
Part of the five-volume
Networtdng Services Developer's Reference Ubrary

The essential reference set for developing with
Microsoft® Windows® networking technologies

David Iseminger
Series Editor

-~mlngel_

Network Protocols
and Interfaces

David Iseminger
Series Editor

Network Protocols·
and Interfaces

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2000 by Microsoft Corporation; portions © 2000 by David Iseminger.

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or
by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Iseminger, David, 1969-

Networking Services Developer's Reference Library / David Iseminger.
p. cm.

ISBN 0-7356-0993-4
1. Application Software--Development. 2. Microsoft Windows (Computer file). 3.

Computer networks. I. Title.
QA76.76.A65 184 2000
oo5.4'4769--dc21 00-020241

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 WCWC 5 4 3 2 1 0

Distributed in Canada by Penguin Books Canada Limited.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further informa
tion about international editions, contact your local Microsoft Corporation office or contact Microsoft
Press International directly at fax (425) 936-7329. Visit our Web site at mspress.microsoft.com.

Intel is a registered trademark of Intel Corporation. Active Directory, BackOffice, FrontPage, Microsoft,
Microsoft Press, MSDN, MS-DOS, Visual Basic, Visual C++, Visual FoxPro, Visual InterDev, Visual
J++, Visual SourceSafe, Visual Studio, Win32, Windows, and Windows NT are either registered trade
marks or trademarks of Microsoft Corporation in the United States and/or other countries. Other product
and company names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, people, and events depicted herein are fictitious.
No association with any real company, organization, product, person, or event is intended or should
be inferred.

Acquisitions Editor: Ben Ryan
Project Editor: Wendy Zucker

Part No. 097-0002784

Acknowledgements
First, thanks to Ben Ryan at Microsoft Press for continuing to share my enthusiasm
about the series. Many thanks to Ben and Steve Guty for also managing the business
details associated with publishing this series. We're just getting started!

Wendy Zucker again kept step with the difficult and tight schedule at Microsoft Press
and orchestrated things in the way only project editors can endure. John Pierce was
also instrumental in seeing the publishing process through completion, many thanks to
both of them. The cool cover art that will continue through the series is directed by Greg
Hickman-thanks for the excellent work. I'm a firm believer that artwork and packaging
are integral to the success of a project.

Thanks also to the marketing team at Microsoft Press that handles this series: Cora
McLaughlin and Cheri Chapman on the front lines and Jocelyn Paul each deserve
recognition for their coordination efforts with MSDN, openness to my ideas and
suggestions, creative marketing efforts, and other feats of marketing ingenuity.

On the Windows SDK side of things, thanks again to Morgan Seeley for introducing me
to the editor at Microsoft Press, and thereby routing this series to the right place.

Thanks also to Margot (Maley) Hutchison for doing all those agent-ish things so well.

Author's Note In Part 2 you'll see some code blocks that have unusual margin
settings, or code that wraps to a subsequent line. This is a result of physical page
constraints of printed material; the original code in these places was indented too much
to keep its printed form on one line. I've reviewed every line of code in this library in an
effort to ensure it reads as well as possible (for example, modifying comments to keep
them on one line, and to keep line-delimited comment integrity). In some places,
however, the word wrap effect couldn't be avoided. As such, please ensure that you
check closely if you use and compile these examples.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I

I
I
I
I

I
I

I

I
I
I
I
I

v

Contents

Acknowledgements .. iii

Part 1

Chapter 1: Getting Around in the Networking Services Library ... 1
How the Networking Services Library Is Structured .. 2

How the Networking Services Library Is Designed ... 3

Chapter 2: What's In This Volume? .. 5
Domain Name System .. 6

Dynamic Host Configuration Protocol ... 6

Multicast Address Dynamic Client Allocation Protocol. ... 6

Internet Authentication Service ... 6

NetBIOS .. 7

Synchronization Manager .. 7

System Event Notification Service .. 8

IP Helper. ... 8

Simple Network Management Protocol ... 8

WinSNMP .. 8

Network Management ... 8

Chapter 3: Using Microsoft Reference Resources .. 9
The Microsoft Developer Network .. 10

Comparing MSDN with MSDN Online ... 11 .

MSDN Subscriptions ... 13

MSDN Library Subscription .. 13

MSDN Professional Subscription ... 14

MSDN Universal Subscription .. 14

Purchasing an MSDN Subscription .. 14

Using MSDN .. 15

Navigating MSDN ... 16

Quick Tips .. 18

Using MSDN Online .. 20

Navigating MSDN Online ... 22

MSDN Online Features ... 23

vi Volume 2 Network Protocols and Interfaces

MSDN Online Registered Users .. 29

The Windows Programming Reference Series .. 30

Chapter 4: Finding the Developer Resources You Need .. 31
Developer Support ... 31

Online Resources ... 33

Internet Standards .. 34
Learning Products .. 35

Conferences ... 37

Other Resources .. 37

Chapter 5: Getting the Most Out of This Volume .. 39
DNS Resource Record (RR) Reference .. 39

SOA Resource Records ... 40

NS Resource Records ... 41
PTR Resource Records ... 41

A Resou rce Records .. 42

MX Resource Records ... 42

CNAME Resource Records ... 42

WINS Resource Records ... 43

WINS-R Resource Records ... 43

SRV Resource Records ... 44

Load Sharing Resource Records ... 45

Part 2

Chapter 6: Domain Name System (DNS) .. 47
DNS Overview .. 47

DNS Standards Documents , .. 48

DNS Reference .. 48

Chapter 7: Dynamic Host Configuration Protocol (DHCP) ... 69
DHCP Overview ... 69'

DHCP Standards .. 69

DHCP Examples ... ; .. 70

DHCP Functions .. 73

Chapter 8: Multicast Address Dynamic Client Allocation Protocol (MADCAP) 81
MADCAP Overview .. 81

MADCAP Functions ... 81
MADCAP Structures .. 88

Contents vii

Chapter 9: Internet Authentication Service (IAS) ... 93
lAS Overview .. 93

Scope .. 93

Authentication and Accounting .. 94

Implementing DLLs to Extend lAS .. 95

Setting Up the Extension and Authorization DLLs ... 95

Authentication and Authorization Process ... 95

User Identification Attributes .. 99

RADIUS Accounting Packets .. 100

Working With a State Server ... 101

State Server Design Considerations .. 101

Using Internet Authentication Service .. 102

Internet Authentication Service Reference ... 106

Internet Authentication Service Functions ... 1 06

Internet Authentication Service Structures .. 11 0

Internet Authentication Service Enumerated Types .. 111

Chapter 10: The NetBIOS Interface ... 123
NetBIOS Interface Overview .. 123

NetBIOS Operation ... 124

NetBIOS LANA Numbers .. 125

NetBIOS Name Table ... 126

NetBIOS Session .. 127
NetBIOS Enhancements ... 127

NetBIOS Commands ... 128

Name Support .. 129

Session Support ... 130
Data-Transfer Support .. 132

Datagram Support .. 135

General Support ... 136

Extension Support .. 139
Using the NetBlOS Interface .. 141

Listing All NetBlOS Names on a LANA , 141

Getting the MAC Address for an Ethernet Adapter ... 144

NetBIOS Reference ... ; 145

NetBIOS Functions .. 145

NetBIOS Structures ... 147

viii Volume 2 Network Protocols and Interfaces

Chapter 11: Synchronization Manager ... 163
Synchronization Manager Overview .. 163

Mobile Computing Configurations , ... 163
Application Scenarios : ... 164

Synchronization Manager Architecture ... 164
Using Synchronization Manager from a Program ... 164

SyncMgr Reference ... 166

Chapter 12: System Event Notification Service .. 205
System Event Notification Service Overview ... 205

Mobile Computing Configurations for SENS ... 205
Application Scenarios for SENS ... 206
Notifications .. 206
SENS Architecture .. 206

SENS Reference .. 208
IsDestinationReachable .. 208
IsNetworkAlive .. 210
SENS Object ... 211

Chapter 13: IP Helper ... 233
IP Helper Overview .. 233

Retrieving Information About Network Configuration ... 233
Managing Network Adapters ... 234
Managing Interfaces ... 234
Managing IP Addresses .. 234

Using the Address Resolution Protocol .. 235
Retrieving Information on the Internet Protocol and the Internet Control Message
Protocol ... 235
Managing Routing ... 236
Receiving Notification of Network Events ... 236
Retrieving Information About the Transmission Control Protocol and the User
Datagram Protocol .. 236

IP Helper Function Reference .. 237
IP Helper Functions ... ; 237

Alphabetical Listing .. 237
Categorical Listing ... 238

IP Helper Structures .. 277

Contents ix

Chapter 14: Simple Network Management Protocol (SNMP) .. 283
New SNMP Programming Elements .. 283

About SNMP ... 285

How SNMP Works ... 285

The SNMP Management Information Base (MIB) ... 285

MIB Name Tree .. 286

Relevant RFCs ... 286

System Files for SNMP ... 287

SNMp· Utilities .. 288

Configuring the SNMP Service .. 288

Community Names ... 289

Host Names and IP Addresses .. 289

Configuring SNMP Security ... 289

Configuring SNMP Agent Information .. 289

SNMP Reference .. 289

SNMP Functions ... 289

SNMP Structures ... 336

Chapter 15: The WinSNMP APi .. 343
New WinSNMP Programming Elements .. 344

About the WinSNMP APi .. 344

About the WinSNMP 2.0 Addendum ... 345

About SNMP Versions .. 345

RFCs Relevant to WinSNMP ... 345

Software Requirements for the WinSNMP API ... 346

The WinSNMP Model .. 347

About the Microsoft WinSNMP Implementation .. 347

The WinSNMP Database ... 348

Levels of SNMP Support .. 348

WinSNMP Sessions ... ; 349

WinSNMP Data Management Concepts ... 349

Object Identifiers .. 349

WinSNMP Descriptors .. 349

Resource Handle Objects .. 350

C-Style Strings ... 350

Allocating WinSNMP Memory Objects ... 351

WinSNMP Communications Management Concepts ; 351

About SNMP Messages ... 351

About Traps and Notifications .. ; ... 352

x Volume 2 Network Protocols and Interfaces

About Retransmission 353
WinSNMP Programming Tasks .. 354
Opening and Closing a WinSNMP Application ... 355
Opening and Closing a WinSNMP Session .. 356
Managing Traps and Notifications .. 356

Multiple Trap Registrations .. 357
Working with Variable Binding Lists .. 358

Creating a Variable Binding List .. 358
Managing a Variable Binding List .. 358

Working with Protocol Data Units ... 359
Creating a PDU .. 359
Updating a PDU ... 360
Duplicating a PDU .. 360
Validating a PDU .. " ... 360
Matching Response and Request PDUs ... 360

Sending SNMP Messages .. 361
Receiving SNMP Messages ... 361
General WinSNMP Programming Tasks .. 362

Managing Object Identifiers ... 362
Freeing WinSNMP Descriptors .. 362
Setting the Entity and Context Translation Mode 363
Managing the Retransmission Policy ... 365
Writing WinSNMP Applications with Multiple Threads 366
Registering an SNMP Agent Application ... 367

WinSNMP API Reference .. 367
WinSNMP Data Types .. 367
WinSNMP Error Codes ... 368

WinSNMP Common Error Codes .. 368
Network Transport Errors ... 369

WinSNMP Function Return Values ... 369
WinSNMP Functions ... 370
WinSNMP Structures .. 458

Chapter 16: Network Management ... 465
About Network Management .. , 465

Network Management Function Groups ... 465
Access Functions ... 466
Alert Functions 467
Api Buffer Functions .. 468

Contents xi

Audit Functions ... : 469

Configuration Functions ... 469
Directory Service Functions .. .469

Distributed File System (Dfs) Functions .. .470

Error Logging Functions ... 472

Get Functions ... 472

Group Functions ~ ... 473

Local Group Functions ... 474

Message Functions .. 475

NetFile Functions ... 476

NetService Functions ... 477

Remote Utility Functions477

Schedule Functions .. 482

Server Functions .. 482
Server and Workstation Transport Functions484

Session Functions .. 485

Share Functions ; .. 486

Statistics Functions .. 488
Use Functions .. 488

User Functions ... 489

User Modal Functions .. 491

Workstation and Workstation User Functions492
Network Management Data ... 493

Network Management Function Buffers .. .493

Network Management Function Buffer Lengths .. .494

API Data Alignment .. 494
Embedded Strings .. 494

Enumeration Resume Handles495

Function Status .. 495

NLS Support ... 495
Parameter Error Reporting ... 495

RPC Buffer Allocation Errors495

Obsolete Information Fields .. .495

Platform Support ... 496

Windows 95/98 Support ... 496

Functions That Only Have Support for Remoting to LAN Manager 2.x497
Requests from 16-bit LAN Manager Clients .. .497

Calling 16-bit LAN Manager Servers498
Security Requirements for the Network Management Functions 498

xii Volume 2 Network Protocols and Interfaces

Using Network Management. ... 500

Looking Up a User's Full Name .. 500

Forcing a User to Change the Logon Password ... 501

Changing Elements of User Information ... 503

Creating a New Computer Account .. 507

Creating a Local G roup and Adding a User .. 51 0

Determining the Validating Server on Windows 95/98 ... 513

Looking Up Text for Error Code Numbers .. 520

Windows 95/98 Network Management Code Samples .. 523

NetConnectionEnum Sample (Windows 95/98) .. 523

NetFileEnum Sample (Windows 95/98) ... 525

NetSecurityGetlnfo Sample (Windows 95/98) ... 528

NetServerGetlnfo Sample (Windows 95/98) .. 529

NetSessionDel Sample (Windows 95/98) .. 531

NetSessionEnum Sample (Windows 95/98) .. 532

NetSessionGetlnfo Sample (Windows 95/98) ... 535

NetShareAdd Sample (Windows 95/98) .. 537

NetShareDel Sample (Windows 95/98) ... 538

NetShareEnum Sample (Windows 95/98) , 539

NetShareGetlnfo Sample (Windows 95/98) ... 541

NetShareSetlnfo Sample (Windows 95/98) ... 543

Chapter 17: Network Management Reference ... 547
Network Management Functions ... 547

Alert Functions .. 547

API Buffer Functions ... 547

Directory Service Functions .. 547
Distributed File System (Dfs) Functions ... 548

Get Functions .. 548

Group Functions ... 548

Local Group Functions .. 548

Message Functions ... 549

NetFile Functions .. 549

Remote Utility Functions .. , .. 549

Replicator Functions ... 549

Schedule Functions .. 549

Server Functions ... 549

Server and Workstation Transport Functions ... 550

Session Functions ... 550

Contents xiii

Share Functions .. 550

Statistics Function ... 550

Use Functions ... 550

User Functions .. 551

User Modals Functions .. 551

Workstation and Workstation User Functions ... 551

Access and Security Functions (Windows 95/98 only) ... 551

Obsolete Functions ... 551

Network Management Structures ... 552

Alert Structures .. 552

Distributed File System (Dfs) Structures ... 552

File Structures ... 552

Get Structures ... 552

Group Structures ... ; 552

Local Group Structures ... 553

Message Structures .. 553

Remote Utility Structure .. 553

Replicator Structures ... 553

Schedule Structures .. 553

Server Structures .. 554

Server and Workstation Transport Structures ... 554

Session Structures .. 554

Share Structures ... 554

Statistics Structures ... 555

Use Structures ... 555

User Structures ... , .. 555

User Modals Structures ... 555

Workstation and Workstation User Structures .. 556

Windows 95/98 Structures .. 556

Network Management Macros ... 556

Mapping ADSllnterfaces to the Network Management Functions 556

Part 3

Index: Networking Services Programming Elements - Alphabetical Listing 559

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I

I
I
I

I

I
I
I
I

Part 1

CHAPTER 1

Getting Around in the Networking
Services Library

Networking is pervasive in this digital age in which we live. Information at your fingertips,
distributed computing, name resolution, and indeed the entire Internet-the advent
of which will be ascribed to our generation for centuries to come-imply and require
networking. Everything that has become the buzz of our business and personal lives,
including e-mail, cell phones, and Web surfing, is enabled by the fact that networking
has been brought to the masses (and we've barely scraped the beginning of the trend).
You, the network-enabled Windows application developer, need to know how to lasso
this all-important networking services capability and make it a part of your application.
You've come to the right place.

