first get a
host address and then add in the port is problematic. To avoid this, queries may also
include the well-known name of a particular service and the protocol over which the
service operates, such as FTP or TCP. In this case, a successful query returns a
complete transport address for the specified service on the indicated host, and the
application is not required to crack open a SOCKADDR structure. This is described in
more detail in the following.

The Internet's Domain Name System does not have a well-defined means to store
service class schema information. As a result, DNS namespace providers can only
accommodate well-known TCP/IP services for which a service class GUID has been
preallocated.

Chapter 6 Winsock 2 API Overview 103

In practice, this is not a serious limitation since service class GUIDs have been
preallocated for the entire set of TCP and UDP ports, and macros are available to
retrieve the GUID associated with any TCP or UDP port with the port expressed in host
byte order. Thus, all 01 the familiar services such as FTP, Telnet, Whois, etc. are well
supported ..

Continuing with our service class example, instance names of the FTP service may be
"alder.intel.com" or "rhino.microsoft.com" while an instance of the XYZ Corp. Employee
Info Server might be named "XYZ Corp. Employee Info Server Version 3.5".

In the first two cases, the combination of the service class GUID for FTP and the
machine name (supplied as the service instance name) uniquely identify the desired
service. In the third case, the host name where the service resides can be discovered at
service query time, so the service instance name does not need to include a host name.

Summary of Name Resolution Functions
The name resolution functions can be grouped into three categories: Service installation,
client queries, and helper functions (and macros). The sections that follow identify the
functions in each category and briefly describe their intended use. Key data structures
are also described.

Service Installation
• WSAlnstanServiceClass

• WSARemoveServiceClas.s

• WSASetService

When the required service class does not already exist, .an application uses
WSAlnstaliServiceClass to install a new service class by supplying a service class
name, a GUID for the service class identifier, and a series ofWSANSCLASSINFO
structures. These structures are each specific to a particular namespace, and supply
common values such as recommended TCP port numbers or Netware SAP Identifiers.
A service class can be removed by calling WSARemoveServiceClass and supplying
the GUID corresponding to the class identifier.

Once a service class exists, specific instances of a service can be installed or removed
through WSASetService. This function takes a WSAQUERYSET structure as an input
parameter along with an operation code and operation flags. The operation code
indicates whether the service is being installed or removed. The WSAQUERYSET
structure provides all of the relevant information about the service including service class
identifier, service name (for this instance), applicable namespace identifier and protocol
information,. and a set of transport addresses at which the service listens. Services
should invokeWSASetService when they initialize t6 advertise their presence in dynamic
namespaces.

104 Volume 1 Winsock and QOS

Client Query
• WSAEnumNameSpaceProviders

• WSALookupServiceBegin

• WSALookupServiceNext

• WSALookupServiceEnd

The WSAEnumNameSpaceProviders function allows an application to discover which
namespaces are accessible through Windows Sockets name resolution facilities. It also
allows an application to determine whether a given namespace is supported by more
than one namespace provider, and to discover the provider identifier for any particular
namespace provider. Using a provider identifier, the application can restrict a query
operation to a specified names pace provider.

Windows Sockets' namespace query operations involve a series of calls:
WSALookupServiceBegin, followed by one or more calls to WSALookupServiceNext
and ending with a call to WSALookupServiceEnd. WSALookupServiceBegin takes a
WSAQUERYSET structure as input to define the query parameters along with a set of
flags to provide additional control over the search operation. It returns a query handle
which is used in the subsequent calls to WSALookupServiceNext and
WSALookupServiceEnd.

The application invokes WSALookupServiceNext to obtain query results, with results
supplied in an application-supplied WSAQUERYSET buffer. The application continues to
call WSALookupServiceNext until the error code WSA_E_NO_MORE is returned
indicating that all results have been retrieved. The search is then terminated by a call to
WSALookupServiceEnd. The WSALookupServiceEnd function can also be used to
cancel a currently pending WSALookupServiceNext when called from another thread.

In Windows Socket 2, conflicting error codes are defined for WSAENOMORE (10102)
and WSA_E_NO_MORE (10110). The error code WSAENOMORE will be removed in a
future version and only WSA_E_NO_MORE will remain. For Windows Socket 2,
however, applications should check for both WSAENOMORE and WSA_E_NO_MORE
for the widest possible compatibility with Namespace Providers that use either one.

Helper Functions
• WSAGetServiceClassNameByClassld

• WSAAddressToString

• WSAStringToAddress

• WSAGetServiceClasslnfo

The name resolution helper functions include a function to retrieve a service class name
given a service class identifier, a pair of functions used to translate a transport address
between a SOCKADDR structure and an ASCII string representation, a function to
retrieve the service class schema information for a given service class, and a set of
macros for mapping well known services to pre-allocated GUIDs.

Chapter 6 Winsock 2 API Overview 105

The following macros from Winsock2.h aid in mapping between well known service
classes and these namespaces.

Macro

SVCID_ TCP(Port)
SVCID_UDP(Port)
SVCID_NETWARE(Object Type)

IS_SVCID_ TCP(GUID)
IS_SVCID_UDP(GUID)
IS_SVCID_NETWARE(GUID)

SET _ TCP _SVCID(GUID, port)
SET _UDP _SVCID(GUID, port)

PORT _FROM_SVCID_ TCP(GUID)
PORT _FROM_SVCID_UDP(GUID)
SAPID_FROM_SVCID_NETWARE(GUID)

Name Resolution Data Structures

Description

Given a port for TCP/IP or UDP/IP or the
object type in the case of Netware, returns
the GUID (port number in host order).

Returns TRUE if the GUID is within the
allowable range.

Initializes a GUID structure with the GUID
equivalent for a TCP or UDP port number
(port number must be in host order).

Returns the port or object type associated
with the GUID (port number in host order).

There are several important data structures that are used extensively throughout the
name resolution functions. These are described in the following.

Query-Related Data Structures
The WSAQUERYSET structure is used to form queries for WSALookupServiceBegin,
and used to deliver query results for WSALookupServiceNext. It is a complex structure
since it contains pOinters to several other structures, some of which reference still other
structures. The relationship between WSAQUERYSET and the structures it references is
illustrated in Figure 6-5.

Within the WSAQUERYSET structure, most of the parameters are self explanatory, but
some deserve additional explanation. The dwSize parameter must always be filled in
with sizeof(WSAQUERYSET), as this is used by namespace providers to detect and
adapt to different versions of the WSAQUERYSET structure that may appear over time.

The dwOutputFlags parameter is used by a namespace provider to provide additional
information about query results. For details, see WSALookupServiceNext.

The WSAECOMPARATOR structure referenced by Ipversion is used for both query
constraint and results. For queries, the dwVersion parameter indicates the desired
version of the service. The ecHow parameter is an enumerated type which specifies how
the comparison can be made. The choices are COMP _EQUALS which requires that an
exact match in version occurs, or COMP _NOTLESS which specifies that the service's
version number be no less than the value of dwVersion.

106 Volume 1 Winsock and QOS

The interpretation of dwNameSpace and IpNSProviderld depends upon how the
structure is being used and is described further in the individual function descriptions
that utilize this structure.

~,.----~
Context string

AFPROTOCOLS
iAddressFamily
iProtocol

CSADDR INFO
Loea/Addr
RemoteAddr
iSoeketType
iProtoeo/

Figure 6-5: Data Structure Relationships.

Query string

SOCKET ADDRESS
/pSoekaddr
iSoekaddrLength

The IpszContext parameter applies to hierarchical namespaces, and specifies the
starting point of a query or the location within the hierarchy where the service resides.
The general rules are:

• A value of NULL, blank ('''') starts the search at the default context.

• A value of ''\'' starts the search at the top of the namespace.

• Any other value starts the search at the designated point.

Providers that do not support containment may return an error if anything other than "" or
''\'' is specified. Providers that support limited containment, such as groups,should
accept "", ''\'', or a designated pOint. Contexts are namespace specific. If dwNameSpace
is NS_ALL, then only"" or ''\'' should be passed as the context since these are
recognized by all namespaces.

Chapter 6 Winsock 2 API Overview 107

The IpszQueryString parameter is used to supply additional, namespace-specific query
information such as a string describing a well-known service and transport protocol
name, as in "FTPITCP".

The AFPROTOCOLS structure referenced by IpafpProtocols is used for query purposes
only, and supplies a list of protocols to constrain the query. These protocols are
represented as (address family, protocol) pairs, since protocol values only have meaning
within the context of an address family.

The array of CSADDR_INFO structure referenced by IpcsaBuffer contain all of the
information needed to for either a service to use in establishing a listen, or a client to use
in establishing a connection to the service. The LocalAddr and RemoteAddr parameters
both directly contain a SOCKET_ADDRESS structure. A service would create a socket
using the tuple (LocaIAddr.lpSockaddr->sa_family, iSocketType, iProtoco~. It would bind
the socket to a local address using LocaIAddr.lpSockaddr, and
LocaIAddr.lpSockaddrLength. The client creates its socket with the tuple
(RemoteAddr.lpSockaddr->sa_family, iSocketType, iProtoco~, and uses the combination
of RemoteAddr.lpSockaddr, and RemoteAddr./pSockaddrLength when making a remote
connection.

Service Class Data Structures
When a new service class is installed, a WSASERVICECLASSINFO structure must be
prepared and supplied. This structure also consists of substructures that contain a series
of parameters that apply to specific namespaces. Figure 6-6 shows a class info data
structure.

.J .. rr.lllm 1 I WSASERVICECLASSINFO I ~l)'
fpServiceClassfd
fpszServiceCfassName --- ••. J Service Class Name _~ dwCount l IpClasslnfos -

4 WSANSCLASSINFO Lr-{ Item Name J IpszName
dwNameSpace
dwValueType -dwValueSize r- ••. J J IpVafue

...-~
Item Value

Figure 6-6: Class Info Data Structure.

108 Volume 1 Winsock and QOS

For each service class, there is a single WSASERVICECLASSINFO structure. Within
the WSASERVICECLASSINFO structure, the service class' unique identifier is contained
in IpServiceClassld, and an associated display string is referenced by
IpServiceClassName. This is the string that is returned by
WSAGetServiceClassNameByClassld.

The IpClasslnfos parameter in the WSASERVICECLASSINFO structure references an
array of WSANSCLASSINFO structures, each of which supplies a named and typed
parameter that applies to a specified namespace. Examples of values for the IpszName
parameter include: "Sapid", "TcpPort", "UdpPort", etc. These strings are generally
specific to the namespace identified in dwNameSpace. Typical values for dwValueType
might be REG_DWORD, REG_SZ, etc. The dwValueSize parameter indicates the length
of the data item pointed to by IpValue.

The entire collection of data represented in a WSASERVICECLASSINFO structure is
provided to each namespace provider when WSAlnstallServiceClass is invoked. Each
individual namespace provider then sifts through the list of WSANSCLASSINFO
structures and retains the information applicable to it.

Compatible Name Resolution for TCP/IP in the Windows
Sockets 1.1 API

Windows Sockets 1.1 defined a number of routines that were used for name resolution
with TCP/IP (IP version 4) networks. These are customarily called the getXbyY functions
and include the following.

gethostname
gethostbyaddr
gethostbyname
getprotobyname
getprotobynumber
getservbyname
getservbyport

Asynchronous versions of these functions were also defined.

WSAAsyncGetHostByAddr
WSAAsyncGetHostByName
WSAAsyncGetProtoByName
WSAAsyncGetProtoByNumber
WSAAsyncGetServByName
WSAAsyncGetServByPort

There are also two functions (now implemented in the Winsock2.dll) used to convert
dotted Ipv4 internet address notation to and from string and binary representations,
respectively.

ineCaddr
ineCntoa

Chapter 6 Winsock 2 API Overview 109

All of these functions are specific to Ipv4 TCP/IP networks and developers of protocol
independent applications are discouraged from continuing to utilize these transport
specific functions. However, in order to retain strict backward compatibility with Windows
Sockets 1.1, all of the above functions continue to be supported as long as at least one
namespace provider is present that supports the AF _INET address family (these
functions are not relevant to IP version 6, denoted by AF _INET6).

The Ws2_32.dll implements these compatibility functions in terms of the new, protocol
independent name resolution facilities using an appropriate sequence of
WSALookupServiceBegin/NextiEnd function calls. The details of how the getXbyY
functions are mapped to name resolution functions are provided below. The
WSs2_32.dll handles the differences between the asynchronous and synchronous
versions of the getXbyY functions, so only the implementation of the synchronous
getXbyY functions are discussed.

Basic Approach for GetXbyV in the API
Most getXbyY functions are translated by the Ws2_32.dll to a
WSAServiceLookupBegin/NextiEnd sequence that uses one of a set of special GUIDs
as the service class. These GUIDs identify the type of getXbyYoperation that is being
emulated. The query is constrained to those NSPs that support AF _INET. Whenever a
getXbyY function returns a hostent or servent structure, the Ws2_32.dll specifies the
LUP _RETURN_BLOB flag in WSALookupServiceBegin so that the desired information
is returned by the NSP. These structures must be modified slightly in that the pOinters
contained within must be replaced with offsets that are relative to the start of the blob's
data. All values referenced by these pointer parameters must, of course, be completely
contained within the blob, and all strings are ASCII.

getprotobyname and getprotobynumber Functions in the API
These functions are implemented within the Ws2_32.DLL by consulting a local protocols
database. They do not result in any name resolution query.

getservbyname and getservbyport Functions in the API
The WSALookupServiceBegin query uses SVCID_INET _SERVICEBYNAME as the
service class GUID. The IpszServicelnstanceName parameter references a string which
indicates the service name or service port, and (optionally) the service protocol. The
formatting of the string is illustrated as FTP or TCP or 21ITCP or just FTP. The string is
not case sensitive. The slash mark, if present, separates the protocol identifier from the
preceding part of the string. The Ws2_32.dll will specify LUP _RETURN_BLOB and the
NSP will place a SERVENT structure in the blob (using offsets instead of pointers as
described above). NSPs should honor these other LUP_RETURN_* flags as well.

110 Volume 1 Winsock and aos

Flag Description

LUP _RETURN_NAME Returns the s_name parameter from SERVENT structure in
IpszServicelnstanceName.

LUP _RETURN_TYPE Returns canonical GUID in IpServiceClassld It is understood
that a service identified as FTP or 21 may be on another port
according to locally established conventions. The s_port
parameter of the SERVENT structure should indicate where
the service can be contacted in the local environment. The
canonical GUID returned when LUP _RETURN_TYPE is set
should be one of the predefined GUIDs from Svcs.h that
corresponds to the port number indicated in the SERVENT
structure.

gethostbyname Function in the API
The WSALookupServiceBegin query uses SVCID_INET_HOSTADDRBYNAME as the
service class GUID. The host name is supplied in IpszServicelnstanceName. The
Ws2_32.DLL specifies LUP _RETURN_BLOB and the NSP places a HOSTENT structure
in the blob (using offsets instead of pOinters as described above). NSPs should honor
these other LUP _RETURN_* flags as well.

Flag Description

LUP _RETURN_NAME Returns the h_name parameter from HOSTENT structure in
IpszServicelnstanceName.

Returns addressing information from HOSTENT in
CSADDR_INFO structures, port information is defaulted to
zero. Note that this routine does not resolve host names that
consist of a dotted internet address.

gethostbyaddr Function in the API
The WSALookupServiceBegin query uses SVCID_1NET_HOSTNAMEBYADDR as the
service class GUID. The host address is supplied in IpszServicelnstanceName as a
dotted internet string (for example, "192.9.200.120"). The Ws2_32.DLL specifies
LUP _RETURN_BLOB and the NSP places a HOSTENT structure in the blob (using
offsets instead of pointers as described above). NSPs should honor these other
LUP _RETURN_* flags as well.

Flag Description

LUP _RETURN_NAME Returns the h_name parameter from HOSTENT structure in
IpszServicelnstanceName.

LUP _RETURN_ADDR Returns addressing information from HOSTENT in
CSADDR_INFO structures, port information is defaulted
to zero.

Chapter 6 Winsock 2 API Overview 111

gethostname Function in the API
The WSALookupServiceBegin query uses SVCID_HOSTNAME as the service class
GUID. If IpszServicelnstanceName is NULL or references a NULL string (that is ""), the
local host is to be resolved. Otherwise, a lookup on a specified host name occurs. For
the purposes of emulating gethostname the WS2_32.DLL specifies a null pointer for
IpszServicelnstanceName, and specifies LUP _RETURN_NAME so that the host name is
returned in the IpszServicelnstanceName parameter. If an application uses this query
and specifies LUP _RETURN_ADDR then the host address is provided in a
CSADDR_INFO structure. The LUP _RETURN_BLOB action is undefined for this query.
Port information is defaulted to zero unless the IpszQueryString references a service
such as FTP, in which case the complete transport address of the indicated service is
supplied.

Multipoint and Multicast Semantics
In considering how to support multipoint and multicast semantics in Windows Sockets 2
a number of existing and proposed multipoinVmulticast schemes (including IP-multicast,
ATM point-to-multipoint connection, ST-II, T.120, H.320 (MCU), and so on) were
examined. While alike in some aspects, each is unlike in others. To enable a coherent
discussion of the various schemes, it is valuable to first create a taxonomy that
characterizes the essential attributes of each. In this document, the term multipoint
represents both multipoint and multicast.

Multipoint Taxonomy
The taxonomy described in this section first distinguishes the control plane that concerns
itself with the way a multipoint session is established, from the data plane that deals with
the transfer of data among session participants.

In the control plane there are two distinct types of session establishment: rooted and
nonrooted. In the case of rooted control, there exists a special participant, called c_root,
that is different from the rest of the members of this multipoint session, each of which is
called a c_leaf. The c_root must remain present for the whole duration of the multipoint
session, as the session is broken up in the absence of the c_root. The c_root usually
initiates the multipoint session by setting up the connection to a c_leaf, or a number of
c_leafs. The c_root may add more c_leafs, or (in some cases) a c_leaf can join the
c_root at a later time. Examples of the rooted control plane can be found in ATM
and ST-II.

For a nonrooted control plane, all the members belonging to a multipoint session are
leaves, that is, no special participant acting as a c_rootexists. Each c_leaf mustadd
itself to a preexisting multipoint session that is always available (as in the case of an IP
multicast address), or has been set up through some OOB mechanism which is outside
the scope of the Windows Sockets specification.

112 Volume 1 Winsock and QOS

Another way to look at this is that a c_root still exists, but can be considered to be in the
network cloud as opposed to one of the participants. Because a control root still exists, a
nonrooted control plane could also be considered to be implicitly rooted. Examples for
this kind of implicitly rooted multipoint schemes are:

• A teleconferencing bridge.

• The IP multicast system .

• A Multipoint Control Unit (MCU) in a H.320 video conference.

In the data plane, there are two types of data transfer styles: rooted and nonrooted. In a
rooted data plane, a special participant called d_root exists. Data transfer only occurs
between the d_root and the rest of the members of this multipoint session, each of which
is referred to as a d_leaf. The traffic could be unidirectional or bi-directional. The data
sent out from the d_root is duplicated (if required) and delivered to every d_leaf, while
the data from d_leafs only goes to the d_root. In the case of a rooted data plane, no
traffic is allowed among d_leafs. An example of a protocol that is rooted in the data
plane is ST-II.

In a nonrooted data plane, all the participants are equal, that is, any data they send is
delivered to all the other participants in the same multipoint session. Likewise each
dJeaf node can receive data from all other d_leafs, and in some cases, from other
nodes that are not participating in the multipoint session. No special d_root node exists.
IP-multicast is nonrooted in the data plane.

Note that the question of where data unit duplication occurs, or whether a shared single
tree or multiple shortest-path trees are used for multipoint distribution are protocol
issues, and irrelevant to the interface the application would use to perform multipoint
communications. Therefore these issues are not addressed in this appendix or the
Windows Sockets interface.

The following table depicts the taxonomy described above and indicates how existing
schemes fit into each of the categories. Note that there do not appear to be any existing
schemes that employ a nonrooted control plane along with a rooted data plane.

Nonrooted (implicit rooted)
Rooted control plane control plane

Rooted data plane ATM, ST-II

Nonrooted data plane T.120

No known examples.

IP-multicast, H.320 (MCU)

Windows Sockets 2 Interface Elements for Multipoint and
Multicast

The mechanisms that have been incorporated into Windows Sockets 2 for utilizing
multipoint capabilities can be summarized as follows:

Three attribute bits in the WSAPROTOCOL_INFO structure.

Chapter 6 Winsock 2 API Overview 113

• Four flags defined for the dwFlags parameter of WSASocket.

• One function, WSAJoinLeaf, for adding leaf nodes into a multipoint session.

• Two WSAloctl command codes for controlling multipoint loopback and the scope of
multicast transmissions.

The following paragraphs describe these interface elements in more detail:

• Semantics for JOining Multipoint Leaves

• How Existing Multipoint Protocols Support These Extensions

Attributes in WSAPROTOCOLJNFO Structure
In support of the taxonomy described above, three attribute parameters in the
WSAPROTOCOL_INFO structure are use to distinguish the schemes used in the control
and data planes respectively:

• XP1_SUPPORT _MULTIPOINT with a value of 1 indicates this protocol entry supports
multipoint communications, and that the following two parameters are meaningful.

• XPCMUL TIPOINT _CONTROL_PLANE indicates whether the control plane is rooted
(value = 1) or nonrooted (value = 0).

• XP1_MULTIPOINT _DATA_PLANE indicates whether the data plane is rooted
(value = 1) or nonrooted (value = 0).

Note that two WSAPROTOCOL_INFO entries would be present if a multipoint protocol
supported both rooted and nonrooted data planes, one entry for each.

The application can use WSAEnumProtocols to discover whether multipoint
communications is supported for a given protocol and, if so, how it is supported with
respect to the control and data planes, respectively.

Flag Bits for WSASocket
In some instances sockets joined to a multipoint session may have some behavioral
differences from point-to-point sockets. For example, a d_leaf socket in a rooted data
plane scheme can only send information to the d_root participant. This creates a need
for the application to be able to indicate the intended use of a socket coincident with its
creation. This is done through four-flag bits that can be set in the dwFlags parameter
to WSASocket:

• WSA_FLAG_MULTIPOINT _C_ROOT, for the creation of a socket acting as a c_root,
and only allowed if a rooted control plane is indicated in the corresponding
WSAPROTOCOL_INFO entry.

• WSA_FLAG_MULTIPOINT_C_LEAF, for the creation of a socket acting as a c_leaf,
and only allowed if XP1_SUPPORT_MULTIPOINTis indicated in the corresponding
WSAPROTOCOL_INFO entry.

114 Volume 1 Winsockand aos

• WSA_FLAG_MUL TIPOINT _D_ROOT, for the creation of a socket acting as ad_root,
and only allowed if a rooted data plane is indicated in the corresponding
WSAPROTOCOL_INFO entry.

• WSA_FLAG_MUL TIPOINT _D_LEAF, for the creation of a socket acting as ad_leaf,
and only allowed if XP1_SUPPORT _MULTIPOINT is indicated in the corresponding
WSAPROTOCOL_INFO entry.

Note that when creating a multipoint socket, exactly one of the two control-plane flags,
and one of the two data-plane flags must be set in WSASocket's dwFlags parameter.
Thus, the four possibilities for creating multipoint sockets are:

• "c_rooVd_root"

• "c_rooVd_leaf"

• "c_leaf/d_root"

• "c_leaf /d_leaf"

SIO_MULTIPOINT _LOOPBACK Command Code for WSAloctl
When d_leaf sockets are used in a nonrooted data plane, it is desirable to have traffic
that is sent out received back on the same socket. The SIO_MULTIPOINT _LOOPBACK
command code for WSAloctl is used to enable or disable loopback of multipoint traffic.

SIO_MULTICAST _SCOPE Command Code for WSAloctl
When multicasting is employed, it is usually necessary to specify the scope over which
the multicast should occur. Scope is defined as the number of routed network segments
to be covered. A scope of zero would indicate that the multicast transmission would not
be placed on the wire but could be disseminated across sockets within the local host. A
scope value of one (the default) indicates that the transmission will be placed on the
wire, but will not cross any routers. Higher scope values determine the number of routers
that may be crossed. Note that this corresponds to the time-to-live (TTL) parameter in IP
multicasting.

The function WSAJoinLeaf is used to join a leaf node into the multipoint session. See
the following for a discussion on how this function is utilized.

Semantics for Joining Multipoint Leaves
In the following, a multipoint socket is frequently described by defining its role in one of
the two planes (control or data). It should be understood that this same socket has a role
in the other plane, but this is not mentioned in order to keep the references short. For
example when a reference is made to a "c_root socket", this could be either a
c_rooVd_root or a c_rooVd_leaf socket.

In rooted control plane schemes, new leaf nodes are added to a multipoint session in
one or both of two different ways. In the first method, the root uses WSAJoinLeaf to
initiate a connection with a leaf node and invite it to become a participant. On the leaf

Chapter 6 Winsock 2 API Overview 115

node, the peer application must have created a c_leaf socket and used listen to set it
into listen mode. The leaf node receives an FD_ACCEPT indication when invited to join
the session, and signals its willingness to join by calling WSAAccept. The root
application then receives an FD_CONNECT indication when the join operation has been
completed.

In the second method, the roles are essentially reversed. The root application creates a
c_root socket and sets it into listen mode. A leaf node wishing to join the session creates
a c_leaf socket and uses WSAJoinLeaf to initiate the connection and request
admittance. The root application receives FD_ACCEPT when an incoming admittance
request arrives, and admits the leaf node by calling WSAAccept. The leaf node receives
FD_CONNECT when it has been admitted.

In a nonrooted control plane, where all nodes are c_leaf's, the WSAJoinLeaf is used to
initiate the inclusion of a node into an existing multipoint session. An FD_CONNECT
indication is provided when the join has been completed and the returned socket
descriptor is useable in the multipoint session. In the case of IP multicast, this would
correspond to the IP _ADD_MEMBERSHIP socket option.

(Readers familiar with IP multicast's use of the connection less UDP protocol may be
concerned by the connection-oriented semantics presented here. In particular the notion
of using WSAJoinLeaf on a UDP socket and waiting for an FD_CONNECT indication
may be troubling. There is, however, ample precedent for applying connection-oriented
semantics to connectionless protocols. It is allowed and sometimes useful, for example,
to invoke the standard connect function on a UDP socket. The general result of applying
connection-oriented semantics to connection less sockets is a restriction in how such
sockets may be used, and this is the case here, as well. A UDP socket used in
WSAJoinLeaf will have certain restrictions, and waiting for an FD_CONNECT indication
(which in this case simply indicates that the corresponding IGMP message has been
sent) is one such limitation.}

There are therefore, three instances where an application would use WSAJoinLeaf:

• Acting as a multipoint root and inviting a new leaf to join the session

• Acting as a leaf making an admittance request to a rooted multipoint session

• Acting as a leaf seeking admittance to a nonrooted multipoint session (for example, IP
multicast)

Using WSAJoinLeaf
As mentioned previously, the function WSAJoinLeaf is used to join a leaf node into a
multipoint session. WSAJoinLeaf has the same parameters and semantics as
WSAConnect except that it returns a socket descriptor (as in WSAAccept), and it has
an additional dwFlags parameter. The dwFlags parameter is used to indicate whether
the socket will be acting only as a sender, only as a receiver, or both. Only multipoint
sockets may be used for input parameter 5 in this function. If the multipoint socket is in
nonblocking mode, the returned socket descriptor is not useable until after a

116 Volume 1 Winsock and QOS

corresponding FD_CONNECT indication is received. A root application in a multipoint
session may call WSAJoinLeaf one or more times in order to add a number of leaf
nodes, however at most one multipoint connection request may be outstanding at a time.

The socket descriptor returned by WSAJoinLeaf is different depending on whether the
input socket descriptor, s, is a c_root or a c_leaf. When used with a c_root socket, the
name parameter designates a particular leaf node to be added and the returned socket
descriptor is a c_leaf socket corresponding to the newly added leaf node. It is not
intended to be used for the exchange of multipoint data, but rather is used to receive
FD_XXX indications (for example, FD_CLOSE) for the connection that exists to the
particular c_leaf. Some multipoint implementations may also allow this socket to be used
for side chats between the root and an individual leaf node. An FD_CLOSE indication is
received for this socket if the corresponding leaf node calls closesocket to drop out of
the multipoint session. Symmetrically, invoking closesocket on the c_leaf socket
returned from WSAJoinLeaf causes the socket in the corresponding leaf node to get
FD_CLOSE notification.

When WSAJoinLeaf is invoked with a c_leaf socket, the name parameter contains the
address of the root application (for a rooted control scheme) or an existing multipoint
session (nonrooted control scheme), and the returned socket descriptor is the same as
the input socket descriptor. In a rooted control scheme, the root application puts its
c_root socket in listening mode by calling listen. The standard FD_ACCEPT notification
is delivered when the leaf node requests to join itself to the multipoint session. The root
application uses the usual acceptIWSAAccept functions to admit the new leaf node.
The value returned from either accept or WSAAccept is also a c_leaf socket descriptor
just like those returned from WSAJoinLeaf. To accommodate multipoint schemes that
allow both root-initiated and leaf-initiated joins, it is acceptable for a c_root socket that is
already in listening mode to be used as in input to WSAJoinLeaf.

A multipoint root application is generally responsible for the orderly dismantling of a
multipoint session. Such an application may use shutdown or closesocket on a c_root
socket to cause all of the associated c_leaf sockets, including those returned from
WSAJoinLeaf and their corresponding c_leaf sockets in the remote leaf nodes, to get
FD_CLOSE notification.

Semantic Differences Between Multipoint Sockets and
Regular Sockets

In the control plane, there are some significant semantic differences between a c_root
socket and a regular point-to-pointsocket:

• The c_root socket can be used in WSAJoinLeaf to join a new a leaf.

• Placing a c_root socket into listening mode (by calling listen) does not preclude the
c_root socket from being used in a call to WSAJoinLeaf to add a new leaf, or for
sending and receiving multipoint data.

• The closing of a c_root socket causes all of the associated c_leaf sockets to get
FD_CLOSE notification.

Chapter 6 Winsock 2 API Overview 117

There are no semantic differences between a c_leaf socket and a regular socket in the
control plane, except that the c_leaf socket can be used in WSAJoinLeaf, and the use
of c_leaf socket in listen indicates that only multipoint connection requests should be
accepted.

In the data plane, the semantic differences between the d_root socket and a regular
pOint-to-point socket are

• The data sent on the d_root socket is delivered to all the leaves in the same multipoint
session.

• The data received on the d_root socket may be from any of the leaves.

The d_leaf socket in the rooted data plane has no semantic difference from the regular
socket, however, in the nonrooted data plane, the data sent on the d_leaf socket goes to
all the other leaf nodes, and the data received could be from any other leaf nodes. As
mentioned earlier, the information about whether the d_leaf socket is in a rooted or
nonrooted data plane is contained in the corresponding WSAPROTOCOL_INFO
structure for the socket.

How Existing Multipoint Protocols Support These Extensions
In this section we indicate how IP multicast and ATM point-to-multipoint capabilities can
be accessed through the Windows Sockets 2 multipoint functions. We chose these two
as examples because they are popular and well understood.

IP Multicast
IP multicast falls into the category of nonrooted data plane and nonrooted control plane.
All applications playa leaf role. Currently, most IP multicast implementations use a set of
socket options proposed by Steve Deering to the IETF. Five operations are thus made
available:

• IP _MULTICAST _TTL-Sets time to live, controls scope of multicast session

• IP _MULTICAST _IF-Determines interface to be used for multicasting.

• IP _ADD_MEMBERSHIP-Joins a specified multicast session.

• IP _DROP _MEMBERSHIP-Drops out of a multicast session.

• IP _MULTICAST _LOOP-Controls loopback of multicast traffic.

Setting the time-to-live for an I P multicast socket maps directly to using the
SIO_MUL TICAST _SCOPE command code for WSAloctl.

The method for determining the.IP interface to be used for multicasting is through a
TCP/IP-specific socket option as described in the Windows Sockets 2 Protocol-Specific
Annex. The remaining three operations are covered well with the Windows Sockets 2
semantics described here.

118 Volume 1 Winsockand QOS

The application would open sockets with c_leaf/d_leaf flags in WSASocket. It would use
WSAJoinLeaf to add itself to a multicast group on the default interface designated for
multicast operations. If the flag in WSAJoinLeaf indicates that this socket is only a
sender, then the join operation is essentially a no-op and no IGMP messages need to be
sent. Otherwise, an IGMP packet is sent out to the router to indicate interests in
receiving packets sent to the specified multicast address. Since the application created
special c_leaf/d_leaf sockets used only for performing multicast, the standard
closesocket function would be used to drop out of the multicast session. The
SIO_MULTIPOINT_LOOPBACK command code forWSAloctl provides a generic
control mechanism for determining whether data sent on a d_leaf socket in a nonrooted
multipoint scheme can also be received on the same socket.

Note The Windows Sockets version of the IP _MULTICAST_LOOP option is
semantically different than the UNIX version of the IP _MULTICAST _LOOP option. In
Windows Sockets, the IP _MULTICAST_LOOP option applies only to the receive path. In
contrast, the UNIX version of the IP _MULTICAST _LOOP option applies to the send
path. For example, applications ON and OFF (which are easier to track than X and Y)
join the same group on the same interface; application ON sets the
IP _MULTICAST_LOOP option on, application OFF sets the IP _MULTICAST_LOOP
option off. If ON and OFF are Windows Sockets applications, OFF can send to ON, but
ON cannot sent to OFF. In contrast, if ON and OFF are UNIX applications, ON can send
to OFF, but OFF cannot send to ON.

ATM Point to Multipoint
ATM falls into the category of rooted data and rooted control planes. An application
acting as the root would create c_root sockets and counterparts running on leaf nodes
would utilize c_leaf sockets. The root application uses WSAJoinLeaf to add new leaf
nodes. The corresponding appiications on the leaf nodes will have set their c_leaf
sockets into listen mode. WSAJoinLeaf with a c_root socket specified is mapped to the
0.2931 ADDPARTY message. The leaf-initiated join is not supported in ATM UNI 3.1,
but is supported in ATM UNI 4.0. Thus WSAJoinLeaf with a c_leaf socket specified is
mapped to the appropriate ATM UN14.0 message.

There are additional considerations to bear in mind for ATM point-to-multipoint:

• The addition of new leaves to the ATM point-to-multipoint session is invitation-based
only. The root invites leaves-which have already their accept function call-by
calling the WSAJoinLeaf function.

• The flow of data in an ATM pOint-to-multipoint session is from root-to-Ieaves only;
leaves cannot use the same session to send information to the root.

• Only one leaf per ATM adapter is allowed.

Chapter 6 Winsock 2 API Overview 119

Additional Windows Socket Information
This section contains information on the Windows Sockets 2 header file, additional
Windows Sockets reference material, and the error codes encountered in programming
for Windows Sockets 2.

Windows Sockets 2 API Header File-Winsock2.h
New versions of Winsock2.h will appear periodically as new identifiers are allocated by
the Windows Sockets Identifier Clearinghouse. The clearinghouse can be reached
through the world wide web at:

http://www.stardust.com/winsock/

Socket Options Specific to Microsoft Service Providers
Microsoft's service providers support additional socket options not included in the
Windows Sockets 2 API:

Socket Option for Windows NT 4.0 Only
Socket Option for Windows NT 4.0 and Windows 95

Socket Option for Windows NT 4.0 Only
The following socket options are Microsoft-specific extensions for connect and
disconnect data and options, and are used only by non-TCP/IP transports such as
DECNet, OSI TP4, etc. These are only used in the Microsoft implementation of Windows
Sockets on Windows NT 4.0.

• SO_CONNDATA

• SO_CONNOPT

• SO_DISCDATA

• SO_DISCOPT

• SO_CONNDATALEN

• SO_CONNOPTLEN

• SO_DISCDATALEN

• SO_DlSCOPTLEN

The following socket options are Microsoft-specific extensions for controlling the size of
datagrams:

• SO_MAXDG

• SO_MAXPATHDG

120 Volume 1 Winsock and aos

Socket Option for Windows NT 4.0 and Windows 95
SO_SNDTIMEO
SO_RCVTIMEO

Details on SO_SNDTIMEO and SO_RCVTIMEO
These two options set up time-outs for the send, sendto, recv, and recvfrom functions.
You can obtain the same functionality by calling select with a time-out just before the I/O
call, but these options offer a significant improvement in performance by avoiding a
kernel transition and the other overhead of the select call. For any code whose
performance is very critical, applications should use these time-out options rather than
select.

You can set these options on any type of socket in any state. The default value for these
options is zero, which refers to an infinite time-out. Any other setting is the time-out, in
milliseconds. It is valid to set the time-out to any value, but values less than
500 milliseconds (half a second) are interpreted to be 500 milliseconds.

To set a send time-out, use:

The TIMEOUT_VALUE is the needed time-out in milliseconds. To set a receive time-out,
substitute SO_RCVTIMEO for SO_SNDTIMEO in the preceding example.

After setting one of these options to a nonzero value, I/O through the Windows Sockets
calls fails with the error WSAETIMEDOUT if the request cannot be satisfied within the
specified time-out. If a request times out, an application has no guarantees as to how
much data was actually sent or received in the I/O call.

The following socket option is used in conjunction with the MS Extension function
AcceptEx.

SO_UPDATE_ACCEPT_CONTEXT

Chapter 6 Winsock 2 API Overview 121

Additional Documentation
This specification is intended to cover the Windows Sockets interface in detail. Many
details of specific protocols and Windows, however, are intentionally omitted in the
interest of brevity, and this specification often assumes background knowledge of these
topics. For more information, the following references may be helpful:

Networking Books
Jones, A. and Ohlund, J., Network Programming for Microsoft Windows, (Microsoft
Press, 1999).

Braden, R.[1989], RFC 1122, Requirements for Internet Hosts--Communication Layers,
Internet Engineering Task Force.

Comer, D., Internetworking with TCPIIP Volume I: Principles, Protocols, and
Architecture, (Prentice Hall, 1991).

Comer, D. and Stevens, D., Internetworking with TCPIIP Volume II: Design,
Implementation, and Internals (Prentice Hall, 1991).

Comer, D. and Stevens, D., Internetworking with TCPIIP Volume III: Client-Server
Programming and Applications (Prentice Hall, 1991).

Leffler, S. et aI., An Advanced 4. 38SD Interprocess Communication Tutorial.

Stevens, W.R., Unix Network Programming (Prentice Hall, 1990).

Stevens, W.R.. TCPIIP Illustrated, Volume 1: The Protocols (Addison-Wesley, 1994).

Wright, G.R. and Stevens, W.R., TCPIIP Illustrated Volume 2: The Implementation
(Addison-Wesley, 1995).

Windows Sockets Books
Jones, A. and Ohlund, J., Network Programming for Microsoft Windows (Microsoft
Press, 1999).

Bonner, P., Network Programming with Windows Sockets (Prentice Hall, 1995).

Dumas, A., Programming Windows Sockets (Sams Publishing, 1995).

Quinn, B. and Shute, D., Windows Sockets Network Programming (Addison-Wesley,
1995).

Roberts, D., Developing for the Internet with Winsock (Coriolis Group Books, 1995).

CHAPTER 7

Error Codes in the Winsock API

The following is a list of possible error codes returned by the WSAGetLastError call,
along with their extended explanations. Errors are listed in alphabetical order by error
macro. Some error codes defined in Winsock2.h are not returned from any function
these are not included in this topic.

Error Codes
WSAEACCES

(10013)

Permission denied.
An attempt was made to access a socket in a way forbidden by its access
permissions. An example is using a broadcast address for sendto without
broadcast permission being set using setsockopt(SO_BROADCAST).

123

Another possible reason for the WSAEACCES error is that when the bind function
is called (on Windows NT 4 SP4 or later), another application, service, or kernel
mode driver is bound to the same address with exclusive access. Such exclusive
access is a new feature of Windows NT 4 SP4 and later, and is implemented
by using the SO_EXCLUSIVEADDRUSE option.

WSAEADDRINUSE
(10048)

Address already in use.
Typically, only one usage of each socket address (protocol/IP address/port) is
permitted. This error occurs if an application attempts to bind a socket to an
IP address/port that has already been used for an existing socket, or a socket that
wasn't closed properly, or one that is still in the process of closing. For server
applications that need to bind multiple sockets to the same port number, consider
using setsockopt(SO_REUSEADDR). Client applications usually need not call
bind at all-connect chooses an unused port automatically. When bind is called
with a wildcard address (involving ADDR_ANY), a WSAEADDRINUSE error could
be delayed until the specific address is committed. This could happen with a call to
another function later, including connect, listen, WSAConnect, or WSAJoinLeaf.

124 Volume 1 Winsock and QOS

WSAEADDRNOTAVAIL
(10049)

Cannot assign requested address.
The requested address is not valid in its context. This normally results from an
attempt to bind to an address that is not valid for the local machine. This can also
result from connect, sendto, WSAConnect, WSAJoinLeaf, or WSASendTo
when the remote address or port is not valid for a remote machine (for example,
address or port 0).

WSAEAFNOSUPPORT
(10047)

Address family not supported by protocol family.
An address incompatible with the requested protocol was used. All sockets are
created with an associated address family (that is, AF _INET for Internet Protocols)
and a generic protocol type (that is, SOCK_STREAM). This error is returned if an
incorrect protocol is explicitly requested in the socket call, or if an address of the
wrong family is used for a socket, for example, in sendto.

WSAEALREADY
(10037)

Operation already in progress.
An operation was attempted on a nonblocking socket with an operation already in
progress-that is, calling connect a second time on a non blocking socket that is
already connecting, or canceling an asynchronous request (WSAAsyncGetXbyY)
that has already been canceled or completed.

WSAECONNABORTED
(10053)

Software caused connection abort.
An established connection was aborted by the software in your host machine,
possibly due to a data transmission time-out or protocol error.

WSAECONNREFUSED
(10061)

Connection refused.
No connection could be made because the target machine actively refused it.
This usually results from trying to connect to a service that is inactive on the foreign
host-that is, one with no server application running.

WSAECONNRESET
(10054)

Connection reset by peer.

Chapter 7 Error Codes in the Winsock API 125

An existing connection was forcibly closed by the remote host. This normally
results if the peer application on the remote host is suddenly stopped, the host
is rebooted, or the remote host uses a hard close (see setsockoptfor more
information on the SO_LINGER option on the remote socket.) This error may also
result if a connection was broken due to keep-alive activity detecting a failure while
one or more operations are in progress. Operations that were in progress fail with
WSAENETRESET. Subsequent operations fail with WSAECONNRESET.

WSAEDESTADDRREQ
(10039)

Destination address required.
A required address was omitted from an operation on a socket. For example, this
error is returned if sendto is called with the remote address of ADDR_ANY.

WSAEFAULT
(10014)

Bad address.
The system detected an invalid pointer address in attempting to use a pOinter
argument of a call. This error occurs if an application passes an invalid pOinter
value, or if the length of the buffer is too small. For instance, if the length of an
argument, which is a SOCKADDR structure, is smaller than the size
of (SOCKADDR).

WSAEHOSTDOWN
(10064)

Host is down.
A socket operation failed because the destination host is down. A socket operation
encountered a dead host. Networking activity on the local host has not been
initiated. These conditions are more likely to be indicated by the error
WSAETIMEDOUT.

WSAEHOSTUNREACH
(10065)

No route to host.
A socket operation was attempted to an unreachable host. See
WSAENETUNREACH.

WSAEINPROGRESS
(10036)

Operation now in progress.
A blocking operation is currently executing. Windows Sockets only allows a single
blocking operation-per task or thread-to be outstanding, and if any other function
call is made (whether or not it references that or any other socket) the function fails
with the WSAEINPROGRESS error.

126 Volume 1 Winsock and aos

WSAEINTR
(10004)

Interrupted function call.
A blocking operation was interrupted by a call to WSACancelBlockingCal1.

WSAEINVAL
(10022)

Invalid argument.
Some invalid argument was supplied (for example, specifying an invalid level to the
setsockopt function). In some instances, it also refers to the current state of the
socket-for instance, calling accept on a socket that is not listening.

WSAEISCONN
(10056)

Socket is already connected.
A connect request was made on an already-connected socket. Some
implementations also return this error if sendto is called on a connected
SOCK_DGRAM socket (for SOCK_STREAM sockets, the to parameter in sendto
is ignored) although other implementations treat this as a legal occurrence.

WSAEMFILE
(10024)

Too many open files.
Too many open sockets. Each implementation may have a maximum number of
socket handles available, either globally, per process, or per thread.

WSAEMSGSIZE
(10040)

Message too long.
A message sent on a datagram socket was larger than the internal message buffer
or some other network limit, or the buffer used to receive a datagram was smaller
than the datagram itself.

WSAENETDOWN
(10050)

Network is down.
A socket operation encountered a dead network. This could indicate a serious
failure of the network system (that is, the protocol stack that the Windows Sockets
DLL runs over), the network interface, or the local network itself.

WSAENETRESET
(10052)

Network dropped connection on reset.
The connection has been broken due to keep-alive activity detecting a failure while
the operation was in progress. It can also be returned by setsockopt if an attempt
is made to set SO_KEEPALIVE on a connection that has already failed.

WSAENETUNREACH
(10051)

Network is unreachable.

Chapter 7 Error Codes in the Winsock API 127

A socket operation was attempted to an unreachable network. This usually means
the local software knows no route to reach the remote host.

WSAENOBUFS
(10055)

No buffer space available.
An operation on a socket could not be performed because the system lacked
sufficient buffer space or because a queue was full.

WSAENOPROTOOPT
(10042)

Bad protocol option.
An unknown, invalid or unsupported option or level was specified in a getsockopt
or setsockopt call.

WSAENOTCONN
(10057)

Socket is not connected.
A request to send or receive data was disallowed because the socket is not
connected and (when sending on a datagram socket using sendto) no address
was supplied. Any other type of operation might also return this error-for example,
setsockopt setting SO_KEEPALIVE if the connection has been reset.

WSAENOTSOCK
(10038)

Socket operation on nonsocket.
An operation was attempted on something that is not a socket. Either the socket
handle parameter did not reference a valid socket, or for select, a member of an
fd_set was not valid.

WSAEOPNOTSUPP
(10045)

Operation not supported.
The attempted operation is not supported for the type of object referenced. Usually
this occurs when a socket descriptor to a socket that cannot support this operation
is trying to accept a connection on a datagram socket.

WSAEPFNOSUPPORT
(10046)

Protocol family not supported.
The protocol family has not been configured into the system or no implementation
for it exists. This message has a Slightly different meaning from
WSAEAFNOSUPPORT. However, it is interchangeable in most cases, and all
Windows Sockets functions that return one of these messages also specify
WSAEAFNOSUPPORT.

128 Volume 1 Winsock and QOS

WSAEPROCLIM
(10067)

Too many processes.
A Windows Sockets implementation may have a limit on the number of applications
that can use it simultaneously. WSAStartup may fail with this error if the limit has
been reached.

WSAEPROTONOSUPPORT
(10043)

Protocol not supported.
The requested protocol has not been configured into the system, or no
implementation for it exists. For example, a socket call requests a SOCK_DGRAM
socket, but specifies a stream protocol.

WSAEPROTOTYPE
(10041)

Protocol wrong type for socket.
A protocol was specified in the socket function call that does not support the
semantics of the socket type requested. For example, the ARPA Internet UDP
protocol cannot be specified with a socket type of SOCK_STREAM.

WSAESHUTDOWN
(10058)

Cannot send after socket shutdown.
A request to send or receive data was disallowed because the socket had already
been shut down in that direction with a previous shutdown call. By calling
shutdown a partial close of a socket is requested, which is a signal that sending or
receiving, or both have been discontinued.

WSAESOCKTNOSUPPORT
(10044)

Socket type not supported.
The support for the specified socket type does not exist in this address family. For
example, the optional type SOCK_RAW might be selected in a socket call, and the
implementation does not support SOCK_RAW sockets at all.

WSAETIMEDOUT
(10060)

Connection timed out.
A connection attempt failed because the connected party did not properly respond
after a period of time, or the established connection failed because the connected
host has failed to respond.

WSATYPE_NOT_FOUND
(10109)

Class type not found.
The specified class was not found.

WSAEWOULDBLOCK
(10035)

Resource temporarily unavailable.

Chapter 7 Error Codes in the Winsock API 129

This error is returned from operations on non blocking sockets that cannot be
completed immediately, for example recv when no data is queued to be read from
the socket. It is a nonfatal error, and the operation should be retried later. It is
normal for WSAEWOULDBLOCK to be reported as the result from calling connect
on a non blocking SOCK_STREAM socket, since some time must elapse for the
connection to be established.

WSAHOST_NOT_FOUND
(11001)

Host not found.
No such host is known. The name is not an official host name or alias, or it cannot
be found in the database(s) being queried. This error may also be returned for
protocol and service queries, and means that the specified name could not be
found in the relevant database.

WSA_INV ALID _HANDLE
(OS dependent)

Specified event object handle is invalid.
An application attempts to use an event object, but the specified handle is not valid.

WSA_INVALlD_PARAMETER
(OS dependent)

One or more parameters are invalid.
An application used a Windows Sockets function which directly maps to a Win32
function. The Win32 function is indicating a problem with one or more parameters.

WSAINVALIDPROCTABLE
(OS dependent)

Invalid procedure table from service provider.
A service provider returned a bogus procedure table to Ws2_32.dll. (Usually
caused by one or more of the function pointers being nUll.)

WSAINVALIDPROVIDER
(OS dependent)

Invalid service provider version number.
A service provider returned a version number other than 2.0.

WSA_IO_INCOMPLETE
(OS dependent)

Overlapped 110 event object not in signaled state.
The application has tried to determine the status of an overlapped operation which
is not yet completed. Applications that use WSAGetOverlappedResult (with the
fWaitflag set to FALSE) in a polling mode to determine when an overlapped
operation has completed, get this error code until the operation is complete.

130 Volume 1 Winsock and QOS

WSA_IO_PENDING
(OS dependent)

Overlapped operations will complete later.
The application has initiated an overlapped operation that cannot be completed
immediately. A completion indication will be given later when the operation has
been completed.

WSA_NOT_ENOUGH_MEMORY
(OS dependent)

Insufficient memory available.
An application used a Windows Sockets function that directly maps to a Win32
function. The Win32 function is indicating a lack of required memory resources.

WSANOTINITIALISED
(10093)

Successful WSAStartup not yet performed.
Either the application hasn't called WSAStartup or WSAStartup failed. The
application may be accessing a socket that the current active task does not own
(that is, trying to share a socket between tasks), or WSACleanup has been called
too many times.

WSANO_DATA
(11004)
Valid name, no data record of requested type.

The requested name is valid and was found in the database, but it does not have
the correct associated data being resolved for. The usual example for this is a host
name-to-address translation attempt (using gethostbyname or
WSAAsyncGetHostByName) which uses the DNS (Domain Name Server). An
MX record is returned but no A record-indicating the host itself exists, but is not
directly reachable.

WSANO_RECOVERY
(11003)
This is a nonrecoverable error.

This indicates some sort of nonrecoverable error occurred during a database
lookup. This may be because the database files (for example, BSD-compatible
HOSTS, SERVICES, or PROTOCOLS files) could not be found, or a DNS request
was returned by the server with a severe error.

WSAPROVIDERFAILEDINIT
(OS dependent)

Unable to initialize a service provider.
Either a service provider's DLL could not be loaded (LoadLibrary failed) or the
provider's WSPStartup/NSPStartup function failed.

WSASYSCALLFAILURE
(OS dependent)

System call failure.

Chapter 7 Error Codes in the Winsock API 131

Returned when a system call that should never fail does. For example, if a call to
WaitForMultipleObjects fails or one of the registry functions fails trying to
manipulate the protocol/name space catalogs.

WSASYSNOTREADY
(10091)

Network subsystem is unavailable.
This error is returned by WSAStartup if the Windows Sockets implementation
cannot function at this time because the underlying system it uses to provide
network services is currently unavailable. Users should check:

• That the appropriate Windows Sockets DLL file is in the current path.

• That they are not trying to use more than one Windows Sockets
implementation simultaneously. If there is more than one Winsock DLL on your
system, be sure the first one in the path is appropriate for the network
subsystem currently loaded.

• The Windows Sockets implementation documentation to be sure all necessary
components are currently installed and configured correctly.

WSATRY _AGAIN
(11002)

Nonauthoritative host not found.
This is usually a temporary error during host name resolution and means that the
local server did not receive a response from an authoritative server. A retry at
some time later may be successful.

WSAVERNOTSUPPORTED
(10092)

Winsock.dll version out of range.
The current Windows Sockets implementation does not support the Windows
Sockets specification version requested by the application. Check that no old
Windows Sockets DLL files are being accessed.

WSAEDISCON
(10101)

Graceful shutdown in progress.
Returned by WSARecv and WSARecvFrom to indicate that the remote party has
initiated a graceful shutdown sequence.

WSA_OPERATION_ABORTED
(OS dependent)

Overlapped operation aborted.
An overlapped operation was canceled due to the closure of the socket, or the
execution of the SIO_FLUSH command in WSAloctl.

CHAPTER 8

Winsock 2 Functions

Windows Sockets 2 Functions

accept
The Windows Sockets accept function permits an incoming connection attempt on a
socket.

Parameters
s

[in] Descriptor identifying a socket that has been placed in a listening state with the
listen function. The connection is actually made with the socket that is returned by
accept.

addr

133

[out] Optional pOinter to a buffer that receives the address of the connecting entity, as
known to the communications layer. The exact format of the addr parameter is
determined by the address family established when the socket was created.

addrlen
[out] Optional pOinter to an integer that contains the length of addr.

Return Values
If no error occurs, accept returns a value of type SOCKET that is a descriptor for the
new socket. This returned value is a handle for the socket on which the actual
connection is made.

Otherwise, a value of INVALlD~SOCKET is returned, and a specific error code can be
retrieved by calling WSAGetLastError.

The integer referred to by addrlen initially contains the amount of space pointed to by
addr. On return it will contain the actual length in bytes of the address returned.

134 Volume 1 Winsock and QOS

Remarks
The accept function extracts the first connection on the queue of pending connections
on socket 5. It then creates a new socket and returns a handle to the new socket. The
newly created socket is the socket that will handle the actual connection and has the
same properties as socket 5, including the asynchronous events registered with the
WSAAsyncSelect or WSAEventSelect functions.

The accept function can block the caller until a connection is present if no pending
connections are present on the queue, and the socket is marked as blocking. If the
socket is marked as nonblocking and no pending connections are present on the queue,
accept returns an error as described in the following. After the successful completion of
accept returns a new socket handle, the accepted socket cannot be used to accept
more connections. The original socket remains open and listens for new connection
requests.

The parameter addr is a result parameter that is filled in with the address of the
connecting entity, as known to the communications layer. The exact format of the addr
parameter is determined by the address family in which the communication is occurring.
The addrlen is a value-result parameter; it should initially contain the amount of space
pointed to by addr, on return it will contain the actual length (in bytes) of the address
returned.

The accept function is used with connection-oriented socket types such as
SOCK_STREAM.

If addr and/or addrlen are equal to NULL, then no information about the remote address
of the accepted socket is returned.

Error Codes
Error code

WSANOTINITIALISED

WSAENETDOWN

WSAEFAULT

WSAEINTR

WSAEINPROGRESS

WSAEINVAL

WSAEMFILE

WSAENOBUFS

Meaning

A successful WSAStartup call must occur before using
this function.

The network subsystem has failed.

The addrlen parameter is too small or addr is not a valid
part of the user address space.

A blocking Windows Sockets 1.1 call was canceled
through WSACancelBlockingCal1.

A blocking Windows Sockets 1.1 call is in progress, or the
service provider is still processing a callback function.

The listen function was not invoked prior to accept.

The queue is nonempty upon entry to accept and there
are no descriptors available.

No buffer space is available.

Error code

WSAENOTSOCK

WSAEOPNOTSUPP

WSAEWOULDBLOCK

Notes for ATM

Chapter 8 Winsock 2 Functions 135

Meaning

The descriptor is not a socket.

The referenced socket is not a type that supports
connection-oriented service.

The socket is marked as non blocking and no connections
are present to be accepted.

The following are important issues associated with connection setup, and must be
considered when using Asynchronous Transfer Mode (ATM) with Windows Sockets 2:

• The accept and WSAAccept functions do not necessarily set the remote address
and address length parameters. Therefore, when using ATM the caller should use the
WSAAccept function and place ATM_CALLlNG_PARTY_NUMBER_IE in the
ProviderSpecific member of the QOS structure, which itself is included in the
IpSOOS parameter of the callback function used in accordance with WSAAccept.

• When using the accept function, realize that the function may return before
connection establishment has traversed the entire distance between sender and
receiver. This is because the accept function returns as soon as it receives a
CONNECT ACK message; in ATM a CONNECT ACK message is returned by the
next switch in the path as soon as a CONNECT message is processed (rather than
the CONNECT ACK being sent by the end node to which the connection is ultimately
established). As such, applications should realize that if data is sent immediately
following receipt of a CONNECT ACK message, data loss is possible, since the
connection may not have been established "all the way" between sender and receiver.

Version: Requires Windows Sockets 1.1 or later.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.lib.

Windows Sockets Programming Considerations Overview, Socket Functions, bind,
connect, listen, select, socket, WSAAsyncSelect, WSAAccept

AcceptEx
The Windows Sockets AcceptEx function accepts a new connection, returns the local
and remote address, and receives the first block of data sent by the client application.
The AcceptEx function is not supported on Windows 95/98.

136 Volume 1 Winsock and QOS

Note This function is a Microsoft-specific extension to the Windows Sockets
specification. For more information, see Microsoft Extensions and Windows Sockets 2 2.

Parameters
sListenSocket

[in] Descriptor identifying a socket that has already been called with the listen
function. A server application waits for attempts to connect on this socket.

sAcceptSocket
[in] Descriptor identifying a socket on which to accept an incoming connection. This
socket must not be bound or connected.

IpOutputBuffer
[in] Pointer to a buffer that receives the first block of data sent on a new connection,
the local address of the server, and the remote address of the client. The receive data
is written to the first part of the buffer starting at offset zero, while the addresses are
written to the latter part of the buffer. If this parameter is set to NULL, no receive will
be performed, nor will local or remote addresses be available through the use of
GetAcceptExSockaddrs function calls.

dwReceiveDataLength
[in] Number of bytes in IpOutputBufferthat will be used for actual receive data at the
beginning of the buffer. This size should not include the size of the local address of
the server, nor the remote address of the client; they are appended to the output
buffer. If dwReceiveDataLength is zero, accepting the connection will not result in a
receive operation. Instead, AcceptEx completes as soon as a connection arrives,
without waiting for any data.

dwLocalAddressLength
[in] Number of bytes reserved for the local address information. This value must be at
least 16 bytes more than the maximum address length for the transport protocol in
use.

dwRemoteAddressLength
[in] Number of bytes reserved for the remote address information. This value must be
at least 16 bytes more than the maximum address length for the transport protocol
in use.

Chapter 8 Winsock 2 Functions 137

IpdwBytesReceived
[out] Pointer to a DWORD that receives the count of bytes received. This parameter is
set only if the operation completes synchronously. If it returns ERROR_10_PENDING
and is completed later, then this DWORD is never set and you must obtain the
number of bytes read from the completion notification mechanism.

IpOveriapped
[in] An OVERLAPPED structure that is used to process the request. This parameter
must be specified; it cannot be null.

Return Values
If no error occurs, the AcceptEx function completed successfully and a value of TRUE is
returned.

If the function fails, AcceptEx returns FALSE. The WSAGetLastError function can then
be called to return extended error information. If WSAGetLastError returns
ERROR_10_PENDING, then the operation was successfully initiated and is still in
progress.

Remarks
The AcceptEx function combines several socket functions into a single APllkernel
transition. The AcceptEx function, when successful, performs three tasks:

• A new connection is accepted.

• Both the local and remote addresses for the connection are returned .

• The first block of data sent by the remote is received.

A program can make a connection to a socket more quickly using AcceptEx instead of
the accept function.

A single output buffer receives the data: the local socket address (the server), and the
remote socket address (the client).

Using a single buffer improves performance, but the GetAcceptExSockaddrs function
must be called to parse the buffer into its three distinct parts.

The buffer size for the local and remote address must be 16 bytes more than the size of
the SOCKADDR structure for the transport protocol in use because the addresses are
written in an internal format. For example, the size of a SOCKADDR_IN (the address
structure for TCP/IP) is 16 bytes. Therefore, a buffer size of at least 32 bytes must be
specified for the local and remote addresses.

The AcceptEx function uses overlapped 110, unlike the Windows Sockets 1.1 accept
function. If your application uses AcceptEx, it can service a large number of clients with
a relatively small number of threads. As with all overlapped Win32 functions, either
Win32 events or completion ports can be used as a completion notification mechanism.

138 Volume 1 Winsock and aos

Another key difference between the AcceptEx function and the Windows Sockets 1.1
accept function is that the AcceptEx function requires the caller to already have two
sockets:

• One that specifies the socket on which to listen.

• One that specifies the socket on which to accept the connection.

The sAcceptSocket parameter must be an open socket that is neither bound nor
connected.

The IpNumberOfBytesTransferred parameter of the GetQueuedCompletionStatus
function or the GetOverlappedResult function indicates the number of bytes received in
the request.

When this operation is successfully completed, sAcceptHandle can be passed, but to the
following functions only:

ReadFile
Write File
send
recv
TransmitFile
closesocket

Note If you have called the TransmitFile function with both the TF _DISCONNECT and
TF _REUSE_SOCKET flags, the specified socket has been returned to a state in which it
is neither bound nor connected. You can then pass the handle of the socket to the
AcceptEx function in the sAcceptSocket parameter.

When the AcceptEx function returns, the socket sAcceptSocket is in the default state for
a connected socket. The socket sAcceptSocket does not inherit the properties of the
socket associated with sListenSocket parameter until
SO_UPDATE_ACCEPT _CONTEXT is set on the socket. Use the setsockopt function to
set the SO_UPDATE_ACCEPT _CONTEXT option, specifying sAcceptSocket as the
socket handle and sListenSocket as the option value.

For example:

Use the getsockopt function with the SO_CONNECT _TIME option to check whether a
connection has been accepted. If it has been accepted, you can determine how long the
connection has been established. The return value is the number of seconds that the
socket has been connected. If the socket is not connected, the getsockopt returns

bind

Chapter 8 Winsock 2 Functions 139

OxFFFFFFFF. Checking a connection like this is necessary to see if connections that
have been established for a while, without receiving any data. It is recommended that
you terminate those connections.

For example:

Notes for ATM
There are important issues associated with connection setup when using Asynchronous
Transfer Mode (ATM) with Windows Sockets 2. Please see the Remarks section in the
Windows Sockets 2 accept function documentation for important ATM connection setup
information.

Version: Requires Windows Sockets 1.1 or later. A Microsoft-specific extension.
Header: Declared in Mswsock.h.
Library: Use Mswsock.lib.

The Windows Sockets bind function associates a local address with a socket.

Parameters
s

[in] Descriptor identifying an unbound socket.

name
[in] Address to assign to the socket from the SOCKADDR structure.

name/en
[in] Length of the value in the name parameter.

140 Volume 1 Winsock and QOS

Return Values
If no error occurs, bind returns zero. Otherwise, it returns SOCKET_ERROR, and a
specific error code can be retrieved by calling WSAGetLastError.

Remarks
The bind function is used on an unconnected socket before subsequent calls to the
connect or listen functions. It is used to bind to either connection-oriented (stream) or
connection less (datagram) sockets. When a socket is created with a call to the socket
function, it exists in a name space (address family), but it has no name assigned to it.
Use the bind function to establish the local association of the socket by assigning a local
name to an unnamed socket.

A name consists of three parts when using the Internet address family:

• The address family.

• A host address.

• A port number that identifies the application.

In Windows Sockets 2, the name parameter is not strictly interpreted as a pointer to a
SOCKADDR structure. It is cast this way for Windows Sockets 1.1 compatibility. Service
providers are free to regard it as a pointer to a block of memory of size name/en. The
first 2 bytes in this block (corresponding to the sa_family member of the SOCKADDR
structure) must contain the address family that was used to create the socket.
Otherwise, an error WSAEFAUL T occurs.

If an application does not care what local address is assigned, specify the manifest
constant value ADDR_ANY for the sa_data member of the name parameter. This allows
the underlying service provider to use any appropriate network address, potentially
simplifying application programming in the presence of multi homed hosts (that is, hosts
that have more than one network interface and address).

For TCP/IP, if the port is specified as zero, the service provider assigns a unique port to
the application with a value between 1024 and 5000. The application can use
getsockname after calling bind to learn the address and the port that has been
assigned to it. If the Internet address is equal to INADDR_ANY, getsockname cannot
necessarily supply the address until the socket is connected, since several addresses
can be valid if the host is multihomed. Binding to a specific port number other than port a
is discouraged for client applications, since there is a danger of conflicting with another
socket already using that port number.

Notes for IrDA Sockets
• The AUrda.h header file must be explicitly included.

• Local names are not exposed in IrDA. IrDA client sockets therefore, must never call
the bind function before the connect function. If the IrDA socket was previously
bound to a service name using bind, the connect function will fail with
SOCKET_ERROR.

Chapter 8 Winsock 2 Functions 141

• If the service name is of the form "LSAP-SELxxx", where xxx is a decimal integer in
the range 1-127, the address indicates a specific LSAP-SEL xxx rather than a service
name. Service names such as these allow server applications to accept incoming
connections directed to a specific LSAP-SEL, without first performing an ISA service
name query to get the associated LSAP-SEL. One example of this service name type
is a non-Windows device that does not support lAS.

Error Codes
Error code

WSANOTINITIALISED

WSAENETDOWN

WSAEACCES

WSAEADDRINUSE

WSAEADDRNOTAVAIL

WSAEFAULT

WSAEINPROGRESS

WSAEINVAL

WSAENOBUFS

WSAENOTSOCK

Meaning

A successful WSAStartup call must occur before using this
function.

The network subsystem has failed.

A process on the machine is already bound to the same fully
qualified address and the socket has not been marked to allow
address reuse with SO_REUSEADDR. For example, the IP
address and port are bound in the aUnet case). (See the
SO_REUSEADDR socket option under setsockopt.)

The specified address is not a valid address for this machine.

The name or name/en parameter is not a valid part of the user
address space, the name/en parameter is too small, the name
parameter contains an incorrect address format for the associated
address family, or the first two bytes of the memory block specified
by name does not match the address family associated with the
socket descriptor s.

A blocking Windows Sockets 1.1 call is in progress, or the service
provider is still processing a callback function.

The socket is already bound to an address.

Not enough buffers available, too many connections.

The descriptor is not a socket.

Version: Requires Windows Sockets 1.1 or later.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.lib.

Windows Sockets Programming Considerations Overview, Socket Functions, connect,
getsockname, listen, setsockopt, socket, WSACancelBlockingCall

142 Volume 1 Win sock and QOS

closesocket
The Windows Sockets closesocket function closes an existing socket.

Parameters
s

[in] Descriptor identifying the socket to close.

Return Values
If no error occurs, closesocket returns zero. Otherwise, a value of SOCKET_ERROR is
returned, and a specific error code can be retrieved by calling WSAGetLastError.

Remarks
The closesocket function closes a socket. Use it to release the socket descriptor s so
that further references to s fail with the error WSAENOTSOCK. If this is the last
reference to an underlying socket, the associated naming information and queued data
are discarded. Any pending blocking, asynchronous calls issued by any thread in this
process are canceled without posting any notification messages.

Any pending overlapped send and receive operations
(WSASendIWSASendToIWSARecvIWSARecvFrom with an overlapped socket) issued
by any thread in this process are also canceled. Any event, completion routine, or
completion port action specified for these overlapped operations is performed. The
pending overlapped operations fail with the error status WSA_OPERATION_ABORTED.

An application should always have a matching call to closesocket for each successful
call to socket to return any socket resources to the system.

The semantics of closesocket are affected by the socket options SO_LINGER and
SO_DONTLINGER as follows (SO_DONTLINGER is enabled by default; SO_LINGER is
disabled).

Option

SO_DONTLINGER

SO_LINGER

SO_LINGER

Interval

Do not care

Zero

Nonzero

Type of close

Graceful

Hard

Graceful

Wait for close?

No

No

Yes

If SO_LINGER is set with a zero time-out interval (that is, the LINGER structure
members I_onoff is not zero and Uinger is zero), closesocket is not blocked even if
queued data has not yet been sent or acknowledged. This is called a hard or abortive
close, because the socket's virtual circuit is reset immediately, and any unsent data is
lost. Any recv call on the remote side of the circuit will fail with WSAECONNRESET.

Chapter 8 Winsock 2 Functions 143

If SO_LINGER is set with a nonzero time-out interval on a blocking socket, the
closesocket call blocks on a blocking socket until the remaining data has been sent or
until the time-out expires. This is called a graceful disconnect. If the time-out expires
before all data has been sent, the Windows Sockets implementation terminates the
connection before closesocket returns.

Enabling SO_LINGER with a nonzero time-out interval on a nonblocking socket is not
recommended. In this case, the call to closesocket will fail with an error of
WSAEWOULDBLOCK if the close operation cannot be completed immediately. If
closesocket fails with WSAEWOULDBLOCK the socket handle is still valid, and a
disconnect is not initiated. The application must call closesocket again to close the
socket. If SO_DONTLINGER is set on a stream socket by setting the Lonoff member of
the LINGER structure to zero, the closesocket call will return immediately and does not
receive WSAWOULDBLOCK whether the socket is blocking or nonblocking. However,
any data queued for transmission will be sent, if possible, before the underlying socket is
closed. This is also called a graceful disconnect. In this case, the Windows Sockets
provider cannot release the socket and other resources for an arbitrary period, thus
affecting applications that expect to use all available sockets. This is the default behavior
(SO_DONTLINGER is set by default).

Note To ensure that all data is sent and received on a connection, an application
should call shutdown before calling closesocket (see Graceful shutdown, linger
options, and socket closure for more information). Also note, an FD_CLOSE network
event is not posted after closesocket is called.

Here is a summary of closesocket behavior:

• If SO_DONTLINGER is enabled (the default setting) it always returns immediately
connection is gracefully closed in the background.

• If SO_LINGER is enabled with a zero time-out: it always returns immediately
connection is reset/terminated.

• If SO_LINGER is enabled with a nonzero time-out:

• with a blocking socket, it blocks until all data sent or time-out expires.

• with a nonblocking socket, it returns immediately indicating failure.

For additional information please see Graceful shutdown, linger options, and socket
closure for more information.

Notes for IrDA Sockets
• The AUrda.h header file must be explicitly included.

• For Windows CE, WSAEINTR is not supported.

• The standard linger options are supported.

144 Volume 1 Winsock and QOS

• Although IrDA does not provide a graceful close, IrDA will defer closing until receive
queues are purged. Thus, an application can send data and immediately call the
socket function, and be confident that the receiver will copy the data before receiving
an FD_CLOSE message.

Notes for ATM
The following are important issues associated with connection teardown when using
Asynchronous Transfer Mode (ATM) and Windows Sockets 2:

• Using the closesocket or shutdown functions with SD_SEND or SD_BOTH results
in a RELEASE signal being sent out on the control channel. Due to ATM's use of
separate signal and data channels, it is possible that a RELEASE signal could reach
the remote end before the last of the data reaches its destination, resulting in a loss of
that data. One possible solutions is programming a sufficient delay between the last
data sent and the closesocket or shutdown function calls for an ATM socket.

• Half Close is not supported by ATM.

• Both abortive and graceful disconnects result in a RELEASE signal being sent out
with the same cause field. In either case, received data at the remote end of the
socket is still delivered to the application. See Graceful Shutdown, Linger Options,
and Socket Closure for more information.

Error Codes
Error code

WSANOTINITIALISED

WSAENETDOWN

WSAENOTSOCK

WSAEINPROGRESS

WSAEINTR

WSAEWOULDBLOCK

Meaning

A successful WSAStartup call must occur before using
this function.

The network subsystem has failed.

The descriptor is not a socket.

A blocking Windows Sockets 1.1 call is in progress, or
the service provider is still processing a callback function.

The (blocking) Windows Socket 1.1 call was canceled
through WSACancelBlockingCal1.

The socket is marked as nonblocking and SO_LINGER is
set to a nonzero time-out value.

Version: Requires Windows Sockets 1.1 or later.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.lib.

Chapter 8 Winsock 2 Functions 145

Windows Sockets Programming Considerations Overview, Socket Functions, accept,
ioctlsocket, setsockopt, socket, WSAAsyncSelect, WSADuplicateSocket

connect
The Windows Sockets connect function establishes a connection to a specified socket.

Parameters
s

[in] Descriptor identifying an unconnected socket.

name
[in] Name of the socket to which the connection should be established.

name/en
[in] Length of name.

Return Values
If no error occurs, connect returns zerO. Otherwise, it returns SOCKET_ERROR, and a
specific error code can be retrieved by calling WSAGetLastError.

On a blocking socket, the return value indicates success or failure of the connection
attempt.

With a nonblocking socket, the connection attempt cannot be completed immediately. In
this case, connect will return SOCKET_ERROR, and WSAGetLastError will return
WSAEWOULDBLOCK. Inthis case, there are three possible scenarios:

• Use the select function to determine the completion of the connection request by
checking to see if the socket is writeable.

• If the application is using WSAAsyncSelect to indicate interest in connection events,
then the application will receive an FD_CONNECT notification indicating that the
connect operation is complete (successfully or not).

• If the application is using WSAEventSelect to indicate interest in connection events,
then the associated event object will be signaled indicating that the connect operation
is complete (successfully or not).

146 Volume 1 Winsock and QOS

Until the connection attempt completes on a non blocking socket, all subsequent calls to
connect on the same socket will fail with the error code WSAEALREADY, and
WSAEISCONN when the connection completes successfully. Due to ambiguities in
version 1.1 of the Windows Sockets specification, error codes returned from connect
while a connection is already pending may vary among implementations. As a result, it is
not recommended that applications use multiple calls to connect to detect connection
completion. If they do, they must be prepared to handle WSAEINVAL and
WSAEWOULDBLOCK error values the same way that they handle WSAEALREADY, to
assure robust execution.

If the error code returned indicates the connection attempt failed (that is,
WSAECONNREFUSED, WSAENETUNREACH, WSAETIMEDOUT) the application can
call connect again for the same socket.

Remarks
The connect function is used to create a connection to the specified destination. If
socket 5, is unbound, unique values are assigned to the local association by the system,
and the socket is marked as bound.

For connection-oriented sockets (for example, type SOCK_STREAM), an active
connection is initiated to the foreign host using name (an address in the name space of
the socket; for a detailed description, see bind and SOCKADDR).

When the socket call completes successfully, the socket is ready to send and receive
data. If the address member of the structure specified by the name parameter is all
zeroes, connect will return the error WSAEADDRNOTAVAIL. Any attempt to reconnect
an active connection will fail with the error code WSAEISCONN.

For connection-oriented, non blocking sockets, it is often not possible to complete the
connection immediately. In such a case, this function returns the error
WSAEWOULDBLOCK. However, the operation proceeds.

When the success or failure outcome becomes known, it may be reported in one of two
ways, depending on how the client registers for notification.

• If the client uses the select function, success is reported in the writefds set and failure
is reported in the exceptfds set.

• If the client uses the functions WSAAsyncSelect or WSAEventSelect, the
notification is announced with FD_CONNECT and the error code associated with the
FD_CONNECT indicates either success or a specific reason for failure.

Chapter 8 Winsock 2 Functions 147

For a connection less socket (for example, type SOCK_DGRAM), the operation
performed by connect is merely to establish a default destination address that can be
used on subsequent sendlWSASend and recvlWSARecv calls. Any datagrams
received from an address other than the destination address specified will be discarded.
If the address member of the structure specified by name is all zeroes, the socket will be
disconnected. Then, the default remote address will be indeterminate, so
sendIWSASend and recv/wSARecv calls will return the error code WSAENOTCONN.
However, sendto/WSASendTo and recvfrorn/WSARecvFrom can still be used. The
default destination can be changed by Simply calling connect again, even if the socket is
already connected. Any datagrams queued for receipt are discarded if name is different
from the previous connect.

For connectionless sockets, name can indicate any valid address, including a broadcast
address. However, to connect to a broadcast address,. a socket must use setsockopt to
enable the SO_BROADCAST option. Otherwise, connect will fail with the error code
WSAEACCES.

When a connection between sockets is broken, the sockets should be discarded and
recreated. When a problem develops on a connected socket, the application must
discard and recreate the needed sockets in order to return to a stable point.

Notes for IrDA Sockets
• The AUrda.h header file must be explicitly included.

• If an existing IrDA connection .is detected at the media-access level,
WSAENETDOWN is returned.

• If active connections to a device with a different address exist, WSAEADDRINUSE is
returned.

• For Windows CE only: If lAS name resolution fails because another lAS query is in
progress, WSAEINPROGRESS is returned. In this situation, retrying the operation at
one-second intervals is recommended.

• If the socket is already connected or an exclusive/rnultiplexed mode change failed,
WSAEISCONN is returned.

• If the socket was previously bound to a local service name to accept incoming
connections using bind, WSAEINVAL is returned. Note that once a socket is bound, it
cannot be used for establishing an outbound connection.

IrDA implements the connect function with addresses of the form sockaddcirda ..
Typically, a client application will create a socket with the socket function, scan the
immediate vicinity for IrDA devices with the IRLMP _ENUMDEVICES socket option,
choose a device from the returned list, form an address, and call connect. There is no
difference between blocking and non blocking semantics.

148 Volume 1 Winsock and QOS

Error Codes
Error code

WSANOTINITIALISED

WSAENETDOWN

WSAEADDRINUSE

WSAEINTR

WSAEINPROGRESS

WSAEALREADY

WSAEADDRNOTAVAIL

WSAEAFNOSUPPORT

WSAECONNREFUSED

WSAEFAULT

WSAEINVAL

WSAEISCONN

WSAENETUNREACH

WSAENOBUFS

WSAENOTSOCK

WSAETIMEDOUT

WSAEWOULDBLOCK

WSAEACCES

Meaning

A successful WSAStartup call must occur before using this
function.

The network subsystem has failed.

The socket's local address is already in use and the socket was not
marked to allow address reuse with SO_REUSEADDR. This error
usually occurs when executing bind, but could be delayed until this
function if the bind was to a partially wildcard address (involving
ADDR_ANY) and if a specific address needs to be committed at the
time of this function.

The blocking Windows Socket 1.1 call was canceled through
WSACancelBlockingCall.

A blocking Windows Sockets 1.1 call is in progress, or the service
provider is still processing a callback function.

A nonblocking connect call is in progress on the specified socket.

Note In order to preserve backward compatibility, this error is
reported as WSAEINVAL to Windows Sockets 1.1 applications that
link to either Winsock.dll or Wsock32.dll.

The remote address is not a valid address (such as ADDR_ANY).

Addresses in the specified family cannot be used with this socket.

The attempt to connect was forcefully rejected.

The name or the name/en parameter is not a valid part of the user
address space, the name/en parameter is too small, or the name
parameter contains incorrect address format for the associated
address family.

The parameter s is a listening socket.

The socket is already connected (connection-oriented sockets
only).

The network cannot be reached from this host at this time.

No buffer space is available. The socket cannot be connected.

The descriptor is not a socket.

Attempt to connect timed out without establishing a connection.

The socket is marked as nonblocking and the connection cannot be
completed immediately.

Attempt to connect datagram socket to broadcast address failed
because setsockopt option SO_BROADCAST is not enabled.

Chapter 8 Winsock 2 Functions 149

Version: Requires Windows Sockets 1.1 or later.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.lib.

Windows Sockets Programming Considerations Overview, Socket Functions, accept,
bind, getsockname, select, socket, WSAAsyncSelect, WSAConnect

EnumProtocols

Important The EnumProtocols function is a Microsoft-specific extension to the
Windows Sockets 1.1 specification. This function is obsolete. For the convenience of
Windows Sockets 1.1 developers, the reference material is included.

The WSAEnumProtocols function provides equivalent functionality in Windows
Sockets 2.

The EnumProtocols function obtains information about a specified set of network
protocols that are active on a local host.

Parameters
IpiProtocols

Pointer to a null-terminated array of protocol identifiers. The EnumProtocols function
obtains information about the protocols specified by this array.

If IpiProtocols is NULL, the function obtains information about all available protocols.

The following protocol identifier values are defined.

Value Protocol

IPPROTO_ TCP

IPPROTO_UDP

TCP/IP, a connection/stream-oriented protocol.

User Datagram Protocol (UDP/IP),a connection less
datagram protocol.

150 Volume 1 Winsock and QOS

Value

ISOPROTO_ TP4

NSPROTO_IPX

NSPROTO_SPX

NSPROTO_SPXII

IpProtocolBuffer

Protocol

ISO connection-oriented transport protocol.

IPX.

SPX.

SPX II.

Pointer to a buffer that the function fills with an array of PROTOCOL_INFO data
structures.

IpdwBufferLength
Pointer to a variable that, on input, specifies the size, in bytes, of the buffer pointed to
by IpProtocolBuffer.

On output, the function sets this variable to the minimum buffer size needed to
retrieve all of the requested information. For the function to succeed, the buffer must
be at least this size.

Return Values
If the function succeeds, the return value is the number of PROTOCOL_INFO data
structures written to the buffer pointed to by IpProtocolBuffer.

If the function fails, the return value is SOCKET_ERROR (-1). To get extended error
information, call GetLastError. GetLastError can return the following extended error
code.

Error code

ERROR_INSUFFICIENT _
BUFFER

Remarks

Meaning

The buffer pOinted to by IpProtocolBuffer was too small to
receive all of the relevant PROTOCOL_INFO structures.
Call the function with a buffer at least as large as the value
returned in * IpdwBufferLength.

In the following sample code, the EnumProtocols function obtains information about all
protocols that are available on a system. The code then examines each of the protocols
in greater detail.

Chapter 8 Winsock 2 Functions 151

152 Volume 1 Winsock and aos

(continued)

Version: Requires Windows Sockets 1.1. A Microsoft-specific extension. Obsolete for
Windows Sockets 2.0.
Header: Declared in Nspapi.h.
Library: Use Wsock32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Chapter 8 Winsock 2 Functions 153

GetAddressByName, PROTOCOL ... JNFO

GetAcceptExSockaddrs
The Windows Sockets GetAcceptExSockaddrs function parses the data obtained from
a call to the AcceptEx function and passes the local and remote addresses to a
SOCKADDR structure.

Note This function is a Microsoft-specific extension to the Windows Sockets
specification. For more information, see Microsoft Extensions and Windows Sockets 2.

Parameters
IpOutputBuffer

[in] Pointer to a buffer that receives the first block of data sent on a connection
resulting from an AcceptEx call. Must be the same IpOutputBuffer parameter that
was passed to the AcceptEx function.

dwReceiveDataLength
[in] Number of bytes in the buffer used for receiving the first data. This value must be
equal to the dwReceiveDataLength parameter that was passed to the AcceptEx
function.

dwLocalAddressLength
[in] Number of bytes reserved for the local address information. Must be equal to the
dwLocalAddressLength parameter that was passed to the AcceptEx function.

dwRemoteAddressLength
[in] Number of bytes reserved for the remote address information. This value must be
equal to the dwRemoteAddressLength parameter that was passed to the AcceptEx
function.

154 Volume 1 Winsock and QOS

LocalSockaddr
[out] Pointer to the SOCKADDR structure that receives the local address of the
connection (the same information that would be returned by the Windows Sockets
getsockname function). This parameter must be specified.

LocalSockaddrLength
[out] Size of the local address. This parameter must be specified.

RemoteSockaddr
[out] Pointer to the SOCKADDR structure that receives the remote address of the
connection (the same information that would be returned by the Windows Sockets
getpeername function). This parameter must be specified.

RemoteSockaddrLength
[out] Size of the local address. This parameter must be specified.

Return Values
This function does not return a value.

Remarks
The GetAcceptExSockaddrs function is used exclusively with the AcceptEx function to
parse the first data that the socket receives into local and remote addresses. You are
required to use this function because the AcceptEx function writes address information
in an internal (TDI) format. The GetAcceptExSockaddrs routine is required to locate the
SOCKADDR structures in the buffer.

Version: Requires Windows Sockets 1.1 or later. A Microsoft-specific extension.
Header: Declared in Mswsock.h.
Library: Use Mswsock.lib.

GetAddressByName
The GetAddressByName function queries a name space, or a set of default name
spaces, in order to obtain network address information for a specified network service.
This process is known as service name resolution. A network service can also use the
function to obtain local address information that it can use with the bind function.

Important The GetAddressByName function is a Microsoft-specific extension to the
Windows Sockets 1.1 specification. This function is obsolete. For the convenience of
Windows Sockets 1.1 developers, the reference material is as follows.

The functions detailed in Protocol-Independent Name Resolution provide equivalent
functionality in Windows Sockets 2.

Value

Parameters
dwNameSpace

Chapter 8 Winsock 2 Functions 155

Specifies the name space, or a set of default name spaces, that the operating system
will query for network address information.

Use one of the following constants to specify a name space.

Name space

A set of default name spaces. The function queries each name space
within this set. The set of default name spaces typically includes all the
name spaces installed on the system. System administrators, however,
can exclude particular name spaces from the set. This is the value that
most applications should use for dwNameSpace.

The Domain Name System used in the Internet for host name resolution.

The NetBlOS over TCP/IP layer. All Windows NT/Windows 2000 systems
register their computer names with NetBIOS. This name space is used to
convert a computer name to an IP address that uses this registration.
Note that NS_NETBT can access a WINS server to perform the
resolution.

(continued)

156 Volume 1 Winsock and QOS

Value

(continued)

Name space

The Netware Service Advertising Protocol. This can access the Netware
bindery if appropriate. NS_SAP is a dynamic name space that allows
registration of services.

Lookup value in the <systemroot>\system32\drivers\etc\hosts file.

Local TCP/IP name resolution mechanisms, including comparisons
against the local host name and looks up host names and IP addresses in
cache of host to IP address mappings.

Most calls to GetAddressByName should use the special value NS_DEFAUL T. This
lets a client get by with no knowledge of which name spaces are available on an
internetwork. The system administrator determines name space access. Name
spaces can come and go without the client having to be aware of the changes.

IpServiceType
Pointer to a globally unique identifier (GUID) that specifies the type of the network
service. The header file Svcguid.h includes definitions of several GUID service types,
and macros for working with them.

IpServiceName
Pointer to a zero-terminated string that uniquely represents the service name. For
example, "MY SNA SERVER".

Setting IpServiceName to NULL is the equivalent of setting dwResolution to
RES_SERVICE. The function operates in its second mode, obtaining the local
address to which a service of the specified type should bind. The function stores the
local address within the LocalAddr member of the CSADDR_INFO structures stored
into * IpCsaddrBuffer.

If dwResolution is set to RES_SERVICE, the function ignores the IpServiceName
parameter.

If dwNameSpace is set to NS_DNS, * IpServiceName is the name of the host.

IpiProtocols
Pointer to a zero-terminated array of protocol identifiers. The function restricts a name
resolution attempt to name space providers that offer these protocols. This lets the
caller limit the scope of the search.

If IpiProtocols is NULL, the function obtains information on all available protocols.

dwResolution
Set of bit flags that specify aspects of the service name resolution process. The
following bit flags are defined:

Value

Chapter 8 Winsock 2 Functions 157

Meaning

If set, the function obtains the address to which a service of the
specified type should bind. This is the equivalent of setting
IpServiceName to NULL.

If this flag is clear, normal name resolution occurs.

If this flag is set, the operating system performs an extensive search
of all name spaces for the service. It asks every appropriate name
space to resolve the service name. If this flag is clear, the operating
system stops looking for service addresses as soon as one is found.

This flag is valid if the name space supports multiple levels of
searching.

If this flag is valid and set, the operating system performs a simple
and quick search of the name space. This is useful if an application
only needs to obtain easy-to-find addresses for the service.

If this flag is valid and clear, the operating system performs a more
extensive search of the name space.

IpServiceAsynclnfo
Reserved for future use; must be set to NULL.

IpCsaddrBuffer
Pointer to a buffer to receive one or more CSADDR_INFO data structures. The
number of structures written to the buffer depends on the amount of information found
in the resolution attempt. You should assume that multiple structures will be written,
although in many cases there will only be one.

IpdwBufferLength
Pointer to a variable that, upon input, specifies the size, in bytes, of the buffer pOinted
to by IpCsaddrBuffer.

Upon output, this variable contains the total number of bytes required to store the
array of CSADDR_INFO structures. If this value is less than or equal to the input
value of *lpdwBufferLength, and the function is successful, this is the number of bytes
actually stored in the buffer. If this value is greater than the input value of
* IpdwBufferLength, the buffer was too small, and the output value of
*lpdwBufferLength is the minimal required buffer size.

IpAliasBuffer
Pointer to a buffer to receive alias information for the network service.

If a name space supports aliases, the function stores an array of zero-terminated
name strings into the buffer pOinted to by IpAliasBuffer. There is a double zero
terminator at the end of the list. The first name in the array is the service's primary
name. Names that follow are aliases. An example of a name space that supports
aliases is DNS.

If a name space does not support aliases, it stores a double zero-terminator into the
buffer.

158 Volume 1 Winsock and QOS

This parameter is optional, and can be set to NULL.

IpdwAliasBufferLength
Pointer to a variable that, upon input, specifies the size, in bytes, of the buffer pOinted
to by IpAliasBuffer.

Upon output, this variable contains the total number of bytes required to store the
array of name strings. If this value is less than or equal to the input value of
*lpdwAliasBufferLength, and the function is successful, this is the number of bytes
actually stored in the buffer. If this value is greater than the input value of
*lpdwAliasBufferLength, the buffer was too small, and the output value of
*lpdwAliasBufferLength is the minimal required buffer size.

If IpAliasBuffer is NULL, IpdwAliasBufferLength is meaningless and can also be
NULL.

Return Values
If the function succeeds, the return value is the number of CSADDR_INFO data
structures written to the buffer pointed to by IpCsaddrBuffer.

If the function fails, the return value is SOCKET_ERROR(-l). To get extended error
information, call GetLastError. GetLastError can return the following extended error
value.

Error code

ERROR_INSUFFICIENT _
BUFFER

Remarks

Meaning

The buffer pointed to by IpCsaddrBufferwas too small to
receive all of the relevant CSADDR_INFO structures. Call
the function with a buffer at least as large as the value
returned in * IpdwBufferLength.

This function is a more powerful version of the Windows Sockets function
gethostbyname The GetAddressByName function works with multiple name services.

The GetAddressByName function lets a client obtain a Windows Sockets address for a
network service. The client specifies the service of interest by its service type and
service name.

Many name services support a default prefix or suffix that the name service provider
considers when resolving service names. For example, in the DNS name space, if a
domain is named "nt.microsoft.com", and "ftp millikan" is provided as input, the DNS
software fails to resolve "millikan", but successfully resolves "millikan.nt.microsoft.com".

Note that the GetAddressByName function can search for a service address in two
ways: within a particular name space, or within a set of default name spaces. USing a
default name space, an administrator can specify that certain name spaces will be
searched for service addresses only if specified by name. An administrator or name
space setup program can also control the ordering of name space searches.

Chapter 8 Winsock 2 Functions 159

Version: Requires Windows Sockets 1.1. A Microsoft-specific extension. Obsolete for
Windows Sockets 2.0.
Header: Declared in Nspapi.h.
Library: Use Wsock32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

gethostbyname, CSADDR_INFO

gethostbyaddr
The Windows Sockets gethostbyaddr function retrieves the host information
corresponding to a network address.

Parameters
addr

[in] Pointer to an address in network byte order.

len
[in] Length of the address.

type
[in] Type of the address, such as the AF _INET address family type (defined as TCP,
UDP, and other associated Internet protocols). Address family types and their
corresponding values are defined in the winsock2.h header file.

Return Values
If no error occurs, gethostbyaddr returns a pointer to the HOSTENT structure.
Otherwise, it returns a NULL pointer, and a specific error code can be retrieved by
calling WSAGetLastError.

Error code

WSANOTINITIAUSED

WSAENETDOWN

Meaning

A successful WSAStartup call must occur before using
this function.

The network subsystem has failed.

(continued)

160 Volume 1 Winsock and QOS

(continued)

Error code

WSAHOST _NOT_FOUND

WSATRY _AGAIN

WSANO_RECOVERY

WSANO_DATA

WSAEINPROGRESS

WSAEAFNOSU PPORT

WSAEFAULT

WSAEINTR

Remarks

Meaning

Authoritative answer host not found.

Nonauthoritative host not found, or server failed.

A nonrecoverable error occurred.

Valid name, no data record of requested type.

A blocking Windows Sockets 1.1 call is in progress, or
the service provider is still processing a callback function.

The type specified is not supported by the Windows
Sockets implementation.

The addr parameter is not a valid part of the user
address space, or the len parameter is too small.

A blocking Windows Socket 1.1 call was canceled
through WSACancelBlockingCal1.

The gethostbyaddr function returns a pointer to the HOSTENT structure that contains
the name and address corresponding to the given network address.

Version: Requires Windows Sockets 1.1 or later.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.lib.

gethostbyname, HOSTENT, WSAAsyncGetHostByAddr

gethostbyname
The Windows Sockets gethostbyname function retrieves host information
corresponding to a host name from a host database.

Parameters
name

[out] Pointer to the nUll-terminated name of the host to resolve.

Chapter 8 Winsock 2 Functions 161

Return Values
If no error occurs, gethostbyname returns a pOinter to the HOSTENT structure
described above. Otherwise, it returns a NULL pointer and a specific error number can
be retrieved by calling WSAGetLastError.

Error code

WSANOTINITIALISED

WSAENETDOWN

WSAHOST _NOT_FOUND

WSATRY _AGAIN

WSANO_RECOVERY

WSANO_DATA

WSAEINPROGRESS

WSAEFAULT

WSAEINTR

Remarks

Meaning

A successful WSAStartup call must occur before
using this function.

The network subsystem has failed.

Authoritative answer host not found.

Nonauthoritative host not found, or server failure.

A nonrecoverable error occurred ..

Valid name, no data record of requested type.

A blocking Windows Sockets 1.1 call is in progress,
or the service provider is still processing a callback
function.

The name parameter is not a valid part of the user
address space.

A blocking Windows Socket 1.1 call was canceled
through WSACancelBlockingCal1.

The gethostbyname function returns a pointer to a HOSTENT structure-a structure
allocated by Windows Sockets. The HOSTENT structure contains the results of a
successful search for the host specified in the name parameter.

The application must never attempt to modify this structure or to free any of its
components. Furthermore, only one copy of this structure is allocated per thread, so the
application should copy any information it needs before issuing any other Windows
Sockets function calls.

The gethostbyname function cannot resolve IP address strings passed to it. Such a
request is treated exactly as if an unknown host name were passed. Use ineCaddr to
convert an IP address string the string to an actuallP address, then use another
function, gethostbyaddr, to obtain the contents of the HOSTENT structure.

The gethostbyname function resolves the string returned by a successful call to
gethostname.

Version: Requires Windows Sockets 1.1 or later.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.lib.

162 Volume 1 Winsock and QOS

gethostbyaddr, WSAAsyncGetHostByName

gethostname
The Windows Sockets gethostname function returns the standard host name for the
local machine.

Parameters
name

[out] Pointer to a buffer that receives the local host name.

name/en
[in] Length of the buffer.

Return Values
If no error occurs, gethostname returns zero. Otherwise, it returns SOCKET_ERROR
and a specific error code can be retrieved by calling WSAGetLastError.

Error code

WSAEFAULT

WSANOTINITIALISED

WSAENETDOWN

WSAEINPROGRESS

Remarks

Meaning

The name parameter is not a valid part of the user address
space, or the buffer size specified by name/en parameter
is too small to hold the complete host name.

A successful WSAStartup call must occur before using
this function.

The network subsystem has failed.

A blocking Windows Sockets 1.1 call is in progress, or the
service provider is still processing a callback function.

The gethostname function returns the name of the local host into the buffer specified by
the name parameter. The host name is returned as a null-terminated string. The form of
the host name is dependent on the Windows Sockets provider-it can be a simple host
name, or it can be a fully qualified domain name. However, it is guaranteed that the
name returned will be successfully parsed by gethostbyname and
WSAAsyncGetHostByName.

Chapter 8 Winsock 2 Functions 163

Note If no local host name has been configured, gethostname must succeed and
return a token host name that gethostbyname or WSAAsyncGetHostByName can
resolve.

Version: Requires Windows Sockets 1.1 or later.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.lib.

gethostbyname, WSAAsyncGetHostByName

GetNameByType
The GetNameByType function obtains the name of a network service. The network
service is specified by its service type.

Important The GetNameByType function is a Microsoft-specific extension to the
Windows Sockets 1.1 specification. This function is obsolete. For the convenience of
Windows Sockets 1.1 developers, the reference material is as follows.

The functions detailed in Protocol-Independent Name Resolution provide equivalent
functionality in Windows Sockets 2.

Parameters
IpServiceType

Pointer to a globally unique identifier (GUID) that specifies the type of the network
service. The header file Svcguid.h includes definitions of several GUID service types,
and macros for working with them.

IpServiceName
Pointer to a buffer to receive a zero-terminated string that uniquely represents the
name of the network service.

164 Volume 1 Winsock and QOS

dwNameLength
Pointer to a variable that, on input, specifies the size of the buffer pointed to by
/pServiceName. On output, the variable contains the actual size of the service name
string.

Return Values
If the function succeeds, the return value is not SOCKET_ERROR (-1).

If the function fails, the return value is SOCKET_ERROR (-1). To get extended error
information, call GetLastError.

Version: Requires Windows Sockets 1.1. A Microsoft-specific extension. Obsolete for
Windows Sockets 2.0.
Header: Declared in NspapLh.
Library: Use Wsock32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

GetTypeByName

getpeername
The Windows Sockets getpeername function retrieves the name of the peer to which a
socket is connected.

Parameters
s

[in] Descriptor identifying a connected socket.

name
[out] The structure that receives the name of the peer.

name/en
[in/out] Pointer to the size of the name structure.

Chapter 8 Winsock 2 Functions 165

Return Values
If no error occurs, getpeername returns zero. Otherwise, a value of SOCKET_ERROR
is returned, and a specific error code can be retrieved by calling WSAGetLastError.

Error code

WSANOTINITIALISED

WSAENETDOWN

WSAEFAULT

WSAEINPROGRESS

WSAENOTCONN

WSAENOTSOCK

Remarks

Meaning

A successful WSAStartup call must occur before
using this function.

The network subsystem has failed.

The name or the name/en parameter is not a valid
part of the user address space, or the name/en
parameter is too small.

A blocking Windows Sockets 1.1 call is in progress,
or the service provider is still processing a callback
function.

The socket is not connected.

The descriptor is not a socket.

The getpeername function retrieves the name of the peer connected to the socket sand
stores it in the aSOCKADDR structure identified by name. The getpeername function
can be used only on a connected socket. For datagram sockets, only the name of a peer
specified in a previous connect call will be returned-any name specified by a previous
sendto call will not be returned by getpeername.

On call, the name/en argument contains the size of the name buffer, in bytes. On return,
the name/en parameter contains the actual size in bytes of the name returned.

Version: Requires Windows Sockets 1.1 or later.
Header: Declared in Winsock2.h.
Library: Use Wsock32.lib.

Windows Sockets Programming Considerations Overview, Socket Functions, bind,
getsockname, socket

getprotobyname
The Windows Sockets getprotobyname function retrieves the protocol information
corresponding to a protocol name.

166 Volume 1 Winsock and QOS

Parameters
name

[in] Pointer to a nUll-terminated protocol name.

Return Values
If no error occurs, getprotobyname returns a pOinter to the PROTOENT. Otherwise, it
returns a NULL pOinter and a specific error number can be retrieved by calling
WSAGetLastError.

Error code

WSANOTINITIALISED

WSAENETDOWN

WSAHOST _NOT_FOUND

WSATRY _AGAIN

WSANO_RECOVERY

WSANO_DATA

WSAEINPROGRESS

WSAEFAULT

WSAEINTR

Remarks

Meaning

A successful WSAStartup call must occur before
using this function.

The network subsystem has failed.

Authoritative answer protocol not found.

A nonauthoritative Protocol not found, or server
failure.

Nonrecoverable errors, the protocols database is not
accessible.

Valid name, no data record of requested type.

A blocking Windows Sockets 1.1 call is in progress,
or the service provider is still processing a callback
function.

The name parameter is not a valid part of the user
address space.

A blocking Windows Socket 1.1 call was canceled
through WSACancelBlockingCall.

The getprotobyname function returns a pOinter to the PROTOENT structure containing
the name(s) and protocol number that correspond to the protocol specified in the name
parameter. All strings are nUll-terminated. The PROTOENT structure is allocated by the
Windows Sockets library. An application must never attempt to modify this structure or to
free any of its components. Furthermore, like HOSTENT, only one copy of this structure
is allocated per thread, so the application should copy a.ny information that it needs
before issuing any other Windows Sockets function calls.

Chapter 8 Winsock 2 Functions 167

Version: Requires Windows Sockets 1.1 or later.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.1ib.

getprotobynumber, WSAAsyncGetProtoByName

getprotobynumber
The Windows Sockets getprotobynumber function retrieves protocol information
corresponding, to a protocol number.

Parameters
number

[in] Protocol number, in host byte order.

Return Values
If no error occurs, getprotobynumber returns a pOinter to the PROTOENTstructure.
Otherwise,it returns'a NULL pointer and a specific error number can be retrieved by
calling WSAGetLastError.

Error code

WSANOTINITIALISED

WSAENETDOWN

WSAHOST_NOT_FOUND

WSATRY _AGAIN

WSANO_RECOVERY

WSANO_DATA

WSAEINPROGRESS

WSAEINTR

Meaning

A successful WSAStartup call must occur before
using this function.

The network subsystem has failed.

Authoritative answer protocol not found.

A nonauthoritative Protocol not found, or server
failure.

Nonrecoverable errors, the protocols database is not
accessible.

Valid name, no data record of requested type.

A blocking Windows Sockets 1.1 call is in progress,
; or the service provider is still processing a callback

function. .

A blocking Windows$ocket 1 .,1 call was canceled
through WSACancelBlockingCall.

168 Volume 1 Winsock and QOS

Remarks
This getprotobynumber function returns a pointer to the PROTOENT structure as
previously described in getprotobyname. The contents of the structure correspond to
the given protocol number.

The pointer that is returned points to the structure allocated by Windows Sockets. The
application must never attempt to modify this structure or to free any of its components.
Furthermore, only one copy of this structure is allocated per thread, so the application
should copy any information that it needs before issuing any other Windows Sockets
function calls.

Version: Requires Windows Sockets 1.1 or later.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.lib.

getprotobyname, WSAAsyncGetProtoByNumber

getservbyname
The Windows Sockets getservbyname function retrieves service information
corresponding to a service name and protocol.

Parameters
name

[in] Pointer to a null-terminated service name.

proto
[in] Optional pOinter to a null-terminated protocol name. If this pOinter is NULL,
getservbyname returns the first service entry where name matches the s_name
member of the SERVENT structure or the s_aliases member of the SERVENT
structure. Otherwise, getservbyname matches both the name and the proto.

Return Values
If no error occurs, getservbyname returns a pointer to the SERVENT structure.
Otherwise, it returns a NULL pointer and a specific error number can be retrieved by
calling WSAGetLastError.

Error code

WSANOTINITIALISED

WSAENETDOWN

WSAHOST_NOT_FOUND

WSATRY _AGAIN

WSANO_RECOVERY

WSANO_DATA

WSAEINPROGRESS

WSAEINTR

Remarks

Chapter 8 Winsock 2 Functions 169

Meaning

A successful WSAStartup call must occur before
using this function.

The network subsystem has failed.

Authoritative Answer Service not found.

A nonauthoritative Service not found, or server
failure.

Nonrecoverable errors, the services database is not
accessible.

Valid name, no data record of requested type.

A blocking Windows Sockets 1.1 call is in progress,
or the service provider is still processing a callback
function.

A blocking Windows Socket 1.1 call was canceled
through WSACancelBlockingCal1.

The getservbyname function returns a pointer to the SERVENT structure containing the
name(s) and service number that match the string in the name parameter. All strings are
null-terminated.

The pOinter that is returned pOints to the SERVENT structure allocated by the Windows
Sockets library. The application must never attempt to modify this structure or to free any
of its components. Furthermore, only one copy of this structure is allocated per thread,
so the application should copy any information it needs before issuing any other
Windows Sockets function calls.

Version: Requires Windows Sockets 1.1 or later.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.lib.

getservbyport, WSAAsyncGetServByName

getservbyport
The Windows Sockets getservbyport function retrieves service information
corresponding to a port and protocol.

170 Volume 1 Winsock and QOS

Parameters
port

[in] Port for a service, in network byte order.

proto
[in] Optional pointer to a protocol name. If this is NULL, getservbyport returns the
first service entry for which the port matches the s_port of the SERVENT structure.
Otherwise, getservbyport matches both the port and the proto parameters.

Return Values
If no error occurs, getservbyport returns a pOinter to the SERVENT structure.
Otherwise, it returns a NULL pOinter and a specific error number can be retrieved by
calling WSAGetLastError. .

Error code

WSANOTINITIALISED

WSAENETDOWN

WSAHOST_NOT_FOUND

WSATRY _AGAIN

WSANO_RECOVERY

WSANO_DATA

WSAEINPROGRESS

WSAEFAULT

WSAEINTR

Remarks

Meaning

A successful WSAStartup call must occur before
using this function.

The network subsystem has failed.

Authoritative Answer Service not found.

A nonauthoritative Service not found, or server
failure.

Nonrecoverable errors, the services database is not
accessible.

Valid name, no data record of requested type.

A blocking Windows Sockets 1.1 call is in progress,
or the service provider is still processing a callback
function.

The proto parameter is not a valid part of the user
address space.

A blocking Windows Socket 1.1 call was canceled
through WSACancelBlockingCal1.

The getservbyport function returns a pOinter to a SERVENT structure as it does in the
getservbyname function.

Chapter 8 Winsock 2 Functions 171

The SERVENT structure is allocated by Windows Sockets. The application must never
attempt to modify this structure or to free any of its components. Furthermore, only one
copy of this structure is allocated per thread, so the application should copy any
information it needs before issuing any other Windows Sockets function calls.

Version: Requires Windows Sockets 1.1 or later.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.lib.

getservbyname, WSAAsyncGetServByPort

GetService

Important The GetService function is a Microsoft-specific extension to the Windows
Sockets 1.1 specification. This function is obsolete. For the convenience of Windows
Sockets 1.1 developers, the reference material is as follows.

The functions detailed in Protocol-Independent Name Resolution provide equivalent
functionality in Windows Sockets 2.

The GetService function obtains information about a network service in the context of a
set of default name spaces or a specified name space. The network service is specified
by its type and name. The information about the service is obtained as a set of
NS_SERVICE_INFO data structures.

172 Volume 1 Winsock and QOS

Parameters
dwNameSpace

Specifies the name space, or a set of default name spaces, that the operating system
queries for information about the specified network service.

Use one of the following constants to specify a name space.

Value Name space

NS_DEFAULT A set of default name spaces. The operating system queries
each name space within this set. The set of default name spaces
typically includes all the name spaces installed on the system.
System administrators, however, can exclude particular name
spaces from the set. NS_DEFAUL T is the value that most
applications should use for dwNameSpace.

NS_DNS The Domain Name System used in the Internet for host name
resolution.

NS_NETBT The NetBIOS over TCP/IP layer. All Windows NTlWindows 2000
systems register their computer names with NetBIOS. This name
space is used to resolve a computer name into an IP address
using this registration. Note that NS_NETBT can access a WINS
server to perform the resolution.

NS_SAP The Netware Service Advertising Protocol. This can access the
Netware bindery if appropriate. NS_SAP is a dynamic name
space that allows registration of services.

NS_ TCPIP _HOSTS Looks up host names and IP addresses in the
<systemroot>\system32\drivers\etc\hosts file.

NS_ TCPIP _LOCAL Local TCP/IP name resolution mechanisms, including
comparisons against the local host name and looks up host
names and IP addresses in cache of host to IP address
mappings.

Most calls to GetService should use the special value NS_DEFAUL T. This lets a
client get by without knowing available name spaces on an internetwork. The system
administrator determines name space access. Name spaces can come and go
without the client having to be aware of the changes.

IpGuid
Pointer to a globally unique identifier (GUID) that specifies the type of the network
service. The header file Svcguid.h includes GUID service types from many well
known services within the DNS and SAP name spaces.

IpServiceName
Pointer to a zero-terminated string that uniquely represents the service name. For
example, "MY SNA SERVER".

Chapter 8 Winsock 2 Functions 173

dwProperties
Set of bit flags that specify the service information that the function obtains. Each of
these bit flag constants, other than PROP_ALL, corresponds to a particular member
of the SERVICE_INFO data structure. If the flag is set, the function puts information
into the corresponding member of the data structures stored in *lpBuffer. The
following bit flags are defined.

Value

PROP _COMMENT

PROP _LOCALE

PROP_VERSION

PROP _MACHINE

PROP_ADDRESSES

PROP_SD

PROP _ALL

IpBuffer

Name space

If this flag is set, the function stores data in the
IpComment member of the data structures stored in
*lpBuffer.

If this flag is set, the function stores data in the
IpLocale member of the data structures stored in
*lpBuffer.

If this flag is set, the function stores data in the
dwDisplayHint member of the data structures stored
in * IpBuffer.

If this flag is set, the function stores data in the
dwVersion member of the data structures stored in
*IpBuffer.

If this flag is set, the function stores data in the
dwTime member of the data structures stored in
*lpBuffer.

If this flag is set, the function stores data in the
IpMachineName member of the data structures
stored in * IpBuffer.

If this flag is set, the function stores data in the
IpServiceAddress member of the data structures
stored in * IpBuffer.

If this flag is set, the function stores data in the
ServiceSpecificlnfo member of the data structures
stored in * IpBuffer.

If this flag is set, the function stores data in all of the
members of the data structures stored in * IpBuffer.

Pointer to a buffer to receive an array of NS_SERVICE_INFO structures and
associated service information. Each NS_SERVICE_INFO structure contains service
information in the context of a particular name space. Note that if dwNameSpace is
NS_DEFAULT, the function stores more than one structure into the buffer; otherwise,
just one structure is stored.

174 Volume 1 Winsock and QOS

Each NS_SERVICE_INFO structure contains a SERVICE_INFO structure. The
members of these SERVICE_INFO structures will contain valid data based on the bit
flags that are set in the dwProperties parameter. If a member's corresponding bit flag
is not set in dwProperties, the member's value is undefined.

The function stores the NS_SERVICE_INFO structures in a consecutive array,
starting at the beginning of the buffer. The pointers in the contained SERVICE_INFO
structures point to information that is stored in the buffer between the end of the
NS_SERVICE_INFO structures and the end of the buffer.

IpdwBufferSize
Pointer to a variable that, on input, contains the size, in bytes, of the buffer pointed to
by IpBuffer. On output, this variable contains the number of bytes required to store the
requested information. If this output value is greater than the input value, the function
has failed due to insufficient buffer size.

IpServiceAsynclnfo
Reserved for future use. Must be set to NULL.

Return Values
If the function succeeds, the return value is the number of NS_SERVICE_INFO
structures stored in *lpBuffer. Zero indicates that no structures were stored.

If the function fails, the return value is SOCKET_ERROR (-1). To get extended error
information, call GetLastError. GetLastError can return one of the following extended
error values.

Error code Meaning

The buffer pointed to by IpBuffer is too small to receive all
of the requested information. Call the function with a
buffer at least as large as the value returned in
* IpdwBufferSize.

The specified service was not found, or the specified
name space is not in use. The function return value is
zero in this case.

Version: Requires Windows Sockets 1.1. A Microsoft-specific extension. Obsolete for
Windows Sockets 2.0.
Header: Declared in Nspapi.h.
Library: Use Wsock32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Chapter 8 Winsock 2 Functions 175

getsockname
The Windows Sockets getsockname function retrieves the local name for a socket.

Parameters
s

[in] Descriptor identifying a socket.

name
[out] Receives the address (name) of the socket.

name/en
[in/out] Size of the name buffer.

Return Values
If no error occurs, getsockname returns zero. Otherwise, a value of SOCKET_ERROR
is returned, and a specific error code can be retrieved by calling WSAGetLastError.

Error code Meaning

WSANOTINITIALISED

WSAENETDOWN

WSAEFAULT

WSAEINPROGRESS

WSAENOTSOCK

WSAEINVAL

Remarks

A successful WSAStartup call must occur before
using this API.

The network subsystem has failed.

The name or the name/en parameter is not a valid
part of the user address space, or the name/en
parameter is too small.

A blocking Windows Sockets 1.1 call is in progress,
or the service provider is still processing a callback
function.

The descriptor is not a socket.

The socket has not been bound to an address with
bind, or ADDR_ANYis specified in bind but
connection has not yet occurs.

The getsocknamefunction retrieves the current name for the specified socket descriptor
in name. It is used on the bound or connected socket specified by the s parameter. The
local association is returned. This call is especially useful when a connect call has been
made without doing a bind first; the getsockname function provides the only way to
determine the local association that has been set by the system.

176 Volume 1 Winsock and QOS

On call, the namelen argument contains the size of the name buffer, in bytes. On return,
the namelen parameter contains the actual size in bytes of the name parameter.

The getsockname function does not always return information about the host address
when the socket has been bound to an unspecified address, unless the socket has been
connected with connect or accept (for example, using ADDR_ANY). A Windows
Sockets application must not assume that the address will be specified unless the socket
is connected. The address that will be used for the socket is unknown unless the socket
is connected when used in a multi homed host. If the socket is using a connectionless
protocol, the address may not be available until 110 occurs on the socket.

Version: Requires Windows Sockets 1.1 or later. Not supported on Windows 95.
Header: Declared in Winsock2.h.
Library: Use Wsock32.lib.

Windows Sockets Programming Considerations Overview, Socket Functions, bind,
getpeername, socket

getsockopt
The Windows Sockets getsockopt function retrieves a socket option.

Parameters
s

[in] Descriptor identifying a socket.

level
[in] Level at which the option is defined; the supported levels include SOL_SOCKET
and IPPROTO_ TCP. See the Windows Sockets 2 Protocol-Specific Annex (a
separate document included with the Platform SDK) for more information on protocol
specific levels.

optname
[in] Socket option for which the value is to be retrieved.

Chapter 8 Winsock 2 Functions 177

optval
[out] Pointer to the buffer in which the value for the requested option is to be returned.

opt/en
[in/out] Pointer to the size of the optval buffer.

Return Values
If no error occurs, getsockopt returns zero. Otherwise, a value of SOCKET_ERROR is
returned, and a specific error code can be retrieved by calling WSAGetLastError.

Error code

WSANOTINITIALISED

WSAENETDOWN

WSAEFAULT

WSAEINPROGRESS

WSAEINVAL

WSAENOPROTOOPT

WSAENOTSOCK

Remarks

Meaning

A successful WSAStartup call must occur before using
this function.

The network subsystem has failed.

One of the optval or the opt/en parameters is not a valid
part of the user address space, or the opt/en parameter is
too small.

A blocking Windows Sockets 1.1 call is in progress, or the
service provider is still processing a callback function.

The level parameter is unknown or invalid.

The option is unknown or unsupported by the indicated
protocol family.

The descriptor is not a socket.

The getsockopt function retrieves the current value for a socket option associated with
a socket of any type, in any state, and stores the result in optval. Options can exist at
multiple protocol levels, but they are always present at the uppermost socket level.
Options affect socket operations, such as the packet routing and OOB data transfer.

The value associated with the selected option is returned in the buffer optval. The
integer painted to by optlen should originally contain the size of this buffer; on return, it
will be set to the size of the value returned. For SO_LINGER, this will be the size of a
LINGER structure. For most other options, it will be the size of an integer.

The application is responsible for allocating any memory space painted to directly or
indirectly by any of the parameters it specified.

If the option was never set with setsockopt, then getsockopt returns the default value
for the option.

The following options are supported for getsockopt. The Type column identifies the type
of data addressed by optval.

178 Volume 1 Winsock and QOS

Value
level = SOL_SOCKET

Type

SO_ACCEPTCONN

SO_BROADCAST

SO_CONOITIONAL_
ACCEPT

SO_DEBUG

SO_OONTLINGER

SO_OONTROUTE

SO_ERROR

SO_GROUP _10

SO_GROUP _PRIORITY

SO_KEEPALIVE

SO_LINGER

SO_MAX_MSG_SIZE

SO_RCVBUF

SO_REUSEADDR

SO_SNDBUF

SO_TYPE

BOOl

BOOl

BOOl

BOOl

BOOl

BOOl

int

GROUP

int

BOOl

LINGER structure

unsigned int

BOOl

WSAPROTOCOL_
INFO

int

BOOl

int

int

Service Provider
Dependent

Meaning

Socket is listening.

Socket is configured for the transmission of
broadcast messages.

Returns current socket state, either from a
previous call to setsockopt or the system
default.

Debugging is enabled.

If TRUE, the SO_LINGER option is disabled.

Routing is disabled. Not supported on ATM
sockets.

Retrieves error status and clear.

Reserved.

Reserved.

Keep-alives are being sent. Not supported on
ATM sockets.

Returns the current linger options.

Maximum size of a message for message
oriented socket types (for example,
SOCK_DGRAM). Has no meaning for stream
oriented sockets.

OOB data is being received in the normal data
stream. (See section Windows Sockets 1.1
Blocking Routines and EINPROGRESS for a
discussion of this topic.)

Description of protocol information for protocol
that is bound to this socket.

Buffer size for receives.

The socket can be bound to an address which
is already in use. Not applicable for ATM
sockets.

Buffer size for sends.

The type of the socket (for example,
SOCK_STREAM).

An opaque data structure object from the
service provider associated with socket s. This
object stores the current configuration
information of the service provider. The exact
format of this data structure is service provider
specific.

Value

level = IPPROTO _ TCP
Type

TCP _NODElAY Baal

level = NSPROTOJPX

Chapter 8 Winsock 2 Functions 179

Meaning

Disables the Nagle algorithm for send
coalescing.

Note Windows 2000 and Windows NT support alllPX options. Windows 95 and
Windows 98 support only the following:

Value

IPX_PTYPE
IPX_Fll TERPTYPE
IPX_DSTYPE
IPX_RECVHDR
IPX_MAXSIZE
IPX_ADDRESS

IPX_PTYPE

IPX_FIL TERPTYPE

IPX_GETNETINFO

Type

int

int

int

Baal

Baal

int

IPX_ADDRESS_DATA
structure

IPX_NETNUM_DAT A
structure

Meaning

Obtains the IPX packet type.

Obtains the receive filter
packet type

Obtain the value of the data
stream field in the SPX header
on every packet sent.

Find out whether extended
addressing is enabled.

Find out whether the protocol
header is sent up on all receive
headers.

Obtain the maximum data size
that can be sent.

Obtain information about a
specific adapter to which IPX is
bound. Adapter numbering is
base zero. The adapternum
member is filled in upon return.

Obtain information about a
specific IPX network number. If
not available in the cache, uses
RIP to obtain information.

(continued)

180 Volume 1 Winsock and aos

(continued)

Value Type

IPX_NETNUM_DATA
structure

Meaning

Obtain information about a
specific IPX network number. If
not available in the cache, will
not use RIP to obtain
information, and returns error.

IPX_
SPXGETCONNECTIONSTATUS

IPX_SPXCONNSTATUS_
DATA structure

Obtains information about a
connected SPX socket.

IPX_ADDRESS_NOTIFY

IPX_RERIPNETNUMBER

IPX_IMMEDIATESPXACK

IPX_ADDRESS_DAT A
structure

int

IPX_NETNUM_DATA
structure

BOOl

Obtains status notification
when changes occur on an
adapter to which IPX is bound.

Obtains maximum number of
adapters present, numbered as
base zero.

Similar to IPX_GETNETINFO,
but forces IPX to use RIP for
resolution, even if the network
information is in the local
cache.

Directs SPX connections not to
delay before sending an ACK.
Applications without back-and
forth traffic should set this to
TRUE to increase
performance.

BSD options not supported for getsockopt are as follows.

Value Type Meaning

SO_RCVLOWAT int Receives low watermark.

SO_RCVTIMEO int Receives time-out.

SO_SNDLOWAT int Sends low watermark.

SO_SNDTIMEO int Sends time-out.

TCP_MAXSEG int Receives TCP maximum-segment size.

Calling getsockopt with an unsupported option will result in an error code of
WSAENOPROTOOPT being returned from WSAGetLastError.

SO_DEBUG
Windows Sockets service providers are encouraged (but not required) to supply
output debug information if the SO_DEBUG option is set by an application. The
mechanism for generating the debug information and the form it takes are beyond the
scope of this document.

Chapter 8 Winsock 2 Functions 181

SO_ERROR
The SO_ERROR option returns and resets the per socket-based error code, which is
different from the per thread based-error code that is handled using the
WSAGetlastError and WSASetlastError function calls. A successful call using the
socket does not reset the socket based error code returned by the SO_ERROR
option.

SO_GROUP _10
This option is reserved. This option is also exclusive to getsockopt; the value should
be NULL.

SO_GROUP _PRIORITY
This option is reserved.

SO_KEEPAlIVE
An application can request that a TCP/IP service provider enable the use of keep
alive packets on TCP connections by turning on the SO_KEEPALIVE socket option.
A Windows Sockets provider need not support the use of keep-alive: if it does, the
precise semantics are implementation-specific but should conform to section 4.2.3.6
of RFC 1122: Requirements for Internet Hosts---Communication Layers. If a
connection is dropped as the result of keep-alives the error code WSAENETRESET is
returned to any calls in progress on the socket, and any subsequent calls will fail with
WSAENOTCONN. SO_KEEPALIVE is not supported on ATM sockets, and requests
to enable the use of keep-alive packets on an ATM socket results in an error being
returned by the socket.

SO_LINGER
SO_LINGER controls the action taken when unsent data is queued on a socket and a
closesocket is performed. See closesocketfor a description of the way in which the
SO_LINGER settings affectthe semantics of closesocket. The application gets the
current behavior by retrieving a LINGER structure (pointed to by the optval
parameter).

SO_MAX_MSG_SIZE
This is a get-only socket option that indicates the maximum outbound (send) size of a
message for message-oriented socket types (for example, SOCK_OGRAM) as
implemented by a particular service provider. It has no meaning for byte stream
oriented sockets. There is no provision to find out the maximum inbound-message
size

SO_PROTOCOL_INFO
This is a get-only option that supplies the WSAPROTOCOl_INFO structure
associated with this socket. See WSAEnumProtocols for more information about this
structure.

SO_SNOBUF
When a Windows Sockets implementation supports the SO_RCVBUF and
SO_SNOBUF options,an application can request different buffer sizes (larger or
smaller). The call to setsockopt can succeed even ifthe implementation did not
provide the whole amount requested. An application must call this function with the
same option to check the buffer size actually provided.

182 Volume 1 Winsock and QOS

SO_REUSEADDR
By default, a socket cannot be bound (see bind) to a local address that is already in
use. On occasion, however, it can be necessary to reuse an address in this way.
Because every connection is uniquely identified by the combination of local and
remote addresses,there is no problem-with having two sockets bound to the same
local address as long as the remote addresses are different. To inform the Windows
Sockets provider that a bind on a socket should not be disallowed because the
desired address is already in use by another socket, the application should set the
SO_REUSEADDR socket option for the socket before issuing the bind. Note that the
option is interpreted only at the time of the bind: it is therefore unnecessary (but
harmless) to set the option on a socket that is not to be bound to an existing address,
and setting or resetting the option after the bind has no effect on this or any other
socket. SO_REUSEADDR is not applicable for ATM sockets, and although requests
to reuse and address do not result in an error, they have no affect on when an ATM
socket is in use.

PVD_CONFIG
This option retrieves an opaque data structure object from the service provider
associated with socket s. This object stores the current configuration information of
the service provider. The exact format of this data structure is service provider
specific.

Tep _NODELAY
The TCP _NODELAYoption is specific to TCP/IP service providers. The Nagle
algorithm is disabled if the TCP _NODELAY option is enabled (and vice versa). The
Nagle algorithm (described in RFC 896) is very effective in reducing the number of
small packets sent by a host. The process involves buffering send data when there is
unacknowledged data already in flight or buffering send data until a full-size packet
can be sent. It is highly recommended that Windows Sockets implementations enable
the Nagle Algorithm by default because, for the vast majority of application protocols,
the Nagle Algorithm can deliver significant performance enhancements. However, for
some applications this algorithm can impede performance, and setsockopt with the
same option can be used to turn it off. These are applications where many small
messages are sent, and the time delays between the messages are maintained.

Notes for IrDA Sockets
• The AUrda.h header file must be explicitly included.

• Windows CE does not support the WSAENETDOWN return value.
Windows NTIWindows 2000 will return WSAENETDOWN to indicate the underlying
transceiver driver failed to initialize with the IrDA protocol stack.

• IrDA supports several special socket options:

Value Type

IRLMP _ENUMDEVICES

IRLMP _lAS_QUERY

*DEVICELIST

*IAS_QUERY

Meaning

Describes devices in range.

Retrieve lAS attributes.

Chapter 8 Win sock 2 Functions 183

Before an IrDA socket connection can be initiated, a device address must be obtained
by performing a getsockopt("IRLMP _ENUMDEVICES,,) function call, which returns a
list of all available IrDA devices. A device address returned from the function call is
copied into a SOCKADDR_IRDA structure, which in turn is used by a subsequent call to
the connect function call.

Discovery can be performed in two ways:

First, performing a getsockopt function call with the IRLMP _ENUMDEVICES option
causes a single discovery to be run on each idle adapter. The list of discovered devices
and cached devices (on active adapters) is returned immediately. The following code
demonstrates this approach.

(continued)

184 Volume 1 Winsockand QOS

(continued)

The second approach to performing discovery of IrDA device addresses is to perform a
lazy discovery; in this approach, the application is not notified until the discovered
devices list changes from the last discovery run by the stack.

The DEVICE LIST structure shown in the Type column in the previous table is an
extendible array of device descriptions. IrDA fills in as many device descriptions as can
fit in the supplied buffer. The device description consists of a device identifier necessary
to form a sockaddUrda structure, and a displayable string describing the device.

The lAS_QUERY structure shown in the Type column in the previous table is used to
retrieve a single attribute of a Single class from a peer device's lAS database. The
application specifies the device and class to query and the attribute and attribute type.
Note that the device would have been obtained previously by a call to
getsockopt(IRLMP _ENUMDEVICES). It is expected that the application allocates a
buffer, of the necessary size, for the returned parameters.

Many SO level socket options are not meaningful to IrDA; only SO_LINGER and
SO_DONTLINGER are specifically supported.

Version: Requires Windows Sockets 1.1 or later.
Header: Declared in Winsock2.h.
Library: Use WS2_32.lib.

Chapter 8 Winsock 2 Functions 185

Windows Sockets Programming Considerations Overview, Socket Functions,
setsockopt, socket, WSAAsyncSelect, WSAConnect, WSAGetLastError,
WSASetLastError

GetTypeByName

Important The GetTypeByName function is a Microsoft-specific extension to the
Windows Sockets 1.1 specification. This function is obsolete. For the convenience of
Windows Sockets 1.1 developers, the reference material is as follows.

The functions detailed in Protocol-Independent Name Resolution provide equivalent
functionality in Windows Sockets 2.

The GetTypeByName function obtains a service type GUID for a network service
specified by name.

Parameters
IpServiceName

Pointer to a zero-terminated string that uniquely represents the name of the service.
For example, "MY SNA SERVER".

IpServiceType
Pointer toa variable to receive a Globally Unique Identifier (GUID) that specifies the
type of the network service. The header file Svcguid.h includes definitions of several
GUID service types and macros for working with them.

Return Values
If the function succeeds, the return value is zero.

If the function fails, the return value is SOCKET _ERROR(-1). To get extended error
information, call GetLastError. GetLastError can return the following extended error
value.

186 Volume 1 Winsock and QOS

htonl

Value Meaning

The specified service type is unknown.

Version: Requires Windows Sockets 1.1. A Microsoft-specific extension. Obsolete for
Windows Sockets 2.0.
Header: Declared in Nspapi.h.
Library: Use Wsock32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

GetNameByType

The Windows Sockets htonl function converts a u_long from host to TCP/IP network
byte order (which is big-endian).

Parameters
hostlong

[in] 32-bit number in host byte order.

Return Values
The htonl function returns the value in TCP/IP's network byte order.

Remarks
The htonl function takes a 32-bit number in host byte order and returns a 32-bit number
in the network byte order used in TCP/IP networks.

Version: Requires Windows Sockets 1.1 or later.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.lib.

Chapter 8 Winsock 2 Functions 187

Windows Sockets Programming Considerations Overview, Socket Functions, htons,
ntohl, ntohs, WSAHtonl, WSAHtons, WSANtohl, WSANtohs

htons
The Windows Sockets htons function converts a u_short from host to TCP/IP network
byte order (which is big-endian).

Parameters
hostshort

[in] 16-bit number in host byte order.

Remarks
The htons function takes a 16-bit number in host byte order and returns a 16-bit number
in network byte order used in TCP/IP networks.

Return Values
The htons function returns the value in TCP/IP network byte order.

Version: Requires Windows Sockets 1.1 or later.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.lib.

Windows Sockets Programming Considerations Overview, Socket Functions, htonl,
ntohl, ntohs, WSAHtonl, WSAHtons, WSANtohl, WSANtohs

The Windows Sockets ineCaddr function converts a string containing an (lpv4) Internet
Protocol dotted address into a proper address for the IN_ADDR structure.

188 Volume 1 Winsock and aos

Parameters
cp

[in] NUll-terminated character string representing a number expressed in the Internet
standard "." (dotted) notation.

Return Values
If no error occurs, ineCaddr returns an unsigned long value containing a suitable binary
representation of the Internet address given. If the string in the cp parameter does not
contain a legitimate Internet address, for example if a portion of an "a.b.c.d" address
exceeds 255, then ineCaddr returns the value INADDR_NONE.

Remarks
The ineCaddr function interprets the character string specified by the cp parameter.
This string represents a numeric Internet address expressed in the Internet standard "."
notation. The value returned is a number suitable for use as an Internet address. All
Internet addresses are returned in IP's network order (bytes ordered from left to right). If
you pass in "" (a space) to the ineCaddr function, ineCaddr returns zero.

Internet Addresses
Values specified using the "." notation take one of the following forms:

a.b.c.d a.b.c a.b a

When four parts are specified, each is interpreted as a byte of data and assigned, from
left to right, to the 4 bytes of an Internet address. When an Internet address is viewed as
a 32-bit integer quantity on the Intel architecture, the bytes referred to above appear as
"d.c.b.a". That is, the bytes on an Intel processor are ordered from right to left.

The parts that make up an address in "." notation can be decimal, octal or hexadecimal
as specified in the C language. Numbers that start with "Ox" or "OX" imply hexadecimal.
Numbers that start with "0" imply octal. All other numbers are interpreted as decimal.

Internet address value

"4.3.2.16"

"004.003.002.020"

"Ox4.0x3.0x2.0x10"

"4.003.002.0x10"

Meaning

Decimal

Octal

Hexadecimal

Mix

Note The following notations are only used by Berkeley, and nowhere else on the
Internet. For compatibility with their software, they are supported as specified.

When a three-part address is specified, the last part is interpreted as a 16-bit quantity
and placed in the right-most 2 bytes of the network address. This makes the three-part
address format convenient for speCifying Class B network addresses as "128.net.host".

Chapter 8 Winsock 2 Functions 189

When a two-part address is specified, the last part is interpreted as a 24-bit quantity and
placed in the right-most 3 bytes of the network address. This makes the two-part
address format convenient for specifying Class A network addresses as "net.host".

When only one part is given, the value is stored directly in the network address without
any byte rearrangement.

Version: Requires Windows Sockets 1.1 or later.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.lib.

Windows Sockets Programming Considerations Overview, Socket Functions, ineCntoa

The Windows Sockets inet_ntoa function converts an (lpv4) Internet network address
into a string in Internet standard dotted format.

Parameters
in

[in] Structure that represents an Internet host address.

Return Values
If no error occurs, ineCntoa returns a character pOinter to a static buffer containing the
text address in standard "." notation. Otherwise, it returns NULL.

Remarks
The ineCntoa function takes an Internet address structure specified by the in parameter
and returns an ASCII string representing the address in "." (dot) notation as in "a.b.c.d."
The string returned by ineCntoa resides in memory that is allocated by Windows
Sockets. The application should not make any assumptions about the way in which the
memory is allocated. The data is guaranteed to be valid until the next Windows Sockets
function call within the same thread-but no longer. Therefore, the data should be
copied before another Windows Sockets call is made.

190 Volume 1 Winsock and QOS

Version: Requires Windows Sockets 1.1 or later.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.lib.

Windows Sockets Programming Considerations Overview, Socket Functions, ineCaddr

ioctlsocket
The Windows Sockets ioctlsocket function controls the I/O mode of a socket.

Parameters
s

[in] Descriptor identifying a socket.

cmd
[in] Command to perform on the socket s.

argp
[in/out] Pointer to a parameter for cmd.

Return Values
Upon successful completion, the ioctlsocket returns zero. Otherwise, a value of
SOCKET_ERROR is returned, and a specific error code can be retrieved by calling
WSAGetLastError.

Error code

WSANOTINITIALISED

WSAENETDOWN

WSAEINPROGRESS

WSAENOTSOCK

WSAEFAULT

Meaning

A successful WSAStartup call must occur before using this
function.

The network subsystem has failed.

A blocking Windows Sockets 1.1 call is in progress, or the
service provider is still processing a callback function.

The descriptor s is not a socket.

The argp parameter is not a valid part of the user address
space.

Chapter 8 Winsock 2 Functions 191

Remarks
The ioctlsocket function can be used on any socket in any state. It is used to set or
retrieve operating parameters associated with the socket, independent of the protocol
and communications subsystem. Here are the supported commands to use in the cmd
parameter and their semantics:

FIONBIO
Use with a nonzero argp parameter to enable the nonblocking mode of socket s. The
argp parameter is zero if nonblocking is to be disabled. The argp parameter pOints to
an unsigned long value. When a socket is created, it operates in blocking mode by
default (nonblocking mode is disabled). This is consistent with BSD sockets.

The WSAAsyncSelect and WSAEventSelect functions automatically set a socket to
non blocking mode. If WSAAsyncSelect or WSAEventSelect has been issued on a
socket, then any attempt to use ioctlsocket to set the socket back to blocking mode
will fail with WSAEINVAL.

To set the socket back to blocking mode, an application must first disable
WSAAsyncSelect by calling WSAAsyncSelect with the IEvent parameter equal to
zero, or disable WSAEventSelect by calling WSAEventSelect with the
INetworkEvents parameter equal to zero.

FIONREAD
Use to determine the amount of data pending in the network's input buffer that can be
read from socket s. The argp parameter paints to an unsigned long value in which
ioctlsocket stores the result. If s is stream oriented (for example, type
SOCK_STREAM), FIONREAD returns the amount of data that can be read in a single
call to the recv function; this might not be the same as the total amount of data
queued on the socket. If s is message oriented (for example, type SOCK_DGRAM),
FIONREAD returns the size of the first datagram (message) queued on the socket.

SIOCATMARK
Use to determine whether or not all OOB data has been read. (See section Windows
Sockets 1.1 Blocking Routines and EINPROGRESS for a discussion on out of band
(OOB) data.) This applies only to a stream oriented socket (for example, type
SOCK_STREAM) that has been configured for in-line reception of any OOB data
(SO_OOBINLlNE). If no OOB data is waiting to be read, the operation returns TRUE.
Otherwise, it returns FALSE, and the next recv or recvfrom performed on the socket
will retrieve some or all of the data preceding the mark. The application should use
the SIOCATMARK operation to determine whether any data remains. If there is any
normal data preceding the urgent (out of band) data, it will be received in order. (A
recv or recvfrom will never mix OOB and normal data in the same call.) The argp
parameter points to an unsigned long value in which ioctlsocket stores the Boolean
result.

192 Volume 1 Winsockand aos

listen

Compatibility
This ioctlsocket function performs only a subset of functions on a socket when
compared to the ioctl function found in Berkeley sockets. The ioctlsocket function has
no command parameter equivalent to the FIOASYNC of ioctl, and SIOCATMARK is the
only socket-level command that is supported by ioctlsocket.

Version: Requires Windows Sockets 1.1 or later.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.lib.

Windows Sockets Programming Considerations Overview, Socket Functions,
getsockopt, setsockopt, socket, WSAAsyncSelect, WSAEventSelect, WSAloctl

The Windows Sockets listen function places a socket a state where it is listening for an
incoming connection.

Parameters
s

[in] Descriptor identifying a bound, unconnected socket.

backlog
[in] Maximum length of the queue of pending connections. If set to SOMAXCONN, the
underlying service provider responsible for socket s will set the backlog to a maximum
reasonable value. There is no standard provision to obtain the actual backlog value.

Return Values
If no error occurs, listen returns zero. Otherwise, a value of SOCKET_ERROR is
returned, and a specific error code can be retrieved by calling WSAGetLastError.

Error code

WSANOTINITIALISED

WSAENETDOWN

Meaning

A successful WSAStartup call must occur before
using this function.

The network subsystem has failed.

Error code

WSAEADDRINUSE

WSAEINPROGRESS

WSAEINVAL

WSAEISCONN

WSAEMFILE

WSAENOBUFS

WSAENOTSOCK

WSAEOPNOTSUPP

Remarks

Chapter 8 Winsock 2 Functions 193

Meaning

The socket's local address is already in use and the
socket was not marked to allow address reuse with
SO_REUSEADDR. This error usually occurs during
execution of the bind function, but could be delayed
until this function if the bind was to a partially
wildcard address (involving ADDR_ANY) and if a
specific address needs to be committed at the time of
this function.

A blocking Windows Sockets 1.1 call is in progress,
or the service provider is still processing a callback
function.

The socket has not been bound with bind.

The socket is already connected.

No more socket descriptors are available.

No buffer space is available.

The descriptor is not a socket.

The referenced socket is not of a type that supports
the listen operation.

To accept connections, a socket is first created with the socket function and bound to a
local address with the bind function, a backlog for incoming connections is specified with
listen, and then the connections are accepted with the accept function. Sockets that are
connection oriented, those of type SOCK_STREAM for example, are used with listen.
The socket s is put into passive mode where incoming connection requests are
acknowledged and queued pending acceptance by the process.

The listen function is typically used by servers that can have more than one connection
request at a time. If a connection request arrives and the queue is full, the client will
receive an error with an indication of WSAECONNREFUSED.

If there are no available socket descriptors, listen attempts to continue to function. If
descriptors become available, a later call to listen or accept will refill the queue to the
current or most recent backlog, if possible, and resume listening for incoming
connections.

An application can call listen more than once on the same socket. This has the effect of
updating the current backlog for the listening socket. Should there be more pending
connections than the new backlog value, the excess pending connections will be reset
and dropped.

194 Volume 1 Winsock and QOS

ntohl

Notes for IrDA Sockets
• The AUrda.h header file must be explicitly included.

• Windows CE only: The backlog parameter is currently limited (silently) to 2. As in
4.3BSD, illegal values (less than 1 or greater than 5) are replaced by the nearest valid
value.

Compatibility
The backlog parameter is limited (silently) to a reasonable value as determined by the
underlying service provider. Illegal values are replaced by the nearest legal value. There
is no standard provision to find out the actual backlog value.

Version: Requires Windows Sockets 1.1 or later.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.lib.

Windows Sockets Programming Considerations Overview, Socket Functions, accept,
connect, socket

The Windows Sockets ntohl function converts a u_long from TCP/IP network order to
host byte order (which is little-endian on Intel processors).

Parameters
net/ong

[in] 32-bit number in TCP/IPnetwork byte order.

Return Values
The ntohl function always returns a value in host byte order. If the netlong parameter
was already in host byte order, then no operation is performed.

Remarks
The ntohl function takes a 32-bit number in TCP/IP network byte order and returns a
32-bit number in host byte order.

ntohs

Version: Requires Windows Sockets 1.1 or later.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.lib.

Chapter 8 Winsock 2 Functions 195

Windows Sockets Programming Considerations Overview, Socket Functions, htonl,
htons, ntohs, WSAHtonl, WSAHtons, WSANtohl, WSANtohs

The Windows Sockets ntohs function converts a u_short from TCP/IP network byte
order to host byte order (which is little-end ian on Intel processors).

Parameters
netshort

[in] 16-bit number in TCP/IP network byte order.

Return Values
The ntohs function returns the value in host byte order. If the netshort parameter was
already in host byte order, then no operation is performed.

Remarks
The ntohs function takes a 16-bit number in TCP/IP network byte order and returns a
16-bit number in host byte order.

Version: Requires Windows Sockets 1.1 or later.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.lib.

Windows Sockets Programming Considerations Overview, Socket Functions, htonl,
htons, ntohl, WSAHtonl, WSAHtons, WSANtohl, WSANtohs

196 Volume 1 Winsock and QOS

recv
The Windows Sockets recv function receives data from a connected socket.

Parameters
s

[in] Descriptor identifying a connected socket.

but
[out] Buffer for the incoming data.

len
[in] Length of but.

flags
[in] Flag specifying the way in which the call is made.

Return Values
If no error occurs, recv returns the number of bytes received. If the connection has been
gracefully closed, the return value is zero. Otherwise, a value of SOCKET_ERROR is
returned, and a specific error code can be retrieved by calling WSAGetLastError.

Error code

WSANOTINITIALISED

WSAENETDOWN

WSAEFAULT

WSAENOTCONN

WSAEINTR

WSAEINPROGRESS

WSAENETRESET

WSAENOTSOCK

Meaning

A successful WSAStartup call must occur before using
this function.

The network subsystem has failed.

The but parameter is not completely contained in a valid
part of the user address space.

The socket is not connected.

The (blocking) call was canceled through
WSACancelBlockingCall.

A blocking Windows Sockets 1.1 call is in progress, or
the service provider is still processing a callback function.

The connection has been broken due to the keep-alive
activity detecting a failure while the operation was in
progress.

The descriptor is not a socket.

Error code

WSAEOPNOTSUPP

WSAESHUTOOWN

WSAEWOULOBLOCK

WSAEMSGSIZE

WSAEINVAL

WSAECONNABORTEO

WSAETIMEOOUT

WSAECONNRESET

Remarks

Chapter 8 Winsock 2 Functions 197

Meaning

MSG_OOB was specified, but the socket is not stream
style such as type SOCK_STREAM, OOB data is not
supported in the communication domain associated with
this socket, or the socket is unidirectional and supports
only send operations.

The socket has been shut down; it is not possible to
receive on a socket after shutdown has been invoked
with how set to SO_RECEIVE or SO_BOTH.

The socket is marked as nonblocking and the receive
operation would block.

The message was too large to fit into the specified buffer
and was truncated.

The socket has not been bound with bind, or an
unknown flag was specified, or MSG_OOB was specified
for a socket with SO_OOBINLINE enabled or (for byte
stream sockets only) len was zero or negative.

The virtual circuit was terminated due to a time-out or
other failure. The application should close the socket as it
is no longer usable.

The connection has been dropped because of a network
failure or because the peer system failed to respond.

The virtual circuit was reset by the remote side executing
a hard or abortive close. The application should close the
socket as it is no longer usable. On a UPO-datagram
socket this error would indicate that a previous send
operation resulted in an ICMP "Port Unreachable"
message.

The recv function is used to read incoming data on connection-oriented sockets, or
connection less sockets. When using a connection-oriented protocol, the sockets must be
connected before calling recv. When using a connection less protocol, the sockets must
be bound before calling recv.

The local address of the socket must be known. For server applications, use an explicit
bind function or an implicit accept or WSAAccept function. Explicit binding is
discouraged for client applications. For client applications, the socket can become bound
implicitly to a local address using connect, WSAConnect, sendto, WSASendTo, or
WSAJoinLeaf.

198 Volume 1 Winsock and QOS

For connected or connection less sockets, the recv function restricts the addresses from
which received messages are accepted. The function only returns messages from the
remote address specified in the connection. Messages from other addresses are
(silently) discarded.

For connection-oriented sockets (type SOCK_STREAM forexample), calling recv will
return as much information as is currently available-up to the size of the buffer
supplied. If the socket has been configured for in-line reception of OOB data (socket
option SO_OOBINLlNE) and OOB data is yet unread, only OOB data will be returned.
The application can use the ioctlsocket or WSAlocti SIOCATMARK command to
determine whether any more OOB data remains to be read.

For connectionless sockets (type SOCK_DGRAM or other message-oriented sockets),
data is extracted from the first enqueued datagram (message) from the destination
address specified by the connect function.

If the datagram or message is larger than the buffer supplied, the buffer is filled with the
first part of the datagram, and recv generates the error WSAEMSGSIZE. For unreliable
protocols (for example, UDP) the excess data is lost; for reliable protocols, the data is
retained by the service provider until it is successfully read by calling recv with a large
enough buffer.

If no incoming data is available at the socket, the recv call blocks and waits for data to
arrive according to the blocking rules defined for WSARecv with the MSG_PARTIAL flag
not set unless the socket is nonblocking. In this case, a value of SOCKET_ERROR is
returned with the error code set to WSAEWOULDBLOCK. The select,
WSAAsyncSelect, or WSAEventSelect functions can be used to determine when more
data arrives.

If the socket is connection oriented and the remote side has shut down the connection
gracefully, and all data has been received, a recv will complete immediately with zero
bytes received. If the connection has been reset, a recv will fail with the error
WSAECONNRESET.

The flags parameter can be used to influence the behavior of the function invocation
beyond the options specified for the associated socket. The semantics of this function
are determined by the socket options and the flags parameter. The latter is constructed
by using the bitwise OR operator with any of the following values.

Value Meaning

Peeks at the incoming data. The data is copied into the buffer
but is not removed from the input queue. The function then
returns the number of bytes currently pending to receive.

Processes OOB data. (See section DEGnet Out-at-band data
for a discussion of this topic.)

Version: Requires Windows Sockets 1.1 or later.
Header: Declared in Winsock2.h.
Library: Use WS2_32.lib.

Chapter 8 Winsock 2 Functions 199

Windows Sockets Programming Considerations Overview, Socket Functions, recvfrom,
select, send, socket, WSAAsyncSelect, WSARecvEx

recvfrom
The Windows Sockets recvfrom function receives a datagram and stores the source
address.

Parameters
s

[in] Descriptor identifying a bound socket.

but
[out] Buffer for the incoming data.

len
[in] Length of but.

flags
[in] Indicator specifying the way in which the call is made.

from
[out] Optional pOinter to a buffer that will hold the source address upon return.

from/en
[in/out] Optional pointer to the size of the from buffer.

Return Values
Ifno error occurs, recvfrom returns the number of bytes received. If the connection has
been gracefully closed, the return value is zero. Otherwise, a value of SOCKET_ERROR
is returned, and a specific error code can be retrieved by calling WSAGetLastError.

200 Volume 1 Winsock and QOS

Error code

WSANOTINITIALISED

WSAENETDOWN

WSAEFAULT

WSAEINTR

WSAEINPROGRESS

WSAEINVAL

WSAEISCONN

WSAENETRESET

WSAENOTSOCK

WSAEOPNOTSUPP

WSAESHUTDOWN

WSAEWOULDBLOCK

WSAEMSGSIZE

WSAETIMEDOUT

WSAECONNRESET

Meaning

A successful WSAStartup call must occur before using
this function.

The network subsystem has failed.

The buf or from parameters are not part of the user
address space, or the fromlen parameter is too small to
accommodate the peer address.

The (blocking) call was canceled through
WSACancelBlockingCall.

A blocking Windows Sockets 1.1 call is in progress, or
the service provider is still processing a callback function.

The socket has not been bound with bind, or an
unknown flag was specified, or MSG_OOB was specified
for a socket with SO_OOBINLINE enabled, or (for byte
stream-style sockets only) len was zero or negative.

The socket is connected. This function is not permitted
with a connected socket, whether the socket is
connection-oriented or connectionless.

The connection has been broken due to the keep-alive
activity detecting a failure while the operation was in
progress.

The descriptor is not a socket.

MSG_OOB was specified, but the socket is not stream
style such as type SOCK_STREAM, OOB data is not
supported in the communication domain associated with
this socket, or the socket is unidirectional and supports
only send operations.

The socket has been shutdown; it is not possible to
recvfrom on a socket after shutdown has been invoked
with how set to SD_RECEIVE or SD_BOTH.

The socket is marked as non blocking and the recvfrom
operation would block.

The message was too large to fit into the specified buffer
and was truncated.

The connection has been dropped, because of a network
failure or because the system on the other end went
down without notice.

The virtual circuit was reset by the remote side executing
a hard or abortive close. The application should close the
socket as it is no longer usable. On a UPD-datagram
socket this error would indicate that a previous send
operation resulted in an ICMP "Port Unreachable"
message.

Chapter 8 Winsock 2 Functions 201

Remarks
The recvfrom function reads incoming data on both connected and unconnected
sockets and captures the address from which the data was sent. The socket must not be
connected. The local address of the socket must be known. For server applications, this
is usually done explicitly through bind. Explicit binding is discouraged for client
applications. For client applications using this function, the socket can become bound
implicitly to a local address through sendto, WSASendTo, or WSAJoinLeaf.

For stream-oriented sockets such as those of type SOCK_STREAM, a call to recvfrom
returns as much information as is currently available-up to the size of the buffer
supplied. If the socket has been configured for inline reception of OOB data (socket
option SO_OOBINLINE) and OOB data is yet unread, only OOB data will be returned.
The application can use the ioctlsocket or WSAloctl SIOCATMARK command to
determine whether any more OOB data remains to be read. The from and from/en
parameters are ignored for connection-oriented sockets.

For message-oriented sockets, data is extracted from the first enqueued message, up to
the size of the buffer supplied. If the datagram or message is larger than the buffer
supplied, the buffer is filled with the first part of the datagram, and recvfrom generates
the error WSAEMSGSIZE. For unreliable protocols (for example, UDP) the excess data
is lost.

If the from parameter is nonzero and the socket is not connection oriented, (type
SOCK_DGRAM for example), the network address of the peer that sent the data is
copied to the corresponding SOCKADDR structure. The value pointed to by from/en is
initialized to the size of this structure and is modified, on return, to indicate the actual
size of the address stored in the SOCKADDR structure.

If no incoming data is available at the socket, the recvfrom function blocks and waits for
data to arrive according to the blocking rules defined for WSARecv with the
MSG_PARTIAL flag not set unless the socket is nonblocking. In this case, a value of
SOCKET_ERROR is returned with the error code set to WSAEWOULDBLOCK. The
select, WSAAsyncSelect, or WSAEventSelect can be used to determine when more
data arrives.

If the socket is connection oriented and the remote side has shut down the connection
gracefully, the call to recvfrom will complete immediately with zero bytes received. If the
connection has been reset recvfrom will fail with the error WSAECONNRESET.

The flags parameter can be used to influence the behavior of the function invocation
beyond the options specified for the associated socket. The semantics of this function
are determined by the socket options and the flags parameter. The latter is constructed
by using the bitwise OR operator with any of the following values.

202 Volume 1 Winsock and QOS

Value Meaning

Peeks at the incoming data. The data is copied into the buffer
but is not removed from the input queue, and the function
returns the number of bytes currently pending to receive.

Processes OOB data. (See section DEGnet Out-Of-band data
for a discussion of this topic.)

Version: Requires Windows Sockets 1.1 or later.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.lib.

Windows Sockets Programming Considerations Overview, Socket Functions, recv,
send, socket, WSAAsyncSelect, WSAEventSelect

select
The Windows Sockets select function determines the status of one or more sockets,
waiting if necessary, to perform synchronous I/O.

Parameters
nfds

[in] Ignored. The nfds parameter is included only for compatibility with Berkeley
sockets.

readfds
[in/out] Optional pOinter to a set of sockets to be checked for readability.

writefds
[in/out] Optional pointer to a set of sockets to be checked for writability

exceptfds
[in/out] Optional pointer to a set of sockets to be checked for errors.

Chapter 8 Winsock 2 Functions 203

timeout
[in] Maximum time for select to wait, provided in the form of a TIMEVAL structure. Set
the timeout parameter to NULL for blocking operation.

Return Values
The select function returns the total number of socket handles that are ready and
contained in the fd_set structures, zero if the time limit expired, or SOCKET_ERROR if
an error occurred. If the return value is SOCKET_ERROR, WSAGetLastError can be
used to retrieve a specific error code.

Error code Meaning

WSANOTINITIALISED

WSAEFAULT

WSAENETDOWN

WSAEINVAL

WSAEINTR

WSAEINPROGRESS

WSAENOTSOCK

Remarks

A successful WSAStartup call must occur before using
this function.

The Windows Sockets implementation was unable to
allocate needed resources for its internal operations, or
the readfds, writefds, exceptfds, or timeval parameters are
not part of the user address space.

The network subsystem has failed.

The time-out value is not valid, or all three descriptor
parameters were NULL.

A blocking Windows Socket 1.1 call was canceled through
WSACancelBlockingCall.

A blocking Windows Sockets 1.1 call is in progress, or the
service provider is still processing a callback function.

One of the descriptor sets contains an entry that is not a
socket.

The select function is used to determine the status of one or more sockets. For each
socket, the caller can request information on read, write, or error status. The set of
sockets for which a given status is requested is indicated by an fd_set structure. The
sockets contained within thefd_set structures must be associated with a single service
provider. For the purpose of this restriction, sockets are considered to be from the same
service provider if the WSAPROTOCOL_INFO structures describing their protocols have
the same providerld value. Upon return, the structures are updated to reflect the subset
of these sockets that meet the specified condition. The select function returns the
number of sockets meeting the conditions. A set of macros is provided for manipulating
an fd...,..set structure. These maCJOS are compatible with those used in the Berkeley
software, but the underlying representation is completely different.

The parameter readfds identifies the sockets that are to be checked for readability. If the
socket is currently in the listen state, it will be marked as readable if an incoming
connection request has been received such that an accept is guaranteed to complete

204 Volume 1 Winsock and QOS

without blocking. For other sockets, readability means that queued data is available for
reading such that a call to recv, WSARecv, WSARecvFrom, or recvfrom is guaranteed
not to block.

For connection-oriented sockets, readability can also indicate that a request to close the
socket has been received from the peer. If the virtual circuit was closed gracefully, and
all data was received, then a recv will return immediately with zero bytes read. If the
virtual circuit was reset, then a recv will complete immediately with an error code such
as WSAECONNRESET. The presence of OOB data will be checked if the socket option
SO_OOBINLINE has been enabled (see setsockopt).

The parameter writefds identifies the sockets that are to be checked for writability. If a
socket is processing a connect call (nonblocking), a socket is writeable if the connection
establishment successfully completes. If the socket is not processing a connect call,
writability means a send, sendto, or WSASendto are guaranteed to succeed. However,
they can block on a blocking socket if the len parameter exceeds the amount of outgoing
system buffer space available. It is not specified how long these guarantees can be
assumed to be valid, particularly in a multithreaded environment.

The parameter exceptfds identifies the sockets that are to be checked for the presence
of OOB data (see section DECnet Out-of-band data for a discussion of this topic) or any
exceptional error conditions.

Important OOB data will only be reported in this way if the option SO_OOBINLINE is
FALSE. If a socket is processing a connect call (nonblocking), failure of the connect
attempt is indicated in exceptfds (application must then call getsockopt SO_ERROR to
determine the error value to describe why the failure occurred). This document does not
define which other errors will be included.

Any two of the parameters, readfds, writefds, or exceptfds, can be given as NULL. At
least one must be non-NULL, and any non-NULL descriptor set must contain at least
one handle to a socket.

Summary: A socket will be identified in a particular set when select returns if:

readfds:

• If listen has been called and a connection is pending, accept will succeed.

• Data is available for reading (includes OOB data if SO_OOBINLINE is enabled).

• Connection has been closed/reset/terminated.

writefds:

• If processing a connect call (nonblocking), connection has succeeded.

• Data can be sent.

Chapter 8 Winsock 2 Functions 205

exceptfds:

• If processing a connect call (non blocking}, connection attempt failed.

• OOB data is available for reading (only if SO_OOBINLINE is disabled).

Four macros are defined in the header file Winsock2.h for manipulating and checking the
descriptor sets. The variable FD_SETSIZE determines the maximum number of
descriptors in a set. (The default value of FD_SETSIZE is 64, which can be modified by
defining FD_SETSIZE to another value before including Winsock2.h.) Internally, socket
handles in an fd_set structure are not represented as bit flags as in Berkeley Unix. Their
data representation is opaque. Use of these macros will maintain software portability
between different socket environments. The macros to manipulate and check fd_set
contents are:

FD_CLR(s, *set)
Removes the descriptor s from set:

FD_ISSET(s, *set)
Nonzero if s is a member of the set. Otherwise, zero.

FD_SET(s, *set)
Adds descriptor s to set.

FD _ZERO(* set)
Initializes the set to the NULL set.

The parameter time-out controls how long the select can take to complete. If time-out is
a NULL pOinter, select will block indefinitely until at least one descriptor meets the
specified criteria. Otherwise, time-out pOints to a TIMEVAL structure that specifies the
maximum time that select should wait before returning. When select returns, the
contents of the TIMEVAL structure are not altered. If TIMEVAL is initialized to {O, OJ,
select will return immediately; this is used to poll the state of the selected sockets. If
select returns immediately, then the select call is considered nonblocking and the
standard assumptions for nonblocking calls apply. For example, the blocking hook will
not be called, and Windows Sockets will not yield.

Note The select function has no effect on the persistence of socket events registered
with WSAAsyncSelect or WSAEventSelect.

Version: Requires Windows Sockets 2.0.
Header: Declared in Winsock2.h.
Library: Use WS2_32.lib.

206 Volume 1 Winsock and QOS

send

Windows Sockets Programming Considerations Overview, Socket Functions, accept,
connect, recv, recvfrom, send, WSAAsyncSelect, WSAEventSelect, TIMEVAL

The Windows Sockets send function sends data on a connected socket.