Networking isn't magic, but it can seem that way to those who aren't accustomed to
it (or to the programmer who isn't familiar with the technologies or doesn't know how to
make networking part of his or her application). That's why the Networking Services
Developer's Reference Library isn't just a collection of programmatic reference
information; it would be only half-complete if it were. Instead, the Networking Services
Library is a collection of explanatory and reference information that combine to provide
you with the complete set that you need to create today's network-enabled Windows
application.

The Networking Services Library is the comprehensive reference guide to network
enabled application development. This library, like all libraries in the Windows
Programming Reference Series (WPRS), is designed to deliver the most complete,
authoritative, and accessible reference information available on a given subject of
Windows network programming-without sacrificing focus. Each book in each library is
dedicated to a logical group of technologies or development concerns; this approach has
been taken specifically to enable you to find the information you need quickly, efficiently,
and intuitively.

In addition to its networking services development information, the Networking Services
Library contains tips designed to make your programming life easier. For example,
a thorough explanation and detailed tour of MSDN Online is included, as is a section
that helps you get the most out of your MSDN subscription. Just in case you don't have
an MSDN subscription, or don't know why you should, I've included information about
that too, including the differences between the three levels of MSDN subscription, what
each level offers, and why you'd want a subscription when MSDN Online is available
over the Internet.

2 Volume 2 Network Protocols and Interfaces

To ensure that you don't get lost in all the information provided in the Networking
Services Library, each volume's appendixes provide an all-encompassing programming
directory to help you easily find the particular programming element you're looking for.
This directory suite, which covers all the functions, structures, enumerations, and other
programming elements found in network-enabled application development, gets you
quickly to the volume and page you need, saving you hours of time and bucketsful
of frustration.

How the Networking Services Library Is Structured
The Networking Services Library consists of five volumes, each of which focuses on
a particular aspect of network programming. These programming reference volumes
have been divided into the following:

• Volume 1: Winsock and OOS

• Volume 2: Network Interfaces and Protocols

• Volume 3: RPC and WNet

• Volume 4: Remote Access Services

• Volume 5: Routing

Dividing the Networking Services Library into these categories enables you to quickly
identify the Networking Services volume you need, based on your task, and facilitates
your maintenance of focus for that task. This approach enables you to keep one
reference book open and handy, or tucked under your arm while researching that aspect
of Windows programming on sandy beaches, without risking back problems (from toting
around all 3,000+ pages of the Networking Services Library) and without having to
shuffle among multiple less-focused books.

Within the Networking Services Library-and in fact, in all WPRS Libraries-each
volume has a deliberate structure. This per-volume structure has been created to further
focus the reference material in a developer-friendly manner, to maintain consistency
within each volume and each Library throughout the series, and to enable you to easily
gather the information you need. To that end, each volume in the Networking Services
Library contains the following parts: .

• Part 1: Introduction and Overview

• Part 2: Guides, Examples, and Programmatic Reference

• Part 3: Intelligently Structured Indexes

Chapter 1 Getting Around in the Networking Services Library 3

Part 1 provides an introduction to the Networking Services Library and to the WPRS
(what you're reading now), and a handful of chapters designed to help you get the most
out of networking technologies, MSDN, and MSDN Online. MSDN and WPRS Libraries
are your tools in the developer process; knowing how to use them to their fullest will
enable you to be more efficient and effective (both of which are generally desirable
traits). In certain volumes (where appropriate), I've also provided additional information
that you'll need in your network-enabled development efforts, and included such
information as concluding chapters in Part 1. For example, Volume 3 includes a chapter
that explains terms used throughout the RPC development documentation; by putting
it into Chapter 5 of that volume, you always know where to go when you have a question
about an RPC term. Some of the other volumes in the Networking Services Library
conclude their Part 1 with chapters that include information crucial to their volume's
contents, but I've been very selective about including such information. Publishing
constraints have limited the amount of information I can provide in each volume
(and in the library as a whole), so I've focused on the priority: getting you the most
useful information possible within the number of pages I have to work with.

Part 2 contains the networking reference material particular to its volume. You'll notice
that each volume contains much more than simple collections of function and structure
definitions. A comprehensive reference resource should include information about how
to use a particular technology, as well as definitions of programming elements.
Consequently, the information in Part 2 combines complete programming element
definitions with instructional and explanatory material for each programming area.

Part 3 is a collection of intelligently arranged and created indexes. One of the biggest
challenges of the IT professional is finding information in the sea of available resources
and network programming is probably one of the most complex and involved of any
development discipline. In order to help you get a handle on network programming
references (and Microsoft technologies in general), Part 3 puts all such information into
an understandable, manageable directory (in the form of indexes) that enables you
to quickly find the information you need.

How the Networking Services Library Is Designed
The Networking Services Library (and all libraries in the WPRS) is designed to deliver
the most pertinent information in the most accessible way possible. The Networking
Services Library is also designed to integrate seamlesslywith MSDN and MSDN Online
by providing a look and feel consistent with their electronic means of disseminating
MicrQsoft reference information. In other words, the way a given function reference
appears on the pages of this book has been designed specifically to emulate the way
that MSDN and MSDN Online present their function reference pages.

The reason for maintaining such integration is simple: to make it easy for you to use the
tools and get the ongoing information you need to create quality programs. Providing a
"common interface" among reference resources allows your familiarity with the
Networking Services Library reference material to be immediately applied to MSDN or
MSDN Online, and vice-versa. In a word, it means consistency.

4 Volume 2 Network Protocols and Interfaces

You'll find this philosophy of consistency and simplicity applied throughout WPRS
publications. I've designed the series to go hand-in-hand with MSDN and MSDN Online
resources. Such consistency lets you leverage your familiarity with electronic reference
material, then apply that familiarity to enable you to get away from your computer if you'd
like, take a book with you, and-in the absence of keyboards and e-mail and upright
chairs-get your programming reading and research done. Of course, each of the
Networking Services Library volumes fits nicely right next to your mouse pad as well,
even when opened to a particular reference page.

With any job, the simpler and more consistent your tools are, the more time you can
spend doing work rather than figuring out how to use your tools. The structure and
design of the Networking.Seniices Library provide you with a comprehensive,
presharpened toolset to build compelling Windows applications.

CHAPTER 2

What's In This Volume?

Volume 2 of the Networking Services Developer's Reference Library provides
information about the vast array of interfaces and protocols (and even some services)
that Windows networking makes available to applications developers. These interfaces,
protocols, and services enable network programmers to get the most out of their
network-enabled applications.

This volume also contains information about how you can use development resources
such as MSDN, MSDN Online, and developer support resources. This helpful
information is found in various chapters in Part 1 , and those chapters are common to all
WPRS volumes. By including this information in each library and in each volume, a few
goals of the WPRS are achieved:

5

• I don't presume you have bought, or expect you to have to buy another WPRS Library
to gain access to this information. Maybe your primary focus is network programming,
and your budget doesn't allow for you to purchase the Active Directory Developer's
Reference Library. Since I've included this information in this library, you don't
have to.

• You can access this important and useful information regardless of which volume you
have in your hand. You don't have to (nor should you have to) fumble with another
physical book to access information about how to get the mostout of MSDN, or where
to get support for questions you have about a particular Windows (jevelopment
problem you're having.

• Each volume becomes more useful, more portable, and more complete in and of
itself. This goal of the WPRS makes it easier for you to grab one of its libraries'
volumes and take it with you, rather than feeling like you must bring multiple volumes
with you to have access to the library's important overview and usability information.

These goals have guided choices about this library's content and included technologies;
I hope you find its information useful, portable, a good value, and as accessible as it
can be.

Part 2 of this volume addresses the interfaces, protocols, and services described in the
following sections.

6 Volume 2 Network Protocols and Interfaces

Domain Name System
Domain Name System (DNS), now an industry-standard protocol, locates computers on
an IP-based network. IP networks, such as the Internet and Microsoft Windows 2000
networks, rely on number-based addresses to move information on the network.
However, users are better at remembering friendly names than number-based
addresses, so it is necessary to translate user-friendly names (www.microsoft.com) into
addresses that the network can recognize (207.46.131.137). DNS is the locator service
of choice in Windows 2000.

Dynamic Host Configuration Protocol
The Dynamic Host Configuration Protocol (DHCP) Application Programming Interface,
also referred to as DHCP Client Options, enables Windows 2000 and Windows 98
clients to query specific options from DHCP servers. Such capability enables
vendor-specific options exposed through DHCP servers to be queried by Windows 2000
or Windows 98 DHCP clients.

Multicast Address Dynamic Client Allocation Protocol
MADCAP, or Multicast Address Dynamic Client Allocation Protocol, is a technology
aimed at making it easy for clients to renew and release multicast addresses,enabling
clients to dynamically "connect" and "disconnect" from multicast network transmissions.
The development of standards for MADCAP is ongoing, and falls under the Multicast
Address Allocation (malloc) Working Group at the Internet Engineering Task Force
(IETF).

Developers can use MADCAP to:

• Dynamically obtain a multicast address for a client, enabling that client to participate
in network multicast transmission reception.

• Enumerate the available MADCAP transmissions available from a given server.

• Release multicast addresses when appropriate.

The Windows 2000 implementation of MADCAP adheres to the MADCAP
recommendations published by the IETF, which are available on the IETF web site
(www.ietf.org). Since MADCAP has not been ratified as a Request For Comments
(RFC), and is rather in Internet Draft form, the technology is subject to continuing growth
and evolution. Microsoft Corporation is actively involved with the standards process on
an ongoing basis.

Internet Authentication Service
The Internet Authentication Service (lAS) API enables software developers to write their
own extensions to lAS. lAS also allows developers to implement session control and
accounting plug-ins, add authorizations, and use network authentication methods for
remote access. lAS supports, as a client and server, the Remote Authentication Dial-In
User Service (RADIUS) protocol.

Chapter 2 What's In This Volume? 7

lAS is applicable in any computing environment where it would improve efficiency to
authenticate dial-in users through a remote server. This technology is especially useful
for Internet Service Providers (ISPs).

NetBIOS
A Win32-based application can use the Network Basic Input/Output System (NetBIOS)
interface to communicate with applications on other computers in a network. The
NetBIOS interface provides commands and support for the following services:

• Network name registration and verification

• Session establishment and termination

• Reliable connection-oriented data transfer

• Unreliable connection less data transfer (datagram)

• Protocol and adapter monitoring and management

The NetBIOS interface is provided primarily for existing applications that use IBM
NetBlOS 3.0 and need to be ported to the Win32 API. New applications and applications
not requiring compatibility with NetBlOS should use other interfaces, such as mailslots,
named pipes, RPC, sockets, or distributed COM to accomplish tasks similar to those
supported by NetBIOS. These interfaces are more flexible and portable than NetBIOS. In
addition, you can use sockets over NetBIOS to communicate with NetBIOS applications.

However, there are plenty of. NetBIOS-enabled applications in existence today, so I've
included NetBIOS in this library to ensure that the reference information you need for
such compatibility is available to you.·

Synchronization Manager
The Synchronization Manager provides a centralized, standard technology for
synchronizing files for offline use on either a mobile computer or a computer connected
to a local area network that has latency issues. Developers can use the common
interface to the Synchronization Manager in their applications to synchronize files
between the user's local computer and network storage.

Files are synchronized independent of the protocol. For example, an e-mail program can
transfer its messages using SMTP, NMTP, or POP3, a browser can use HTTP, and a
database can use Remote Procedure Call (RPC).

The Synchronization Manager is intended for applications that run primarily on mobile
computers. Applications that run on computers connected to high latency local area
networks may also benefit from using the Synchronization Manager.

8 Volume 2 Network Protocols and Interfaces

System Event Notification Service
Applications designed for mobile users require a unique set of connectivity functions and
notifications. In the past, individual applications were required to implement these
features internally. The System Event Notification Service (SENS) now provides these
capabilities in the operating system, creating a uniform connectivity and notification
interface for applications. Using SENS, developers can determine connection bandwidth
and latency information from within their application and optimize the application's
operation based on those conditions.

The SENS connectivity functions and notifications are useful for applications written for
mobile computers or computers connected to high latency local area networks.

IP Helper
The Internet Protocol Helper (IP Helper) API enables a software developer to retrieve
and modify network configuration settings for a local computer.

The IP Helper API is applicable in any computing environment where the TCP/IP
network protocol is used and there is a need to programmatically manipulate the TCP/IP
configuration. Typical applications include IP routing protocols and Simple Network
Management Protocol (SNMP) agents.

Simple Network Management Protocol
The Simple Network Management Protocol (SNMP) is the Internet standard protocol for
exchanging management information between management console applications such
as HP Openview, Novell NMS, IBM NetView, or Sun Net Manager, and managed
entities. The managed entities can include hosts, routers, bridges, and hubs.

WinSNMP
The Windows SNMP Application Programming Interface (the WinSNMP API) versions
1.1 a and 2.0 allow you to develop SNMP-based network management applications that
execute in the Windows 2000 operating environment. SNMP is a request-response
protocol that transfers management information between protocol entities.

Network Management
Microsoft Windows NT, Windows 2000, Windows 95, and Windows 98 support a variety
of networking APls. The network management functions provide the ability to manage
user accounts and network resources. Many of the capabilities provided by the network
management functions are not provided by other networking functions.

CHAPTER 3

Using Microsoft Reference
Resources

9

Keeping current with all the latest information on the latest networking technology is like
trying to count the packets going through routers at the MAE-WEST Internet service
exchange by watching their blinking activity lights: It's impossible. Often times,
application developers feel like those routers might feel at a given day's peak activity; too
much information is passing through them, none of which is being absorbed or passed
along fast enough for their boss' liking.

For developers, sifting through all the available information to get to the required
information is often a major undertaking, and can impose a significant amount of
overhead upon a given project. What's needed is either a collection of information that
has been sifted for you, shaking out the information you need the most and putting that
pertinent information into a format that's useful and efficient, or direction on how to sift
the information yourself. The Networking Services Developer's Reference Library does
the former, and this chapter and the next provide you with the latter.

This veritable white noise of information hasn't always been a problem for network
programmers. Not long ago, getting the information you needed was a challenge
because there wasn't enough of it; you had to find out where such information might be
located and then actually get access to that location, because it wasn't at your fingertips
or on some globally available backbone, and such searching took time. In short, the
availability of information was limited.

Today, the volume of information that surrounds us sometimes numbs us; we're
overloaded with too much information, and if we don't take measures to filter out what
we don't need to meet our goals, soon we become inundated and unable to discern
what's "white noise" and what's information that we need to stay on top of our respective
fields. In short, the overload of available information makes it more difficult for us to find
what we really need, and wading through the deluge slows us down.

This fact applies equally to Microsoft's reference material, because there is so much
information that finding what you need can be as challenging as figuring out what to do
with it once you have it. Developers need a way to cut through what isn't pertinent to
them and to get what they're looking for. One way to ensure you can get to the
information you need is to understand the tools you use; carpenters know how to use
nail-guns, and it makes them more efficient. Bankers know how to use ten-keys, and it
makes them more adept. If you're a developer of Windows applications, two tools you
should know are MSDN and MSDN Online. The third tool for developers-reference
books from the WPRS-c--can help you get the most out of the first two.