Parameters
s

[in] Descriptor identifying a connected socket.

but
[in] Buffer containing the data to be transmitted.

len
[in] Length of the data in but.

flags
[in] Indicator specifying the way in which the call is made.

Return Values
If no error occurs, send returns the total number of bytes sent, which can be less than
the number indicated by len for non blocking sockets. Otherwise, a value of
SOCKET_ERROR is returned, and a specific error code can be retrieved by calling
WSAGetLastError.

Error code

WSANOTINITIALISED

WSAENETDOWN

WSAEACCES

WSAEINTR

Meaning

A successful WSAStartup call must occur before using
this function.

The network subsystem has failed.

The requested address is a broadcast address, but the
appropriate flag was not set. Call setsockopt with the
SO_BROADCAST parameter to allow the use of the
broadcast address.

A blocking Windows Sockets 1.1 call was canceled
through WSACancelBlockingCal1.

Error code

WSAEINPROGRESS

WSAEFAULT

WSAENETRESET

WSAENOBUFS

WSAENOTCONN

WSAENOTSOCK

WSAEOPNOTSUPP

WSAESHUTDOWN

WSAEWOULDBLOCK

WSAEMSGSIZE

WSAEHOSTUNREACH

WSAEINVAL

WSAECONNABORTED

WSAECONNRESET

WSAETIMEDOUT

Chapter 8 Winsock 2 Functions 207

Meaning

A blocking Windows Sockets 1.1 call is in progress, or the
service provider is still processing a callback function.

The bufparameter is not completely contained in a valid
part of the user address space.

The connection has been broken due to the keep-alive
activity detecting a failure while the operation was in
progress.

No buffer space is available.

The socket is not connected.

The descriptor is not a socket.

MSG_OOB was specified, but the socket is not stream
style such as type SOCK_STREAM, OOB data is not
supported in the communication domain associated with
this socket, or the socket is unidirectional and supports
only receive operations.

The socket has been shut down; it is not possible to send
on a socket after shutdown has been invoked with how
set to SO_SEND or SO_BOTH.

The socket is marked as nonblocking and the requested
operation would block.

The socket is message oriented, and the message is
larger than the maximum supported by the underlying
transport.

The remote host cannot be reached from this host at
this time.

The socket has not been bound with bind, or an unknown
flag was specified, or MSG_OOB was specified for a
socket with SO_OOBINLINEenabled.

The virtual circuit was terminated due to a time-out or
other failure. The application should close the socket as it
is no longer usable.

The virtual circuit was reset by the remote side executing a
hard or abortive close. For UPD sockets, the remote host
was unable to deliver a previously sent UDP datagram and
responded with a "Port Unreachable" ICMP packet. The
application should close the socket as it is no longer
usable.

The connection has been dropped, because of a network
failure or because the system on the other end went down
without notice.

208 Volume 1 Winsock and aos

Remarks
The send function is used to write outgoing data on a connected socket. For message
oriented sockets, care must be taken not to exceed the maximum packet size of the
underlying provider, which can be obtained by using getsockopt to retrieve the value of
socket option SO_MAX_MSG_SIZE. If the data is too long to pass atomically through
the underlying protocol, the error WSAEMSGSIZE is returned, and no data is
transmitted.

The successful completion of a send does not indicate that the data was successfully
delivered.

If no buffer space is available within the transport system to hold the data to be
transmitted, send will block unless the socket has been placed in non blocking mode. On
non blocking stream oriented sockets, the number of bytes written can be between 1 and
the requested length, depending on buffer availability on both client and server
machines. The select, WSAAsyncSelect or WSAEventSelect functions can be used to
determine when it is possible to send more data.

Calling send with a zero len parameter is permissible and will be treated by
implementations as successful. In such cases, send will return zero as a valid value. For
message-oriented sockets, a zero-length transport datagram is sent.

The flags parameter can be used to influence the behavior of the function beyond the
options specified for the associated socket. The semantics of this function are
determined by the socket options and the flags parameter. The latter is constructed by
using the bitwise OR operator with any of the following values.

Value Meaning

MSG_DONTROUTE

Notes for IrDA Sockets

Specifies that the data should not be subject to routing. A
Windows Sockets service provider can choose to ignore this
flag.

Sends OOB data (stream-style socket such as
SOCK_STREAM only. Also see DECnet Out-Of-band data for
a discussion of this topic).

The AUrda.h header file must be explicitly included.

Version: Requires Windows Sockets 1.1 or later.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.lib.

Chapter 8 Winsock 2 Functions 209

Windows Sockets Programming Considerations Overview, Socket Functions, recv,
recvfrom, select, sendto, socket, WSAAsyncSelect, WSAEventSelect

sendto
The Windows Sockets sendto function sends data to a specific destination.

Parameters
s

[in] Descriptor identifying a (possibly connected) socket.

but
[in] Buffer containing the data to be transmitted.

len
[in] Length of the data in bilt.

flags
[in] Indicator specifying the way in which the call is made.

to
[in] Optional pOinter to the address of the target socket.

tolen
[in] Size of the address in to.

Return Values
If no error occurs,sendto returns the total number of bytes sent, which can be less than
the number indicated by len. Otherwise, a value of SOCKET_ERROR is returned, and a
specific error code can be retrieved by calling WSAGetLastError.

Error code

WSANOTINITIALISED

WSAENETDOWN

Meaning

A successful WSAStartup call must occur before using this
function.

The network subsystem has failed.

(continued)

210 Volume 1 Winsock and aos

(continued)

Error code

WSAEACCES

WSAEINVAL

WSAEINTR

WSAEINPROGRESS

WSAEFAULT

WSAENETRESET

WSAENOBUFS

WSAENOTCONN

WSAENOTSOCK

WSAEOPNOTSUPP

WSAESHUTDOWN

WSAEWOULDBLOCK

WSAEMSGSIZE

WSAEHOSTUNREACH

WSAECONNABORTED

WSAECONNRESET

Meaning

The requested address is a broadcast address, but the
appropriate flag was not set. Call setsockopt with the
SO_BROADCAST parameter to allow the use of the
broadcast address.

An unknown flag was specified, or MSG_OOB was
specified for a socket with SO_OOBINLINE enabled.

A blocking Windows Sockets 1.1 call was canceled through
WSACancelBlockingCall.

A blocking Windows Sockets 1.1 call is in progress, or the
service provider is still processing a callback function.

The but or to parameters are not part of the user address
space, or the tolen parameter is too small.

The connection has been broken due to keep-alive activity
detecting a failure while the operation was in progress.

No buffer space is available.

The socket is not connected (connection-oriented
sockets only).

The descriptor is not a socket.

MSG_OOB was specified, but the socket is not stream-style
such as type SOCK_STREAM, OOB data is not supported
in the communication domain associated with this socket, or
the socket is unidirectional and supports only receive
operations.

The socket has been shut down; it is not possible to sendto
on a socket after shutdown has been invoked with how set
to SD_SEND or SD_BOTH.

The socket is marked as nonblocking and the requested
operation would block.

The socket is message oriented, and the message is larger
than the maximum supported by the underlying transport.

The remote host cannot be reached from this host at
this time.

The virtual circuit was terminated due to a time-out or other
failure. The application should close the socket as it is no
longer usable.

The virtual circuit was reset by the remote side executing a
hard or abortive close. For UPD sockets, the remote host
was unable to deliver a previously sent UDP datagram and
responded with a "Port Unreachable" ICMP packet. The
application should close the socket as it is no longer usable.

Chapter 8 Winsock 2 Functions 211

Error code Meaning

WSAEADDRNOTAVAIL The remote address is not a valid address, for example,
ADDR_ANY.

WSAEAFNOSUPPORT Addresses in the specified family cannot be used with this
socket.

WSAEDESTADDRREQ A destination address is required.

WSAENETUNREACH The network cannot be reached from this host at this time.

WSAETIMEDOUT The connection has been dropped, because of a network
failure or because the system on the other end went down
without notice.

Remarks
The sendto function is used to write outgoing data on a socket. For message-oriented
sockets, care must be taken not to exceed the maximum packet size of the underlying
subnets, which can be obtained by using getsockopt to retrieve the value of socket
option SO_MAX_MSG_SIZE. If the data is too long to pass atomically through the
underlying protocol, the error WSAEMSGSIZE is returned and no data is transmitted.

The to parameter can be any valid address in the socket's address family, including a
broadcast or any multicast address. To send to a broadcast address, an application must
have used setsockopt with SO_BROADCAST enabled. Otherwise, sendto will fail with
the error code WSAEACCES. For TCP/IP, an application can send to any multicast
address.

If the socket is unbound, unique values are assigned to the local association by the
system, and the socket is then marked as bound. An application can use getsockname
to determine the local socket name in this case.

The successful completion of a sendtodoes not indicate that the data was successfully
delivered.

The sendto function is normally used on a connectionless socket to send a datagram to
a specific peer socket identified by the to parameter. Even if theconnectionless socket
has been previously connected to a specific address, the to parameter overrides the
destination address for that particular datagram only. On aconnection-orientedsocket,
the to and tolen parameters are ignored, making sendto equivalent to send.

For Sockets Using IP (Version 4)
To send a broadcast (on a SOCK_DGRAM only), the address in the to parameter should
be constn,lcted using the speciallP address INADDR_BROADCAST (defined in
Winsock2.h), together with the intended port number. It is generally inadvisable for a
broadcast datagram to exceed the size at which fragmentation can occur, which implies
that the data portion of the datagram (excluding headers) should notexceed 512 bytes.

212 Volume 1 Winsock and aos

If no buffer space is available within the transport system to hold the data to be
transmitted, sendto will block unless the socket has been placed in a nonblocking mode.
On nonblocking, stream oriented sockets, the number of bytes written can be between 1
and the requested length, depending on buffer availability on both the client and server
systems. The select, WSAAsyncSelect or WSAEventSelect function can be used to
determine when it is possible to send more data.

Calling sendto with a len of zero is permissible and will return zero as a valid value. For
message-oriented sockets, a zero-length transport datagram is sent.

The flags parameter can be used to influence the behavior of the function invocation
beyond the options specified for the associated socket. The semantics of this function
are determined by the socket options and the flags parameter. The latter is constructed
by using the bitwise OR operator with any of the following values.

Value Meaning

MSG_DONTROUTE Specifies that the data should not be subject to routing. A
Windows Sockets service provider can choose to ignore
this flag.

Sends OOB data (stream-style socket such as
SOCK_STREAM only. Also see DECnet Out-Of-band data for
a discussion of this topic.)

Version: Requires Windows Sockets 1.1 or later.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.lib.

Windows Sockets Programming Considerations Overview, Socket Functions, recv,
recvfrom, select, send, socket, WSAAsyncSelect, WSAEventSelect

SetService
The SetService function registers or removes from the registry a network service within
one or more name spaces. The function can also add or remove a network service type
within one or more name spaces.

Important The SetService function is obsolete. For the convenience of Windows
Sockets 1.1 developers, the reference material is as follows.

The functions detailed in Protocol-Independent Name Resolution provide equivalent
functionality in Windows Sockets 2.

Parameters
dwNameSpace

Chapter 8 Winsock 2 Functions 213

Name space, or a set of default name spaces, within which the function will operate.

Use one of the following constants to specify a name space.

Value Name space

NS_DEfAUL T A set of default name spaces. The function queries each name space
within this set. The set of default name spaces typically includes all the
name spaces installed on the system. System administrators, however,
can exclude particular name spaces from the set. NS_DEFAULT is the
value that most applications should use for dwNameSpace.

NS_DNS The Domain Name System used in the Internet to resolve the name of
the host.

NS_NDS The NetWare 4 provider.

NS_NETBT The NetBIOS over TCP/IP layer. All Windows NT/windows 2000 and
Windows 95 systems register their computer names with NetBIOS. This
name space is used to convert a computer name to.an IP address that
uses this registration.

NS_SAP The NetWare Service Advertising Protocol. This can access the Netware
bindery, if appropriate. NS_SAP is a dynamic name space that enables the
registration of services.

NS_ TCPIP _HOSTS Lookup valu~ in the <systemroot>\system32\drivers\etc\posts file.

NS_ TCPIP .:.-LOCAL Local TCP/IP name resolution mechanisms, including comparisons against
the local host name and lookup value in the cache of host to IP address
mappings.

214 Volume 1 Winsock and QOS

Value

dwOperation
Specifies the operation that the function will perform. Use one of the following values
to specify an operation:

Meaning

SERVICE_REGISTER Register the network service with the name space. This operation
can be used with the SERVICE_FLAG_DEFER and
SERVICE_FLAG_HARD bit flags.

SERVICE_DEREGISTER Remove from the registry the network service from the name
space. This operation can be used with the
SERVICE_FLAG_DEFER and SERVICE_FLAG_HARD bit flags.

SERVICE_FLUSH Perform any operation that was called with the
SERVICE_FLAG_DEFER bit flag set to one.

Value

dwFlags

Add a service type to the name space.

For this operation, use the ServiceSpecificlnfo member of the
SERVICE_INFO structure pointed to by IpServicelnfo to pass a
SERVICE_TYPE_INFO_ABS structure. You must also set the
ServiceType member of the SERVICE_INFO structure. Other
SERVICE_INFO members are ignored.

Remove a service type, added by a previous call specifying the
SERVICE_ADD_ TYPE operation, from the name space.

Set of bit flags that modify the function's operation. You can set one or more of the
following bit flags:

IpServicelnfo

Name space

This bit flag is valid only if the operation is SERVICE_REGISTER
or SERVICE_DEREGISTER.

If this bit flag is one, and it is valid, the name-space provider
should defer the registration or deregistration operation until a
SERVICE_FLUSH operation is requested.

This bit flag is valid only if the operation is SERVICE_REGISTER
or SERVICE_DEREGISTER.

If this bit flag is one, and it is valid, the name-space provider
updates any relevant persistent store information when the
operation is performed.

For example: Ifthe operation involvesderegistration in a name
space that uses a persistent store, the name-space provider would
remove the relevant persistent store information.

Pointer to a SERVICE_INFO structure that contains information about the network
service or service type.

Chapter 8 Winsock 2 Functions 215

IpServiceAsynclnfo
Reserved for future use. Must be set to NULL.

IpdwStatusFlags
Set of bit flags that receive function status information. The following bit flag is
defined:

Value

SET _SERVICE_
PARTIAL_SUCCESS

Return Values

Meaning

One or more name-space providers were unable to
successfully perform the requested operation.

If the function fails, the return value is SOCKET_ERROR. To get extended error
information, call GetLastError. GetLastError can return the following extended error
value.

Error code

ERROR_ALREADY _
REGISTERED

Meaning

The function tried to register a service that was already
registered.

Version: Requires Windows Sockets 1.1. Not supported on Windows 95. Obsolete for
Windows Sockets 2.0.
Header: Declared in Nspapi.h.
Library: Use Wsock32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

GetService, SERVICE_INFO, SERVICE_ TYPE_INFO_ABS

setsockopt
The Windows Sockets setsockopt function sets a socket option.

216 Volume 1 Winsock and QOS

Parameters
s

[in] Descriptor identifying a socket.

level
[in] Level at which the option is defined; the supported levels include SOL_SOCKET
and IPPROTO_ TCP. See the Windows Sockets 2 Protocol-Specific Annex
(a separate document included with the Platform SDK) for more information on
protocol-specific levels.

optname
[in] Socket option for which the value is to be set.

optval
[in] pointer to the buffer in which the value for the requested option is supplied.

opt/en
[in] Size of the optval buffer.

Return Values
If no error occurs, setsockopt returns zero. Otherwise, a value of SOCKET_ERROR is
returned, and a specific error code can be retrieved by calling WSAGetLastError.

Error code

WSANOTINITIALISED

WSAENETDOWN

WSAEFAULT

WSAEINPROGRESS

WSAEINVAL

WSAENETRESET

WSAENOPROTOOPT

WSAENOTCONN

WSAENOTSOCK

Remarks

Meaning

A successful WSAStartup call must occur before using this
function.

The network subsystem has failed.

optval is not in a valid part of the process address space or
opt/en parameter is too small.

A blocking Windows Sockets 1.1 call is in progress, or the
service provider is still processing a callback function.

level is not valid, or the information in optval is not valid.

Connection has timed out when SO_KEEPALIVE is set.

The option is unknown or unsupported for the specified
provider or socket

Connection has been reset when SO_KEEPALIVE is set.

The descriptor is not a socket.

The setsockopt function sets the current value for a socket option associated with a
socket of any type, in any state. Although options can exist at multiple protocol levels,
they are always present at the uppermost socket level. Options affect socket operations,
such as whether expedited data (OOB data for example) is received in the normal data
stream, and whether broadcast messages can be sent on the socket.

Value

Chapter 8 Winsock 2 Functions 217

Note If the setsockopt function is called before the bind function, TCP/IP options will
not be checked with TCP/IP until the bind occurs. In this case, the setsockopt function
call will always succeed, but the bind function call may fail because of an early
setsockopt failing.

There are two types of socket options: Boolean options that enable or disable a feature
or behavior, and options that require an integer value or structure. To enable a Boolean
option, optva/ points to a nonzero integer. To disable the option optva/ pOints to an
integer equal to zero. The opt/en parameter should be equal to sizeof(int) for Boolean
options. For other options, optva/ points to the an integer or structure that contains the
desired value for the option, and opt/en is the length of the integer or structure.

The following options are supported for setsockopt. For default values of these options,
see the description. The Type identifies the type of data addressed by optva/.

level = SOL_SOCKET
Type

BOOl

Meaning

Allows transmission of broadcast messages
on the socket.

SO _CONDITIONAL_ACCEPT BOOl Enables sockets to delay the
acknowledgment of a connection until after
the WSAAccept condition function is called.

SO_DEBUG

SO_DONTLINGER

SO_DONTROUTE

SO_GROUP _PRIORITY

SO_KEEPALIVE

BOOl

BOOl

BOOl

int

BOOl

structure
LINGER

BOOl

int

Records debugging information.

Does not block close waiting for unsent data
to be sent. Setting this option is equivalent to
setting SO_LINGER with Lonoffset to zero.

Does not route: sends directly to interface.
Not supported on ATM sockets (results in an
error).

Reserved.

Sends keep-alives. Not supported on ATM
sockets (results in an error).

Lingers on close if unsent data is present.

Receives OOB data in the normal data
stream. (See section DECnet Out-Of-band
data for a discussion of this topic.)

Specifies the total per-socket buffer space
reserved for receives. This is unrelated to
SO_MAX_MSG_SIZE or the size of a TCP
window.

(continued)

218 Volume 1 Win sock and QOS

(continued)

Value Type

BOOl

Meaning

Allows the socket to be bound to an address
that is already in use. (See bind.) Not
applicable on ATM sockets.

SO_EXCLUSIVEADDRUSE BOOl Enables a socket to be bound for exclusive
access. Requires Windows NT 4.0 SP4 or
Windows 2000.

level = IPPROTO_TCp1
Value

int

Service
Provider
Dependent

Type

Specifies the total per-socket buffer space
reserved for sends. This is unrelated to
SO_MAX_MSG_SIZE or the size of a TCP
window.

This object stores the configuration
information for the service provider
associated with socket s. The exact format of
this data structure is service provider specific.

Meaning

TCP _NODELA Y BOOl Disables the Nagle algorithm for send
coalescing.

1 Included for backward compatibility with Windows Sockets 1.1.

level = NSPROTOJPX

Note Windows 2000 and Windows NT support alllPX options. Windows 95 and
Windows 98 support only the following:

IPX_PTYPE
IPX_Fll TERPTYPE
IPX_DSTYPE
IPX_RECVHDR
IPX_MAXSIZE (used with the getsockopt function)
IPX_ADDRESS (used with the getsockopt function)

Value Type Meaning

IPX_PTYPE int Sets the IPX packet type.

IPX_FIL TERPTYPE int Sets the receive filter packet type

IPX_STOPFIL TERPTYPE int Stop filtering the filter type set with
IPX_Fll TERTYPE

IPX_DSTYPE int Set the value of the data stream field in
the SPX header on every packet sent.

Value Type

IPX_EXTENDED _ADDRESS BOOl

BOOl

BOOl

IPX_IMMEDIATESPXACK BOOl

BSD options not supported for setsockopt are:

Value Type

SO_ACCEPTCONN BOOl

SO_RCVLOWAT int

SO_RCVTIMEO int

SO_SNDLOWAT int

SO_SNDTIMEO int

SO_TYPE int

SO_CONDITIONAL_ACCEPT

Chapter 8 Winsock 2 Functions 219

Meaning

Set whether extended addressing is
enabled.

Set whether the protocol header is sent
up on all receive headers.

Indicates broadcast packets are likely on
the socket. Set to TRUE by default.
Applications that do not use broadcasts
should set this to FALSE for better
system performance.

Directs SPX connections not to delay
before sending an ACK. Applications
without back-and-forth traffic should set
this to TRUE to increase performance.

Meaning

Socket is listening.

Receives low watermark.

Receives time-out (available in Microsoft
implementation of Windows Sockets 2).

Sends low watermark.

Sends time-out (available in Microsoft
implementation of Windows Sockets 2).

Type of the socket.

Setting this socket option to TRUE delays the acknowledgment of a connection until
after the WSAAccept condition function is called. If FALSE, the connection may be
accepted before the condition function is called, but the connection will be
disconnected if the condition function rejects the call. This option must be set before
calling the listen function, otherwise WSAEINVAL is returned.
SO_CONDITIONAL_ACCEPT is only supported for TCP and ATM.

TCP sets SO_CONDITIONAL_ACCEPT to FALSE by default, and therefore by
default the connection will be accepted before the WSAAccept condition function is
called. When set to TRUE, the conditional decision must be made within the TCP
connection timeout. CF _DEFER connections are still subject to the timeout.

ATM sets SO_CONDITIONAL_ACCEPT to TRUE by default.

220 Volume 1 Winsock and QOS

SO_DEBUG
Windows Sockets service providers are encouraged (but not required) to supply
output debug information if the SO_DEBUG option is set by an application. The
mechanism for generating the debug information and the form it takes are beyond the
scope of this document.

SO_GROUP _PRIORITY
Reserved.

SO_KEEPALIVE
An application can request that a TCP/IP provider enable the use of keep-alive
packets on TCP connections by turning on the SO_KEEPALIVE socket option. A
Windows Sockets provider need not support the use of keep-alives. If it does, the
precise semantics are implementation-specific but should conform to section 4.2.3.6
of RFC 1122: Requirements for Internet Hosts-Communication Layers. If a
connection is dropped as the result of keep-alives the error code WSAENETRESET is
returned to any calls in progress on the socket, and any subsequent calls will fail with
WSAENOTCONN.

SO_LINGER
The SO_LINGER option controls the action taken when unsent data is queued on a
socket and a closesocket is performed. See closesocket for a description of the way
in which the SO_LINGER settings affect the semantics of closesocket. The
application sets the desired behavior by creating a LINGER structure (pOinted to by
the optval parameter) with these members I_onoff and Uinger set appropriately.

SO_REUSEADDR
By default, a socket cannot be bound (see bincl) to a local address that is already in
use. On occasion, however, it can be necessary to reuse an address in this way.
Since every connection is uniquely identified by the combination of local and remote
addresses, there is no problem with having two sockets bound to the same local
address as long as the remote addresses are different. To inform the Windows
Sockets provider that a bind on a socket should not be disallowed because the
desired address is already in use by another socket, the application should set the
SO_REUSEADDR socket option for the socket before issuing the bind. The option is
interpreted only at the time of the bind. It is therefore unnecessary and harmless to
set the option on a socket that is not to be bound to an existing address. Setting or
resetting the option after the bind has no effect on this or any other socket.

SO_RCVBUF and SO_SNDBUF
When a Windows Sockets implementation supports the SO_RCVBUF and
SO_SNDBUF options, an application can request different buffer sizes (larger or
smaller). The call to setsockopt can succeed even when the implementation did not
provide the whole amount requested. An application must call getsockopt with the
same option to check the buffer size actually provided.

PVD_CONFIG
This object stores the configuration information for the service provider associated
with the socket specified in the s parameter. The exact format of this data structure is
specific to each service provider.

Chapter 8 Winsock 2 Functions 221

TCP _NODELAY
The TCP _NODELAY option is specific to TCP/IP service providers. The Nagle
algorithm is disabled if the TCP _NODELAY option is enabled (and vice versa). The
process involves buffering send data when there is unacknowledged data already in
flight or buffering send data until a full-size packet can be sent. It is highly
recommended that TCP/IP service providers enable the Nagle Algorithm by default,
and for the vast majority of application protocols the Nagle Algorithm can deliver
significant performance enhancements. However, for some applications this algorithm
can impede performance, and TCP _NODELAY can be used to turn it off. These are
applications where many small messages are sent, and the time delays between the
messages are maintained. Application writers should not set TCP _NODELA Y unless
the impact of dOing so is well-understood and desired because setting
TCP _NODELA Y can have a significant negative impact on network and application
performance.

Notes for IrDA Sockets
• The AUrda.h header file must be explicitly included.

• IrDA provides the following settable socket option:

Value Type Meaning

Sets lAS attributes

The IRLMP _lAS_SET socket option enables the application to set a single attribute of a
single class in the local lAS. The application specifies the class to set, the attribute, and
attribute type. The application is expected to allocate a buffer of the necessary size for
the passed parameters.

IrDA provides an lAS database that stores IrDA-based information. Limited access to the
lAS database is available through the Windows Sockets 2 interface, but such access is
not normally used by applications, and exists primarily to support connections to non
Windows devices that are not compliant with the Windows Sockets 2 IrDA conventions.

The following structure, lAS_SET, is used with the IRLMP _lAS_SET setsockopt option
to manage the local lAS database:

(continued)

222 Volume 1 Winsock and QOS

(continued)

The following structure, lAS_QUERY, is used with the IRLMP _lAS_QUERY setsockopt
option to query a peer's lAS database:

Many SO_level socket options are not meaningful to IrDA. Only SO_LINGER is
specifically supported.

Version: Requires Windows Sockets 1.1 or later.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.lib.

Chapter 8 Winsock 2 Functions 223

Windows Sockets Programming Considerations Overview, Socket Functions, bind,
getsockopt, ioctlsocket, socket, WSAAsyncSelect, WSAEventSelect

shutdown
The Windows Sockets shutdown function disables sends or receives on a socket.

Parameters
s

[in] Descriptor identifying a socket.

how
[in] Flag that describes what types of operation will no longer be allowed.

Return Values
If no error occurs, shutdown returns zero. Otherwise, a value of SOCKET_ERROR is
returned, and a sp~cific error code can be retrieved by calling WSAGetLastError.

Error code

WSANOTINITIALISED

WSAENETDOWN

WSAEINVAL

WSAEINPROGRESS

WSAENOTCONN

WSAENOTSOCK

Remarks

Meaning

A successful WSAStartup call must occur before
using this function.

The network subsystem has failed.

The how parameter is not valid, or is not consistent
with the socket type. For example, SD_SEND is used
with a UNI_RECV socket type.

A blocking Windows Sockets 1.1 call is in progress,
or the service provider is still processing a callback
function.

The socket is not connected (connection-oriented
sockets only).

The descriptor is not a socket.

The shutdown function is used on all types of sockets to disable reception,
transmission, or both.

224 Volume 1 Winsock and QOS

If the how parameter is SD_RECEIVE, subsequent calls to the recy function on the
socket will be disallowed. This has no effect on the lower protocol layers. For TCP
sockets, if there is still data queued on the socket waiting to be received, or data arrives
subsequently, the connection is reset, since the data cannot be delivered to the user.
For UDP sockets, incoming datagrams are accepted and queued. In no case will an
ICMP error packet be generated.

If the how parameter is SD_SEND, subsequent calls to the send function are disallowed.
For TCP sockets, a FIN will be sent after all data is sent and acknowledged by the
receiver.

Setting howto SD_BOTH disables both sends and receives as described above.

The shutdown function does not close the socket. Any resources attached to the socket
will not be freed until closesocket is invoked.

To assure that all data is sent and received on a connected socket before it is closed, an
application should use shutdown to close connection before calling closesocket. For
example, to initiate a graceful disconnect:

1. Call WSAAsyncSelect to register for FD_CLOSE notification.

2. Call shutdown with how=SD_SEND.

3. When FD_CLOSE received, call recy until zero returned, or SOCKET_ERROR.

4. Call closesocket.

Note The shutdown function does not block regardless of the SO_LINGER setting on
the socket.

An application should not rely on being able to reuse a socket after it has been shut
down. In particular, a Windows Sockets provider is not required to support the use of
connect on a socket that has been shut down.

Notes for ATM
There are important issues associated with connection teardown when using
Asynchronous Transfer Mode (ATM) and Windows Sockets 2. For more information
about these important considerations, see the section titled Notes for A TM in the
Remarks section of the closesocket function reference.

Version: Requires Windows Sockets 1.1 or later.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.lib.

Chapter 8 Winsock 2 Functions 225

Windows Sockets Programming Considerations Overview, Socket Functions, connect,
socket

socket
The Windows Sockets socket function creates a socket that is bound to a specific
service provider.

Parameters
at

[in] Address family specification.

type
[in] Type specification for the new socket.

The following are the only two type specifications supported for Windows Sockets 1.1 :

Type Explanation

SOCK_STREAM Provides sequenced, reliable, two-way, connection-based
byte streams with an OOB data transmission mechanism.
Uses TCP for the Internet address family.

Supports datagrams, which are conne.ctionless, unreliable
buffers of a fixed (typically small) maximum length. Uses
UDP for the Internet address family.

In Windows Sockets 2, many new socket types will be introduced and no longer need
to be specified, since an application can dynamically discover the attributes of each
available transport protocol through the WSAEnumProtocols function. Socket type
definitions appear in Winsock2.h, which will be periodically updated as new socket
types, address families, and protocols are defined.

protocol
[in] Protocol to be used with the socket that is specific to the indicated address family.

Return Va1ues
If no error occurs, socket returns a descriptor referencing the new socket. Otherwise, a
value of INVALID_SOCKET is returned, and a specific error code can be retrieved by
calling WSAGetLastError.

226 Volume 1 Winsock and QOS

Error code

WSANOTINITIALISED

WSAENETDOWN

WSAEAFNOSUPPORT

WSAEINPROGRESS

WSAEMFILE

WSAENOBUFS

WSAEPROTONOSUPPORT

WSAEPROTOTYPE

WSAESOCKTNOSUPPORT

WSAEBADF

Remarks

Meaning

A successful WSAStartup call must occur
before using this function.

The network subsystem or the associated
service provider has failed.

The specified address family is not supported.

A blocking Windows Sockets 1.1 call is in
progress, or the service provider is still
processing a callback function.

No more socket descriptors are available.

No buffer space is available. The socket cannot
be created.

The specified protocol is not supported.

The specified protocol is the wrong type for this
socket.

The specified socket type is not supported in this
address family.

For Windows CE AF _IRDA sockets only: the
shared serial port is busy.

The socket function causes a socket descriptor and any related resources to be
allocated and bound to a specific transport-service provider. Windows Sockets will utilize
the first available service provider that supports the requested combination of address
family, socket type and protocol parameters. The socket that is created will have the
overlapped attribute as a default. For Microsoft operating systems, the Microsoft-specific
socket option, SO_OPENTYPE, defined in Mswsock.h can affect this default. See
Microsoft-specific documentation for a detailed description of SO_OPENTYPE.

Sockets without the overlapped attribute can be created by using WSASocket. All
functions that allow overlapped operation (WSASend, WSARecv,WSASendTo,
WSARecvFrom, and WSAloctl) also support nonoverlapped usage on an overlapped
socket if the values for parameters related to overlapped operation are NULL.

When selecting a protocol and its supporting service provider this procedure will only
choose a base protocol or a protocol chain, not a protocol layer by itself. Unchained
protocol layers are not considered to have partial matches on type or af either. That is,
they do not lead to an error code of WSAEAFNOSUPPORT or
WSAEPROTONOSUPPORT if no suitable protocol is found.

Chapter 8 Winsock 2 Functions 227

Important The manifest constant AF _UNSPEC continues to be defined in the header
file but its use is strongly discouraged, as this can cause ambiguity in interpreting the
value of the protocol parameter.

Connection-oriented sockets such as SOCK_STREAM provide full-duplex connections,
and must be in a connected state before any data can be sent or received on it. A
connection to another socket is created with a connect call. Once connected, data can
be transferred using send and recv calls. When a session has been completed, a
closesocket must be performed.

The communications protocols used to implement a reliable, connection-oriented socket
ensure that data is not lost or duplicated. If data for which the peer protocol has buffer
space cannot be successfully transmitted within a reasonable length of time, the
connection is considered broken and subsequent calls will fail with the error code set to
WSAETIMEDOUT.

Connection less, message-oriented sockets allow sending and receiving of datagrams to
and from arbitrary peers using sendto and recvfrom. If such a socket is connected to a
specific peer, datagrams can besent to that peer using send and can be received only
from this peer using recv.

Support for sockets with type RAW is not required, but service providers are encouraged
to support raw sockets as practicable.

Notes for IrDA Sockets
• The AUrda.h header file must be explicitly included.

• Only SOCK_STREAM is supported; the SOCK_DGRAM type is not supported by
IrDA.

• The protocol parameter is always set to 0 for IrDA.

Note On Windows NTlWindows 2000, raw socket support requires administrative
privileges.

Version: Requires Windows Sockets 1.1 or later.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.lib.

Windows Sockets Programming Considerations Overview, Socket Functions, accept,
bind, connect, getsockname, getsockopt, ioctlsocket, listen, recv, recvfrom,
select, send, sendto, setsockopt, shutdown, WSASocket

228 Volume 1 Winsock and QOS

TransmitFile
The Windows Sockets TransmitFile function transmits file data over a connected socket
handle. This function uses the operating system's cache manager to retrieve the file
data, and provides high-performance file data transfer over sockets.

Note This function is a Microsoft-specific extension to the Windows Sockets
specification. For more information, see Microsoft Extensions and Windows Sockets 2.

Parameters
hSocket

Handle to a connected socket. The TransmitFile function will transmit the file data
over this socket. The socket specified by hSocket must be a connection-oriented
socket; the TransmitFile function does not support datagram sockets. Sockets of
type SOCK_STREAM, SOCK_SEQPACKET, or SOCK_ROM are connection
oriented sockets.

hFile
Handle to the open file that the TransmitFile function transmits. Since operating
system reads the file data sequentially, you can improve caching performance by
opening the handle with FILE_FLAG_SEQUENTIAL_SCAN. The hFile parameter is
optional; if the hFile parameter is NULL, only data in the header and/or the tail buffer
is transmitted; any additional action, such as socket disconnect or reuse, is performed
as specified by the dwFfags parameter.

nNumberOfBytes To Wdte
Number of file bytes to transmit. The TransmitFile function completes when it has
sent the specified number of bytes, or when an error occurs, whichever occurs first.

Set nNumberOfBytesToWrite to zero in order to transmit the entire file.

nNumberOfBytesPerSend
Size of each block of data sent in each send operation, in bytes. This specification is
used by Windows' sockets layer. To select the default send size, set
nNumberOfBytesPerSend to zero.

The nNumberOfBytesPerSend parameter is useful for message protocols that have
limitations on the size of individual send requests.

Chapter 8 Winsock 2 Functions 229

IpOverlapped
Pointer to an OVERLAPPED structure. If the socket handle has been opened as
overlapped, specify this parameter in order to achieve an overlapped (asynchronous)
I/O operation. By default, socket handles are opened as overlapped.

You can use IpOverlappedto specify an offset within the file at which to start the file
data transfer by setting the Offset and OffsetHigh member of the OVERLAPPED
structure. If IpOverlapped is NULL, the transmission of data always starts at the
current byte offset in the file.

When IpOverlapped is not NULL, the overlapped I/O might not finish before
TransmitFile returns. In that case, the TransmitFile function returns FALSE, and
GetLastError returns ERROR_IO_PENDING. This enables the caller to continue
processing while the file transmission operation completes. Windows will set the event
specified by the hEvent member of the OVERLAPPED structure, or the socket
specified by hSocket, to the signaled state upon completion of the data transmission
request.

Ip TransmitBuffers
Pointer to a TRANSMIT _FILE_BUFFERS data structure that contains pointers to data
to send before and after the file data is sent. Set the IpTransmitBuffers parameter to
NULL if you want to transmit only the file data.

dwFlags
The dwFlags parameter has six settings:

TF _DISCONNECT
Start a transport-level disconnect after all the file data has been queued for
transmission.

TF _REUSE_SOCKET
Prepare the socket handle to be reused. When the TransmitFile request completes,
the socket handle can be passed to the AcceptEx function. It is only valid if
TF _DISCONNECT is also specified.

TF _USE_DEFAULT _WORKER
Directs the Windows Sockets service provider to use the system's default thread to
process long TransmitFile requests. The system default thread can be adjusted
using the following registry parameter as a REG_DWORD:

CurrentControISet\Services\afd\Parameters\TransmitWorker

TF_USE_SYSTEM_THREAD
Directs the Windows Sockets service provider to use system threads to process
long TransmitFile requests.

TF_USE_KERNEL_APC
Directs the driver to use kernel Asynchronous Procedure Calls (APCs) instead of
worker threads to process long TransmitFile requests. Long TransmitFile requests
are defined as requests that require more than a single read from the file or a
cache; the request therefore depends on the size of the file and the specified
length of the send packet.

230 Volume 1 Winsock and aos

Use of TF _USE_KERNEL_APC can deliver significant performance benefits. It is
possible (though unlikely), however, that the thread in which context TransmitFile
is initiated is being used for heavy computations; this situation may prevent APCs
from launching. Note that the Windows Sockets kernel mode driver uses normal
kernel APCs, which launch whenever a thread is in a wait state, which differs from
user-mode APCs, which launch whenever a thread is in an alertable wait state
initiated in user mode).

TF _WRITE_BEHIND
Complete the TransmitFile request immediately, without pending. If this flag is
specified and TransmitFile succeeds, then the data has been accepted by the
system but not necessarily acknowledged by the remote end. Do not use this
setting with the TF _DISCONNECT and TF _REUSE_SOCKET flags.

Return Values
If the TransmitFile function succeeds, the return value is TRUE. Otherwise, the return
value is FALSE. To get extended error information, call GetLastError. The function
returns FALSE if an overlapped I/O operation is not complete before TransmitFile
returns. In that case, GetLastError returns ERROR_IO_PENDING.

Remarks
The Windows NT ServerIWindows 2000 Server optimizes the TransmitFile function for
high performance. The Windows NT WorkstationlWindows 2000 Professional optimizes
the function for minimum memory and resource utilization. Expect better performance
results when using TransmitFile on Windows NT ServerIWindows 2000 Server.

Note TransmitFile is not functional on transports that perform their own buffering.
Transports with the TDI_SERVICE_INTERNAL_BUFFERING flag set, such as ADSP,
perform their own buffering. Because TransmitFile achieves its performance gains by
sending data directly from the file cache. Transports that run out of buffer space on a
particular connection are not handled by TransmitFile, and as a result of running out of
buffer space on the connection, TransmitFile returns STATUS_DEVICE~NOT_READY.

Version: Requires Windows Sockets 1.1 or later. A Microsoft-specific extension. Not
supported on Windows 95.
Header: Declared in Mswsock.h.
Library: Use Mswsock.lib.

OVERLAPPED, TRANSMIT _FILE_BUFFERS

Chapter 8 Winsock 2 Functions 231

W5AAccept
The Windows Sockets WSAAccept function conditionally accepts a connection based
on the return value of a condition function, provides QOS flow specifications, and allows
the transfer of connection data.

Parameters
s

[in] Descriptor identifying a socket that is listening for connections after a call to the
listen function.

addr
[out] Optional pOinter to a buffer that receives the address of the connecting entity, as
known to the communications layer. The exact format of the addr parameter is
determined by the address family established when the socket was created.

addr/en
[in/out] Optional pointer to an integer that contains the length of the address addr.

IpfnCondition
[in] Procedure instance address of the optional, application-supplied condition function
that will make an accepVreject decision based on the caller information passed in as
parameters.

dwCallbackData
[in] Callback data passed back to the application as the value of the dwCallbackData
parameter of the condition function. This parameter is not interpreted by Windows
Sockets.

Return Values
If no error occurs, WSAAccept returns a value of type SOCKET that is a descriptor for
the accepted socket. Otherwise, a value of INVALID_SOCKET is returned, and a
specific error code can be retrieved by calling WSAGetLastError.

The integer referred to by addrlen initially contains the amount of space pointed to by
addr. On return it will contain the actual length in bytes of the address returned.

232 Volume 1 Winsock and QOS

Error code

WSANOTINITIALISED

WSAECONNREFUSED

WSAENETDOWN

WSAEFAULT

WSAEINTR

WSAEINPROGRESS

WSAEINVAL

WSAEMFILE

WSAENOBUFS

WSAENOTSOCK

WSAEOPNOTSU PP

WSAEWOULDBLOCK

WSAEACCES

Remarks

Meaning

A successful WSAStartup call must occur before using
this function.

The connection request was forcefully rejected as
indicated in the return value of the condition function
(CF _REJECT).

The network subsystem has failed.

The addrlen parameter is too small or the addr or
IpfnCondition are not part of the user address space.

A blocking Windows Sockets 1.1 call was canceled
through WSACancelBlockingCal1.

A blocking Windows Sockets 1.1 call is in progress.

listen was not invoked prior to WSAAccept, the return
value of the condition function is not a valid one, or any
case where the specified socket is in an invalid state.

The queue is nonempty upon entry to WSAAccept and
there are no socket descriptors available.

No buffer space is available.

The descriptor is not a socket.

The referenced socket is not a type that supports
connection-oriented service.

The acceptance of the connection request was deferred
as indicated in the return value of the condition function
(CF _DEFER).

The socket is marked as nonblocking and no connections
are present to be accepted.

The connection request that was offered has timed out or
been withdrawn.

The WSAAccept function extracts the first connection on the queue of pending
connections on socket 5, and checks it against the condition function, provided the
condition function is specified (that is, not NULL). If the condition function returns
CF _ACCEPT, WSAAccept creates a new socket. The newly created socket has the
same properties as socket 5 including asynchronous events registered with
WSAAsyncSelect or with WSAEventSelect. If the condition function returns
CF _REJECT, WSAAccept rejects the connection request. The condition function runs in
the same thread as this function does, and should return as soon as possible. If the
decision cannot be made immediately, the condition function should return CF _DEFER
to indicate that no decision has been made, and no action about this connection request

Chapter 8 Winsock 2 Functions 233

should be taken by the service provider. When the application is ready to take action on
the connection request, it will invoke WSAAccept again and return either CF _ACCEPT
or CF _REJECT as a return value from the condition function.

A socket in default mode (blocking) will block until a connection is present when an
application calls WSAAccept and no connections are pending on the queue.

A socket in non blocking mode (blocking) fails with the error WSAEWOULDBLOCK when
an application calls WSAAccept and no connections are pending on the queue. After
WSAAccept succeeds and returns a new socket handle, the accepted socket cannot be
used to accept any more connections. The original socket remains open and listens for
new connection requests.

The addr parameter is a result parameter that is filled in with the address of the
connecting entity, as known to the communications layer. The exact format of the addr
parameter is determined by the address family in which the communication is occurring.
The addrlen is a value-result parameter; it should initially contain the amount of space
pointed to by addr. On return, it will contain the actual length (in bytes) of the address
returned. This call is used with connection-oriented socket types such as
SOCK_STREAM. If addr and/or addrlen are equal to NULL, then no information about
the remote address of the accepted socket is returned. Otherwise, these two parameters
will be filled in regardless of whether the condition function is specified or whatit returns.

A prototype of the condition function is as follows:

The ConditionFunc is a placeholder for the application-supplied callback function. The
actual condition function must reside in a DLL or application module. It is exported in the
module definition file. Use MakeProclnstance to get a procedure-instance address for
the callback function.

The IpCaIJerld parameter pOints to a WSABUF structure that contains the address of the
connecting entity, where its len parameter is the length of the buffer in bytes, and its buf
parameter is a pointer to the buffer. The IpCaIJerData is a value parameter that contains
any user data. The information in these parameters is sent along with the connection
request. If no caller identification or caller data is available, the corresponding
parameters will be NULL. Many network protocols do not support connect-tirne caller
data. Most conventional network protocols can be expected to support caller.identifier
Information at connection-request time. The buf portion of the WSABUF pOinted to by

234 Volume 1 Winsock and QOS

IpCallerld pOints to a SOCKADDR. The SOCKADDR structure is interpreted according
to its address family (typically by casting the SOCKADDR to some type specific to the
address family).

The IpSQOS parameter references the FLOWSPEC structures for socket s specified by
the caller, one for each direction, followed by any additional provider-specific
parameters. The sending or receiving flow specification values will be ignored as
appropriate for any unidirectional sockets. A NULL value for indicates that there is no
caller supplied aos and that no negotiation is possible. A non-NULL IpSQOS pOinter
indicates that a aos negotiation is to occur or that the provider is prepared to accept the
aos request without negotiation.

The IpGQOS parameter is reserved, and should be NULL.

The IpCalleeld is a value parameter that contains the local address of the connected
entity. The but portion of the WSABUF pointed to by IpCalleeld points to a SOCKADDR.
The SOCKADDR structure is interpreted according to its address family (typically by
casting the SOCKADDR to some type specific to the address family).

The IpCalleeData is a result parameter used by the condition function to supply user
data back to the connecting entity. The IpCalleeData->len initially contains the length of
the buffer allocated by the service provider and pointed to by IpCalleeData->buf. A value
of zero means passing user data back to the caller is not supported. The condition
function should copy up to IpCalleeData->len bytes of data into IpCalleeData->buf, and
then update IpCalleeData->len to indicate the actual number of bytes transferred. If no
user data is to be passed back to the caller, the condition function should set
IpCalleeData->len to zero. The format of all address and user data is specific to the
address family to which the socket belongs.

The dwCallbackData parameter value passed to the condition function is the value
passed as the dwCallbackData parameter in the original WSAAccept call. This value is
interpreted only by the Windows Socket version 2 client. This allows a client to pass
some context information from the WSAAccept call site through to the condition
function. This also provides the condition function with any additional information
required to determine whether to accept the connection or not. A typical usage is to pass
a (suitably cast) pointer to a data structure containing references to application-defined
objects with which this socket is associated.

Version: Requires Windows Sockets 2.0.
Header; Declared in Winsock2.h.
Library: Use Ws2_32.lib.

Windows Sockets Programming Considerations Overview, Microsoft Windows-Specific
Extension Functions, accept, bind, connect, getsockopt, listen, select, socket,
WSAAsyncSelect, WSAConnect

Chapter 8 Winsock 2 Functions 235

WSAAddressToString
The Windows Sockets WSAAddressToString function converts all components of a
SOCKADDR structure into a human-readable string representation of the address.

This is intended to be used mainly for display purposes. If the caller wants the translation
to be done by a particular provider, it should supply the corresponding
WSAPROTOCOL_INFO structure in the IpProtocollnfo parameter.

Parameters
IpsaAddress

{in] Pointer to the SOCKADDR structure to translate into a string.

dwAddressLength
{in] Length of the address in SOCKADDR, which may vary in size with different
protocols.

IpProtocollnfo
[in] (Optional) The WSAPROTOCOL_INFO structure for Ii particular provider. If this is
NULL, the call is routed to the provider of the first protocol supporting the address
family indicated in IpsaAddress.

IpszAddressString
[in] Buffer that receives the human-readable address string.

IpdwAddressStringLength
[in/out] On input, the length of the AddressString buffer. On output,returns the length
of the string actually copied into the buffer. If the supplied buffer is not large enough,
the function fails with a specific error of WSAEFAUL T and this parameter is updated
with the required size in bytes.

Return Values
If no error occurs, WSAAddressToString returns a value of zero. Otherwise, the value
SOCKET_ERROR is returned, and a specific error number can be retrieved by calling

. WSAGetLastError.

236 Volume 1 Winsock and QOS

Error code

WSAEFAULT

WSAEINVAL

WSANOTINITIALIZED

WSANOT
ENOUGH MEMORY

Meaning

The specified IpcsAddress, IpProtocollnfo,
IpszAddressString are not all in the address space of the
process, or the IpszAddressString buffer is too small. Pass
in a larger buffer.

The specified address is not a valid socket address, or
there was no transport provider supporting its indicated
address family.

The Winsock 2 DLL has not been initialized. The
application must first call WSAStartup before calling any
Windows Sockets functions.

There was insufficient memory to perform the operation.

Version: Requires Windows Sockets 2.0.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

WSAAsyncGetHostBy Addr
The Windows Sockets WSAAsyncGetHostByAddr function asynchronously retrieves
host information that corresponds to an address.

Parameters
hWnd

[in] Handle of the window that will receive a message when the asynchronous request
completes.

wMsg
[in] Message to be received when the asynchronous request completes.

Chapter 8 Winsock 2 Functions 237

addr
[in] Pointer to the network address for the host. Host addresses are stored in network
byte order.

len
[in] Length of the address.

type
[in] Type of the address.

but
[out] Pointer to the data area to receive the HOSTENT data. The data area must be
larger than the size of a HOSTENT structure because the supplied data area is used
by Windows Sockets to contain a HOSTENT structure and all of the data referenced
by members of the HOSTENT structure. A buffer of MAXGETHOSTSTRUCT bytes is
recommended.

buflen
[in] Size of data area for the but parameter.

Return Values
The return value specifies whether or not the asynchronous operation was successfully
initiated. It does not imply success or. failure of the operation itself.

If no error occurs, WSAAsyncGetHostByAddr returns a nonzero value of type
HANDLE that is the asynchronous task handle (not to be confused with a Windows
HTASK) for the request. This value can be used in two ways. It can be used to cancel
the operation using WSACanceJAsyncRequest, or it can be used to match up
asynchronous operations and completion messages by examining the wParam message
parameter.

If the asynchronous operation could not be initiated, WSAAsyncGetHostByAddr
returns a zero value, and a specific error number can be retrieved by calling
WSAGetLastError.

The following error codes can be set when an application window receives a message.
As described above, they can be extracted from the IParam in the reply message using
the WSAGETASYNCERROR macro.

Error code

WSAENETDOWN

WSAENOBUFS

WSAEFAULT

WSAHOST _NOT_FOUND

WSATRY _AGAIN

Meaning

The network subsystem has failed.

Insufficient buffer space is available.

addr or but is not in a valid part of the process
addr~ss space.

Authoritative answer host not found.

Nonauthoritative host not found, or SERVERFAIL.

(continued)

238 Volume 1 Winsock and QOS

(continued)

Error code

WSANO_RECOVERY

WSANO_DATA

Meaning

Nonrecoverable errors, FORM ERR, REFUSED,
NOTIMP.

Valid name, no data record of requested type.

The following errors can occur at the time of the function call, and indicate that the
asynchronous operation could not be initiated.

Error Code Meaning

WSANOTINITIALISED

WSAENETDOWN

WSAEINPROGRESS

WSAEWOULDBLOCK

Remarks

A successful WSAStartup call must occur before
using this function.

The network subsystem has failed.

A blocking Windows Sockets 1.1 call is in progress,
or the service provider is still processing a callback
function.

The asynchronous operation cannot be scheduled at
this time due to resource or other constraints within
the Windows Sockets implementation.

The WSAAsyncGetHostByAddr function is an asynchronous version of
gethostbyaddr. It is used to retrieve the host name and address information that
corresponds to a network address. Windows Sockets initiates the operation and returns
to the caller immediately, passing back an opaque, asynchronous task handle that the
application can use to identify the operation. When the operation is completed, the
results (if any) are copied into the buffer provided by the caller and a message is sent to
the application's window.

When the asynchronous operation has completed, the application window indicated by
the hWnd parameter receives message in the wMsg parameter. The wParam parameter
contains the asynchronous task handle as returned by the original function call. The high
16 bits of IParam contain any error code. The error code can be any error as defined in
Winsock2.h. An error code of zero indicates successful completion of the asynchronous
operation. .

On successful completion, the buffer supplied to the original function call contains a
HOSTENT structure. To access the members ofthis structure, the original buffer
address is cast to a HOSTENT structure pOinter and accessed as appropriate.

If the error code is WSAENOBUFS, the size of the buffer specified by buflen in the
original call was too small to contain all the resulting information. In this case, the low 16
bits of IParam contain the size of buffer required to supply all the requisite information. If
the application decides that the partial data is inadequate, it can reissue the
WSAAsyncGetHostByAddr function call with a buffer large enough to receive all the
desired information (that is, no smaller than the low 16 bits of IParam).

Chapter 8 Winsock 2 Functions 239

The buffer supplied to this function is used by Windows Sockets to construct a structure
together with the contents of data areas referenced by members of the same HOSTENT
structure. To avoid the WSAENOBUFS error, the application should provide a buffer of
at least MAXGETHOSTSTRUCT bytes (as defined in Winsock2.h).

The error code and buffer length should be extracted from the IParam using the macros
WSAGETASYNCERROR and WSAGETASYNCBUFLEN, defined in Winsock2.h as:

The use of these macros will maximize the portability of the source code for the
application.

Version: Requires Windows Sockets 1.1 or later.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.lib.

Windows Sockets Programming Considerations Overview, Microsoft Windows-Specific
Extension Functions, gethostbyaddr, HOSTENT, WSACancelAsyncRequest

WSAAsyncGetHostByName
The Windows Sockets WSAAsyncGetHostByName function asynchronously retrieves
host information corresponding to a host name.

Parameters
hWnd

[in] Handle of the window that will receive a message when the asynchronous request
completes.

wMsg
[in] Message to be received when the asynchronous request completes.

name
. [in] Pointer to the null-terminated name of the host.

240 Volume 1 Winsock and QOS

but
[out] Pointer to the data area to receive the HOSTENT data. The data area must be
larger than the size of a HOSTENT structure because the supplied data area is used
by Windows Sockets to contain a HOSTENT structure and all of the data referenced
by members of the HOSTENT structure. A buffer of MAXGETHOSTSTRUCT bytes is
recommended.

buflen
[in] Size of data area for the but parameter.

Return Values
The return value specifies whether or not the asynchronous operation was successfully
initiated. It does not imply success or failure of the operation itself.

If no error occurs, WSAAsyncGetHostByName returns a nonzero value of type
HANDLE that is the asynchronous task handle (not to be confused with a Windows
HT ASK) for the request. This value can be used in two ways. It can be used to cancel
the operation using WSACancelAsyncRequest, or it can be used to match up
asynchronous operations and completion messages by examining the wParam message
parameter.

If the asynchronous operation could not be initiated, WSAAsyncGetHostByName
returns a zero value, and a specific error number can be retrieved by calling
WSAGetLastError.

The following error codes can be set when an application window receives a message.
As described above, they can be extracted from the IParam in the reply message using
the WSAGETASYNCERROR macro.

Error code

WSAENETDOWN

WSAENOBUFS

WSAEFAULT

WSAHOST _NOT_FOUND

WSATRY _AGAIN

WSANO_RECOVERY

Meaning

The network subsystem has failed.

Insufficient buffer space is available.

The name or but parameter is not in a valid part of
the process address space.

Authoritative answer host not found.

A nonauthoritative host not found, or SERVERFAIL.

Nonrecoverable errors, FORMERR, REFUSED,
NOTIMP.

Valid name, no data record of requested type.

The following errors can occur at the time of the function call, and indicate that the
asynchronous operation could not be initiated.

Error code

WSANOTINITIALISED

WSAENETDOWN

WSAEINPROGRESS

WSAEWOULDBLOCK

Remarks

Chapter 8 Winsock 2 Functions 241

Meaning

A successful WSAStartup call must occur before
using this function.

The network subsystem has failed.

A blocking Windows Sockets 1.1 call is in progress,
or the service provider is still processing a callback
function.

The asynchronous operation cannot be scheduled at
this time due to resource or other constraints within
the Windows Sockets implementation.

The WSAAsyncGetHostByName function is an asynchronous version of
gethostbyname, and is used to retrieve host name and address information
corresponding to a host name. Windows Sockets initiates the operation and returns to
the caller immediately, passing back an opaque asynchronous task handle that which
the application can use to identify the operation. When the operation is completed, the
results (if any) are copied into the buffer provided by the caller and a message is sent to
the application's window.

When the asynchronous operation has completed, the application window indicated by
the hWnd parameter receives message in the wMsg parameter. The wParam parameter
contains the asynchronous task handle asreturned by the original function call. The high
16 bits of IParam contain any error code. The error code can be any error as defined in
Winsock2.h. An error code of zero indicates successful completion of the asynchronous
operation.

On successful completion, the buffer supplied to the original function call contains a
HOSTENT structure. To access the elements of this structure, the original buffer address
should be cast to a HOSTENT structure pOinter and accessed as appropriate.

If the error code is WSAENOBUFS, the size of the buffer specified by buflen in the
original call was too small to contain all the resulting information. In this case, the low
16 bits of IParam contain the size of buffer required to supply all the requisite
information. If the application decides that the partial data is inadequate, it can reissue
the WSAAsyncGetHostByAddr function call with a buffer large enough to receive all
the desired information (that is, no smaller than the low 16 bits of IParam).

The buffer supplied to this function is used byWindows Sockets to construct a
HOSTENT structure together with the contents of data areas referenced by members of
the same HOSTENT structure. To avoid the WSAENOBUFS error, the application
should provide a buffer of at least MAXGETHOSTSTRUCT bytes (as defined in
Winsock2.h).

The error code and buffer length should be extracted from the IParam using the macros
WSAGETASYNCERROR and WSAGETASYNCBUFLEN, defined in Winsock2.h as:

242 Volume 1 Winsock and QOS

The use of these macros will maximize the portability of the source code for the
application.

WSAAsyncGetHostByName is guaranteed to resolve the string returned by a
successful call to gethostname.

Version: Requires Windows Sockets 1.1 or later.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.lib.

Windows Sockets Programming Considerations Overview, Microsoft Windows-Specific
Extension Functions, gethostbyname, HOSTENT, WSACancelAsyncRequest

WSAAsyncGetProtoByName
The Windows Sockets WSAAsyncGetProtoByName function gets protocol information
corresponding to a protocol name asynchronously.

Parameters
hWnd

[in] Handle of the window that will receive a message when the asynchronous request
completes.

wMsg
[in] Message to be received when the asynchronous request completes.

name
[in] Pointer to the null-terminated protocol name to be resolved.

Chapter 8 Win sock 2 Functions 243

but
[out] Pointer to the data area to receive the PROTOENT data. The data area must be
larger than the size of a PROTOENT structure because the data area is used by
Windows Sockets to contain a PROTOENT structure and all of the data that is
referenced by members of the PROTOENT structure. A buffer of
MAXGETHOSTSTRUCT bytes is recommended.

buflen
[out] Size of data area for the but parameter.

Return Values
The return value specifies whether or not the asynchronous operation was successfully
initiated. It does not imply success or failure of the operation itself.

If no error occurs, WSAAsyncGetProtoByName returns a nonzero value of type
HANDLE that is the asynchronous task handle for the request (not to be confused with a
Windows HTASK). This value can be used in two ways. It can be used to cancel the
operation using WSACancelAsyncRequest, or it can be used to match up
asynchronous operations and completion messages, by examining the wParam
message parameter.

If the asynchronous operation could not be initiated, WSAAsyncGetProtoByName
returns a zero value, and a specific error number can be retrieved by calling
WSAGetLastError.

The following error codes can be set when an application window receives a message.
As described above, they can be extracted from the IParam in the reply message using
the WSAGETASYNCERROR macro.

Error code

WSAENETDOWN

WSAENOBUFS

WSAEFAULT

WSAHOST _NOT_FOUND

WSATRY _AGAIN

WSANO_RECOVERY

Meaning

The network subsystem has failed.

Insufficient buffer space is available.

The name or but parameter is not in a valid part of
the process address space.

Authoritative answer protocol not found.

A nonauthoritative protocol not found,or server
failure.

Nonrecoverable errors, the protocols database is not
accessible.

Valid name, no data record of requested type.

The following errors can occur at the time of the function call, and indicate that the
asynchronous operation could not be initiated.

244 Volume 1 Winsock and QOS

Error code

WSANOTINITIALISED

WSAENETDOWN

WSAEINPROGRESS

WSAEWOULDBLOCK

Remarks

Meaning

A successful WSAStartup call must occur before
using this function.

The network subsystem has failed.

A blocking Windows Sockets 1.1 call is in progress,
or the service provider is still processing a callback
function.

The asynchronous operation cannot be scheduled at
this time due to resource or other constraints within
the Windows Sockets implementation.

The WSAAsyncGetProtoByName function is an asynchronous version of
getprotobyname. It is used to retrieve the protocol name and number from the Windows
Sockets database corresponding to a given protocol name. Windows Sockets initiates
the operation and returns to the caller immediately, passing back an opaque,
asynchronous task handle that the application can use to identify the operation. When
the operation is completed, the results (if any) are copied into the buffer provided by the
caller and a message is sent to the application's window.

When the asynchronous operation has completed, the application window indicated by
the hWnd parameter receives message in the wMsg parameter. The wParam parameter
contains the asynchronous task handle as returned by the original function call. The high
16 bits of IParam contain any error code. The error code can be any error as defined in
Winsock2.h. An error code of zero indicates successful completion of the asynchronous
operation.

On successful completion, the buffer supplied to the original function call contains a
PROTOENT structure. To access the members of this structure, the original buffer
address should be cast to a PROTOENT structure pOinter and accessed as appropriate.

If the error code is WSAENOBUFS, the size of the buffer specified by buflen in the
original call was too small to contain all the resulting information. In this case, the low 16
bits of IParam contain the size of buffer required to supply all the requisite information. If
the application decides that the partial data is inadequate, it can reissue the
WSAAsyncGetHostByAddr function call with a buffer large enough to receive all the
desired information (that is, no smaller than the low 16 bits of IParam).

The buffer supplied to this function is used by Windows Sockets to construct a
PROTOENT structure together with the contents of data areas referenced by members
of the same PROTOENT structure. To avoid the WSAENOBUFS error noted above, the
application should provide a buffer of at least MAXGETHOSTSTRUCT bytes (as defined
in Winsock2.h).

The error code and buffer length should be extracted from the IParam using the macros
WSAGETASYNCERROR and WSAGETASYNCBUFLEN, defined in Winsock2.h as:

Chapter 8 Winsock 2 Functions 245

The use of these macros will maximize the portability of the source code for the
application.

Version: Requires Windows Sockets 1.1 or later.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.lib.

Windows Sockets Programming Considerations Overview, Microsoft Windows-Specific
Extension Functions, getprotobyname, WSACancelAsyncRequest

WSAAsyncGetProtoByNumber
The Windows Sockets WSAAsyncGetProtoByNumber function asynchronously
retrieves protocol information corresponding to a protocol number.

Parameters
hWnd

[in] Handle of the window that will receive a message when the asynchronous request
completes.

wMsg
[in] Message to be received when the asynchronous request completes.

number
[in] Protocol number to be resolved, in host byte order.

but
[out] Pointer to the data area to receive the PROTOENT data. The data area must be
larger than the size of a PROTOENT structure because the data area is used by
Windows Sockets to contain a PROTOENT structure and all of the data that is
referenced by members of the PROTOENT structure. A buffer of
MAXGETHOSTSTRUCT bytes is recommended.

246 Volume 1 Winsock and aos

but/en
[in] Size of data area for the but parameter.

Return Values
The return value specifies whether or not the asynchronous operation was successfully
initiated. It does not imply success or failure of the operation itself.

If no error occurs, WSAAsyncGetProtoByNumber returns a nonzero value of type
HANDLE that is the asynchronous task handle for the request (not to be confused with a
Windows HTASK). This value can be used in two ways. It can be used to cancel the
operation using WSACancelAsyncRequest, or it can be used to match up
asynchronous operations and completion messages, by examining the wParam
message parameter.

If the asynchronous operation could not be initiated, WSAAsyncGetProtoByNumber
returns a zero value, and a specific error number can be retrieved by calling
WSAGetLastError.

The following error codes can be set when an application window receives a message.
As described above, they can be extracted from the IParam in the reply message using
the WSAGETASYNCERROR macro.

Error code

WSAENETDOWN

WSAENOBUFS

WSAEFAULT

WSAHOST_NOT_FOUND

WSATRY _AGAIN

WSANO_RECOVERY

Meaning

The network subsystem has failed.

Insufficient buffer space is available.

The but parameter is not in a valid part of the process
address space.

Authoritative answer protocol not found.

Nonauthoritative protocol not found, or server failure.

Nonrecoverable errors, the protocols database is not
accessible.

Valid name, no data record of requested type.

The following errors can occur at the time of the function call, and indicate that the
asynchronous operation could not be initiated.

Error code

WSANOTINITIALISED

WSAENETDOWN

WSAEINPROGRESS

WSAEWOULDBLOCK

Meaning

A successful WSAStartup call must occur before using
this function.

The network subsystem has failed.

A blocking Windows Sockets 1.1 call is in progress, or
the service provider is still processing a callback function.

The asynchronous operation cannot be scheduled at this
time due to resource or other constraints within the
Windows Sockets implementation.

Chapter 8 Winsock 2 Functions 247

Remarks
The WSAAsyncGetProtoByNumber function is an asynchronous version of
getprotobynumber, and is used to retrieve the protocol name and number
corresponding to a protocol number. Windows Sockets initiates the operation and
returns to the caller immediately, passing back an opaque, asynchronous task handle
that the application can use to identify the operation. When the operation is completed,
the results (if any) are copied into the buffer provided by the caller and a message is
sent to the application's window.

When the asynchronous operation has completed, the application window indicated by
the hWnd parameter receives message in the wMsg parameter. The wParam parameter
contains the asynchronous task handle as returned by the original function call. The high
16 bits of IParam contain any error code. The error code can be any error as defined in
Winsock2.h. An error code of zero indicates successful completion of the asynchronous
operation.

On successful completion, the buffer supplied to the original function call contains a
PROTOENT structure. To access the members of this structure, the original buffer
address is cast to a PROTOENT structure pOinter and accessed as appropriate.

If the error code is WSAENOBUFS, the size of the buffer specified by buflen in the
original call was too small to contain all the resulting information. In this case, the low 16
bits of IParam contain the size of buffer required to supply all the requisite information. If
the application decides that the partial data is inadequate, it can reissue the
WSAAsyncGetHostByAddr function call with a buffer large enough to receive all the
desired information (that is, no smaller than the low 16 bits of IParam).

The buffer supplied to this function is used by Windows Sockets to construct a
PROTOENT structure together with the contents of data areas referenced by members
of the same PROTOENT structure. To avoid the WSAENOBUFS error noted above, the
application should provide a buffer of at least MAXGETHOSTSTRUCT bytes (as defined
in Winsock2.h).

The error code and buffer length should be extracted from the IParam using the macros
WSAGETASYNCERROR and WSAGETASYNCBUFLEN, defined in Winsock2.h as:

The use of these macros will maximi.ze the portability of the source code for the
application.· .

Version: Requires Windows Sockets 1.1 or later.
Header: Declared in Winsock2.h.
Library: Use WS2_32.lib.

248 Volume 1· Winsock and QOS

Windows Sockets Programming Considerations Overview, Microsoft Windows-Specific
Extension Functions, getprotobynumber, WSACancelAsyncRequest

WSAAsyncGetServByName
The Windows Sockets WSAAsyncGetServByName function asynchronously retrieves
service information corresponding to a service name and port.

Parameters
hWnd

[in] Handle of the window that should receive a message when the asynchronous
request completes.

wMsg
[in] Message to be received when the asynchronous request completes.

name
[in] Pointer to a null-terminated service name.

proto
[in] Pointer to a protocol name. This can be NULL, in which case
WSAAsyncGetServByName will search for the first service entry for which s_name
or one of the s_a/iases matches the given name. Otherwise,
WSAAsyncGetServByName matches both name and proto.

but
[out] Pointerto the data area to receive the SERVENT data. The data area must be
larger than the size of a SERVENT structure because the data area supplied is used
by Windows Sockets to contain a SERVENT structure and all of the data that is
referenced by members of the SERVENT structure. A buffer of
MAXGETHOSTSTRUCT bytes is recommended.

buf/en
[in] Size of data area for the but parameter.

Chapter 8 Winsock 2 Functions 249

Return Values
The return value specifies whether or not the asynchronous operation was successfully
initiated. It does not imply success or failure of the operation itself.

If no error occurs, WSAAsyncGetServByName returns a nonzero value of type
HANDLE that is the asynchronous task handle for the request (not to be confused with a
Windows HTASK). This value can be used in two ways. It can be used to cancel the
operation using WSACancelAsyncRequest, or it can be used to match up
asynchronous operations and completion messages, by examining the wParam
message parameter.

If the asynchronous operation could not be initiated, WSAAsyncServByName returns a
zero value, and a specific error number can be retrieved by calling WSAGetLastError.

The following error codes can be set when an application window receives a message.
As described above, they can be extracted from the IParam in the reply message using
the WSAGET ASYNCERROR macro.

Error code

WSAENETDOWN

WSAENOBUFS

WSAEFAULT

WSAHOST _NOT_FOUND

WSATRY _AGAIN

WSANO_RECOVERY

Meaning

The network subsystem has failed.

Insufficient buffer space is available.

but is not in a valid part of the process address
space.

Authoritative answer host not found.

Nonauthoritative service not found, or server failure.

Nonrecoverable errors, the services database is not
accessible.

Valid name, no data record of requested type.

The following errors can occur at the time of the function call, and indicate that the
asynchronous operation could not be initiated.

Error code

WSANOTINITIALISED

WSAENETDOWN

WSAEINPROGRESS

WSAEWOULDBLOCK

Meaning

A successful WSAStartup call must occur before
using this function.

The network subsystem has failed.

A blocking Windows Sockets 1.1 call is in progress,
or the service provider is still processing a callback
function.

The asynchronous operation cannot be scheduled at
this time due to resource or other constraints within
the Windows Sockets implementation.

250 Volume 1 Winsock and aos

Remarks
The WSAAsyncGetServByName function is an asynchronous version of
getservbyname and is used to retrieve service information corresponding to a service
name. Windows Sockets initiates the operation and returns to the caller immediately,
passing back an opaque, asynchronous task handle that the application can use to
identify the operation. When the operation is completed, the results (if any) are copied
into the buffer provided by the caller and a message is sent to the application's window.

When the asynchronous operation has completed, the application window indicated by
the hWnd parameter receives message in the wMsg parameter. The wParam parameter
contains the asynchronous task handle as returned by the original function call. The high
16 bits of IParam contain any error code. The error code can be any error as defined in
Winsock2.h. An error code of zero indicates successful completion of the asynchronous
operation.

On successful completion, the buffer supplied to the original function call contains a
SERVENT structure. To access the members of this structure, the original buffer
address should be cast to a SERVENT structure pointer and accessed as appropriate.

If the error code is WSAENOBUFS, the size of the buffer specified by buflen in the
original call was too small to contain all the resulting information. In this case, the low 16
bits of IParam contain the size of buffer required to supply all the requisite information. If
the application decides that the partial data is inadequate, it can reissue the
WSAAsyncGetHostByAddr function call with a buffer large enough to receive all the
desired information (that is, no smaller than the low 16 bits of IParam).

The buffer supplied to this function is used by Windows Sockets to construct a
SERVENT structure together with the contents of data areas referenced by members of
the same SERVENT structure. To avoid the WSAENOBUFS error, the application
should provide a buffer of at least MAXGETHOSTSTRUCT bytes (as defined in
Winsock2.h).

The error code and buffer length should be extracted from the IParam using the macros
WSAGETASYNCERROR and WSAGETASYNCBUFLEN, defined in Winsock2.h as:

The use of these macros will maximize the portability of the source code for the
application.

Version: Requires Windows Sockets 1.1 or later.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.1ib.

Chapter 8 Winsock 2 Functions 251

Windows Sockets Programming Considerations Overview, Microsoft Windows-Specific
Extension Functions, getservbyname, WSACancelAsyncRequest

WSAAsyncGetServByPort
The Windows Sockets WSAAsyncGetServByPort function gets service information
corresponding to a port and protocol asynchronously.

Parameters
hWnd

[in] Handle of the window that should receive a message when the asynchronous
request completes.

wMsg
[in] Message to be received when the asynchronous request completes.

port
[in] Port for the service, in network byte order.

proto
[in] Pointer to a protocol name. This can be NULL, in which case
WSAAsyncGetServByPort will search for the first service entry for which s_port
match the given port. Otherwise, WSAAsyncGetServByPort matches both port and
proto.

but
[out] Pointer to the data area to receive the SERVENT data. The data area must be
larger than the size of a SERVENT structure because the data area supplied is used
by Windows Sockets to contain a SERVENT structure and all of the data that is
referenced by members of the SERVENT structure. A buffer of
MAXGETHOSTSTRUCT bytes is recommended.

buflen
[in] Size of data area for the but parameter.

252 Volume 1 Winsock and QOS

Return Values
The return value specifies whether or not the asynchronous operation was successfully
initiated. It does not imply success or failure of the operation itself.

If no error occurs, WSAAsyncGetServByPort returns a nonzero value of type HANDLE
that is the asynchronous task handle for the request (not to be confused with a Windows
HTASK). This value can be used in two ways. It can be used to cancel the operation
using WSACancelAsyncRequest, or it can be used to match up asynchronous
operations and completion messages, by examining the wParam message parameter.

If the asynchronous operation could not be initiated, WSAAsyncGetServByPort returns
a zero value, and a specific error number can be retrieved by calling WSAGetLastError.

The following error codes can be set when an application window receives a message.
As described above, they can be extracted from the IParam in the reply message using
the WSAGET ASYNCERROR macro.

Error code

WSAENETDOWN

WSAENOBUFS

WSAEFAULT

WSAHOST _NOT_FOUND

WSATRY _AGAIN

WSANO_RECOVERY

WSANO_DATA

Meaning

The network subsystem has failed.

Insufficient buffer space is available.

proto or but is not in a valid part of the process address
space.

Authoritative answer port not found.

Nonauthoritative port not found, or server failure.

Nonrecoverable errors, the services database is not
accessible.

Valid name, no data record of requested type.

The following errors can occur at the time of the function call, and indicate that the
asynchronous operation could not be initiated.

Error code

WSANOTINITIALISED

WSAENETDOWN

WSAEINPROGRESS

WSAEWOULDBLOCK

Meaning

A successful WSAStartup call must occur before using
this function.

The network subsystem has failed.

A blocking Windows Sockets 1.1 call is in progress, or the
service provider is still processing a callback function.

The asynchronous operation cannot be scheduled at this
time due to resource or other constraints within the
Windows Sockets implementation.

Chapter 8 Winsock 2 Functions 253

Remarks
The WSAAsyncGetServByPort function is an asynchronous version of getservbyport,
and is used to retrieve service information corresponding to a port number. Windows
Sockets initiates the operation and returns to the caller immediately, passing back an
opaque, asynchronous task handle that the application can use to identify the operation.
When the operation is completed, the results (if any) are copied into the buffer provided
by the caller and a message is sent to the application's window.

When the asynchronous operation has completed, the application window indicated by
the hWnd parameter receives message in the wMsg parameter. The wParam parameter
contains the asynchronous task handle as returned by the original function call. The high
16 bits of IParam contain any error code. The error code can be any error as defined in
Winsock2.h. An error code of zero indicates successful completion of the asynchronous
operation.

On successful completion, the buffer supplied to the original function call contains a
SERVE NT structure. To access the members of this structure, the original buffer
address should be cast to a SERVENT structure pOinter and accessed as appropriate.

If the error code is WSAENOBUFS, the size of the buffer specified by but/en in the
original call was too small to contain all the resulting information. In this case, the low 16
bits of IParam contain the size of buffer required to supply all the requisite information. If
the application decides that the partial data is inadequate, it can reissue the
WSAAsyncGetHostByAddr function call with a buffer large enough to receive all the
desired information (that is, no smaller than the low 16 bits of IParam).

The buffer supplied to this function is used by Windows Sockets to construct a
SERVENT structure together with the contents of data areas referenced by members of
the same SERVENT structure. To avoid the WSAENOBUFS error, the application
should provide a buffer of at least MAXGETHOSTSTRUCT bytes (as defined in
Winsock2.h).

The error code and buffer length should be extracted from the IParam using the macros
WSAGETASYNCERROR and WSAGETASYNCBUFLEN, defined in Winsock2.h as:

The use of these macros will maximize the portability of the source code for the
application.

Version: Requires Windows Sockets 1.1 or later.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.lib.

254 Volume 1 Winsock and QOS

Windows Sockets Programming Considerations Overview, Microsoft Windows-Specific
Extension Functions, getservbyport, WSACancelAsyncRequest

WSAAsyncSelect
The Windows Sockets WSAAsyncSelect function requests Windows message-based
notification of network events for a socket.

Parameters
s

[in] Descriptor identifying the socket for which event notification is required.

hWnd
[in] Handle identifying the window that will receive a message when a network event
occurs.

wMsg
[in] Message to be received when a network event occurs.

IEvent
[in] Bitmask that specifies a combination of network events in which the application is
interested.

Return Values
If the WSAAsyncSelect function succeeds, the return value is zero provided the
application's declaration of interest in the network event set was successful. Otherwise,
the value SOCKET_ERROR is returned, and a specific error number can be retrieved by
calling WSAGetLastError.

Error code

WSANOTINITIALISED

WSAENETDOWN

WSAEINVAL

Meaning

A successful WSAStartup call must occur before using this
function.

The network subsystem has failed.

Indicates that one of the specified parameters was invalid
such as the window handle not referring to an existing
window, or the specified socket is in an invalid state.

Error code

WSAEINPROGRESS

WSAENOTSOCK

Chapter 8 Winsock 2 Functions 255

Meaning

A blocking Windows Sockets 1.1 call is in progress, or the
service provider is still processing a callback function.

The descriptor is not a socket.

Additional error codes can be set when an application window receives a message. This
error code is extracted from the IParam in the reply message using the
WSAGETSELECTERROR macro. Possible error codes for each network event are
shown in the following table.

Event: FD_CONNECT
Error code

WSAEAFNOSUPPORT

WSAECONNREFUSED

WSAENETUNREACH

WSAEFAULT

WSAEINVAL

WSAEISCONN

WSAEMFILE

WSAENOBUFS

WSAENOTCONN

WSAETIMEDOUT

Event: FD _CLOSE
Error code

WSAENETDOWN

WSAECONNRESET

WSAECONNABORTED

Meaning

Addresses in the specified family cannot be used with
this socket.

The attempt to connect was forcefully rejected.

The network cannot be reached from this host at this
time.

The name/en parameter is incorrect.

The socket is already bound to an address.

The socket is already connected.

No more file descriptors are available.

No buffer space is available. The socket cannot be
connected.

The socket is not connected.

Attempt to connect timed out without establishing a
connection.

Meaning

The network subsystem has failed.

The connection was reset by the remote side.

The connection was terminated due to a time-out or
other failure.

256 Volume 1 Winsock and aos

Event: FD _READ

Event: FD _WRITE

Event: FD_OOB

Event: FD_ACCEPT

Event: FD _ QOS

Event: FD_GROUP _QOS

Event: FD_ADDRESS_L1ST_CHANGE
Error code Meaning

WSAENETDOWN The network subsystem has failed.

Event: FD_ROUTINGJNTERFACE_CHANGE
Error code

WSAENETUNREACH

WSAENETDOWN

Remarks

Meaning

The specified destination is no longer reachable.

The network subsystem has failed.

The WSAAsyncSelect function is used to request that Ws2_32.dll should send a
message to the window hWndwhenever it detects any of the network events specified
by the IEvent parameter. The message that should be sent is specified by the wMsg
parameter. The socket for which notification is required is identified by the 5 parameter.

The WSAAsyncSelect function automatically sets socket 5 to nonblocking mode,
regardless of the value of IEvent. See the ioct/socket functions for information on how
to set the non blocking socket back to blocking mode.

The IEvent parameter is constructed by using the bitwise OR operator with any of the
values specified in the following table.

Value

FD_READ

FD_WRITE

FD_OOB

FD_ACCEPT

FD_CONNECT

Meaning

Wants to receive notification of readiness for reading.

Wants to receive notification of readiness for writing.

Wants to receive notification of the arrival of OOB data.

Wants to receive notification of incoming connections.

Wants to receive notification of completed connection or
multipoint join operation.

Wants to receive notification of socket closure.

Wants to receive notification of socket Quality of Service
(QOS) changes.

Value

FD_GROUP _OOS

FD_ROUTING
INTERFACE_CHANGE

FD_ADDRESS_
LIST_CHANGE

Chapter 8 Winsock 2 Functions 257

Meaning

Reserved.

Wants to receive notification of routing interface changes
for the specified destination(s).

Wants to receive notification of local address list changes
for the socket's protocol family.

Issuing a WSAAsyncSelect for a socket cancels any previous WSAAsyncSelect or
WSAEventSelect for the same socket. For example, to receive notification for both
reading and writing, the application must call WSAAsyncSelect with both FD_READ
and FD_WRITE, as follows:

It is not possible to specify different messages for different events. The following code
will not work; the second call will cancel the effects of the first, and only FD_WRITE
events will be reported with message wMsg2:

To cancel all notification indicating that Windows Sockets should send no further
messages related to network events on the socket, IEvent is set to zero.

Although WSAAsyncSelect immediately disables event message posting for the socket
in this instance, it is possible that messages could be waiting in the application's
message queue. Therefore, the application must be prepared to receive network event
messages even after cancellation. Closing a socket with closesocket also cancels
WSAAsyncSelect message sending, but the same caveat about messages in the
queue still applies.

The socket created by the accept function has the same properties as the listening
socket used to accept it. Consequently, WSAAsyncSelect events set for the listening
socket also apply to the accepted socket. For example, if a listening socket has
WSAAsyncSelect events FD_ACCEPT, FD_READ, and FD_WRITE, then any socket
accepted on that listening socket will also have FD_ACCEPT, FD_READ, and
FD.:...WRITE events with the same wMsgvalue used for messages. If a different wMsgor
events are desired, the application should call WSAAsyncSelect, passing the accepted
socket and the desired new information.

When one of the nominated network events occurs on the specified socket s, the
application's window hWnd receives message wMsg. The wParam parameter identifies
the socket on which a network event has occurred. The low word of IParam specifies the
network event that has occurred. The high word of IParam contains any error code. The
error code be any error as defined in Winsock2.h.

258 Volume 1 Winsock and OOS

Note Upon receipt of an event notification message, the WSAGetLastError function
cannot be used to check the error value because the error value returned can differ from
the value in the high word of IParam.

The error and event codes can be extracted from the IParam using the macros
WSAGETSELECTERROR and WSAGETSELECTEVENT, defined in Winsock2.h as:

The use of these macros will maximize the portability of the source code for the
application.

The possible network event codes that can be returned are shown in the following table.

Value Meaning

FD_READ

FD_WRITE

FD_OOB

FD_ACCEPT

FD_CONNECT

FD_CLOSE

FD_QOS

FD_GROUP _QOS

FD_ROUTING
INTERFACE_CHANGE

FD_ADDRESS_
LIST_CHANGE

Socket s ready for reading.

Socket s ready for writing.

OOB data ready for reading on socket s.

Socket s ready for accepting a new incoming connection.

Connection or multipoint join operation initiated on socket s
completed.

Connection identified by socket s has been closed.

Quality of Service associated with socket s has changed.

Reserved.

Local interface that should be used to send to the specified
destination has changed.

The list of addresses of the socket's protocol family to which
the application client can bind has changed.

Although WSAAsyncSelect can be called with interest in multiple events, the application
window will receive a single message for each network event.

As in the case of the select function, WSAAsyncSelect will frequently be used to
determine when a data transfer operation (send or recv) can be issued with the
expectation of immediate success. Nevertheless, a robust application must be prepared
for the possibility that it can receive a message and issue a Windows Sockets 2 call that
returns WSAEWOULDBLOCK immediately. For example, the following sequence of
events is possible:

1. Data arrives on socket s; Windows Sockets 2 posts WSAAsyncSelect message

2. Application processes some other message

3. While processing, application issues an ioctlsocket(s, FIONREAD ...) and notices
that there is data ready to be read

Chapter 8 Winsock 2 Functions 259

4. Application issues a recv(s, ...) to read the data

5. Application loops to process next message, eventually reaching the
WSAAsyncSelect message indicating that data is ready to read

6. Application issues recv(s, ...), which fails with the error WSAEWOULDBLOCK.

Other sequences are possible.

The Ws2_32.dll will not continually flood an application with messages for a particular
network event. Having successfully posted notification of a particular event to an
application window, no further message(s) for that network event will be posted to the
application window until the application makes the function call that implicitly reenables
notification of that network event.

Event

FD_READ

FD_WRITE

FD_OOB

FD_ACCEPT

FD_CONNECT

FD_CLOSE

FD_OOS

FD_GROUP _OOS

FD_ROUTING_
INTERFACE_CHANGE

FD_ADDRESS_
LIST_CHANGE

Reenabling function

recv, recvfrom, WSARecv, or WSARecvFrom.

send, sendto, WSASend, or WSASendTo.

recv, recvfrom, WSARecv, or WSARecvFrom.

accept or WSAAccept unless the error code is
WSATRY _AGAIN indicating that the condition function
returned CF _DEFER.

NONE.

NONE.

WSAloctl with commandSIO_GET _O~S.

Reserved.

WSAloctl with command
SIO_ROUTING_INTERFACE_CHANGE.

WSAloctl with command SIO_ADDRESS_L1ST _CHANGE.

Any call to the reenabling routine, even one that fails, results in reenabling of message
posting for the relevant event.

For FD_READ, FD_OOB, and FD_ACCEPT events, message posting is level-triggered.
This means that if the reenabling routine is called and the relevant condition is still met
after the call, a WSAAsyncSelect message is posted to the application. This allows an
application to be event-driven and not be concerned with the amount of data that arrives
at anyone time. Consider the following sequence:

1. Network transport stack receives 100 bytes of data on socket s and causes Windows
Sockets 2 to post an FD-,READ message.

2. The application issues recv(s, buffptr, 50, 0) to read 50 bytes.

3. Another FD_READ message is posted since there is still data to be read.

260 Volume 1 Winsock andQOS

With these semantics, an application need not read all available data in response to an
FD_READ message-a single recv in response to each FD_READ message is
appropriate. If an application issues multiple recv calls in response to a single
FD_READ, it can receive multiple FD_READ messages. Such an application can need
to disable FD_READ messages before starting the recv calls by calling
WSAAsyncSelect with the FD_READ event not set.

The FD_OOS and FD_GROUP _OOS events are considered edge triggered. A message
will be posted exactly once when a quality of service change occurs. Further messages
will not be forthcoming until either the provider detects a further change in quality of
service or the application renegotiates the quality of service for the socket.

The FD_ROUTING_INTERFACE_CHANGE message is posted when the local interface
that should be used to reach the destination specified in WSAloctl with
SIO_ROUTING_INTERFACE_CHANGE changes after such 10CTL has been issued.

The FD_ADDRESS_LlST _CHANGE message is posted when the list of addresses to
which the application can bind changes after WSAloctl with
SIO_ADDRESS_LlST _CHANGE has been issued.

If any event has already happened when the application calls WSAAsyncSelect or
when the reenabling function is called, then a message is posted as appropriate. For
example, consider the following sequence:

1. An application calls listen.

2. A connect request is received but not yet accepted.

3. The application calls WSAAsyncSelect specifying that it wants to receive
FD_ACCEPT messages for the socket. Due to the perSistence of events, Windows
Sockets 2 posts an FD_ACCEPT message immediately.

The FD_WRITE event is handled slightly differently. An FD_WRITE message is posted
when a socket is first connected with connect or WSAConnect (after FD_CONNECT, if
also registered) or accepted with accept or WSAAccept, and then after a send
operation fails with WSAEWOULDBLOCK and buffer space becomes available.
Therefore, an application can assume that sends are possible starting from the first
FD_WRITE message and lasting until a send returns WSAEWOULDBLOCK. After such
a failure the application will be notified that sends are again possible with an FD_WRITE
message.

The FD_OOB event is used only when a socket is configured to receive OOB data
separately. (See section DECnet Out-Of-band data for a discussion of this topic.) If the
socket is configured to receive OOB data inline, the OOB (expedited) data is treated as
normal data and the application should register an interest in, and will receive,
FD_READ events, not FD_OOB events. An application can set or inspect the way in
which OOB data is to be handled by using setsockopt or getsockopt for the
SO_OOBINLINE option.

Chapter 8 Winsock 2 Functions 261

The error code in an FD_CLOSE message indicates whether the socket close was
graceful or abortive. If the error code is zero, then the close was graceful; if the error
code is WSAECONNRESET, then the socket's virtual circuit was reset. This only applies
to connection-oriented sockets such as SOCK_STREAM.

The FD_CLOSE message is posted when a close indication is received for the virtual
circuit corresponding to the socket. In TCP terms, this means that the FD_CLOSE is
posted when the connection goes into the TIME WAIT or CLOSE WAIT states. This
results from the remote end performing a shutdown on the send side or a closesocket.
FD_CLOSE should only be posted after all data is read from a socket, but an application
should check for remaining data upon receipt of FD_CLOSE to avoid any possibility of
losing data.

Please note your application will receive ONLY an FD_CLOSE message to indicate
closure of a virtual circuit, and only when all the received data has been read if this is a
graceful close. It will not receive an FD_READ message to indicate this condition.

The FD_OOS message is posted when any parameter in the flow specification
associated with socket s has changed. Applications should use WSAloctl with command
SIO_GET _OOS to get the current OOS for socket s.

The FD_ROUTING_INTERFACE_CHANGE and FD_ADDRESS_LlST _CHANGE events
are considered edge triggered as well. A message will be posted exactly once when a
change occurs after the application has requested the notification by issuing WSAloctl
with SIO_ROUTING_INTERFACE_CHANGE or SIO_ADDRESS_LlST _CHANGE
correspondingly. Further messages will not be forthcoming until the application reissues
the 10CTL and another change is detected since the 10CTL has been issued.

Here is a summary of events and conditions for each asynchronous notification
message .

• FD_READ:

1. When WSAAsyncSelect is called, if there is data currently available to receive.

2. When data arrives, if FD_READ is not already posted.

3. After recy or recyfrom is called (with or without MSG_PEEK), if data is still
available to receive.

Note When setsockopt SO_OOBINLINE is enabled, data includes both normal
data and OOB data in the instances noted above .

• FD_WRITE:

1. When WSAAsyncSelect called, if a send or sendto is possible.

2. After connect or accept called, when connection established.

3. After send or sendto fail with WSAEWOULDBLOCK, when send or sendto are
likely to succeed.

4. After bind on a connectionless socket. FD_WRITE mayor may not occur at this
time (implementation-dependent). In any case, a connection less socket is always
writeable immediately after a bind operation.

262 Volume 1 Winsock and QOS

• FD_OOB: Only valid when setsockopt SO_OOBINLINE is disabled (default).

1. When WSAAsyncSelect called, if there is OOB data currently available to receive
with the MSG_OOB flag.

2. When OOB data arrives, if FD_OOB not already posted.

3. After recv or recvfrom called with or without MSG_OOB flag, if OOB data is still
available to receive.

• FD_ACCEPT:
1. When WSAAsyncSelect called, if there is currently a connection request available

to accept.

2. When a connection request arrives, if FD_ACCEPT not already posted.

3. After accept called, if there is another connection request available to accept.

• FD_CONNECT:

1. When WSAAsyncSelect called, if there is currently a connection established.

2. After connect called, when connection is established (even when connect
succeeds immediately, as is typical with a datagram socket).

3. After calling WSAJoinLeaf, when join operation completes.

4. After connect, WSAConnect, or WSAJoinLeaf was called with a nonblocking,
connection-oriented socket. The initial operation returned with a specific error of
WSAEWOULDBLOCK, but the network operation went ahead. Whether the
operation eventually succeeds or not, when the outcome has been determined,
FD_CONNECT happens. The client should check the error code to determine
whether the outcome was successful or failed.

• FD_CLOSE: Only valid on connection-oriented sockets (for example,
SOCK_STREAM)

1. When WSAAsyncSelect called, if socket connection has been closed.

2. After remote system initiated graceful close, when no data currently available to
receive (note: if data has been received and is waiting to be read when the remote
system initiates a graceful close, the FD_CLOSE is not delivered until all pending
data has been read).

3. After local system initiates graceful close with shutdown and remote system has
responded with "End of Data" notification (for example, TCP FIN), when no data
currently available to receive.

4. When remote system terminates connection (for example, sent TCP RST), and
IParam will contain WSAECONNRESET error value.

Note FD_CLOSE is not posted after closesocket is called.

• FD_QOS:
1. When WSAAsyncSelect called, if the quality of service associated with the socket

has been changed.

2. After WSAloctl with SIO_GET _OOS called, when the quality of service is changed.

Chapter 8 Winsock 2 Functions 263

• FD_GROUP _QOS Reserved.

• FD_ROUTING_INTERFACE_CHANGE:

After WSAloctl with SIO_ROUTING_INTERFACE_CHANGE called, when the local
interface that should be used to reach the destination specified in the IOCTL changes.

• FD_ADDRESS_LIST _CHANGE:

After WSAloctl with SIO_ADDRESS_LlST _CHANGE called, when the list of local
addresses to which the application can bind changes.

Version: Requires Windows Sockets 1.1 or later.
Header: Declared in Winsock2.h.
Library: Use WS2_32.lib.

Windows Sockets Programming Considerations Overview, Microsoft Windows-Specific
Extension Functions, select, WSAEventSelect

WSACancelAsyncRequest
The Windows Sockets WSACancelAsyncRequest function cancels an incomplete
asynchronous operation.

Parameters
hAsyncTaskHandle

[in] Handle that specifies the asynchronous operation to be canceled.

Return Values
The value returned by WSACancelAsyncRequest is zero if the operation was
successfully canceled. Otherwise, the value SOCKET_ERROR is returned, and a
specific error number can be retrieved by calling WSAGetLastError.

Error code Meaning

WSANOTINITIALISED

WSAENETDOWN

WSAEINVAL

A successful WSAStartupcall must occur before using this
function.

The network subsystem has failed ..

Indicates that the specified asynchronous task handle was
invalid.

(continued)

264 Volume 1 Winsock and QOS

(continued)

Error code

WSAEINPROGRESS

WSAEALREADY

Meaning

A blocking Windows Sockets 1.1 call is in progress, or the
service provider is still processing a callback function.

The asynchronous routine being canceled has already
completed.

Note It is unclear whether the application can usefully distinguish between
WSAEINVAL and WSAEALREADY, since in both cases the error indicates that there is
no asynchronous operation in progress with the indicated handle. [Trivial exception: zero
is always an invalid asynchronous task handle.] The Windows Sockets specification
.does not prescribe how a conformant Windows Sockets provider should distinguish
between the two cases. For maximum portability, a Windows Sockets application should
treat the two errors as equivalent.

Remarks
The WSACancelAsyncRequest function is used to cancel an asynchronous operation
that was initiated by one of the WSAAsyncGetXByY functions such as
WSAAsyncGetHostByName. The operation to be canceled is identified by the
hAsyncTaskHandle parameter, which should be set to the asynchronous task handle as
returned by the initiating WSAAsyncGetXByY function.

An attempt to cancel an existing asynchronous WSAAsyncGetXByY operation can fail
with an error code of WSAEALREADY for two reasons. First, the original operation has
already completed and the application has dealt with the resultant message. Second, the
original operation has already completed but the resultant message is still waiting in the
application window queue.

Version: Requires Windows Sockets 1.1 or later.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.lib.

Windows Sockets Programming Considerations Overview, Microsoft Windows-Specific
Extension Functions, WSAAsyncGetHostByAddr, WSAAsyncGetHostByName,
WSAAsyncGetProtoByName, WSAAsyncGetProtoByNumber,
WSAAsyncGetServByName, WSAAsyncGetServByPort

Chapter 8 Winsock 2 Functions 265

WSACancel Blocki ngCal1
The WSACancelBlockingCall function has been removed in compliance with the
Windows Sockets 2 specification, revision 2.2.0.

The function is not exported directly by the Ws2_32.dll and Windows Sockets 2
applications should not use this function. Windows Sockets 1.1 applications that call this
function are still supported through the Winsock.dll and Wsock32.dll.

Blocking hooks are generally used to keep a single-threaded GUI application responsive
during calls to blocking functions. Instead of using blocking hooks, an applications
should use a separate thread (separate from the main GUI thread) for network activity.

Version: Requires Windows Sockets 1.1. Obsolete for Windows Sockets 2.0.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.lib.

WSACleanup
The Windows Sockets WSACleanup function terminates use of the Ws2_32.dll.

Parameters
This function has no parameters.

Return Values
The return value is zero if the operation was successful. Otherwise, the value
SOCKET_ERROR is returned, and a specific error number can be retrieved by calling
WSAGetLastError.

Attempting to call WSACleanup from within a blocking hook and then failing to check the
return code is a common programming error in Windows Socket 1.1 applications. If an
application needs to quit while a blocking call is outstanding, the application must first
cancel the blocking call with WSACancelBlockingCall then issue the WSACleanup call
once control has been returned to the application.

In a multithreaded environment, WSACleanup terminates Windows Sockets operations
for all threads.

266 Volume 1 Winsock and aos

Error code

WSANOTINITIALISED

WSAENETDOWN

WSAEINPROGRESS

Remarks

Meaning

A successful WSAStartup call must occur before using this
function.

The network subsystem has failed.

A blocking Windows Sockets 1.1 call is in progress, or the
service provider is still processing a callback function.

An application or DLL is required to perform a successful WSAStartup call before it can
use Windows Sockets services. When it has completed the use of Windows Sockets, the
application or DLL must call WSACleanup to deregister itself from a Windows Sockets
implementation and allow the implementation to free any resources allocated on behalf
of the application or DLL. Any pending blocking or asynchronous calls issued by any
thread in this process are canceled without posting any notification messages or without
signaling any event objects. Any pending overlapped send and receive operations
(WSASendlWSASendTolWSARecvlWSARecvFrom with an overlapped socket) issued
by any thread in this process are also canceled without setting the event object or
invoking the completion routine, if specified. In this case, the pending overlapped
operations fail with the error status WSA_OPERATION_ABORTED.

Sockets that were open when WSACleanup was called are reset and automatically
deallocated as if closesocket were called; sockets that have been closed with
closesocket but that still have pending data to be sent can be affected-the pending
data can be lost if the Ws2_32.dll is unloaded from memory as the application exits. To
insure that all pending data is sent, an application should use shutdown to close the
connection, then wait until the close completes before calling closesocket and
WSACleanup. All resources and internal state, such as queued unposted-posted
messages, must be deallocated so as to be available to the next user.

There must be a call to WSACleanup for every successful call to WSAStartup made by
a task. Only the final WSACleanup for that task does the actual cleanup; the preceding
calls simply decrement an internal reference count in the Ws2_32.dll.

Version: Requires Windows Sockets 1.1 or later.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.lib.

Windows Sockets Programming Considerations Overview, Microsoft Windows-Specific
Extension Functions, closesocket, shutdown, WSAStartup

Chapter 8 Winsock 2 Functions 267

WSACloseEvent
The Windows Sockets WSACloseEvent function closes an open event object handle.

Parameters
hEvent

[in] Object handle identifying the open event.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
WSAGetLastError.

Error code

WSANOTINITIALISED

WSAENETDOWN

WSAEINPROGRESS

WSA_INV ALI D_HANDLE

Remarks

Meaning

A successful WSAStartup call must occur before
using this function.

The network subsystem has failed.

A blocking Windows Sockets 1.1 call is in progress,
or the service provider is still processing a callback
function.

The hEvent is not a valid event object handle.

The handle to the event object is closed so that further references to this handle will fail
with the error WSA_INVALlD_HANDLE.

Version: Requires Windows Sockets 2.0.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.1ib.

Windows Sockets Programming Considerations Overview, Microsoft Windows-Specific
Extension Functions, WSACreateEvent, WSAEnumNetworkEvents,
WSAEventSelect, WSAGetOverlappedResult, WSARecv, WSARecvFrom,
WSAResetEvent, WSASend, WSASendTo, WSASetEvent,
WSAWaitForMultipleEvents

268 Volume 1 Winsock and QOS

WSAConnect
The Windows Sockets WSAConnect function establishes a connection to another
socket application, exchanges connect data, and specifies needed quality of service
based on the supplied FLOWSPEC structure.

Parameters
s

[in] Descriptor identifying an unconnected socket.

name
[in] Name of the socket in the other application to which to connect.

name/en
[in] Length of the name.

/pCallerData
[in] Pointer to the user data that is to be transferred to the other socket during
connection establishment.

/pCalleeData
[out] Pointer to the user data that is to be transferred back from the other socket
during connection establishment.

/pSOOS
[in] Pointer to the FLOWSPEC structures for socket s, one for each direction.

/pGOOS
[in] Reserved. Should be NULL.

Return Values
If no error occurs, WSAConnect returns zero. Otherwise, it returns SOCKET_ERROR,
and a specific error code can be retrieved by calling WSAGetLastError. On a blocking
socket, the return value indicates success or failure of the connection attempt.

With a nonblocking socket, the connection attempt cannot be completed immediately. In
this case, WSAConnect will return SOCKET_ERROR, and WSAGetLastError will
return WSAEWOULDBLOCK; the application could therefore:

• Use select to determine the completion of the connection request by checking if the
socket is writeable.

Chapter 8 Winsock 2 Functions 269

• If your application is using WSAAsyncSelect to indicate interest in connection
events, then your application will receive an FD_CONNECT notification when the
connect operation is complete (successful or not).

• If your application is using WSAEventSelect to indicate interest in connection events,
then the associated event object will be signaled when the connect operation is
complete (successful or not).

For a nonblocking socket, until the connection attempt completes all subsequent calls to
WSAConnect on the same socket will fail with the error code WSAEALREADY.

If the return error code indicates the connection attempt failed (that is,
WSAECONNREFUSED, WSAENETUNREACH, WSAETIMEDOUT) the application can
call WSAConnect again for the same socket.

Error code

WSANOTINITIALISED

WSAENETDOWN

WSAEADDRINUSE

WSAEINTR

WSAEINPROGRESS

WSAEALREADY

WSAEADDRNOTAVAIL

WSAEAFNOSUPPORT

WSAECONNREFUSED

WSAEFAULT

WSAEINVAL

WSAEISCONN

WSAENETUNREACH

WSAENOBUFS

Meaning

A successful WSAStartup call must occur before using this
function.

The network subsystem has failed.

The local address of the socket is already in use and the socket
was not marked to allow address reuse with SO_REUSEADDR.
This error usually occurs during the execution of bind, but could
be delayed until this function if the bind function operates on a
partially wildcard address (involving ADDR_ANY) and if a specific
address needs to be "committed" at the time of this function.

The (blocking) Windows Socket 1.1 call was canceled through
WSACancelBlockingCall.

A blocking Windows Sockets 1 .1 call is in progress, or the service
provider is still processing a callback function.

A nonblocking connect/WSAConnect call is in progress on the
specified socket.

The remote address is not a valid address (such as ADDR_ANY).

Addresses in the specified family cannot be used with this socket.

The attempt to connect was rejected.

The name or the name/en parameter is not a valid part of the user
address space, the name/en parameter is too small, the buffer
length for /pCal/eeData, /pSOOS, and /pGOOS are too small, or
the buffer length for /pCal/erData is too large.

The parameter s is a listening socket.

The socket is already connected (connection-oriented
sockets only).

The network cannot be reached from this host at this time.

No buffer space is available. The socket cannot be connected.

(continued)

270 Volume 1 Winsock and QOS

(continued)

Error code

WSAENOTSOCK

WSAEOPNOTSUPP

WSAEPROTONOSUPPORT

WSAETIMEDOUT

WSAEWOULDBLOCK

WSAEACCES

Remarks

Meaning

The descriptor is not a socket.

The FLOWSPEC structures specified in /pSOOS and /pGOOS
cannot be satisfied.

The /pCallerData argument is not supported by the service
provider.

Attempt to connect timed out without establishing a connection.

The socket is marked as nonblocking and the connection cannot
be completed immediately.

Attempt to connect datagram socket to broadcast address failed
because setsockopt SO_BROADCAST is not enabled.

The WSAConnect function is used to create a connection to the specified destination,
and to perform a number of other ancillary operations that occur at connect time. If the
socket, s, is unbound, unique values are assigned to the local association by the system,
and the socket is marked as bound.

For connection-oriented sockets (for example, type SOCK_STREAM), an active
connection is initiated to the foreign host using name (an address in the name space of
the socket; for a detailed description, please see bind). When this call completes
successfully, the socket is ready to send/receive data. If the address parameter of the
name structure is all zeroes, WSAConnect will return the error WSAEADDRNOTAVAIL.
Any attempt to reconnect an active connection will fail with the error code
W8AEISCONN.

For connection-oriented, nonblocking sockets, it is often not possible to complete the
connection immediately. In such cases, this function returns the error
WSAEWOULDBLOCK. However, the operation proceeds. When the success or failure
outcome becomes known, it may be reported in one of several ways depending on how
the client registers for notification. If the client uses select, success is reported in the
writefds set and failure is reported in the exceptfds set. If the client uses
WSAAsyncSelect or WSAEventSelect, the notification is announced with
FD_CONNECT and the error code associated with the FD_CONNECT indicates either
success or a specific reason for failure.

For a connectionless socket (for example, type SOCK_DGRAM), the operation
performed by WSAConnect is merely to establish a default destination address so that
the socket can be used on subsequent connection-oriented send and receive operations
(send, WSASend, recv, and WSARecv). Any datagrams received from an address
other than the destination address specified will be discarded. If the entire name
structure is all zeros (not just the address parameter of the name structure), then the
socket will be disconnected. Then, the default remote address will be indeterminate, so
sendIWSASend and recvIWSARecv calls will return the error code WSAENOTCONN.
However, sendtolWSASendTo and recvfromlWSARecvFrom can still be used.

Chapter 8 Winsock 2 Functions 271

The default destination can be changed by simply calling WSAConnect again, even if
the socket is already connected. Any datagrams queued for receipt are discarded if
name is different from the previous WSAConnect.

For connectionless sockets, name can indicate any valid address, including a broadcast
address. However, to connect to a broadcast address, a socket must have setsockopt
SO_BROADCAST enabled. Otherwise, WSAConnect will fail with the error code
WSAEACCES.

On connection less sockets, exchange of user-to-user data is not possible and the
corresponding parameters will be silently ignored.

The application is responsible for allocating any memory space pOinted to directly or
indirectly by any of the parameters it specifies.

The IpCal/erData is a value parameter that contains any user data that is to be sent
along with the connection request. If Ipeal/erData is NULL, no user data will be passed
to the peer. The IpCalleeData is a result parameter that will contain any user data
passed back from the other socket as part of the connection establishment in a
WSABUF structure. The member IpCal/eeData->len initially contains the length of the
buffer allocated by the application and pOinted to by IpCal/eeData->but. IpCal/eeData
>Ien will be set to zero if no user data has been passed back. The IpCalleeData
information will be valid when the connection operation is complete. For blocking
sockets, the connection operation completes when the WSAConnect function returns.
For nonblocking sockets, completion will be after the FD_CONNECT notification has
occurred. If IpCal/eeData is NULL, no user data will be passed back. The exact format of
the user data is specific to the address family to which the socket belongs.

At connect time, an application can use the IpSOOS parameter to override any previous
quality of service specification made for the socketthrough WSAloctl with the
SIO:...SET _OOS opcode.

IpSOOS specifies the FLOWSPEC structures for socket s, one for each direction,
followed by any additional provider-specific parameters. If either the associated transport
provider in general or the specific type of socket in particular cannot honor the quality of
service request, an error will be returned as indicated in the following. The sending or
receiving flow specification values will be ignored, respectively, for any unidirectional
sockets. If no provider-specific parameters are supplied, the but and len parameters of
IpSOOS->ProviderSpecitic should be set to NULL and zero, respectively. A NULL value
for JpSOOS indicates no application supplied quality of service.

When connected sockets become closed for whatever reason; they should be discarded
and recreated. \tis safest to assume that when.things go awry for any reason on a
connected socket, the application must discard and recreate the needed sockets in order
to return to a stable point.

272 Volume 1 Winsock and QOS

Version: Requires Windows Sockets 2.0.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.lib.

Windows Sockets Programming Considerations Overview, Microsoft Windows-Specific
Extension Functions, accept, bind, connect, getsockname, getsockopt, select,
socket, WSAAsyncSelect, WSAEventSelect

WSACreateEvent
The Windows Sockets WSACreateEvent function creates a new event object.

Parameters
This function has no parameters.

Return Values
If no error occurs, WSACreateEvent returns the handle of the event object. Otherwise,
the return value is WSA_INVALlD_EVENT. To get extended error information, call
WSAGetLastError.

Error code

WSANOTINITIALISED

WSAENETDOWN

WSAEINPROGRESS

Remarks

Meaning

A successful WSAStartup call must occur
before using this flJnction.

The network subsystem has failed.

A blocking Windows Sockets 1.1 call is in
progress, or the service provider is still
processing a callback function.

Not enough free memory available to.create the
event object.

The WSACreateEvent function is used to create an event object created that is manual
reset with an initial state of nonsignaled. Windows Sockets 2 event objects are system
objects in Win32 environments. Therefore, if a Win32 application desires auto reset
events, it can call the native WSACreateEvent Win32 function directly. The scope of an
event object is limited to the process in which it is created.

Version: Requires Windows Sockets 2.0.
Header: Declared in Winsock2.h.
Library: Use WS2_32.lib.

Chapter 8 Winsock 2 Functions 273

Windows Sockets Programming Considerations Overview, Microsoft Windows-Specific
Extension Functions, WSACloseEvent, WSAEnumNetworkEvents, WSAEventSelect,
WSAGetOverlappedResult, WSARecv, WSARecvFrom, WSAResetEvent,
WSASend, WSASendTo, WSASetEvent, WSAWaitForMultipleEvents

WSADuplicateSocket
The Windows Sockets WSADuplicateSocket function returns a
WSAPROTOCOL_INFO structure that can be used to create a new socket descriptor for
a shared socket. The WSADuplicateSocket function cannot be used on a QOS-enabled
socket.

Parameters
s

[in] Descriptor identifying the local socket.

dwProcessld
[in] Process identifier of the target process in which the duplicated socket will be used.

IpProtocol/nfo
[out] Pointer to a buffer, allocated by the client, that is large enough to contain a
WSAPROTOCOL_INFO structure. The service provider copies the protocol
information structure contents to this buffer.

Return Values
If no error occurs, WSADuplicateSocket returns zero. Otherwise, a value of
SOCKET ..ERROR is returned, and a specific error code can be retrieved by calling
WSAGetLastError.

274 Volume 1 Winsock and QOS

Error code

WSANOTINITIALISED

WSAENETDOWN

WSAEINVAL

WSAEINPROGRESS

WSAEMFILE

WSAENOBUFS

WSAENOTSOCK

WSAEFAULT

Remarks

Meaning

A successful WSAStartup call must occur before
using this function.

The network subsystem has failed.

Indicates that one of the specified parameters was
invalid.

A blocking Windows Sockets 1.1 call is in progress,
or the service provider is still processing a callback
function.

No more socket descriptors are available.

No buffer space is available. The socket cannot be
created.

The descriptor is not a socket.

The IpProtocollnfo argument is not a valid part of the
user address space.

The WSADuplicateSocket function is used to enable socket sharing between
processes. A source process calls WSADuplicateSocket to obtain a special
WSAPROTOCOL_INFO structure. It uses some interprocess communications (IPC)
mechanism to pass the contents of this structure to a target process, which in turn uses
it in a call to WSASocket to obtain a descriptor for the duplicated socket. The special
WSAPROTOCOL_INFO structure can only be used once by the target process.

Sockets can be shared among threads in a given process without using the
WSADuplicateSocket function because a socket descriptor is valid in all threads of a
process

One possible scenario for establishing and handing off a shared socket is illustrated in
the following table.

Source process IPC

1) WSASocket, WSAConnect

2) Request target process identifier

4) Receive process identifier ¢:

5) Call WSADuplicateSocket to get
a special WSAPROTOCOL_INFO
structure

Destination process

3) Receive process identifier request
and respond

Source process

6) Send WSAPROTOCOL_INFO
structure to target

10) closesocket

IPC

Chapter 8 Winsock 2 Functions 275

Destination process

7) Receive WSAPROTOCOL_INFO
structure

8) Call WSASocket to create shared
socket descriptor.

9) Use shared socket for data exchange

The descriptors that reference a shared socket can be used independently for 1/0.
However, the Windows Sockets interface does not implement any type of access control,
so it is up to the processes involved to coordinate their operations on a shared socket.
Shared sockets are typically used to having one process that is responsible for creating
sockets and establishing connections, and other processes that are responsible for
information exchange.

All of the state information associated with a socket is held in common across all the
descriptors because the socket descriptors are duplicated and not the actual socket. For
example, a setsockopt operation performed using one descriptor is subsequently visible
using a getsockopt from any or all descriptors. A process can call closesocket on a
duplicated socket and the descriptor will become deallocated. The underlying socket,
however, will remain open until closesocket is called by the lastremaining descriptor.

Notification on shared sockets is subject to the usual constraints of WSAAsyncSelect
and WSAEventSelect. Issuing either of these calls using any of the shared descriptors
cancels any previous event registration for the socket, regardless of which descriptor
was used to make that registration. Thus, a shared socket cannot deliver FD_READ
events to process Aand FD_WRITE events to process B. For situations when such tight
coordination is required, developers would be advised to use threads instead of separate
processes.

Note The WSADuplicateSocket function cannot be used on a aOS-enabled socket.
Attempting to do so will result in the return of a WSAEINVAL error.

Version: Requires Windows Sockets 2.0.
Header: Declared in Winsock2.h.
Library: Use WS2_32.1ib.
Unicode: Implemented as Unicode and ANSI versions on all platforms.

Windows Sockets Programming Considerations Overview, Microsoft Windows-Specific
Extension Functions, WSASocket

276 Volume 1 Winsock and QOS

WSAEnumNameSpaceProviders
The Windows Sockets WSAEnumNameSpaceProviders function retrieves information
about available name spaces.

Parameters
IpdwBufferLength

[in/out] On input, the number of bytes contained in the buffer pointed to by
IpnspBuffer. On output (if the function fails, and the error is WSAEFAULT), the
minimum number of bytes to pass for the IpnspBufferto retrieve all the requested
information. The passed-in buffer must be sufficient to hold all of the name space
information.

IpnspBuffer
[out] Buffer that is filled with WSANAMESPACE_INFO structures. The returned
structures are located consecutively at the head of the buffer. Variable sized
information referenced by pOinters in the structures point to locations within the buffer
located between the end of the fixed sized structures and the end of the buffer. The
number of structures filled in is the return value of WSAEnumNameSpaceProviders.

Return Values
The WSAEnumNameSpaceProviders function returns the number of
WSANAMESPACE_INFO structures copied into IpnspBuffer. Otherwise, the value
SOCKET_ERROR is returned, and a specific error number can be retrieved by calling
WSAGetLastError.

Error code

WSAEFAULT

WSANOTINITIALIZED

WSA NOT ENOUGH
MEMORY

Meaning

The buffer length was too small to receive all the relevant
WSANAMESPACE_INFO structures and associated information.
Passes in a buffer at least as large as the value returned in
IpdwBufferLength.

The Ws2_32.dll has not been initialized. The application must first
call WSAStartup before calling any Windows Sockets functions.

There was insufficient memory to perform the operation.

Chapter 8 Winsock 2 Functions 277

Version: Requires Windows Sockets 2.0.
Header: Declared in Winsock2.h.
Library: Use WS2_32.lib.
Unicode: Implemented as Unicode and ANSI versions on all platforms.

WSAEnumNetworkEvents
The Windows Sockets WSAEnumNetworkEvents function discovers occurrences of
network events for the indicated socket, clear internal network event records, and reset
event objects (optional).

Parameters
s

[in] Descriptor identifying the socket.

hEventObject
[in] Optional handle identifying an associated event object to be reset.

IpNetworkEvents
[out] Pointer to a WSANETWORKEVENTS structure that is filled with a record of
network events that occurred and any associated error codes.

Return Values
The return value is zero if the operation was successful. Otherwise, the value
SOCKET_ERROR is returned, and a specific error number can be retrieved by calling
WSAGetLastError.

Error code

WSANOTINITIALISED

WSAENETDOWN

WSAEINVAL

WSAEINPROGRESS

WSAENOTSOCK

WSAEFAULT

Meaning

A successful WSAStartup call must occur before using
this function.

The network subsystem has failed.

Indicates that one Qf the specified parameters was invalid.

A blocking Windows Sockets 1.1 call is in progress, or the
service provider is still processing a callback function.

The descriptor is not a l:;ocket.

The IpNetworkEvents argument is not a valid part of the
user address space.

278 Volume 1 Winsock and QOS

Remarks
The WSAEnumNetworkEvents function is used to discover which network events have
occurred for the indicated socket since the last invocation of this function. It is intended
for use in conjunction with WSAEventSelect, which associates an event object with one
or more network events. The recording of network events commences when
WSAEventSelect is called with a nonzero INetworkEvents parameter and remains in
effect until another callis made to WSAEventSelect with the INetworkEvents parameter
set to zero, or until a call is made to WSAAsyncSelect.

WSAEnumNetworkEvents only reports network activity and errors nominated through
WSAEventSelect. See the descriptions of select and WSAAsyncSelect to find out how
those functions report network activity and errors.

The socket's internal record of network events is copied to the structure referenced by
IpNetworkEvents, after which the internal network events record is cleared. If the
hEventObject parameter is not NULL, the indicated event object is also reset. The
Windows Sockets provider guarantees that the operations of copying the network event
record, clearing it and resetting any associated event object are automatic, such that the
next occurrence of a nominated network event will.cause the event object to become set.
In the case of this function returning SOCKET_ERROR, the associated event object is
not reset and the record of network events is not cleared.

The INetworkEvents member of the WSANETWORKEVENTS structure indicates which
of the FD_XXX network events have occurred. The iErrorCode array is used to contain
any associated error codes with the array index corresponding to the position of event
bits in INetworkEvents. Identifiers such as FD_READ_BIT and FD_WRITE_BIT can be
used to index the iErrorCode array. Note that only those elements of the iErrorCode
array are set that correspond to the bits set in INetworkEvents parameter. Other
parameters are not modified (this is important for backward compatibility with the
applications that are not aware of new FD_ROUTING_INTERFACE_CHANGE and
FD_ADDRESS_LlST _CHANGE events).

The following error codes can be returned along with the corresponding network event.

Event: FD_CONNECT
Error code

WSAEAFNOSUPPORT

WSAECONNREFUSED

WSAENETUNREACH

WSAENOBUFS

WSAETIMEDOUT

Meaning

Addresses in the specified family cannot be used
with this socket.

The attempt to connect was forcefully rejected.

The network cannot be reached from this host at this
time.

No buffer space is available. The socket cannot be
connected.

Attempt to connect timed out without establishing a
connection

Event: FD _CLOSE
Error code

WSAENETDOWN

WSAECONNRESET

WSAECONNABORTED

Event: FD_READ

Event: FD _WRITE

Event: FD _ OOB

Event: FD _ACCEPT

Event: FD _ QOS

Event: FD_GROUP _QOS

Chapter 8 Win sock 2 Functions 279

Meaning

The network subsystem has failed.

The connection was reset by the remote side.

The connection was terminated due to a time-out or
other failure.

Event: FD_ADDRESS_LlST _CHANGE
Error code Meaning

WSAENETDOWN The network subsystem has failed.

Event: FD_ROUTINGJNTERFACE_CHANGE
Error code

WSAENETUNREACH

WSAENETDOWN

Meaning

The specified destination is no longer reachable.

The network subsystem has failed.

Version: Requires Windows Sockets 2.0.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.lib.

Windows Sockets Programming Considerations Overview, Microsoft Windows-Specific
Extension Functions, WSAEventSelect

WSAEnumProtocols
The Windows Sockets WSAEnumProtocols function retrieves information about
available transport protocols.

280 Volume 1 Winsock and aos

Parameters
IpiProtocols

[in] NUll-terminated array of iProtocol values. This parameter is optional; if IpiProtocols
is NULL, information on all available protocols is returned. Otherwise, information is
retrieved only for those protocols listed in the array.

IpProtocolBuffer
[out] Buffer that is filled with WSAPROTOCOL_INFO structures.

IpdwBufferLength
[in/out] On input, the count of bytes in the IpProtocolBuffer buffer passed to
WSAEnumProtocols. On output, the minimum buffer size that can be passed to
WSAEnumProtocols to retrieve all the requested information. This routine has no
ability to enumerate over multiple calls; the passed-in buffer must be large enough to
hold all entries in order for the routine to succeed. This reduces the complexity of the
API and should not pose a problem because the number of protocols loaded on a
machine is typically small.

Return Values
If no error occurs, WSAEnumProtocols returns the number of protocols to be reported.
Otherwise, a value of SOCKET_ERROR is returned and a specific error code can be
retrieved by calling WSAGetLastError.

Error code

WSANOTINITIALISED

WSAENETDOWN

WSAEINPROGRESS

WSAEINVAL

WSAENOBUFS

WSAEFAULT

Meaning

A successful WSAStartup call must occur before
using this function.

The network subsystem has failed.

A blocking Windows Sockets 1.1 call is in progress.

Indicates that one of the specified parameters was
invalid.

The buffer length was too small to receive all the
relevant WSAPROTOCOL_INFO structures and
associated information. Pass in a buffer at least as
large as the value returned in IpdwBufferLength.

One or more of the IpiProtocols, IpProtocolBuffer, or
IpdwBufferLength arguments are not a valid part of
the user address space.

Chapter 8 Winsock 2 Functions 281

Remarks
The WSAEnumProtocols function is used to discover information about the collection of
transport protocols and protocol chains installed on the local machine. Since layered
protocols are only usable by applications when installed in protocol chains, information
on layered protocols is not included in IpProtocolBuffer. The IpiProtocols parameter can
be used as a filter to constrain the amount of information provided. Often, IpiProtocols
will be supplied as a NULL pointer that will cause the function to return information on all
available transport protocols and protocol chains.

A WSAPROTOCOL_INFO structure is provided in the buffer pointed to by
IpProtocolBufferfor each requested protocol. If the supplied buffer is not large enough
(as indicated by the input value of IpdwBufferLength), the value pointed to by
IpdwBufferLength will be updated to indicate the required buffer size. The application
should then obtain a large enough buffer and call this WSAEnumProtocols again.

The order in which the WSAPROTOCOL_INFO structures appear in the buffer coincides
with the order in which the protocol entries were registered by the service provider using
the Ws2_32.dll, or with any subsequent reordering that occurred through the Windows
Sockets applet or DLL supplied for establishing default TCP/IP providers.

Version: Requires Windows Sockets 2.0.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.lib.
Unicode: Implemented as Unicode and ANSI versions on all platforms.

Windows Sockets Programming Considerations Overview, Microsoft Windows-Specific
Extension Functions

WSAEventSelect
The Windows Sockets WSAEventSelect function specifies an event object to be
associated with the supplied set of FD_XXX network events.

Parameters
s

[in] Descriptor identifying the socket.

282 Volume 1 Winsock and QOS

hEventObject
[in] Handle identifying the event object to be associated with the supplied set of
FD_XXX network events.

INetworkEvents
[in] Bitmask that specifies the combination of FD_XXX network events in which the
application has interest.

Return Values
The return value is zero if the application's specification of the network events and the
associated event object was successful. Otherwise, the value SOCKET_ERROR is
returned, and a specific error number can be retrieved by calling WSAGetLastError.

As in the case of the select and WSAAsyncSelect functions, WSAEventSelect will
frequently be used to determine when a data transfer operation (send or recv) can be
issued with the expectation of immediate success. Nevertheless, a robust application
must be prepared for the possibility that the event object is set and it issues a Windows
Sockets call that returns WSAEWOULDBLOCK immediately. For example, the following
sequence of operations is possible:

• Data arrives on socket s; Windows Sockets sets the WSAEventSelect event object.

• The application does some other processing.

• While processing, the application issues an ioctlsocket(s, FIONREAD ...) and notices
that there is data ready to be read.

• The application issues a recv(s, ...) to read the data.

• The application eventually waits on the event object specified in WSAEventSelect,
which returns immediately indicating that data is ready to read.

• The application issues recv(s, ...), which fails with the error WSAEWOULDBLOCK.

Having successfully recorded the occurrence of the network event (by setting the
corresponding bit in the internal network event record) and signaled the associated
event object, no further actions are taken for that network event until the application
makes the function call that implicitly reenables the setting of that network event and
signaling of the associated event object.

Network event Re-enabling function

FD_READ

FD_WRITE

FD_OOB

FD_ACCEPT

recv, recvfrom, WSARecv, or WSARecvFrom.

send, sendto, WSASend, or WSASendTo.

recv, recvfrom, WSARecv, or WSARecvFrom.

accept or WSAAccept unless the error code returned is
WSATRY _AGAIN indicating that the condition function
returned CF _DEFER.

None.

Network event

FD_CLOSE

FD_OOS

FD_GROUP _OOS

FD_ROUTING_
INTERFACE_CHANGE

FD_ADDRESS_
LIST_CHANGE

Chapter 8 Winsock 2 Functions 283

Re-enabling function

None.

WSAloctl with command SIO_GET_OOS.

Reserved.

WSAloctl with command
SIO_ROUTING_INTERFACE_CHANGE.

WSAloctl with command
SIO_ADDRESS_LlST _CHANGE.

Any call to the reenabling routine, even one that fails, results in reenabling of recording
and signaling for the relevant network event and event object.

For FD_READ, FD_008, and FD_ACCEPT network events, network event recording
and event object signaling are level-triggered. This means that if the reenabling routine
is called and the relevant network condition is still valid after the call, the network event
is recorded and the associated event object is set. This allows an application to be
event-driven and not be concerned with the amount of data that arrives at anyone time.
Consider the following sequence:

1. Transport provider receives 100 bytes of data on socket s and causes Ws2_32.dll to
record the FD_READ network event and set the associated event object.

2. The application issues recv(s, buffptr, 50, 0) to read 50 bytes.

3. The transport provider causes WS2_32.dll to record the FD_READ network event and
sets the associated event object again since there is still datato be read.

With these semantics, an application need not read all available data in response to an
FD_READ network event-a single recv in response to each FD_READ network event
is appropriate.

The FD_OOS event is considered edge triggered. A message will be posted exactly
once when a quality of service change occurs. Further messages will not be forthcoming
until either the provider detects a further change in quality of service or the application
renegotiates the quality of service for the socket.

The FD_ROUTING_INTERFACE_CHANGE and FD_ADDRESS_LlST _CHANGE events
are considered edge triggered as well. A message will be posted exactly once when a
change occurs afterthe application has requested the notification by issuing WSAloctl
with SIO_ROUTING_INTERFACE_CHANGE or SIO_ADDRESS_LlST _CHANGE
correspondingly. Other messages will not be forthcoming until the application reissues
the IOCTL and another change is detected since the IOCTL has been issued.

If a network event has already happened when the application calls WSAEventSelect or
when the reenabling function is called, then a network event is recorded and the
associated event object is set as appropriate. For example, consider the following
sequence:

284 Volume 1 Winsock and QOS

1. An application calls listen.

2. A connect request is received but not yet accepted.

3. The application calls WSAEventSelect specifying that it is interested in the
FD_ACCEPT network event for the socket. Due to the persistence of network events,
Windows Sockets records the FD_ACCEPT network event and sets the associated
event object immediately.

The FD_WRITE network event is handled slightly differently. An FD_WRITE network
event is recorded when a socket is first connected with connectIWSAConnect or
accepted with acceptIWSAAccept, and then after a send fails with
WSAEWOULDBLOCK and buffer space becomes available. Therefore, an application
can assume that sends are possible starting from the first FD_WRITE network event
setting and lasting until a send returns WSAEWOULDBLOCK. After such a failure the
application will find out that sends are again possible when an FD_WRITE network event
is recorded and the associated event object is set.

The FD_OOB network event is used only when a socket is configured to receive OOB
data separately. If the socket is configured to receive OOB data in line, the OOB
(expedited) data is treated as normal data and the application should register an interest
in, and will get FD_READ network event, not FD_OOB network event. An application
can set or inspect the way in which OOB data is to be handled by using setsockopt or
getsockopt for the SO_OOBINLINE option.

The error code in an FD_CLOSE network event indicates whether the socket close was
graceful or abortive. If the error code is zero, then the close was graceful; if the error
code is WSAECONNRESET, then the socket's virtual circuit was reset. This only applies
to connection-oriented sockets such as SOCK_STREAM.

The FD_CLOSE network event is recorded when a close indication is received for the
virtual circuit corresponding to the socket. In TCP terms, this means that the FD_CLOSE
is recorded when the connection goes into the TIME WAIT or CLOSE WAIT states. This
results from the remote end performing a shutdown on the send side or a closesocket.
FD_CLOSE being posted after all data is read from a socket. An application should
check for remaining data upon receipt of FD_CLOSE to avoid any possibility of losing
data.

Please note Windows Sockets will record only an FD_CLOSE network event to indicate
closure of a virtual circuit. It will not record an FD_READ network event to indicate this
condition.

The FD_OOS network event is recorded when any parameter in the flow specification
associated with socket s. Applications should use WSAloctl with command
SIO_GET _OOS to get the current OOS for socket s.

The FD_ROUTING_INTERFACE_CHANGE network event is recorded when the local
interface that should be used to reach the destination specified in WSAloctl with
SIO_ROUTING_INTERFACE_CHANGE changes after such 10CTL has been issued.

Chapter 8 Winsock 2 Functions 285

The FD_ADDRESS_LlST _CHANGE network event is recorded when the list of
addresses of protocol family for the socket to which the application can bind changes
afterWSAloctl with SIO_ADDRESS_LlST _CHANGE has been issued.

Error code

WSANOTINITIALISED

WSAENETDOWN

WSAEINVAL

WSAEINPROGRESS

WSAENOTSOCK

Remarks

Meaning

A successful WSAStartup call must occur before using this
function.

The network subsystem has failed.

Indicates that one of the specified parameters was invalid,
or the specified socket is in an invalid state.

A blocking Windows Sockets 1.1 call is in progress, or the
service provider is still processing a callback function.

The descriptor is not a socket.

The WSAEventSelect function is used to specify an event object, hEventObject, to be
associated with the selected FD_XXX network events, INetworkEvents. The socket for
which an event object is specified is identified by the s parameter. The event object is set
when any of the nominated network events occur.

The WSAEventSelect function operates very similarly to WSAAsyncSelect, the
difference being the actions taken when a nominated network event occurs. The
WSAAsyncSelect function causes an application-specified Windows message to be
posted. The WSAEventSelect sets the associated event object and records the
occurrence of this event in an internal network event record. An application can use
WSAWaitForMultipleEvents to wait or poll on the event object, and use
WSAEnumNetworkEvents to retrieve the contents of the internal network event record
and thus determine which of the nominated network events have occurred.

WSAEventSelect is the only function that causes network activity and errors to be
recorded and retrievable through WSAEnumNetworkEvents. See the descriptions of
select and WSAAsyncSelect to find out how those functions report network activity and
errors.

The WSAEventSelect function automatically sets socket s to nonblocking mode,
regardless of the value of INetworkEvents. See ioctlsocketIWSAloctl about how to set
the socket back to blocking mode.

The INetworkEvents parameter is constructed by using the bitwise OR operator with any
of the values specified in the following table.

Value Meaning

Wants to receive notification of readiness for reading.

Wants to receive notification of readiness for writing.

(continued)

286 Volume 1 Winsock and QOS

(continued)

Value

FD_OOB

FD_ACCEPT

FD_CONNECT

FD_CL08E

FD_008

FD_GROUP _008

FD_ROUTING_
INTERFACE_CHANGE

FD_ADDRE88_
LIST_CHANGE

Meaning

Wants to receive notification of the arrival of OOB data.

Wants to receive notification of incoming connections.

Wants to receive notification of completed connection or
multipoint join operation.

Wants to receive notification of socket closure.

Wants to receive notification of socket (008 changes.

Reserved.

Wants to receive notification of routing interface changes
for the specified destination.

Wants to receive notification of local address list changes
for the address family of the socket.

Issuing a WSAEventSelect for a socket cancels any previous WSAAsyncSelect or
WSAEventSelect for the same socket and clears the internal network event record. For
example, to associate an event object with both reading and writing network events, the
application must call WSAEventSelect with both FD_READ and FD_WRITE, as follows:

It is not possible to specify different event objects for different network events. The
following code will not work; the second call will cancel the effects of the first, and only
the FD_WRITE network event will be associated with hEventObject2:

To cancel the association and selection of network events on a socket, INetworkEvents
should be set to zero, in which case the hEventObject parameter will be ignored.

Closing a socket with closesocket also cancels the association and selection of network
events specified in WSAEventSelect for the socket. The application, however, still must
call WSACloseEvent to explicitly close the event object and free any resources.

The socket created when the accept function is called has the same properties as the
listening socket used to accept it. Any WSAEventSelect association and network events
selection set for the listening socket apply to the accepted socket. For example, if a
listening socket has WSAEventSelect association of hEventOjectwith FD_ACCEPT,
FD_READ, and FD_WRITE, then any socket accepted on that listening socket will also
have FD_ACCEPT, FD_READ, and FD_WRITE network events associated with the
same hEventObject. If a different hEventObject or network events are desired, the
application should call WSAEventSelect, passing the accepted socket and the desired
new information.

Version: Requires Windows Sockets 2.0.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.lib.

Chapter 8 Win sock 2 Functions 287

Windows Sockets Programming Considerations Overview, Microsoft Windows-Specific
Extension Functions, WSAAsyncSelect, WSACloseEvent, WSACreateEvent,
WSAEnumNetworkEvents, WSAWaitForMultipleEvents

WSAGetLastError
The Windows Sockets WSAGetLastError function gets the error status for the last
operation that failed.

Parameters
This function has no parameters.

Return Values
The return value indicates the error code for this thread's last Windows Sockets
operation that failed.

Remarks
The WSAGetLastError function returns the last network error that occurred. When a
particular Windows Sockets function indicates that an error has occurred, this function
should be called to retrieve the appropriate error code. This error code can be different
from the error code obtained from getsockopt SO_ERROR, which is socket-specific
since WSAGetLastError is for all thread-specific sockets.

A successful function call, or a call to WSAGetLastError, does not reset the error code.
To reset the error code,use the WSASetLastError function call with iError set tozero. A
getsockopt SO_ERROR also resets the error code to zero.

The WSAGetLastError function should not be used to check for an error valueon
receipt of an asynchronous message. In this case, the error value is passed in the
IParam parameter of the message, and this can differ from the value returned by
WSAGetLastError.

288 Volume 1 Winsock and QOS

Version: Requires Windows Sockets 1.1 or later.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.lib.

Windows Sockets Programming Considerations Overview, Microsoft Windows-Specific
Extension Functions, getsockopt, WSASetLastError

WSAGetOverlappedResult
The Windows Sockets WSAGetOverlappedResult function returns the results of an
overlapped operation on the specified socket.

Parameters
s

[in] Descriptor identifying the socket. This is the same socket that was specified when
the overlapped operation was started by a call to WSARecv, WSARecvFrom,
WSASend, WSASendTo, or WSAloctl.

IpOveriapped
[in] Pointer to a WSAOVERLAPPED structure that was specified when the
overlapped operation was started.

pcb Transfer
[out] Pointer to a 32-bit variable that receives the number of bytes that were actually
transferred by a send or receive operation, or by WSAloctl.

fWait
[in] Flag that specifies whether the function should wait for the pending overlapped
operation to complete. If TRUE, the function does not return until the operation has
been completed. If FALSE and the operation is still pending, the function returns
FALSE and the WSAGetLastError function returns WSA_IO_INCOMPLETE. The
fWait parameter may be set to TRUE only if the overlapped operation selected the
event-based completion notification.

Chapter 8 Winsock 2 Functions 289

IpdwFlags
[out] Pointer to a 32-bit variable that will receive one or more flags that supplement
the completion status. If the overlapped operation was initiated through WSARecv or
WSARecvFrom, this parameter will contain the results value for IpFlags parameter.

Return Values
If WSAGetOverlappedResult succeeds, the return value is TRUE. This means that the
overlapped operation has completed successfully and that the value pointed to by
IpcbTransferhas been updated. If WSAGetOverlappedResult returns FALSE, this
means that either the overlapped operation has not completed, the overlapped operation
completed but with errors, or the overlapped operation's completion status could not be
determined due to errors in one or more parameters to WSAGetOverlappedResult. On
failure, the value pOinted to by IpcbTransferwili not be updated. Use WSAGetLastError
to determine the cause of the failure (either of WSAGetOverlappedResult or of the
associated overlapped operation).

Error code

WSANOTINITIALISED

WSAENETDOWN

WSAENOTSOCK

WSA_I NVALID _HANDLE

WSA_INVALlD_PARAMETER

WSA.c.--'O_INCOMPLETE

WSAEFAULT

Remarks

Meaning

A successful WSAStartup call must occur before
using this function.

The network subsystem has failed.

The descriptor is not a socket.

The hEvent parameter of the
WSAOVERLAPPED structure does not contain
a valid event object handle.

One of the parameters is unacceptable.

The fWait parameter is FALSE and the I/O
operation has not yet completed.

One or more of the IpOverlapped, IpcbTransfer,
or IpdwFlags arguments are not a valid part of
the user address space.

The WSAGetOverlappedResult function reports the results of the last overlapped
operation for the specified socket. The WSAOverlappedResult function is passed the
socket descriptor and the WSAOVERLAPPED structure that was specified when the
overlapped function was called. A pending operation is indicated when the function that
started the operation returns FALSE and the WSAGetLastError function returns
WSA_IO_PENDING. When an I/O operation such as WSARecv is pending, the function
that started the operation resets the hEvent member of the WSAOVERLAPPED
structure to the nonsignaled state. Then, when the pending operation has completed, the
system sets the event object to the signaled state.

290 Volume 1 Winsock and QOS

If the fWait parameter is TRUE, WSAGetOverlappedResult determines whether the
pending operation has been completed by waiting for the event object to be in the
signaled state. A client may set the fWait parameter to TRUE, but only if it selected
event-based completion notification when the I/O operation was requested. If another
form of notification was selected, the usage of the hEvent parameter of the
WSAOVERLAPPED structure is different, and setting fWaitto TRUE causes
unpredictable results.

Version: Requires Windows Sockets 2.0.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.lib.

Windows Sockets Programming Considerations Overview, Microsoft Windows-Specific
Extension Functions, WSAAccept, WSAConnect, WSACreateEvent, WSAloctl,
WSARecv, WSARecvFrom, WSASend, WSASendTo, WSAWaitForMultipleEvents

WSAGetQOSByName
The Windows Sockets WSAGetQOSByName function initializes a QOS structure based
on a named template, or it supplies a buffer to retrieve an enumeration of the available
template names.

Parameters
s

[in] Descriptor identifying a socket.

JpOOSName
[in out] Pointer to a specific quality of service template.

JpOOS
[out] Pointer to the QOS structure to be filled.

Return Values
If WSAGetQOSByName succeeds, the return value is TRUE. If the function fails, the
return value is FALSE. To get extended error information, call WSAGetLastError.

Error code

WSANOTINITIALISED

WSAENETDOWN

WSAENOTSOCK

WSAEFAULT

WSAENVAL

Remarks

Chapter 8 Winsock 2 Functions 291

Meaning

A successful WSAStartup call must occur before using
this function.

The network subsystem has failed.

The descriptor is not a socket.

The IpOOSName or IpOOS parameter are not a valid
part of the user address space, or the buffer length for
IpOOS is too small.

The specified QOS template name is invalid.

The WSAGetQOSByName function is used by applications to initialize a QOS structure
to a set of known values appropriate for a particular service class or media type. These
values are stored in a template that is referenced by a well-known name. The client may
retrieve these values by setting the bufparameter of the WSABUF structure indicated by
IpOOSName, which points to a string of nonzero length specifying a template name. In
this case, the usage of IpOOSName is IN only, and results are returned through IpOOS.

Alternatively, the client may use this function to retrieve an enumeration of available
template names. The client may do this by setting the bufparameter of the WSABUF
indicated by IpOOSName to a zero-length null-terminated string. In this case the buffer
indicated by buf is overwritten with a sequence of as many available, null-terminated
template names up to the number of bytes available in bufas indicated by the len
parameter of the WSABUF indicated by IpOOSName. The list of names itself is
terminated by a zero-length name. When the WSAGetQOSByName function is used to
retrieve template names, the IpOOS parameter is ignored.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.lib.

Windows Sockets Programming Considerations Overview, Microsoft Windows-Specific
Extension Functions, getsockopt, WSAAccept, WSAConnect

292 Volume 1 Winsock and QOS

WSAGetServiceClasslnfo
The Windows Sockets WSAGetServiceClasslnfo function retrieves all of the class
information (schema) pertaining to a specified service class from a specified name space
provider.

Parameters
IpProviderld

[in] Pointer to a GUID that identifies a specific name space provider.

IpServiceClassld
[in] Pointer to a GUID identifying the service class.

IpdwBufferLength
[in/out] On input, the number of bytes contained in the buffer pointed to by
IpServiceClasslnfos. On output, if the function fails and the error is WSAEFAUL T,
then it contains the minimum number of bytes to pass for the IpServiceClasslnfo to
retrieve the record.

IpServiceClasslnfo
[out] Pointer to the service class information from the indicated name space provider
for the specified service class.

Return Values
The return value is zero if the WSAGetServiceClasslnfo was successful. Otherwise, the
value SOCKET_ERROR is returned, and a specific error number can be retrieved by
calling WSAGetLastError.

Error code

WSAEACCESS

WSAEFAULT

WSAEINVAL

WSANOTI NITIALIZED

Meaning

The calling routine does not have sufficient
privileges to access the information.

The buffer referenced by IpServiceClasslnfo is
too small. Pass in a larger buffer.

The specified service class identifier or name
space provider identifier is invalid.

The Ws2_32.dll has not been initialized. The
application must first call WSAStartup before
calling any Windows Sockets functions.

Chapter 8 Winsock 2 Functions 293

Error code Meaning

WSATYPE NOT FOUND The specified class was not found.

WSA NOT ENOUGH MEMORY

Remarks

There was insufficient memory to perform the
operation.

The WSAGetServiceClasslnfo function retrieves service class information but the
service class information retrieved from a particular name space provider might not be
the complete set of class information that was supplied when the service class was
installed. Individual name space providers are only required to retain service class
information that is applicable to the name spaces that they support. See the section
SeNice Class Data Structures for more information.

Version: Requires Windows Sockets 2.0.
Header: Declared in Winsock2.h.
Library: Use WS2_32.lib.
Unicode: Implemented as Unicode and ANSI versions on all platforms.

WSAGetServiceClassNameByClassld
The Windows Sockets WSAGetServiceClassNameByClassld function returnsthe
name of the service associated with the given type. This name is the generic service
name, like FTP or SNA, and not the name of a specific instance of that service.

Parameters
IpServiceClassld

[in] Pointer to the GUID for the service class.

IpszServiceClassName
[out] Pointer to the service name.

IpdwBufferLength .
[in/out] On input, the iength of the buffer returned by IpszServiceClassName. On
output, the length of the service name copied into IpszServiceClassName.

294 Volume 1 Winsock and QOS

Return Values
The WSAGetServiceClassNameByClassld function returns a value of zero if
successful. Otherwise, the value SOCKET_ERROR is returned, and a specific error
number can be retrieved by calling WSAGetLastError.

Error code

WSAEFAULT

WSA_INVALlD_PARAMETER

WSANOTINITIALIZED

WSA NOT ENOUGH MEMORY

Meaning

The specified buffer referenced by
/pszSeNiceC/assName is too small. Pass in a
larger buffer.

The /pSeNiceC/ass/d parameter specified is
invalid.

The Ws2_32.dll has not been initialized. The
application must first call WSAStartup before
calling any Windows Sockets functions.

There was insufficient memory to perform the
operation.

Version: Requires Windows Sockets 2.0.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.lib.

WSAHtonl
The Windows Sockets WSAHtonl function converts a u_long from host byte order to
network byte order.

Parameters
s

[in] Descriptor identifying a socket.

host/ong .
[in] 32-bit number in host byte order.

/pnet/ong
[out] Pointer to a 32-bit number in network byte order.

Chapter 8 Winsock 2 Functions 295

Return Values
If no error occurs, WSAHtonl returns zero. Otherwise, a value of SOCKET_ERROR is
returned, and a specific error code can be retrieved by calling WSAGetLastError.

Error code Meaning

WSANOTINITIALISED

WSAENETDOWN

WSAENOTSOCK

WSAEFAULT

Remarks

A successful WSAStartup call must occur before using this
function.

The network subsystem has failed.

The descriptor is not a socket.

The Ipnetlong parameter is not completely contained in a
valid part of the user address space.

The WSAHtonl function takes a 32-bit number in host byte order and returns a 32-bit
number pointed to by the Ipnetlong parameter in the network byte order associated with
socket s.

Version: Requires Windows Sockets 2.0.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.lib.

Windows Sockets Programming Considerations Overview, Microsoft Windows-Specific
Extension Functions, htonl, htons, ntohl, ntohs, WSANtohl, WSAHtons, WSANtohs

WSAHtons
The Windows Sockets WSAHtons function converts au_short from host byte order to
network byte order.

Parameters
s

[in] Descriptor identifying a socket.

296 Volume 1 Winsock and QOS

hostshort
[in] 16-bit number in host byte order.

Ipnetshort
[out] Pointer to a 16-bit number in network byte order.

Return Values
If no error occurs, WSAHtons returns zero. Otherwise, a value of SOCKET_ERROR is
returned, and a specific error code can be retrieved by calling WSAGetLastError.

Error code

WSANOTINITIALISED

WSAENETDOWN

WSAENOTSOCK

WSAEFAULT

Remarks

Meaning

A successful WSAStartup call must occur before using
this function.

The network subsystem has failed.

The descriptor is not a socket.

The Ipnetshort parameter is not completely contained in a
valid part of the user address space.

The WSAHtons function takes a 16-bit number in host byte order and returns a 16-bit
number pointed to by the Ipnetshort parameter in the network byte order associated with
socket s.

Version: Requires Windows Sockets 2.0.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.lib.

Windows Sockets Programming Considerations Overview, Microsoft Windows-Specific
Extension Functions, htonl, htons, ntohl, ntohs, WSAHtonl, WSANtohl, WSANtohs

WSAlnstallServiceClass
The Windows Sockets WSAlnstaliServiceClass function registers a service class
schema within a name space. This schema includes the class name, class identifier, and
any name space-specific information that is common to all instances of the service, such
as the SAP identifier or object identifier.

Parameters
IpServiceClasslnfo

Chapter 8 Winsock 2 Functions 297

[in] Service class to name space specific-type mapping information. Multiple
mappings can be handled at one time.

See the section Service Class Data Structures for a description of pertinent data
structures.

Return Values
The return value is zero if the operation was successful. Otherwise, the value
SOCKET_ERROR is returned, and a specific error number can be retrieved by calling
WSAGetLastError.

Error code

WSAEACCES

WSAEALREADY

WSAEINVAL

WSANOTINITIALIZED

WSA NOT ENOUGH MEMORY

Meaning

The calling function does not have sufficient
privileges to install the service.

Service class information has already been
registered for this service class identifier. To
modify service class information, first use
WSARemoveServiceClass, and then reinstall
with updated class information data.

The service class information was invalid or
improperly structured.

The Ws2_32.dll has not been initialized. The
application must first caJI WSAStartup before
calling any Windows Sockets functions.
There was insufficient memory to perform the
operation.

Version: Requires Windows Sockets 2.0.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.lib.
Unicode: Implemented as Unicode and ANSI versions on all platforms.

WSAloctl
The Windows Sockets WSAloctl function controls the mode of a socket.

(continued)

298 Volume 1 Winsock and QOS

(continued)

Parameters
s

[in] Descriptor identifying a socket.

dwloControlCode
[in] Control code of operation to perform.

IpvlnBuffer
[in] Pointer to the input buffer.

cblnBuffer
[in] Size of the input buffer.

IpvOutBuffer
[out] Pointer to the output buffer.

cbOutBuffer
[in] Size of the output buffer.

IpcbBytesReturned
[out] Pointer to actual number of bytes of output.

IpOverlapped
[in] Pointer to a WSAOVERLAPPED structure (ignored for nonoverlapped sockets).

IpCompletionRoutine
[in] Pointer to the completion routine called when the operation has been completed
(ignored for nonoverlapped sockets).

Return Values
Upon successful completion, the WSAloctl returns zero. Otherwise, a value of
SOCKET_ERROR is returned, and a specific error code can be retrieved by calling
WSAGetLastError.

Error code

WSAENETDOWN

WSAEFAULT

Meaning

The network subsystem has failed.

The IpvlnBuffer, IpvOutBuffer IpcbBytesReturned,
IpOverlapped, or IpCompletionRoutine argument is not
totally contained in a valid part of the user address space,
or the cblnBuffer or cbOutBuffer argument is too small.

Error code

WSAEINVAL

WSAEINPROGRESS

WSAENOTSOCK

WSAEOPNOTSUPP

WSAEWOULDBLOCK

Remarks

Chapter 8 Winsock 2 Functions 299

Meaning

dwloControlCode is not a valid command, or a supplied
input parameter is not acceptable, or the command is not
applicable to the type of socket supplied.

The function is invoked when a callback is in progress.

The descriptor s is not a socket.

The specified ioctl command cannot be realized.
(For example, the FLOWSPEC structures specified in
SIO_SET _OOS cannot be satisfied.)

An overlapped operation was successfully initiated and
completion will be indicated at a later time.

The socket is marked as nonblocking and the requested
operation would block.

The WSAloctl function is used to set or retrieve operating parameters associated with
the socket, the transport protocol, or the communications subsystem.

If both IpOver/apped and IpCompletionRoutine are NULL; the socket in this function will
be treated as a nonoverlapped socket. For a nonoverlapped socket, IpOver/apped and
IpCompletionRoutine parameters are ignored, which cause the function to behave like
the standard ioctlsocket function except that WSAloctl can block if socket s is in
blocking mode. If socket s is in nonblocking mode, this function can return
WSAEWOULDBLOCK when the specified operation cannot be finished immediately. In
this case, the application may change the socket to blocking mode and reissue the
request or wait fOr the corresponding network event (such as
FD~ROUTING_INTERFACE_CHANGE or FD....;ADDRESS_L1ST_CHANGE in the case
of SIO_ROUTING_INTERFACE_CHANGE or SIO_ADDRESS_LlST _CHANGE) using a
Windows message-based (using WSAAsyncSelect) or event (using WSAEventSelect)
based notification mechanism.

For overlapped sockets, operations that cannot be completed immediately will be
initiated, and completion will be indicated at a later time. The final completion status is
retrieved through WSAGetOverlappedResult. The IpcbBytesReturned parameter is
ignored.

Any 10CTL may block indefinitely, depending on the service provider's implementation. If
the application cannot tolerate blocking in a WSAloctl call, overlapped I/O would be
advised for 10CTLs that are especially likely to block including:

SIO_FINDROUTE SIO_SET ...;...OOS
SIO_FLUSH SIO_SET _GROUP_OOS
SIO_GET _OOS SICLROUTING_INTERFACE_CHANGE
SIO_GET _GROUP _00$ SIO_ADDRE$S_L1ST _CHANGE

300 Volume 1 Winsock and QOS

Some protocol-specific IOCTLs may also be especially likely to block. Check the relevant
protocol-specific annex for any available information.

It is possible to adopt an encoding scheme that preserves the currently defined
ioctlsocket opcodes while providing a convenient way to partition the opcode identifier
space in as much as the dwloControlCode parameter is now a 32-bit entity. The
dwloControlCode parameter is built to allow for protocol and vendor independence when
adding new control codes while retaining backward compatibility with the Windows
Sockets 1.1 and Unix control codes. The dwloControlCode parameter has the
following form.

3

1

o V T Vendor/address family code

3 2

o 9
22 22222221111

87 65432109876

1 1 1 1 1 1

5432109876543210

is set if the input buffer is valid for the code, as with IOC_IN.

o is set if the output buffer is valid for the code, as with IOC_OUT. Codes with both
input and output parameters set both I and O.

V is set if there are no parameters for the code, as with IOC_ VOID.

T is a 2-bit quantity that defines the type of IOCTL. The following values are defined:

o The IOCTL is a standard Unix IOCTL code, as with FIONREAD and FIONBIO.

1 The IOCTL is a generic Windows Sockets 2 IOCTL code. New IOCTL codes
defined for Windows Sockets 2 will have T == 1.

2 The IOCTL applies only to a specific address family.

3 The IOCTL applies only to a specific vendor's provider. This type allows companies
to be assigned a vendor number that appears in the Vendor/Address family
parameter. Then, the vendor can define new IOCTLs specific to that vendor without
having to register the IOCTL with a clearinghouse, thereby providing vendor
flexibility and privacy.

Vendor/Address family An 11-bit quantity that defines the vendor who owns the code
(if T == 3) or that contains the address family to which the code applies (if T == 2). If this
is a Unix IOCTL code (T == 0) then this parameter has the same value as the code on
Unix. If this is a generic Windows Sockets 2 IOCTL (T == 1) then this parameter can be
used as an extension of the code parameter to provide additional code values.

Code The 16-bit quantity that contains the specific IOCTL code for the operation.

The following Unix IOCTL codes (commands) are supported.

FIONBIO
Enable or disable non blocking mode on socket S. IpvlnBuffer points at an unsigned
long, which is nonzero if nonblocking mode is to be enabled and zero if it is to be
disabled. When a socket is created, it operates in blocking mode (that is, nonblocking
mode is disabled). This is consistent with BSD sockets.

Chapter 8 Winsock 2 Functions 301

The WSAAsyncSelect or WSAEventSelect routine automatically sets a socket to
non blocking mode. If WSAAsyncSelect or WSAEventSelect has been issued on a
socket, then any attempt to use WSAloctl to set the socket back to blocking mode will
fail with WSAEINVAL. To set the socket back to blocking mode, an application must
first disable WSAAsyncSelect by calling WSAAsyncSelect with the IEvent
parameter equal to zero, or disable WSAEventSelect by calling WSAEventSelect
with the lNetworkEvents parameter equal to zero.

FIONREAD
Determine the amount of data that can be read atomically from socket s. IpvOutBuffer
pOints at an unsigned long in which WSAloctl stores the result. If s is stream
oriented (for example, type SOCK_STREAM), FIONREAD returns the total amount of
data that can be read in a single receive operation; this is normally the same as the
total amount of data queued on the socket (since data stream is byte-oriented, this is
not guaranteed). If s is message oriented (for example, type SOCK_DGRAM),
FIONREAD returns the size of the first datagram (message) queued on the socket.

SIOCATMARK
Determine whether or not all OOB data has been read. This applies only to a socket
of stream-style (for example, type SOCK_STREAM) that has been configured for
inline reception of any OOB data (SO_OOBINLlNE). If no OOB data is waiting to be
read, the operation returns TRUE. Otherwise, it returns FALSE, and the next receive
operation performed on the socket will retrieve some or all of the data preceding the
mark; the application should use the SIOCATMARK operation to determine whether
any remains. If there is any normal data preceding the urgent (out of band) data, it will
be received in order. (Note that recv operations will never mix OOB and normal data
in the same call.) IpvOutBufferpoints at a BOOl in which WSAloctl stores the result.

The following Windows Sockets 2 commands are supported.

SIO_ASSOCIATE_HANDLE (opcode setting: I, T ==1)
Associate this socket with the specified handle of a companion interface. The input
buffer contains the jnteger value corresponding to the manifest constant for the
companion interface (for example, IH_NETDEV and TH_ TAP!.), followed by a value
that is a handle of the specified companion interface, along with any other required
information. Refer to the appropriate section in the Windows Sockets 2 Protocol
Specific Annex (a separate document) for details specific to a particular companion
interface. The total size is reflected in the input buffer length. No output buffer is
required. The WSAENOPROTOOPT error code is indicated for service providers that
do not support this ioctl. The handle associated by this ioctl can be retrieved using
SIO_ TRANSLATE_HANDLE.

A companion interface might be used, for example, If a particular provider provides (1)
a great deal of additional controls over the behavior·of a socket and (2) the controls
are provider-specific enough that they do not map to existing Windows. Socket
functions or ones likely to be defined in the future. It is recommend that the
Component Object Model (COM) be used instead of this ioctno discover and track

302 Volume 1 Winsock and QOS

other interfaces that might be supported by a socket. This ioctl is present for (reverse)
compatibility with systems where COM is not available or cannot be used for some
other reason.

SIO_ENABLE_CIRCULAR_QUEUEING (opcode setting: V, T ==1)
Indicates to the underlying message-oriented service provider that a newly arrived
message should never be dropped because of a buffer queue overflow. Instead, the
oldest message in the queue should be eliminated in order to accommodate the newly
arrived message. No input and output buffers are required. Note that this ioctl is only
valid for sockets associated with unreliable, message-oriented protocols. The
WSAENOPROTOOPT error code is indicated for service providers that do not support
this ioctl.

SIO_FIND_ROUTE (opcode setting: 0, T ==1)
When issued, this ioctl requests that the route to the remote address specified as a
SOCKADDR in the input buffer be discovered. If the address already exists in the
local cache, its entry is invalidated. In the case of Novell's IPX, this call initiates an
IPX GetLocalTarget (GL T), which queries the network for the given remote address.

SIO_FLUSH (opcode setting: V, T==1)
Discards current contents of the sending queue associated with this socket. No input
and output buffers are required. The WSAENOPROTOOPT error code is indicated for
service providers that do not support this ioctl.

SIO_GET_BROADCAST_ADDRESS (opcode setting: 0, T==1)
This ioctl fills the output buffer with a SOCKADDR structure containing a suitable
broadcast address for use with sendtolWSASendTo.

SIO_GET_EXTENSION_FUNCTION~POINTER (opcode setting: 0, I, T==1)
Retrieve a pointer to the specified extension function supported by the associated
service provider. The input buffer contains a globally unique identifier (GUID) whose
value identifies the extension function in question. The pOinter to the desired function
is returned in the output buffer. Extension function identifiers are established by
service provider vendors and should be included in vendor documentation that
describes extension function capabilities and semantics.