10 Volume 2 Network Protocols and Interfaces

Books in the WPRS, such as those found in the Networking Services Developer's
Reference Library, provide reference material that focuses on a given area of Windows
programming. MSDN and MSDN Online, in comparison, contain all of the reference
material that all Microsoft programming technologies have amassed over the past few
years, and create one large repository of information. Regardless of how well such
information is organized, there's a lot of it, and if you don't know your way around,
finding what you need (even though it's in there, somewhere) can be frustrating, time
consuming, and just an overall bad experience.

This chapter will give you the insight and tips you need to navigate MSDN and MSDN
Online and enable you to use each of them to the fullest of their capabilities. Also, other
Microsoft reference resources are investigated, and by the end of the chapter, you'll
know where to go for the Microsoft reference information you need (and how to quickly
and efficiently get there).

The Microsoft Developer Network
MSDN stands for Microsoft Developer Network, and its intent is to provide developers
with a network of information to enable the development of Windows applications. Many
people have either worked with MSDN or have heard of it, and quite a few have one of
the three available subscription levels to MSDN, but there are many, many more who
don't have subscriptions and could use some concise direction on what MSDN can do
for a developer or development group. If you fall into any of these categories, this
section is for you.

There is some clarification to be done with MSDN and its offerings; if you've heard of
MSDN, or have had experience with MSDN Online, you may have asked yourself one of
these questions during the process of getting up to speed with either resource:

• Why do I need a subscription to MSDN if resources such as MSDN Online are
accessible for free over the Internet?

• What is the difference between the three levels of MSDN subscriptions?

• Is there a difference between MSDN and MSDN Online, other than the fact that one is
on the Internet and the other is on a CD? Do their features overlap, separate,
coincide, or what?

If you have asked any of these questions, then lurking somewhere in the back of your
thoughts has probably been a sneaking suspicion that maybe you aren't getting the most
out of MSDN. Maybe you're wondering whether you're paying too much for too little, or
not enough to get the resources you need. Regardless, you want to be in the know and
not in the dark. By the end of this chapter, you'll know the answers to all these questions
and more, along with some effective tips and hints on how to make the most effective
use of MSDN and MSDN Online.

Chapter 3 Using Microsoft Reference Resources 11

Comparing MSDN with MSDN Online
Part of the challenge of differentiating between MSDN and MSDN Online comes with
determining which has the features you need. Confounding this differentiation is the fact
that both have some content in common, yet each offers content unavailable with the
other. But can their difference be boiled down? Yes, if broad strokes and some
generalities are used:

• MSDN provides reference content and the latest Microsoft product software, all
shipped to its subscribers on CD or DVD.

• MSDN Online provides reference content and a development community forum, and
is available only over the Internet.

Each delivery mechanism for the content that Microsoft is making available to Windows
developers is appropriate for the medium, and each plays on the strength of the medium
to provide its "customers" with the best possible presentation of material. These
strengths and medium considerations enable MSDN and MSDN Online to provide
developers with different feature sets, each of which has its advantages.

MSDN is perhaps less "immediate" than MSDN Online because it gets to its subscribers
in the form of CDs or DVDs that come in the mail. However, MSDN can sit in your
CD/DVD drive (or on your hard drive), and isn't subject to Internet speeds or failures.
Also, MSDN has a software download feature that enables subscribers to automatically
update their local MSDN content over the Internet, as soon as it becomes available,
without having to wait for the updateCD/DVD to come in the mail. The interface with
which MSDN. displays its material-which looks a whole lot like a specialized browser
window-is also linked to the Internet as a browser-like window. To further coordinate
MSDN with the immediacy of the Internet, MSDN Online has a section of the site
dedicated to MSDN subscribers that enable subscription material to be updated (on their
local machines) as soon as it's available.

MSDN Online has lots of editorial and technical columns that are published directly to
the site, and are tailored (not surprisingly) to the issues and challenges faced by
developers of Windows applications or Windows-based Web sites. MSDN Online also
has a customizable interface (somewhat similar to MSN.com) that enables visitors to
tailor the information that's presented upon visiting the site to the areas of Windows
development in which they are most interested. However, MSDN Online, while full of
up-to-date reference material and extensive online developer community content,
doesn't come with Microsoft product software, and doesn't reside on your local machine.

Because it's easy to confuse the differences and similarities between MSDN and MSDN
Online, it makes sense to figure out a way to quickly identify how and where they depart.
Figure 3-1 puts the differences-and similarities-between MSDN and MSDN Online
into a quickly identifiable format.

12 Volume 2 Network Protocols and Interfaces

Figure 3-1: The similarities and differences in coverage between MSDN and
MSDN Online.

One feature you'll notice is shared between MSDN and MSDN Online is the interface
they are very similar. That's almost certainly a result of attempting to ensure that
developers' user experience with MSDN is easily associated with the experience had on
MSDN Online, and vice-versa.

Chapter 3 Using Microsoft Reference Resources 13

Remember, too, that if you are an MSDN subscriber, you can still use MSDN Online and
its features. So it isn't an "either/or" question with regard to whether you need an MSDN
subscription or whether you should use MSDN Online; if you have an MSDN
subscription, you will probably continue to use MSDN Online and the additional features
provided with your MSDN subscription.

MSDN Subscriptions
If you're wondering whether you might benefit from a subscription to MSDN, but you
aren't quite sure what the differences between its subscription levels are, you aren't
alone. This section aims to provide a quick guide to the differences in subscription levels,
and even provides an estimate for what each subscription level costs.

The three subscription levels for MSDN are: Library, Professional, and Universal. Each
has a different set of features. Each progressive level encompasses the lower level's
features, and includes additional features. In other words, with the Professional
subscription, you get everything provided in the Library subscription plus additional
features; with the Universal subscription, you get everything provided in the Professional
subscription plus even more features.

MSDN Library Subscription
The MSDN Library subscription is the basic MSDN subscription. While the Library
subscription doesn't come with the Microsoft product software that the Professional and
Universal subscriptions provide, it does come with other features that developers may
find necessary in their development effort. With the Library subscription, you get the
following:

• The Microsoft reference library, including SDK and DDK documentation, updated
quarterly

• Lots of sample code, which you can cut-and-paste into your projects, royalty free

• The complete Microsoft Knowledge Base-the collection of bugs and workarounds

• Technology specifications for Microsoft technologies

• The complete set of product documentation, such as Microsoft Visual Studio,
Microsoft Office, and others

• Complete (and in some cases, partial) electronic copies of selected books and
magazines

• Conference and seminar papers-if you weren't there, you can use MSDN's notes

In addition to these items, you also get:

• Archives of MSDN Online columns

• Periodic e-mails from Microsoft chock full of development-related information

• A subscription to MSDN News, a bi-monthly newspaper from the MSDN folks

• Access to subscriber-exclusive areas and material on MSDN Online

14 Volume 2 Network Protocols and Interfaces

MSDN Professional Subscription
The MSDN Professional subscription is a superset of the Library subscription. In addition
to the features outlined in the previous section, MSDN Professional subscribers get the
following:

• Complete set of Windows operating systems, including release versions of
Windows 95, Windows 98, and Windows NT 4 Server and Workstation.

• Windows SDKs and DDKs in their entirety

• International versions of Windows operating systems (as chosen)

• Priority technical support for two incidents in a development and test environment

MSDN Universal Subscription
The MSDN Universal subscription is the all-encompassing version of the MSDN
subscription. In addition to everything provided in the Professional subscription,
Universal subscribers get the following:

• The latest version of Visual Studio, Enterprise Edition

• The Microsoft BackOffice test platform, which includes all sorts of Microsoft product
software incorporated in the BackOffice family, each with a special 10-connection
license for use in the development of your software products

• Additional development tools, such as Office Developer, Microsoft FrontPage, and
Microsoft Project

• Priority technical support for two additional incidents in a development and test
environment (for a total of four incidents)

Purchasing an MSDN Subscription
Of course, all the features that you get with MSDN subscriptions aren't free. MSDN
subscriptions are one-year subscriptions, which are current as of this writing. Just as
each MSDN subscription escalates in functionality of incorporation of features, so does
each escalate in price. Please note that prices are subject to change.

The MSDN Library subscription hasa retail price of $199, but if you're renewing an
existing subscription you get a $100 rebate in the box. There are other perks for existing
Microsoft customers, but those vary. Check out the Web site for more details.

The MSDN Professional subscription is a bit more expensive than the Library, with a
retail price of $699. If you're an existing customer renewing your subscription, you again
get a break in the box, this time in the amount of a $200 rebate. You also get that break
if you're an existing Library subscriber who's upgrading to a Professional subscription.

The MSDN Universal subscription takes a big jump in price, sitting at $2,499. If you're
upgrading from the Professional subscription, the price drops to $1,999, and if you're
upgrading from the Library subscription level, there's an in-the-box rebate for $200.

Chapter 3 Using Microsoft Reference Resources 15

As is often the case, there are academic and volume discounts available from various
resellers, including Microsoft, so those who are in school or in the corporate environment
can use their status (as learner or learned) to get a better deal----and in most cases, the
deal is in fact much better. Also, if your organization is using lots of Microsoft products,
whether or not MSDN is a part of that group, ask your purchasing department to look into
the Microsoft Open License program; the Open License program gives purchasing
breaks for customers who buy lots of products. Check out www.microsoft.com//icensing
for more details. Who knows, if your organization qualifies you could end up getting an
engraved pen from your purchasing department, or if you're really lucky maybe even a
plaque of some sort for saving your company thousands of dollars on Microsoft products.

You can get MSDN subscriptions from a number of sources, including online sites
specializing in computer-related information, such as www.iseminger.com (shameless
self-promotion, I know), or from your favorite online software site. Note that not all
software resellers carry MSDN subscriptions; you might have to hunt around to find one.
Of course, if you have a local software reseller that you frequent, you can check out
whether they carry MSDN subscriptions.

As an added bonus for owners of this Networking Services Developer's Reference
Library, in the back of Volume 1, you'll find a $200 rebate good toward the purchase of
an MSDN Universal subscription. For those of you doing the math, that means you
actually make money when you purchase the Networking Services Developer's
Reference Library and an MSDN Universal subscription. With this rebate, every
developer in your organization can have the Networking Services Developer's Refence
Library on their desk and the MSDN Universal subscription on thier desktop, and still
come out $50 ahead. That's the kind of math even accountants can like.

USing MSDN
MSDN subscriptions come with an installable interface, and the Professional and
Universal subscriptions also come with a bunch of Microsoft product software such as
Windows platform versions and BackOffice applications. There's no need to tell you how
to use Microsoft product software, but there's a lot to be said for providing some quick
but useful guidance on getting the most out of the interface to present and navigate
through the seemingly endless supply of reference material provided with any MSDN
subscription.

To those who have used MSDN, the interface shown in Figure 3-2 is likely familiar; it's
the navigational front-end to MSDN reference material.

The interface is familiar and straightforward enough, but if you don't have a grasp on its
features and navigation tools, you can be left a little lost in its sea of information. With a
few sentences of explanation and some tips for effective navigation, however, you can
increase its effectiveness dramatically.

16 Volume 2 Network Protocols and Interfaces

Navigating MSDN
One of the primary features of MSDN-and to many, its primary drawback-is the sheer
volume of information it contains, over 1.1 GB and growing. The creators of MSDN likely
realized this, though, and have taken steps to assuage the problem. Most of those steps
relate to enabling developers to selectively navigate through MSDN's content.

Windows Resource Kits
Tool. and Technologies
Knowledge Base
Technical Articles

Welcome to the October 1999
release of the MSDN Library.

The MSDN Library is the essential reference for developers, with
more than a gigabyte of technical programming information,
including sample code, documentation, technical articles, the
Microsoft Developer Knowledge Base, and anything else you
might need to develop solutions that implement Microsoft
technology.

4·Wa'·.;'·';41,·4,.'
Dr, GUI introduces the October 1999 release of the MSDN Library, The
good doctor examines new Library content, including articles and
documentation about Windows 2000, Windows CE, Office 2000, and
databases and data access, plus several new technical article sample
suites,

M"."i';.],"M";'.
Read through this document for summaries of what's new and follow
the links to the new titles,

Figure 3-2: The MSDN interface.

Basic navigation through MSDN is simple and is a lot like navigating through Microsoft
Windows Explorer and its folder structure. Instead of folders, MSDN has books into
which it organizes its topics; expand a book by clicking the + box to its left, and its
contents are displayed with its nested books or reference pages, as shown in Figure 3-3.
If you don't see the left pane in your MSDN viewer, go to the View menu and select
Navigation Tabs and they'll appear.

The four tabs in the left pane of MSDN-increasingly referred to as property sheets
these days-are the primary means of navigating through MSDN content. These four
tabs, in coordination with the Active Subset drop-down box above the four tabs, are the
tools you use to search through MSDN content. When used to their full extent, these
coordinated navigation tools greatly improve your MSDN experience.

I±l • 'Welcome to the MSDN Library
I:±l • Visual Studio 6.0 Documentation
ffi • Office Developer Documentation
&l • Windows CE Documentation
EJ ~ PlatfOJm SDK

tB • Getting Started
f:B • Design Strategies and Standards
f±] • Base Services
[E • Component Services
EEl • Data Access Services
EEl • Graphics and Multimedia Services
EEl • Management Services
[±l • Messaging and Collaboration Services
El IJ2I and DireclOlY Services

Active Directory, ADSI, and Directory Selvices
Common Intelnet File S}lstem PlOtocol

Chapter 3 Using Microsoft Reference Resources 17

Purpose

MADCAP, or Multicast Address
Dynamic Client Allocation
Protocol, is a technology
aimed at making it easy for
clients to renew and release
Multicast addresses! enabling
clients to dynamically
"connect" and "disconnect"
from multicast network
transmissions,

The development of
standards for MADCAP is
ongoing, and falls under the
Multicast Address Allocation
(malloc) Working Group at the
IETF,

Overview

General
information
about
MADCAP,

Reference

Documentation
of MADCAP
functions and
structures,

Efledhack

Make error
reports and
feature
requests
directly to
Microsoft.

Figure 3-3: Basic navigation through MSDN.

The Active Subset drop-down box is a filter mechanism; choose the subset of MSDN
information you're interested in working with from the drop-down box, and the
information in each of the four Navigation Tabs (including the Contents tab) limits the
information it displays to the information contained in the selected subset. This means
that any searches you do in the Search tab, and in the index presented in the Index tab,
are filtered by their results and/or matches to the subset you define, greatly narrowing
the number of potential results for a given inquiry. This enables you to better find the
information you're really looking for. In the Index tab, results that might match your
inquiry but aren't in the subset you have chosen are grayed out (but still selectable). In
the Search tab, they simply aren't displayed.

MSDN comes with the following predefined subsets (these subsets are subject to
change, based on documentation updates and TOC reorganizations):

Entire Collection Platform SDK, Networking Services
MSDN, Books and Periodicals Platform SDK, Security
MSDN, Content on Disk 2 only Platform SDK, Tools and Languages
(CD only - not in DVD version) Platform SDK, User Interface Services

MSDN, Content on Disk 3 only Platform SDK, Web Services
(CD only - not in DVD version) Platform SDK, Win32 API

MSDN, Knowledge Base Repository 2.0 Documentation
MSDN, Technical Articles and Visual Basic Documentation
Backgrounders Visual C++ Documentation

18 Volume 2 Network Protocols and Interfaces

Office Developer Documentation
Platform SDK, BackOffice
Platform SDK, Base Services
Platform SDK, Component Services
Platform SDK, Data Access Services
Platform SDK, Getting Started
Platform SDK, Graphics and
Multimedia Services

Platform SDK, Management Services
Platform SDK, Messaging and
Collaboration Services

Visual C++, Platform SDK and
WinCE Docs

Visual C++, Platform SDK, and
Enterprise Docs

Visual FoxPro Documentation
VisuallnterDev Documentation
Visual J++ Documentation
Visual SourceSafe Documentation
Visual Studio Product Documentation
Windows CE Documentation

As you can see, these filtering options essentially mirror the structure of information
delivery used by MSDN. But what if you are interested in viewing the information in a
handful of these subsets? For example, what if you want to search on a certain keyword
through the Platform SDK's ADS I , Networking Services, and Management Services
subsets, as well as a little section that's nested way into the Base Services subset?
Simple-you define your own subset by choosing the View menu, and then selecting the
Define Subsets menu item. You're presented with the window shown in Figure 3-4.

Defining a subset is easy; just take the following steps:

1. Choose the information you want in the new subset; you can choose entire subsets or
selected books/content within available subsets.

2. Add your selected information to the subset you're creating by clicking the Add button.

3. Name the newly created subset by typing in a name in the Save New Subset As box.
Note that defined subsets (including any you create) are arranged in alphabetical
order.

You can also delete entire subsets from the MSDN installation. Simply select the subset
you want to delete from the Select Subset To Display drop-down box, and then click the
nearby Delete button.

Once you have defined a subset, it becomes available in MSDN just like the predefined
subsets, and filters the information available in the four Navigation Tabs, just like the
predefined subsets do.

Quick Tips
Now that you know how to navigate MSDN, there are a handful of tips and tricks that you
can use to make MSDN as effective as it can be.

Use the Locate button to get your bearings. Perhaps it's human nature to need to
know where you are in the grand scheme of things, but regardless, it can be bothersome
to have a reference page displayed in the right pane (perhaps jumped to from a search),
without the Contents tab in the left pane being synchronized in terms of the reference
page's location in the information tree. Even if you know the general technology in which
your reference page resides, it's nice to find out where it is in the content structure.

Chapter 3 Using Microsoft Reference Resources 19

This is easy to fix. Simply click the Locate button in the navigation toolbar and all will be
synchronized.

Component Services
Data Access Services
Graphics and Multimedia
Management Services

Figure 3-4: The Define Subsets window.

Use the Back button just like a browser. The Back button in the navigation tool bar
functions just like a browser's Back button; if you need information on a reference page
you viewed previously, you can use the Back button to get there, rather than going
through the process of doing another search.

Define your own subsets, and use them. Like I said at the beginning of this chapter,
the volume of information available these days can sometimes make it difficult to get our
work done. By defining subsets of MSDN that are tailored to the work you do, you can
become more efficient

Use an underscore at the beginning of your named subsets. Subsets in the Active
Subset drop-down box are arranged in alphabetical order, and the drop-down box shows
only a few subsets at a time (making it difficult to get a grip on available subsets, I think).
Underscores come before letters in alphabetical order, so if you use an underscore on all
of your defined subsets, you get them placed at the front of the Active Subset listing of
available subsets. Also, by using an underscore, you can immediately see which subsets
you've defined, and which ones come with MSDN-it saves a few seconds at most, but
those seconds can add up.

20 Volume 2 Network Protocols and Interfaces

Using MSDN Online
MSDN underwent a redesign in December of 1999, aimed at streamlining the
information provided, jazzing things up with more color, highlighting hot new
technologies, and various other improvements. Despite its visual overhaul, MSDN Online
still shares a lot of content and information delivery similarities with MSDN, and those
similarities are by design; when you can go from one developer resource to another and
immediately work with its content, your job is made easier. However, MSDN Online is
different enough that it merits explaining in its own right-it's a different delivery medium,
and can take advantage of the Internet in ways that MSDN simply cannot.

If you've used MSN's home page before (www.msn.com). you're familiar with the fact
that you can customize the page to your liking; choose from an assortment of available
national news, computer news, local news, local weather, stock quotes, and other
collections of information or news that suit your tastes or interests. You can even insert a
few Web links and have them readily accessible when you visit the site. The MSDN
Online home page can be customized in a similar way, but its collection of headlines,
information, and news sources are all about development. The information you choose
specifies the information you see when you go to the MSDN Online home page, just like .
the MSN home page.

There are a couple of ways to get to the customization page; you can go to the MSDN
Online home page (msdn.microsoft.com) and click the Personalize This Site button near
the top of the page, or you can go there directly by pointing your browser to
msdn.microsoft.com/msdn-online/start/custom. However you get there, the page you'll
see is shown in Figure 3-5.

As you can see from Figure 3-5, there are lots of technologies to choose from (many
more options can be found when you scroll down through available technologies). If
you're interested in Web development, you can select the checkbox at the left of the
page next to Standard Web Development, and a predefined subset of Web-centered
technologies is selected. For technologies centered more on Network Services, you can
go through and choose the appropriate technologies. If you want to choose all the
technologies in a given technology group more quickly, click the Select All button in the
technology's shaded title area.

You can also choose which tab is selected by default in the home page that MSDN
Online presents to you, which is convenient for dropping you into the category of MSDN
Online information that interests you most. All five of the tabs available on MSDN
Online's home page are available for selection; those tabs are the following:

• Features

• News

• Columns
• Technical Articles

• Training & Events

Select or clear the check boxes
below to choose a pre~set
template of information for that
technology

o Database
DevelopmenVAdministration

o Database Web Development

o OfficeNBA Developer

o Standard Web Development

D Windows Development

Chapter 3 Using Microsoft Reference Resources 21

Personalize the information that appears on your M50N Online home page.

Select your preferences from the sections below 1 then return here and choose Save. (Yes, we
know it's a lot of choices. There's a lot of information on this site.) You can update your choices
at any time by visiting this Personalization page,

Figure 3-5: The MSDN Online Personalize Page.

Once you've defined your profile-that is, customized the MSDN Online content you
want to see-MSDN Online shows you the most recent information pertinent to your
profile when you go to MSDN Online's home page, with the default tab you've chosen
displayed upon loading of the MSDN Online home page.

Finally, if you want your profile to be available to you regardless of which computer
you're using, you can direct MSDN Online to store your profile. Storing a profile for
MSDN Online results in your profile being stored on MSDN Online's server, much like
roaming profiles in Windows 2000, and thereby makes your profile available to you
regardless of the computer you're using. The option of storing your profile is available
when you customize your MSDN Online home page (and can be done any time
thereafter). The storing of a profile, however, requires that you become a registered
member of MSDN Online. More information about becoming a registered MSDN Online
user is provided in the section titled MSDN Online Registered Users.

22 Volume 2 Network Protocols and Interfaces

Navigating MSDN Online
Once you're done customizing the MSDN Online home page to get the information
you're most interested in, navigating through MSDN Online is easy. A banner that sits
just below the MSDN Online logo functions as a navigation bar, with drop-down menus
that can take you to the available areas on MSDN Online, as Figure 3-6 illustrates.

i±I MSDN Training
i±I Products
i±I Partnering
i±I International
i±I My Links

• IT Professionals

~ ~ISDN Flash
(e·newsletter)

1i Send Us
Your Feedback

~ Site Guide

What's New in XML for Microsoft

Learn about the new features, bug fixes, and other
improvements to the Microsoft XML parser coming in
Windows 2000, in this column by Charlie Heinemann of
the Microsoft XML team, Charlie also explains why the
ne'w version of the parser is better equipped for server

•

Tune in to the MSDN Show

Xi'lL

Visual Studio

Dll Help
Database

Learn about new technologies coming out of Microsoft in MSDN Online's

first streaming media show. This show's topics include XML and BizTalk.

•

Figure 3-6: The MSDN Online Navigation Bar with Its Drop-Down Menus.

Following is a list of available menu categories, which groups the available sites and
features within MSDN Online:

Home

Magazines

Libraries

Developer Centers

Resources

Downloads

Search MSDN

The navigation bar is available regardless of where you are in MSDN Online, so the
capability to navigate the site from this familiar menu is always available, leaving you a
click away from any area on MSDN Online. These menu categories create a functional
and logical grouping of MSDN Online's feature offerings.

Chapter 3 Using Microsoft Reference Resources 23

MSDN Online Features
Each of MSDN Online's seven feature categories contains various sites that comprise
the features available to developers visiting MSDN Online.

Home is already familiar; clicking on Home in the navigation bar takes you to the MSDN
Online home page that you've (perhaps) customized, showing you all the latest
information about technologies that you've indicated you're interested in reading about.

Magazines is a collection of columns and articles that comprise MSDN Online's
magazine section, as well as online versions of Microsoft's magazines such as MSJ,
MIND, and the MSDN Show (a Webcast feature introduced with the December 1999
remodeling of MSDN Online). The Magazines feature of MSDN Online can be linked to
directly at msdn.microsoft.comlresourceslmagazines.asp. The Magazines home page is
shown in Figure 3-7.

Voices ..

MSJ i

MIND '"

MSDN Newspaper +

MSDN Show ..

Magazines
Print and online publications for current information on all types of development,

MSJ is the magazine that brings developers monthly features on the most important tools and
technologies such as XML~ Windows 2000, ATL) MFC, Windows eEl DirectX, c++} as well as monthly
columns on visual programming) Win'32J COM, debugging, security! and more,

Microsoft Internet Developer (MIND)

MIND is the monthly magazine for Internet and intra net developers that covers tools 'and technologies
including XML, Visual Basic) scripting) ADO! SQL Server! lIS) and anything else a developer might need
to build an interactive or e-commerce site,

MSDN News

The MSDN News is a printed newspaper) published bi-monthly for the developer audience, The
newspaper features new technical articles and ongoing columns, including the popular "Ask Dr, GUI/ as
well as a regular series of posters, Subscriptions are free to'MSDN subscribers,

The MSDN Show

This regular Webcast brings you inside Microsoft to talk with developers and planners about our hottest
new technologies. The segments range from broad overviews to down-and-dirty coding! with some

Figure 3-7: The Magazines Home Page.

For those of you familiar with the Voices feature section that formerly found its home on
the MSDN Online navigation banner, don't worry; all content formerly in the Voices
section is included the Magazines section as a subsite (or menu item, if you prefer) of
the Magazines site. For those of you who aren't familiar with the Voices subsite, you'll

24 Volume 2 Network Protocols and Interfaces

find a bunch of different articles or "voices" there, each of which adds its own particular
twist on the issues that face developers. Both application and Web developers can get
their fill of magazine-like articles from the sizable list of different articles available (and
frequently refreshed) in the Voices subsite. With the combination of columns and online
developer magazines offered in the Magazines section, you're sure to find plenty of
interesting insights.

Libraries is where the reference material available on MSDN Online lives. The Libraries
site is divided into two sections: Library and Web Workshop. This distinction divides the
reference material between Windows application development and Web development.
Choosing Library from the Libraries menu takes you to a page through which you can
navigate in traditional MSDN fashion, and gain access to traditional MSDN reference
material. The Library home page can be linked to directly at msdn.microsoft.comllibrary.
Choosing Web Workshop takes you to a site that enables you to navigate the Web
Workshop in a slightly different way, starting with a bulleted list of start points, as shown
in Figure 3-8. The Web Workshop home page can be linked to directly at
msdn.microsoft.comlworkshop.

ESSENTIALS ..

Component Deve!opm'ent ..,

Content 2. Component Delivery""

Dab:! Access 8< Databases ..

Design ~

DHTML, HTML & css •
Languages & Development Tools $

Messaging & Collaboration ..

Net orking, Protocols +

& Data Format:::

Reusing Bro ser Technology.

Security & Cr,?'ptography '"

Server Technologies ..

Streaming & Interactive Media ..

Web Content Management.: •

XML (b::t""n:<>:ible Markup Language) •

This; section contains
information you'll need to
create components for your
web pages} using either
AetiveX or DHTML ,criptlet
technology) as well as related
information about COM)
ActiveX Scripting) Active
Documents! and offline
browsing,

Welcome

The MSDN Online Web
Workshop provides the late,t
information about Internet
technologies~ including
reference material and in
depth article, on all a'peet,
of Web site design and
development, Choose the
categories on the left to
navigate via content listings,
Use the index to look up
keywords, and the search
page for specific queries.
Check our What's New page
for updates,

The MSON Online team

© 1999 Microsoft Corporation, All rights reser..,ed, Terms of use.

Figure 3-8: The Web Workshop Home Page.

Chapter 3 Using Microsoft Reference Resources 25

Developer Centers is a hub from which developers who are interested in a particular
area of development-such as Windows 2000, Sal Server, or XMl-can go to find
focused Web site centers within MSDN Online. Each developer center is dedicated to
providing all sorts of information associated with its area of focus. For example, the
Windows 2000 developer center has information about what's new with Windows 2000,
including newsgroups, specifications, chats, knowledge base articles, and news, among
others. At publication time, MSDN Online had the following developer centers:

• Microsoft Windows 2000

• Microsoft Exchange

• Microsoft Sal Server

• Microsoft Windows Media
• XMl

In addition to these developer centers is a promise that new centers would be added to
the site in the future. To get to the Developer Centers home page directly, link to
msdn.microsoft.comlresourcesldevcenters.asp. Figure 3-9 shows the Developer Centers
home page.

Microsoft Windo s ..
2000

Microsoft Exchange •

Microsoft SQL Server ..

Microsoft.: Windo s •
Media

XML '"

MSDN Developer Centers
MSDN Developer Centers provide access to all the developer resources MSDN has to offer for specific
products and technologies. From the Developer Centers you can also find the latest links to all the best
new technical articles, downloads, samples) product news) and more, While we'll be adding more
Developer Centers to the site in the future) you can visit the following Developer Centers today:

• Microsoft Exchange

• Microsoft SQl Server
• Microsoft 'lNindows Media

• XMl

Figure 3-9: The Developer Centers Home Page.

26 Volume 2 Network Protocols and Interfaces

Resources is a place where developers can go to take advantage of the online forum of
Windows and Web developers, in which ideas or techniques can be shared, advice can
be found orgiven (through MHM, or Members Helping Members), and the MSDN User
Group Program can be joined or perused to find a forum to voice their opinions or chat
with other developers. The Resources site is full of all sorts of useful stuff, including
featured books, a DLL help database, online chats, case studies, and more. The
Resources home page can be linked to directly at msdn.microsoft.com/resources. Figure
3-10 provides a look at the Resources home page.

DLL Help Database. Additional MSDN Online Resources
MSDM Online SuppOtt e

Newsgroups ot

Peer Journal ..

Members Helping •
Members

MSDN User Gt'oUP •
Program

MSDN Online Chab>

MSDN Tt'.;;lining

Events

De ... eloper Books •

MSDN Online is about more than just technical articles and documentation. Check out the wide variety
of resources we offer to help you get your job done,

The Dll Help Database

Microsoft's DLL Help database provides a searchable database of information about file versions that
ship with a selected set of Microsoft products,

MSON Online Support

MSDN Online Support offers ?I large variety of technical resources) including the Microsoft Knowledge
Base; service packs! hotfixes) and tools; and Support Web Casts, live presentations by Support
professionals.

Newsgroups

MSDN Online provides access to selected developer-focused public newsgroups through our browser
based newsreader. Microsoft's public newsgroups allow you to interact with the Microsoft developer
community and MVPs (Most Valuable Professionals). Public newsgroups are a great way to solve
technical problems) learn more about a specific product or te"chnology J or keep up with the latest buzz
in the developer community. Microsoft employees do not monitor Microsoft's public newsgroups.