SIO_GET_QOS (opcode setting: 0, T==1)
Reserved for future use with sockets. Retrieve the QOS structure associated with the
socket. The input buffer is optional. Some protocols (for example, RSVP) allow the
input buffer to be used to qualify a quality of service request. The QOS structure will
be copied into the output buffer. The output buffer must be sized large enough to be
able to contain the full QOS structure. The WSAENOPROTOOPT error code is
indicated for service providers that do not support quality of service.

A sender may not call SIO_GET_QOS until the socket is connected.

A receiver may call SEO_GET_QOS soon as it is bound.

SIO_GET_GROUP --.:QOS (opcode setting: 0, I, T==l)
Reserved.

Chapter 8 Winsock 2 Functions 303

SIO_MULTIPOINT_LOOPBACK (opcode setting: I, T==1)
Controls whether data sent in a multipoint session will also be received by the same
socket on the local host. A value of TRUE causes loopback reception to occur while a
value of FALSE prohibits this. By default, loopback is enabled.

SIO_MULTICAST_SCOPE (opcode setting: I, T==1)
Specifies the scope over which multicast transmissions will occur. Scope is defined as
the number of routed network segments to be covered. A scope of zero would
indicate that the multicast transmission would not be placed on the wire but could be
disseminated across sockets within the local host. A scope value of one (the default)
indicates that the transmission will be placed on the wire, but will not cross any
routers. Higher scope values determine the number of routers that can be crossed.
Note that this corresponds to the time-to-live (TTL) parameter in IP multicasting. By
default, scope is 1 .

SIO_RCVALL
Enables a socket to receive alilP packets on the network. The socket handle passed
to the WSAloctl function must be of AF _INET address family, SOCK_RAW socket
type, and IPPROTO_IP protocol. The socket also must be bound to an explicit local
interface, which means that you cannot bind to INADDR_ANY.

Once the socket is bound and the ioctl set, calls to the WSARecv or recv functions
return IP datagrams passing through the given interface. Note that you must supply a
sufficiently large buffer. Setting this ioctl requires Administrator privilege on the local
machine. SIO_RCVALL is available in Windows 2000 and later versions of Windows.

SIO_RCVALL_MCAST
Enables a socket to receive all multicast IP traffic on the network (that is, all IP
packets destined for IP addresses in the range of 224.0.0.0 to 239.255.255.255). The
socket handle passed to the WSAloctl function must be of AF _INET address family,
SOCK_RAW socket type, and IPPROTO_UDP protocol. The socket also must be
bound to an explicit local interface, which means that you cannot bind to
INADDR_ANY.

Once the socket is bound and the ioctl set, calls to the WSARecv or recv functions
return multicast IP datagrams passing through the given interface. Note that you must
supply a sufficiently large buffer. Setting this ioctl requires Administrator privilege on
the local machine. SIO_RCVALL_MCAST is available only in Windows 2000 and
later versions of Windows.

SIO_RCVALL_IGMPMCAST
Enables a socket to receive alllGMP multicast IP traffic on the network, without
receiving other multicast IP traffic. The socket handle passed to the WSAloctl
function must be of AF _INET address family, SOCK_RAW socket type, and
IPPROTO_IGMP protocol. The socket also must be bound to an explicit local
interface, which means that you cannot bind to INADDR_ANY.

Once the socket is bound and the ioctl set, calls to the WSARecv or recv functions
return multicast IP datagrams passing through the given interface. Note that you must

304 Volume 1 Winsock and QOS

supply a sufficiently large buffer. Setting this ioctl requires Administrator privilege on
the local machine. SIO_RCVAll_IGMPMCAST is available only in Windows 2000
and later versions of Windows.

SIO_KEEPALlVE_ VAlS
Enables the per-connection setting of keep-alive option, keepalive time, and
keepalive interval. The argument structure for SIO_KEEPAlIVE_VAlS is as follows:

SIO_SET_QOS (opcode setting: I, T==1)
Associate the supplied QOS structure with the socket. No output buffer is required,
the QOS structure will be obtained from the input buffer. The WSAENOPROTOOPT
error code is indicated for service providers that do not support quality of service.

SIO_SET _GROUP _QOS (opcode setting: I, T ==1)
Reserved.

SIO_TRANSlATE_HANDlE (opcode setting: 1,0, T==1)
To obtain a corresponding handle for socket s that is valid in the context of a
companion interface (for example, TH_NETDEV and TH_ TAPI). A manifest constant
identifying the companion interface along with any other needed parameters are
specified in the input buffer. The corresponding handle will be available in the output
buffer upon completion of this function. Refer to the appropriate section in Windows
Sockets 2 Protocol-Specific Annex for details specific to a particular companion
interface. The WSAENOPROTOOPT error code is indicated for service providers that
do not support this ioctl for the specified companion interface. This ioctl retrieves the
handle associated using SIO_TRANSlATE_HANDlE.

It is recommend that the Component Object Model (COM) be used instead of this ioctl
to discover and track other interfaces that might be supported by a socket. This ioctl is
present for backward compatibility with systems where COM is not available or cannot
be used for some other reason.

SIO_ROUTING_INTERFACE_QUERY (opcode setting: 1,0, T==1)
To obtain the address of the local interface (represented as SOCKADDR structure)
which should be used to send to the remote address specified in the input buffer (as
SOCKADDR). Remote multicast addresses may be submitted in the input buffer to
get the address of the preferred interface for multicast transmission. In any case, the
interface address returned may be used by the application in a subsequent bindO
request.

Note that routes are subject to change. Therefore, applications cannot rely on the
information returned by SIO_ROUTING_INTERFACE_QUERY to be perSistent.
Applications may register for routing change notifications through the
SIO_ROUTING_INTERFACE_CHANGE 10CTL which provides for notification

Chapter 8 Winsock 2 Functions 305

through either overlapped I/O or FD_ROUTING_INTERFACE_CHANGE event. The
following sequence of actions can be used to guarantee that the application always
has current routing interface information for a given destination:

• Issue SIO_ROUTING_INTERFACE_CHANGE 10CTl

• Issue SIO_ROUTING_INTERFACE_QUERY 10CTl

• Whenever SIO_ROUTING_INTERFACE_CHANGE IOCTL notifies the application
of routing change (either through overlapped I/O or by signaling
FD_ROUTING_INTERFACE_CHANGE event), the whole sequence of actions
should be repeated.

If output buffer is not large enough to contain the interface address,
SOCKET_ERROR is returned as the result of this 10CTl and WSAGetLastError
returns WSAEFAUl T. The required size of the output buffer will be returned in
IpcbBytesReturned in this case. Note the WSAEFAUl T error code is also returned if
the IpvlnBuffer, IpvOutBuffer or IpcbBytesReturned parameter is not totally contained
in a valid part of the user address space.

If the destination address specified in the input buffer cannot be reached through any
of the available interfaces, SOCKET_ERROR is returned as the result of this 10CTl
and WSAGetLastError returns WSAENETUNREACH or even WSAENETDOWN if all
of the network connectivity is lost.

SIO_ROUTING_INTERFACE_CHANGE (opcode setting: I, T==1)
To receive notification of the interface change that should be used to reach the
remote address in the input buffer (specified as a SOCKADDR structure). No output
information will be provided upon completion of this 10CTl; the completion merely
indicates that routing interface for a given destination has changed and should be
queried again through SIO_ROUTING_INTERFACE_QUERY.

It is assumed (although not required) that the application uses overlapped I/O to be
notified of routing interface change through completion of
SIO_ROUTING_INTERFACE_CHANGE request. Alternatively, if the
SIO_ROUTING_INTERFACE_CHANGE IOCTL is issued on nonblocking socket and
without overlapped parameters (IpOver/apped / Completion Routine are set NUll), it
will complete immediately with error WSAEWOUlDBlOCK, and the application can
then wait for routing change events through call to WSAEventSelect or
WSAAsyncSelect with FD_ROUTING_INTERFACE_CHANGE bit set in the network
event bitmask.

It is recognized that routing information remains stable in most cases so that requiring
the application to keep multiple outstanding 10CTls to get notifications about all
destinations that it is interested in as well as having service provider to keep track of
all them will unnecessarily tie significant system resources. This situation can be
avoided by extending the meaning of the input parameters and relaxing the service
provider requirements as follows:

306 Volume 1 Winsock and QOS

• The application can specify a protocol family specific wildcard address (same as
one used in bind call when requesting to bind to any available address) to request
notifications of any routing changes. This allows the application to keep only one
outstanding SIO_ROUTING_INTERFACE_CHANGE for all the
sockets/destinations it has and then use SIO_ROUTING_INTERFACE_QUERY to
get the actual routing information.

• Service provider has the option to ignore the information supplied by the
application in the input buffer of the SIO_ROUTING_INTERFACE_CHANGE (as
though the application specified a wildcard address) and complete the
SIO_ROUTING_INTERFACE_CHANGE IOCTL or signal
FD_ROUTING_INTERFACE_CHANGE event in the event of any routing
information change (not just the route to the destination specified in the input
buffer).

SIO_ADDRESS_LlST_QUERY (opcode setting: 1,0, T==1)
To obtain a list of local transport addresses of the socket's protocol family to which the
application can bind. The list returned in the output buffer using the following format:

Note In Win32 Plug-n-Play environments addresses can be added and removed
dynamically. Therefore, applications cannot rely on the information returned by
SIO_ADDRESS_LIST _QUERY to be persistent. Applications may register for
address change notifications through the SIO_ADDRESS_LlST _CHANGE IOCTL
which provides for notification through either overlapped I/O or
FD_ADDRESS_LlST _CHANGE event. The following sequence of actions can be
used to guarantee that the application always has current address list information:

• Issue SIO_ADDRESS_LlST_CHANGE IOCTL

• Issue SIO_ADDRESS_LlST _QUERY IOCTL

• Whenever SIO_ADDRESS_LlST _CHANGE IOCTL notifies the application of
address list change (either through overlapped I/O or by signaling
FD_ADDRESS_LlST _CHANGE event), the whole sequence of actions should be
repeated.

If output buffer is not large enough to contain the address list, SOCKET_ERROR is
returned as the result of this 10CTL and WSAGetLastError returns WSAEFAULT.
The required size of the output buffer will be returned in IpcbBytesReturned in this
case. Note the WSAEFAULT error code is also returned if the IpvlnBuffer,
ipvOutBuffer,or IpcbBytesReturned parameter is not totally contained in a valid part of
the user address space.

Chapter 8 Winsock 2 Functions 307

SIO_ADDRESS_LlST_CHANGE (opcode setting: T==1)
To receive notification of changes in the list of local transport addresses of the
socket's protocol family to which the application can bind. No output information will
be provided upon completion of this 10CTL; the completion merely indicates that list
of available local address has changed and should be queried again through
SIO_ADDRESS_LlST _QUERY.

It is assumed (although not required) that the application uses overlapped 110 to be
notified of change by completion of SIO_ADDRESS_LlST _CHANGE request.
Alternatively, if the SIO_ADDRESS_LlST _CHANGE 10CTL is issued on a
nonblocking socket and without overlapped parameters (IpOverlapped I
IpCompletionRoutine are set to NULL), it will complete immediately with error
WSAEWOULDBLOCK. The application can then wait for address list change events
through a call to WSAEventSelect or WSAAsyncSelect with
FD_ADDRESS_LlST _CHANGE bit set in the network event bitmask.

If an overlapped operation completes immediately, WSAloctl returns a value of zero and
the IpcbBytesReturned parameter is updated with the number of bytes in the output
buffer. If the overlapped operation is successfully initiated and will complete later, this
function returns SOCKET_ERROR and indicates error code WSA.JO_PENDING. In this
case, IpcbBytesReturned is not updated. When the overlapped operation completes the
amount of data in the output buffer is indicated either through the cbTransferred
parameter in the completion routine (if specified), or through the IpcbTransferparameter
in WSAGetOverlappedResult.

When called with an overlapped socket, the IpOverlapped parameter must be valid for
the duration of the overlapped operation. The IpOverlapped parameter contains the
address of a WSAOVERLAPPED structure.

If the IpCompletionRoutine parameter is NULL, the hEvent parameter of IpOverlapped is
signaled when the overlapped operation completes if it contains a valid event object
handle. An application can. use WSAWaitForMultipleEvents or
WSAGetOverlappedResult to wait or poll on the event object.

If IpCompletionRoutine is not NULL, the hEvent parameter is ignored and can be used
by the application to pass context information to the completion routine. A caller that
passes a non-NULL IpCompletionRoutine and later callsWSAGetOverlappedResult for
the 'same overlapped 110 request may not set the fWait parameter for that invocation of
WSAGetOverlappeciResult to TRUE. In this case, the usage of the hEvent parameter is
undefined, and attempting to wait on the hEvent parameter would produce unpredictable
results.

T.he prototype of the completion routine is as follows:

(continued)

308 Volume 1 Winsock and QOS

(continued)

This Completion Routine is a placeholder for an application-defined or library-defined
function. The dwError parameter specifies the completion status for the overlapped
operation as indicated by IpOverlapped. The cbTransferred parameter specifies the
number of bytes returned. Currently, there are no flag values defined and dwFlags will
be zero. The Completion Routine function does not return a value.

Returning from this function allows invocation of another pending completion routine for
this socket. The completion routines can be called in any order, not necessarily in the
same order the overlapped operations are completed.

Compatibility
The IOCTL codes with T == 0 are a subset of the IOCTL codes used in Berkeley
sockets. In particular, there is no command that is equivalent to FIOASYNC.

Version: Requires Windows Sockets 2.0.
Header: Declared in Winsock2.h.
Library: Use WS2_32.lib.

Windows Sockets Programming Considerations Overview, Microsoft Windows-Specific
Extension Functions, getsockopt, ioctlsocket, setsockopt, socket, WSASocket

WSAlsBlocking
This function has been removed in compliance with the Windows Sockets 2
specification, revision 2.2.0.

The Windows Socket WSAlsBlocking function is not exported directly by the
Ws2_32.dll, and Windows Sockets 2 applications should not use this function. Windows
Sockets 1.1 applications that call this function are still supported through the Winsock.dll
and Wsock32.dll.

Blocking hooks are generally used to keep a Single-threaded GUI application responsive
during calls to blocking functions. Instead of using blocking hooks, an applications
should use a separate thread (separate from the main GUI thread) for network activity.

Chapter 8 Winsock 2 Functions 309

WSAJoinLeaf
The Windows Sockets WSAJoinLeaf function joins a leaf node into a multipoint session,
exchanges connect data, and specifies needed quality of service based on the supplied
FLOWSPEC structures.

Parameters
s

[in] Descriptor identifying a multipoint socket.

name
[in] Name of the peer to which the socket is to be joined.

name/en
[in] Length of name.

{pCal/erData
[in] Pointer to the user data that is to be transferred to the peer during multipoint
session establishment.

/pCal/eeData
[out] Pointer to the user data that is to be transferred back from the peer during
multipoint session establishment.

/pSOOS
[in] Pointer to the FLOWSPEC structures for socket s, one for each direction.

{pGOOS
[in] Reserved.

dwF/ags
[in] Flags to indicate that the socket is acting as a sender, receiver, or both.

Return Values
If no error occurs, WSAJoinLeaf returns a value of type SOCKET that is a descriptor for
the newly created multipoint socket. Otherwise, a value of INVALID_SOCKET is
returned, and a specific error code can be retrieved by calling WSAGetLastError.

On a blocking socket, the return value indicates success or failure of the join operation.

310 Volume 1 Winsock and QOS

With a nonblocking socket, successful initiation of a join operation is indicated by a
return of a valid socket descriptor. Subsequently, an FD_CONNECT indication will be
given on the original socket s when the join operation completes, either successfully or
otherwise. The application must use either WSAAsyncSelect or WSAEventSelect with
interest registered for the FD_CONNECT event in order to determine when the join
operation has completed and checks the associated error code to determine the success
or failure of the operation. The select function cannot be used to determine when the
join operation completes.

Also, until the multipoint session join attempt completes all subsequent calls to
WSAJoinLeaf on the same socket will fail with the error code WSAEALREADY. After
the WSAJoinLeaf operation completes successfully, a subsequent attempt will usually
fail with the error code WSAEISCONN. An exception to the WSAEISCONN rule occurs
for a Cjoot socket that allows root-initiated joins. In such a case, another join may be
initiated after a prior WSAJoinLeaf operation completes.

If the return error code indicates the multipoint session join attempt failed (that is,
WSAECONNREFUSED, WSAENETUNREACH, WSAETIMEDOUT) the application can
call WSAJoinLeaf again for the same socket.

Error code

WSANOTINITIALISED

WSAENETDOWN

WSAEADDRINUSE

WSAEINTR

WSAEINPROGRESS

WSAEALREADY

WSAEADDRNOTAVAIL

WSAEAFNOSU PPORT

WSAECONNREFUSED

Meaning

A successful WSAStartup call must occur before
using this function.

The network subsystem has failed.

The socket's local address is already in use and the
socket was not marked to allow address reuse with
SO_REUSEADDR. This error usually occurs at the
time of bind, but could be delayed until this function
if the bind was to a partially wildcard address
(involving ADDR_ANY) and if a specific address
needs to be committed at the time of this function.

A blocking Windows Socket 1.1 call was canceled
through WSACancelBlockingCali.

A blocking Windows Sockets 1.1 call is in progress,
or the service provider is still processing a callback
function.

A nonblocking WSAJoinLeaf call is in progress on
the specified socket.

The remote address is not a valid address (such as
ADDR_ANY).

Addresses in the specified family cannot be used
with this socket.

The attempt to join was forcefully rejected.

Error code

WSAEFAULT

WSAEISCONN

WSAENETUNREACH

WSAENOBUFS

WSAENOTSOCK

WSAEOPNOTSUPP

WSAEPROTONOSUPPORT

WSAETIMEDOUT

Remarks

Chapter 8 Winsock 2 Functions 311

Meaning

The name or the name/en parameter is not a valid
part of the user address space, the name/en
parameter is too small, the buffer length for
/pCalleeData, /pSOOS, and /pGOOS are too small,
or the buffer length for /pCaJ/erData is too large.

The socket is already a member of the multipoint
session.

The network cannot be reached from this host at
this time.

No buffer space is available. The socket cannot be
joined.

The descriptor is not a socket.

The FLOWSPEC structures specified in /pSOOS and
/pGOOS cannot be satisfied.

The /pCallerData augment is not supported by the
service provider.

The attempt to join timed out without establishing a
multipoint session.

The WSAJoinLeaf function is used to join a leaf node to a multipoint session, and to
perform a number of other ancillary operations that occur at session join time as well. If
the socket, s, is unbound, unique values are assigned to the local association by the
system, and the socket is marked as bound.

The WSAJoinLeaf function has the same parameters and semantics as WSAConnect
except that it returns a socket descriptor (as in WSAAccept), and it has an additional
dwF/ags parameter. Only multipoint sockets created using WSASocket with appropriate
multipoint flags set can be used for input parameter s in this function. The returned
socket descriptor will not be useable until after the join operation completes. For
example, if the socket is in nonblockingmode after a corresponding FD_CONNECT
indication has been received from WSAAsyncSelect or WSAEventSelect on the
original socket s, except that closesocket may be invoked on this new socket descriptor
to cancel a pending join operation. A root application in a multipoint session may call
WSAJoinLeaf one or more times in order to add a number of leaf nodes, however at
most one multipoint connection request may be outstanding at a time. Refer to Multipoint
and Multicast Semantics for additional information.

For nonblocking sockets it is often not possible to complete the connection immediately.
In such a case, this function returns an as-yet unusable socket descriptor and the
operation proceeds. There is no error code such as WSAEWOULDBLOCK in this case,
since the function has effectively returned a successful start indication. When the final
outcome success or failure becomes known, it may be reported through

312 Volume 1 Win sock and QOS

WSAAsyncSelect or WSAEventSelect depending on how the client registers for
notification on the original socket s. In either case, the notification is announced with
FD_CONNECT and the error code associated with the FD_CONNECT indicates either
success or a specific reason for failure. The select function cannot be used to detect
completion notification for WSAJoinLeaf.

The socket descriptor returned by WSAJoinLeaf is different depending on whether the
input socket descriptor, s, is a c_root or a c_leaf. When used with a c_root socket, the
name parameter designates a particular leaf node to be added and the returned socket
descriptor is a c_leaf socket corresponding to the newly added leaf node. The newly
created socket has the same properties as s, including asynchronous events registered
with WSAAsyncSelect or with WSAEventSelect. It is not intended to be used for
exchange of multipoint data, but rather is used to receive network event indications (for
example, FD_CLOSE) for the connection that exists to the particular c_leaf. Some
multipoint implementations can also allow this socket to be used for side chats between
the root and an individual leaf node. An FD_CLOSE indication will be received for this
socket if the corresponding leaf node calls closesocket to drop out of the multipoint
session. Symmetrically, invoking closesocket on the c_leaf socket returned from
WSAJoinLeaf will cause the socket in the corresponding leaf node to get an
FD_CLOSE notification.

When WSAJoinLeaf is invoked with a c_leaf socket, the name parameter contains the
address of the root application (for a rooted control scheme) or an existing multipoint
session (nonrooted control scheme), and the returned socket descriptor is the same as
the input socket descriptor. In other words, a new socket descriptor is not allocated. In a
rooted control scheme, the root application would put its c_root socket in listening mode
by calling listen. The standard FD_ACCEPT notification will be delivered when the leaf
node requests to join itself to the multipoint session. The root application uses the usual
acceptIWSAAccept functions to admit the new leaf node. The value returned from
either accept or WSAAccept is also a c_leaf socket descriptor just like those returned
from WSAJoinLeaf. To accommodate multipoint schemes that allow both root-initiated
and leaf-initiated joins, it is acceptable for a c_root socket that is already in listening
mode to be used as an input to WSAJoinLeaf.

The application is responsible for allocating any memory space pOinted to directly or
indirectly by any of the parameters it specifies.

The /pCallerData is a value parameter that contains any user data that is to be sent
along with the multipoint session join request. If /pCallerData is NULL, no user data will
be passed to the peer. The /pCalleeData is a result parameter that will contain any user
data passed back from the peer as part of the multipoint session establishment. The
/pCal/eeData->/en initially contains the length of the buffer allocated by the application
and pointed to by /pCalleeData->buf. /pCal/eeData->/en will be set to zero if no user data
has been passed back. The IpCal/eeData information will be valid when the multipoint
join operation is complete.

Chapter 8 Winsock 2 Functions 313

For blocking sockets, this will be when the WSAJoinLeaf function returns. For
non blocking sockets, this will be after the join operation has completed. For example,
this could occur after FD_CONNECT notification on the original socket s). If
IpCalleeData is NULL, no user data will be passed back. The exact format of the user
data is specific to the address family to which the socket belongs.

At multipoint session establishment time, an application can use the IpSOOS parameter
to override any previous quality of service specification made for the socket through
WSAloctl with the SIO_SET _QOS opcode.

The IpSOOS parameter specifies the FLOWSPEC structures for socket s, one for each
direction, followed by any additional provider-specific parameters. If either the associated
transport provider in general or the specific type of socket in particular cannot honor the
quality of service request, an error will be returned as indicated in the following. The
respective sending or receiving flow specification values will be ignored for any
unidirectional sockets. If no provider-specific parameters are supplied, the but and len
parameters of IpSOOS->ProviderSpecitic should be set to NULL and zero, respectively.
A NULL value for IpSOOS indicates no application-supplied quality of service.

The dwFlags parameter is used to indicate whether the socket will be acting only as a
sender (JL_SENDER_ONL V), only as a receiver (JL_RECEIVER_ONL V), or both
(JL_BOTH).

When connected sockets break (that is, become closed for whatever reason), they
should be discarded and recreated. It is safest to assume that when things go awry for
any reason on a connected socket, the application must discard and recreate the
needed sockets in order to return to a stable point.

Version: Requires Windows Sockets 2.0.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.lib.

Windows Sockets Programming Considerations Overview, Microsoft Windows-Specific
Extension Functions, accept, bind, select, WSAAccept, WSAAsyncSelect,
WSAEventSelect, WSASocket

WSALookupServiceBegin
The Windows Sockets WSALookupServiceBegin function initiates a client query that is
constrained by the information contained within a WSAQUERYSET structure.
WSALookupServiceBegin only returns a handle, which should be used by subsequent
calls to WSALookupServiceNext to get the actual results.

314 Volume 1 Winsock and QOS

Parameters
IpqsRestrictions

[in] Pointer to the search criteria. See the following for details.

dwControlFlags
[in] Flag that controls the depth of the search:

Flag Description

LUP_DEEP

LUP _CONTAINERS

LUP _NOCONTAINERS

LUP _FLUSHCACHE

LUP _FLUSH PREVIOUS

LUP_NEAREST

LUP _RETURN_TYPE

LUP _RETURN_VERSION

LUP _RETURN_COMMENT

LUP _RETURN_ADDR

LUP _RETURN_BLOB

LUP _RETURN_ALL

Queries deep as opposed to just the first level.

Returns containers only.

Does not return any containers.

If the provider has been caching information,
ignores the cache, and queries the name space
itself.

Used as a value for the dwControlFlags argument
in WSALookupServiceNext. Setting this flag
instructs the provider to discard the last result set,
which was too large for the supplied buffer, and
move on to the next result set.

If possible, returns results in the order of
distance. The measure of distance is provider
specific.

This indicates whether prime response is in the
remote or local part of CSADDR_INFO structure.
The other part needs to be usable in either case.

Any available alias information is to be returned
in successive calls to WSALookupServiceNext,
and each alias returned will have the
RESULT _IS_ALIAS flag set.

Retrieves the name as
IpszServicelnstanceName.

Retrieves the type as IpServiceClassld.

Retrieves the version as IpVersion.

Retrieves the comment as IpszComment.

Retrieves the addresses as IpcsaBuffer.

Retrieves the private data as IpBlob.

Retrieves all of the information.

Chapter 8 Winsock 2 Functions 315

IphLookup
[out] Handle to be used when calling WSALookupServiceNext in order to start
retrieving the results set.

Return Values
The return value is zero if the operation was successful. Otherwise, the value
SOCKET_ERROR is returned, and a specific error number can be retrieved by calling
WSAGetLastError.

Error code

WSAEINVAL

WSANOTI NITIALIZEO

WSA NOT ENOUGH MEMORY

Remarks

Meaning

One or more parameters were missing or invalid
for this provider.

The name was found in the database but no data
matching the given restrictions was located.

The WS2_32.dll has not been initialized. The
application must first call WSAStartup before
calling any Windows Sockets functions.

No such service is known. The service cannot be
found in the specified name space.

There was insufficient memory to perform the
operation.

If LUP _CONTAINERS is specified in a call, all other restriction values should be
avoided. If any are supplied, it is up to the name service provider to decide if it can
support this restriction over the containers. If it cannot, it should return an error.

Some name service providers can have other means of finding containers. For example,
containers might all be of some well-known type, or of a set of well-known types, and
therefore a query restriction can be created for finding them. No matter what other
means the name service provider has for locating containers, LUP _CONTAINERS and
LUP _NOCONTAINERS take precedence. Hence, if a query restriction is given that
includes containers, specifying LUP _NOCONTAINERS will prevent the container items
from being returned. Similarly, no matter the query restriction, if LUP _CONTAINERS is
given, only containers should be returned. If a name space does not support containers,
and LUP _CONTAINERS is specified, it should simply return WSANO,-OATA.

The preferred method of obtaining the containers within another container, is the call:

316 Volume 1 Winsock and QOS

This call is followed by the requisite number of WSALookupServiceNext calls. This will
return all containers contained immediately within the starting context; that is, it is not a
deep query. With this, one can map the address space structure by walking the
hierarchy, perhaps enumerating the content of selected containers. Subsequent uses of
WSALookupServiceBegin use the containers returned from a previous call.

As mentioned above, a WSAQUERYSET structure is used as an input parameter to
WSALookupBegin in order to qualify the query. The following table indicates how the
WSAQUERYSET is used to construct a query. When a parameter is marked as
(Optional) a NULL pOinter can be supplied, indicating that the parameter will not be used
as a search criteria. See section Query-Related Data Structures for additional
information.

WSAQUERYSET member
name

dwSize

dwOutputflags

LpszServicelnstanceName

LpServiceClassld

LpVersion

LpszComment

DwNameSpace 1

LpNSProviderld

LpszContext

DwNumberOfProtocols

LpafpProtocols

Query interpretation

Must be set to sizeof(WSAQUERYSET). This is a
versioning mechanism.

Ignored for queries.

(Optional) Referenced string contains service name.
The semantics for wildcarding within the string are
not defined, but can be supported by certain name
space providers.

(Required) The GUID corresponding to the service
class.

(Optional) References desired version number and
provides version comparison semantics (that is,
version must match exactly, or version must be not
less than the value supplied).

Ignored for queries.

Identifier of a single name space in which to
constrain the search, or NS_ALL to include all name
spaces.

(Optional) References the GUID of a specific name
space provider, and limits the query to this
provider only.

(Optional) Specifies the starting point of the query in
a hierarchical name space.

Size of the protocol constraint array, can be zero.

(Optional) References an array of AFPROTOCOLS
structure. Only services that utilize these protocols
will be returned.

WSAQUERYSET member
name

LpszQueryString

DwNumberOfCsAddrs

LpcsaBuffer

LpBlob

1 See the Important note that follows.

Chapter 8 Winsock 2 Functions 317

Query interpretation

(Optional) Some name spaces (such as whois++)
support enriched Sal-like queries that are contained
in a simple text string. This parameter is used to
specify that string.

Ignored for queries.

Ignored for queries.

(Optional) This is a pOinter to a provider-specific
entity.

Important In most instances, applications interested in only a particular transport
protocol should constrain their query by address family and protocol rather than by name
space. This would allow an application that needs to locate a TCP/IP service, for
example, to have its query processed by all available name spaces such as the local
hosts file, DNS, and NIS.

Version: Requires Windows Sockets 2.0.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

WSALookupServiceEnd, WSALookupServiceNext

WSALookupServiceEnd
The Windows Sockets WSALookupServiceEnd function. is called to free the handle
after previous calls to WSALookupServiceBegin and WSALookupServiceNext.

If you call WSALookupServiceEnd from another thread while an existing
WSALookupServiceNext is blocked, the end call will have the same effect as a cancel
and will cause the WSALookupServiceNext call to return immediately.

318 Volume 1 Winsock and QOS

Parameters
hLookup

[in] Handle previously obtained by calling WSALookupServiceBegin.

Return Values
The return value is zero if the operation was successful. Otherwise, the value
SOCKET_ERROR is returned, and a specific error number can be retrieved by calling
WSAGetLastError.

Error code

WSA_INVALID _HAN DLE

WSANOTINITIALIZED

WSA NOT ENOUGH MEMORY

Meaning

The handle is not valid.

The Ws2_32.dll has not been initialized. The
application must first call WSAStartup before
calling any Windows Sockets functions.

There was insufficient memory to perform the
operation.

Version: Requires Windows Sockets 2.0.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.lib.

WSALookupServiceBegin, WSALookupServiceNext

WSALookupServiceNext
The Windows Sockets WSALookupServiceNext function is called after obtaining a
handle from a previous call to WSALookupServiceBegin in order to retrieve the
requested service information.

The provider will pass back a WSAQUERYSET structure in the IpqsResults buffer. The
client should continue to call this function until it returns WSA_E_NOMORE, indicating
that all of WSAQUERVSET has been returned.

Chapter 8 Winsock 2 Functions 319

Parameters
hLookup

[in] Handle returned from the previous call to WSALookupServiceBegin.

dwControlFlags
[in] Flags to control the next operation. Currently only LUP _FLUSH PREVIOUS is
defined as a means to cope with a result set which is too large. If an application does
not wish to (or cannot) supply a large enough buffer, setting LUP _FLUSH PREVIOUS
instructs the provider to discard the last result set-which was too large-and move
on to the next set for this call.

IpdwBufferLength
[in/out] On input, the number of bytes contained in the buffer pointed to by
IpqsResults. On output, if the function fails and the error is WSAEFAUL T, then it
contains the minimum number of bytes to pass for the IpqsResults to retrieve the
record.

IpqsResults
[out] Pointer to a block of memory, which will contain one result set in a
WSAQUERYSET structure on return.

Return Values
The return value is zero if the operation was successful. Otherwise, the value
SOCKET_ERROR is returned, and a specific error number can be retrieved by calling
WSAGetLastError.

Error code Meaning

There is no more data available. In Windows Sockets version 2,
conflicting error codes are defined for WSAENOMORE (10102)
and WSA_E_NO_MORE (10110). The error code
WSAENOMORE will be removed in a future version and only
WSA_E_NO_MORE will remain. For Windows Sockets version
2, however, applications should check for both WSAENOMORE
and WSA_E_NO_MORE for the widest possible compatibility
with name-space providers that use either one.

A call to WSALookupServiceEnd was made while this call was
still processing. The call has been canceled. Thedata in the
IpqsResults buffer is undefined. In Windows Sockets version 2,
conflicting error codes are defined for WSAECANCELLED
(10103) and WSA_E_CANCELLED (10111). The error code
WSAECANCELLED will be removed in a future version and only
WSA_E_CANCELLED will remain. For Windows Sockets version
2, however, applications should check for both
WSAECANCELLED and WSA_E_CANCELLED for the widest
possible compatibility with name space providers that use
either one.

(continued)

320 Volume 1 Winsock and aos

(continued)

Error code Meaning

WSAEFAULT The IpqsResults buffer was too small to contain a
WSAQUERYSET set.

WSAEINVAL One or more required parameters were invalid or missing.

WSA_INVALlD_HANDLE The specified Lookup handle is invalid.

WSANOTINITIALIZED The Ws2_32.dll has not been initialized. The application must
first call WSAStartup before calling any Windows Sockets
functions.

WSANO_DATA The name was found in the database, but no data matching the
given restrictions was located.

WSASERVICE_NOT _FOUND No such service is known. The service cannot be found in the
specified name space.

WSA NOT ENOUGH
MEMORY

Remarks

There was insufficient memory to perform the operation.

The dwControlFlags parameter specified in this function and the ones specified at the
time of WSALookupServiceBegin are treated as restrictions for the purpose of
combination. The restrictions are combined between the ones at
WSALookupServiceBegin time and the ones at WSALookupServiceNext time.
Therefore the flags at WSALookupServiceNext can never increase the amount of data
returned beyond what was requested at WSALookupServiceBegin, although it is not
an error to specify more or fewer flags. The flags specified at a given
WSALookupServiceNext apply only to that call.

The dwControlFlags LUP _FLUSH PREVIOUS and LUP _RES_SERVICE are exceptions
to the combined restrictions rule (because they are behavior flags instead of restriction
flags). If either of these flags are used in WSALookupServiceNext they have their
defined effect regardless of the setting of the same flags at WSALookupServiceBegin.

For example, if LUP _RETURN_VERSION is specified at WSALookupServiceBegin the
service provider retrieves records including the version. If LUP _RETURN_VERSION is
NOT specified at WSALookupServiceNext, the returned information does not include
the version, even though it was available. No error is generated.

Also for example, if LUP _RETURN_BLOB is NOT specified at
WSALookupServiceBegin but is specified at WSALookupServiceNext, the returned
information does not include the private data. No error is generated.

Query Results
The following table describes how the query results are represented in the
WSAQUERYSET structure.

WSAQUERYSET member
name

dwSize

dwOuputFlags

LpszServicelnstanceName

LpServiceClassld

LpVersion

LpszComment

DwNameSpace

LpNSProviderld

LpszContext

DwNumberOfProtocols

IpafpProtocols

LpszQueryString

DwNumberOfCsAddrs

LpcsaBuffer

LpBlob

Chapter 8 Winsock 2 Functions 321

Result interpretation

Will be set to sizeof(WSAQUERYSET). This is used as a
versioning mechanism.

RESULT _IS_ALIAS flag indicates this is an alias result.

Referenced string contains service name.

The GUID corresponding to the service class.

References version number of the particular service instance.

Optional comment string supplied by service instance.

Name space in which the service instance was found.

Identifies the specific name space provider that supplied this
query result.

Specifies the context point in a hierarchical name space at
which the service is located.

Undefined for results.

Undefined for results, all needed protocol information is in the
CSADDR_INFO structures.

When dwControlFlags includes
LUP _RETURN_QUERY _STRING, this parameter returns the
unparsed remainder of the IpszServicelnstanceName specified
in the original query. For example, in a name space that
identifies services by hierarchical names that specify a host
name and a file path within that host, the address returned might
be the host address and the unparsed remainder might be the
file path. If the IpszServicelnstanceName is fully parsed and
LUP _RETURN_QUERY _STRING is used, this parameter is
NULL or pOints to a zero-length string.

Indicates the number of elements in the array of
CSADDR_INFO structures.

A pointer to an array of CSADDR_INFO structures, with one
complete transport address contained within each element.

(Optional) This is a pointer to a provider-specific entity.

Version: Requires Windows Sockets 2.0.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

322 Volume 1 Winsock and QOS

WSALookupServiceBegin, WSALookupServiceEnd

WSANtohl
The Windows Sockets WSANtohl function converts a u_long from network byte order to
host byte order.

Parameters
s

[in] Descriptor identifying a socket.

netlong
[in] 32-bit number in network byte order.

Iphostlong
[out] Pointer to a 32-bit number in host byte order.

Return Values
If no error occurs, WSANtohl returns zero. Otherwise, a value of SOCKET_ERROR is
returned, and a specific error code can be retrieved by calling WSAGetLastError.

Error code Meaning

WSANOTINITIALISED

WSAENETDOWN

WSAENOTSOCK

WSAEFAULT

Remarks

A successful WSAStartup call must occur before
using this function.

The network subsystem has failed.

The descriptor is not a socket.

The Iphostlong parameter is not completely
contained in a valid part of the user address space.

The WSANtohl function takes a 32-bit number in the network byte order associated with
socket s and returns a 32-bit number pointed to by the Iphostlong parameter in host byte
order.

Chapter 8 Winsock 2 Functions 323

Version: Requires Windows Sockets 2.0.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.lib.

Windows Sockets Programming Considerations Overview, Microsoft Windows-Specific
Extension Functions, htonl, htons, ntohl, ntohs, WSAHtonl, WSAHtons, WSANtohs

WSANtohs
The Windows Sockets WSANtohs function converts a u_short from network byte order
to host byte order.

Parameters
s

[in] Descriptor identifying a socket.

netshort
[in] 16-bit number in network byte order.

Iphostshort
[out] Pointer to a 16-bit number in host byte order.

Return Values
If no error occurs, WSANtohs returns zero. Otherwise, a value of SOCKET_ERROR is
returned, and a specific error code can be retrieved by calling WSAGetLastError.

Error Codes
Error code

WSANOTINITIALISED

WSAENETDOWN

WSAENOTSOCK

WSAEFAULT

Meaning

A successful WSAStartup call must occur before
using this function.

The network subsystem has failed.

The descriptor is not a socket.

The Iphostshort parameter is not completely
contained in a valid part of the user address space.

324 Volume 1 Winsock and QOS

Remarks
The WSANtohs function takes a 16-bit number in the network byte order associated with
socket s and returns a 16-bit number pOinted to by the Iphostshort parameter in host
byte order.

Version: Requires Windows Sockets 2.0.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.lib.

Windows Sockets Programming Considerations OveNiew, Microsoft Windows-Specific
Extension Functions, htonl, htons, ntohl, ntohs, WSAHtonl, WSANtohl, WSAHtons

WSAProviderConfigChange
The Windows Sockets WSAProviderConfigChange function notifies the application
when the provider configuration is changed.

Parameters
IpNotificationHandle

[in/out] Pointer to notification handle. If the notification handle is set to NULL (the
handle value not the pointer itself), this function returns a notification handle in the
location pOinted to by IpNotificationHandle.

IpOverlapped
[in] Pointer to a WSAOVERLAPPED structure.

IpCompletionRoutine
[in] Pointer to the completion routine called when the provider change notification is
received.

Return Values
If no error occurs the WSAProviderConfigChange returns O. Otherwise, a value of
SOCKET_ERROR is returned and a specific error code may be retrieved by calling
WSAGetLastError. The error code WSA_IO_PENDING indicates that the overlapped
operation has been successfully initiated and that completion (and thus change event)
will be indicated at a later time.

Error code

WSANOTINITIALISED

WSAENETDOWN

WSA_NOT_ENOUGH_MEMORY

WSAEOPNOTSUPP

Remarks

Chapter 8 Winsock 2 Functions 325

Meaning

A successful WSAStartup call must occur
before using this function.

The network subsystem has failed.

Not enough free memory available to complete
the operation.

Value pointed by IpNotificationHandle parameter
is not a valid notification handle.

Current operating system environment does not
support provider installation or removal without
restart.

The WSAProviderConfigChange function notifies the application of provider (both
transport and name-pace) installation or removal in Win32 operating environments that
support such configuration change without requiring a restart. When called for the first
time (/pNotificationHandle parameter points to NULL handle), this function completes
immediately and returns notification handle in the location pointed by
IpNotificationHandle that can be used in subsequent calls to receive notifications of
provider installation and removal. The second and any subsequent calls only complete
when provider information changes since the time the call was made It is expected (but
not required) that that application uses overlapped 1/0 on second and subsequent calls
to WSAProviderConfigChange, in which case the call will return immediately and
application will be notified of provider configuration changes using the completion
mechanism chosen through specified overlapped completion parameters.

Notification handle returned by WSAProviderConfigChange is like any regular
operating system handle that should be closed (when no longer needed) using Win32
CloseHandle call.

The following sequence of actions can be used to guarantee that application always has
current protocol configuration information:

• Call WSAProviderConfigChange

• Call WSAEnumProtocols andlor WSAEnumNameSpaceProviders

• Whenever WSAProviderConfigChange notifies application of provider configuration
change (through blocking or overlapped 1/0), the whole sequence of actions should
be repeated.

Version: Requires Windows Sockets 2.0.
Header: Declared in Winsock2.h.
Library: Use Ws_32.lib.

326 Volume 1 Winsock and QOS

Windows Sockets Programming Considerations Overview, Microsoft Windows-Specific
Extension Functions, WSAEnumProtocols, WSAEnumNameSpaceProviders

WSARecv
The Windows Sockets WSARecv function receives data from a connected socket.

Parameters
s

[in] Descriptor identifying a connected socket.

/pBuffers
[in/out] Pointer to an array of WSABUF structures. Each WSABUF structure contains
a pOinter to a buffer and the length of the buffer.

dwBufferCount
[in] Number of WSABUF structures in the /pBuffers array.

/pNumberOfBytesRecvd
[out] Pointer to the number of bytes received by this call if the receive operation
completes immediately.

/pFlags
[in/out] Pointer to flags.

/pOver/apped
[in] Pointer to a WSAOVERLAPPED structure (ignored fornonoverlapped sockets).

/pComp/etionRoutine
[in] Pointer to the completion routine called when the receive operation has been
completed (ignored for nonoverlapped sockets).

Return Values
If no error occurs and the receive operation has completed immediately, WSARecv
returns zero. In this case, the completion routine will have already been scheduled to be
called once the calling thread is in the alertable state. Otherwise, a value of
SOCKET_ERROR is returned, and a specific error code can be retrieved by calling

Chapter 8 Winsock 2 Functions 327

WSAGetLastError. The error code WSA_IO_PENDING indicates that the overlapped
operation has been successfully initiated and that completion will be indicated at a later
time. Any other error code indicates that the overlapped operation was not successfully
initiated and no completion indication will occur.

Error code Meaning

WSANOTINITIALISED

WSAENETDOWN

WSAENOTCONN

WSAEINTR

WSAEINPROGRESS

WSAENETRESET

WSAENOTSOCK

WSAEFAULT

WSAEOPNOTSUPP

WSAESHUTDOWN

WSAEWOULDBLOCK

WSAEMSGSIZE

WSAEINVAL

WSAECONNABORTED

WSAECONNRESET

WSAEDISCON

A successful WSAStartup call must occur before using this
function.

The network subsystem has failed.

The socket is not connected.

The (blocking) call was canceled through
WSACancelBlockingCali.

A blocking Windows Sockets 1.1 call is in progress, or the service
provider is still processing a callback function.

The connection has been broken due to keep-alive activity
detecting a failure while the operation was in progress.

The descriptor is not a socket.

The IpBuffers parameter is not completely contained in a valid part
of the user address space.

MSG_OOB was specified, but the socket is not stream-style such
as type SOCK_STREAM, OOB data is not supported in the
communication domain associated with this socket, or the socket
is unidirectional and supports only send operations.

The socket has been shut down; it is not possible to call
WSARecv on a socket after shutdown has been invoked with
how set to SO_RECEIVE or SD_BOTH.

Overlapped sockets: there are too many outstanding overlapped
1/0 requests. Nonoverlapped sockets: The socket is marked as
nonblocking and the receive operation cannot be compl.eted
immediately.

The message was too large to fit into the specified buffer and (for
unreliable protocols only) any trailing portion of the message that
did not fit into the buffer has been discarded.

The socket has not been bound (for example, with bind).

The virtual circuit was terminated due to a time-out or other failure.

The virtual circuit was reset by the remote side.

Socket 5 is message oriented and the virtual circuit was gracefully
closed by the remote side.

(continued)

328 Volume 1 Winsock and QOS

(continued)

Error code

WSA_OPERATION_
ABORTED

Remarks

Meaning

An overlapped operation was successfully initiated and
completion will be indicated at a later time.

The overlapped operation has been canceled due to the closure
of the socket.

The WSARecv function provides functionality over and above the standard recv function
in three important areas:

• It can be used in conjunction with overlapped sockets to perform overlapped recv
operations.

• It allows multiple receive buffers to be specified making it applicable to the
scatter/gather type of I/O.

• The lpFlags parameter is both an input and an output parameter, allowing applications
to sense the output state of the MSG_PARTIAL flag bit. However, the MSG_PARTIAL
flag bit is not supported by all protocols.

The WSARecv function is used on connected sockets or bound connection less sockets
specified by the s parameter and is used to read incoming data. The socket's local
address must be known. For server applications, this is usually done explicitly through
bind or implicitly through accept or WSAAccept. Explicit binding is discouraged for
client applications. For client applications the socket can become bound impliCitly to a
local address through connect, WSAConnect, sendto, WSASendTo, or
WSAJoinLeaf.

For connected, connectionless sockets, this function restricts the addresses from which
received messages are accepted. The function only returns messages from the remote
address specified in the connection. Messages from other addresses are (silently)
discarded.

For overlapped sockets, WSARecv is used to post one or more buffers into which
incoming data will be placed as it becomes available, after which the application
specified completion indication (invocation of the completion routine or setting of an
event object) occurs. If the operation does not complete immediately, the final
completion status is retrieved through the completion routine or
WSAGetOverlappedResult.

If both IpOverlapped and IpCompletionRoutine are NULL, the socket in this function will
be treated as a nonoverlapped socket.

For nonoverlapped sockets, the blocking semantics are identical to that of the standard
recv function and the IpOverlapped and IpCompletionRoutine parameters are ignored.
Any data that has already been received and buffered by the transport will be copied into
the supplied user buffers. In the case of a blocking socket with no data currently having
been received and buffered by the transport, the call will block until data is received.

Chapter 8 Winsock 2 Functions 329

Windows Socket 2 does not define any standard blocking time-out mechanism for this
function. For protocols acting as byte-stream protocols the stack tries to return as much
data as possible subject to the supplied buffer space and amount of received data
available. However, receipt of a single byte is sufficient to unblock the caller. There is no
guarantee that more than a single byte will be returned. For protocols acting as
message-oriented, a full message is required to unblock the caller.

Whether or not a protocol is acting as byte stream is determined by the setting of
XP1_MESSAGE_ORIENTED and XP1_PSEUDO_STREAM in its
WSAPROTOCOL_INFO structure and the setting of the MSG_PARTIAL flag passed in
to this function (for protocols that support it). The relevant combinations are summarized
in the following table, (an asterisk "*,, indicates that the setting of this bit does not matter
in this case).

XP1_MESSAGE - XP1_PSEUDO -
ORIENTED STREAM MSG_PARTIAL Acts as

not set * * byte stream

* set * byte stream

set not set set byte stream

set not set not set message oriented

The supplied buffers are filled in the order in which they appear in the array pOinted to by
IpBuffers, and the buffers are packed so that no holes are created.

The array of WSABUF structures pointed to by the IpBuffers parameter is transient. If
this operation completes in an overlapped manner, it is the service provider's
responsibility to capture these WSABUF structures before returning from this call. This
enables applications to build stack-based WSABUF arrays.

For byte stream-style sockets (for example, type SOCK_STREAM), incoming data is
placed into the buffers until the buffers are filled, the connection is closed, or the
internally buffered data is exhausted. Regardless of whether or not the incoming data
fills all the buffers, the completion indication occurs for overlapped sockets.

For message-oriented sockets (for example, type SOCK_DGRAM), an incoming
message is placed into the supplied buffers up to the total Size of the buffers supplied,
and the completion indication occurs for overlapped sockets. If the message is larger
than the buffers supplied, the buffers are filled with the first part of the message. If the
MSG_PARTIAL feature is supported by the underlying service provider, the
MSG_PARTIAL flag is set in /pFlags and subsequent receive operations will retrieve the
rest of the message. If MSG_PARTIAL is not supported but the protocol is reliable,
WSARecv generates the error WSAEMSGSIZE and a subsequent receive operation
with a larger buffer can be used to retrieve the entire message. Otherwise, (that is, the
protocol is unreliable and does not support MSG_PARTIAL), the excess data is lost, and
WSARecv genetates the error WSAEMSGSIZE.

330 Volume 1 Winsock and QOS

For connection-oriented sockets, WSARecv can indicate the graceful termination of the
virtual circuit in one of two ways that depend on whether the socket is byte stream or
message oriented. For byte streams, zero bytes having been read (as indicated by a
zero return value to indicate success, and IpNumberOfBytesRecvdvalue of zero)
indicates graceful closure and that no more bytes will ever be read. For message
oriented sockets, where a zero byte message is often allowable, a failure with an error
code of WSAEDISCON is used to indicate graceful closure. In any case a return error
code of WSAECONNRESET indicates an abortive close has occurred.

The IpFlags parameter can be used to influence the behavior of the function invocation
beyond the options specified for the associated socket. That is, the semantics of this
function are determined by the socket options and the IpFlags parameter. The latter is
constructed by using the bitwise OR operator with any of the following values.

Value Meaning

Peeks at the incoming data. The data is copied into the buffer
but is not removed from the input queue. This flag is valid only
for nonoverlapped sockets.

Processes OOB data. (See section DEGnet Out-Of-band data
for a discussion of this topic.)

This flag is for message-oriented sockets only. On output,
indicates that the data supplied is a portion of the message
transmitted by the sender. Remaining portions of the message
will be supplied in subsequent receive operations. A subsequent
receive operation with MSG_PARTIAL flag cleared indicates end
of sender's message.

As an input parameter, this flag indicates that the receive
operation should complete even if only part of a message has
been received by the service provider.

For message-oriented sockets, the MSG_PARTIAL bit is set in the IpFlags parameter if a
partial message is received. If a complete message is received, MSG_PARTIAL is
cleared in IpFlags. In the case of delayed completion, the value pOinted to by IpFlags is
not updated. When completion has been indicated, the application should call
WSAGetOverlappedResult and examine the flags indicated by the IpdwFlags
parameter.

Overlapped Socket 1/0
If an overlapped operation completes immediately, WSARecv returns a value of zero
and the IpNumberOfBytesRecvd parameter is updated with the number of bytes received
and the flag bits indicated by the JpFlags parameter are also updated. If the overlapped
operation is successfully initiated and will complete later, WSARecv returns
SOCKET_ERROR and indicates error code WSA_IO_PENDING. In this case,
IpNumberOfBytesRecvd and IpFlags are not updated. When the overlapped operation
completes, the amount of data transferred is indicated either through the cbTransferred

Chapter 8 Winsock 2 Functions 331

parameter in the completion routine (if specified), or through the IpcbTransferparameter
in WSAGetOverlappedResult. Flag values are obtained by examining the IpdwFlags
parameter of WSAGetOverlappedResult.

The WSARecv function can be called from within the completion routine of a previous
WSARecv, WSARecvFrom, WSASend or WSASendTo function. For a given socket,
I/O completion routines will not be nested. For a given socket, I/O completion routines
will not be nested. This permits time-sensitive data transmissions to occur entirely within
a preemptive context.

The IpOverlapped parameter must be valid for the duration of the overlapped operation.
If multiple I/O operations are simultaneously outstanding, each must reference a
separate WSAOVERLAPPED structure.

If the IpCompletionRoutine parameter is NULL, the hEvent parameter of IpOverlapped is
signaled when the overlapped operation completes if it contains a valid event object
handle. An application can use WSAWaitForMultipleEvents or
WSAGetOverlappedResult to wait or poll on the event object.

If IpCompletionRoutine is not NULL, the hEvent parameter is ignored and can be used
by the application to pass context information to the completion routine. A caller that
passes a non-NULL IpCompletionRoutine and later calls WSAGetOverlappedResult for
the same overlapped I/O request may not set the tWait parameter for that invocation of
WSAGetOverlappedResult to TRUE. In this case the usage of the hEvent parameter is
undefined, and attempting to wait on the hEvent parameter would produce unpredictable
results.

The completion routine follows the same rules as stipulated for Win32 file I/O completion
routines. The completion routine will not be invoked until the thread is in an alertable wait
state such as can occur when the function WSAWsitForMultipleEvents with the
fAlertable parameter set to TRUE is invoked.

The transport providers allow an application to invoke send and receive operations from
within the context of the socket I/O completion routine, and guarantee that, for a given
socket, I/O completion routines will not be nested. This permits time-sensitive data
transmissions to occur entirely within a preemptive context.

The prototype of the completion routine is as follows:

Completion Routine is a placeholder for an application-defined or library-defined
function name. The dwError specifies the completion status for the overlapped operation
as indicated by IpOllerlapped. The cbTransferredparameter specifies the number of

332 Volume 1 Winsock and QOS

bytes received. The dwFlags parameter contains information that would have appeared
in IpFlags if the receive operation had completed immediately. This function does not
return a value.

Returning from this function allows invocation of another pending completion routine for
this socket. When using WSAWaitForMultipleEvents, all waiting completion routines
are called before the alertable thread's wait is satisfied with a return code of
WSA_IO_COMPLETION. The completion routines can be called in any order, not
necessarily in the same order the overlapped operations are completed. However, the
posted buffers are guaranteed to be filled in the same order in which they are supplied.

Version: Requires Windows Sockets 2.0.
Header: Declared in Winsock2.h.
Library: Use WS2_32.lib.

Windows Sockets Programming Considerations Overview, Microsoft Windows-Specific
Extension Functions, WSACloseEvent, WSACreateEvent,
WSAGetOverlappedResult, WSASocket, WSAWaitForMultipleEvents

WSARecvDisconnect
The Windows Sockets WSARecvDisconnect function terminates reception on a socket,
and retrieves the disconnect data if the socket is connection oriented.

Parameters
5

[in] Descriptor identifying a socket.

IplnboundDisconnectData
[out] Pointer to the incoming disconnect data.

Return Values
If no error occurs, WSARecvDisconnect returns zero. Otherwise, a value of
SOCKET_ERROR is returned, and a specific error code can be retrieved by calling
WSAGetLastError.

Error code

WSANOTINITIALISED

WSAENETDOWN

WSAEFAULT

WSAENOPROTOOPT

WSAEINPROGRESS

WSAENOTCONN

WSAENOTSOCK

Remarks

Chapter 8 Winsock 2 Functions 333

Meaning

A successful WSAStartup call must occur before using
this function.

The network subsystem has failed.

The buffer referenced by the parameter
IplnboundDisconnectData is too small.

The disconnect data is not supported by the indicated
protocol family.

A blocking Windows Sockets 1.1 call is in progress, or the
service provider is still processing a callback function.

The socket is not connected (connection-oriented
sockets only).

The descriptor is not a socket.

The WSARecvDisconnect function is used on connection-oriented sockets to disable
reception and retrieve any incoming disconnect data from the remote party. This is
equivalent to a shutdown (SD_RECV), except that WSASendDisconnect also allows
receipt of disconnect data (in protocols that support it).

After this function has been successfully issued, subsequent receives on the socket will
be disallowed. Calling WSARecvDisconnect has no effect on the lower protocol layers.
For TCP sockets, if there is still data queued on the socket waiting to be received, or
data arrives subsequently, the connection is reset, since the data cannot be delivered to
the user. For UDP, incoming datagrams are accepted and queued. In no case will an
ICMP error packet be generated.

To successfully receive incoming disconnect data, an application must use other
mechanisms to determine that the circuit has been closed. For example, an application
needs to receive an FD_CLOSE notification, to receive a zero return value, or to receive
a WSAEDISCON or WSAECONNRESET error code from recv/wSARecv.

The WSARecvDisconnect function does not close the socket, and resources attached
to the socket will not be freed until closesocket is invoked.

The WSARecvDisconnect function does not block regardless of the SO_LINGER
setting on the socket.

An application should not rely on being able to reuse a socket after it has been
disconnected using WSARecvDisconnect. In particular, a Windows Sockets provider is
not required to support the use of connect/WSAConnect on such a socket.

334 Volume 1 Winsock and QOS

Version: Requires Windows Sockets 2.0.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.lib.

connect, socket

WSARecvEx
The Windows Sockets WSARecvEx function is identical to the recv function, except that
the flags parameter is an [in, out] parameter. When a partial message is received while
using datagram protocol, the MSG_PARTIAL bit is set in the flags parameter on return
from the function.

Note The Windows Sockets WSARecvEx function is a Microsoft-specific extension to
the Windows Sockets specification. For more information, see Microsoft Extensions and
Windows Sockets 2.

Parameters
s

[in] Descriptor identifying a connected socket.

buf
[out] Buffer for the incoming data.

len
[in] Length of but.

flags
[in/out] Indicator specifying whether the message is fully or partially received for
datagram sockets.

Chapter 8 Winsock 2 Functions 335

Return Values
If no error occurs, WSARecvEx returns the number of bytes received. If the connection
has been closed, it returns zero. Additionally, if a partial message was received, the
MSG_PARTIAL bit is set in the flags parameter. If a complete message was received,
MSG_PARTIAL is not set in flags.

Otherwise, a value of SOCKET_ERROR is returned, and a specific error code can be
retrieved by calling WSAGetLastError.

Important For a stream oriented-transport protocol, MSG_PARTIAL is never set on
return from WSARecvEx. This function behaves identically to the Windows Sockets recv
function for stream-transport protocols.

Error code

WSANOTINITIAUSEO

WSAENETOOWN

WSAEFAULT

WSAENOTCONN

WSAEINTR

WSAEINPROGRESS

WSAENETRESET

WSAENOTSOCK

WSAEOPNOTSUPP

WSAESHUTOOWN

WSAEWOULOBLOCK

WSAEINVAL

Meaning

A successful WSAStartup call must occur before using
this function.

The network subsystem has failed.

The but parameter is not completely contained in a valid
part of the user address space.

The socket is not connected.

The (blocking) call was canceled through
WSACancelBlockingCali.

A blocking Windows Sockets 1.1 call is in progress, or
the service provider is still processing a callback function.

The connection has been broken due to the remote host
resetting.

The descriptor is not a socket.

MSG_OOB was specified, but the socket is not stream
style such as type SOCK_STREAM, OOB data is not
supported in the communication domain associated with
this socket, or the socket is unidirectional and supports
only send operations.

The socket has been shut down; it is not possible to use
WSARecvEx on a socket after shutdown has been
invoked with how set to SO_RECEIVE or SO_BOTH.

The socket is marked as nonblocking and the receive
operation would block.

The socket has not been bound with bind, or an
unknown flag was specified, or MSG_OOB was specified
for a socket with SO_OOBINUNE enabled or (for byte
stream sockets only) len was zero or negative.

(continued)

336 Volume 1 Winsock and QOS

(continued)

Error code

WSAECONNABORTED

WSAETIMEDOUT

WSAECONNRESET

Remarks

Meaning

The virtual circuit was terminated due to a time-out or
other failure. The application should close the socket as it
is no longer usable.

The connection has been dropped because of a network
failure or because the peer system failed to respond.

The virtual circuit was reset by the remote side executing
a hard or abortive close. The application should close the
socket as it is no longer usable. On a UPD-datagram
socket this error would indicate that a previous send
operation resulted in an ICMP "Port Unreachable"
message.

The WSARecvEx function that is part of the Microsoft implementation of Windows
Sockets 2 is similar to the more common recv function except that the flags parameter is
an in-out parameter, not just an in parameter. The additional out parameter is used to
indicate whether a partial or complete message is received when a message-oriented
protocol is being used.

The WSARecvEx and recv function identically for stream-oriented protocols.

Making the flags parameter an in-out parameter accommodates two common situations
in which a partial message will be received:

• When the application's data buffer size is smaller than the message size and the
message coincidentally arrives in two pieces.

• When the message is rather large and must arrive in several pieces.

The MSG_PARTIAL bit is set in the flags parameter on return from WSARecvEx when a
partial message was received. If a complete message was received, MSG_PARTIAL is
not set in flags.

The Windows Sockets recv function is different than WSARecvEx in that the recv
function always receives a Single message for each call for message-oriented transport
protocols. The recv function does not have a means to indicate to the application that
the data received is only a partial message. An application must build its own protocol for
checking whether a message is partial or complete by checking for the error code
WSAEMSGSIZE after each call to recv. When the application buffer is smaller than the
data being sent, as much of the message as will fit is copied into the user's buffer and
recv returns with the error code WSAEMSGSIZE. A subsequent call to recv will get the
next part of the message.

Chapter 8 Winsock 2 Functions 337

Applications written for message-oriented transport protocols should be coded for this
possibility if message sizing is not guaranteed by the application's data transfer protocol.
An application can use recv and manage the protocol itself. Alternatively, an application
can use WSARecvEx and check that the MSG_PARTIAL bit is set in the flags
parameter.

The WSARecvEx function provides the developer with a more effective way of checking
whether a message received is partial or complete when a very large message arrives
incrementally. For example, if an application sends a one-megabyte message, the
transport protocol must break up the message in order to send it over the physical
network. It is theoretically possible for the transport protocol on the receiving side to
buffer all the data in the message, but this would be quite expensive in terms of
resources. Instead, WSARecvEx can be used, minimizing overhead and eliminating the
need for an application-based protocol.

Version: Requires Windows Sockets 1.1. A Microsoft-specific extension. Not supported
on Windows 95.
Header: Declared in Mswsock.h.
Library: Use Mswsock.lib.

recvfrom, select, send, socket, WSAAsyncSelect

WSARecvFrom
The Windows Sockets WSARecvFrom function receives a datagram and stores the
source address.

Parameters
s

[in] Descriptor identifying a socket.

338 Volume 1 Winsock and aos

IpBuffers
[in/out] Pointer to an array of WSABUF structures. Each WSABUF structure contains
a pointer to a buffer and the length of the buffer.

dwBufferCount
[in] Number of WSABUF structures in the IpBuffers array.

IpNumberOfBytesRecvd
[out] Pointer to the number of bytes received by this call if the recvoperation
completes immediately.

IpFlags
[in/out] Pointer to flags.

IpFrom
[out] Optional pointer to a buffer that will hold the source address upon the completion
of the overlapped operation.

IpFromlen
[in/out] Pointer to the size of the from buffer, required only if IpFrom is specified.

IpOverlapped
[in] Pointer to a WSAOVERLAPPED structure (ignored for nonoverlapped sockets).

IpCompletionRoutine
[in] Pointer to the completion routine called when the recv operation has been
completed (ignored for nonoverlapped sockets).

Return Values
If no error occurs and the receive operation has completed immediately, WSARecvFrom
returns zero. In this case, the completion routine will have already been scheduled to be
called once the calling thread is in the alertable state. Otherwise, a value of
SOCKET_ERROR is returned, and a specific error code can be retrieved by calling
WSAGetLastError. The error code WSA_IO_PENDING indicates that the overlapped
operation has been successfully initiated and that completion will be indicated at a later
time. Any other error code indicates that the overlapped operation was not successfully
initiated and no completion indication will occur.

Error code

WSANOTINITIALISED

WSAENETDOWN

WSAEFAULT

WSAEINTR

WSAEINPROGRESS

Meaning

A successful WSAStartup call must occur before using this function.

The network subsystem has failed.

The IpBuffers, IpFlags, IpFrom, IpNumberOfBytesRecvd, IpFromlen,
IpOverlapped, or IpCompletionRoutine argument is not totally
contained in a valid part of the user address space: the IpFrom buffer
was too small to accommodate the peer address.

A blocking Windows Socket 1.1 call was canceled through
WSACancelBlockingCall.

A blocking Windows Sockets 1.1 call is in progress, or the service
provider is still processing a callback function.

Error code

WSAEINVAL

WSAEISCONN

WSAENETRESET

WSAENOTCONN

WSAEOPNOTSUPP

WSAESHUTDOWN

WSAEWOULDBLOCK

WSAEMSGSIZE

WSAECONNRESET

WSAEDISCON

WSA_OPERATION_
ABORTED

Remarks

Chapter 8 Winsock 2 Functions 339

Meaning

The socket has not been bound (with bind, for example).

The socket is connected. This function is not permitted with a
connected socket, whether the socket is connection-oriented or
connectionless.

The connection has been broken due to keep-alive activity detecting a
failure while the operation was in progress.

The socket is not connected (connection-oriented sockets only).

MSG_OOB was specified, but the socket is not stream-style such as
type SOCK_STREAM, OOB data is not supported in the
communication domain associated with this socket, or the socket is
unidirectional and supports only send operations.

The socket has been shut down; it is not possible to WSARecvFrom
on a socket after shutdown has been invoked with how set to
SO_RECEIVE or SO_BOTH.

Overlapped sockets: There are too many outstanding overlapped I/O
requests. Nonoverlapped sockets: The socket is marked as
non blocking and the receive operation cannot be completed
immediately.

The message was too large to fit into the specified buffer and (for
unreliable protocols only) any trailing portion of the message that did
not fit into the buffer has been discarded.

The virtual circuit was reset by the remote side executing a hard or
abortive close. The application should close the socket as it is no
longer useable. On a UPD~datagram socket this error would indicate
that a previous send operation resulted in an ICMP "Port Unreachable"
message.

Socket s is message oriented and the virtual circuit was gracefully
closed by the remote side.

An overlapped operation was successfully initiated and completion will
be indicated at a later time.

The overlapped operation has been canceled due to the closure of the
socket.

The WSARecvFrom function provides functionality over and above the standard
recvfrom function in three·important areas:

• It can be used in conjunction with overlapped sockets to perform overlapped receive
operations.

• It allows multiple receive buffers to be specified making it applicable to the
scatterlgather type of 1/0.

340 Volume 1 Winsock and aos

• The IpFlags parameter is both an input and an output parameter, allowing applications
to sense the output state of the MSG_PARTIAL flag bit. Note however, that the
MSG_PARTIAL flag bit is not supported by all protocols.

The WSARecvFrom function is used primarily on a connection less socket specified by
s. The socket's local address must be known. For server applications, this is usually
done explicitly through bind. Explicit binding is discouraged for client applications. For
client applications using this function the socket can become bound implicitly to a local
address through sendto, WSASendTo, or WSAJoinLeaf.

For overlapped sockets, this function is used to post one or more buffers into which
incoming data will be placed as it becomes available on a (possibly connected) socket,
after which the application-specified completion indication (invocation of the completion
routine or setting of an event object) occurs. If the operation does not complete
immediately, the final completion status is retrieved through the completion routine or
WSAGetOverlappedResult. Also, the values indicated by IpFrom and IpFromlen are not
updated until completion is itself indicated. Applications must not use or disturb these
values until they have been updated, therefore the application must not use automatic
(that is, stack-based) variables for these parameters.

If both IpOver/apped and IpCompletionRoutine are NULL, the socket in this function will
be treated as a non overlapped socket.

For nonoverlapped sockets, the blocking semantics are identical to that of the standard
WSARecv function and the IpOver/apped and IpCompletionRoutine parameters are
ignored. Any data that has already been received and buffered by the transport will be
copied into the supplied user buffers. For the case of a blocking socket with no data
currently having been received and buffered by the transport, the call will block until data
is received.

The supplied buffers are filled in the order in which they appear in the array indicated by
IpBuffers, and the buffers are packed so that no holes are created.

The array of WSABUF structures pOinted to by the IpBuffers parameter is transient. If
this operation completes in an overlapped manner, it is the service provider's
responsibility to capture these WSABUF structures before returning from this call. This
enables applications to build stack-based WSABUF arrays.

For connectionless socket types, the address from which the data originated is copied to
the buffer indicated by IpFrom. The value pointed to by IpFromlen is initialized to the size
of this buffer, and is modified on completion to indicate the actual size of the address
stored there. As noted previously for overlapped sockets, the IpFrom and IpFromlen
parameters are not updated until after the overlapped I/O has completed. The memory
pointed to by these parameters must, therefore, remain available to the service provider
and cannot be allocated on the application's stack frame. The IpFrom and IpFromlen
parameters are ignored for connection-oriented sockets.

For byte stream-style sockets (for example, type SOCK_STREAM), incoming data is
placed into the buffers until:

Value

Chapter 8 Winsock 2 Functions 341

• The buffers are filled.

• The connection is closed.

• The internally buffered data is exhausted.

Regardless of whether or not the incoming data fills all the buffers, the completion
indication occurs for overlapped sockets. For message-oriented sockets, an incoming
message is placed into the supplied buffers up to the total size of the buffers supplied,
and the completion indication occurs for overlapped sockets. If the message is larger
than the buffers supplied, the buffers are filled with the first part of the message. If the
MSG_PARTIAL feature is supported by the underlying service provider, the
MSG_PARTIAL flag is set in IpFlags and subsequent receive operation(s) will retrieve
the rest of the message. If MSG_PARTIAL is not supported but the protocol is reliable,
WSARecvFrom generates the error WSAEMSGSIZE and a subsequent receive
operation with a larger buffer can be used to retrieve the entire message. Otherwise,
(that is, the protocol is unreliable and does not support MSG_PARTIAL), the excess data
is lost, and WSARecvFrom generates the error WSAEMSGSIZE.

The IpFlags parameter can be used to influence the behavior of the function invocation
beyond the options specified for the associated socket. That is, the semantics of this
function are determined by the socket options and the IpFlags parameter. The latter is
constructed by using the bitwise OR operator with any of any of the following values.

Meaning

Peeks at the incoming data. The data is copied into the buffer but is not
removed from the input queue. This flag is valid only for nonoverlapped
sockets.

Processes OOB data. (See DEenet Out-Of-band data for more
information.)

This flag is for message-oriented sockets only. On output, this flag indicates
that the data supplied is a portion of the message transmitted by the
sender. Remaining portions of the message will be supplied in subsequent
receive operations. A subsequent receive operation with MSG_PARTIAL
flag cleared indicates the end of the sender's message.

As an input parameter, this flag indicates that the receive operation should
complete even if only part of a message has been received by the service
provider.

For message-oriented sockets, the MSG_PARTIAL bit is set in the IpFlags parameter if a
partial message is received. If a complete message is received, MSG_PARTIAL is
cleared in IpFlags. In the case of delayed completion, the value pointed to by IpFlags is
not updated. When completion has been indicated the application should call
WSAGetOverlappedResult and examine the flags pOinted to by the IpdwFlags
parameter.

342 Volume 1 Winsock and QOS

Overlapped Socket 1/0
If an overlapped operation completes immediately, WSARecvFrom returns a value of
zero and the IpNumberOfBytesRecvd parameter is updated with the number of bytes
received and the flag bits pOinted by the IpFlags parameter are also updated. If the
overlapped operation is successfully initiated and will complete later, WSARecvFrom
returns SOCKET_ERROR and indicates error code WSA_IO_PENDING. In this case,
IpNumberOfBytesRecvd and IpFlags is not updated. When the overlapped operation
completes the amount of data transferred is indicated either through the cbTransferred
parameter in the completion routine (if specified), or through the IpcbTransfer parameter
in WSAGetOverlappedResult. Flag values are obtained either through the dwFlags
parameter of the completion routine, or by examining the IpdwFlags parameter of
WSAGetOverlappedResult.

The WSARecvFrom function can be called from within the completion routine of a
previous WSARecv, WSARecvFrom, WSASend, or WSASendTo function. For a given
socket, I/O completion routines will not be nested. This permits time-sensitive data
transmissions to occur entirely within a preemptive context.

The IpOverlapped parameter must be valid for the duration of the overlapped operation.
If multiple I/O operations are simultaneously outstanding, each must reference a
separate WSAOVERLAPPED structure.

If the IpCompletionRoutine parameter is NULL, the hEvent parameter of IpOveriapped is
signaled when the overlapped operation completes if it contains a valid event object
handle. An application can use WSA WaitForMultipleEvents or
WSAGetOverlappedResult to wait or poll on the event object.

If IpCompletionRoutine is not NULL, the hEvent parameter is ignored and can be used
by the application to pass context information to the completion routine. A caller that
passes a non-NULL IpCompletionRoutine and later calls WSAGetOverlappedResult for
the same overlapped I/O request may not set the fWait parameter for that invocation of
WSAGetOverlappedResult to TRUE. In this case the usage of the hEventparameter is
undefined, and attempting to wait on the hEvent parameter would produce unpredictable
results.

The completion routine follows the same rules as stipulated for Win32 file I/O completion
routines. The completion routine will not be invoked until the thread is in an alertable wait
state such as can occur when the function WSAWaitForMultipleEvents with the
fAlertable parameter set to TRUE is invoked.

The transport providers allow an application to invoke send and receive operations from
within the context of the socket I/O completion routine, and guarantee that, for a given
socket, I/O completion routines will not be nested. This permits time-sensitive data
transmissions to occur entirely within a preemptive context.

The prototype of the completion routine is on the following page.

Chapter 8 Winsock 2 Functions 343

The Completion Routine is a placeholder for an application-defined or library-defined
function name. The dwError specifies the completion status for the overlapped operation
as indicated by IpOverlapped. The cbTransferred specifies the number of bytes received.
ThedwFlags parameter contains information that would have appeared in IpFlags if the
receive operation had completed immediately. This function does not return a value.

Returning from this function allows invocation of another pending completion routine for
this socket. When using WSA WaitForMultipleEvents, all waiting completion routines
are called before the alertable thread's wait is satisfied with a return code of
WSA_IO_COMPLETION. The completion routines can be called in any order, not
necessarily in the same order the overlapped operations are completed. However, the
posted buffers are guaranteed to be filled in the same order they are supplied,

Version: Requires Windows Sockets 2.0.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.lib.

Windows Sockets Programming Considerations Overview, Microsoft Windows-Specific
Extension Functions, WSACloseEvent, WSACreateEvent,
WSAGetOverlappedResult, WSASocket, WSAWaitForMultipleEvents .

WSARemoveServiceClass
The Windows.Sockets WSARemoveServiceClass function permanently removes from
the registry service class schema.

Parameters
IpServiceClassld

[in1 Pointer to the GUID for the service class you want to remove.

344 Volume 1Winsock and QOS

Return Values
The return value is zero if the operation was successful. Otherwise, the value
SOCKET_ERROR is returned, and a specific error number can be retrieved by calling
WSAGetLastError.

Error code

WSATYPE_NOT_FOUND

WSAEACCES

WSANOTINITIALIZED

WSAEINVAL

WSA NOT ENOUGH MEMORY

Meaning

The specified class was not found.

The calling routine does not have sufficient
privileges to remove the Service.

The Ws2_32.dll has not been initialized. The
application must first call WSAStartup before
calling any Windows Sockets functions.

The specified GUID was not valid.

There was insufficient memory to perform the
operation

Version: Requires Windows Sockets 2.0.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.lib.

WSAResetEvent
The Windows Sockets WSAResetEvent function resets the state of the specified event
object to nonsignaled.

Parameters
hEvent

[in] Handle that identifies an open event object handle.

Return Values
If the WSAResetEvent function succeeds, the return value is TRUE. If the function fails,
the return value is FALSE. To get extended error information, call WSAGetLastError.

Error code

WSANOTINITIALISED

WSAENETDOWN

WSAEINPROGRESS

Remarks

Chapter 8 Winsock 2 Functions 345

Meaning

A successful WSAStartup call must occur before
using this function.

The network subsystem has failed.

A blocking Windows Sockets 1.1 call is in progress,
or the service provider is still processing a callback
function.

The hEvent parameter is not a valid event object
handle.

The WSAResetEvent function is used to set the state of the event object to
nonsignaled. .

Version: Requires Windows Sockets 2.0.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.lib.

Windows Sockets Programming Considerations Overview, Microsoft Windows-Specific
Extension Functions, WSACloseEvent, WSACreateEvent, WSASetEvent

WSASend
The Windows Sockets WSASend function sends data on a connected socket.

Parameters
5

[in] Descriptor identifying? connected socket.

346 Volume 1 Winsock and QOS

IpBuffers
[in} Pointer to an array of WSABUF structures. Each WSABUF structure contains a
pOinter to a buffer and the length of the buffer. This array must remain valid for the
duration of the send operation.

dwBufferCount
[in} Number of WSABUF structures in the IpBuffers array.

IpNumberOfBytesSent
[out} Pointer to the number of bytes sent by this call if the 1/0 operation completes
immediately.

dwFlags
[in} Flags used to modify the behavior of the WSASend function call. See Using
dwFlags in the Remarks section for more information.

IpOverlapped
[in} Pointer to a WSAOVERLAPPED structure. This parameter is ignored for
nonoverlapped sockets.

IpCompletionRoutine
[in} Pointer to the completion routine called when the send operation has been
completed. This parameter is ignored for nonoverlapped sockets.

Return Values
If no error occurs and the send operation has completed immediately, WSASend returns
zero. In this case, the completion routine will have already been scheduled to be called
once the calling thread is in the alertable state. Otherwise, a value of SOCKET_ERROR
is returned, and a specific error code can be retrieved by calling WSAGetLastError. The
error code WSA_IO_PENDING indicates that the overlapped operation has been
successfully initiated and that completion will be indicated at a later time. Any other error
code indicates that the overlapped operation was not successfully initiated and no
completion indication will occur.

Error code Meaning

WSANOTINITIALISED

WSAENETDOWN

WSAEACCES

WSAEINTR

WSAEINPROGRESS

WSAEFAULT

A successful WSAStartup call must occur before using this function.

The network subsystem has failed.

The requested address is a broadcast address, but the appropriate
flag was not set.

A blocking Windows Socket 1.1 can was canceled through
WSACancelBtockingCal1. .

A blocking Windows Sockets 1 .. 1 call is in progress, or the service
provider is still processing a callback function.

The IpBuffers, IpNumberOfBytesSent, IpOverlapped,
IpCompletionRoutine argument is not totally contained in a valid part
of the user address space.

Error code

WSAENETRESET

WSAENOBUFS

WSAENOTCONN

WSAENOTSOCK

WSAEOPNOTSUPP

WSAESHUTDOWN

WSAEWOULDBLOCK

WSAEMSGSIZE

WSAEINVAL

WSAECONNABORTED

WSAECONNRESET

WSA_IO_PENDING

WSA_OPERATION
ABORTED

Remarks

Chapter 8 Winsock 2 Functions 347

Meaning

The connection has been broken due to keep-alive activity detecting
a failure while the operation was in progress.

The Windows Sockets provider reports a buffer deadlock.

The socket is not connected.

The descriptor is not a socket.

MSG_OOB was specified, but the socket is not stream-style such as
type SOCK_STREAM, OOB data is not supported in the
communication domain associated with this socket, MSG_PARTIAL
is not supported, or the socket is unidirectional and supports only
receive operations.

The socket has been shut down; it is not possible to WSASend on a
socket after shutdown has been invoked with how set to SO_SEND
or SO_BOTH.

Overlapped sockets: There are too many outstanding overlapped I/O
requests. Nonoverlapped sockets: The socket is marked as
nonblocking and the send operation cannot be completed
immediately.

The socket is message oriented, and the message is larger than the
maximum supported by the underlying transport.

The socket has not been bound with bind or the socket is not
created with the overlapped flag.

The virtual circuit was terminated due to a time-out or other failure.

The virtual circuit was reset by the remote side.

An overlapped operation was successfully initiated and completion
will be indicated at a later time.

The overlapped operation has been canceled due to the closure of
the socket, or the execution of the SIO_FLUSH command in
WSAloctl.

The WSASend function provides functionality over and above the standard send
function in two important areas:

• It can be used in conjunction with overlapped sockets to perform overlapped send
operations.

• It allows multiple send buffers to be specified making it applicable to the scatter/gather
type of I/O.

348 Volume 1 Winsock and QOS

The WSASend function is used to write outgoing data from one or more buffers on a
connection-oriented socket specified by s. It can also be used, however, on
connectionless sockets that have a stipulated default peer address established through
the connect or WSAConnect function.

For overlapped sockets (created using WSASocket with flag
WSA_FLAG_OVERLAPPED) sending information uses overlapped 110, unless both
IpOverlapped and IpCompletionRoutine are NULL. In that case, the socket is treated as
a nonoverlapped socket. A completion indication will occur, invoking the completion of a
routine or setting of an event object, when the supplied buffer(s) have been consumed
by the transport. If the operation does not complete immediately, the final completion
status is retrieved through the completion routine or WSAGetOverlappedResult.

If both IpOverlapped and IpCompletionRoutine are NULL, the socket in this function will
be treated as a nonoverlapped socket.

For nonoverlapped sockets, the last two parameters (lpOverlapped,
IpCompletionRoutine) are ignored and WSASend adopts the same blocking semantics
as send. Data is copied from the supplied buffer(s) into the transport's buffer. If the
socket is nonblocking and stream oriented, and there is not sufficient space in the
transport's buffer, WSASend will return with only part of the application's buffers having
been consumed. Given the same buffer situation and a blocking socket, WSASend will
block until all of the application's buffer contents have been consumed.

The array of WSABUF structures pOinted to by the IpBuffers parameter is transient. If
this operation is completed in an overlapped manner, it is the service provider's
responsibility to capture these WSABUF structures before returning from this call. This
enables applications to build stack-based WSABUF arrays.

For message-oriented sockets, care must be taken not to exceed the maximum
message size of the underlying provider, which can be obtained by getting the value of
socket option SO_MAX_MSG_SIZE. If the data is too long to pass atomically through
the underlying protocol the error WSAEMSGSIZE is returned, and no data is transmitted.

Note The successful completion of a WSASend does not indicate that the data was
successfully delivered.

Using dwFlags
The dwFlags parameter can be used to influence the behavior of the function invocation
beyond the options specified for the associated socket. That is, the semantics of this
function are determined by the socket options and the dwFlags parameter. The latter is
constructed by using the bitwise OR operator with any of any of the following values.

Chapter 8 Winsock 2 Functions 349

Value Meaning

MSG_DONTROUTE Specifies that the data should not be subject to routing. A Windows
Sockets service provider can choose to ignore this flag.

Send OOB data on a stream-style socket such as SOCK_STREAM
only. (See DECnet Out-Of-band data for a discussion of this topic.)

Specifies that IpBuffers only contains a partial message. Note that the
error code WSAEOPNOTSUPP will be returned by transports that do
not support partial message transmissions.

Overlapped Socket I/O
If an overlapped operation completes immediately, WSASend returns a value of zero
and the IpNumberOfBytesSent parameter is updated with the number of bytes sent. If
the overlapped operation is successfully initiated and will complete later, WSASend
returns SOCKET_ERROR and indicates error code WSA_IO_PENDING. In this case,
IpNumberOfBytesSent is not updated. When the overlapped operation completes the
amount of data transferred is indicated either through the cbTransferred parameter in the
completion routine (if specified), or through the IpcbTransferparameter in
WSAGetOverlappedResult.

The WSASend function can be called from within the completion routine of a previous
WSARecv, WSARecvFrom, WSASend, or WSASendTo function. This permits time
sensitive data transmissions to occur entirely within a preemptive context.

The IpOver/apped parameter must be valid for the duration of the overlapped operation.
If multiple I/O operations are simultaneously outstanding, each must reference a
separate WSAOVERLAPPED structure.

If the IpCompletionRoutine parameter is NULL, the hEvent parameter of IpOverlapped is
signaled when the overlapped operation completes if it contains a valid event object
handle. An application can use WSAWaitForMultipleEvents or
WSAGetOverlappedResult to wait or poll on the event object.

If IpCompletionRoutine is not NULL, the hEvent parameter is ignored and can be used
by the application to pass context information to the completion routine. A caller that
passes a non-NULL IpCompletionRoutine and later calls WSAGetOverlappedResult for
the same overlapped I/O request may not set the fWait parameter for that invocation of
WSAGetOverlappedResult to TRUE. In this case the usage of the hEvent parameter is
undefined, and attempting to wait on the hEvent parameter would produce unpredictable
results.

The completion routine follows the same rules as stipulated for Win32 file I/O completion
routines. The completion routine will not be invoked until the thread is in an alertable wait
state such as can occur when the function WSAWaitForMultipleEvents with the
fAlertable parameter set to TRUE is invoked.

350 Volume 1 Win sock and QOS

The transport providers allow an application to invoke send and receive operations from
within the context of the socket I/O completion routine, and guarantee that, for a given
socket, I/O completion routines will not be nested. ThiS permits time-sensitive data
transmissions to occur entirely within a preemptive context.

The prototype of the completion routine is as follows:

The Completion Routine function is a placeholder for an application~defined or library
defined function name. The dwError parameter specifies the completion status for the
overlapped operation as indicated by IpOverlapped. cbTransferred specifies the number
of bytes sent. Currently there are no flag values defined and dwFlags will be zero. This
function does not return a value.

Returning from this function allows invocation of another pending completion routine for
this socket. All waiting completion routines are called before the alertable thread's wait is
satisfied with a return code of WSA_IO_COMPLETION. The completion routines can be
called in any order, not necessarily in the same order the overlapped operations are
completed. However, the posted buffers are guaranteed to be sent in the same order
they are supplied.

Version: Requires Windows Sockets 2.0.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.1ib.

Windows Sockets ProgralT]ming Considerations Overview, Microsoft Windows~Specific
Extension Functions, WSACloseEvent, WSACreateEvent,
WSAGetOverlappedResult, WSASocket, WSAWaitForMultipleEvents

WSASendDisconnect
The Windows Sockets WSASendDisconnect function initiates termination of the
connection for the socket and sends disconnect data.

Parameters
s

Chapter 8 Winsock 2 Functions 351

[in] Descriptor identifying a socket.

IpOutboundDisconnectData
[in] Pointer to the outgoing disconnect data.

Return Values
If no error occurs, WSASendDisconnect returns zero. Otherwise, a value of
SOCKET_ERROR is returned, and a specific error code can be retrieved by calling
WSAGetLastError.

Error code

WSANOTINITIALISED

WSAENETDOWN

WSAENOPROTOOPT

WSAEINPROGRESS

WSAENOTCONN

WSAENOTSOCK

WSAEFAULT

Remarks

Meaning

A successful WSAStartup call must occur before
using this function.

The network subsystem has failed.

The parameter IpOutboundDisconnectData is not
NULL, and the disconnect data is not supported by
the service provider.

A blocking Windows Sockets 1.1 call is in progress,
or the service provider is still processing a callback
function.

The socket is not connected (connection-oriented
sockets only).

The descriptor is not a socket.

The IpOutboundDisconnectData parameter is not
completely contained in a valid part of the user
address space.

The WSASendDisconnect function is used on connection-oriented sockets to disable
transmission and to initiate termination of the connection along with the transmission of
disconnect data, if any. This is equivalent to a shutdown (SD_SEND), except that
WSASendDisconnect also allows sending disconnect data (in protocols that support it).

After this function has been successfully issued, subsequent sends are disallowed.

The IpOutboundDisconnectData parameter, if not NULL, pOints to a buffer containing the
outgoing disconnect data to be sent to the remote party for retrieval by using
WSARecvDisconnect.

The WSASendDisconnect function does not close the socket, and resources attached
to the socket will not be freed until closesocket is invoked.

352 Volume 1 Winsock and QOS

The WSASendDisconnect function does not block regardless of the SO_LINGER
setting on the socket.

An application should not rely on being able to reuse a socket after calling
WSASendDisconnect. In particular, a Windows Sockets provider is not required to
support the use of connectIWSAConnect on such a socket.

Version: Requires Windows Sockets 2.0.
Header: Declared in Winsock2.h.
Library: Use WS2_32.lib.

connect, socket

WSASendTo
The Windows Sockets WSASendTo function sends data to a specific destination, using
overlapped I/O where applicable.

Parameters
s

[in] Descriptor identifying a (possibly connected) socket.

IpBuffers
[in] Pointer to an array of WSABUF structures. Each WSABUF structure contains a
pOinter to a buffer and the length of the buffer. This array must remain valid for the
duration of the send operation.

dwBufferCount
[in] Number of WSABUF structures in the IpBuffers array.

Chapter 8 Winsock 2 Functions 353

IpNumberOfBytesSent
[out] Pointer to the number of bytes sent by this call if the I/O operation completes
immediately.

dwFlags
[in] Indicator specifying the way in which the call is made.

IpTo
[in] Optional pointer to the address of the target socket.

iToLen
[in] Size of the address in IpTo.

IpOver/apped
[in] A pointer to a WSAOVERLAPPED structure (ignored for nonoverlapped sockets).

IpCompletionRoutine
[in] Pointer to the completion routine called when the send operation has been
completed (ignored for nonoverlapped sockets).

Return Values
If no error occurs and the send operation has completed immediately, WSASendTo
returns zero. In this case, the completion routine will have already been scheduled to be
called once the calling thread is in the alertable state. Otherwise, a value of
SOCKET_ERROR is returned, and a specific error code can be retrieved by calling
WSAGetLastError. The error code WSA_IO_PENDING indicates that the overlapped
operation has been successfully initiated and that completion will be indicated at a later
time. Any other error code indicates that the overlapped operation was not successfully
initiated and no completion indication will occur.

Error code

WSANOTINITIALISED

WSAENETDOWN

WSAEACCES

WSAEINTR

WSAEINPROGRESS

WSAEFAULT

WSAENETRESET

WSAENOBUFS

Meaning

A successful WSAStartup call must occur before using this
function.

The network subsystem has failed.

The requested address is a broadcast address, but the
appropriate flag was not set.

A blocking Windows Socket 1.1 call was canceled through
WSACancelBlockingCall.

A blocking Windows Sockets 1.1 call is in progress, or the service
provider is still processing a callback function.

The IpBuffers, IpTo, IpOverlapped, IpNumberOfBytesSent, or
IpCompletionRoutine parameters are not part of the user address
space, or the IpTa argument is too small.

The connection has been broken due to keep-alive activity
detecting a failure while the operation was in progress.

The Windows Sockets provider reports a buffer deadlock.

(continued)

354 Volume 1 Winsock and QOS

(continued)

Error code

WSAENOTCONN

WSAENOTSOCK

WSAEOPNOTSU PP

WSAESHUTDOWN

WSAEWOULDBLOCK

WSAEMSGSIZE

WSAEINVAL

WSAECONNABORTED

WSAECONNRESET

WSAEADDRNOTAVAIL

WSAEAFNOSUPPORT

WSAEDESTADDRREQ

WSAENETUNREACH

WSA_IO_PENDING

WSA_OPERATION_
ABORTED

Remarks

Meaning

The socket is not connected (connection-oriented sockets only).

The descriptor is not a socket.

MSG_OOB was specified, but the socket is not stream-style such
as type SOCK_STREAM, OOB data is not supported in the
communication domain associated with this socket,
MSG_PARTIAL is not supported, or the socket is unidirectional
and supports only receive operations.

The socket has been shut down; it is not possible to WSASendTo
on a socket after shutdown has been invoked with how set to
SD_SEND or SD_BOTH.

Overlapped sockets: there are too many outstanding overlapped
I/O requests. Nonoverlapped sockets: The socket is marked as
nonblocking and the send operation cannot be completed
immediately.

The socket is message oriented, and the message is larger than
the maximum supported by the underlying transport.

The socket has not been bound with bind, or the socket is not
created with the overlapped flag.

The virtual circuit was terminated due to a time-out or other
failure.

The virtual circuit was reset by the remote side.

The remote address is not a valid address (such as ADDR_ANY).

Addresses in the specified family cannot be used with this socket.

A destination address is required.

The network cannot be reached from this host at this time.

An overlapped operation was successfully initiated and
completion will be indicated at a later time.

The overlapped operation has been canceled due to the closure
of the socket, or the execution of the SIO_FLUSH command in
WSAloctl.

The WSASendTo function provides functionality over and above the standard sendto
function in two important areas:

• It can be used in conjunction with overlapped sockets to perform overlapped send
operations.

• It allows multiple send buffers to be specified making it applicable to the scatter/gather
type of I/O.

Chapter 8 Winsock 2 Functions 355

The WSASendTo function is normally used on a connection less socket specified by s to
send a datagram contained in one or more buffers to a specific peer socket identified by
the IpTo parameter. Even if the connection less socket has been previously connected
using the connect function to a specific address, IpTo overrides the destination address
for that particular datagram only. On a connection-oriented socket, the IpTo and iToLen
parameters are ignored; in this case, the WSASendTo is equivalent to WSASend.

For overlapped sockets (created using WSASocket with flag
WSA_FLAG_OVERLAPPED) sending data uses overlapped 1/0, unless both
IpOverlapped and IpCompletionRoutine are NULL in which case the socket is treated as
a nonoverlapped socket. A completion indication will occur (invoking the completion
routine or setting of an event object) when the supplied buffer(s) have been consumed
by the transport. If the operation does not complete immediately, the final completion
status is retrieved through the completion routine or WSAGetOverlappedResult.

If both IpOverlapped and IpCompletionRoutine are NULL, the socket in this function will
be treated as a nonoverlapped socket.

For nonoverlapped sockets, the last two parameters (IpOver/apped,
IpCompletionRoutine) are ignored and WSASendTo adopts the same blocking
semantics as send. Data is copied from the supplied buffer(s) into the transport's buffer.
If the socket is nonblocking and stream oriented, and there is not sufficient space in the
transport's buffer, WSASendTo returns with only part of the application's buffers having
been consumed. Given the same buffer situation and a blocking socket, WSASendTo
will block until all of the application's buffer contents have been consumed.

The array of WSABUF structures indicated by the IpBuffers parameter is transient. If this
operation is completed inan overlapped manner, it is the service provider's responsibility
to capture these WSABUF structures before returning from this call. This enables
applications to build stack-based WSABUF arrays.

For message-oriented sockets, care must be taken not to exceed the maximum
message size of the underlying transport, which can be obtained by getting the value of
socket option SO_MAX_MSG_SIZE. If the data is too long to pass atomically through
the underlying protocol the error WSAEMSGSIZE is returned, and no data is transmitted.

The successful completion of a WSASendTo does not indicate that the data was
successfully delivered.

The dwFlags parameter can be used to influence the behavior of the function invocation
beyond the options specified for the associated socket. That is, the semantics of this
function are determined by the socket options and the dwFlags parameter. The latter is
constructed by using the bitwise OR operator with any of any of the following values.

356 Volume 1 Winsock and QOS

Value Meaning

MSG_DONTROUTE Specifies that the data should not be subject to routing. A
Windows Socket service provider may choose to ignore
this flag.

MSG_OOB Send OOB data (stream-style socket such as
SOCK_STREAM only).

MSG_PARTIAL Specifies that IpBuffers only contains a partial message. Note
that the error code WSAEOPNOTSUPP will be returned by
transports that do not support partial message transmissions.

Overlapped Socket I/O
If an overlapped operation completes immediately, WSASendTo returns a value of zero
and the IpNumberOfBytesSent parameter is updated with the number of bytes sent. If
the overlapped operation is successfully initiated and will complete later, WSASendTo
returns SOCKET_ERROR and indicates error code WSA_IO_PENDING. In this case,
IpNumberOfBytesSent is not updated. When the overlapped operation completes the
amount of data transferred is indicated either through the cbTransferred parameter in the
completion routine (if specified), or through the IpcbTransfer parameter in
WSAGetOverlappedResult.

The WSASendTo function can be called from within the completion routine of a previous
WSARecv, WSARecvFrom, WSASend, or WSASendTo function. This permits time
sensitive data transmissions to occur entirely within a preemptive context.

The IpOverlapped parameter must be valid for the duration of the overlapped operation.
If multiple I/O operations are simultaneously outstanding, each must reference a
separate WSAOVERLAPPED structure.

If the IpCompletionRoutine parameter is NULL, the hEvent parameter of IpOverlapped is
signaled when the overlapped operation completes if it contains a valid event object
handle. An application can use WSAWaitForMultipleEvents or
WSAGetOverlappedResult to wait or poll on the event object.

If IpCompletionRoutine is not NULL, the hEvent parameter is ignored and can be used
by the application to pass context information to the completion routine. A caller that
passes a non-NULL IpCompletionRoutine and later calls WSAGetOverlappedResult for
the same overlapped I/O request may not set the fWait parameter for that invocation of
WSAGetOverlappedResult to TRUE. In this case the usage of the hEvent parameter is
undefined, and attempting to wait on the hEvent parameter would produce unpredictable
results.

The completion routine follows the same rules as stipulated for Win32 file I/O completion
routines. The completion routine will not be invoked until the thread is in an alertable wait
state such as can occur when the function WSAWaitForMultipleEvents with the
fAlertable parameter set to TRUE is invoked.

Chapter 8 Winsock 2 Functions 357

Transport providers allow an application to invoke send and receive operations from
within the context of the socket I/O completion routine, and guarantee that, for a given
socket, I/O completion routines will not be nested. This permits time-sensitive data
transmissions to occur entirely within a preemptive context.

The prototype of the completion routine is as follows:

The Completion Routine function is a placeholder for an application-defined or library
defined function name. The dwError parameter specifies the completion status for the
overlapped operation as indicated by /pOver/apped. The cbTransferredparameter
specifies the number of bytes sent. Currently there are no flag values defined and
dwF/ags will be zero. This function does not return a value.

Returning from this function allows invocation of another pending completion routine for
this socket. All waiting completion routines are called before the alertable thread's wait is
satisfied with a return code of WSA_IO_COMPLETION. The completion routines can be
called in any order, not necessarily in the same order in which the overlapped operations
are completed. However, the posted buffers are guaranteed to be sent in the same order
they are supplied.

Version: Requires Windows Sockets 2.0.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.lib.

Windows Sockets Programming Considerations Overview, Microsoft Windows-Specific
Extension Functions, WSACloseEvent, WSACreateEvent,
WSAGetOverlappedResult, WSASocket, WSA WaitForMultipleEvents

WSASetBlockingHook
This function has been removed in compliance with the Windows Sockets 2
specification, revision 2.2.0.

The function is not exported directly by the Ws2_32.dll, and Windows Sockets 2
applications should not use this function. Windows Sockets 1.1 applications that call this
function are still supported through the Winsock.dll and Wsock32.dll.

358 Volume 1 Winsock and aos

Blocking hooks are generally used to keep a single-threaded GUI application responsive
during calls to blocking functions. Instead of using blocking hooks, an application should
use a separate thread (separate from the main GUI thread) for network activity.

WSASetEvent
The Windows Sockets WSASetEvent function sets the state of the specified event
object to signaled.

Parameters
hEvent

[in] Handle that identifies an open event object.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
WSAGetLastError.

Error code

WSANOTINITIALISED

WSAENETDOWN

WSAEINPROGRESS

WSA_INVALID _HANDLE

Remarks

Meaning

A successful WSAStartup call must occur before
using this function.

The network subsystem has failed.

A blocking Windows Sockets 1.1 call is in progress,
or the service provider is still processing a callback
function.

The hEvent parameter is not a valid event object
handle.

The WSASetEvent function sets the state of the event object to be signaled.

Version: Requires Windows Sockets 2.0.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.lib.

Chapter 8 Winsock 2 Functions 359

Windows Sockets Programming Considerations Overview, Microsoft Windows-Specific
Extension Functions, WSACloseEvent, WSACreateEvent, WSAResetEvent

WSASetLastError
The Windows Sockets WSASetLastError function sets the error code that can be
retrieved through the WSAGetLastError function.

Parameters
iError

[in] Integer that specifies the error code to be returned by a subsequent
WSAGetLastError call.

Return Values
This function generates no return values.

Error code

WSANOTINITIALISED

Remarks

Meaning

A successful WSAStartup call must occur before
using this function.

The WSASetLastError function allows an application to set the error code to be
returned by a subsequent WSAGetLastError call for the current thread. Note that any
subsequent Windows Sockets routine called by the application will override the error
code as set by this routine.

The error code set by WSASetLastError is different from the error code reset by calling
the function getsockopt with SO_ERROR.

Version: Requires Windows Sockets 2.0.
Header: Declared in Winsock2.h.
Library: Use WS2_32.lib.

Windows Sockets Programming Considerations Overview, Microsoft Windows-Specific
Extension Functions, getsockopt, WSAGetLastError

360 Volume 1 Winsock and QOS

WSASetService

Value

The Windows Sockets WSASetService function registers or removes from the registry a
service instance within one or more name spaces. This function can be used to affect a
specific name space provider, all providers associated with a specific name space, or all
providers across all name spaces.

Parameters
IpqsReglnfo

[in] Pointer to the service information for registration or deregistration.

essOperation
[in] Enumeration whose values include the following.

Description

RNRSERVICE_REGISTER Register the service. For SAP, this means sending out a
periodic broadcast. This is an NOP for the DNS name space.
For persistent data stores, this means updating the address
information.

RNRSERVICE_DEREGISTER Remove the service from the registry. For SAP, this means
stop sending out the periodic broadcast. This is an NOP for
the DNS name space. For persistent data stores this means
deleting address information.

RNRSERVICE_DELETE

dwControlFlags

Delete the service from dynamic name and persistent spaces.
For services represented by multiple CSADDR~INFO
structures (using the SERVICE_MULTIPLE flag), only the
supplied address will be deleted, and this must match exactly
the corresponding CSADDR_INFO structure that was
supplied when the service was registered.

[in] Meaning of dwControlFlags is dependent on the following values.

Flag

SERVICE MULTIPLE

Meaning

Controls scope of operation. When clear, service addresses are
managed as a group. A register or removal from the registry
invalidates all existing addresses before adding the given address set.
When set, the action is only performed on the given address set. A
register does not invalidate existing addresses and a removal from
the registry only invalidates the given set of addresses.

Chapter 8 Winsock 2 Functions 361

The available values for essOperation and dwControlFlags combine to give meanings as
shown in the following table.

Operation Flags Service already exists Service does not exist

RNRSERVICE - None Overwrites the object. Uses only Creates a new object.
REGISTER addresses specified. Object is Uses only addresses

REGISTERED. specified. Object is
REGISTERED.

RNRSERVICE - SERVICE - Update object. Adds new Creates a new object.
REGISTER MULTIPLE addresses to existing set. Object Uses all addresses

is REGISTERED. specified. Object is
REGISTERED.

RNRSERVICE - None Removes all addresses, but WSASERVICE -
DEREGISTER does not remove object from NOT_FOUND

name space. Object is removed
from the registry.

RNRSERVICE - SERVICE_ Updates object Removes only WSASERVICE -
DEREGISTER MULTIPLE addresses that are specified. NOT_FOUND

Only marks object as
DEREGISTERED if no
addresses present. Does not
remove from the name space.

RNRSERVICE - None Removes object from the name WSASERVICE -
DELETE space. NOT_FOUND

RNRSERVICE - SERVICE - Removes only addresses that WSASERVICE -
DELETE MULTIPLE are specified. Only removes NOT_FOUND

object from the name space jf no
addresses remain.

Return Values
The return value for WSASetService is zero if the operation was successful. Otherwise,
the value SOCKET_ERROR is returned, and a specific error number can be retrieved by
calling WSAGetLastError.

Error code

WSAEACCES

WSAEINVAL

WSANOTINITIAUZED

Meaning

The calling routine does not have sufficient privileges to install
the Service.

One Or more required parameters were invalid or missing.

The WiS2_32.dll has not been initialized. The application must
first call WSAStartup before calling any Windows Sockets
functions.

(continued)

362 Volume 1 Winsock and QOS

(continued)

Error code Meaning

WSA NOT ENOUGH MEMORY

WSASERVICE NOT FOUND

There was insufficient memory to perform the operation.

No such service is known. The service cannot be found in the
specified name space.

Remarks
SERVICE_MULTIPLE lets an application manage its addresses independently. This is
useful when the application wants to manage its protocols individually or when the
service resides on more than one machine. For instance, when a service uses more than
one protocol, it may find that one listening socket aborts but the others remain
operational. In this case, the service could remove the aborted address from the registry
without affecting the other addresses.

When using SERVICE_MULTIPLE, an application must not let stale addresses remain in
the object. This can happen if the application aborts without issuing a DEREGISTER
request. When a service registers, it should store its addresses. On its next invocation,
the service should explicitly remove these old stale addresses from the registry before
registering new addresses.

Service Properties
The following table describes how service property data is represented in a
WSAQUERYSET structure. Fields labeled as (Optional) can be supplied with a NULL
pointer.

WSAQUERYSET member name

Field Name

dwSize

dwOutputFlags

LpszServicelnstanceName

LpServiceClassld

LpVersion

LpszComment

DwNameSpace

LpNSProviderld

LpszContext

DwNumberOfProtocols

Service property description

Service Property Description

Must be set to sizeof (WSAQUERYSET). This is
a versioning mechanism.

Not applicable and ignored.

Referenced string contains the service instance
name.

The GUID corresponding to this service class.

(Optional) Supplies service instance version
number.

(Optional) An optional comment string.

See table that follows.

See table that follows.

(Optional) Specifies the starting pOint of the
query in a hierarchical name space.

Ignored.

Chapter 8 Winsock 2 Functions 363

WSAQUERYSET member name Service property description

LpafpProtocols

LpszQueryString

DwNumberOfCsAddrs

LpcsaBuffer

LpBlob

Ignored.

Ignored.

The number of elements in the array of
CSADDR_INFO structures referenced by
IpcsaBuffer.

A pointer to an array of CSADDR_INFO
structures that contain the address(es) that the
service is listening on.

(Optional) This is a pointer to a provider-specific
entity.

As illustrated in the following, the combination of the dwNameSpace and IpNSProviderld
parameters determine that name space providers are affected by this function.

DwNameSpace IpNSProviderld Scope of impact

Ignored

A valid name space
identifier

NS_ALL

Non-NULL

NULL

NULL

Version: Requires Windows Sockets 2.0.
Header: Declared in Winsock2.b.
Library: Use Ws2_32.1ib.

The specified name-space provider.

All name-space providers that
support the indicated name space.

All name-space providers.

Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

WSASocket
The Windows Sockets WSASocket function creates a socket that is bound to a specific
transport-service provider.

364 Volume 1 Winsock and QOS

Parameters
at

[in] Address family specification.

type
[in] Type specification for the new socket.

protocol
[in] Protocol to be used with the socketthat is specific to the indicated address family.

IpProtocol/nto
[in] Pointer to a WSAPROTOCOL_INFO structure that defines the characteristics of
the socket to be created.

g
[in] Reserved.

dwFlags
[in] Flag that specifies the socket attribute.

Return Values
If no error occurs, WSASocket returns a descriptor referencing the new socket.
Otherwise, a value of INVALID_SOCKET is returned, and a specific error code can be
retrieved by calling WSAGetLastError.

Note This error code description is Microsoft-specific.

Error code

WSANOTINITIALISED

WSAENETDOWN

WSAEAFNOSUPPORT

WSAEINPROGRESS

WSAEMFILE

WSAENOBUFS

WSAEPROTONOSUPPORT

WSAEPROTOTYPE

WSAESOCKTNOSUPPORT

Meaning

A successful WSAStartup call must occur before using this
function.

The network subsystem has failed.

The specified address family is not supported.

A blocking Windows Sockets 1.1 call is in progress, or the
service provider is still processing a callback function.

No more socket descriptors are available.

No buffer space is available. The socket cannot be created.

The specified protocol is not supported.

The specified protocol is the wrong type for this socket.

The specified socket type is not supported in this address family.

Error code

WSAEINVAL

WSAEFAULT

WSAINVALI DPROVI DER

WSAINVALI DPROCT ABLE

Remarks

Chapter 8 Winsock 2 Functions 365

Meaning

This value is true for any of the following conditions.

• The parameter g specified is not valid.

• The WSAPROTOCOL_INFO structure that IpProtocol/nfo
points to is incomplete, the contents are invalid or the
WSAPROTOCOL_INFO structure has already been used in
an earlier duplicate socket operation.

• The values specified for members of the socket triple <at,
type, and protocol> are individually supported, but the given
combination is not.

IpProtocol/nfo argument is not in a valid part of the process
address space.

The service provider returned a version other than 2.2.

The service provider returned an invalid or incomplete procedure
table to the WSPStartup.

The WSASocket function causes a socket descriptor and any related resources to be
allocated and associated with a transport-service provider. By default, the socket will not
have an overlapped attribute. If IpProtocol/nfo is NULL, the Ws2_32.dll uses the first
three parameters (at, type, protoco~ to determine which service provider is used by
selecting the first transport provider able to support the stipulated address family, socket
type, and protocol values. If the IpProtocol/nfo is not NULL, the socket will be bound to
the provider associated with the indicated WSAPROTOCOL_INFO structure. In this
instance, the application can supply the manifest constant FROM_PROTOCOL_INFO as
the value for any of at, type, or protocol. This indicates that the corresponding values
from the indicated WSAPROTOCOL_INFO structure (iAddressFamily, iSocketType,
iProtocol) are to be assumed. In any case, the values supplied for at, type, and protocol
are supplied unmodified to the transport-service provider.

When selecting a protocol and its supporting service provider based on at, type, and
protocol, this procedure will only choose a base protocol or a protocol chain, not a
protocol layer by itself. Unchained protocol layers are not considered to have partial
matches on type or af, either. That is, they do not lead to an error code of
WSAEAFNOSUPPORT or WSAEPROTONOSUPPORT, if no suitable protocol is found.

Note The manifest constant AF _UNSPEC continues to be defined in the header file but
its use is strongly discouraged, as this can cause ambiguity in interpreting the value of
the protocol parameter.

The dwFlags parameter can be used to specify the attributes ofthe socket by using the
bitwise OR operator with any of the following flags.

366 Volume 1 Winsock and aos

Flag Meaning

WSA_FLAG_
OVERLAPPED

WSA_FLAG_
MULTIPOINT _C_ROOT

WSA_FLAG_
MULTIPOINT _C_LEAF

WSA_FLAG_
MULTIPOINT _D_ROOT

WSA_FLAG_
MULTIPOINT _D_LEAF

This flag causes an overlapped socket to be created. Overlapped
sockets can utilize WSASend, WSASendTo, WSARecv,
WSARecvFrom, and WSAloctl for overlapped I/O operations,
which allow multiple operations to be initiated and in progress
simultaneously. All functions that allow overlapped operation
(WSASend, WSARecv, WSASendTo, WSARecvFrom, WSAloctl)
also support nonoverlapped usage on an overlapped socket if the
values for parameters related to overlapped operations are NULL.

Indicates that the socket created will be a c_root in a multipoint
session. Only allowed if a rooted control plane is indicated in the
protocol's WSAPROTOCOL_INFO structure. Refer to Multipoint
and Multicast Semantics for additional information.

Indicates that the socket created will be a c_leaf in a multicast
session. Only allowed if XP1_SUPPORT _MULTIPOINT is indicated
in the protocol's WSAPROTOCOL_INFO structure. Refer to
Multipoint and Multicast Semantics for additional information.

Indicates that the socket created will be a d_root in a multipoint
session. Only allowed if a rooted data plane is indicated in the
protocol's WSAPROTOCOL_INFO structure. Refer to Multipoint
and Multicast Semantics for additional information.

Indicates that the socket created will be a d_leaf in a multipoint
session. Only allowed if XP1_SUPPORT _MULTIPOINT is indicated
in the protocol's WSAPROTOCOL_INFO structure. Refer to
Multipoint and Multicast Semantics for additional information.

Important For multipoint sockets, exactly one of WSA_FLAG_MUL TIPOINT _C_ROOT
or WSA_FLAG_MUL TIPOINT _C_LEAF must be specified, and exactly one of
WSA_FLAG_MUL TIPOINT _D_ROOT or WSA_FLAG_MULTIPOINT _D_LEAF must be
specified. Refer to Multipoint and Multicast Semantics for additional information.

Connection-oriented sockets such as SOCK...STREAM provide full-duplex connections,
and must be in a connected state before any data can be sent or received on them. A
connection to another socket is created with a connectIWSAConnect call. Once
connected, data can be transferred using send/wSASend and recv/wSARecv calls.
When a session has been completed, a closesocket must be performed.

The communications protocols used to implement a reliable, connection-oriented socket
ensure that data is not lost or duplicated. If data for which the peer protocol has buffer
space cannot be successfully transmitted within a reasonable length of time, the
connection is considered broken and subsequent calls will fail with the error code set to
WSAETIMEDOUT.

Chapter 8 Winsock 2 Functions 367

Connectionless, message-oriented sockets allow sending and receiving of datagrams to
and from arbitrary peers using sendtolWSASendTo and recvfrornlWSARecvFrom. If
such a socket is connected to a specific peer, datagrams can be sent to that peer using
sendlWSASend and can be received from (only) this peer using recvlWSARecv.

Support for sockets with type RAW is not required, but service providers are encouraged
to support raw sockets whenever possible.

Shared Sockets
When a special WSAPROTOCOL_INFO structure (obtained through the
WSADuplicateSocket function and used to create additional descriptors for a shared
socket) is passed as an input parameter to WSASocket, the g anddwFlags
parameters are ignored. Such a WSAPROTOCOL_INFO structure may only be used
once, otherwise the error code WSAEINVAL will result.

Version: Requires Windows Sockets 2.0.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.lib.
Unicode: Implemented as Unicode and ANSI versions on all platforms.

Windows Sockets Programming Considerations Overview, Microsoft Windows-Specific
Extension Functions, accept, bind, connect, getsockname, getsockopt, ioctlsocket,
listen, r-ecv, recvfrom, select, send,sendto, setsockopt, shutdown

WSAStartup
The Windows Sockets WSAStartup function initiates use of WS2_32.dllby a process.

Parameters
wVersionRequested

[in] Highest version of Windows Sockets support that the caller can use. The high
order byte specifies the minor version (revision) number; the low-order byte specifies
the major version number;

IpWSAData
[out] Pointer to the WSADATA data structure that is to receive details of the Windows
Sockets implementation.

368 Volume 1 Winsock and QOS

Return Values
The WSAStartup function returns zero if successful. Otherwise, it returns one of the
error codes listed in the following.

An application cannot call WSAGetLastError to determine the error code as is normally
done in Windows Sockets if WSAStartup fails. The Ws2_32.dll will not have been
loaded in the case of a failure so the client data area where the last error information is
stored could not be established.

Error code

WSASYSNOTREADY

WSAVERNOTSUPPORTED

WSAEINPROGRESS

WSAEPROCLIM

WSAEFAULT

Remarks

Meaning

Indicates that the underlying network subsystem is
not ready for network communication.

The version of Windows Sockets support
requested is not provided by this particular
Windows Sockets implementation.

A blocking Windows Sockets 1.1 operation is in
progress.

Limit on the number of tasks supported by the
Windows Sockets implementation has been
reached.

The IpWSAData is not a valid pointer.

The WSAStartup function must be the first Windows Sockets function called by an
application or DLL. It allows an application or DLL to specify the version of Windows
Sockets required and retrieve details of the specific Windows Sockets implementation.
The application or DLL can only issue further Windows Sockets functions after
successfully calling WSAStartup.

In order to support future Windows Sockets implementations and applications that can
have functionality differences from the current version of Windows Sockets, a negotiation
takes place in WSAStartup. The caller of WSAStartup and the Ws2_32.dll indicate to
each other the highest version that they can support, and each confirms that the other's
highest version is acceptable. Upon entry to WSAStartup, the WS2_32.dll examines the
version requested by the application. If this version is equal to or higher than the lowest
version supported by the DLL, the call succeeds and the DLL returns in wHighVersion
the highest version it supports and in wVersion the minimum of its high version and
wVersionRequested. The Ws2_32.dll then assumes that the application will use
wVersion. If the wVersion parameter of the WSADATA structure is. unacceptable to the
caller, it should call WSACleanup and either search for another Ws2_32.dll or fail to
initialize.

It is legal and possible for an application written to this version of the specification to
successfully negotiate a higher version number version.·ln that case; the application is
only guaranteed access to higher-version functionality that fits within the syntax defined

Chapter 8 Winsock 2 Functions 369

in this version, such as newloctl codes and new behavior of existing functions. New
functions may be inaccessible. To get full access to the new syntax of a future version,
the application must fully conform to that future version, such as compiling against a new
header file, linking to a new library, or other special cases.

This negotiation allows both a Ws2_32.dll and a Windows Sockets application to support
a range of Windows Sockets versions. An application can use Ws2_32.dll if there is any
overlap in the version ranges. The following table shows how WSAStartup works with
different applications and Ws2_32.dll versions.

App DLL wVersion wHigh
versions versions requested wVersion version End result

1.1 1.1 1.1 1.1 1.1 use 1.1

1.01.1 1.0 1.1 1.0 1.0 use 1.0

1.0 1.01.1 1.0 1.0 1.1 use 1.0

1.1 1.0 1.1 1.1 1.1 1.1 use 1.1

1.1 1.0 1.1 1.0 1.0 Application fails

1.0 1.1 1.0 WSAVERNOT
SUPPORTED

1.01.1 1.01.1 1.1 1.1 1.1 use 1.1

1.1 2.0 1.1 2.0 1.1 1.1 use 1.1

2.0 2.0 2.0 2.0 2.0 use 2.0

Example
The following code fragment demonstrates how an application that supports only
version 2.2 of Windows Sockets makes a WSAStartup call:

(continued)

370 Volume 1 Winsock and QOS

(continued)

Once an application or DLL has made a successful WSAStartup call, it can proceed to
make other Windows Sockets calls as needed. When it has finished using the services
of the Ws2_32.dll, the application or DLL must call WSACleanup to allow the
Ws2_32.dll to free any resources for the application.

Details of the actual Windows Sockets implementation are described in the WSADATA
structure.

An application or DLL can call WSAStartup more than once if it needs to obtain the
WSADATA structure information more than once. On each such call the application can
specify any version number supported by the DLL.

An application must call one WSACleanup call for every successful WSAStartup call to
allow third-party DLLs to make use of a WS2_32.dll on behalf of an application. This
means, for example, that if an application calls WSAStartup three times, it must call
WSACleanup three times. The first two calls to WSACleanup do nothing except
decrement an internal counter; the final WSACleanup call for the task does all
necessary resource deallocation for the task.

Version: Requires Windows Sockets 2.0.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.lib.

Windows Sockets Programming Considerations Overview, Microsoft Windows-Specific
Extension Functions, send, sendto, WSACleanup

Chapter 8 Winsock 2 Functions 371

WSAStringToAddress
The Windows Sockets WSAStringToAddress function converts a numeric string to a
SOCKADDR structure, suitable for passing to Windows Sockets routines that take such
a structure.

Parameters
AddressString

[in] Pointer to the zero-terminated human-readable numeric string to convert.

AddressFamily
[in] Address family to which the string belongs.

IpProtocollnfo
[in] (optional) The WSAPROTOCOL_INFO structure associated with the provider to
be used. If this is NULL, the call is routed to the provider of the first protocol
supporting the indicated AddressFamily.

IpAddress
[out] Buffer that is filled with a single SOCKADDR.

IpAddressLength
[in/out] Length of the Address buffer. Returns the size of the resultant SOCKADDR
structure. If the supplied buffer is not large enough, the function fails with a specific
error of WSAEFAUL T and this parameter is updated with the required size in bytes.

Return Values
The return value for WSAStringToAddress is zero if the operation was successful.
Otherwise, the value SOCKET_ERROR is returned, and a specific error number can be
retrieved by calling WSAGetLastError.

Error code

WSAEFAULT

WSAEINVAL

Meaning

The specified Address buffer is too small. Passes
in a larger buffer.

Unable to translate the string into a SOCKADDR.
See the following· Remarks section for more
information.

(continued)

372 Volume 1 Winsock and QOS

(continued)

Error code

WSANOTINITIALIZED

WSANOTENOUGHMEMORY

Remarks

Meaning

The Ws2_32.dll has not been initialized. The
application must first call WSAStartup before
calling any Windows Socket functions.

There was insufficient memory to perform the
operation.

The WSAStringToAddress function converts alphanumeric address to SOCKADDR
structures. WSAStringToAddress is the protocol independent equivalent of the BSD
ineCntoa function.

Any missing components of the address will be defaulted to a reasonable value, if
possible. For example, a missing port number will default to zero. If the caller wants the
translation to be done by a particular provider, it should supply the corresponding
WSAPROTOCOL_INFO structure in the IpProtocollnfo parameter.

The WSAStringToAddress function fails (and returns WSAEINVAL) if the sin_family
member of the SOCKADDR_IN structure, which is passed in the IpAddress parameter in
the form of a SOCKADDR structure, is not set to AF _INET.

Version: Requires Windows Sockets 2.0.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

WSAUnhookBlockingHook
This function has been removed in compliance with the Windows Sockets 2
specification, revision 2.2.0.

The function is not exported directly by the Ws2_32.dll, and Windows Sockets 2
applications should not use this function. Windows Sockets 1.1 applications that call this
function are still supported through the Winsock.dll and Wsock32.dll.

Blocking hooks are generally used to keep a single-threaded GUI application responsive
during calls to blocking functions. Instead of using blocking hooks, an application should
use a separate thread (separate from the main GUI thread) for network activity.

Chapter 8 Win sock 2 Functions 373

WSA WaitForMu ItipleEvents
The Windows Sockets WSAWaitForMultipleEvents function returns either when one or
all of the specified event objects are in the signaled state, or when the time-out interval
expires.

Parameters
cEvents

[in] Indicator specifying the number of event object handles in the array pOinted to by
IphEvents. The maximum number of event object handles is
WSA_MAXIMUM_WAIT _EVENTS. One or more events must be specified.

IphEvents
[in] Pointer to an array of event object handles.

fWaitAII
[in] Indicator specifying the wait type. If TRUE, the function returns when all event
objects in the IphEvents array are signaled at the same time. If FALSE, the function
returns when anyone of the event objects is signaled. In the latter case, the return
value indicates the event object whose state caused the function to return.

dwTimeout
[in] Indicator specifying the time-out interval, in milliseconds. The function returns if
the interval expires, even if conditions specified by the fWaitAII parameter are not
satisfied. If dwTimeout is zero, the function tests the state of the specified event
objects and returns immediately. If dwTimeout is WSA_INFINITE, the function's time
out interval never expires.

fA/ertable
[in] Indicator specifying whether the function returns when the system queues an I/O
completion routine for execution by the calling thread. If TRUE, the completion routine
is executed and the fUnction returns. If FALSE, the completion routine is not executed
when the function returns.

Return Values
If the WSA WaitForMultipleEvents function succeeds, the return value indicates the
event object that caused the function to return.

If the function fails, the return value is WSA_WAIT _FAILED. To get extended error
information, call WSAGetLastError.

374 Volume 1 Winsock and aos

The return value upon success is one of the following values.

Value Meaning

WSA_WAIT _EVENT _0 to
(WSA_WAIT_EVENT_O + cEvents - 1)

If fWaitAII is TRUE, the return value indicates that the
state of all specified event objects is signaled. If
fWaitAII is FALSE, the return value minus
WSA_WAIT _EVENT _0 indicates the IphEvents array
index of the object that satisfied the wait.

Error code

WSANOTINITIALISED

WSAENETDOWN

WSAEINPROGRESS

WSA_INVALlD_HANDLE

WSA_I NVALI D _PARAMETER

Remarks

One or more I/O completion routines are queued for
execution.

The time-out interval elapsed and the conditions
specified by the fWaitAII parameter are not satisfied.

Meaning

A successful WSAStartup call must occur before
using this function.

The network subsystem has failed.

A blocking Windows Sockets 1.1 call is in progress,
or the service provider is still processing a callback
function.

Not enough free memory available to complete the
operation.

One or more of the values in the IphEvents array is
not a valid event object handle.

The cEvents parameter does not contain a valid
handle count.

The WSAWaitForMultipleEvents function returns when anyone or all of the specified
objects are in the signaled state, or when the time-out interval elapses. This function is
also used to perform an alertable wait by setting the parameter fAltertable to be TRUE.
This enables the function to returnwhen the system queues an I/O completion routine to
be executed by the calling thread.

When fWaitAII is TRUE, the function's wait condition is satisfied only when the state of all
objects is signaled at the same time. The function does not modify the state of the
specified objects until all objects are simultaneously signaled.

Applications that simply need to enter an alertable wait state without waiting for any
event objects to be signaled should use the Win32 SleepEx function.

Version: Requires Windows Sockets 2.0.
Header: Declared in Winsock2.h.
Library: Use WS2_32.lib.

Chapter 8 Winsock 2 Functions 375

Windows Sockets Programming Considerations Overview, Microsoft Windows-Specific
Extension Functions, WSACloseEvent, WSACreateEvent

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I

I
I
I

I
I

I

I
I
I
I

CHAPTER 9

Winsock 2 Structures and
Enumerations

Windows Sockets Structures in the API
This chapter lists the structures used with Windows Sockets 2.

AFPROTOCOLS

377

The Windows Sockets AFPROTOCOLS structure supplies a list of protocols to which
application programmers can constrain queries. The AFPROTOCOLS structure is used
for query purposes only.

Members
iAddressFamily

Address family to which the query is to be constrained.

iProtocol
Protocol to which the query is to be constrained.

Remarks
The members of the AFPROTOCOLS structure are a functional pair, and only have
meaning when used together, as protocol values have meaning only within the context
of an address family.

Version: Requires Windows Sockets 2.0.
Header: Declared in Winsock2.h.

WSAQuerySet, WSALookupServiceBegin, NSPLookupServiceBegin

378 Volume 1 Winsock and aos

BLOB
A Windows Sockets BLOB structure, derived from Binary Large Object, contains
information about a block of data.

Members
cbSize

Size of the block of data pOinted to by pBlobData, in bytes.

pBlobData
Pointer to a block of data.

Remarks
The structure name BLOB comes from the acronym BLOB, which stands for Binary
Large Object.

This structure does not describe the nature of the data pOinted to by pBlobData.

Note Windows Sockets defines a similar BLOB structure in Wtypes.h. Using both
header files in the same source code file creates redefinition compile-time errors.

Version: Requires Windows Sockets 1.1 or later. Not supported on Windows 95.
Header: Declared in Wtypes.h.

The Windows Sockets CSADDR_INFO structure contains Windows Sockets address
information for a network service or name space provider. The GetAddressByName
function obtains Windows Sockets address information using CSADDR_INFO
structures.

Members
LocalAddr

Chapter 9 Winsock 2 Structures and Enumerations 379

Specifies a Windows Sockets local address.

In a client application, pass this address to the bind function to obtain access to a
network service.

In a network service, pass this address to the bind function so that the service is
bound to the appropriate local address.

RemoteAddr
Specifies a Windows Sockets remote address. There are several uses for this remote
address:

• You can use this remote address to connect to the service through the connect
function. This is useful if an application performs send/receive operations that
involve connection-oriented protocols .

• You can use this remote address with the sendto function when you are
communicating over a connection less (datagram) protocol. If you are using a
connectionless protocol, such as UDP, sendto is typically the way you pass data to
the remote system.

iSocketType
Specifies the type of the Windows socket. The following socket types are defined in
Winsock.h.

Value

SOCK_SEQPACKET

iProtocol

Socket type

Stream. This is a protocol that sends data as astream of
bytes, with no message boundaries.

Datagram. This is a connection less protocol. There is no
virtual circuit setup. There are typically no reliability
guarantees. Services use recvfrom to obtain datagrams.
The listen and accept functions do not work with
datagrams.

Reliably-Delivered Message. This is a protocol that
preserves message boundaries in data.

Sequenced packet stream. This is a protocol that is
essentially the same as SOCK_RDM.

Specifies a value to pass as the protocol parameter to the socket function to open a
socket for this service.

380 Volume 1 Winsock and QOS

Version: Requires Windows Sockets 1.1 or later.
Header: Declared in NspapLh.

bind, connect, GetAddressByName, recv, send, sendto

The Windows Sockets fd_set structure is used by various Windows Sockets functions
and service providers, such as the select function, to place sockets into a "set" for
various purposes, such as testing a given socket for readability using the readfds
parameter of the select function.

Members
fd_count

Number of sockets in the set.

fd_array
Array of sockets that are in the set.

Version: Requires Windows Sockets 2.0.
Header: Declared in Winsock2.h.

select, WSAAsyncSelect, WSAEventSelect

FLOWSPEC
The FLOWSPEC structure is defined in the Quality of Service (QOS) section of the SDK.

Chapter 9 Winsock 2 Structures and Enumerations 381

hostent
The Windows Sockets hostent structure is used by functions to store information about
a given host, such as host name, IP address, and so forth. An application should never
attempt to modify this structure or to free any of its components. Furthermore, only one
copy of the hostent structure is allocated per thread, and an application should therefore
copy any information that it needs before issuing any other Windows Sockets API calls.

Members
h_name

Official name of the host (PC).lf using the DNS or similar resolution system, it is the
Fully Qualified Domain Name (FQDN) that caused the server to return a reply. If using
a local hosts file, it is the first entry after the IP address.

h_aliases
Null-terminated array of alternate names.

h_addrtype
Type of address being returned.

h_length
Length of each address, in bytes.

h_addclist
Null-terminated list of addresses for the host. Addresses are returned in network byte
order. The macro h_addr is defined to be h_addclist[O] for compatibility with older
software. .

Version: Requires Windows Sockets 2.0.
Header: Declared in Winsock2.h.

gethostbyaddr

The Windows Sockets in_addr structure represents a host by its Internet address.

382 Volume 1 Winsock and aos

linger

Members
S_un_b

Address of the host formatted as four u_chars.

S_un_w
Address of the host formatted as two u_shorts.

S_addr
Address of the host formatted as au_long.

Version: Requires Windows Sockets 2.0.
Header: Declared in Winsock2.h.

ineCaddr, ineCntoa, SOCKADDR

The Windows Sockets linger structure maintains information about a specific socket that
specifies how that socket should behave when data is queued to be sent and the
closesocket function is called on the socket.

Members
I_onoff

Specifies whether a socket should remain open for a specified amount of time after a
closesocket function call to enable queued data to be sent.

Uinger
Enabling SO_LINGER also disables SO_DONTLINGER, and vice versa. Note that if
SO_DONTLINGER is DISABLED (that is, SO_LINGER is ENABLED) then no time
out value is specified. In this case, the time-out used is implementation dependent.

Chapter 9 Winsock 2 Structures and Enumerations 383

If a previous time-out has been established for a socket (by enabling SO_LINGER),
this time-out value should be reinstated by the service provider.

Remarks
To enable SO_LINGER, the application should set I_onoff to a nonzero value, set
I_linger to zero or the desired time-out (in seconds), and call the setsockopt function.
To specify SO_DONTLINGER (that is, disable SO_LINGER) l_on011 should be set to
zero and setsockopt should be called. Note that enabling SO_LINGER with a nonzero
time-out on a nonblocking socket is not recommended.

Version: Requires Windows Sockets 2.0.
Header: Declared in Winsock2.h.

setsockopt, getsockopt, closesocket

The Windows Sockets NS_SERVICE_INFO structure contains information about a
network service or a network service type in the context of a specified name space, or a
set of default name spaces.

Members
dwNameSpace

Specifies the name space or a set of default name spaces to which this service
information applies.

Use one of the following constant values to specify a name space.

Value Name space

A set of default name spaces. The set of default name spaces
typically includes all the name spaces installed on the system.
System administrators, however, can exclude particular name
spaces from the set.

The Domain Name System used in the Internet to resolve the
name of the host.

(continued)

384 Volume 1 Winsock and QOS

(continued)

Value

NS_MS

NS_NDS

NS_NETBT

NS_STDA

Name space

The Microsoft name space.

The NetWare 4 provider.

The NetBIOS over TCP/IP layer. The operating system
registers their computer names with NetBIOS. This name
space is used to convert a computer name to an IP address
that uses this registration.

The NetWare Service Advertising Protocol. This can access
the Netware bindery, if appropriate. NS_SAP is a dynamic
name space that enables the registration of services.

NS_ TCPIP _HOSTS Lookup value in the <systemroot>\system32\drivers\etc\
posts file.

NS_ TCPIP _LOCAL Local TCP/IP name resolution mechanisms, including
comparisons against the local host name and lookup value in
the cache of host to IP address mappings.

NS_WINS The Windows Internet Name System (WINS) name space.

NS_X500 The X.500 directory service name space.

Servicelnfo
A SERVICE_INFO structure that contains information about a network service or
network service type.

Version: Requires Windows Sockets 1.1 or later. Not supported on Windows 95.
Header: Declared in Nspapi.h.
Unicode: Declared as Unicode and ANSI structures.

PROTOCOL_INFO
The Windows Sockets PROTOCOL_INFO structure contains information about a
protocol.

Members
dwServiceFlags

Chapter 9 Winsock 2 Structures and Enumerations 385

A set of bit flags that specifies the services provided by the protocol. One or more of
the following bit flags may be set.

Value

XP _CONNECTIONLESS

XP_GUARANTEED_DELIVERY

XP _MESSAGE_ORIENTED

Meaning

If this flag is set, the protocol provides
connection less (datagram) service. If this flag is
clear, the protocol provides connection-oriented
data transfer.

If this flag is set, the protocol guarantees that all
data sent will reach the intended destination. If
this flag is clear, there is no such guarantee.

If this flag is set, the protocol guarantees that
data will arrive in the order in which it was sent.
Note that this characteristic does not guarantee
delivery of the data, only its order. If this flag is
clear, the order of data sent is not guaranteed.

If this flag is set, the protocol is message
oriented. A message-oriented protocol honors
message boundaries. If this flag is clear, the
protocol is stream oriented, and the concept of
message boundaries is irrelevant.

If this flag is set, the protocol is a message
oriented protocol that ignores message
boundaries for all receive operations.

This optional capability is useful when you do not
want the protocol to frame messages. An
application that requires stream-oriented
characteristics can open a socket with type
SOCK_STREAM for transport protocols that
support this functionality, regardless of the value
of iSocketType.

(continued)

386 Volume 1 Winsock and aos

(continued)

Value Meaning

XP _GRACEFUL_CLOSE If this flag is set, the protocol supports two-phase
close operations, also known as graceful close
operations. If this flag is clear, the protocol
supports only abortive close operations.

XP _EXPEDITED_DATA If this flag is set, the protocol supports expedited
data, also known as urgent data.

XP _CONNECT _DATA If this flag is set, the protocol supports
connect data.

XP _DISCONNECT _DATA If this flag is set, the protocol supports
disconnect data.

XP _SUPPORTS_BROADCAST If this flag is set, the protocol supports a
broadcast mechanism.

XP _SUPPORTS_MULTICAST If this flag is set, the protocol supports a
multicast mechanism.

XP _BANDWIDTH_ALLOCATION If this flag is set, the protocol supports a
mechanism for allocating a guaranteed
bandwidth to an application.

XP _FRAGMENTATION If this flag is set, the protocol supports message
fragmentation; physical network MTU is hidden
from applications.

XP _ENCRYPTS If this flag is set, the protocol supports data
encryption.

iAddressFamily
Value to pass as the afparameter when the socket function is called to open a socket
for the protocol. This address family value uniquely defines the structure of protocol
addresses, also known as sockaddr structures, used by the protocol.

iMaxSockAddr
Maximum length of a socket address supported by the protocol.

iMinSockAddr
Minimum length of a socket address supported by the protocol.

iSocketType
Value to pass as the type parameter when the socket function is called to open a
socket for the protocol.

Note that if XP _PSEUDO_STREAM is set in dwServiceFlags, the application can
specify SOCK_STREAM as the type parameter to socket, regardless of the value of
iSocketType.

iProtocol
Value to pass as the protocol parameter when the socket function is called to open a
socket for the protocol.

Chapter 9 Winsock 2 Structures and Enumerations 387

dwMessageSize
Maximum message size supported by the protocol. This is the maximum size of a
message that can be sent from or received by the host. For protocols that do not
support message framing, the actual maximum size of a message that can be sent to
a given address may be less than this value.

The following special message size values are defined.

Value Meaning

o

OxFFFFFFFF

IpProtocol

The protocol is stream-oriented; the concept of message size is
not relevant.

The protocol is message-oriented, but there is no maximum
message size.

Points to a zero-terminated string that supplies a name for the protocol; for
example, "SPX2."

Version: Requires Windows Sockets 1.1 or later.
Header: Declared in Nspapi.h.
Unicode: Declared as Unicode and ANSI structures.

EnumProtocols, socket

protoent
The Windows Sockets protent structure contains the name and protocol numbers that
correspond to a given protocol name. Applications must never attempt to modify this
structure or to free any of its components. Furthermore, only one copy of this structure is
allocated per thread, and therefore, the application should copy any information it needs
before issuing any other Windows Sockets function calls.

Members
p_name

Official name of the protocol.

388 Volume 1 Winsock and aos

QOS

p_aIi ases
Null-terminated array of alternate names.

p_proto
Protocol number, in host byte order.

Version: Requires Windows Sockets 2.0.
Header: Declared in Winsock2.h.

The aos structure (implemented in Windows 2000 as the aos structure) is defined in
the Ouality of Service (OOS) API reference later in this book.

servent
The Windows Sockets servent structure is used to store or return the name and service
number for a given service name.

Members
s_name

Official name of the service.

s_aliases
Null-terminated array of alternate names.

s_port
Port number at which the service can be contacted. Port numbers are returned in
network byte order.

s_proto
Name of the protocol to use when contacting the service.

Version: Requires Windows Sockets 2.0.
Header: Declared in Winsock2.h.

Chapter 9 Winsock 2 Structures and Enumerations 389

getservbyname

SERVICE_ADDRESS
The Windows Sockets SERVICE_ADDRESS structure contains address information for
a service. The structure can accomodate many types of Interprocess Communications
(IPC) mechanisms and their address forms, including Remote Procedure Calls (RPC),
named pipes, and sockets.

Members
dwAddressType

Address family to which the socket address pointed to by IpAddress belongs.

dwAddressFlags
Set of bit flags that specify properties of the address. The following bit flags are
defined.

Value Meaning

SERVICE_ADDRESS_
FLAG_RPC_CN

SERVICE_ADDRESS
FLAG_RPC_DG

SERVICE_ADDRESS_
FLAG_RPC_NB

dw AddressLength

If this bit flag is set, the service supports connection
oriented RPC over this transport protocol.

If this bit flag is set, the service supports datagram
oriented RPC over this transport protocol.

If this bit flag is set, the service supports NetBlOS RPC
over this transport protocol.

Size, in bytes, of the address.

dwPrincipalLength
Reserved for future use. Must be zero.

IpAddress
Pointer to a socket address of the appropriate type.

IpPrincipal
Reserved for future use. It must be null.

390 Volum~ 1 Winsock and aos

Version: Requires Windows Sockets 1.1 or later. Not supported on Windows 95.
Header: Declared in Nspapi.h.

SERVICE_ADDRESSES, SERVICE_INFO

SERVICE_ADDRESSES
The Windows Sockets SERVICE_ADDRESSES structure contains an array of
SERVICE_ADDRESS data structures.

Members
dwAddressCount

Specifies the number of SERVICE_ADDRESS structures in the Addresses array

Addresses
An array of SERVICE_ADDRESS data structures. Each SERVICE_ADDRESS
structure contains information about a network service address.

Version: Requires Windows Sockets 1.1 or later. Not supported on Windows 95.
Header: Declared in NspapLh.

SERVICE_ADDRESS, SERVICE_INFO

The Windows Sockets SERVICE INFO structure contains information about a network
service or a network service type.

Chapter 9 Winsock 2 Structures and Enumerations 391

Members
IpServiceType

Pointer to a GUID that is the type of the network service.

IpServiceName
Pointer to a zero-terminated string that is the name of the network service.

If you are calling the SetService function with the dwNameSpace parameter set to
NS_DEFAUl T, the network service name must be a common name. A common
name is what the network service is commonly known as. An example of a common
name for a network service is "My Sal Server".

If you are calling the SetService function with the dwNameSpace parameter set to a
specific service name, the network service name can be a common name or a
distinguished name. A distinguished name distinguishes the service to a unique
location with a directory service. An example of a distinguished name for a network
service is "MS\\SYS\\NT\\DEv\\My Sal Server".

IpComment
Pointer to a zero-terminated string that is a comment or description for the network
service. For example, "Used for development upgrades."

IpLocale
Pointer to a zero-terminated string that contains locale information.

dwDisplayHint
Specifies a hint as to how to display the network service in a network browsing user
interface. This can be one of the following values.

Value Meaning

RESOURCEDISPLA YTYPE
DOMAIN

RESOURCEDISPLAYTYPE
FilE

RESOURCEDISPLAYTYPE_
GENERIC

RESOURCEDISPlAYTYPE_
GROUP

Displays the network service as a domain.

Displays the network service as a file.

The method used to display the object does not
matter.

Displays the network service as a group.

(continued)

392 Volume 1 Winsock and QOS

(continued)

Value Meaning

RESOURCEDISPLAYTYPE Displays the network service as a server.
SERVER

RESOURCEDISPLAYTYPE_ Displays the network service as a sharepoint.
SHARE

RESOURCEDISPLAYTYPE_ Displays the network service as a tree.
TREE

dwVersion
Version information for the network service. The high word of this value specifies a
major version number. The low word of this value specifies a minor version number.

dwTime
Reserved for future use. Must be set to zero.

IpMachineName
Pointer to a zero-terminated string that is the name of the computer on which the
network service is running.

IpServiceAddress
Pointer to a SERVICE_ADDRESSES structure that contains an array of
SERVICE_ADDRESS structures. Each SERVICE_ADDRESS structure contains
information about a network service address.

A network service can call the getsockname function to determine the local address
of the system.

ServiceSpecificlnfo
A BLOB structure that specifies service-defined information.

Note In general, the data pointed to by the BLOB structure's pBlobData member
must not contain any pointers. That is because only the network service knows the
format of the data; copying the data without such knowledge would lead to pOinter
invalidation. If the data pOinted to by pBlobData contains variable-sized elements,
offsets from pBlobData can be used to indicate the location of those elements. There
is one exception to this general rule: when pBlobData points to a
SERVICE_ TYPE_INFO_ABS structure. This is possible because both the
SERVICE_TYPE_INFO_ABS structure, and any SERVICE_TYPE_VALUE_ABS
structures it contains are predefined, and thus their formats are known to the
operating system.

Version: Requires Windows Sockets 1.1 or later. Not supported on Windows 95.
Header: Declared in Nspapi.h.
Unicode: Declared as Unicode and ANSI structures.

Chapter 9 Winsock 2 Structures and Enumerations 393

BLOB, GetService, NS_SERVICE_INFO, SetService, SERVICE_ADDRESS,
SERVICE_ADDRESSES, SERVICE_ TYPE_INFO _ABS,
SERVICE_ TYPE_ VALUE_ABS

The Windows Sockets SERVICE_TYPE_INFO_ABS structure contains information
about a network service type. You use a SERVICE_TYPE_INFO_ABS structure to add a
network service type to a name space.

Members
IpTypeName

Pointer to a zero-terminated string that is the name of the network service type. This
name is the same in all name spaces, and is used by the GetTypeByName and
GetNameByType functions.

dwValueCount
Number of SERVICE_ TYPE_ VALUE_ABS structures in the Values member array
that follows dwValueCount.

Values[1]
Array of SERVICE_ TYPE_ VALUE_ABS structures.

Each of these structures contains information about a service type value that the
operating system or network service may need when an instance of this network
service type is registered with a name space.

The information in these structures may be specific to a name-space. For example, if
a network service uses the SAP name space, but does not have a GUID that contains
the SAP identifier (SAPID), it defines the SAPID in a SERVICE_TYPE_VALUE_ABS
structure.

Remarks
When you use the SetService function to add a network service type to a name space,
the SERVICE_ TYPE_INFO_ABS structure is passed as the ServiceSpecificlnfo BLOB
member of a SERVICE_INFO structure. Although the ServiceSpecificlnfo member
generally should not contain pOinters, an exception is made in the case of the
SERVICE_ TYPE_INFO_ABS and SERVICE_ TYPE_ VALUE_ABS structures.

394 Volume 1 Winsock and aos

Version: Requires Windows Sockets 1.1 or later. Not supported on Windows 95.
Header: Declared in NspapLh.
Unicode: Declared as Unicode and ANSI structures.

The Windows Sockets SERVICE_ TYPE_ VALUE_ABS structure contains information
about a network-service type value. This information may be specific to a name space.

Members
dwNameSpace

Specifies the name space, or a set of default name spaces, for which the network
service type value is intended. Name-space providers will look only at values intended
for their name space.

Use one of the following constants to specify a name space.

Value Name space

A set of default name spaces. The function queries each name
space within this set. The set of default name spaces typically
includes all the name spaces installed on the system. System
administrators, however, can exclude particular name spaces
from the set. NS_DEFAUL T is the value that most applications
should use for dwNameSpace.

The Domain Name System used in the Internet for host name
resolution.

Chapter 9 Winsock 2 Structures and Enumerations 395

Value Name space

NS_NETBT The NetBIOS over TCP/IP layer. All
Windows NTlWindows 2000 systems register their computer
names with NetBIOS. This name space is used to convert a
computer name to an IP address that uses this registration.
Note that NS_NETBT may access a WINS server to perform
the resolution.

NS_SAP The Netware Service Advertising Protocol. This may access
the Netware bindery if appropriate. NS_SAP is a dynamic
name space that allows registration of services.

NS_ TCPIP _HOSTS Lookup value in the <systemroot>\system32\drivers\etc\
hosts file.

NS_ TCPIP _LOCAL Local TCP/IP name resolution mechanisms, including
comparisons against the local host name and looks up host
names and IP addresses in cache of host to IP address
mappings.

dwValueType
Type of the value data. Specify one of the following types.

Value

REG_BINARY

REG_DWORD

REG_MUL TI_SZ

dwValueSize

Meaning

Binary data in any form.

A 32-bit number.
An array of null-terminated strings, terminated by two null
characters.

A null-terminated string.

Size of the value data, in bytes. In the case of REG_SZ and REG_MUL TLSZ string
data, the terminating characters are counted as part of the size.

IpValueName
Pointer to a zero-terminated string that is the name of the value. This name is specific
to a name space.

Several commonly used value name strings are associated with defined constants.
These name strings include the following.

Constant Name string

SERVICE_ TYPE_ VALUE_SAPID

SERVICE_ TYPE_ VALUE_CONN

SERVICE_ TYPE_ VALUE-c TCPPORT

SERVICE_ TYPE_ VALUE_ UDPPORT

IpValue
Pointer to the value data.

"Sapid"

"ConnectionOriented"

"TcpPort"

"UdpPort"

396 Volume 1 Win sock and QOS

Remarks
When you use the SetService function to add a network service type to a name space,
a SERVICE_ TYPE_INFO_ABS structure is passed as the ServiceSpecificlnfo BLOB
member of a SERVICE_INFO structure. Although the ServiceSpecificlnfo member
generally should not contain pOinters, an exception is made in the case of the
SERVICE_ TYPE_INFO~BS and SERVICE_ TYPE_ VALUE_ABS structures.

Version: Requires Windows Sockets 1.1 or later. Not supported on Windows 95.
Header: Declared in NspapLh.
Unicode: Declared as Unicode and ANSI structures.

sockaddr
The Windows Sockets sockaddr structure varies depending on the protocol selected.
Except for the sa_family parameter, sockaddr contents are expressed in network byte
order.

In Windows Sockets 2, the name parameter is not strictly interpreted as a pointer to a
sockaddr structure. It is presented in this manner for Windows Sockets compatibility.
The actual structure is interpreted differently in the context of different address families.
The only requirements are that the first u_sho rt is the address family and the total size
of the memory buffer in bytes is name/en.

The structure below is used with TCP/IP. Other protocols use similar structures.

Version: Requires Windows Sockets 2.0.
Header: Declared in Winsock2.h.

Chapter 9 Winsock 2 Structures and Enumerations 397

SOCKADDR_IRDA
The Windows Sockets SOCKADDR_IRDA structure is used in conjunction with IrDA
socket operations, defined by address family AF _IRDA.

Members
irdaAddressFamily

Address family. This member is always AF _IRDA.

irdaDevicelD
Device identifier (10) of the IrDA device to which the client wants to issue the connect
function call. Ignored by server applications.

irdaServiceName
Well-known service name associated with a server application. Specified by servers
during their bind function call.

Remarks
Client applications make use of each field in the SOCKADDR_IRDA structure. The
irdaDevicelD member is obtained by a previous discovery operation performed by
making a setsockopt(IRLMP _ENUMDEVICES) function call. For more information on
performing a discovery operation, see the Notes for'rDA Sockets section in the Remarks
section of setsockopt.

The irdaServiceName member is filled with the well-known value that the server
application specified in its bind function call.

Version: Requires Windows Sockets 2.0.
Header: Declared in AUrda.h.

getsockopt, setsockopt, bind, connect

SOCKET _ADDRESS
The SOCKET_ADDRESS structure stores protocol-specific address information.

398 Volume 1 Winsock and QOS

Members
IpSockaddr

Pointer to a socket address

iSockaddrLength
Length of the socket address, in bytes.

Version: Requires Windows Sockets 2.0.
Header: Declared in Winsock2.h.

WSAloctl, WSPloctl

timeval
The Windows Sockets timeval structure is used to specify time values. It is associated
with the BSD file Time.h.

Members
tv_sec

Time value, in seconds.

tv_usee
Time value, in microseconds.

Version: Requires Windows Sockets 2.0.
Header: Declared in Winsock2.h.

linger, select

Chapter 9 Winsock 2 Structures and Enumerations 399

The Windows Sockets TRANSMIT _FILE_BUFFERS structure specifies data to be
transmitted before and after file data during a TransmitFile function file transfer
operation.

Members
Head

Pointer to a buffer that contains data to be transmitted before the file data is
transmitted.

HeadLength
Number of bytes in the buffer pointed to by Head that are to be transmitted.

Tail
Pointer toa buffer that contains data to be transmitted after the file data is transmitted.

TailLength
Number of bytes of data in the buffer painted to by the Tail member that are to be
transmitted.

Version: Requires Windows Sockets 1.1 or later. Not supported on Windows 95.
Header: Declared in Winsock.h.

TransmitFile

WSABUF
The Windows Sockets WSABUF structure enables the creation or manipulation of a
data buffer.

400 Volume 1 Winsock and aos

Members
len

Length of the buffer.

buf
Pointer to the buffer.

Version: Requires Windows Sockets 2.0.
Header: Declared in Winsock2.h.

WSADATA
The members of the Windows Sockets WSADATA structure are:

Members
wVersion

Version of the Windows Sockets specification that the Ws2_32.dll expects the caller
to use.

wHighVersion
Highest version of the Windows Sockets specification that this .dll can support (also
encoded as above). Normally this is the same as wVersion.

szDescription
Null-terminated ASCII string into which the Ws2_32.dll copies a description of the
Windows Sockets implementation. The text (up to 256 characters in length) can
contain any characters except control and formatting characters: the most likely use
that an application can put this to is to display it (possibly truncated) in a status
message.

szSystemStatus
NUll-terminated ASCII string into which the WSs2_32.dll copies relevant status or
configuration information. The WS2_32.dll should use this parameter only if the
information might be useful to the user or support staff: it should not be considered as
an extension of the szDescription parameter.

Chapter 9 Winsock 2 Structures and Enumerations 401

iMaxSockets
Retained for backward compatibility, but should be ignored for Windows Sockets
version 2 and later, as no single value can be appropriate for all underlying service
providers.

iMaxUdpDg
Ignored for Windows Sockets version 2 and onward. iMaxUdpDg is retained for
compatibility with Windows Sockets specification 1.1, but should not be used when
developing new applications. For the actual maximum message size specific to a
particular Windows Sockets service provider and socket type, applications should use
getsockopt to retrieve the value of option SO_MAX_MSG_SIZE after a socket has
been created.

IpVendorlnfo
Ignored for Windows Sockets version 2 and onward. It is retained for compatibility
with Windows Sockets specification 1.1. Applications needing to access vendor
specific configuration information should use getsockopt to retrieve the value of
option PVD_CONFIG. The definition of this value (if utilized) is beyond the scope of
this specification.

Note An application should ignore the iMaxsockets, iMaxUdpDg, and IpVendorlnfo
members in WSAData if the value in wVersion after a successful call to WSAStartup is
at least 2. This is because the architecture of Windows Sockets has been changed in
version 2 to support multiple providers, and WSAData no longer applies to a single
vendor's stack. Two new socket options are introduced to supply provider-specific
information: SO_MAX_MSG_SIZE (replaces the iMaxUdpDg elemElnt) and
PVD_CONFIG(aliows any other provider-specific configuration to occur).

Version: Requires Windows Sockets 2.0.
Header: Declared in Winsock2.h.

WSANAMESPACE_INFO
The Windows Sockets WSANAMESPACE_INFO structure contains all registration
information for a name space provider.

402 Volume 1 Winsock and QOS

Members
NSProviderld

Unique identifier for this name-space provider.

dwNameSpace
Name space supported by this implementation of the provider.

fActive
If TRUE, indicates that this provider is active. If FALSE, the provider is inactive and is
not accessible for queries, even if the query specifically references this provider.

dwVersion
Name space-version identifier.

Ipszldentifier
Display string for the provider.

Version: Requires Windows Sockets 2.0.
Header: Declared in Winsock2.h.
Unicode: Declared as Unicode and ANSI structures.

WSANErwORKEVENTS
The Windows Sockets WSANETWORKEVENTS structure is used to store a socket's
internal information about network events.

Members
INetworkEvents

Indicates which of the FD_XXX network events have occurred.

iErrorCodes
An array that contains any associated error codes, with an array index that
corresponds to the position of event bits in INetworkEvents. The identifiers
FD_READ_BIT, FD_WRITE_BIT and other can be used to index the iErrorCodes
array.

Version: Requires Windows Sockets 2.0.
Header: Declared in Winsock2.h.

Chapter 9 Winsock 2 Structures and Enumerations 403

WSAEnumNetworkEvents, WSAEvenlSelect

WSAOVERLAPPED
The Windows Sockets WSAOVERLAPPED structure provides a communication medium
between the initiation of an overlapped I/O operation and its subsequent completion. The
WSAOVERLAPPED structure is designed to be compatible with the Win32
OVERLAPPED structure:

Members
Internal

Reserved for internal use. The Internal member is used internally by the entity that
implements overlapped I/O. For service providers that create sockets as installable
file system (lFS) handles, this parameter is used by the underlying operating system.
Other service providers (non-IFS providers) are free to use this parameter as
necessary.

InlernalHigh
Reserved. Used internally by the entity that implements overlapped I/O. For service
providers that create sockets as IFS handles, this parameter is used by the underlying
operating system. NonlFS providers are free to use this parameter as necessary.

Offset
Reserved for use by service providers.

OffselHigh
Reserved for use by service providers.

hEvenl
If an overlapped I/O operation is issued without an I/O completion routine
(/pCompletionRoutineis null), then this parameter should either contain a valid handle
to a WSAEVENT object or be null. If IpCompletionRoutine is non-null then
applications are free to use this parameter as necessary.

Version: Requires Windows Sockets 2.0.
Header: Declared in Winsock2.h.

404 Volume 1 Winsock and QOS

WSASend, WSARecv, WSAGetOverlappedResult

WSAPROTOCOL_INFO
The Windows Sockets WSAPROTOCOL_INFO structure is used to store or retrieve
complete information for a given protocol.

Members
dwServiceFlags1

Bitmask describing the services provided by the protocol. The following values are
possible:

XP1_CONNECTIONLESS
Provides connection less (datagram) service. If not set, the protocol supports
connection-oriented data transfer.

XP1_GUARANTEED_DELIVERY
Guarantees that all data sent will reach the intended destination.

Chapter 9 Winsock 2 Structures and Enumerations 405

XP1_GUARANTEED_ORDER
Guarantees that data only arrives in the order in which it was sent and that it is not
duplicated. This characteristic does not necessarily mean that the data is always
delivered, but that any data that is delivered is delivered in the order in which it was
sent.

XP1_MESSAGE_ORIENTED
Honors message boundaries-as opposed to a stream-oriented protocol where
there is no concept of message boundaries.

XP1_PSEUDO_STREAM
A message-oriented protocol, but message boundaries are ignored for all receipts.
This is convenient when an application does not desire message framing to be
done by the protocol.

XP1_GRACEFUL_CLOSE
Supports two-phase (graceful) close. If not set, only abortive closes are performed.

XP1_EXPEDITED_DATA
Supports expedited (urgent) data.

XP1_CONNECT_DATA
Supports connect data.

XP1_DISCONNECT _DATA
Supports disconnect data.

XP1_INTERRUPT
Bit is reserved.

XP1_SUPPORT _BROADCAST
Supports a broadcast mechanism.

XPCSUPPORT _MULTIPOINT
Supports a multipoint or multicast mechanism. Control and data plane attributes
are indicated below.

XP1_MULTIPOINT _CONTROL_PLANE
Indicates whether the control plane is rooted (value = 1) or nonrooted (value = 0).

XP1_MULTIPOINT_DATA_PLANE
Indicates whether the data plane is rooted (value = 1) or nonrooted (value = 0).

XP1_QOS_SUPPORTED
Supports quality of service requests.

XP1_UNI_SEND
Protocol is unidirectional in the send direction.

XP1_UNLRECV
Protocol is unidirectional in the recv direction.

XP1_IFS_HANDLES
Socket descriptors returned by the provider are operating system Installable File
System (IFS) handles.

406 Volume 1 Winsock and QOS

XP1_PARTIAL_MESSAGE
The MSG_PARTIAL flag is supported in WSASend and WSASendTo.