Peer Journal
Microsoft's collection of code! tips, and articles written by your developer peers.

Figure 3-10: The Resources Home Page.

The Downloads site is where developers can find all sorts of useable items fit to be
downloaded, such as tools, samples, images, and sounds. The Downloads site is also
where MSDN subscribers go to get their subscription content updated over the Internet
to the latest and greatest releases, as described previously in this chapter in the Using
MSDN section. The Downloads home page can be linked to directly at
msdn.microsoft.com/downloads. The Downloads home page is shown in Figure 3-11.

Sefyice Packs •

Samples: •

Tools •

Beta and Preview •
Releases

Images •

Sounds •

Development •
Kits (SDKs)

MSDN Subscriber •
DO'AnIO-il&S:

Chapter 3 Using Microsoft Reference Resources 27

Welcome to the MSDN Online Downloads Area

Service Packs

Service Packs and product updates provide bug fixes and address other issues that customers have
diSicovered since a product's release.

Samples

In this section, you will find a great variety of samples that demonstrate ways to use the latest and
greatest Microsoft technologies to make your applications the best they can be. All samples have code
that can be downloaded l most can be browsed online l and many have live demonstration pages.
Choose from the Table of Contents to find samples focused on a particular product or technology.
Entries prefixed with li are for users registered with Visual Studio only. To get access to these, register
your product today.

Tools

Want to tryout some great new products? Check out our tools areal where users can download more
than 40 trial, beta, and full versions of the latest developer products.

Visit the Visual Studio Solutions Center for sample solutions designed to help you learn and understand
end-to-end application architecture and design.

Beta and Preview Releases

Figure 3-11: The Downloads Home Page.

The Search MSDN site on MSDN Online has been improved over previous versions,
and includes the capability to restrict searches to either library (Library or Web
Workshop), as well as other fine-tune search capabilities. The Search MSDN home page
can be linked to directly at msdn_microsoftcomlsearch. The Search MSDN home page is
shown in Figure 3-12.

There are two other destinations within MSDN Online of specific interest, neither of
which is immediately reachable through the MSDN navigation bar. The first is the MSDN
Online Member Community home page, and the other is the Site Guide.

28 Volume 2 Network Protocols and Interfaces

Figure 3-12: The Search MSDN Home Page.

The MSDN Online Member Community home page can be directly reached at
msdn. microsoft. com/community. Many of the features found in the Resources
navigation menu are actually subsites of the Community page. Of course, becoming a
member of the MSDN Online member community requires that you register (see the next
section for more details on joining), but doing so enables you to get access to Online
Special Interest Groups (OSIGs}&nd other features reserved for registered members.
The Community page is shown in Figure 3-13.

Another destination of interest on MSDN Online that isn't displayed on the navigation
banner is the Site Guide. The Site Guide is just what its name suggests-a guide to the
MSDN Online site that aims at helping developers find items of interest, and includes
links to other pages on MSDN Online such as a recently posted files listing, site maps,
glossaries, and other useful links. The Site Guide ho~e page can be linked to directly at
msdn. microsoft. com/siteguide.

Your Membership >I

OSIGs: •

Peer Journal flo

Case Studies"

Downloads '*'

Members Helping flo

Membet's

Offer:=: ~

Training ""

MSDN Stores: •

Chapter 3 Using Microsoft Reference Resources 29

Welcome to the MSDN Online Member Community
Updated October 14, 1999

With an MSDN Online membership, developers can easily access technical
information, tools, and a community of developers ready to help solve the
toughest challenges, and take advantage of member benefits.

Online Spedal-Interest Groups

Access the information you need, when you need it, with
(OSIGs). Web~based access to relevant newsgroups, sorted by product,

make it easy for you to get information you need to do your job. Take advantage
of special offers, find useful links, and stay up to date with the latest product and
technology news.

Members Helping Members

(MHM) is a networking and support tool that help,
developers get connected, solve problems~ and gain recognition within the
developer community, Get answers quickly by searching the MHM database for
people who can answer your technical questions, Or] register as a volunteer and
help other developers when they need it. rpJ!Ad

Roaming Profiles

Figure 3-13: The MSDN Online Member Community Home Page.

MSDN Online Registered Users
You may have noticed that some features of MSDN Online-such as the capability to
create a store profile of the entry ticket to some community features-require you to
become a registered user. Unlike MSDN subscriptions, becoming a registered user of
MSDN Online won't cost you anything more but a few minutes of registration time.

Some features of MSDN Online require registration before you can take advantage of
their offerings. For example, becoming a member of an OSIG requires registration. That
feature alone is enough to register; rather than attempting to call your developer buddy
for an answer to a question (only to find out that she's on vacation for two days, and your
deadline is in a few hours), you can go to MSDN Online's Community site and ferret
through your OSIG to find the answer in a handful of clicks. Who knows; maybe your
developer buddy will begin calling you with questions-you don't have to tell her where
you're getting all your answers.

30 Volume 2 Network Protocols and Interfaces

There are a number of advantages to being a registered user, such as the choice to
receive newsletters right in your inbox if you want to. You can also get all sorts of other
timely information, such as chat reminders that let you know when experts on a given
subject will be chatting in the MSDN Online Community site. You can also sign up to get
newsletters based on your membership in various OSIGs-again, only if you want to. It's
easy for me to suggest that you become a registered user for MSDN Online-I'm a
registered user, and it's a great resource.

The Windows Programming Reference Series
The WPRS provides developers with timely, concise, and focused material on a given
topic, enabling developers to get their work done as efficiently as possible. In addition to
providing reference material for Microsoft technologies, each Library in the WPRS also
includes material that helps developersget the most out of its technologies, and
provides insights that might otherwise be difficult to find.

The WPRS currently includes the following libraries:

• Microsoft Win32 Developer's Reference Library

• Active Directory Developer's Reference Library

• Networking Services Developer's Reference Library

In the near future (subject, of course, to technology release schedules, demand, and
other forces that can impact publication decisions), you can look for these prospective
WPRS Libraries that cover the following material:

• Web Technologies Library

• Web Reference Library

• MFC Developer's Reference Library

• Com Developer's Reference Library

What else might you find in the future? Planned topics such as a Security Library,
Programming Languages Reference Library, BackOffice Developer's Reference Library,
or other pertinent topics that developers using Microsoft products need in order to get
the most out of their development efforts, are prime subjects for future membership in
the WPRS. If you have feedback you want to provide on such libraries, or on the WPRS
in general, you can send email towinprs@microsoft.com.

If you're sending mail about a particular library, make sure you put the name of the
library in the subject line. For example, e-mail about the Networking Services
Developer's Reference Library would have a subject line that reads "Networking
Services Developer's Reference Library." There aren't any guarantees that you'll get a
reply, but I'll read all of the mail and do what I can to ensure your comments, concerns,
or (especially) compliments get to the right place.

CHAPTER 4

Finding the Developer Resources
You Need

Networking is complex, and its resource information vast. With all the resources
available for developers of network-enabled applications, and the answers they can
provide to questions or problems that developers face every day, finding the developer
information you need can be a challenge. To address that problem, this chapter is
designed to be your one-stop resource to find the developer resources you need,
making the job of actually developing your application just a little easier.

31

Microsoft provides plenty of resource material through MSDN and MSDN Online, and the
WPRS provides a great filtered version of focused reference material and development
knowledge. However, there is a lot more information to be had. Some of that information
comes from Microsoft, some of it from the general development community, and yet
more information comes from companies that specialize in such development services.
Regardless of which resource you choose, in this chapter you can find out what your
development resource options are, and be more informed about the resources that are
available to you.

Microsoft provides developer resources through a number of different media, channels,
and approaches. The extensiveness of Microsoft's resource offerings mirrors the fact
that many are appropriate under various circumstances. For example, you wouldn't go to
a .conference to find the answer to a specific development problem in your programming
project; instead, you might use one of the other Microsoft resources.

Developer Support
Microsoft's support sites cover a wide variety of support issues and approaches,
including all of Microsoft's products, but most of those sites are not pertinent to
developers. Some sites, however, are designed for developer support; the Product
Services Support page for developers is a good central place to find the support
information you need. Figure 4-1 shows the Product Services Support page for
developers, which can be reached at www.microsoft.com/support/customerldeve/op.htm.

Note that there are a number of options for support from Microsoft, including everything
from simple online searches of known bugs in the Knowledge Base to hands-on
consulting support from Microsoft Consulting Services, and everything in between.
The Web page displayed in Figure 4-1 is a good starting point from which you can
find out more information about Microsoft's support services.

32 Volume 2 Network Protocols and Interfaces

Whether you are a Software or Web Developer, developing or porting
commercial applications to run on Microsoft platforms requires a unique
level of support to ensure tho •• applications optimize both current and
emerging technologies. Microsoft provides access to a wide range of
product and application development expertise to help developers
accelerate the development cycle and produce successful ~pplications.
This includes the Microsoft Developer Network (MSDN'") - • specially
dedicated Web site packed with news~ resources and technical services.

II Go to Support Phone Numbers Click here

PREMIER SUPPORT FOR DEVELOPERS
For large organizations developing products using Microsoft technologies
who require a direct~ proactive and managed support relationship with
Microsoft, Premier Support offers comprehensive and flexible high-end
support.

(~ Click here for details

PROFESSIONAL SUPPORT F.DR DEVELOPERS
Professional Support for Developers provides inform~tion services 8nd
incident-based support to create and your software

Figure 4-1: The Product Services Support page for developers.

Premier Support from Microsoft provides extensive support for developers, and
includes different packages geared toward specific Microsoft customer needs. The
packages of Premier Support that Microsoft provides are:

• Premier Support for Enterprises

• Premier Support for Developers

• Premier Support for Microsoft Certified Solution Providers

• Premier Support for OEMs

If you're a developer, you could fall into any of these categories. To find out more
information about Microsoft's Premier Support, contact them at (800) 936-2000.

Priority Annual Support from Microsoft is geared toward developers or organizations
that have more than an occasional need to call Microsoft with support questions and
need priority handling of their support questions or issues. There are three packages
of Priority Annual Support offered by Microsoft.

Chapter 4 Finding the Developer Resources You Need 33

• Priority Comprehensive Support

• Priority Developer Support

• Priority Desktop Support

The best support option for you as a developer is the Priority Developer support. To
obtain more information about Priority Developer Support, call Microsoft at
(800) 936-3500.

Microsoft also offers a Pay-Per-Incident Support option so you can get help if there's just
one question that you must have answered. With Pay-Per-Incident Support, you call a toll
free number and provide your Visa, MasterCard, or American Express account number,
after which you receive support for your incident. In loose terms, an incident is a problem
or issue that can't be broken down into subissues or subproblems (that is, it can't be
broken down into smaller pieces). The number to call for Pay-Per-Incident Support
is (800) 936-5800.

Note that Microsoft provides two priority technical support incidents as part of the MSDN
Professional subscription, and provides four priority technical support incidents as part
of the MSDN Universal subscription.

You can also submit questions to Microsoft engineers through Microsoft's support Web
site, but if you're on a time line you might want to rethink this approach and consider
going to MSDN Online and looking into the Community site for help with your
development question. To submit a question to Microsoft engineers online,
go to support.microsoft.com/support/webresponse.asp.

Online Resources
Microsoft also provides extensive developer support through its community of
developers found on MSDN Online. At MSDN Online's Community site, you will find
OSIGs that cover all sorts of issues in an online, ongoing fashion. To get to MSDN
Online's Community site, Simply go to msdn.microsoft.com/community.

Microsoft's MSDN Online also provides its Knowledge Base online, which is part of the
Personal Support Center on Microsoft's corporate site. You can search the Knowledge
Base online at support. microsoft. com/support/search.

Microsoft provides a number of newsgroups that developers can use to view
information on newsgroup-specific topics, providing yet another developer resource for
information about creating Windows applications. To find out which newsgroups are
available and how to get to them, go to support. microsoft. com/support/news.

The following newsgroups will probably be of particular interest to readers of the
Microsoft Active Directory Developer's Reference Library.

• microsoft. public. win2000. *

• microsoft.public.msdn.general

• microsoft.public.platformsdk. active. directory

• microsoft.public.platformsdk.adsi

34 Volume 2 Network Protocols and Interfaces

• microsoft.public.platformsdk.disLsvcs

• microsoft. public. vb. *

• microsoft.public. vc. *

• microsoft. public. vstudio. *microsoft.public. cert. *

• microsoft.public.certification. *

Of course, Microsoft isn't the only newsgroup provider on which newsgroups pertaining
to developing on Windows are hosted. Usenet has all sorts of newsgroups-too many to
list-that host ongoing discussions pertaining to developing applications on the Windows
platform. You can access newsgroups on Windows development just as you access any
other newsgroup; generally, you'll need to contact your ISP to find out the name of the
mail server and then use a newsreader application to visit, read, or post to the
Usenet groups.

For network developers with a taste for Winsock (and OOS) programming, another site
of interest is www.stardust.com. which is chock full of up-ta-date information about
Winsock development and other network-related information. There's other information
about network programming on the site, so it's worth a look.

Internet Standards
Many of the network protocols and services implemented in Windows platforms conform
to one or more Internet standards recommendations that have gone through a process
of review and comments. One especially useful source of information about such
standards, recommendations, and ongoing comment periods is the Internet Engineering
Task Force, or IETF. Rather than go into some long-winded (page-eating) explanation
of what the IETF is, does, and stands for, let me simply say that this is the place where
networking protocols and other various Internet-related services are often born,
scrutinized, recast, commented upon, and although not standardized or implemented,
recommended in a final form called a request for comment, or RFC, even though it's
essentially a standard by the time it gets to RFC stage.

If you want to get a clear technical picture of a given technology or protocol, or if you're
inclined to comment on the creation and subsequent scrutiny of such things, the place
you should go is www.ietf.org.This site can tell you all you want to know about the
goings on of the IETF, their (non-profit) mission, their Working Groups, and all the
information you might ever want about almost anything that has to do with networking
recommendations.

If you're curious about a given protocol or networking technology, and want to find an
unadulterated (albeit technical) version of its explanation, this is a great place to go.
It's a virtual hangout for the brightest people in networking, and it's worth a look or two,
even just for the sake of satisfying curiosity.

Chapter 4 Finding the Developer Resources You Need 35

Learning Products
Microsoft provides a number of products that enable developers to get versed in
the particular tasks or tools that they need to achieve their goals (or to finish their tasks).
One product line that is geared toward developers is called the Mastering series, and its
products provide comprehensive, well-structured interactive teaching tools for a wide
variety of development topics.

The Mastering Series from Microsoft contains interactive tools that group books and CDs
together so that you can master the topic in question, and there are products available
based on the type of application you're developing. To obtain more information about the
Mastering series of products, or to find out what kind of offerings the Mastering series
has, check out msdn.microsoft.com/mastering.

Other learning products are available from other vendors as well, such as other
publishers, other application providers that create tutorial-type content and applications,
and companies that issue videos (both taped and broadcast over the Internet)
on specific technologies. For one example of a company that issues technology-based
instructional or overview videos, take a look at www.compchannel.com.

Another way of learning about development in a particular language (such as C++,
FoxPro, or Microsoft Visual Basic), for a particular operating system, or for a particular
product (such as Microsoft SOL Server or Microsoft Commerce Server) is to read the
preparation materials available for certification as a Microsoft Certified Solutions
Developer (MCSD). Before you get defensive about not having enough time to get
certified, or not having any interest in getting your certification (maybe you do-there are
benefits, you know), let me just state that the point of the journey is not necessarily to
arrive. In other words, you don't have to get your certification for the preparation
materials to be useful; in fact, the materials might teach you things that you thought you
knew well but actually didn't knowas well as you thought you did. The fact of the matter
is that the coursework and the requirements to get through the certification process are
rigorous, difficult, and quite detail-oriented. If you have what it takes to get your
certification, you have an extremely strong grasp of the fundamentals (and then some) of
application programming and the developer-centric information about Windows
platforms.