Note that only one of XP1_UNI_SEND or XP1_UNLRECV may be set. If a protocol
can be unidirectional in either direction, two WSAPROTOCOL_INFOW structures
should be used. When neither bit is set, the protocol is considered to be bidirectional.

dwServiceFlags2
Reserved for additional protocol-attribute definitions.

dwServiceFlags3
Reserved for additional protocol-attribute definitions.

dwServiceFlags4
Reserved for additional protocol-attribute definitions.

dwProviderFlags
Provides information about how this protocol is represented in the protocol catalog.
The following flag values are possible:

PFL_MUL TIPLE_PROTO_ENTRIES
Indicates that this is one of two or more entries for a single protocol (from a given
provider) which is capable of implementing multiple behaviors. An example of this
is SPX which, on the receiving side, can behave either as a message-oriented or a
stream-oriented protocol.

PFL_RECOMMENDED_PROTO_ENTRY
Indicates that this is the recommended or most frequently used entry for a protocol
that is capable of implementing multiple behaviors.

PFL_HIDDEN
Set by a provider to indicate to the Ws2_32.dll that this protocol should not be
returned in the result buffer generated by WSAEnumProtocols. Obviously, a
Windows Sockets 2 application should never see an entry with this bit set.

PFL_MATCHES_PROTOCOL_ZERO
Indicates that a value of zero in the protocol parameter of socket or WSASocket
matches this protocol entry.

Providerld
Globally unique identifier assigned to the provider by the service provider vendor. This
value is useful for instances where more than one service provider is able to
implement a particular protocol. An application may use the dwProviderld value to
distinguish between providers that might otherwise be indistinguishable.

dwCatalogEntryld
Unique identifier assigned by the WS2_32.DLL for each WSAPROTOCOL_INFOW
structure.

Chapter 9 Winsock 2 Structures and Enumerations 407

WSAPROTOCOLCHAIN ProtocolChain;

If the length of the chain is 0, this WSAPROTOCOL_INFOW entry represents a
layered protocol which has Windows Sockets 2 SPI as both its top and bottom
edges. If the length of the chain equals 1, this entry represents a base protocol
whose Catalog Entry identifier is in the dwCatalogEntryld member of the
WSAPROTOCOL_INFOW structure. If the length of the chain is larger than 1, this
entry represents a protocol chain which consists of one or more layered protocols
on top of a base protocol. The corresponding Catalog Entry identifiers are in the
ProtocolChain.ChainEntries array starting with the layered protocol at the top (the
zero element in the ProtocolChain.ChainEntries array) and ending with the base
protocol. Refer to the Windows Sockets 2 Service Provider Interface specification
for more information on protocol chains.

iVersion
Protocol version identifier.

iAddressFamily
Value to pass as the address family parameter to the socketIWSASocket function in
order to open a socket for this protocol. This value also uniquely defines the structure
of protocol addresses SOCKADDRs used by the protocol.

iMaxSockAddr
Maximum address length.

iMinSockAddr
Minimum address length.

iSocketType
Value to pass as the socket type parameter to the socket function in order to open a
socket for this protocol.

iProtocol
Value to pass as the protocol parameter to the socket function in order to open a
socket for this protocol.

iProtocolMaxOffset
Maximum value that may be added to iProtocol when supplying a value for the
protocol parameter to socket and WSASocket. Not all protocols allow a range of
values. When this is the case iProtocolMaxOffset is zero.

iNetworkByteOrder
Currently these values are manifest constants (BIGENDIAN and LlTTLEENDIAN) that
indicate either big-end ian or littie-endian with the values ° and 1 respectively.

iSecurityScheme
Indicates the type of security scheme employed (if any). A value of
SECURITY _PROTOCOL_NONE is used for protocols that do not incorporate security
provisions.

408 Volume 1 Winsock and QOS

dwMessageSize
Maximum message size supported by the protocol. This is the maximum size that can
be sent from any of the host's local interfaces. For protocols that do not support
message framing, the actual maximum that can be sent to a given address may be
less. There is no standard provision to determine the maximum inbound message
size. The following special values are defined:

o
The protocol is stream-oriented and hence the concept of message size is not
relevant.

Ox1
The maximum outbound (send) message size is dependent on the underlying
network MTU (maximum sized transmission unit) and hence cannot be known until
after a socket is bound. Applications should use getsockopt to retrieve the value
of SO_MAX_MSG_SIZE after the socket has been bound to a local address.

OxFFFFFFFF
The protocol is message-oriented, but there is no maximum limit to the size of
messages that may be transmitted.

dwProviderReserved
Reserved for use by service providers.

szProtocol
Array of characters that contains a human-readable name identifying the protocol, for
example "SPX2". The maximum number of characters allowed is
WSAPROTOCOL_LEN, which is defined to be 255.

Version: Requires Windows Sockets 2.0.
Header: Declared in Winsock2.h.
Unicode: Declared as Unicode and ANSI structures.

WSAEnumProtocols, WSASend, WSASendTo, getsockopt, socket

WSAPROTOCOLCHAIN
The Windows Sockets WSAPROTOCOLCHAIN structure contains a counted list of
Catalog Entry identifiers that comprise a protocol chain. This structure is defined as
follows:

Chapter 9 Winsock 2 Structures and Enumerations 409

Members
ChainLen

Length of the chain. The following settings apply:

Setting ChainLen to zero indicates a layered protocol

Setting ChainLen to one indicates a base protocol

Setting ChainLen to greater than one indicates a protocol chain

ChainEntries
Array of protocol chain entries.

Remarks
If the length of the chain is larger than 1, this structure represents a protocol chain which
consists of one or more layered protocols on top of a base protocol. The corresponding
Catalog Entry IDs are in the ProtocolChain.ChainEntries array starting with the layered
protocol at the top (the zeroth element in the ProtocolChain.ChainEntries array) and
ending with the base protocol. Refer to Windows Sockets 2 Service Provider Interface
for more information on protocol chains.

Version: Requires Windows Sockets 2.0.
Header: Declared in Winsock2.h.

WSAEnumProtocols

WSAQUERYSET
The Windows Sockets WSAQUERYSET structure provides relevant information about a
given service, including service class 10, service name, applicable name-space identifier
and protocol information, as well as a set of transport addresses at which the service
listens.

(conUnued)

410 Volume 1 Winsock and QOS

(continued)

Members
dwSize

Must be set to sizeof(WSAQUERYSET). This is a versioning mechanism.

dwOutputFlags
Ignored for queries.

IpszServicelnstanceName
(Optional) Referenced string contains service name. The semantics for using
wildcards within the string are not defined, but can be supported by certain name
space providers.

IpServiceClassld
(Required) The GUID corresponding to the service class.

IpVersion
(Optional) References desired version number and provides version comparison
semantics (that is, version must match exactly, or version must be not less than the
value supplied).

IpszComment
Ignored for queries.

dwNameSpace
Identifier of a single name space in which to constrain the search, or NS_ALL to
include all name spaces.

IpNSProviderld
(Optional) References the GUID of a specific name-space provider, and limits the
query to this provider only.

IpszContext
(Optional) Specifies the starting point of the query in a hierarchical name space.

dwNumberOfProtocols
Size of the protocol constraint array, can be zero.

IpafpProtocols
(Optional) References an array of AFPROTOCOlS structure. Only services that
utilize these protocols will be returned.

IpszQueryString
(Optional) Some name spaces (such as Whois++) support enriched SOL-like queries
that are contained in a simple text string. This parameter is used to specify that string.

dwNumberOfCsAddrs
Ignored for queries.

IpcsaBuffer
Ignored for queries.

IpBlob

Chapter 9 Winsock 2 Structures and Enumerations 411

(Optional) This is a pointer to a provider-specific entity.

Remarks
In most instances, applications interested in only a particular transport protocol should
constrain their query by address family and protocol rather than by name space. This
would allow an application that needs to locate a TCP/IP service, for example, to have its
query processed by all available name spaces such as the local hosts file, DNS,
andNIS.

Version: Requires Windows Sockets 2.0.
Header: Declared in Winsock2.h.
Unicode: Declared as Unicode and ANSI structures.

WSAQuerySet,. WSASetService, WSALookupServiceBegin,
WSALo.okupServiceNext

WSASERVICECLASSINFO
The Windows Sockets WSASERVICECLASSINFO structure contains information about
a specified service class. For each service class in Windows Sockets 2, there is a single
WSASERVICECLASSINFO structure.

Members
IpServiceClassld

Unique Identifier (GUID) for the service class.

IpszServiceClassName
Well known associated with the service class.

412 Volume 1 Winsock and QOS

dwCount
Number of entries in IpClasslnfos.

IpClasslnfos
Array of WSANSCLASSINFOW structures that contains information about the service
class.

Version: Requires Windows Sockets 2.0.
Header: Declared in Winsock2.h.
Unicode: Declared as Unicode and ANSI structures.

NSPGetServiceClasslnfo, NSPLookupServiceBegin

WSATHREADID
The Windows Sockets WSATHREADID structure enables a provider to identify a thread
on which asynchronous procedure calls (APes) can be queued using the
WPUQueueApc function.

Members
ThreadHandle

Handle to the thread ID.

Reserved
Reserved.

Version: Requires Windows Sockets 2.0.
Header: Declared in Ws2spLh.

WPUQueueApc, WSPloctl, WSPSend, WSPRecv

Chapter 9 Winsock 2 Structures and Enumerations 413

Windows Sockets Enumeration in the API
The following enumeration is used in Windows Sockets:

• WSAECOMPARATOR

The following enumeration is obsolete:

• GUARANTEE

GUARANTEE
The Windows Sockets GUARANTEE enumeration is no longer used. For information
regarding the Windows 2000 implementation of Quality of Service, and the associated
API, refer to Chapters 13 through 17 later in this volume.

WSAECOMPARATOR
The Windows Sockets WSAECOMPARATOR enumeration type is used for version
comparison semantics in Windows Sockets 2.

Enumerator Value

COMP_EQUAL

COMP _NOTLESS

Meaning

Used for determining whether version values are equal.

Used for determining whether a version value is no less
than a specified value.

Version: Requires Windows Sockets 1.1 or later.
Header: Declared in Winsock2.h.

WSALookupServiceBegin, WSAQuerySet, NSPLookupServiceBegin,
NSPLookupServiceNext, WSASetService, NSPSetService

415

CHAPTER 10

Winsock 2 SPI Overview

Welcome to Windows Sockets 2 SPI
This chapter describes the Windows Sockets 2 Service Provider Interface (SPI). It
consists, primarily, of information from the Windows Sockets 2 SPI specification, but also
includes additional information. The information in this document is not presented in
exactly the same way as specification.

Using the SPI Document
This document provides the online material needed to create Windows Sockets service
or transport providers for Windows operating systems, using the Microsoft
implementation of Windows Sockets 2. It is intended as a reference tool and outlines the
functions of the Windows Sockets SPI.

You should be familiar with Win32 programming concepts and the Windows Sockets API
to make the best use of this document. Thus, you may want to refer to other references
that provide a more systematic guide to writing Windows Sockets applications.

Note This documentation is intended for service provider developers, also known as
transports. If you are developing a Windows Sockets 2 application, see chapters 6
through 9 in this volume.

Overview of the Windows Sockets 2 SPI
Windows Sockets 2 utilizes the sockets paradigm that was first popularized by Berkeley
Software Distribution (BSD) UNIX. It was later adapted for Microsoft Windows in the
Windows Sockets 1.1.

One of the primary goals of Windows Sockets 2 has been to provide a protocol
independent interface fully capable of supporting the emerging networking capabilities,
such as real-time multimedia communications.

Windows Sockets 2 is an interface, not a protocol. As an interface, it is used to discover
and utilize the communications capabilities of any number of underlying transport
protocols. Because it is not a protocol, it does not in any way affect the bits on the wire,
and does not need to be utilized on both ends of a communications link.

416 Volume 1 Winsock and QOS

Windows Sockets programming previously centered around TCP/IP. Some of the
programming practices that worked with TCP/IP do not work with every protocol. As a
result, the Windows Sockets 2 API added new functions where necessary that, in turn,
must be implemented in the underlying service provider.

Windows Sockets 2 has changed its architecture to provide easier access to multiple
transport protocols. Following the Windows Open System Architecture (WOSA) model,
Windows Sockets 2 now defines a standard SPI between the application programming
interface (API), with its functions exported from Ws2_32.dll, and the protocol stacks.
Consequently, Windows Sockets 2 support is not limited to TCP/IP protocol stacks as is
the case for Windows Sockets 1.1. For more information, see Windows Sockets 2
Architectural Overview.

There are new challenges in developing Windows Sockets 2 applications. When sockets
only supported TCP/IP, a developer could create an application that supported only two
socket types: connection less and connection-oriented. Connection less protocols used
SOCK_DGRAM sockets and connection-oriented protocols used SOCK_STREAM
sockets. Now, these are just two of the many new socket types. Additionally, developers
can no longer rely on socket type to describe all the essential attributes of a transport
protocol.

The service provider is created by implementing the functions defined in this document.
This is a new challenge differing significantly from Windows Sockets 1.1.

Windows Sockets 2 SPI Features
The new Windows Sockets 2 extends functionality in a number of areas.

Features

Access to protocols other than
TCP/IP

Overlapped 110 with
scatter/gather

Protocol-independent name
resolution facilities:

Protocol-independent multicast
and multipoint:

Description

Allows an application to use the familiar socket
interface to achieve simultaneous access to a
number of installed transport protocols.

Incorporates the overlapped paradigm for socket
110 and incorporates scatter/gather capabilities as
well, following the model established in Win32
environments.

Includes a standardized set of functions for
querying and working with the myriad of name
resolution domains that exist today (for example
DNS, SAP, and X.500).

Windows Sockets 2 applications discover what type
of multipOint or multicast capabilities a transport
provides and use these facilities in a generic
manner.

Features

Quality of Service (QOS)

Other frequently requested
extensions

Chapter 10 Winsock 2 SPI Overview 417

Description

Establishes conventions applications use to
negotiate required service levels for parameters
such as bandwidth and latency. Other QOS-related
enhancements mechanisms for network-specific
QOS extensions. QOS implementation in Windows
is explained in detail in its own section under
Networking Services in the Platform SDK.

Incorporates shared sockets and conditional
acceptance; exchange of user data at connection
setup/teardown time; and protocol-specific
extension mechanisms.

Microsoft Extensions and the Windows Sockets 2 SPI
The Windows Sockets 2 specification defines an extension mechanism that exposes
advanced transport functionality to application programs. See the SPI: Function
Extension Mechanism in the SPI section. The following Microsoft-specific extensions that
were added to Windows Sockets 1.1 are also available to Windows Sockets 2
applications:

• AcceptEx

• GetAcceptExSockaddrs

• TransmitFile

• WSARecvEx

These functions are not exported from the Ws2_32.dll; they are exported from
Mswsock.dll.

An application written to use the Microsoft-specific extensions to Windows Sockets will
not run correctly over a Windows Sockets service provider that does not support those
extensions.

Socket Handles for the Windows Sockets 2 SPI
A socket handle can optionally be a file handle In Windows Sockets 2. It is possible to
use socket handles with ReadFile, WriteFile, ReadFileEx, WriteFileEx,
DuplicateHandle, and other Win32 functions. Not all transport service providers will
support this option. For an application to run over the widest possible number of service
providers, it should not assume that socket handles are file handles.

Windows Sockets 2 has expanded certain functions used for transferring data between
sockets using handles. The functions offer advantages specific to sockets for transferring
data and include WSARecv, WSASend, and WSADuplicateSocket.

418 Volume 1 Winsock and QOS

Windows Sockets 2 Architectural Overview
This chapter provides an overview of the Windows Sockets 2 architecture. It describes
and illustrates the relationships between applications, the Windows Sockets 2 DLL and
Windows Sockets service providers. A high-level view of the division of responsibilities
between the Windows Sockets 2 DLL and the Windows Sockets service providers is also
provided.

Windows Sockets 2 as a WOSA Component
The Windows Sockets 2 network transport and name resolution services are provided as
a Windows Open Services Architecture (WOSA) component. They consist of both an
application programming interface (API) used by applications and service provider
interfaces (SPls) implemented by service providers. This document defines the service
provider interfaces for data transport and name resolution. While it is designed to be a
stand-alone reference for the implementers of Windows Sockets 2 service providers,
developers are strongly encouraged to obtain and become familiar with the Windows
Sockets 2 Application Programming Interface as well.

WOSA provides a common set of interfaces for connecting front-end applications with
back-end services. The front-end application and back-end services need not speak
each other's language in order to communicate as long as they both know how to talk to
their respective WOSA interfaces. As a result, WOSA allows application developers and
vendors of back-end services to mix and match applications and services to build
solutions that shield programmers and users from the underlying complexity of the
system. WOSA defines an abstraction layer to heterogeneous computing resources
through the WOSA set of APls. Because this set of APls is extensible, new services and
their corresponding APls can be added as needed. Applications written to the WOSA
APls have access not only to the various computing environments supported today, but
also to all additional environments as they become available. Moreover, applications
don't have to be modified in any way to enjoy this support.

Each service recognized by WOSA also has a set of interfaces that service-provider
vendors use to take advantage of the seamless interoperability that WOSA provides. To
provide transparent access for applications, each implementation of a particular WOSA
service simply needs to support the functions defined by its service provider interface.

Like most WOSA components, Windows Sockets 2 uses a Windows Dynamic-Link
Library (DLL) that allows applications and service providers software components to be
bound together at runtime. In this way, applications are able to connect to services
dynamically. An application needs to know only the definition of the interface, not its
implementation.

Chapter 10 Win sock 2 SPI Overview 419

Windows Sockets 2 Dlls
Windows Sockets network services follow the WOSA model, meaning that there exists a
Windows Sockets Application Programming Interface (API), which is the application
programmer's access to network services, Windows Sockets Service Provider Interfaces
(SPls) which are implemented by transport service providers and name resolution
service provider vendors, and WS2_32.dll. The Windows Sockets 2 WOSA-compliant
architecture is illustrated in Figure 10-1.

Windows
Sockets 2 AP I

Windows Sockets 2
Transport SPI

Windows
Sockets 2

Application

Transport
Functions

,--------,

Transport
Service
Provider

Transport
Service
Provider

Windows
Sockets 2

Application

Name Space
Functions

_____ ~ ____ Windows Sockets 2

Name Space
Service
Provider

Name Space SPI
,-----------"

Name Space
Service
Provider

Figure 10-1: Winsock 2 WOSA-Compliant Architecture.

The SPI is intended to be used within all 32-bit implementations and versions of
Microsoft® Windows® including Windows® NT® and Windows® 95®.

Function Interface Model
Windows Sockets transport and name space service providers are DLLs with a single
exported procedure entry point for the service provider initialization function
WSPStartup or NSPStartup, respectively. All other service provider functions are made
accessible to the Ws2_32.dll through the service provider's dispatch table. Service
provider DLL's are loaded into memory by the Ws2_32.dll only when needed, and are
unloaded when their services are no longer required.

The SPI also defines several circumstances in which a transport service provider calls
up into the Ws2_32.dll (upcalls) to obtain DLL support services. The transport service
provider DLL is given the Ws2_32.dll's upcall dispatch table through the UpcallTable
parameter to WSPStartup.

420 Volume 1 Winsock and QOS

Service providers should have their file extension changed from "DLL" to ".WSP" or
".NSP". This requirement is not strict. A service provider will still operate with the
Ws2_32.dll with any file extension.

Naming Conventions
The Windows Sockets SPI uses the following function prefix naming convention.

Prefix Meaning Description

WSP Windows Sockets Service Transport service provider entry points
Provider

WPU Windows Sockets Provider Ws2_32.dll entry pOints for service
Upcall providers

WSC Windows Sockets WS2_32.dll entry points for installation
Configuration applets

NSP Name Space Provider Name space provider entry pOints

As described above, these entry pOints are not exported (with the exception of
WSPStartup and NSPStartup), but are accessed through an exchange of dispatch
tables.

Windows Sockets 2 Service Providers
As shown in the figure, Windows Sockets 2 Architecture, there are two basic types of
service providers: transport providers and name space providers. Examples of transport
providers include protocol stacks such as TCP/IP or IPXlSPX, while an example of a
name space provider would be an interface to the Internet's Domain Naming System
(DNS). Separate sections of the service provider interface specification apply to each
type of service provider.

Transport and name space service providers must be registered with the Ws2_32.dll at
the time they are installed. This registration need only be done once for each provider as
the necessary information is retained in perSistent storage.

Transport Service Providers
A given transport service provider supports one or more protocols. For example, a
TCP/IP providerwould supply (as a minimum) the TCP and UDP protocols, while an
IPXlSPX provider might supply IPX, SPX, and SPX II. Each protocol supported by a
particular provider is described by a WSAPROTOCOL_INFOW structure, and the total
set of such structures can be thought of as the catalog of installed protocols.
Applications can retrieve the contents of this catalog (see WSAEnumProtocols), and by
examining the available WSAPROTOCOL_INFOW structures, discover the
communications attributes associated with each protocol.

Chapter 10 Winsock 2 SPI Overview 421

Layered Protocols and Protocol Chains in the SPI
Windows Sockets 2 accommodates the notion of a layered protocol. A layered protocol
is one that implements only higher level communications functions, while relying on an
underlying transport stack for the actual exchange of data with a remote endpoint. An
example of such a layered protocol would be a security layer that adds protocol to the
connection establishment process in order to perform authentication and to establish a
mutually agreed upon encryption scheme. Such a security protocol would generally
require the services of an underlying reliable transport protocol such as TCP or SPX.
The term base protocol refers to a protocol such as TCP or SPX which is fully capable of
performing data communications with a remote endpoint, and the term layered protocol
is used to describe a protocol that cannot stand alone. A protocol chain would then be
defined as one or more layered protocols strung together and anchored by a base
protocol.

This stringing together of layered protocols and base protocols into chains can be
accomplished by arranging for the layered protocols to support the Windows Sockets 2
SPI at both their upper and lower edges. A special WSAPROTOCOL_INFOW structure
is created, which refers to the protocol chain as a whole, and which describes the explicit
order in which the layered protocols are joined. (See Figure 10-2.)

API

WS2 32.DLL
SPI

!
Layered Protocol

SPI

Layered Protocol·

SPI

Base Protocol

Figure 10-2: Joining Layered Protocols.

422 Volume 1 Winsock and aos

Namespace Service Providers
A namespace provider implements an interface mapping between the Windows
Sockets 2 name space SPI and the native programmatic interface of an existing name
service such as DNS, X.SOO, Netware® Directory Services (NDS), etc. While a name
space provider supports exactly one name space, it is possible for multiple providers for
a given name space to be installed. It is also possible for a single DLL to create an
instance of multiple different name space providers. As name space providers are
installed, a catalog of WSANAMESPACE_INFO structures is maintained. An application
may use WSAEnumNameSpaceProviders to discover which name spaces are
supported on a machine. Refer to Section Name Reso/ution Service Provider
Requirements for detailed information.

Legacy GetXbyY Service Providers
Windows Sockets 2 fully supports the TCP/IP-specific name resolution facilities found in
Windows Sockets version 1.1. It does this by including the set of GetXbyY functions in
the SPI. However, the treatment of this set of functions is somewhat different from the
rest of the SPI functions. The GetXbyY functions appearing in the SPI are prefaced with
GETXSYVSP _, and are summarized as follows:

Berkeley Style Functions
SPI function name

GETXBVVSP _gethostbyaddr

GETXBVVSP _gethostbyname

GETXBVVSP .:...getprotobyname

GETXBVVSP _getprotobynumber

GETXBVVSP _getservbyname

GETXBVVSP _getservbyport

GETXBVVSP _gethostname

Description

Supply a hostent structure for the specified host
address.

Supply a hostent structure for the specified host
name.

Supply a protoent structure for the specified
protocol name.

Supply a protoent structure for the specified
protocol number.

Supply a servent structure for the specified
service nam.e

Supply a servent structure for the service at the
specified port.

Return the standard host name for the local
machine.

Chapter 10 Winsock 2 SPI Overview 423

Async Style Functions
SPI function name Description

GETXBVVSP _WSAAsyncGetHostByAddr Supply a hostent structure for the
specified host address.

GETXBVVSP _WSAAsyncGetHostByName Supply a hostent structure for the
specified host name.

GETXBVVSP _ WSAAsyncGetProtoByName Supply a protoent structure for the
specified protocol name.

GETXBVVSP _ WSAAsyncGetProtoByNumber Supply a protoent structure for the
specified protocol number.

GETXBVVSP _WSAAsyncGetServByName Supply a servent structure for the
specified service name.

GETXBVVSP _WSAAsyncGetServByPort Supply a servent structure for the
service at the specified port.

GETXBVVSP _ WSACancelAsyncRequest Cancel an asynchronous GetXbyY
operation.

The syntax and semantics of these GetXbyY functions are exactly the same as is
documented in the Windows Sockets 2 API Specification and are, therefore, not
repeated in this document.

The Windows Sockets 2 DLL allows exactly one service provider to offer these services.
Therefore, there is no need to include pOinters to these functions in the procedure table
received from service providers at startup. In 32-bit environments the path to the DLL
that implements these functions is retrieved from the registry key named:

Warning How the path is obtained in 16-bit environments has not yet been determined.

Built-In Default GetXbyV Service Provider
A default GetXbyY service provider is integrated into the standard Windows Sockets 2
run-time components. This default provider implements all of the above functions, thus it
is not required for these functions to be implemented by any name space provider.
However, a name space provider is free to provide any or all of these functions (and thus
override the defaults) by simply storing the string which is the path to the DLLthat
implements these functions in the indicated registry key. Any of the GetXbyY functions
not exported by the named provider DLL will be supplied through the built-in defaults.
Note, however, that if a provider elects to supply any of the async version of the
GetXbyY functions, he should supply all of the async functions so that the cancel
operation will work appropriately.

424 Volume 1 Winsock and aos

For 32-bit environments, the current implementation of the default GetXbyY service
provider resides within the Microsoft Wsock32.dll. Depending on how the TCP/IP
settings have been established through Control Panel, name resolution will occur using
either DNS or local host files. When DNS is used, the default GetXbyY service provider
uses standard Windows Sockets 1.1 API calls to communicate with the DNS server.
These transactions will occur using whatever TCP/IP stack is configured as the default
TCP/IP stack. Two special cases however, deserve special mention.

The default implementation of GETXBYYSP _gethostname obtains the local host name
from the registry. This will correspond to the name assigned to "My Computer". The
default implementation of GETXBYYSP _gethostbyname and
GETXBYYSP _ WSAAsyncGetHostByName always compares the supplied host name
with the local host name. If they match, the default implementation uses a private
interface to probe the Microsoft TCP/IP stack in order to discover its local IP address.
Thus, in order to be completely independent of the Microsoft TCP/IP stack, a name
space provider must implement both GETXBYYSP _gethostbyname and
GETXBYYSP _ WSAAsyncGetHostByName.

Windows Sockets 2 Identifiers
A Windows Sockets 2 clearinghouse has been established for service provider vendors
to obtain unique identifiers for new address families, socket types, and protocols. FTP
and world-wide web servers are used to supply current identifier/value mappings, and
email is used to request allocation of new ones. At the time of this writing the world-wide
web URL for the Windows Sockets 2 Identifier Clearinghouse is:

http://www.stardust.com/winsock/

Data Transport Providers
The following sections apply only to data transport service providers and the data
transport portion of the SPI.

Transport Division of Responsibilities Between DLL and Service
Providers
This section provides an overview of the division of responsibility between the
Ws2_32.dll and transport service providers.

Ws2_32.dll Functionality for Transport
The major task of the data transport portion of the Ws2_32.dll is to serve as a sort of
traffic manager between service providers and applications. Consider several different
service providers interacting with the same application. Each service providerinteracts
strictly with the Ws2_32.dll. The Ws2_32.dll takes care of:

• Selecting an appropriate service provider for creating sockets based on a protocol
description.

Chapter 10 Winsock 2 SPI Overview 425

• Forwarding application procedure calls involving a socket to the appropriate service
provider that created or controls that socket. Service providers are unaware that any
of this is happening.

They do not need to be concerned about the details of cooperating with one another or
even the existence of other service providers. By abstracting the service providers into a
consistent DLL interface and performing this automatic traffic routing function, the
Ws2_32.dll allows applications to interact with a variety of providers without requiring the
applications to be aware of the divisions between providers, where different providers
are installed.

The Ws2_32.dll relies on the parameters of the API socket creation functions (socket
and WSASocket) to determine which service provider to utilize. The selected transport
service provider will be invoked through the WSPSocket function. In the case of the
socket function, the Ws2_32.dll finds the first entry in the set of installed
WSAPROTOCOL_INFOW structures that matches the values supplied in the tuple
formed by the (address family, socket type, protoco~ parameters. To preserve backward
compatibility, the WS2_32.dll treats the value of zero for either address family or socket
type as a wildcard value. The value of zero for protocol is not considered a wildcard
value by the Ws2_32.dll unless such behavior is indicated for a particular protocol by
having the PFL_MATCHES_PROTOCOL_ZERO flag set in the
WSAPROTOCOL_INFOW structure.

For the WSASocket function, if NULL is supplied for IpProtocollnfo, the behavior is
exactly as just described for socket. If a WSAPROTOCOL_INFO structure is
referenced, however, the WS2_32.dll does not perform any matching function .but
immediately relays the socket creation request to the transport service provider
associated with the indicated WSAPROTOCOL_INFO structure. The values for the
(address family, socket type, protoco~ tuple are supplied intact to the service provider in
the WSPSocket function. Service providers are free to ignore or pay attention to the
values of the (address family, socket type, protoco~ parameters as is appropriate, but
they must not indicate an error condition when the value of either address family or
socket type is zero. In addition, service providers must not indicate an error condition
when the manifest constant FROM_PROTOCOL_INFO is contained in any of the
(address family, socket type, protoco~ parameters. This value simply indicates that the
application wishes to use the values found in the corresponding parameters of the
WSAPROTOCOL_INFO structure: (iAddressFamily, iSocketType, iProtoco~.

As part of socket creation a service provider informs the WS2_32.dll about the
association between itself and the new socket by means of parameters passed to
WPUCreateSocketHandle or WPUModifylFSHandle. The Ws2_32.dll keeps track of
this association between socket handles and particular service providers. Whenever an
application interface function that refers to a socket handle is called, the Ws2_32.dll
looks up the association and calls the corresponding service provider interface function
of the appropriate service provider.

426 Volume 1 Winsock and QOS

In addition to its major traffic routing service, the Ws2_32.dll provides a number of other
services such as protocol enumeration, socket descriptor management (allocation,
deallocation, and context value association) for nonfile-system service providers,
blocking hook management on a per-thread basis, byte-swapping utilities, queuing of
Asynchronous Procedure Calls (APCs) to facilitate invocation of I/O completion routines,
and version negotiation between applications and the Ws2_32.dll, as well as between
the Ws2_32.dll and service providers.

Transport Service Provider Functionality
Service providers implement the actual transport protocol which includes such functions
as setting up connections, transferring data, exercising flow control and error control, etc.
The Ws2_32.dll has no knowledge about how requests to service providers are realized;
this is up to the service provider implementation. The implementation of such functions
may differ greatly from one provider to another. Service providers hide the
implementation-specific details of how network operations are accomplished.

Transport service providers can be broadly divided into two categories: those whose
socket descriptors are real file system handles (and are hereafter referred to as
Installable File System (IFS) providers; the remainder are referred to as non-IFS
providers. The Ws2_32.dll always passes the transport service provider's socket
descriptor on up to the Windows Sockets application, so applications are free to take
advantage of socket descriptors that are file system handles if they so choose.

To summarize: Service providers implement the low-level network-specific protocols.
The Ws2_32.dll provides the medium-level traffic management that interconnects these
transport protocols with applications. Applications in turn provide the policy of how these
traffic streams and network-specific operations are used to accomplish the functions
desired by the user.

Transport Mapping Between API and SPI Functions
The Windows Sockets Transport SPI is similar to the Windows Sockets API in that all of
the basic socket functions appear. When a new Windows Sockets 2 version of a function
and the original Windows Sockets 1.1 version of a function both exist in the API, only the
new version will show up in the SPI. For example:

• connect and WSAConnect both map to WSPConnect

• accept and WSAAccept map to WSPAccept

• socket and WSASocket map to WSPSocket

Other API functions that are collapsed into the enhanced versions in SPI include:

• send

• sendto

• recv

• recvfrom

• ioctlsocket

Chapter 10 Winsock 2 SPI Overview 427

Support functions like htonl, htons, ntohl, and ntohs are implemented in the
WS2_32.dll, and are not passed down to service providers. The same holds true for the
WSA versions of these functions.

Windows Sockets service provider enumeration and the blocking hook-related functions
are realized in the Ws2_32.dl', thus WSAEnumProtocols, WSAlsBlocking,
WSASetBlockingHook, and WSAUnhookBlockingHook do not appear as SPI
functions.

Since error codes are returned along with SPI functions, equivalents of
WSAGetLastError and WSASetLastError are not needed in the SPI.

The event object manipulation and wait functions including WSACreateEvent,
WSACloseEvent, WSASetEvent, WSAResetEvent, and WSAWaitForMultipleEvents
are mapped directly to native OS services and thus are not present in the SPI.

All the TCP/IP-specific name conversion and resolution functions in Windows Sockets
1.1 such as getXbyV, WSAAsyncGetXByV and WSACancelAsyncRequest, as well as
gethostname are implemented within the Ws2_32.dll in terms of the new name
resolution facilities. See Windows Sockets 1.1 Compatible Name Resolution for TCP/IP
for details. Conversion functions such as ineCaddr and ineCntoa are implemented
within the Ws2_32.dll.

Function Extension Mechanism in the SPI
Since the Windows Sockets DLL itself is no longer supplied by each individual stack
vendor, it is no longer possible for a stack vendor to offer extended functionality by just
adding entry points to the Windows Sockets DLL. To overcome this limitation, Windows
Sockets 2 takes advantage of the new WSAloctl function to accommodate service
providers who wish to offer provider-specific functionality extensions. This mechanism
presupposes, of course, that an application is aware of a particular extension and
understands both the semantics and syntax involved. Such information would typically
be supplied by the service provider vendor.

In order to invoke an extension function, the application must first ask for a pointer to the
desired function. This is done through the WSAloctl function using the
SIO_GET _EXTENSION_FUNCTION_POINTER command code. The input buffer to the
WSAloctl function contains an identifier for the desired extension function and the
output buffer will contain the function pOinter itself. The application can then invoke the
extension function directly without passing through the Ws2_32.dll.

The identifiers assigned to extension functions are globally unique identifiers (GUIDs)
that are allocated by service provider vendors. Vendors who create extension functions
are urged to publish full details about the function including the syntax of the function
prototype. This makes it possible for common and/or popular extension functions to be
offered by more than one service provider. An application can obtain the function pointer
and use the function without needing to know anything about the particular service
provider that implements the function.

428 Volume 1 Winsock and aos

Transport Configuration and Installation
In order for a transport protocol to be accessible through Windows Sockets it must be
properly installed on the system and registered with Windows Sockets. When a transport
service provider is installed by invoking a vendor's installation program, configuration
information must be added to a configuration database to give the Ws2_32.dll required
information regarding the service provider. The Ws2_32.dll exports an installation
function, WSClnstaliProvider for the vendor's installation program to supply the relevant
information about the to-be-installed service provider, for example, the name and path to
the service provider DLL and a list of WSAPROTOCOL_INFOW structures that this
provider can support. Symmetrically, the Ws2_32.dll also provides a function,
WSCDeinstaliProvider, for a vendor's deinstallation program to remove all the relevant
information from the configuration database maintained by the Ws2_32.dll. The exact
location and format of this configuration information is private to the Ws2_32.dll, and can
only be manipulated by the above-mentioned functions.

The order in which transport service providers are initially installed governs the order in
which they are enumerated through WSCEnumProtocols at the service provider
interface, or through WSAEnumProtocols at the application interface. More importantly,
this order also governs the order in which protocols and service providers are considered
when a client requests creation of a socket based on its address family, type, and
protocol identifier. Windows Sockets 2 includes an applet called Sporder.exe that allows
the catalog of installed protocols to be re-ordered interactively after protocols have
already been installed. Windows Sockets 2 also includes an auxiliary DLL, Sporder.dll,
that exports a procedural interface for re-ordering protocols. This procedural interface is
described in Service Provider Ordering.

Installing Layered Protocols and Protocol Chains
The WSAPROTOCOL_INFO structure supplied with each protocol to be installed
indicates whether the protocol is a base protocol, layered protocol, or protocol chain. The
value of the Protaca/Chain.ChainLen parameter is interpreted as shown in the following
table.

Value

o

>1

Meaning

Layered protocol.

Base protocol (or chain with only one component).

Protocol chain.

Installation of protocol chains can only occur after successful installation of all of the
constituent components (base protocols and layered protocols). The
WSAPROTOCOL_INFOW structure for a protocol chain uses the Protaca/Chain
parameter to describe the length of the chain and the identity of each component. The
individual protocols that make up a chain are listed in order in the
ProtocolChain.ChainEntries array, with the zeroth element of the array corresponding to
the first layered provider. Protocols are identified by their Cata/ogEntry/D values, which

Chapter 10 Winsock 2 SPI Overview 429

are assigned by the WS2_32.dll at protocol installation time, and can be found in the
WSAPROTOCOL_INFOW structure for each protocol.

The values for the remaining parameters in the protocol chain's
WSAPROTOCOL_INFOW structure should be chosen to reflect the attributes and
identifiers that best characterize the protocol chain as a whole. When selecting these
values, developers should bear in mind that communications over protocol chains can
only occur when both endpoints have compatible protocol chains installed, and that
applications must be able to recognize the corresponding WSAPROTOCOL_INFO
structure.

When a base protocol is installed, it is not necessary to make any entries in the
ProtocoIChain.ChainEntriesarray. It is implicitly understood that the sole component of
this chain is already identified in the CatalogEntrylD parameter of the same
WSAPROTOCOL_INFO structure. Also note that protocol chains may not include
multiple instances of the same layered protocol.

Name Resolution Providers
The following sections apply only to name resolution service providers and the name
resolution portion of the SPI.

Name Resolution Model for the SPI
In developing a protocol-independent client/server application, there are two basic
requirements that exist with respect to name resolution and registration:

• The ability of the server half of the application (hereafter referred to as a service) to
register its existence within (or become accessible to) one or more name spaces.

• The ability of the client application to find the service within a name space and obtain
the required transport protocol and addreSSing information.

For those accustomed to developing TCP/IP based applications, this may seem to
involve little more than looking up a host address and then using an agreed upon port
number. Other networking schemes, however, allow the location of the service, the
protocol used for the service, and other attributes to be discovered at run-time. To
accommodate the broad diversity of capabilities found in existing name services, the
Windows Sockets 2 interface adopts the model described below.

A namespace refers to some capability to associate (as a minimum) the protocol and
addreSSing attributes of a network service with one or more human-friendly names.
Many name spaces are currently in wide use including the Internet's Domain Name
System (DNS), Netware Directory Services (NOS), X.SOO, etc. These name spaces vary
widely in how they are organized and implemented. Some of their properties are
particularly important to understand from the perspective of Windows Sockets name
resolution.

430 Volume 1 Winsock and aDS

Types of Namespaces in the SPI
There are three different types of namespaces in which a service could be registered:

• Dynamic

• Static

• Persistent

Dynamic namespaces allow services to register with the name space on the fly, and for
clients to discover the available services at run time. Dynamic name spaces frequently
rely on broadcasts to indicate the continued availability of a network service. Examples
of dynamic name spaces include the SAP name space used within a Netware
environment and the NBP name space used by Appletalk®.

Static name spaces require all of the services to be registered ahead of time, that is,
when the name space is created. The DNS is an example of a static name space.
Although there is a programmatic way to resolve names, there is no programmatic way
to register names.

Persistent name spaces allow services to register with the name space on the fly. Unlike
dynamic name spaces however, persistent name spaces retain the registration
information in nonvolatile storage where it remains until such time as the service
requests that it be removed. Persistent name spaces are typified by directory services
such as X.500 and the NDS (Netware Directory Service). These environments allow the
adding, deleting, and modification of service properties. In addition, the service object
representing the service within the directory service could have a variety of attributes
associated with the service. The most important attribute for client applications is the
service's addressing information.

Namespace Organization in the SPI
Many namespaces are arranged hierarchically. Some, such as X.500 and NOS, allow
unlimited nesting. Others allow services to be combined into a single level of hierarchy or
group. This is typically referred to as a workgroup. When constructing a query, it is often
necessary to establish a context point within a namespace hierarchy from which the
search will begin.

Namespace Provider Architecture in the SPI
Naturally, the programmatic interfaces used to query the various types of name spaces
and to register information within a namespace (if supported) differ widely. A namespace
provider is a locally-resident piece of software that knows how to map between the
Windows Sockets namespace SPI and some existing namespace (which could be
implemented locally or accessed through the network). This is shown in Figure 10-3.

Note Note that it is possible for a given namespace, say DNS, to have more than one
namespace provider installed on a given machine.

Chapter 10 Winsock 2 SPI Overview 431

Transport _______ _ __________ Name Space

SPI

I
Transport
Service
Provider

Ir
Transport
Service
Provider

Figure 10-3: Namespace Provider.

Name
Space

Provider

Name
Space

Provider

Locally
Implemented
Name Space

SPI

Local NS
Interiace

As mentioned above, the generic term service refers to the server-half of a client/server
application. In Windows Sockets, a service is associated with a service class, and each
instance of a particular service has a service name which must be unique within the
service class. Examples of service classes include FTP Server, Sal Server, XYZ Corp.
Employee Info Server, etc.

As the example attempts to illustrate, some service classes are well known while others
are very unique and specific to a particular vertical application. In either case, every
service class is represented by both a class name and a class identifier. The class name
does not necessarily need to be unique, but the class identifier must be. Globally Unique
Identifiers (GUIDs) are used to represent service class IDs. For well-known services,
class names, and class identifiers (GUIDs) have been pre-allocated, and macros are
available to convert between, for example, TCP port numbers and the corresponding
class identifier GUIDs. For other services, the developer chooses the class name and
uses the Uuidgen.exe utility to generate a GUID for the class identifier.

The notion of a service class exists to allow a set of attributes to be established that are
held in common by all instances of a particular service. This set of attributes is supplied
to Windows Sockets at the time the service class is defined, and is referred to as the
service class schema information. The Ws2_32.dll in turn relays this information to all
active name space providers. When an instance of a service is installed and made
available on a host machine, its service name is used to distinguish this particular
instance from others that may be known to the name space.

Note that the installation of a service class only needs to occur on machines where the
service executes, not on all of the clients which may utilize the service. Where possible,
the Ws2_32.dll will provide service class schema information toa name space provider
at the time an instance of a service is to be registered or a service query is initiated. The
WS2_32.dll does not, of course, store this information itself, but attempts to retrieve it
from a name space provi'der that has indicated its ability to supply this data. Since there
is no guarantee that the WS2_32.dll will be able to supply the service class schema,
name space providers that need this information must have a fallback mechanism to
obtain it through name space-specific means.

432 Volume 1 Winsock and aos

The Internet's Domain Name System does not have a well-defined means to store
service class schema information. As a result, DNS name space providers will only be
able to accommodate well-known TCP/IP services for which a service class GUID has
been preallocated. In practice, this is not a serious limitation since service class GUIDs
have been preallocated for the entire set of TCP and UDP ports, and macros are
available to retrieve the GUID associated with any TCP or UDP port. Thus, all of the
familiar services such as ftp, telnet, whois, etc. are well supported. When querying for
these services, by convention the host name of the target machine is the service
instance name.

Continuing with our service class example, instance names of the ftp service may be
"alder.intel.com" or "rhino.microsoft.com" while an instance of the XYZ Corp. Employee
Info Server might be named "XYZ Corp. Employee Info Server Version 3.5". In the first
two cases, the combination of the service class GUID for ftp and the machine name
(supplied as the service instance name) uniquely identify the desired service. In the third
case, the host name where the service resides can be discovered at service query time,
so the service instance name does not need to include a host name.

Name Resolution Division of Responsibilities Between DLL and
Service Providers
The following paragraphs describe how the Ws2_32.dll and the name space providers
cooperate together to implement the name resolution services supported by the
Windows Sockets 2 API.

Ws2_32.dll Functionality for Name Resolution
The WS2_32.dll manages the registration and demand loading of individual name space
provider DLLs. It also is responsible for routing name space operations from a Windows
Sockets 2 application to the appropriate set of name space providers. This mapping is
governed by the value of name space and service provider identifier parameters that are
found in individual API functions. As a general rule, when a specific name space
provider is referenced, the operation is only routed to an identified provider. If the name
space provider identifier is NULL but a particular name space is referenced, the
operation is routed to all name space providers that support the identified name space. If
the name space provider identifier is NULL and the name space identifier is given as
NS_ALL, then the operation is routed to all active name space providers.

As part of starting a query to one or more service providers, the WS2_32.dll allocates an
object to keep track of the ongoing state of the query. An opaque handle representing
this object is returned to the application that started the query. The application supplies
this handle as a parameter each time it repetitively calls an application interface function
to retrieve the next unit of data resulting from the query.

In response to these application interface procedure calls, the Ws2_32.dll uses the
information it stores in the object to make corresponding calls to the name space
providers involved in the query. The Ws2_32.dll updates the information in its object as

Chapter 10 Winsock 2 SPI Overview 433

each successive application interface call occurs so that the corresponding calls to name
space providers progress appropriately through all of the name space providers involved
in the query.

Name Space Provider Functionality
Each name space provider is responsible for mapping the set of functions appearing in
the Windows Sockets 2 name resolution SPI to the appropriate transactions with the
supported name space. In some cases, this is primarily a matter of mapping the SPI to
whatever native interface exists for the name space. In others, the name space provider
must conduct transactions with the name space provider over the network. Some name
space providers will do this by making calls to the Windows Sockets API, others will use
private interfaces to associated transport stacks.

Name Resolution Mapping Between API and SPIFunctions
The installation of service classes, registration of service instances and basic query
operations all map fairly directly from the API to the SPI. The
WSAGetServiceClassNameByClassld function does not have a corresponding
function in the SPI, as this function is implemented in Ws2_32.dll by making a call to
NSPGetServiceClasslnfo.

The helper functions WSAAddressToString and WSAStringToAddress are mapped to
the corresponding functions in the transport API, as only a transport provider will
necessarily know how to perform the translation on a SOCKADDR structure.

Name Resolution Configuration and Installation
In order for a name space provider to be accessible through Windows Sockets it must be
properly installed on the system and registered with Windows Sockets. When a name
space provider is installed by invoking a vendor's installation program, configuration
information must be added to a configuration database to give the Ws2_32.dll required
information regarding the service provider. The Ws2_32.dll exports
WSClnstallNameSpace for the vendor's installation program to use. This function is
used to supply relevant information about the to-be-installed service provider. This
information includes:

• Provider Name - A string representing the provider for display in Control Panel

• Provider Version - The version of this provider

• Provider Path - A path name to the provider OLL

• Name Space - The name space supported by the provider

• Provider GUIO - A unique, vendor-supplied number representing this provider/name
space combination. This is used as a key for all subsequent references to this
provider, and for uninstall. These values are created using the Uuidgen:exe utility.

434 Volume 1 Winsock and QOS

• Stores all flag - a flag indicating whether this name space provider will be responsible
for retaining all service class schema information for all service classes. If such a
provider exists, the Ws2_32.dll does not need to query each individual name space
provider for this information.

Symmetrically, the Ws2_32.dll also provides a function, WSCUnlnstaliNameSpace, for
a vendor'S deinstallation program to remove all the relevant information from the
configuration database. The exact location and format of this configuration information is
private to the Ws2_32.dll, and can only be manipulated by the above-mentioned
functions.

At any point, an NSP is considered to be either active or inactive, with this setting
controlled through the WSCEnableNSProvider function. Name space providers that are
inactive continue to show up when enumerated through
WSAEnumNameSpaceProviders, but the Ws2_32.dll will not route any query or
service registration operations to these providers. This capability can be useful in
situations where more than one of the installed name space providers can support a
given name space.

When multiple name space providers are referenced in a single API function, the order in
which the order in which the queries and registration operations are routed to name
space providers is unspecified. The order is unrelated to the order in which name space
providers are installed. There are two ways to control which name space providers are
used to resolve a name query. First, the name space configuration function,
WSCEnableNSProvider can be used to enable and disable name spaces in a machine
wide, persistent way. Second, applications can direct an individual query to a particular
provider by specifying that provider's identifying GUID as part of the query.

Windows Sockets 2 Transport Provider Requirements
The following sections provide a description of each of the functional areas which
transport service providers are required to implement. Where appropriate,
implementation considerations and guidelines are also provided.

Service Provider Activation
The following sections describe the sequence of events involved in bringing a transport
service provider DLL into memory, initializing it, and eventually, de-initializing it.

Initialization
The Ws2_32.dll loads the service provider's interface DLL into the system by using the
standard Microsoft® Windows® dynamic library loading mechanisms, and initializes it by
calling WSPStartup. This is usually triggered by an application calling either socket or
WSASocket in order to create a new socket that is to be associated with a service
provider whose interface DLL is not currently loaded into memory. The path to each

Chapter 10 Winsock 2 SPI Overview 435

service provider's interface DLL is stored by the Ws2_32.dll at the time the service
provider is being installed. See section Configuration and Installation for more
information.

Over time, different versions may exist for the Windows Sockets 2 DLLs, applications,
and service providers. New versions may define new features, new parameters to data
structures and bit parameters, etc. Version numbers therefore indicate how to interpret
various data structures.

To allow optimal mixing and matching of different versions of applications, versions of
the Ws2_32.dll itself, and versions of service providers by different vendors, the SPI
provides a version negotiation mechanism for use between the WS2_32.dll and the
service providers. This version negotiation is handled by WSPStartup. Basically, the
Ws2_32.dll passes to the service provider the highest version numbers with which it is
compatible. The service provider compares this with its own supported range of version
numbers. If these ranges overlap, the service provider returns a value within the
overlapping portion of the range as the result of the negotiation. Usually, this should be
the highest possible value. If the ranges do not overlap, the two parties are incompatible
and the function returns an error.

WSPStartup must be called at least once by each client process, and may be called
multiple times by Ws2_32.dll or other entities. A matching WSPCleanup must be called
for each successful WSPStartup call. The service provider should maintain a reference
count on a per-process basis. On each WSPStartup call, the caller may specify any
version number supported by the SP DLL.

A service provider must store the pOinter to the client's upcall dispatch table that is
received as a WSPStartup parameter on a per-process basis. If a given process calls
WSPStartup multiple times, the service provider must use only the most recently
supplied dispatch table pointer.

As part of the service provider initialization process The Ws2_32.dll retrieves the service
provider's dispatch table through the IpProcTable parameter in order to obtain entry
points to the rest of the SPI functions specified in this document.

Using a dispatch table (as opposed to the usual DLL mechanisms for accessing entry
points) serves two purposes:

• It is more convenient for the Ws2_32.dll since a single call can be made to discover
the entire set of entry points.

• It enables layered service providers formed into protocol chains to operate more
efficiently.

Initializing Protocol Chains
At the time the WSAPROTOCOL_INFOW structure for a protocol chain is installed, the
path to the first layered provider in the chain is also specified. When a protocol chain is
initialized, the Ws2_32.dll uses this path to load the provider DLL and then invokes
WSPStartup. Since WSPStartup includes a pOinter to the chain's
WSAPROTOCOL_INFOW structure as one of its parameters, layered providers can

436 Volume 1 Winsock and QOS

determine what type of chain they are being initialized into, and the identity of the next
lower layer in the chain. A layered provider would then in turn load the next protocol
provider in the chain and initialize it with a call to WSPStartup, and so forth. Whenever
the next lower layer is another layered provider, the chain's WSAPROTOCOL_INFOW
structure must be referenced in the WSPStartup call. When the next lower layer is a
base protocol (signifying the end of the chain), the chain's WSAPROTOCOL_INFOW
structure is no longer propagated downward. Instead, the current layer must reference a
WSAPROTOCOL_INFOW structure that corresponds to the protocol that the base
provider should use. Thus, the base provider has no notion of being involved in a
protocol chain.

The dispatch table provided by any given layered provider will, in many instances,
duplicate the entry pOints of an underlying provider. The layered provider would only
insert its own entry pOints for functions that it needed to be directly involved in. Note,
however, that it is imperative that a layered provider not modify the contents of the
upcall table that it received when calling WSPStartup on the next lower layer in a
protocol chain. These upcalls must be made directly to the Windows Sockets 2 DLL.

Cleanup
The Ws2_32.dll (and layered protocols) will call WSPCleanup once for each invocation
of WSPStartup. On each invocation, WSPCleanup should decrement a per-process
reference counter, and when the counter reaches zero the service provider must prepare
itself to be unloaded from memory. The first order of business is to finish transmitting any
unsent data on sockets that are configured for a graceful close. Thereafter, any and all
resources held by the provider are to be freed. The service provider must be left in a
state where it can be immediately re-initialized by a call to WSPStartup.

Error Reporting and Parameter Validation
The scheme for error reporting differs between the SPI and API interfaces. Windows
Sockets service providers report errors along with the function returning, as opposed to
the per-thread based approach utilized in the API. The Ws2_32.dll uses the service
provider's per-function error code to update the per-thread error value that is obtained
through the WSAGetLastError API function. Service providers are still required,
however, to maintain the per-socket based error which can be retrieved through the
SO_ERROR socket option.

The Ws2_32.dll performs parameter validation only on function calls that are
implemented entirely within itself. Service providers are responsible for performing all of
their own parameter validation.

Byte Ordering Assumptions
A service provider should treat all SOCKADDR components exclusive of the address
family parameter as if they are in the network byte order, and the address family
parameter as in the local machine's byte order. It is the Windows Sockets application's

Chapter 10 Winsock 2 SPI Overview 437

responsibility to make sure that addresses contained in SOCKADDR structures are
properly arranged. The Windows Sockets API provides a number of conversion routines
to simplify this task. Currently these routines understand conversion between the local
host's natural byte order and either big-endian or little-endian network byte ordering. The
Windows Sockets architecture can support other byte ordering schemes in the future.

Socket Creation and Descriptor Management
The following sections describe aspects of creating new sockets and the allocation of
socket descriptors.

Descriptor Allocation
While Windows Sockets service providers are encouraged to implement sockets as
installable file system (IFS) objects, the Windows Sockets architecture also
accommodates service providers whose socket handles are not IFS objects. Providers
with IFS handles indicate this through the XP1_IFS_HANDLES attribute bit in the
WSAPROTOCOL_INFOW structure. (Note: the XP1_IFS_HANDLES attribute bit was
not included in release 2.0.8 of the API specification, but has since been added through
the errata mechanism.) Windows Sockets SPI clients may take advantage of providers
whose socket descriptors are I FS handles by using these descriptors with standard
Win32 I/O facilities, such as ReadFile and WriteFile.

Whenever an IFS provider creates a new socket descriptor, it is mandatory that the
provider call WPUModifylFSHandle prior to supplying the new handle to a Windows
Sockets SPI client. This function takes a provider identifier and a proposed IFS handle
from the provider as input and returns a (possibly) modified handle. The IFS provider
must supply only the modified handle to its client, and all requests from the client will
reference only this modified handle. The modified handle is guaranteed to be
indistinguishable from the proposed handle as far as the operating system is concerned.
Thus in most instances, the service provider will simply choose to use only the modified
handle in all of its internal processing. The purpose of this modification function is to
allow the WS2_32.dll to greatly streamline the process of identifying the service provider
associated with a given socket.

Providers that do not return IFS handles must obtain a valid handle from the Ws2_32.dll
via the WPUCreateSocketHandle call. The nonlFS provider must offer only a Windows
Sockets 2.dll-supplied handle to its client, and all requests from the client will reference
only these handles. As a convenience to service provider implementers, one of the input
parameters supplied by a provider in WPUCreateSocketHandle is a DWORD context
value. The Ws2_32.dll associates this context value with the allocated socket handle
and allows a service provider to retrieve the context value at any time through the
WPUQuerySocketHandleContext call. A typical use for this context value would be to
store a pOinter to a service provider maintained data structure used to store socket state
information.

438 Volume 1 Winsock and QOS

Socket Attribute Flags and Modes
There are several socket attributes which can be indicated through the flags parameter
in WSPSocket. The WSA_FLAG_OVERLAPPED flag indicates that a socket will be
used for overlapped I/O operations. Support of this attribute is mandatory for all service
providers. See Overlapped I/O for more information. Note that creating a socket with the
overlapped attribute has no impact on whether a socket is currently in the blocking or
non blocking mode. Sockets created with the overlapped attribute may be used to
perform overlapped I/O, and doing so does not change the blocking mode of a socket.
Since overlapped I/O operations do not block, the blocking mode of a socket is irrelevant
for these operations.

Four additional attribute flags are used when creating sockets that are to be used for
multipoint and/or multicast operations, and support for these attributes is optional.
Providers that support multipoint attributes indicate this through the
XP1_SUPPPORT _MULTIPOINT bit in their respective WSAPROTOCOL_INFOW
structures. See WSPSocket and section Protocol-Independent Multicast and Multipoint
in the API for the definition and usage of each of these flags. Only sockets that are
created with multipoint-related attributes can be used in the WSPJoinLeaf function for
creating multipoint sessions.

A socket is in one of two modes, blocking and nonblocking, at any time. Sockets are
created in the blocking mode by default, and can be changed to nonblocking mode by
calling WSPAsyncSelect, WSPEventSelect, or WSPloctl. A socket can be switched
back to blocking mode by using WSPloctl if no WSPAsyncSelect or WSPEventSelect
is active. The mode for a socket only affects those functions which may block, and does
not affect overlapped I/O operations. See section Blocking Operations for more
information.

Closing Sockets
WSPCloseSocket releases the socket descriptor so that any pending operations in any
threads of the same process will be aborted, and any further reference to it will fail. Note
that a reference count should be employed for shared sockets, and only if this is the last
reference to an underlying socket, should the information associated with this socket be
discarded, provided graceful close is not requested (that is, SO_DONTLINGER is not
set). In the case of SO_DONTLINGER being set, any data queued for transmission will
be sent, if possible, before information associated with the socket is released. See
WSPCloseSocket for more information.

For nonlFS service providers, WPUCloseSocketHandle must be invoked to release the
socket handle back to the Windows Sockets 2 DLL.

Blocking Operations
The notion of blocking in a Windows environment has historically been a very important
one. In Windows Sockets 1.1 environments, blocking calls were discouraged since they
tend to disable ongoing interaction with the Windowing system, and since they employ a

Chapter 10 Winsock 2 SPI Overview 439

pseudo blocking technique which, for a variety of reasons, does not always work as
intended. However, in preemptively scheduled Win32 environments such as
Windows 95/98® and Windows NT®IWindows® 2000, blocking calls make much more
sense, can be implemented by native operating system services, and are in fact a
generally preferred mechanism. The Windows Sockets 2 API no longer supports psuedo
blocking, but because the Windows Sockets 1.1 compatibility shims must continue to
emulate this behavior, service providers must support this as described below.

Pseudo vs. True Blocking
In 16 Windows environments, true blocking is not supported by the as, thus a blocking
operation that cannot be completed immediately is handled as follows:

• The service provider initiates the operation, and then enters a loop during which it
dispatches any Windows messages (yielding the processor to another thread if
necessary)

• It then checks for the completion of the Windows Sockets function.

• If the function has completed, or if WSPCancelBlockingCall has been invoked, the
loop is terminated and the blocking function completes with an appropriate result.

This is what is meant by the term pseudo blocking, and the loop referred to above is
known as the default blocking hook.

Blocking Hook
Although this mechanism is sufficient for simple applications, it cannot support the
complex message-dispatching requirements of more advanced applications such as
those using the Multiple Document Interface (MOl) model. For such applications, a
thread-specific blocking hook may be installed by the application. This will be called by
the service provider instead of the default blocking hook described above. A service
provider must retrieve a pOinter to the per-thread blocking hook from the Ws2_32.dll by
calling WPUQueryBlockingCaliback. If the application has not installed its own
blocking hook a pointer to the default blocking hook function will be returned;

A Windows Sockets service provider cannot assume that an application-supplied
blocking hook allows message processing to continue as the default blocking hook does.
Some applications cannot tolerate the possibility of reentrant messages while a blocking
operation is outstanding. Such an application's blocking hook function would simply
return FALSE. If a service provider depends on messages for its internal operation, it
may execute PeekMessage(hMyWnd ...) before executing the application's blocking
hook so that it can get its own messages without affecting the rest of the system.

There is no default blocking hook installed in preemptive multithreaded versions of
Windows. This is because other processes will not be blocked if a single application is
waiting for an operation to complete (and hence not calling PeekMessage or
GetMessage which causes the application to yield the processor in nonpreemptive
Windows). When the service provider calls WPUQueryBlockingCaliback a null pOinter
will be returned indicating that the provider is to use native as blocking functions.

440 Volume 1 Winsock and QOS

However, in order to preserve backward compatibility, an application-supplied blocking
hook can still be installed on a per-thread basis in 32 bit versions of Windows.

The Windows Sockets service provider calls the blocking hook only if all of the following
are true: the routine is one which is defined as being able to block, the specified socket
is a blocking socket, and the request cannot be completed immediately. If only
nonblocking sockets and WSPAsyncSelectIWSPEventSelect instead of WSPSelect
are used, then the blocking hook will never be called.

Important If, during the time pseudo blocking is being used to block a thread, a
Windows message is received for the thread, there is a risk that the thread will attempt to
issue another Windows Sockets call. Because of the difficulty of managing this condition
safely, the Windows Sockets 1.1 specification disallowed this behavior. It is not
permissible for a given thread to make multiple nested Windows Sockets function calls.
Only one outstanding function call is allowed for a particular thread. Any nested
Windows Sockets function calls fail with the error WSAEINPROGRESS. It should be
emphasized that this restriction applies to both blocking and nonblocking operations, but
only in Windows Sockets 1.1 environments. There are a few exceptions to this rule,
including two functions that allow an application to determine whether a pseudo blocking
operation is in fact in progress, and to cancel such an operation if need be. These are
described below.

Canceling Blocking Operations
A thread may, at any time, call WSAlsBlocking to determine whether or not a blocking
call is currently in progress. (This function is implemented within the Windows Sockets
1.1 compatibility shims and hence has no SPI counterpart.) Clearly this is only possible
when pseudo blocking, as opposed to true blocking, is being employed by the service
provider. When necessary, WSPCancelBlockingCall may be called at any time to
cancel any current pseudo blocking operation.

Event Objects in the Windows Sockets 2 SPI
Event objects are introduced in Windows Sockets 2 as a general synchronization
mechanism between Windows Sockets 2 service providers and applications. They are
used for a number of purposes including indicating the completion of overlapped
operations and the occurrence of one or more network events.

Creating Event Objects
The Ws2_32.dll provides facilities for event object creation to both applications and
service providers, although in most instances event objects will be created by
applications. Event object services are made available to Windows Sockets service
providers through WPUCreateEvent simply as a convenience mechanism for any
internal processing that may benefit from same. Note that the event object handle is only
valid in the context of the calling process. In Win32 environments the realization of event
objects is through the native event services provided by the operating system.

Chapter 10 Winsock 2 SPI Overview 441

Using Event Objects
Windows Sockets event objects are fairly simple constructs which can be created and
closed, set and cleared, waited upon and polled. The general usage model is for clients
to create an event object and supply the handle as a parameter (or as a component of a
parameter structure) in functions such as WSPSend and WSPEventSelect. When the
nominated condition has occurred, the service provider uses the handle to set the event
object by calling WPUSetEvent. Meanwhile, the Windows Sockets SPI client may either
block and wait or poll until the event object becomes set (or as it is sometimes called:
signaled). The client may subsequently clear or reset the event object and use it again.

Destroying Event Objects
The entity which creates an event object (application or service provider) is responsible
for destroying it when it is no longer required. Service providers do this through
WPUCloseEvent.

Notification of Network Events
One of the most important responsibilities of a data transport service provider is that of
providing indications to the client when certain network events have occurred. The list of
defined network events consists of the following:

• FD_CONNECT - A connection to a remote host or to a multicast session has been
completed

• FD_ACCEPT - A remote host is making a connection request

• FD_READ - Network data has arrived which is available to be read

• FD_WRITE - Space has become available in the service provider's buffers so that
additional data may now be sent

• FD_OOB - Out of band data is available to be read

• FD_ClOSE - The remote host has closed down the connection

• FD_QOS - A change has occurred in negotiated QOS levels

• FD_GROUP _QOS - Reserved.

• FD_ROUTING_INTERFACE_CHANGE - A local interface that should be used to
reach the destination specified in SIO_ROUTING_INTERFACE_CHANGE 10Cl T has
changed

• FD_ADDRESS_LlST _CHANGE - The list of local addresses to which application can
bind has changed

The set of network event$ enumerated above is sometimes referred to as the FD_XXX
events. Indication of the occurrence of one or more of such network events may be given
in a number of ways depending on how the client requests for notification.

442 Volume 1 Winsock and QOS

Selects
In the original BSD sockets interface the select call was the standard (and only) means
to obtain network event indications. For each socket, information on read, write, or error
status can be polled or waited on. See WSPSelectfor more information. Note that
network event FD_QOS and cannot be obtained by this approach.

Windows Messages
Windows Sockets 1.1 introduced the async-select mechanism in order to provide
network event indications in a manner that did not involve either polling or blocking. The
WSPAsyncSelect function is used to register an interest in one or more network events
as listed above, and supply a window handle to be used for notification. When a
nominated network event occurs, a client-specified Windows message is sent to the
indicated window. The service provider must use the WPUPostMessage function to
accomplish this.

In Win32 environments, this may not be the most efficient notification mechanism, and is
inconvenient for daemons and services that don't want to open any windows. The event
object signaling mechanism described below is introduced to solve this problem.

Event Object Signaling
WSPEventSelect behaves exactly like WSPAsyncSelect except that, rather than cause
a Windows message to be sent on the occurrence of any nominated FD_XXX network
event (for example, FD_READ, FD_WRITE, etc.), a designated event object is set.

Also, the fact that a particular FD_XXX network event has occurred is remembered by
the service provider. This is needed since the occurrence of any and all nominated
network events will result in a single event object becoming signaled. A call to
WSPEnumNetworkEvents causes the current contents of the network event memory to
be copied to a client-supplied buffer and the network event memory to be cleared. The
client may also designate a particular event object to be cleared atomically along with
the network event memory.

Socket Groups in the Windows Sockets 2 SPI
All use of Socket Groups is reserved.

Socket Group Operations
All use of Socket Groups is reserved.

Required Socket Grouping Behavior
All use of Socket Groups is reserved.

Recommended Socket Grouping Behavior
All use of Socket Groups is reserved.

Chapter 10 Winsock 2 SPI Overview 443

Quality of Service in the Windows Sockets 2 SPI
Quality of Service is implemented in Windows 2000 through various Windows 2000 QOS
components. For details and implementation guidelines, see the OOS chapters later in
this book.

Socket Connections on Connection-Oriented Protocols
The following paragraphs describe the semantics applicable to socket connections over
connection-oriented protocols.

Binding to a Local Address
Before a socket can be used to set up a connection or receive a connection request, it
needs to be bound to a local address. This could be done explicitly by calling WSPBind,
or implicitly by WSPConnect if the socket is unbound when this function is called.

Protocol Basics: Listen, Connect, Accept
The basic operations involved with establishing a socket connection can be most
conveniently explained in terms of the client-server paradigm.

The server side will first create a socket, bind it to a well known local address (so that the
client can find it), and put the socket in listening mode, through WSPListen, in order to
prepare for any incoming connection requests and to specify the length of the
connection backlog queue. Service providers hold pending connection requests in a
backlog queue until they are acted upon by the server or are withdrawn (due to time-out)
by the client. A service provider may silently ignore requests to extend the size of the
backlog queue beyond a provider-defined upper limit.

At this point, if a blocking socket is being used, the server side may immediately call
WSPAccept which will block until a connection request is pending. Conversely, the
server may also use one of the network event indication mechanisms discussed
previously to arrange for notification of incoming connection requests. Depending on the
notification mechanism selected, the provider will either issue a Windows message or
signal an event object when connection requests arrive. See section Notification of
Network Events for how to register for the FD_ACCEPT network event.

The client side will create an appropriate socket, and initiate the connection by calling
WSPConnect, specifying the known server address. Clients usually do not perform an
explicit bind operation prior to initiating a connection, allowing the service provider to
perform an implicit bind on their behalf. If the socket is in blocking mode, WSPConnect
will block until the server has received and acted upon the connection request (or until a
time-out occurs). Otherwise, the client should use one of the network event indication
mechanisms discussed previously to arrange for notification of a new connection being
established. Depending on the notification mechanism selected, the provider will indicate
this either through a Windows message or by signaling an event object.

444 Volume 1 Win sock and QOS

When the server side invokes WSPAccept, the service provider calls the application
supplied condition function, using function parameters to pass into the server information
from the top entry in the connection request backlog queue. This information includes
such things as address of connecting host, any available user data, and any available
QOS information. Using this information the server's condition function determines
whether to accept the request, reject the request, or defer making a decision until later.
This decision is indicated through the return value of the condition function. See section
Notification of Network Events for how to register for the FD_CONNECT network event.

If the server decides to accept the request, the provider must create a new socket with
all of the same attributes and event registrations as the listening socket. The original
socket remains in the listening state so that subsequent connection requests can be
received. Through output parameters of the condition function, the server may also
supply any response user data and assign QOS parameters (assuming that these
operations are supported by the service provider).

Determining Local and Remote Names
WSPGetSockName is used to retrieve the local address for bound sockets. This is
especially useful when a WSPConnect call has been made without doing a WSPBind
first; WSPGetSockName provides the only means to determine the local association
which has been set implicitly by the provider.

After a connection has been set up, WSPGetPeerName can be used to determine the
address of the peer to which a socket is connected.

Enhanced Functionality at Connect Time
Windows Sockets 2 offers an expanded set of operations that can occur coincident to
establishing a socket connection. The service provider requirements for implementing
these features are described below.

Conditional Acceptance
As described previously, WSPAccept invokes a client-supplied condition function that
uses input parameters to supply information about the pending connection request. This
information can be used by the client to accept or reject a connection request based on
caller information such as caller identifier, QOS, etc. If the condition function returns
CF _ACCEPT, a new socket is created with the same properties as the listening socket,
and a handle to the new socket is returned. If the condition function returns
CF _REJECT, the connection request should be rejected. If the condition function returns
CF _DEFER, the accept/reject decision cannot be made immediately, and the service
provider must leave the connection request on the backlog queue. The client must call
WSPAccept again, when it is ready to make a decision, and arrange for the condition
function to return either CF _ACCEPT or CF _REJECT. While a deferred connection
request is at the top of the backlog queue, the service provider does not issue any
further indications for pending connection requests.

Chapter 10 Winsock 2 SPI Overview 445

Exchanging User Data at Connect Time
Some protocols allow a small amount of user data to be exchanged at connect time. If
such data has been received from the connecting host, it is placed in a service provider
buffer, and a pointer to this buffer along with a length value are supplied to the Windows
Sockets SPI client through input parameters to the WSPAccept condition function. If the
Windows Sockets SPI client has response data to return to the connecting host, it may
copy this into a buffer that is supplied by the service provider. A pOinter to this buffer and
an integer indicating buffer size are also supplied as condition function input parameters
(if supported by the protocol).

Establishing Socket Groups
All use of Group Sockets is reserved.

Connection Shutdown
The following paragraphs describe operations incident to shutting down an established
socket connection.

Initiating Shutdown Sequence
A socket connection can be taken down in one of several ways. WSPShutdown (with
how equal to SD_SEND or SD_BOTH), and WSPSendDisconnect may be used to
initiate a graceful connection shutdown. WSPCloseSocket can be used to initiate either
a graceful or abortive shutdown, depending on the linger options invoked by the closing
a socket. See below for more information about graceful and abortive shutdowns, and
linger options.

Indicating Remote Shutdown
Service providers indicate connection teardown that is initiated by the remote party
through the FD_CLOSE network event. Graceful shutdown is also be indicated through
WSPRecv when the number of bytes read is 0 for byte-stream protocols, or through a
return error code of WSAEDISCON for message-oriented protocols. In any case, a
WSPRecv return error code of WSAECONNRESET indicates an abortive shutdown.

Exchanging User Data at Shutdown Time
At connection teardown time, it is also possible (for protocols that support this) to
exchange user data between the endpoints. The end that initiates the teardown can call
WSPSendDisconnect to indicate that no more data is to be sent and cause the
connection teardown sequence to be initiated. For certain protocols, part of this
teardown sequence is the delivery of disconnect data from the teardown initiator. After
receiving notice that the remote end has initiated the teardown sequence (typically
through the FD_CLOSE indication), the WSPRecvDisconnect function may be called to
receive the disconnect data (if any).

446 Volume 1 Winsock and QOS

To illustrate how disconnect data might be used, consider the following scenario. The
client half of a client/server application is responsible for terminating a socket
connection. Coincident with the termination it provides (through disconnect data) the
total number of transactions it processed with the server. The server in turn responds
with the cumulative grand total of transactions that it has processed with all clients. The
sequence of calls and indications might occur as shown in the following table.

Client side Server side

(1) Invokes WSPSendDisconnect to
conclude session and supply
transaction total.

(6) Receives FD_CLOSE indication.

(7) Invokes WSPRecvDisconnect to
receive and store cumulative grand
total of transactions.

(2) Gets FD_CLOSE, or WSPRecv with a
return value of zero or WSAEDISCON
indicating graceful shutdown in progress.

(3) Invokes WSPRecvDisconnect to get
client's transaction total.

(4) Computes cumulative grand total of all
transactions.

(5) Invokes WSPSendDisconnect to transmit
grand total.

(5a) Invokes WSPClosesocket

(8) Invokes WSPClosesocket

Step (5a) must follow step (5), but has no timing relationship with-steps (6), (7), or (8).

Graceful Shutdown, Linger Options, and Socket Closure in the SPI
It is important to distinguish between shutting down a socket connection and closing a
socket. Shutting down a socket connection involves an exchange of protocol messages
between the two endpoints, which is hereafter referred to as a shutdown sequence. Two
general classes of shutdown sequences are defined: graceful and abortive. In a graceful
shutdown sequence, any data that has been queued but not yet transmitted can be sent
prior to the connection being closed. In an abortive shutdown, any unsent data is lost.
The occurrence of a shutdown sequence (graceful or abortive) can also be used to
provide an FD_CLOSE indication to the associated applications signifying that a
shutdown is in progress. Closing a socket, on the other hand, causes the socket handle
to become deallocated so that the application can no longer reference or use the socket
in any manner.

In Windows Sockets, both the WSPShutdown function, and the WSPSendDisconnect
function can be used to initiate a shutdown sequence, while the WSPCloseSocket
function is used to deallocate socket handles and free up any associated resources.

Chapter 10 Winsock 2 SPI Overview 447

Some amount of confusion arises, however, from the fact that the WSPCloseSocket
function will implicitly cause a shutdown sequence to occur if it has not already
happened. In fact, it has become a rather common programming practice to rely on this
feature and use WSPCloseSocket to both initiate the shutdown sequence and
deallocate the socket handle.

To facilitate this usage, the sockets interface provides for controls through the socket
option mechanism that allows the programmer to indicate whether the implicit shutdown
sequence should be graceful or abortive, and also whether the WSPCloseSocket
function should linger that is, not complete immediately) to allow time for a graceful
shutdown sequence to complete.

By establishing appropriate values for the socket options SO_LINGER and
SO_DONTLINGER, the following types of behavior can be obtained with the
WSPCloseSocket function.

• Abortive shutdown sequence, immediate return from WSPCloseSocket.

• Graceful shutdown, delay return until either shutdown sequence completes or a
specified time interval elapses. If the time interval expires before the graceful
shutdown sequence completes, an abortive shutdown sequence occurs and
WSPCloseSocket returns.

• Graceful shutdown, return immediately, and allow the shutdown sequence to
complete in the background. This is the default behavior. Note, however, that the
application has no way of knowing when (or whether) the graceful shutdown
sequence completes.

One technique that can be used to minimize the chance of problems occurring during
connection teardown is not to rely on an implicit shutdown being initiated by
WSPCloseSocket. Instead, one of the two explicit shutdown functions (WSPShutdown
or WSPSendDisconnect) are used. This in turn will cause an FD_CLOSE indication to
be received by the peer application indicating that all pending data has been received.
To illustrate this, the following table shows the functions that would be invoked by the
client and server components of an application, where the client is responsible for
initiating a graceful shutdown. .

Client side Server side

(1) Invokes WSPShutdown (8,
SO_SEND) to signal end of session and
that client has no more data to send.

(2) Receives FD_CLOSE, indicating graceful
shutdown in progress and that all data has
been received.

(3) Sends any remaining response data.

(continued)

448 Volume 1 Winsock and QOS

(continued)

Client side

(5a) Gets FD_READ and invoke recv to
get any response data sent by server.

(5) Receives FD_CLOSE indication.

(6) Invokes WSPCloseSocket

Server side

(4) Invokes WSPShutdown(s, SO_SEND) to
indicate server has no more data to send.

(4a) Invokes WSPCloseSocket

The timing sequence is maintained from step (1)to step (6) between the client and the
server, except for steps (4a) and (5a) which only have local timing significance in the
sense that step (5) follows step (5a) on the client side while step (4a) follows step (4) on
the server side, with no timing relationship with the remote party.

Socket Connections on Connection less Protocols
The following sections describe the semantics of using connect operations on
connectionless protocols such as UDP and IPX.

Connecting to a Default Peer
For a socket bound to a connection less protocol, the operation performed by
WSPConnect is merely to establish a default destination address so that the socket may
be used with subsequent connection-oriented send and receive operations (WSPSend
and WSPRecv). Any datagrams received from an address other than the destination
address specified will be discarded.

Reconnecting and Disconnecting
The default destination may be changed by simply calling WSPConnect again, even if
the socket is already connected. Any datagrams queued for receipt are discarded if the
new address is different from the address specified in a previous WSPConnect.

If the address supplied is all zeroes, the socket will be disconnected-the default remote
address will be indeterminate, so WSPSend and WSPRecv calls will return the error
code WSAENOTCONN, although WSPSendTo and WSPRecvFrom may still be used.

Using Sendto While Connected
WSPSendTo will always deliver the data to the specified address, even though a
designated peer for the sending socket has been established in WSPConnect.

Socket 1/0
There are three primary ways of doing I/O in Windows Sockets 2:

• Blocking I/O.
• Nonblocking I/O along with asynchronous notification of network events.

• Overlapped I/O with completion indication.

Chapter 10 Winsock 2 SPI Overview 449

We describe each method in the following sections. Blocking I/O is the default behavior,
nonblocking mode can be used on any socket that is placed into nonblocking mode, and
overlapped I/O can only occur on sockets that are created with the overlapped attribute.
It is also interesting to note that the two calls for sending: WSPSend and WSPSendTo
and the two calls for receiving: WSPRecv and WSPRecvFrom each implement all three
methods of I/O. Service providers determine how to perform the I/O operation based on
socket modes and attributes and the input parameter values.

Blocking Input/Output
The simplest form of I/O in Windows Sockets 2 is blocking I/O. As mentioned in section
Socket Attribute Flags and Modes, sockets are created in blocking mode by default. Any
I/O operation with a blocking socket will not return until the operation has been fully
completed. Thus, any thread can only execute one I/O operation at a time. For example,
if a thread issues a receive operation and no data is currently available, the thread will
block until data becomes available and is placed into the thread's buffer. Although this is
Simple, it is not necessarily the most efficient way to do I/O in all versions of Windows. In
Win16 environments for example, blocking is strongly discouraged due to the
nonpreemptive nature of the operating system. (see section Pseudo vs. True Blocking
for more information).

Nonblocking Input/Output
If a socket is in a nonblocking mode, any 1/0 operation must either complete immediately
or return error code WSAEWOULDBLOCK indicating that the operation cannot be
finished right away. In the latter case, a mechanism is needed to discover when it is
appropriate to try the operation again with the expectation that the operation will
succeed. A set of network events has been defined for this purpose. These events can
be polled or waited on by using WSPSelect, or they can be registered for asynchronous
delivery by calling WSPAsyncSelect or WSPEventSelect. (see section Notification of
Network Events for more information)

Overlapped Input/Output
Windows Sockets 2 introduces overlapped I/O and requires that all transport providers
support this capability. Overlapped I/O can be performed only on sockets that were
created through the WSPSocket function with the WSA_FLAG_OVERLAPPED flag set,
and follow the model established in Win32.

For receiving, a client uses WSPRecv or WSPRecvFrom to supply buffers into which
data is to be received. If one or more buffers are posted prior to the time when data has
been received by the network, it is possible that data will be placed into the user's
buffers immediately as it arrives and thereby avoid the copy operation that would
otherwise occur. If data is already present when receive buffers are posted, it is copied
immediately into the user's buffers. If data arrives when no receive buffers have been
posted by the application, the service provider resorts to the synchronous style of
operation where the incoming data is buffered internally until such time as the client
issues a receive call and thereby supplies a buffer into which the data may be copied.

450 Volume 1 Winsock and QOS

An exception to this would be if the application used WSPSetSockOpt to set the size of
the receive buffer to zero. In this instance, reliable protocols would only allow data to be
received when application buffers had been posted, and data on unreliable protocols
would be lost.

On the sending side, clients use WSPSend or WSPSendTo to supply pointers to filled
buffers and then agree not to disturb the buffers in any way until the network has
consumed the buffer's contents.

Overlapped send and receive calls return immediately. A return value of zero indicates
that the I/O operation completed immediately and that the corresponding completion
indication has already occurred. That is, the associated event object has been signaled,
or the completion routine has been queued through WPUQueueApc. A return value of
SOCKET_ERROR coupled with an error code of WSA_IO_PENDING indicates that the
overlapped operation has been successfully initiated and that a subsequent indication
will be provided when send buffers have been consumed or when receive buffers are
filled. Any other error code indicates that the overlapped operation was not successfully
initiated and that no completion indication will be forthcoming.

Both send and receive operations can be overlapped. The receive functions may be
invoked multiple times to post receive buffers in preparation for incoming data, and the
send functions may be invoked multiple times to queue up multiple buffers to be sent.
Note that while a series of overlapped send buffers will be sent in the order supplied, the
corresponding completion indications may occur in a different order. Likewise, on the
receiving side, buffers will be filled in the order they are supplied, but completion
indications may occur in a different order.

The deferred completion feature of overlapped I/O is also available for WSPloctl.

Delivering Completion Indications
Service providers have two ways to indicate overlapped completion: setting a client
specified event object, or invoking a client-specified completion routine. In both cases a
data structure, WSAOVERLAPPED, is associated with each overlapped operation. This
structure is allocated by the client and used by it to indicate which event object (if any) is
to be set when completion occurs. The WSAOVERLAPPED structure may be used by
the service provider as a place to store a handle to the results (for example, number of
bytes transferred, updated flags, error codes, etc.) for a particular overlapped operation.
To obtain these results clients must invoke WSPGetOverlappedResult, passing in a
pointer to the corresponding overlapped structure.

If event based completion indication is selected for a particular overlapped I/O request,
the WSPGetOverlappedResult routine may itself be used by clients to either poll or wait
for completion of the overlapped operation. If completion-routine-based completion
indication is selected for a particular overlapped I/O request, only the polling option of
WSPGetOverlappedResult is available. A client may also use other means to wait
(such as using WSAWaitForMultipleEvents) until the corresponding event object has

Chapter 10 Winsock 2 SPI Overview 451

been signaled or the specified completion routine has been invoked by the service
provider. Once completion has been indicated, the client may invoke
WSPGetOverlappedResult, with the expectation that the call will complete immediately.

Invoking Socket 1/0 Completion Routines
If the IpCompletionRoutine parameter to an overlapped operation is not NULL, it is the
service provider's responsibility to arrange for invocation of the client-specified
completion routine when the overlapped operation completes. Since the completion
routine must be executed in the context of the same thread that initiated the overlapped
operation, it cannot be invoked directly from the service provider. The Ws2_32.dll offers
an asynchronous procedure call (APC) mechanism to facilitate invocation of completion
routines.

A service provider arranges for a function to be executed in the proper thread by calling
WPUQueueApc. This function can be called fwm any process and thread context, even
a context different from the thread and process that was used to initiate the overlapped
operation.

WPUQueueApc takes as input parameters a pointer to a WSATHREADID structure, a
pOinter to an APC function to be invoked, and a 32-bit context value that is subsequently
passed to the APC function. Service providers are always supplied with a pOinter to the
proper WSATHREADID structure through the IpThreadld parameter to the overlapped
function. The provider should store the WSATHREADID structure locally and supply a
pointer to this copy of the WSATHREADID structure as an input parameter to
WPUQueueApc. Once the WPUQueueApc function returns, the provider can dispose of
its copy of the WSATHREADID.

The procedure WPUQueueApc simply enqueues sufficient information to call the
indicated APC function with the given parameters, but does not call it. When the target
thread enters an alertable wait state, this information is dequeued and a call is made to
the APC function in that target thread and process context. Because the APC
mechanism supports only a single 32-bit context value, the APC function cannot itself be
the client-specified completion routine, which involves more parameters. The service
provider must instead supply a pOinter to its own APC function which uses the supplied
context value to access the needed result information for the overlapped operation, and
then invokes the client-specified completion routine.

For service providers where a user-mode component implements overlapped 1/0, a
typical usage of the APC mechanism is as follows:

• When the 1/0 operation completes, the provider allocates a small buffer and packs it
with a pointer to the client-supplied completion procedure and parameter values to
pass to the procedure.

• It queues an APC, specifying the pointer to the buffer as the context value and its own
intermediate procedure as the target procedure.

• When the target thread eventually enters alertable wait state, the service provider's
intermediate procedure is called in the proper thread context.

452 Volume 1 Winsock and QOS

• The intermediate procedure simply unpacks parameters, deallocates the buffer, and
calls the client-supplied completion procedure.

• For service providers where a kernel-mode component implements overlapped I/O, a
typical implementation is similar, except that the implementation would use standard
kernel interfaces to enqueue the APC.

Description of the relevant kernel interfaces is outside the scope of the Windows
Sockets 2 specification.

Important Service providers must allow Windows Sockets 2 clients to invoke send and
receive operations from within the context of the socket I/O completion routine, and
guarantee that, for a given socket, I/O completion routines will not be nested.

Under some circumstances, a layered service provider may need to initiate and
complete overlapped operations from within an internal worker thread. In this case, a
WSATHREADID would not be available from an incoming function call. The service
provider interface provides an upcall, WPUOpenCurrentThread, to obtain a
WSATHREADID for the current thread. When this WSATHREADID is no longer needed,
its resources should be returned by calling WPUCloseThread.

Summary of Overlapped Completion Indication Mechanisms in the SPI
The following table summarizes the completion semantics for an overlapped socket,
showing the various combination of IpOveriapped, hEvent, and IpCompletionRoutine:

IpOverlapped hEvent IpCompletionRoutine Completion indication

NULL Not applicable Ignored

!NULL NULL NULL

Operation completes
synchronously, that is, it
behaves as if it were a
nonoverlapped socket.

Operation completes
overlapped, but there is no
Windows Sockets 2-
supported completion
mechanism. The completion
port mechanism
(if supported) may be used
in this case, otherwise there
will be no completion
notification.

IpOverlapped hEvent

!NULL !NULL

!NULL Ignored

Chapter 10 Winsock 2 SPI Overview 453

IpCompletionRoutine Completion indication

NULL Operation completes
overlapped, notification by
signaling event object.

NULL Operation completes
overlapped, notification by
scheduling completion
routine.

Support for Scatter/Gather Input/Output in the SPI
The WSPSend, WSPSendTo, WSPRecv, and WSPRecvFrom routines all take an
array of client buffers as input parameters and thus may be used for scatter/gather
(or vectored) I/O. This can be very useful in instances where portions of each message
being transmitted consist of one or more fixed length header components in addition to a
message body. Such header components need not be concatenated into a single
contiguous buffer prior to sending. Likewise on receiving, the header components can be
automatically split off into separate buffers, leaving the message body pure.

Utilizing lists of buffers instead of a single buffer does not change the boundaries that
apply to receive operations. For message-oriented protocols, a receive operation
completes whenever a single message has been received, regardless of how many or
few of the supplied buffers were used. Likewise for stream-oriented protocols, a receive
completes when an unspecified quantity of bytes arrives over the network, not
necessarily when all of the supplied buffers are full.

Out-of-Band Data in the SPI
The service providers which support the out-of-band data (OOB) abstraction for the
stream-style sockets must adhere to the semantics in this section. We will describe OOB
data handling in a protocol-independent manner. Please refer to the Windows Sockets 2
Protocol-Specific Annex (a separate document) for a discussion of OOB data
implemented using urgent data in TCP/IP service providers. In the following, the use of
WSPRecv also implies WSPRecvFrom.

Protocollndependent-Out-of-Band Data in the SPI
008 data is a logically independent transmission channel associated with each pair of
connected stream sockets. 008 data may be delivered to the user independently of
normal data. The abstraction defines that the OOB data facilities must support the
reliable delivery of at least one 008 data block at a time. This data block may contain at
least one byte of data, and at least one 008 data block may be pending delivery to the
user at anyone time. For communications protocols which support in-band signaling
(that is, TCP, where the urgent data is delivered in sequence with the normal data), the
system normally extracts the 008 data from the normal data stream and stores it
separately (leaving a gap in the normal data stream). This allows users to choose
between receiving the OOB data in order and receiving it out of sequence without having
to buffer all the intervening data. It is possible to peek at 008 data.

454 Volume 1 Winsock and QOS

A user can determine if there is any OOB data waiting to be read using the
WSPloctl(SIOCATMARK) function. For protocols where the concept of the position of
the OOB data block within the normal data stream is meaningful (that is, Tep), a
Windows Sockets service provider will maintain a conceptual marker indicating the
position of the last byte of OOB data within the normal data stream. This is not
necessary for the implementation of the WSPloctl (SIOCATMARK) functionality-the
presence or absence of OOB data is all that is required.

For protocols where the concept of the position of the OOB data block within the normal
data stream is meaningful an application may prefer to process out-of-band data inline,
as part of the normal data stream. This is achieved by setting the socket option
SO_OOBINLINE (see section WSPloctl). For other protocols where the OOB data
blocks are truly independent of the normal data stream, attempting to set
SO_OOBINLINE will result in an error. An application can use the SIOCATMARK
WSPloctl command to determine whether there is any unread OOB data preceding the
mark. For example, it might use this to resynchronize with its peer by ensuring that all
data up to the mark in the data stream is discarded when appropriate.

With SO_OOBINLINE disabled (by default):

• The Windows Sockets service provider notifies a client of an FD_OOB event, if the
client registered for notification with WSPAsyncSelect, in exactly the same way
FD_READ is used to notify of the presence of normal data. That is, FD_OOB is
posted when OOB data arrives and there was no OOB data previously queued, and
also when data is read using the MSG_OOB flag, and some OOB data remains to be
read after the read operation has returned. FD_READ messages are not posted for
OOB data.

• The Windows Sockets service provider returns from WSPSelect with the appropriate
exceptfds socket set if OOB data is queued on the socket.

• The client can call WSPRecv with MSG_OOB to read the urgent data block at any
time. The block of OOB data jumps the queue.

• The client can call WSPRecv without MSG_OOB to read the normal data stream. The
OOB data block will not appear in the data stream with normal data. If OOB data
remains after any call to WSPRecv, the service provider notifies the client with
FD_OOB or through exceptfds when using WSPSelect.

• For protocols where the OOB data has a position within the normal data stream, a
single WSPRecv operation will not span that position. One WSPRecv will return the
normal data before the mark, and a second WSPRecvis required to begin reading
data after the mark.

With SO_OOBINLINE enabled:

• FD_OOB messages are not posted for OOB data-for the purpose of the WSPSelect
and WSPAsyncSelect functions, OOB data is treated as normal data, and indicated
by setting the socket in readfds or by sending an FD_READ message respectively.

Chapter 10 Winsock 2 SPI Overview 455

• The client may not call WSPRecv with the MSG_OOB flag set to read the OOB data
block-the error code WSAEINVAL will be returned.

• The client can call WSPRecv without the MSG_OOB flag set. Any OOB data will be
delivered in its correct order within the normal data stream. OOB data will never be
mixed with normal data-there must be three read requests to get past the OOB data.
The first returns the normal data prior to the OOB data block, the second returns the
OOB data, the third returns the normal data following the OOB data. In other words,
the OOB data block boundaries are preserved.

The WSPAsyncSelect routine is particularly well suited to handling notification of the
presence of OOB data when SO_OOBINLINE is off.

Shared Sockets in the SPI
Socket sharing between processes in Windows Sockets is implemented as follows. A
source process calls WSPDuplicateSocket to obtain a special
WSAPROTOCOL_INFOW structure. It uses some interprocess communications (IPC)
mechanism to pass the contents of this structure to a target process. The target process
then uses the WSAPROTOCOL_INFOW structure in a call to WSPSocket. The socket
descriptor returned by this function will be an additional socket descriptor to an
underlying socket which thus becomes shared.

It is the service provider's responsibility to perform whatever operations are needed in
the source process context and to create a WSAPROTOCOL_INFOW structure that will
be recognized when it subsequently appears as a parameter to WSPSocket in the
target processes' context. The dwProviderReserved parameter of the
WSAPROTOCOL_INFOW structure is available for the service provider's use, and may
be used to store any useful context information, including a duplicated handle.

This mechanism is designed to be appropriate for both single-threaded versions of
Windows (such as Windows 3.1) and preemptive multithreaded versions of Windows
(such as Windows 95 and Windows NT/Windows 2000). Note however, that sockets
may be shared amongst threads in a given process without using the
WSPDuplicateSocket function, since a socket descriptor is valid in all of a process'
threads.

As is described in section Descriptor Allocation, when new socket descriptors are
allocated IFS providers must call WPUModifylFSHandle and nonlFS providers must call
WPUCreateSocketHandle.

One possible scenario for establishing and using a shared socket in a handoff mode is
illustrated here.

456 Volume 1 Winsock and QOS

Source process

1) WSPSocket, WSPConnect

2) Requests target process
identifier.

IPC

4) Receives process identifier. ¢:::

5) Calls WSPDuplicateSocket to
get a special
WSAPROTOCOL_INFOW
structure.

6) Sends
WSAPROTOCOL_INFOW
structure to target.

10) WSPClosesocket

Multiple Handles to a Single Socket

Destination process

3) Receives process identifier request
and responds.

7) Receives WSAPROTOCOL_INFOW
structure.

8) Calls WSPSocket to create shared
socket descriptor.

9)Uses shared socket for data
exchange.

Since what are duplicated are the socket descriptors and not the underlying sockets, all
of the states associated with a socket are held in common across all the descriptors. For
example a WSPSetSockOpt operation performed using one descriptor is subsequently
visible using a WSPGetSockOpt from any or all descriptors.

Notification on shared sockets is subject to the usual constraints of WSPAsyncSelect
and WSPEventSelect. Issuing either of these calls using any of the shared descriptors
cancels any previous event registration for the socket, regardless of which descriptor
was used to make that registration. Thus, for example, it would not be possible to have
process A receive FD_READ events and process B receive FD_WRITE events. For
situations when such tight coordination is required, it is suggested that developers
consider using threads instead of separate processes.

Reference Counting
A process may call WSPCloseSocket on a duplicated socket and the descriptor will
become deallocated. The underlying socket, however, will remain open until
WSPCloseSocket is called on the last remaining descriptor.

Chapter 10 Winsock 2 SPI Overview 457

Precedence Guidelines
The two (or more) descriptors that reference a shared socket may be used
independently as far as I/O is concerned. However, the Windows Sockets interface does
not implement any type of access control, so it is up to the processes involved to
coordinate their operations on a shared socket. A typical use for shared sockets is to
have one process that is responsible for creating sockets and establishing connections
hand off sockets to other processes which are responsible for information exchange.

The general guideline for supporting multiple outstanding operations on shared sockets
is that a service provider is encouraged to honor all simultaneous operations on shared
sockets, especially the most recent operation on a socket object. If need be, this may
occur at the expense of aborting some of the previous but still pending operations, which
will return WSAEINTR in this case.

Protocol-Independent Multicast and Multipoint in the SPI
Just as Windows Sockets 2 allows the basic data transport capabilities of numerous
transport protocols to be accessed in a generic manner, it also provides a generic way to
use multipoint and multicast capabilities of transports that implement these features. To
simplify, the term multipoint is used hereafter to refer to both multicast and multipoint
communications.

Current multipoint implementations (for example, IP multicast, ST-II, T.120, ATM UNI,
etc.) vary widely with respect to how nodes join a multipoint session, whether a particular
node is designated as a central or root node, and whether data is exchanged between
all nodes or only between a root node and the various leaf nodes. The Windows Sockets
2 WSAPROTOCOL_INFOW structure is used to declare the various multipoint attributes
of a protocol. By examining these attributes the programmer will know what conventions
to follow in using the applicable Windows Sockets 2 functions to set up, use, and tear
down multipoint sessions.

The features of Windows Sockets 2 that support multicast can be summarized as
follows:

• Three attribute bits in the WSAPROTOCOL_INFOW structure.

• Four flags defined for the dwFlags parameter of WSPSocket

• One function, WSPJoinLeaf, for adding leaf nodes into a multipoint session.

• Two WSPloctl command codes for controlling multipoint loopback and establishing
the scope for multicast transmissions. (The latter corresponds to the IP multicast
time-to-live or TTL parameter.)

Note The inclusion of these multipoint features in Windows Sockets 2 does not
preclude a service provider from also supporting an existing protocol-dependent
interface, such as the Deering socket options for IP multicast.

458 Volume 1 Wlnsock and QOS

Multipoint Taxonomy and Glossary
The taxonomy described below first distinguishes the control plane that concerns itself
with the way a multipoint session is established, from the data plane that deals with the
transfer of data among session participants.

In the control plane, there are two distinct types of session establishment: rooted and
nonrooted. In the case of rooted control, there exists a special participant, called c_root,
that is different from the rest of the members of this multipoint session, each of which is
called a c_leaf. The c_root must remain present for the whole duration of the multipoint
session, as the session will be broken up in the absence of the c_root. The c_root
usually initiates the multipoint session by setting up the connection to a c_leaf, or a
number of c_leafs. The c_root may add more c_leafs, or (in some cases) a c_leaf can
join the c_root at a later time. Examples of the rooted control plane can be found in ATM
and ST-II.

For a nonrooted control plane, all members belonging to a multipoint session are leaves,
that is, no special participant acting as a c_root exists. Each c_leaf needs to add itself to
a pre-existing multipoint session that either is always available (as in the case of an IP
multicast address), or has been set up through some OOB mechanism which is outside
the scope of this discussion (and hence not addressed in the proposed Windows
Sockets extensions). Another way to look at this is that a c_root still exists, but can be
considered to be in the network cloud as opposed to one of the partiCipants. Because a
control root still exists, a nonrooted control plane could also be considered to be
implicitly rooted. Examples of this kind of implicitly rooted multipoint schemes are: a
teleconferencing bridge, the IP multicast system, a Multipoint Control Unit (MCU) in an
H.320 video conference, etc.

In the data plane, there are also two types of data transfer styles: rooted and nonrooted.
In a rooted data plane, a special participant called d_root exists. Data transfer only
occurs between the d_root and the rest of the members of this multipoint session, each
of which is referred to as a d_leaf. The traffic could be unidirectional, or bidirectional. The
data sent out from the d_root will be duplicated (if required) and delivered to eVery
d_leaf, while the data from d_leafs will only go to the d_root. In the case of a rooted data
plane, there is no traffic allowed among d_leafs. An example of a protocol that is rooted
in the data plane is ST-II.

In a nonrooted data plane, all the partiCipants are equal inthe sense that any data they
send will be delivered to all the other participants in the same multipoint session.
Likewise each d_leaf node will be able to receive data from all other d_leafs, and in
some cases, from other nodes which are not participating in the multipoint session as
well. No special d_root node exists. IP-multicast is nonrooted in the data plane.

Note that the question of where data unit duplication occurs, or whether a shared single
tree or multiple shortest-path trees are used for multipoint distribution are protocol
issues., As such, they are irrelevant to the interface the client would use to perform
multipoint communications. Therefore these issues are not addressed by the Windows
Sockets interface.

Chapter 10 Winsock 2 SPI Overview 459

The following table depicts the taxonomy described above and indicates how existing
schemes fit into each of the categories. Note that there does not appear to be any
multipoint schemes that employ a nonrooted control plane along with a rooted data
plane.

Rooted data plane

Nonrooted data plane

Rooted control
plane

ATM, ST-II

T.120

Nonrooted (implicit rooted)
control plane

No known examples

IP-multicast, H.320 (MCU)

Multipoint Attributes in the WSAPROTOCOLJNFOW Structure
Three attribute parameters are defined in the WSAPROTOCOL_INFOW structure in
order to distinguish the different schemes used in the control and data planes,
respectively:

• XP1_SUPPORT _MULTIPOINT with a value of 1 indicates this protocol entry supports
multipoint communications, and that the following two parameters are meaningful.

• XP1_MULTIPOINT _CONTROL_PLANE indicates whether the control plane is rooted
(value = 1) or nonrooted (value = 0).

• XP1_MULTIPOINT _DATA_PLANE indicates whether the data plane is rooted
(value = 1) or nonrooted (value = 0).

Two WSAPROTOCOL_INFOW entries would be present if a multipoint protocol
supported both rooted and nonrooted data planes, one entry for each.

Multipoint Socket Attributes
In some instances sockets joined to a multipoint session may have some behavioral
differences from point-to-point sockets. For example, a d_leaf socket in a rooted data
plane scheme can only send information to the d_root participant. This creates a need
for the client to be able to indicate the intended use of a socket coincident with its
creation. This is done through four multipoint attribute flags that can be set through the
dwFlags parameter in WSPSocket:

• WSA~FLAG_MUL TIPOINT _C_ROOT, for the creation of a socket acting as a c_root,
and only allowed if a rooted control plane is indicated in the corresponding
WSAPROTOCOL_INFOWentry.

• WSA_FLAG_MULTIPOINT _C_LEAF, for the creation of a socket acting as a c_leaf,
and only allowed if XP1_SUPPORT_MULTIPOINT is indicated in the corresponding
WSAPROTOCOL_INFOW entry.

• WSA_FLAG_MUL TIPOINT _D_ROOT, for the creation of a socket acting as ad_root,
and only allowed if a rooted data plane is indicated in the corresponding
WSAPROTOCOL_INFOW entry.

460 Volume 1 Win sock and QOS

• WSA_FLAG_MULTIPOINT_D_LEAF, for the creation of a socket acting as ad_leaf,
and only allowed if XP1_SUPPORT _MULTIPOINT is indicated in the corresponding
WSAPROTOCOL_INFOW entry.

When creating a multipoint socket, exactly one of the two control plane flags, and one of
the two data plane flags must be set in WSPSocket's dwFlags parameter. Thus, the four
possibilities for creating multipoint sockets are: "c_rootld_root", "c_rootld_leaf",
"c_leaf/d_root", or "c_leaf /d_leaf".

SIO_MUL TIPOINT _LOOPBACK loctl
When d_leaf sockets are used in a nonrooted data plane, it is generally desirable to be
able to control whether traffic sent out is also received back on the same socket. The
SIO_MUL TIPOINT _LOOPBACK command code for WSPloctl is used to enable or
disable loopback of multipoint traffic.

SIO_MULTICAST _SCOPE loctl
When multicasting is employed, it is usually necessary to specify the scope over which
the multicast should occur. Here scope is defined to be the number of routed network
segments to be covered. The SIO_MUL TICAST _SCOPE command code for WSPloctl
is used to control this. A scope of zero would indicate that the multicast transmission
would not be placed on the wire but could be disseminated across sockets within the
local host. A scope value of one (the default) indicates that the transmission will be
placed on the wire, but will not cross any routers. Higher scope values determine the
number of routers that may be crossed. Note that this corresponds to the time-to-live
(TTL) parameter in IP multicasting.

SPI Semantics for Joining Multipoint Leaves
In the following, a multipoint socket is frequently characterized by describing its role in
one of the two planes (control or data). It should be understood that this same socket
has a role in the other plane, but this is not mentioned in order to keep the references
short. For example a reference to a c_root socket could refer to either a c_rootld_root or
a c_rootld_leaf socket.

In rooted control plane schemes, new leaf nodes are added to a multipoint session in
one or both of two different ways. In the first method, the root uses WSPJoinLeaf to
initiate a connection with a leaf node and invite it to become a participant. On the leaf
node, the peer application must have created a c_leaf socket and used WSPListen to
set it into listen mode. The leaf node will receive an FD_ACCEPT indication when invited
to join the session, and signals its willingness to join by calling WSPAccept. The root
application will receive an FD_CONNECT indication when the join operation has been
completed.

In the second method, the roles are essentially reversed. The root client creates a c_root
socket and sets it into listen mode. A leaf node wishing to join the session creates a
c_leaf socket and uses WSPJoinLeaf to initiate the connection and request admittance.

Chapter 10 Winsock 2 SPI Overview 461

The root client receives FD_ACCEPT when an incoming admittance request arrives, and
admits the leaf node by calling WSPAccept. The leaf node receives FD_CONNECT
when it has been admitted.

In a nonrooted control plane, where all nodes are c_leafs, the WSPJoinLeaf function is
used to initiate the inclusion of a node into an existing multipoint session. An
FD_CONNECT indication is provided when the join has been completed and the
returned socket descriptor is useable in the multipoint session. In the case of IP
multicast, this would correspond to the IP _ADD_MEMBERSHIP socket option.

There are, therefore, three instances where a client would use WSPJoinLeaf:

• Acting as a multipoint root and inviting a new leaf to join the session.

• Acting as a leaf making an admittance request to a rooted multipoint session.

• Acting as a leaf seeking admittance to a nonrooted multipoint session (for example,
IP multicast.)

Using WSPJoinLeaf
As mentioned previously, WSPJoinLeaf is used to join a leaf node into a multipoint
session. WSPJoinLeaf has the same parameters and semantics as WSPConnect
except that it returns a socket descriptor (as in WSPAccept), and it has an additional
dwFlag5 parameter. The dwFlag5 parameter is used to indicate whether the socket will
be acting only as a sender, only as a receiver, or both. Only multipoint sockets may be
used for input parameter 5 in this function. If the multipoint socket is in the non blocking
mode, the returned socket descriptor will not be useable until after a corresponding
FD_CONNECT indication lias been received. A root application in a multipoint session
may call WSPJoinLeaf one or more times in order to add a number of leaf nodes,
however at most one multipoint connection request may be outstanding at a time.

The socket descriptor returned by WSPJoinLeaf is different depending on whether the
input socket descriptor, 5, is a c_root or a c_leaf. When used with a c_root socket, the
name parameter designates a particular leaf node to be added and the returned socket
descriptor is a c_leaf socket corresponding to the newly added leaf node. It is not
intended to be used for exchange of multipoint data, but rather is used to receive
network event indications (for example FD_CLOSE) for the connection that exists to the
particular c_leaf. Some multipoint implementations may also allow this socket to be used
for side chats between the root and an individual leaf node. An FD_CLOSE indication
should be given for this socket if the corresponding leaf node calls WSPCloseSocket to
drop out of the multipoint session. Symmetrically, invoking WSPCloseSocket on the
c_leaf socket returned from WSPJoinLeaf will cause the socket in the corresponding
leaf node to get FD_CLOSE notification.

When WSPJoinLeaf is invoked with a c_leaf socket, the name parameter contains the
address of the root application (for a rooted control scheme) or an existing multipoint
session (nonrooted control scheme), and the returned socket descriptor is the same as
the input socket descriptor. In a rooted control scheme, the root client would put its
c_root socket in the listening mode by calling WSPListen. The standard FD_ACCEPT

462 Volume 1 Winsock and QOS

notification will be delivered when the leaf node requests to join itself to the multipoint
session. The root client uses the usual WSPAccept function to admit the new leaf node.
The value returned from WSPAccept is also a c_leaf socket descriptor just like those
returned from WSPJoinLeaf. To accommodate multipoint schemes that allow both root
initiated and leaf-initiated joins, it is acceptable for a c_root socket that is already in
listening mode to be used as in input to WSPJoinLeaf.

A multipoint root client is generally responsible for the orderly dismantling of a multipoint
session. Such an application may use WSPShutdown or WSPClosesocket on a c_root
socket to cause all of the associated c_leaf sockets, including those returned from
WSPJoinLeaf and their corresponding c_leaf sockets in the remote leaf nodes, to get
FD_CLOSE notification.

Semantic Differences Between Multipoint Sockets and Regular
Sockets in the SPI
In the control plane, there are some significant semantic differences between a c_root
socket and a regular point-to-point socket:

• The c_root socket can be used in WSPJoinLeaf to join a new leaf.

• Placing a c_root socket into the listening mode (by calling WSPListen) does not
preclude the c_root socket from being used in a call to WSPJoinLeaf to add a new
leaf, or for sending and receiving multipoint data.

• The closing of a c_root socket will cause all the associated c_leaf sockets to get
FD_CLOSE notification.

There are no semantic differences between a c_leaf socket and a regular socket in the
control plane, except that the c_leaf socket can be used in WSPJoinLeaf, and the use
of c_leaf socket in WSPListen indicates that only multipoint connection requests should
be accepted.

In the data plane, the semantic differences between the d_root socket and a regular
point-to-point socket are

• The data sent on the d_root socket will be delivered to all the leaves in the same
multipoint session.

• The data received on the d_root socket may be from any of the leaves.

The d_leaf socket in the rooted data plane has no semantic difference from the regular
socket, however, in the nonrooted data plane, the data sent on the d_leaf socket will go
to all the other leaf nodes, and the data received could be from any other leaf nodes. As
mentioned earlier, the information about whether the d_leaf socket is in a rooted or
non rooted data plane is contained in the corresponding WSAPROTOCOL_INFOW
structure for the socket.

Chapter 10 Winsock 2 SPI Overview 463

Socket Options and IOCTLs
The socket options for Windows Sockets 2 are summarized in the following table. More
detailed information is provided in section 4 under WSPGetSockOpt and/or
WSPSetSockOpt. There are other new protocol-specific socket options which can be
found in the Protocol-Specific Annex.

A Windows Sockets service provider must recognize all of these options, and (for
WSPGetSockOpt) return plausible values for each. The default value for each option is
shown in the following table.

Value Type

SO~ACCEPTCONN BOOl

SO~DEBUG

SO~DONTLINGER

SO~DONTROUTE

SO~GROUP~
PRIORITY

SO~KEEPALIVE

BOOl

BOOl

BOOl

BOOl

int

GROUP

int

BOOl

Structure linger

Meaning

Socket is listening.

Socket is configured
for the transmission of
broadcast messages.

Debugging is enabled.

If true, the
SO~LlNGER option is
disabled.

Routing is disabled.
Not supported on ATM
sockets (results in an
error).

Default

FALSE unless
a WSPListen
has been
performed.

FALSE

FALSE

TRUE

FALSE

Retrieves error status 0
and clear.

Reserved. NUll

Reserved. o

Keepalives are being FALSE
sent. Not supported on
ATM sockets (results
in an error).

Returns the current I~onoff is 0
linger options.

Note

(i)

(i)

Get
only

(i)

(continued)

464 Volume 1 Win sock and QOS

(continued)

Value Type Meaning Default Note

SO_MAX_MSG - int Maximum outbound size Implementation Get
SIZE of a message for dependent only

message socket types.
There is no provision to
determine the maximum
inbound message size.
Has no meaning for
stream-oriented sockets.

SO_OOBINLINE Baal OOB data is being FALSE
received in the normal
data stream.

SO_PROTOCOL_ structure Description of protocol Protocol Get
INFOW WSAPROTOCOL information for the dependent only -

INFOW protocol that is bound to
this socket.

SO_RCVBUF int Buffer size for receives. Implementation (i)
dependent

SO_REUSEADDR Baal The address to which FALSE
this socket is bound can
be used by others. Not
applicable on ATM
sockets.

SO_SNDBUF int Total per-socket buffer Implementation (i)
space reserved for dependent
sends. This is unrelated
to SO_MAX_MSG

SIZE or the size of a
TCP window.

SO_TYPE int The type of the socket As created
(for example, through socket.
SOCK_STREAM).

PVD_CONFIG char FAR * An opaque data Implementation
structure object dependent
containing configuration
information of the
service provider.

TCP _NODELAY Baal Disables the Nagle Implementation
algorithm for send dependent
coalescing.

(i) A service provider may silently ignore this option on WSPSetSockOpt and return a constant value for
WSPGetSockOpt, or it may accept a value for WSPSetSockOpt and return the corresponding value in WSPGetSockOpt
without using the value in any way.

Chapter 10 Winsock 2 SPI Overview 465

Summary of Socket loctl Opcodes
The socket 10CTl opcodes for Windows Sockets 2 are summarized in the following
table. More detailed information is provided in section 4 under WSPloctl. There are
other new protocol-specific 10CTl opcodes that can be found in the protocol-specific
annex.

Opcode

FIONBIO

FIONREAD

SIOCATMARK

SIO_ASSOCIATE_HANDlE

SIO_ENABLE_CIRCULAR_
QUEUEING

SIO_FIND_ROUTE

SIO_GET_BROADCAST_
ADDRESS

SIO_GET_GROUP _QOS

SIO_MUL TIPOINT_
LOOKBACK

Input type

Unsigned
long

<Not used>

Output type Meaning

<Not used> Enables or disables
nonblocking mode on the
socket.

Unsigned long Determines the amount of
data that can be read
atomically from the socket.

<Not used> Baal Determines whether or not all
OOB data has been read.

Companion <Not used>
API
dependent

<Not used> <Not used>

SOCKADDR <Not used>
structure

<Not used> <Not used>

<Not used>

<Not used>

<Not used>

Baal

SOCKADDR
structure

QOS

QOS

<Not used>

Associates the socket with
the specified handle of a
companion interface.

Enables circular queuing.

Requests the route to the
specified address to be
discovered.

Discards current contents of
the sending queue.

Retrieves the protocol
specific broadcast address to
be used in WSPSendTo.

Retrieves current flow
specification(s) for the socket.

Reserved.

Controls whether data sent in
a multipoint session will also
be received by the same
socket on the local host.

(continued)

466 Volume 1 Win sock and QOS

(continued)

Opcode Input type Output type

int <Not used>

QOS <Not used>

SIO_SET_GROUP _QOS QOS <Not used>

SIO_TRANSLATE_HANDLE int Companion-
API
dependent

SIO_ROUTING_INTERFACE_ SOCKADDR SOCKADDR
QUERY

SIO_ROUTING_INTERFACE_ SOCKADDR <Not used>
CHANGE

SIO_ADDRESS_LlST_QUERY <Not used> SOCKET_
ADDRESS_
LIST

SIO_ADDRESS_LlST _ <Not used> <Not used>
CHANGE

SIO_QUERY_PNP _TARGET_ <Not used> SOCKET
HANDLE

Summary of SPI Functions

Meaning

Specifies the scope over
which multicast transmissions
will occur.

Establishes new flow
specification(s) for the socket.

Reserved.

Obtains a corresponding
handle for socket s that is
valid in the context of a
companion interface.

Obtains the address of the
local interface that should be
used to send to the specified
address.

Requests notification of
changes in information
reported through
SIO_ROUTING_
INTERFACE_QUERY for the
specified address.

Obtains the list of addresses
to which the application can
bind.

Requests notification of
changes in information
reported through
SIO_ADDRESS_LlST _
QUERY

Obtains socket descriptor of
the next provider in the chain
on which current socket
depends in regards to PnP.

The SPI functions for Windows Sockets 2 are summarized in the following tables.

Generic Data Transport Functions
This section lists the Data Transport functions exposed by Ws2spi.h.

Function

WSPAccept

WSPAsyncSelect

WSPBind

WSPCancelBlockingCal1

WSPCleanup

WSPCloseSocket

WSPConnect

WSPDuplicateSocket

WSPEnumNetworkEvents

WSPEventSelect

WSPGetOverlappedResult

WSPGetPeerName

WSPGetSockName

WSPGetSockOpt

WSPGetQOSByName

WSPloctl

WSPJoinLeaf

WSPListen

WSPRecv

Chapter 10 Winsock 2 SPI Overview 467

Description

An incoming connection is acknowledged and
associated with an immediately created socket. The
original socket is returned to the listening state. This
function also allows for conditional acceptance.

Performs asynchronous version of WSPSelect.

Assigns a local name to an unnamed socket.

Cancels an outstanding blocking Windows
Sockets call.

Signs off from the underlying Windows Sockets
service provider.

Removes a socket from the per-process object
reference table. Only blocks if SO_LINGER is set with
a nonzero time-out on a blocking socket.

Initiates a connection on the specified socket. This
function also allows for exchange of connect data and
QOS specification.

Returns a WSAPROTOCOL_INFOW structure that
can be used to create a new socket descriptor for a
shared socket.

Discovers occurrences of network events.

Associates network events with an event object.

Gets completion status of overlapped operation.

Retrieves the name of the peer connected to the
specified socket.

Retrieves the local address to which the specified
socket is bound.

Retrieves options associated with the specified socket.

Supplies QOS parameters based on a well-known
service name.

Provides control for sockets.

Joins a leaf node into a multipoint session.

Listens for incoming connections ona specified
socket.

Receives data from a connected or unconnected
socket. This function accommodates scatter/gather
I/O, overlapped sockets, and provides the flags
parameter as IN/OUT.

(continued)

468 Volume 1 Winsock and aos

(continued)

Function

WSPRecvDisconnect

WSPRecvFrom

WSPSelect

WSPSend

WSPSendDisconnect

WSPSendTo

WSPSetSockOpt

WSPShutdown

WSPSocket

WSPStartup

Description

Terminates reception on a socket, and retrieve the
disconnect data if the socket is connection-oriented.

Receives data from either a connected or
unconnected socket. This function accommodates
scatter/gather I/O, overlapped sockets and provides
the flags parameter as IN/OUT.

Performs synchronous I/O multiplexing.

Sends data to a connected socket. This function also
accommodates scatter/gather I/O and overlapped
sockets.

Initiates termination of a socket connection and
optionally send disconnect data.

Sends data to either a connected or unconnected
socket. This function also accommodates
scatter/gather I/O and overlapped sockets.

Stores options associated with the specified socket.

Shuts down part of a full-duplex connection.

A socket creation function which takes a
WSAPROTOCOL_INFOW structure as input and
allows overlapped sockets to be created.

Initializes the underlying Windows Sockets service
provider.

Upcalls Exposed by Windows Sockets 2 DLL
This section lists the upcalls that service providers may make into the Windows Sockets
client. Service providers receive an upcall dispatch table as a parameter to
WSPStartupO, and use entries in this table to make the upcalls. Therefore, a client does
not need to export its WPU functions.

It is not mandatory that providers use all of these upcalls. The following table indicates
which upcalls must be used and which are optional.

Function

WPUCloseEvent

WPUCloseSocketHandle

WPUCloseThread

WPUCompleteOverlappedRequest

WPUCreateEvent

WPUCreateSocketHandle

WPUFDlsSet

Chapter 10 Winsock 2 SPI Overview 469

Description Status

Closes an open Optional.
event object handle.

Closes a socket Required.
handle allocated by
the Windows
Sockets DLL.

Closes a thread ID
for an internal
service thread.

Delivers overlapped
I/O completion
notification where
the completion
mechanism is
something other
than user
mode APC.

Creates a new
event object.

Creates a new
socket handle for
nonlFS providers.

Checks the
membership of the
specified socket
handle.

Optional.

Required
for nonlFS
providers.

Optional.

Meaning

The provider may
use an appropriate
OS call instead.

The Ws2_32.dll
needs to query
and/or modify
internal state
information
associated with the
socket handle.

The provider may
use an appropriate
OS call instead.

The Ws2_32.dll
needs to query
and/or modify
internal state
information
associated with the
socket handle.

This is just a
convenience
function that knows
how to dig through
FD SET structures.
A provider may
need to dig through
these structures
explicitly anyway.

(continued)

470 Volume 1 Winsock and QOS

(continued)

Function Description Status Meaning

WPUGetProviderPath Retrieves the DLL Required. Only the
path for the WS2_32.dll would
specified provider. know where an

adjacent protocol
layer (potentially
from another
vendor) has been
installed.

WPUModifylFSHandle Receives a Required The Ws2_32.dll
(possibly) modified for IFS needs to query
I FS handle from the providers. and/or modify
Windows internal state
Sockets DLL. information

associated with the
socket handle.

WPUPostMessage Performs the Required. Windows NT/2000
standard only. Windows 95
PostMessage allows post
function in a way message from
that maintains kernel mode.
backward
compatibility.

WPUQueryBlockingCallback Returns a pointer to Required. There is no
a thread's blocking corresponding OS
hook function. functionality. Only

the Ws2_32.dll has
the information to
accomplish this.

WPUQuerySocketHandleContext Gets a socket's Required The Ws2_32.dll
context value for nonlFS needs to query
(nonlFS providers. and/or modify
providers only). internal state

information
associated with the
socket handle.

WPUQueueApc Queues a user- Optional. The
mode APC to the QueueUserApc
specified thread. may also be used.

Chapter 10 Winsock 2 SPI Overview 471

Function Description Status Meaning

WPUResetEvent Resets an event Optional. The provider may
object. use an appropriate

OS call instead.

WPUSetEvent Sets an event Optional. The provider may
object. use an appropriate

OS call instead.

Installation and Configuration Functions
The following functions are implemented in the Ws2_32.dll, and are intended to be used
by applications that install Windows Sockets transport and name space service providers
on a machine. These functions neither affect currently running applications, nor are the
changes made by these functions visible to currently running applications.

For all providers, a provider identifier is a GUID which is generated by the developer of
the provider (using the Uuidgen.exe utility) and supplied to Ws2_32.dll.

Function

WSCDeinstallProvider

WSCEnumProtocols

WSClnstaliProvider

Description

Removes a service provider from the registry.

Retrieves information about available transport
protocols.

Registers anew service provider.

Name Resolution Service Provider Requirements
The following sections provide a description of each of the functional areas that name
space providers are required to implement. Where appropriate, implementation
considerations and guidelines are also provided.

Summary of Namespace Provider Functions
The namespace service provider functions can be grouped into five categories:

• Namespace provider configuration (and installation)

• Provider initialization

• Service installation

• Clientqueries

• Helper functions (and macros)

The following sections identify the functions in each category and briefly describe their
intended use. Key data structures are also described.

472 Volume 1 Win sock and QOS

Namespace Provider Configuration and Installation
• WSClnstallNameSpace

• WSCUnlnstallNameSpace

• WSCEnableNSProvider

As mentioned previously, the installation application for a namespace provider must call
WSClnstallNameSpace to register with the Ws2_32.dll and supply static configuration
information. The Ws2_32.dll uses this information to accomplish its routing function and
in its implementation of WSAEnumNameSpaceProviders. The
WSCUnlnstallNameSpace function is used to remove a name space provider from the
registry, and the WSCEnableNSProvider function is used to toggle a provider between
the active and inactive states.

The results of these three operations are not visible to applications that are currently
loaded and running. Only applications that begin executing after these operations have
occurred will be affected by them.

This architecture explicitly supports the instantiation of multiple name space providers
within a single DLL, however each such provider must have a unique name space
provider identifier (GUID) allocated, and a separate call to WSClnstallNameSpace must
occur for each instantiation. Such a provider can determine which instantiation is being
invoked because the namespace provider (NSP) identifier appears as a parameter in
every NSP function.

Namespace Provider Initialization and Cleanup
• NSPStartup

• NSPCleanup

As is the case for the transport SPI, a namespace provider is initialized with a call to
NSPStartup and is terminated with a final call to NSPCleanup. Calls to the startup
function may be nested, but will be matched by corresponding calls to the cleanup
function. A provider should employ reference counting to determine when the final call to
NSPCleanup has occurred.

Service Installation in the Windows Sockets 2 SPI
• NSPlnstallServiceClass

• NSPRemoveServiceClass

• NSPSetService

When the required service class does not already exist, a namespace SPI client uses
NSPlnstallServiceClass to install a new service class by supplying a service class
name, a GUID for the service class identifier, and a series of WSANSCLASSINFO
structures. These structures are each specific to a particular name space, and supply
common values such as recommended TCP port numbers or Netware SAP Identifiers.

Chapter 10 Winsock 2 SPI Overview 473

A service class can be removed by calling NSPRemoveServiceClass and supplying the
GUID corresponding to the class identifier.

Once a service class exists, specific instances of a service can be installed or removed
via NSPSetService. This function takes a WSAQUERYSET structure as an input
parameter along with an operation code and operation flags. The operation code
indicates whether the service is being installed or removed. The WSAQUERYSET
structure provides all of the relevant information about the service including service class
identifier, service name (for this instance), applicable name space identifier and protocol
information, and a set of transport addresses to which the service listens.

Service Query
• NSPLookupServiceBegin

• NSPLookupServiceNext

• NSPLookupServiceEnd

A name service query involves a series of calls: NSPLookupServiceBegin, followed by
one or more calls to NSPLookupServiceNext and ending with a call to
NSPLookupServiceEnd. NSPLookupServiceBegin takes a WSAQUERYSET
structure as input in order to define the query parameters along with a set of flags to
provide additional control over the search operation. It returns a query handle which is
used in the subsequent calls to NSPLookupServiceNext and NSPLookupServiceEnd.

The name space SPI client invokes NSPLookupServiceNext to obtain query results,
with results supplied in an client-supplied WSAQUERYSET buffer. The client continues
to call NSPLookupServiceNext until the error code WSA_E_NO_MORE is returned
indicating that all results have been retrieved. The search is then terminated by a call to
NSPLookupServiceEnd. The NSPLookupServiceEnd function can also be used to
cancel a currently pending NSPLookupServiceNext when called from another thread.

In Windows Sockets 2, conflicting error codes are defined for WSAENOMORE (10102)
and WSA_E_NO_MORE (10110). The error code WSAENOMORE will be removed in a
future version and only WSA_E_NO_MORE will remain. Name space providers should
switch to using the WSA_E_NO_MORE error code as soon as possible to maintain
compatibility with the widest possible range of applications.

Helper Functions in the SPI
• NSPGetServiceClasslnfo

The NSPGetServiceClasslnfo function retrieves service class schema information that
has been retained by a name space provider. It is also used by the Windows Sockets 2
DLL in its implementation of WSAGetServiceClassNameByClassld.

The following macros from Winsock2.h are available and can aid in mapping between
well known service classes and these name spaces.

474 Volume 1 Winsock and aos

SVCID_ TCP(Port)
SVCID_UDP(Port) .
SVCID_NETWARE(Object Type)

IS_SVCID_ TCP(GUID)
IS_SVCID_UDP(GUID)
IS_SVCID_NETWARE(GUID)

PORT _FROM_SVCID_ TCP(GUID)
PORT _FROM_SVCID_UDP(GUID)
SAPID_FROM_SVCID_NETWARE(GUID)

Given a port for TCP/IP or UDP/IP or the
object type in the case of Netware,
returns the GUID.

Returns TRUE if the GUID is within the
allowable range.

Returns the port or object type associated
with the GUID.

Name Resolution Data Structures in the SPI
There are several important data structures that are used extensively throughout the
name resolution functions. These are described below.

• Query-Related Data Structures in the SPI

• Service Class Data Structures in the SPI

Query-Related Data Structures in the SPI
The WSAQUERYSET structure is used to form queries for NSPLookupServiceBegin,
and used to deliver query results for NSPLookupServiceNext. It is a complex structure
since it contains pointers to several other structures, some of which reference still other
structures. Figure 10-4 shows the relationship between WSAQUERYSET and the
structures it references.

Within the WSAQUERYSET structure, most of the members are self explanatory, but
some deserve additional explanation. The dwSize will be filled in with
sizeof(WSAQUERYSET), and can be used by name space providers to detect and
adapt to different versions of the WSAQUERYSET structure that may appear over time.

The dwOutputFlags member is used by a name space provider to provide additional
information about query results. For details, see NSPLookupServiceNext.

The WSAECOMPARATOR structure referenced by Ipversion is used for both query
constraint and results. For queries, the dwVersion member indicates the desired version
of the service. The ecHow member is an enumerated type which specifies how the
comparison will be made. The choices are COMP _EQUALS which requires that an exact
match in version occurs, or COMP _NOTLESS which specifies that the service's version
number be no less than the value of dwVersion.

The interpretation of dwNameSpace and IpNSProviderld depends upon how the
structure is being used and is described further in the individual function descriptions
that utilize this structure.

Chapter 10 Winsock 2 SPI Overview 475

WSAQUERYSET
l

dwSize

/~l J dwOutputFlaqs Service Class 10 (GUID)

IpszServicelnstanceName
IpServieeC/assld ------- r WSAECOMPARATOR 1
IpVers/on - ~;wversion 51 IpszComment ---~ . ecHow(equals,or not less than)
dwNamesSpace
IpNSProviderld

, ~(comment String J IpszContext
dwNumberOfProtoco/s

rotoeo/s J IpszQueryString
dwNumberOfCsAddrs

- IpcsaBuffer J /pBlob Context String

Query String J .. AFPROTOCOLS
1 iAddressFam/1y
1 iPr%col 1

-
~ CSADDR INFO -- ~ 1 SOCKET ADDRESS 1

Loca/Addr
f-~

1 IpSockaddr

~ RemoteAddr 1-- - _I iSockaddrLength --iSocketType --
iProtocol ..

SOCKADDR
sajamily

Figure 10-4: The Data Structure and the Structures It References.

The IpszContext member applies to hierarchical name spaces, and specifies the
starting point of a query or the location within the hierarchy where the service resides.
The general rules are:

• A value of NULL, blank ("") will start the search at the default context.

• A value of "\" starts the search at the top of the name space.

• Any other value starts the search at the designated point.

Providers that do not support containment may return an error if anything other than "" or
"\" is specified. Providers that support limited containment, such as groups, should
accept "", ''\'', or a designated point. Contexts are name space specific. If dwNameSpace
is NS_ALL, then only"" or ''\'' should be passed as the context since these are
recognized by all name spaces.

The IpszQueryString member is used to supply additional, name space-specific query
information such as a string describing a well-known service and transport protocol
name, as in "ftp/tcp".

476 Volume 1 Winsock and QOS

The AFPROTOCOLS structure referenced by IpafpProtocols is used for query purposes
only, and supplies a list of protocols to constrain the query. These protocols are
represented as (address family, protocol) pairs, since protocol values only have meaning
within the context of an address family.

The array of CSADDR_INFO structure referenced by IpcsaBuffercontains all of the
information needed for either a service to use in establishing a listen, or a client to use in
establishing a connection to the service. The LocalAddr and RemoteAddr members
both directly contain a SOCKET_ADDRESS structure. A service would create a socket
using the tuple (LocaIAddr.lpSockaddr->sa_family, iSocketType, iProtoco~. It would bind
the socket to a local address using LocaIAddr.lpSockaddr, and
LocaIAddr.lpSockaddrLength. The client creates its socket with the tuple
(RemoteAddr.lpSockaddr->sa_family, iSocketType, iProtoco~, and uses the combination
of RemoteAddr.lpSockaddr, and RemoteAddr.lpSockaddrLength when making a remote
connection.

Service Class Data Structures in the SPI
When a new service class is installed, a WSASERVICECLASSINFO structure must be
prepared and supplied. This structure also consists of substructures that contain a series
of parameters that apply to specific name spaces. (See Figure 10-5.)

(. ,n fro, 1m 1
WSASERVICECLASSINFO l J

IpServiceClass/d
IpszServiceClassName •• .I J dwCount "'-l Service Class Name

IpClasslnfos I---

4 WSANSCLASSINFO ~, Item Name J IpszName
dwNameSpace
dwValueType

--dwValueSize J J IpValue ... \ Item Value

Figure 10-5: Service Class Data Structures.

For each service class, there is a single WSASERVICECLASSINFO structure. Within
the WSASERVICECLASSINFO structure, the service class's unique identifier is
contained in IpServiceClassld, and an associated display string is referenced by
IpServiceClassName.

Chapter 10 Winsock 2 SPI Overview 477

The IpClasslnfos member in the WSASERVICECLASSINFO structure references an
array of WSANSCLASSINFO structures, each of which supplies a named and typed
parameter that applies to a specified name space. Examples of values for the IpszName
member include: SAPID, TCPPORT, UDPPORT, etc. These strings are generally
specific to the name space identified in dwNameSpace. Typical values for dwValueType
might be REG_DWORD, REG_SZ, etc. The dwValueSize member indicates the length
of the data item pointed to by IpValue.

The entire collection of data represented in a WSASERVICECLASSINFO structure is
provided to each name space provider via NSPlnstaliServiceClass. Each individual
name space provider then sifts through the list of WSANSCLASSINFO structures and
retain the information applicable to it. This architecture also envisions the future
existence of a special name space provider that would retain all of the service class
schema information for all of the name spaces. The Ws2_32.dll would query this
provider to obtain the WSASERVICECLASSINFO data needed to supply to name space
providers when NSPLookupServiceBegin is invoked to initiate a query, and when
NSPSetService is invoked to register a service. Name space provider should not rely on
this capability for the time being, and should instead have a provider-specific means to
obtain any needed service class schema information. In the absence of a provider that
stores all service class schema for all name spaces, the Ws2_32.dll will use
NSPGetServiceClasslnfo to obtain such information from each individual name space
provider.

Compatible Name Resolution for TCP/IP in the Windows
Sockets 1.1 SPI

Windows Sockets 1.1 defined a number of routines that were used for name resolution
with TCP/IP networks. These are customarily called the getXbyY functions and include
the following.

gethostname
gethostbyaddr
gethostbyname
getprotobyname
getprotobynumber
getservbyname
getservbyport

Asynchronous versions of these functions were also defined.

WSAAsyncGetHostByAddr
WSAAsyncGetHostByName
WSAAsyncGetProtoByName
WSAAsyncGetProtoByNumber
WSAAsyncGetServByName
WSAAsyncGetServByPort

478 Volume 1 Winsock and QOS

These functions are specific to TCP/IP networks and developers of protocol-independent
applications are discouraged from continuing to utilize these transport-specific functions.
However, to retain strict backward compatibility with Windows Sockets 1 .1 , all of the
above functions continue to be supported as long as at least one name space provider is
present that supports the AF _INET address family.

The WS2_32.dll implements these compatibility functions in terms of the new, protocol
independent name resolution facilities using an appropriate sequence of
WSALookupServiceBegin, WSALookupServiceNext, WSALookupServiceEnd
function calls. The details of how the getXbyV functions are mapped to name resolution
functions are provided below. The Ws2_32.dll handles the differences between the
asynchronous and synchronous versions of the getXbyV functions, so that only the
implementation of the synchronous getXbyV functions are discussed.

Basic Approach for getXbyV in the SPI
Most getXbyV functions are translated by Ws2_32.dll to a WSALookupServiceBegin,
WSALookupServiceNext, WSALookupServiceEnd sequence that uses one of a set of
special GUIDs as the service class. These GUIDs identify the type of getXbyV operation
that is being emulated. The query is constrained to those NSPs that support AF _INET.
Whenever a getXbyV function returns a HOSTENT or SERVENT structure, the
Ws2_32.dll will specify the LUP _RETURN_BLOB flag in WSALookupServiceBegin so
that the desired information will be returned by the NSP. These structures must be
modified slightly in that the pointers contained within must be replaced with offsets that
are relative to the start of the blob's data. All values referenced by these pOinter
members must, of course, be completely contained within the blob, and all strings are
ASCII.

getprotobyname and getprotobynumber Functions in the SPI
These functions are implemented within Ws2_32.dll by consulting a local protocols
database. They do not result in any name resolution query.

getservbyname and getservbyport Functions in the SPI
The WSALookupServiceBegin query uses SVCID_INET _SERVICEBYNAME as the
service class GUID. The IpszServicelnstanceName parameter references a string which
indicates the service name or service port, and (optionally) the service protocol. The
formatting of the string is illustrated as ftp/tcp or 21/tcp or just ftp. The string is not case
sensitive. The slash mark, if present, separates the protocol identifier from the preceding
part of the string. The Ws2_32.dll will specify LUP _RETURN_BLOB and theNSP will
place a SERVENT structure in the blob (using offsets instead of pOinters as described
above). NSPs should honor these other LUP _RETURN_* flags as well.

Chapter 10 Winsock 2 SPI Overview 479

Flag Description

LUP _RETURN_NAME Returns the s_name member from SERVENT structure in
IpszServicelnstanceName.

LUP _RETURN_TYPE Returns canonical GUID in IpServiceClassld It is understood
that a service identified as ftp or 21 may be on another port
according to locally established conventions. The s_port
member of the SERVENT structure should indicate where the
service can be contacted in the local environment. The
canonical GUID returned when LUP _RETURN_TYPE is set
should be one of the predefined GUIDs from svcs.h that
corresponds to the port number indicated in the SERVENT
structure.

gethostbyname Function in the SPI
The WSALookupServiceBegin query uses SVCID_INET_HOSTADDRBYNAME as the
service class GUID. The host name is supplied in IpszServicelnstanceName. The
Ws2_32.dll specifies LUP _RETURN_BLOB and the NSP places a HOSTENT struct in
the blob (using offsets instead of pOinters as described above). NSPs should honor
these other LUP _RETURN_* flags as well.

Flag Description

LUP _RETURN_NAME Returns the h_name member from HOSTENT structure in
IpszServicelnstanceName.

LUP _RETURN_ADDR Returns addressing information from HOSTENT in
CSADDR_INFO structures, port information is defaulted to
zero. Note that this routine does not resolve host names
consisting of a dotted internet address.

gethostbyaddr Function in the SPI
The WSALookupServiceBegin query usesSVCID_INET_HOSTNAMEBYADDR as the
service class GUID. The host address is supplied in IpszServicelnstanceName as a
dotted internet string (for example, 192.9.200.120). The Ws2_32.dll specifies
LUP _RETURN_BLOB and the NSP places a HOSTENT structure in the blob (using
offsets instead of pointers as described above). NSPs should honor these other
LUP _RETURN_*flags as well.

Flag Description

LUP _RETURN_NAME Returns the h_name member from HOSTENT structure in
IpszServicelnstanceName.

LUP _RETURN_ADDR Returns addressing information from HOSTENT in
CSADDR_INFO structures, port information is defaulted
to zero.

480 Volume 1 Winsock and QOS

gethostname Function in the SPI
The WSALookupServiceBegin query uses SVCID_HOSTNAME as the service class
GUID. If IpszServicelnstanceName is NULL or references a NULL string (that is ""), the
local host is to be resolved. Otherwise, a lookup on a specified host name shall occur.
For the purposes of emulating gethostname the WS2_32.dll will specify a null pOinter for
IpszServicelnstanceName, and specify LUP _RETURN_NAME so that the host name is
returned in the IpszServicelnstanceName parameter. If an application uses this query
and specifies LUP _RETURN_ADDR then the host address will be provided in a
CSADDR_INFO structure. The LUP _RETURN_BLOB action is undefined for this query.
Port information will be defaulted to zero unless the IpszQueryString references a
service such as ftp, in which case the complete transport address of the indicated
service will be supplied.

Sample Code for a Service Provider
This section contains a source code sample that demonstrates how to implement the
GetXbyV functions using the new, protocol-independent RNR functions. A developer
should implement these functions as a starting point. To comply with the Windows
Sockets specification, many more functions are needed.

Important The following code is not guaranteed to compile.

Chapter 10 Winsock 2 SPI Overview 481

(continued)

482 Volume 1 Winsock and QOS

(continued)

Chapter 10 Winsock 2 SPI Overview 483

(continued)

484 Volume 1 Win sock and QOS

(continued)

Chapter 10 Winsock 2 SPI Overview 485

486 Volume 1 Winsock and QOS

(continued)

Chapter 10 Winsock 2 SPI Overview 487

(continued)

488 Volume 1 Winsock and QOS

(continued)

Chapter 10 Winsock 2 SPI Overview 489

(continued)

490 Volume 1 Winsock and QOS

(continued)

Chapter 10 Winsock 2 SPI Overview 491

(continued)

492 Volume 1 Winsock and OOS

(continued)

Chapter 10 Winsock 2 SPI Overview 493

(continued)

494 Volume 1 Winsock and QOS

(continued)

Chapter 10 Winsock 2 SPI Overview 495

Additional Windows Sockets 2 SPI Concerns
This section contains information on service provider ordering and the Windows Sockets
SPI header file, Ws2spLh.

Service Provider Ordering
The order in which transport service providers are initially installed governs the order in
which they are enumerated through WSCEnumProtocols at the service provider
interface, or through WSAEnumProtocols at the application interface. More importantly,
this order also governs the order in which protocols and service providers are considered
when a client requests creation ofa socket based on its address family, type, and
protocol identifier. Windows Sockets 2 includes an applet called Sporder.exe that allows
the catalog of installed protocols to be re-ordered interactively after protocols have
already been installed. Windows Sockets 2 also includes an auxiliary .dll, Sporder.dll,
that exports a procedural interface for re-ordering protocols. This procedural interface
consists of a single procedure called WSCWrlteProviderOrder.

496 Volume 1 Winsock and QOS

The interface definition may be imported into a C .or C++ program by means of the
include file Sporder.h. The entry point may be linked by means of the lib file Sporder.lib.
The actual procedure specification is given in the following section.

Windows Sockets SPI Header File· Ws2spi.h
The function prototypes and structures in this document can be found in Ws2spi.h.

New versions of Ws2spi.h will appear periodically as new identifiers are allocated by the
Windows Sockets Identifier Clearinghouse. The clearinghouse can be reached through
the world wide web:

http://www.stardust.com/winsock/

Developers are urged to stay current with successive revisions of Ws2spi.h as they are
made available by the clearinghouse.

CHAPTER 11

Winsock 2 SPI Reference

Winsock 2 SPI Reference

NSPCleanup
The NSPCleanup function terminates the use of a particular Windows Sockets name
space service provider.

Parameters
IpProviderld

[in] Pointer to the GUID of the name-space provider that is to be terminated.

Return Values

497

If no error occurs, NSPCleanup returns a value of NO_ERROR (zero). Otherwise,
SOCKET_ERROR (-1) is returned and the provider must set the appropriate error code
using SetLastError.

Remarks
The NSPCleanup function is called when an application is finished using a Windows
Sockets name space service provider. The NSPCleanup function deregisters
a particular name-space provider and allows the transport service provider to free any
of the name-space provider's allocated resources.

The NSPStartup function must be called successfully before using any name-space
providers. It is permissible to make more than one NSPStartup call. However, for each
NSPStartup call, a corresponding NSPCleanup call must also be issued. Only the final
NSPCleanup for the service provider does the actual cleanup; the preceding calls simply
decrement an internal reference count in the service provider.

This function should not return until the name space service provider DLL can
be unloaded from memory.

498 Volume 1 Win sock and QOS

Error Codes
Error code

WSAEINVAL

NSPGetServiceClasslnfo

Meaning

The IpProviderld does not specify a valid
provider.

Not enough free memory available to perform
this operation.

The NSPGetServiceClasslnfo function retrieves all the pertinent class information
(schema) pertaining to the name-space provider. This call retrieves any name space
specific information that is common to all instances of the service, including connection
information for SAP, or port information for SAP or TCP.

Parameters
IpProviderld

[in] Pointer to the GUID of the specific name-space provider from which the service
class schema is to be retrieved.

IpdwBufSize
[in] Number of bytes contained in the buffer pointed to by IpServiceClasslnfo on input.
Alternately, if the function fails and the error is WSAEFAULT, IpdwBufSize contains
the minimum number of bytes to pass for the IpServiceClasslnfo to retrieve the record
on output.

IpServiceClasslnfo
[in] Returns service class to name space-specific mapping information.
The IpServiceClassld parameter must be filled in to indicate which
WSASERVICECLASSINFOW record should be returned.

Return Values
If no error occurs, the NSPGetServiceClasslnfo function returns NO_ERROR (zero).
Otherwise, SOCKET_ERROR (-1) is returned and it must set the appropriate error code
using SetLastError.

Chapter 11 Winsock 2 SPI Reference 499

Remarks
The W2_32.dll uses this function to implement the
WSAGetServiceClassNameByClassld function, as well as to retrieve the name space
specific information passed into the NSPLookupServiceBegin and NSPSetService.

Error Codes
Error code

WSAEACCES

WSAEFAULT

WSAEINVAL

Meaning

Calling routine does not have sufficient
privileges to access the information.

The IpServiceClass buffer was too small
to contain a WSASERVICECLASSINFOW.

Specified service class identifier or name
space-provider identifier is invalid.

Specified class was not found in any of the
name spaces.

Not enough free memory available to perform
this operation.

Version: Requires Windows Sockets 2.0.
Header: Declared in Ws2spi.h.

NSPlnstaliServiceClass
The NSPlnstaliServiceClass function registers service class schema within the name
space providers.

The schema includes the class name,class identifier, and any name space-specific type
information that is common to all instances of the service, such as SAP identifier
or object identifier. A dynamic name-space provider is expected to store any class
information associated with that name space. Other name-space providers should
do whatever makes sense.

Parameters
IpProviderld

[in] Pointer to the GUID of the specific name-space provider that this service class
schema is being registered in.

500 Volume 1 Winsock and QOS

/pServiceC/ass/nfo
[in] Contains service class schema information.

Return Values
The function should return NO_ERROR (zero) if the routine succeeds. It should return
SOCKET_ERROR (-1) if the routine fails and it must set the appropriate error code
using SetLastError.

Remarks
Name space providers are encouraged but not required to store information that
is specific to the name space they support.

Error Codes
Error code Meaning

WSAEACCES Calling routine does not have sufficient privileges
to perform this operation.

WSAEALREADY Service class information has already been
registered for this service class identifier.
To modify service class information, first use
NSPRemoveServiceClass, then reinstall with
updated class information data.

WSAEINVAL Service class identifier was invalid or improperly
structured.

WSA_I NVALI D_PARAMETER Name space provider cannot supply the requested
class information.

WSA_NOT _ENOUGH_MEMORY Not enough free memory available to perform this
operation.

Version: Requires Windows Sockets 2.0.
Header: Declared in Ws2spi.h.

NSPLookupServiceBegin
The WSALookupServiceBegin function initiates a client query that is constrained
by the information contained within a WSAQUERYSET structure.

Chapter 11 Winsock 2 SPI Reference 501

WSALookupServiceBegin only returns a handle, which should be used by subsequent
calls to WSALookupServiceNext to get the actual results. Since this operation can not
be canceled, it should be implemented to execute quickly. While it is acceptable
to initiate a network query, this function should not require a response in order to return
successfully.

Parameters
IpProviderld

[in] Contains the specific provider identifier that should be used for the query.

IpqsRestrictions
[in] Contains the search criteria. See the following for more information.

IpServiceClasslnfo
[in] WSASERVICECLASSINFOW structure that contains all the schema information
for the service.

dwControlFlags
[in] Controls the depth of the search.

Value

LUP _DEEP

LUP _CONTAINERS

LUP _NOCONTAINERS

LUP _FLUSHCACHE

LUP _FLUSH PREVIOUS

LUP_NEAREST

Meaning

Query deep as opposed to just the first level.

Return containers only.

Do not return any containers.

If the provider has been caching information,
ignore the cache and go query the name space
itself.

Used as a value for the dwControlFlags argument
in NSPLookupServiceNext. Setting this flag
instructs the provider to discard the last result set,
which was too large for the supplied buffer, and
move on to the next result set.

If possible, return results in the order of distance.
The measure of distance is provider specific.

Indicates whether prime response is in the remote
or local part of CSADDR_INFO structure.
The other part needs to be usable in either case.

(continued)

502 Volume 1 Winsock and QOS

(continued)

Value

LUP _RETURN_NAME

LUP _RETURN_TYPE

LUP _RETURN_WSAVERSION

LUP _RETURN_COMMENT

LUP _RETURN_ADDR

LUP _RETURN_BLOB

LUP _RETURN_ALL

IphLookup

Meaning

Any available alias information is to be returned
in successive calls to NSPLookupServiceNext,
and each alias returned will have the
RESULT _IS_ALIAS flag set.

Retrieves the name as IpszServicelnstanceName.

Retrieves the type as IpServiceClassld.

Retrieves the version as IpVersion.

Retrieves the comment as IpszComment.

Retrieves the addresses as IpcsaBuffer.

Retrieves the private data as IpBlob.

Retrieves all the information.

[out] Handle to be used in subsequent calls to NSPLookupServiceNext in order
to retrieve the results set.

Return Values
The function should return NO_ERROR (zero) if the routine succeeds. It should return
SOCKET_ERROR (-1) if the routine fails and it must set the appropriate error code
using SetLastError.

Remarks
If LUP _CONTAINERS is specified in a call, all other restriction values should be
avoided. If any are supplied, it is up to the name service provider to decide if it can
support this restriction over the containers. If it cannot, it should return an error.

Some name service providers may have other means of finding containers. For example,
containers can all be of some well-known type, or of a set of well-known types, and
therefore a query restriction could be created for finding them. No matter what other
means the name service provider has for locating containers, LUP _CONTAINERS and
LUP _NOCONTAINERS take precedence. Hence, if a query restriction is given that
includes containers, specifying LUP _NOCONTAINERS will prevent the container items
from being returned. Similarly, no matter the query restriction, if LUP _CONTAINERS
is given, only containers should be returned. If a name space does not support
containers and LUP _CONTAINERS is specified, it should simply return WSANO_DATA.

The preferred method of obtaining the containers within another container, is the call:

Chapter 11 Winsock 2 SPI Reference 503

followed by the requisite number of NSPLookupServiceNext calls. This will return all
containers contained immediately within the starting context; that is, it is not a deep
query. With this, one can map the address space structure by walking the hierarchy,
perhaps enumerating the content of selected containers. Subsequent uses
of NSPLookupServiceBegin use the containers returned from a previous call.

Forming Queries
As mentioned above, a WSAQUERYSET structure is used as an input parameter
to NSPLookupServiceBegin in order to qualify the query. The following table indicates
how the WSAQUERYSET is used to construct a query. When a member is marked
as (Optional) a NULL pointer can be supplied, indicating that the parameter will not be
used as a search criteria. See Query-Related Data Structures for additional information.

WSAQUERYSET member name Query interpretation

dwSize

dwOuputFlags

IpszServicelnstanceName

IpServiceClassld

IpVersion

IpszComment

dwNameSpace

IpNSProviderld

IpszContext

dwNumberOfProtocols

IpafpProtocols

IpszQueryString

Will be set to sizeof(WSAQUERYSET). This is a versioning
mechanism.

Ignored for queries.

(Optional) Referenced string contains service name. The
semantics for wildcarding within the string are not defined,
but can be supported by certain name-space providers.

(Required) GUID corresponding to the service class.

(Optional) References desired version number and provides
version comparison semantics (that is, version must match
exactly, or version must be not less than the value supplied).

Ignored for queries.

Identifier of a single name space in which to constrain the
search, or NS_ALL to include all name spaces.

(Optional) References the GUID of a specific name-space
provider and limits the query to this provider only.

(Optional) Specifies the starting point of the query
in a hierarchical name space.

Size of the protocol constraint array, can be zero.

(Optional) References an array of AFPROTOCOLS structure.
Only services that utilize these protocols will be returned.
It is legal for the value AF _UNSPEC to appear asa protocol
family value, signifying a wildcard. Name space providers
may supply information onany service that uses the
corresponding protocol, regardless of address family.

(Optional) Some name spaces (such as whois++) support
enriched SOL-like queries that are contained in a simple text
string. This parameter is used to specify that string.

(continued)

504 Volume 1 Win sock and QOS

(continued)

WSAQUERYSET member name Query interpretation

dwNumberOfCsAddrs

IpcsaBuffer

Ignored for queries.

Ignored for queries.

IpBlob

Error Codes
Error code

WSAEINVAL

WSANO_DATA

(Optional) Pointer to a provider-specific entity.

Meaning

One or more parameters were invalid for this
provider or missing.

Name was found in the database but it does not
have the correct associated data being resolved
for.

WSASERVICE_NOT _FOUND No such service is known. The service cannot be
found in the specified name space.

WSA_NOT _ENOUGH_MEMORY Not enough free memory available to perform this
operation.

Version: Requires Windows Sockets 2.0.
Header: Declared in Ws2spi.h.

NSPLookupServiceEnd
The NSPLookupServiceEnd function is called to free the handle after previous calls
to NSPLookupServiceBegin and NSPLookupServiceNext.

It is possible to receive an NSPLookupServiceEnd call on another thread while
processing an NSPLookupServiceNext. This indicates that the client has canceled
the request and the provider should close the handle and return from the
NSPLookupServiceNext call as well, setting the last error to WSA_E_CANCELLED.

Parameters
hLookup

[in] Handle previously obtained by calling NSPLookupServiceBegin.

Chapter 11 Winsock 2 SPI Reference 505

Return Values
The function should return NO_ERROR (zero) if the routine succeeds. It should return
SOCKET_ERROR (-1) if the routine fails and it must set the appropriate error code
using SetLastError.

Remarks
In Windows Sockets 2, conflicting error codes are defined for WSAECANCELLED
(10103) and WSA_E_CANCELLED (10111). The error code WSAECANCELLED will
be removed in a future version and only WSA_E_CANCELLED will remain. Name Space
Providers should switch to using the WSA_E_CANCELLED error code as soon
as possible to maintain compatibility with the widest possible range of applications.

Error Codes
Error code

WSA_INVALlD_HANDLE

WSA_NOT_ENOUGH_MEMORY

Meaning

Handle is not valid.

Not enough free memory available to perform
this operation.

Version: Requires Windows Sockets 2.0.
Header: Declared in Ws2spLh.

NSPLookupServiceNext
The NSPLookupServiceNext function is called after obtaining a handle from a previous
call to NSPLookupServiceBegin in order to retrieve the requested service information.

The provider will pass back a WSAQUERYSET structure in the IpqsResults buffer.
The client should continue to call this function until it returns WSA_E_NOMORE,
indicating that all the WSAQUERYSET have been returned.

Parameters
hLookup

[in] Handle returned from the previous call to WSALookupServiceBegin.

506 Volume 1 Winsockand QOS

dwControlFlags
[in] Flags to control the next operation. Currently only LUP _FLUSHPREVIOUS
is defined as a means to cope with a result set that is too large. If an application does
not wish to (or cannot) supply a large enough buffer, setting LUP _FLUSH PREVIOUS
instructs the provider to discard the last result set, which was too large, and move
to the next set for this call.

IpdwBufferLength
[in/out] On input, the number of bytes contained in the buffer pointed to
by IpqsResults. On output, if the function fails and the error is WSAEFAUL T, then
it contains the minimum number of bytes to pass for the IpqsResults to retrieve the
record.

IpqsResults
[out] Pointer to a block of memory that will contain one result set
in a WSAQUERYSET structure on return.

Return Values
The function should return NO_ERROR (zero) if the routine succeeds. It should return
SOCKET_ERROR (-1) if the routine fails and it must set the appropriate error code
using SetLastError.

Remarks
The dwControlFlags specified in this function and the ones specified at the time of
NSPLookupServiceBegin are treated as "restrictions" for the purpose of combination.
The restrictions are combined between the ones at NSPLookupServiceBegin time
and the ones at NSPLookupServiceNext time. Therefore, the flags at
NSPLookupServiceNext can never increase the amount of data returned beyond what
was requested at NSPLookupServiceBegin, although it is not an error to specify more
or less flags. The flags specified at a given NSPLookupServiceNext apply only
to that call.

The dwControlFlags LUP _FLUSH PREVIOUS and LUP _RES_SERVICE are exceptions
to the combined restrictions rule (because they are behavior flags instead of restriction
flags).lf either of these flags is used in NSPLookupServiceNext, they have their defined
effect regardless of the setting of the same flags at NSPLookupServiceBegin.

For example, if LUP _RETURN_VERSION is specified at NSPLookupServiceBegin,
the service provider retrieves records including the version. If LUP _RETURN_VERSION
is not specified at NSPLookupServiceNext, the returned information does not include
the version, even though it was available. No error is generated.

Also for example, if LUP _RETURN_BLOB is not specified at NSPLookupServiceBegin
but is specified at NSPLookupServiceNext, the returned information does not include
the private data. No error is generated.

Chapter 11 Winsock 2 SPI Reference 507

Query Results
The following table describes how the query results are represented in the
WSAQUERYSET structure. Refer to Query-Related Data Structures for additional
information.

WSAQUERYSET member name

dwSize

dwOuputFlags

IpszServicelnstanceName

IpServiceClassld

IpVersion

IpszComment

dwNameSpace

IpNSProviderld

IpszContext

dwNumberOfProtocols

IpafpProtocols

IpszQueryString

dwNumberOfCsAddrs

IpcsaBuffer

IpBlob

Result interpretation

Will be set to sizeof(WSAQUERYSET). This is used
as a versioning mechanism.

RESULT _'S_ALIAS flag indicates this is an alias result.

References the string that contains the service name.

GUID corresponding to the service class.

References version number of the particular service
instance.

Optional comment string supplied by service instance.

Name space in which the service instance was found.

Identifies the specific name-space provider that supplied
this query result.

Specifies the context point in a hierarchical name space
at which the service is located.

Undefined for results.

Undefined for results, all needed protocol information is
in the CSADDR_INFO structures.

When dwControlFlags includes
LUP _RETURN_QUERY _STRING, this member returns the
unparsed remainder of the IpszServicelnstanceName
specified in the original query. For example, in a name
space that identifies services by hierarchical names that
specify a host name and a file path within that host, the
address returned might be the host address and the
unparsed remainder might be the fi·le path. If the
IpszServicelnstanceName is fully parsed and
LUP _RETURN_QUERY _STRING is used, this member
is NULL or points to a zero-length string.

Indicates the number of elements in the array
of CSADDR_INFO structures.

Pointer to an array of CSADDR_INFO structures, with one
complete transport address contained within each element.

(Optional) Pointer to a provider-specific entity.

508 Volume 1 Winsock and QOS

Error Codes
Error code

WSAEFAULT

WSAEINVAL

WSA_INVALlD_HANDLE

WSANO_DATA

Meaning

There is no more data available.