You are required to pass a set of core examsto get an MCSD certification, and then
you must choose one topiC from many available electives exams to complete your
certification requirements. Core exams are chosen from among a group of available
exams; you must pass a total of three exams to complete the core requirements. There
are "tracks" that candidates generally choose which point their certification in a given
direction, such as C++ development or Visual Basic development The core exams and
their exam numbers (at the time of publication) are as follows.

36 Volume 2 Network Protocols and Interfaces

Desktop Applications Development (one required):

• Designing and Implementing Desktop Applications with Visual C++ 6.0 (70-016)

• Designing and Implementing Desktop Applications with Visual FoxPro 6.0 (70-156)

• Designing and Implementing Desktop Applications with Visual Basic 6.0 (70-176)

Distributed Applications Development (one required):

• Designing and Implementing Distributed Applications with Visual C++ 6.0 (70-015)

• Designing and Implementing Distributed Applications with Visual FoxPro 6.0 (70-155)

• Designing and Implementing Distributed Applications with Visual Basic 6.0 (70-175)

Solutions Architecture:

• Analyzing Requirements and Defining Solution Architectures (70-100)

Elective exams enable candidates to choose from a number of additional exams
to complete their MCSD exam requirements. The following MCSD elective exams are
available:

• Any Desktop or Distributed exam not used as a core requirement

• Designing and Implementing Data Warehouses with Microsoft Sal Server 7.0
(70-019)

• Developing Applications with C++ Using the Microsoft Foundation Class Library
(70-024)

• Implementing OLE in Microsoft Foundation Class Applications (70-025)

• Implementing a Database Design on Microsoft Sal Server 6.5 (70-027)

• Designing and Implementing Databases with Microsoft Sal Server 7.0 (70-029)

• Designing and Implementing Web Sites with Microsoft FrontPage 98 (70-055)

• Designing and Implementing Commerce Solutions with
Microsoft Site Server 3.0, Commerce Edition (70-057)

• Application Development with Microsoft Access for Windows 95 and the
Microsoft Access Developer's Toolkit (70-069)

• Designing and Implementing Solutions with Microsoft Office 2000 and
Microsoft Visual Basic for Applications (70-091)

• Designing and Implementing Database Applications with Microsoft Access 2000
(70-097)

• Designing and Implementing Collaborative Solutions with Microsoft Outlook 2000 and
Microsoft Exchange Server 5.5 (70-105)

• Designing and Implementing Web Solutions with Microsoft Visual InterDev 6.0
(70-152)

• Developing Applications with Microsoft Visual Basic 5.0 (70-165)

Chapter 4 Finding the Developer Resources You Need 37

The good news is that because there are exams you must pass to become certified,
there are books and other material out there to teach you how to meet the knowledge
level necessary to pass the exams. That means those resources are available to you
regardless of whether you care about becoming an MCSD.

The way to leverage this information is to get study materials for one or more of these
exams and go through the exam preparation material (don't be fooled by believing that if
the book is bigger, it must be better, because that certainly isn't always the case.) Exam
preparation material is available from such publishers as Microsoft Press, IDG, Sybex, and
others. Most exam preparation texts also have practice exams that let you assess your
grasp on the material. You might be surprised how much you learn, even though you may
have been in the field working on complex projects for some time.

Exam requirements, as well as the exams themselves, can change over time; more
electives become available, exams based on previous versions of software are retired,
and so on. You should check the status of individual exams (such as whether one of the
exams listed has been retired) before moving forward with your certification plans. For
more information about the certification process, or for more information about the
exams, check out Microsoft's certification web site at www.microsoft.comltrain_cert/dev.

Conferences
Like any industry, Microsoft and the development industry as a whole sponsor
conferences on various topics throughout the year and around the world. There are
probably more conferences available than anyone human could possibly attend and still
maintain his or her sanity, but often a given conference is geared toward a focused topic,
so choosing to focus on a particular development topic enables developers to winnow
the number of conferences that apply to their efforts and interests.

MSDN itself hosts or sponsors almost one hundred conferences a year (some of them
are regional, and duplicated in different locations, so these could be considered one
conference that happens multiple times). Other conferences are held in one central
location, such as the big one-the Professional Developers Conference (PDC).
Regardless of which conference you're looking for, Microsoft has provided a central site
for event information, enabling users to search the site for conferences, based on many
different criteria. To find out what conferences or other events are going on in your area
of interest of development, go to events. microsoft. com.

Other Resources
Other resources are available for developers of Windows applications, some of which
might be mainstays for one developer and unheard of for another. The list of developer
resources in this chapter has been geared toward getting you more than started with
finding the developer resources you need; it's geared toward getting you 100 percent of
the way, but there are always exceptions.

38 Volume 2 Network Protocols and Interfaces

Perhaps you're just getting started and you want more hands-on instruction than MSDN
Online or MCSD preparation materials provide. Where can you go? One option is to
check out your local college for instructor-led courses. Most community colleges offer
night classes, and increasingly, community colleges are outfitted with pretty nice
computer labs that enable you to get hands-on development instruction and experience
without having to work on a 386/20.

There are undoubtedly other resources that some people know about that have been
useful, or maybe invaluable. If you know of a resource that should be shared, send me
e-mail atwinprs@microsoft.com. and who knows-maybe someone else will benefit
from your knowledge.

If you're sending mail about a particularly useful resource, simply put "Resources" in the
subject line. There aren't any guarantees that you'll get a reply, but I'll read all of the mail
and do what I can to ensure that your resource idea gets considered.

CHAPTER 5

Getting the Most Out of
This Volume

DNS Resource Record (RR) Reference

39

When programming with the DNS API, it's useful to have a handy reference of the most
commonly used DNS resource records; in the spirit of making this Networking Services
Developer's Reference Library as useful as possible, I've included this reference
information so that you don't have to search through other books to find it.

Let's begin with some overview information about DNS resource records. DNS resource
records are the unit of information entries in DNS zone files (zone files are stored on
DNS servers, and contain the resource records used locate computers in an IP network).
DNS resource records are the basic building blocks of host name and IP information,
and are used to resolve all DNS queries. While there are only a handful of commonly
used resource record types, resource records actually come in a fairly wide variety of
flavors in order to provide extended name-resolution services. This section provides
reference for the most commonly used DNS resource records.

The various types of resource records come in different formats. In general however,
many resource records share a common format, as the following A-type resource record
example illustrates. Following the example are explanations of all of its fields.

• The first field (Iseminger.com) denotes the owner.

• The second field (600) is the TTL parameter in seconds.

• The third field (IN) is the class field that represents the protocol family, which is almost
always IN, for Internet class.

• The fourth field (A) is the type of resource the resource record is representing. I'll
describe the commonly used types of resources in a moment.

• The fifth field (150.150.150.1) is the resource data, or RDATA. This field is a variable
type that provides information appropriate for the type of resource; in this case, it's a
32-bit IP address.

40 Volume.2 Network Protocols and Interfaces

There are a number of different resource record types, but there are only a handful that
are commonly used in DNS. These types are the following:

• Start of authority (SOA)

• Name server (NS)

• Pointer record (PTR)

• Address (A)

• Mail exchange (MX)

• Canonical name (CNAME)

• Windows Internet Naming Service (WINS)

• WINS-reverse (WINS-R)

• Service (SRV)

• Load-sharing

These common resource record types are the subjects of this resource reference
section. In the explanations I provide examples of these RR types taken from a private
test deployment of Iseminger.com after the first Windows 2000 domain controller was
brought online. Note that in these examples I use parentheses to identify the sample
values of certain fields; remember that these values are the sample values and won't or
shouldn't necessarily be the values in any other DNS deployment's resource records.

SOA Resource Records
The start of authority (SOA) record is the required first entry in all forward and reverse
(in-addr.arpa) zone files and defines the zone for which the DNS server is authoritative,
as well as the specific server that is authoritative for the domain. The following is an
example of an SOA record:

The SOA RR has the following fields:

• Owner (@) specifies the owner of the record (the DNS server on which the zone file
resides). The use of a freestanding @ specifies that the owner is the current origin
(the server from which the file is taken).

• Class (IN) specifies the protocol family, in this case (and in most cases), the Internet
protocol family.

• Type (SOA) indicates that this is an SOA RR.

• Authoritative server (server4.iseminger.com) specifies the DNS server that is
authoritative for the zone.

Chapter 5 Getting the Most Out of This Volume 41

• Responsible person (dnsadmin.iseminger.com) specifies the mailbox address of the
person-presumably an administrator-who is responsible for the zone. Note that it
uses a period instead of an @, as in dnsadmin.iseminger.com instead of
dnsadmin@iseminger.com.

• Serial number (1) specifies the number of times the zone has been updated. When
secondary servers contact the primary server to determine whether a zone transfer is
necessary, the secondary servers compare their individual serial numbers with the
primary server's serial number. If the primary server's serial number is higher, a zone
transfer is necessary.

• Refresh number (3600) specifies the interval, in seconds, that secondary servers
should wait between checks with the primary server for zone changes. The bracketed
notation to its right denotes the time in common terms, such as [1 h], which stands for
one hour (which equates to 3600 seconds).

• Retry number (600) specifies the delay time, in seconds, between retries that
secondary servers should use when contacting the primary server.

• Expire number (86400) specifies the time, in seconds, that secondary servers should
wait for a response from the primary server before discarding their copies of the zone
file as invalid.

• Minimum TTL (3600) is the default TTL value applied to resource records in the zone
that do not specify their own TTL.

NS Resource Records
Name server (NS) records describe which servers are secondary servers for the zone
specified in the SOA record and indicate which servers are primary servers for any
delegated zones. The following are examples of NS RRs:

• Owner (@) specifies the owner of the record. As mentioned previously, the use of a
freestanding @ specifies that the owner is the current origin.

• Class (IN) specifies the protocol family, in this case (and in most cases), the Internet
protocol family.

• Type (NS) indicates that this is an NS RR.

• Authoritative server (server4.iseminger.com in the first record,
dnsserver1.iseminger.com in the second) specifies the name of the server that
houses information about the zone.

PTR Resource Records
The Pointer (PTR) record provides reverse address resolution (called reverse lookups);
PTR RRs map an IP address to a host name, as the following example illustrates:

42 Volume 2 Network Protocols and Interfaces

Notice that the order of the IP address octets is reversed in this example:

• Class (IN) specifies the protocol family, in this case (and in most cases), the Internet
protocol family.

• Type (PTR) indicates that this is a PTR RR.

A Resource Records
The Address (A) record is the most common; it simply maps an IP address to a host
name, as the following example displays:

• The first field (filesrv1 in this example) is the owner (host) of the record.

• Class (IN) specifies the protocol family, in this case (and in most cases), the Internet
protocol family.

• Type (A) indicates that this is an A RR.

MX Resource Records
The mail exchange (MX) record specifies where mail is to be routed for users in the
given DNS domain. In addition to standard fields, the MX RR contains a field that
enables administrators to weight multiple MX RRs based on whatever criteria seem
appropriate. This field is called the preference field. Consider the following examples:

In these examples, the assignment of values in the preference fields (4 and 9) has the
following effect:

A mail server that needs to send mail to the iseminger.com domain would contact a DNS
server for iseminger.com and retrieve all of the MX records for the domain. This mail
server would then attempt to contact the mail server with the lowest preference field
value (mailsrv1.isemingeLcom according to these sample MX entries). If contact with the
host associated with the lowest preference value was not possible, the mail server would
attempt to reach the MX-designated host that had the next-lowest value for its
preference field (mailsrv3.iseminger.com in this example).

CNAME Resource Records
The canonical name (CNAME) record provides a mechanism by which you can assign
an alias to a given host. CNAME RRs are useful for keeping the naming conventions of
your network infrastructure hidden from the outside world (or the inside world, for that
matter). When DNS resolves a CNAME RR, it uses the owner field
(filesrv1.iseminger.com. in the following example) to subsequently find an A RR to
resolve the name. An example of a CNAME RR is shown on the following page.

Chapter 5 Getting the Most Out of This Volume 43

• The first field (drawings in this example) is the alias assigned to the host.

• Class (IN) specifies the protocol family, in this case (and in most cases), the Internet
protocol family.

• Type (CNAME) indicates that this is a CNAME RR.

Note NS records must not point to a host that equates to a CNAME RR; that is, an NS
record can't paint to an alias. Also, NS records must have an A record in the same zone
file as the NS record so that the name can be locally resolved.

WINS Resource Records
The Windows Internet Naming Service (WINS) record is implemented only by Microsoft
DNS and is used when dynamically created host names registered with WINS are
unavailable in a static DNS zone file. In essence, this resource record enables Microsoft
DNS to make a request to a WINS server when DNS is unable to resolve a given host
name. If the host name exists in the WINS database, WINS returns the query to DNS
and DNS resolves the query. The following example illustrates a WINS RR:

• Owner (@) specifies the owner of the record. As mentioned previously, the use of a
freestanding @ specifies that the owner is the current origin.

• Class (IN) specifies the protocol family, in this case (and in most cases), the Internet
protocol family.

• Type (WINS) indicates that this is a WINS RR.

Note The WINS and WINS-R RRs are specific to Microsoft DNS and won't work if you
attempt to use them with other DNS server software.

WINS·R Resource Records
The WINS-reverse (WINS-R) record provides administrators the capability to perform
reverse lookups through WINS. Consider the following WINS-R RR example:

The WINS-R RR has a structure that is similar to that of the PTR RR, with the WINS-R
RR containing additional information. WINS-R RRs have the following fields:

• The first field (17.152.151.150.in-addr.arpa.) is the reverse-lookup in-addr-arpa
address.

• The time to live (TTL) value, which is specified in the second field (0), is usually set to
zero to keep WINS-R records (which are often volatile) from being cached by DNS.

44 Volume 2 Network Protocols and Interfaces

• Class (IN) specifies the protocol family, in this case (and in most cases), the Internet
protocol family.

• Type (WINS-R) indicates that this is a WINS-R RR.

• The next field (filesrv1) indicates the NetBIOS name of the owner of the record.

• The domain name that should be appended to the host name for creation of the Fully
Qualified Domain Name (FQDN) is specified in the final field (iseminger.com.).

SRV Resource Records
The service (SRV) record enables administrators to specify servers that service a
specific service, protocol, and domain. SRV RRs have their own special syntax, as the
following example illustrates:

• The first field (http.tcp.iseminger.com.) follows a specific dot-delimited formatting
convention, which can be defined as:

[service].[protocol].[name] .

• In this example, the service (http), protocol (tcp), and name (Iseminger.com) are
dot-delimited and contain a trailing dot.

• The second field (600) specifies the TTL.

• The third and fourth fields (IN and SRV) specify class and type.

• The fifth field (0) specifies host priority. As with the MX RR preference field, clients
give preference to SRV RRs with the lowest value in their priority fields.

• The sixth field (100) specifies weight and can be used for load balancing when SRV
RRs have the same values in their priority fields. Clients should give preference to
hosts with higher weight-field values.

• The seventh field (80) speCifies the port number on which the server is listening for
requests pertaining to the specified service.

• The last field (web1.iseminger.com.) is the FQDN for the host associated with the
SRV RR.

Chapter 5 Getting the Most Out of This Volume 45

Load Sharing Resource Records
This is less a resource type and more a means of incorporating load-sharing
mechanisms into your DNS deployment. DNS can perform load sharing in a round-robin
fashion. When multiple A RRs for a given host name exist in the zone file, DNS servers
that are RFC 1794 compliant distribute the load across those entries by rotating which
entry is returned when queries for the given host name are serviced. Take the following
example:

If www.iseminger.com were an internal site that was receiving lots of hits, I could mirror
the site onto three (or more) servers, enter the sample RRs into DNS and viola! I get
round-robin load balancing across allthree servers. Windows 2000 DNS servers and
versions of BIND 4.9.3 and later implement this kind of round-robin load balancing.

Part 2 47

CHAPTER 6

Domain Name System (DNS)

DNS Overview
Domain Name System, more commonly referred to as DNS, is an industry-standard
protocol used to locate computers on an IP-based network. Users are better at
remembering friendly names, such as www.microsoft.comormsdn.microsoft.com. than
they are at remembering number-based addresses such as 207.46.131.137.

IP networks, such as the Internet and Windows 2000 networks, rely on number-based
addresses to ferry information across and throughout the network; therefore, it is
necessary to translate user-friendly names (www.microsoft.com) into addresses that the
network can recognize (207.46.131.137). DNS is the service of choice in Windows 2000
to locate resources and translate such resources into IP addresses.

DNS is the primary locator service for Active Directory, and therefore, DNS can be
considered a base service for Windows 2000 and for Active Directory. Both
Windows 2000 and Active Directory make heavy use of DNS;

Windows 2000 provides functions that enable application programmers to use DNS,
such as programmatically making DNS queries, comparing records, and looking up
names.

Many of the DNS functions are actually function types, in that there is a base name for
the function, but its use depends on the character encoding used. For example, the
DnsQuery function is listed in the function reference of the DNS Application
Programmer's Interface (API) as DnsQuery, but its use in applications depends on
whether the character encoding is ANSI (designated by appending _A to the function
type name), Unicode (designated by appending _W to the function type name), or UTF-8
(designated by appending _UTF to the function type name). Therefore, the function call
for the DnsQueryfunction would actually be one of the following:

DnsQuery_A CA for ANSI encoding)

DnsQuery_W CW for Unicode encoding)

DnsQuery_UTFB CUTF8 for UTF-8 encoding)

All functions that require this convention clearly state this requirement within the first few
sentences of their function definition. You must use the proper function name; for
example, you cannot simply call DnsQuery instead of DnsQuery_A.

48 Volume 2 Network Protocols and Interfaces

DNS Standards Documents
The Domain Name System is an open protocol. As such, there have been many
collaborative efforts from the industry as a whole to ensure that its implementation on
various systems does not result in a lack of interoperability. The standards body
overseeing such recommendations is the Internet Engineering Task Force (IETF). The
following are IETF documents, some of them Requests for Comments (RFC) and some
Internet Drafts, that are associated with DNS. For more information about any of these
documents, visit www.ietf.org.

DNS-Related RFCs
RFC 1034: Domain Names-Concepts and Facilities

RFC 1035: Domain Names-Implementation and Specification

RFC 1123: Requirements for Internet Hosts-Application and Support

RFC 1886: DNS Extensions to Support IP Version 6

RFC 1995: Incremental Zone Transfer in DNS

RFC 1996: A Mechanism for Prompt DNS Notification of Zone Changes

RFC 2136; Dynamic Updates in the Domain Name System (DNS UPDATE)

RFC 2181: Clarifications to the DNS Specification

RFC 2308: Negative Caching of DNS Queries (DNS NCACHE)

DNS-Related Internet Drafts
Draft-ietf-dnsind-rfc2052bis-02.txt (A DNS RR for Specifying the Location of Services
(DNS SRV))

Draft-skwan-utf8-dns-02.txt (Using the UTF-8 Character Set in the Domain" Name
System)

Draft-ietf-dhc-dhcp-dns-08.txt (Interaction between DHCP and DNS)

Draft-ietf-dnsind-tsig-11.txt (Secret Key Transaction Signatures for DNS (TSIG))

Draft-ietf-dnsind-tkey-OO.txt (Secret Key Establishment for DNS (TKEY RR))

Draft-skwan-gss"tsig-04.txt (GSS Algorithm for TSIG (GSS-TSIG))

DNS Reference
This section defines the programmatic elements in the DNS API.

Chapter 6 Domain Name System (DNS) 49

DnsAcquireContextHandle
The DnsAcquireContextHandle function type acquires a context handle to a set of
credentials. Like many DNS functions, the DnsAcquireContextHandle function type is
implemented in multiple forms to facilitate different character encoding. Based on the
character encoding involved, use one of the following functions:

DnsAcquireContextHandle_A CA for ANSI encoding)

DnsAcquireContextHandle_W CW for Unicode encoding)

If the DnsAcquireContextHandle function type is called without its suffix CA or _W), a
compiler error will occur.

Parameters
CredentialFlags

[in] Flag indicating character encoding. Set toTRUE for Unicode, FALSE for ANSI.

Credentials
[in, optional] Pointer to the SEC_WINNT_AUTH_IDENTITY _W structure or the
SEC_WINNT_AUTH_IDENTITY_A structure containing the name, domain, and
password of the account to be used in a secure dynamic update. If not specified, the
credentials of the calling service are used.

ContextHandle
[out] Pointer to a handle pointing to the credentials.

Return Values
Returns success confirmation upon successful completion. Otherwise, returns the
appropriate DNS-specific error code as defined in Winerror.h.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Windns.h.
Library: Use Dnsapi.lib.

DnsQuery

50 Volume 2 Network Protocols and Interfaces

DnsExtractRecordsFromMessage
The DnsExtractRecordsFromMessage function type extracts resource records from a
DNS message, and stores those records in a DNS_RECORD structure. Like many DNS
functions, the DnsExtractRecordsFromMessage function type is implemented in
multiple forms to facilitate different character encoding. Based on the character encoding
involved, use one of the following functions:

DnsExtractRecordsFromMessage_W CW for Unicode encoding)

DnsExtractRecordsFromMessage_UTF8 CUTF8 for UTF-8 encoding)

If the DnsExtractRecordsFromMessage function type is called without its suffix (either
_W or _UTF8), a compiler error will occur.

Parameters
pDnsBuffer

[in] Pointer to a DNS response message stored in a DNS_MESSAGE_BUFFER
structure.

wMessageLength
[in] Size of the message stored in DNS_MESSAGE_BUFFER, in bytes.

ppRecord
[in, out] Pointer to a pOinter to the list of extracted resource records.

Return Values
Returns success confirmation upon successful completion. Otherwise, returns the
appropriate DNS-specifiC error code as defined in Winerror.h.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Windns.h.
Library: Use DnsapLlib.

DnsWriteQuestionToBuffer, DnsQuery

Chapter 6 Domain Name System (DNS) 51

DnsFreeRecordList
The DnsFreeRecordList function frees memory allocated for DNS records obtained

. using the DnsQuery function.

Parameters
pRecord

[in, out] Pointer to the list of DNS records to be freed.

Remarks
The DnsFreeRecordList function can be used to free memory allocated from query
results obtained using a DnsQuery function call; it cannot free memory allocated for
DNS record lists created manually.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Windns.h.
Library: Use DnsapUib.

DnsQuery

DnsModifyRecordslnSet
The DnsModifyRecordslnSet function alters an existing resource record set that was
previously registered with DNS servers. Like many DNS functions, the
DnsModifyRecordslnSet function type is implemented in multiple forms to facilitate
different character encoding. Based on the character encoding involved, use one of the
following functions:

DnsModifyRecordslnSeCA LAfor ANSI encoding)

DnsModifyRecordslnSeCW LW for Unicode encoding)

DnsModifyRecordsinSeCUTF8 LUTF8 for UTF8 encoding)

If the DnsModifyRecordslnSet function type is called without its suffix LA, c-W, or
_UTF8), a compiler e'rror will occur.

52 Volume 2 Network Protocols and Interfaces

Parameters
pAddRecords

[in] Pointer to the DNS_RECORD structure containing the resource records to be
added to the resource record set.

pDeleteRecords
[in] Pointer to the DNS_RECORD structure containing the resource records to be
deleted from the resource record set.

Options
[in] Options to apply to the operation. Options consist of the following, and may be
combined.

Option Meaning

DNS_UPDATE_SECURITY _USE_
DEFAULT

DNS_UPDATE_SECURITY _OFF

DNS_UPDATE_SECURITY _ON

DNS_UPDATE_SECURITY _ONLY.

DNS_UPDATE_CACHE_SECURITY_
CONTEXT

DNS_UPDATE_TEST_USE_LOCAL_
SYS_ACCT

DNS_UPDATE~FORCE_SECURITY _
NEGO

DNS_UPDATE_RESERVED

hContextHandle

Uses the default behavior, which is
specified in the registry, for secure dynamic
DNS updates.

Does not attempt secure dynamic updates.

Attempts nonsecure dynamic update. If
refused, then attempts secure dynamic
update.

Attempts secure dynamic updates only.

Caches the security context for use in
future transactions.

Uses credentials of the local computer
account.

Does not use cached security context

Reserved for future use.

[in, optional] Handle to the credentials of a specific account. Used when secure
dynamic update is required.

pServerList
[in] Array of DNS server IP addresses to which the Find Authoritative Zone (FAZ)
request is sent.

Chapter 6 Domain Name System (DNS) 53

pReserved
Reserved for future use.

Remarks
The DnsModifyRecordslnSet function type executes in the following steps.

1. Records specified in pDeleteRecords are deleted. If pDeleteRecords is empty or
doesn't contain records that exist in the current set, the DnsModifyRecordlnSet
function goes to the next step.

2. Records specified in pAddRecords are added. If pAddRecords is empty, the operation
completes without adding any records.

Return Values
Returns success confirmation upon successful completion. Otherwise, it returns the
appropriate DNS-specific error code as defined in Winerror.h.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Windns.h.
Library: Use DnsapUib.

DnsReplaceRecordSet, DnsQuery

DnsNameCompare
The DnsNameCompare function compares two DNS names. Like many DNS functions,
the DnsNameCompare function type is implemented in multiple forms to facilitate
different character encoding. Based on the character encoding involved, use one of the
following functions:

DnsNameCompare_A LA for ANSI encoding)

DnsNameCompare--,-W LW for Unicode encoding)

If the DnsNameCompare function type is called without its suffix LA or _W), a compiler
error will occur.

54 Volume 2 Network Protocols and Interfaces

Parameters
pName1

[inlFirst DNS name of the comparison pair.

pName2
[in] Second DNS name of the comparison pair.

Remarks
Name comparisons are not case sensitive, and trailing dots are ignored.

As with other DNS comparison functions, the DnsNameCompare function deems
different encOding as immediate indication of differing values, and as such, the same
names with different characters encoding will not be reported identically.

Return Values
Returns TRUE if the compared names are equivalent, FALSE if they are not.

WindowsNT/2000: Requires Windows 2000.
Header: Declared in Windns.h.
Library: Use DnsapUib.

DnsQuery, DnsRecordCompare, DnsRecordSetCompare

DnsReleaseContextHandle
The DnsReleaseContextHandle function releases memory used to store the credentials
of a specific account.

Parameters
ContextHandle

[in] Pointer to a handle pointing to the credentials of a specific account.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Windns.h.
Library: Use DnsapUib.

Chapter 6 Domain Name System (DNS) 55

DnsAcquireContextHandle

DnsRecordCompare
The DnsRecordCompare function compares two DNS resource records.

Parameters
pRecord1

[in] Pointer to the first DNS resource record of the comparison pair.

pRecord2
[in] Pointer to the second DNS resource record of the comparison pair.

Remarks
When comparing records, DNS resource records that are stored using different
character encoding are treated by the DnsRecordCompare function as different, even if
the records are otherwise equivalent.

Return Values
Returns TRUE if the compared records are equivalent, FALSE if they are not.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Windns.h.
Library: Use Dnsapi.lib.

DnsRecordSetCompare

DnsRecordCopyEx
The DnsRecordCopyEx function creates a copy of a specified resource record. The
DnsRecordCopyEx function is also capable of converting the character encoding during
the copy operation.

56 Volume 2 Network Protocols and Interfaces

Parameters
pRecord

[in] Pointer to the resource record to be copied.

CharSetln
[in] Character encoding of the source resource record.

CharSetOut
[in] Character encoding required of the destination record.

Remarks
The CharSetln parameter is used only if the character encoding of the source resource
record is not specified in pRecord.

Return Values
Successful execution returns a pOinter to the (newly created) destination record.
Otherwise, returns NULL.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Windns.h.
Library: Use Dnsapi.lib.

DnsRecordSetCopyEx

DnsRecordSetCompare
The DnsRecordSetCompare function compares two resource record sets.

Parameters
pRR1

Chapter 6 Domain Name System (DNS) 57

[in, out] Pointer to the first DNS resource record set of the comparison pair.

pRR2
[In, out] Pointer to the second DNS resource record set of the comparison pair.

ppDiff1
[out] Pointer to a pointer to the list of resource records built as a result of the
arithmetic performed on them: pRRSet1 minus pRRSet2.

ppDiff2
[out] Pointer to a painter to the list of resource records built as a result of the
arithmetic performed on them: pRRSet2 minus pRRSet1.

Remarks
When comparing records sets, DNS resource records that are stored using different
character encoding are treated by the DnsRecordSetCompare function as equivalent.
Contrast this to the DnsRecordCompare function, in which equivalent records with
different encoding are not returned as equivalent records.

Return Values
Returns TRUE if the compared record sets are equivalent, FALSE if they are not.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Windns.h.
Library: Use DnsapLlib.

DnsRecordCompare

DnsRecordSetCopyEx
The DnsRecordSetCopyEx function creates a copy of a specified resource record set.
The DnsRecordSetCopyEx function is also capable of converting the character
encoding during the copy operation.

58 Volume 2 Network Protocols and Interfaces

Parameters
pRecordSet

[in} Pointer to the resource record set to be copied.

CharSetln
[in} Character encoding of the source resource record set.

CharSetOut
[in} Character encoding required of the destination record set.

Remarks
The CharSetln parameter is used only if the character encoding of the source resource
record set is not specified in pRecordSet.

Return Values
Successful execution returns a painter to the (newly created) destination record set.
Otherwise, it returns NULL.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Windns.h.
Library: Use Dnsapi.lib.

DnsRecordCopyEx

DnsRecordSetDetach
The DnsRecordSet function detaches the first record set from a specified list of DNS
records.

Parameters
pRR

[in, out} On input, a pointer to the list prior to the detachment of the first DNS record in
the list of DNS records. On output, a pointer to the list subsequent to the detachment
of the DNS record.

Return Values
On return, the DnsRecordSet function points to the detached DNS record set.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Windns.h.
Library: Use Dnsapi.lib.

Chapter 6 Domain Name System (DNS) 59

DnsQuery, DnsRecordCompare, DnsRecordSetCompare

DnsReplaceRecordSet
The DnsReplaceRecordSet function type replaces an existing record set. Like many
DNS functions, the DnsReplaceRecordSet function type is implemented in multiple
forms to facilitate different character encoding, which is indicated by a suffix. Based on
the character encoding involved, use one of the following functions:

DnsReplaceRecordSetA CA for ANSI encoding)

DnsReplaceRecordSetW CW for Unicode encoding)

DnsRepiaceRecordSetUTF8 CUTF8 for UTF 8 encoding)

Notice the lack of an underscore between the function type name and its suffix. If the
DnsModifyRecordslnSet function type is called without its suffix (A, W, or UTF8), a
compiler error will occur.

Parameters
pNewSet

[in] Pointer to the DNS_RECORD structure holding the resource record set that
replaces the existing set. The specified resource record set is replaced with the
contents of pNewSet. To delete a resource record set, specify the set in pNewSet but
set RDATA to NULL.