In Windows Sockets 2, conflicting error codes are defined
for WSAENOMORE (10102) and WSA_E_NO_MORE
(10110).The error code WSAENOMORE will be removed
in a future version and only WSA_E_NO_MORE will remain.
Name space providers should switch to using the
WSA_E_NO_MORE error code as soon as possible
to maintain compatibility with the widest possible range
of applications.

Call to NSPLookupServiceEnd was made while this call
was still processing. The call has been canceled. The data
in the IpqsResults buffer is undefined.

In Windows Sockets 2, conflicting error codes are defined
for WSAECANCELLED (10103) and WSA_E_CANCELLED
(10111).The error code WSAECANCELLED will be
removed in a future version and only WSA_E_CANCELLED
will remain. Name space providers should switch to using
the WSA_E_CANCELLED error code as soon as possible
to maintain compatibility with the widest possible range
of applications.

The IpqsResults buffer was too small to contain
a WSAQUERYSET set.

One or more parameters were invalid or missing for this
provider.

Specified lookup handle is invalid.

The name was found in the database but no data matching
the given restrictions was located.

No such service is known. The service cannot be found
in the specified name space.

Not enough free memory available to perform this operation.

Version: Requires Windows Sockets 2.0.
Header: Declared in Ws2spLh.

Chapter 11 Winsock 2 SPI Reference 509

NSPRemoveServiceClass
The NSPRemoveServiceClass function permanently removes a specified service class
from the name space.

Parameters
IpProviderid

[in] Pointer to the GUID of the specific name-space provider that this service class
schema is to be removed from.

IpServiceClassld
[in] Pointer to the GUID for the service class to remove.

Return Values
The function should return NO_ERROR (zero) if the routine succeeds. It should return
SOCKET_ERROR (-1) if the routine fails and it must set the appropriate error code
using SetLastError.

Error Codes
Error code Meaning

WSA TYPE_NOT _FOUND Specified class was not found in any of the name
spaces.

WSAEACCES Calling routine does not have sufficient privileges
to remove the Service.

WSA_INVALlD_PARAMETER Specified GUID was not valid.

WSAEINVAL Specified service class identifier GUID was not
valid.

WSA...:..NOT _ENOUGH_MEMORY Not enough free memory available to perform this
operation.

Version: Requires Windows Sockets 2.0.
Header: Declared in Ws2spLh.

510 Volume 1 Winsock and QOS

NSPSetService
The NSPSetService function registers or deregisters a service instance within
a name space.

Parameters
IpProviderld

[in] Pointer to the GUID of the specific name-space provider in which the service
is being registered.

IpServiceClasslnfo
[in] Contains service class schema information.

IpqsReglnfo
[in] Specifies property informatio~ to be updated upon registration.

essOperation
[in] Enumeration whose values include:

RNRSERVICE_REGISTER
Register the service. For SAP, this means sending out a periodic broadcast.
This is an NOP for the DNS name space. For persistent data stores this means
updating the address information.

RNRSERVICE_DEREGISTER
Deregister the service. For SAP, this means stop sending out the periodic
broadcast. This is an NOP for the DNS name space. For persistent data stores
this means deleting address information.

RNRSERVICE_DELETE
Del.ete the service from dynamic name and persistent spaces. For
services represented by multiple CSADDR_INFO structures (using the
SERVICE_MULTIPLE flag), only the supplied address will be deleted, and
this must match exactly the corresponding CSADD_INFO structure that
was supplied when the service was registered.

dwControlFlags
[in] Set of control flags whose values include:

SERVICE_MULTIPLE
Controls scope of operation. A register or deregister invalidates all existing
addresses before adding the given address set. When set, the action is only
performed on the given address set. A register does not invalidate existing
addresses and a deregister only invalidates the given set of addresses.

Chapter 11 Winsock 2 SPI Reference 511

The available values for essOperation and dwControlFlags combine to give meanings
as shown in the following table.

Operation Flags Service already exists Service does not exist

RNRSERVICE_
REGISTER

RNRSERVICE_
REGISTER

RNRSERVICE_
DEREGISTER

RNRSERVICE_
DEREGISTER

RNRSERVICE_
DELETE

RNRSERVICE_
DELETE

None

SERVICE_
MULTIPLE

None

SERVICE
MULTIPLE

None

SERVICE
MULTIPLE

Return Values

Overwrites the object. Uses only
addresses specified. Object is
REGISTERED.

Updates object. Adds new
addresses to existing set. Object
is REGISTERED.

Removes all addresses, but
does not remove object from
name space. Object is
DEREGISTERED.

Updates object. Removes only
addresses that are specified.
Only mark object as
DEREGISTERED if no
addresses are present. Does not
remove from the name space.

Removes object from the name
space.

Removes only addresses that
are specified. Only removes
object from the name space if no
addresses remain.

Creates a new object. Uses
only addresses specified.
Object is REGISTERED.

Creates a new object. Uses
all addresses specified.
Object is REGISTERED.

WSASERVICE_
NOT_FOUND

WSASERVICE_
NOT_FOUND

WSASERVICE_
NOT_FOUND

WSASERVICE_
NOT_FOUND

The function should return NO_ERROR (zero) if the routine succeeds. It should return
SOCKET_ERROR (-1) if the routine fails and it must set the appropriate error code
using SetLastError.

Remarks
SERVICE_MULTIPLE lets an application manage its addresses independently.
This is useful when the application wants to manage its protocols individually or when
the service resides on more than one machine. For instance, when a service uses more
than one protocol, it may find that one listening socket aborts but the others remain
operational. In this case, the service could de register the aborted address without
affecting the other addresses.

512 Volume 1 Winsock and QOS

When using SERVICE_MULTIPLE, an application must not let stale addresses remain
in the object. This can happen if the application aborts without issuing a DEREGISTER
request. When a service registers, it should store its addresses. On its next invocation,
the service should explicitly deregister these old stale addresses before registering new
addresses.

Service Properties
The following table describes how service property data is represented in a
WSAQUERYSET structure. Members labeled as (Optional) can be supplied with a NULL
pointer.

WSAQUERYSET
member name

dwSize

DwOuputFlags

LpszServicelnstanceName

LpServiceClassld

LpVersion

LpszComment

DwNameSpace

LpNSProviderld

LpszContext

DwNumberOfProtocols

LpafpProtocols

LpszQueryString

DwNumberOfCsAddrs

LpcsaBuffer

LpBlob

Service property description

Must be set to sizeof(WSAQUERYSET). This
is a versioning mechanism.

Not applicable and ignored.

Referenced string contains the service instance name.

GUID corresponding to this service class.

(Optional) Supplies service instance version number.

(Optional) An optional comment string.

Ignored for this operation.

Ignored for this operation, provider identifier is contained
in the IpProviderld parameter.

(Optional) Specifies the starting point of the query
in a hierarchical name space.

Ignored.

Ignored.

Ignored.

Number of elements in the array of CSADDRO_INFO
structures referenced by IpcsaBuffer.

Pointer to an array of CSADDRO_INFO structures that
contain the address[es] that the service is listening on.

(Optional) Pointer to a provider-specific entity.

Note It is acceptable for the iProtocol member of the CSADDR_INFO structure
to contain the manifest constant IPROTOCOL_ANY, signifying a wildcard value.
The name-space provider should substitute a value that is reasonable for the given
address family and socket type.

Chapter 11 Winsock 2 SPI Reference 513

Error Codes
Error code Meaning

WSAEACCES Calling routine does not have sufficient privileges
to install the service.

WSAEINVAL One or more parameters were invalid or missing
for this provider.

WSA_NOT _ENOUGH_MEMORY Not enough free memory available to perform this
operation.

WSASERVICE_NOT _FOUND No such service is known. The service cannot
be found in the specified name space.

Version: Requires Windows Sockets 2.0.
Header: Declared in Ws2spLh.

NSPStartup
The NSPStartup function retrieves the dynamic information about a provider, such
as the list of the DLL entry points.

This function is called by the client upon initialization. NSPStartup and NSPCleanup
must be called as pairs. All the NSP functions must be called from within
an NSPStartup/NSPCleanup pair. WSC functions do not need to be called from
within an NSPStartup/NSPCleanup pair either.

Parameters
IpProviderld

[in] Indicates the desired provider for which to return the entry pOints.

IpnspRoutines
[out] Pointer to all the provider entry pOints.

Data Types
The following data types are needed for this call.

NSP _ROUTINE
The NSP _ROUTINE structure contains information regarding all the functions
implemented by a given provider.

514 Volume 1 Winsock and QOS

cbSize
Size of this structure.

dwMajorVersion
Major version of the service provider specification supported by this provider.

dwMinorVersion
Minor version of the service provider specification supported by this provider.

NSP. *
Pointers to the various NSP functions. Every entry must point to a valid function.
If the provider does not implement this function, it should simply return
WSAENOTIMPLEMENTED.

Note In the header file this structure contains complete prototypes for all the NSP
pointers.

Return Values
The function should return NO_ERROR (zero) if the routine succeeds. It should return
SOCKET_ERROR (-1) if the routine fails and it must set the appropriate error code
using SetLastError.

Error Codes
Error Code

WSAEINVAL

Meaning

One or more parameters were invalid or
missing for this provider.

Not enough free memory available to
perform this operation.

Version: Requires Windows Sockets 2.0.
Header: Declared in Ws2spLh.

WPUCloseEvent

Chapter 11 Winsock 2 SPI Reference 515

The WPUCloseEvent function closes an open event object handle.

Parameters
hEvent

[in] Handle to an open event object.

IpErmo
[out] Pointer to the error code.

Return Values
If the function succeeds, the return value is TRUE. Otherwise, the return value is FALSE
and a specific error code is available in IpErmo.

Error Codes
Error code

WSA_I NVALI D_HANDLE

Meaning

The hEvent is not a valid event object handle.

Version: Requires Windows Sockets 2.0.
Header: Declared in Ws2spLh.

WPUCreateEvent

WPUCloseSocketHandle
The WPUCloseSocketHandle function closes an existing socket handle.

516 Volume 1 Winsock and aos

Parameters
5

[in] Handle to socket created with WPUCreateSocketHandle.

IpErmo
[out] Pointer to the error code.

Return Values
If no error occurs, WPUCreateSocketHandle returns zero. Otherwise, it returns
SOCKET_ERROR, and a specific error code is available in IpErmo.

Remarks
The WPUCloseSocketHandle function closes an existing socket handle created
by WPUCreateSocketHandle. This function removes the socket from Ws2_32.dll's
internal socket table. The owning service provider is responsible for releasing any
resources associated with the socket.

Error Codes
Error code

WSAENOTSOCK

Meaning

Descriptor is not a socket created by WPUCreateSocketHandle.

Version: Requires Windows Sockets 2.0.
Header: Declared in Ws2spLh.

WPUCreateSocketHandle

WPUCloseThread
The WPUCloseThread function closes a thread opened with a
call to WPUOpenCurrentThread.

Chapter 11 Winsock 2 SPI Reference 517

Parameters
IpThreadld

[in] Pointer to a WSATHREADID structure that identifies the thread context. This
structure must have been initialized by a previous call to WPUOpenCurrentThread.

IpErmo
[out] Pointer to the error code.

Return Values
If no error occurs, WPUOpenCurrentThread returns zero. Otherwise, it returns
SOCKET_ERROR, and a specific error code is available in IpErmo.

Remarks
The WPUCloseThread function is used in a layered service provider to deallocate the
resources that were initiated in a call by the WPUOpenCurrentThread function.
The WSATHREADID structure in the IpThreadld is the thread to deallocate.

Every call to WPUOpenCurrentThread must have a call to WPUCloseThread. These
two functions are used when the overlapped functions, such as WSPSend, are called
in a lower layer of the service provider than the current thread.

Error Codes
Error code Meaning

WSANOTINITIALISED A successful WSPStartup call must occur before using this
function.

Version: Requires Windows Sockets 2.0.
Header: Declared in Ws2spi.h.

WPUCloseThread, WPUOpenCurrentThread

WPUCompleteOverlappedRequest
The WPUCompleteOverlappedRequest function performs overlapped I/O completion
notification for overlapped I/O operations.

(continued)

518 Volume 1 Winsock and QOS

(continued)

Parameters
s

[in] Service provider socket created by WPUCreateSocketHandle.

IpOverlapped
[in] Pointer to a WSAOVERLAPPED structure associated with the overlapped
I/O operation whose completion is to be notified.

dwError
[in] Completion status of the overlapped I/O operation whose completion
is to be notified.

cb Transferred
[in] Number of bytes transferred to or from client buffers (the direction of the transfer
depends on the send or receive nature of the overlapped I/O operation whose
completion is to be notified).

IpErmo
[out] Pointer to the error code resulting from execution of this function.

Return Values
If no error occurs, WPUCompleteOverlappedRequest returns zero and notifies
completion of the overlapped I/O operation according to the mechanism selected
by the client (signals an event found in the WSAOVERLAPPED structure referenced
by IpOverlapped and/or queues a completion status report to the completion port
associated with the socket if a completion port is associated). Otherwise,
WPUCompleteOverlappedRequest returns SOCKET_ERROR, and a specific
error code is available in IpErmo.

Remarks
The WPUCompleteOverlappedRequest function performs overlapped I/O completion
notification for overlapped I/O operations where the client-specified completion
mechanism is something other than user mode-asynchronous procedure call (APC).
This function can only be used for socket handles created
by WPUCreateSocketHandle.

Note This function is different from other functions with the WPU prefix in that it is
not accessed through the upcall table. Instead, it is exported directly by Ws2_32.dll.
Service providers that need to call this function should link with WS2_32.lib or use
appropriate operating system functions such as LoadLibrary and GetProcAddress
to retrieve the function pointer.

Chapter 11 Winsock 2 SPI Reference 519

The function WPUCompleteOverlappedRequest is used by service providers that
do not implement Installable File System (IFS) functionality directly for the socket
handles they expose. It performs completion notification for any overlapped I/O request
for which the specified completion notification is other than a user-mode APe.
WPUCompleteOverlappedRequest is supported only for the socket handles created
by WPUCreateSocketHandle and not for sockets created by a service provider directly.

If the client selects a user-mode APe as the notification method, the service provider
should use WPUQueueApc or another appropriate operating system function to perform
the completion notification. If user-mode APe is not selected by the client, a service
provider that does not implement IFS functionality directly cannot determine whether
or not the client has associated a completion port with the socket handle. Thus, it cannot
determine whether the completion notification method should be queuing a completion
status record to a completion port or signaling an event found in the
WSAOVERLAPPED structure. The Windows Socket 2 architecture keeps track of any
completion port association with a socket created by WPUCreateSocketHandle and can
make a correct decision between completion port-based notification or event-based
notification.

When WPUCompleteOverlappedRequest queues a completion indication, it sets the
InternalHigh member of the WSAOVERLAPPED structure to the count of bytes
transferred. Then, it sets the Internal member to some OS-dependent value other than
the special value WSS_OPERATION_IN~PROGRESS. There may be some slight delay
after WPUCompleteOverlappedRequest returns before these values appear, since
processing may occur asynchronously. However, the InternalHigh value (byte count)
is guaranteed to be set by the time Internal is set.

WPUCompleteOverlappedRequest is available both on Windows® 95/98 and
Windows NT®IWindowS® 2000. It works as stated (performs the completion notification
as requested by the client) whether or not the socket handle has been associated with
a completion port.

Interaction with WSPGetOverlappedResult
The behavior of WPUCompleteOverlappedRequest places some constraints on how
a service provider implements WSPGetOverlappedResultsince only the Offset and
OffsetHigh members of the WSAOVERLAPPED structure are exclusively controlled
by the service provider, yet three values (byte count, flags, and error) must be .retrieved
from the structure by WSPGetOverlappedResult. A service provider may accomplish
this any way it chooses as long as it interacts with the behavior
of WPUCompleteOverJappedRequest properly. However, a typical
implementation is as follows:

• At the start of overlapped processing, the service provider sets Internal
to WSS_OPERATION_IN_PROGRESS.

520 Volume 1 Winsock and QOS

• When the I/O operation has been completed, the provider sets OffsetHigh to the
Windows Socket 2 error code resulting from the operation, sets Offset to the flags
resulting from the 1/0 operation, and calls WPUCompleteOverlappedRequest,
passing the transfer byte count as one of the parameters.
WPUCompleteOverlappedRequest eventually sets InternalHigh to the transfer byte
count, then sets Internal to a value other than WSS_OPERATION_IN_PROGRESS.

• When WSPGetOverlappedResult is called, the service provider checks Internal.
If it is WSS_OPERATION_IN_PROGRESS, the provider waits on the event handle
in the hEvent member or returns an error, based on the setting of the FWAIT flag
of WSPGetOverlappedResult. If not in progress, or after completion of waiting, the
provider returns the values from InternalHigh, OffsetHigh, and Offset as the transfer
count, operation result error code, and flags respectively.

Error Codes
Error code

WSAEINVAL

Meaning

Socket is not a socket created by WPUCreateSocketHandle.

WSPGetOverlappedResult, WPUCreateSocketHandle, WPUQueueApc

WPUCreateEvent
The WPUCreateEvent function creates a new event object.

Parameters
IpErmo

[out] Pointer to the error code.

Return Values
If no error occurs, WPUCreateEvent function returns the handle of the event object.

Otherwise, the return value is WSA_INVALlD_EVENT and a specific error code
is available in IpErmo.

Remarks
The event object created by this function is manual reset with an initial state
of nonsignaled. If a Win32 service provider wants auto reset events, it can call the
Win32 CreateEvent function directly. For more information, see CreateEvent.

Chapter 11 Winsock 2 SPI Reference 521

Error Codes
Error code Meaning

WSA_NOT _ENOUGH_MEMORY Not enough free memory available to create the
event object.

Version: Requires Windows Sockets 2.0.
Header: Declared in Ws2spi.h.

WPUCloseEvent

WPUCreateSocketHandle
The WPUCreateSocketHandle function creates a new socket handle.

Parameters
dwCatalogEntryld

[in] Descriptor identifying the calling service provider.

dwContext
[in] Context value to associate with the new socket handle.

IpErmo
[out] Pointer to the error code.

Return Values
If no error occurs, WPUCreateSocketHandle returns the new socket handle. Otherwise,
it returns INVALID_SOCKET, and a specific error code is avaiiable in IpErmo.

Remarks
The WPUCreateSocketHandle function creates a new socket handle for the specified
provider. The handles created by WPUCreateSocketHandle are indistinguishable from
true file system handles. This is significant in two respects. First, the Windows Socket 2
architecture takes care of redirecting the file system functions ReadFile and WriteFile
to this service provider's WSPRecv and WSPSend functions, respectively. Second,

522 Volume 1 Winsock and QOS

in operating systems that support completion ports, the Windows Sockets 2 architecture
supports associating a completion port with the socket handle and using it to report
overlapped I/O completion.

Note That the mechanism for redirecting ReadFile and WriteFile necessarily involves
a user-to-kernel transition to get to the redirector, followed by a kernel-to-user transition
to get to WSPRecv or WSPSend. On return, these transitions are retraced in reverse.
This can be a significant performance penalty. Any service provider that uses
WPUCreateSocketHandle to create its socket handles should not set
XP1_IFS_HANDLES in its WSAPROTOCOL_INFOW structure. Clients should take the
absence of XP1_IFS_HANDLES as guidance to avoid the use of ReadFile
and WriteFile.

There is no exceptional performance penalty for using the completion port mechanism
with socket handles created with WPUCreateSocketHandle. A service provider should
use WPUCompleteOverlappedRequest to announce completion of overlapped
I/O operations that may involve a completion port. Clients may freely use operating
system functions to create, associate, and use a completion port for completion
notification (for example, CreateloCompletionPort, GetQueuedCompletionStatus,
see relevant OS documentation for details). Note that completion ports are not integrated
with the other asynchronous notification mechanisms offered by Windows Sockets 2.
That is, a client can do a multiple-wait that includes multiple events and completion
callbacks, but there is no predefined way for the multiple-wait to include
completion ports.

Layered Service Provider Considerations
This procedure is of particular interest to Layered Service Providers. A layered service
provider may use this procedure, instead of WPUModifylFSHandle to create the socket
handles it exposes to its client. The advantage of using this procedure is that all I/O
requests involving the socket can be guaranteed to go through this service provider.
This is true even if the client assumes that the sockets are file system handles and calls
the file system functions ReadFile and Write File (although it would pay a performance
penalty for this assumption).

The guarantee that all 1/0 goes through this layer is a requirement for layers that need
to process the I/O stream either before or after the actual I/O operation. Creating socket
handles using WPUCreateSocketHandle and specifying an appropriate service provider
interface procedure dispatch table at the time of WSPStartup makes sure the layer has
the chance to get involved in starting each I/O operation. When the client requests
overlapped I/O operations, this service provider layer will usually have to arrange to get
into the path of I/O completion notification as well.

To see why this is true, consider what happens if the client associates a completion port
with the socket handle for the purpose of overlapped I/O completion notification.
The port is associated with the socket handle exposed by this layer, not the next layer's
socket handle. There is no way for this layer to determine if a completion port has been

Chapter 11 Winsock 2 SPI Reference 523

associated or what the port is. When this layer calls the next layer's 1/0 operation, it uses
the next layer's socket handle. The next layer's socket handle will not have the same
completion port association. The client's expected completion-port notification will not
happen without some extra help.

The usual way a layered service provider takes care of this is to substitute a different
overlapped 1/0 structure and different overlapped 1/0 parameters when invoking an
1/0 operation in the next layer. The SUbstitute overlapped 1/0 structure references the
client's stored overlapped structure and parameters. The invocation of the next layer
sets up a callback notification. When the callback notification occurs, this layer performs
any post-processing desired, retrieves the overlapped I/O information it stored on behalf
of the client, discards the substitute structures, and forwards an appropriate completion
notification to the client.

Error Codes
Error code

WSAENOBUFS

Meaning

Not enough buffers available, too many sockets.

Version: Requires Windows Sockets 2.0.
Header: Declared in Ws2spLh.

WPUCloseSocketHandle, WPUQuerySocketHandleContext, WPUModifylFSHandle,
WPUCompleteOverlappedRequest

WPUFDlsSet
The WPUFDlsSet function checks the membership of the specified socket handle.

Parameters
s

[in] Descriptor identifying the socket

set
[in] Set to check for the membership of socket $.

524 Volume 1 Winsock andQOS

Return Values
If no error occurs, a value of nonzero is returned denoting that socket s is a member
of the set. Otherwise, the return value is zero.

WSPSelect

WPUGetProviderPath
The WPUGetProviderPath function retrieves the OLL path for the specified provider.

Parameters
IpProviderld

[in] Locally unique identifier of the provider. This must be a value obtained by using
WSCEnumProtocols.

IpszProviderDIIPath
[out] Pointer to a buffer containing a string that identifies the provider OLL's path.
This path is a null-terminated string and any embedded environment strings
(such as %SystemRoot%) have not been expanded.

IpProviderDIIPathLen
[in/out] Size of the buffer pointed to by IpszProviderDIIPath.

IpErmo
[out] Pointer to the error code.

Return Values
If no error occurs, WPUGetProviderPath returns zero. Otherwise, it returns
SOCKET_ERROR, and a specific error code is available in IpErmo.

Remarks
The WPUGetProviderPath function retrieves the OLL path for the specified provider.
The OLL path is null-terminated and can contain embedded environment strings (such
as %SystemRoot%). Thus, the string should be expanded prior to being used with
LoadLibrary. For more information, see LoadLibrary.

Error Codes
Error code Meaning

Chapter 11 Winsock 2 SPI Reference 525

WSAEINVAL

WSAEFAULT

The IpProviderld does not specify a valid provider.

Either IpszProviderDIIPath or IpErmo is not in a valid part of the user
address space, or IpProviderDIIPathLen is too small.

Version: Requires Windows Sockets 2.0.
Header: Declared in Ws2spLh.

WSClnstaliProvider, WSCEnumProtocols

WPUModifylFSHandle
The WPUModifylFSHandle function receives a (possibly) modified IFS handle from
Ws2_32.dll.

Parameters
dwCatalogEntryld

[in) Descriptor identifying the calling service provider.

ProposedHandle
[in)IFS handle allocated by the provider.

IpErmo
[out) Pointer to the error code.

Return Values
If no error occurs, WPUModifylFSHandle returns the modified socket handle.
Otherwise, it returns INVALID_SOCKET, and a specific error code is available
in IpErmo.

526 Volume 1 Winsock and QOS

Remarks
The WPUModifylFSHandle handle allows the Ws2_32.dll to streamline its internal
operations by returning a possibly modified version of the supplied IFS handle.
It is guaranteed that the returned handle is indistinguishable from the proposed handle
as far as the operating system is concerned. IFS providers must call this function before
returning any newly created socket descriptor to a service provider. The service provider
will only use the modified handle for any subsequent socket operations.
This routine is only used by IFS providers whose socket descriptors are real
IFS handles.

Layered Service Provider Considerations
This procedure may also be used by a layered provider that is layered on top of a base
IFS provider and wants to expose the base provider's socket handles as its own instead
of creating them with a WPUCreateSocketHandle call. A layered provider that wishes
to "pass through" the IFS socket handles it receives from the next layer in the chain can
call WPUModifylFSHandle, passing its own catalog entry 10 as dwCatalogEntryld. This
informs the Windows Sockets OLL that this layer, and not the next layer, should be the
target for SPI calls involving that socket handle.

There are several limitations a layered provider should observe if ittakes this approach.

• The provider should expose base provider entry pOints for WSPSend and WSPRecv
in the procedure dispatch table it returns at the time of WSPStartup to make sure the
Windows Sockets SPI client's access to these functions is as efficient as possible.

• The provider cannot rely on its WSPSend and WSPRecv functions being invoked
for all I/O, particularly in the case of the I/O system functions ReadFile and WriteFile.
These functions would bypass the layered provider and invoke the base IFS
provider's implementation directly even if the layered provider puts its own entry
pOints for these functions into the procedure dispatch table.

• The provider cannot rely on any ability to post-process overlapped I/O using
WSPSend, WSPSendTo, WSPRecv, WSPRecvFrom, or WSPloctl. Post-processing
notification may happen through completion ports and bypass the layered provider
entirely. A layered provider has no way to determine that a completion port was used
or determine what port it is. The layered provider has no way to insert itself into the
notification sequence.

• The provider should pass through all overlapped I/O requests directly to the base
provider using the original overlapped parameters (for example, the
WSAOVERLAPPED structure and completion .routine pointer). The provider should
expose the base provider entry point for WSPGetOverlappedResult, Since some
overlapped I/O requests can bypass the layered provider completely, the layered
provider cannot reliably mark WSAOVERLAPPED structures to determine which
ones it can report results for, and which ones would have to be passed through to the
underlying provider's WSPGetOverlappedResult. This effectively means that
WSPloctl has to be a pass-through operation to the underlying provider.

Error Codes
Error code Meaning

Chapter 11 Winsock 2 SPI Reference 527

WSAEINVAL Proposed handle is invalid.

Version: Requires Windows Sockets 2.0.
Header: Declared in Ws2spLh.

WPUCreateSocketHandle

WPUOpenCurrentThread
The WPUOpenCurrentThread function opens a handle to the current thread that can
be used with overlapped functions in a layered service provider. This is intended to be
used by layered service providers that wish to initiate overlapped I/O from
nonapplication threads.

Parameters
IpThreadld

[out] Pointer to a WSATHREADID structure that can then be passed to an overlapped
function.

IpErmo
[out] Pointer to the error code.

Return Values
If no error occurs, WPUOpenCurrentThread returns the zero. Otherwise, it returns
SOCKET_ERROR, and a specific error code is available in IpErmo.

Remarks
The WPUOpenCurrentThread function provides a pointer to a WSATHREADID
structure that can then be passed to an overlapped function such as WSPSend or
WSPRecv. Layered service providers that use a private thread in one of the upper layers
will use WPUOpenCurrentThread to pass a WSATHREADID pOinter to the lower layer
that is administering overlapped functions.

528 Volume 1 Winsock and QOS

Overlapped functions such as WSPSend and WSPRecv can then be used in the same
way as a regular service provider.

Every call to WPUOpenCurrentThread must have a corresponding call to
WPUCloseThread.

Error Codes
Error code

WSANOTINITIALISED

Meaning

A successful WSPStartup call must occur before using this
function.

Version: Requires Windows Sockets 2.0.
Header: Declared in Ws2spLh.

WPUCloseThread, WSPSend, WSPRecv, WPUOpenCurrentThread

WPUPostMessage
The WPUPostMessage function performs the standard Win32 PostMessage function in
a way that maintains backward compatibility with older versions of Wsock32.dll.

Parameters
hWnd

[in] Handle to the window that will receive the message.

Msg
[in] Message that will be posted.

wParam
[in] First parameter containing additional message-specific information.

IParam
[in] Second parameter containing additional message-specific information.

Chapter 11 Winsock 2 SPI Reference 529

Return Values
If no error occurs, WPUPostMessage returns the TRUE value. Otherwise, the FALSE
value is returned.

Version: Requires Windows Sockets 2.0.
Header: Declared in Ws2spLh.

WPUQueryBlockingCallback
The WPUQueryBlockingCallback function returns a pOinter to a callback function the
service provider should invoke periodically while servicing blocking operations.

Parameters
dwCatalogEntryld

[in] Descriptor identifying the calling service provider.

IplpfnCal/back .
[out] Pointer that receives the blocking callback function.

IpdwContext
[out] Pointer that receives a context value that the service provider must pass into the
blocking callback.

IpErmo
[out] Pointer to the error code.

Return Values
If no error occurs, WPUQueryBlockingCallback returns zero and stores a pOinter to a
blocking callback function in IpfnCal/back and an associated context value in
IpdwContext. Otherwise, it returns SOCKET . .:ERROR, and a specific error code is
available in IpErmo.

Remarks
The WPUQueryBlockingCallback function returns a pOinter to a callback function in
IpfnCal/backto be invoked periodically during blocking operations. This function also
returns a context value in IpdwContextto be passed into the blocking callback.

530 Volume 1 Winsock and QOS

Under Win32, this function can return NULL in IpfnCallback, indicating that no user
defined-blocking hook is installed. In this case, the service provider should use the
native Win32 synchronization objects to implement blocking.

LPBLOCKINGCALLBACK is defined as follows:

The blocking callback will return TRUE if the service provider is to continue waiting for
the blocking operation to complete. It will return FALSE if the blocking operation has
been canceled with the WSPCancelBlockingCall.

Any missing components of the address will default to a reasonable value if possible. For
example, a missing port number will default to zero.

Error Codes
Error code Meaning

WSAEFAUL T The IpfnCallback or the IpdwContext argument is not a valid part of the
process address space.

WSAEINVAL The dwCatalogEntryld is invalid.

Version: Requires Windows Sockets 2.0.
Header: Declared in Ws2spi.h.

WSPCancelBlockingCal1

WPUQuerySocketHandleContext
The WPUQuerySocketHandleContext function queries the context value associated
with the specified socket handle.

Parameters
s

[in] Descripton identifying the socket whose context is to be queried.

Chapter 11 Winsock 2 SPI Reference 531

IpContext
[out] Pointer that will receive the context value.

IpErmo
[out] Pointer to the error code.

Return Values
If no error occurs, WPUQuerySocketHandleContext returns zero and stores the current
context value in IpContext. Otherwise, it returns SOCKET_ERROR, and a specific error
code is available in IpErmo.

Remarks
The WPUQuerySocketHandleContext function queries the current context value
associated with the specified socket handle. Service providers typically use this function
to retrieve a pOinter to provider-specific data associated with the socket. For example, a
service provider can use the socket context to store a pOinter to a structure containing
the socket's state, local and remote transport addresses, and event objects for Signaling
network events.

This function is only used by non-IFS providers since IFS providers are not able to
supply a context value.

Error Codes
Error code Meaning

WSAENOTSOCK Descriptor is not a socket created by WPUCreateSocketHandle.

Version: Requires Windows Sockets 2.0.
Header: Declared in Ws2spLh.

WPUCreateSocketHandle

WPUQueueApc
The WPUQueueApc function queues a user mode-asynchronous procedure call (APC)
to the specified thread in order to facilitate invocation of overlapped 1/0 completion
rOl,ltines.

532 Volume 1 Winsock and QOS

(continued)

Parameters
JpThreadJd

[in] Pointer to a WSATHREADID structure that identifies the thread context. A pOinter
to this structure is supplied to the service provider by the WS2_32.dll as an input
parameter to an overlapped operation. The provider should store the WSATHREADID
structure locally and provide a pointer to this local store. The local copy of
WSATHREADID is no longer needed once WPUQueueApc returns.

JpfnUserApc
[in] Points to the APC function to be called.

dwContext
[in] 32-bit context value that is subsequently supplied as an input parameter to the
APC function.

JpErmo
[out] Pointer to the error code.

Return Values
If no error occurs, WPUQueueApc returns zero and queues the completion routine for
the specified thread. Otherwise, it returns SOCKET_ERROR, and a specific error code is
available in JpErmo.

Remarks
This function queues an APC function against the specified thread. Under Win32, this
will be done using a user mode-asynchronous procedure call (APC). The APC will only
execute when the specified thread is blocked in an alertable wait. For Win16, a callback
will be made directly. In Win16 environments, this call is safe for use within an
interrupt context.

LPWSAUSERAPC is defined as follows:

Because the APC mechanism supports only a single 32-bit context value, JpfnUserApc
itself cannot be the client specified....;..completion routine, which involves more
parameters. The service provider must instead supply a pointer to its own APC function
that uses the supplied dwContextvalue to access the needed result information for the
overlapped operation, and then invokes the client specified-completion routine.

For service providers where a user-mode component implements overlapped I/O, a
typical usage of the APC mechanism is as follows.

Chapter 11 Winsock 2 SPI Reference 533

1. When the I/O operation completes, the provider allocates a small buffer and packs it
with a pOinter to the client-supplied completion procedure and parameter values to
pass to the procedure.

2. It queues an APe, specifying the pOinter to the buffer as the dwContextvalue and its
own intermediate procedure as the target procedure IpfnUserApc.

3. When the target thread eventually enters alertable wait state, the service provider's
intermediate procedure is called in the proper thread context.

4. The intermediate procedure simply unpacks parameters, deallocates the buffer, and
calls the client-supplied completion procedure.

Error Codes
Error code

WSAEFAULT

Meaning

The dwThreadld does not specify a valid thread.

Version: Requires Windows Sockets 2.0.
Header: Declared in Ws2spLh.

WSPSend, WSPSendTo, WSPRecv, WSPRecvFrom, WSPloctl

WPUResetEvent
The WPUResetEvent function resets the state of the specified event object to
nonsignaled. In Win16 environments, this call is safe for use within interrupt context.

Parameters
hEvent

[in] Handle that identifies an open event object.

IpErmo
[out] Pointer to the error code.

Return Values
If no error occurs, the WPUResetEvent function returns the value TRUE. Otherwise,
FALSE is returned, and a specific error code is available in IpErmo.

534 Volume 1 Winsock and QOS

Error Codes
Error code Meaning

The hEv(!Jnt is not a valid event object handle.

Version: Requires Windows Sockets 2.0.
Header: Declared in Ws2spLh.

WPUCreateEvent, WPUSetEvent, WPUCloseEvent

WPUSetEvent
The WPUSetEvent function sets the state of the specified event object to signaled. In
Win16 environments, this call is safe for use within interrupt context.

Parameters
hEvent

[in] Handle that identifies an open event object.

IpErmo
[out] Pointer to the error code.

Return Values
If no error occurs, the WPUSetEvent function returns the value TRUE. Otherwise,
FALSE is returned, and a specific error code is available in IpErmo.

Error Codes
Error code Meaning

The hEvent is not a valid event object handle.

Version: Requires Windows Sockets 2.0.
Header: Declared in Ws2spLh.

Chapter 11 Winsock 2 SPI Reference 535

WPUCreateEvent, WPUResetEvent, WPUCloseEvent

W5CDeinstailProvider
The WSCDeinstaliProvider function removes the specified transport provider from the
system configuration database.

Parameters
JpProviderid

[in] Globally unique identifier of the provider to deinstall. This value is stored within
each WSAPROTOCOL_INFOW structure.

JpErmo
[out] Pointer to the error code.

Return Values
If no error occurs, WSCDeinstaliProvider returns zero. Otherwise, it returns
SOCKET_ERROR, and a: 'specific error code is available in JpErmo.

Remarks
The WSCDeinstaliProvider function removes the common Windows Sockets 2
configuration information for the specified provider. After this routine completes
successfully, the configuration information stored in the registry will be changed.
However, any Ws2_32.dll instances currently in memory will not be able to see this
change.

The caller of this function must remove any additional files or service provider-specific
configuration information that is needed to completely de-install the service provider.

Error Codes
Error code

WSAEINVAL

WSAEFAULT

Meaning

The JpProviderJd does not specify a valid provider.

The {pErmo is not in a valid part of the user address space.

536 Volume 1 Winsock and QOS

Version: Requires Windows Sockets 2.0.
Header: Declared in Ws2spi.h.
Library: Use Ws2_32.1ib.

WSClnstaliProvider, WSCEnumProtocols

WSCEnableNSProvider
The WSCEnableNSProvider function changes the state of a given name-space
provider. It is intended to give the end user the ability to change the state of the name
space providers through Control Panel.

Parameters
IpProviderld

[in] Locally unique identifier for this provider.

tEnable
[in] Boolean value that, if TRUE, the provider is set to the active state. If FALSE, the
provider is disabled and will not be available for query operations or
service registration.

Return Values
If no error occurs, the WSCEnableNSProvider function returns NO_ERROR (zero).
Otherwise, it returns SOCKET_ERROR and must set the appropriate error code using
SetLastError.

Remarks
The name space configuration functions do not affect applications that are already
running. Newly installed name-space providers will not be visible to applications nor will
the changes in a name-space provider's activation state. Applications launched after the
call to WSCEnableNSProvider will see the changes.

The WSCEnableNSProvider function is intended to be used by the Control Panel to
change the state of the providers. An ISV should not just blindly de-activate another
ISV's provider in order to activate its own. The choice should be left to the user.

Error Codes
Error code Meaning

Chapter 11 Winsock 2 SPI Reference 537

WSAEINVAL The specified name-space-provider identifier is invalid.

Version: Requires Windows Sockets 2.0.
Header: Declared in Ws2spLh.
Library: Use Ws2_32.lib.

WSCEnumProtocols
The WSCEnumProtocols function retrieves information about available transport
protocols.

Parameters
IpiProtoco/s

[in] Null-terminated array of iProtoco/values. This parameter is optional; if IpiProtoco/s
is NULL, information on all available protocols is returned. Otherwise, information is
retrieved only for those protocols listed in the array.

IpProtocolBuffer
[out] Buffer that is filled with WSAPROTOCOL_INFOW structures.

IpdwBufferLength
[in/out] On input, the count of bytes in the IpProtocolBuffer buffer passed to
WSCEnumProtocols. On output, the minimum buffer size that can be passed to
WSCEnumProtocols to retrieve all the requested information.

IpErmo
[out] Pointer to the error code.

Return Values
If no error occurs, WSCEnumProtocols returns the number of protocols to be reported
on. Otherwise, a value of SOCKET_ERROR is returned and a specific error code is
available in IpErmo.

538 Volume 1 Winsock and QOS

Remarks
This function is used to discover information about the collection of transport protocols
installed on the local machine. This function differs from its API counterpart
(WSAEnumProtocols) in that WSAPROTOCOL_INFOW structures for all installed
protocols, including layered protocols, can be obtained. (WSAEnumProtocols only
returns information on base protocols and protocol chains.) The IpiProtocols parameter
can be used as a filter to constrain the amount of information provided. Typically, a
NULL pointer is supplied so the function will return information on all available
transport protocols.

A WSAPROTOCOL_INFOW structure is provided in the buffer pointed to by
IpProtocolBufferfor each requested protocol. If the supplied buffer is not large enough
(as indicated by the input value of IpdwBufferLength), the value pointed to by
IpdwBufferLength will be updated to indicate the required buffer size. The Windows
Sockets SPI client should then obtain a large enough buffer and call this function again.
The WSCEnumProtocols function cannot enumerate over multiple calls; the passed-in
buffer must be large enough to hold all expected entries in order for the function to
succeed. This reduces the complexity of the function and should not pose a problem
because the number of protocols loaded on a machine is typically small.

The order in which the WSAPROTOCOL_INFOW structures appear in the buffer
coincides with the order in which the protocol entries were registered by the service
provider with the Ws2_32.dll, or with any subsequent reordering that may have occurred
through the Windows Sockets applet supplied for establishing default
transport providers.

Error Codes
Error code

WSAEFAULT

WSAEINVAL

WSAENOBUFS

Meaning

One of more of the arguments is not in a valid part of the user
address space.

Indicates that one of the specified parameters was invalid.

Buffer length was too small to receive all the relevant
WSAPROTOCOL_INFOW structures and associated information.
Pass in a buffer at least as large as the value returned
in IpdwBufferLength.

Version: Requires Windows Sockets 2.0.
Header: Declared in Ws2spLh.
Library: Use Ws2_32.lib.

Chapter 11 Winsock 2 SPI Reference 539

WSCGetProviderPath
The WSCGetProviderPath function retrieves the DLL path for the specified provider.

Parameters
IpProviderld

[in] Locally unique identifier of the provider. This value is obtained by using
WSCEnumProtocols.

IpszProviderDIIPath
[out] Pointer to a buffer into which the provider DLL's path string is returned. The path
is a null-terminated string and any embedded environment strings, such
as %SystemRoot%, have not been expanded.

IpProviderDIIPathLen
[in/out] Size of the buffer pOinted to by the IpszProviderDIIPath parameter.

IpErmo
[out] Pointer to the error code.

Return Values
If no error occurs, WSCGetProviderPath returns zero. Otherwise, it returns
SOCKET_ERROR. The specific error code is available in IpErmo.

Remarks
The WSCGetProviderPath function retrieves the DLL path for the specified provider.
The DLL path can contain embedded environment strings, such as %SystemRoot%, and
thus should be expanded prior to being used with the Win32 LoadLibrary function.
For more information, see LoadLibrary.

Error Codes
Error code

WSAEINVAL

WSAEFAULT

Meaning

The IpProviderid parameter does not specify a valid provider.

The IpszProviderDIIPath or IpErmo parameter is not in a valid part
of the user address space, or IpProviderDIIPathLen is too small.

540 Volume 1 Winsock and QOS

Version: Requires Windows Sockets 2.0.
Header: Declared in Ws2spi.h.
Library: Use Ws2_32.lib.

WSClnstaliProvider, WSCEnumProtocols

WSClnstallNameSpace
The WSClnstaliNameSpace function installs a name-space provider. For providers that
are able to support multiple names spaces, this function must be called once for every
name space supported, and a unique provider identifier must be supplied each time.

Parameters
Ipszldentifier

[in] Pointer to a string that identifies the provider for use in the GUID.

IpszPathName
[in] Pointer to a string that contains the path to the provider's DLL image. The string
observes the usual rules for path resolution: this path can contain embedded
environment strings (such as %SystemRoot%). Such environment strings are
expanded whenever the Ws2_32.dll needs to subsequently load the provider DLL
on behalf of an application. After any embedded environment strings are expanded,
the Ws2_32.dll passes the resulting string into the LoadLibrary function to load the
provider into memory. For more information, see Load Li brary.

dwNameSpace
[in] Descriptor that specifies the name space supported by this provider.

dwVersion
[in] Descriptor that specifies the version number of the provider.

IpProviderld
[in] Unique identifier for this provider. This GUID should be generated
by Uuidgen.exe.

Chapter 11 Winsock 2 SPI Reference 541

Return Values
If no error occurs, the WSClnstallNameSpace function returns NO_ERROR (zero).
Otherwise, it returns SOCKET_ERROR if the function fails, and it must set the
appropriate error code using SetLastError.

Remarks
The name space configuration functions do not affect applications that are already
running. Newly installed name-space providers will not be visible to applications nor will
the changes in a name-space provider's activation state. Applications launched after the
call to WSClnstallNameSpace will see the changes.

Error Codes
Error code

WSAEACCESS

Meaning

Calling routine does not have sufficient privileges to install
a name space.

Version: Requires Windows Sockets 2.0.
Header: Declared in Ws2spi.h.
Library: Use Ws2_32.lib.

WSClnstaliProvider
The WSClnstallProvider function installs the specified transport provider into the
system configuration database.

Parameters
IpProviderld

[in] Pointer to a provider-selected, globally unique identifier (GUID).

IpszProviderDIIPath
[in] Pointer to a string containing the load path to the provider's DLL. This string
observes the usual rules for path resolution and can contain embedded environment
strings (such as %SystemRoot%). Such environment strings are expanded whenever
the Ws2_32.dll needs to subsequently load the provider DLL on behalf of an

542 Volume 1 Winsock and QOS

application. After any embedded environment strings are expanded, the Ws2_32.dll
passes the resulting string into the LoadLibrary function to load the provider into
memory. For more information, see LoadLibrary.

IpProtocollnfoList
[in] Points to an array of WSAPROTOCOL_INFOW structures. Each structure defines
a protocol, address_family, and sockeUype supported by the provider.

dwNumberOfEntries
[in] Contains the number of entries in the IpProtocol/nfoList array.

IpErmo
[out] Pointer to the error code.

Return Values
If no error occurs, WSClnstaliProvider returns zero. Otherwise, it returns
SOCKET_ERROR, and a specific error code is available in IpErmo.

Remarks
This routine creates the necessary common Windows Sockets 2 configuration
information for the specified provider. It is applicable to base protocols, layered
protocols, and protocol chains. After this routine completes successfully, the protocol
information provided in IpProtocollnfoListwili be returned by the WSAEnumProtocols.
Note that in Win32 environments, only instances of the Ws2_32.dll created after
a successful completion of this function will include the new entries in
WSAEnumProtocols.

Any file installation or service provider-specific configuration must be performed by the
caller.

Error Codes
Error code

WSAEFAULT

Meaning

One or more of the arguments is not in a valid part of the user
address space.

Version: Requires Windows Sockets 2.0.
Header: Declared in Ws2spi.h.
Library: Use Ws2_32.lib.

WSCDeinstaliProvider, WSCEnumProtocols

Chapter 11 Winsock 2 SPI Reference 543

WSCUnlnstallNameSpace
The WSCUnlnstaliNameSpace function uninstalls the indicated name-space provider.

Parameters
IpProviderld

[in] Unique identifier for this provider.

Return Values
If no error occurs, WSCUnlnstaliNameSpace returns NO_ERROR (zero). Otherwise, it
returns SOCKET_ERROR and must set the appropriate error code using SetLastError.

Remarks
The name space configuration functions do not affect applications that are already
running. Newly installed name-space providers will not be visible to applications nor will
the changes in a name-space provider's activation state. Applications launched after the
call to WSCUnlnstaliNameSpace will see the changes.

Error Codes
Error code

WSAEINVAL

Meaning

Specified name-space-provider identifier is invalid.

Version: Requires Windows Sockets 2.0.
Header: Declared in Ws2spi.h.
Library: Use Ws2_32.lib.

WSCWriteProviderOrder
The WSCWriteProviderOrder function is used to reorder the available transport
providers. The order of the protocols determines the priority of a protocol when being
enumerated or selected for us.

544 Volume 1 Winsock and QOS

Parameters
IpwdCatalogEntryld

[in] Array of CatalogEntryld elements found in the WSAPROTOCOL_INFO structure.
The order of the CatalogEntryld elements is the new priority ordering for
the protocols.

dwNumberOfEntries
[in] Number of elements in the IpwdCatalogEntryld array.

Return Values
The function returns ERROR_SUCCESS (zero) if the routine is successful. Otherwise, it
returns a specific error code.

Remarks
The order in which transport service providers are initially installed governs the order in
which they are enumerated through WSCEnumProtocols at the service provider
interface, or through WSAEnumProtocols at the application interface. More importantly,
this order also governs the order in which protocols and service providers are considered
when a client requests creation of a socket based on its address family, type, and
protocol identifier.

Windows Sockets 2 includes an application called Sporder.exe that allows the catalog of
installed protocols to be reordered interactively after protocols have already been
installed. Windows Sockets 2 also includes an auxiliary DLL, Sporder.dll that exports this
procedural interface for reordering protocols. This interface can be imported by linking
with Sporder.lib.

Here are scenarios in which the WSCWriteProviderOrder function can fail.

• The dwNumberOfEntries parameter is not equal to the number of registered service
providers.

• The IpwdCatalogEntryld contains an invalid catalog identifier.

• The IpwdCatalogEntryld does not contain all valid catalog identifiers exactly one time.

• The routine is not able to access the registry for some reason (for example,
inadequate user permissions).

• Another process (or thread) is currently calling the function.

Error Codes
Error code

WSAEINVAL

ERROR_BUSY

(other)

Meaning

Input parameters were bad, no action was taken.

Routine is being called by another thread or process.

Routine may return any registry error code.

Version: Requires Windows Sockets 2.0.
Header: Declared in Sporder.h.
Library: Included as a resource in Sporder.dll.

WSPAccept

Chapter 11 Winsock 2 SPI Reference 545

The W5PAccept function conditionally accepts a connection based on the return value
of a condition function.

Parameters
s

[in] Descriptor identifying a socket that is listening for connections after a W5PListen.

addr
[out] Optional pointer to a buffer that receives the address of the connecting entity, as
known to the service provider. The exact format of the addr argument is determined
by the address family established when the socket was created.

addrlen
[in/out] Optional pointer to an integer that contains the length of the addr parameter.

IpfnCondition
[in] Procedure instance address of an optional-condition function furnished by
Windows Sockets. This function is used in the accept or reject decision based on the
caller information passed in as parameters.

dwCallbackData
[in] Callback data to be passed back to the Windows Socket 2 client as the value of
the dwCallbackData parameter of the condition function. This parameter is not
interpreted by the service provider.

IpErmo
[out] Pointer to the error code.

546 Volume 1 Winsock and QOS

Return Values
If no error occurs, WSPAccept returns a value of type SOCKET that is a descriptor for
the accepted socket. Otherwise, a value of INVALID_SOCKET is returned, and a
specific error code is available in IpErmo.

Remarks
The WSPAccept function extracts the first connection on the queue of pending
connections on socket s, and checks it against the condition function, provided the
condition function is specified (that is, not NULL). The condition function must be
executed in the same thread as this routine. If the condition function returns
CF _ACCEPT, WSPAccept creates a new socket.

Newly created sockets have the same properties as the socket s, including network
events registered with WSPAsyncSelect or with WSPEventSelect. As described in
Descriptor Allocation, when new socket descriptors are allocated, IFS providers must call
WPUModifylFSHandle and non-IFS providers must call WPUCreateSocketHandle.

If the condition function returns CF _REJECT, WSPAccept rejects the connection
request. If the application's accepVreject decision cannot be made immediately, the
condition function will return CF _DEFER to indicate that no decision has been made. No
action about this connection request is to be taken by the service provider. When the
application is ready to take action on the connection request, it will invoke WSPAccept
again and return either CF _ACCEPT or CF _REJECT as a return value from the
condition function.

For sockets that are in the (default) blocking mode, if no pending connections are
present on the queue, WSPAccept blocks the caller until a connection is present. For
sockets in nonblocking mode, if this function is called when no pending connections are
present on the queue, WSPAccept returns the error code WSAEWOULDBLOCK. The
accepted socket cannot be used to accept more connections. The original socket
remains open.

The argument addr is a result parameter that is filled with the address of the connecting
entity, as known to the service provider. The exact format of the addr parameter is
determined by the address family in which the communication is occurring. The addrlen
is a value-result parameter; it will initially contain the amount of space pointed to by addr.
On return, it must contain the actual length (in bytes) of the address returned by the
service provider. This call is used with connection-oriented socket types such as
SOCK_STREAM. If addrand/or addr/en are equal to NULL, then no information about
the remote address of the accepted socket is returned. Otherwise, these two parameters
shall be filled in regardless of whether the condition function is specified or
what it returns.

The prototype of the condition function is as follows.

Chapter 11 Winsock 2 SPI Reference 547

The IpCal/erld and IpCal/erData are value parameters that must contain the address of
the connecting entity and any user data that was sent along with the connection request.
If no caller identifier or caller data is available, the corresponding parameter will be
NULL. Many network protocols do not support connect-time caller data. Most
conventional network protocols can be expected to support caller identifier information at
connection-request time. The bufpart of the WSABUF pOinted to by IpCal/erldpoints to
a SOCKADDR. The SOCKADDR is interpreted according to its address family (typically
by casting the SOCKADDR to some type specific to the address family).

The IpSOOS parameter references the flow specifications for socket s specified by the
caller, one for each direction, followed by any additional provider-specific parameters.
The sending or receiving flow specification values will be ignored as appropriate for any
unidirectional sockets. A NULL value for IpSOOS indicates that there is no caller
supplied QOS and that no negotiation is possible. A non-NULL IpSOOS pointer indicates
thata QOS negotiation is to occur or that the provider is prepared to accept the QOS
request without negotiation.

The IpCal/eeld is a value parameter that contains the local address of the connected
entity. The buf part of the WSABUF pointed to by /pCal/eeld points to a SOCKADDR.
The SOCKADDRis interpreted according to its address family (typically by casting the
SOCKADDR to some type specific to the address family).

The IpCal/eeData is a result parameter used by the condition function to supply user
data back to the connecting entity. The storage for this data must be provided by the
service provider. The IpCal/eeData->len initially contains the length of the buffer
allocated by the service provider and pointed to by IpCalleeData->buf. Avalue of zero
means passing user data back to the caller is not supported. The condition function will
copy up to IpCal/eeData->len bytes of data into IpCal/eeData->buf, and then update
IpCal/eeData->len to indicate the actual number of bytes transferred. If no user data is to
be passed back to the caller, the condition function will set IpCalleeData->len to zero.
The format of all address and user data is specific to the address family to which the
socket belongs.

The dwCal/backData parameter value passed to the condition function is the value
passed as the dwCal/backData parameter in the original WSPAccept call. Thisvalue is
interpreted only by the Windows Sockets 2 client. This allows a client to pass some

548 Volume 1 Winsock and QOS

context information from the WSPAccept call site through to the condition function,
which provides the condition function with any additional information required to
determine whether to accept the connection. A typical usage is to pass a (suitably cast)
pOinter to a data structure containing references to application-defined objects with
which this socket is associated.

Error Codes
Error code Meaning

WSAECONNREFUSED Connection request was forcefully rejected as indicated in the
return value of the condition function (CF _REJECT).

WSAENETDOWN Network subsystem has failed.

WSAEFAUL T The addrlen argument is too small or the IpfnCondition is not
part of the user address space.

WSAEINTR (Blocking) call was canceled through
WSPCancelBlockingCall.

WSAEINPROGRESS Blocking Windows Sockets call is in progress.

WSAEINVAL WSPListen was not invoked prior to WSPAccept, parameter
9 specified in the condition function is not a valid value, the
return value of the condition function is not a valid one, or any
case where the specified socket is in an invalid state.

WSAEMFILE Queue is nonempty upon entry to WSPAccept and there are
no socket descriptors available.

WSAENOBUFS No buffer space is available.

WSAENOTSOCK Descriptor is not a socket.

WSAEOPNOTSUPP Referenced socket is not a type that supports connection
oriented service.

WSATRY _AGAIN Acceptance of the connection request was deferred as
indicated in the return value of the condition function
(CF _DEFER).

WSAEWOULDBLOCK Socket is marked as nonblocking and no connections are
present to be accepted.

WSAEACCES Connection request that was offered has timed out or been
withdrawn.

Version: Requires Windows Sockets 2.0.
Header: Declared in Ws2spi.h.

Chapter 11 Winsock 2 SPI Reference 549

WSPAccept, WSPBind, WSPConnect, WSPGetSockOpt, WSPListen, WSPSelect,
WSPSocket, WSPAsyncSelect, WSPEventSelect

WSPAddressToString
The WSPAddressToString function converts all components of a SOCKADDR
structure into a human readable-numeric string representation of the address. This is
used mainly for display purposes.

Parameters
IpsaAddress

[in] Points to a SOCKADDR structure to translate into a string.

dwAddressLength
[in] Length of the address SOCKADDR.

IpProtocol/nfo
[in] (required) WSAPROTOCOL_INFO structure associated with the provider that will
do the translation.

IpszAddressString
[out] Buffer that receives the human readable-address string.

IpdwAddressStringLength
[in/out] Length of the AddressString buffer. Returns the length of the string actually
copied into the buffer. If the supplied buffer is not large enough, the function fails with
a specific error of WSAEFAUL T and this parameter is updated with the required size
in bytes.

IpErmo
[out] Pointer to the error code.

Return Values
If no error occurs, WSPAddressToString returns zero. Otherwise, it returns
SOCKET_ERROR, and a specific error code is available in IpErmo.

550 Volume 1 Winsock and QOS

Layered Service Provider Considerations
A layered service provider supplies an implementation of this function, but it is also a
client of this function if and when it calls WSPAddressToString of the next layer in the
protocol chain. Some special considerations apply to the IpProtocol/nfo parameter as it is
propagated down through the layers of the protocol chain.

If the next layer in the protocol chain is another layer, then, when the next layer's
WSPAddressToString is called, this layer must pass to the next layer a IpProtocol/nfo
parameter that references the same unmodified WSAPROTOCOL_INFO structure with
the same unmodified chain information. However, if the next layer is the base protocol
(that is, the last element in the chain), this layer performs a substitution when calling the
base provider's WSPAddressToString. In this case, the base provider's
WSAPROTOCOL_INFO structure should be referenced by the IpProtocollnfo parameter.
One vital benefit of this policy is that base service providers do not have to be aware of
protocol chains.

This same propagation policy applies when propagating a WSAPROTOCOL_INFO
structure through a layered sequence of other functions such as WSPDuplicateSocket,
WSPStartup, WSPSocket, or WSPStringToAddress.

Error Codes
Error code

WSAEFAULT

WSA_EINVAL

Meaning

Specified AddressString buffer is too small. Pass in a larger buffer.

Specified Address is not a valid socket address, or its address family
is not supported by the provider, or the specified IpProtocol/nfo did not
refer to a WSAPROTOCOL_INFO structure supported by the
provider.

Version: Requires Windows Sockets 2.0.
Header: Declared in Ws2spLh.

WSPAsyncSelect
The WSPAsyncSelect function requests Windows message-based event notification of
network events for a socket.

Parameters
s

Chapter 11 Winsock 2 SPI Reference 551

[in] Descriptor identifying the socket for which event notification is required.

hWnd
[in] Handle identifying the window that should receive a message when a network
event occurs.

wMsg
[in] Message to be sent when a network event occurs.

IEvent
[in] Bitmask that specifies a combination of network events in which the Windows
Sockets SPI client is interested.

IpErmo
[out] Pointer to the error code.

This function is used to request that the service provider send a Windows message to
the client's window hWnd whenever it detects any of the network events specified by the
IEvent parameter. The service provider should use the WPUPostMessage function to
post the message. The message to be sent is specified by the wMsg parameter. The
socket for which notification is required is identified by s.

This function automatically sets socket s to non blocking mode, regardless of the value of
IEvent. See WSPloctl about how to set the socket back to blocking mode.

The IEvent parameter is constructed by using the bitwise OR operator with any of the
values specified in the following table.

Value

FD_READ

FD_WRITE

FD_OOB

FD_ACCEPT

FD_CONNECT

FD_CLOSE

FD_OOS

FD_GROUP _OOS

FD_ROUTING_
INTERFACE_CHANGE

FD_ADDRESS_
LIST_CHANGE

Meaning

Issues notification of readiness for reading.

Issues notification of readiness for writing.

Issues notification of the arrival of OOB data.

Issues notification of incoming connections.

Issues notification of completed connections.

Issues notification of socket closure.

Issues notification of socket (OOS) changes.

Reserved.

Issues notification of routing interface change for the
specified destination.

Issues notification of local address list change for the
socket's protocol family.

552 Volume 1 Winsock and QOS

Invoking WSPAsyncSelect for a socket cancels any previous WSPAsyncSelect or
WSPEventSelect for the same socket. For example, to receive notification for both
reading and writing, the Windows Sockets SPI client must call WSPAsyncSelect with
both FD_READ and FD_WRITE, as follows:

It is not possible to specify different messages for different events. The following code
will not work; the second call will cancel the effects of the first, and only FD_WRITE
events will be reported with message wMsg2:

To cancel all notification (for example, to indicate that the service provider should send
no further messages related to network events on the socket) IEventwili be set to zero:

Since a socket created by WSPAccept has the same properties as the listening socket
used to accept it, any WSPAsyncSelect events set for the listening socket apply to the
accepted socket. For example, if a listening socket has WSPAsyncSelect events
FD_ACCEPT, FD_READ and FD_WRITE, then any socket accepted on that listening
socket will also have FD_ACCEPT, FD_READ, and FD_WRITE events with the same
wMsg value used for messages. If a different wMsg or events are needed, the Windows
Sockets SPI client must call WSPAsyncSelect, passing the accepted socket and the
new information.

When one of the nominated network events occurs on the specified socket s, the service
provider uses WPUPostMessage to send message wMsg to the Windows Sockets SPI
client's window hWnd. The wParam argument identifies the socket on which a network
event has occurred. The low word of IParam specifies the network event that has
occurred. The high word of IParam contains any error code. The error code can be any
error as defined in Ws2spi.h.

The possible network event codes that may be indicated are shown in the following
table.

Value

FD_READ

FD_WRITE

FD_OOB

FD_ACCEPT

FD_CONNECT

FD_CLOSE

FD_OOS

Meaning

Socket s ready for reading.

Socket s ready for writing.

OOB data ready for reading on socket s.

Socket s ready for accepting a new incoming connection.

Connection initiated on socket s completed.

Connection identified by socket s has been closed.

OOS associated with socket s has changed.

Value

FD_GROUP _OOS

FD_ROUTING
INTERFACE_CHANGE

FD_ADDRESS
LIST_CHANGE

Return Values

Chapter 11 Winsock 2 SPI Reference 553

Meaning

Reserved.

Local interface that should be used to send to the specified
destination has changed.

List of addresses of the socket's protocol family to which the
Windows Socket SPI client can bind has changed.

The return value is zero if the Windows Sockets SPI client's declaration of interest in the
network event set was successful. Otherwise, the value SOCKET_ERROR is returned,
and a specific error code is available in /pErmo.

Remarks
Although WSPAsyncSelect can be called with interest in multiple events, the service
provider issues the same Windows message for each event.

A Windows Sockets 2 provider will not continually flood a Windows Sockets SPI client
with messages for a particular network event. Having successfully posted notification of
a particular event to a Windows Sockets SPI client window, no further message(s) for
that network event will be posted to the window until the Windows Sockets SPI client
makes the function call that implicitly reenables notification of that network event.

Event Re-enabling function

FD_READ

FD_WRITE

FD_OOB

FD_ACCEPT

FD_CONNECT

FD_CLOSE

FD_OOS

FD_GROUP _OOS

FD_ROUTING
INTERFACE_CHANGE

FD_ADDRESS_
LIST_CHANGE

WSPRecv or WSPRecvFrom

WSPSend or WSPSendTo

WSPRecv or WSPRecvFrom

WSPAccept unless the error code returned is
WSATRY _AGAIN indicating that the condition function
returned CF _DEFER

None

None

WSPloctl with SIO_GET _OOS

Reserved.

WSPloctl with command
SIO_ROUTING_INTERFACE_CHANGE

WSPloctl with command SIO_ADDRESS_L1ST _CHANGE

Any call to the reenablingroutine, even one that fails, results in reenabling of message
posting for the relevant event.

554 Volume 1 Winsock and QOS

For FD_READ, FD_OOB, and FD_ACCEPT events, message posting is level-triggered.
This means if the reenabling routine is called and the relevant condition is still met after
the call, a WSPAsyncSelect message is posted to the Windows Sockets SPI client.

The FD_QOS event is considered edge triggered. A message will be posted exactly
once when a QOS change occurs. Further messages will not be forthcoming until either
the provider detects a further change in quality of service or the Windows Sockets SPI
client renegotiates the quality of service for the socket.

The FD_ROUTING_INTERFACE_CHANGE and FD_ADDRESS_LlST _CHANGE events
are considered edge triggered as well. A message will be posted exactly once when a
change occurs after the Windows Socket 2 SPI client has requested the notification by
issuing WSPloctl with SIO_ROUTING_INTERFACE_CHANGE or
SIO_ADDRESS_LlST _CHANGE correspondingly. Further messages will not be
forthcoming until the SPI client reissues the 10CTL and another change is detected since
the 10CTL has been issued.

If any event has already occurred when the Windows Sockets SPI client calls
WSPAsyncSelect or when the reenabling function is called, then an appropriate
message is posted. For example, consider the following sequence:

• An SPI client calls WSPListen.

• A connect request is received but not yet accepted.

• The Windows Sockets SPI client calls WSPAsyncSelect specifying that it wants to
receive FD_ACCEPT messages for the socket.

Due to the persistence of events, the Windows Sockets service provider posts an
FD_ACCEPT message immediately.

The FD_WRITE event is handled slightly differently. An FD_WRITE message is posted
when a socket is first connected with WSPConnect (after FD_CONNECT, if also
registered) or accepted with WSPAccept, and then after a WSPSend or WSPSendTo
fails with WSAEWOULDBLOCK and buffer space becomes available. Therefore, a
Windows Sockets SPI client can assume that sends are possible starting from the first
FD_WRITE message and lasting until a send returns WSAEWOULDBLOCK. After such
a failure the Windows Sockets SPI client will be notified that sends are again possible
with an FD_WRITE message.

The FD_OOB event is used only when a socket is configured to receive OOB data
separately. If the socket is configured to receive OOB data inline, the OOB (expedited)
data is treated as normal data and the Windows Sockets SPI client must register an
interest in FD_READ events, not FD_OOB events.

The error code in an FD_CLOSE message indicates whether the socket close was
graceful or abortive. If the error code is zero, then the close was graceful; if the error
code is WSAECONNRESET, then the socket's virtual circuit was reset. This only applies
to connection-oriented sockets such as SOCK_STREAM.

Chapter 11 Winsock 2 SPI Reference 555

The FD_CLOSE message is posted when a close indication is received for the virtual
circuit corresponding to the socket. In TCP terms, this means the FD_CLOSE is posted
when the connection goes into the TIME WAIT or CLOSE WAIT states. This results from
the remote end performing a WSPShutdown on the send side or a WSPCloseSocket.
FD_CLOSE shall only be posted after all data is read from a socket.

In the case of a graceful close, the service provider should only send an FD_CLOSE
message to indicate virtual circuit closure after all the received data has been read. It
should not send an FD_READ message to indicate this condition.

The FD_QOS message is posted when any member in the flow specification associated
with socket s has changed, respectively. The service provider must update the QOS
information available to the client through WSPloctl with SIO_GET_QOS.

The FD_ROUTING_INTERFACE_CHANGE message is posted when the local interface
that should be used to reach the destination specified in WSPloctl with
SIO_ROUTING_INTERFACE_CHANGE changes after such 10CTL has been issued.

The FD_ADDRESS_LlST _CHANGE message is posted when the list of addresses to
which the Windows Socket 2 SPI client can bind changes after WSPloctl with
SIO_ADDRESS_LlST _CHANGE has been issued.

Here is a summary of events and conditions for each asynchronous notification
message:

• FD_READ:

• When WSPAsyncSelect is called, if there is data currently available to receive.

• When data arrives, if FD_READ is not already posted.

• After WSPRecv or WSPRecvfrom is called (with or without MSG_PEEK), if data is
still available to receive.

Note When WSPSetSockOpt SO_OOBINLINE is enabled, data includes both
normal data and OOB data in the instances noted in the preceding .

• FD_WRITE:

• When WSPAsyncSelect is called, if a WSPSend or WSPSendTo is possible.

• After WSPConnect or WSPAccept is called, when connection is established.

• After WSPSend or WSPSendTo fails with WSAEWOULDBLOCK, when WSPSend
or WSPSendTo islikely to succeed ..

• After WSPBind on a datagram socket. FD_WRITE mayor may not occur at this
time (implementation dependent). In any case, a connection less socket is always
writeable immediately after WSPBind ..

• FD_OOB: Only valid when WSPSetSockOpt SO_OOBINLINE is disabled (default).

• When WSPAsyncSelect is called, if there is OOB data currently available to
receive with the MSG_OOB flag.

• WhenOOB data arrives, if FD_OOB is not already posted.

556 Volume 1 Winsock and QOS

• After WSPRecv or WSPRecvfrom is called with or without MSG_OOB flag, if OOB
data is still available to receive.

• FD_ACCEPT:

• When WSPAsyncSelect is called, if there is. currently a connection request
available to accept.

• When a connection request arrives, if FD_ACCEPT is not already posted.

• After WSPAccept is called, if there is another connection request available
to accept.

• FD_CONNECT:

• When WSPAsyncSelect is called, if there is currently a connection established.

• After WSPConnect is called, when connection is established (even when
WSPConnect succeeds immediately, as is typical with a datagram socket, and
even when it fails immediately).

• After WSAJoinLeaf is called, when the join operation completes.

• After connect, WSAConnect, or WSAJoinLeaf was called with a nonblocking,
connection-oriented socket. The initial operation returned with a specific error of
WSAEWOULDBLOCK, but the network operation went ahead. Whether the
operation eventually succeeds or not, when the outcome has been determined,
FD_CONNECT happens. The client should check the error code to determine
whether the outcome was a success or failure.

• FD_CLOSE: Only valid on connection-oriented sockets (for example,
SOCK_STREAM):

• When WSPAsyncSelect is called, if socket connection has been closed.

• After the remote system initiated a graceful close, when no data is currently
available to receive (if data has been received and is waiting to be read when the
remote system initiates a graceful close, the FD_CLOSE is not delivered until all
pending data has been read).

• After the local system initiates a graceful close with WSPShutdown and the
remote system has responded with End of Data notification (for example, TCP
FIN), when no data is currently available to receive.

• When the remote system terminates connection (for example, sent TCP RST), and
IParam will contain the WSAECONNRESET error value.

Note FD_CLOSE is not posted after WSPClosesocket is called.

• FD_QOS:

• When WSPAsyncSelect is called, if the OOS associated with the socket has
been changed,

• After WSPloctl with SIO_GET _OOS is called, when the OOS is changed.

• FD_GROUP _QOS: Reserved.

• FD_ROUTING_INTERFACE_CHANGE:

Chapter 11 Winsock 2 SPI Reference 557

• After WSPloctl with SIO_ROUTING_INTERFACE_CHANGE is called, when the
local interface that should be used to reach the destination specified in the
IOCTL changes.

• FD_ADDRESS_LIST _CHANGE:

• After WSPloctl with SIO_ADDRESS_LlST _CHANGE is called, when the list of
local addresses to which the Windows Socket 2 SPI client can bind changes.

Error Codes
Error code Meaning

WSAENETDOWN Network sUbsystem has failed.

WSAEINVAL Indicates that one of the specified parameters was invalid such
as the window handle not referring to an existing window, or
the specified socket is in an invalid state.

WSAEINPROGRESS Blocking Windows Sockets call is in progress, or the service
provider is still processing a callback function.

WSAENOTSOCK Descriptor is not a socket.

Additional error codes can be set when the service provider issues a message to a
Windows Sockets SPI client's window. This error code is embedded in the IParam
member of the message. Possible error codes for each network event are as shown in
the following tables.

Event: FD_CONNECT

Error code

WSAEAFNOSUPPORT

WSAECONNREFUSED

WSAENETUNREACH

WSAEFAULT

WSAEINVAL

WSAEISCONN

WSAEMFILE

WSAENOBUFS

WSAENOTCONN

WSAETIMEDOUT

Meaning

Addresses in the specified family cannot be used with this
socket.

Attempt to connect was forcefully rejected.

Network cannot be reached from this host at this time.

The name/en argument is incorrect.

Socket is already bound to an address.

Socket is already connected.

No more file descriptors are available.

No buffer space is available. The socket cannot be
connected.

Socket is not connected.

Attempt to connect timed out without establishing a
connection.

558 Volume 1 Winsock and QOS

Event: FD_CLOSE

Error code

WSAENETDOWN

WSAECONNRESET

WSAECONNABORTED

Event: FD_READ

Event: FD_WRITE

Event: FD_OOB

Event: FD_ACCEPT

Event: FD_OOS

Event: FD_GROUP _OOS

Meaning

Network subsystem has failed.

Connection was reset by the remote side.

Connection was terminated due to a time-out or other
failure.

Event: FD_ADDRESS_LlST _CHANGE

Error code

WSAENETDOWN

Error code

WSAENETUNREACH

WSAENETDOWN

Meaning

Network subsystem has failed.

Meaning

Specified destination can no longer be reached.

Network subsystem has failed.

Version: Requires Windows Sockets 2.0.
Header: Declared in Ws2spLh.

WSPSelect

WSPBind
The WSPBind function associates a local address (that is, name) with a socket.

Parameters
s

Chapter 11 Winsock 2 SPI Reference 559

[in] Descriptor identifying an unbound socket.

name
[in] Address to assign to the socket. The SOCKADDR structure is defined as follows:

Except for the sa_family member, SOCKADDR contents are expressed in network
byte order. In Windows Sockets 2, the name parameter is not strictly interpreted as a
pointer to a SOCKADDR structure. It is cast this way for Windows Sockets
compatibility. The actual structure is interpreted differently in the context of different
address families. The only requirements are that the first u_short is the address family
and the total size of the memory buffer in bytes is name/en.

name/en
[in] Length of the name.

/pErmo
[out] Pointer to the error code.

Return Values
If no error occurs, WSPBind returns zero. Otherwise, it returns SOCKET_ERROR, and
a specific error code is available in /pErmo.

Remarks
This routine is used on an unconnected connection less or connection-oriented socket,
before subsequent calls to WSPConnect or WSPListen. When a socket is created with
WSPSocket, it exists in a name space (address family), but it has no name or local
address assigned. WSPBind establishes the local association of the socket by assigning
a local name to an unnamed socket.

As an example, in the Internet address family, a name consists of three parts: the
address family, a host address, and a port number that identifies the Windows Sockets
SPI client. In Windows Sockets 2, the name parameter is not strictly interpreted as a
pointer to a SOCKADDR structure. Service providers are free to regard it as a pointer to
a block of memory of size name/en. The first two bytes in this block (corresponding to
sa_family in the SOCKADDR declaration) must contain the address family that was
used to create the socket. Otherwise, the error WSAEFAUL T will be indicated.

560 Volume 1 Winsock and QOS

If a Windows Sockets 2 SPI client does not care what local address is assigned to it, it
will specify the manifest constant value ADDR_ANY for the sa_data member of the
name parameter. This instructs the service provider to use any appropriate network
address. For TCP/IP, if the port is specified as zero, the service provider will assign a
unique port to the Windows Sockets SPI client with a value between 1024 and 5000.
The SPI client can use WSPGetSockName after WSPBind to learn the address and the
port that has been assigned to it. However, note that if the Internet address is equal to
INADDR_ANY, WSPGetSockOpt will not necessarily be able to supply the address until
the socket is connected, since several addresses can be valid if the host is multihomed.

Error Codes
Error code

WSAENETDOWN

WSAEADDRINUSE

WSAEADDRNOTAVAIL

WSAEFAULT

WSAEINPROGRESS

WSAEINVAL

WSAENOBUFS

WSAENOTSOCK

Meaning

Network subsystem has failed.

Some process on the machine has already bound to the same fully
qualified address (for example, IP address and port in the aUnet
case) and the socket has not been marked to allow address reuse
with SO_REUSEADDR. (See the SO_REUSEADDR socket option
under WSPSetSockOpt.)

Specified address is not a valid address for this machine.

Name or the name/en argument is not a valid part of the user address
space, the name/en argument is too small, the name argument
contains incorrect address format for the associated address family, or
the first two bytes of the memory block specified by name do not
match the address family associated with the socket descriptor s.

Function is invoked when a callback is in progress.

Socket is already bound to an address.

Not enough buffers available, too many connections.

Descriptor is not a socket.

Version: Requires Windows Sockets 2.0.
Header: Declared in Ws2spLh.

WSPConnect, WSPListen, WSPGetSockName, WSPSetSockOpt, WSPSocket

WSPCancelBlockingCal1
The WSPCancelBlockingCall function cancels a blocking call that is currently in
progress.

Parameters
/pErmo

[out] Pointer to the error code.

Return Values

Chapter 11 Winsock 2 SPI Reference 561

The value returned by WSPCancelBlockingCali is zero if the operation was
successfully canceled. Otherwise, the value SOCKET_ERROR is returned, and a
specific error code is available in /pErmo.

Remarks
This function cancels any outstanding blocking operation for this thread. It is typically
used in two situations:

• A Windows Sockets SPI client is processing a message that has been received while
a service provider is implementing pseudo blocking. In this case, WSAlsBlocking will
be true.

• A blocking call is in progress and the Windows Sockets service provider has called
back to the Windows Sockets SPI client's blocking hook function (through the callback
function retrieved from WPUQueryBlockingCaliback), which in turn is invoking this
function. Such a situation might arise, for instance, in implementing a Cancel option
for an operation that requires an extended time to complete.

In each case, the original blocking call will terminate as soon as possible with the error
WSAEINTR. (In the first instance the termination will not take place until Windows
message scheduling has caused control to revert back to the pseudo blocking routine in
Windows Sockets. In the second instance, the blocking call will be terminated as soon as
the blocking hook function completes.)

In the case of a blocking WSPConnect operation, Windows Sockets will terminate the
blocking call as soon as possible, but it cannot be possible for the socket resources to
be released until the connection has completed (and then been reset) or timed out. This
is likely to be noticeable only if the Windows Sockets SPI client immediately tries to open
a new socket (if no sockets are available), or to connect to the same peer through a
WSPConnect call.

Canceling a WSPAccept or a WSPSelect call does not adversely impact the sockets
passed to these calls. Only the particular call fails; any operation that was legal before
the cancel is legal after the cancel, and the state of the socket is not affected in any way.

Canceling any operation other than WSPAccept and WSPSelect can leave the socket
in an indeterminate state. If a Windows Sockets SPI client cancels a blocking operation
on a socket, the only operation the Windows Sockets SPI client will be able to perform
on the socket is a call to WSPCloseSocket, although other operations can work on

562 Volume 1 Winsock and aos

some Windows Sockets service providers. If a Windows Sockets SPI client requires
maximum portability, it must be careful not to depend on performing operations after a
cancel operation. A Windows Sockets SPI client can reset the connection by setting the
time-out on SO_LINGER to zero and calling WSPCloseSocket.

If a cancel operation compromised the integrity of a SOCK_STREAM's data stream in
any way, the Windows Sockets provider will reset the connection and fail all future
operations other than WSPCloseSocket with WSAECONNABORTED.

Remarks
It is acceptable for WSPCancelBlockingCall to return successfully if the blocking
network operation completes prior to being canceled. In this case, the blocking operation
will return successfully as if WSPCancelBlockingCall had never been called. The only
way for the Windows Sockets SPI client to know with certainty that an operation was
actually canceled is to check for a return code of WSAEINTR from the blocking call.

Error Codes
Error code Meaning

WSAENETDOWN Network subsystem has failed.

WSAEINVAL Indicates there is no outstanding blocking call.

Version: Requires Windows Sockets 2.0.
Header: Declared in Ws2spi.h.

WSPCleanup
The WSPCleanup function terminates use of the Windows Sockets service provider.

Parameters
JpErmo

[out] Pointer to the error code.

Return Values
The return value is zero if the operation has been successfully initiated. Otherwise, the
value SOCKET_ERROR is returned, and a specific error number is available in JpErmo.

Chapter 11 Winsock 2 SPI Reference 563

Remarks
The Windows Sockets 2 SPI client is required to perform a successful WSPStartup call
before it can use Windows Sockets service providers. When it has completed the use of
Windows Sockets service providers, the SPI client will call WSPCleanup to deregister
itself from a Windows Sockets service provider and allow the service provider to free any
resources allocated on behalf of the Windows Sockets 2 client. It is permissible for SPI
clients to make more than one WSPStartup call. For each WSPStartup call, a
corresponding WSPCleanup call will also be issued. Only the final WSPCleanup for the
service provider does the actual cleanup; the preceding calls simply decrement an
internal reference count in the Windows Sockets service provider.

When the internal reference count reaches zero and actual cleanup operations
commence, any pending blocking or asynchronous calls issued by any thread in this
process are canceled without posting any notification messages or signaling any event
objects. Any pending overlapped send and receive operations (WSPSend,
WSPSendTo, WSPRecv, WSPRecvFrom with an overlapped socket) issued by any
thread in this process are also canceled without setting the event object or invoking the
completion routine, if specified. In this case, the pending overlapped operations fail with
the error status WSA_OPERATION_ABORTED. Any sockets open when WSPCleanup
is called are reset and automatically deallocated as if WSPClosesocket was called;
sockets that have been closed with WSPCloseSocket but still have pending data to be
sent are not affected-the pending data is still sent.

This function should not return until the service provider DLL is prepared to be unloaded
from memory. In particular, any data remaining to be transmitted must either already
have been sent or be queued for transmission by portions of the transport stack that will
not be unloaded from memory along with the service provider's DLL.

Remarks
A Windows Sockets service provider must be prepared to deal with a process that
terminates without invoking WSPCleanup (for example, as a result of an error). A
Windows Sockets service provider must ensure thatWSPCleanup leaves things in a
state in which the Ws2_32.dll can immediately invoke WSPStartup to reestablish
Windows Sockets usage.

Error Codes
Error code Meaning

WSANOTINITIALISED A successful WSPStartup call must occur before using this
function.

WSAENETDOWN Network subsystem has failed.

WSAEINVAL Provider identifier given to the name-space provider is not
managed by the name-space provider.

564 Volume 1 Winsock and QOS

Version: Requires Windows Sockets 2.0.
Header: Declared in Ws2spLh.

WSPStartup, WSPClosesocket, WSPShutdown

WSPCloseSocket
The WSPCloseSocket function closes a socket.

Parameters
5

[in] Descriptor identifying a socket.

/pErmo
[out] Pointer to the error code.

Return Values
If no error occurs, WSPCloseSocket returns zero. Otherwise, a value of
SOCKET_ERROR is returned, and a specific error code is available in /pErmo.

Remarks
This function closes a socket. More precisely, it releases the socket descriptor 5, so
further references to 5 should fail with the error WSAENOTSOCK. If this is the last
reference to an underlying socket, the associated naming information and queued data
are discarded. Any blocking or asynchronous calls pending on the socket (issued by any
thread in this process) are canceled without posting any notification messages. Any
pending overlapped operations issued by any thread in this process are also canceled.
Whatever completion action was specified for these overlapped operations is performed
(for example, event, completion routine, or completion port). In this case, the pending
overlapped operations fail with the error status WSA_OPERATION_ABORTED.
FD_CLOSE will not be posted after WSPCloseSocket is called.

WSPClosesocket behavior is summarized as follows:

• If SO_DONTLINGER is enabled (the default setting), WSPCloseSocket returns
immediately and connection is gracefully closed in the background.

Chapter 11 Winsock 2 SPI Reference 565

• If SO_LINGER is enabled with a zero time-out, WSPCloseSocket returns
immediately and the connection is reset/terminated.

or
• If SO_LINGER is enabled with a nonzero time-out with a blocking socket,

WSPCloseSocket blocks until all data is sent or the time-out expires.

• If SO_LINGER is enabled with a nonzero time-out with a nonblocking socket,
WSPCloseSocket returns immediately, thus indicating failure.

The semantics of WSPCloseSocket are affected by the socket options SO_LINGER
and SO_DONTLINGER as follows.

Option

SO_DONTLINGER

SO_LINGER

SO_LINGER

Interval

Do not care

Zero

Nonzero

Type of close

Graceful

Hard

Graceful

Wait for close?

No

No

Yes

If SO_LINGER is set (that is, the Lonoffmember of the linger structure is nonzero) and
the time-out interval, Uinger, is zero, WSPClosesocket is not blocked even if queued
data has not yet been sent or acknowledged. This is called a hard or abortive close,
because the socket's virtual circuit is reset immediately, and any unsent data is lost. Any
WSPRecv call on the remote side of the circuit will fail with WSAECONNRESET.

If SO_LINGER is set with a nonzero time-out interval on a blocking socket, the
WSPClosesocket call blocks on a blocking socket until the remaining data has been
sent or until the time-out expires. This is called a graceful disconnect. If the time-out
expires before all data has been sent, the service provider should terminate the
connection before WSPClosesocket returns.

Enabling SO_LINGER with a nonzero time-out interval on a nonblocking socket is not
recommended. In this case, the call to WSPClosesocket will fail with an error of
WSAEWOULDBLOCK if the close operation cannot be completed immediately. If
WSPClosesocket fails with WSAEWOULDBLOCK, the socket handle is still valid and
a disconnect is not initiated.

The Windows Sockets SPI client must call WSPClosesocket again to close the socket,
although WSPClosesocket can continue to fail unless the Windows Sockets SPI client
does one of the following:

• Disables SO_DONTLINGER.

• Enables SO_LINGER with a zero time-out.

• Calls WSPShutdown to initiate closure.

If SO_DONTLINGER is set on a stream socket (that is, the '_onoffmember of the linger
structure is zero), the WSPClosesocket call will return immediately and does not get
WSAEWOULDBLOCK, whether the socket is blocking or nonblocking. However, any

566 Volume 1· Winsock and QOS

data queued for transmission will be sent if possible before the underlying socket
is closed. This is called a graceful disconnect and is the default behavior.

Note that in this case the Windows Sockets provider is allowed to retain any resources
associated with the socket until such time as the graceful disconnect has completed
or the provider terminates the connection due to an inability to complete the operation
in a provider-determined amount of time. This can affect Windows Sockets clients that
expect to use all available sockets. This is the default behavior; SO_DONTLINGER
is set by default.

Error Codes
Error code

WSAENETDOWN

WSAEINPROGRESS

WSAENOTSOCK

WSAEWOULDBLOCK

Meaning

Network subsystem has failed.

Blocking Windows Sockets call is in progress, or the service
provider is still processing a callback function.

Descriptor is not a socket.

Socket is marked as nonblocking and SO_LINGER is set to a
nonzero time-out value.

Version: Requires Windows Sockets 2.0.
Header: Declared in Ws2spLh.

WSPAccept, WSPSocket, WSPloctl, WSPSetSockOpt

WSPConnect
The WSPConnect function establishes a connection to a peer, exchanges connect data,
and specifies needed quality of service based on the supplied flow specification.

Parameters
5

Chapter 11 Winsock 2 SPI Reference 567

[in] Descriptor identifying an unconnected socket.

name
[in] Name of the peer to which the socket is to be connected.

name/en
[in] Length of the name.

/pCal/erData
[in] Pointer to the user data that is to be transferred to the peer during connection
establishment.

/pCalleeData
[out] Pointer to a buffer into which any user data received from the peer during
connection establishment can be copied.

/pSQOS
[in] Pointer to the flow specifications for socket 5, one for each direction.

/pGQOS
[in] Reserved.

/pErmo
[out] Pointer to the error code.

Return Values
If no error occurs, WSPConnect returns zero. Otherwise, it returns SOCKET _ERROR,
and a specific error code is available in /pErmo.

On a blocking socket, the return value indicates success or failure of the connection
attempt. If the return error code indicates the connection attempt failed (that is,
WSAECONNREFUSED, WSAENETUNREACH, WSAETIMEDOUT) the Windows
Sockets SPI client can call WSPConnect again for the same socket.

Remarks
This function is used to create a connection to the specified destination and to perform
a number of other ancillary operations that occur at connect time as well. If the socket,
5, is unbound, unique values are assigned to the local association by the system and the
socket is marked as bound.

For connection-oriented sockets (for example, type SOCK_STREAM), an active
connection is initiated to the specified host using name (~n address in the name space
of the socket. (For a detail~d description, see WSPBind.) When this call completes
successfully, the socket is ready to send and receivedata. ·If the address member of the
name structure is all zeroes, WSPConnect will return the error WSAEADDRNOTAVAIL.
Any attempt to reconnect an active connection will fail with the error code
WSAEISCONN.

568 Volume 1 Winsock and QOS

For connection-oriented, nonblocking sockets it is often not possible to complete the
connection immediately. In such a case, this function returns with the error
WSAEWOULDBLOCK but the operation proceeds. When the success or failure outcome
becomes known, it may be reported in one of several ways depending on how the client
registers for notification. If the client uses WSPSelect, success is reported in the writefds
set and failure is reported in the exceptfds set. If the client uses WSPAsyncSelect or
WSPEventSelect, the notification is announced with FD_CONNECT and the error code
associated with the FD_CONNECT indicates either success or a specific reason for
failure.

For a connection less socket (for example, type SOCK_DGRAM), the operation
performed by WSPConnect is to establish a default destination address so the socket
can be used with subsequent connection-oriented send and receive operations
(WSPSend,WSPRecv). Any datagrams received from an address other than the
destination address specified will be discarded. If the address member of the name
structure is all zeroes, the socket will be disconnected-the default remote address will
be indeterminate, so WSPSend and WSPRecv calls will return the error code
WSAENOTCONN. However, WSPSendTo and WSPRecvFrom can still be used. The
default destination can be changed by simply calling WSPConnect again, even if the
socket is already connected. Any datagrams queued for receipt are discarded if name is
different from the previous WSPConnect.

For connectionless sockets, name can indicate any valid address, including a broadcast
address. However, to connect to a broadcast address, a socket must have
WSPSetSockOpt SO_BROADCAST enabled. Otherwise, WSPConnect will fail with the
error code WSAEACCES.

On connectionless sockets, exchange of user-to-user data is not possible and the
corresponding parameters will be silently ignored.

The Windows Sockets SPI client is responsible for allocating any memory space pointed
to directly or indirectly by any of the parameters it specifies.

The IpCallerData is a value parameter that contains any user data to be sent along with
the connection request. If IpCallerData is NULL, no user data will be passed to the peer.
The IpCalleeData is a result parameter that will reference any user data passed back
from the peer as part of the connection establishment. The IpCalleeData->len initially
contains the length of the buffer allocated by the Windows Sockets SPI client and
pOinted to by IpCalleeData->buf. The IpCalleeData->len will be set to zero if no user data
has been passed back. The IpCalleeData information will be valid when the connection
operation is complete. For blocking sockets, this will be when the WSPConnect function
returns. For nonblocking sockets, this will be afterthe FD_CONNECT notification has
occurred. If IpCalleeData is NULL, no user data will be passed back. The exact format
of the user data is specific to the address family the socket belongs to and/or the
applications involved.

At connect time, a Windows Sockets SPI client can use the /pSOOS parameter
to override any previous QOS specification made for the socket through WSPloctl
with the SIO_SET _QOS opcode.

Chapter 11 Winsock 2 SPI Reference 569

The /pSOOS specifies the flow specifications for socket 5, one for each direction,
followed by any additional provider-specific parameters. If either the associated transport
provider in general or the specific type of socket in particular cannot honor the aos
request, an error will be returned as indicated below. The sending or receiving flow
specification values will be ignored, respectively, for any unidirectional sockets.
If no provider-specific parameters are supplied, the but and len members of
/pSOOS->ProviderSpecitic should be set to NULL and zero, respectively. A NULL value
for /pSOOS indicates that no application supplied quality of service.

Note When connected sockets break (that is, become closed for whatever reason),
they should be discarded and recreated. It is safest to assume that when things go awry
for any reason on a connected socket, the Windows Sockets SPI client must discard and
recreate the needed sockets in order to return to a stable point.

Error Codes
Error code

WSAENETDOWN

WSAEADDRINUSE

WSAEINTR

WSAEINPROGRESS

WSAEALREADY

WSAEADDRNOTAVAIL

WSAEAFNOSUPPORT

WSAECONNREFUSED

WSAEFAULT

WSAEINVAL

WSAEISCONN

Meaning

Network subsystem has failed.

Local address of the socket is already in use and the socket was
not marked to allow address reuse with SO_REUSEADDR. This
error usually occurs at the time of bind, but could be delayed until
this function if the bind was to a partially wildcard address
(involving ADDR_ANY) and if a specific address needs to be
committed at the time of this function ..

(Blocking) call was canceled through WSPCancelBlockingCall.

Blocking Windows Sockets call is in progress or the service
provider is still processing a callback function.

Nonblocking WSPConnect call is in progress on the specified
socket.

In order to preserve backward compatibility, this error is reported
as WSAEINVAL to Windows Sockets 1.1 applications that link to
either Winsock.dll or Wsock32.dll.

Remote address is not a valid address (for example, ADDR_ANY).

Addresses in the specified family cannot be used with this socket.

Attempt to connect was rejected.

Name or the name/en argument is not a valid part of the user
address space, the name/en argument is too small, the buffer
length for /pCal/eeData, /pSOOS, and /pGOOSis too small, or the
buffer length for /pCal/erData is too large.

Parameter 5 is a listening socket.

Socket is already connected (connection-oriented sockets only).

(continued)

570 Volume 1 Winsock and aos

(continued)

Error code

WSAENETUNREACH

WSAENOBUFS

WSAENOTSOCK

WSAEOPNOTSUPP

WSAEPROTONOSUPPORT

WSAETIMEDOUT

WSAEWOULDBLOCK

WSAEACCES

Meaning

Network cannot be reached from this host at this time.

No buffer space is available. The socket cannot be connected.

Descriptor is not a socket.

Flow specifications specified in IpSOOS cannot be satisfied.

The Ipeal/erData augment is not supported by the
service provider.

Attempt to connect timed out without establishing a connection.

Socket is marked as non blocking and the connection cannot be
completed immediately. It is possible to select the socket using the
WSPSelect function while it is connecting by using the
WSPSelect function to select it for writing.

Attempt to connect datagram socket to broadcast address failed
because WSPSetSockOpt SO_BROADCAST is not enabled.

Version: Requires Windows Sockets 2.0.
Header: Declared in Ws2spi.h.

WSPAccept, WSPBind, WSPGetSockName, WSPGetSockOpt, WSPSocket,
WSPSelect, WSPEventSelect, WSPEnumNetworkEvents

WSPDuplicateSocket
The WSPDuplicateSocket function returns a WSAPROTOCOL_INFOW structure that
can be used to create a new socket descriptor for a shared socket.

Parameters
s

[in] Specifies the local socket descriptor.

dwProcessld
[in] Specifies the identifier of the target process for which the shared socket will be
used.

Chapter 11 Winsock 2 SPI Reference 571

IpProtocollnfo
[out] Pointer to a buffer allocated by the client that is large enough to contain
a WSAPROTOCOL_INFOW structure. The service provider copies the protocol
information structure contents to this buffer.

IpErmo
[out] Pointer to the error code.

Return Values
If no error occurs, WSPDuplicateSocket returns zero. Otherwise, the value of
SOCKET_ERROR is returned, and a specific error number is available in IpErmo.

Remarks
A source process calls WSPDuplicateSocket to obtain a special
WSAPROTOCOL_INFOW structure. It uses some interprocess communications (IPC)
mechanism to pass the contents of this structure to a target process, which in turn uses
it in a call to WSPSocket to obtain a descriptor for the duplicated socket. Note that the
special WSAPROTOCOL_INFOW structure can only be used once by the target
process.

It is the service provider's responsibility to perform whatever operations are needed
in the source process context and to create a WSAPROTOCOL_INFOW structure that
will be recognized when it subsequently appears as a parameter to WSPSocket in the
target processes' context. The provider must then return a socket descriptor that
references a common underlying socket. The dwProviderReserved member of the
WSAPROTOCOL_INFOW structure is available for the service provider's use and
can be used to store any useful context information, including a duplicated handle.

When new socket descriptors are allocated, IFS providers must call
WPUModifylFSHandle and non-IFS providers must call WPUCreateSocketHandle.

One possible scenario for establishing and using a shared socket in a handoff mode
is illustrated in the following.

Source process IPC

1) WSPSocket, WSPConnect.

2) Requests target process identifier.

4) Receives process identifier. <=

5) Calls WSPDuplicateSocket to get a
special WSAPROTOCOL_INFOW structure.

6) Sends WSAPROTOCOL_INFOW
structure to target.

Destination process

3) Receives process identifier
request and respond.

(continued)

572 Volume 1 Win sock and QOS

(continued)

Source process

10) WSPClosesocket

IPC

=>

Destination process

7) Receives
WSAPROTOCOL_INFOW
structure.

8) Calls WSPSocket to create
shared socket descriptor.

9) Uses shared socket for data
exchange.

The descriptors that reference a shared socket can be used independently as far
as I/O is concerned. However, the Windows Sockets interface does not implement
any type of access control, so it is up to the processes involved to coordinate their
operations on a shared socket. A typical use for shared sockets is to have one process
that is responsible for creating sockets and establishing connections, hand off sockets
to other processes that are responsible for information exchange.

Since what is duplicated are the socket descriptors and not the underlying socket, all
the states associated with a socket are held in common across all the descriptors.
For example a WSPSetSockOpt operation performed using one descriptor
is subsequently visible using a WSPGetSockOpt from any or all descriptors.
A process can call WSPClosesocket on a duplicated socket and the descriptor will
become deallocated. The underlying socket, however, will remain open until
WSPClosesocket is called by the last remaining descriptor.

Notification on shared sockets is subject to the usual constraints of WSPAsyncSelect
and WSPEventSelect. Issuing either of these calls using any of the shared descriptors
cancels any previous event registration for the socket, regardless of which descriptor
was used to make that registration. Thus, for example, a shared socket cannot deliver
FD_READ events to process A and FD_WRITE events to process B. For situations
when such tight coordination is required, it is suggested that developers use threads
instead of separate processes.

A layered service provider supplies an implementation of this function, but it is also
a client of this function if and when it calls WSPDuplicateSocket of the next layer in
the protocol chain. Some special considerations apply to this function's IpProtocollnfo
parameter as it is propagated down through the layers of the protocol chain.

If the next layer in the protocol chain is another layer then when the next layer's
WSPDuplicateSocket is called, this layer must pass to the next layer a IpProtoco/lnfo
that references the same unmodified WSAPROTOCOL_INFOW structure with the same
unmodified chain information. However, if the next layer is the base protocol (that is,
the last element in the chain), this layer performs a substitution when calling the base
provider's WSPDuplicateSocket. In this case, the base provider's
WSAPROTOCOL_INFOW structure should be referenced by the IpProtocollnfo
parameter.

Chapter 11 Winsock 2 SPI Reference 573

One vital benefit of this policy is that base service providers do not have to be aware
of protocol chains. This same policy applies when propagating a
WSAPROTOCOL_INFOW structure through a layered sequence of other functions such
as WSPAddressToString, WSPStartup, WSPSocket, or WSPStringToAddress.

Error Codes
Error code

WSAENETDOWN

WSAEINVAL

WSAEINPROGRESS

WSAEMFILE

WSAENOBUFS

WSAENOTSOCK

Meaning

Network subsystem has failed.

Indicates that one of the specified parameters was invalid.

Blocking Windows Sockets call is in progress or the service
provider is still processing a callback function.

No more socket descriptors are available.

No buffer space is available. The socket cannot be created.

Descriptor is not a socket.

Version: Requires Windows Sockets 2.0.
Header: Declared in Ws2spi.h.

WPUCreateSocketHandle, WPUModifylFSHandle

WSPEnumNetworkEvents
The WSPEnumNetworkEvents function reports occurrences of network events for the
indicated socket.

Parameters
s

[in] Descriptor identifying the socket.

hEventObject
[in] An optional handle identifying an associated event object to be reset.

574 Volume 1 Winsock and aos

IpNetworkEvents
[out] Pointer to a WSANETWORKEVENTS structure that is filled with a record
of occurred network events and any associated error codes.
The WSANETWORKEVENTS structure is defined in the following text.

IpErmo
[out] Pointer to the error code.

Return Values
The return value is zero if the operation was successful. Otherwise, the value
SOCKET_ERROR is returned, and a specific error number is available in IpErmo.

Remarks
This function is used to report which network events have occurred for the indicated
socket since the last invocation of this function. It is intended for use in conjunction with
WSPEventSelect, which associates an event object with one or more network events.
Recording of network events commences when WSPEventSelect is called with a
nonzero INetworkEvents parameter and remains in effect until another call is made to
WSPEventSelect with the INetworkEvents parameter set to zero, or until a call is made
to WSPAsyncSelect.

WSPEnumNetworkEvents only reports network activity and errors nominated through
WSPEventSelect. See the descriptions of WSPSelect and WSPAsyncSelect to find out
how those functions report network activity and errors.

The socket's internal record of network events is copied to the structure referenced by
IpNetworkEvents, whereafter the internal network events record is cleared. If
hEventObject is non-NULL, the indicated event object is also reset. The Windows
Sockets provider guarantees that the operations of copying the network event record,
clearing it, and resetting any associated event object are atomic, such that the next
occurrence of a nominated network event will cause the event object to become set. In
the case of this function returning SOCKET_ERROR, the associated event object is not
reset and the record of network events is not cleared.

The WSANETWORKEVENTS structure is defined as follows:

The INetworkEvent member of the structure indicates which of the FD_XXX network
events have occurred. The iErrorCode array is used to contain any associated error
codes, with array index corresponding to the position of event bits in INetworkEvents.
The identifiers such as FD_READ_BIT and FD_WRITE_BIT can be used to index the
iErrorCode array.

Chapter 11 Winsock 2 SPI Reference 575

Note that only those elements of the iErrorCode array are set that correspond to the bits
set in INetworkEvents member. Other members are not modified (this is important for
backward compatibility with the Windows Socket 2 SPI clients that are not aware of new
FD_ROUTING_INTERFACE_CHANGE and FD_ADDRESS_LlST _CHANGE events).

The following error codes can be returned along with the respective network event.

Event: FD_CONNECT

Error Code Meaning

WSAEAFNOSUPPORT Addresses in the specified family cannot be used with this
socket.

WSAECONNREFUSED Attempt to connect was forcefully rejected.

WSAENETUNREACH Network cannot be reached from this host at this time.

WSAENOBUFS No buffer space is available. The socket cannot be
connected.

WSAETIMEDOUT Attempt to connect timed out without establishing a
connection.

Event: FD_CLOSE

Error Code Meaning

WSAENETDOWN Network subsystem has failed.

WSAECONNRESET Connection was reset by the remote side.

WSAECONNABORTED Connection was terminated due to a time-out or other failure.

Event: FD_READ

Event: FD_WRITE

Event: FD_OOB

Event: FD_ACCEPT

Event: FD_QOS

Event: FD_GROUP _QOS

Event: FD_ADDRESS_LlST _CHANGE

Event: FD_ROUTING_INTERFACE_CHANGE

Error Code

WSAENETUNREACH

WSAENETDOWN

Meaning

Specified destination is no longer reachable.

Network subsystem has failed.

576 Volume 1 Winsock and QOS

Error Code Meaning

WSAENETDOWN Network subsystem has failed.

Error Code
Error code Meaning

WSAENETDOWN Network subsystem has failed.

WSAEINVAL Indicates that one of the specified parameters was invalid.

WSAEINPROGRESS A blocking Windows Sockets call is in progress, or the service
provider is still processing a callback function.

WSAENOTSOCK Descriptor is not a socket.

Version: Requires Windows Sockets 2.0.
Header: Declared in Ws2spi.h.

WSPEventSelect

WSPEventSelect
The WSPEventSelect function specifies an event object to be associated with the
supplied set of network events.

Parameters
5

[in] Descriptor identifying the socket.

hEventObject
[in] Handle identifying the event object to be associated with the supplied set of
network events.

INetworkEvents
[in] Bitmask that specifies the combination of network events in which the Windows
Sockets SPI client has interest.

Chapter 11 Winsock 2 SPI Reference 577

IpErmo
[out] Pointer to the error code.

Return Values
The return value is zero if the Windows Sockets SPI client's specification of the network
events and the associated event object was successful. Otherwise, the value
SOCKET_ERROR is returned, and a specific error number is available in IpErmo.

Remarks
This function is used to specify an event object, hEventObject, to be associated with the
selected network events, INetworkEvents. The socket for which an event object is
specified is identified by s. The event object is set when any of the nominated network
events occur.

WSPEventSelect operates very similarly to WSPAsyncSelect, the difference being in
the actions taken when a nominated network event occurs. Whereas WSPAsyncSelect
causes a Windows Sockets SPI client-specified Windows message to be posted,
WSPEventSelect sets the associated event object and records the occurrence of this
event in an internal network event record. A Windows Sockets SPI client can use
WSPEnumNetworkEvents to retrieve the contents of the internal network event record
and thus determine which of the nominated network events have occurred.

WSPEventSelect is the only function that causes network activity and errors to be
recorded and retrievable through WSPEnumNetworkEvents. See the descriptions of
WSPSelect and WSPAsyncSelect to find out how those functions report network
activity and errors.

This function automatically sets socket s to nonblocking mode, regardless of the value of
INetworkEvents.

The INetworkEvents parameter is constructed by using the bitwise OR operator with any
of the values specified in the following table.

Value

FD_READ

FD_WRITE

FD_OOB

FD_ACCEPT

FD_CONNECT

FD_CLOSE

FD_OOS

FD_GROUP _OOS

Meaning

Issues notification of readiness for reading.

Issues notification of readiness for writing.

Issues notification of the arrival of OOB data.

Issues notification of incoming connections.

Issues notification of completed connection.

Issues notification of socket closure.

Issues notification of socket (OOS) changes.

Reserved.

(continued)

578 Volume 1 Winsock and OOS

(continued)

Value

FD_ROUTING_
INTERFACE_CHANGE

FD_ADDRESS_
LIST_CHANGE

Meaning

Issues notification of routing interface changes for the
specified destination(s).

Issues notification of local address list changes for the
socket's address family.

Issuing a WSPEventSelect for a socket cancels any previous WSPAsyncSelect or
WSPEventSelect for the same socket and clears the internal network event record. For
example, to associate an event object with both reading and writing network events, the
Windows Sockets SPI client must call WSPEventSelect with both FD_READ and
FD_WRITE, as follows:

It is not possible to specify different event objects for different network events. The
following code will not work; the second call will cancel the effects of the first, and only
FD_WRITE network event will be associated with hEventObject2:

To cancel the association and selection of network events on a socket, INetworkEvents
should be set to zero, in which case the hEventObject parameter will be ignored.

Closing a socket with WSPCloseSocket also cancels the association and selection of
network events specified in WSPEventSelect for the socket. The Windows Sockets SPI
client, however, still must call WSACloseEvent to explicitly close the event object and
free any resources.

Since an accepted (WSPAccept) socket has the same properties as the listening socket
used to accept it, any WSPEventSelect association and network events selection set for
the listening socket apply to the accepted socket. For example, if a listening socket has
WSPEventSelect association of hEventOjectwith FD_ACCEPT, FD_READ, and
FD_WRITE, then any socket accepted on that listening socket will also have
FD_ACCEPT, FD_READ, and FD_WRITE network events associated with the same
hEventObject. If a different hEventObject or network events are needed, the Windows
Sockets SPI client should call WSPEventSelect, passing the accepted socket and the
new information.

Note Having successfully recorded the occurrence of the network event and Signaled
the associated event object, no further actions are taken for that network event until the
Windows Sockets SPI client makes the function call that implicitly reenables the setting
of that network event and the signaling of the associated event object.

Network event

FD_READ

FD_WRITE

FD_OOB

FD_ACCEPT

FD_CONNECT

FD_CLOSE

FD_OOS

FD_GROUP _OOS

FD_ROUTING_
INTERFACE_CHANGE

FD_ADDRESS
LIST_CHANGE

Chapter 11 Winsock 2 SPI Reference 579

Reenabling function

WSPRecv or WSPRecvFrom

WSPSend or WSPSendTo

WSPRecv or WSPRecvFrom

WSPAccept unless the error code returned is
WSATRY _AGAIN indicating that the condition function
returned CF _DEFER

None

None

WSPloctl with SIO_OOS

Reserved

WSPloctl with command
SIO_ROUTING_INTERFACE_CHANGE

WSPloctl with command SIO_ADDRESS_LlST _CHANGE

Any call to the reenabling routine, even one that fails, results in reenabling of recording
and signaling for the relevant network event and event object, respectively.

For FD_READ, FD_OOB, and FD_ACCEPT network events, network event recording
and event object signaling are level-triggered. This means that if the reenabling routine
is called and the relevant network condition is still valid after the call, the network event
is recorded and the associated event object is signaled. This a.llows a Windows Sockets
SPI client to be event-driven and not be concerned with the amount of data that arrives
at anyone time. This is illustrated by the following sequence.

• Service provider receives 100 bytes of data on sockets, records the FD_READ
network event and signals the associated event object.

• The Windows Sockets SPI client issues WSPRecv(s, buffptr, 50, 0) to read 50 bytes.

• The service provider records the FD_READ network event and signals the associated
event object again since there is still data to be read.

With these semantics, a Windows Sockets SPI client need not read all available data in
response to an FD_READ network event---a single WSPRecv in response to each
FD_READ network event is appropriate.

The FD_OOS event is considered edge triggered. A message will be posted exactly
once when a OOS change occurs. Further indications will not be issued until either the
service provider detects a further change in quality of service or the Windows Sockets
SPI client renegotiates the quality of service for the socket.

The FD_ROUTING_INTERFACE_CHANGE and FD_ADDRESS_LlST_CHANGE events
are considered edge triggered as well. A message will be posted exactly once when a
change occurs AFTER the Windows Socket SPI client has requested the notification by

580 Volume 1 Winsock and QOS

issuing WSAloctl with SIO_ROUTING_INTERFACE_CHANGE or
SIO_ADDRESS_LlST _CHANGE correspondingly. Further messages will not be
forthcoming until the SPI client reissues the 10CTL and another change is detected since
the IOCTL has been issued.

If a network event has already occurred when the Windows Sockets SPI client calls
WSPEventSelect or when the reenabling function is called, then a network event is
recorded and the associated event object is signaled as appropriate. This is illustrated in
the following sequence.

• A Windows Sockets SPI client calls WSPListen.

• A connect request is received but not yet accepted.

• The Windows Sockets SPI client calls WSPEventSelect specifying that it is interested
in the FD_ACCEPT network event for the socket. The service provider records the
FD_ACCEPT network event and signals the associated event object immediately.

The FD_WRITE network event is handled slightly differently. An FD_WRITEnetwork
event is recorded when a socket is first connected with WSPConnect or accepted with
WSPAccept, and then after a WSPSend or WSPSendTo fails with
WSAEWOULDBLOCK and buffer space becomes available. Therefore, a Windows
Sockets SPI client can assume that sends are possible starting from the first FD_WRITE
network event setting and lasting until a send returns WSAEWOULDBLOCK. After such
a failure the Windows Sockets SPI client will find out that sends are again possible when
an FD_WRITE network event is recorded and the associated event object is signaled.

The FD_OOB network event is used only when a socket is configured to receive OOB
data separately. If the socket is configured to receive OOB data inline, the OOB
(expedited) data is treated as normal data and the Windows Sockets SPI client should
register an interest in, and will get, FD_READ network event, not FD_OOB network
event. A Windows Sockets SPI client can set or inspect the way in which OOB data is to
be handled by using WSPSetSockOpt or WSPGetSockOpt for the
SO_OOBINLINE option.

The error code in an FD_CLOSE network event indicates whether the socket close was
graceful or abortive. If the error code is zero, then the close was graceful; if the error
code is WSAECONNRESET, then the socket's virtual circuit was reset. This only applies
to connection-oriented sockets such as SOCK_STREAM.

The FD_CLOSE network event is recorded when a close indication is received for the
virtual circuit corresponding to the socket. In TCP terms, this means that the FD_CLOSE
is recorded when the connection goes into the FIN WAIT or CLOSE WAIT states. This
results from the remote end performing a WSPShutdown on the send side or a
WSPCloseSocket.

Service providers shall record only an FD_CLOSE network event to indicate closure of a
virtual circuit, they must not record an FD_READ network event to indicate this condition.

Chapter 11 Winsock 2 SPI Reference 581

The FD_OOS network event is recorded when any member in the flow specification
associated with socket s has changed. This change must be made available to Windows
Sockets SPI clients through the WSPloctl function with SIO_GET _OOS to retrieve the
current quality of service for socket s.

The FD_ROUTING_INTERFACE_CHANGE network event is recorded when the local
interface that should be used to reach the destination specified in WSAloctl with
SIO_ROUTING_INTERFACE_CHANGE changes AFTER such 10CTL has been issued.

The FD_ADDRESS_LlST _CHANGE network event is recorded when the list of
addresses of socket's protocol family to which the Windows Socket SPI client can bind
changes afterWSAloctl with SIO_ADDRESS_LlST _CHANGE has been issued.

Error Codes
Error code Meaning

WSAENETDOWN Network subsystem has failed.

WSAEINVAL Indicates that one of the specified parameters was invalid, or
the specified socket is in an invalid state.

WSAEINPROGRESS Blocking Windows Sockets call is in progress or the service
provider is still processing a callback function.

WSAENOTSOCK Descriptor is not a socket.

Version: Requires Windows Sockets 2.0.
Header: Declared in Ws2spLh.

WSPEnumNetworkEvents

WSPGetOverlappedResult
The WSPGetOverlappedResult function returns the results of an overlapped operation
on the specified socket.

582 Volume 1 Winsock and QOS

Parameters
s

[in] Identifies the socket. This is the same socket that was specified when the
overlapped operation was started by a call to WSPRecv, WSPRecvFrom, WSPSend,
WSPSendTo, or WSPloctl.

IpOver/apped
[in] Points to a WSAOVERLAPPED structure that was specified when the overlapped
operation was started.

Ipcb Transfer
[out] Points to a 32-bit variable that receives the number of bytes that were actually
transferred by a send or receive operation, or by WSPloctl.

fWait
[in] Specifies whether the function should wait for the pending overlapped operation to
complete. If TRUE, the function does not return until the operation has been
completed. If FALSE and the operation is still pending, the function returns FALSE
and IpErmo is WSA_IO_INCOMPLETE. The fWait parameter may be set to TRUE
only if the overlapped operation selected event-based completion notification.

IpdwFlags
[out] Points to a 32-bit variable that will receive one or more flags that supplement the
completion status. If the overlapped operation was initiated through WSPRecv or
WSPRecvFrom, this parameter will contain the results value for IpFlags parameter.

IpErmo
[out] Pointer to the error code.

Return Values
If WSPGetOverlappedResult succeeds, the return value is TRUE. This means the
overlapped operation has completed successfully and the value pointed to by
IpcbTransferhas been updated. If WSPGetOverlappedResult returns FALSE, this
means that the overlapped operation has not completed or the overlapped operation
completed but with errors, or completion status could not be determined due to errors in
one or more parameters to WSPGetOverlappedResult. On failure, the value pOinted to
by IpcbTransferwili not be updated. The IpErmo parameter indicates the cause of the
failure (either of WSPGetOverlappedResult or of the associated overlapped operation).

Remarks
The results reported by the WSPGetOverlappedResult function are those of the
specified socket's last overlapped operation to which the specified WSAOVERLAPPED
structure was provided, and for which the operation's results were pending. A pending
operation is indicated when the function that started the operation returns
SOCKET_ERROR, and the IpErmo is WSA_IO_PENDING. When an I/O operation is
pending, the function that started the operation resets the hEvent member of the
WSAOVERLAPPED structure to the nonsignaled state. Then, when the pending
operation has been completed, the system sets the event object to the signaled state.

Chapter 11 Winsock 2 SPI Reference 583

If the fWait parameter is TRUE, WSPGetOverlappedResult determines whether the
pending operation has been completed by blocking and waiting for the event object to be
in the signaled state. A client may set the fWait parameter to TRUE only if it selected
event-based completion notification when the I/O operation was requested. If another
form of notification was selected, the usage of the hEvent member of the
WSAOVERLAPPED structure is different, and setting fWaitto TRUE causes
unpredictable results.

Interaction with WPUCompleteOverlappedRequest
The behavior of WPUCompleteOverlappedRequest places some constraints on how a
service provider implements WSPGetOverlappedResult since only the Offset and
OffsetHigh members of the WSAOVERLAPPED structure are exclusively controlled by
the service provider even though three values (byte count, flags, and error) must be
retrieved from the structure by WSPGetOverlappedResult. A service provider may
accomplish this any way it chooses as long as it interacts with the behavior of
WPUCompleteOverlappedRequest properly. The following description presents a
typical implementation:

At the start of overlapped processing, the service provider sets Internalto
WSS_OPERATION IN PROGRESS.

When the I/O operation is complete, the provider sets OffsetHigh to the Windows
Sockets 2 error code resulting from the operation, sets Offset to the flags resulting from
the I/O operation, and calls WPUCompleteOverlappedRequest, passing the transfer
byte count as one of the parameters. WPUCompleteOverlappedRequest eventually
sets InternalHigh to the transfer byte count, then sets Internal to a value other than
WSS_OPERATION IN PROGRESS.

When WSPGetOverlappedResult is called, the service provider checks Internal. If it is
WSS_OPERATION_IN_PROGRESS, the provider waits on the event handle in the
hEvent member or returns an error, based on the setting of the fWait flag of
WSPGetOverlappedResult. If not in progress, or after completion of waiting, the
provider returns the values from InternalHigh, OffsetHigh, and Offset as the transfer
count, operation result error code, and flags respectively.

Error Codes
Error code

WSAENETDOWN

WSAENOTSOCK

WSA_I NVALI D _HANDLE

WSA_EINVAL

WSA_IO _INCOMPLETE

Meaning

Network subsystem has failed.

Descriptor is not a socket.

The hEvent member of the WSAOVERLAPPED structure
does not contain a valid event object handle.

One of the parameters is unacceptable.

The fWait parameter is FALSE and the I/O operation has
not yet completed.

584 Volume 1 Winsock and QOS

Version: Requires Windows Sockets 2.0.
Header: Declared in Ws2spi.h.

WSPRecv, WSPRecvFrom, WSPSend, WSPSendTo, WSPConnect, WSPAccept,
WSPloctl, WPUCompleteOverlappedRequest

WSPGetPeerName
The WSPGetPeerName function gets the address of the peer to which a socket is
connected.

Parameters
s

[in] Descriptor identifying a connected socket.

name
[out] Pointer to the structure to receive the name of the peer.

name/en
[in/out] Pointer to an integer that, on input, indicates the size of the structure pointed
to by name, and on output indicates the size of the returned name.

/pErmo
[out] Pointer to the error code.

Return Values
If no error occurs, WSPGetPeerName returns zero. Otherwise, a value of
SOCKET_ERROR is returned, and a specific error code is available in /pErmo.

Remarks
WSPGetPeerName supplies the name of the peer connected to the socket s and stores
it in the structure SOCKADDR referenced by name. It can be used only on a connected
socket. For datagram sockets, only the name of a peer specified in a previous
WSPConnect call will be returned-any name specified by a previous WSPSendTo call
will not be returned by WSPGetPeerName.

Chapter 11 Winsock 2 SPI Reference 585

On return, the name/en argument contains the actual size of the name returned in bytes.

Error Codes
Error code Meaning

WSAENETDOWN Network subsystem has failed.

WSAEFAUL T Name or the name/en argument is not a valid part of the user
address space, or the name/en argument is too small.

WSAEINPROGRESS Function is invoked when a callback is in progress.

WSAENOTCONN Socket is not connected.

WSAENOTSOCK Descriptor is not a socket.

Version; Requires Windows Sockets 2.0.
Header: Declared in Ws2spLh.

WSPBind, WSPSocket, WSPGetSockName

WSPGetQOSByName
The WSPGetQOSByName function initializes a QOS structure based ona named
template, or retrieves an enumeration of the available template names.

Parameters
s

[in] Descriptor identifying a socket.

/pOOSName
[in out] Specifies the QOS template name, or supplies a buffer to retrieve an
enumeration of the available template names.

/pOOS
[out] Pointer to the QOS structure to be filled.

/pErmo
[out] A pointer to the error code.

586 Volume 1 Winsock and QOS

Return Values
If the function succeeds, the return value is TRUE. If the function fails, the return value is
FALSE, and a specific error code is available in /pErmo.

Remarks
Clients can use WSPGetQOSByName to initialize a QOS structure to a set of known
values appropriate for a particular service class or media type. These values are stored
in a template that is referenced by a well-known name. The client may retrieve these
values by setting the buf member of the WSABUF indicated by /pOOSName to point to
a Unicode string of nonzero length specifying a template name. In this case the usage of
/pOOSName is IN only, and results are returned through /pOOS.

Alternatively, the client may use WSPGetQOSByName to retrieve an enumeration of
available template names. The client may do this by setting the buf member of the
WSABUF indicated by /pOOSName to a zero-length null-terminated Unicode string. In
this case, the buffer indicated by buf is overwritten with a sequence of as many nulI
terminated Unicode template name strings as are available up to the number of bytes
available in buf as indicated by the len member of the WSABUF indicated by
/pOOSName. The list of names itself is terminated by a zero-length Unicode name
string. When WSPGetQOSByName is used to retrieve template names, the /pOOS
parameter is ignored.

Error Codes
Error code Meaning

WSAENETDOWN Network subsystem has failed.

WSAENOTSOCK Descriptor is not a socket.

WSAEFAUL T The /pOOS argument is not a valid part of the user address space,
or the buffer length for /pOOS is too small.

WSAEINVAL Specified aos template name is invalid.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Header: Declared in Ws2spLh.

WSPConnect, WSPAccept, WSPGetSockOpt

WSPGetSockName
The WSPGetSockName function gets the local name for a socket.

Parameters
s

Chapter 11 Winsock 2 SPI Reference 587

[in] Descriptor identifying a bound socket.

name
[out] Pointer to a structure used to supply the address (name) of the socket.

name/en
[in/out] Pointer to an integer that, on input, indicates the size of the structure pOinted
to by name, and on output indicates the size of the returned name.

/pErmo
[out] Pointer to the error code.

Return Values
If no error occurs, WSPGetSockName returns zero. Otherwise, a value of
SOCKET_ERROR is returned, and a specific error code is available in /pErmo.

Remarks
WSPGetSockName retrieves the. current name for the specified socket descriptor in
name. It is used on a bound and/or connected socket specified by the s parameter. The
local association is returned. This call is especially useful when a WSPConnect call has
been made without doing a WSPBind first; as this call provides the only means by which
the local association that has been set by the service provider can be determined.

If a socket was bound to an unspecified address (for example, ADDR_ANY), indicating
that any of the host's addresses within the specified address family should be used for
the socket, WSPGetSockName will not necessarily return information about the host
address, unless the socket has been connected with WSPConnect or WSPAccept. The
Windows Sockets SPI client must not assume that an address will be specified unless
the socket is. connected. This is because for a multihomed host, the address that will be
used for the socket is unknown until the socket is connected.

Error Codes
Error code

WSAENETDOWN

WSAEFAULT

Meaning

Network subsystem has failed.

Name or the name/en argument 1.8 not a.valid part of the user
address space, or the name/en argument is too small.

(continued)

588 Volume 1 Winsock and QOS

(continued)

Error code

WSAEINPROGRESS

WSAENOTSOCK

WSAEINVAL

Meaning

Function is invoked when a callback is in progress.

Descriptor is not a socket.

Socket has not been bound to an address with WSPBind, or
ADDR_ANY is specified in WSPBind but connection has not
yet occurred.

Version: Requires Windows Sockets 2.0.
Header: Declared in Ws2spLh.

WSPBind, WSPSocket, WSPGetPeerName

WSPGetSockOpt
The WSPGetSockOpt function retrieves a socket option.

Parameters
s

[in] Descriptor identifying a socket.

level
[in] Level at which the option is defined; the supported levels include SOL_SOCKET.
(See Annex for more protocol-specific levels.)

optname
[in] Socket option for which the value is to be retrieved.

optval
[out] Pointer to the buffer in which the value for the requested option is to be returned.

optlen
[in/out] Pointer to the size of the optval buffer.

IpErmo
[out] A pOinter to the error code.

Chapter 11 Winsock 2 SPI Reference 589

Return Values
If no error occurs, WSPGetSockOpt returns zero. Otherwise, a value of
SOCKET_ERROR is returned, and a specific error code is available in IpErmo.

Remarks
WSPGetSockOpt retrieves the current value for a socket option associated with a
socket of any type, in any state, and stores the result in optval. Options can exist at
multiple protocol levels, but they are always present at the uppermost socket' level.
Options affect socket operations, such as the routing of packets and OOB data transfer.

The value associated with the selected option is returned in the buffer optval. The
integer pointed to by opt/en should originally contain the size of this buffer; on return, it
will be set to the size of the value returned. For SO_LINGER, this will be the size of a
structure linger; for most other options it will be the size of an integer.

The Windows Sockets SPI client is responsible for allocating any memory space pointed
to directly or indirectly by any of the parameters it specifies.

If the option was never set with WSPSetSockOpt, then WSPGetSockOpt returns the
default value for the option.

level = SOL_SOCKET

Value Type

SO_ACCEPTCONN Baal

SO_BROADCAST Baal

SO_DEBUG Baal

SO_DONTLINGER Baal

SO_DONTROUTE Baal

SO_ERROR integer

SO_GROUP _ID GROUP

SO_GROUP_ integer
PRIORITY

Meaning

Socket is listening through
WSPlisten.

Socket is configured for the
transmission of broadcast
messages.

Debugging is enabled.

If true, the SO_LINGER option is
disabled.

Routing is disabled. Not
supported on ATM sockets
(results in an error).

Retrieves error status and
clears.

Reserved.

Reserved.

Default

FALSE unless a
WSPlisten has
been
performed.

FALSE

FALSE

TRUE

FALSE

o

Null

o

(continued)

590 Volume 1 Winsock and aos

(continued)

Value

SO_PROTOCOl_
INFO

SO_REUSEADDR

Type

BOOl

LINGER structure

unsigned integer

BOOl

WSAPROTOCOl_
INFO structure

integer

BOOl

integer

integer

Service Provider
Dependent

Meaning

Keepalives are being sent. Not
supported on ATM sockets
(results in an error).

Returns the current linger
options.

Maximum size of a message for
message-oriented socket types
(for example, SOCK_DGRAM).
Has no meaning for stream
oriented sockets.

OOB data is being received in
the normal data stream.

Description of protocol
information for protocol that is
bound to this socket.

Total per-socket buffer space
reserved for receives. This is
unrelated to
SO_MAX_MSG_SIZE or the
size of a TCP window.

Socket can be bound to an
address that is already in use.
Not applicable on ATM sockets.

Total per-socket buffer space
reserved for sends. This is
unrelated to
SO_MAX_MSG_SIZE or the
size of a TCP window.

Type of socket (for example,
SOCK_STREAM).

An opaque data structure object
from the service provider
associated with socket s. This
object stores the current
configuration information of the
service provider. The exact
format of this data structure is
service provider-specific.

Default

FALSE

1 is on (default),
o is off

Implementation
dependent

FALSE

Protocol
dependent

Implementation
dependent

FALSE.

Implementation
dependent

As created with
socket

Implementation
dependent

Calling WSPGetSockOpt with an unsupported option will result in an error code of
WSAENOPROTOOPT being returned in IpErmo.

Chapter 11 Winsock 2 SPI Reference 591

SO_DEBUG
Windows Sockets service providers are encouraged (but not required) to supply
output debug information if the SO_DEBUG option is set by a Windows Sockets SPI
client. The mechanism for generating the debug information and the form it takes are
beyond the scope of this specification.

SO_ERROR
The SO_ERROR option returns and resets the per-socket-based error code (that is
not necessarily the same as the per-thread-error code that is maintained by the
WS2_32.dll). A successful Windows Sockets call on the socket does not reset the
socket-based error code returned by the SO_ERROR option.

SO_GROUP _ID
Reserved. This value should be NULL.

SO_GROUP _PRIORITY
Reserved.

SO _KEEPALIVE
A Windows Sockets SPI client can request that a TCP/IP service provider enable the
use of keep-alive packets on TCP-connections by turning on the SO_KEEPALIVE
socket option. A Windows Sockets provider need not support the use of keep-alives: if
it does, the precise semantics are implementation specific but should conform to
section 4.2.3.6 of RFC 1122: Requirements for Internet Hosts-Communication
Layers. If a connection is dropped as the result of keep-alives, the error code
WSAENETRESET is returned to any calls in progress on the socket, and any
subsequent calls will fail with WSAENOTCONN.

SO_LINGER
SO_LINGER controls the action taken when unsent data is queued on a socket and a
WSPCloseSocket is performed. See WSPCloseSocket for a description of the way
in which the SO_LINGER settings affect the semantics of WSPCloseSocket. The
Windows Sockets SPI client obtains the desired behavior by creating a LINGER
structure (pointed to by the optval argument) with the following elements:

SO_MAX_MSG_SIZE
This is a get-only socket option, which indicates the maximum size of an outbound
send message for message-oriented socket types (for example, SOCK_DGRAM) as
implemented by the service provider. It has no meaning for byte stream-oriented
sockets. There is no provision to determine the maximum inbound message size.

SO_PROTOCOL_INFOW
This is a get-only option that supplies the WSAPROTOCOL~INFO structure
associated with this socket. See WSCEnumProtocols for more information about this
structure.

592 Volume 1 Winsock and QOS

SO_SNDBUF
When a Windows Sockets service provider supports the SO_RCVBUF and
SO_SNDBUF options, a Windows Sockets SPI client can use WSPSetSockOpt to
request different buffer sizes (larger or smaller). The call can succeed even though
the service provider did not make available the entire amount requested. A Windows
Sockets SPI client must call this function with the same option to check the buffer size
actually provided.

SO_REUSEADDR
By default, a socket can not be bound (see WSPBind) to a local address that is
already in use. On occasion, however, it may be desirable to reuse an address in this
way. Since every connection is uniquely identified by the combination of local and
remote addresses, there is no problem with having two sockets bound to the same
local address as long as the remote addresses are different. To inform the Windows
Sockets provider that a WSPBind on a socket should be allowed to bind to a local
address that is already in use by another socket, the Windows Sockets SPI client
should set the SO_REUSEADDR socket option for the socket before issuing the
WSPBind. Note that the option is interpreted only at the time of the WSPBind:. It is
therefore unnecessary (but harmless) to set the option on a socket that is not to be
bound to an existing address, and setting or resetting the option after the WSPBind
has no effect on this or any other socket.

PVD_CONFIG
This option retrieves an opaque data structure object from the service provider
associated with socket s. This object stores the current configuration information of
the service provider. The exact format of this data structure is service-provider
specific.

Error Codes
Error code Meaning

WSAENETDOWN Network subsystem has failed.

WSAEFAUL T One of the optval or the optlen arguments is not a valid part of
the user address space, or the optlen argument is too small.

WSAEINVAL The levelis unknown or invalid.

WSAEINPROGRESS Function is invoked when a callback is in progress.

WSAENOPROTOOPT Option is unknown or unsupported by the indicated protocol
family.

WSAENOTSOCK Descriptor is not a socket.

Version: Requires Windows Sockets 2.0.
Header: Declared in Ws2spLh.

Chapter 11 Winsock 2 SPI Reference 593

WSPSetSockOpt, WSPSocket

WSPloctl
The WSPloctl function controls the mode of a socket.

Parameters
s

[in] Handle to a socket.

dwloControlCode
[in] Control code of the operation to perform.

IpvlnBuffer
[in] Address of input buffer.

cblnBuffer
[in] Size of input buffer.

IpvOutBuffer
[out] Address of output buffer.

cbOutBuffer
[in] Size of output buffer.

IpcbBytesReturned
[out] Pointer to the size of output buffer's contents.

IpOverlapped
[in] Address ofWSAOVERLAPPEDstructure (ignored for nonoverlapped sockets).

IpCompletionRoutine
[in] Pointer to the completion routine called when the operation has been completed
(ignored for nonoverlapped sockets).

594 Volume 1 Winsock and QOS

IpThreadld
[in] Pointer to a WSATHREADID structure to be used by the provider in a subsequent
call to WPUQueueApc. The provider should store the referenced WSATHREADID
structure (not the pointer to same) until after the WPUQueueApc function returns.

IpErmo
[out] Pointer to the error code.

Remarks
This routine is used to set or retrieve operating parameters associated with the socket,
the transport protocol, or the communications subsystem. If both IpOveriapped and
IpCompletionRoutine are NULL, the socket in this function will be treated as a
nonoverlapped socket.

For non overlapped sockets, IpOverlapped and IpCompletionRoutine parameters are
ignored and this function can block if socket s is in blocking mode. Note that if socket s is
in nonblocking mode, this function can return WSAEWOULDBLOCK if the specified
operation cannot be finished immediately. In this case, the Windows Sockets SPI client
may change the socket to blocking mode and reissue the request or wait for the
corresponding network event (such as FD_ROUTING_INTERFACE_CHANGE or
FD_ADDRESS_LlST _CHANGE in case of SIO_ROUTING_INTERFACE_CHANGE or
SIO_ADDRESS_LlST _CHANGE) using Windows message (through WSPAsyncSelect
or event (using WSPEventSelect) based notification mechanism. For overlapped
sockets, operations that cannot be completed immediately will be initiated and
completion will be indicated at a later time. Final completion status is retrieved through
WSPGetOverlappedResult.

Any 10CTL may block indefinitely, depending on the implementation of the service
provider. If the Windows Sockets SPI client cannot tolerate blocking in a WSPloctl call,
overlapped 110 would be advised for ioctls that are most likely to block including:

• SIO_FINDROUTE

• SIO_FLUSH

• SIO_GET_OOS

• SIO_GET _GROUP _OOS

• SIO_SET _OOS

• SIO_SET _GROUP _OOS

• SIO_ROUTING_INTERFACE_CHANGE

• SIO_ADDRESS_LlST _CHANGE

Some protocol-specific ioctls may also be particularly likely to block. Check the relevant
protocol-specific annex for available information.

In as much as the dwloControlCode parameter is now a 32-bit entity, it is possible to
adopt an encoding scheme that provides aconvenient way to partition the opcode
identifier space. The dwloControlCode parameter is constructed to allow for protocol and

Chapter 11 Winsock 2 SPI Reference 595

vendor independence when adding new control codes, while retaining backward
compatibility with Windows Sockets 1.1 and Unix control codes. The dwloControlCode
parameter has the following form.

3

o V T Vendor/address family Code

3

o
2

9

22 22222221111

87 65432109876
111 1 1 1

5432109876543210

Set if the input buffer is valid for the code, as with IOC_IN.

o Set if the output buffer is valid for the code, as with IOC_OUT. Note that for codes
with both input and output parameters, both I and 0 will be set.

V Set if there are no parameters for the code, as with IOC_ VOID.

T A two-bit quantity that defines the type of IOCTL. The following values are defined:

o The IOCTL is a standard Unix IOCTL code, as with FIONREAD and FIONBIO.

1 The IOCTL is a generic Windows Sockets 2 IOCTL code. New IOCTL codes
defined for Windows Sockets 2 will have T == 1.

2 The IOCTL applies only to a specific address family.

3 The IOCTL applies only to a specific vendor's provider. This type allows companies
to be assigned a vendor number that appears in the Vendor/AddressFamily
member. Then, the vendor can define new ioctls specific to that vendor without
having to register the IOCTL with a clearinghouse, thereby providing vendor
flexibility and privacy.

The Vendor/Address Family is an 11-bit quantity that defines the vendor who owns the
code (if T == 3) or that contains the address family to which the code applies (if T == 2).
If this is a Unix IOCTL code (T == 0) then this member has the same value as the code
on Unix. If this is a generic Windows Sockets 2 IOCTL (T == 1) then this member can be
used as an extension of the code member to provide additional code values.

Code The specific IOCTL code for the operation.

The following Unix commands are supported.

Parameters
FIONBIO

Enables or disables non blocking mode on socket S. IpvlnBuffer points at an unsigned
long, Which is nonzero if nonblocking mode is to be enabled and zero if it is to be
disabled. When a socket is created, it operates in blocking mode (that is, nonblocking
mode is disabled). This is consistent with BSD sockets.

The WSPAsyncSelect or WSPEventSelect routine automatically sets a socket to
nonblocking mode. If WSPAsyncSelect or WSPEventSelect has been issued on a
socket, then any attemptto use WSPloctlto set the socket back to blocking modewill
fail with WSAEINVAL. To set the socket back to blocking mode, a Windows Sockets

596 Volume 1 Winsock and aos

SPI client must first disable WSPAsyncSelect by calling WSPAsyncSelect with the
IEvent parameter equal to zero, or disable WSPEventSelect by calling
WSPEventSelect with the INetworkEvents parameter equal to zero.

FIONREAD
Determines the amount of data that can be read atomically from socket s.
IpvOutBuffer points at an unsigned long in which WSPloctl stores the result. If s is
stream oriented (for example, type SOCK_STREAM), FIONREAD returns the total
amount of data that can be read in a single receive operation; this is normally the
same as the total amount of data queued on the socket. If s is message oriented (for
example, type SOCK_DGRAM), FIONREAD returns the size of the first datagram
(message) queued on the socket.

SIOCATMARK
Determines whether or not all OOB data has been read. This applies only to a socket
of stream style (for example, type SOCK_STREAM) that has been configured for
inline reception of any OOB data (SO_OOBINLlNE). If no OOB data is waiting to be
read, the operation returns TRUE. Otherwise, it returns FALSE, and the next receive
operation performed on the socket will retrieve some or all of the data preceding the
mark; the Windows Sockets SPI client should use the SIOCATMARK operation to
determine whether any remains. If there is any normal data preceding the urgent
(OOB) data, it will be received in order. (Note that receive operations will never mix
OOB and normal data in the same call.) IpvOutBuffer points at a BOOl in which
WSPloctl stores the result.

The following Windows Sockets 2 commands are supported.

Parameters
SIO_ASSOCIATE_HANDlE (opcode setting: I, T ==1)

Associates this socket with the specified handle of a companion interface. The input
buffer contains the integer value corresponding to the manifest constant for the
companion interface (for example, TH_NETDEV and TH_TAPI), followed by a value
that is a handle of the specified companion interface, along with any other required
information. Refer to the appropriate section in the Windows Sockets 2 Protocol
Specific Annex and/or documentation for the particular companion interface for
additional details. The total size is reflected inthe input buffer length. No output buffer
is required. The WSAENOPROTOOPT error code is indicated for service providers
that do not support this 10CTL. The handle associated by this 10CTl can be retrieved
using SIO_TRANSLATE_HANDLE.

A companion interface might be used, for example, if a particular provider provides:

• A great deal of additional control over the behavior of a socket.

• Provider-specific controls that do not map to existing Windows Socket functions (or
those likely for the future).

Chapter 11 Winsock 2 SPI Reference 597

It is recommended that the Component Object Model (COM) be used instead of this
10CTL to discover and track other interfaces that might be supported by a socket.
This 10CTL is present for backward compatibility with systems where COM is not
available or cannot be used for some other reason.

SIO_ENABLE_CIRCULAR_QUEUEING (opcode setting: V, T==1)
Indicates to a message-oriented service provider that a newly arrived message should
never be dropped because of a buffer queue overflow. Instead, the oldest message in
the queue should be eliminated in order to accommodate the newly arrived message.
No input and output buffers are required. Note that this 10CTL is only valid for sockets
associated with unreliable, message-oriented protocols. The WSAENOPROTOOPT
error code is indicated for service providers that do not support this 10CTL.

SIO_FIND_ROUTE (opcode setting: 0, T ==1)
When issued, this 10CTL requests that the route to the remote address specified as a
SOCKADDR in the input buffer be discovered. If the address already exists in the
local cache, its entry is invalidated. In the case of Novell's IPX, this call initiates an
IPX GetLocalTarget (GLT), that queries the network for the given remote address.

SIO_FLUSH (opcode setting: V, T==1)
Discards current contents of the sending queue associated with this socket. No input
and output buffers are required. The WSAENOPROTOOPT error code is indicated for
service providers that do not support this 10CTL.

SIO_GET_BROADCAST_ADDRESS (opcode setting: 0, T==1)
This 10CTL fills the output buffer with a SOCKADDR structure containing a suitable
broadcast address for use with WSPSendTo.

SIO_GET_EXTENSION_FUNCTION_POINTER (opcode setting: 0, I, T==1)
Retrieves a pointer to the specified extension function supported by the associated
service provider. The input buffer contains a GUID whose value identifies the
extension function in question. The pointer to the desired function is returned in the
output buffer. Extension function identifiers are established by service provider
vendors and should be included in vendor documentation that describes extension
function capabilities and semantics.

SIO_GET_QOS (opcode setting: 0, T==1)
Retrieves the QOS structure associated with the socket. The input buffer is optional.
Some protocols (for example, RSVP) allow the input buffer to be used to qualify a
QOS request. The QOS structure will be copied into the output buffer. The output
buffer must be sized large enough to be able to contain the full QOS structure. The
WSAENOPROTOOPT error code is indicated for service providers that do not support
quality of service.

SIO_GEt_GROUP _QOS (opcode setting: 0, T ==1)
Reserved.

SIO_MULTIPOINT_LOOPBACK (opcode setting: I, T==1)
Controls whether data sent in a multipoint session will also be received by the same
socket on the local host. A value of TRUE causes loop back reception to occur while a
value of FALSE prohibits this.

598 Volume 1 Winsock and QOS

SIO_MUlTICAST_SCOPE (opcode setting: I, T==1)
Specifies the scope over which multicast transmissions will occur. Scope is defined as
the number of routed network segments to be covered. A scope of zero would
indicate that the multicast transmission would not be placed on the wire, but could be
disseminated across sockets within the local host. A scope value of 1 (the default)
indicates that the transmission will be placed on the wire, but will not cross any
routers. Higher scope values determine the number of routers that can be crossed.
Note that this corresponds to the time-to-live (TTL) parameter in IP multicasting.

SIO_SET_QOS (opcode setting: I, T==1)
Associate the supplied QOS structure with the socket. No output buffer is required,
the QOS structure will be obtained from the input buffer. The WSAENOPROTOOPT
error code is indicated for service providers that do not support quality of service.

SIO_SET _GROUP _QOS (opcode setting: I, T ==1)
Reserved.

SIO_TRANSlATE_HANDlE (opcode setting: 1,0, T==1)
To obtain a corresponding handle for socket s that is valid in the context of a
companion interface (for example, TH_NETDEV and TH---.:.TAPI). A manifest constant
identifying the companion interface along with any other needed parameters are
specified in the input buffer. The corresponding handle will be available in the output
buffer upon completion of this function. Refer to the appropriate section in the
Windows Sockets 2 Protocol-Specific Annex and/or documentation for the
particular companion interface for additional details. The WSAENOPROTOOPT error
code is indicated for service providers that do not support this 10CTL for the specified
companion interface. This 10CTL retrieves the handle associated using
SIO_ TRANSLATE_HANDLE.

It is recommended that COM be used instead of this 10CTL to discover and track
other interfaces that might be supported by a socket. This 10CTL is present for
backward compatibility with systems where COM is not available or cannot be used
for some other reason.

SIO_ROUTING_INTERFACE_QUERY (opcode setting: I, 0, T==1)
To obtain the address of the local interface (represented as SOCKADDR structure)
that should be used to send to the remote address specified in the input buffer (as
SOCKADDR). Remote multicast addresses may be submitted in the input buffer to
get the address of the preferred interface for multicast transmission. In any case, the
interface address returned may be used by the application in a subsequent bind
request.

Note that routes are subject to change. Therefore, Windows Socket SPI clients cannot
rely on the information returned by SIO_ROUTING_INTERFACE_QUERY to be
persistent. SPI clients may register for routing change notifications using the
SIO_ROUTING_INTERFACE_CHANGE IOCTl, which provides for notification
through either overlapped I/O or a FD_ROUTING_INTERFACE_CHANGE event. The
following sequence of actions can be used to guarantee that the Windows Socket SPI
client always has current routing interface information for a given destination.

Chapter 11 Winsock 2 SPI Reference 599

• Issue SIO_ROUTING_INTERFACE_CHANGE IOCTL.

• Issue SIO_ROUTING_INTERFACE_QUERY IOCTL.

• Whenever SIO_ROUTING_INTERFACE_CHANGE IOCTL notifies the WinSock
SPI client of routing change (either through overlapped I/O or by signaling
FD_ROUTING_INTERFACE_CHANGE event), the whole sequence of actions
should be repeated.

If output buffer is not Ii:uge enough to contain the interface address,
SOCKET_ERROR is returned as the result of this 10CTL and WSPGetLastError
returns WSAEFAULT. The required size of the output buffer will be returned in
IpcbBytesReturnedin this case. Note the WSAEFAULT error code is also returned if
the IpvlnBuffer, IpvOutBuffer, or IpcbBytesReturned parameter is not totally contained
in a valid part of the user address space.

If the destination address specified in the input buffer cannot be reached through any
of the available interfaces, SOCKET_ERROR is returned as the result of this IOCTL
and WSAGetLastError returns WSAENETUNREACH or even WSAENETDOWN if all
of the network connectivity is lost.

SIO_ROUTING_INTERFACE_CHANGE (opcode setting: I, T ==1)
To receive notificatiqn of the interface change that should be used to reach the
remote address in the input buffer (specified as a SOCKADDR structure). No output
information will be provided upon completion of this 10CTL; the completion merely
indicates that the routing interface for a given destination has changed and should be
queried again through SIO_ROUTING_INTERFACE_QUERY.

It is assumed (although· not required) that the Windows Socket SPI client uses
overlapped I/O to be notified of routing interface change through completion of
SIO_ROUTING_INTERFACE,-CHANGE request. Alternatively, if the
SIO_ROUTING_INTERFACE_CHANGE IOCTL is issued on a nonblocking socket
and without overlapped parameters (IpOverlapped / CompletionRoutineare set to
NULL), it will complete immediately with error WSAEWOULDBLOCK and the
Windows Socket SPI client can then wait for routing change events using a call to
WSPEventSelect or WSPAsyncSelect with the
FD--.:ROUTING_INTERFACE_CHANGEbit set in the network event bitmask.

It is recognized that routing information remains stable in most cases. So requiring the
Windows Sockets SPI client to keep multiple outstanding IOCTLs-for notifications
about all destinations that it is interested in as well as having the service provider
keep track of all them-will unnecessarily tie up significant system resources. This
situation can be avoided by extending the meaning of the input parameters and
relaxing the service provider requirements as follows:

The Windows Sockets SPlelient can specify a protocol family specific wildcard
address (same as one used in bind call when requesting to bind to any available
address) to request notifications of any routing changes. This allows the Windows
Sockets SPI client to keep only one outstanding
SIO_ROUTING_INTERFACE--.:CHANGE for all the sockets/destinations it has and
then use SIO_ROUTING_INTERFACE_QUERY togetthe actual routing
information.

600 Volume 1 Winsock and QOS

Service provider can opt to ignore the information supplied by the Windows
Sockets SPI client in the input buffer of the
SIO_ROUTING_INTERFACE_CHANGE (as though the Windows Sockets SPI
client specified a wildcard address) and complete the
SIO_ROUTING_INTERFACE_CHANGE IOCTL or signal
FD_ROUTING_INTERFACE_CHANGE event in the event of any routing
information change (not just the route to the destination specified in the input
buffer).

SIO_ADDRESS_LIST_QUERY (opcode setting: I, 0, T==1)
To obtain a list of local transport addresses of the socket's protocol family to which the
Windows Sockets SPI client can bind. The list returned in the output buffer using tHe
following format:

Note that in Win32 Plug and Play environments·, addresses can be added and
removed dynamically. Therefore, Windows Sockets SPI clients cannot rely on the
information returned by SIO_ADDRESS_LlST _QUERY to be persistent. Windows
Sockets SPI clients may register for address change notifications through the
SIO_ADDRESS_LlST_CHANGE IOCTL that provides for notification through either
overlapped I/O or FD_ADDRESS_LlST _CHANGE event. The following sequence of
actions can be used to guarantee that the Windows Sockets SPI client always has
current address list information:

• Issue SIO_ADDRESS_LlST _CHANGE 10CTL.

• Issue SIO_ADDRESS_LlST _QUERY 10CTL.

• Whenever SIO_ADDRESS_LIST_CHANGE IOCTL notifies the Windows Sockets
SPI client of address list change (either through overlapped I/O or by signaling
FD_ADDRESS_LlST _CHANGE event), the whole sequence of actions should be
repeated.

If the output buffer is not large enough to contain the address list, SOCKET_ERROR
is returned as the result of this 10CTL and WSPGetLastError returns WSAEFAUl-T.
The required size of the output buffer will be returned in IpcbBytesReturned in this
case. Note the WSAEFAUL T error code is also returned if the IpvlnBuffer,
IpvOutBuffer, or IpcbBytesReturned parameter is not totally contained in a valid part of
the user address space.

SIO_ADDRESS_LlST _CHANGE (opcode setting: T ==1)
To receive notification of changes in the list of local transport addresses of the
socket's protocol family to which the Windows Sockets SPI client can bind. No output
information will be provided upon completion of this IOCTL; the completion merely

Chapter 11 Winsock 2 SPI Reference 601

indicates that the list of available local addresses has changed and should be queried
again through SIO_ADDRESS_LIST _QUERY.

It is assumed (although not required) that the Windows Sockets SPI client uses
overlapped I/O to be notified of change by completion of
SIO_ADDRESS_LlST _CHANGE request. Alternatively, if the
SIO_ADDRESS_LlST _CHANGE 10CTL is issued on a nonblocking socket and
without overlapped parameters (IpOverlapped and IpCompletionRoutine are set to
NULL), it will complete immediately with error WSAEWOULDBLOCK. The Windows
Sockets SPI client can then wait for address list change events through a call to
WSPEventSelect or WSPAsyncSelect with the FD_ADDRESS_LlST _CHANGE bit
set in the network event bitmask.

SIO_QUERY _PNP _TARGET_HANDLE (opcode setting: 0, T ==1)
To obtain the socket descriptor of the next provider in the chain on which the current
socket depends in PnP sense. This 10CTL is invoked by the Windows Sockets 2 DLL
only on sockets of non-IFS service providers created through
WPUCreateSocketHandle call. The provider should return in the output buffer the
socket handle of the next provider in the chain on which a given socket handle
depends in PnP sense (for example, the removal of the device that supports the
underlying handle will result in the invalidation of the handle above it in the chain).

If an overlapped operation completes immediately, this function returns a value of
zero and the IpcbBytesReturned parameter is updated with the number of bytes in the
output buffer. If the overlapped operation is successfully initiated and will complete
later, this function returns SOCKET_ERROR and indicates error code
WSA_IO_PENDING. In this case, IpcbBytesReturned is not updated. When the
overlapped operation completes, the amount of data in the output buffer is indicated
either through the cbTransferred parameter in the completion routine (if specified), or
through the IpcbTransfer parameter in WSPGetOverlappedResult.

When called with an overlapped socket, the IpOverlapped parameter must be valid for
the duration of the overlapped operation. The WSAOVERLAPPEDstructure has the
following form:

If the IpCompletionRoutine parameter is NULL, the service provider signals the hEvent
member of IpOver/apped when the overlapped operation completes if it contains a valid
event object handle. The Windows Sockets SPI client can use
WSPGetOverlappedResult to poll or wait on the event object.

602 Volume 1 Winsock and QOS

If IpCompletionRoutine is not NULL, the hEvent member is ignored and can be used by
the Windows Sockets SPI client to pass context information to the completion routine. A
client that passes a non-NULL IpCompletionRoutine and later calls
WSAGetOverlappedResult for the same overlapped I/O request may not set the fWait
parameter for that invocation of WSAGetOverlappedResult to TRUE. In this case, the
usage of the hEvent member is undefined, and attempting to wait on the hEvent
member would produce unpredictable results.

It is the service provider's responsibility to arrange for invocation of the client specified
completion routine when the overlapped operation completes. Since the completion
routine must be executed in the context of the same thread that initiated the overlapped
operation, it cannot be invoked directly from the service provider. The Ws2_32.dll offers
an asynchronous procedure call (APC) mechanism to facilitate invocation of completion
routines.

A service provider arranges for a function to be executed in the proper thread and
process context by calling WPUQueueApc. This function can be called from any
process and thread context, even a context different from the thread and process that
was used to initiate the overlapped operation.

WPUQueueApc takes as input parameters a pOinter to a WSATHREADID structure
(supplied to the provider through the IpThreadld input parameter), a pOinter to an APC
function to be invoked, and a 32-bit context value that is subsequently passed to the
APC function. Because only a single 32-bit context value is available, the APC function
itself cannot be the client specified-completion routine. The service provider must
instead supply a pointer to its own APC function that uses the supplied context value to
access the needed result information for the overlapped operation, and then invokes the
client specified-completion routine.

The prototype for the client-supplied completion routine is as follows:

Completion Routine is a placeholder for a client supplied function. The dwError
specifies the completion status for the overlapped operation as indicated by
IpOverlapped. The cbTransferredspecifies the number of bytes returned. Currently,
there are no flag values defined and dwFlags will be zero. This function does not return
a value.

Returning from this function allows invocation of another pending completion routine for
this socket. The completion routines can be called in any order, though not necessarily in
the same order that the overlapped operations are completed.

Chapter 11 Winsock 2 SPI Reference 603

Compatibility
The 10CTl codes with T == 0 are a subset of the 10CTl codes used in Berkeley
sockets. In particular, there is no command that is equivalent to FIOASYNC.

Return Values
If no error occurs and the operation has completed immediately, WSPloctl returns zero.
Note that in this case the completion routine, if specified, will have already been queued.
Otherwise, a value of SOCKET_ERROR is returned, and a specific error code is
available in IpErmo. The error code WSA_IO_PENDING indicates that an overlapped
operation has been successfully initiated and that completion will be indicated at a later
time. Any other error code indicates that no overlapped operation was initiated and no
completion indication will occur.

Error Codes
Error code

WSAENETDOWN

WSAEFAUlT

WSAEINVAl

WSAEINPROGRESS

WSAENOTSOCK

WSAEOPNOTSUPP

WSAEWOUlDBlOCK

Meaning

Network subsystem has failed.

The IpvlnBuffer, IpvOutBuffer or IpcbBytesRetumed argument
is not totally contained in a valid part of the user address
space, or the cblnBuffer or cbOutBuffer argument is too small.

The dwloControlCode is not a valid command, or a supplied
input parameter is not acceptable, or the command is not
applicable to the type of socket supplied.

Function is invoked when a callback is in progress.

Descriptor s is not a socket.

Specified 10CTl command cannot be realized. For example,
the flow specifications specified in SIO_SET _OOS cannot be
satisfied.

An overlapped operation was successfully initiated and
completion will be indicated at a later time.

Socket is marked as nonblocking and the requested operation
would block.

Version: Requires Windows Sockets 2.0.
Header: Declared in Ws2spi.h.

WSPSocket, WSPSetSockOpt, WSPGetSockOpt, WPUQueueApc

604 Volume 1 Winsock and QOS

WSPJoinLeaf
The WSPJoinLeaf function joins a leaf node into a multipoint session, exchanges
connect data, and specifies needed quality of service based on the supplied flow
specifications.

Parameters
5

[in] Descriptor identifying a multipoint socket.

name
[in] Name of the peer to which the socket is to be joined.

name/en
[in] Length of the name.

/pCallerData
[in] Pointer to the user data that is to be transferred to the peer during multipoint
session establishment.

/pCalleeData
[out] Pointer to the user data that is to be transferred back from the peer during
multipoint session establishment.

~SQOS ,
[in] Pointer to the flow specifications for socket 5, one for each direction.

/pGQOS
[in] Reserved.

dwF/ag5
[in] Flags to indicate that the socket is acting as a sender, receiver, or both.

/pErmo
[out] Pointer to the error code.

Chapter 11 Winsock 2 SPI Reference 605

Return Values
If no error occurs, WSPJoinLeaf returns a value of type SOCKET that is a descriptor for
the newly created multipoint socket. Otherwise, a value of INVALID_SOCKET is
returned, and a specific error code is available in IpErmo.

On a blocking socket, the return value indicates success or failure of the join operation.

With a non blocking socket, successful initiation of a join operation is indicated by a
return value of a valid socket descriptor. Subsequently, an FD_CONNECT indication is
given when the join operation completes, either successfully or otherwise. The error
code associated with the FD_CONNECT indicates the success or failure of the
WSPJoinLeaf.

Also, until the multipoint session join attempt completes all subsequent calls to
WSPJoinLeaf on the same socket will fail with the error code WSAEALREADY. After
the WSAJoinLeaf completes successfully a subsequent attempt will usually fail with the
error code WSAEISCONN. An exception to the WSAEISCONN rule occurs for a c_root
socket that allows root-initiated joins. In such a case another join may be initiated after a
prior WSAJoinLeaf completes.

If the return error code indicates the multipoint session join attempt failed (that is,
WSAECONNREFUSED, WSAENETUNREACH, WSAETIMEDOUT) the Windows
Sockets SPI client can call WSPJoinLeaf again for the same socket.

Remarks
This function is used to join a leaf node to a multipoint session, and to perform a number
of other ancillary operations that occur at session join time as well. If the socket, s, is
unbound, unique values are assigned to the local association by the system, and the
socket is marked as bound.

WSPJoinLeaf has the same parameters and semantics as WSPConnect except that it
returns a socket descriptor (as in WSPAccept), and it has an additional dwFlags
parameter. Only multipoint sockets created using WSPSocket with appropriate
multipoint flags set can be used for input parameter s in this function. If the socket is in
the nonblocking mode, the returned socket descriptor will not be useable until after a
corresponding FD_CONNECT indication on the original socket s has been received,
except that closesocket can be invoked on this new socket descriptor to cancel a
pending join operation. A root node in a multipoint session can call WSPJoinLeaf one or
more times in order to add a number of leaf nodes, however at most one multipoint
connection request can be outstanding at a time. Refer to Protocol-Independent
Multicast and Multipoint in the SPI for additional information.

For nonblocking sockets it is often not possible to complete the connection immediately.
In such Bcase, this function returns an as-yet unusable socket descriptor and the
operation proceeds. There is no error code such as WSAEWOULDBLOCK in this case,
since the function has effectively returned a "successful start" indication. When the final
outcome success or failure becomes known, it may be reported through
WSPAsyncSelect or WSPEventSelect depending on how the client registers for

606 Volume 1 Winsock and QOS

notification on the original socket s. In either case, the notification is announced with
FD_CONNECT and the error code associated with the FD_CONNECT indicates either
success or a specific reason for failure. Note that WSPSelect cannot be used to detect
completion notification for WSAJoinLeaf.

The socket descriptor returned by WSPJoinLeaf is different depending on whether the
input socket descriptor, s, is a c_root or a c_leaf. When used with a c_root socket, the
name parameter designates a particular leaf node to be added and the returned socket
descriptor is a c_leaf socket corresponding to the newly added leaf node. (As is
described in section Descriptor Allocation, when new socket descriptors are allocated
IFS providers must call WPUModifylFSHandle and non-IFS providers must call
WPUCreateSocketHandle). The newly created socket has the same properties as s
including asynchronous events registered with WSPAsyncSelect or with
WSPEventSelect. It is not intended to be used for exchange of multipoint data, but
rather is used to receive network event indications (for example, FD_CLOSE) for the
connection that exists to the particular c_leaf. Some multipoint implementations can also
allow this socket to be used for "side chats" between the root and an individual leaf
node. An FD_CLOSE indication will be received for this socket if the corresponding leaf
node calls WSPCloseSocket to drop out of the multipoint session. Symmetrically,
invoking WSPCloseSocket on the c_leaf socket returned from WSPJoinLeaf will cause
the socket in the corresponding leaf node to get FD_CLOSE notification.

When WSPJoinLeaf is invoked with a c_leaf socket, the name parameter contains the
address of the root node (for a rooted control scheme) or an existing multipoint session
(nonrooted control scheme), and the returned socket descriptor is the same as the input
socket descriptor. In other words, a new socket descriptor is not allocated. In a rooted
control scheme, the root application would put its c_root socket in the listening mode by
calling WSPListen. The standard FD_ACCEPT notification will be delivered when the
leaf node requests to join itself to the multipoint session. The root application uses the
usual WSPAccept functions to admit the new leaf node. The value returned from
WSPAccept is also a c_leaf socket descriptor just like those returned from
WSPJ()inLeaf. To accommodate multipoint schemes that allow both root-initiated and
leaf-initiated joins, it is acceptable for a c_root socket that is already in listening mode to
be used as an input to WSPJoinLeaf.

The Windows Sockets SPI client is responsible for allocating any memory space pointed
to directly or indirectly by any of the parameters it specifies.

The IpCallerData is a value parameter that contains any user data that is to be sent
along with the multipoint session join request. If IpCallerData is NULL, no user data will
be passed to the peer. ThelpCalleeData is a result parameter that will contain any user
data passed back from the peer as part of the multipoint session establishment.
IpCalleeData->len initially contains the length of the buffer allocated by the Windows
Sockets SPI client and pointed to by IpCalleeData->buf. IpCalleeData->len will be set to
zero if no user data has been passed back. The IpCalleeData information will be valid
when the multipoint join operation is complete. For blocking sockets, this will be when
the WSPJoinLeaf function returns. For nonblocking sockets, this will be after the
FD_CONNECT notification has occurred on the original socket s. If IpCalleeData is

Chapter 11 Winsock 2 SPI Reference 607

NULL, no user data will be passed back. The exact format of the user data is specific to
the address family to which the socket belongs and/or the applications involved.

At multipoint session establishment time, a Windows Sockets SPI client can use the
IpSOOS parameters to override any previous OOS specification made for the socket
through WSPloctl with the SIO_SET _OOS opcode.

IpSOOS specifies the flow specifications for socket s, one for each direction, followed by
any additional provider-specific parameters. If either the associated transport provider in
general or the specific type of socket in particular cannot honor the OOS request, an
error will be returned as indicated below. The sending or receiving flow specification
values will be ignored, respectively, for any unidirectional sockets. If no provider-specific
parameters are supplied, the buf and len members of IpSOOS->ProviderSpecific should
be set to NULL and zero, respectively. A NULL value for IpSOOS indicates no
application supplied quality of service.

The dwFlags parameter is used to indicate whether the socket will be acting only as a
sender (JL_SENDER_ONL V), only as a receiver (JL_RECEIVER_ONL V), or both
(JL_BOTH).

Note When connected sockets break (that is, become closed for whatever reason),
they should be discarded and recreated. It is safest to assume that when things go awry
for any reason on a connected socket, the Windows Sockets SPI client must discard and
recreate the needed sockets in order to return to a stable point.

Error Codes
Error code

WSAENETDOWN

WSAEADDRINUSE

WSAEINTR

WSAEINPROGRESS

WSAEALREADY

WSAEADDRNOTAVAIL

Meaning

Network subsystem has failed.

Socket's local address is already in use and the socket
was not marked to allow address reuse with
SO_REUSEADDR. This error usually occurs at the time
of bind, but could be delayed until this function if the
bind was to a partially wild-card address (involving
ADDR_ANY) and if a specific address needs to be
"committed" at the time of this function.

(Blocking) call was canceled through
WSPCancelBlockingCall.

Blocking Windows Sockets call is in progress, or the
service provider is still processing a callback function.

Nonblocking WSPJoinLeaf callisin progress on the
specified socket.

Remote address is not a valid address (for example,
ADDR_ANY).

(continued)

608 Volume 1 Winsock and QOS

(continued)

Error code

WSAEAFNOSUPPORT

WSAECONNREFUSED

WSAEFAULT

WSAEISCONN

WSAENETUNREACH

WSAENOBUFS

WSAENOTSOCK

WSAEOPNOTSUPP

WSAEPROTONOSUPPORT

WSAETIMEDOUT

Meaning

Addresses in the specified family cannot be used with
this socket.

The attempt to join was forcefully rejected.

Name or the name/en argument is not a valid part of the
user address space, the name/en argument is too
small, the buffer length for /pCalleeData, /pSOOS, and
/pGOOS are too small, or the buffer length for
/pCallerData is too large.

Socket is already member of the multipoint session.

Network cannot be reached from this host at this time.

No buffer space is available. The socket cannot be
joined.

Descriptor is not a socket.

Flow specifications specified in /pSOOS cannot be
satisfied.

The /pCallerData augment is not supported by the
service provider.

Attempt to join timed out without establishing a
multipOint session.

Version: Requires Windows Sockets 2.0.
Header: Declared in Ws2spLh.

WSPBind, WSPSelect, WSPAccept, WSPAsyncSelect, WSPEventSelect,
WSPSocket

WSPListen
The WSPListen function establishes a socket to listen for incoming connections.

Parameters
s

Chapter 11 Winsock 2 SPI Reference 609

[in] Descriptor identifying a bound, unconnected socket.

backlog
[in] Maximum length to which the queue of pending connections can grow. If this
value is SOMAXCONN, then the service provider should set the backlog to a
maximum "reasonable" value. There is no standard provision to find out the actual
backlog value.

IpErmo
[out] Pointer to the error code.

Return Values
If no error occurs, W5PListen returns zero. Otherwise, a value of SOCKET_ERROR is
returned, and a specific error code is available in IpErmo.

Remarks
To accept connections, a socket is first created with WSPSocket bound to a local
address with WSPBind, a backlog for incoming connections is specified with
W5PListen, and then the connections are accepted with WSPAccept. W5PListen
applies only to sockets that are connection oriented (for example, SOCK_STREAM).
The socket s is put into passive mode where incoming connection requests are
acknowledged and queued pending acceptance by the Windows Sockets SPI client.

This function is typically used by servers that could have more than one connection
request at a time: if a connection request arrives with the queue full, the client will
receive an error with an indication of WSAECONNREFUSED.

WSPListen should continue to function rationally when there are no available
descriptors. It should accept connections until the queue is emptied. If descriptors
become available, a later call to WSPListen or WSPAccept will refill the queue to the
current or most recent "backlog", if pOSSible, and resume listening for incoming
connections.

A Windows Sockets SPI client can call WSPListen more than once on the same socket.
This has the effect of updating the current backlog for the listening socket. Should there
be more pending connections than the new backlog value, the excess pending
connections will be reset and dropped.

Compatibility
backlog is limited (Silently) to a reasonable value as determined by the service provider.
Illegal values are replaced by the nearest legal value. There is no standard provision to
find out the actual backlog value.

610 Volume 1 Winsock and aos

Error Codes
Error code

WSAENETDOWN

WSAEADDRINUSE

WSAEINPROGRESS

WSAEINVAL

WSAEISCONN

WSAEMFILE

WSAENOBUFS

WSAENOTSOCK

WSAEOPNOTSUPP

Meaning

Network subsystem has failed.

Socket's local address is already in use and the socket was
not marked to allow address reuse with SO_REUSEADDR.
This error usually occurs at the time of bind, but could be
delayed until this function if the bind was to a partially wildcard
address (involving ADDR_ANY) and if a specific address
needs to be committed at the time of this function.

Function is invoked when a callback is in progress.

Socket has not been bound with WSPBind.

Socket is already connected.

No more socket descriptors are available.

No buffer space is available.

Descriptor is not a socket.

Referenced socket is not of a type that supports the
WSPListen operation.

Version: Requires Windows Sockets 2.0.
Header: Declared in Ws2spLh.

WSPAccept, WSPConnect, WSPSocket

WSPRecv
The WSPRecv function receives data on a socket.

Parameters
s

Chapter 11 Winsock 2 SPI Reference 611

[in] Descriptor identifying a connected socket.

IpBuffers
[in/out] Pointer to an array of WSABUF structures. Each WSABUF structure contains
a pOinter to a buffer and the length of the buffer.

dwBufferCount
[in] Number of WSABUF structures in the IpBuffers array.

IpNumberOfBytesRecvd
[out] Pointer to the number of bytes received by this call.

IpFlags
[in/out] Pointer to flags.

IpOverlapped
[in] Pointer to a WSAOVERLAPPED structure (ignored for nonoverlapped structures).

IpCompletionRoutine
[in] Pointer to the completion routine called when the receive operation has been
completed (ignored for nonoverlapped structures).

IpThreadld
[in] Pointer to a WSATHREADID structure to be used by the provider in a subsequent
call to WPUQueueApc. The provider should store the referenced WSATHREADID
structure (not the pointer to same) until after the WPUQueueApc function returns.

IpErmo
[out] Pointer to the error code.

Return Values
If no error occurs and the receive operation has completed immediately, WSPRecv
returns zero. Note that in this case the completion routine, if specified, will have already
been queued. Otherwise, a value of SOCKET_ERROR is returned, and a specific error
code is available in IpErmo. The error code WSA_IO_PENDING indicates that the
overlapped operation has been successfully initiated and that completion will be
indicated at a later time. Any other error code indicates that no overlapped operations
was initiated and no completion indication will occur.

Remarks
WSPRecv is used on connected sockets or bound connectionless sockets specified by
the sparameter and is used to read incoming data. The socket's local address must be
known. This may be done explicitly through WSPBind or implicitly through WSPAccept,
WSPConnect, WSPSendTo, or WSPJoinLeaf.

For connected, connection less sockets, this function restricts the addresses from which
received messages are accepted. The function only returns messages from the remote
address specified in the connection. Messages from other addresses are (silently)
discarded.

612 Volume 1 Winsock and OOS

For overlapped sockets WSPRecv is used to post one or more buffers into which
incoming data will be placed as it becomes available, after which the Windows Sockets
SPI client-specified completion indication (invocation of the completion routine or setting
of an event object) occurs. If the operation does not complete immediately, the final
completion status is retrieved through the completion routine or
WSPGetOverlappedResult.

If both IpOverlapped and IpCompletionRoutine are NULL, the socket in this function will
be treated as a nonoverlapped socket.

For nonoverlapped sockets, the IpOverlapped, IpCompletionRoutine, and IpThreadld
parameters are ignored. Any data that has already been received and buffered by the
transport will be copied into the supplied user buffers. For the case of a blocking socket
with no data currently having been received and buffered by the transport, the call will
block until data is received. Windows Sockets 2 does not define any standard blocking
timeout mechanism for this function. For protocols acting as byte-stream protocols the
stack tries to return as much data as possible subject to the supplied buffer space and
amount of received data available. However, receipt of a single byte is sufficient to
unblock the caller. There is no guarantee that more than a single byte will be returned.
For protocols acting as message-oriented, a full message is required to unblock
the caller.

Whether or not a protocol is acting as byte-stream is determined by the setting of
XP1_MESSAGE_ORIENTED and XP1_PSEUDO_STREAM in its
WSAPROTOCOL_INFO structure and the setting of the MSG_PARTIAL flag passed in
to this function (for protocols that support it). The relevant combinations are summarized
in the following table (an asterisk (*) indicates that the setting of this bit does not matter
in this case).

XP1_MESSAGE - XP1_PSEUDO -
ORIENTED STREAM MSG_PARTIAL Acts as

not set * * byte-stream

* set * byte-stream

set not set set byte-stream

set not set not set message-oriented

The supplied buffers are filled in the order in which they appear in the array pointed to by
IpBuffers, and the buffers are packed so that no holes are created.

The array of WSABUF structures pointed to by the IpBuffers parameter is transient. If
this operation completes in an overlapped manner, it is the service provider's
responsibility to capture this array of pointers to WSABUF structures before returning
from this call. This enables Windows Sockets SPI clients to build stack-based
WSABUF arrays.

Chapter 11 Winsock 2 SPI Reference 613

For byte stream-style sockets (for example, type SOCK_STREAM), incoming data is
placed into the buffers until the buffers are filled, the connection is closed, or internally
buffered data is exhausted. Regardless of whether or not the incoming data fills all the
buffers, the completion indication occurs for overlapped sockets. For message-oriented
sockets (for example, type SOCK_DGRAM), an incoming message is placed into the
supplied buffers, up to the total size of the buffers supplied, and the completion
indication occurs for overlapped sockets. If the message is larger than the buffers
supplied, the buffers are filled with the first part of the message. If the MSG_PARTIAL
feature is supported by the service provider, the MSG_PARTIAL flag is set in Ipf/ags and
subsequent receive operation(s) can be used to retrieve the rest of the message. If
MSG_PARTIAL is not supported but the protocol is reliable, WSPRecv generates the
error WSAEMSGSIZE and a subsequent receive operation with a larger buffer can be
used to retrieve the entire message. Otherwise, (that is, the protocol is unreliable and
does not support MSG_PARTIAL), the excess data is lost, and WSPRecv generates the
error WSAEMSGSIZE.

For connection-oriented sockets, WSPRecv can indicate the graceful termination of the
virtual circuit in one of two ways, depending on whether the socket is a byte stream or
message oriented. For byte streams, zero bytes having been read indicates graceful
closure and that no more bytes will ever be read. For message-oriented sockets, where
a zero byte message is often allowable, a return error code of WSAEDISCON is used to
indicate graceful closure. In any case a return error code of WSAECONNRESET
indicates an abortive close has occurred.

IpFlags can be used to influence the behavior of the function invocation beyond the
options specified for the associated socket. That is, the semantics of this function are
determined by the socket options and the IpFlags parameter. The latter is constructed by
using the bitwise OR operator with any of the following values.

Value Meaning

MSG_PEEK Peeks at the incoming data. The data is copied into the buffer but is
not removed from the input queue. This flag is valid only for
nonoverlapped sockets.

MSG_OOB Processes OOB data (See section. DECnet Out-Ot-band data for a
discussion of this topic.)

MSG_PARTIAL This flag is for message-oriented sockets only. On output, indicates
that the data supplied is a portion of the message transmitted by the
sender. Remaining portions of the message will be supplied in
subsequent receive operations. A subsequent receive operation with
MSG_PARTIAL flag cleared indicates end of sender's message.

As an input parameter, MSG_PARTIAL indicates that the receive
operation should complete even ifonly part of a message has been
received by the service provider.

614 Volume 1 Winsock and QOS

Overlapped Socket 1/0
If an overlapped operation completes immediately, WSPRecv returns a value of zero
and the IpNumberOfBytesRecvd parameter is updated with the number of bytes received
and the flag bits pointed by the IpFlags parameter are also updated. If the overlapped
operation is successfully initiated and will complete later, WSPRecv returns
SOCKET_ERROR and indicates error code WSA_IO_PENDING. In this case,
IpNumberOfBytesRecvd and IpFlags are not updated. When the overlapped operation
completes the amount of data transferred is indicated either through the cbTransferred
parameter in the completion routine (if specified), or through the IpcbTransfer parameter
in WSPGetOverlappedResult. Flag values are obtained either through the dwFlags
parameter of the completion routine, or by examining the IpdwFlags parameter of
WSPGetOverlappedResult.

Providers must allow this function to be called from within the completion routine of a
previous WSPRecv, WSPRecvFrom, WSPSend or WSPSendTo function. However, for
a given socket, I/O completion routines can not be nested. This permits time-sensitive
data transmissions to occur entirely within a preemptive context.

The IpOver/apped parameter must be valid for the duration of the overlapped operation.
If multiple I/O operations are simultaneously outstanding, each must reference a
separate overlapped structure. The WSAOVERLAPPED structure has the
following form:

If the IpCompletionRoutine parameter is NULL, the service provider signals the hEvent
member of IpOverlapped when the overlapped operation completes if it contains a valid
event object handle. The Windows Sockets SPI client can use
WSPGetOverlappedResult to wait or poll on the event object.

If IpCompletionRoutine is not NULL, the hEvent member is ignored and can be used by
the Windows Sockets SPI client to pass context information to the completion routine. A
client that passes a non-NULL IpCompletionRoutine and later calls
WSAGetOverlappedResult for the same overlapped I/O request may not set the fWait
parameter for that invocation of WSAGetOverlappedResult to TRUE. In this case the
usage of the hEvent member is undefined, and attempting to wait on the hEvent member
would produce unpredictable results.

It is the service provider's responsibility to arrange for invocation of the client specified
completion routine when the overlapped operation completes. Since the completion
routine must be executed in the context of the same thread that initiated the overlapped

Chapter 11 Winsock 2 SPI Reference 615

operation, it cannot be invoked directly from the service provider. The Ws2_32.dll offers
an asynchronous procedure call (APC) mechanism to facilitate invocation of completion
routines.

A service provider arranges for a function to be executed in the proper thread and
process context by calling WPUQueueApc, which was used to initiate the overlapped
operation. This function can be called from any process and thread context, even a
context different from the thread and process that was used to initiate the overlapped
operation.

WPUQueueApc takes as input parameters a pointer to a WSATHREADID structure
(supplied to the provider through the IpThreadld input parameter), a pointer to an APC
function to be invoked, and a 32-bit context value that is subsequently passed to the
APC function. Because only a single 32-bit context value is available, the APC function
itself cannot be the client-specified completion routine. The service provider must instead
supply a pOinter to its own APC function that uses the supplied context value to access
the needed result information for the overlapped operation, and then invokes the
client-specified completion routine.

The prototype for the client-supplied completion routine is as follows:

CompletionRoutine is a placeholder for a client-supplied function name . . dwError
specifies the completion status for the overlapped operation as indicated by
IpOverlapped. cbTransferred specifies the number of bytes received. dwFlags contains
information that would have appeared in IpFlags if the receive operation had completed
immediately. This function does not return a value.

The completion routines can be called in any order, but not necessarily the same order
in which the overlapped operations are completed. However, the posted buffers are
guaranteed to be filled in the same order in which they are supplied.

Error Codes
Error code

WSAENETDOWN

WSAENOTCONN

WSAEINTR

WSAEINPROGRESS

Meaning

Network subsystem has failed.

Socket is not connected.

(Blocking) call was canceled through
WSPCancelBlockingCall.

Blocking Windows Sockets call is· in progress, or the service·
provider is still processing a callback function.

(continued)

616 Volume 1 Winsock and QOS

(continued)

Error code

WSAENETRESET

WSAEFAULT

WSAENOTSOCK

WSAEOPNOTSUPP

WSAESHUTDOWN

WSAEWOULDBLOCK

WSAEMSGSIZE

WSAEINVAL

WSAECONNABORTED

WSAECONNRESET

WSAEDISCON

WSA_OPERATION_ABORTED

Meaning

Connection has been broken due to keep-alive activity
detecting a failure while the operation was in progress.

The IpBuffers argument is not totally contained in a valid part of
the user address space.

Descriptor is not a socket.

MSG_OOB was specified, but the socket is not stream-style
such as type SOCK_STREAM, OOB data is not supported in
the communication domain associated with this socket, or the
socket is unidirectional and supports only send operations.

Socket has been shut down; it is not possible to receive
through WSPRecv on a socket after WSPShutdown has been
invoked with how set to SD_RECEIVEor SD_BOTH.

Overlapped sockets: there are too many outstanding
overlapped I/O requests. Nonoverlapped sockets: The socket is
marked as nonblocking and the receive operation cannot be
completed immediately.

Message was too large to fit into the specified buffer and (for
unreliable protocols only) any trailing portion of the message
that did not fit into the buffer has been discarded.

Socket has not been bound (for example, with WSPBind) or
the socket is not created with the overlapped flag.

Virtual circuit was terminated due to a time-out or other failure.

Virtual circuit was reset by the remote side.

Socket s is message oriented and the virtual circuit was
gracefully closed by the remote side.

An overlapped operation was successfully initiated and
completion will be indicated at a later time.

Overlapped operation has been canceled due to the closure of
the socket.

Version: Requires Windows Sockets 2.0.
Header: Declared in Ws2spLh.

WPUCloseEvent, WPUCreateEvent, WSPGetOverlappedResult, WSPSocket,
WPUQueueApc

Chapter 11 Winsock 2 SPI Reference 617

WSPRecvDisconnect
The WSPRecvDisconnect function terminates reception on a socket and retrieves the
disconnect data, if the socket is connection oriented.

Parameters
s

[in] Descriptor identifying a socket.

IplnboundDisconnectData
[out] Pointer to a buffer into which disconnect data is to be copied.

IpErmo
[out] Pointer to the error code.

Return Values
If no error occurs, WSPRecvDisconnect returns zero. Otherwise, a value of
SOCKET_ERROR is returned, and a specific error code is available in IpErmo.

Remarks
WSPRecvDisconnect is used on connection-oriented sockets to disable reception, and
retrieve any incoming disconnect data from the remote party.

After this function has been successfully issued, subsequent receives on the socket will
be disallowed. This has no effect on the lower protocol layers. For TCP, the TCP window
is not changed and incoming data will be accepted (but not acknowledged) until the
window is exhausted. For UDP, incoming datagrams are accepted and queued. In no
case will an ICMP error packet be generated.

To successfully receive incoming disconnect data, a Windows Sockets SPI client must
use other mechanisms to determine that the circuit has been closed. For example, a
client needs to receive an FD_CLOSE notification, or get a zero return value, or a
WSAEDISCONerror code from WSPRecv.

Note that WSPRecvDisconnect does not close the socket, and resources attached to
the socket will not be freed until WSPCloseSocket is invoked.

618 Volume 1 Winsock and QOS

Note WSPRecvDisconnect does not block regardless of the SO_LINGER setting on
the socket.

A Windows Sockets SPI client should not rely on being able to reuse a socket after it has
been WSPRecvDisconnected. In particular, a Windows Sockets provider is not required
to support the use of WSPConnect on such a socket.

Error Codes
Error code Meaning

WSAENETDOWN Network subsystem has failed.

WSAEFAUL T Buffer referenced by the parameter IplnboundDisconnectData
is too small.

WSAENOPROTOOPT Disconnect data is not supported by the indicated protocol
family.

WSAEINPROGRESS Blocking Windows Sockets call is in progress, or the service
provider is still processing a callback function.

WSAENOTCONN Socket is not connected (connection-oriented sockets only).

WSAENOTSOCK Descriptor is not a socket.

Version: Requires Windows Sockets 2.0.
Header: Declared in Ws2spLh.

WSPConnect, WSPSocket

WSPRecvFrom
The WSPRecvFrom function receives a datagram and stores the source .address.

Parameters
s

[in] Descriptor identifying a socket.

IpBuffers

Chapter 11 Winsock 2 SPI Reference 619

[in/out] Pointer to an array of WSABUF structures. Each WSABUF structure contains
a pOihter to a buffer and the length of the buffer.

dwBufferCount
[in] Number of WSABUF structures in the JpBuffers array.

IpNumberOfBytesRecvd
[out] Pointer to the number of bytes received by this call.

IpFlags
[in/out] Pointer to flags.

IpFrom
[out] An optional pointer to a buffer that will hold the source address upon the
completion of the overlapped operation.

IpFromlen
[in/out] Pointer to the size of the from buffer, required only if IpFrom is specified.

IpOverlapped
[in] Pointer to a WSAOVERLAPPED structure (ignored for nonoverlappedsockets).

IpCompletionRoutine
[in) Pointer to the completion routine called when the receive operation has been
completed (ignored for nonoverlapped sockets).

IpThreadld
[in] Pointer to a WSATHREADID structure to be used by the provider in a subsequent
call to WPUQueueApc. The provider should.store the referenced WSATHREADID
structure (nolthe pOinter to same) until after the WPUQueueApc function returns.

IpErmo
[in/out] Pointer to the error code.

Return Values
If no error occurs and the receive operation has completed immediately, WSPRecvFrom
returns zero. Note that in this case the completion routine, if specjfi~d will have already
been queueq. Otherwise, a value of SOCKET_ERROR is returned, and a specific error
code is available in IpErmo. The error code WSA_IO_PENDING indicates that the
overlapped operation has beenSlJccessfully initiated and that completion will be
indicated at a later time. Any other error code indiqates that no overlapped operations
was initiated and no completion indication will occur. .

620 Volume 1 Winsock and QOS

Remarks
WSPRecvFrom is used primarily on a connection less socket specified by s. The socket
must not be connected. The local address of the socket must be known. This may be
done explicitly through WSPBind or implicitly through WSPSendTo or WSPJoinLeaf.

For overlapped sockets, this function is used to post one or more buffers into which
incoming data will be placed as it becomes available on a (possibly connected) socket,
after which the client-specified completion indication (invocation of the completion
routine or setting of an event object) occurs. If the operation does not complete
immediately, the final completion status is retrieved through the completion routine or
WSPGetOverlappedResult. Also note that the values pointed to by IpFrom and
IpFromlen are not updated until completion is indicated. Applications must not use or
disturb these values until they have been updated, therefore the client must not use
automatic (that is, stack-based) variables for these parameters.

If both IpOverlapped and IpCompletionRoutine are NULL, the socket in this function will
be treated as a non overlapped socket.

For nonoverlapped sockets, the IpOverlapped, IpCompletionRoutine, and IpThreadld
parameters are ignored. Any data that has already been received and buffered by the
transport will be copied into the supplied user buffers. For the case of a blocking socket
with no data currently having been received and buffered by the transport, the call will
block until data is received according to the assigned blocking semantics for WSPRecv.

The supplied buffers are filled in the order in which they appear in the array pointed to by
IpBuffers, and the buffers are packed so that no holes are created.

The array of WSABUF structures pointed to by the IpBuffers parameter is transient. If
this operation completes in an overlapped manner, it is the service provider's
responsibility to capture this array of pointers to WSABUF structures before returning
from this call. This enables Windows Sockets SPI clients to build stack-based WSABUF
arrays.

For connectionless socket types, the address from which the data originated is copied to
the buffer pOinted by IpFrom. On input, the value pointed to by IpFromlen is initialized to
the size of this buffer, and is modified on completion to indicate the actual size of the
address stored there.

As noted previously for overlapped sockets, the IpFrom and IpFromlen parameters are
not updated until after the overlapped I/O has completed. The memory pOinted to by
these parameters must, therefore, remain available to the service provider and cannot
be allocated on the Windows Sockets SPI client's stack frame. The IpFrom and
IpFromlen parameters are ignored for connection-oriented sockets.

For byte stream style sockets (for example, type SOCK_STREAM), incoming data is
placed into the buffers until the buffers are filled, the connection is closed, or internally
buffered data is exhausted. Regardless of whether or not the incoming data fills all the
buffers, the completion indication occurs for overlapped sockets.

Chapter 11 Winsock 2 SPI Reference 621

For message-oriented sockets, a single incoming message is placed into the supplied
buffers, up to the total size of the buffers supplied, and the completion indication occurs
for overlapped sockets. If the message is larger than the buffers supplied, the buffers are
filled with the first part of the message. If the MSG_PARTIAL feature is supported by the
service provider, the MSG_PARTIAL flag is set in /pf/ags for the socket and subsequent
receive operation(s) will retrieve the rest of the message. If MSG_PARTIAL is not
supported but the protocol is reliable, WSPRecvFrom generates the error
WSAEMSGSIZE and a subsequent receive operation with a larger buffer can be used to
retrieve the entire message. Otherwise, (that is, the protocol is unreliable and does not
support MSG_PARTIAL), the excess data is lost, and WSPRecvFrom generates the
error WSAEMSGSIZE.

/pF/ags can be used to influence the behavior of the function invocation beyond the
options specified for the associated socket. That is, the semantics of this function are
determined by the socket options and the /pF/ags parameter. The latter is constructed by
using the bitwise OR operator with any of the following values.

Value Meaning

MSG_PEEK Peeks at the incoming data. The data is copied into the buffer but is
not removed from the input queue. This flag is valid only for
nonoverlapped sockets.

MSG_OOB Processes OOB data (See DECnet Out-Ot-band data for a discussion
of this topic.)

MSG_PARTIAL This flag is for message-oriented sockets only. On output, indicates
that the data supplied is a portion of the message transmitted by the
sender. Remaining portions of the message will be supplied in
subsequent receive operations. A subsequent receive operation with
MSG_PARTIAL flag cleared indicates end of sender's message.

As an input parameter, MSG_PARTIAL indicates that the receive
operation should complete even if only part of a message has been
received by the service provider.

For message-oriented sockets, the MSG_PARTIAL bit is set in the /pF/ags parameter if a
partial message is received. If a complete message is received, MSG_PARTIAL is
cleared in /pF/ags. In the case of delayed completion, the value pointed to by /pF/ags is
not updated. When completion has been indicated the Windows Sockets SPI client
should call WSPGetOverlappedResult and examine the flags pointed to by the
/pdwF/ags parameter.

Overlapped Socket VO
If an overlapped operation completes immediately, WSPRecv returns a value of zero
and the /pNumberOtBytesRecvd parameter is updated with the number of bytes received
and the flag bits pointed by the /pF/ags parameter are also updated. If the overlapped
operation is successfully initiated and will complete later, WSPRecv returns
SOCKET_ERROR and indicates error code WSA_IO_PENDING. In this case,

622 Volume 1 Winsock and QOS

JpNumberOfBytesRecvd and JpFJags is not updated. When the overlapped operation
completes, the amount of data transferred is indicated either through the cbTransferred
parameter in the completion routine (if specified), or through the JpcbTransferparameter
in WSPGetOverlappedResult. Flag values are obtained by examining the JpdwFJags
parameter of WSPGetOverlappedResult.

Providers must allow this function to be called from within the completion routine of a
previous WSPRecv, WSPRecvFrom, WSPSend, or WSPSendTo function. However,
for a given socket, I/O completion routines cannot be nested. This permits time-sensitive
data transmissions to occur entirely within a preemptive context.

The fpOverJapped parameter must be valid for the duration of the overlapped operation.
If multiple I/O operations are simultaneously outstanding, each must reference a
separate overlapped structure. The WSAOVERLAPPED structure has the following
form:

If the JpCompJetionRoutine parameter is null, the service provider signals the hEvent
member of JpOverJapped when the overlapped operation completes if it contains a valid
event object handle. A Windows Sockets SPI client can use WSPGetOverlappedResult
to wait or poll on the event object.

If JpCompJetionRoutine is not null, the hEvent member is ignored and can be used by the
Windows Sockets SPI client to pass context information to the completion routine. It is
the service provider's responsibility to arrange for invocation of the client-specified
completion routine when the overlapped operation completes. Since the completion
routine must be executed in the context of the same thread that initiated the overlapped
operation, it cannot be invoked directly from the service provider. The Ws2_32.dll offers
an asynchronous procedure call (APC) mechanism to facilitate invocation of completion
routines.

A service provider arranges for a function to be executed in the proper thread and
process context by calling WPUQueueApc. This function can be called from any
process and thread context, even a context different from the thread and process that
was used to initiate the overlapped operation.

WPUQueueApc takes as input parameters a pOinter to a WSATHREADID structure
(supplied to the providerthrough the JpThreadJd input parameter), a pointer to an APe
function to be invoked, and a 32-bit context value that is subsequently passed to the
APe function. Because only a single 32-bit context value is available, the APe function
itself cannot be the client specified-completi6n routine. The service provider must

Chapter 11 Winsock 2 SPI Reference 623

instead supply a pointer to its own APC function that uses the supplied context value to
access the needed result information for the overlapped operation, and then invokes the
client specified-completion routine.

The prototype for the client-supplied completion routine is as follows:

Completion Routine is a placeholder for a client-supplied function name. dwError
specifies the completion status for the overlapped operation as indicated by
Ip.overlapped. cbTransferred specifies the number of bytes received. dwFlags contains
information that would have appeared in /pFlags if the receive operation had completed
immediately. This function does not return a value.

The completion routines can be called in any order, though not necessarily in the same
order that the overlapped operations are completed. However, the posted buffers are
guaranteed to be filled in the same order they are supplied.

Error Codes
Error code

WSAENETDOWN

WSAEFAULT

WSAEINTR

WSAEINPROGRESS

WSAEINVAL

WSAEISCONN

WSAENETRESET

WSAENOTSOCK

Meaning

Network subsystem has failed.

The JpFromlen argument was invalid: the IpFrom buffer was too
small to accommodate the peer address or Ipbuffers is not
totally contained within a valid part of the user address space.

(Blocking) call was canceled through
WSPCancelBlockingCali.

Blocking Windows Sockets call is inprogres$,orthe.service
provider is still processing a cal,lback function.

Socket has not been bound (for example, with WSPBind) or
the socket is not created with the overlapped flag.

Socket is connected. Thisfunction is not permitted with a
connected socket, whether the socket is connection-oriented or
con nection less.

Connection has been broken due to keep-alive activity
detecting a failure while the operation was in progress.

Descriptor is not a socket.

(continued)

624 Volume 1 Winsock and QOS

(continued)

Error code Meaning

WSAEOPNOTSUPP MSG_OOB was specified, but the socket is not stream-style
such as type SOCK_STREAM, OOB data is not supported in
the communication domain associated with this socket, or the
socket is unidirectional and supports only send operations.

WSAESHUTDOWN Socket has been shut down; it is not possible to run
WSPRecvFrom on a socket after WSPShutdown has been
invoked with how set to SD_RECEIVE or SD_BOTH.

WSAEWOULDBLOCK Overlapped sockets: There are too many outstanding
overlapped I/O requests.
Nonoverlapped sockets: The socket is marked as non blocking
and the receive operation cannot be completed immediately.

WSAEMSGSIZE Message was too large to fit into the specified buffer and (for
unreliable protocols only) any trailing portion of the message
that did not fit into the buffer has been discarded.

WSAECONNRESET The virtual circuit was reset by the remote side executing a
hard or abortive close. The application should close the socket
as it is no longer useable. On a UDP datagram socket this error
would indicate that a previous send operation resulted in an
ICMP "Port Unreachable" message.

WSAEDISCON Socket s is message oriented and the virtual circuit was
gracefully closed by the remote side.

WSA_IO_PENDING An overlapped operation was successfully initiated and
completion will be indicated at a later time.

WSA_OPERATION_ABORTED Overlapped operation has been canceled due to the closure of
the socket.

Version: Requires Windows Sockets 2.0.
Header: Declared in Ws2spLh.

WSPSocket, WSPGetOverlappedResult, WPUQueueApc

WSPSelect
The WSPSelect function determines the status of one or more sockets.

Parameters
nfds

Chapter 11 Win sock 2 SPI Reference 625

[in] Ignored and included only for the sake of compatibility.

readfds
[in/out] An optional pointer to a set of sockets to be checked for readability.

writefds
[in/out] An optional pointer to a set of sockets to be checked for writability

exceptfds
[in/out] An optional pointer to a set of sockets to be checked for errors.

timeout
[in] Maximum time for WSPSelect to wait, or NULL for a blocking operation.

/pErmo
[out] Pointer to the error code.

Return Values
WSPSeJect returns the total number of descriptors that are ready and contained in the
FD_SET structures, or SOCKET_ERROR if an error occurred. If the return value is
SOCKET_ERROR, a specific error code is available in /pErmo.

Remarks
This function is used to determine the status of one or more sockets. For each socket,
the caller can request information on read, write, or error status. The set of sockets for
which a given status is requested is indicated by an FD_SET structure. All entries in an
FD_SET correspond to sockets created by the service provider (that is, the
WSAPROTOCOL_INFOW structures describing their protocols have the same
provider/dvalue). Upon return, the structures are updated to reflect the subset of these
sockets that meet the specified condition, and WSPSelect returns the total number of
sockets meeting the conditions. A set of macros is provided for manipulating an
FD_SET. These macros are compatible with those used in the Berkeley software, but
the underlying representation is completely different.

The parameterreadfds identifies those sockets that are to be checked for readability. If
the socket is currently listening through WSPListen, it will be marked as readable if an
incoming connection request has been received, so that a WSPAccept is guaranteed to
complete without blocking. For other sockets, readability means that queued data is
available for reading so that a WSPRecv or WSPRecvfrom is guaranteed not to block.

626 Volume 1 Winsock and QOS

For connection-oriented sockets, readability can also indicate that a close request has
been received from the peer. If the virtual circuit was closed gracefully. then a WSPRecv
will return immediately with zero bytes read. If the virtual circuit was reset, then a
WSPRecv will complete immediately with an error code, such as WSAECONNRESET.
The presence of OOB data will be checked if the socket option SO_OOBINLINE has
been enabled (see WSPSetSockOpt).

The parameter writefds identifies those sockets that are to be checked for writability:

• If a socket is connecting through WSPConnect, writability means that the connection
establishment successfully completed.

• If the socket is not in the process of listening through WSPConnect, writability means
that a WSPSend or WSPSendTo are guaranteed to succeed.

However, they can block on a blocking socket if the len exceeds the amount of outgoing
system buffer space available. It is not specified how long these guarantees can be
assumed to be valid, particularly in a multithreaded environment.

The parameter exceptfds identifies those sockets that are to be checked for the
presence of OOB data or any exceptional error conditions. Note that OOB data will only
be reported in this way if the option SO_OOBINLINE is FALSE. If a socket is making a
WSPConnect (nonblocking) connection, failure of the connect attempt is indicated in
exceptfds. This specification does not define which other errors will be included.

Any two of readfds, writefds, or exceptfds can be given as NULL if no descriptors are to
be checked for the condition of interest. At least one must be non-NULL, and any non
NULL descriptor set must contain at least one socket descriptor.

Summary: A socket will be identified in a particular set when WSPSelect returns
according to the following:

readfds: If WSPListen is called, a connection is pending, WSPAccept will succeed.
Data is available for reading (includes OOB data if SO_OOBINLINE
is enabled). Connection has been closed/reset/terminated.

writefds: If WSPConnect (nonblocking), connection has succeeded. Data can
be sent.

Exceptfds: If WSPConnect (nonblocking), connection attempt failed. OOB data
is available for reading (only if SO_OOBINLINE isdisabled).

Three macros and one upcall function are defined in the header file Ws2spLh for
manipulating and checking the descriptor sets. The variable FD_SETSIZE determines
the maximum number of descriptors in a set. (The default value of FD_SETSIZE is 64,
which can be modified by #defining FD_SETSIZE to another value before #including
Ws2spLh.) Internally, socket handles in a FD_SET are not represented as bit flags as in
Berkeley Unix. Their data representation is opaque. Use of these macros will maintain
software portability between different socket environments.

The macros to manipulate and check FD_SET contents are.

Chapter 11 Win sock 2 SPI Reference 627

FD_CLR(s, *set)
Removes the descriptor 5 from set.

FD_SET(s, *set)
Adds descriptor 5 to set.

FD_ZERO(*set)
Initializes the setto the NULL set.

The upcall function used to check the membership is:

int WPUFDlsSet (SOCKET 5, FD_SET FAR * set);
which will return nonzero if s is a member of the set or otherwise zero.

The parameter timeout controls how long the WSPSelect can take to complete. If
timeout is a NULL pOinter, WSPSelect will block indefinitely until at least one descriptor
meets the specified criteria. Otherwise, timeout pOints to a TIMEVAL structure that
specifies the maximum time that WSPSelect should wait before returning. When
WSPSelect returns, the contents of the TIMEVAL structure are not altered. If TIMEVAL
is initialized to {O, O}, WSPSelect will return immediately; this is used to poll the state of
the selected sockets. If this is the case, then the WSPSelect call is considered
nonblocking and the standard assumptions for non blocking calls apply. For example, the
blocking hook will not be called, and the Windows Sockets provider will not yield.

Note WSPSelect has no effect on the persistence of socket events registered with
WSPAsyncSelect or WSPEventSelect.

Error Codes
Error code

WSAEFAULT

WSAENETDOWN

WSAEINVAL

WSAEINTR

WSAEINPROGRESS

WSAENOTSOCK

Meaning

Windows Sockets service provider was unable to allocated needed
resources for its internal operations, or the readfds, writefds, exceptfds or
time val parameters are not part of the user address space.

Network subsystem has failed.

The timeout value is not valid, or all three descriptor parameters were
NULL.

(Blocking) call was canceled through WSPCancelBlockingCal1.

Blocking Windows Sockets call is in progress, or the service provider is
still processing a callback function.

One of the descriptor sets contains an entry that is not a socket.

Version: RequiresWindows Sockets 2.0.
Header: Declared in Ws2spi.h.

628 Volume 1 Winsock and QOS

WSPAccept, WSPConnect, WSPRecv, WSPRecvFrom, WSPSend, WSPSendTo,
WSPEventSelect

WSPSend
The WSPSend function sends data on a connected socket.

Parameters
s

[in] Descriptor identifying a connected socket.

IpBuffers
[in] Pointer to an array of WSABUF structures. Each WSABUF structure contains a
pOinter to a buffer and the length of the buffer. This array must remain valid for the
duration of the send operation.

dwBufferCount
[in] Number of WSABUF structures in the IpBuffers array.

IpNumberOfBytesSent
[out] Pointer to the number of bytes sent by this call.

dwFlags
[in] Specifies the way in which the call is made.

IpOverlapped
[in] Pointer to a WSAOVERLAPPED structure (ignored for nonoverlapped sockets.)

IpCompletionRoutine
[in] Pointer to the completion routine called when the send operation has been
completed (ignored for nonoverlapped sockets.)

IpThreadld
[in] Pointer to a WSATHREADID structure to be used by the provider in a subsequent
call to WPUQueueApc. The provider should store the referenced WSATHREADID
structure (not the pOinter to same) until after the WPUQueueApc function returns.

Chapter 11 Winsock 2 SPI Reference 629

IpErmo
[out] Pointer to the error code.

Return Values
If no error occurs and the send operation has completed immediately, WSPSend returns
zero. Note that in this case the completion routine, if specified, will have already been
queued. Otherwise, a value of SOCKET_ERROR is returned, and a specific error code
is available in IpErmo. The error code WSA_IO_PENDING indicates that the overlapped
operation has been successfully initiated and that completion will be indicated at a later
time. Any other error code indicates that no overlapped operation was initiated and no
completion indication will occur.

Remarks
WSPSend is used to write outgoing data from one or more buffers on a connection
oriented socket specified by s. It can also be used, however, on connection less sockets
that have a stipulated default peer address established through the WSPConnect
function.

For overlapped sockets (created using WSPSocket with flag
WSA_FLAG_OVERLAPPED) this will occur using overlapped 110, unless both
IpOverlapped and IpCompletionRoutine are NULL in which case the socket is treated as
a nonoverlapped socket. A completion indication will occur (invocation of the completion
routine or setting of an event object) when the supplied buffer(s) have been consumed
by the transport. If the operation does not complete immediately, the final completion
status is retrieved through the completion routine or WSPGetOverlappedResult.

For nonoverlapped sockets, the parameters IpOverlapped, IpCompletionRoutine, and
IpThreadld are ignored and WSPSend adopts the regular synchronous semantics. Data
is copied from the supplied buffer(s) into the transport's buffer. If the socket is
nonblocking and stream oriented, and there is not sufficient space in the transport's
buffer, WSPSend will return with only part of the supplied buffers having been
consumed. Given the same buffer situation and a blocking socket, WSPSend will block
until all of the supplied buffer contents have been consumed.

The array of WSABUF structures pOinted to by the IpBuffers parameter is transient. If
this operation completes in an overlapped manner, it is the service provider's
responsibility to capture these WSABUF structures before returning from this call. This
enables applications to build stack-based WSABUF arrays.

For message-oriented sockets, care must be taken not to exceed the maximum
message size of the underlying provider, which can be obtained by getting the value of
socket option SO_MAX_MSG_SIZE. If the data is too long to pass atomically through
the underlying protocol the error WSAEMSGSIZE is returned, and no data is transmitted.

Note that the successful completion of a WSPSend does not indicate that the data was
successfully delivered.

630 Volume 1 Winsock and QOS

dwFlags can be used to influence the behavior of the function invocation beyond the
options specified for the associated socket. That is, the semantics of this function are
determined by the socket options and the dwFlags parameter. The latter is constructed
by using the bitwise OR operator with any of the following values.

Value Meaning

MSG_DONTROUTE Specifies that the data should not be subject to routing. A
Windows Sockets service provider can choose to ignore
this flag;.

MSG_OOB Sends OOB data (stream-style socket such as
SOCK_STREAM only).

MSG_PARTIAL Specifies that IpBuffers only contains a partial message. Note
that the error code WSAEOPNOTSUPP will be returned for
messages that do not support partial message transmissions.

Overlapped Socket 1/0
If an overlapped operation completes immediately, WSPSend returns a value of zero
and the IpNumberOfBytesSent parameter is updated with the number of bytes sent. If
the overlapped operation is successfully initiated and will complete later, WSPSend
returns SOCKET_ERROR and indicates error code WSA_IO_PENDING. In this case,
IpNumberOfBytesSent is not updated. When the overlapped operation completes the
amount of data transferred is indicated either through the cb Transferred parameter in the
completion routine (if specified), or through the IpcbTransfer parameter in
WSPGetOverlappedResult.

Providers must allow this function to be called from within the completion routine of a
previous WSPRecv, WSPRecvFrom, WSPSend orWSPSendTo function. However, for
a given socket, I/O completion routines cannot be nested. This permits time-sensitive
data transmissions to occur entirely within a preemptive context.

The IpOverlapped parameter must be valid for the duration of the overlapped operation.
If multiple I/O operations are simultaneously outstanding, each must reference a
separate overlapped structure. The WSAOVERLAPPED structure has the
following form:

Chapter 11 Winsock 2 SPI Reference 631

If the IpCompletionRoutine parameter is NULL, the service provider signals the hEvent
member of IpOverlapped when the overlapped operation completes if it contains a valid
event object handle. The Windows Sockets SPI client can use
WSPGetOverlappedResult to wait or poll on the event object.

If IpCompletionRoutine is not NULL, the hEvent member is ignored and can be used by
the Windows Sockets SPI client to pass context information to the completion routine. A
client that passes a non-NULL IpCompletionRoutine and later calls
WSAGetOverlappedResult for the same overlapped I/O request may not set the fWait
parameter for that invocation of WSAGetOverlappedResult to TRUE. In this case the
usage of the hEvent member is undefined, and attempting to wait on the hEvent member
would produce unpredictable results.

A service provider arranges for a function to be executed in the proper thread and
process context by calling WPUQueueApc. This function can be called from any
process and thread context, even a context different from the thread and process that
was used to initiate the overlapped operation.

A service provider arranges for a function to be executed in the proper thread by calling
WPUQueueApc. Note that this function must be invoked while in the context of the
same process (but not necessarily the same thread) that was used to initiate the
overlapped operation. It is the service provider's responsibility to arrange for this process
context to be active prior to calling WPUQueueApc.

WPUQueueApc takes as input parameters a pOinter to a WSATHREADID structure
(supplied to the provider through the IpThreadld inputparameter), a pointer to an APC
function to be invoked, and a 32-bit context value that is subsequently passed to the
APC function. Because only a single 32-bit context value is available, the APC function
itself cannot be the client specified-completion routine. The service provider must
instead supply a pointer to its own APC function that uses the supplied context value to
access the needed result information for the overlapped operation, and then invokes the
client specified-completion routine.

The prototype for the client-supplied completion routine is as follows:

Completion Routine is a placeholder for a client supplied function name. dwError
specifies the completion status for the overlapped operation as indicated by
IpOverlapped. cbTransferred specifies the number of bytes sent. No flag values are
currently defined and the dwFlags value will be zero. This function does not
return a value.

632 Volume 1 Winsock and QOS

The completion routines can be called in any order, though not necessarily in the same
order that the overlapped operations are completed. However, the service provider
guarantees to the client that posted buffers are sent in the same order they are supplied.

Error Codes
Error code

WSAENETDOWN

WSAEACCES

WSAEINPROGRESS

WSAEFAULT

WSAENETRESET

WSAENOBUFS

WSAENOTCONN

WSAENOTSOCK

WSAEOPNOTSUPP

WSAESHUTDOWN

WSAEWOULDBLOCK

WSAEMSGSIZE

WSAEINVAL

WSAECONNABORTED

WSAECONNRESET

WSA_OPERATION
ABORTED

Meaning

Network subsystem has failed.

Requested address is a broadcast address, but the appropriate flag
was not set.

Blocking Windows Sockets call is in progress, or the service provider is
still processing a callback function.

The IpBuffers argument is not totally contained in a valid part of the
user address space.

Connection has been broken due to the remote host resetting.

Connection has been broken due to keep-alive activity detecting a
failure while the operation was in progress.

Socket is not connected.

Descriptor is not a socket.

MSG_OOB was specified, but the socket is not stream-style such as
type SOCK_STREAM, OOB data is not supported in the
communication domain associated with this socket, MSG_PARTIAL is
not supported, or the socket is unidirectional and supports only receive
operations.

Socket has been shut down; it is not possible to WSPSend on a socket
after WSPShutdown has been invoked with how set to SD_SEND or
SD_BOTH.

Overlapped sockets: There are too many outstanding overlapped I/O
requests.
Nonoverlapped sockets: The socket is marked as non blocking and the
send operation cannot be completed immediately.

Socket is message oriented, and the message is larger than the
maximum supported by the underlying transport.

Socket has not been bound with WSPBind, or the socket is not created
with the overlapped flag.

Virtual circuit was terminated due to a time-out or other failure.

Virtual circuit was reset by the remote side.

Overlapped operation has been canceled due to the closure of the
socket, or the execution of the SIO_FLUSH command in WSPloctl.

Version: Requires Windows Sockets 2.0.
Header: Declared in Ws2spLh.

Chapter 11 Winsock 2 SPI Reference 633

WSPSocket, WSPGetOverlappedResult, WPUQueueApc

WSPSendDisconnect
The WSPSendDisconnect function initiates termination of the connection for the socket
and sends disconnect data.

Parameters
s

[in] A descriptor identifying a socket.

IpOutboundDisconnectData
[in] A pointer to the outgoing disconnect data.

IpErmo
[out] A pointer to the error code.

Return Values
If no error occurs, WSPSendDisconnect returns zero. Otherwise, a value of
SOCKET_ERROR is returned, and a specific error code is available in IpErmo.

Remarks
WSPSendDisconnect is used on connection-oriented sockets to disable transmission,
and to initiate termination of the connection along with the transmission of disconnect
data, if any.

After this function has been successfully issued, subsequent sends are disallowed.

IpOutboundDisconnectData, if not NULL, points to a buffer containing the outgoing
disconnect data to be sent to the remote party.

Note that WSPSendDisconnect does not close the socket, and that resources attached
to the socket will not be freed until WSPCloseSocket is invoked.

634 Volume 1 Winsock and QOS

Note WSPSendDisconnect does not block regardless of the SO_LINGER setting on
the socket.

A Windows Sockets SPI client should not rely on being able to reuse a socket after it has
been disconnected. In particular, a Windows Sockets provider is not required to support
the use of WSPConnect on such a socket.

Error Codes
Error code

WSAENETDOWN

WSAENOPROTOOPT

WSAEINPROGRESS

WSAENOTCONN

WSAENOTSOCK

WSAEFAULT

Meaning

Network subsystem has failed.

Parameter IpOutboundDisconnectData is not NULL, and the
disconnect data is not supported by the service provider.

Blocking Windows Sockets call is in progress, or the service
provider is still processing a callback function.

Socket is not connected (connection-oriented sockets only).

Descriptor is not a socket.

The IpOutboundDisconnectData argument is not totally
contained in a valid part of the user address space.

Version: Requires Windows Sockets 2.0.
Header: Declared in Ws2spi.h.

WSPConnect, WSPSocket

WSPSendTo
The WSPSendTo function sends data to a specific destination using overlapped 1/0.

Parameters
s

[in] A descriptor identifying a socket.

/pBuffers

Chapter 11 Winsock 2 SPI Reference 635

[in] A pointer to an array of WSABUF structures. Each WSABUF structure contains a
painter to a buffer and the length of the buffer. This array must remain valid for the
duration of the send operation.

dwBufferCount
[in] The number of WSABUF structures in the /pBuffers array.

/pNumberOfBytesSent
[out] A painter to the number of bytes sent by this call.

dwF/ags
[in] Specifies the way in which the call is made.

/pTo
[in] An optional pointer to the address of the target socket.

iTo/en
[in] The size of the address in /pTo.

/pOver/apped
[in] A pointer to a WSAOVERLAPPEDstructure(ignored for nonoverlapped sockets).

/pComp/etionRoutine
[in] A painter to the completion routine called when the send operation has been
completed (ignored for nonoverlapped sockets).

/pThread/d
[in] A pointer to a WSATHREADID structure to be used by the provider in a
subsequent call to WPUQueueApc. The provider should store the referenced
WSATHREADID structure (not the pointer to same) until after the WPUQueueApc
function returns.

/pErmo
[out] A painter to the error code.

Return Values
If no error occurs and the receive operation has completed immediately, WSPSendTo
returns zero. Note that in this case the completion routine, if specified, will have already
been queued. Otherwise, a value of SOCKET_ERROR is returned, and a specific error
code is available in /pErmo. The error code WSA_IO_PENDING indicates that the
overlapped operation has been successfully initiated and that completion will be
indicated at a later time. Any other error code indicates that no overlapped operation
was initiated and no completion indication will occur.

636 Volume 1 Winsock and QOS

Remarks
WSPSendTo is normally used on a connection less socket specified by s to send a
datagram contained in one or more buffers to a specific peer socket identified by the
IpTa parameter. Even if the connection less socket has been previously connected to a
specific address with the connect function, IpTo overrides the destination address for
that particular datagram only. On a connection-oriented socket, the IpTa and iToLen
parameters are ignored; in this case the WSPSendTo function is equivalent to
WSPSend.

For overlapped sockets (created using WSPSocket with flag
WSA_FLAG_OVERLAPPED) this will occur using overlapped 110, unless both
IpOverlapped and IpCompletionRoutine are NULL in which case the socket is treated as
a nonoverlapped socket. A completion indication will occur (invocation of the completion
routine or setting of an event object) when the supplied buffer(s) have been consumed
by the transport. If the operation does not complete immediately, the final completion
status is retrieved through the completion routine or WSPGetOverlappedResult.

For nonoverlapped sockets, the parameters IpOverlapped, IpCompletionRoutine, and
IpThreadld are ignored and WSPSendTo adopts the regular synchronous semantics.
Data is copied from the supplied buffer(s) into the transport's buffer. If the socket is
nonblocking and stream oriented, and there is not sufficient space in the transport's
buffer, WSPSendTo will return with only part of the Windows Sockets SPI client's buffers
having been consumed. Given the same buffer situation and a blocking socket,
WSPSendTo will block until all of the Windows Sockets SPI client's buffer contents have
been consumed.

The array of WSABUF structures pOinted to by the IpBuffers parameter is transient. If
this operation completes in an overlapped manner, it is the service provider'S
responsibility to capture these WSABUF structures before returning from this call. This
enables applications to build stack-based WSABUF arrays.

For message-oriented sockets, care must be taken not to exceed the maximum
message size of the underlying transport, which can be obtained by getting the value of
socket option SO_MAX_MSG_SIZE. If the data is too long to pass atomically through
the underlying protocol the error WSAEMSGSIZE is returned, and no data is transmitted.

Note that the successful completion of a WSPSendTo does not indicate that the data
was successfully delivered.

iF lags can be used to influence the behavior of the function invocation beyond the
options specified for the associated socket. That is, the semantics of this function are
determined by the socket options and the dwFlags parameter. The latter is constructed
by using the bitwise OR operator with any of the values on the following page.

Chapter 11 Winsock 2 SPI Reference 637

Value Meaning

MSG_DONTROUTE Specifies that the data should not be subject to routing. A
Windows Sockets service provider can choose to ignore
this flag.

MSG_OOB Sends OOB data (stream-style socket such as
SOCK_STREAM only).

MSG_PARTIAL Specifies that IpBuffers only contains a partial message. Note
that the error code WSAEOPNOTSUPP will be returned by
transports that do not support partial message transmissions.

Overlapped Socket I/O
If an overlapped operation completes immediately, WSPSendTo returns a value of zero
and the IpNumberOfBytesSent parameter is updated with the number of bytes sent. If
the overlapped operation is successfully initiated and will complete later, WSPSendTo
returns SOCKET_ERROR and indicates error code WSA_IO_PENDING. In this case,
IpNumberOfBytesSent is not updated. When the overlapped operation completes the
amount of data transferred is indicated either through the cbTransferred parameter in the
completion routine (if specified), or through the IpcbTransfer parameter in
WSPGetOverlappedResult.

Providers must allow this function to be called from within the completion routine of a
previous WSPRecv, WSPRecvFrom, WSPSend or WSPSendTo function. However, for
a given socket, I/O completion routines cannot be nested. This permits time-sensitive
data transmissions to occur entirely within a preemptive context.

The IpOver/apped parameter must be valid for the duration of the overlapped operation.
If multiple I/O operations are Simultaneously outstanding, each must reference a
separate overlapped structure. The WSAOVERLAPPED structure has the
following form:

If the IpCompletionRoutine parameter is NULL, the service provider signals the hEvent
member of IpOverlapped when the overlapped operation completes if it contains a valid
event object handle. Windows Sockets SPI clients can use WSPGetOverlappedResult
to wait or poll on the event object.

If IpCompletionRoutine is not NULL, the hEvent member is ignored and can be used by
the Windows Sockets SPI client to pass context information to the completion routine. A
client that passes a non-NULL IpCompletionRoutine and later calls

638 Volume 1 Win sock and QOS

WSAGetOverlappedResult for the same overlapped I/O request may not set the fWait
parameter for that invocation of WSAGetOverlappedResult to TRUE. In this case the
usage of the hEvent member is undefined, and attempting to wait on the hEvent member
would produce unpredictable results.

It is the service provider's responsibility to arrange for invocation of the client specified
completion routine when the overlapped operation completes. Since the completion
routine must be executed in the context of the same thread that initiated the overlapped
operation, it cannot be invoked directly from the service provider. The WS2_32.dll offers
an asynchronous procedure call (APC) mechanism to facilitate invocation of completion
routines.

A service provider arranges for a function to be executed in the proper thread by calling
WPUQueueApc. This function can be called from any process and thread context, even
a context different from the thread and process that was used to initiate the overlapped
operation.

WPUQueueApc takes as input parameters a pointer to a WSATHREADID structure
(supplied to the provider through the IpThreadld input parameter), a pointer to an APe
function to be invoked, and a 32-bit context value that is subsequently passed to the
APe function. Because only a single 32-bit context value is available, the APe function
itself cannot be the client specified-completion routine. The service provider must
instead supply a pOinter to its own APe function, which uses the supplied context value
to access the needed result information for the overlapped operation, and then invokes
the client specified-completion routine.

The prototype for the client-supplied completion routine is as follows:

Completion Routine is a placeholder for a client-supplied function name. dwError
specifies the completion status for the overlapped operation as indicated by
IpOver/apped. cbTransferred specifies the number of bytes sent. No flag values are
currently defined and the dwFlags value will be zero. This function does not return a
value.

The completion routines can be called in any order, though not necessarily in the same
order that the overlapped operations are completed. However, the service provider
guarantees to the client that posted buffers are sent in the same order they are supplied.

Error Codes
Error code

WSAENETDOWN

WSAEACCES

WSAEINTR

WSAEINPROGRESS

WSAEFAULT

WSAENETRESET

WSAENOBUFS

WSAENOTCONN

WSAENOTSOCK

WSAEOPNOTSUPP

WSAESHUTDOWN

WSAEWOULDBLOCK

WSAEMSGSIZE

WSAEINVAL

WSAECONNABORTED

WSAECONNRESET

WSAEADDRNOTAVAIL

WSAEAFNOSUPPORT

WSAEDESTADDRREQ

WSAENETUNREACH

WSA_OPERATION
ABORTED

Chapter 11 Winsock 2 SPI Reference 639

Meaning

Network subsystem has failed.

Requested address is a broadcast address, but the appropriate flag
was not set.

(Blocking) call was canceled through WSPCancelBlockingCali.

Blocking Windows Sockets call is in progress, or the service provider is
still processing a callback function.

The IpBuffers or IpTa parameters are not part of the user address
space, or the IpTa argument is too small.

Connection has been broken due to keep-alive activity detecting a
failure while the operation was in progress.

Windows Sockets provider reports a buffer deadlock.

Socket is not connected (connection-oriented sockets only.)

Descriptor is not a socket.

MSG_OOB was specified, but the socket is not stream-style such as
type SOCK_STREAM, OOB data is not supported in the
communication domain associated with this socket, MSG_PARTIAL is
not supported, or the socket is unidirectional and supports only receive
operations.

Socket has been shut down; it is not possible to use WSPSendTo on a
socket after WSPShutdown has been invoked with how set to
SD_SEND or SD_BOTH.

Overlapped sockets: there are too many outstanding overlapped I/O
requests. Nonoverlapped sockets: The socket is marked as
nonblocking and the send operation cannot be completed immediately.

Socket is message oriented, and the message is larger than the
maximum supported by the underlying transport.

Socket has not been bound with WSPBind, or the socket is not
created with the overlapped flag.

Virtual circuit was terminated dueto a time-out or other failure.

Virtual circuit was reset by the remote side.

Remote address is not a valid address (for example, ADDR_ANY).

Addresses in the specified family cannot be used with this socket.

Destination address is required.

Network cannot be reached from this host at this time.

Overlapped operation has been canceled due to the closure of the
socket, or the execution of the SIO_FLUSH command in WSPloctl.

640 Volume 1 Winsock and QOS

Version: Requires Windows Sockets 2.0.
Header: Declared in Ws2spLh.

WSPSocket, WSPGetOverlappedResult, WPUQueueApc

WSPSetSockOpt
The WSPSetSockOpt function sets a socket option.

Parameters
s

[in] Descriptor identifying a socket.

level
[in] Level at which the option is defined; the supported levels include SOL_SOCKET.
(See the Windows Sockets Protocol-Specific Annex for more protocol-specific levels.)

optname
[in] Socket option for which the value is to be set.

optval
[in] Pointer to the buffer in which the value for the requested option is supplied.

optlen
[in] Size of the optval buffer.

IpErmo
[out] Pointer to the error code.

Return Values
If no error occurs, WSPSetSockOpt returns zero. Otherwise, a value of
SOCKET_ERROR is returned, and a specific error code is available in IpErmo.

Chapter 11 Winsock 2 SPI Reference 641

Remarks
WSPSetSockOpt sets the current value for a socket option associated with a socket of
any type, in any state. Although options can exist at multiple protocol levels, they are
always present at the uppermost socket' level. Options affect socket operations, such as
whether broadcast messages can be sent on the socket.

There are two types of socket options: Boolean options that enable or disable a feature
or behavior, and options that require an integer value or structure. To enable a Boolean
option, optval points to a nonzero integer. To disable the option, optval paints to an
integer equal to zero. The optlen parameter should be equal to sizeof (int) for Boolean
options. For other options, optval paints to the an integer or structure that contains the
desired value for the option, and opt/en is the length of the integer or structure.

level = SOL_SOCKET

Value

SO_BROADCAST

SO_DEBUG

SO_DONTLINGER

SO_DONTROUTE

SO_GROUP _PRIORITY

SO_KEEPALIVE

SO_LINGER

SO_OOBINLINE

SO_RCVBUF

SO_REUSEADDR

Type

BOOl

BOOl

BOOl

BOOl

int

BOOl

struct linger

BOOl

int

BOOl

int

Service
Provider
Dependent

Meaning

Allows transmission of broadcast messages on the
socket.

Records debugging information.

Reserved.

Does not route: sends directly to interface. Not
supported on ATM sockets (results in an error).

Reserved.

Sends keep-alives. Not supported on ATM sockets
(results in an error).

Lingers on close if unsent data is present.

Receives OOB data in the normal data stream.

Specifies the total per-socket buffer space reserved for
receives. This is unrelated to SO_MAX_MSG_SIZE or
the size of a TCP window.

Allows the socket to be bound to an address that is
already in use. (See bind.) Not applicable on ATM
sockets.

Specifies the total per-socket buffer space reserved for
sends. This is unrelated to SO_MAX_MSG_SIZE or the
size of a TCP window.

This object stores the configuration information for the
service provider associated with socket s. The exact
format of this data structure is service provider specific.

Calling WSPGetSockOpt with an unsupported option will result in an error code of
WSAENOPROTOOPT being returned in IpErmo.

642 Volume 1 Winsock and aos

SO_DEBUG
Windows Sockets service providers are encouraged (but not required) to supply
output debug information if the SO_DEBUG option is set by a Windows Sockets SPI
client. The mechanism for generating the debug information and the form it takes are
beyond the scope of this specification.

SO_GROUP _PRIORITY
Reserved.

SO_KEEPALIVE
A Windows Sockets SPI client can request that a TCP/IP provider enable the use of
keep-alive packets on TCP-connections by turning on the SO_KEEPALIVE socket
option. A Windows Sockets provider need not support the use of keep-alives: if it
does, the precise semantics are implementation specific but should conform to
section 4.2.3.6 of RFC 1122: Requirements for Internet Hosts-Communication
Layers. If a connection is dropped as the result of keep-alive the error code
WSAENETRESET is returned to any calls in progress on the socket, and any
subsequent calls will fail with WSAENOTCONN.

50_LINGER
SO_LINGER controls the action taken when unsent data is queued on a socket and a
WSPCloseSocket is performed. See WSPCloseSocket for a description of the way
in which the SO_LINGER settings affect the semantics of WSPCloseSocket. The
Windows Sockets SPI client sets the desired behavior by creating a struct linger
(pointed to by the optval argument) with the following elements:

To enable SO_LINGER, a Windows Sockets SPI client should set Lonottto a
nonzero value, set Uingerto zero or the desired time-out (in seconds), and call
WSPSetSockOpt. To enable SO_DONTLINGER (that is, disable SO_LINGER)
Lonott should be set to zero and WSpsetsockOpt should be called. Note that
enabling 50_LINGER with a nonzero time-out on a nonblocking socket is not
recommended (see section 4.1.7. WSPCloseSocketfor details.)

Enabling SO_LINGER also disables SO_DONTLINGER, and vice versa. Note that if
SO_DONTLINGER is disabled (that is, SO_LINGER is enabled) then no time-out
value is specified. In this case, the time-out used is implementation dependent. If a
previous time-out has been established for a socket (by enabling SO_LINGER), then
this time-out value should be reinstated by the service provider.

SO_REUSEADDR
By default, a socket cannot be bound (see WSPBind) to a local address that is
already in use. On occasion, however, it may be desirable to reuse an address in this
way. Since every connection is uniquely identified by the combination of local and
remote addresses, there is no problem with having two sockets bound to the same
local address as long as the remote addresses are different. To inform the Windows
Sockets provider that a WsPBind on a socket should be allowed to bind to a local

Chapter 11 Winsock 2 SPI Reference 643

address that is already in use by another socket, the Windows Sockets SPI client
should set the SO_REUSEADDR socket option for the socket before issuing the
WSPBind. Note that the option is interpreted only at the time of the WSPBind: it is
therefore unnecessary (but harmless) to set the option on a socket that is not to be
bound to an existing address, and setting or resetting the option after the WSPBind
has no effect on this or any other socket.

SO_SNDBUF
When a Windows Sockets implementation supports the SO_RCVBUF and
SO_SNDBUF options, a Windows Sockets SPI client can request different buffer
sizes (larger or smaller). The call can succeed even though the service provider did
not make available the entire amount requested. A Windows Sockets SPI client must
call WSPGetSockOpt with the same option to check the buffer size actually provided.

PVD_CONFIG
This object stores the configuration information for the service provider associated
with socket s. The exact format of this data structure is service provider specific.

Error Codes
Error code

WSAENETDOWN

WSAEFAULT

WSAEINPROGRESS

WSAEINPROGRESS

WSAEINVAL

WSAENETRESET

WSAENOPROTOOPT

WSAENOTCONN

WSAENOTSOCK

Meaning

Network subsystem has failed.

The optval is not in a valid part of the process address space
or opt/en argument is too small.

Function is invoked when a callback is in progress.

Blocking Windows Sockets call is in progress, or the service
provider is still processing a callback function.

The level is not valid, or the information in optval is not valid.

Connection has been broken due to keep-alive activity
detecting a failure while the operation was in progress.

Option is unknown or unsupported for the specified provider.

Connection has been reset when SO_KEEPALIVE is set.

Descriptor is not a socket.

Version: Requires Windows Sockets 2.0.
Header: Declared in Ws2spLh.

WSPBind, WSPGetSockOpt, WSPloctl, WSPSocket, WSPEventSelect

644 Volume 1 Winsock and aos

WSPShutdown
The WSPShutdown function disables sends and/or receives on a socket.

Parameters
5

[in] Descriptor identifying a socket.

how
[in] Flag that describes what types of operation will no longer be allowed.

JpErmo
[out] Pointer to the error code.

Return Values
If no error occurs, WSPShutdown returns zero. Otherwise, a value of
SOCKET_ERROR is returned, and a specific error code is available in JpErmo.

Remarks
WSPShutdown is used on all types of sockets to disable reception,
transmission, or both.

If how is SD_RECEIVE, subsequent receives on the socket will be disallowed. This has
no effect on the lower protocol layers. For TCP sockets, if there is still data queued on
the socket waiting to be received, or data arrives subsequently, the connection is reset,
since the data cannot be delivered to the user. For UDP sockets, incoming datagrams
are accepted and queued. In no case will an ICMP error packet be generated.

If how is SD_SEND, subsequent sends on the socket are disallowed. For TCP sockets,
a FIN will be sent. Setting how to SD_BOTH disables both sends and receives as
described above.

Note that WSPShutdown does not close the socket, and resources attached to the
socket will not be freed until WSPCloseSocket is invoked.

Note WSPShutdown does not block regardless of the SO_LINGER setting on the
socket. A Windows Sockets SPI client should not rely on being able to reuse a socket
after it has been shut down. In particular, a Windows Sockets service provider is not
required to support the use of WSPConnect on such a socket.

Chapter 11 Winsock 2 SPI Reference 645

Error Codes
Error code Meaning

WSAENETDOWN Network subsystem has failed.

WSAEINVAL The how is not valid, or is not consistent with the socket type.
For example, SO_SEND is used with a UNLRECV
socket type.

WSAEINPROGRESS Function is invoked when a callback is in progress.

WSAENOTCONN Socket is not connected (connection-oriented sockets only).

WSAENOTSOCK Descriptor is not a socket.

Version: Requires Windows Sockets 2.0.
Header: Declared in Ws2spi.h.

WSPConnect, WSPSocket

WSPSocket
The WSPSocket function creates a socket.

Parameters
at

[in] Address family specification.

type
[in] Type specification for the new socket.

protocol
[in] Protocol to be used with the socket that is specific to the indicated address family.

646 Volume 1 Winsock and QOS

IpProtocoll nto

9

[in] Pointer to a WSAPROTOCOl_INFOW structure that defines the characteristics of
the socket to be created.

[in] Reserved.

dwFlags
Socket attribute specification.

IpErmo
[out] Pointer to the error code.

Return Values
If no error occurs, WSPSocket returns a descriptor referencing the new socket.
Otherwise, a value of INVALID_SOCKET is returned, and a specific error code is
available in IpErmo.

Remarks
WSPSocket causes a socket descriptor and any related resources to be allocated. By
default, the created socket will not have the overlapped attribute. Windows Sockets
providers are encouraged to be realized as Windows installable file systems, and supply
system file handles as socket descriptors. These providers must call
WPUModifylFSHandle prior to returning from this function. For nonfile-system Windows
Sockets providers, WPUCreateSocketHandle must be used to acquire a unique socket
descriptor from the WS2_32.dll prior to returning from this function. See section
Descriptor Allocation for more information.

The values for at, type, and protocol are those supplied by the application in the
corresponding API functions socket or WSASocket. A service provider is free to ignore
or pay attention to any or all of these values as is appropriate for the particular protocol.
However, the provider must be willing to accept the value of zero for at and type, since
the Ws2_32.dll considers these to be wildcard values. Also the value of manifest
constant FROM_PROTOCOL_INFO must be accepted for any of at, type and protocol.
This value indicates that the Windows Sockets 2 application needs to use the
corresponding values from the indicated WSAPROTOCOl_INFOW structure:
(iAddressFamily, iSocketType, iProtoco~.

The dwFlags parameter can be used to specify the attributes of the socket by using the
bitwise OR operator with any of the flags on the following page.

Chapter 11 Winsock 2 SPI Reference 647

Flag Meaning

WSA_FLAG_
OVERLAPPED

This flag causes an overlapped socket to be created. Overlapped
sockets can utilize WSPSend, WSPSendTo, WSPRecv,
WSPRecvFrom and WSPloctl for overlapped 1/0 operations, which
allow multiple operations to be initiated and in process simultaneously.
All functions that allow overlapped operations also support

WSA_FLAG_
MULTIPOINT _C_ROOT

WSA_FLAG_
MULTIPOINT _C_LEAF

WSA_FLAG_
MULTIPOINT _D_ROOT

WSA_FLAG_
MULTIPOINT _D_LEAF

non overlapped usage on an overlapped socket if the values for
parameters related to overlapped operation are NULL.

Indicates that the socket created will be a c_root in a multipoint
session. Only allowed if a rooted control plane is indicated in the
protocol's WSAPROTOCOL_INFOW structure.

Indicates that the socket created will be a c_leaf in a multicast session.
Only allowed ifXP1_SUPPORT_MULTIPOINT is indicated in the
protocol's WSAPROTOCOL_INFOW structure.

Indicates that the socket created will be a d_root in a multipoint
session. Only allowed if a rooted data plane is indicated in the
protocol's WSAPROTOCOL_INFOW structure.

Indicates that the socket created will be a d.Jeaf in a multipoint
session. Only allowed if XP1_SUPPORT_MULTIPOINT is indicated in
the protocol's WSAPROTOCOL_INFOW structure.

Important For multipoint sockets, exactly one of WSA_FLAG_MUL TIPOINT _C_ROOT
orWSA_FLAG_MULTIPOINT_C_LEAF must be specified, and exactly one of
WSA_FLAG_MUL TIPOINT _D_ROOT or WSA_FLAG_MUL TIPOINT _D.:...LEAF must be
specified. Refer to Protocol-Independent Multicast and Multipoint in the SPI for additional
information.

Connection-oriented sockets such as SOCK_STREAM provide full-duplex connections,
and must be in a connected state before any data can be sent or received on them. A
connection to another socket is created with a WSPConnect call. Once connected, data
can be transferred using WSPSend and WSPRecv calls. When a session ha.s been
completed, a WSPCloseSocket must be performed.

The communications protocols used to implement a reliable, connection-oriented socket
ensure that data is not lost or duplicated. If data for which the peer protocol has buffer
space cannot be successfully transmitted within a reasonable length of. time, the
connection is considered broken and subsequent calls will fail with the error code set to
WSAETIMEDOUT.

Connectionless, message-oriented sockets allow sending and receiving of datagrams to
and from arbitrary peers using WSPSendTo and WSPRecvFrom. If such a socket is
connected by using WSPConnect to a specific peer, datagrams can be sent to that peer
using WSPSend and can be received from (only) this peer usingWSPRecv.

648 Volume 1 Winsock and QOS

Support for sockets with type SOCK RAW is not required but service providers are
encouraged to support raw sockets whenever it makes sense to do so.

Shared Sockets
When a special WSAPROTOCOL_INFOW structure (obtained through the
WSPDuplicateSocket function and used to create additional descriptors for a shared
socket) is passed as an input parameter to WSPSocket, the g and dwFlags
parameters are ignored.

Layered Service Provider Considerations
A layered service provider supplies an implementation of this function, but it is also a
client of this function if and when it calls WSPSocket of the next layer in the protocol
chain. Some special considerations apply to this function's IpProtocollnfo parameter as it
is propagated down through the layers of the protocol chain.

If the next layer in the protocol chain is another layer then when the next layer's
WSPSocket is called, this layer must pass to the next layer a IpProtocollnfo that
references the same unmodified WSAPROTOCOL_INFOW structure with the same
unmodified chain information. However, if the next layer is the base protocol (that is, the
last element in the chain), this layer performs a substitution when calling the base
provider's WSPSocket. In this case, the base provider's WSAPROTOCOL_INFOW
structure should be referenced by the IpProtocollnfo parameter.

One vital benefit of this policy is that base service providers do not have to be aware of
protocol chains.

This same propagation policy applies when propagating a WSAPROTOCOL_INFOW
structure through a layered sequence of other functions such as WSPAddressToString,
WSPDuplicateSocket, WSPStartup, or WSPStringToAddress.

Error Codes
Error code

WSAENETDOWN

WSAEAFNOSUPPORT

WSAEINPROGRESS

WSAEMFILE

WSAENOBUFS

WSAEPROTONOSUPPORT

WSAEPROTOTYPE

WSAESOCKTNOSUPPORT

WSAEINVAL

Meaning

Network subsystem has failed.

Specified address family is not supported.

Blocking Windows Sockets call is in progress, or the
service provider is still processing a callback function.

No more socket descriptors are available.

No buffer space is available. The socket cannot be
created.

Specified protocol is not supported.

Specified protocol is the wrong type for this socket.

Specified socket type is not supported in this address
family.

Parameter g specified is not valid.

Version: Requires Windows Sockets 2.0.
Header: Declared in Ws2spLh.

Chapter 11 Winsock 2 SPI Reference 649

WSPAccept, WSPBind, WSPConnect, WSPGetSockName, WSPGetSockOpt,
WSPSetSockOpt, WSPListen, WSPRecv, WSPRecvFrom, WSPSend, WSPSendTo,
WSPShutdown, WSPloctl, WPUCreateSocketHandle

WSPStartup
The WSPStartup function initiates use of a Windows Sockets service provider by a
client.

Parameters
wVersionRequested

[in] Highest version of Windows Sockets SPI support that the caller can use. The
high-order byte specifies the minor version (revision) number; the low-order byte
specifies the major version number.

IpWSPData
[out] Pointer to the WSPDAT A data structure that is to receive details of the Windows
Sockets service provider.

IpProtocollnfo
[in] Pointer to a WSAPROTOCOL_INFOW structure that defines the characteristics of
the desired protocol. This is especially useful when a single provider DLL is capable
of instantiating multiple different service providers.

UpcallTable
[in] Ws2_32.dll's upcall dispatch table.

IpProcTable
[out] Pointer to the table of SPI function pOinters.

Return Values
WSPStartup returns zero if successful. Otherwise, it returns one of the error codes listed
below:

650 Volume 1 Winsock and QOS

Dll
versions

1.1

1.01.1

1.0

1.1

1.1

1.0

1.0 1.1

1.1 2.0

2.0

Remarks
This function must be the first Windows Sockets SPI function called by a Windows
Sockets SPI client on a per-process basis. It allows the client to specify the version of
Windows Sockets SPI required and to provide its upcall dispatch table. All upcalls (that
is, functions prefixed with WPU) made by the Windows Sockets service provider are
invoked through the client's upcall dispatch table. This function also allows the client to
retrieve details of the specific Windows Sockets service provider implementation. The
Windows Sockets SPI client can only issue further Windows Sockets SPI functions after
a successful WSPStartup invocation. A table of pOinters to the rest of the SPI' functions
is retrieved through the IpProcTable parameter.

In order to support future versions of the Windows Sockets SPI and the Ws2_32.dll,
which may have functionality differences from the current Windows Sockets SPI, a
negotiation takes place in WSPStartup. The caller of WSPStartup (either the
Ws2_32.dll or a layered protocol) and the Windows Sockets service provider indicate to
each other the highest version that they can support, and each confirms that the other's
highest version is acceptable. Upon entry to WSPStartup, the Windows Sockets service
provider examines the version requested by the client. If this version is equal to or higher
than the lowest version supported by the service provider, the call succeeds and the
service provider returns in wHighVersion the highest version it supports and in wVersion
the minimum of its high version and wVersionRequested. The Windows Sockets service
provider then assumes that the Windows Sockets SPI client will use wVersion. If the
wVersion member of the WSPDATA structure is unacceptable to the caller, it should call
WSPCleanup and either search for another Windows Sockets service provider or fail to
initialize.

This negotiation allows both a Windows Sockets service provider and a Windows
Sockets SPI client to support a range of Windows Sockets versions. A client can
successfully utilize a Windows Sockets service provider if there is any overlap in the
version ranges.

The following chart gives examples of how WSPStartup works in conjunction with
different WS2_32.dll and Windows Sockets service provider (SP) versions.

SP wVersion wHigh
versions requested wVersion version End result

1.1 1.1 1.1 1.1 use 1.1

1.0 1.1 1.0 1.0 use 1.0

1.0 1.1 1.0 1.0 1.1 use 1.0

1.01.1 1.1 1.1 1.1 use 1.1

1.0 1.1 1.0 1.0 Dll fails

1.1 1.0 WSAVERNOTSUPPORTED

1.0 1.1 1.1 1.1 1.1 use 1.1

1.1 2.0 1.1 1.1 use 1.1

2.0 2.0 2.0 2.0 use 2.0

Chapter 11 Winsock 2 SPI Reference 651

The following code fragment demonstrates how a Windows Sockets SPI client, which
supports only version 2 of Windows Sockets SPI, makes a WSPStartup call:

And this code fragment demonstrates how a Windows Sockets service provider that
supports only version 2 performs the WSPStartup negotiation.

652 Volume 1 Winsock and QOS

Once the Windows Sockets SPI client has made a successful WSPStartup call, it can
proceed to make other Windows Sockets SPI calls as needed. When it has finished
using the services of the Windows Sockets service provider, the client must call
WSPCleanup in order to allow the Windows Sockets service provider to free any
resources allocated for the client.

Details of how Windows Sockets service provider information is encoded in the
WSPDATA structure is as follows:

The members of this structure are shown in the following table.

Member Usage

wVersion Version of the Windows Sockets SPI specification that the Windows
Sockets service provider expects the caller to use.

wHighVersion Highest version of the Windows Sockets SPI specification that this
service provider can support (also encoded as above). Normally this
will be the same as wVersion.

szDescription NUll-terminated Unicode string into which the Windows Sockets
provider copies a description of itself. The text (up to 256 characters
in length) can contain any characters except control and formatting
characters: the most likely use to which an SPI client will put this is to
display it (possibly truncated) in a status message.

Chapter 11 Winsock 2 SPI Reference 653

A Windows Sockets SPI client can call WSPStartup more than once if it needs to obtain
the WSPData structure information more than once. On each such call the client can
specify any version number supported by the provider.

There must be one WSPCleanup call corresponding to every successful WSPStartup
call to allow third-party DLLs to make use of a Windows Sockets provider. This means,
for example, that if WSPStartup is called three times, the corresponding call to
WSPCleanup must occur three times. The first two calls to WSPCleanup do nothing
except decrement an internal counter; the final WSPCleanup call does all necessary
resource deallocation.

This function (and most other service provider functions) can be invoked in a thread that
started out as a 16-bit process if the client is a 16-bit Windows Sockets 1.1 client. One
important limitation of 16-bit processes is that a 16-bit process cannot create threads.
This is significant to service provider implementers that plan to use an internal service
thread as part of the implementation.

Fortunately, there are usually only two areas where the conditions for a service thread
are strong:

• In the implementation of overlapped I/O completion.

• In the implementation of WSPEventSelect.

Both of these areas are only accessible through new Windows Sockets 2 functions,
which can only be invoked by 32-bit processes.

A service thread can be safely used if these two design rules are carefully followed:

• Use a service thread only for functionality that is unavailable to 16-bit Windows
Sockets 1.1 clients.

• Create the service thread only on demand.

Several other cautions apply to the use of internal service threads. First, threads
generally carry some performance penalty. Use as few as possible, and avoid thread
transitions wherever possible. Second, your code should always check for errors in
creating threads and fail gracefully and informatively (for example, with
WSAEOPNOTSUPP) in case some execution event you did not expect results in a 16-
bit process executing a code path that needs threads.

Layered Service Provider Considerations
A layered service provider supplies an implementation of this function, but it is also a
client of this function when it calls WSPStartup to initialize the next layer in the protocol
chain. The call to the next layer's WSPStartup may happen during the execution of this
layer's WSPStartup or it may be delayed and called on demand, such as when
WSPSocket is called. In any case, some special considerations apply to this function's
IpProtocollnfo parameter as it is propagated down through the layers of the protocol
chain.

654 Volume 1 Winsock and QOS

The layered provider searches the Protoco/Chain of the structure referenced by
/pProtocol/nfo to determine its own location in the chain (by searching for the layer's own
catalog entry Ie!) and the identity of the next element in the chain. If the next element is
another layer, then, when the next layer's WSPStartup is called, this layer must pass to
the next layer a /pProtocol/nfo that references the same unmodified
WSAPROTOCOL_INFOW structure with the same unmodified chain information.
However, if the next layer is the base protocol (that is, the last element in the chain), this
layer performs a substitution when calling the base provider's WSPStartup. In this case,
the base provider's WSAPROTOCOL_INFOW structure should be referenced by the
/pProtocol/nfo parameter.

One vital benefit of this policy is that base service providers do not have to be aware of
protocol chains.

This same propagation policy applies when propagating a WSAPROTOCOL_INFOW
structure through a layered sequence of other functions such as WSPAddressToString,
WSPDuplicateSocket, WSPSocket, or WSPStringToAddress.

Error Codes
Error code Meaning

WSASYSNOTREADY Indicates that the underlying network subsystem is not
ready for network communication.

WSAVERNOTSUPPORTED Version of Windows Sockets SPI support requested is
not provided by this particular Windows Sockets service
provider.

WSAEINPROGRESS Blocking Windows Sockets operation is in progress.

WSAEPROCLIM Limit on the number of clients supported by the Windows
Sockets implementation has been reached.

WSAEFAUL T The /pWSPData or /pProcTab/e parameter is invalid.

Version: Requires Windows Sockets 2.0.
Header: Declared in Ws2spLh.

WSPSend, WSPSendTo, WSPCleanup

WSPStringToAddress
The WSPStringToAddress function converts a human-readable numeric string to a
socket address structure (SOCKADDR) suitable to passing to Windows Sockets routines
that take such a structure.

Chapter 11 Winsock 2 SPI Reference 655

Any missing components of the address will be defaulted to a reasonable value if
possible. For example, a missing port number will default to zero.

Parameters
AddressString

[in] Points to the zero-terminated human-readable string to convert.

AddressFamily
[in] Address family to which the string belongs, or AF _UNSPEC if it is unknown.

JpProtocollnfo
[in] (required) Provide(s WSAPROTOCOL_INFOW structure.

IpAddress
[out] Buffer that is filled with a single SOCKADDR structure.

IjJAddressLength
[in/out] Length of the Address buffer. Returns the size of the resultant SOCKADDR
structure. If the supplied buffer is not large enough, the function fails with a specific
error of WSAEFAULT and this parameter is updated with the required size in bytes.

IpErmo
[out] Pointer to the error code.

Return Values
If no error occurs, WSPStringToAddress returns zero. Otherwise, a value of
SOCKET_ERROR is returned, and a specific error code is available in IpErmo.

layered Service Provider Considerations
A layered service provider supplies an implementation of this function, but it is also a
client of this function if and when it calls WSPStringToAddress of the next layer in the
protocol chain. Some special considerations apply to this function's IpProtocollnfo
parameter as it is propagated down through the layers of the protocol chain.

656 Volume 1 Winsock and QOS

If the next layer in the protocol chain is another layer then when the next layer's
WSPStringToAddress is called, this layer must pass to the next layer a IpProtocollnfo
that references the same unmodified WSAPROTOCOL_INFOW structure with the same
unmodified chain information. However, if the next layer is the base protocol (that is, the
last element in the chain), this layer performs a substitution when calling the base
provider's WSPStringToAddress. In this case, the base provider's
WSAPROTOCOL_INFOW structure should be referenced by the IpProtocollnfo
parameter.

One vital benefit of this policy is that base service providers do not have to be aware of
protocol chains.

This same propagation policy applies when propagating a WSAPROTOCOL_INFOW
structure through a layered sequence of other functions such as WSPAddressToString,
WSPDuplicateSocket, WSPStartup, or WSPSocket.

Error Codes
Error code Meaning

WSAEFAUL T Specified address buffer is too small. Pass in a larger buffer.

WSAEINVAL Unable to translate the string into a SOCKADDR, or the provider was
unable to support the indicated address family, or the specified
IpProtocollnfo did not refer to a WSAPROTOCOL_INFOW structure
supported by the provider.

Version: Requires Windows Sockets 2.0.
Header: Declared in Ws2spLh.

657

CHAPTER 12

Winsock 2 Protocol-Specific Annex

This chapter describes the Microsoft® Windows® Sockets 2 Protocol-Specific Annex. It
presents information drawn from the Windows Sockets 2 Protocol-Specific Annex
specification.

Using the Annex
This chapter and its sections provide the information needed to create a Windows
Sockets (Winsock) application for Microsoft® Windows NT®lWindows® 2000,
Windows 98®, and Windows 95® operating systems, using the Microsoft implementation
of Windows Sockets 2. It is intended as a reference tool and outlines the functions in the
Windows Sockets Protocol-Specific Annex.

To make the best use of this chapter, you should have a working knowledge of Microsoft
Win32® programming concepts. The Win32® Developer's Reference Library, another
library in the Windows Programming Reference Series (WPRS) is. available from
Microsoft Press. If you do not have a working knowledge of Win32®, you may want to
refer to the Win32 Developer's Reference Library or, other references that provide a
more systematic guide to writing Winsock applications.

Note This documentation is intended for application developers. If you are developing a
transport or service provider, see the Service Provider documentation installed with the
Platform SDK.

Overview of Windows Sockets 2
Windows Sockets 2 is a superset of the widely deployed Windows Sockets 1.1. Windows
Sockets 2 extends the 1.1 interface in a number of areas while maintaining full backward
compatibility. Among other enhancements, it provides access to protocols other than
TCP/IP. Winsock enables an application to use the familiar socket interjace to achieve
simultaneous access to any number of installed transport protocols.

While most of these protocols may be used with standard Windows Sockets2-interface
mechanisms, each supported protocol contains. conventions and· behaviors that
developers need to be aware of. Some individual protocols support special features that
do not lend themselves to being treated generically. This document provides the details
that developers need to effectively use all of the supported protocols.

658 Volume 1 Winsock and QOS

Microsoft Extensions and Windows Sockets 2
The Windows Sockets 2 specification defines an extension mechanism that exposes
advanced transport functionality to application programs. For more information, see
Function Extension Mechanism.

The following Microsoft-specific extensions were added to Windows Sockets 1.1. They
are also available in Windows Sockets 2:

• AcceptEx

• GetAcceptExSockaddrs

• TransmitFile

• WSARecvEx

These functions are not exported from the Ws2_32.dll; they are exported from
Mswsock.dll.

An application written to use the Microsoft-specific extensions to Winsock will not run
correctly over a Windows Sockets service provider that does not support those
extensions.

Socket Handles for Windows Sockets 2
A socket handle can optionally be a file handle in Windows Sockets 2. It is possible to
use socket handles with ReadFile, WriteFile, ReadFileEx, WriteFileEx,
DuplicateHandle, and other Win32 functions. Not all transport service providers will
support this option. However, for an application to run over the widest possible number
of service providers, it should not assume that socket handles are file handles.

Windows Sockets 2 has expanded certain functions that transfer data between sockets
using handles. The functions offer advantages specific to sockets for transferring data
and include WSARecv, WSASend, and WSADuplicateSocket.

TCP/IP
This section describes TCP/IP functions, data structures, and TCP/IP controls.

TCPIIP Introduction
Thissectiori covers extensions to Windows Sockets 2 that are specific to TCP/IP
protocols. It also describes aspects of base Windows Sockets 2 functions that require
special consideration or that may exhibit unique behavior when using TCP/IP.

Fast Facts
Protocol name(s)

Description

Address family

Header file

TCP/IP Overview

Chapter 12 Winsock 2 Protocol-Specific Annex 659

TCP, UDP

Provides two transport services over the IP networking layer:
UDP for unreliable datagrams, TCP for reliable, connection
oriented byte streams.

AF_INET

Ws2tcpip.h

The TCP/IP protocol suite forms the backbone of the global Internet. The original
Windows Sockets specification (version 1.1) addressed only TCP/IP protocols, and still
contains a few IP-specific attributes.

Two basic types of transport services are offered: unreliable datagrams (UDP), and
reliable connection-oriented byte streams (TCP). In addition, a raw socket is optionally
supported. Raw sockets allow an application to communicate through protocols other
than TCP and UDP such as ICMP.

TCP/IP Data Structures
The INTERFACE_INFO structure is used in conjunction with the
SIO_GET _INTERFACE_LIST ioctl command. It is defined in Ws2tcpip.h file and is
reproduced here.

Members
iiFlags

A bitmask describing the status of the interface. The following flags are possible.

Flag Meaning

IFF_UP The interface is running.

IFF_BROADCAST The broadcast feature is supported.

IFF _LOOPBACK

IFF _POINTTOPOINT

IFF _MULTICAST

The loopback interface is running.

The interface is using pOint-to-point link.

The multicast feature is supported.

660 Volume 1 Winsock and QOS

iiAddress
The address of the interface.

iiBroadcastAddress
The broadcast address of the interface or the address of the other side for point-to
point links.

iiNetmask
The netmask used by the interface.

TCP/IP Controls
The following controls are available in all TCP/IP implementations:

• UNIX loctls

• TCP/IP Socket Options

UNIX loctls
The SIOGIFCONF command provided by most UNIX implementations is supported in
the form of WSAloctl and WSPloctl functions with the command
SIO_GET _INTERFACE_LIST. This command returns the list of configured interfaces
and their parameters. Support of this command is mandatory for Windows Sockets 2
compliant-TCP/IP service providers.

The parameter IpvOutBuffer points to the buffer in which WSAloctl and WSPloctl store
the information about interfaces. The number of interfaces (number of structures
returned in IpvOutBuffet') can be determined based on the actual length of the output
buffer returned in IpcbBytesReturned.

TCP/IP Socket Options
The following TCP/IP-specific options are defined.

Value Meaning

Returns a list of alilP interfaces on the system.

level=lPPROTOJP
Value

IP_OPTIONS

IP_TOS

Type

char FAR *

int

int

Meaning

Lists I P options to be inserted into
the outgoing packets.

Specifies the type of service to be
used. See following for more
information about setting TOS.

Specifies the TTL to be used.

Value

IP_HDRINCl

IP _MULTICAST_TTL

IP _MULTICAST_lOOP

IP _ADD_MEMBERSHIP

IP _DROP _MEMBERSHIP

level:: IPPROTO_UDP
Value

UDP_NOCHECKSUM

level::lPPROTO _ Tep
Value

TCP _EXPEDITED_1122

Chapter 12 Winsock 2 Protocol-Specific Annex 661

Type

BOOl

IN_ADDR FAR
*structure

int

BOOl

IP _MREQ FAR *
structure

IP _MREQ FAR *
structure

Type

BOOl

Type

BOOl

Meaning

If TRUE, the application provides the
IP header in the packets sent over
SOCK_RAW interface. Otherwise,
the header is provided by the service
provider.

Selects the interface for the outgoing
multicast packets. The optval should
point to the address of the interface
to be used. If NUll, the default
interface is used.

TTL used for the multicast packets.

If TRUE, multicast loopback is
enabled. Otherwise, it is disabled.

Specifies the multicast group to join.

Specifies the multicast group to
leave.

Meaning

If this option is set, UDPdatagrams are
sent with the checksum of zero. This.
option is required. If a service provider
does not have a mechanism to disable
UDP checksum calculation, it may
simply store this option without taking
any action.

Meaning

If set, the SP implements the expedited
data as specified in RFC-1222.
Otherwise, the BSD style (default) is
used. This option can be set on the
connection only once, that is, once on,
this option can not be turned off. This
option is not required;

662 Volume 1 Winsock and QOS

IP_OPTIONS
Specifies IP options to be inserted into outgoing datagrams. Setting the new options
overwrites all the previously specified options. Setting optva/ to zero means removing
all previously specified options. The support of IP _OPTIONS is not required. In order
to check whether IP _OPTIONS is supported, an application should use getsockopt
to attempt to get the current options. If getsockopt fails, the IP _OPTIONS is not
supported.

IP_TOS
Changes the default value set by the TCP/IP service provider in the TOS field of the
IP header in outgoing datagrams. The support of IP _ TOS is not required. To check
whether .IP _ TOS is supported, an application should use getsockopt to attempt to get
the current options. If getsockopt fails, the IP _TOS is not supported.

There are two important points to keep in mind regarding TOS:

• TOS and IP precedence bits have been deprecated, and the corresponding TOS
RFC obviated, by Diffserv code point (DSCP). Many DSCP values have been
recommended for standardization by the IETF. For more information about these
standardization recommendations, consult the IETF Web site.at www.ietf.organd
look into the Diffserv working group.

• Programmers should never directly set TOS bits. Use the QOS API to set the bits.
Diffserv code point is explained in the Quality of Service SDK reference section.

It is important to note that when QOS is enabled on a Windows 2000 computer, all
TOS settings are overridden by settings implemented or set using the traffic control
API (TC API) or the QOS API.

IP_TTL
Changes the default value set by the TCP/IP service provider in the TTL field of the IP
header in outgoing datagrams. The support of IP _ TTL is not required. In order to
check if IP _ TTL is supported, an application should use getsockopt to attempt to get
the current options. If getsockopt fails, the IP _ TTL is not supported.

IP _HDRINCL
By default TCP/IP service provider forms the IP header for the outgoing datagrams.
Some applications, however, may wish to provide their own IP header. Such
applications should setIP_HDRINCL option to TRUE and then supply a completed IP
header at the front of each outgoing datagram. The only modification TCP/IP service
provider may make to the supplied IP header is setting the ID field, if the value
supplied by the application is O. The IP _HDRINCL option is applied only to the
SOCK_RAW type of protocol. If a TCP/IP service provider supports SOCICRAW
protocol, it should also support IP _HDRINCL option.

IP _MULTICAST_IF
Information supplied at a later release.

IP _MULTICAST_TTL
Information supplied at a later release.

IP _MULTICAST_LOOP
Information supplied at a later release.

Chapter 12 Winsock 2 Protocol-Specific Annex 663

IP _ADD_MEMBERSHIP
Information supplied at a later release.

IP _DROP _MEMBERSHIP
Support of these options is required if a protocol supports multicast. This will be
indicated in the WSAPROTOCOL_INFO structure returned by WSAEnumProtocols
as follows: .

XPLSUPPORTS_MUL TIPOINT = 1

XP1_MULTIPOINT _CONTROL_PLANE = 0

XP1_MULTIPOINT_DATA_PLANE = 0

TCP/IP Function Details
This section presents general information about TCP/IP function details for multicast,
raw sockets, and Ipv6 support.

Multicast
Generic Winsock multipoint functions support IP multicast. However, the TCP/IP
transport providers who support multicast must also provide BSD style-multicast support
by supporting the corresponding multicast options. This will simplify the porting of
existing multicast applications to Windows Sockets 2.

TCP/IP Raw Sockets
The TCP/IP service providers may support the SOCK_RAW socket type. There are two
types of such sockets:

• The first type assumes a known protocol type as written in the IP header. An example
of the first type of socket is ICMP.

• The second type allows any protocol number. An example of the second type would
be an experimental protocol that is not supported by the service provider.

If a TCP/IP service provider supports SOCK_RAW sockets for the AF _INET family, the
corresponding protocol(s) should be included in the list returned by
WSAEnumProtocols. The ipProtocol field of the WSAPROTOCOL_INFO structure may
be set to zero if the service provider allows an application to specify any value for the
protocol parameter for the Socket, WSASocket, and WSPSocket functions.

Note An application may not specify zero (0) as the protocol parameter for the Socket,
WSASocket, and WSPSocket functions if SOCK_RAW sockets are used.

The following rules are applied to the operations over SOCK_RAW sockets:

• When an application sends a datagram it mayor may not include the IP header at the
front of the outgoing datagrams depending on the IP _HDRINCL option set for the
socket.

664 Volume 1 Winsock and QOS

• An application always gets the IP header at the front of each received datagram
regardless of the IP _HDRINCL option .

• Received datagrams are copied into all SOCK_RAW sockets that satisfy the following
conditions:

• The protocol number specified for the socket should match the protocol number in
the IP header of the received datagram.

• If a local IP address is defined for the socket, it should correspond to the
destination address as specified in the IP header of the received datagram. An
application may specify the 10cailP address by calling bind functions. If no 10cailP
address is specified for the socket, the datagrams are copied into the socket
regardless of the destination IP address in the IP header of the received datagram.

• If a foreign address is defined for the socket, it should correspond to the source
address as specified in the IP header of the received datagram. An application may
specify the foreign IP address by calling connect functions. If no foreign IP
address is specified for the socket, the datagrams are copied into the socket
regardless of the source IP address in the IP header of the received datagram.

It is important to understand that SOCK_RAW sockets may get many unexpected
datagrams. For example, a PING program may use SOCK_RAW sockets to send ICMP
echo requests. While the application is expecting ICMP echo responses, all other ICMP
messages (such as ICMP HOST_UNREACHABLE) may be delivered to this application
also. Moreover, if several SOCK_RAW sockets are open on a machine at the same
time, the same datagrams may be delivered to all the open sockets. An application must
have a mechanism to recognize its datagram and to ignore all others. Such mechanism
may include inspecting the received IP header-using unique identifiers in the ICMP
header (ProcessID, for example), and so forth.

Note On Windows NTIWindows 2000, raw socket support requires administrative
privileges. Users running Winsock applications that make use of raw sockets must have
administrative privileges on the computer, otherwise raw socket calls fail with an error
code of WSAEACCESS.

IPv6 Support
If TCP/IP service provider supports IPv6 addressing, it must install itself twice:

• Once for IPv4.

• Once for IPv6 address family.

So, WSAEnumProtocols returns two WSAPROTOCOL_INFO structures for each of the
supported socket types (SOCK_STREAM, SOCK_DGRAM, SOCK_RAW). The
iAddressFamily must by set to AF _INET for IPv4 addressing, and to AF _INET6 for IPv6
addressing.

The IPv6 addresses are described in the following structures.

Chapter 12 Winsock 2 Protocol-Specific Annex 665

The IPv6 addresses are described in the following structures:

If an application uses Windows Sockets 1.1 functions and wants to use IPv6 addresses,
it may continue to use all the old functions that take the SOCKADDR structure as one of
the parameters (bind, connect, sendto, and recvfrom, accept, and so forth). The only
change that is required is to use SOCKADDR_IN6 instead of SOCKADDR.

However, the name resolution functions (gethostbyname, gethostbyaddr, and so forth)
and address conversion functions (ineCaddr, ineCntoa) can not be reused because
they assume an IP address 4 bytes in length. An application that wants to perform name
resolution and address conversion for IPv6 addresses must use the Windows Sockets 2-
specific functions (WSAStringToAddress, WSAAddressToString, and so forth).

Text Representation of IPv6 Addresses
This section is copied from the IP Version 6 Addressing Architecture by R.Hinden and S.
Deering. There are three conventional forms for representing IPv6 addresses as text
strings:

• The preferred form is X:X:X:X:X:X:X:X, where the "x"s are the hexadecimal values of the
eight 16-bit pieces of the address.

Examples:

FEDC:BA98:7654:321 0:FEDC:BA98:7654:321 0

1 080:0:0:0:8:800:200C:417 A

Note It is not necessary to write the leading zeros in an individual field, but there
must be at least one numeral in every field (except for the case described in the
second form).

• Due to the method of allocating certain styles of IPv6 addresses, it is common for
addresses to contain long strings of zero bits. In order to make writing addresses
containing zero bits easier, a special syntax is available to compress the zeros. The
use of double quotation marks ("::") indicates multiple groups of 16-bits of zeros.

For example, the multicast address

FF01 :0:0:0:0:0:0:43

may be represented as:

FF01::43

666 Volume 1 Winsock and QOS

The double quotation marks ("::") can only appear once in an address. They can be
used to compress leading or trailing zeros in an address.

• An alternative form that may be more convenient when dealing with a mixed
environment of IPv4 and IPv6 nodes is x:x:x:x:x:x:d.d.d.d, where the "x"s are the
hexadecimal values of the six high-order 16-bit pieces of the address, and the "d"s are
the decimal values of the four low-order 8-bit pieces of the address (standard IPv4
representation).

Examples:

0:0:0:0:0:0: 13.1.68.3

0:0:0:0:0:FFFF:129.144.52.38

or in compressed form:

::13.1.68.3

::FFFF:129.144.52.38

TCP/IP Header File
Use the Ws2tcpip.h header file for TCP/IP transactions.

IPXlSPX
This section introduces and provides important specifics for IPx/SPX:

IPXlSPX Introduction
This section covers extensions to Windows Sockets 2 that are specific to the IPX family
of transport protocols. It also describes aspects of base Windows Sockets 2 functions
that require special consideration or that may exhibit unique behavior.

Fast Facts
Protocol name(s)

Description

Address family

Header file

IPXlSPX Overview

IPX, SPX

Provides transport services over the IPX networking layer: IPX
for unreliable datagrams, SPX for reliable, connection-oriented
message streams.

AF_IPX

Wsipx.h

This section discusses how to use the Windows Sockets 2 API with the IPX family of
protocols. Traditionally, the Windows Sockets 1.x specification has been used with the IP
family of protocols such as TCP and UDP. With the advent of Windows Sockets 2, the
API has been updated to access a wide range of transport and network types more
easily.

Chapter 12 Winsock 2 Protocol-Specific Annex 667

The Windows Sockets 2 API is sufficiently generic. That is, programmers need to know
very little about the specifics of the IPXlSPX implementation. However, if you are moving
traditionallPX applications to Winsock or want more knowledge of the IPXlSPX
implementation, this appendix is for you. Be aware that IPX networks operate differently
than IP networks; consideration of this fact will most likely be manifest in your code.

IPXlSPX features are defined in the header file Wsipx.h.

AF JPX Address Family
The IPX address family defines the addressing structure for protocols that use standard
IPX socket addressing. For these transports, an endpoint address consists of a network
number, node address, and socket number.

The network number is an administrative domain and typically names a single Ethernet
or token ring segment. The node number is a station's physical address. The
combination of net and node form a unique station address that is presumed to be
unique in the world. Net and node numbers are represented in ASCII text in either block
or dashed notation as: "0101 a040,00001 b498765" or "01-01-aO-40,00-00-1 b-49-87-65".
Leading zeros need not be present.

The IPX socket number is a network/transport service number much like a TCP port
number and is not to be confused with the Winsock socket descriptor. IPX socket
numbers are global to the end station and cannot be bound to specific net/node
addresses. For instance, if the end station has two network interface cards, a bound
socket can send and receive on both cards. In particular, datagram sockets would
receive broadcast datagrams on both cards.

Caution SOCKADDR_IPX is 14 bytes long and is shorter than the 16-byte
SOCKADDR reference structure. IPXlSPX implementations may accept the 16-byte
length as well as the true length. If you use SOCKADDR_IPX and a. hard-coded length
of 16 bytes, the implementation may assume that it has access to the 2 bytes following
your structure.

Field

sa_family

Sa_netnum

Sa_nodenum

. Sa_socket

Value

Address family AF _IPX in host order.

IPX network identifier in network order.

Station node address, flushed right.

IPX socket number in network order.

IPX Family of Protocol Identifiers
The protocol parameter in socket and WSASocket is an identifier that establishes a
network type and a method for identifying the various transport protocols that run on the
network. Unlike IP, IPX does not use a single protocol value for selecting a transport
stack. Since there is no network requirement to use a specific value for each transport

668 Volume 1 Winsock and aos

protocol, we are free to assign them in a manner convenient for Winsock applications.
We avoid values 0-255 in order to avoid collisions with the corresponding PF _INET
protocol values.

Name Value

Reserved 0-255

1000-1255

1256

Socket types

SOCK_DGRAM
SOCK_RAW

SOCK_STREAM
SOCK_SEQPKT

Description

Reserved for PF _INET protocol
values.

Datagram service for IPX.

Reliable packet exchange
using fixed-sized packets.

Note When NSPROTO_SPX is specified, the SPX II protocol is automatically utilized if
both endpoints are capable of doing so.

Broadcast to Local Network
A broadcast can be made to the locally attached network by setting S8_netnum to binary
zeros and s8_nodenum to binary ones. This broadcast may be sent to the primary
network for the device, or to all locally attached networks at the option of the service
provider. Broadcasts to the local network are not propagated by routers.

All Routes Broadcast
A general broadcast through the Internet is achieved by setting the s8_netnum and
s8_nodenum fields to binary ones (-1). The service provider translates this request to a
type 20 packet, which IPX routers recognize and forward. The packet visits all subnets
and may be duplicated several times. Receivers must handle several duplicate copies of
the datagram.

Use of this broadcast type is unpopular among network administrators, so its use should
be extremely limited. Many routers disable this type of broadcast, leaving parts of the
subnet invisible to the packet.

Directed Broadcast
Generally considered more network friendly than an all-routes broadcast, a directed
broadcast limits itself to the local network that you specify. Fill s8_netnum with the target
network number and s8_nodenum with binary ones. Routers forward this request to the
destination network where it becomes a local broadcast. Intermediate networks do not
see this packet as a broadcast.

Chapter 12 Winsock 2 Protocol-Specific Annex 669

About Media Packet Size
Media packet size affects the ability of IPX protocols to transfer data across networks
and can prove challenging to deal with in a transport-independent manner. IPX does not
segment packets, nor does it report when packets are dropped due to size violations.
This means that some entity on the end station must maintain knowledge of the
maximum packet size to be used on any given internetwork path. Traditionally, IPX
datagram and SPX connection-oriented services have left this burden to the application,
while SPXII has used Large Internet Packet negotiation to handle it transparently.

Winsock attempts to set rational packet size limits for its various IPX protocols as
described in the next section. These limits can be viewed and modified by applications
through geVset socket options. When determining maximum packet size, the three areas
of concern are:

• # Media packet size

• # Routable packet size

• # End-station packet size

Media packet size reflects the maximum packet size acceptable on any media the
packet traverses to its destination. Packet size varies among differing media such as
Ethernet and token ring. The amount of data space within a packet can also vary within
a given media, depending on the packet header arrangement. For instance, the effective
data size of an Ethernet packet varies depending on whether it is of the type Ethernet II,
Ethernet 802.2, or Ethernet SNAP.

Routable packet size reflects the maximum packet size an intermediate router is willing
to forward. Modern IPX routers are built to route any size datagram as long as it remains
within the media size of the sending and receiving network. However, older routers may
limit maximum packet size to 576 bytes, including protocol headers.

End-station packet size reflects the size of the listen buffers that end stations have
posted to receive incoming packets. Even when the media and router limits allow a
packet through, it may be discarded by the end station if the receiving application has
posted a smaller buffer. Many traditionallPXlSPX applications limit receive buffer size
such that the data portion must be no larger than 512 or 1024 bytes.

How Packet Size Affects Protocols
Media packet size issues discussed in the topic, About Media Packet Size, affect the
various PF _IPX protocols differently. A common strategy for handling various router and
media size constraints is to use the full media size when the remote station's network
number matches the local station, and fall back to the minimum packet size otherwise.

NSPROTO_IPX
Provides a datagram service; each datagram must reside within the maximum packet
size. Winsock sets the maximum datagram packet size to the local media packet size
minus the IPX header. Keep in mind, however, that if the packet is routed, it may hit
router restrictions en route. Make sure your application can fall back to 546-byte
datagrams.

670 Volume 1 Winsock and aos

NSPROTO_SPX
Provides stream and sequenced-packet services. Winsock IPXlSPX lets data streams
and messages span multiple packets, so packet size does not limit the amount of data
handled by send and recv. However, the underlying media size must be set correctly
or the first large packet will be undeliverable and the connection will reset. If the target
station is on the local network, Winsock sets its packet size to the media packet size.
Otherwise, it defaults to 512 bytes. This size can be changed immediately after
connect or accept through setsockopt.

NSPROTO_SPXII
SPXII features large Internet packet negotiation to maintain a best-fit size for packets
and does not require programmer intervention. However, if the remote station does
not support SPXII and negotiates down to standard SPX, the NSPROTO_SPX rules
are in effect.

Protocol Media Type Data packet size

Ethernet

Token Ring

Ethernet

Token Ring

IPXlSPX Data Structures

Ethernet II

802.3

802.2

SNAP

four megabit

16 megabit

Ethernet II

802.3

802.2

SNAP

four megabit

16 megabit

1466

1454

The IPXlSPX data structures in this section are Microsoft-specific implementations, and
can be found in Wsnwlink.h.

The IPX_ADDRESS_DATA structure provides information about a specific adapter to
whichlPX is bound. Used in conjunction with getsockopt function calls that specify
IPX_ADDRESS in the optname parameter.

Members
adapternum

[in] Adapter number.

netnum

Chapter 12 Winsock 2 Protocol-Specific Annex 671

[out] IPX network number for the associated adapter.

nodenum
[out] IPX node address for the associated adapter.

wan
[out] Specifies whether the adapter is on a wide area network (WAN) link. When
TRUE, the adapter is on a WAN link.

status
[out] Specifies whether the WAN link is up. FALSE indicates that the WAN link isup
or the adapter is not on a WAN. Compare with wan to determine the meaning.

maxpkt
[out] Maximum allowable packet size, excluding the IPX header.

linkspeed
[out] Link speed, returned in 100 bytes per second increments. For example, a 9600
byte per second link would be return a value of 96.

Remarks
Adapter numbers are base zero, so if there are eight adapters on a given computer, they
are numbered 0-7. To determine the number of adapters present on the computer, call

··thegetsockopt function with I PX..,.MAX_ADAPTER_NUM. .

Version: Requires Windows Sockets 2.0.
Header: Declared in Wsnwlink.h.

672 Volume 1 Winsock and QOS

getsockopt

The IPX_NETNUM_DATA structure provides information about a specified IPX network
number. Used in conjunction with getsockopt function caUs that specify
IPX_GETNETINFO in the optname parameter.

Members
netnum

[in] IPX network number for which information is being requested.

hopcount
[out] Number of hops to the IPX network being queried, in machine order.

netdelay
[out] Network delay tick count required to reach the IPX network, in machine order.

cardnum
[out] Adapter number used to reach the IPX network. The adapter number is zero
based, such that if eight adapters are on a given computer, they are numbered 0-7.

router
[out] Media Access Control (MAC) address of the next-hop router in the path between
the computer and the IPX network. This value is zero if the computer is directly
attached to the IPX network.

Remarks
If information about the IPX network is in the computer's IPX cache, the call will return
immediately. If not, RIP requests are used to resolve the information.

Chapter 12 Winsock 2 Protocol-Specific Annex 673

Version: Requires Windows Sockets 2.0.
Header: Declared in Wsnwlink.h.

getsockopt

The IPX_SPXCONNSTATUS_DATA structure provides information about a connected
SPX socket. Used in conjunction with getsockopt function calls that specify
IPX_SPXGETCONNECTIONSTATUS in the optname parameter. All numbers in
IPX_SPXCONNSTATUS_DATA are in Novell (high-low) order.

Members
ConnectionState

Specifies the connection state.

Watch DogActive
Specifies whether watch dog capabilities are active.

LocalConnectionld
Specifies the .Iocal connection ID.

674 Volume 1 Winsock and QOS

RemoteConnectionld
Specifies the remote connection 10.

LocalSequenceNumber
Specifies the local sequence number.

LocalAckNumber
Specifies the local acknowledgment (ACK) number.

LocalAllocNumber
Specifies the local allocation number.

RemoteAckNumber
Specifies the remote acknowledgment (ACK) number.

RemoteAllocNumber
Specifies the remote allocation number.

LocalSocket
Specifies the local socket.

ImmediateAddress
Specifies the IPX address to which the local computer is attached.

RemoteNetwork
Specifies the network to which the remote host is attached.

RemoteNode
Specifies the remote node.

RemoteSocket
Specifies the remote socket.

RetransmissionCount
Specifies the number of retransmissions.

EstimatedRoundTripDelay
Specifies the estimated round trip-time delay for a given packet.

RetransmittedPackets
Specifies the number of retransmitted packets on the socket.

Suppressed Packet
Specifies the number of suppressed packets on the socket.

Version: Requires Windows Sockets 2.0.
Header: Declared in Wsnwlink.h.

getsockopt

IPXlSPX Controls
This section describes IPXlSPX socket options.

Chapter 12 Winsock 2 Protocol-Specific Annex 675

NSPROTOJPX Socket Options
NSPROTO_IPX options are handled through getsockopt and setsockopt. Each option
is accessed by setting level = NSPROTO_'PX and optname to one of the following
values.

level = NSPROTOJPX
Option

IPX_ TXPKTSIZE

IPX_RXPKTSIZE

IPX_ TXMEDIASIZE

IPX_RXMEDIASIZE

IPX_PRIMARY

level = NSPROTO_SPX
Option

SPX_CHECKSUM

SPX_ TXPKTSIZE

Type

Bool

int

int

int

int

Bool

Type

Bool

int

Default

off

Media size to
a maximum of
1466

Media size to
a maximum of
1466

Primary board

Primary board

Primary

Default

off

Media size to
a maximum of
1466

Meaning

When set, I PX performs a
checksum on outgoing packets
and verifies the checksum of
incoming packets.

Sets maximum send datagram
size. This size does not include the
I PX header or any media headers
that may also be used. May be
increased to media size.

Sets maximum receive datagram
size. This size does not include the
IPX header or any media headers
that may also be used. May be
increased to media size.

Returns send media size that sets
an upper bound for datagram size.

Returns receive media size that
sets an upper bound for datagram
size.

Restricts traffic to the primary
network board.

Meaning

When set, IPX performs a
checksum on outgoing packets
and verifies the checksum of
incoming packets. Not supported
on all platforms.

Sets maximum send datagram
size. This size does not include the
SPX header or any media headers
that may also be used. May be
increased to media size.

(continued)

676 Volume 1 Winsock and QOS

(continued)

Option

SPX_RXPKTSIZE

SPX_ TXMEDIASIZE

SPX_RXMEDIASIZE

SPX_RAWSPX

Type

int

int

int

Bool

Default

Media size to
a maximum of
1466

Primary board

Meaning

Sets maximum receive datagram
size. This size does not include the
SPX header or any media headers
that may also be used. May be
increased to media size.

Returns send media size minus
SPX and media headers. This sets
an upper bound for message
segmentation packet size.

Primary board Returns receive media size minus
SPX and media headers. This sets

off

an upper bound for receive packet
size.

When set, the I PXlSPX protocol
header is passed with the data.

When set, SPX_RAWSPX lets the application manage the IPXlSPX header. In this
mode, Winsock will not segment messages, restricting maximum send and recv
message size to the underlying packet size. Packet size options are automatically
adjusted to include the IPXlSPX headers. Fields that can be set by the application are
detailed in Wsipx.h.

DECnet
This section covers extensions to Windows Sockets 2 that are specific to DECnet. It also
describes aspects of base Windows Sockets 2 functions that require special
consideration or that may exhibit unique behavior.

Fast Facts
Protocol name(s)

Socket type

Description

Address family

Header file

DEenet Overview

DNPROTO_NSP

SOCK_SEQPACKET

Provides transport service over the DECnet network layer.

AF_DECnet

Ws2dnet.h

The Digital Network Architecture (DNA) consists of an architectural overview and a set of
specifications defining various network protocol layers. DECnet refers to a set of

Chapter 12 Winsock 2 Protocol-Specific Annex 677

products that implement the Digital Network Architecture. DECnet Phase IV, as
introduced in 1982, supports peer-to-peer connectivity in both local and wide area
networks.

DNPROTO_NSP Protocol Family
DECnet Phase IV uses Network Services Protocol (NSP) as its transport layer.

AF _DEenet Address Families
The AF _DECnet Address families include:

DECnet Phase IV Node Addresses
DECnet Phase IV node addresses are hierarchical, indicating the routing area and the
node number within that area. The binary format of the address is a 16-bit unsigned
integer. The high-order 6 bits indicate the area, the low-order 10 bits are the node
number within the area.

The ASCII format of the address is area.number with area in the range 1-63, and
number in the range 1-1023.

For example: A DECnet node address in area 5, number 7 is represented as shown in
the following table.

ASCII format "5.7"

Binary value

Hexadecimal value

000101 0000000111.

Ox1407

DECnet Extended Addressing
DECnet extended addressing allows the DECnet NSP transport to be run over the OSI
routing layer. Sockets opened through AF _DECnet assumes that addresses of 3 to 20
bytes in length are OSI-style addresses.

DECnetObjects
DECnet client tasks specify the server task that they want to communicate with by using
network object number and task names. The DECnet object number is an 8-bit unsigned
value. Object numbers in the range 1-127 are reserved as generic objects for digital
use. Numbers 1-128 are available for user-written generic objects.

If the object number is zero, then the network connect is done to a specific server task
name. Task names are 1-16-byte ASCII strings.

#17

#19

#0

FAL

NML

DEBUG_TASK

Generic DECnet file access listener.

Generic DECnet network management listener.

User-specified debug server task.

678 Volume 1 Winsock and aos

SOCK_SEQPACKET Socket Type
DECnet sockets use sequenced packets that maintain message boundaries across the
network.

DECnet Data Structures
The DECnet structures and constants include Winsock2.h and Ws2dnet.h. This section
presents information about their constants and controls.

Manifest Constants (Winsock2.h)

Manifest Constants (Ws2dnet.h)

Data Structures (Ws2dnet.h)
This section lists address type information for the header files.

DECnet Node Address

Chapter 12 Winsock 2 Protocol-Specific Annex 679

DECnet Socket

DECnet Node Entity

DECnet Optional Data

DECnet Outgoing Access Control

DECnet Incoming Access Control

680 Volume 1 Winsock and QOS

(continued)

DECnet Call Data

DECnet Logical Link

DECnet Function Details
This section presents connection information for DECnet functions.

Connections Using AcceptIWSAAcceptIWSPAccept
This section describes various data connections for accept functions.

Immediate Accept with No Optional or Access Data
In order to accept a connection on a DECnet socket, the parameter addrshould point to
a SOCKADDR_DN structure.

Chapter 12 Winsock 2 Protocol·Specific Annex 681

addr
Pointer to a SOCKADDR_DN structure that receives the address of the connecting
entity, as known to the communications layer.

Deferred Accept with Optional and Access Data
DECnet sockets support both immediate and deferred accepts. It also supports the
exchange of up to 16 bytes of optional data on accept and connect. It also supports the
receipt of DECnet access control information by the server from the client on a connect
request.

682 Volume 1 Winsock and QOS

DECnet optional data is passed in an OPTDATA_DN structure. Access control data is
. passed in an ACCESSDATA_DN structure.

In the CALLBACK function, the IpCallerData should point to a CALLDATA_DN structure
that contains concatenated OPTDATA_DN and ACCESSDATA_DN structures. If
IpCallerData is set to NULL, no additional data will be read from the caller. If either the
OPTDATA_DN.OPT_OPTL or the ACCESSDATA_DN.ACC_USERL are set to zero,
that portion of the structure will be ignored.

The accept only reads ACCESSDATA_DN, it does not write it, so only OPTDATA_DN
can be returned by the server. The IpCalleeData pOinter should point to a buffer
containing the OPTDATA_DN structure. If IpCalleeData is set to NULL, no optional data
can be read from the server.

Structure Information for BindlWSPBind
In order to bind a local DECnet address to a socket, the parameter name should point to
a SOCKADDR_DN structure.

name
Pointer to a SOCKADDR_DN structure that contains the DECnet address to be
bound to this socket.

Connections Using ConnectIWSAConnectIWSPConnect
This section provides connection information using Connect functions.

Connect with no Optional or Access Data
In order to establish a connection to a DECnet peer, the parameter name should point to
a SOCKADDR_DN structure.

Chapter 12 Winsock 2 Protocol-Specific Annex 683

name
Pointer to a SOCKADOR.:....DN structure that contains the DEene! address and object
to which the socket is to be connected.

Optional and Access Data on .Connect
DEenet sockets support the exchange of up to 16 bytes of optional data on a
WSAConnect. It also supports the sending of DEenet access control information from
the client to the server on a connect request.

Parameter

Ipeal/erData

IpCalleeData

Description

Pointer to the user data that is to be transferred from the client to
the server during connection establishment.

Pointer to the optional data that is to be transferred back from the
server during connection establishment.

684 Volume 1 Winsock and aos

DECnet optional data is passed in an OPTDATA_DN structure. Access control data is
passed in an ACCESSDATA_DN structure.

The IpCallerData should point to a CALLDATA_DN structure that contains concatenated
OPTDATA_DN and ACCESSDATA_DN structures. If IpCallerData is set to NULL, no
additional data will be sent to the server. If either the opdata_dn.opLopt/ or the
accessdata_dn.acc_userl are set to zero, that portion of the structure should be ignored.

If IpCalleeData is set to NULL, no optional data will be read from the server. If either the
opdata_dn.opLoptl or the accessdata_dn.acc_userl are set to zero, that structure should
be ignored. The accept function only returns optional data, not access data. So the
IpCalleeData pOinter should point to a buffer containing the OPTDAT A_DN structure. If
IpCalleeData is set to NULL no optional data will be read from the server.

Addressing with GetPeerNamelWSPGetPeerName
To get the address of the DECnet peer to which a socket is connected, the parameter
name should point to a SOCKADDR_DN structure.

name
Pointer to a SOCKADDR_DN structure that will return the DECnet address of the
DECnet peer to which a socket is connected.

Receiving Local Name with getsocknamelWSPGetSockName
To get the local name for a DECnet socket, the parameter name should point to a
SOCKADDR_DN structure.

Chapter 12 Winsock 2 Protocol·Specific Annex 685

name
Pointer to a SOCKADDR_DN structure that will return the local name to which a
DECnet socket is connected.

Using GetsockoptIWSPGetSockOpt
The SO_LINKINFO socket option returns a LINKINFO_DN structure containing the
current state of the specified DECnet logical link.

s
Descriptor identifying socket

level
DNPROTO_NSP

optname
SO_LINKINFO

optval
FAR" LINKINFO_DN structure

optlen
Sizeof(LlN KINFO _DN)

{pErmo
Pointer to error code

Return Values
If no error occurs, WSPGetSockOpf returns zero and the LlNKINFO_DN structure
pOinted to by optval contains the current transport segment size and logical link state,
See the LL_* manifest constants for valid link states. Otherwise, a value of
SOCKET_ERROR is returned, and a specific error code is available in IpErmo.

686 Volume 1 Winsock and QOS

Using SocketIWSASocketIWSPSocket
To create a socket that is bound to a DECnet service provider, the following values
should be passed to the socket call.

af = AF _DECnet
DECnet address family.

~pe=SOCK_SEQPACKET
Sequenced packets (message-oriented).

protocol = DNPROTO_NSP
DECnet NSP transport protocol.

oeCnet Out-of-Band Data
DECnet supports the sending and receiving of OOB data through the MSG_OOB flag for
recy and send. If a send with the MSG_OOB flag is sent, the recy must be posted with
MSG_OOB in order to read the data. To check for the presence of OOB data, use select
with exceptfds set, or a WSAASYNCSELECT with FD_OOB set.

DECnet does not support inline OOB data through the setsockopt SO_OOBINLINE
flag.

DECnet-Specific Extended Functions Identifiers
This section presents the DECnet-specific extensions to the Windows Sockets 2
specification.

The Windows Sockets 2 function extension mechanism works as follows: a call is made
to WSAloctl with the control code SIO_GET _EXTENSION_FUNCTION_POINTER that
returns a function pointer to a specified extension function.

The following DECnet-specific extension identifiers have been allocated by the WS2
identifier clearinghouse.

Note We reserve 32 in each block.

Chapter 12 Winsock 2 Protocol-Specific Annex 687

dneCaddr
The dneCaddr identifier converts an ASCIZ DECnet Phase IV node address string to a
binary address.

cp
Specifies the address of a character string that contains a DECnet node address in
the form a.n (area.node). For example, 9.440 is a DECnet Phase IV node number.

Return Values
dneCaddr returns a pOinter to the DN_NADDR structure

If successful, it returns a pOinter to a DN_NADDR structure that contains a binary
DECnet address. Applications should copy this data before issuing another dneCaddr
call. Otherwise, it returns a NULL pointer.

dneCeof
The dneCeof identifier tests aDECnet socket for an end-of-file condition.

s
SpecifiesDECnet socket to test.

Return Values
If the connection is still active (either in a running or connected state), it returns zero. If
the connection is inactive, a one is returned.

688 Volume 1 Winsock and aos

dnet_getacc
The dneCgetacc identifier retrieves local access control for incoming DECnet
connections based on the specified user name.

nacc
Pointer to the incoming access control record. nacc.dac_username contains the user
name. This ASCIZ character string has a maximum length of DN_MAXACCL.

Return Values
If successful, it returns a pOinter to a DNET _ACCENT structure. Applications should
copy this data before issuing another dneCgetacc call. Otherwise, it returns a NULL
pOinter.

dneCgetalias
The dneCgetalias identifier returns any default access control information associated
with a specific node.

The following ASCIZ strings are all valid returns:

"node"

"node/username"

"node/username/password"

"node/username/password/account"

"node/username//account"

node
Pointer to the node name for which dnet_getalias should search.

Return Values
The call returns the address of a static buffer that contains the information from the local
DECnet node database. Applications should copy this data before issuing another
dneCgetalias call.

dnet_htoa
The dneChtoa identifier searches the local node database. If it finds the node name for
the specified node address, it returns a pointer to an ASCIZ DECnet name string.
Otherwise, it returns an ASCIZ node address string.

Chapter 12 Winsock 2 Protocol·Specific Annex 689

add
Specifies the address of a DN_NADDR structure that contains the node number for
which to search.

Return Values
The function returns the address of a static buffer that contains the node string. This
string must be copied before dneChtoa is called again.

dneCntoa
The dneCntoa identifier converts a DECnet node address from binary to ASCIIZ format.
It converts the pointer to a DN_NADDR to a string in the form 9.123, for example.

add
Specifies the address of a DN_NADDR structure that contains the node number to
convert.

Return Values
The function returns a pOinter to a static string that contains the node address. This
string must be copied before dneCntoa is called again.

getnodeadd
The getnodeadd identifier returns the local node's DECnet address.

Return Values
The function returns the address of a static DN_NADDR structure containing the local
node's DECnet address. Applications should copy this data before issuing another
getnodeadd call. If DECnet is not installed, it returns a NULL pOinter

getnodebyaddr
The getnodebyaddr identifier searches for a DECnet node name that matches a
specified DECnet address. The address is a 16-bit binary DECnet address, where the

690 Volume 1 Winsock and QOS

high 6 bits are the DECnet area number and the low 10 bits are the DECnet node
number. DECnet Phase IV node names consist of one to six alphanumeric characters
with at least one alphabetic character.

addr
Pointer to the address for which getnodebyaddr should search.

len
Length in bytes of the requested address (range DN_ADDL to DN_MAXADDL).

type
Address family of the address (AF _DECnet).

Return Values
The function returns a pointer to a static NODEENT_F structure. The application must
copy this data before issuing another getnodebyaddr call. If the end of file is reached, a
NULL pointer is returned.

getnodebyname
The getnodebyname identifier searches for a DECnet node address that matches the
specified DECnet node name. DECnet Phase IV node names consist of one to six
alphanumeric characters with at least one alphabetic character.

name
Pointer to an ASCIIZ node name for which to search.

Return Values
The function returns a pOinter to a static NODEENT _F structure. The application must
copy this data before issuing another getnodebyaddr call. If the end of file is reached, a
NULL pointer is returned.

getnodename
The getnodename identifier returns the name of the local DECnet node. DECnet Phase
IV node names consist of one to six alphanumeric characters with at least one
alphabetic character.

Chapter 12 Winsock 2 Protocol-Specific Annex 691

Return Values
The function returns the address of a static string that contains the local node's ASCIZ
DECnet name, or a NULL pointer if DECnet is not installed. The maximum size for a
returned string is DN_MAXNODEL. The application must copy this data before issuing
another getnodename call.

DECnet Header File
Use Ws2dnet.h.

Open Systems Interconnection (OSI)
This section presents OSI-transport information in the following topics.

OSllntroduction
This section covers extensions to Windows Sockets 2 that are specific to OSI transports.
It also describes aspects of base Windows Sockets 2 functions that require special
consideration or that may exhibit unique behavior when used with OSI transports.

Fast Facts
Protocol name(s)

Description

Address family

Header file

TP4/CLNS, TP4/NULL, and so forth.

Provides OSI transport services over OSI networking layer:
CL TS for unreliable datagrams and COTS for reliable
connection-oriented message streams.

AF_OSI

Ws20sLh

International Organization for Standardization (lOS)
The International Organization for Standardization (lOS) produces a set of standards to
facilitate interconnection of computer systems. The Open Systems Interconnection (OSI)
Reference Model subdivides the set into a series of layers. Win sock allows an
application to use OSI Transport protocols.

Examples of OSI profiles that may be implemented are shown in the following table.

OSI profile Description

TP4/CLNS

TP4/NULL

TPO/CONS

NULUCONS

TPO/TCP

Transport class four over Connectionless-mode Network Service

Transport class four over Null Network Service

Transport class zero over Connection-mode Network Service

Null Transport over Connection-mode Network Service

Transport class zero over TCP/IP (RFC1006)

692 Volume 1 Winsock and QOS

The OSI profile is designated either by the protocol parameter or the IpProtocol/nfo
parameter to the WSASocket API. The TP4/NULL profile is a subset of the TP4/CLNS
profile and is selected by the addressing information. The default OSI profile is
TP4/CLNS.

An application must use the WSAPROTOCOL_INFO structure returned by
WSAEnumProtocols to discover the services provided by a particular OSI profile. For
example, not all OSI profiles support connect and disconnect data.

051 Expedited Data
OSI protocols may support expedited data. Expedited data is not subject to the flow
control procedures for normal data and may overtake normal data.

ISO Qualified Data
The ISO 8208/X.25 protocol supports qualified data. Qualified data is sent by using the
WSAloctl function to mark the following data as qualified, and then using the normal
Winsock send functions. Qualified data is received by using the WSAloctl function to
wait for notification of qualified data, and then using the normal Winsock recv functions.

ISO Reset
The ISO 8208/X.25 protocol supports resets. A reset may be generated by using the
WSAloctl function. Two bytes of reset data are permitted. These are interpreted as reset
cause and reset diagnostic. For further details of this data see the X.25 specification.

051 Quality of Service
The provider-specific parameters in the flow specification are encoded in a
Type/Length/Data format to enable multiple parameters to be provided.

For example ISO 8208/X.25 call facilities may be specified by using the type
OSLPARAM_ID_X25_CALL_FACI LlTY.

Option Profiles
OSI protocols typically have a large number of options. These options may include:

• Preferred class

• Alternative classes

• Timers

• Checksums
• Lifetime

• Others

An option profile name may be used to select a set of options available in a particular
vendor's OSI-protocol implementation. The Windows Sockets specification does not
define the options that may be selected.

Chapter 12 Winsock 2 Protocol·Specific Annex 693

Option profile names are specified in the OSI address structure. If an option profile name
is not specified, the OSI protocol uses its default option profile.

Address Format
Two address formats for the OSI protocol are defined in this section. The
SOCKADDR_ TP format is retained for compatibility with Windows Sockets 1 .1-0SI
protocols. Windows Sockets 2 OSI protocols support the SOCKADDR_OSITP format. It
contains:

• A Transport Selector (TSEL).

• Network Service Access Point (NSAP).

• Sub Network address (SNPA).

• Extended addressing information.

• The option profile name.

The SNPA follows the rules of the Sub Network in use. For example, an SNPA would
contain a 6-byte MAC address followed by a 1-byte Link Service Access Point (LSAP)
giving a 7-byte SNPA.

Some X.2S protocols use connect user data to select the listening socket. The extended
addressing information contains connect user data. This field must not be specified for
other OSI protocols.

The address structure also contains the option profile name. If the name length is zero,
the default option profile is used.

The TP4/NULL OSI-protocol profile is selected by using the TP4/CLNS protocol,
selecting a zero-length NSAP, and specifying the MAC address and LSAP in the Sub
Network address field.

OSI Data Structures
The following structure is used to encode the provider-specific parameters in the flow
specification:

OSI Controls
This section describes OSI control features using locUs and socket options.

694 Volume 1 Winsock and QOS

loctls
The following commands are available.

Command

SIO_OSLX25_
GET_RESET_DATA

SIO_OSI_X25_
GENERATE_RESET

SIO_OSLX25_
SEND_QUALIFIED

SIO_OSLX25_
GET_QUALIFIED

Socket Options

Semantics

Waits for an ISO 8208/X.25 reset to occur, and then returns
the reset data associated with the reset. No input buffer is
required. The 2 bytes of reset data are copied to the output
buffer. The WSAENOPROTOOPT error code is indicated for
service providers that do not support X.25 resets.

Generates an ISO 8208/X.25 reset. No output buffer is
required, the 2 byes of reset data are obtained from the input
buffer. The WSAENOPROTOOPT error code is indicated for
service providers that do not support X.25 resets.

Indicates that the next message sent using one of the send
functions, or WSASend, will be sent as qualified data. No
buffers are required. It is not necessary to call this function
for subsequent sends of the same message where the
MSG_PARTIAl flag has been used. The
WSAENOPROTOOPT error code is indicated for service
providers that do not support X.25-qualified data.

Waits until the next message that is received by the recv or
WSARecv functions is ISO 8208/X.25-qualified data. This
command only completes once for each message received,
even if the MSG_PARTIAl flag is returned. The
WSAENOPROTOOPT error code is indicated for service
providers that do not support X.25-qualified data.

The following socket options are supported for setsockopt and getsockopt. The Type
identifies the type of data addressed by optval.

level = SOL_SOCKET
Value

SO_EXPEDITED

SO_X25_CONFIRM_DELIVERY

SO_EXPEDITED

Type

BOOl

BOOl

Meaning

Negotiates expedited data.

ISO 8208/X.25 delivery confirmation.

This option is negotiated during connection establishment. The setsockopt function
must be used before the connection is established to specify the proposed option.
The getsockopt function may be used after the circuit has been established to
retrieve the final negotiated option. See ISO 8073 for further details.

Chapter 12 Winsock 2 Protocol-Specific Annex 695

SO_X25_CONFIRM_DELIVERY
This option controls the state of the Delivery Confirmation bit (D-bit) for X.25
protocols. If the D-bit is set, end-to-end confirmation of data occurs. The
Sa_X25_CaNFIRM_DELIVERYoption may be used to change the state of the D-bit
many times during the life of a connection.

OSI Function Specifics
This section describes provider-specific parameters for Quality of Service and lists the
aSI header file.

Quality of Service
The provider-specific parameters in the flow specification are encoded in a
Type/Length/Data format to enable multiple parameters to be provided. The
OSISPECFLOWPARAM structure is used to encode the parameter.

The following parameter type is defined.

Parameter

aSI_PARAM_ID_
X25_CALL_FACILITY

Type

OSI_PARAM_ID_X25_CALL_FACILITY

Meaning

Isa 8208/X.25 call facilities.

This parameter specifies the IS.o 8208/X.25 call facilities to be used. The format of
the data is the same as is coded in an X.25 callrequestlcall confirm packet. For
further details see the X.25 specification.

OSI Header File
Use ws20sLh.

ATM-Specific Extensions
This section presents information describing the Asynchronous Transfer Mode (ATM)
specific extensions.

ATM Introduction
This section describes the Asynchronous Transfer Mode (ATM)-specific extensions
needed to support the native ATMservices as exposed and specified in the ATM Forum
User Network Interface (UNI) specification version 3.x (3.0 and 3.1). This document
supports AAL type 5 (message mode) and user-defined AAL. Future versions of this
document will support other types of AAL as well as UNI 4.0 after it's. finalized.

696 Volume 1 Winsock and QOS

Fast Facts
Protocol name(s)

Description

Address family

Header file

ATM Overview

ATMPROTO_AAL5,ATMPROTO_AALUSER

A TM AAL5 provides a transport service that is connection
oriented, message-boundary preserved, and QOS guaranteed.
ATMPROTO_AALUSER is a user-defined AAL.

AF_ATM

Ws2atm.h

ATM is an emerging high-speed networking technology that is applicable to both LAN
and WAN arenas. An ATM network simultaneously transports a wide variety of network
traffic-voice, data, image, and video. It provides users with a guaranteed quality of
service on a per-virtual channel (VC) basis.

ATM Data Structures
A new address family, AF _ATM, is introduced for native ATM services, and the
corresponding SOCKADDR structure, sockaddr_atm, is defined in the following. To
open a socket for native ATM services, parameters in socket should contain AF _ATM,
SOCK_RAW, and ATMPROTO_AAL5 or ATMPROTO_AALUSER, respectively.

Members
satm_family

Identifies the address family, which is AF _ATM in this case.

satm_number
Identifies the ATM address that could be either in E.164 or NSAP-style ATM End
Systems Address format. See Using the A TM_ADDRESS Structure for more details
about the ATM_ADDRESS structure. This field will be mapped to the Called Party
Number IE (Information Element) if it is specified in bind and WSPBind for a listening
socket, or in connect, WSAConnect, WSPConnect, WSAJoinLeaf, orWSPJoinLeaf
for a connecting socket. It will be mapped to the Calling Party Number IE if specified
in bind and WSPBind for a connecting socket.

satm_blli
Identifies the fields in the B-LLI Information Element that are used along with
satm_bhli to identify an application. See the Using the A TM_ADDRESS Structure
section for more details about the ATM_BLLI structure. Note that the B-LLIlayer two

Chapter 12 Winsock 2 Protocol-Specific Annex 697

information is treated as not present if its Layer2Protocoi field contains
SAP _FIELD_ABSENT, or as a wildcard if it contains SAP _FIELD_ANY. Similarly, the
B-LLIlayer three information is treated as not present if its Layer3Protoco/fieid
contains SAP _FIELD_ABSENT, or as a wildcard if it contains SAP _FIELD_ANY.

satm_bhli
Identifies the fields in the B-HLI Information Element that are used along with
satm_blli to identify an application. See Using the ATM_ADDRESS Structure for
more details about the ATM_BHLI structure.

Note Satm_bhli is treated as not present if its HighLayerlnfoType field contains
SAP _FIELD_ABSENT, or as a wildcard if it contains SAP _FIELD_ANY.

For listening sockets, the SOCKADDR_ATM structure is used in bindIWSPBind to
register a Service Access Point (SAP) to receive incoming connection requests destined
to this SAP. SAP registration is used to match against the SAP specified in an incoming
connection request in order to determine which listenihg socket is to receive this request.
In the current version of this specification, overlapping registration is not allowed.
Overlapping registration is defined as having more than one registered SAP to
potentially match the SAP specified in any incoming connection request. Listen and
WSPListen will return the error code WSAEADDRINUSE if the SAP associated with the
listening socket overlaps with any currently registered SAPs in the system.

The fields in a SAP to be registered must contain either a valid value, or one of two
special manifestconstants: SAP _FJELD_ABSENT or SAP _FIELD_ANY.

SAP _FIELD_ABSENT simply means that this field is not presented as part of a SAP.
SAP _FIELD_ANY means using wildcards.

Note that the requirement of nonoverlapping registration does not preclude using
wildcards. For example, it is possible to have two registered SAPs that both contain
SAP _FIELD_ANY in some fields and different values in other fields.

Note The called party ATM number is mandatory, thus the satm_number field cannot
contain SAP _FIELD_ABSENT.

For connecting sockets, the SOCKADDR_ATM structure is used to specify the
destination SAP in connectIWSAConnectIWSPConnect for point-to-point connections,
and WSAJoinLeaflWSPJoinLeaf for point-to-multipoint connections. The fields in the
destination SAP of a connecting socket must contain either a valid value or
SAP _FIELD_ABSENT, that is, SAP _FIELD_ANY is not allowed.

Furthermore, SAP _FIELD_ABSENT is not allowed for the satm_number field. The
destination SAP is used to match against all the registered SAPs in the destination
machine to determine the forwarding destination for this connection request. If each and
every field of the destination SAP of an incoming request either equals the

698 Volume 1 Winsock and QOS

corresponding field of a registered SAP, or the corresponding field contains the
SAP _FIELD_ANY, the listening socket associated with this registered SAP will receive
the incoming connection request.

If bind and/or WSPBind are used on a connecting socket to specify the calling party
ATM address, the satm_blli and satm_bhli fields should be ignored and the ones
specified in connect, WSAConnect, or WSPConnect will be used.

Using the ATM_ADDRESS Structure

For ATM_E164, enter the numbered digits in the same order in which they would
be entered on a numeric keypad; that is, the number digit that would be entered first
is located in addr. Digits are cOded in lAS characters. Bit 8 is set to zero.

For ATM_NSAP, code the address using Binary Coded Decimal (BCD) as defined in the
ATM Forum UNI 3.1. The NumofDigits field are ignored in this case, and the
NSAP-style address always contains 20 bytes.

A value of SAP _FIELD_ANY in AddressType indicates that the satm_number field
is a wildcard. There are two more specialized wildcard values:
SAP _FIELD_ANY _AESA_SEL and SAP _FIELD_ANY _AESA_REST.
SAP _FIELD_ANY _AESA_SEL means that this is an NSAP-style ATM Endsystem
Address and the selector octet is set as a wildcard. SAP _FIELD_ANY _AESA_REST
means that this is an NSAP-style ATM Endsystem Address and all the octets except
for the selector octet are set as wildcards.

Chapter 12 Winsock 2 Protocol-Specific Annex 699

ATM_BLLI Structure and Associated Manifest Constants

(continued)

700 Volume 1 Winsock and QOS

(continued)

Parameters
Layer2Protocoi

Identifies the layer-two protocol. Corresponds to the User information layer 2 protocol
field in the B-LLI information element. A value of SAP _FIELD_ABSENT indicates that
this field is not used, and a value of SAP _FIELD_ANY means wildcard.

Layer2UserSpecifiedProtocol
Identifies the user-specified layer-two protocol. Only used if the Layer2Protocol
parameter is set to BLLLL2_USER_SPECIFIED. The valid values range from zero-
127. Corresponds to the User specified layer 2 protocol information field in the B-LLI
information element.

Layer3Protocol
Identifies the layer-three protocol. Corresponds to the User information layer 3
protocol field in the B-LLI information element. A value of SAP _FIELD_ABSENT
indicates that this field is not used, and a value of SAP _FIELD_ANY means wildcard.

Layer3UserSpecifiedProtocol
Identifies the user-specified layer-three protocol. Only used if the Layer3Protocol
parameter is set to BLLI_L3_USER_SPECIFIED. The valid values range from zero-
127. Corresponds to the User specified layer 3 protocol information field in the B-LLI
information element.

Layer31PI
Identifies the layer-three Initial Protocol Identifier. Only used if the Layer3Protocol
parameter is set to BLLI_L3_ISO_ TR95?? Corresponds to the ISOIIEG TR 9577
Initial Protocolldentifierfield in the B-LLI information element.

SnaplD
Identifies the 802.1 SNAP identifier. Only used if the Layer3Protocol parameter is set
to BLLI_L3_ISO _ TR95?? and Layer31PI is set to BLLI_L3_1 PI_SNAP, indicating an
IEEE 802.1 SNAP identifier. Corresponds to the OUI and PID fields in the B-LLI
information element.

Chapter 12 Winsock 2 Protocol-Specific Annex 701

ATM_BHU Structure and Associated Manifest Constants

Parameters
HighLayer/nfo Type

Identifies the high layer information type field in the B-LLI information element. Note
that the type BHLLHighLayerProfile has been eliminated in UNI 3.1. A value of
SAP _FIELD_ABSENT indicates that B-HLI is not present, and a value of
SAP _FIELD_ANY means wildcard.

HighLayerlnfoLength
Identifies the number of bytes from one to eight in the HighLayerlnfo array. Valid
values include eight for the cases of BHLUSO and BHLI_UserSpecific, four for
BHLI_HighLayerProfile, and seven for BHLI_ VendorSpecificAppld.

HighLayer/nfo
Identifies the high layer information field in the B-LLI information element. In the case
of HighLayerlnfoType being BHLI_VendorSpecificAppld, the first 3 bytes consist of a
globally-administered Organizationally Unique Identifier (OUI) (as per IEEE standard
802-1990), followed by a 4-byte application identifier, which is administered by the
vendor identified by the OUI. Value for the case of ~HLI_UserSpecific is user defined
and requires bilateral agreement between two end users.

ATM Controls
ATM point-to-point and point-to-multipoint connection setup and teardown are natively
supported by the Windows Sockets 2 specification. In fact, Windows Sockets 2 QOS
specification and protocol-independent multipoinVmulticast mechanisms were designed
with ATM in mind, along with other protocols. See section 2.7 and appendix D of the
Windows Sockets 2 API specification for Windows Sockets 2 QOS and multipoint
support, respectively. Therefore,. no ATM-specific ioctls need to be introduced in this
document.

702 Volume 1 Winsock and QOS

ATM Function Specifics
Based on the taxonomy defined for Windows Sockets 2 protocol-independent
multipoint/multicast schemes, ATM falls into the category of rooted data and rooted
control planes. (See the Windows Sockets 2 API specification, Appendix D for more
information.) An application acting as the root would create c_root sockets, and
counterparts running on leaf nodes would utilize c_leaf sockets. The root application will
use WSAJoinLeaf to add new leaf nodes. The corresponding applications on the leaf
nodes will have set their c_leaf sockets into the listening mode. WSAJoinLeaf with a
c_root socket specified will be mapped to the 0.2931 SETUP message (for the first leaf)
or ADD PARTY message (for any subsequent leaves).

Note The OOS parameters specified in WSAJoinLeaf for any subsequent leaves
should be ignored per the ATM Forum UNI specification.

The leaf-initiated join is not part of the ATM UNI 3.1, but is supported in the ATM
UNI 4.0. Thus WSAJoinLeaf with a c_leaf socket specified can be mapped to the
appropriate ATM UNI 4.0 message.

The AAL Parameter and B-LLI negotiation is supported through the modification of the
corresponding IEs in the /pSOOS parameter upon the invocation of the condition
function specified in WSAAccept.

Note Only certain fields in those two IEs can be modified. See the ATM Forum UNI
specification Appendix C and Appendix F for details.

ATM-Specific Quality of Service Extension
This section describes the protocol-specific Ouality of Service (QOS) structure for ATM,
which is contained in the ProviderSpecific.buf field of the QOS structure. Note that the
use of this ATM-specific QOS structure is optional by Windows Sockets 2 clients, and
the ATM service provider is required to map the generic FLOWSPEC structure to
appropriate 0.2931 Information Elements. However, if both the generic FLOWSPEC
structure and ATM-specific QOS structure are specified, the value specified in the ATM
specific QOS structure should take precedence should there be any conflicts. See
Windows Sockets 2 API specification section 2.7 for more information about the OOS
provisions and FLOWSPEC structure.

The protocol-specific QOS structure for ATM is a concatenation of 0.2931 Information
Element (IE) structures, which are defined in the following text. If an application omits an
IE that UNI 3.x mandates, the service provider should insert a reasonable default value,
taking the information in the FLOWSPEC structure into account if applicable.

The handling of repeated IEs is dependent on the IE itself. If an IE is repeated and it is
one that is allowed to be repeated per the ATM Forum UNI specification then the
provider must handle it properly. In this case, order in the list determines preference

Chapter 12 Winsock 2 Protocol-Specific Annex 703

order, with elements appearing earlier in the list being more preferred. If an IE is
repeated and this is not allowed per ATM Forum UNI specification, the provider may
either fail the request from the client (the preferred option) or use the last IE of that type
found.

Each individual IE structure is formatted in the following manner and identified by the
IEType field:

Legal values for the IEType field are defined as:

The IE field is overlaid by a specific IE structure and the IELength field is the total length
in bytes of the IE structure including the IEType and IELength fields. The semantics and
legal values for each element of these IE structures are per ATM UNI 3.x specification.
SAP _FIELD_ABSENT can be used for those elements that are optional for a given IE
structure, per ATM UNI 3.x specification.

AAL Parameters

704 Volume 1 Winsock and QOS

(continued)

ATM Traffic Descriptor
This sections lists the ATM Traffic Descriptor.

Chapter 12 Winsock 2 Protocol-Specific Annex 705

Broadband Bearer Capability
This section lists the values used for the Broadband Bearer Capability.

(continued)

706 Volume 1 Winsock and QOS

(continued)

Broadband High Layer Information
This section lists the type definition for the broadband high-layer information.

Broadband Lower Layer Information
This section lists the type definition for the broadband lower-layer information.

Chapter 12 Winsock 2 Protocol-Specific Annex 707

Called Party Number
This section lists the type definition for the called party number.

Called Party Subaddress
This section lists the type definition for the called party subaddress.

Calling Party Number
This section lists the type definition for the calling party number.

708 Volume 1 Winsock and QOS

(continued)

Calling Party Subaddress
This section lists the type definition for the calling party subaddress.

Quality of Service Parameter
This section lists the parameters used for the quality of service (OOS).

Transit Network Selection
This section lists values used for the transit network selection.

Chapter 12 Winsock 2 Protocol·Specific Annex 709

Cause
In addition to all the IEs previously described, which could be specified in the ATM
specific QOS structure while calling WSAConnect, there is a Cause IE that can only be
used during the call release. Upon disconnecting, Windows Sockets 2 applications can
optionally specify this IE as the disconnect data in WSASendDisconnect. The remote
party can retrieve this IE through WSARecvDisconnect after receiving the FD_CLOSE
notification.

(continued)

710 Volume 1 Winsock and QOS

(continued)

Chapter 12 Winsock 2 Protocol-Specific Annex 711

ATM Header File
Use ws2atm.h.

Other Windows Sockets 2 Considerations

Secure Sockets Layer (SSL)

RSVP

Secure Sockets Layer (SSL) is not natively supported in Windows Sockets 2. Microsoft
makes available the Security Support Provider Interface (SSPI) to enable application
programmers to provide security-enabled communications. See the section titled
Security Support Provider Interface (SSPI), found under Security in the Platform SDK,
for more information.

The Resource Reservation Protocol (RSVP) implementation of the Windows Sockets 2
Protocol-Specific Annex, found at
ftp://ftp.microsoft.com/bussys/winsocklwinsock2/wsanx203.doc, is supported by
Microsoft through Windows 2000 OOS functionality. For more information on RSVP in
Windows 2000, check following chapters in this volume of the Networking Services
Developer's Reference Ubrary.

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
I.

713

CHAPTER 13

QOS Overview

QOS Documentation Structure
To facilitate explanation, Windows 2000 Quality of Service (QOS) documentation divides
its QOS components into three categories:

• Application-Driven QOS Components

• Network-Driven QOS Components

• Policy-Driven QOS Components

This division is purely for the sake of convenience and clarity. Though each of these
QOS components is in some way initiated at the client or end-node, and in pure
semantics, is initiated by the application, the impact of the component may actually be
greatest elsewhere.

For an example (which may be clearer once the 802.1 p QOS component is further
explained), the 802.1 p precedence bits are actually set in the end-node's network stack.
This is done because it was an application-initiated sequence of QOS events that
eventually triggered the setting of the bits. The cause of this bit-setting, then, could be
argued to be the application's initiation of QOS service (thus application-driven).
However, because the effect of setting the priority on 802.1 p bits has the greatest impact
when the packets associated with this session cross their local segment, 802.1 p is
included in the Network-Driven QOS Components category, but not in the Application
Driven QOS Components category. Despite the fact that no QOS requests would have
been instigated to set the 802.1 p bit without the application'S invocation of a QOS
component, its explanation is best placed in a discussion of network-driven components.
The ripple-effect of 802.1 p bit setting, then, is felt greatest in the network.

Although individual components from among the three categories can function
independently at times to provide subsets of QOS functionality, Windows 2000 QOS
overall is an integrated technology.

Figure 13-1 provides a visual representation of the structure of QOS documentation, and
the reasoning behind its structure; certain QOS components have greatest impact in one
of the three categories, and are thus discussed there.

714 Volume 1 Winsock and QOS

Windows 2000 OOS components facilitate predictable quality of service for interaction between two devices.

Application-Driven
aos Components'
areas of greatest impact
(darkly shaded areas) Network-Driven

aos Components'
area of greatest im pact
(medium shaded area)

;) , = Interfaces to distant subnets

Policy-Driven aos
Components' area of
greatest impact
(lightly shaded area)

Figure 13-1: Visual Representation of QOS Documentation.

Determining Which Discussion Is for You
Most developers of QOS-enabled applications will find their requirements met within the
QOS API, and the requisite knowledge of components will fall largely under the
Application-Driven QOS Components section. Thus, reading through that overview
material, combined with the API reference information in QOS Reference, should provide
nearly all of the information necessary to develop QOS-aware applications.

There is more information in other sections of QOS documentation that facilitates the
development of granular Traffic Control. For example, that found in the Network-Driven
OOS Components section, can provide explanations of the underlying technologies and
programmatic reference to interfaces available for such efforts. In such circumstances, a
reading of the Application-Driven and Network-Driven sections is suggested.

For development of policy module components, such as policy-based decision services
intended to provide network resource-admission services, the Policy-Driven sections are
recommended.

For a complete understanding of QOS and its components, as they are implemented and
interact within the Microsoft® Windows 2000® (and Microsoft® Windows® 98)
framework, reading all of the overview sections is recommended.

Chapter 13 QOS Overview 715

Additional Information on QOS
For additional information on Windows 2000 Quality of Service, including implementation
recommendations and approaches, the following book is available:

Iseminger, David, Windows 2000 Quality of Service, (Macmillan Technical
Publishing, 1999).

About Quality of Service
Quality of Service in Microsoft® Windows® 2000 is a collection of components that
enable differentiation and preferential treatment for subsets of data transmitted over the
network. QOS components constitute the Microsoft implementation of Quality of Service.

Quality of Service is a defined term that loosely means subsets of data get preferential
treatment when traversing a network. QOS technology has implications for the
application programmer and the network administrator.

By writing QOS-enabled applications, programmers can:

• Specify or request bandwidth requirements particular to their application, such as
latency requirements for streaming audio.

• Write mission-critical applications for the corporate environment that are guaranteed
to get their required bandwidth-provided permissions and bandwidth availability
exist.

Just as importantly, network administrators can leverage knowledge of Quality of
Service to:

• Control network device resources based on user policy and/or application usage.

• Provision portions of a given bandwidth, whether an Ethernet subnet or a WAN
interface, for applications or users that require such availability for core business
activities.

• Shape and smooth the traffic that clients submit to the network, thereby avoiding the
overburdening of switches and routers suffered with traditional burst transmissions.

Windows 2000 Quality of Service achieves this through programmatic interfaces, the
cooperation of multiple components, and communication with network devices
throughout the end-to-end network solution.

Introduction to QOS
If you've ever endured demonstrations of new software touting real-time audio and video
to the desktop (gobbling megabits per second on the already-taxed network resources),
only to find your important file transfer inching along, you may be interested in Quality of
Service. If you're the network administrator, charged with ensuring that mission-critical

716 Volume 1 Winsock and QOS

applications have sufficient bandwidth to keep the company functioning, while users
flood the network with multimedia application data, you, too may be interested in Quality
of Service.

Quality of Service Defined
Quality of Service is an industry-wide movement that aims to get more efficient use out
of network resources by differentiating between subsets of data. The IETF (Internet
Engineering Task Force) has played a central role in ensuring that QOS standards
enable all affected network devices to participate in the end-to-end QOS-enabled
connection.

Quality of Service provides applications (or network administrators) with a means by
which network resources-such as available bandwidth and latency-can be predicted
and managed on both local computers and devices throughout the network.

With such an all-network encompassing definition, QOS functionality requires
cooperation among end nodes, switches, routers, and wide area network (WAN) links
through which data must pass. Without some level of cooperation among those network
devices, the quality of data transmission services can break down. In other words, if
each such network device is left to make its own decisions about transmitting data, it
would likely treat all data equally, and thus provide service on a first come-first served
basis. Although such service may be satisfactory in network devices or transmission
media that are not heavily loaded, when congestion occurs, such service can delay all
data. With this information, we can extend the definition of quality of service-it allows
preferential treatment for certain subsets of data as they traverse any QOS-enabled part
of (or devices in) the network.

Microsoft® Windows 2000® implements quality of service by including a number of
components that can cooperate with (or invoke) one another. These components are
found in the DLLs, protocols, services, and individual network device functionality.

Windows 2000 Quality of Service Defined
The Microsoft implementation of Quality of Service enables developers to use generic
Windows Sockets 2 calls to create QOS-enabled applications. With the Windows 2000
QOS capabilities, developers do not need to consider how the various operating system
components interact to achieve quality of service. The components that constitute QOS
implementation are instead abstracted from the QOS application development effort,
allowing a single or generic QOS interface-instead of individual interfaces-for each
QOS component. This provides a generic interface for the developer, and also provides
a mechanism by which new QOS components (perhaps with increased functionality) can
be added, without the need to completely rewrite existing QOS applications.

What QOS Solves
As computing and applications become more mission-critical, not to mention more
content-rich and multimedia-oriented, the bandwidth necessary to service desktop
functionality increases. However, bandwidth availability doesn't necessarily keep up with

Chapter 13 QOS Overview 717

the bandwidth appetite of today's desktop applications, creating an environment where
there is often more data to be transmitted than there are resources to transmit. The
bursty nature of network transmissions only aggravates the problem.

Traditional data transfers are also increasing as a result of the continual addition of new
network nodes to existing networks. At the crux of this problem is the fact that there is no
inherent means of differentiating between important data-such as data transmitted by
mission-critical applications, and excessive data, or data transmitted by interesting (but
not necessarily critical) multimedia applications.

Such traditional business applications are continuing to increase in size and in network
use, but they aren't alone in their hunger for network resources. New applications such
as multimedia applications, make extensive use of the network, pushing network
utilization to its limit-and sometimes beyond. For example, video transmission
applications require significant bandwidth to transmit with acceptable levels of quality.
Due to the send-as-much-data-as-you-can nature of the most common networking
protocol, IP, even a few active instances of these data-intensive programs can create
bandwidth strain for networks that were never designed to carry the burden. With data
intensive multimedia applications putting such hefty data loads onto the network, the
network often becomes less available for other applications. If the load is significant
enough, overall network performance will wane.

Poor network performance is especially threatening to real-time audio and interactive
conferencing transmissions; they are time-sensitive and especially susceptible to delays
or individual frame drops delivery. Such delays in the delivery of individual packets,
known as latency, can render real-time audio and real-time conferencing applications
substandard at best and at worst, burdensome.

In the midst of larger traditional applications' higher network utilization, as well as
increased network use by emerging desktop applications, core business applications are
left vying, sometimes unsuccessfully, for adequate access to the network. These
bandwidth-poor and latency-laden characteristics of an overburdened network have an
even larger and more dramatic effect on mission-critical applications' use of new
multimedia desktop technology: not only do they need access to the burdened network,
they need more of the increasingly precious network resources, putting core business
applications that use multimedia features in double jeopardy.

If such over-subscription of available network resources isn't a bleak enough picture,
consider the prevalence of WAN, which introduces an even more critical and more
precious bandwidth restriction at the WAN link. With this, the situation is exacerbated.

Mechanisms that manage network activity from an end-to-end perspective are needed to
manage over-subscription of network resources, to regulate the allocation of their
availability, and to present network data in a means more friendly to a shared network
environment (that is, in a less bursty manner). These mechanisms are found in
Windows 2000 Quality of Service.

718 Volume 1 Winsock and aos

How Windows 2000 aos Works
To achieve manageable and predictable quality of service from one end of the network
to the other, the collection of components that must communicate and interact results in
a fairly complex process. Microsoft® Windows 2000 QOS has the ability to facilitate
priority along every step of a packet's journey: in the sender's network stack, at the
switch, and even at each QOS-enabled router hop. Quality of Service also has the ability
to facilitate how much data can and should be sent in a given unit of time, maximum
burst rates, and overall bandwidth utilization rights. These can be configured based on
administratively configurable policies. These functional capabilities only scratch the
surface of quality of service.

Windows 2000 QOS is comprised of a number of components. Figure 13-2 shows where
many of the QOS components reside in relation to the network stack, where
communication occurs between and among them, and where certain interfaces, such as
APls, facilitate developing QOS services.

Note that this is an individual node's network stack view, not a functional schematic of
how Quality of Service operates over a given network. Some of these components have
further defined subcomponents, each of which is explained under Components.

Windows 98 aos Notes
The following list describes Windows 2000 QOS features not available in
Microsoft® Windows® 98:

Error Code Granularity
Windows 98 does not support the fine-grained error codes that can be provided in
ExtendedStatus1 and ExtendedStatus2.

Kernel Traffic Control
Kernel traffic control is not available in Windows 98. Therefore, observe the following
restrictions when using Windows 98:

Applications should not pass down or retrieve traffic objects, including shaping rage
or shape/discard objects.

The SERVICE_NO_ TRAFFIC_CONTROL control flag is not available.

ADSPEC parameters specific to traffic control are not set.

Registry Parameters
Windows 98 does not support the following registry parameters:

EnablePriorityBoost

EnableRSVP

EnableSPSetlPTOS

RSVP _RESERVE_INFO
Windows 98 does not support the passing of RSVP _POLICY _INFO objects in the
RSVP _RESERVE_INFO structure.

Policy Objects
Windows 98 does not support the submission or retrieval of application
specific-policy objects.

Chapter 13 aos Overview 719

QOS-Enabled Application

aos API

RSVP Signaling is --.
initiated and maintained
by the RSVP SP

Network

RSVP SP

Protocol
Stack

Figure 13-2: QOS Components.

Service Types

Internal GPC Interface

Flow of Data

The SERVICE_NO_QOS_SIGNALING control flag is not available.

SIO_CHK_QOS

3rd Party
Traffic

Management
Application

Windows 98 does not support SIO_CHK_QOS, and as a result, Windows 98 does not
support queries for ALLOWED_TO_SEND_DATA, ABLE_TO_RECV_RSVP, or
LINE_RATE.

720 Volume 1 Winsock and aos

SIO_SET _QOS
Asynchronous calls to WSAloctl(SIO_SET_QOS) are not supported in Windows 98.

TOS
The RSVP service provider does not set Type of Service (TOS) bits in the IP header.
TOS has been obviated by DSCP.

Known QOS Issues
The following are known issues regarding the use of Quality of Service on Windows 98.

Socket Handles

With Windows 2000 or Windows 98, if a QOS-enabled application passes socket
handles between different processes and requests for QOS notifications on that socket,
the application may receive multiple notification events.

Overlapped VO

The use of overlapped 110 on a blocking socket for QOS event notification is
problematic.

QOS Header Files
Certain QOS-specific data structures should not be used in Windows 98. The following
list outlines those structures.

ABLE_TO_RECV_RSVP
ALLOW_TO_SEND_DATA
INFO_NOT _AVAILABLE
LINE_RATE
QOS_OBJECT _SO_MODE
RSVP _OBJECT _POLICY_INFO

QOS Components

SERVICETYPE_NONCONFORMING
TC_NONCONF_BORROW
TC_NONCONF_SHAPE
TC_NONCONF _DISCARD
TC_NONCONF _BORROW_PLUS

To facilitate explanation, the Microsoft® Windows 2000 QOS documentation divides the
QOS components into the following three topics:

• Application-Driven QOS Components

• Network-Driven QOS Components

• Policy-Driven QOS Components

Note This segmentation is purely for convenience and clarity. Though individual
components among the three categories can function independently to provide certain
subsets of QOS functionality, overall, Windows 2000 QOS is an integrated technology.
For more information on how the documentation is organized, see OOS Documentation
Structure.

Chapter 13 aos Overview 721

This is the approach taken with all QOS components, with one exception: RSVP.
Though the bulk of RSVP will be discussed within the Application-Driven QOS
Components topic, elements that have effects elsewhere (namely in the network, and for
facilitation of policy checking) will be included in their respective sections.

Application-Driven QOS Components
RSVP Service Provider

The RSVP service provider facilitates Windows 2000 QOS and invokes other
QOS components.

Traffic Control Modules
Traffic control modules facilitate traffic control. Traffic control modules include the
packet classifier, the packet scheduler, and the packet shaper.

Resource Reservation Protocol (RSVP) Service
Resource ReSerVation Protocol is invoked by the RSVP SP, and the carrier of RSVP
messages across the entire network, with a functional interface for each QOS
enabled network device hop across the network. Though important to overall
Windows 2000 QOS technology, and to QOS in general, certain QOS faculties do not
require RSVP to operate, which means that quality of service can be achieved without
RSVP signaling.

QOSAPI
The QOS API is the programmatic interface to the RSVP SP.

Traffic Control API (TC API)
The traffic control API is a programmatic interface to the traffic control components
that regulate network traffic on local hosts.

QOSAPI
The QOS API is the programmatic interface to the RSVP service provider (RSVP SP).
Under most circumstances, the QOS API is the only interface that programmers will
require to create QOS-aware or QOS-enabled applications. Most operations that happen
on behalf of an application in the QOS sequence are a result of QOS API calls
communicating requests down (and sometimes back up) through QOS components,
creating a QOS-enabled flow of data that keeps important data moving through the
network with preferential transmission consideration.

For more information on the programming elements included in the QOS API,see
QOS Reference.

RSVP Service
The RSVP service is a single instance Windows 2000 service that runs on a
Windows 2000 computer. The RSVP service instigates traffic control functionality
(if appropriate), and implements, maintains, and handles RSVP Signaling for all
Windows 2000 QOS functionality.

The RSVP service, by virtue of the fact that it implements and maintains RSVP and is
the initiator of traffic control, is at the heart of Windows 2000 Quality of Service.

722 Volume 1 Winsock and QOS

RSVP Service Provider
The RSVP service provider (RSVP SP) is the name for the QOS component that invokes
nearly all resulting QOS facilities. The RSVP SP communicates Windows Sockets 2
QOS semantics to the RSVP SP. The Rsvpsp DLL is loaded by Windows Sockets when
a QOS-enabled socket is opened.

Traffic Control API
The traffic control application programming interface (TC API), is a programmatic
interface to the components that regulate network traffic on local hosts; both from an
internal perspective (within the kernel itself), and from a network perspective
(prioritization and queuing of packets based on transmission priority).

Traffic control is implicitly invoked through calls made to the QOS API and subsequently
serviced by the RSVP service provider (RSVP SP). However, applications that require
further or specific control over traffic control can use the TC API. The RSVP Service also
uses TC API calls.

Note that the use of functions in the TC API requires administrative privilege.

Traffic Control and Differentiated Services
Windows 2000 QOS is capable of providing differentiated services. The traffic control
functionality built into Microsoft Windows 2000 QOS is also capable of operating in
differentiated services mode. This capability is primarily used on routers, in which
incoming IP packets are classified into generalized (differentiated) flows using the
Diffserv code point (DSCP), rather than setting up and monitoring individual RSVP flows.

The packet scheduler component of TC can be put into differentiated services mode for
a given interface by:

• Using TcSetlnterface, Set GUID_QOS_ADAPTER_MODE to
PSADAPTER_FLOW _MODE_DI FFSERV

The interface can be returned to its default mode of operation by setting the GUID to the
default value of PSADAPTER_FLOW_MODE_STANDARD.

While operating in Diffserv mode, standard TC function calls, such as those found in the
Traffic Control API (TC API) section are still used, but a special QOS object called
QOS_OBJECT _DIFFSERV can be included with the TcAddFlow function call. This
QOS object is used to specify the list of DSCPs that are used to classify incoming IP
packets on a given flow. Hence the TcAddfilter function and TcDeleteFilter function will
not be used for classifying packets.

For more information about QOS_OBJECT _DlFFSERV, see QOS Objects.

Chapter 13 QOS Overview 723

Traffic Control Modules
Traffic control (TC) plays a central role in the provision of quality of service. With traffic
control, packets are prioritized both inside and outside the node on which TC is used.
The implications for such granular control (or preferential treatment) of packets as they
flow through the system and through the network, reach across the entire network realm
or enterprise. Traffic control is realized through two modules, the Generic Packet
Classifier and the Packet Scheduler.

Generic Packet Classifier

Packet classification provides a means by which packets internal to a specific network
node can be classified, and consequently prioritized, within and by both user and kernel
mode network components. These classification and prioritization uses include activities
such as CPU processing attention or transmission onto the network. The Generic Packet
Classifier (GPC) is utilized through the Generic Packet Classifier Interface, or GPC
Interface, which facilitates an information store that can be used or associated with
specified (defined) subsets of packets.

The importance of GPC hinges on its ability to provide lookup tables and classification
services within the network stack, and is thus the first step in an overall and ubiquitous
prioritization scheme for network traffic.

Packet Scheduler

Packet scheduling is the means by which data (packet) transmission-governing-a key
function of quality of service-is achieved. The packet scheduler is the traffic control
module that regulates how much data an application (or flow) is allowed, essentially
enforcingQOS parameters that are set for a particular flow. The packet scheduler
incorporates three mechanisms in its scheduling of packets:

• A conformer

• The packet shaper

• A sequencer

The conformer and sequencer are discussed in more detail in the traffic control
documentation. Since the packet scheduler's role is essential to overall traffic control
understanding, it is defined here.

The packet scheduler considers the classification provided by the Generic Packet
Classifier (GPC), and provides preferential treatment to higher-priority traffic.
Consequently, the packet scheduler is the first step (in a sequential view) to ensuring
that the prioritized network transmission of packets begins with data that has been
deemed most important.

Part of the packet scheduler's responsibility is shaping the way packets are transmitted
from a network device, a capability often referred to as packet shaping. Though often
referenced by its own name, the packet shaper is simply a part of overall packet
scheduler functionality.

724 Volume 1 Winsock and QOS

The packet shaper mitigates the burst nature of computer network transmissions by
smoothing transmission peaks over a given period of time, thereby smoothing out
network usage to affect a more steady use of the network. The significance of the packet
shaper becomes apparent: one factor that contributes to network congestion is the burst
nature of computer data transmissions, a side-effect of the inherent "send it all out right
now" nature of IP transmission. Packet shaping can help alleviate at least some of the
effects of such activity by spacing out QOS-enabled packet transmissions.

Network-Driven QOS Components
802.1p

The use of flags in the Media Access Control (MAC) header to establish packet
priority in shared-media 802 networks.

Differentiated Services
Enables the marking of relative priority for IP packets. Differentiated Services enable
the marking of packets with a code point value, called the DiffServe code paint, which
is used by network devices such as routers to determine the Per-Hop Behavior (PHB)
treatment to which the packet is subjected. Essentially, differentiated services
specifies a packet's transmission priority as it passes through each network device on
its journey through the network.

L2 Signaling
The mapping of RSVP objects to Layer 2 (per the ISO OSI Model) signaling, such as
Frame Relay Network Devices (FRNDs) or ATM interfaces.

Subnet Bandwidth Manager (SBM)
Manages shared-media network bandwidth. In Windows 2000 Quality of Service,
SBM functionality is incorporated into Admission Control Service (ACS).

Resource Reservation Protocol (RSVP)
Carries and disseminates QOS information to QOS-aware network devices along the
path between a sender and one or more receivers for a given flow, and also to
senders and receivers.

802.1p
Responsibility for QOS provisions on the local segment, and avoidance of the "all
packets are treated equally" issue, falls onto the hub or switch servicing the segment. At
such a level, the issue of differentiating between network packets, and perhaps treating
them differently, must fall into the realm of the media access control (MAC) header. The
MAC header (the lower half of Layer 2 in the ISO OSI Model) is the only part of a packet
that hubs or switches investigate in their scope of work.

802.1 p provides prioritization of packets traversing a subnet by the setting of a 3-bit
value in the MAC header. Thus, when the local segment becomes congested and the
hub/switch workload results in the delay (or dropping) of packets, those packets with
flags that correspond to higher priorities will receive preferential treatment, and will be
serviced before packets with lower priorities.

Chapter 13 QOS Overview 725

Note that implementing 802.1 p for QOS requires an 802.1 p-aware network interface
card, an 802.1 p-aware device driver, and an 802.1 p-aware switch.

Differentiated Services
Differentiated services enables packets that pass through network devices operating on
Layer 3 information, such as routers, to have their relative priority differentiated from one
another. Differentiated services uses 6 bits in the IP header to specify its value, called
the DSCP (DiffServ code point); the first 6 bits of the TOS field, the first three of which
were formerly used for IP precedence. Differentiated services has subsumed IP
precedence, but maintains backward compatibility.

With differentiated services marking, Layer 3 devices can establish aggregated
precedence-based queues and provide better service (when packet service is subject to
queuing, as is the case under significant traffic loads) to packets that have higher
relative priority. For differentiated services to be effective, Layer 3 devices must be
DSCP-enabled.

L2 Signaling
WAN technology manipulates Layer 1, Layer 2, and to a certain extent Layer 3
information, as it transmits data over the telecommunications network. Since quality of
service is an end-to-end solution that provides quality of service for data transferred
across the network, there must be a means by which data passing through WAN
interfaces can be associated with some sort of preferential or non preferential treatment.
Such a requirement necessitates the mapping of RSVP or other QOS parameters to
WAN technology QOS interfaces.

Layer 2, however, is where QOS technology interacts most with the WAN's underlying
signaling, since it is in Layer 2 where existing WAN technologies implement their own
native QOS components. L2 signaling, in Windows 2000 QOS terms, takes QOS
information such as parameters that are carried in RSVP messages to or through each
network node between end devices, and maps that QOS information to native WAN
technology QOS interfaces. For example, the classicallP over ATM (CLIP) module in
Windows 2000 specifically maps Windows 2000 QOS settings to an appropriate ATM
class of service.

Subnet Bandwidth Manager
The Subnet Bandwidth Manager (SBM) is the QOS component that provides resource
management and policy based-admission control for QOS-aware applications using
shared media subnets (Ethernet, for example). The SBM is based on an IETF draft that
defines SBM functionality and its general implementation.

SBM is implemented in Windows 2000® through the Admission Control Service (ACS).
ACS is a Windows 2000 service that resides on a Windows 2000 Server.

726 Volume 1 Winsock and aos

Policy-Driven QOS Components
Admission Control Service (ACS)

A Windows 2000 service, residing on a Windows 2000 Server, that inserts itself into
the RSVP message path to enforce Windows 2000 Directory Service based-network
admission control policies for QOS-enabled clients.

Local Policy Module (LPM)
A Microsoft-provided module that provides network resource-access decisions, based
on policies configured in Active Directory services, for the Subnet Bandwidth Manager
(SBM) component. The LPM makes policy decisions based on policy information
contained in RSVP-based signaling messages sent by clients.

Policy Information
Identity-based policy information contained in RSVP messages is submitted to the
LPM, on which LPMs base policy decisions. Policy information is generated by a
Microsoft-provided DLL that resides on Windows clients providing turnkey
implementation of Windows 2000 QOS. Policy information is securely transmitted
across the network in a session that is secured by a Kerberos ticket. Microsoft
provided policy information is data generated by the Microsoft-provided DLL, and not
QOS service components (rather, they are data that is generated by a
QOS component).

RSVP
Carries policy data between end nodes and the ACS/SBM. RSVP also carries
rejections to admission requests back to the requesting node.

Local Policy Module API (LPM API)
The programmatic interface for LPMs to interface with the SBM in ACS.

For a figure that shows where these components fit into the end-to-end QOS enabled
network picture, see QOS Documentation Structure.

Admission Control Service
Admission control service (ACS), is a Windows 2000 QOS component that regulates
subnet usage for QOS-enabled applications. The ACS exerts its authority over
QOS aware applications or clients by placing itself within the RSVP message path. With
this placement, ACS effectively intercepts RSVP PATH, RESV, PATH_ERR,
RESV_ERR, PATH_TEAR, and RESV_TEAR messages and passes the messages'
policy information to Local Policy Modules (LPMs) for authentication. This exertion of
ACS authority occurs on each interface (or shared medium) over which a given QOS
flow must traverse. For a simplified example, if ACS is functioning on a source subnet
and a (different) destination subnet for a given flow, policy restrictions are enforced by
the ACSon each subnet.

ACS regulation is based on available network resources and on administratively
configurable information on users, or group policy. ACS is implemented as a
Windows 2000 service on a Windows 2000 Server.

Chapter 13 aos Overview 727

Local policy modules (LPMs) fall within the fold of ACS functionality, and can be
considered an integral part of the ACS. With the default LPM, Microsoft Identity LPM
(MSIDLPM) user information in the intercepted RSVP message is used to look up user
policy in Windows 2000 Active Directory services. MSIDLPM then makes policy
decisions based on information found in Active Directory services.

Another ACS component, the Policy Control Module (PCM), actually mediates the
interaction between the ACS and LPMs. If there are multiple residential LPMs, the PCM
will send all policy data objects contained in the received RSVP messages to each LPM,
gather all responses, perform logical checks on the information, aggregate it, and return
the combined response to the ACS.

If network resources are available and if the policy check succeeds, the RSVP message
and its policy information is sent to the next hop (or the previous hop, if it is a PATH or
RESV message). In this way, ACS acts as the logical gatekeeper for RSVP message
propagation across the network by rejecting requests under the following conditions:

• If local segment resources aren't available to provide the requested level of OOS
(the S8M functionality of the ACS).

• If the sender or receiver doesn't have appropriate policy permission to transmit data
with the requested parameters.

When such conditions occur, no network nodes beyond the ACS (in the appropriate
direction) receive any of the RSVP messages rejected by the ACS. However, the error
messages due to the rejection will traverse the network to get to the network mode that
made the request.

This provides twofold service. It keeps unnecessary RSVP signaling traffic from
traversing the network by keeping lame-duck RSVP messages from running across the
network, and it preserves processing resources for routers and WAN Interface Cards
(WANICs) since they will not have to handle such RSVP messages. Note that any node
that declines requests based on policy failure, however, will return an RSVP error
message to the sender, indicating failure. Clients will not transmit anything if their
request is rejected by ACS.

Though ACS is a Windows 2000 OOS component, its services include other OOS
components, such as the Subnet Bandwidth Manager (SBM) and its LPM interface.

Policy Information
Microsoft provides identity policy information through a DLL installed on OOS-enabled
Windows clients such as Windows 2000 Server and Windows 2000 Professional.

The policy information is incorporated in RSVP resource reservation requests, which in
turn get sent out onto the network in the form of RSVP messages. This policy
information is intercepted by the Admission Control Service (ACS), which includes SBM
functionality as part of its fundamental service suite. The ACS services such requests by
checking whether the requesting client has authorization to use network resources on
the local subnet. If successful, the policy information is forwarded to the next network

728 Volume 1 Win sock and aos

node for subsequent policy checking, and such activity continues toward the intended
receiver, along the data path of network nodes, until the request is rejected or the
intended receiver (the node with which the sending client wishes to communicate) is
reached.

Local Policy Module
The Local Policy Module (LPM) is a QOS component responsible for retrieving and
returning policy-based decisions used by the Admission Control Service (ACS). A default
LPM provides an interface to policy information that is configured and stored in
Windows 2000 Active Directory services. LPM is a generic term used to supply policy
based admission control decisions for ACS. An LPM makes these decisions using
policies that are generally configured by network administrators, and stored in policy
databases. An LPM is usually implemented as a DLL.

LPMs are used on the ACS server. Client QOS components that generate the policy
element reside on the client, and are capable of creating policy information that is carried
in RSVP messages to the ACS (which then gets forwarded down to the LPM). It is
possible to install an LPM on the ACS server for which there is no corresponding
component on the client; for example, an ACS-based LPM could enforce "time-of-day"
policies, or could be capable of communicating with a COPS server.

It is important to note the difference between IETF-draft technologies and the Microsoft
implementation of them. Subnet Bandwidth Manager (SBM), for example, is a
technology derived from an IETF-draft proposal for regulating access to B02 subnets
(draft-ietf-issll-isB02-sbm-OB.txt). ACS is a Windows 2000 service (and a QOS
component) that incorporates SBM technology within its fold to incorporate regulation of
access to B02 subnets in accordance with policy control.

LPM API
The local policy module application programming interface (LPM API) is the
programmatic interface by which LPMs communicate and interact with the Admission
Control Service (ACS). The LPM API also specifies how LPMs are registered and
initialized within the constructs of the ACS.

Such interaction is actually regulated by an abstraction module called the Policy Control
Module (PCM). Because it is possible to have multiple LPMs, the PCM manages the
policy-based decision information that LPM modules return. Note that LPMs may
selectively accept or reject flows. For example, an LPM can receive an RSVP-based
request from the PCM that has multiple flow requests; the LPM can then selectively
accept or reject individual flows within that request, and return the results to the PCM.
Note, too, that the PCM can manage information returned from multiple LPMs (if multiple
LPMs are installed on the system), perform logical aggregation of their results, and then
return aggregated information to the ACS.

Chapter 13 QOS Overview 729

The LPM API consists of a handful of functions used to allow its interaction with the
ACS. The interaction of an LPM with its corresponding policy store or server is excluded
from this interface; such interfacing would be proprietary to the LPM and the policy store
or server.

LPM Byte Reordering
The RSVP protocol submits policy information in network-byte order, as illustrated in the
following example:

As you can see from the example, in network-byte ordering, the bits in any given byte
are ordered such that the first bit (base zero) is bit zero, and the following bits are
ordered sequentially through the last bit (bit position seven, base zero).

The Microsoft LPM, MSidlpm.dll, reorders these bits in order to put them into host-byte
order. This is an important distinction because bit-based flags can be used to designate
certain values in the PCM-LPM interaction. The following example illustrates host-byte
ordering:

As you can see from the example, host byte ordering begins with the last bit in the byte
(bit position seven, base zero) and progressing sequentially through the byte to bit
position zero.

Installing an LPM
For additional LPMs to function on a system, you must install the LPM on the
Windows 2000 Server computer on which it will function. Note that the Microsoft
provided LPM, MSidlpm.dll, is installed by default with Windows 2000 Quality of Service.

~ To install an LPM on a system
1. Create a registry entry. The key in which the entry must be created is

HKEY _LOCAL_MACHINE\SYSTEM\CurrentControISet\Services\RSVP\PCM Config\
ActiveLPMs

a. The entry type is REG_MUL TLSZ

b. The value of the entry is the name of the LPM DLL

2. Then, place the DLL into the Windows 2000 System32 directory.

RSVP and QOS
Resource Reservation Protocol (RSVP) plays a multifaceted role in the provisioning and
signaling of QOS reservation requirements in Windows 2000. The following pages
outline how RSVP carries out that role.

730 Volume 1 Winsock and QOS

RSVP
Resource Reservation Protocol (RSVP) is an IETF-draft networking protocol dedicated
to being the facilitator and carrier of standardized QOS information and parameters.
RSVP carries generic (industry-defined) QOS parameters from end nodes (inclusive) to
each QOS-aware network device included in the path between RSVP session members.
That is, RSVP is a means by which end nodes and network devices can communicate
and negotiate QOS parameters and network usage admission.

RSVP is a multifaceted protocol-it is central to application-driven, network-driven, and
policy-driven QOS activities-it is the carrier on which Windows 2000 systems send
QOS parameters and information to the network. RSVP has its own objects that can be
filled or interrogated to specify or determine the requested QOS parameters that are
either requested by the application, required of the network device, or applied for by
the user.

Since RSVP has its own clearly-defined objects, the implementation of RSVP within
Windows 2000 requires QOS parameters to be mapped into (or on the receiving end of
RSVP messages, derived from) RSVP objects.

From an application-driven perspective, RSVP is the means by which an application's
requests are transported through the network (a container, though one with specifically
defined compartments). Calls to the QOS API provide information to the RSVP SP,
which then maps such information into predefined RSVP objects for transmission across
the network.

RSVP provides a mechanism for end systems to convey information to network devices
about application data flow. Network devices can then take QOS- or policy-related action
based on this information.

From a policy-driven perspective, RSVP provides the necessary user information within
industry standard-RSVP objects (much like a set of containers, each of which is defined
based on its standard formats), that facilitate the exchange of user identity and
admission requests.

Although RSVP can be considered responsible for the bulk of Windows 2000 QOS
interaction among end nodes, it is possible to achieve QOS without RSVP signaling,
such as by using traffic control facilities available with Windows 2000 QOS.

731

CHAPTER 14

aos Programming

Basic QOS Operations
The RSVP Service Provider (RSVP SP) is where developers can enable their
applications to take advantage of the aos capabilities built into Windows 2000. The
RSVP SP provides a service layer; by sitting between applications that want to take
advantage of Windows aos capabilities and aos components. The RSVP SP shields
developers from complexities involved in directly interfacing with aos components such
as RSVP, traffic control, and local policy modules.

The process of aOS-enabling an application includes enabling the application to perform
the following:

• Receiving aOS-enabled Data

• Sending aOS-enabled Data

• Closing the aos connection

Throughout the course of a aos session, applications also need to be able to manage
the aos connection.

Note that there are other components that may affect the success of aOS-enabled
connection requests-such as policies in routers or on switches. For the purpose of
explaining the process of aOS-enabling applications, the effect of these other aos
components will be addressed apart from the process of aos enabling an application
with the RSVP SP.

QOS-Enabling Your Application
aos is enabled through the use of specific Windows Sockets APls, as well as APls and
structures created specifically for use with aos. Applications taking advantage of
Windows aos use Windows Sockets 2 APls, in conjunction with aos APls and
structures, to create a connection and provide aos parameters that articulate the
application's aos requirements. aos APls and structures are also used to maintain
(or change) settings associated with a particular aos session.

The call sequence involved in establishing and maintaining a ODS-enabled connection
generally includes preparation calls, such as enumerating protocols then querying
available protocols for aos capability. The process of enumerating and querying
protocols for aos capability is outlined in Opening a OOS-Enabled Socket.

732 Volume 1 Winsock and aos

Opening a QOS-Enabled Socket
The services and service quality guarantees provided by the RSVP SP require a QOS
enabled socket. The process of finding a QOS-enabled protocol involves the following
steps:

1. Call the WSAEnumProtocols function to enumerate the existing protocols.

2. Loop through the enumerated protocols to find a protocol that supports QOS. QOS
support is indicated by the presence of the XP1_QOS_SUPPORTED flag in
dwServiceFlags1 in the WSAPROTOCOL_INFO structure.

3. Call the WSASocket function, and pass a pOinter to the WSAPROTOCOL_INFO
structure corresponding to the QOS-enabled protocol. Note that the RSVP SP
requires an overlapped socket. Create the socket in overlapped mode by setting the
WSA_FLAG_OVERLAPPED flag in the dwFlags parameter of the WSASocket
function.

Note Do not attempt to use the WSADuplicateSocket function to create QOS-enabled
sockets; the WSADuplicateSocket function cannot be used on a QOS-enabled socket.
Attempting to do so will result in the return of a WSAEINVAL error.

Invoking the RSVP SP
QOS-enabled connections are unidirectional. To enable a connection with service
guarantees for both sending and receiving from a host, two individual QOS-enabled
flows are required. Whether the QOS-enabled flow is for sending or receiving, the initial
process of invoking the RSVP SP usually includes the use of one of the following
Windows Sockets 2 APls:

• WSAConnect

• WSAJoinLeaf

• WSAAccept

• WSAloctl{SIO_SET_QOS)

Each of these functions invokes the RSVP SP on the application's behalf, and begins
the process of establishing Quality of Service between the receiver and sender. Each of
these functions includes a parameter that provides the application with the capability of
providing QOS-specific parameters. These QOS-specific parameters are provided
through the QOS structure, which is included as a parameter of each of the three
preceding functions (WSAAccept generally implements the QOS structure through the
callback function provided in its IpfnCondition parameter).

Whenever an application calls the WSAConnect function, the WSAJoinLeaf function, or
the WSAAccept callback function with a non-NULL pointer to the QOS structure, QOS
functionality is implicitly invoked. This invocation includes enlistment of any other QOS
components' services (such as traffic control or RSVP signaling) by the RSVP SP on
behalf of the application.

Chapter 14 aos Programming 733

QOS technology and parameters are unidirectional, enabling different transmission
parameters for sender and receiver. Additionally, RSVP semantics are receiver-centric,
in that resources aren't reserved until the receiver sends out a RESV message. Due to
this unidirectional approach, differences exist in the behavior of the receiver and the
sender. These differences are outlined in the Receiving OOS-Enabled Data and Sending
OOS-Enabled Data sections.

Providing the RSVP SP with aOS-specific Parameters
In order for the RSVP SP to act on behalf of an application, the RSVP SP must be
provided with QOS-specific parameters. These parameters come in the form of the
following structures:

• QOS
• FLOWSPEC

The QOS structure is the all-encompassing structure for QOS-specific parameters, and
is comprised of three parameters, two of which are FLOWSPEC structures (one for
sending, one for receiving).

The FLOWSPEC structure includes flow members, which are TokenRate,
TokenBucketSize, PeakBandwidth, Latency, DelayVariation, ServiceType,
MaxSduSize (maximum packet size permitted in the traffic flow), and
MinimumPolicedSize. When the application provides values for these parameters, the
RSVP SP can characterize the service quality being requested; this enables the RSVP
SP to make appropriate requests to corresponding components of QOS.

The third parameter of the QOS structure is the ProviderSpecific buffer, which is used for
additional provider-specific QOS parameters that can not be specified in the
FLOWSPEC structures. For more information about the ProviderSpecific buffer, see the
section titled Using the ProviderSpecific Buffer.

QOS parameters for the FLOWSPEC structure may be common among certain
application types. Such commonality lends itself to the establishment of standardized
QOS parameters for a given type of transmission. The RSVP SP provides such
standardization, and the ease of implementation that comes with prescribed service
types, through the use of QOS templates, which are described in detail in the OOS
Templates section.

Further details of the QOS structure and the FLOWSPEC structure can be found in their
respective API entries.

734 Volume 1 Winsock and QOS

Receiving QOS-Enabled Data
An application can begin receiving data from its OOS-enabled sender before the OOS
enabled reservation is established. The result of receiving data before the OOS
reservation is established is that data is transmitted over the network without OOS
guarantees (as it would be in a non-OOS network). Once the OOS-enabled reservation
is established, the receiver can receive data that conforms to the established OOS
parameters for the reservation.

Inherent in the occurrence of events (such as the establishment of the OOS-enabled
connection) is the need for an application to query for events. The RSVP SP provides
mechanisms that enable event notification. These mechanisms differ depending on
whether the application is receiving or sending data.

As a receiver on a OOS-enabled connection, a host may initiate some or all of the
following actions:

• As implied in the section titled Providing the RSVP SP with O~S-specific parameters,
a receiver must provide OOS-specific parameters to the RSVP SP. These parameters
are provided in the ReceivingFlowSpec parameter of the QOS structure, which is
provided through the use of the WSAConnect function, the WSAJoinLeaf function,
the WSAAccept callback function, or through the Windows Sockets 2 SIO_SET _OOS
10CTL opcode .

• To streamline the establishment of existing, common settings for the QOS structure,
an application can use the WSAGetQosByName function to enumerate, and then
retrieve an existing OOS template, and apply the values in that template (in the form
of a QOS structure) to the OOS structure in the Windows Sockets function call. See
the section titled OOS Templates for more information on OOS templates.

• The application may then send data. Data sent per the constraints of the established
O~S-specific parameters is considered conforming data. Data that falls outside those
parameters, or nonconforming data, is handled differently based on the
OOS_OBJECT _SO_MODE setting, which is particular to traffic control. Options for
nonconforming data include relegating it to a best-effort transmission to discarding
nonconforming packets.

• The application may want to monitor RSVP SP events in order to monitor the OOS
enabled connection status. For example, the application uses the status information
and error codes provided with FD_OOS events. Other RSVP SP events that an
application may want to monitor include using an RSVP _RESERVE_INFO object to
request arrival confirmation of a RESV message.

• When the application receives notification of certain events, it may want to take
appropriate action to modify its OOS settings or parameters. For example, if an
application is notified of the arrival of a PATH message,it must use the Windows
Sockets 2 SIO_GET _OOS 10CTL opcode in order to retrieve pertinent OOS
information, such as the sender's Tspec and the path's Adspec. Information provided
in the PATH message may be used by the application to modify its initial
OOS-specific parameters to match the sender's Tspec. For more information on
Tspec and Adspec, see the section titled RSVP SP and RSVP.

Chapter 14 QOS Programming 735

Sending QOS-Enabled Data
As a sender on a OOS-enabled connection, the events differ somewhat from the
receiver's collection of available actions. Where senders initiate connections and request
certain OOS-specific parameters, receivers respond to such requests (note that network
devices between the receiver and sender also react to receiver requests, and may reject
requests before they ever reach the sender).

As a sender on a OOS-enabled connection, a host may initiate some or all of the
following actions:

• Sending hosts must inform the RSVP SP of OOS-specific parameters in order to
enable the RSVP SP to interact with other OOS components on the sending host's
behalf. OOS-specific parameters are provided to the RSVP SP through the
SendingFlowspec member of the QOS structure, which itself is a parameter of the
WSAConnect function, the WSAAccept function's CondltionFunc placeholder, and
the WSAJoinLeaf function. The SendingFlowspec member can also be provided
through the use of the SIO_SET _OOS 10CTL opcode.

• The OOS-specific members (SendingFlowspec) are based on the application's
knowledge of the data transmission characteristics appropriate for the application. For
example, bandwidth requirements for database queries of a mission-critical
application may be different than bandwidth requirements for low-quality audio
broadcasts. Latency boundaries may also be different for those types of applications
(note that latency boundaries are only available with Guaranteed Service). Therefore,
the application is best equipped to provide appropriate O~S-specific transmission
parameters, perhaps through the use of a OOS template.

• Senders may use the WSAGetQosByName function to enumerate, and then retrieve
preinstalled OOS templates that include OOS-specific parameters with appropriate
transmission characteJistics based on the type of application. For example, there may
be a template called RADIOBCAST associated with a QOS structure that
automatically applies the most appropriate OOS settings for radio broadcast senders.
It is the application's responsibility to ensure its traffic remains within the bounds of
FLOWSPEC members obtained using theWSAGetQosByName function; traffic that
exceeds those parameters will be treated as nonconforming, and may result in
degradation of quality.

.• Senders may configure additional traffic control parameters by including objects in the
ProviderSpecific buffer, such as handling nonconforming packets through setting of
the SO_MODE.

• The sendetmay monitor RSVP SP events to maintain theOOS-enabled connection,
such as the a:rrival of RESV messages. Often, the sender will want to monitor status
information and error codes provided withFD_OOS events. For example, the sender
may choose to stop transmission when the FD_OOS event
WSA_OOS_NO_RECEIVER occurs, indicating that there are no OOS-enabled
receivers for the transmission.

736 Volume 1 Winsock and QOS

• The sending application may want to use.the Windows Sockets 2 SIO_GET_QOS
10CTL opcode to look up QOS-specific parameters associated with the arrival of a
RESV message.

• The sending application may want to use the Windows Sockets 2 SIO_CHK_QOS
10CTL opcode to query parameters that provide information about the QOS
connection such as allowed sending rate, line rate, and others.

Closing the QOS Connection
There are a number of ways to close a QOS-enabled connection. Generally, any event
that closes a socket also ends RSVP SP servicing on the socket. Examples of events
that cause the RSVP SP to stop providing QOS functionality on a socket include:

• Using the closesocket function to close the socket.

• Using the shutdown function to disable sends or receives on a socket. Note,
however, that shutting down only the receive capabilities leaves the QOS-enabled
send capabilities for the socket intact, and that shutting down only the send
capabilities of a socket leaves the QOS-enabled receive capabilities for the socket
intact as well.

• Using the WSAConnect function with the name parameter set to NULL.

• Using the WSAloctl function with the SIO_SET _QOS 10CTL opcode, in which the
ServiceType member corresponding to SendingFlowspec or ReceivingFlowspec
(both of which are of FLOWSPEC) is set to SERVICETYPE_NOTRAFFIC or
SERVICETYPE_BESTEFFORT.

Note that setting SERVICETYPE_NOTRAFFIC or SERVICETYPE_BESTEFFORT
selectively can disable RSVP SP service for sending and receiving individually. For
example, setting the ServiceType member of SendingFlowspec to
SERVICETYPE_NOTRAFFIC or SERVICETYPE_BESTEFFORT only terminates
QOS servicing for sending, and setting the SeNiceType member of
ReceivingFlowspec to SERVICETYPE_NOTRAFFIC or
SERVICETYPE_BESTEFFORT only terminates QOS servicing for receiving.

QOS Templates
The use of QOS templates enables applications to leverage well-known QOS settings for
common transmission types. Templates can reduce the complexity associated with
setting QOS parameters, because they enable application programmers to choose from
established QOS settings (by using included and existing templates), or enable
application programmers to create additional templates based for special QOS needs of
applications, then simply apply that template to subsequent connections.

Chapter 14 QOS Programming 737

The RSVP SP provides three functions that facilitate the enumeration, use, creation, and
deletion of aos templates. These functions are:

• WSAGetQOSByName

• WSClnstallQOSTemplate

• WSCRemoveQOSTemplate

There are four activities associated with using aos templates:

• Enumerating Available aos Templates

• Applying a aos Template

• Installing a aos Template

• Removing a aos Template

Enumerating Available QOS Templates
In order to discover which templates are available on a given system, an application can
enumerate the available aos templates, using the WSAGetQOSByName function.

The process of using the WSAGetQosByName function to enumerate available aos
templates follows a set of steps, as outlined in the following list:

1. The application calls the WSAGetQOSByNamefunction with the IpOOS parameter
set to NULL, and a pointer to a structure of type WSABUF provided for the
IpOOSName parameter.

2. A list ·of available aos template names is returned in the WSABUF structure pointed
to by IpOOSName.

3. The application peruses the available templates, and selects an appropriate template,
based on the template's name (codec), to service the application's required aos
parameters.

Once the list of available aos templates is obtained, the application may apply a aos
template to a requested connection. The process of applying a aos template is
explained in the section called Applyinga aos Template.

Applying a QOS Template
When an application knows the name of the aos template it wants to use, the process
of applying the aos template is implemented through the WSAGefQOSByName
function. The following steps outline the process necessary to apply a aOStemplate:

1. The application then implements a aos template by making a call to the
WSAGetQOSByName function. In the function call, the application passes the
template name in the IpOOSName parameter, and provides a pOinter to a QOS
structure to be filled with the template's settings in the IpOOS parameter with a NULL
string.

2. The RSVP SP fills the QOS structure pointed to in IpOOS with the parameters from
the selected QOS template.

738 Volume 1 Winsock and QOS

3. The application then sets members of its SendingFlowspec and
ReceivingFlowspec members of the QOS structure with values that correspond to
the values of the associated template. (SendingFlowspec and ReceivingFlowspec
are members of the QOS structure, and both are of type FLOWSPEC.) When using a
QOS template, you should ensure that your application conforms to the transmission
characteristics specified by the template being used.

4. The application may then make a QOS-enabled connection request, and by using the
QOS structure filled in Step 2, implement the QOS template's QOS parameters as
part of the request.

For applications that do not know the name of the QOS template they want to use, or
want to enumerate the available QOS templates, the process outlined in Enumerating
Available QOS Templates should be followed.

Installing a QOS Template
Under certain circumstances, such as when available QOS templates do not fit required
or desired QOS parameters, an application may want to install a QOS template of its
own. By installing a QOS template that is tailored specifically to its needs, the application
can benefit from easier and more consistent implementation of QOS parameter
requests.

Note that the installation of a QOS template requires administrative privilege. The
process of installing a QOS template is contained within the WSClnstallQOSTemplate
function. Essentially, a successful call to the WSClnstallQOSTemplate function installs
a QOS template and associates the template with the name provided in the IpQOSName
parameter. Once the QOS template is installed with the WSClnstallQOSTemplate
function, it can be applied to a connection through the use of the WSAGetQOSByName
function.

Removing a QOS Template
The process of removing a QOS template is contained within the
WSCRemoveQOSTemplate function. Note that the removal of a QOS template requires
administrative privilege. For more details about the removal of a QOS template, see the
WSCRemoveQOSTemplate reference page.

Built-in QOS Templates
The RSVP SP provides a set of built-in QOS templates that enable applications to apply
well-known codecs to QOS connection requests. The QOS templates provided are as
follows:

• G711

• G723.1

• G729

• H263QCIF

• H263CIF

Chapter 14 aos Programming 739

• H261QCIF

• H261CIF

• GSM6.10

RSVP SP Error Codes
The RSVP SP provides a rich set of error codes and error values that enable
applications and service providers to get detailed feedback when errors in processing
occur.

RSVP SP errors (and all QOS errors) are retrieved using the SIO_GET_QOS IOCTL
call. SIO_GET_QOS returns a QOSstructure, and the error codes are returned in a
RSVP _STATUS_INFO object provided in the ProviderSpecific buffer in the QOS
structure.

The reference pages in this section enable application and service developers to
become familiar with the RSVP SP error code/error value family, and provide suggested
actions when such errors arise.

Error Codes
The following table provides error codes, a description of the error code, and if
applicable, the action that the application should take in the event the error is
encountered.

Error code Description

No error occurred,
or the error code
is unavailable.

The error occurred
in the local RSVP
engine.

The error occurred
in local traffic
control.

Admission failure,
due to the S8M
(part of the ACS).

A policy-related
error occurred.

Application response

Check the QOS call
sequence.

Depending on the specific
error value, the application
may retry the operation
with reduced QOS
requirements.

Stop the operation, retry
with reduced QOS
requirements, or try later.

Stop or retry with reduced
QOS requirements
(depending on the specific
error value).

(continued)

740 Volume 1 Winsock and QOS

(continued)

Error code

GOOS_ERRORCODE_UNKNOWN

GOOS_API

GOOS_RSVP _SYS

GOOS_KERNEL_ TC

Error Values

Description Application response

The following table provides error values, a description of the error value, and if
applicable, the action that the application should take in the event the error is
encountered.

Error value

Admission (resource) Error Values

GOOS_OTHER

GOOS_DELAYBND

GOOS_BANDWIDTH

Description

No error occurred, or the
error value is unavailable.

An upstream OOS
enabled device cannot
meet the specified delay
bound requirement.

An upstream OOS
enabled device cannot
meet bandwidth
requirement.

The Maximum
Transmission Unit (MTU)
in FLOWSPEC is too
large.

An upstream OOS
enabled device cannot
meet bandwidth
requirement.

An upstream OOS
enabled device cannot
meet bandwidth
requirement.

Application response

Retry the operation with a
more relaxed delay-bound
requirement.

Retry the operation with a
more relaxed bandwidth
requirement.

Adjust the packet size and
retry the operation.

Retry the operation with a
more relaxed bandwidth
requirement.

Retry the operation with a
more relaxed bandwidth
requirement.

Chapter 14 aos Programming 741

Error value Description Application response

Policy Errors

GOOS_POLICY _ERROR_UNKNOWN A policy error occurred for
an unknown reason.

GOOS_POLICY _GLOBAL_ Policy error: the operation Abort or retry at a
DEF _FLOW_COUNT would exceed the global later time.

default-policy flow count.

GOOS_POLICY _GLOBAL_ Policy error: the operation Abort or retry at a
GRP _FLOW_COUNT would exceed the global later time.

group-policy flow count.

GOOS_POLICY _GLOBAL_ Policy error: the operation Abort or retry at a
USER_FLOW_COUNT would exceed the global later time.

user-policy flow count.

GOOS_POLICY _GLOBAL_ Policy error: the operation Abort or retry at a
UNK_USER_FLOW_COUNT would exceed the later time.

unknown user-policy flow
count.

GOOS_POLICY _SUBNET_ Policy error: the operation Abort or retry at a
DEF _FLOW_COUNT would exceed the subnet later time.

default-policy flow count.

GOOS_POLICY _SUBNET_ Policy error: the operation Abort or retry at a
GRP _FLOW_COUNT would exceed the subnet later time.

default-policy flow count.

GOOS_POLICY _SUBNET_ Policy error: the operation Abort or retry at a
USER_FLOW_COUNT would exceed the subnet later time.

default-policy flow count.

GOOS_POLICY _SUBNET _ Policy error: the operation Abort or retry at a
UNK_USER_FLOW_COUNT would exceed the subnet later time.

default-policy flow count.

GOOS_POLICY _GLOBAL_ Policy error: the operation Abort.

DEF _FLOW_DURATION would exceed the global
default-policy flow
duration.

GOOS_POLICY _GLOBAL_ Policy error: the operation Abort.
GRP _FLOW_DURATION would exceed the global

group-policy flow
duration.

GOOS_POLICY _GLOBAL_ Policy error: the operation Abort.

USER_FLOW _DURATION would exceed the global
user-policy flow duration.

(continued)

742 Volume 1 Winsock and QOS

(continued)

Error value

Policy Errors
GOOS_POLICY _GLOBAL_
UNK_USER_FLOW _DU RATION

GOOS_POLICY _SUBNET_
DEF _FLOW_DURATION

GOOS_POLICY _SUBNET_

GRP _FLOW_DURATION

GOOS_POLICY _SUBNET_

USER_FLOW _DU RATION

GOOS_POLICY _SUBNET_
UNK_USER_FLOW _DURATION

GOOS_POLICY _GLOBAL_
DEF _FLOW_RATE

GOOS_POLICY _GLOBAL_
GRP _FLOW_RATE

GOOS_POLICY _GLOBAL_
USER_FLOW _RATE

GOOS_POLICY _GLOBAL_
UNK_USER_FLOW_RATE

GOOS_POLICY _SUBNET_
DEF _FLOW_RATE

GOOS_POLICY _SUBNET_
GRP _FLOW_RATE

GOOS_POLICY _SUBNET_
USER_FLOW _RATE

Description

Policy error: the operation
would exceed the
unknown user-policy flow
duration.

Policy error: the operation
would exceed the subnet
default-policy flow
duration.
Policy error: the operation
would exceed the subnet
group-policy flow
duration.
Policy error: the operation
would exceed the subnet
user-policy flow duration.

Policy error: the operation
would exceed the subnet
unknown user-policy flow
duration.

Policy error: the operation
would exceed the global
default-policy flow rate.
Policy error: the operation
would exceed the global
group-policy flow rate.

Policy error: the operation
would exceed the global
user-policy flow rate.

Policy error: the operation
would exceed the
unknown user-policy
flow rate.

Policy error: the operation
would exceed the subnet
default-policy flow rate.

Policy error: the operation
would exceed the subnet
group-policy flow rate.

Policy error: the operation
would exceed the subnet
user"policy flow rate.

Application response

Abort.

Abort.

Abort.

Abort.

Abort.

Abort or retry with reduced
OOS requirements.

Abort or retry with reduced
OOS requirements.

Abort or retry with reduced
OOS requirements.

Abort or retry with reduced
OOS requirements.

Abort or retry with reduced
OOS requirements.

Abort or retry with reduced
OOS requirements.

Abort or retry with reduced
OOS requirements.

Error value

Policy Errors

GOOS_POLICY _SUBNET_
UNK_USER_FLOW_RATE

GOOS_POLICY _GLOBAL_
DEF_PEAK_RATE

GOOS_POLICY _GLOBAL_
GRP _PEAK_RATE

GOOS_POLICY _GLOBAL_
USER_PEAK_RATE

GOOS_POLICY _GLOBAL_
UNK_USER_PEAK_RATE

GOOS_POLICY _SUBNET_
DEF_PEAK_RATE

GOOS_POLICY _SUBNET_
GRP _PEAK_RATE

GOOS_POLICY _SUBNET_
USER_PEAK_RATE

GOOS_POLICY _SUBNET_
UNK_USER_PEAK_RATE

GOOS_POLICY _GLOBAL_
DEF _SUM_FLOW_RATE

GOOS_POLICY _GLOBAL_
GRP _SUM_FLOW_RATE

GOOS_POLICY _GLOBAL_
USER_SUM_FLOW _RATE

Chapter 14 aos Programming 743

Description

Policy error: the operation
would exceed the subnet
unknown user-policy
flow rate.

Policy error: the operation
would exceed the global
default-policy peak rate.

Policy error: the operation
would exceed the global
group-policy peak rate.

Policy error: the operation
would exceed the global
user-policy peak rate.

Policy error: the operation
would exceed the
unknown user-policy
peak rate.

Policy error: the operation
would exceed the subnet
default-policy peak rate.

Policy error: the operation
would exceed the subnet
default-policy peak rate.

Policy error: the operation
would exceed the subnet
default-policy peak rate.

Policy error: the operation
would exceed the subnet
default-policy peak rate.

Policy error: the operation
would exceed the global
default-policy total
flow rate.

Policy error: the operation
would exceed the global
group-policy total
flow rate.

Policy error: the operation
would exceed the global
user-policy total flow rate.

Application response

Abort or retry with reduced
QOS requirements

Abort or retry with reduced
QOS requirements.

Abort or retry with reduced
QOS requirements.

Abort or retry with reduced
QOS requirements.

Abort or retry with reduced
QOS requirements.

Abort or retry with reduced
QOS requirements.

Abort or retry with reduced
QOS requirements.

Abort or retry with reduced
QOS requirements.

Abort or retry with reduced
QOS requirements.

Abort or retry with reduced
QOS requirements.

Abort or retry with reduced
OOS requirements.

Abort or retry with reduced
QOS requirements.

(continued)

744 Volume 1 Winsock and QOS

(continued)

Error value

Policy Errors
GOOS_POLICY _GLOBAL_
UNK_USER_SUM_FLOW_RATE

GOOS_POLICY _SUBNET_
DEF _SUM_FLOW_RATE

GOOS_POLICY _SUBNET_
GRP _SUM_FLOW_RATE

GOOS_POLICY _SUBNET _
UNK_USER_SUM_FLOW_RATE

GOOS_POLICY _SUBNET_

USER_SUM_FLOW _RATE

GOOS_POLICY _GLOBAL_

DEF_SUM_PEAK_RATE

GOOS_POLICY _GLOBAL_
GRP _SUM_PEAK_RATE

GOOS_POLICY _GLOBAL_
USER_SUM_PEAK_RATE

GOOS_POLICY _GLOBAL_
UNK_USER_SUM_PEAK_RATE

GOOS_POLICY _SUBNET _
DEF_SUM_PEAK_RATE

Description Application response

Policy error: the operation Abort or retry with reduced
would exceed the OOS requirements.
unknown user-policy total
flow rate.

Policy error: the operation
would exceed the subnet
default-policy total
flow rate.

Policy error: the operation
would exceed the subnet
group-policy total
flow rate.

Policy error: the operation
would exceed the subnet
unknown user-policy total
flow rate.

Abort or retry with reduced
OOS requirements.

Abort or retry with reduced
OOS requirements.

Abort or retry with reduced
OOS requirements.

Policy error: the operation Abort or retry with reduced
would exceed the subnet OOS requirements.
user-policy total flow rate.

Policy error: the operation
would exceed the global
default-policy total
peak rate.

Policy error: the operation
would exceed the global
default-policy total
peak rate.

Policy error: the operation
would exceed the global
default-policy total
peak rate.

Policy error: the operation
would exceed the global
default-policy total
peak rate.

Policy error: the operation
would exceed the subnet
default-policy total
peak rate.

Abort or retry with reduced
OOS requirements.

Abort or retry with reduced
OOS requirements.

Abort or retry with reduced
OOS requirements.

Abort or retry with reduced
OOS requirements.

Abort or retry with reduced
OOS requirements.

Error value

Policy Errors
GaOS_POLICY _SUBNET_
GRP_SUM_PEAK_RATE

GaOS_POLICY _SUBNET_
USER_SUM_PEAK_RATE

GaOS_POLICY _SUBNET_
UNK_USER_SUM_PEAK_RATE

GaOS_POLICY _EXPI RED_
USER_TOKEN

Chapter 14 aos Programming 745

Description

Policy error: the operation
would exceed the subnet
default-policy total
peak rate.

Policy error: the operation
would exceed the subnet
default-policy total
peak rate.

Policy error: the operation
would exceed the subnet
default-policy total
peak rate.

Policy error: the user is
unknown.

Policy error: the user has
no privilege.

Policy error: the user
identification token has
expired.

Policy error: LPM out of
resources (memory).

Policy error: the operation
was pre-empted by a
higher priority request.

Policy error: user
identification has
changed after the
reservation was
approved.

Policy error: the operation
was rejected by all policy
modules.

Policy error: LPM out of
memory.

Policy error: invalid
FLOWSPEC.

Unable to understand the
user ID

Application response

Abort or retry with reduced
QOS requirements.

Abort or retry with reduced
QOS requirements.

Abort or retry with reduced
QOS requirements.

Check the user's
identification and security
attributes.

Abort. Possible shut down
on sender or receiver.

Abort or retry.

Abort or retry at a
later time.

Abort or retry at a
later time.

Abort.

Abort.

Abort or retry at a
later time.

Check the FLOWSPEC
structure.

Abort.

(continued)

746 Volume 1 Winsock and QOS

(continued)

Error value

RSVP Errors

GQOS_NO_PATH

API Errors

GQOS_APLBADSEND

GQOS_API_BADRECV

GQOS_API_BADSPORT

Traffic Control System Errors

GQOS_ TC_GENERIC

GQOS_TC_INVALID

GQOS_NO_MEMORY

Description

No matching path state
for the reservation
request.

No sender information for
the reservation request.

Mismatch in Resv style.

The Resv style is
unknown.

Conflicting or invalid
destination port.

Conflicting or invalid
source port.

Ambiguous filter
specification in RESV.

Service preempted due to
a higher priority
reservation.

Invalid RSVP syntax in
objects

Invalid RSVP syntax in
objects

Invalid operation or
parameters.

Generic error.

Not enough memory
available to execute the
requested RSVP/traffic
control operation.

Application response

Check the QOS call
sequence.

Check the QOS call
sequence.

Check the RESV filter
specifications.

Check the RESV filter
specifications.

Check the QOS call
sequence.

Check the QOS call
sequence.

Check the RESV filter
specifications.

Try to invoke QOS again
at a later time.

Abort.

Abort.

Abort the operation or retry
at a later time.

Error value

Traffic Control System Errors

GOOS_BAD_ADDRESSTYPE

GOOS_BAD_DUPLICATE

GOOS_CONFLICT

GOOS_NOTREADY

GOOS_ WOULDBLOCK

GOOS_INCOMPATIBLE

GOOS_BAD_SDMODE

GOOS_BAD_OOSPRIORITY

GOOS_BAD_ TRAFFICCLASS

GOOS_NO_SYS_RESOURCES

RSVP System Errors

GOOS_OTHER_SYS

GOOS_MEMORY _SYS

GOOS_APLSYS

GOOS_SETOOS_NO_LOCAL_APPS

Traffic Control Errors

GOOS_CONFLICT _SERV

GOOS_BAD _FLOWSPEC

GOOS_BAD_ TSPEC

GOOS_BAD _ADSPEC

WSAloctl Errors

GOOS_IOCTL_SYSTEMFAILURE

GOOS_IOCTL_NOBYTESRETURN ED

GOOS_IOCTL_INVALI DSOCKET

Chapter 14 QOS Programming 747

Description

Traffic control error:
invalid address type.

RSVP/traffic control
operation would block.

Traffic control error:
invalid internal priority.

Application response

Check the address type of
the socket.

Retry at a later time.

Check the traffic control
priority object.

Traffic control error: out of Abort or retry at a
system resources. later time.

Conflicting traffic control
filters.

The service is unknown
to local traffic control.

Check the OOS
specifications.

Check the Service Type
parameter.

(continued)

748 Volume 1 Winsock and QOS

(continued)

Error value

SIO_SET _OOS Errors
GQOS_SETQOS_BADINBUFFER

GQOS_SETQOS_BADFLOWSPEC

GQOS_SETQOS_COLLISION

GQOS_SETQOS_
BADPROVSPECBUF

GQOS_SETQOS_ILLEGALOP

GQOS_SETQOS_INVALIDADDRESS

GQOS_SETQOS_OUTOFMEMORY

GQOS_SETQOS_EXCEPTION

GQOS_SETQOS_BADADDRLEN

GQOS_SETQOS_NOSOCKNAME

GQOS_SETQOS_IPTOSFAIL

GQOS_SETQOS_
OPENSESSIONFAIL

GQOS_SETQOS_SENDFAIL

GQOS_SETQOS_RECVFAIL

GQOS_SETQOS_
BADPOLICYOBJECT

GQOS_SETQOS_
UNKNOWNFIL TEROBJ

GQOS_SETQOS_BADFILTERTYPE

GQOS_SETQOS_BADFILTERCOUNT

GQOS_SETQOS_BADOBJLENGTH

GQOS_SETQOS_BADFLOWCOUNT

GQOS_SETQOS_UNKNOWNPSOBJ

GQOS_SETQOS_BADPOLICYOBJ

GQOS_SETQOS_BADFLOWDESC

GQOS_SETQOS_
BADPROVSPECOBJ

GQOS_SETQOS_NOLOOPBACK

GQOS_SETQOS_
MODENOTSUPPORTED

GQOS_SETQOS_
MISSINGFLOWDESC

Description Application response

Error value

SIO_GET _QOS Errors

GQOS_GETQOS_BADOUTBUFFER

GQOS_GETQOS_SYSTEMFAILURE

GQOS_GETQOS_EXCE;TION

GQOS_GETQOS_INTERNALFAILURE

SIO_CHK_QOS Errors

GQOS_CHKQOS_BADINBUFFER

GQOS_ CHKQOS_BADOUTBUFFER

GQOS_ CHKQOS_SYSTEMFAILURE

GQOS_CHKQOS_INTERNALFAILURE

GQOS_ CHKQOS_BADPARAMETER

GQOS_ CHKQOS_EXCEPTION

Service Types

Chapter 14 QOS Programming 749

Description Application response

Service types enable an application to specify service quality requirements for a Q08-
enabled connection. The availability of different service types enables the RSVP SP to
categorize the QOS required by the application, and thereby decide the type of requests
it (the RSVP SP) should make to complementary components on behalf of the
requesting application.

There are four primary service types included in the RSVP SP.

Applications must choose which service type is most appropriate for their transmission
requirements, based on traffic characteristics, performance requirements, user
preferences, or any other criterion that influences how data should be transmitted. Also
note that when an application invokes the RSVP SP to initiate QOS for a given
connection, the ServiceType member of the FLOWSPEC structure (where the service
type is specified) for both the SendingFlowspec and ReceivingFlowspec members of
the QOS structure must be specified.

Specifying either CONTROLLED LOAD or GUARANTEED for the Service Type
parameter implicitly invokes QOS service for the corresponding direction of the
QOS enabled connection.

In addition to the primary service types, the RSVP SP provides secondary service types
that enable application programmers and the RSVP SP to monitor or modify service
provisions under certain circumstances, and on an ongoing basis.

There are three secondary service types.

750 Volume 1 Winsock and QOS

Primary Service Types
The following four service types are considered primary service types:

• BEST EFFORT

• CONTROLLED LOAD

• GUARANTEED

• QUALITATIVE

BEST EFFORT
The BEST EFFORT service type instructs the RSVP SP to use the application's QOS
parameters as guidelines for service quality requests, and make reasonable effort to
maintain the requested level of service. The BEST EFFORT service type does not make
any guarantees that requested QOS parameters will be implemented or enforced, but
can be used by senders to specify traffic control objects.

CONTROLLED LOAD
When the CONTROLLED LOAD service type is specified, the RSVP SP is instructed to
provide end-to-end service quality that approximates the network behavior achieved
from BEST EFFORT service under unloaded conditions.

The result of specifying the CONTROLLED LOAD service type is that network devices
and elements in the path between the QOS-enabled connection (the end-to-end path)
can be expected to:

• Deliver a very high percentage of packets (packet loss approximates basic packet
error rates for the transmission medium).

• Transit delay by a very high percentage of transmitted packets will not greatly exceed
the minimum transit delay experienced by any successfully delivered packet at the
speed of light.

These defining characteristics of the CONTROLLED LOAD service type are based on
definitions provided by RFC 2210.

GUARANTEED
When the GUARANTEED service type is specified, the RSVP SP and other QOS
components included in the transmission of packets attempt to guarantee the level of
service quality defined by the application's provided QOS parameters. With the
GUARANTEED service type, queuing algorithms isolate an application's data flow (a
flow is the unidirectional transmission of packets on a QOS-enabled connection) to
provide the following service characteristics.

Chapter 14 QOS Programming 751

• The application's flow is isolated from other flows as much as possible.

• The application's flow is guaranteed the ability to transmit data at the TokenRate for
the duration of the connection.

• If the application does not exceed TokenRate over time, latency is also guaranteed.

The GUARANTEED service type is designed for applications that require precisely
known service quality (QOS parameters), but would not benefit from better service. An
example of such an application is a real-time control system application. The
GUARANTEED service type is also designed to transmit within a specific delay bound.

QUALITATIVE
The QUALITATIVE service type is suited for applications that require better than BEST
EFFORT service, but are unable to quantify their requirements. Applications that request
QUALITATIVE service can supply an application ID policy object. Policy servers on the
network use information in the application ID object to identify the application's flow and
assign it an appropriate quality of service. For more information on how to insert an
application ID, see the Microsoft White Paper titled Inserting Application and Sub
application IDs or the IETF Internet Draft on APP ID, draft-ietf-rap-rsvp-appid-OO.txt.

Secondary Service Types
The use of secondary service types enable an application programmer to modify QOS
service guarantees in different ways, such as enabling QOS for only one direction of a
bidirectional connection, disabling an existing QOS service guarantee, or disabling traffic
control. Each of the following secondary service types are explained in this section:

• SERVICETYPE_NOTRAFFIC

• SERVICETYPE_GENERAL_INFORMATION

• SERVICETYPE_NOCHANGE

There are also two secondary service types that an application programmer can use in
conjunction with the all primary service types, and the previously mentioned secondary
service types. Application programmers can use the bitwise OR operator with these
following two service type values to further refine the service type behavior they require:

• SERVICE_NO_ TRAFFIC_CONTROL

• SERVICE_NO_QOS_SIGNALING

SERVICETYPE_NOTRAFFIC
Use of the SERVICETYPE_NO_ TRAFFIC service type indicates (or specifies) that no
QOS services are required in the associated direction. For example, ifthe
SendingFlowspec specifies SERVICETYPE_NOTRAFFIC, then traffic sent on the
specified connection would not receive QOS service provisions. In other words, QOS
signaling for sent data would be disabled.

752 Volume 1 Winsock and QOS

This service type is useful when QOS service guarantees are only required in one
direction (and therefore not required in the opposite direction). The
SERVICETYPE_NOTRAFFIC service type is also useful when QOS service provisions
are no longer required in a specific direction, in which case the
SERVICETYPE_NOTRAFFIC service type can be used in conjunction with the
SERVICETYPE_NOCHANGE service type to disable QOS signaling in one direction,
and leave the other direction's QOS signaling unchanged.

SERVICETYPE_GENERALJNFORMATION
The SERVICETYPE_GENERAL_INFORMATION service type is used in the
SendingFlowspec parameter of a QOS structure to indicate that the sender can operate
properly within any of the services. Note that
SERVICETYPE_GENERAL_INFORMATION does not include any indication regarding
the availability of the QUALITATIVE service type.

SERVICETYPE_GENERAL_INFORMATION is only available to the sender; the RSVP
SP returns an error if the receiver attempts to use the
SERVICETYPE_GENERAL_INFORMATION service type.

It is worth noting that BEST EFFORT is almost always available, since it makes no
particular guarantee for service quality. The RSVP SP will do its best to meet service
level requests for BEST EFFORT flows. Therefore, the
SERVICETYPE_GENERAL_INFORMATION can more effectively be interpreted as
advertising that either CONTROLLED LOAD or GUARANTEED service types can be
selected by the receiver for the flow.

Note, however, that routers in the path between end nodes may indicate that they do not
support one or both of the (interesting) service types-CONTROLLED LOAD and
GUARANTEED.

SERVICETYPE_NOCHANGE
The SERVICETYPE_NOCHANGE service type is useful when making changes to QOS
parameters for one direction of a given flow. Specifically, the
SERVICETYPE_NOCHANGE enables application developers to indicate or implement
changes in one direction of a flow, without having to respecify unchanged QOS
parameters for the SERVICETYPE_NOCHANGE-specified direction of the flow.

SERVICE_NO _TRAFFIC_CONTROL
The SERVICE_NO_ TRAFFIC_CONTROL service type instructs the RSVP SP not to
invoke kernel traffic control. This secondary service type can be invoked using the
bitwise OR operator with the following primary and secondary service types to further
specify an application's quality of service requirements:

• BEST EFFORT

• CONTROLLED LOAD

• GUARANTEED

Chapter 14 QOS Programming 753

• QUALITATIVE

• SERVICETYPE_NOTRAFFIC

• SERVICETYPE_GENERAL_INFORMATION

• SERVICETYPE_NOCHANGE

SERVICE_NO _ QOS_SIGNALING
The SERVICE_NO_QOS_SIGNALING service type may be set by the sending or
receiving application. When this service type is specified, the RSVP SP does not invoke
RSVP signaling, enabling the application to suppress the RSVP SP's invocation of
RESV messages on the application's behalf.

This secondary service type can be invoked using the bitwise OR operator with the
following primary and secondary service types to further specify an application's quality
of service requirements:

• BEST EFFORT

• CONTROLLED LOAD

• GUARANTEED

• QUALITATIVE

• SERVICETYPE_NOTRAFFIC

• SERVICETYPE_GENERAL_INFORMATION

• SERVICETYPE_NOCHANGE

Using Service Types
The following sections provide information on how to use service types in your
application, including the directional implications of each of the primary and secondary
service types, as well as a usage example.

Directional Implications of Service Types
The impact of specifying each of these service types differs depending on whether is it
sent in the SendingFlowspec or ReceivingFlowspec. To best illustrate the impact of
specifying any of these service types, the following table explains the implications of
each, depending on whether the service type is specified in the SendingFlowspec or the
ReceivingFlowspec.

754 Volume 1 Win sock and aos

Service Types

BESTEFFORT

NOTRAFFIC

CONTROLLED LOAD

GUARANTEED

QUALITATIVE

GENERAL_
INFORMATION

In SendingFlowspec

Indicates that only best
effort service is supported
for this traffic flow.

Indicates that there will be
no traffic in this direction.

Indicates that only
controlled load service is
supported for this
traffic flow.

Indicates that only
guaranteed service is
supported for this
traffic flow.

Indicates that only
qualitative service is
requested for this
traffic flow.

Indicates that all service
types are supported or this
traffic flow.

Allows an application to
modify QOS in the receiving
direction, while leaving the
sending unchanged, or to
provide ProviderSpecific
parameters without altering
values previously specified
in the flowspec.

In ReceivingFlowspec

Requests best-effort service
(no RSVP signaling treatment).

Indicates that there will be no
traffic in this direction.

Ask the network for a controlled
load reservation.

Ask the network for a
guaranteed reservation.

Indicates that qualitative
service is being requested for
the traffic flow.

N/A

Allows an application to modify
QOS in the sending direction,
while leaving the receiving
direction unchanged, or to
provide ProviderSpecific
parameters without altering
values previously specified in
the flowspec.

Note that a sending application can specify a ServiceType parameter in the
SendingFlowspec set to CONTROLLED_LOAD or GUARANTEED if it wants to limit the
service type options presented to the receiver to just one service type. If the
SendingFlowspeccontains a service type of GENERAL_INFORMATION then both
service types will be advertised as available from the sender (although intervening
routers may indicate that they do not support one or both service types).

Examples of Setting the Service Type
The first example is a sending application that requires GUARANTEED service type, but
does not want kernel traffic control. In this case, the application should set the
ServiceType in its SendingFlowspecto the following:

SERVICETYPE_GUARANTEED I SERVICE_NO_ TRAFFIC_CONTROL

Chapter 14 QOS Programming 755

Using the ProviderSpecific Buffer
Most application developers will find that the RSVP SP and its functions provide all the
necessary programmatic access to QOS parameters and settings. However, some
applications may find it necessary to provide information or parameters that are not
available through the FLOWSPEC structure. The ProviderSpecific buffer enables
application developers to provide special QOS information, such as RSVP style, Resv
confirmation request, or traffic control parameters and settings.

The ProviderSpecific buffer is a member of the aos structure, and is of type
WSABUF.

Structure of the ProviderSpecific Buffer
The ProviderSpecific buffer includes a length field, and a pOinter to a buffer. The buffer
may include multiple objects, and each object must contain the following, in the order
shown:

• A type field that identifies the object.

• A length field that contains the length of the object, including the header.

• The object data itself.

Note that all objects referenced in the ProviderSpecific buffer must be contained within
the same piece of contiguous buffer memory (the entire aos structure is contained
within a contiguous block of memory).

Use of the ProviderSpecific Buffer as a Receiver
Receivers can use the ProviderSpecific buffer to do the following:

While making QOS requests, receivers can:

• Specify nondefault RSVP reservation style, flow descriptors, and filter specifications.

• Request RESERVE CONFIRMATION.

• Specify one or more policy elements (policy information) to RSVP.

While receiving notification, such as getting additional information from the sender,
receivers can:

• Retrieve policy information.

• Retrieve QOS and RESV_CONFIRM events.

Use of the ProviderSpecific Buffer as a Sender
Senders can use theProviderSpecific buffer to do the following.

756 Volume 1 Winsock and QOS

While making QOS requests, senders can:

• Specify one or more policy elements (policy information) to RSVP.

• Specify traffic control parameters such as shape/discard mode.

• Specify policy information.

While receiving notification, such as getting additional information from the sender,
senders can:

• Retrieve QOS events.

• Retrieve policy information.

Understanding Traffic Control
Traffic control, commonly referred to as TC, regulates traffic on local hosts. Traffic
control is responsible for controlling the flow of traffic based on a given flow's priority,
both from an internal perspective (within the kernel itself), and from a network
perspective (prioritization and queuing of packets based on transmission priority).

The following sections detail how traffic control is invoked, how traffic control settings
can be checked, and how to programmatically modify how traffic control treats a
given flow.

Note Ownership of TC objects, such as flows and settings, are specific to a given
application. As such, one application cannot inherit flow or filter objects from another
object, not can an application change any such flows or settings it does not own.
Accordingly, all TC objects are deleted when an application (process) dies.

How the RSVP SP Invokes TC
The RSVP service and TC communicate in order to work together to provide overall
QOS for a given sending flow. When an application requests QOS using the RSVP SP,
the RSVP SP responds by initiating RSVP signaling and invoking kernel traffic control
from local TC components (using the traffic control Interface). As such, traffic control and
RSVP signaling are initiated concurrently upon flow setup.

In this transitional period (presuming QOS_OBJECT _SO_MODE has not been
specifically set) the reservation has not been established, and therefore traffic control is
configured to transmit traffic associated with the flow's specification, as follows:

• BEST_EFFORT traffic is transmitted with its QOS_SD_MODE set to borrow mode
(TC_NONCONF _BORROW)

• CONTROLLED LOAD traffic is transmitted with its QOS_SD_MODE set to
TC_NONCONF _BORROW

• GUARANTEED traffic is shaped with its QOS_SD_MODE set to
TC_NONCONF _SHAPE

Chapter 14 QOS Programming 757

Note The above default configuration can be overridden by supplying the
QOS_OBJECT _SD_MODE object in the ProviderSpecific buffer.

In this transitional period, all packets conforming to the flowspec for BEST_EFFORT and
CONTROLLED LOAD are sent immediately with the appropriate traffic control marking,
and nonconforming packets are sent immediately with their host and network priority
demoted. Transmission settings for any given flow are aligned with the allowed sending
rate specified by the system (which is in turn determined by settings in the appropriate
FLOWSPEC).

Sending applications can determine what the allowed sending rate is by querying the
Allowed_Rate using SIO_CHK_QOS. More information about using SIO_CHK_QOS is
provided in the section titled Using SIO_CHK_QOS.

Once PATH messages arrive at the receiving host (or hosts; for simplicity, ongoing
references will be singular), the host may request QOS provisioning for the flow in the
form of RESV messages sent back toward the sender. When the RSVP SP on the
receiver receives the RESV message, it communicates with traffic control to enable
traffic control to update its transmission information, and if appropriate, to modify the
BEST_EFFORT flow according to the reservation indicated in the RESV message.

Note that it is possible to invoke traffic control without RSVP signaling, and to
programmatically modify traffic control's treatment of a flow. RSVP signaling can be
suppressed on a given flow if the SERVICE_NO_QOS_SIGNALING service type is
specified, and traffic control can be suppressed on a given flow if the
SERVICE_NO_ TRAFFIC_CONTROL service type is specified. Additional control over
the suppressing of RSVP Signaling and traffic control can be achieved through the use of
registry entries. For more information on controlling QOS through the use of registry
entries, consult the Windows 2000 Resource Kit, available from Microsoft Press.

Using SIO_CHK_QOS
SIO_CHK_QOS can be used in conjunction with the WSAloctl function to obtain
information on QOS traffic characteristics. During the transitional phase on the sending
system between flow setup and the receipt of a RESV message (see How the RSVP SP
Invokes TC for more information on the transitional phase), traffic associated with the
flow is shaped based on service type (BEST EFFORT, CONTROLLED LOAD, or
GUARANTEED). When the RSVP service on the sending host receives the RESV
message, it communicates with traffic control to modify the BEST_EFFORT flow
according to the change in ServiceType in the FLOWSPEC, and traffic control objects
received in the RESV message.

Certain applications may find the results of shape/discard mode settings unacceptable,
such as a CONTROLLED LOAD flow's nonconforming packets (in borrow mode)
potentially being discarded. To avoid unnecessary discarding of packets, applications
can use SIO_CHK_QOS immediately following QOS invocation. The results of the call
may require that the application defer data transmission until receipt of the RESV
message.

758 Volume 1 Winsock and QOS

Note that the default setting for SIO_CHK_QOS allows the application to send data as
BEST_EFFORT before the reservation is in place. Network administrators in a given
QOS-enabled network environment must explicitly override this setting on the ACS in
order to exercise this control.

Disabling Traffic Control
Traffic control is invoked by default, and is done so immediately upon the receipt of a
sending FLOWSPEC. Application programmers, however, can disable traffic control by
using the SERVICE_NO_TRAFFIC_CONTROL service type. When the
SERVICE_NO_ TRAFFIC_CONTROL service type is used, traffic control is not invoked
on the specified flow regardless of RSVP signaling. If QOS is reset (modified) without the
SERVICE_NO_ TRAFFIC_CONTROL flag, traffic control is invoked.

QOS Events
Windows 2000 QOS makes QOS event information available to applications that register
interest in obtaining event-related QOS information. Windows 2000 QOS makes the
following event categories available to applications:

• Policy-based or administratively based information that impacts QOS provisioning for
a given flow.

• Errors that occur upon setup, or during the life of a QOS-enabled flow.

• Information regarding acceptance or rejection of QOS requests by the RSVP module
or by the network. Keep in mind that rejection of a QOS request may indicate a
transient failure, which may be subsequently corrected.

• Significant changes in the service quality provided by the network (when in contrast
with previously negotiated QOS parameters), such as from flow preemption in the
network.

• Status regarding the presence of a QOS peer to send or receive a particular flow.

Windows 2000 QOS provides this status information through the FD_QOS event suite.
Applications that take advantage of QOS capabilities, whether sending or receiving data,
should use FD_QOS events to maintain and monitor their QOS-enabled application.
Registering interest in QOS events is done by listening for FD_QOS event notifications.

It is important to realize that all FD_QOS events are edge"triggered. With edge-triggered
events, a message is posted exactly once when a quality of service change occurs.
Further messages are not forthcoming until the provider detects a further change in
quality of service, or the application re-negotiates the flow's QOS.

Chapter 14 QOS Programming 759

For more information about event notification, consult the following knowledge base
article:

support.microsoft.comlsupportlkb/articles/Q 196/3/60.ASP

Listening for FD_QOS Events
QOS status is provided through FD_QOS events. Applications that either send or
receive QOS-enabled data can listen for FD_QOS events by either of the following
mechanisms:

• Register for FD_QOS events using the WSAAsyncSelect or WSAEventSelect
function.

• Perform an overlapped WSAloctl(SIO_GET_QOS) function call ..

Each of these approaches is explained in the following sections.

Using WSAEventSelect or WSAAsyncSelect
Applications that register their interest in receiving FD_QOS events can do so by
enabling asynchronous event notificationwith either the WSAAsyncSeleclor
WSAEventSelect function. Information about how to do so can be found in the Windows
Sockets 2 documentation.

When registered for event notification using this mechanism, and an event notification
occurs, an application can look up the status code (by using the
WSAEnumNetworkEvents function, for example) and subsequertly issue a
WSAloctl(SIO~GET_QOS)function call to retrieve tbe QOS structure associated with
the event. .

The associated QOS structure contains the current QOS parameters. Applications
should inspect the QOS parameters to determine the extent of the changes associated
with the event notification. There are a couple of issues to consider when working with
FD_QOS events in this manner:

• You must issue the WSAloctl(SIO_GET_QOS) to reenable the FD_QOS event.

• There may b~.multiple QOS status indications waiting for retrieval. Use the
WSAloctl(SIO_GET_QOS) function call in a loop until SOCKET_ERROR is returned.

Applications can also register their interest in FD_QOS events using overlapped
WSAI()ctl(SIO_GET _QOS), as explained in Using Overlapped
WSAloctl(S/O_ GET_ aOS):

Using OverlappedWSAloctl(SIO _GET .,-QOS)
Applications can register their interest in FD_QOS events by issuing an overlapped
WSAloctl(SIO_GET_QOS) function call. When an application takes this approach, an
FD_QOS event invokes ~he completion function specified in the CompletionRoutine
parameter of ·the W~AI()ctlfunetion call, and the updated QOS structure is made

760 Volume 1 Winsock and QOS

available in its output buffer. With this approach, the application could be developed to
use the CompletionRoutine to act on the contents of the output buffer. The
WSAloctl(SIO_GET _QOS) function request completes with QOS information that
corresponds only to one direction (either the SendingFlowspec or the
ReceivingFlowspec is valid, but not both). The FLOWSPEC that is invalid has its
ServiceType value set to SERVICETYPE_NOCHANGE.

Note Sending applications cannot call SIO_GET _QOS until a connection has
completed. However, a receiving application can call SIO_GET _QOS as soon as it is
bound. When using overlapped WSAloctl(SIO_GET_QOS) to monitor FD_QOS events,
the RSVP SP also passes an RSVP _STATUS_INFO object in the ProviderSpecific
buffer of the updated QOS structure. This enables applications to obtain extended status
information about the FD_QOS event.

Note If the output buffer associated with the WSAloctl function call is not sufficiently
sized to contain the full QOS structure and the RSVP _STATUS_INFO object that is
included in its ProviderSpecific buffer, the application will get WSA_ENOBUFS and can
reissue the query. The required size is returned as an unsigned integer at the beginning
of the output buffer.

QOS Event Codes
Applications that use the FD_QOS event suite to monitor QOS events have access to
status and error codes associated with the event, as well as updated QOS parameters
(in the QOS structure associated with the event). The following is a list of common
QOS-related Windows Sockets 2 status and error codes.

Event or error code

WSA_QOS_RECEIVERS

WSA_QOS_SENDERS

WSA_QOS_NO_SENDERS

WSA_QOS_NO_RECEIVERS

WSA_QOS_REQUEST _CONFIRMED

WSA_QOS_ADMISSION_FAILURE

WSA_QOS_POLICY _FAILURE

WSA_QOS_BAD_STYLE

WSA_QOS_BAD_OBJECT

WSA_QOS_ TRAFFIC_CTRL_ERROR

Definition

One or more RESV message has arrived.

One or more PATH message has arrived.

There are no senders.

There are no receivers.

Reservation has been confirmed.

Error due to lack of resources.

Rejected for administrative reasons.

Unknown or conflicting style.

Problem with some part of the FLOWSPEC.

Problem with some part of the filter
specification.

General error.

For additional status and error codes, consult the Winsock2.h header file.

Chapter 14 QOS Programming 761

RSVP SP and RSVP
Below the RSVP SP sits the Resource Reservation Protocol, or RSVP. RSVP is an
IETF-standardized protocol that ferries quality of service provision requests between end
nodes, and interacts with all RSVP-enabled network devices in the path between end
nodes. The RSVP SP-which invokes and facilitates all aspects of Windows 2000 ODS,
not just RSVP signaling-also enables application developers to fine-tune RSVP
messages through the use of the ProviderSpecific buffer. Such fine-grained control of
RSVP by an application enables the fine-tuning or special service requests to be made
without depending on the RSVP SP to interpret conventional requests (through
members in the QOS structure) and pass such requests down to RSVP.

RSVP signaling is the primary mechanism employed by the RSVP SP to create an end
to-end OOS connection. When ServiceType in either the SendingFlowspec or
ReceivingFlowspec member of the QOS structure is set to initiate Ouality of Service
over the connection in either direction (that is, when either parameter is set to a service
type other than SERVICETYPE_BESTEFFORT or SERVICETYPE_NOTRAFFIC), the
RSVP SP initiates RSVP signaling.

Most application programmers will find that enabling an application to use the RSVP SP,
which automatically initiates and maintains RSVP signaling on behalf of applications, is
sufficient to enable their application to take advantage of OOS capabilities.

For those interested in the specifics of RSVP signaling, and how to get more granular
control over its parameters and notifications, the following sections outline general RSVP
concepts as they interact with the RSVP SP.

Basic RSVP Operations
This section introduces basic RSVP operations, including:

• How RSVP signaling is invoked by the RSVP SP.

• How RSVP filters are defined and applied to RSVP SP Service Type specifications.

Invoking RSVP
There are two ways to invoke RSVP:

• Using defaults, through the RSVP SP.

• Overriding defaults, by using the RSVP _RESERVE_INFO object.

RSVP signaling is invoked automatically when an application invokes the RSVP SP to
provide OOS reservations on its behalf. The RSVP SPprovides OOS reservations on
behalf of an application when the service type in either the SendingFlowspec or
ReceivingFlowspec members of the QOSstructure is set to a service type other than
SERVICETYPE_BESTEFFORT or SERVICETYPE_NOTRAFFIC. Note that there are a
number of individual APls that can invoke the RSVP SP. For more information, see
Invoking the RSVP SP.

762 Volume 1 Winsock and QOS

Another mechanism that an application developer can use to invoke RSVP, and to gain
access to advanced RSVP features available in the QOS structure, is through the
ProviderSpecific buffer in the QOS structure.

The ProviderSpecific buffer can be used in conjunction with the
RSVP _RESERVE_INFO object. When specific RSVP-based reservation .information is
specified in the RSVP _RESERVE_INFO object, RSVP SP-supplied default information
is superseded by the information, enabling application developers to fine-tune the way
RSVP handles reservation requests (and responses). For more information on using the
RSVP _RESERVE_INFO object, see Using the RSVP _RESERVE_'NFO Object. For
more information about the FLOWSPEC structure, including which of its members can
be defaulted, see FLOWSPEC.

Using the RSVP _RESERVEJNFO Object
The RSVP _RESERVE_INFO object enables application developers to specify granular
QOS parameters directly to RSVP, providing a mechanism for fine-tuning RSVP
reservations. To implement the object, you must pass a filled RSVP _RESERVE_INFO
object to the RSVP SP using the ProviderSpecific buffer. The following members can
be fine~tuned with the RSVP _RESERVE_INFO object:

• RSVP Filter Style

• RESV Confirmation Request

• Policy Objects

• List of flow descriptors

Confirming RSVP Reservations
The RSVP _RESERVE_INFO object enables a receiving application to be notified of the
outcome of an RSVP reservation request. RSVP reservation confirmation is achieved by
setting the Confirm Request member of the RSVP _RESERVE_INFO object to a
nonzero value. This setting is necessary because RSVP network nodes are not required
to automatically generate RSVP CONFIRMATION messages, per the RSVP
specification.

Until the presence of a reservation is discerned (senders learn about the presence of a
reservation by listening for a WSA_QOS_RECEIVERS event), data for the connection
will be treated as BEST_EFFORT traffic, which provides a compelling reason for network
programmers to enable RSVP confirmation immediately after a WSAConnect,
WSAJoinLeaf function call, or use of the SIO_SET_QOS IOCTL.

Senders can query whether their application is allowed to send by using
SIO_CHK_QOS. If the binary result of ALLOWED_ TO_SEND is false (indicating that the
application is not allowed to send) and the application chooses to send anyway, the
traffic is treated as BEST_EFFORT. Once the RESV message arrives at the sender
(triggering the RSVP confirmation), the RSVP SP on the sending host modifies traffic
control service to match the service type in the RESV message, and the traffic is treated
as per the service type.

Chapter 14 QOS Programming 763

RSVP confirmation requests are only useful for receiving applications.

Disabling RSVP Signaling
Both receiving applications and senders may disable RSVP signaling on a per-flow basis
(a flow is a unidirectional aOS-enabled connection). Disabling RSVP signaling for a
given flow is done by using the bitwise OR operator in the
SERVICE_NO_aOS_SIGNALING flag with the value in the ServiceType field of the
ReceivingFlowspec member of the QOS structure.

RSVP Reservation Styles
RSVP recognizes three reservation styles that define how RSVP-enabled network
devices set up reservations along the path between an end-to-end aOS-enabled
connection. RSVP reservation styles are also sometimes called reservation styles. The
three RSVP reservation styles are:

• Fixed Filter (FF)

• Wildcard Filter (WF)

• Shared Explicit (SE)

RSVP reservation styles either establish a distinct reservation for each upstream sender,
or make a single reservation that is shared among all senders' packets. The RSVP SP
automatically selects an appropriate RSVP-reservation style based on the type of

. connection (unicast or multicast) aspart of its RSVP invocation. Application
programmers can override the RSVP SP's selection of reservation style, overriding the
setting that the RSVP SP provides, through use of the Style member of the
~SVP _RESERVE_INFO object. For more information on overriding this setting, see
Overriding Default RSVP Filter Style Settings.

Base RSVP Reservation Styles
RSVP recognizes three base reservation styles. Note that not all RSVP reservation
styles are available without direct interaction (through the ProviderSpecific buffer)
with RSVP.

RSVP Fixed Filter
The fixed filter (FF) RSVP reservation style implies a distinct reservation and an explicit
sender. This contrasts with other reservation styles in that a reservation is made for
individual senders, and the reservation is not shared with any other sender.

The fixed filter style is appropriate (and its definition implied) for use withunicast
sessions. The RSVP SP uses the fixed filter for all TCP receivers, and for unicast UPD
receivers attempting to establish a aOS-enabled connection.

764 Volume 1 Winsock and QOS

RSVP Wildcard Filter
The wildcard filter (WF) RSVP reservation style implies that a single reservation is
shared among all senders in the session. The wildcard filter style is appropriate for use
with applications such as audio conferencing, for example, in which only one or two
speakers at a time can speak (in order for the audio conference to be meaningful); in
which case only one reservation is necessary to service all participants.

RSVP Shared Explicit
The shared explicit (SE) RSVP reservation style is a hybrid of the other two RSVP
reservation styles; with the shared explicit style, the receiving application is making a
reservation which can be shared (explicitly) by selected senders. The shared explicit
style is appropriate for applications such as a video conference in which, unlike the WF
reservation, only participants who are explicitly listed benefit from the RSVP reservation.

The RSVP SP does not use the shared explicit filter by default. Applications that want to
use the shared explicit filter must set the Style member of the RSVP _RESERVE_INFO
object to RSVP _SHARED_EXPLICIT _STYLE, and must specify the list of senders in
flowdescripfolS.

It is important to note that the number of senders included in any individual Shared
Explicit reservation should be limited to a reasonable number of senders (such as 10). If
more than approximately 10 senders will be included in a given reservation, senders
should use the WF reservation style.

Default RSVP Filter Style Settings
The RSVP SP sets RSVP reservation style based on the type of socket on which the
reservation request is based. Default settings are applied to their corresponding
connection types when the RSVP SP makes RSVP signaling requests on behalf of an
application when there is no reservation, and when RSVP _DEFAULT_STYLE is
specified in the Style member of the RSVP _RESERVE_INFO object.

Note, however, that these default settings can be overridden by setting the Style
member of the RSVP _RESERVE_INFO object to one of the other available RSVP filter
styles.

Unicast Receivers
Applications that request QOS service provisions for unicast sessions are assumed to
require the fixed filter (FF) RSVP filter style. While TCP receivers are always assumed to
be unicast receivers, only UDP unicast receivers that use the WSAConnect function are
provided with the Fixed Filter RSVP filter style; otherwise, UDP unicast receivers are
provided with the wildcard filter (WF) RSVP reservation style.

Multicast Receivers
Applications that request QOS service provisions for multicast sessions are assumed to
require the wildcard filter (WF) RSVP reservation style.

Chapter 14 QOS Programming 765

Use of the RSVP _DEFAULT_STYLE Filter Style
The RSVP _DEFAULT _STYLE filter style enables an application developer to specify
parameters in other members of the RSVP _RESERVE_INFO object without having to
explicitly indicate (or override) the RSVP filter style applied by the RSVP SP.

When the connection is TCP or connected UDP, specifying RSVP _DEFAULT_STYLE
implements the fixed filter (FF) style.

When the connection is multicast or unconnected UDP, specifying
RSVP _DEFAULT _STYLE implements the wildcard filter (WF) style.

Overriding Default RSVP Filter Style Settings
Default RSVP filter style settings can be overridden through the use of the
RSVP _RESERVE_INFO object by specifying one of the following values in the Style
member of the RSVP _RESERVE_INFO object, along with required f/owdescriptors.

The RSVP _FIXED_FILTER_STYLE Object
The RSVP _FIXED_FIL TER_STYLE object may be specified in the Style member of the
RSVP _RESERVE_INFO object to override default settings of the wildcard filter (WF)
RSVP filter style setting for multicast or unconnected UDP unicast receivers. This
capability is useful when a multicast session has multiple senders; rather than accepting
the default WF reservation that provides a shared reservation among all senders, you
can use RSVP _FIXED_FIL TER_STYLE to set up individual reservations for each
sender. Another similar situation is when the receiver is using unconnected UDP to
receive from multiple senders, in which a RSVP _FIXED_FILTER_STYLE can again be
used to set up individual reservations for each sender.

Note that f/owdescriptors must be specified when using the
RSVP _FIXED_FIL TER_STYLE object, and the NumFlowDesc member of
RSVP _RESERVE_INFO is set to the number of senders, and FlowDescList of
RSVP _RESERVE_INFO is set to each sender's address/port. This is only appropriate
when multiple senders are involved.

The RSVP _WILDCARD_STYLE Object
The RSVP _WILDCARD_STYLE object may be specified in the Style member of the
RSVP _RESERVE_INFO object to override default settings of the fixed filter (FF) RSVP
filter style setting for unicast receivers.

Note that flowdescriptors must not be specified when using the
RSVP _WILDCARD_STYLE object, such that the NumFlowDesc member of
RSVP _RESERVE_INFO is set to zero, and FlowDescList of RSVP _RESERVE_INFO is
set to NULL.

The RSVP _SHARED_EXPLICIT _STYLE Object
The RSVP _SHARED_EXPLICIT_STYLE object may be specified in the Style member
of the RSVP _RESERVE_INFO object to override default RSVP filter style settings. The
RSVP _SHARED_EXPLICIT _STYLE object is used to create an RSVP Shared Explicit

766 Volume 1 Win sock and QOS

(SE) reservation (see Base RSVP Reservation Styles). Note that the only way to create
connections that use the shared explicit (SE) RSVP filter style is through this
mechanism.

The RSVP _SHARED_EXPLICIT_STYLE object cannot be applied to TCP receivers or
to connected UDP receivers.

When the RSVP _SHARED_EXPLICIT _STYLE is used, the flow's resources are shared
between all senders listed in the FilterSpec. Also, when using the
RSVP _SHARED_EXPLICIT _STYLE object, f/owdescriptors must be specified, such that
the NumFlowDesc member of RSVP _RESERVE_INFO is set to 1, and FlowDescList
of RSVP _RESERVE_INFO is not set to NULL.

It is important to note that the number of senders included in any individual Shared
Explicit reservation should be limited to a reasonable number of senders (such as 10). If
more than 10 senders will be included in a given reservation, senders should use the WF
reservation style.

Generating Multiple Fixed Filter Reservations in a Single Reservation
It may be useful in certain situations to enable a receiver to reserve mutually exclusive
flows for multiple, explicitly identified sources. This is achieved by generating multiple
fixed filter (FF) RSVP reservations in a single reservation.

To do this, specify RSVP _FIXED_FIL TER_STYLE in the Style member of the
RSVP _RESERVE_INFO object, followed by a list of multiple f/owdescriptors. So for n
explicitly identified sources, the NumFlowDesc member of the RSVP _RESERVE_INFO
object is set to n, and the FlowDescList member of the RSVP _RESERVE_INFO object
is set to n sender addresses/ports.

Note that this cannot be done with TCP receivers, as TCP receivers are assumed
connected to a single-peer sender. This should not be applied to UDP receivers that
have been connected using the WSAConnect function. In these cases, the transport
discards data from all senders other than the sender specified in the WSAConnect
function call.

Mapping RSVP SP Parameters to RSVP
In order to provide quality of service parameters from the RSVP SP to RSVP, there must
be some mechanism to translate parameters that the application provides in the QOS
structure to RSVP. Passing RSVP-requisite service quality parameters, based on
information provided by the application to the RSVP SP, is done through mapping.

The information provided to RSVP is derived from the SendingFlowspec and
ReceivingFlowspec members of the FLOWSPEC structure, itself a member of the QOS
structure.

Chapter 14 QOS Programming 767

RSVP PATH and RESV Messages
RSVP establishes QOS-enabled connections through the use of PATH and RESV
messages. A short explanation of each, and how they pertain to Windows 2000 QOS
and the RSVP SP is merited. For a thorough explanation and discussion of RSVP PATH
and RESV messages, consult IETF RFC 2205.

When a QOS-enabled connection is established and RSVP signaling is triggered (see
Invoking RSVP), the sender and receiver(s} play specific roles in the establishment of an
RSVP session:

• The sender emits PATH messages toward the receiver (or receivers).

• The receiver waits until the PATH message corresponding to the flow arrives, then
issues a RESV message.

The information contained in the PATH and RESV messages is derived from the
FLOWSPEC structures associated with the SendingFlowspec and
ReceivingFlowspec members of the QOS structure.

Transmission of RSVP PATH and RESV Messages
When a PATH message is received, the RSVP SP creates an RSVP session and
associates a PATH state (based on the PATH message) with the RSVP session. The
RSVP SP sends RESV messages once it determines that the PATH state exists for a
session that matches a socket for which receiving QOS is indicated. In the absence of a
received PATH message, the RSVP SP creates an RSVP session using QOS
parameters (and thereby, QOS is invoked) on a receive socket. In this latter case, PATH
state is not associated with the session until a matching PATH message is received.

The transmission of RESV messages, therefore, may be triggered by the following
circumstances:

• Upon receipt of a PATH message that matches the session associated with a
preexisting socket.

• Upon creation of a socket that matches the session associated with a preexisting
PATH state.

RSVP PATH Message Parameters
RSVP PATH messages derive their RSVP sender Tspecfrom the SendingFlowspec
member ofthe QOS structure (the SendingFlowspec member of QOS is itself a
FLOWSPEC structure).

The following table outlines the information required to begin transmission of RSVP
PATH messages, and how the information is derived from the QOS structure or other
information provided by the sender. The RSVP PATH parameters discussed serve the
following purposes.

768 Volume 1 Winsock and QOS

• SenderTspec contains aos parameters for sent traffic.

• SenderTemplate contains the sender's address.

• Session contains the destination of the sent traffic.

RSVP PATH parameter

SenderTspec

SenderTemplate

Session

Equivalent receiver-based parameters

SendingFlowspec member of the QOS structure.

Source IP address/port to which sending socket is
bound.

Destination IP address/port and protocol identifier to
which the socket is sending (sockaddr_in).

Note that the RSVP session parameter includes specification of the protocol identifier
can be UDP or TCP. The type of socket on which the aOS-enabled connection is being
invoked determines the protocol identifier.

RSVP RESV Message Parameters
RSVP RESV messages derive their RSVP FLOWSPEC parameters from the
ReceivingFlowspec member of the QOS structure (the ReceivingFlowspec member of
QOS is itself a FLOWSPEC structure).

The following table outlines the information required to begin transmission of RSVP
RESV messages, and how the information is derived from the QOS structure or other
information provided by the receiver. The RSVP RESV parameters discussed serve the
following purposes:

• Flowspec contains desired aos parameters for traffic to be received.

• Filterspec contains the source or sources from which aOS-enabled traffic will be
received.

• Session contains the destination of the sent traffic.

RSVP RESV parameter

flowspec

Filterspec (source(s) from which
aos traffic will be received)*.

Session (destination of sent
traffic).

Derived from the following Winsock parameter

ReceivingFlowspec member of the QOS structure
or the ProviderSpecific buffer.

Address(es) of peer(s) from which the socket is
receiving.

Local IP address and port to which the receiving
socket is bound (unicast), or multicast session
address to which the socket has joined (multicast).

* Strictly speaking, RES V messages can be generated without knowledge of the sender's address. These
type of RESV messages are said to be WF style, meaning that they apply to all senders in the session.

The WF reservation style RESV messages do not have any filterspecs, so receivers
need not supply the sender an IP address.

Chapter 14 QOS Programming 769

Tspec, FlowSpec, and Adspec
RSVP transmits request information for a QOS-enabled connection with RSVP PATH
and RESV messages. Within such PATH and RESV messages, certain values are used
to represent traffic and requested QOS parameters that enable a sender and receiver to
establish service quality parameters for a given flow:

• The sender Tspec (T representing traffic) specifies parameters available for the flow.
Both senders and receivers use Tspec (SenderTspec and ReceiverTspec,
respectively) .

• The FLOWSPEC specifies requested QOS parameters, and is used by the receiver in
RESV messages.

• The Adspec (ad for advertisement) enables QOS-enabled network devices in the path
between sender and receiver to advertise their service capabilities, resource
availability, and transmission characteristics.

RSVP Tspec
Both senders and receivers use Tspec, as part of SenderTspec and Receiverflowspec,
respectively.

Sender provides the Tspec to describe the traffic it will originate, and the receiver
provides the flowspec to describe the reservation it needs.

The RSVP Tspec derives its parameters from the SendingFlowspec member of a QOS
structure (SendingFlowspec is of type FLOWSPEC).

The following table explains how members in SendingFlowspec map to Tspec
parameters.

SendingFlowspec Parameter Tspec

TokenRate

TokenBucketSize

PeakBandwidth

MinimumPolicedSize

MaxSduSize

DelayVariation

Latency

SenderTspec Specifics

TokenBucketRate

TokenBucketSize

PeakRate

MinimumPolicedUnit

MaximumPacketSize

The following items are specific to a sender's use of the RSVP Tspec in PATH
messages:

• If MaxSduSize is not specified in the Tspec included in the sender's PATH message,
the RSVP SP will default to a value of 1,500 bytes.

• If MinimumPolicedSize is not specified in the Tspec included in the sender's PATH
message, the RSVP SP will default to a value of 128 bytes.

770 Volume 1 Winsock and QOS

Receiver Flowspec Specifics
For receivers, the contents of the RSVP f10wspec varies depending on requested service
type in the following ways:

• CONTROLLED LOAD service contains a Tspec.

• GUARANTEED service f10wspec contains a Tspec and an Rspec.

CONTROLLED LOAD Service
Receivers requesting CONTROLLED LOAD service may decide to specify only (but at
least) the ServiceType parameter in ReceivingFlowspec, setting remaining parameters
to QOS_UNSPECIFIED, in which case the RSVP SP copies the SenderTspecfrom the
matching PATH message into the ReceiverFlowspec sent with the corresponding RESV
message. In order to specify additional parameters in the ReceiverFlowspec (allowing
remaining flow parameters set to aOS_UNSPECIFIED to be derived from the
SenderTspec), an application may provide values for other ReceivingFlowspec
parameters.

GUARANTEED Service
When a receiver requests GUARANTEED service, the RSVP SP copies SenderTspec
from the matching PATH message into the ReceiverFlowspec sent with the
corresponding RESV message.

RSVP Rspec
The RSVP Rspec specifies requested QOS parameters, and is used by the receiver in
RESV messages to transmit requested reservation parameters only when
GUARANTEED service is specified by the application. The Rspec derives its parameters
from the ReceivingFlowspec member of a QOS structure (ReceivingFlowspec is of
type FLOWSPEC).

The following table explains how parameters in ReceivingFlowspec map to Tspec
parameters.

ReceivingFlowspec parameter

TokenRate

TokenBucketSize

PeakBandwidth

MinimumPolicedSize

MaxSduSize

DelayVariation

Latency

Rspec

Rate

DelaySlackTerm

The application specifying GUARANTEED service is expected to provide two of the
three parameters, in the following combinations.

Chapter 14 QOS Programming 771

• TokenRate

• DelayVariation

• DelayVariation

• Latency

If an application fails to specify two of the three required parameters, the RSVP SP infers
appropriate values based on the corresponding PATH message(s). The following table
explains how the provided parameters are used by the RSVP SP to construct the RSVP
Rspec.

Application specifies:

TokenRate and DelayVariation

DelayVariation and Latency

RSVP Adspec

RSVP SP constructs Rspec:

Rate is copied from TokenRate

DelaySlackTerm is copied from DelayVariation

Latency parameter ignored

Rate parameter of Rspec calculated based on
DelayVariation and Latency and other
parameters obtained from Adspec

Each RSVP PATH message includes an Adspec, which enables QOS-enabled network
devices in the path between sender and receiver to advertise the services they support,
their resource availability and transmission characteristics. Such information can be
useful in helping the receiving application select FLOWSPEC.

Mapping QOS Call Sequences to RSVP
RSVP signaling is invoked once a series of QOS calls that initiate QOS activity are
called. Such call sequences tend to differ based on whether an application is a sender or
receiver, and for that reason, senders and receivers are discussed separately.

Often, applications will be both sender and receiver, in which case both sender and
receiver call sequences may apply.

Sending Applications
In order for the RSVP SP to invoke RSVP processing and signaling, the following
information must be available:

• Peer address (the receiver's address). This enables RSVP to create its session
object.

• Source address (the sender's local address). This enables RSVP to create its
SenderTemplate object.

• QOS parameters in the form of a SendingFlowspec (a member of the QOS
structure). This enables RSVP to generate its sender Tspec object.

772 Volume 1 Winsock and QOS

The means by which the RSVP SP derives information necessary to satisfy those three
requirements is outlined in the following table.

Sender type

UDP unicast
sender

UDP multicast
sender

TCP unicast
sender

Session information
derived from:

Destination address and
port specified in the name
parameter of the
WSAConnect function.

Multicast IP address and
port as specified in the
name parameter of the
WSAJoinLeaf function.

Peer (destination) address
and port as determined by
a call to the getpeername
function, following
connection establishment.

SenderTemplate derived from:

Local port determined by a RSVP SP
call to the getsockname function.

For sockets bound explicitly by the
application, to a specific address, the
RSVP SP calls the getsockname
function to get the local address/port.

For sockets bound by the application
to INADDR_ANY, the RSVP SP gets
the local address by issuing a routing
interface query on the destination
address (as obtained from the
application's call to the WSAConnect
or WSAJoinLeaf function).

Same as above.

Local address and local port
determined by call to the
getsockname function following
connection establishment.

Details of each of these sender types are outlined individually in the following reference
pages:

• UDP unicast senders

• UDP multicast senders

• TCP unicast senders

UDP Unicast Senders
The RSVP SP derives information for the initiation of RSVP processing and signaling for
UDP unicast senders based on the following table.

Sender type

UDP unicast
sender

Session information
derived from:

Destination address and
port specified in the name
parameter of the
WSAConnect function.

Chapter 14 aos Programming 773

SenderTempiate derived from:

Local port determined by a RSVP SP
call to the getsockname function.

For sockets bound explicitly by the
application, to a specific address, the
RSVP SP calls the getsockname
function to get the local address.

For sockets bound by the application
to INADDR_ANY, the RSVP SP gets
the local address by issuing a routing
interface query on the destination
address (as obtained from the
application's call to the WSAConnect
or WSAJoinLeaf function).

Unicast UDP senders typically call the WSAConnect function to invoke RSVP
processing and signaling. For sockets that have been bound using INADDR_ANY, the
RSVP SP uses the peer address to determine the local address to use SenderTemplate
by issuing a routing interface query to the underlying transport service provider. This
approach returns the address of the local interface used to reach the specified peer.

Typically, the WSAConnect function call includes sending QOS parameters
(SendingFlowspec). Alternatively, the sending application may use the
WSAloctl(SIO_SET_QOS) function/opcode call to provide sending QOS parameters to
the RSVP SP, either before or after the WSAConnect function call.

RSVP processing begins as soon as the RSVP SP knows the peer address (from which
it may also determine the local bound address) and the sending QOS parameters.

Application programmers can also choose to use unconnected UDP sockets using
Wsaloctl(SIO_SET_QOS) by specifying a QOS_OBJECT_DESTADDR object in the
ProviderSpecific buffer of the QOS structure. In this scenario, the session information is
derived from the QOS_OBJECT_DESTADDR object.

Note for unconnected UDP sockets An application may choose to use unconnected
UDP sockets by specifying a QOS_OBJECT_DESTADDR object in the
ProviderSpecific buffer of the QOS structure. In this case, the session information is
derived from the QOS_OBJECT_DESTADDR object.

UDP Multicast Senders
The RSVP SP derives information for the initiation of RSVP signaling for UDP multicast
senders based on the following table.

774 Volume 1 Winsock and aos

Sender type

UDP multicast
sender

Session information
derived from:

Multicast IP address and
port as specified in the
name parameter of the
WSAJoinLeaf function.

SenderTemplate derived from:

Local port determined by RSVP SP
call to the getsockname function.

For sockets bound explicitly by the
application, to a specific address, the
RSVP SP calls the getsockname
function to get the local address.

For sockets bound by the application
to INADDR_ANY, the RSVP SP gets
the local address by issuing a routing
interface query on the destination
address (as obtained from the
application's call to the WSAConnect
or WSAJoinLeaf function).

Multicast UDP senders typically call the WSAJoinLeaf function to invoke RSVP
signaling. The WSAJoinLeaf function call provides the destination multicast session
address, and may also be used to provide QOS parameters through its LPQOS
parameter. If QOS parameters are not provided with the call to WSAJoinLeaf, they must
be provided separately with a call to the WSAloctl(SIO_SET _QOS) function/opcode
pair. The RSVP session object included in the corresponding PATH messages is derived
from the multicast session address.

For sockets that have been bound using INADDR_ANY, the RSVP SP uses the
multicast session address to determine the local address used in SenderTemplate by
issuing a routing interface query to the underlying transport service provider. This
approach returns the address of the local interface used to reach the specified peer.
RSVP processing begins as soon as the RSVP SP knows the peer address and the
sending QOS parameters.

TCP Unicast Senders
The RSVP SP derives information for the initiation of RSVP processing and signaling for
TCP unicast senders based on the following table.

Sender type

TCP unicast
sender

Session information
derived from:

Peer (destination) address
and port as determined by
a call to the getpeername
function, following
connection establishment.

SenderTemplate derived from:

Local address and local port
determined by call to the
getsockname function following
connection establishment.

Chapter 14 OOS Programming 775

Generally, sockets are connected through the interaction of an active and passive peer;
the active peer issues a WSAConnect function call, and the passive peer issues a
WSAAccept function call. In most circumstances the receiver is the active peer, the
sender the passive peer. This page assumes the sender is the passive peer; for cases
where the sender is the active peer, refer to TCP unicast receivers.

Upon calling the WSAAccept function, the TCP unicast sender can gather OOS
parameters through the WSAAccept function's callback function, but in order to do so,
the application must complete the callback function with status CF _ACCEPT. The RSVP
SP does not use the ProviderSpecific buffer when calling the WSAAccept function's
callback function.

Applications may alternatively set OOS parameters on the socket (or any parameters
that require use of the ProviderSpecific buffer) through the use of the
WSAloctl(SIO_SET _OOS) function/opcode call. However, if the application has
previously associated OOS parameters with the sqcket by calling the
WSAloctl(SIO_SET _OOS) function/opcode pair, completion of the callback function
may modify OOS parameters unless the ServiceType parameters in the corresponding
FLOWSPEC structures are set to SERVICETYPE_NOCHANGE.

The application may also set OOS parameters on the listening socket prior to the call to
WSAAccept, and these settings are inherited by the accepted socket, but any
parameters set in the WSAAccept function's callback function take precedence. RSVP
processing begins as soon as the RSVP SP knows the peer address, the address to
which the socket is locally bound, and the sending OOS parameters.

Receiving Applications
For the RSVP SP to invoke RSVP processing and signaling, the receiving application is
required to provide the following information:

• OOS parameters, through the use of the ReceivingFlowspec member of the QOS
structure. Receiving applications generally provide such OOS parameters in a call to
the WSAConnect or WSAJoinLeaf functions, or in a call to the
WSAloctl(SIO_SET _OOS) function/opcode pair.

For receiving applications, the RSVP SP must create a session object, and in certain
cases must create a filterspec object (filterspec selects a subset of the senders by
specifying their address) for placement into its RESV messages. These objects are
generally matched to the PATH state (which itself is derived from corresponding PATH
messages). In order to limit matching of the PATH state, the RSVP SP needs the
following information:

• Peer address or addresses (the source address). This enables RSVP to limit RSVP
sessions for which RESV messages are sent.

• Local address. The RSVP SP uses the local address to match received PATH
messages and to select the interface on which to send out the RESV message.

776 Volume 1 Winsock and QOS

Transmission of RESV messages begins as soon as the RSVP service has sufficient
information.

Details of each of these receiver types are outlined individually in the following sections:

• UDP unicast receivers

• UDP multicast receivers

• TCP unicast receivers

UDP Unicast Receivers
UDP unicast receivers can initiate a OOS-enabled connection by providing OOS
parameters to the RSVP SP using either of the following methods:

• A call to the WSAConnect function

• A call using the WSAloctl(SIO_SET _OOS) function/opcode pair.

Using WSAConnect

A UDP unicast receiver should use the WSAConnect function only if it wants to receive
from a single sender; using WSAConnect causes traffic received from other senders to
be discarded. In order to receive traffic from multiple senders using the WSAConnect
function, a separate socket must be created for each sender. By using the WSAConnect
function as a UDP unicast receiver, the application provides a peer address and, in
doing so, selects a specific sender.

When a UDP unicast receiver uses the WSAConnect function, the RSVP SP sends
RESV messages only when the PATH state exists for the specified sender, and uses the
included peer address to compose fixed filter style (FF) RESV messages.

Note that using the WSAConnect function may cause the RSVP SP to cease sending
RESV messages that were triggered in a previous call to the WSAloctl(SIO_SET _OOS)
function/lOCTL pair; this is because PATH state, though it may have existed for some
sender, may not have existed for the sender specified in the WSAConnect function call.

Using WSAloctl(SIO_SET_QOS)

A UDP unicast receiver can use the WSAloctl(SIO_SET _OOS) function/lOCTL pair to
indicate receiving OOS parameters, after which the RSVP SP begins transmitting RESV
messages for any matching PATH state. Since the WSAloctl(SIO_SET_OOS)
function/lOCTL pair does not associate a peer address with the socket (unless the
ProviderSpecific buffer is used to specify a particular sender), the socket will match
PATH state of any sender in this RSVP session.

When the WSAloctl(SIO_SET _OOS) function/lOCTL pair is used by a UDP unicast
receiver, the RSVP SP transmits wildcard filter (WF) style RESV messages. Note that
WF RESV messages are used for unconnected UDP sockets only; connected UDP
sockets result in Fixed Filter (FF) style reservations.

Chapter 14 QOS Programming 777

Combining WSAConnect and WSAloctl(SIO_SET_QOS)

A UDP unicast receiver may call both the WSAloctl(SIO_SET _OOS) function/lOCTL
pair and the WSAConnect function in any order. In either case, the RSVP service
begins sending RESV messages as soon as the indicated OOS parameters match a
PATH state.

If the WSAloctl(SIO_SET _OOS) function/lOCTL pair is called before the WSAConnect
function, the RSVP SP initially sends wildcard filter (WF) RESV messages, presuming a
matching PATH state. Subsequently (upon calling of the WSAConnect function, its
specified peer, and a matching PATH state) the RSVP SP sends a RESVTEAR
message for the WF style reservation followed by fixed filter (FF) style RESV messages.

Calling the WSAloctl(SIO_SET _OOS) function/lOCTL pair subsequent to a call to the
WSAConnect function does not negate the selection of a specific sender. Therefore,
while the WSAloctl(SIO_SET _OOS) function/lOCTL pair is a useful method of altering
RESV messages (such as altering OOS parameters, or terminating RESV messages
altogether by indicating BEST_EFFORT), its use does not cause the RSVP SP to send
wildcard filter (WF) style RESV messages.

UDP Multicast Receivers
UDP multicast receivers are expected to do the following:

• Create UDP sockets using the WSASocket function.

• Indicate that they are multicast receivers in the accompanying (WSASocket) flags .

• Call the WSAJoinLeaf function to indicate the multicast session they want to join.

UDP multicast receivers can indicate OOS parameters either through their call to the
WSAJoinLeaf function, or through the use of the WSAloctl(SIO_SET _OOS)
function/lOCTL pair.

The RSVP SP does not send RESV messages for UDP multicast receivers until a
multicast session address is unambiguously specified through the use of a
WSAJoinLeaf function call. The RSVP SP does not use parameters with which the
socket is bound; since no peer is specified, the RSVP service sends a WF style RESV
message only when it has a PATH state from at least one sender.

A UDP unicast receiver may call both the WSAloctl(SIO_SET_OOS) function/lOCTL
pair and the WSAJoinLeaf function in any order. In either case, the RSVP service
begins sending RESV messages as soon as there is a sender in the multicast session.
However, with multicast receivers the matching PATH state will only be found if a
multicast socket has been created with a matching multicast session address.

Joining Multiple Multicast Groups on a Single Socket

When a UDP multicast receiver joins multiple multicast groups on a single socket, the
RSVP SP sends RESV messages for all groups for which there is amatching PATH
state. OOS parameters are obtained separately from the ReceivingFlowspec included

778 Volume 1 Winsock and aos

in individual WSAJoinLeaf function calls made for each multicast group. However, if the
WSAloctl(SIO_SET _OOS) function/IOCTL pair is called, its specified OOS parameters
are applied to all presently joined multicast groups.

Tep Unicast Receivers
TCP receivers are generally the active peer in a TCP connection. TCP unicast receivers
are therefore expected to initiate a OOS-enabled connection by providing OOS
parameters to the RSVP SP using one of the following methods:

• A call to the WSAConnect function

• A call using the WSAloctl(SIO_SET _OOS) function/opcode pair.

The RSVP SP uses the address specified in the WSAConnect function call to specify
the peer sender's address, which enables RSVP to compose its filterspec for fixed filter
(FF) style RESV messages. The RSVP SP begins RSVP processing.

RSVP will start signaling as soon as the RSVP SP knows the receiving OOS
parameters, and those parameters match a PATH state; PATH state only matches if the
associated socket's session address matches the bound address and its
SenderTemplate matches the peer address.

If the receiving socket is bound using INADDR_ANY, the bound address cannot be
determined until the WSAConnect function is called. Under this circumstance, RESV
messages are delayed until, following connection establishment, the RSVP SP
automatically calls the getsockname function to determine local address.

Receiver Reservation Semantics
The process of joining RSVP sessions includes making appropriate function calls
particular to the type of RSVP session an application wants to join. Due to their inherent
differences, and the difference in the way each handles sockets, unicast (both TCP and
UDP) and multicast sessions are best discussed individually. To generalize, the following
are usually true:

• Unicast sessions usually include use of the WSAConnect function.

• Multicast sessions generally use the WSAJoinLeaf function (and sendto for multicast
senders).

• Both unicast and multicast can use the WSAloctl(SIO_SET _OOS)
function/opcode pair.

Each of these common methods for joining RSVP sessions is discussed individually.

Using WSAConnect to Join Unicast RSVP Sessions
The WSAConnect function is generally used by unicast receivers to join RSVP
sessions. The behavior is somewhat different with TCP sessions and UDP unicast
sessions.

Chapter 14 QOS Programming 779

TCP Sessions

The use of the WSAConnect function with RSVP-enabled TCP sessions is fairly simple,
if somewhat stringent, because parameters match quite well between parameters
associated with the WSAConnect function and parameters necessary for RSVP to
operate. The following table illustrates which conditions of a TCP socket (left column)
correspond to RSVP conditions (right column) that enable the TCP socket to join the
session.

TCP Socket is: RSVP session is joined:

Not bound, or is bound and not Never
connected (the WSAConnect
function is not issued)

Bound and connected If both of the following conditions are true:

UDP Unicast Sessions

The port and address specified in any TCP session
matches the socket's bound port and address.

SenderTemplate, which is specified in PATH state
associated with the session, matches the connected
peer's port and address.

The use of the WSAConnect function with RSVP-enabled UDP unicast sessions is less
stringent than its use with TCP sessions, largely due to the fact that it is not always
possible to determine unique addresses associated with a UDP socket. The following
table illustrates which conditions of a UDP unicast socket (left column) correspond to
RSVP conditions (right column) that enable the UDP unicast socket to join the session.
These mappings do not apply to UDP multicast sessions.

UDP unicast socket is:

Not bound and not connected.

Bound using INADDR_ANY, and
not connected (the WSAConnect
function is not issued).

Bound using a specific address and
not connected.

Bound using INADDR_ANY, and
connected.

RSVP session is joined:

Never

If the port specified in any UDP session matches
the socket's bound port.

If the port and address specified in any UDP
session matches the socket's bound port and
address.

If both of the following conditions are true:

The port specified in any UDP session matches
the socket's bound port.

SenderTemplate, which is specified in PATH
state associated with the UDP session, matches
the connected peer's port and address.

(continued)

780 Volume 1 Winsock and QOS

(continued)

UDP unicast socket is:

Bound using a specific address and
connected.

RSVP session is joined:

If both of the following conditions are true:

The port and address specified in any UDP
session matches the socket's bound port and
address.

SenderTemplate, which is specified in PATH
state associated with the session, matches the
connected peer's port and address.

Using WSAJoinLeaf to Join Multicast RSVP Sessions
Multicast UDP receivers are expected to create the multicast UDP socket using the
WSASocket function, and indicate that they are multicast receivers in the accompanying
(WSASocket) flags. If multicast UDP sockets don't use the WSASocket function (and
associated multicast flags), the RSVP SP may not be able to determine that the socket is
multicast, and therefore may send undesired RESV messages based on unicast
matching rules described in the Using WSAConnect to Join unicast RSVP Sessions
section.

The following table illustrates which conditions of a UDP multicast socket (left column)
correspond to RSVP conditions (right column) that enable the UDP multicast socket to
join the session (note these mappings do not apply to UDP unicast sessions).

UDP multicast socket is:

Not joined to a specific multicast group
(the WSAJoinLeaf function is not
issued).

Joined to a specific multicast group
(using the WSAJoinLeaf function).

RSVP session is joined:

Never

The multicast address specified in any UDP
session matches the multicast address
specified in the WSAJoinLeaf function call.

Applications are required to use the WSAJoinLeaf function call before sending or
receiving multicast traffic, and are required to set the dwFlags parameter of the
WSAJoinLeaf function to JL_SENDER_ONL Y, JL_RECEIVER_ONL Y or JL_BOTH, to
indicate the direction in which QOS service is requested.

It is important to note that alternate multicast semantics, such as simply calling the
sendto function with a multicast address (for sending) or using IP _ADD_MEMBERSHIP
(for receiving) do not invoke QOS service, even if the IOCTL is issued.

Chapter 14 aos Programming 781

Use of Sendto and WSASendTo by Multicast Senders
Senders that join multicast sessions using the WSAJoinLeaf function are required to call
the sendto or WSASendTo function with the correct multicast session address to send
data to the multicast session (even though the multicast session address is already
provided with the WSAJoinLeaf function call). If the sending application calls the sendto
or WSASendTo function specifying a multicast session address other than the address
specified with the WSAJoinLeaf function call, the data will not receive QOS
provisioning. This requirement is due to the fact that the sender's RSVP service
generates the RSVP session based on the multicast session address specified in the
call to the WSAJoinLeaf function.

Also note that QOS-enabled applications should only call the sendto or WSASendTo
function when acting as a multicast sender. Unicast (UDP or TCP) sender applications
must specify their destination address using WSAConnect, and it is sufficient for that
application to use the send or WSASend function calls, rather than the sendto or
WSASendTo functions.

Using WSAloctl(SIO_SET _QOS) During RSVP Sessions
The use of WSAloctl(SIO_SET _QOS) is often unnecessary; the use of connection
oriented Windows Sockets function calls (such as the WSAConnect function) is
generally sufficient for providing the RSVP SP (and therefore RSVP) with requisite QOS
parameters.

One exception is when a UDP application receives from multiple senders, in which case
the WSAloctl(SIO_SET _QOS) function/opcode pair must be used to specify QOS
parameters to avoid limiting the socket to receive traffic from a single sender (as the use
of a connection-oriented function call such as WSAConnect would do). This is a
limitation of Windows Sockets 2.

Another exception is when a UDP transmit uses the sendto function to transmit data to
one or more receivers through an unconnected socket (Microsoft® NetMeeting™
version 2.1 is an example of such an application). In this circumstance, the sending
application must do the following in order to invoke QOS provisioning:

• Supply the RSVP SP with one or more appropriate SendingFlowspec(s) by issuing
one or more SIO_SET _QOS 10CTLs.

• Provide the RSVP SP with the destination address by issuing a
QOS_OBJECT_DESTADDR object in the ProviderSpecific buffer.

The WSAloctl(SIO_SET _QOS) function/opcode pair is also useful for modifying QOS
parameters subsequent to the establishment of the connection with a connection
oriented function call. This functionality also enables an application to separate the
specification of QOS parameters from the determination of local and peer addresses
implicit in making a connection-oriented function call.

CHAPTER 15

QOS API Reference

QOS Functions
This section contains an alphabetical list of OOS functions.

• WPUGetQOSTempiate

• WSAGetQOSByName

• WSClnstallQOSTemplate

• WSCRemoveQOSTemplate

• WSPGetQOSByName

WPUGetQOSTempiate
The WPUGetQOSTempiate function retrieves a OOS template for a particular service
provider.

Parameters
IpProviderld

[in] Pointer to a provider selected-globally unique identifier (GUID).

IpOOSName
[in] Specifies the OOS template name.

IpOOS
[out] Pointer to a QOS structure.

Return Values
IfWPUGetQOSTempiate succeeds, the return value is zero. If the function fails, the
return value is SOCKET _~RROR. For extended error information, call
WSAGetLastError.

783

784 Volume 1 Winsock and aos

Remarks
The WPUGetQOSTempiate function retrieves a QOS-named template containing the
associated QOS structure. If IpProviderld is NULL, WPUGetQOSTempiate attempts to
find the QOS-named template in the global list of QOS names. Otherwise,
WPUGetQOSTempiate searches the template list specific to the service provider
indicated by IpProviderld.

The IpOOS parameter can include a ProviderSpecific buffer for retrieval with the basic
QOS structure. In this case, the ProviderSpecific buffer must be large enough to hold
the provider-specific information stored in the template; otherwise
WPUGetQOSTempiate returns WSAENOBUFS.

Error Codes
Error Code

WSAEFAULT

WSAEINVAL

WSA_NODATA

WSAENOBUFS

Meaning

The IpOOS or IpOOSName parameter is not a valid part of the
user address space.

The specified IpProviderld is invalid, or the IpOOS template is
invalid.

The specified QOS name could not be found.

The provider-specific buffer is too small.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Header: Declared in Qosname.h.
Library: Use Qosname.lib.

QOS, WSAGetQOSByName, WSClnstallQOSTemplate, WSCRemoveQOSTemplate

WSAGetQOSByName
The WSAGetQOSByName function initializes a QOS structure based on a named
template, or retrieves an enumeration of the available template names:

Parameters
s

[in] Descriptor identifying a socket.

IpOOSName

Chapter 15 QOS API Reference 785

[in, out] Specifies the aos template name or supplies a buffer to retrieve an
enumeration of available template names.

IpOOS
[out] Pointer to the QOS structure to be filled. The ProviderSpecific buffer member of
the QOS structure must be initialized before calling the WSAGetQOSByName
function.

Return Values
If WSAGetQOSByName succeeds, the return value is TRUE. If the function fails, the
return value is FALSE. For extended error information, call WSAGetLastError.

The algorithm that WSAGetQOSByName applies in its search for a template's name
match is:

• The socket's service provider checks for a provider-specific template-a template
installed specifically for the socket's service provider-with a name that matches the
service provider's name.

• If that fails, the service provider checks its internal table of QOS templates (if it has
such a table).

• If that fails, the service provider checks for a list of global aos templates.

• If any of the preceding steps succeeds, the service provider can modify the aos
template before returning it to Windows Sockets. Otherwise, WSAGetQOSByName
returns FALSE, and WSAGetLastError returns WSA_NODATA to indicate an
invalid name.

Remarks
Applications can use WSAGetQOSByName to initialize a QOS structure with a
prescribed set of known values appropriate for a particular service class or media type.
These known values are stored in a template, and the template is referenced by a well
known name. For example, if the service provider's DLL is named Ipphone.dll, the
template can be referenced by the name IPPHONE. Applications can retrieve these
values by setting the but member of WSABUF, indicated by IpOOSName, to pOint to a
string of nonzero length specifying a template name. When doing so, IpOOSName is an
[in] parameter only, and results are returned through IpOOS.

This function can also be used to retrieve an enumeration of available template names.
This is done by setting the but member of WSABUF, indicated by IpOOSName, to a
zero-length, null-terminated string. The buffer indicated by but is then overwritten with a
sequence of as many null-terminated template names as are available-up to the
number of bytes available in buf, as provided by the len member of WSABUF.

786 Volume 1 Winsock and QOS

The list of names itself is terminated by a zero-length name. When
WSAGetQOSByName is used to retrieve template names, the /pOOS parameter is
ignored.

If two templates have the same name, with one template being specific to the service
provider and the other being global, they will appear in the list only once.

Error Codes
Error Code

WSANOTINITIALIZED

WSAENETDOWN

WSAENOTSOCK

WSAEFAULT

WSAENOBUFS

WSA_NODATA

Meaning

A successful call to WSAStartup must occur before using
this function.

The network subsystem has failed.

The descriptor is not a socket.

The /pOOSName or /pOOS parameter is not a valid part of
the user address space.

The buffer length for /pOOS is too small.

The specified aos template name is invalid.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Header: Declared in Winsock2.h.
Library: Use Ws2_32.1ib.

QOS, WSAAccept, WSABUF, WSAConnect, WSAloctl, WSAStartup

WSClnstallQOSTemplate
The WSClnstallQOSTemplate function installs a aos template, based on a aos
name. This QOS structure (and thus its aos settings) can be retrieved by calling the
WSPGetQOSByName function and passing in its associated aos name. Note that the
caller of this function must have administrative rights.

Parameters
IpProviderld

Chapter 15 QOS API Reference 787

[in] Pointer to a provider-selected globally unique identifier (GUIO).

IpQOSName
[in] Specifies the QOS template name.

IpQOS
[in] Pointer to a QOS structure.

Return Values
If WSClnstallQOSTemplate succeeds, the return value is TRUE. If the function fails, the
return value is FALSE. For extended error information, call WSAGetLastError.

Remarks
The WSClnstallQOSTemplate function installs a QOS-named template containing the
specified and subsequently associated QOS structure, or replaces settings of an existing
template. Values are stored in nonvolatile storage, so subsequent calls to
WSAGetQOSByName, passing the same IpQOSName, return the QOS structure. If
IpProviderld is set to NULL, the installed QOS-named template applies across all service
providers; otherwise the QOS-named template applies only to the provider indicated by
the IpProviderld parameter.

Windows Sockets 2 ihcludes abase set of QOS templates. You can override and
replace any of these QOS templates or change an existing QOS template by simply
installing a new template with the existing name. You do not need to delete an existing
template before replacing or modifying it. You cannot delete the base set of QOS-named
templates.included in Windows. Sockets 2. However,You can delete templates added
subsequently, perhaps by other service providers.

The IpQOS parameter, which points to a QOS structure, can include a ProviderSpecific
buffer that will be stored with the basic QOS structure and returned in subsequent
WSAGetQOSByName calls.

You can provide the ProviderSpecific buffer-even if IpProviderld is set to NULL-to
install global name templates that include provider-specific information. Note that this
practice may lead the service provider to ignore the ProviderSpecific buffer if the
service provider does not recognize its contents. The recommended use of
WSClnstallQOSTemplate is to include a ProviderSpecific buffer only if the named

. template is being installed on a particular service provider,as implemented when
IpProvideridis not NULL.

788 Volume 1 Winsock and QOS

Error Codes
Error Code

WSAEINVAL

WSEFAULT

Meaning

The specified QOS template name or provider identifier is invalid, or
the contents of the template structure is invalid or incomplete.

One or more of the parameters is not a valid part of the user address
space.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Header: Declared in Qosname.h.
Library: Use Qosname.lib.

QOS, WPUGetQOSTemplate, WSAGetQOSByName, WSCRemoveQOSTemplate

WSCRemoveQOSTemplate
The WSCRemoveQOSTemplate function removes a QOS template. Note that the caller
of this function must have administrative rights.

Parameters
IpProviderld

[in] Pointer to a provider-selected globally unique identifier (GUID).

IpQOSName
[in] Specifies the QOS template name.

Return Values
If WSCRemoveQOSTemplate succeeds, the return value is TRUE. If the function fails,
the return value is FALSE. For extended error information, call WSAGetLastError.

Remarks
The WSCRemoveQOSTemplate function deletes a QOS template previously installed
with WSClnstallQOSTemplate. If IpProviderld is NULL, WSCRemoveQOSTemplate
attempts to find and delete a QOS template from the global list of QOS names.
Otherwise, WSCRemoveQOSTemplate attempts to find and delete a QOS template

Chapter 15 aos API Reference 789

specific to the service provider associated with IpProviderld. You cannot delete the base
set of aos names included with Windows Sockets 2. The WSAEINVAL error code will
be returned if such an attempt is made.

Error Codes
Error Code

WSAEINVAL

WSA_NODATA

WSEFAULT

Meaning

The specified aos template name is invalid.

The specified aos template could not be found.

One or more of the parameters is not a valid part of the user
address space.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Header: Declared in aosname.h.
Library: Use aosname.lib.

WPUGetQOSTemplate, WSAGetQOSByName, WSClnstallQOSTemplate

WSPGetQOSByName
The aos WSPGetQOSByName function initializes a QOS structure based ona named
template, or retrieves an enumeration of the available template names.

Parameters
s

[in] Descriptor identifying a socket.

IpQOSName
[in, out] Specifies the aos template name or supplies a buffer to retrieve an
enumeration of available template names.

IpQOS
[out] Pointer to the QOS structure to be filled.

790 Volume 1 Winsock and QOS

IpErmo
[out] Pointer to the error code.

Return Values
If WSPGetQOSByName succeeds, the return valUe is TRUE. If the function fails, the
return value is FALSE. Error information is available in IpErmo.

The algorithm that WSPGetQOSByName applies in its search fora template's name
match is:

• The service provider checks for a provider-specific template by calling
WPUGetQOSTemplate, using the service provider's globally unique identifier (GUID)
and aos name as search criteria.

• If that fails, the service provider checks its internal table of aos templates (if it has
such a table).

• If that fails; the service provider calls WPUGetQOSTempiate again, using the same
aos name, but using NULL for the GUID to facilitate a query of the global list of aos
names.

• If any of the preceding steps succeeds, the service provider can modify the aos
template before returning it to Windows Sockets. Otherwise, WSPGetQOSByName
returns FALSE, and IpErmo is set to WSA_NODATA.

Remarks
Applications can use this function to initialize a QOS structure with a prescribed set of
known values appropriate for a particular service class or media type. These known
values are stored in a template, and the template is referenced by a well-known name.
Applications can retrieve these values by setting the buf member of WSABUF, indicated
by IpOOSName, to point to a string of nonzero length specifying a template name. When
doing so, IpOOSName is an [in] parameter only, and results are returned
through IpOOS.

This function can also be used to retrieve an enumeration of available template names.
This is done by setting the buf member of WSABUF, indicated by IpOOSName, to a
zero-length, null-terminated Unicode string. The buffer indicated by buf is then
overwritten with a sequence of as many null-terminated Unicode template names as are
available-up to the number of bytes available in buf, as provided by the len member of
WSABUF. The list of names itself is terminated by a zero-length Unicode na.me string.
When WSPGetQOSByName is used to retrieve template names, the IpOOS parameter
is ignored.

Error Codes
Error Code

WSAENETDOWN

WSAENOTSOCK

Meaning

The network subsystem has failed.

The descriptor is not a socket.

Error Code

WSAEFAULT

WSAENOBUFS

WSA_NODATA

Chapter 15 QOS API Reference 791

Meaning

The /pOOSName or /pOOS parameter is not a valid part of
the user address space.

The buffer length for /pOOS is too small.

The specified QOS template name is invalid.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Header: Declared in Ws2spLh.

QOS, WPUGetQOSTemplate, WSABUF, WSClnstallQOSTemplate,
WSCRemoveQOSTemplate

aos Structures
This section describes the following Quality of Service structures:

• FLOWSPEC

• QOS

FLOWSPEC
The FLOWSPEC structure provides QOS parameters to the RSVP SP. This allows
QOS-aware applications to invoke, modify, or remove QOS settings for a given flow.

Some members of FLOWSPEC can be set to default values. See Remarks for more
information.

792 Volume 1 Winsock and QOS

Members
Token Rate

Specifies the permitted rate at which data can be transmitted over the life of the flow.
TokenRate is similar to other token bucket models seen in such WAN technologies
as Frame Relay, in which the token is analogous to a credit. If such tokens are not
used immediately, they accrue to allow data transmission up to a certain periodic limit
(PeakBandwidth, in the case of Windows 2000 OOS). Accrual of credits is limited,
however, to a specified amount (TokenBucketSize). Limiting total credits (tokens)
avoids situations where, for example, flows that are inactive for some time flood the
available bandwidth with their large amount of accrued tokens. Because flows may
accrue transmission credits over time (at their Token Rate value) only up to the
maximum of their TokenBucketSize, and because they are limited in burst
transmissions to their PeakBandwidth, traffic control and network-device resource
integrity are maintained. Traffic control is maintained because flows cannot send too
much data at once, and network-device resource integrity is maintained because such
devices are spared from high traffic bursts.

With this model, applications can transmit data only when sufficient credits are
available. If sufficient credits are not available, the application must either wait or
discard the traffic (based on the value of QOS_OBJECT _SO_MODE). Therefore it is
important that applications base their TokenRate requests on reasonable
expectations for transmission requirements. For example, in video applications,
TokenRate is typically set to the average bit rate from peak to peak.

If TokenRate is set to OOS_NOT _SPECIFIED on the receiver only, the maximum
transmission unit (MTU) is used for TokenRate, and limits on the transmission rate
(the token bucket model) will not be put into effect. TokenRate is expressed in bytes
per second.

TokenRate cannot be set to zero. TokenRate cannot be set as a default (that is, set
to OOS_NOT _SPECIFIED) in a sending FLOWSPEC.

TokenBucketSize
The maximum amount of credits a given direction of a flow can accrue, regardless of
time. In video applications, TokenBucketSize will likely be the largest average frame
size. In constant rate applications, TokenBucketSize should be set to allow for small
variations. TokenBucketSize is expressed in bytes.

PeakBandwidth
The upper limit on time-based transmission permission for a given flow, sometimes
considered a burst limit. PeakBandwidth restricts flows that may have accrued a
significant amount of transmission credits, or tokens from overburdening network
resources with one-time or cyclical data bursts, by enforcing a per-second data
transmission ceiling. Some intermediate systems can take advantage of this
information, resulting in more efficient resource allocation. PeakBandwidth is
expressed in bytes per second.

Value

Chapter 15 aos API Reference 793

Latency
Maximum acceptable delay between transmission of a bit by the sender and its
receipt by one or more intended receivers. The precise interpretation of this number
depends on the level of guarantee specified in the aos request. Latency is
expressed in microseconds.

DelayVariation
Difference between the maximum and minimum possible delay a packet will
experience. Applications use DelayVariation to determine the amount of buffer space
needed at the receiving end of the flow. This buffer space information can be used to
restore the original data transmission pattern. DelayVariation is expressed in
microseconds.

ServiceType
Specifies the level of service to negotiate for the flow. This member can be one of the
following defined service types:

Meaning

SERVICETYPE_NOTRAFFIC Indicates that no traffic will be transmitted in the
specified direction. On duplex-capable media, this
value signals underlying software to set up
unidirectional connections only. This service type
is not valid for the TC API.

SERVICETYPE_BESTEFFORT

SERVICETYPE_CONTROLLEDLOAD

Results in no action taken by the RSVP SP. Traffic
control does create a BESTEFFORT flow,
however, and traffic on the flow will be handled by
traffic control similarly to other BESTEFFORT
traffic.

Provides an end-to-end aos that closely
approximates transmission quality provided by
best-effort service, as expected under unloaded
conditions from the associated network
components along the data path.

Applications that use
SERVICETYPE_CONTROLLEDLOAD may
therefore assume the following:

• The network will deliver a very high percentage
of transmitted packets to its intended receivers. In
other words, packet loss will closely approximate
the basic packet error rate of the transmission
medium.

• Transmission delay for a very high percentage
of the delivered packets will not greatly exceed the
minimum transit delay experienced by any
successfully delivered packet.

(continued)

794 Volume 1 Winsock and QOS

(continued)

Value Meaning

SERVICETYPE_GUARANTEED Guarantees that datagrams will arrive within the
guaranteed delivery time and will not be discarded
due to queue overflows, provided the flow's traffic
stays within its specified traffic parameters. This
service is intended for applications that need a firm
guarantee that a datagram will arrive no later than
a certain time after it was transmitted by its source.

SERVICETYPE_QUALITATIVE Indicates that the application requires better than
BESTEFFORT transmission, but cannot quantify
its transmission requirements. Applications that
use SERVICETYPE_QUALITATIVE can supply an
application ID policy object. The application ID
policy object enables policy servers on the network
to identify the application, and accordingly, assign
an appropriate QOS to the request. For more
information on application ID, consult the IETF
Internet Draft draft-ietf-rap-rsvp-appid-OO.txt, or the
Microsoft white paper on Application ID. Traffic
control treats flows of this type with the same
priority as BESTEFFORT traffic on the local
computer. However, application programmers can
get boosted priority for such flows by modifying the
Layer 2 settings on the associated flow using the
QOS_OBJECT _TRAFFIC_CLASS QOS object.

SERVICETYPE_NETWORKCONTROL Used only for transmission of control packets
(such as RSVP signaling messages). This
ServiceType has the highest priority.

SERVICETYPE_GENERAL_INFORMATION Specifies that all service types are supported for a
flow. Can be used on sender side only.

SERVICETYPE_NOCHANGE Indicates that the QOS in the transmission using
this ServiceType value is not changed.
SERVICETYPE_NOCHANGE can be used when
requesting a change in the QOS for one direction
only, or when requesting a change only within the
ProviderSpecific parameters of a QOS
specification, and not in the SendingFlowspec or
ReceivingFlowspec.

SERVICE_NO_ TRAFFIC_CONTROL Indicates that traffic control should not be invoked
in the specified direction.

SERVICE_NO_QOS_SIGNALING Suppresses RSVP signaling in the specified
direction.

Chapter 15 QOS API Reference 795

The following list identifies the relative priority of ServiceType settings:

SERVICETYPE_NETWORKCONTROL
SERVICETYPE_GUARANTEED
SERVICETYPE_CONTROLLED_LOAD
SERVICETYPE_BESTEFFORT, SERVICETYPE_QUALITATIVE
Non-conforming traffic

For a simple example, if a given network device were resource-bounded and had to
choose among transmitting a packet from one of the above ServiceType settings, it
would first send a packet of SERVICETYPE_NETWORKCONTROL, and if there were
no packets of that ServiceType requiring transmission it would send a packet of
ServiceType SERVICETYPE_GUARANTEED, and so on.

MaxSduSize
Specifies the maximum packet size permitted or used in the traffic flow. This member
is expressed in bytes.

MinimumPolicedSize
Specifies the minimum packet size for which the requested QOS will be provided.
Packets smaller than this size are treated by traffic control as MinimumPolicedSize.
The MinimumPolicedSize member is expressed in bytes. When using the
FLOWSPEC structure in association with RSVP, the value of MinimumPolicedSize
cannot be zero; however, if you are using the FLOWSPEC structure specifically with
the TC API, you can set MinimumPolicedSize to zero.

Remarks
Many members of the FLOWSPEC structure can be set to default values by setting the
member to QOS_NOT _SPECIFIED. Note that the members that can be set to default
values differ depending on whether the FLOWSPEC is a receiving FLOWSPEC or a
sending FLOWSPEC.

There are a handful of considerations you should keep in mind when using FLOWSPEC
with traffic control:

• TokenRate can be QOS_NOT _SPECIFIED for
SERVICETYPE_NETWORKCONTROL, SERVICETYPE_QUALITATIVE, and
SERVICETYPE_BESTEFFORT. TokenRate must be valid for all other ServiceType
values.

• If PeakBandwidth is specified, it must be greater than or equal to TokenRate.

Many settings can be defaulted in a receiving FLOWSPEC except ServiceType, with
the following considerations:

• For a Controlled Load Service receiver, the default values are derived from the sender
TSPEC.

• For a Guaranteed Service receiver, ServiceType and TokenRate must be specified.

796 Volume 1 Winsock and QOS

The following list specifies the values that are applied when a receiving FLOWSPEC
sets the corresponding values to default:

Token Rate
Set to OOS_NOT _SPECIFIED when defaulted in a receiving FLOWSPEC. The value
is set to the TokenRate parameter in the sender's FLOWSPEC.

TokenBucketSize
Set to OOS_NOT_SPECIFIED when defaulted in a receiving FLOWSPEC. The value
is set to the TokenBucketSize parameter in the sender's FLOWSPEC.

PeakBandwidth
Set to OOS_NOT _SPECIFIED when defaulted in a receiving FLOWSPEC. The value
is set to the PeakBandwidth parameter in the sender's FLOWSPEC.

Latency
Set to OOS_NOT_SPECIFIED when defaulted in a receiving FLOWSPEC. The value
is set to the Latency parameter in the sender's FLOWSPEC.

Service Type
Must be specified.

DelayVariation
Set to OOS_NOT _SPECIFIED when defaulted in a receiving FLOWSPEC. The value
is set to the DelayVariation parameter in the sender's FLOWSPEC.

MaxSduSize
Set to OOS_NOT_SPECIFIED when defaulted in a receiving FLOWSPEC. The value
is set to the MaxSduSize parameter in the sender's FLOWSPEC.

MinimumPolicedSize
Set to OOS_NOT _SPECIFIED when defaulted in a receiving FLOWSPEC. The value
is set to the MinimumPolicedSize parameter in the sender's FLOWSPEC.

When the value of the ServiceType is set to SERVICETYPE_GUARANTEED, the
following also applies:

• The RATE value in RSPEC is set to the value of TokenRate.

• The DELAYSLACKTERM value in RSPEC is set to DelayVariation, which is set to
zero if DelayVariation is set to OOS_NOT_SPECIFIED .

• For receivers requesting SERVICETYPE_GUARANTEED, the receiving TokenRate
must be specified. This contrasts with a SERVICETYPE_CONTROLLEDLOAD
receiver, for which TokenRate may be set to OOS_NOT _SPECIFIED.

In a sending FLOWSPEC, everything can be defaulted except ServiceType and
TokenRate. The following list specifies the values that are applied when a sending
FLOWSPEC sets the corresponding values to default:

To ken Rate
Must be specified.

Token BucketSize
Set to 1500 bytes when defaulted in a receiving FLOWSPEC.

QOS

Chapter 15 QOS API Reference 797

PeakBandwidth
Set to the local link speed, if known, otherwise set to POSITIVE_INIFINITY when
defaulted in a receiving FLOWSPEC.

Latency
Set to 0 msec when defaulted in a receiving FLOWSPEC.

DelayVariation
Set to 0 msec when defaulted in a receiving FLOWSPEC.

ServiceType
Must be specified.

MaxSduSize
Set to 1500 bytes when defaulted in a receiving FLOWSPEC.

MinimumPolicedSize
Set to 128 bytes when defaulted in a receiving FLOWSPEC.

Notes for Traffic Control The following ServiceTypes are invalid when specifically
working with Traffic Control. If you are unsure whether you are working directly with
Traffic Control (and thereby need to be concerned about whether the following
ServiceTypes are applicable in your situation), you probably are not:

SERVICETYPE_NOTRAFFIC
SERVICETYPE_NETWORK_UNAVAILABLE
SERVICETYPE_GENERAL_INFORMATION
SERVICETYPE_NOCHANGE
SERVICE_NO_ TRAFFIC_CONTROL
SERVICE_NO_ QOS_SIGNALI NG

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Header: Declared in Qos.h.

QOS

The QOS structure provides the means by which QOS-enabled applications can specify
quality of service parameters for sent and received traffic on a particular flow.

798 Volume 1 Winsock and QOS

Members
SendingFlowspec

Specifies QOS parameters for the sending direction of a particular flow.
SendingFlowspec is sent in the form of a FLOWSPEC structure.

ReceivingFlowspec
Specifies QOS parameters for the receiving direction of a particular flow.
ReceivingFlowspec is sent in the form of a FLOWSPEC structure.

ProviderSpecific
Pointer to a structure of type WSABUF that can provide additional provider-specific
QOS parameters to the RSVP SP for a given flow.

Remarks
Most applications can fulfill their quality of service requirements without using the
ProviderSpecific buffer. However, if the application must provide information not
available with standard Windows 2000 QOS parameters, the ProviderSpecific buffer
allows the application to provide additional parameters for RSVP and/or traffic control.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Header: Declared in Winsock2.h.

FLOWSPEC, ProviderSpecific

QOS Objects
Applications that require specific or granular quality of service control, beyond what is
available in the QOS API, can use QOS objects. QOS objects implement functionality
specific to the Microsoft® Windows 2000® operating system, such as traffic control
related objects, as well as industry-wide functionality such as RSVP-related objects.
QOS objects are implemented through the ProviderSpecific buffer in the FLOWSPEC
structure, which is a member of the QOS structure.

Chapter 15 aos API Reference 799

QOS objects follow a stringent structure. QOS objects always include an information
header that specifies the type and length of the QOS object to which it is attached,
followed by the object itself.

This section describes the following:

• The ProviderSpecific Buffer

• QOS_OBJECT_HDR

• QOS_OBJECT_DESTADDR

• QOS_OBJECT_SD_MODE

• QOS_OBJECT_SHAPING_RATE

• RSVP_ADSPEC

• RSVP _RESERVE_INFO

• RSVP _STATUS_INFO

The ProviderSpecific Buffer
The ProviderSpecific buffer provides applications that have special QOS needs with a
mechanism that enables fine-grained tuning of required QOS parameters. The
ProviderSpecific buffer is of type WSABUF as defined by Windows Sockets 2 and is a
member of the QOS structure.

The standard mechanisms by which Windows 2000 QOS enables service quality
provisioning fulfills QOS requirements for the majority of applications. In some situations,
however, service quality parameters not available with standard QOS mechanisms may
need to be implemented. The ProviderSpecific buffer interface is provided for those
situations.

The ProviderSpecific buffer specifically includes a length field and a painter to a buffer,
which may contain one or more QOS objects. The format of each object is as follows:

• Each object includes a type field, which specifically identifies the object, followed by:

• A length field, which contains the length of the object inclusive of the header,
followed by:

• The object data itself.

See OOS Objects for more information.

The QOS object QOS_OBJECT _HDR is attached to each QOS object. It specifies the
object type and its length.

800 Volume 1 Winsock and QOS

Members
ObjectType

Specifies the type of object to which QOS_OBJECT _HDR is attached.

ObjectLength
Specifies the length of the attached object, inclusive of QOS_OBJECT _HDR.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Qos.h.

The QOS object QOS_OBJECT_DESTADDR is used during a call to the
WSAloctl(SIO_SET_QOS) function in order to avoid issuing a connect function call for
a sending socket.

Members
ObjectHdr

The QOS object QOS_OBJECT _HDR. The object type for this QOS object should be
QOS_OBJECT _DESTADDR.

SocketAddress
Address of the destination socket.

SocketAddressLength
Length of the SocketAddress structure.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Qossp.h.

Chapter 15 QOS API Reference 801

The OOS object aOS_OBJECT _SD_MODE defines the behavior of the traffic control
packet shaper component.

Members
ObjectHdr

The OOS object aOS_OBJECT _HDR. The object type for this OOS object should be
aOS_OBJECT _SD_MODE.

ShapeDiscardMode
Specifies the requested behavior of the packet shaper. Note that there are elements
of packet handling within these predefined behaviors that depend on the flow settings
specified within FLOWSPEC.

Value Meaning

TC_NONCONF _BORROW Instructs the packet shaper to borrow remaining available resources
after all higher priority flows have been serviced. If the TokenRate
member of FLOWSPEC is specified for this flow, packets that
exceed the value of TokenRate will have their priority demoted to
less than SERVICETYPE_BESTEFFORT, as defined in the
ServiceType member of the FLOWSPEC structure.

TC_NONCONF _SHAPE Instructs the packet shaper to retain packets until network
resources are available to the flow in sufficient quantity to make
such packets conforming. (For example, a 100K packet will be
retained in the packet shaper until 1 OOK worth of credit is accrued
for the flow, allowing the packet to be transmitted as conforming).
Note that TokenRate must be specified if using
TC_NONCONF _SHAPE.

TC_NONCONF _DISCARD Instructs the packet shaper to discard all nonconforming packets.
TC_NONCONF _DISCARD should be used with care.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Oos.h.

802 Volume 1 Win sock and aos

The aos object aOS_OBJECT_SHAPING_RATE specifies the type of shaping
behavior to be applied to a given flow.

Members
ObjectHdr

The aos object aOS_OBJECT _HDR. The object type for this aos object should be
aOS_OBJECT _SHAPING_RATE.

Shaping Rate
Value that corresponds to the required shaping rate, as follows:

TC_NONCONF _BORROW
The flow receives resources that remain after all higher priority flows have been
serviced. If a TokenRate is specified, packets may be non-conforming and are
demoted to less than best-effort priority.

TC_NONCONF_SHAPE
TokenRate must be specified. Nonconforming packets are retained in the packet
shaper until they become conforming.

TC_NONCONF _DISCARD
TokenRate must be specified. Nonconforming packets are discarded.

TC_NONCONF _BORROW_PLUS
Similar to TC_NONCONF _BORROW, but no packets will be marked as non
conforming. Note that the setting Shaping Rate to value cannot be accomplished
with the aos API; it must be done through the traffic control API (the TC API).

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in aos.h.

RSVP_ADSPEC
The aos object RSVP _ADSPEC provides a means by which information describing
network devices along the data path between sender and receiver, pertaining to RSVP
functionality and available services, is provided or retrieved.

Members
ObjectHdr

The QOS object QOS_OBJECT _HDR.

GeneralParams

Chapter 15 QOS API Reference 803

An AD_GENERAL_PARAMS structure that provides general characterization
parameters for the flow. Information includes RSVP-enabled hop count, bandwidth
and latency estimates, and the path's MTU.

NumberOfServices
Provides a count of the number of services available. (See the following member for
more information.)

Services
A CONTROL_SERVICE array, its element count based on NumberOfServices,
which provides information about the services available along the data path between
the sender and receiver of a given flow.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Header: Declared in Qossp.h.

The QOS object RSVP _RESERVE_INFO, through the ProviderSpecific buffer, allows
RSVP behavior for a given flow to be specified or modified at a granular level, and allows
default RSVP style settings for a flow to be overridden. Although
RSVP _RESERVE_INFO is technically a structure, its use within Windows 2000 QOS
technology-and especially its required inclusion of the QOS_OBJECT _HDR as its first
member-define it as a QOS object.

804 Volume 1 Winsock and QOS

(continued)

Members
ObjectHdr

The aos object aOS_OBJECT _HDR.

Style
Specifies the RSVP reservation style for a given flow, and can be used to replace
default reservation styles placed on a particular type of flow. More information about
RSVP reservation styles, and the default settings for certain aOS-enabled socket
sessions, can be found under Network-Driven oOS Components. This member can
be one of the following values.

Value Meaning

RSVP _WILDCARD_SYLE Implements the WF RSVP reservation style.
RSVP _WILDCARD_STYLE is the default value for
multicast receivers and UDP unicast receivers. Specifying
RSVP _WILDCARD_STYLE through
RSVP _RESERVE_INFO is useful for overriding the
default value (RSVP _FIXED_FILTER_STYLE) applied to
connected unicast receivers.

RSVP _FIXED_FILTER_STYLE Implements the Fixed Filter (FF) RSVP reservation style.
RSVP _FIXED_FIL TER_STYLE is useful for overriding the
default style for multicast receivers or unconnected UDP
unicast receivers (RSVP _WILDCARD_STYLE). It may
also be used to generate multiple
RSVP _FIXED_FIL TER_STL YE reservations in instances
where only a single RSVP _FIXED_FIL TER_STYLE
reservation will be generated by default, such as with
connected unicast receivers.

RSVP _SHARED_EXPLICIT _STYLE Implements the Shared Explicit (SE) RSVP reservation
style.

Chapter 15 QOS API Reference 805

Note It is important to note that the number of senders included in any individual
RSVP _SHARED_EXPLICIT _STYLE reservation must be less than one hundred
senders. If more than one hundred senders attempt to connect to an
RSVP _SHARED_EXPLICIT _STYLE reservation, the one-hundredth (and above)
attempt fails without notice.

Confirm Request
Can be used by a receiving application to request notification of its reservation
request by setting Confirm Request to a nonzero value. Such notification is achieved
when RSVP-aware devices in the data path between sender and receiver (or vice
versa) transmit an RESV CONFIRMATION message toward the requesting node.
Note that an RSVP node is not required to automatically generate RESV
CONFIRMATION messages.

NumPolicyElement
Specifies the number of policy elements.

PolicyElementList
Pointer to the set of policy elements. Optional policy information, as provided in an
RSVP_POLICY structure.

NumFlowDesc
Specifies the FLOWDESCRIPTOR count.

FlowDescList
Pointer to the list of FLOWDESCRIPTORs.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Header: Declared in Qossp.h.

The QOS object RSVP _STATUS_INFO provides information regarding the status of
RSVP for a given flow, including event notifications associated with monitoring FD_QOS
events, as well as error information. RSVP _STATUS~INFO is useful for storing RSVP
specific status and error information.

(continued)

806 Volume 1 Winsock and aos

(continued)

Members
ObjectHdr

The QOS object QOS_OBJECT _HDR.

StatusCode
Status information. See Winsock2.h for more information.

ExtendedStatus1
Mechanism for storing or returning provider-specific status information. The
ExtendedStatus1 parameter is used for storing a higher-level, or generalized error
code, and is augmented by finer-grained error information provided in
ExtendedStatus2.

ExtendedStatus2
Additional mechanism for storing or returning provider-specific status information.
Provides finer-grained error information compared to the generalized error information
provided in ExtendedStatus 1.

Remarks
When applications register their interest in FD_QOS events (see OOS Events), event
and error information is associated with the event in the form of the QOS structure that is
associated with the event. For more detailed information associated with that event,
applications can investigate the RSVP _STATUS_INFO object that is provided in the
ProviderSpecific buffer of the event-associated QOS structure.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Header: Declared in Qossp.h.

CHAPTER 16

Traffic Control API Reference

Traffic Control Functions

TcAdd Filter
The TcAddFilter function associates a new filter with an existing flow that allows
packets matching the filter to be directed to the associated flow.

807

Filters include a pattern and a mask. The pattern specifies particular parameter values,
while the mask specifies which parameters and parameter subfields apply to a given
filter. When a pattern and mask combination is applied to a set of packets, matching
packets are directed to the flow to which the corresponding filter is associated.

Traffic control returns a handle to the newly added filter, in the pFilterHandle parameter,
by which clients can refer to the added filter. Pending flows, such as those processing a
TcAddFlow or TcModifyFlow request for which a callback routine has not been
completed, cannot have filters associated to them; only flows that have been completed
and are stable can apply associated filters.

The relationship between filters and flows is many to one. Multiple filters can be applied
to a single flow; however, a filter can only apply to one flow. For example, flow A can
have filters X, Y and Z applied to it, but as long as flow A is active, filters X, Y and Z
cannot apply to any other flows.

Parameters
FlowHandle

[in] Handle for the flow, as received from a previous call to the TcAddFlow function.

pGenericFilter
[in] Pointer to a description of the filter to be installed.

pFilterHandle
[out] Pointer to a buffer where traffic control returns the filter handle. This filter handle
is used by the client in subsequent calls to refer to the added filter.

808 Volume 1 Winsock and OOS

Return Values
Error codes Description

NO_ERROR The function executed without errors.

ERROR_INVALlD_HANDLE The flow handle is invalid.

ERROR_NOT _ENOUGH_MEMORY The system is out of memory.

ERROR_INVALlD_PARAMETER A parameter is invalid.

ERROR_INVALlD_ADDRESS_TYPE An invalid address type has been provided.

ERROR_DUPLICATE_FILTER An identical filter exists on a flow on this
interface.

ERROR_FIL TER_CONFLICT A conflicting filter exists on a flow on this
interface.

ERROR_NOT READY The flow is either being installed, modified, or
deleted, and is not in a state that accepts
filters.

Remarks
Filters can be of different types. They are typically used to filter packets belonging to
different network layers. Filter types installed on an interface generally correspond to the
address types of the network layer addresses associated with the interface. The address
type should be specified in the filter structure.

Filters may be rejected for various reasons, including possible conflicts with the
requested filter and those filters already associated with the flow. Error codes specific to
traffic control are provided to help the user diagnose the reason behind a rejection to the
TcAddFilter function.

Note Use of the TcAddFilter function requires administrative privilege.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Traffic.h.
Library: Use Traffic.lib.

TcAddFlow

Chapter 16 Traffic Control API Reference 809

TcAddFlow
The TcAddFlow function adds a new flow on the specified interface. Note that the
successful addition of a flow does not necessarily indicate a change in the way traffic is
handled; traffic handling changes are effected by attaching a filter to the added flow,
using the TcAddFilter function.

Traffic control clients that have registered an AddFlowComplete handler (a mechanism
for allowing traffic control to call the CIAddFlowComplete callback function in order to
alert clients of completed flow additions) can expect a return value of
ERROR_SIGNAL_PENDING. For more information, see Traffic Control Objects.

Parameters
IfcHandle

[in] Handle associated with the interface on which the flow is to be added. This handle
is obtained by a previous call to the TcOpenlnterface function.

CIFlowCtx
[in] Client provided-flow context handle. Used subsequently by traffic control when
referring to the added flow.

Flags
[in] Reserved for future use. Must be set to zero.

pGenericFlow
[in] Pointer to a description of the flow being installed.

pFlowHandle
[out] Pointer to a location into which traffic control will return the flow handle. This flow
handle should be used in subsequent calls to traffic control to refer to the installed
flow.

Return Values
There are many reasons why a request to add a flow might be rejected. Error codes
returned by traffiC control from calls to TcAddFloware provided to aid in determining the
reason for rejection. For more information on the validation rules applied to flow
requests, see traffic control.

810 Volume 1 Winsock and QOS

Error codes

NO_ERROR

ERROR_SIGNAL_PENDING

ERROR_INVALlD_HANDLE

ERROR_NOT_ENOUGH_MEMORY

ERROR_INVALlD_PARAMETER

ERROR_INVALlD_SERVICE_ TYPE

ERROR_INVALlD_PEAK_RATE

ERROR_INVALlD_SD_MODE

ERROR_I NVALI D_OOS_PRIORITY

ERROR_INVALlD_ TRAFFIC_CLASS

ERROR_NO_SYSTEM_RESOURCES

ERROR_TC_OBJECT_LENGTH_
INVALID

ERROR_INVALlD_DIFFSERV _FLOW

ERROR_INVALlD_DS_CLASS

ERROR_NETWORK_UNREACHABLE

Description

The function executed without errors.

The function is being executed
asynchronously; the client will be called
back through the client-exposed
CIAddFlowComplete function when the
flow has been added or when the process·
has been completed.

The interface handle is invalid.

The system is out of memory.

A parameter is invalid.

An unspecified or bad INTSERV service
type has been provided.

An unspecified or bad TOKENRATE value
has been provided.

The PEAKBANDWIDTH value is invalid.

The SHAPEDISCARDMODE is invalid.

The priority value is invalid.

The traffic class value is invalid.

There are not enough resources to
accommodate the requested flow.

Bad length specified for the TC objects.

Applies to Diffserv flows. Indicates that the
QOS_OBJECT_DIFFSERVobject was
passed with an invalid parameter.

Applies to Diffserv flows. Indicates that the
OOS_DIFFSERV _RULE specified in
TC_GEN_FLOW already applies to an
existing flow on the interface.

The OOS_OBJECT_SHAPING_RATE
object was passed with an invalid
ShapeRate.

The OOS_OBJECT _OS_CLASS is invalid.

The network cable is not plugged into the
adapter.

Chapter 16 Traffic Control API Reference 811

Remarks
If the TcAddFlow function returns ERROR_SIGNAL_PENDING, the
CIAddFlowComplete function will be called on a different thread than the thread that
called the TcAddFlow function.

Only the addition of a filter will affect traffic control. However, the addition of a flow will
cause resources to be committed within traffic control components. This enables traffic
control to prepare for handling traffic on the added flow.

Traffic control may delete a flow for various reasons, including the inability to
accommodate the flow due to bandwidth restrictions, and adjusted policy requirements.
Clients are notified of deleted flows through the CINotifyHandler callback function, with
the TC_NOTIFY _FLOW_CLOSE event.

Note Use of the TcAddFlow function requires administrative privilege.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Traffic.h.
Library: Use Traffic.lib.

TcCloselnterface
The TcCloselnterface function closes an interface previously opened with a call to
TcOpenlnterface. All flows and filters on a particular interface should be closed before
closing the interface with a call to TcCloselnterface.

Parameters
IfcHandle

[in] Handle associated with. the interface to be closed. This handle is obtained by a
previous call to the TcOpenlnterface function.

Return Values
Error code

NO_ERROR

ERROR_INVALlD_HANDLE

ERROR_TC_SUPPORTED_OBJECTS_
EXIST

Description

The function executed without errors.

The interface handle is invalid.

Not all flows have been deleted for this
interface.

812 Volume 1 Winsockand QOS

Remarks
Regardless of whether TcCloselnterface is called, an interface will be closed following a
TC_NOTIFY _IFC_CLOSE notification event. If the TcCloselnterface function is called
with the handle of an interface that has already been closed, the handle will be
invalidated and TcCloselnterface will return ERROR_INVALlD_HANDLE.

Note Use of TcCloselnterface requires administrative privilege.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Traffic.h.
Library: Use Traffic.lib.

TcOpenlnterface

TcDeleteFilter
The TcDeleteFilter function deletes a filter previously added with the TcAddFilter
function:

Parameters
FilterHandle

[in] Handle to the filter to be deleted, as received in a previous call to the TcAddFilter
function.

Return Values
Error codes

NO_ERROR

ERROR_INVALlD_HANDLE

Description

The function executed without errors.

The filter handle is invalid.

Note Use of the TcDeleteFilter function requires administrative privilege.

Chapter 16 Traffic Control API Reference 813

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Traffic.h.
Library: Use Traffic.lib.

TcAddFilter

TcDeleteFlow
The TcDeleteFlow function deletes a flow that has been added with the TcAddFlow
function. Clients should delete all filters associated with a flow before deleting it,
otherwise, an error will be returned and the function will not delete the flow.

Traffic control clients that have registered a DeleteFlowComplete handler (a
mechanism for allowing traffic control to call the CtDeleteFlowComplete callback
function in order to alert clients of completed flow deletions) can expect a return value of
ERROR_SIGNAL_PENDING.

Parameters
FlowHandle

[in] Handle for the flow, as received from a previous call to the TcAddFlow function.

Return Values
Error codes Description

NO_ERROR The function executed without errors.

ERROR_SIGNAL_PENDING The function is being executed
asynchronously; the client will be called
back through the client-exposed
CIDeleteFlowComplete function when the
flow has been added, or when the process
has been completed.

ERROR_INVALlD_HANDLE The flow handle is invalid or NULL.

ERROR_TC_SUPPORTED_0BJECTS_ At least one filter associated with this flow
EXIST exists.

814 Volume 1 Winsock and QOS

Remarks
If the TcDeleteFlow function returns ERROR_SIGNAL_PENDING, the
CIDeleteFlowComplete function will be called on a different thread than the thread that
called the TcDeleteFlow function.

Note Use of the TcDeleteFlow function requires administrative privilege.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Traffic.h.
Library: Use Traffic.lib.

TcEnumerateFlows, TcAddFlow, CIDeleteFlowComplete

TcDeregisterClient
The TcDeregisterClient function deregisters a client with the Traffic Control Interface
(Tel). Before deregistering, a client must delete each installed flow and filter with the
TcDeleteFlow and TcDeleteFilter functions, and close all open interfaces with the
TcCloselnterface function, respectively.

Parameters
ClientHandle

[in] Handle assigned td the client through the previous call to the TcRegisterClient
function.

Return Values
Error codes

NO_ERROR

ERROR_INVALID_HANDLE

ERROR_TC_SU PPORTED_OBJ ECTS_
EXIST

Description

The function executed without errors.

Invalid interface handle, or the handle was
set to NULL.

Interfaces are still open for this client. all
interfaces must be closed to deregister a
client.

Chapter 16 Traffic Control API Reference 815

Remarks
Once a client calls TcDeregisterClient, the only traffic control function the client is
allowed to call is TcRegisterClient.

Note Use of the TcDeregisterClient function requires administrative privilege.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Traffic.h.
Library: Use Traffic.lib.

TcRegisterClient, TcCloselnterface, TcDeleteFlow, TcDeleteFilter

TcEnumerateFlows
The TcEnumerateFlows function enumerates installed flows and their associated filters
on an interface.

The process of returning flow enumeration often consists of multiple calls to the
TcEnumerateFlows function. The process of receiving flow information from
TcEnumerateFlows can be compared to reading through a book in multiple sittings-a
certain number of pages are read at one time, a bookmark is placed where the reading
stopped, and reading is resumed from the bookmark until the book is finished.

The TcEnumerateFlows function fills the Buffer parameter with as many flow
enumerations as the buffer can hold, then returns a handle in the pEnumToken
parameter that internally bookmarks where the enumeration stopped. Subsequent calls
to TcEnumerateFlows must then pass the returned pEnumToken value to instruct traffic
control where to resume flow enumeration information. When all flows have been
enumerated, pEnumToken will be NULL.

816 Volume 1 Winsock and aos

Parameters
IfcHandle

[in] Handle associated with the interface on which flows are to be enumerated. This
handle is obtained by a previous call to the TcOpenlnterface function.

pEnumToken
[in, out] Pointer to the enumeration token, used internally by traffic control to maintain
returned flow information state.

For input of the initial call to TcEnumerateFlows, pEnumToken should be set to
NULL. For input on subsequent calls, pEnumToken must be the value returned as the
pEnumToken OUT parameter from the immediately preceding call to
TcEnumerateFlows.

For output, pEnumToken is the refreshed enumeration token that must be used in the
following call to TcEnumerateFlows.

pFlowCount
[in, out] Pointer to the number of requested or returned flows. For input, this
parameter designates the number of requested flows or it can be set to (-1) to
request all flows. For output, pFlowCount returns the number of flows actually
returned in Buffer.

pBufSize
[in, out] Pointer to the size of the client-provided buffer or the number of bytes used by
traffic control. For input, points to the size of Buffer, in bytes. For output, points to the
actual amount of buffer space, in bytes, written or needed with flow enumerations.

Buffer
[out] Pointer to the buffer containing flow enumerations. See
ENUMERA TlON_BUFFER for more information about flow enumerations.

Return Values
Error codes

NO_ERROR

ERROR_INVALlD_HANDLE

ERROR_INVALI D _PARAMETER

ERROR_NOT_ENOUGH_MEMORY

ERROR_INVALlD_DATA

Remarks

Description

The function executed without errors.

Invalid interface handle.

One of the pOinters is NULL, or pFlowCount
or pBufSize are set to zero.

The buffer is too small to store even a
single flow's information and attached
filters.

The system is out of memory.

The enumeration token is no longer valid.

Do not request zero flows, or pass a buffer with a size equal to zero or pOinter to a
NULL.

Chapter 16 Traffic Control API Reference 817

If an enumeration token painter has been invalidated by traffic control (due to the
deletion of a flow), continuing to enumerate flows is not allowed, and the call will return
ERROR_INVALlD_DATA. Under this circumstance, the process of enumeration must
start over. This circumstance can occur when the next flow to be enumerated is deleted
while enumeration is in progress.

To get the total number of flows for a given interface, call TcQuerylnterface and specify
GUID_QOS_FLOW_COUNT.

Note Use of the TcEnumerateFlows function requires administrative privilege.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Traffic.h.
library: Use Traffic.lib.

TcOpenlnterface, TcQuerylnterface

TcEnumeratelnterfaces
The TcEnumeratelnterfaces function enumerates all traffic control-enabled network
interfaces. Clients are notified of interface changes through the CINotifyHandler
function.

Parameters
ClientHandle

[in] Handle used by traffic control to identify the client. Clients receive handles when
registering with traffic control through the TcRegisterClient function.

pBufferSize
[in, out] Pointer to a value indicating the size of the buffer. For input, this value is the
size of the buffer, in bytes, allocated by the caller. For output, this value is the actual
size of the buffer, in bytes, used or needed by traffic control. A value of zero on output
indicated that no traffic control interfaces are available, indicating that the QOS
Packet Scheduler is not installed.

818 Volume 1 Winsock and QOS

InterfaceBuffer
[out] Pointer to the buffer containing the returned list of interface descriptors.

Return Values
Successful completion returns the device name of the interface.

Error code

NO_ERROR

ERROR_INVALID _HANDLE

ERROR_INVALlD_PARAMETER

ERROR_INSUFFICIENT _BUFFER

Remarks

Description

The function executed without errors.

The client handle is invalid.

One of the parameters is NULL.

The buffer is too small to enumerate all
interfaces. If this error is returned, the correct
(required) size of the buffer is passed back in
pBufferSize.

The system is out of memory.

The client calling the TcEnumeratelnterfaces function must first allocate a buffer, then
pass the buffer to traffic control through InterfaceBuffer. Traffic control returns a pointer
to an array of interface descriptors in InterfaceBuffer. Each interface descriptor contains
two elements:

• The traffic control interface's identifying text string.

• The network address list descriptor currently associated with the interface.

The network address list descriptor includes the media type, as well as a list of network
addresses. The media type determines how the network address list should be
interpreted:

• For connectionless media such as a LAN, the network address list contains all the
protocol-specific addresses associated with the interface.

• For connection-oriented media such as a WAN, the network address list contains an
even number of network addresses:

• The first address in each pair represents the local (source) address of the interface .

• The second address in each pair represents the remote (destination) address of
the interface.

Note Use of the TcEnumeratelnterfaces function requires administrative privilege.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Traffic.h.
Library: Use Traffic.lib.

Chapter 16 Traffic Control API Reference 819

TcRegisterClient, CINotifyHandler

TcGetFlowName
The TcGetFlowName function provides the name of a flow that has been created by the
calling client. Flow properties and other characteristics of flows are provided based on
the name of a flow. Flow names can also be retrieved by a call to the
TcEnumerateFlows function.

Parameters
FlowHandle

[in] Handle for the flow.

StrSize
[in] Size of the string buffer provided in pFlowName.

pFlowName
[out] Pointer to the output buffer holding the flow name.

Return Values
Error codes

NO_ERROR

ERROR_INVALID_HANDLE

ERROR_INVALID_PARAMETER

ERROR_INSUFFICIENT _BUFFER

Description

The function executed without errors.

The flow handle is invalid.

One of the parameters is invalid.

The buffer is too small to contain the results.

Note Use of the TcGetFlowName function requires administrative privilege.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Traffic.h.
Library: Use Traffic.lib.

820 Volume 1 Winsock and QOS

TcEnumerateFlows

TcModifyFlow
The TcModifyFlow function modifies an existing flow. When calling TcModifyFlow, new
f10wspec parameters and any traffic control objects should be filled.

Traffic control clients that have registered a ModifyFlowComplete handler (a mechanism
for allowing traffic control to call the CIModifyFlowComplete callback function in order
to alert clients of completed flow modifications) can expect a return value of
ERROR_SIGNAL_PENDING.

Parameters
FlowHandle

[in] Handle for the flow, as received from a previous call to the TcAddFlow function.

pGenericFlow
[in] Pointer to a description of the flow modifications.

Return Values
Error codes

NO_ERROR

ERROR_SIGNAL_PENDING

ERROR_INVALID_HANDLE

ERROR_NOT_ENOUGH_MEMORY

ERROR_INVALID_PARAMETER

ERROR_INVALlD_SERVICE_ TYPE

Description

The function executed without errors.

The function is being executed
asynchronously; the client will be called
back through the client-exposed
CIModifyFlowComplete function when
the flow has been added, or when the
process has been completed.

The interface handle is invalid.

The system is out of memory.

A parameter is invalid.

An unspecified or bad intserv service
type has been provided.

An unspecified or bad TokenRate value
has been provided.

Chapter 16 Traffic Control API Reference 821

Error codes

ERROR_INVALI D _PEAK_RATE

ERROR_INVALlD_SD_MODE

ERROR_INVALlD_QOS_PRIORITY

ERROR_INVALlD_TRAFFIC_CLASS

ERROR_NO_SYSTEM_RESOURCES

ERROR_ TC_OBJECT _LENGTH_INVALID

ERROR_INVALID _DI FFSERV _FLOW

ERROR_INVALI D_DS_CLASS

ERROR_NETWORK_UNREACHABLE

Remarks

Description

The PeakBandwidth value is invalid.

The ShapeDiscardMode is invalid.

The priority value is invalid.

The traffic class value is invalid.

There are not enough resources to
accommodate the requested flow.

Bad length specified for the TC objects.

Applies to Diffserv flows. Indicates that the
QOS_DIFFSERV object was passed with
an invalid parameter.

Applies to Diffserv flows. Indicates that the
QOS_DIFFSERV _RULE specified in
TC_GEN_FLOW already applies to an
existing flow on the interface.

The QOS_OBJECT_SHAPING_RATE
was passed with an invalid ShapeRate.

QOS_OBJECT _DS_CLASS is invalid.

The network cable is not plugged into the
adapter.

If the TcModifyFlow function returns ERROR_SIGNAL_PENDING, the
CIModifyFlowComplete function will be called on a different thread than the thread that
called the TcModifyFlow function.

Note Use of the TcModifyFlow function requires administrative privilege.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Traffic.h.
Library: Use Traffic.lib.

TcEnumerateFlows, TcAddFlow, CIModifyFlowComplete

822 Volume 1 Winsock and QOS

TcOpenlnterface
The TcOpenlnterface function opens an interface. The TcOpenlnterface function
identifies and opens an interface based on its text string, which is available from a call to
TcEnumeratelnterfaces .. Once an interface is opened, the client must be prepared to
receive notification regarding the open interface, through traffic control's use of the
interface context.

Parameters
plnterfaceName

[in] Pointer to the text string identifying the interface to be opened. This text string is
part of the information returned in a previous call to TcEnumeratelnterfaces.

ClientHandle
[in] Handle used by traffic control to identify the client, obtained through the
pClientHandle parameter of the client's call to TcRegisterClient.

CllfcCtx
[in] Client's interface-context handle for the opened interface. Used as a callback
parameter by traffic control when communicating with the client about the opened
interface. This can be a container to hold an arbitrary client-defined context for this
instance of the interface.

p/fcHandle
[out] Pointer to the buffer where traffic control can return an interface handle. The
interface handle returned to plfcHandle must be used by the client to identify the
interface in subsequent calls to traffic control.

Return Values
Error code

NO_ERROR

ERROR_INVALlD_PARAMETER

ERROR_NOT_ENOUGH_MEMORY

ERROR_NOT _FOUND

Description

The function executed without errors.

One of the parameters is NULL.

The system is out of memory.

Traffic control failed to find an interface with
the name provided in plnterfaceName.

The client handle is invalid.

Chapter 16 Traffic Control API Reference 823

Note Use of the TcOpenlnterface function requires administrative privilege.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Traffic.h.
Library: Use Traffic.lib.

TcEnumeratelnterfaces, TcRegisterClient, CINotifyHandler

TcQueryFlow
The TcQueryFlow function queries traffic control for the value of a specific flow
parameter based on the name of the flow. The name of a flow can be retrieved from the
TcEnumerateFlows function or from the TcGetFlowName function.

Parameters
FlowName

[in] Name of the flow being queried.

pGuidParam . . .
[in] Pointer to the. globally unique identifier (GUID) that corresponds to the flow
parameter ofinterest. A list of traffic control's GUIDs can be found in GUID.

pBufferSize
[in] Pointer to the size of the client-provided buffer or the number of bytes used by
traffic control. For input, points to the size of Buffe(,.iri bytes. For output, pOints to the
actual amount of buffer space written with returned flow-parameter data, in bytes.

Buffer
[out] pOinter to the client-provided buffer in which the returned flow p9-rarneter is
written. .

824 Volume 1 Winsock and QOS

Return Values
Error codes Description

NO_ERROR The function executed without errors.

ERROR_I NVALI D_PARAMETER A parameter is invalid.

ERROR_INSUFFICIENT _BUFFER The provided buffer is too small to hold the
results.

ERROR_NOT _SUPPORTED The requested GUID is not supported.

ERROR_WMLGUID_NOT _FOUND The device did not register for this GUID.

ERROR_WMUNSTANCE_NOT _FOUND The instance name was not found, likely
because the flow or the interface is in the
process of being closed.

Note Use of the TcQueryFlow function requires administrative privilege.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Traffic.h.
Library: Use Traffic.lib.

TcEnumerateFlows, TcGetFlowName, GUID

TcQuerylnterface
The TcQuerylnterface function queries traffic control for related per-interface
parameters. A traffic control parameter is queried by providing its Globally Unique
Identifier (GUID). Setting the NotifyChange parameter to TRUE enables event
notification on the specified GUID, after which notification events are sent to a client
whenever the queried parameter changes. GUIDs for which clients can request
notification are found in the GUID entry; the column titled "Notification" denotes which
GUIDs are available for notification.

Parameters
/fcHandle

Chapter 16 Traffic Control API Reference 825

[in] Handle associated with the interface to be queried. This handle is obtained by a
previous call to the TcOpenlnterface function.

pGuidParam
[in] Pointer to the globally unique identifier (GUID) that corresponds to the traffic
control parameter being queried.

NotifyChange
[in] Used to request notifications from traffic control for the parameter being queried. If
TRUE, traffic control will notify the client, through the CINotifyHandler function, upon
changes to the parameter corresponding to the GUID provided in pGuidParam.
Notifications are off by default.

BufferSize
[in, out] Indicates the size of the buffer. For input, this value is the size of the buffer
allocated by the caller. For output, this value is the actual size of the buffer, in bytes,
used by traffic control.

Buffer
[out] Pointer to a client-allocated buffer into which returned data will be written.

Return Values
Note that, with regard to a requested notification state, only a return value of
NO_ERROR will result in the application of the requested notification state. If a return
value other than NO_ERROR is returned from a call to the TcQuerylnterface function,
the requested change in notification state will not be accepted.

Error code

NO_ERROR

ERROR_INVALlD_HANDLE

ERROR_INVALlD_PARAMETER

ERROR_)NSUFFICIENT _BUFFER

ERROR_NOT_SUPPORTED

ERROR_WMI_GUID_NOT _FOUND

ERROR_WMUNSTANCE_NOT _FOUND

Description

The function executed without errors.

Invalid interface handle.

Invalid or NULL parameter.

The buffer is too small to store the results.

Querying for the GUID provided is not
supported on the provided interface.

The device did not register for this GUID.

The instance name was not found, likely
because the interface is in the process of
being closed.

Note . Use of the TcQuerylnterface function requires administrative privilege.

826 Volume 1 Winsock and QOS

Windows NT/2000: Requires Windows 2000.
Windows 95198: Unsupported.
Header: Declared in Traffic.h.
Library: Use Traffic.lib.

TcEnumeratelnterfaces, TcRegisterClient, CINotifyHandler

TcRegisterClient
The TcRegisterClient function is used to register a client with the Traffic Control
Interface (TCI). The TcRegisterClient function must be the first function call a client
makes to the TCI.

Client registration provides callback routines that allow the TCI to complete either client
initiated operations or asynchronous events. Upon successful registration, the caller of
the TcRegisterClient function must be ready to have any of its TCI handlers called. See
Entry Points Exposed by Clients of the Traffic Contro//nterface for more
information.

Parameters
TciVersion

[in] Traffic control version expected by the client, included to ensure compatibility
between traffic control and the client. Clients can pass CURRENT_TCLVERSION,
defined in Traffic.h.

CIRegCtx
[in] Client registration context. CIRegCtx is returned when the client's notification
handler function is called. This can be a container to hold an arbitrary client~defined
context for this instance of the interface.

pClientHandlerList
[in] Pointer to a list of client-supplied handlers. Client-supplied handlers are used for
notification events and asynchronous completions. Each completion routine is
optional, with the exception of the notification handler. Setting the notification handler
to NULL will return an ERROR_INVALlD_PARAMETER.

Chapter 16 Traffic Control API Reference 827

pClientHandle
[out] Pointer to the buffer that traffic control uses to return a registration handle to the
client.

Return Values
Error code

NO_ERROR

ERROR_NOT_ENOUGH_MEMORY

ERROR_INVALID _PARAMETER

ERROR_INCOMPATIBLE_TCLVERSION

ERROR_OPEN_FAILED

Description

The function executed without errors.

The system is out of memory.

One of the parameters is NULL.

The TCI version is wrong.

Traffic control failed to open a system
device. The likely cause is insufficient
privileges.

Note Use of the TcRegisterClient function requires administrative privilege.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Traffic.h.
Library: Use Traffic.lib.

TcSetFlow
The TcSetFlow function sets individual parameters for a given flow:

Parameters
pFlowName

[in] Name of the flow being set. Thevaluefor this parameter is obtained by a previous
call to the TcEnumerateFlows function or the TcGetFlowName function.

pGuidParam
[in] Pointer to the Globally Unique Identifier (GUID) that corresponds to the parameter
to be set. A list of available GUIDs can be found in GUID.

828 Volume 1 Winsock and QOS

BufferSize
[in] Size of the client-provided buffer.

Buffer
[in] Pointer to a client-provided buffer. Buffer must contain the value to which the
traffic control parameter provided in pGuidParam should be set.

Return Values
The TcSetFlow function has the following return values.

Error codes

NO_ERROR

ERROR_NOT _READY

ERROR_NOT_ENOUGH_MEMORY

ERROR_INVALlD_PARAMETER

ERROR_NOT_SUPPORTED

Description

The function executed without errors.

The flow is currently being modified.

The buffer size was insufficient for the
GUID.

Invalid parameter.

Setting the GUID for the provided flow is
not supported.

The instance name was not found, likely
due to the flow or the interface being in
the process of being closed.

The device did not register for this GUID.

Note Use of the TcSetFlow function requires administrative privilege.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Traffic.h.
Library: Use Traffic.lib.

TcSetlnterface
The TcSetlnterface function sets individual parameters for a given interface.

Parameters
IfcHand!e

Chapter 16 Traffic Control API Reference 829

[in] Handle associated with the interface to be set. This handle is obtained by a
previous call to the TcOpenlnterface function.

pGuidParam
[in] Pointer to the globally unique identifier (GUID) that corresponds to the parameter
to be set. A list of available GUIDs can be found in GUID.

BufferSize
[in] Size of the client-provided buffer.

Buffer
[in] Pointer to a client-provided buffer. Buffer must contain the value to which the
traffic control parameter provided in pGuidParam should be set.

Return Values
Error codes

NO_ERROR

ERROR_INVALID_HANDLE

ERROR_INVALID_PARAMETER

ERROR_NaT_SUPPORTED

ERROR_WMUNSTANCE_NOT _FOUND

ERROR_WMLGUID_NOT _FOUND

Description

The function executed without errors.

Invalid interface handle.

Invalid parameter.

Setting the GUID for the provided interface
is not supported.

The GUID is not available.

The device did not register for this GUID.

Note Use of the TcSetlnterface function requires administrative privilege. The list of
GUIDS that can be set is explained in GUID.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Traffic.h.
Library: Use Traffic.lib.

Entry Points Exposed by Clients of the Traffic Control
Interface

When registering as a client of the traffic control interface, the user is expected to
provide a list of entry paints, which can be called by the TCI. These are defined in this
section.

830 Volume 1 Winsock and aos

• CIAddFlowComplete

• CIDeleteFlowComplete

• CIModifyFlowComplete

• CINotifyHandler

CIAddFlowComplete
The CIAddFlowComplete function is used by traffic control to notify the client of the
completion of its previous call to the TcAddFlow function.

The CIAddFlowComplete callback function is optional. If this function is not specified,
TcAddFlow will block until it completes.

Parameters
CIFlowCtx

[in] Client provided-flow context handle. This can be the container used to hold an
arbitrary client-defined context for this instance of the client. This value will be the
same as the value provided by the client during its corresponding call to TcAddFlow.

Status
[in] Completion status for the TcAddFlow request. This value may be any of the
return values possible for the TcAddFlow function, with the exception of
ERROR_SIGNAL_PENDING.

Note Use of the CIAddFlowComplete function requires administrative privilege.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.

TcAddFlow

Chapter 16 Traffic Control API Reference 831

CIDeleteFlowComplete
The CIDeleteFlowComplete function is used by traffic control to notify the client of the
completion of its previous call to the TcDeleteFlow function.

The CIDeleteFlowComplete callback function is optional. If this function is not specified,
TcDeleteFlow will block until it completes.

Parameters
CIFlowCtx

[in] Client provided-flow context handle. This can be the container used to hold an
arbitrary client-defined context for this instance of the client. This value will be the
same as the value provided by the client during its correspOnding call to
TcDeleteFlow.

Status
[in] Completion status for the TcDeleteFlow request. This value may be any of the
return values possible for the TcDeleteFlow function, with the exception of
ERROR_SIGNAL_PENDING.

Note Use of the CIDeleteFlowComplete function requires administrative privilege,

Windows NT/2000: Requires Windows 2000.
Window.s 95/98: Unsupported.

TcDeleteFlow

CIModifyFlowComplete
The CIModifyFlowComplete function is used by traffic control to notify the client of the
completion of its previous call to the TcModtfyFlow function.

TheCIModifyFlow.Completecaliback function is optional. If this function is not
specified, TcModifyFlow will block until it completes.

832 Volume 1 Winsock and QOS

Parameters
CIFlowCtx

[in] Client provided-flow context handle. This can be the container used to hold an
arbitrary client-defined context for this instance of the client. This value will be the
same as the value provided by the client during its corresponding call to
TcModifyFlow.

Status
[in] Completion status for the TcModifyFlow request. This value may be any of the
return values possible for the TcModifyFlow function, with the exception of
ERROR_SIGNAL_PENDING.

Note Use of the CIModifyFlowComplete function requires administrative privilege.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.

TcModifyFlow

CI NotifyHand ler
The CINotifyHandler function is used by traffic control to notify the client of various
traffic control-specific events, including the deletion of flows, changes in filter
parameters, or the closing of an interface.

The CINotifyHandler callback function should be exposed by all clients using traffic
control services.

Parameters
ClRegCtx

Chapter 16 Traffic Control API Reference 833

[in] Client registration context, provided to traffic control by the client with the client's
call to the TcRegisterClient function.

CllfcCtx
[in] Client interface context, provided to traffic control by the client with the client's call
to the TcOpenlnterface function. Note that during a TC_NOTIFY _IFC_UP event,
CllfcCtx is not available and will be set to NULL.

Event
[in] Describes the notification event. See the Remarks section for a list of notification
events.

Sub Code
[in] Value used to further qualify a notification event.

BufSize
[in] Size of the buffer included with the notification event.

Buffer
[in] Buffer containing the. detailed event information associated with Event and
Sub Code.

Remarks
Notification events may require the traffic control client to take particular action or
respond appropriately, for example, removing filters or enumerating flows for affected
interfaces.

The following table describes the various notification events.

Buffer
Event SubCode contents Remarks

TC_NOTIFY_
IFC_UP

TC_NOTIFY_
I FC_CLOSE

TC_NOTIFY_
I FC_CHANGE

None

Reason for
close

None

I nterfaceName
of the new
interface

InterfaceName
of the new
interface

New parameter
value

A new traffic control interface is coming
up, and the list of addresses is indicated.

Indicates an interface that was opened
by the client is being closed by the
system. Note that the interface and its
supported flows and filters are closed by
the system upon return from the
notification handler. The client does not
need to close the interface, delete flows,
or delete filters.

Used to notify clients that have
registered for interface change
notification through the NotifyChange
parameter of the TcQuerylnterface
function.

(continued)

834 Volume 1 Winsock and QOS

(continued)

Event

TC_NOTIFY_
PARAM_CHANG
ED

TC_NOTIFY_
FLOW_CLOSE

SubCode

Pointer to the
GUID for a
traffic control
parameter
queried using
the
TcQuerylnterf
ace function.

CIFlowCtx

Buffer
contents

New parameter
value

InterfaceName
of the closed
interface

Remarks

This event is notified as a result of a
change in a parameter previously
queried with the NotifyChange flag set.

Indicates system closure of a client
created flow. The system deletes all
associated filters.

Note Use of the CINotifyHandler function requires administrative privilege.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.

Traffic Control Structures
This section describes the following traffic control structures:

• ADDRESS_LIST _DESCRIPTOR

• ENUMERATION_BUFFER

• IP _PATTERN
• QOS_DIFFSERV _RULE

• TC_GEN_FIL TER

• TC_GEN_FLOW
• TC_IFC_DESCRIPTOR

• TCI_CLlENT _FUNC_LIST

There is also a collection of structures associated with traffic control that enable
application developers to query or gather statistical information regarding the packet
scheduler and its traffic control faculties. That collection of statistic-enabling structures is
the following:

• GUID
• PS_COMPONENT_STATS

Chapter 16 Traffic Control API Reference 835

• PS_ADAPTER_STATS

• PS_FLOW_STATS

• PS_CONFORMER_STATS

• PS_SHAPER_STATS

• PS_DRRSEQ_STATS

Many structures explained in this section work closely with the FLOWSPEC structure.

The ADDRESS_LIST _DESCRIPTOR structure provides network address descriptor
information for a given interface. For point-to-point media such as WAN connections, the
list is a pair of addresses, the first of which is always the local or source address, the
second of which is the remote or destination address. Note that the members of
ADDRESS_LIST_DESCRIPTOR are defined in Ntddndis.h.

Members
MediaType

Pointer to the media type of the interface. NDIS_MEDIUM is a defined type from
definitions provided in Ntddndis.h.

AddressList
Pointer to the address list for the interface. NETWORK_ADDRESS_LlST is defined in
Ntddndis.h.

Windows NT/2000: Requires Windows2000.
Windows 95/98: Unsupported.
Header: Declared in Traffic.h.

ENUMERATION_BUFFER
The ENUMERATION_BUFFER structure contains information specific to a given flow,
including flow name, the number of filters associated with the flow, and an array of filters
associated with the flow.

836 Volume 1 Winsock and QOS

Members
Length

Number of bytes from the beginning of the ENUMERATION_BUFFER to the next
ENUMERATION_BUFFER.

OwnerProcessld
Identifies the owner of the process.

FlowNameLength
Specifies the length of the FlowName member.

FlowName
Array of WCHAR characters, of length MAX_STRING_LENGTH, that specifies the
flow name.

pFlow
Pointer to the corresponding TC_GEN_FLOW structure. This structure is placed
immediately after the array of TC_GEN_FIL TERS and is included in Length.

NumberOfFilters
Specifies the number of filters associated with the flow.

GenericFilter
Array of TC_GEN_FIL TER structures. The number of elements in the array
corresponds to the number of filters attached to the specified flow. Note that in order
to enumerate through the array of TC_GEN_FIL TER structures, you need to
increment the pointer to the current TC_GEN_FILTER by using the following:

sizeof(TC_GEN_FIL TER) + 2 * [the pattern size of the current TC_GEN_FILTER
structure].

Example
The following example shows how to use the ENUMERATION_BUFFER with traffic
control. It also provides an example of enumerating through the array of
TC_GEN_FILTER structures found in GenericFilter.

Chapter 16 Traffic Control API Reference 837

838 Volume 1 Winsock and QOS

(continued)

Chapter 16 Traffic Control API Reference 839

(continued)

840 Volume 1 Winsock and QOS

(continued)

Chapter 16 Traffic Control API Reference 841

(continued)

842 Volume 1 Winsock and QOS

(continued)

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Traffic.h.

IP PATTERN
The IP _PATTERN structure applies a specific pattern or corresponding mask for the IP
protocol. The IP _PATTERN structure designation is used by the traffic control interface
in the application of packet filters:

Members
Reserved1

Reserved for future use.

Reserved2
Reserved for future use.

SrcAddr
Source address.

DstAddr
Destination address.

Protocolld
Protocol identifier.

Reserved3
Reserved for future use.

tcSrcPort
Source port.

tcDstPort
Destination port.

tclcmpType
ICMP message type

tclcmpCode
ICMP message code.

tcSpi
Service provider interface.

Chapter 16 Traffic Control API Reference 843

844 Volume 1 Winsock and QOS

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Traffic.h.

The QOS_DIFFSERV _RULE structure is used in conjunction with the traffic control
object QOS_OBJECT _DIFFSERV to provide Diffserv rules for a given flow.

Members
InboundDSField

Diffserv code pOint (DSCP) on the inbound packet. InboundDSField must be unique
for the interface, otherwise the flow addition will fail.

Valid range is OxOO-Ox3F.

ConformingOutboundDSField
Diffserv code point (DSCP) marked on all conforming packets on the flow. This
member can be used to re-mark the packet before it is forwarded.

Valid range is OxOO-Ox3F.

NonConformingOutboundDSField
Diffserv code point (DSCP) marked on all nonconforming packets on the flow. This
member can be used to remark the packet before it is forwarded.

Valid range is OxOO-Ox3F.

ConformingUserPriority
UserPriority value marked on all conforming packets on the flow. This member can be
used to remark the packet before it is forwarded.

Valid range is 0-7

NonConformingUserPriority
UserPriority value marked on all nonconforming packets on the flow. This member
can be used to remark the packet before it is forwarded.

Valid range is 0-7

Chapter 16 Traffic Control API Reference 845

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Traffic.h.

The TC_GEN_FILTER structure creates a filter that matches a certain set of packet
attributes or criteria, which can subsequently be used to associate packets that meet the
attribute criteria with a particular flow. The TC_GEN_FIL TER structure uses its
AddressType member to indicate a specific filter type to apply to the filter.

Members
AddressType

Defines the filter type to be applied with the filter, as defined in Ntddndis.h. With the
designation of a specific filter in AddressType, the generic filter structure
TC_GEN_FILTER provides a specific filter type.

PatternSize
Size of the Pattern member.

Pattern
Indicates the specific format of the pattern to be applied to the fHter, such as
IP _PATTERN. The pattern specifies which bits of a given packet should be evaluated
when determining whether a packet is included in the filter.

Mask
A bitmask applied to the bits designated in the Pattern member. The application of
the Mask member to the Pattern member determines which bits in the Pattern
member are significant (should be applied to the filter criteria). Note thatthe Mask
member must be of the same type as the Pattern member.

846 Volume 1 Winsock and QOS

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Traffic.h.

The TC_GEN_FLOW structure creates a generic flow for use with the traffic control
interface. The flow is customized through the use of the structure's members.

Members
SendingFlowspec

FLOWSPEC structure for the sending direction of the flow.

ReceivingFlowspec
FLOWSPEC structure for the receiving direction of the flow.

TcObjectsLength
Length of TcObjects.

TcObjects
Buffer that contains an array of traffic control objects specific to the given flow. The
TcObjects member can contain objects from the list of currently supported objects.
Definitions of these objects can be found in Qos.h and Traffic.h:

QOS_OBJECT_DS_CLASS

QOS_OBJECT _TRAFFIC_CLASS

QOS_OBJECT _DIFFSERV

QOS_OBJECT _SD_MODE

QOS_OBJECT _SHAPING_RATE

QOS_OBJECT _END_OF _LIST

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Traffic.h.

Chapter 16 Traffic Control API Reference 847

FLOWSPEC

The TC_IFC_DESCRIPTOR structure is an interface identifier used to enumerate
interfaces.

Members
Length

Number of bytes from the beginning of the TC_IFC_DESCRIPTOR to the next
TC_IFC_DESCRIPTOR.

plnterfaceName
Pointer to a zero-terminated Unicode string representing the name of the packet
shaper interface. This name is used in subsequent TC API calls to reference the
interface.

pi nterfacelD
Pointer to a zero-terminated Unicode string naming the DeviceName of the interface.

AddressListDesc
Network address list descriptor.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Traffic.h.

The TCI_CLlENT _FUNC_LlST structure is used by the trafficGontrol interface to register
and then access client-callback functions. Each member of TCI_CLIENT_FUNC_LlST is
a pointer to the client provided-callback function.

848 Volume 1 Winsock and aos

GUID

Members
CINotifyHandler

Pointer to the client-callback function CINotifyHandler.

CIAddFlowCompleteHandler
Pointer to the client-callback function CIAddFlowCompleteHandler.

CIModifyFlowCompleteHandler
Pointer to the client-callback function CIModifyFlowCompleteHandler.

CIDeleteFlowCompleteHandler
Pointer to the client-callback function CIDeleteFlowCompleteHandler.

Remarks
Any member of the TCLCLlENT_FUNC_LlST structure can be NULL except
TCI_NOTIFY _HANDLER.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Traffic.h.

CINotifyHandler, CIAddFlowComplete, CIModifyFlowComplete,
CIDeleteFlowComplete

Traffic control uses GUIDs to convey information about the status of packet shaper
interfaces, to report errors, and to provide statistics.

The GUID_QOS_STATISTICS_BUFFER structure is actually an array of
PS_COMPONENT_STATSstructures, which in turn serve as a container structure,
holding one of the five following structures in its Stats member.

Chapter 16 Traffic Control API Reference 849

• PS_ADAPTER_STATS

• PS_FLOW_STATS
• PS_CONFORMER_STATS
• PS_SHAPER_STATS

• PS_DRRSEQ_STATS

The following table lists GUIDs used with packet shaper on Windows 2000 QOS-enabled
computers. In the scope column, PII indicates that the GUID is based per-interface, and
P/F indicates it is based per-flow.

GUID

GUID_QOS_
REMAINING
BANDWIDTH

GUID_QOS_
LATENCY

GUID_QOS
FLOW_COUNT

GUID_QOS_NON
BESTEFFORT _
LIMIT

GUID_QOS_MAX_
OUTSTANDING_
SENDS

GUID_QOS_
ST ATISTICS_
BUFFER

GUID_
QOS_
FLOW_
MODE

GUID_QOS_
ISSLOW_
FLOW

Size Scope

ULONG P/I

ULONG P/I

ULONG P/I

ULONG P/I

ULONG P/I

See the P/I,
following. P/F

ULONG P/I

ULONG P/F

Set- Notifi-
table? cation? Description

No Yes The remaining amount of
reservable bandwidth on this
interface.

No No The latency of this interface.

No Yes Number of active flows.

No No The total amount of reservable
bandwidth.

No No Maximum number of sends
that can be outstanding on this
interface.

Yes No Statistics collected for flow or
interface. The
GUID_QOS_STATISTICS_
BUFFER structure is actually
an array of
PS_COMPONENT_STATS
structures, as described in the
preceding.

Yes No

No No

Mode of operation for this
interface: STANDARD or
DIFFSERV. Note that you
must specify the constants
rather than Standard or
Diffserv when using this GUID.

Indicates an ISSLOW flow.

(continued)

850 Volume 1 Winsock and OOS

(continued)

Set- Notifi-
GUID Size Scope table? cation? Description

GUID_QOS_ ULONG none No No Timer resolution, in
TIMER_ microseconds.
RESOLUTION

GUID_QOS_ ULONG P/F No No The conforming DSCP value
FLOW_IP _ for this flow.
CONFORMING

GUID_QOS_FLOW_ ULONG P/F No No The nonconforming SCP value
IP _ for this flow.
NONCONFORMING

GUID_QOS_FLOW_ ULONG P/F No No The conforming 802.1p value
8021 P _ for this flow
CONFORMING

GUID_QOS_FLOW_ ULONG P/F No No The nonconforming 802.1p
8021 P _ value for this flow.
NONCONFORMING

Remarks
In the GUID_QOS_STATISTICS_BUFFER GUID described in the table above, you must
pass in a buffer that is large enough to hold all returned PS_COMPONENT _STATS
structures.

Version: Requires MAPI 1.0 or later.
Header: Declared in Mapiguid.h.

The PS_COMPONENT_STATS structure enables applications to get statistical
information regarding their TC-enabled flow. This structure obtains information from
GUID_QOS_STATISTICS_BUFFER GUID. This GUID actually is an array of
PS_COMPONENT_STATS, with each element of that array (each
PS_COMPONENT_STATS structure) containing one of the five PS_* structure types
explained subsequently.

Members
Type

Chapter 16 Traffic Control API Reference 851

Indicates one of the following types of PS_* structure contained in the Stats member:

• PS_ADAPTER_STATS

• PS_FLOW_STATS

• PS_CONFORMER_STATS

• PS_SHAPER_STATS

• PS_DRRSEQ_STATS

Length
Length of the Stats member, in bytes.

Stats
Array of structures of the type indicated in the Type member.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Ntddpsch.h.

The PS_ADAPTER_STATS structure provides statistical packet shaper information
about a specified adapter. Note that the PS_ADAPTER_STATS structure is used in
conjunction with the PS_COMPONENT_STATS structure.

852 Volume 1 Winsock and QOS

Members
OutOfPackets

Number of instances in which the adapter had no packets to transmit on the specified
adapter.

FlowsOpened
Number of flows opened on the adapter.

FlowsClosed
Number of flows closed on the adapter.

FlowsRejected
Number of flows that were rejected due to packet shaper constraints on the adapter.

FlowsModified
Number of flows that were modified on the adapter.

FlowModsRejected
Number of flow modifications that were rejected on the adapter due to packet shaper
constraints.

MaxSimultaneousFlows
Maximum number of simultaneous flows.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Ntddpsch.h.

The PS_FLOW_STATS structure provides statistical packet shaper information about a
particular flow. Note that the PS_FLOW_STATS structure is used in conjunction with the
PS_COMPONENT_STATS structure.

Members
DroppedPackets

Number of packets that have been dropped from the flow.

Chapter 16 Traffic Control API Reference 853

PacketsScheduled
Number of packets that have been scheduled for transmission on the flow.

Packets Transmitted
Number of packets that have been transmitted on the flow.

BytesScheduled
Number of bytes that have been scheduled for transmission on the flow.

BytesTransmitted
Number of bytes that have been transmitted on the flow.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Ntddpsch.h.

The PS_CONFORMER_STATS structure provides statistical packet shaper information
about a particular flow. Note that the PS_CONFORMER_STATS structure is used in
conjunction with the PS_COMPONENT_STATS structure.

Members
NonconformingPacketsScheduled

Number of nonconforming packets that have been scheduled on the flow or interface.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Ntddpsch.h.

The PS_SHAPER_STATS structure provides statistical packet shaper information about
the computer's Windows 2000 packet shaper component. Note that the
PS_SHAPER_STATS structure is used in conjunction with the
PS_COMPONENT_STATS structure.

854 Volume 1 Winsock and aos

Members
MaxPacketslnShaper

Maximum number of packets that have been in the packet shaper for the flow or
interface.

AveragePacketslnShaper
Average number of packets that have been in the packet shaper for the flow or
interface.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Ntddpsch.h.

The PS_DRRSEQ_STATS structure provides network interface card (NIC) and packet
sequencer-packet shaper statistics. Note that the PS_DRRSEQ_STATS structure is
used in conjunction with the PS_COMPONENT_STATS structure.

Members
MaxPacketslnNetcard

Maximum number of packets that have been queued in the network interface card for
the flow or interface.

AveragePacketslnNetcard
Average number of packets queued in the network interface card for the flow or
interface.

MaxPacketslnSequencer
Maximum number of packets that have been queued in the packet sequencer for the
flow or interface.

Chapter 16 Traffic Control API Reference 855

AveragePacketslnSequencer
Average number of packets that have been queued in the packet sequencer for the
flow or interface.

NonconformingPacketsTransmitted
Number of nonconforming packets that have been transmitted for the flow or
interface.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Ntddpsch.h.

Traffic Control Objects
Applications that require specific or granular traffic control, beyond what is available in
the TC API, can use traffic control objects. The use of traffic control objects with the TC
API is similar to the use of QOS Objects with the QOS API.

Like QOS objects, traffic control object follow a stringent structure. Traffic control objects
always include an information header that specifies the type and length of the traffic
control object to which it is attached, followed by the object itself.

Some objects are shared by QOS and traffic control. Those objects are defined in the
QOS Objects section, and are the following:

• QOS~OBJECT_SD....:MODE

• QOS_OBJECT_SHAPING_RATE

This section describes the following traffic control objects:

• QOS_OBJECT_TRAFFIC_CLASS

• QOS_OBJECT_DS_CLASS

• QOS_OBJECT_DIFFSERV

As with QOS objects, traffic control objects begin each object with the
QOS_OBJECT_I-IDR, which is used by QOS components that interrogate QOS objects
to ascertain the type of object that follows the header.

856 Volume 1 Winsock and aos

QOS_OBJECT _TRAFFIC_CLASS
The traffic control object QOS_OBJECT_TRAFFIC_CLASS is used to override the
default UserPriority value ascribed to packets that classify to (are associated with) a
given flow. By default, the UserPriority value of a flow is derived from the ServiceType;
the capability to override the default UserPriority is necessary because packets can be
tagged in their Layer 2 headers (such as an 802.1 p header) to specify their priority to
Layer-2 devices. Using QOS_OBJECT _TRAFFIC_CLASS enables application
developers to override the default UserPriority setting.

Members
ObjectHdr

The QOS object QOS_OBJECT_HDR. The object type for this traffic control object
should be QOS_OBJECT_TRAFFIC_CLASS.

TrafficClass
User priority value of the flow. The valid range is zero through seven. The following
settings are chosen (by default) when the QOS_OBJECT _TRAFFIC_CLASS traffic
control object is not used.

Service Types Traffic Class Default Value

ServiceTypeBestEffort, 0
Service TypeQualitative

ServiceTypeControlledLoad 4

ServiceTypeGuaranteed 5

ServiceTypeNetworkControl 7

Non Conformant traffic 1

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Traffic.h.

Chapter 16 Traffic Control API Reference 857

The traffic control object QOS_OBJECT_DS_CLASS enables application developers to
override the default DiffseN code point (DSCP) value for the IP packets associated with
a given flow. By default, the DSCP value is derived from the flow's SeNiceType.

Members
ObjectHdr

The OOS object QOS_OBJECT _HDR. The object type for this traffic control object
should be QOS_OBJECT_DS_CLASS.

DSFieid
User priority value for the flow. The valid range is OxOO through Ox3F. The following
settings are chosen (by default) when the OOS_OBJECT _DS_CLASS traffic control
object is not used.

Service types Traffic class default value

SeNiceTypeBestEffort, 0
SeNice TypeOualitative

SeNiceTypeControliedLoad Ox18

SeNiceTypeGuaranteed 0X28

SeNice TypeNetworkControl Ox30

Non Conformant traffic oxOO

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Traffic.h.

QOS_DIFFSERV _RULE, QOS_OBJECT _DIFFSERV,
QOS_OBJECT _TRAFFIC_CLASS

858 Volume 1 Winsock and QOS

QOS_ OBJECT _DIFFSERV
The QOS_OBJECT _DIFFSERV traffic control object is used to specify filters for the
packet scheduler when it operates in Differentiated Services Mode.

Members
ObjectHdr

The aos object QOS_OBJECT_HDR. The object type for this traffic control object
should be QOS_OBJECT _DIFFSERV.

DSFieldCount
Number of Diffserv Rules in on this object.

OiffservRule
Array of QOS_DIFFSERV _RULE structures.

Remarks
The QOS_OBJECT_DIFFSERVobject is used to specify the set of Diffserv rules that
apply to the specified flow, all of which are specified in the DiffservRule member. Each
Diffserv rule has an InboundDSField, which signifies the DSCP on the Inbound packet.
The Diffserv Rules also have an OutboundDSCP and UserPriority values for conforming
and non conforming packets. These indicate the DSCP and 802.1 p values that go out on
the forwarded packet. Note that the DSCP or UserPriority mapping based on
ServiceType or aOS_OBJECT_DS_CLASS or QOS_OBJECT_TRAFFIC_CLASS is
not- used in this mode.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Traffic.h.

QOS_DIFFSERV _RULE, QOS_OBJECT _DS_CLASS,
QOS_OBJECT _TRAFFIC_CLASS

859

CHAPTER 17

Local Policy Module API Reference

The Local Policy Module (LPM) API is a set of functions that the Policy Control Module
(PCM) uses to interact with one or more LPMs. LPM API functions must be exported by
LPMs to allow the PCM to invoke the LPM. This approach enables multiple LPMs to
interact with the PCM, and subsequently, allows the PCM to return policy based
admission control decisions from one or more LPMs to the Admission Control Service
(ACS). This concept is similar to a three-tiered approach, and enables multiple LPMs to
easily coexist on a single system. Note, too, that LPMs may selectively accept or reject
individual flows within a given policy based-decision request.

LPM Functions
The following functions are exposed by the Microsoft-provided LPM, Msidlpm.dll.

• cbpAdmitRsvpMsg

• cbpGetRsvpObjects

The following functions must be exposed by each LPM; they allow the PCM to
communicate requests from the Subnet Bandwidth Manager (SBM) (through the PCM).
The Microsoft-supplied LPM, implemented as a DLL in Msidlpm.dll, also uses this API.
Note that callback functions, identified by their cbp prefix, should not be exposed by
LPMs; these callback functions, which are exposed by the PCM, facilitate deferred
response from LPMs to PCM requests.

• LPM_AdmitRsvpMsg

• LPM_CommitResv

• LPM_Deinitialize

• LPM_DeleteState

• LPM_GetRsvpObjects

• LPM_lnitialize

• Lpm_lpAddressTable

860 Volume 1 Winsock and QOS

cbpAdmitRsvpMsg
The cbpAdmitRsvpMsg function is used by LPMs to return results for the
LPM_AdmitRsvpMsg request. LPMs should only use this function if they have returned
LPM_RESUL T _DEFER to the LPM_AdmitRsvpMsg function call. The PCM will only
accept results from this function within the result-time limit established by each LPM
through the ResultTimeUmit parameter of the LPM_lnitialize function.

Parameters
LpmHandle

[in] Unique handle for the LPM, as supplied in LPM_lnitialize. The PCM will ignore
any result that is not accompanied by a valid LPM handle.

RequestHandle
[in] Unique handle that distinguishes this request from all other requests. LPMs must
pass this handle to the PCM when returning results asynchronously for an individual
request by calling cbpAdmitRsvpMsg. RequestHandles become invalid once results
are returned, requiring each request to get its own unique RequestHandle from
the PCM.

LpmPriorityValue
[in] LPM Priority Value assigned to the request. The PCM assumes
LPV _DONT _CARE if LpmPriorityValue is invalid.

PolicyErrorCode
[in] Policy error code value. PolicyErrorCode must be a nonzero value; the SBM will
copy this value, in combination with PolicyErrorValue, into the RSVP Error Object
when sending PATHERR or RES ERR messages (as the result of policy based
admission control failure, to provide a reason for rejecting the request).

PolicyErrorValue
[in] Policy error value. PolicyErrorValue must be a nonzero value; the SBM will copy
this value, in combination with POlicyErrorCode, into the RSVP Error Object when
sending PATHERR or RESERR messages (as the result of policy based-admission
control failure, to provide a reason for rejecting the request).

Reserved
[in] This parameter is reserved for future use.

Chapter 17 Local Policy Module API Reference 861

Remarks
When a request has been rejected, the PCM will call the LPM to instruct it to delete the
request's state. The LPM can choose to delete the request's state at any time during the
rejection process. If the LPM deletes a request's state shortly after its rejection of the
request, the LPM must be prepared to handle subsequent calls (by the PCM, through
the LPM_DeleteState function) to delete the (already deleted) state.

The LPM does not need to maintain state for requests to which it returns
LPV _DONT _CARE. However, the LPM must be prepared to handle LPM_DeleteState
requests for this (nonexisting) state.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.

cbpGetRsvpObjects
The cbpGetRsvpObjects function is a callback function for LPMs to asynchronously
return results for LPM_GetRsvpObjects requests. LPMs call the cbpGetRsvpObjects
function to asynchronously return policy data objects to the PCM for an
LPM_GetRsvpObjects request. An LPM should only use the cbpGetRsvpObjects
function if it returned LPM..c.RESULTS_DEFER to the PCM's LPM_GetRsvpObjects
request.

Parameters
LpmHandle

[in] Unique handle for the LPM, as supplied in LPM_lnitialize. The PCM will ignore
any result that is not accompanied by a valid handle.

RequestHandle
[in] Unique handle that distinguishes this request from all other requests, provided
from the corresponding LPM_GetRsvpObjects request.

LpmError
[in] Error value, used by the PCM to determine whether the policy data objects
returned with this function should be used. Any value other than LPM_OK will result in
the PCM ignoring the contents of *RsvpObjects.

862 Volume 1 Winsock and QOS

Note that if an LPM is returning an error, it should free buffers allocated during the
LPM_GetRsvpObjects request processing; these buffers should have been allocated
using the MemoryAliocator function, supplied within the LPM_lnitialize function as
its FreeMemory parameter.

If no policy data objects are being returned, LpmError must be set to LPM_OK,
RsvpObjectsCount must be set to zero, and *RsvpObjects must be set to NULL. The
LPM can force the SBM to stop sending out the RSVP message by setting the value
of LpmErrorto LPV_DROP _MSG.

RsvpObjectsCount
[in] Number of policy data objects being returned. If no policy data objects are being
returned, LpmError must be set to LPM_OK, RsvpObjectsCount must be set to zero,
and *RsvpObjects must be set to NULL.

RsvpObjects
[in] Array of pointers to policy data object. The buffer containing the policy data
objects should be allocated using the MemoryAllocatorfunction supplied within the
LPM_lnitialize function. The Subnet Bandwidth Manager (SBM) will free the policy
data objects when they are no longer needed.

If no policy data objects are being returned, LpmError must be set to LPM_OK,
RsvpObjectsCount must be set to zero, and *RsvpObjects must be set to NULL.

Remarks
LPMs do not need to send policy data options if only default options are required. Since
the content of policy data objects are opaque to the peM, no host-to-network order
conversion of policy element headers and contents will be done by the peM; the peM
expects LPMs to generate policy elements in the network order such that the receiver of
the policy elements can correctly parse them. However, the policy data object header
must be in host order to allow the peM to merge policy elements (if possible or
applicable).

From LPMs that support all PE types, the peM expects complete policy data objects and
their required policy data options. Furthermore, the peM expects the policy data object
header to be in host order; it is the responsibility of the LPM to process the host-to
network order conversions of policy options and policy elements.

If any LPM returns LPV _DROP _MSG, the SBM will not send out an RSVP refresh
message, but will free the policy data objects returned by other LPMs (those that did not
return LPV _DROP _MSG, if any). By not sending out RSVP refresh messages, a flow's
RSVP state both upstream and downstream will begin to age, and eventually get
deleted.

Note The SBM will send out the RSVP refresh message even if some or all LPMs fail to
return policy data objects in a timely fashion, even though such an outgoing RSVP
message may not contain all policy data objects it should.

Chapter 17 Local Policy Module API Reference 863

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.

LPM_AdmitRsvpMsg
The LPM_AdmitRsvpMsg function is called by the peM to pass RSVP messages to the
LPM for policy based-admission control decisions. Results from calling
LPM_AdmitRsvpMsg can be passed back to the peM either synchronously or
asynchronously by setting the return value appropriately. Asynchronous results should
be returned by calling the cbpAdmitRsvpMsg function.

Parameters
PcmReqHandle

[in] Unique handle that identifies this request from all other requests. LPMs must pass
this handle to the peM when returning results asynchronously for an individual
request by calling cbpAdmitRsvpMsg. PcmReqHandlOS become invalid once results
are returned, requiring each request to get its own unique PcmReqHandle from
the peM.

pRecvdlntf
[in] Pointer to the interface on which the message was received. The received
interface IP address is supplied as the RSVP HOP object, and the Logical Interface
Handle is set to the SNMP Index. Note that interface index numbers can change with
the addition and deletion of interfaces, due to the Plug and Play features of
Windows 2000.

pRsvpMsgObjs
[in] Objects received from RSVP. The. S8M unpacks received RSVP messages into
individual objects and converts the contents of such RSVP objects into host order,
and supplies them in the RSVP _MSG_OBJS structure, which is defined in IpmapLh.
The following objects are supplied.

864 Volume 1 Winsock and QOS

RcvdRsvpMsgLength
Value

RsvpMsgType

RsvpSession

RsvpFromHop

RsvpScope

RsvpStyle

FlowDescListCount

FlowDescList

PolicyDataCount

PolicyDataObjects

ErrorSpec

RcvdRsvpMsgLength

Meaning

RSVP message type, as defined by the RSVP protocol.

Pointer to the RSVP session, as defined by the RSVP
protocol. Note that contents are in host order.

Pointer to the hop from which the RSVP message was
received. Note that contents are in host order.

Pointer to the RSVP scope object.

Pointer to the RSVP reservation style, as defined by the
RSVP protocol. Note that contents are in host order.

Number of flow descriptors.

Array of flow descriptor pointers.

Number of policy data objects.

Array of policy data object pOinters. Note that only the RSVP
object header and the policy options are converted to host
order, but policy element headers as well as contents are left
in network order; the PCM cannot convert the latter to host
order, because the PCM cannot parse policy elements. Note
that the Microsoft-provided LPM, Msidlpm.dll, does reorder
policy element conte~t into host order.

Pointer to the received RSVP ERROR_SPEC object.

[in] Length of the received RSVP message, in bytes.

RcvdRsvpMsg
[in] RSVP message, in network order.

pulPcmActionFlags
[out] Flags used to specify an action requested of the PCM. The LPM can currently
set this parameter to FORCE_IMMEDIATE_REFRESH to request an immediate
refresh of the message being admitted. An LPM can set this flag if a change in policy
data is detected that it wants to forward immediately. Before sending, the SBM asks
the LPM to supply policy information for the outgoing refresh message.
Note that LPMs do not need to set this flag when a new PATH message is being
accepted; SBMs automatically send the new PATH message toward receivers.

pPolicyDecisions
[out] Pointer to policy decisions. An LPM must allocate this buffer using the memory
allocator supplied in the LPM_lnitialize function call; the SBM frees the buffer after
acting on pPolicyDecisions. The PCM looks at pPolicyDecisions only when the
function returns LPM_RESUL T _READY. Synchronous policy decisions must be

c returned for each flow in FlowDescList, and the number of entries in the
pPolicyOecisions array must be equal to FlowDescListCount. Each policy decision
consists of the following.

Chapter 17 Local Policy Module API Reference 865

Value Meaning

LpmPriorityValue Pointer to a buffer to receive the LPM Priority Value from the
LPM. Note that the PCM will only look at this parameter if the
return value of LPM_AdmitRsvpMsg is set to
LPM_RESUL T _READY. If the LPM is returning results
synChronously, this parameter must be set to a valid priority
value. See Local Policy Module for more information.

PolicyErrorCode Pointer to a policy error code. If the request is being rejected
synchronously, LPMs must provide a nonzero value for this
parameter; the S8M will copy this value, in combination with
PolicyErrorValue, into the RSVP error object when sending
PATHERR or RESVERR messages (as the result of policy
based-admission control failure, to provide a reason for
rejecting the request).

PolicyErrorValue Pointer to a policy error value. If the request is being rejected
synchronously, LPMs must provide a nonzero value for this
parameter; the S8M will copy this value, in combination with
POlicyErrorCode, into the RSVP error object when sending
PATHERR or RESVERR messages (as the result of policy
based-admission control failure, to provide a reason for
rejecting the request).

Since an LPMs return POLICY_DECISION is an array, an LPM can accept a subset
of flows in FlowDescListand reject the rest of them,if appropriate. For example, since
FF style RESV messages can contain multiple flows, when an LPM rejects some
flows and accepts others, the S8M generates a separate RESVERR message for
each rejected flow; before sending the RESVERR message, PCM calls each LPM to
supply policy data objects for each outgoing RESVERR message.

Reserved
[out] Reserved for future use.

Return Values
LPM_RESULT_READY

The LPM has made a policy decision. The result is available in LpmPriorityValue.

LPM_RESUL T _DEFER
The LPM was unable to return a decision immediately, but will do so using the
callback function cbpAdmitRsvpMsg. The LPM· must. call the callback within the time
period specified by the ResultTimeLimit parameter of LPM~lnitialize, otherwise the
PCM will assume LPV _REJECT.

Any other value
The PCM assumes LPV _DONT _CARE. In addition, the PCM will assume the return
value to be synchronous, and thus will not expect the LPM to call the
cbpAdmitRsvpMsg callback function; even if the LPM calls the function later, the
result will be rejected.

866 Volume 1 Winsock and QOS

Remarks
The Subnet Bandwidth Manager (SBM) forwards RSVP PATH, RESV, PATHERR,
RESVERR, PATH_TEAR, and RESV _TEAR messages to the PCM. If a request passes
LPM policy-based admission (in which case the success status is passed up through the
PCM to the SBM), the SBM performs resource based-admission control as part of its
RSVP processing; if resource based-admission control fails, the SBM will instruct the
PCM to instruct each LPM to delete its state through the LPM_CommitResv function. In
such circumstances, the SBM (and not the LPMs) will create the requisite RSVP error
message.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in LpmapLh.

LPM_ CommitResv
The LPM_CommitResv function is called by the PCM to obtain reservation commitment
decisions from the LPM.

Parameters
RsvpSession

[in] Pointer to the RSVP session object for which the reservation commitment is being
requested.

Flowlnstalledlntf
[in] Pointer to the interface on which the message was received. The received
interface IP address is supplied as the RSVP HOP object, and the Logical Interface
Handle is set to the SNMP Index. Note that interface index numbers can change with
the addition and deletion of interfaces, due to the Plug and Play features of
Windows 2000.

RsvpStyle
[in] RSVP reservation style being requested.

Chapter 17 Local Policy Module API Reference 867

FilterSpecCount
[in] Number of filter specs in ppFilterSpecList.

ppFilterSpecList
[in] Array of filter specs, listing the senders for whom the flow is created.

pAfergedFlowSpec
[in] Flow spec installed on the specified interface. The flow spec is a merged flow for
all receivers that can be reached by Flowlnstalledlntf.

CommitDecision
[in] Value of the commitment decision reached by the LPM. The following list indicates
possible values:

RESOURCES_ALLOCATED
RESOURCES_MODIFIED

Remarks
When the resources are allocated by the SBM for a new reservation, it calls LPMs with
CommitDecision set to RESOURCES_ALLOCATED. When resources allocated for an
existing reservation are changed, the SBM calls the LPM_CommitResv function with
CommitDecision set to RESOURCES_MODIFIED.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in LpmapLh.

LPM_Deinitialize
The LPM_Deinitialize function allows the PCM to instruct LPMs to deinitialize, whether
due to system shutdown or a change in Designated Subnet Bandwidth Manager (DSBM)
status. This occurs when the Admission Control Service no longer needs to do policy
based-admission control, such as when a demotion from DSBM status occurs. LPMs
should free res()urces, close connections to external entities such as policy servers,
directory services, and perform any other cleanup necessary to properly relinquish LPM
activities. The PCM will unload the DLL after LPM_Deinitializereturns.

Parameters
LpmHandle

Unique handle to the LPM, as supplied through LPM_lnitialize during initialization.

868 Volume 1 Winsock and QOS

Return Values
LPM_OK

The LPM deinitialized successfully.

If another value is returned from LPM_Deinitialize, the PCM will record the name of this
DLL (implementations of LPMs are always in the form of a DLL), as well as this return
value, in the Event Log.

Remarks
LPMs do not need to return errors for outstanding requests when LPM_Deinitialize is
called; PCM assumes LPV _REJECT for outstanding requests. LPMs should deinitialize
synchronously before returning. If an LPM has been loaded and initialized multiple times
to facilitate the handling of multiple PE types, the PCM will call LPM_Deinitialize
multiple times as well.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in LpmapLh.

LPM_DeleteState
The LPM_DeleteState function is called by the PCM to delete LPMs' RSVP state
information. RSVP states are deleted on various occasions, including when the S8M
receives RSVP TEAR/ERR messages, or when an RSVP state times out. The
LPM_DeleteState function call is synchronous. The PCM does not expect any results
from the LPM for this request.

Parameters
RsvpSession

Chapter 17 Local Policy Module API Reference 869

[in] Pointer to the RSVP session object for which the LPM should delete its state. This
value is never NULL.

ReceivedlntfAddress
[in] Pointer to the interface on which the RSVP TEAR message was received. The
received interface IP address is supplied as the RSVP HOP object, and the Logical
Interface Handle is set to the SNMP Index. If the PCM is calling the LPM_DeleteState
function for any reason other than an RSVP TEAR message, this argument can be
NULL. Note that interface index numbers can change with the addition and deletion of
interfaces, due to the Plug and Play features of Windows 2000.

RsvpMsgType
[in] RSVP message type for which the LPM should delete its state.

RsvpHop
[in] Pointer to an RSVP HOP object identifying the node that sent the TEAR message.
LPMs can use this argument to locate state information.

RsvpStyle
[in] Pointer to an argument that specifies the RSVP reservation style for RSVP
RESV _TEAR messages. LPMs can use this argument to locate state information.

FilterSpecCount
[in] Specifies the number of FilterSpecs in FilterSpecList. For RESV messages,
FilterSpecCount is dependent on RsvpStyle. For PATH messages, this value will
always be 1.

FilterSpecList
[in] Array of FilterSpec pointers. Note that the contents of Fi/terSpecList is dependent
on RsvpStyle; if RsvpMsgType is RSVP_PATH then FilterSpecListspecifies the
SenderTemplate, if RsvpMsgType is RSVP _RESV then FHterSpecList is the list of
filters for which the RESV state needs to be deleted.

DeleteReason
[in] Reason for deleting the state. Possible values are:

RCVD_PATH_TEAR
RCVD_RESV_TEAR
ADM_CTRL_FAILED
STATE_TIMEOUT
FLOW_DURATION

LPMs can use DeleteReason for statistic gathering or any other use.

Remarks
The PCM will call the LPM_DeleteState function for each LPM; LPMs should be
prepared to handle LPM_DeleteState for a nonexistent state, as described further in the
Remarks section of the cbpAdmitRsvpMsg function.

870 Volume 1 Winsock and QOS

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Lpmapi.h.

LPM_ GetRsvpObjects
The LPM_GetRsvpObjects function allows the PCM to query LPMs for policy data. The
data is forwarded by the PCM to the S8M for inclusion in RSVP refresh messages that
require policy data.

Results from the LPM_GetRsvpObjects function can be returned synchronously or
asynchronously. Asynchronous results are returned by calling the cbpGetRsvpObjects
callback function.

Parameters
PcmReqHandle

[in] Unique handle that distinguishes this request from all other requests. LPMs should
use this PcmReqHandle when returning results asynchronously using the
cbpGetRsvpObjects callback function.

MaxPdSize
[in] Maximum allowable size of the returned policy data.

$endinglntfAddr
[in] Pointer to the interface on which the RSVP message will be sent out. The sending
interface IP address is supplied as the RSVP HOP object, which equates to PHOP for
PATH messages and NHOP for RESV messages. The Logical Interface Handle is set
to the SNMP Index. Note that interface index numbers can change with the addition
and deletion of interfaces, due to the Plug and Play features of Windows 2000.

pRsvpMsgObjs
[in] RSVP objects generated by the S8M. All RSVP objects are in host order. The
following objects are supplied.

Value

RsvpMsgType

RsvpSession

RsvpHop

RsvpStyle

RsvpScope

FlowDescCount

FlowDescUst

pRsvpObjectsCount

Chapter 17 Local Policy Module API Reference 871

Meaning

RSVP message type, as defined in the RSVP protocol. This can
be used by an LPM to locate the state from which it can
generate policy data objects.

RSVP session for which the S8M requires policy information.
This can be used by an LPM to locate the state from which it
can generate policy data objects.

The HOP to which the RSVP message is being forwarded.
Since a PATH message is sent directory to the session address,
this HOP pointer is NULL for PATH messages. For all other
messages, the address in the HOP object is the node address
and the LlH is unused.

RSVP reservation style, as defined in the RSVP protocol. If an
RESV message is being sent out by the S8M, RsvpStyle
specifies the reservation style. If a PATH message is being
sent, RsvpStyle is NULL.

The RSVP scope of an outgoing RESV message, as long as the
SCOPE object is not NULL. Used only for WF-style
reservations. For all other RSVP reservation styles, RsvpScope
is NULL.

Number of flow descriptors.

Array of flow descriptor pOinters in the outgoing RSVP
message. For PATH messages, there will be only one
FlowDescriptor containing sender template and sender TSPEC.

[out] Pointer to the number of policy objects being returned. When an LPM is
immediately returning results, the pRsvpObjectsCount and pppRsvpObjects
parameters should be used to return policy data objects. Note that the buffer
containing the policy data objects should be allocated using the memory allocation
function PALLOCMEM, supplied within the LPM_lnitialize function.

pppRsvpObjects
[out] Pointer to an array of policy data object pointers returned in response to the
request. Note that the buffer containing the policy data objects, and this array of policy
data object pointers, should be allocated using the memory allocation function
PALLOCMEM, supplied within the LPM_lnitialize function.

Reserved
[out] Reserved for future use.

Return Values
LPM_RESULT_READY

The LPM has returned the policy data using pRsvpObjectsCount and pppRsvpObjects
parameters.

872 Volume 1 Winsock and QOS

LPM_RESUL T _DEFER
The LPM is unable to return the policy data objects synchronously, and will return the
policy data objects with a subsequent call to cbpGetRsvpObjects.

LPM_DROP _MSG
The LPM can return this value when it does not want to refresh the outgoing
message.

LPM_ERROR
The LPM has encountered an error.

Remarks
If an LPM doesn't have policy data to return from the LPM_GetRsvpObjects function
call, it should synchronously return LPM_RESUL T _READY, set pppRsvpObjects to
NULL, and set pRsvpObjectsCountto zero. If a synchronous return isn't possible, an
LPM should return LPM_RESUL T _DEFER, and return the result by calling the
cbpGetRsvpObjects callback function. If the LPM does not have any policy data objects
to return, it can set pppRsvpObjects to NULL and pRsvpObjectsCountto zero.

If any LPM returns LPV _DROP _MSG, the SBM will not send out an RSVP refresh
message, and will free the policy data objects returned by other LPMs (those that did not
return LPM_DROP _MSG, if any). By not sending out RSVP refresh messages, a flow's
RSVP state both upstream and downstream will begin to age, and eventually get
deleted.

Note The SBM will send out the RSVP refresh message even if some or all LPMs fail to
return policy data objects in a timely fashion, even though such an outgoing RSVP
message may not contain all policy data objects it should.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in LpmapLh.

LPM_lnitialize
The LPM_lnitialize function initializes a local policy module (LPM). This occurs when the
Admission Control Service needs to do policy based-admission control, such as when
an SBM becomes the Designated Subnet Bandwidth Manager (DSBM). LPMs should
initialize themselves, synchronously, before returning.

Parameters
LpmHandle

Chapter 17 Local Policy Module API Reference 873

[in] Unique handle for the LPM, assigned by the peM.

ResultTimeUmit
[in] Represents the value, in seconds, within which the LPM must respond to peM
requests. An LPM's failure to respond to peM requests within ResultTimeUmit results
in assumed rejection of the peM request. The peM will ignore responses provided
after ResultTimeUmit.

MemoryA lIoca tor
[in] peM provided-memory allocation routine PALLOCMEM. This function call must
be used by LPMs when returning policy information to the peM. This function,
combined with the PFREEMEM function, allows the S8M to use different memory
management schemes without requiring the recompilation of LPMs. Its use is
recommended. LPMs do not need to use this function to manage their local buffers.

FreeMemory
[in] peM provided-memory freeing routine PFREEMEM. This function, combined with
the function PALLOCMEM, allows the S8M to use different memory-management
schemes without requiring the recompilation of LPMs. Its use is recommended. If
memory allocated with MemoryAllocator is not returned to peM, nor freed with this
call, a memory leak will result. LPMs do not need to use this function to manage their
local buffers. The S8M will free this buffer when it is no longer needed. This function
call must be used by LPMs when returning policy information to the peM.

cbpAdmitRsvpMsg
[in] Pointer to the function used to asynchronously return results to the
LPM_AdmitRsvpMsg request.

cbpGetRsvpObjects
[in] Pointer to the function used to asynchronously return policy data objects from calls
to the LPM_GetRsvpObjects request.

874 Volume 1 Winsock and QOS

ConfiguredLpmCount
[in] Number of LPMs configured for use with the peM. Note that this value does not
indicate whether LPMs have been successfully loaded or initialized. This value is a
useful indication that the peM will attempt to load multiple LPMs on the system.

SupportedPe Type
[out] Valid Policy Element (PE) type that the LPM uses to make policy based
admission control decisions. Each LPM can only support one PE type, though future
versions may allow an LPM to support multiple PE types. Reserved PE types are
defined in LpmapLh.

It is possible for a single DLL to support multiple PE types by having the DLL name
entered multiple times in the peM configuration data. Under such circumstances, the
peM will load and call the same LPM_lnitia/ize routine multiple times; it is the LPM's
responsibility to return different PE types for these additional calls.

LPMs can return a special PE type, LPM_ALL_PE_ TYPES, to indicate that it will
make policy based-admission control decisions based on all policy data objects. In
this scenario, the peM will assume that this LPM understands how to generate policy
data objects for outgoing messages that the peM is not able to understand.

Reserved
[in, out] Reserved for future use.

Return Values
If the LPM is initialized successfully, and a valid PE type is returned in
SupportedPeType, the return value will be LPM_OK. The peM treats any value other
than LPM_OK as an error, and unloads the DLL (LPMs are always implemented as
DLLs). If a value other than LPM_OK is returned or SupportedPeType is invalid, the
peM writes a record to the Event Log and includes the name of the DLL and the
returned error value.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in LpmapLh.

Lpm_lpAddressTable
The Lpm_lpAddressTable function is used by the peM to pass a list of IP addresses
assigned to the Windows 2000 Server upon which the LPM is initialized. The peM calls
this routine after the LPM has successfully initialized, but before making any requests.
The peM also uses the Lpm_lpAddressTable function to update LPMs regarding IP
address changes. LPMs are expected to detect IP address changes and update their
states appropriately.

Parameters
clpAddrTable

Chapter 17 Local Policy Module API Reference 875

[in] Number of addresses in the IP table.

plpAddrTable
[in] Pointer to an LPMIPTABLE structure that contains the IP addresses assigned to
the Windows 2000 Server on which the LPM resides.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Lpmapi.h.

LPM Structures
The following structures are exposed by the Microsoft-provided LPM:

• LPMIPT ABLE

• PALLOCMEM

• PFREEMEM

LPMIPTABLE
The LPMIPTABLE structure contains IP information, including the SNMP index, IP
address, and subnet mask for each interface. The LPMIPTABLE structure is supplied as
an argument for the LPM_lpAddressTable function.

Members
Ullflndex

SNMP index for the interface.

IflpAddr
IP address for the interface.

876 Volume 1 Winsock and QOS

IfNetMask
IP subnet mask for the interface.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Lpmapi.h.

PALLOCMEM
The PALLOCMEM function is a memory allocation function provided by the peM, used
for allocating memory when returning policy information to the peM. The PALLOCMEM
function is supplied as a parameter of the LPM_lnitialize function, and allows the S8M
to experiment with different memory-management schemes without requiring
recompilation of LPMs.

Parameters
Size

Size of the memory buffer required by the LPM.

Remarks
LPMs do not need to use this function to manage their local buffers.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Lpmapi.h.

PFREEMEM
The PFREEMEM function is a memory-freeing function provided by the peM.
PFREEMEM frees memory buffers that were allocated using PALLOCMEM. The
PFREEMEM function is supplied as a parameter of the LPM_lnitialize function. The
combination of PALLOCMEM and PFREEMEM allows the S8M to experiment with
different memory-management schemes without requiring recompilation of LPMs.

Parameters
pv

Pointer to the memory buffer to free.

Remarks

Chapter 17 Local Policy Module API Reference 877

LPMs do not need to use this function to manage their local buffers. LPMs need to use
this function to free buffers that were allocated, but were not sent to the PCM. For
example, if a buffer is allocated in anticipation of a PCM's response to a request, but a
response is never returned (perhaps the remote policy store is unavailable or
unresponsive), that buffer must be freed with this function, or a memory leak will ensue.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in LpmapLh.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Part 3 879

IN 0 E X

Networking Services Programming Elements -
Alphabetical Listing

This final part, found in each volume in the Networking Services Library, provides a
comprehensive programming element index that has been designed to make your life
easier.

Rather than cluttering the TOGs of each individual volume in this library with the names
of programming elements, I've relegated such per-element information to a central
location: the back of each volume. This index points you to the volume that has the
information you need, and organizes the information in a way that lends itself to easy
use.

Also, to keep you as informed and up-to-date as possible about Microsoft technologies,
I've created (and maintain) a live Web-based document that maps Microsoft
technologies to the locations where you can get more information about them. The
following link gets you to the live index of technolqgies:

www.iseminger.com/Winprs/technologies

The format of this index is in a constant state of improvement. I've designed it to be as
useful as possible, but the real test comes when you put it to use. If you can think of
ways to make improvements, send me feedback at winprs@microsoft.com. While I can't
guarantee a reply, I'll read the input, and if others can benefit, I will incorporate the idea
into future libraries.

Locators are arranged by Volume Number followed by Page Number.

A B
accept ... Vol. 1, 133 bind ... Vol. 1, 139
AcceptEx ... Vol. 1, 135 Binding Option Constants Vol. 3, 333
ACTION_HEADER Vol. 2,147 Binding Time-out Constants Vol. 3, 333
ADAPTER_STATUS Vol. 2,148 BLOB .. Vol. 1, 378
Addlnterface Vol. 5, 266 BlockConvertServicesToStatic Vol. 5, 316
AddlPAddress Vol. 2, 239 BlockDeleteStaticServices Vol. 5, 317
ADDRESS_LIST _DESCRIPTOR. Vol. 1, 835
AFPROTOCOLS Vol. 1, 377
AsnAny , Vol. 2, 336 c
AsnCounter64 Vol. 2, 338
AsnObjectldentifier Vol. 2, 339
AsnOctetString Vol. 2, 339
Authentication-Level Constants Vol. 3, 330
Authentication-Service Constants Vol. 3, 331
Authorization-Service Constants Vol. 3, 332

cbpAdmitRsvpMsg Vol. 1, 860
cbpGetRsvpObjects Vol. 1,861
Change Notification Flags Vol. 5, 505
CIAddFlowComplete Vol. 1, 830
CIDeleteFlowComplete Vol. 1,831
CIModifyFlowComplete VoI.1, 831
CINotifyHandler. Vol. 1,832

880 Volume 1 Winsock and QOS

CloseServiceEnumerationHandle Vol. 5, 318 EnumProtocols Vol. 1, 149
closesocket... Vol. 1, 142
connect ... Vol. 1, 145
ConnectClient... Vol. 5, 268 F
CONNECTDLGSTRUCT Vol. 3, 656
CreatelpForwardEntry Vol. 2, 240
CreatelpNetEntry Vol. 2, 242
CreateProxyArpEntry Vol. 2, 242
CreateServiceEnumerationHandle ... Vol. 5, 319
CreateStaticService Vol. 5, 320
CSADDR_INFO Vol. 1,378

fd set .. Vol. 1,380
FIND NAME BUFFER Vol. 2,151
FIND-NAME - HEADER Vol. 2,152
FIXED INFO-:-.................................... Vol. 2, 277
FLOW8PEC Vol. 1,380
FLOWSPEC Vol. 1,791
FlushlpNetTable Vol. 2, 246

D G
DCE C ERROR STRING LEN Vol. 3, 336
DceErrorlnqText ::-.............. :-: Vol. 3, 349
Deletelnterface Vol. 5, 269
DeletelPAddress Vol. 2, 243
DeletelpForwardEntry Vol. 2, 244
DeletelpNetEntry Vol. 2, 245
DeleteProxyArpEntry Vol. 2, 245
DeleteStaticService Vol. 5, 321
DemandDialRequest Vol. 5, 306
DhcpCApiCleanup Vol. 2, 74
DhcpCApilnitialize Vol. 2, 74
DhcpDeRegisterParamChange Vol. 2, 80
DhcpRegisterParamChange Vol. 2, 78
DhcpRequestParams Vol. 2, 75
DhcpUndoRequestParams Vol. 2, 77
DISCDLGSTRUCT Vol. 3, 658
DisconnectClient Vol. 5, 270
DnsAcquireContextHandle Vol. 2, 49
DnsExtractRecordsFromMessage Vol. 2, 50
DnsFreeRecordList Vol. 2, 51
DnsModifyRecordslnSet.. Vol. 2, 51
DnsNameCompare Vol. 2, 53
DnsQuery ... Vol. 2, 61
DnsQueryConfig Vol. 2, 63
DnsRecordCompare Vol. 2, 55
DnsRecordCopyEx Vol. 2, 55
DnsRecordSetCompare Vol. 2, 56
DnsRecordSetCopyEx Vol. 2, 57
DnsRecordSetDetach Vol. 2, 58
DnsReleaseContextHandle Vol. 2, 54
DnsReplaceRecordSet... Vol. 2, 59
DnsValidateName Vol. 2, 64
DnsWriteQuestionToBuffer Vol. 2, 67
DoUpdateRoutes Vol. 5, 271
DoUpdateServices Vol. 5, 271

GetAcceptExSockaddrs Vol. 1,153
GetAdapterlndex Vol. 2, 247
GetAdapterslnfo Vol. 2, 248
GetAddressByName Vol. 1, 154
GetBestinterface Vol. 2, 249
GetBestRoute Vol. 2, 250
GetEventMessage Vol. 5, 272
GetFirstOrderedService Vol. 5, 323
GetFriendlylflndex Vol. 2, 251
GetGloballnfo Vol. 5, 274
gethostbyaddr Vol. 1, 159
gethostbyname Vol. 1, 160
gethostname Vol. 1, 162
GetlcmpStatistics Vol. 2, 252
GetifEntry .. Vol. 2, 252
GetlfTable ... Vol. 2, 253
Getlnterfacelnfo Vol. 2, 254
Getlnterfacelnfo Vol. 5, 275
GetlpAddrTable Vol. 2, 255
GetlpForwardTable Vol. 2, 256
GetipNetTable Vol. 2, 257
GetipStatistics Vol. 2, 258
GetMfeStatus Vol. 5, 277
GetNameByType Vol. 1, 163
GetNeighbors Vol. 5, 278
GetNetworkParams Vol. 2, 258
GetNextOrderedService Vol. 5, 324
GetNumberOflnterfaces Vol. 2, 260
getpeername Vol. 1, 164
GetPerAdapterlnfo Vol. 2, 260
getprotobyname ,.Vol. 1, 165
getprotobynumber. Vol. 1, 167
GetRTTAndHopCount Vol. 2, 262
getservbyname Vol. 1, 168
getservbyport Vol. 1, 169
GetService .. Vol. 1,171

E GetServiceCount Vol. 5, 325
getsockname Vol. 1, 175

EnumerateGetNextService Vol. 5, 322 getsockopt... Vol. 1, 176
Enumeration Flags Vol. 5, 505 GetTcpStatistics Vol. 2, 263
ENUMERATION_BUFFER Vol. 1, 835 GetTcpTable Vol. 2, 263

Index Networking Services Programming Elements - Alphabetical Listing 881

GetTypeByName Vol. 1, 185
GetUdpStatistics Vol. 2, 264
GetUdpTable Vol. 2, 265
GetUniDirectionalAdapterlnfo Vol. 2, 266
GLOBAL FILTER Vol. 5, 262
GUARANTEE Vol.1, 413
GUID ... Vol. 1, 848
GUID ... Vol. 3, 295

IPX NETWORK Vol. 5, 355
IPX - NEXT HOP ADDRESS Vol. 5, 355
IPX -SERVER ENTRY Vol. 5, 327
IPX - SERVICE-.................................. Vol. 5, 328
IPX -SPECIFIC DATA Vol. 5, 356
IPX - SPXCONNSTATUS_DATA Vol. 1,673
IPX -STATIC SERVICE_INFO Vol. 5,181
IPXWAN_IFjNFO Vol. 5,182
ISensLogon Vol. 2, 212

H
ISensLogon::DisplayLockvol. 2, 216
ISensLogon::DisplayUnLock Vol. 2, 217

hostent .. Vol. 1, 381
htonl .. Vol. 1, 186
htons ... Vol. 1, 187

ISensLogon::Logoff Vol. 2, 214
ISensLogon::Logon Vol. 2, 213
ISensLogon::StartScreenSaver Vol. 2, 218
ISensLogon::StartShell Vol. 2, 215
ISensLogon::StopScreenSaver Vol. 2, 219
ISensNetwork Vol. 2, 220
I SensNetwork::

IEAPProviderConfig Vol. 4, 426
I EAPProviderConfig::

ConnectionMadeNoQOClnfo Vol. 2, 222
ISensNetwork::

RouterlnvokeConfigUI Vol. 4, 430
I EAPProviderConfig::

DestinationReachable Vol. 2, 225
ISensNetwork: :

RouterlnvokeCredentialsUI Vol. 4, 432 DestinationReachable
IEAPProviderConfig: :

ServerlnvokeConfigUI Vol. 4, 429
IEAPProviderConfig::lnitialize Vol. 4, 426
IEAPProviderConfig::Uninitialize Vol. 4, 428

NoQOClnfo Vol. 2, 226
ISensNetwork::ConnectionLost Vol. 2, 223
ISensNetwork::ConnectionMade Vol. 2, 221
ISensOnNow ; Vol. 2, 228

in addr. ... Vol. 1,381
ineCaddr. .. Vol. 1, 187
inet ntoa ... Vol. 1, 189
Interface Registration Flags Vol. 3, 336
InterfaceStatus Vol. 5, 280
ioctlsocket ... Vol. 1, 190
IP Info Types for Router

Information Blocks Vol. 5, 183
IP ADAPTER BINDING INFO Vol. 5,149
IP -ADAPTER -INDEX MAP Vol. 2, 278
IP =ADAPTER=INFO .::-: ; Vol. 2, 279
IP INTERFACE INFO Vol. 2, 280
IP=LOCAL_BINDING Vol. 5, 150
IP NETWORK Vol. 5, 352
IP - NEXT HOP ADDRESS Vol. 5, 352
IP =PATTERN .. ~ Vol. 1,842
IP _PER_ADAPTER_INFO Vol. 2, 281
IP _SPECiFiC_DATA Vol. 5, 353
IP _UNIDIRECTIONAL_ADAPTER_

ADDRESS Vol. 2, 282
IPNG ADDRESS Vol. 2, 88
IpReleaseAddress Vol. 2, 267
IpRenewAddress Vol. 2, 268
IPX Info Types for Router

Information Blocks Vol. 5, 184
IPX ADAPTER BINDING INFO Vol. 5, 151
IPX-ADDRESS-DATA. ~ Vol.1, 670
IPX-IF INFO ... ~ Vol. 5,181
IPX=NETNUM_DATA Vol. 1, 672

ISensOnNow::BatteryLow Vol. 2, 231
ISensOnNow::OnACPower. Vol. 2, 229
ISensOnNow::OnBatteryPower Vol. 2, 230
IsService ... Vol. 5, 326
ISyncMgrEnumltems Vol. 2,166
ISyncMgrRegister Vol. 2,193
ISyncMgrRegister::

GetHandlerRegistrationlnfo Vol. 2, 195
ISyncMgrRegister::

RegisterSyncMgrHandler Vol. 2, 194
I SyncMgrRegister::

UnregisterSyncMgrHandler Vol. 2,194
ISyncMgrSynchronize Vol. 2, 168
ISyncMgrSynchronize: :

EnumSyncMgrltems Vol. 2,171
ISyncMgrSynchronize::

GetHandlerlnfo Vol. 2,170
ISyncMgrSynchronize: :

GetitemObject... Vol. 2,172
ISyncMgrSynchronize: :

PrepareForSync Vol. 2,175
ISyncMgrSynchronize::

SetitemStatus Vol. 2,178
ISyncMgrSynchronize: :

SetProgressCaliback Vol. 2, 174
ISyncMgrSynchronize::

ShowProperties Vol. 2,173
ISyncMgrSynchronize: :

Synchronize ;vol. 2,176

882 Volume 1 Winsock and QOS

ISyncMgrSynchronize::lnitialize Vol. 2, 169 McastRequestAddress Vol. 2, 85
ISyncMgrSynchronize::ShowError ... Vol. 2, 179 MesBufferHandleReset... Vol. 3, 350
ISyncMgrSynchronizeCaliback Vol. 2, 180 MesDecodeBufferHandleCreate Vol. 3, 351
ISyncMgrSynchronizeCaliback: : MesDecodelncrementalHandle

DeleteLogError Vol. 2, 189 Create .. Vol. 3, 353
ISyncMgrSynchronizeCallback:: MesEncodeDynBufferHandle

EnableModeless Vol. 2, 186 Create .. Vol. 3, 354
ISyncMgrSynchronizeCaliback: : MesEncodeFixedBufferHandle

EstablishConnection Vol. 2, 190 Create .. Vol. 3, 355
ISyncMgrSynchronizeCallback:: MesEncodelncrementalHandle

LogError. .. Vol. 2, 187 Create .. Vol. 3, 356
ISyncMgrSynchronizeCallback:: MesHandleFree Vol. 3, 357

PrepareForSyncCompleted Vol. 2, 184 MeslncrementalHandleReset Vol. 3, 358
ISyncMgrSynchronizeCallback:: MeslnqProcEncodingld Vol. 3, 359

Progress .. Vol. 2, 182 MESSAGE .. Vol. 5, 297
ISyncMgrSynchronizeCallback:: MGM_ENUM3YPES Vol. 5, 564

ShowErrorCompleted Vol. 2, 188 MGM_IF _ENTRY Vol. 5, 561
ISyncMgrSynchronizeCallback:: MgmAddGroupMembershipEntry Vol. 5, 524

ShowPropertiesCompleted Vol. 2, 183 MgmDeleteGroupMembership
ISyncMgrSynchronizeCallback:: Entry ... Vol. 5, 526

SynchronizeCompleted Vol. 2, 185 MgmDeRegisterMProtocol. Vol. 5, 527
ISyncMgrSynchronizelnvoke Vol. 2, 191 MgmGetFirstMfe Vol. 5, 528
ISyncMgrSynchronizelnvoke:: MgmGetFirstMfeStats Vol. 5, 530

UpdateAII Vol. 2, 192 MgmGetMfe Vol. 5, 531
ISyncMgrSynchronizelnvoke:: MgmGetMfeStats Vol. 5, 533

Update Items Vol. 2, 191 MgmGetNextMfe Vol. 5, 534
MgmGetNextMfeStats Vol. 5, 536

L
MgmGetProtocoIOnlnterface Vol. 5, 537
MgmGroupEnumerationEnd Vol. 5, 539

LANA_ENUM Vol. 2, 152
linger. .. Vol. 1, 382
listen ... Vol. 1, 192
LPM_AdmitRsvpMsg Vol. 1,863
LPM_CommitResv Vol. 1, 866
LPM_Deinitialize Vol. 1, 867
LPM_DeleteState Vol. 1, 868
LPM_GetRsvpObjects Vol. 1, 870
LPM_lnitialize Vol. 1, 872
Lpm_lpAddressTable Vol. 1,874
LPMIPTABLE Vol. 1,875

MgmGroupEnumerationGetNext Vol. 5, 539
MgmGroupEnumerationStart Vol. 5, 541
MgmRegisterMProtocol Vol. 5, 542
MgmReleaselnterfaceOwnership Vol. 5, 543
MgmSetMfe Vol. 5, 545
MgmTakelnterfaceOwnership Vol. 5, 545
MIB_BEST _IF Vol. 5, 202
MIB_ICMP ... Vol. 5, 203
MIB_IFNUMBER Vol. 5, 203
MIB_IFROW Vol. 5, 204
MIB_IFSTATUS Vol. 5, 206
MIB_IFTABLE Vol. 5, 207
MIB_IPADDRROW Vol. 5, 207

M MIB_IPADDRTABLE Vol. 5, 208

MACYIELDCALLBACK Vol. 3, 575
MCAST_CLlENT_UID Vol. 2, 89
MCAST _LEASE_REQUEST Vol. 2, 90
MCAST _LEASE_RESPONSE Vol. 2, 92
MCAST _SCOPE_CTX Vol. 2, 89
MCAST _SCOPE_ENTRy Vol. 2, 90
McastApiCleanup Vol. 2, 82
McastApiStartup Vol. 2, 82
McastEnumerateScopes Vol. 2, 83
McastGenUID Vol. 2, 85
McastReleaseAddress Vol. 2, 87
McastRenewAddress Vol. 2, 86

MIB_IPFORWARDNUMBER Vol. 5, 209
MIB_IPFORWARDROW Vol. 5, 210
MIB_IPFORWARDTABLE Vol. 5, 212
MIB_IPMCAST_GLOBAL Vol. 5, 212
MIB_IPMCAST_IF _ENTRY Vol. 5, 213
MIB_IPMCAST_IF _TABLE Vol. 5, 214
MIB_IPMCAST_MFE Vol. 5, 214
MIB_IPMCAST_MFE_STATS Vol. 5, 216
MIB_IPMCAST_OIF Vol. 5, 218
MIB_IPMCAST_OIF _STATS Vol. 5, 219
MIB_IPNETROW Vol. 5, 220
MIB_IPNETTABLE Vol. 5, 221
MIB_IPSTATS Vol. 5, 222

Index Networking Services Programming Elements - Alphabetical Listing 883

MIB_MFE_STATS_TABLE Vol. 5, 224 MprAdminlnterfaceDelete Vol. 5, 76
MIB_MFE_ TABLE Vol. 5, 224 MprAdminlnterfaceDisconnect... Vol. 5, 77
MIB_OPAQUE_INFO Vol. 5, 225 MprAdminlnterfaceEnum Vol. 5, 78
MIB_OPAQUE_QUERY Vol. 5, 225 MprAdminlnterfaceGetCredentials Vol. 5, 80
MIB_PROXYARP Vol. 5, 226 MprAdminlnterfaceGetCredentials
MIB_TCPROW Vol. 5, 227 Ex ... Vol. 5, 82
MIB_TCPSTATS Vol. 5, 228 MprAdminlnterfaceGetHandle Vol. 5, 83
MIB_TCPTABLE Vol. 5, 230 MprAdminlnterfaceGetlnfo Vol. 5, 84
MIB_UDPROW Vol. 5, 230 MprAdminlnterfaceQueryUpdate
MIB_UDPSTATS Vol. 5, 231 Result ... V01. 5, 86
MIB_UDPTABLE Vol. 5, 232 MprAdminlnterfaceSetCredentials Vol. 5, 87
MibCreate ... Vol. 5, 281 MprAdminlnterfaceSetCredentials
MibDelete ... Vol. 5, 282 Ex ... Vol. 5, 89
MibEntryCreate Vol. 5, 307 MprAdminlnterfaceSetlnfo Vol. 5, 90
MibEntryDelete Vol. 5, 308 MprAdminlnterfaceTransport
MibEntryGet... Vol. 5, 309 Getlnfo ... Vol. 5, 93
MibEntryGetFirst Vol. 5, 311 MprAdminlnterfaceTransport
MibEntryGetNext Vol. 5, 312 Remove .. Vol. 5, 94
MibEntrySet... Vol. 5, 313 MprAdminlnterfaceTransport
MibGet .. Vol. 5, 283 Setlnfo .. VoI. 5, 95
MibGetFirst... Vol. 5, 284 MprAdminlnterfaceTransportAdd Vol. 5, 91
MibGetNext... Vol. 5, 285 MprAdminlnterfaceUpdate
MibGetTraplnfo Vol. 5, 286 Phonebooklnfo Vol. 5, 97
MIBICMPINFO Vol. 5, 232 MprAdminlnterfaceUpdateRoutes Vol. 5, 98
MIBICMPSTATS Vol. 5, 233 MprAdminlsServiceRunning Vol. 5, 100
MibSet .. Vol. 5, 287 MprAdminLinkHangupNotification Vol. 4, 347
MibSetTraplnfo Vol. 5, 288 MprAdminMIBBufferFree Vol. 5, 188
MPR_CREDENTIALSEX_O Vol. 5, 152 MprAdminMIBEntryCreate Vol. 5,188
MPR_IFTRANSPORT _0 Vol. 5, 152 MprAdminMIBEntryDelete Vol. 5, 190
MPR_INTERFACE_O Vol. 5, 153 MprAdminMIBEntryGet... Vol. 5, 191
MPR_INTERFACE_1 Vol. 5,154 MprAdminMIBEntryGetFirst Vol. 5, 193
MPR_INTERFACE_2 Vol. 5, 156 MprAdminMIBEntryGetNext Vol. 5, 195
MPR_ROUTING_ MprAdminMIBEntrySet Vol. 5, 196

CHARACTERISTICS Vol. 5, 297 MprAdminMIBGetTraplnfo Vol. 5,198
MPR_SERVER_O Vol. 5, 166 MprAdminMIBServerConnect... Vol. 5, 199
MPR_SERVICE_ MprAdminMIBServerDisconnect Vol. 5, 200

CHARACTERISTICS Vol. 5, 301 MprAdminMIBSetTraplnfo Vol. 5, 200
MPR_ TRANSPORT _0 Vol. 5, 167 MprAdminPortClearStats Vol. 4, 334
MprAdminAcceptNewConnection Vol. 4, 341 MprAdminPortDisconnect.. Vol. 4, 335
MprAdminAcceptNewConnection2 .. Vol. 4, 342 MprAdminPortEnum Vol. 4, 336
MprAdminAcceptNewLink Vol. 4, 343 MprAdminPortGetinfo Vol. 4, 338
MprAdminBufferFree Vol. 5, 70 MprAdminPortReset Vol. 4, 339
MprAdminConnectionClearStats Vol. 4, 329 MprAdminRegisterConnection
MprAdminConnectionEnum Vol. 4, 330 Notification Vol. 5, 100
MprAdminConnectionGetlnfo Vol. 4, 332 MprAdminReleaselpAddress Vol. 4, 348
MprAdminConnectionHangup MprAdminSendUserMessage Vol. 4, 351

Notification Vol. 4, 344 MprAdminServerConnect Vol. 5, 102
MprAdminConnectionHangup MprAdminServerDisconnect.. Vol. 5,102

Notification2 Vol. 4,345 MprAdminServerGetlnfo Vol. 5,103
MprAdminDeregisterConnection MprAdminTransportCreate•........ Vol. 5,104

Notification Vol. 5, 71 MprAdminTransportGetinfo Vol. 5, 106
MprAdminGetErrorString Vol. 5, 72 MprAdminTransportSetlnfo Vol. 5, 108
MprAdminGetipAddressForUser. Vol. 4, 346 MprAdminUserGetinfo Vol. 4, 352
MprAdminGetPDCServer Vol. 4, 349 MprAdminUserSetlnfo Vol. 4, 353
MprAdminlnterfaceConnect Vol. 5, 73 MprConfigBufferFree Vol. 5,110
MprAdminlnterfaceCreate Vol. 5, 75 MprConfigGetFriendlyName Vol. 5, 110

884 Volume 1 Winsock and QOS

MprConfigGetGuidName Vol. 5, 112 NSPCleanup Vol. 1,497
MprConfiglnterfaceCreate Vol. 5, 114 NSPGetServiceClasslnfo Vol. 1,498
MprConfiglnterfaceDelete Vol. 5, 115 NSPlnstaliServiceClass Vol. 1, 499
MprConfiglnterfaceEnum Vol. 5, 116 NSPLookupServiceBegin Vol. 1, 500
MprConfiglnterfaceGetHandle Vol. 5, 118 NSPLookupServiceEnd Vol. 1,504
MprConfiglnterfaceGetlnfo Vol. 5, 119 NSPLookupServiceNext Vol. 1,505
MprConfiglnterfaceSetlnfo Vol. 5, 121 NSPRemoveServiceClass Vol. 1,509
MprConfiglnterfaceTransport NSPSetService Vol. 1,510

Enum ... Vol. 5, 124 NSPStartup Vol. 1,513
MprConfiglnterfaceTransport ntohl .. Vol. 1, 194

GetHandle Vol. 5, 126 ntohs ... Vol. 1, 195
MprConfiglnterfaceTransport

Getlnfo ... Vol. 5, 128
MprConfiglnterfaceTransport o

Remove ... Vol. 5, 130
MprConfiglnterfaceTransport

ORASADFunc Vol. 4,103

Setlnfo ... Vol. 5,131
MprConfiglnterfaceTransportAdd Vol. 5,122
MprConfigServerBackup Vol. 5, 133
MprConfigServerConnect Vol. 5, 134
MprConfigServerDisconnect Vol. 5, 135
MprConfigServerGetlnfo Vol. 5, 136
MprConfigServerlnstall. Vol. 5, 113
MprConfigServerRestore Vol. 5, 137
MprConfigTransportCreate Vol. 5, 138
MprConfigTransportDelete Vol. 5, 140
MprConfigTransportEnum Vol. 5,141
MprConfigTransportGetHandle Vol. 5, 143
MprConfigTransportGetinfo Vol. 5, 144
MprConfigTransportSetlnfo Vol. 5,147
MprlnfoBlockAdd Vol. 5, 170
MprlnfoBlockFind Vol. 5, 172
MprlnfoBlockQuerySize Vol. 5, 173
MprlnfoBlockRemove Vol. 5, 174
MprlnfoBlockSet Vol. 5, 175
MprlnfoCreate Vol. 5, 176
MprlnfoDelete Vol. 5,177
MprlnfoDuplicate Vol. 5, 178
MprlnfoRemoveAII Vol. 5, 179
MultinetGetConnection

p
PALLOCMEM Vol. 1, 876
PF _FILTER_DESCRIPTOR Vol. 5, 256
PF _FIL TER_STATS Vol. 5, 257
PF _INTERFACE_STATS Vol. 5, 258
PF _LATEBIND_INFO Vol. 5, 260
PfAddFiltersTolnterface Vol. 5, 239
PfAddGlobalFilterTolnterface Vol. 5, 241
PFADDRESSTYPE Vol. 5, 262
PfBindlnterfaceTolndex Vol. 5, 241
PfBindlnterfaceTolPAddress Vol. 5, 242
PfCreatelnterface Vol. 5, 243
PfDeletelnterface Vol. 5, 245
PfDeleteLog Vol. 5, 246
PFFORWARD_ACTION Vol. 5, 263
PFFRAMETYPE Vol. 5, 264
PfGetlnterfaceStatistics Vol. 5, 246
PFLOGFRAME Vol. 5, 260
PfMakeLog .. Vol. 5, 248
PfRebindFilters Vol. 5, 249
PFREEMEM Vol. 1, 876
PfRemoveFilterHandles Vol. 5, 250

Performance ; Vol. 3, 609 PfRemoveFiltersFromlnterface Vol. 5, 250
PfRemoveGlobalFilterFrom

N
nterface .. Vol. 5, 252

PfSetLogBuffer Vol. 5, 252

NAME_BUFFER Vol. 2, 153
NCB ... Vol. 2,154
NDR_USER_MARSHAL_INFO Vol. 3, 296
NdrGetUserMarshalinfo Vol. 3, 360
Netbios ... Vol. 2, 145
NETCONNECTINFOSTRUCT Vol. 3, 659
NETINFOSTRUCT Vol. 3, 661
NETRESOURCE Vol. 3, 663
Next Hop Flags Vol. 5, 503
NotifyAddrChange Vol. 2, 268
NotifyRouteChange Vol. 2, 269
NS_SERVICE_INFO Vol. 1, 383

PtTestPacket... Vol. 5, 253
PfUnBindlnterface Vol. 5, 255
PMGM CREATION ALERT

CALLsACK ::: ::-........... Vol. 5, 547
PMGM_DISABLE_IGMP _

CALLBACK Vol. 5, 549
PMGM ENABLE IGMP

CALLBACK ::-......... ::-.................. Vol. 5, 549
PMGM_JOIN~ALERT _

CALLBACK Vol. 5, 550
PMGM_LOCAL_JOIN_

CALLBACK Vol. 5, 552

Index Networking Services Programming Elements - Alphabetical Listing 885

PMGM_LOCAL_LEAVE_ RADIUS_AUTHENTICATION_
CALLBACK Vol. 5, 554 PROVIDER Vol. 2,120

PMGM_PRUNE_ALERT _ RADIUS_DATA_TYPE Vol. 2,121
CALLBACK Vol. 5, 555 RadiusExtensionlnit... Vol. 2, 107

PMGM_RPF _CALLBACK Vol. 5, 558 RadiusExtensionProcess Vol. 2,108
PMGM_WRONG_IF _CALLBACK Vol. 5, 560 RadiusExtensionProcessEx Vol. 2, 109
Portability Macros Vol. 3, 583 RadiusExtensionTerm Vol. 2,107
PPP _ATCP _INFO Vol. 4, 355 RAS_AUTH_ATTRIBUTE Vol. 4, 413
PPP _CCP _INFO Vol. 4, 356 RAS_AUTH_ATTRIBUTE3YPE Vol. 4, 415
PPP _EAP _ACTION Vol. 4, 414 RAS_CONNECTION_O Vol. 4, 365
PPP _EAP _INFO Vol. 4, 403 RAS_CONNECTION_1 Vol. 4, 367
PPP _EAP _INPUT Vol. 4, 404 RAS_CONNECTION_2 Vol. 4, 368
PPP _EAP _OUTPUT Vol. 4, 409 RAS_HARDWARE_CONDITION Vol. 4, 375
PPP _EAP _PACKET Vol. 4, 412 RAS_PARAMETERS Vol. 4, 293
PPP _INFO .. Vol. 4, 358 RAS_PARAMS_FORMAT Vol. 4, 314
PPP _INFO_2 Vol. 4, 358 RAS_PARAMS_VALUE Vol. 4, 312
PPP _IPCP _INFO Vol. 4, 359 RAS_PORT_O Vol. 4, 294
PPP _IPCP _INF02 Vol. 4, 360 RAS_PORT_O Vol. 4, 369
PPP _IPXCP _INFO Vol. 4, 361 RAS_PORT_1 Vol. 4, 297
PPP _LCP _INFO Vol. 4, 362 RAS_PORT_1 Vol. 4, 370
PPP _NBFCP _INFO Vol. 4, 364 RAS_PORT _CONDITION Vol. 4, 376
Protection Level Constants Vol. 3, 337 RAS_PORT_STATISTICS Vol. 4, 298
Protocol Identifiers Vol. 5, 235 RAS_PPP _ATCP _RESULT Vol. 4, 302
Protocol Sequence Constants Vol. 3, 338 RAS_PPP _IPCP _RESUL T Vol. 4, 303
PROTOCOUNFO Vol. 1, 384 RAS_PPP _IPXCP _RESULT Vol. 4, 303
PROTOCOL_SPECIFIC_DATA Vol. 5, 357 RAS_PPP _NBFCP _RESULT Vol. 4, 304
protoent .. Vol. 1, 387 RAS_PPP _PROJECTION_
PROTSEO .. Vol. 3, 317 RESULT ... Vol. 4, 305
PS_ADAPTER_STATS Vol. 1,851 RAS_SECURITY _INFO Vol. 4, 306
PS_COMPONENT_STATS Vol. 1,850 RAS_SERVER_O Vol. 4, 307
PS_CONFORMER_STATS Vol. 1,853 RAS_STATS Vol. 4, 308
PS_DRRSEO_STATS Vol. 1,854 RAS_USER_O Vol. 4, 310
PS_FLOW_STATS Vol. 1,852 RAS_USER_O Vol. 4, 372
PS_SHAPER_STATS Vol. 1, 853 RAS_USER_1 Vol. 4, 373

RASADFunc Vol. 4,105

Q
RasAdminAcceptNewConnection Vol. 4, 277
RasAdminConnectionHangup

OOCINFO ... Vol. 2, 209
OOS .. Vol. 1,388
OOS .. Vol. 1, 797
OOS_DIFFSERV _RULE Vol. 1, 844
OOS_OBJECT _DESTADDR Vol. 1, 800
OOS_OBJECT _DIFFSERV Vol. 1, 858
OOS_OBJECT _DS_CLASS Vol. 1, 857
OOS_OBJECT_HDR Vol.1, 799
OOS_OBJECT_SD_MODE Vol. 1,801
OOS_OBJECT _SHAPING_RATE ... Vol. 1, 802
OOS_OBJECT_TRAFFIC_CLASS .. Vol. 1,856
OueryPower. Vol. 5, 289

Notification Vol. 4, 279
RasAdminFreeBuffer Vol. 4, 265
RasAdminGetErrorString Vol. 4, 266
RasAdminGetlpAddressForUser Vol. 4, 281
RasAdminGetUserAccountServer Vol. 4, 267
RasAdminPortClearStatistics Vol. 4, 269
RasAdminPortDisconnect Vol. 4, 270
RasAdminPortEnum Vol. 4, 271
RasAdminPortGetlnfo Vol. 4, 272
RasAdminReleaselpAddress Vol. 4, 282
RasAdminServerGetlnfo Vol. 4, 274
RasAdminUserGetlnfo Vol. 4, 275
RasAdminUserSetlnfo Vol. 4, 276
RASADPARAMS Vol. 4, 205

R RASAMB ... Vol. 4, 206

RADIUS_ACTION•........... Vol. 2, 112
RADiUS_ATTRIBUTE ; Vol. 2, 110
RADIUS_ATTRIBUTE_TYPE Vol. 2,112

RASAUTODIALENTRY Vol. 4, 207
RasClearConnectionStatistics Vol. 4,107
RasClearLinkStatistics Vol. 4,107
RASCONN .. Vol. 4, 208

886 Volume 1 Winsock and QOS

RasConnectionNotification Vol. 4, 109 RasGetEntryProperties Vol. 4, 160
RASCONNSTATE Vol. 4, 258 RasGetErrorString Vol. 4, 162
RASCONNSTATUS Vol. 4, 210 RasGetLinkStatistics Vol. 4, 164
RasCreatePhonebookEntry Vol. 4, 110 RasGetProjectionlnfo Vol. 4,165
RASCREDENTIALS Vol. 4, 211 . RasGetSubEntryHandle Vol. 4, 167
RASCTRYINFO Vol. 4, 212 RasGetSubEntryProperties Vol. 4,168
RasCustomDeleteEntryNotify Vol. 4, 111 RasHangUp Vol. 4, 170
RasCustomDial Vol. 4,112 RaslnvokeEapUI Vol. 4, 171
RasCustomDialDlg Vol. 4, 114 RASIPADDR Vol. 4, 239
RasCustomEntryDlg Vol. 4, 116 RasMonitorDlg :: Vol. 4, 173
RasCustomHangUp Vol. 4, 118 RASMONITORDLG Vol. 4, 240
RasCustomScriptExecute Vol. 4, 197 RASNOUSER Vol. 4, 241
RasDeleteEntry Vol. 4, 119 RASPBDLG Vol. 4, 243
RASDEVINFO Vol. 4, 214 RasPBDlgFunc Vol. 4,174
RasDial ... Vol. 4,120 RasPhonebookDlg Vol. 4,176
RasDialDlg Vol. 4,123 RASPPPCCP Vol. 4, 245
RASDIALDLG Vol. 4, 215 RASPPPIP .. Vol. 4, 247
RASDIALEXTENSIONS Vol. 4, 217 RASPPPIPX Vol. 4, 251
RasDiaIFunc Vol. 4, 125 RASPPPLCP Vol. 4, 248
RasDiaIFunc1 Vol. 4, 127 RASPPPNBF Vol. 4, 252
RasDiaIFunc2 Vol. 4,129 RASPROJECTION Vol. 4, 263
RASDIALPARAMS Vol. 4, 219 RasReceiveBuffer Vol. 4, 201
RasEapBegin Vol. 4, 389 RasRenameEntry Vol. 4, 178
RasEapEnd Vol. 4, 391 RasRetrieveBuffer Vol. 4, 203
RasEapFreeMemory Vol. 4, 391 RasSecurityDialogBegin Vol. 4, 284
RasEapGetldentity Vol. 4, 392 RasSecurityDialogComplete Vol. 4, 286
RasEapGetlnfo Vol. 4, 395 RasSecurityDialogEnd Vol. 4, 287
RASEAPINFO Vol. 4, 222 RasSecurityDialogGetlnfo Vol. 4, 288
RasEaplnitialize Vol. 4, 396 RasSecurityDialogReceive Vol. 4, 289
RasEaplnvokeConfigUI Vol. 4, 397 RasSecurityDialogSend Vol. 4, 291
RasEaplnvokelnteractiveUI Vol. 4, 399 RasSendBuffer Vol. 4, 200
RasEapMakeMessage Vol. 4, 401 RasSetAutodiaIAddress Vol. 4, 179
RASEAPUSERIDENTITY Vol. 4, 222 RasSetALitodiaIEnable Vol. 4, 181
RasEditPhonebookEntry Vol. 4, 131 RasSetAutodialParam Vol. 4,182
RASENTRY Vol. 4, 223 RasSetCredentials Vol. 4, 184
RasEntryDlg Vol. 4,133 RasSetCustomAuthData Vol. 4, 186
RASENTRYDLG Vol. 4, 236 RasSetEapUserData Vol. 4,187
RASENTRYNAME Vol. 4, 238 RasSetEntryDialParams Vol. 4, 189
RasEnumAutodialAddresses Vol. 4, 135 RasSetEntryProperties Vol. 4, 191
RasEnumConnections Vol. 4, 136 RasSetSubEntryProperties Vol. 4, 193
RasEnumDevices Vol. 4, 137 RASSLIP ... Vol. 4, 253
RasEnumEntries Vol. 4,139 RASSUBENTRY Vol. 4, 254
RasFreeBuffer Vol. 4,199 RasValidateEntryName Vol. 4,195
RasFreeEapUserldentity Vol. 4, 142 recv ... Vol.1, 196
RasGetAutodialAddress Vol. 4, 143 recvfrom .. Vol. 1, 199
RasGetAutodiaIEnable Vol. 4,144 RegisterProtocol Vol. 5, 290
RasGetAutodiaIParam ; Vol. 4,145 REMOTE_NAME_INFO Vol. 3, 665
RasGetBuffer Vol. 4,198 Route Flags Vol. 5, 501
RasGetConnectionStatistics Vol. 4,147 ROUTER_CONNECTION_STATE ... Vol. 5,167
RasGetConnectStatus Vol. 4, 148 ROUTER_INTERFACE_TYPE Vol. 5,168
RasGetCountrylnfo Vol. 4,149 Routing Table Query Flags Vol. 5, 504
RasGetCredentials Vol. 4,151 ROUTING_PROTOCOL_CONFIG ... Vol. 5, 562
RasGetCustomAuthData Vol. 4, 153 RPC_ASYNC_EVENT Vol. 3, 315
RasGetEapUserData Vol. 4, 155 RPC_ASYNC_STATE Vol. 3, 298
RasGetEapUserldentity Vol. 4, 156 RPC_AUTH_IDENTITY_HANDLE ... Vol. 3, 318
RasGetEntryDialParams Vol. 4, 158

Index Networking Services Programming Elements - Alphabetical Listing 887

RPC_AUTH_KEY _RETRIEVAL_ RpcEpUnregister Vol. 3, 405
FN .. Vol. 3, 576 . RpcExcept... Vol. 3, 587

RPC_AUTHZ_HANDLE Vol. 3, 319 RpcExceptionCode Vol. 3, 407
RPC_BINDING_HANDLE Vol. 3, 319 RpcFinally ... Vol. 3, 588
RPC_BINDING_VECTOR Vol. 3, 301 RpclfldVectorFree Vol. 3, 407
RPC_CLlENT _INTERFACE Vol. 3, 302 Rpclflnqld .. Vol. 3, 408
RPC_DISPATCH_TABLE Vol. 3, 302 RpclmpersonateClient Vol. 3, 409
RPC_EP _INO_HANDLE Vol. 3, 320 RpcMacSetYieldlnfo , Vol. 3, 410
RPC_IF _CALLBACK_FN Vol. 3, 577 RpcMgmtEnableldleCleanup Vol. 3, 411
RPC_IF _HANDLE Vol. 3, 321 RpcMgmtEpEltlnqBegin Vol. 3,412
RPC_IF _ID Vol. 3, 303 RpcMgmtEpEltlnqDone Vol. 3, 415
RPC_IF_ID_VECTOR Vol. 3, 304 RpcMgmtEpEltlnqNext Vol. 3, 416
RPC_MGMT _AUTHORIZATION_ RpcMgmtEpUnregister Vol. 3, 417

FN .. Vol. 3, 577 RpcMgmtlnqComTimeout... Vol. 3, 418
RPC_MGR_EPV Vol. 3, 321 RpcMgmtlnqDefauItProtectLevel Vol. 3, 419
RPC_NOTIFICATION3YPES Vol. 3, 315 RpcMgmtlnqlflds Vol. 3, 421
RPC_NS_HANDLE Vol. 3, 322 RpcMgmtlnqSeNerPrincName ... , Vol. 3, 422
RPC_OBJECT _INO_FN Vol. 3, 579 RpcMgmtlnqStats Vol. 3, 423
RPC_POLlCY Vol. 3, 304 RpcMgmtlsSeNerListening Vol. 3, 425
RPC_PROTSEQ_ VECTOR Vol. 3, 308 RpcMgmtSetAuthorizationFn Vol. 3, 426
RPC_SECURITY _OOS Vol. 3, 308 RpcMgmtSetCanceITimeout... Vol. 3, 427
RPC_STATS_VECTOR Vol. 3, 310 RpcMgmtSetComTimeout Vol. 3, 428
RPC_STATUS Vol. 3, 323 RpcMgmtSetSeNerStackSize Vol. 3, 429
RpcAbnormaITermination Vol. 3, 362 RpcMgmtStatsVectorFree Vol. 3, 430
RpcAsyncAbortCall Vol. 3, 362 RpcMgmtStopSeNerListening Vol. 3, 431
RpcAsyncCancelCall. Vol. 3, 363 RpcMgmtWaitServerListen Vol. 3, 432
RpcAsyncCompleteCall. Vol. 3, 365 RpcNetworklnqProtseqs Vol. 3, 433
RpcAsyncGetCaIiHandle Vol. 3, 585 RpcNetworklsProtseqValid Vol. 3, 434
RpcAsyncGetCaliStatus Vol. 3, 366 RPCNOTIFICATION_ROUTINE Vol. 3, 579
RpcAsyncinitializeHandle Vol. 3, 367 RpcNsBindingExport Vol. 3, 435
RpcAsyncRegisterlnfo Vol. 3, 368 RpcNsBindingExportPnP Vol. 3, 438
RpcBindingCopy Vol. 3, 369 RpcNsBindinglmportBegin Vol. 3, 440
RpcBindingFree Vol. 3, 370 RpcNsBindinglmportDone Vol. 3, 442
RpcBindingFromStringBinding Vol. 3, 372 RpcNsBindinglmportNext Vol. 3, 443
RpcBindinglnqAuthClient Vol. 3, 373 RpcNsBindinglnqEntryName Vol. 3, 445
RpcBindinglnqAuthClientEx Vol. 3, 375 RpcNsBindingLookupBegin Vol. 3, 446
RpcBindinglnqAuthlnfo Vol. 3, 377 RpcNsBindingLookupDone Vol. 3, 449
RpcBindinglnqAuthlnfoEx Vol. 3, 380 RpcNsBindingLookupNext.. Vol. 3, 450
RpcBindinglnqObject... Vol. 3, 382 RpcNsBindingSelecl Vol. 3, 452
RpcBindinglnqOption Vol. 3, 383 RpcNsBindingUnexport Vol. 3, 453
RpcBindingReset... Vol. 3, 384 RpcNsBindingUnexportPnP Vol. 3, 456
RpcBindingSeNerFromClient... Vol. 3, 385 RpcNsEntryExpandName Vol. 3, 457
RpcBindingSetAuthlnfo Vol. 3, 387 RpcNsEntryObjectlnqBegin Vol. 3, 458
RpcBindingSetAuthlnfoEx Vol. 3, 389 RpcNsEntryObjectlnqDone Vol. 3, 460
RpcBindingSetObject , Vol. 3, 391 RpcNsEntryObjectlnqNext... Vol. 3, 461
RpcBindingSetOption Vol. 3, 392 RpcNsGroupDelete Vol. 3, 462
RpcBindingToStringBinding Vol. 3, 394 RpcNsGroupMbrAdd Vol. 3, 463
RpcBindingVectorFree Vol. 3, 395 RpcNsGroupMbrlnqBegin VOI. 3, 465
RpcCancelThread Vol. 3, 396 RpcNsGroupMbrlnqDone Vol. 3, 466
RpcCancelThreadEx Vol. 3, 397 RpcNsGroupMbrlnqNext Vol. 3, 467
RpcCertGeneratePrincipaIName Vol. 3, 398 RpcNsGroupMbrRemove Vol. 3, 468
RpcEndExcept... Vol. 3,586 RpcNsMgmtBindingUnexport ; Vol. 3, 470
RpcEndFinally Vol. 3, 586 RpcNsMgmtEntryCreate Vol. 3, 473
RpcEpRegister Vol. 3, 399 RpcNsMgmtEntryDelete Vol. 3, 474
RpcEpRegisterNoReplace Vol. 3, 401 RpcNsMgmtEntrylnqlflds Vol. 3, 475
RpcEpResolveBinding Vol. 3, 404 RpcNsMgmtHandleSetExpAge Vol. 3, 476

888 Volume 1 Win sock and QOS

RpcNsMgmtlnqExpAge , Vol. 3, 478 RpcStringBindingParse Vol. 3, 559
RpcNsMgmtSetExpAge Vol. 3, 480 RpcStringFree Vol. 3, 561
RpcNsProfileDelete Vol. 3, 481 RpcTestCancel Vol. 3, 562
RpcNsProfileEltAdd Vol. 3, 482 RpcTryExcept Vol. 3, 590
RpcNsProfileEltlnqBegin Vol. 3, 484 RpcTryFinally Vol. 3, 590
RpcNsProfileEltlnqDone Vol. 3, 488 RpcWinSetYieldlnfo Vol. 3, 563
RpcNsProfileEltlnqNext... Vol. 3, 488 RpcWinSetYieldTimeout Vol. 3, 566
RpcNsProfileEltRemove Vol. 3, 490 RSVP _ADSPEC Vol. 1, 802
RpcObjectlnqType Vol. 3, 492 RSVP _RESERVE_INFO Vol. 1,803
RpcObjectSetlnqFn Vol. 3, 493 RSVP_STATUS_INFO VoI.1, 805
RpcObjectSetType Vol. 3, 494 RTM_DEST_INFO Vol. 5, 480
RpcProtseqVectorFree Vol. 3, 496 RTM_ENTITY _EXPORT_
RpcRaiseException Vol. 3, 497 METHOD Vol. 5, 477
RpcRevertToSelf Vol. 3, 501 RTM_ENTITY _EXPORT_
RpcRevertToSelfEx Vol. 3, 502 METHODS Vol. 5, 481
RpcServerlnqBindings Vol. 3, 503 RTM_ENTITY _ID Vol. 5, 482
RpcServerlnqDefaultPrincName Vol. 3, 504 RTM_ENTITY _INFO Vol. 5, 483
RpcServerlnqlf Vol. 3, 505 RTM_ENTITY _METHOD_
RpcServerListen Vol. 3, 506 OUTPUT .. Vol. 5, 484
RpcServerRegisterAuthlnfo Vol. 3, 508 RTM_ENTITY _METHOD_INPUT Vol. 5, 483
RpcServerRegisterlf Vol. 3, 511 RTM_EVENT_CALLBACK Vol. 5, 478
RpcServerRegisterlf2 Vol. 3, 512 RTM_EVENT _ TYPE Vol. 5, 506
RpcServerRegisterlfEx Vol. 3, 514 RTM_IP _ROUTE Vol. 5, 357
RpcServerTestCancel Vol. 3, 516 RTM_IPV4_GET _ADDR_AND_
RpcServerUnregisterlf Vol. 3, 517 LEN .. Vol. 5, 492
RpcServerUseAIiProtseqs Vol. 3, 519 RTM_IPV4_GET _ADDR_AND_
RpcServerUseAIiProtseqsEx Vol. 3, 521 MASK ... Vol. 5, 493
RpcServerUseAIiProtseqslf Vol. 3, 523 RTM_IPV4_LEN_FROM_MASK Vol. 5, 494
RpcServerUseAIiProtseqslfEx Vol. 3, 524 RTM_IPV4_MAKE_NET _
RpcServerUseProtseq Vol. 3, 526 ADDRESS Vol. 5, 495
RpcServerUseProtseqEp Vol. 3, 530 RTM_IPV4_MASK_FROM_LEN Vol. 5, 496
RpcServerUseProtseqEpEx Vol. 3, 532 RTM_IPV4_SET _ADDR_AND_
RpcServerUseProtseqEx Vol. 3, 528 LEN .. Vol. 5, 497
RpcServerUseProtseqlf Vol. 3, 534 RTM_IPV4_SET _ADDR_AND_
RpcServerUseProtseqlfEx Vol. 3, 536 MASK ... Vol. 5, 498
RpcSmAliocate Vol. 3, 538 RTM_IPX_ROUTE Vol. 5, 358
RpcSmClientFree Vol. 3, 539 RTM_NET _ADDRESS Vol. 5, 485
RpcSmDestroyClientContext Vol. 3, 540 RTM_NEXTHOP _INFO Vol. 5, 486
RpcSmDisableAliocate Vol. 3, 541 RTM_NEXTHOP _LIST Vol. 5, 487
RpcSmEnableAliocate Vol. 3, 542 RTM_PREF _INFO Vol. 5, 488
RpcSmFree Vol. 3, 543
RpcSmGetThreadHandle Vol. 3, 544

RTM_REGN_PROFILE Vol. 5, 488
RTM_ROUTE_INFO Vol. 5, 489

RpcSmSetClientAllocFree Vol. 3, 545 RTM_SIZE_OF _DEST _INFO Vol. 5, 499
RpcSmSetThreadHandle Vol. 3, 546 RTM_SIZE_OF _ROUTE_INFO Vol. 5, 500
RpcSmSwapClientAllocFree Vol. 3, 547 RtmAddNextHop Vol. 5, 405
RpcSsAliocate Vol. 3, 548 RtmAddRoute Vol. 5, 335
RpcSsDestroyClientContext... Vol. 3, 549 RtmAddRouteToDest... Vol. 5, 406
RpcSsDisableAliocate Vol. 3, 550 RtmBlockDeleteRoutes Vol. 5, 347
RpcSsDontSerializeContext Vol. 3, 550 RtmBlockMethods Vol. 5, 409
RpcSsEnableAliocate Vol. 3, 551 RtmCloseEnumerationHandle Vol. 5, 346
RpcSsFree Vol. 3, 552 RtmCreateDestEnum Vol. 5, 410
RpcSsGetThreadHandle Vol. 3, 553 RtmCreateEnumerationHandle Vol. 5, 343
RpcSsSetClientAllocFree Vol. 3, 554 RtmCreateNextHopEnum Vol. 5, 413
RpcSsSetThreadHandle Vol. 3, 555 RtmCreateRouteEnum Vol. 5, 414
RpcSsSwapClientAllocFree Vol. 3, 556 RtmCreateRouteList Vol. 5, 417
RpcStringBindingCompose Vol. 3, 558 RtmCreateRouteListEnum Vol. 5, 418

Index Networking Services Programming Elements - Alphabetical Listing 889

RtmDeleteEnumHandle Vol. 5, 419 RtmReleaseDestlnfo Vol. 5, 469
RtmDeleteNextHop Vol. 5, 420 RtmReleaseDests Vol. 5, 469
RtmDeleteRoute Vol. 5, 338 RtmReleaseEntities Vol. 5, 471
RtmDeleteRouteList Vol. 5, 421 RtmReleaseEntitylnfo Vol. 5, 471
RtmDeleteRouteToDest Vol. 5, 422 RtmReleaseNextHoplnfo Vol. 5, 472
RtmDequeueRouteChange RtmReleaseNextHops Vol. 5, 473

Message .. Vol. 5, 333 RtmReleaseRoutelnfo Vol. 5, 474
RtmDeregisterClient Vol. 5, 332 RtmReleaseRoutes Vol. 5, 475
RtmDeregisterEntity Vol. 5, 423 RtmUpdateAndUnlockRoute Vol. 5, 476
RtmDeregisterFromChange

Notification Vol. 5, 424
RtmEnumerateGetNextRoute Vol. 5, 345 S
RtmFindNextHop Vol. 5, 425
RtmGetChangedDests Vol. 5, 426
RtmGetChangeStatus Vol. 5, 428
RtmGetDestlnfo Vol. 5, 429
RtmGetEntitylnfo Vol. 5, 430
RtmGetEntityMethods Vol. 5, 431
RtmGetEnumDests Vol. 5, 432
RtmGetEnumNextHops Vol. 5, 434
RtmGetEnumRoutes Vol. 5, 435
RtmGetExactMatchDestination Vol. 5, 436
RtmGetExactMatchRoute Vol. 5, 438
RtmGetFirstRoute Vol. 5, 348
RtmGetLessSpecificDestination Vol. 5, 440
RtmGetListEnumRoutes Vol. 5, 441
RtmGetMostSpecificDestination Vol. 5, 443
RtmGetNetworkCount.. Vol. 5, 341
RtmGetNextHoplnfo Vol. 5, 444
RtmGetNextHopPointer Vol. 5, 445
RtmGetNextRoute ; Vol. 5, 350
RtmGetOpaquelnformation

Pointer ... Vol. 5, 446
RtmGetRegisteredEntities Vol. 5, 447
RtmGetRouteAge Vol. 5, 342
RtmGetRoutelnfo Vol. 5, 449
RtmGetRoutePointer Vol. 5, 450
RtmHoldDestination Vol. 5, 451
RtmlgnoreChangedDests Vol. 5, 452
RtmlnsertlnRouteList... Vol. 5, 453
RtmlnvokeMethod Vol. 5, 454
RtmlsBestRoute Vol. 5, 455
RtmlsMarkedForChange

Notification Vol. 5, 456
RtmlsRoute Vol. 5, 340
RtmLockDestination Vol. 5, 457
RtmLockNextHop Vol. 5, 459
RtmLockRoute Vol. 5, 460
RtmMarkDestForChange

Notification ; Vol. 5, 461
RtmReferenceHandles Vol. 5, 463
RtmRegisterClient Vol. 5, 331
RtmRegisterEntity Vol. 5, 464
RtmRegisterForChange

Notification Vol. 5, 466
RtmReleaseChangedDests Vol. 5, 467

SEC WINNT AUTH IDENTITY Vol. 3, 312
SECURITY MESSAGE Vol. 4, 311
select... .. Vol. 1,202
send .. Vol. 1,206
SendARP .. Vol. 2, 270
sendto ... Vol. 1,209
SENS QOCINFO Vol. 2, 227
servent .. Vol. 1,388
SERVICE ADDRESS Vol. 1,389
SERVICE_ADDRESSES Vol. 1,390
SERVICE INFO Vol. 1, 390
SERVICE= TYPE_INFO_ABS Vol. 1,393
SERVICE_TYPE_VALUE_ABS Vol. 1,394
SESSION BUFFER Vol. 2, 160
SESSION - HEADER Vol. 2,162
SetGloballnfo Vol. 5, 291
SetifEntry .. Vol. 2, 271
Setinterfacelnfo Vol. 5, 292
SetlnterfaceReceiveType Vol. 5, 314
SetlpForwardEntry Vol. 2, 272
SetipNetEntry Vol. 2, 273
SetipStatistics Vol. 2, 274
SetipTTL ... Vol. 2, 275
SetPower .. Vol. 5, 293
SetService ... Vol. 1,212
setsockopt...vol. 1, 215
SetTcpEntry Vol. 2, 276
shutdown ... Vol. 1,223
smiCNTR64 Vol. 2, 458
smiOCTETS Vol. 2, 459
smiOID .. Vol. 2, 460
smiVALUE ... Vol. 2, 461
smiVENDORINFO Vol. 2, 464
SNMPAPI CALLBACK Vol. 2, 375
SnmpCancelMsgvol. 2, 376
SnmpCleanup Vol. 2, 378
SnmpClose Vol. 2, 379
SnmpContextToStrvol. 2, 380
SnmpCountVbl. Vol. 2, 382
SnmpCreatePdu Vol. 2, 383
SnmpCreateSessionvol. 2, 385
SnmpCreateVbl. , .. Vol. 2, 388
SnmpDecodeMsgvol. 2, 390
SnmpDeleteVb Vol. 2, 392

890 Volume 1 Winsock and QOS

SnmpDuplicatePdu Vol. 2, 394 SnmpUtilidsToA Vol. 2, 319
SnmpDuplicateVbl Vol. 2, 395 SnmpUtilMemAlioc Vol. 2, 321
SnmpEncodeMsg Vol. 2, 396 SnmpUtilMemFree Vol. 2, 321
SnmpEntityToStr Vol. 2, 398 SnmpUtilMemReAlloc Vol. 2, 322
SnmpExtensionClose Vol. 2, 290 SnmpUtiiOctetsCmp Vol. 2, 323
SnmpExtensionlnit Vol. 2, 291 SnmpUtilOctetsCpy Vol. 2, 324
SnmpExtensionlnitEx Vol. 2, 293 SnmpUtiiOctetsFree Vol. 2, 325
SnmpExtensionMonitor Vol. 2, 294 SnmpUtiIOctetsNCmp Vol. 2, 325
SnmpExtensionQuery Vol. 2, 295 SnmpUtiiOidAppend Vol. 2, 326
SnmpExtensionQueryEx Vol. 2, 298 SnmpUtiiOidCmp Vol. 2, 327
SnmpExtensionTrap Vol. 2, 302 SnmpUtiiOidCpy Vol. 2, 328
SnmpFreeContext Vol. 2, 399 SnmpUtilOidFree Vol. 2, 329
SnmpFreeDescriptor Vol. 2, 401 SnmpUtiiOidNCmp Vol. 2, 330
SnmpFreeEntity Vol. 2, 402 SnmpUtiiOidToA Vol. 2, 331
SnmpFreePdu Vol. 2, 403 SnmpUtilPrintAsnAny Vol. 2, 331
SnmpFreeVbl Vol. 2, 404 SnmpUtilPrintOid Vol. 2, 332
SnmpGetLastError Vol. 2, 406 SnmpUtilVarBindCpy Vol. 2, 333
SnmpGetPduData Vol. 2, 407 SnmpUtilVarBindFree Vol. 2, 335
SnmpGetRetransmitMode Vol. 2, 411 SnmpUtilVarBindListCpy Vol. 2, 334
SnmpGetRetry Vol. 2, 412 SnmpUtilVarBindListFree Vol. 2, 335
SnmpGetTimeout Vol. 2, 414 SnmpVarBind Vol. 2, 340
SnmpGetTranslateMode Vol. 2, 416 SnmpVarBindList Vol. 2, 341
SnmpGetVb Vol. 2, 417 sockaddr ... Vol. 1, 396
SnmpGetVendorlnfo Vol. 2, 420 SOCKADDR_IRDA Vol. 1, 397
SnmpListen Vol. 2, 421 socket.. .. ,.VoI. 1, 225
SnmpMgrClose Vol. 2, 304 SOCKET_ADDRESS Vol. 1,397
SnmpMgrGetTrap Vol. 2, 305 SOURCE_GROUP _ENTRy Vol. 5, 563
SnmpMgrOidToStr Vol. 2, 307 StartComplete Vol. 5, 293
SnmpMgrOpen Vol. 2, 308 StartProtocol Vol. 5, 294
SnmpMgrRequest Vol. 2, 309 Stop Protocol Vol. 5, 295
SnmpMgrStrToOid Vol. 2, 311 String Binding Vol. 3, 324
SnmpMgrTrapListen Vol. 2, 312 String UUID Vol. 3, 329
SnmpOidCompare Vol. 2, 423 SUPPORT_FUNCTIONS VOL 5, 305
SnmpOidCopy Vol. 2, 425 SYNCMGRFLAG Vol. 2,196
SnmpOidToStr. Vol. 2, 427 SYNCMGRHANDLERFLAGS Vol. 2,197
SnmpOpen Vol. 2, 428 SYNCMGRHANDLERINFO Vol. 2, 201
SnmpRecvMsg Vol. 2, 430 SYNCMGRINVOKEFLAGS Vol. 2, 200
SnmpRegister. Vol. 2, 433 SYNCMGRITEM Vol. 2, 203
SnmpSendMsg Vol. 2, 436 SYNCMGRITEMFLAGS Vol. 2,199
SnmpSetPduData Vol. 2, 438 SYNCMGRLOGERRORINFO Vol. 2, 202
SnmpSetPort Vol. 2, 440 SYNCMGRLOGLEVEL. Vol. 2,199
SnmpSetRetransmitMode Vol. 2, 442 SYNCMGRPROGRESSITEM Vol. 2, 201
SnmpSetRetry Vol. 2, 444 SYNCMGRSTATUS Vol. 2,198
SnmpSetTimeout... Vol. 2, 445
SnmpSetTranslateMode Vol. 2, 446
SnmpSetVb Vol. 2, 448 T
SnmpStartup Vol. 2, 450
SnmpStrToContext Vol. 2, 453
SnmpStrToEntity Vol. 2, 455
SnmpStrToOid Vol. 2, 456
SnmpSvcGetUptime Vol. 2, 314
SnmpSvcSetLogLevel. Vol. 2, 315
SnmpSvcSetLogType Vol. 2, 316
SnmpUtilAsnAnyCpy Vol. 2, 317
SnmpUtilAsnAnyFree Vol. 2, 317
SnmpUtiIDbgPrint Vol. 2, 318

TC_GEN_FILTER Vol.1,845
TC_GEN_FLOW Vol. 1, 846
TC_IFC_DESCRIPTOR Vol. 1, 847
TcAddFilter. Vol. 1,807
TcAddFlow .. Vol. 1, 809
TcCloselnterface Vol. 1, 811
TcDeleteFilter Vol. 1,812
TcDeleteFlow Vol. 1,813
TcDeregisterClient Vol. 1,814
TcEnumerateFlows Vol. 1,815

Index Networking Services Programming Elements - Alphabetical Listing 891

TcEnumeratelnterfaces Vol. 1, 817 WNetAddConnection3 Vol. 3, 616
TcGetFlowName Vol. 1, 819 WNetCancelConnection Vol. 3, 620
TCLCLIENT _FUNC_LlST Vol. 1, 847 WNetCanceiConnection2 Vol. 3, 622
TcModifyFlow Vol. 1, 820 WNetCloseEnum Vol. 3, 624
TcOpenlnterface Vol. 1, 822 WNetConnectionDialog Vol. 3, 625
TcQueryFlow Vol. 1, 823 WNetConnectionDialog1 Vol. 3, 626
TcQuerylnterface Vol. 1,824 WNetDisconnectDialog Vol. 3, 628
TcRegisterClient Vol. 1,826 WNetDisconnectDialog1 Vol. 3, 629
TcSetFlow ... Vol. 1, 827 WNetEnumResource Vol. 3, 630
TcSetlnterface Vol. 1, 828 WNetGetConnection Vol. 3, 632
The ProviderSpecific Buffer Vol. 1, 799 WNetGetLastError Vol. 3, 634
timeval .. Vol. 1, 398 WNetGetNetworklnformation Vol. 3, 635
TraceDeregister. Vol. 4, 438 WNetGetProviderName Vol. 3, 636
TraceDump Vol. 4, 438 WNetGetResourcelnformation Vol. 3, 638
TraceDumpEx Vol. 4, 440 WNetGetResourceParent Vol. 3, 640
TracePrintf .. Vol. 4, 441 WNetGetUniversalName Vol. 3, 642
TracePrintfEx Vol. 4, 442 WNetGetUser Vol. 3, 645
TracePuts ... Vol. 4, 444 WNetOpenEnum Vol. 3, 647
TracePutsEx Vol. 4, 445 WNetUseConnection Vol. 3, 650
TraceRegister Vol. 4, 446 WPUCloseEvent Vol. 1, 515
TraceRegisterEx Vol. 4, 447 WPUCloseSocketHandle Vol. 1,515
TraceVprintf Vol. 4, 449 WPUCloseThread Vol. 1,516
TraceVprintfEx Vol. 4, 450 WPUCompleteOverlapped
TRANSMIT _FILE_BUFFERS Vol. 1, 399 Request... Vol. 1,517
TransmitFile Vol. 1,228 WPUCreateEvent Vol. 1,520
Transport Identifiers Vol. 5, 235 WPUCreateSocketHandle Vol. 1,521

WPUFDlsSet... Vol. 1, 523

u WPUGetProviderPath Vol. 1,524
WPUGetQOSTemplate Vol. 1, 783

Unbindlnterface Vol. 5, 296
UNIVERSAL_NAME_INFO Vol. 3, 667
UPDATE_COMPLETE_

MESSAGE Vol. 5, 303
UUID ... V01. 3, 313
UUID_VECTOR Vol. 3, 314
UuidCompare Vol. 3, 567
UuidCreate Vol. 3, 568
UuidCreateNil Vol. 3, 570
UuidCreateSequential Vol. 3, 569
UuidEqual ... Vol. 3, 570
UuidFromString Vol. 3, 571
UuidHash .. Vol. 3, 572
UuidlsNil ... Vol. 3, 573
UuidToString Vol. 3, 574

WPUModifyIFSHandle Vol. 1,525
WPUOpenCurrentThread Vol. 1,527
WPUPostMessage Vol. 1, 528
WPUQueryBlockingCaliback Vol. 1, 529
WPUQuerySocketHandleContext Vol. 1, 530
WPUQueueApc Vol. 1,531
WPUResetEvent Vol. 1,533
WPUSetEvent... Vol. 1,534
WSAAccept.. Vol. 1,231
WSAAddressToString Vol. 1,235
WSAAsyncGetHostByAddr Vol. 1,236
WSAAsyncGetHostByName Vol. 1,239
WSAAsyncGetProtoByName Vol. 1,242
WSAAsyncGetProtoByNumber Vol. 1,245
WSAAsyncGetServByName Vol. 1,248
WSAAsyncGetServByPort Vol. 1,251

v WSAAsyncSelect.. Vol. 1,254
WSABUF ... Vol. 1,399

ValidateRoute Vol. 5, 315
View Flags .. Vol. 5, 501

WSACancelAsyncRequest Vol. 1,263
WSACanceIBlockingCall Vol. 1,265
WSACleanup Vol. 1,265
WSACloseEvent Vol. 1,267

w WSAConnectvol. 1, 268
WSACreateEvent.. Vol. 1,272

WM_RASDIALEVENT. Vol. 4, 257 WSADATA .. Vol. 1,400
WNetAddConnection Vol. 3, 611 WSADuplicateSocket.. Vol. 1,273
WNetAddConnection2 Vol. 3, 613 WSAECOMPARATOR Vol. 1,413

892 Volume 1 Winsock and QOS

WSAEnumNameSpaceProviders Vol. 1, 276 WSAUnhookBlockingHook Vol. 1, 372
WSAEnumNetworkEvents Vol. 1, 277 WSAWaitForMultipleEventsvol. 1, 373
WSAEnumProtocols Vol. 1,279 WSCDeinstaliProvider Vol. 1, 535
WSAEventSelect Vol. 1, 281 WSCEnableNSProvider. Vol. 1, 536
WSAGetLastError Vol. 1,287 WSCEnumProtocols Vol. 1,537
WSAGetOverlappedResult Vol. 1, 288 WSCGetproviderPath Vol. 1, 539
WSAGetOOSByName Vol. 1, 290 WSClnstaliNameSpace Vol. 1, 540
WSAGetOOSByName Vol. 1, 784 WSClnstaIiProvider. Vol. 1,541
WSAGetServiceClasslnfo Vol. 1, 292 WSClnstaliOOSTemplate Vol. 1,786
WSAGetServiceClassNameBy WSCRemoveOOSTemplate Vol. 1, 788

Classld ... Vol. 1, 293 WSCUnlnstaIiNameSpace Vol. 1, 543
WSAHtonl. .. Vol. 1, 294 WSCWriteProviderOrder Vol. 1,543
WSAHtons .. Vol. 1, 295 WSPAccept... Vol. 1, 545
WSAlnstaIiServiceClass Vol. 1,296 WSPAddressToString Vol. 1,549
WSAloctl. .. Vol. 1, 297 WSPAsyncSelect... Vol. 1,550
WSAlsBlocking Vol. 1, 308 WSPBind ... Vol. 1,558
WSAJoinLeaf Vol. 1,309 WSPCanceIBlockingCall. Vol. 1,560
WSALookupServiceBegin Vol. 1, 313 WSPCleanup Vol. 1,562
WSALookupServiceEnd Vol. 1, 317 WSPCloseSocket Vol. 1, 564
WSALookupServiceNext... Vol. 1,318 WSPConnect Vol. 1,566
WSANAMESPACE_INFO Vol. 1,401 WSPDuplicateSocket... Vol. 1,570
WSANETWORKEVENTS Vol. 1, 402 WSPEnumNetworkEvents Vol. 1,573
WSANtohl ... Vol. 1, 322 WSPEventSelect Vol. 1,576
WSANtohs .. Vol. 1, 323 WSPGetOverlappedResult Vol. 1,581
WSAOVERLAPPED VoI.1,403 WSPGetPeerName Vol. 1, 584
WSAPROTOCOUNFO Vol. 1, 404 WSPGetOOSByName Vol. 1,585
WSAPROTOCOLCHAIN Vol. 1, 408 WSPGetOOSByName Vol. 1,789
WSAProviderConfigChange Vol. 1,324 WSPGetSockName Vol. 1, 586
WSAOUERYSET Vol. 1,409 WSPGetSockOpt Vol. 1,588
WSARecv ... Vol. 1, 326 WSPloctl ... Vol. 1, 593
WSARecvDisconnect Vol. 1, 332 WSPJoinLeaf Vol. 1, 604
WSARecvEx Vol. 1,334 WSPListen .. Vol. 1,608
WSARecvFrom Vol. 1,337 WSPRecv .. Vol. 1,610
WSARemoveServiceClass Vol. 1, 343 WSPRecvDisconnect... Vol. 1,617
WSAResetEvent... Vol. 1, 344 WSPRecvFrom Vol. 1,618
WSASend ... Vol. 1, 345 WSPSelect .. Vol. 1,624
WSASendDisconnect Vol. 1, 350 WSPSend ... Vol. 1, 628
WSASendTo Vol. 1,352 WSPSendDisconnectvol. 1, 633
WSASERVICECLASSINFO Vol. 1, 411 WSPSendTo Vol. 1, 634
WSASetBlockingHook Vol. 1, 357 WSPSetSockOpt Vol. 1, 640
WSASetEvent... Vol. 1, 358 WSPShutdown Vol. 1,644
WSASetLastError Vol. 1, 359 WSPSocket... Vol. 1,645
WSASetService Vol. 1,360 WSPStartup Vol. 1, 649
WSASocket Vol. 1, 363 WSPStringToAddress Vol. 1,654
WSAStartup Vol. 1,367
WSAStringToAddress Vol. 1, 371
WSATHREADID Vol. 1,412 y

YieldFunctionName Vol. 3, 580

Part No. 097-0002783

Windows® Sockets
andQOS
This essential reference book is part of the five-volume
NETWORKING SERVICES DEVELOPER'S REFERENCE LIBRARY.

In its printed form, this material is portable, easy to use,
and easy to browse-a highly condensed, completely
indexed, intelligently organized complement to the
information available on line and through the Microsoft
Developer Network (MSDN"'). Each book includes an
overview of the five-volume library, an appendix of
programming elements, an index of referenced Microsoft«>
technologies, and tips on how and where to find other
Microsoft developer reference resources you may need.

Windows Socket and QOS

This volume provides vital programmatic information
about Windows Sockets 2 (Winsock) and Quality of Service
(QOS), two networking standards that Windows 2000
supports. Winsock provides easy access to multiple
transport protocols, enabling programmers to create
advanced Web and network-aware applications that
transmit data regardless of the protocol being used.
The industry-wide QOS initiative enables developers to
create or retrofit mission-critical applications that can
operate as if network traffic conditions were ideal, even
when the network is clogged.

Included on DVD-ROM:

An MSDN'" Quarterly Snapshot