Options
[in] Options available for the function call, which may be combine, are shown in the
table on the following page.

60 Volume 2 Network Protocols and Interfaces

Option

DNS_UPDATE_SECURITY _USE_
DEFAULT

DNS_UPDATE_SECURITY _OFF

DNS_UPDATE_SECURITY _ON

DNS_UPDATE_SECLJRITY _ONLY

DNS_UPDATE_CACHE_SECURITY _
CONTEXT

DNS_UPDATE_TEST_USE_LOCAL_
SYS_ACCT

DNS_UPDATE_FORCE_SECURITY _
NEGO

DNS_UPDATE_RESERVED

hContext

Meaning

Uses the default behavior, which is
specified in the registry, for secure dynamic
DNS updates.

Does not attempt secure dynamic updates.

Attempts nonsecure dynamic update. If
refused, then attempts secure dynamic
update.

Attempts secure dynamic updates only.

Caches the security context for use in
future transactions.

Uses credentials of the local computer
account.

Does not use cached security context

Reserved for future use.

[in, optional] Handle to the credentials of a specific account. Used when secure
dynamic update is required.

pServerList
[in] Array of DNS server IP addresses to which the Find Authoritative Zone (FAZ)
request is sent.

pReserved
Reserved for future use.

Return Values
Returns success confirmation upon successful completion. Otherwise, returns the
appropriate DNS-specific error code as defined in Winerror.h.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Windns.h.
Library: Use DnsapLlib.

Chapter 6 Domain Name System (DNS) 61

DnsQuery

Query

The DnsQuery function type is the generic query interface to the DNS name space, and
provides application programmers with a DNS query resolution interface. Like many
DNS functions, the DnsQuery function type is implemented in multiple forms to facilitate
different character encoding. Based on the character encoding involved, use one of the
following functions:

DnsQuery_A (for ANSI encoding)

DnsQuery_W (for Unicode encoding)

DnsQuery_UTFS (for UTF-8 encoding)

If the DnsQuery function type is called without its suffix LA, _W, or _UTF8), a compiler
error will occur.

Parameters
IpstrName

[in] Name of the owner of the record set being queried.

wType
[in] Numeric representation of the type of record set queried.

fOptions
[in] Query options. Options can be combined, and all options override
DNS_QUERY _STANDARD. The following table lists the available query options.

Meaning

DNS_QUERY_STANDARD

DNS,--QUERY _ACCEPT _PARTIAL_
UDP

Standard query.

Returns truncated results-:-does not retry under TCP.

DNS_QUERY_USE_TCP_ONLY

DNS_QUERY _NO_RECURSION

Uses TCP only for the query.

Directs the ONS server to perform an iterative query
(specifically directs the DNS server not to perform
recursive resolution to resolve the query).

Bypasses the resolver cache on the lookup.

(continued)

62 Volume 2 Network Protocols and Interfaces

(continued)

Query Meaning

Attempts to resolve the query using locally cached
data only.

Prevents the DNS query socket from closing after the
response is received.

Prevents the DNS response from attaching suffixes to
the submitted name in a name resolution process.

DNS_QUERY _ALLOW_EMPTY_
AUTH_RESP

Accepts the response with empty authority section.

DNS_QUERY_DONT_RESET_TTL_
VALUES

aipServers

If set, and if the response contains multiple records,
records.are stored with the TTL corresponding to the
minimum value TTL from among all records. When this
option is set, "Do not change the TTL of individual
records" in the returned record set is not modified.

Reserved.

[in, optional] Specifies DNS servers to which the query should be sent. If aipServers is
NULL, default DNS servers for the local computer are used.

ppQueryResultsSet
[in, out, optional] Pointer to the pointer that points to the list of resource records
comprising the response.

pReserved
[in, out, optional] Returns the response in original wire format.

Remarks
Callers of the DnsQuery function build a query using a fully-qualified DNS name and
resource record type, and set query options depending on the type of service desired.
When the DNS_QUERY _STANDARD option is set DNS uses the resolver cache,
queries first with UDP then retries with TCP if the response is truncated, and asks the
server to perform recursive resolution on behalf of the client to resolve the query.

Callers are responsible for freeing any returned resource record sets.

Note When calling one of the DnsQuery function types, it is important to realize that a
DNS server may return multiple records in response to a query. A computer that is
multihomed, for example, will receive multiple A records for the same IP address. It is
the caller's responsibility to use as many of the returned records as necessary.

Chapter 6 Domain Name System (DNS) 63

Consider the following scenario, in which multiple returned records requires additional
activity on behalf of the application: A DnsQuery_A function call is made for a
multihomed computer and the application finds that the address associated with first A
record is not responding. The application should then attempt to use other IP addresses
specified in the (additional) A records returned from the DnsQuery_A function call.

Return Values
Returns success confirmation upon successful completion. Otherwise, returns the
appropriate DNS-specific error code as defined in Winerror.h.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Windns.h.
Library: Use DnsapLlib.

DnsQueryConfig
The DnsQueryConfig function enables application programmers to query for the
configuration of the local computer or a specific adapter.

Parameters
Config

[in] Structure specifying query requests. The following parameters can be queried:

DnsConfigPrimaryDomainName_ W,
DnsConfigPrimaryDomainName_A,

DnsConfigPrimaryDomainName_UTF8,

DnsConfigAdapterDomainName_ W,
DnsConfigAdapterDomainName_A,

DnsConfigAdapterDomainName_UTF8,

DnsConfigDnsServerList,

DnsConfigSearchL~t

64 Volume 2 Network Protocols and Interfaces

Flag

DnsConfigAdapterlnfo,

DnsConfigPrimaryHostNameRegistrationEnabled,

DnsConfigAdapterHostNameRegistrationEnabled,

DnsConfigAddressRegistrationMaxCount

[in] Specifies whether the configuration should be associated with a LocalAlioc
function call. Set Flag to TRUE to associate the query.

pwsAdapterName
[in] Specifies the adapter name against which the query is run.

pReserved
Reserved for future use.

pBuffer
[out] Pointer to the buffer storing the query response.

pBufferLength
[in, out] Length of the buffer, in bytes. If the buffer provided is not sufficient, an error is
returned and pBufferLength contains the minimum necessary buffer size. Ignored on
input if Flag is set to TRUE.

Return Values
Returns success confirmation upon successful completion. Otherwise, returns the
appropriate DNS-specific error code as defined in Winerror.h.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Windns.h.
Library: Use DnsapLlib.

DnsQuery

DnsValidateName
The DnsValidateName function validates the status of a specified DNS name. Like
many DNS functions, the DnsValidateName function type is implemented in multiple
forms to facilitate different character encoding. Based on the character encoding
involved, use one of the following functions:

DnsValidateName_A LA for ANSI encoding)

DnsValidateName_W LW for Unicode encoding)

DnsValidateName_UTF8 LUTF8 for UTF-8 encoding)

Chapter 6 Domain Name System (DNS) 65

If the DnsValidateName function type is called without its suffix CA, _W, or _UTF8), a
compiler error will occur.

Parameters
pszName

[in] DNS name to be examined.

Format
[in] Format of the name to be examined. The format may have the following values:

DnsNameDomain
DnsNameDomainLabel
DnsNameHostNameFul1

Remarks

DnsNameHostNameLabel
DnsNameWildcard
DnsNameSrvRecord

To check the status of the Computer Host (single label), use the DnsValidateName
function type with DnsNameHostNameLabel in Format.

Return Values
The DnsValidateName function type provides five possible return values.

• ERROR_SUCCESS

• ERROR_INVALlD_NAME

• DNS_ERROR_INVALlD_NAME_CHAR

• DNS_ERROR_NUMERIC_NAME

• DNS_ERROR_NON_RFC_NAME

The DnsValidateName function works in a progression when determining whether an
error exists with a given DNS name, and returns upon finding its first error. Therefore, a
DNS name that has multiple, different errors may be reported as having the first error,
could be corrected and resubmitted, only then to find the second error.

The DnsValidateName function searches for the errors in the following progression:

Returns ERROR_INVALlD_NAME if the DNS name:

• Is longer than 255 octets

• Contains a label longer than 63 octets

• Contains a space

• Contains two or more consecutive dots

66 Volume 2 Network Protocols and Interfaces

• Begins with a dot

• Contains a dot if. the name is submitted with Format set to
DnsNameHostDomainLabel or DnsNameHostNameLabel.

Next, DnsValidateName returns DNS_ERROR_INVALlD_NAME_CHAR if the DNS
name:

• Contains any of the following invalid characters: {I}-[\]"':;<=>?@!"#$%A'O+/,

• Contains an asterisk (*), unless the asterisk is the first label in the multi-labeled name,
submitted with Format set to DnsNameWildcard.

Next, DnsValidateName returns DNS_ERROR_NUMERIC_NAME if the DNS name:

• Consists of one or more labels build of only the numeric characters (0-9), Unless
Format is DnsNameDomainLabel or DnsNameDomain, and one of the labels is not
fully numeric.

Then,DnsValidateName returns DNS_ERROR_NON_RFC_NAME if the DNS name:

• Contains at least one extended or Unicode character

• Contains underscore L), unless the underscore is a first character in a label, in the
name, submitted with Format set to DnsNameSrvRecord.

Note that if DnsValidateName returns DNS_ERROR_NON_RFC_NAME, the error
should be treated as a warning that not all DNS servers will accept the name. When this
error is received, note that Windows 2000 DNS Server does accept the submitted name,
if appropriately configured (default configuration does accept the name as submitted
when DNS_ERROR_NON_RFC_NAME is returned), but other DNS server software may
not.

If DnsValidateName returns any of the following, the error should be treated as an
invalid host name:

• DNS_ERROR_NUMERIC_NAMEa

• DNS_ERROR_INVALlD_NAME_CHAR

• ERROR_INVALID_NAME

Windows NT/2000: Requires Windows 2000.
Header: Declared in Windns.h.
Library: Use Dnsapi.lib.

DnsNameCompare, DnsQuery

Chapter 6 Domain Name System (DNS) 67

DnsWriteQuestionToBuffer
The DnsWriteQuestionToBuffer function type creates a DNS query message and
stores it in a DNS_MESSAGE_BUFFER structure. Like many DNS functions, the
DnsWriteQuestionToBuffer function type is implemented in multiple forms to facilitate
different character encoding. Based on the character encoding involved, use one of the
following functions:

DnsWriteQuestionToBuffer_W CW for Unicode encoding)

DnsWriteQuestionToBuffecUTF8 CUTF8 for UTF-8 encoding)

If the DnsWriteQuestionToBuffer function type is called without its suffix (either _W or
_UTF8), a compiler error will occur.

Parameters
pDnsBuffer

[in, out] Pointer to a DNS query message stored in a buffer.

pdwBufferSize
[in, out] Size of the buffer allocated to store the message, in bytes. If the buffer size is
insufficient to contain the message, an error is returned and pdwBufferSize contains
the minimum required buffer size.

pszName
[in] Name of the owner of the record set being queried.

wType
[in] Numeric representation of the type of record set queried.

Xid
[in] Query identifier.

fRecursionDesired
[in] Flag indicating the desired type of DNS name resolution. Set to TRUE to request
recursive name resolution, FALSE to request iterative name resolution.

Return Values
Returns TRUE upon successful execution, otherwise returns FALSE.

68 Volume 2 Network Protocols and Interfaces

Windows NT/2000: Requires Windows 2000.
Header: Declared in Windns.h.
Library: Use DnsapLlib.

DnsQuery

CHAPTER 7

Dynamic Host Configuration
Protocol (DHCP)

DHCP Overview
The Dynamic Host Configuration Protocol (DHCP) Application Programming Interface,
also referred to as D.HCP Client Options, enables Windows 2000 and Windows 98
clients to query specific options from DHCP servers. Such capability enables vendor
specific options exposed through DHCP servers to be queried by Windows 2000 or
Windows 98 DHCP clients. This documentation refers to the most recent version of the
DHCP API, version 2.

Programmers using the DHCP API should note the following:

• The adapter name being passed in DHCP functions should be the adapter GUID for
the routine.

• The class ID parameter in DHCP functions is the binary class ID information to pass
in the DHCP INFORM packet through use of the USER CLASS option.

69

• The AdapterName parameter exists on Windows 98, but it refers to the adapter index
(converted to a string) rather than the adapter name itself. This is necessary because
Windows 98 does not have the Windows 2000 equivalent notion of adapter names.

• DHCP functions are exposed through Dhcpcsvc.dll.

DHCP Standards
Dynamic Host Configuration Protocol (DHCP) is a standardized protocol that enables
clients to be dynamically assigned with various configuration parameters, such as an IP
address, subnet mask, default gateway, and other critical network configuration
information. DHCP servers centrally manage such configuration data, and are configured
by network administrators with settings that are appropriate for a given network
environment. DHCP servers in turn communicate with DHCP clients through the use of
DHCP messages.

DHCP has many ass.ociated documents that standardize the protocol, and the messages
DHCP clients and servers use to communicate their requests and data. These
standardization documents can be found at the Internet Engineering Task Force (IETF)
web site, located at www.ietf.org

70 Volume 2 Network Protocols and Interfaces

The following are some relevant Request For Comments documents (RFCs) associated
with DHCP, which include definitions for DHCP messages such as INFORM, and others:

• Dynamic Host Configuration Protocol (RFC 2131)

• Interoperation Between DHCP and BOOTP (RFC 1534)

• Clarifications and Extensions for the Bootstrap Protocol (RFC 1542)

• DHCP Options and BOOTP Vendor Extensions (RFC 2132)

• Procedure for Defining New DHCP Options (RFC 2489)

• DHCP Options for Service Location Protocol (RFC 2610)

Note that there are additional RFCs associated with DHCP available on the IETF web
site, and that standards efforts and specifications are subject to change. If you are
interested in tracking specific or new standards efforts, you should frequently consult the
IETF web site.

DHCP Examples
The following examples illustrate two uses of the DHCP API:

• Example 1 illustrates how to use the DhcpRequestParams function to retrieve a host
name.

• Example 2 shows how the DhcpRegisterParamChange function can be used to
keep track of host name changes.

Example 1: Using the DhcpRequestParams function
. The following example illustrates how to retrieve the host name using the

DhcpRequestParams function call. The name of the adapter can be retrieved using the
Getlnterfacelnfo structure, which is part of the Internet Protocol Helper API:

Chapter 7 Dynamic Host Configuration Protocol (DHCP) 71

(continued)

72 Volume 2 Network Protocols and Interfaces

(continued)

Example 2: Using the DhcpRegisterParamChange function
The following code illustrates how the DhcpRegisterParamChange function can be
used to keep track of host name changes:

Chapter 7 Dynamic Host Configuration Protocol (DHCP) 73

Note The event handle obtained by this routine must not be closed with the
CloseHandle function. It should be released using the DhcpDeRegisterParamChange
function in order to avoid resources leaks; the DhcpDeRegisterParamChange function
releases internal resources allocated for this notification.

DHCP Functions
DHCP provides the following functions that enable application programmers to initialize,
request, and clean up DHCP-specific data for any given application:

• DhcpCApiinitialize

• DhcpCApiCleanup

• DhcpRequestParams

• DhcpUndoRequestParams

• DhcpRegisterParamChange

• DhcpDeRegisterParamChange

74 Volume 2 Network Protocols and Interfaces

The DhcpCApiinitialize function should always be the first function called whenever this
suite of DHCP functions are implemented.

DhcpCApiinitialize
The DhcpCApiinitialize function must be the first function call made by users of DHCP,
it prepares the system for all other DHCP function calls. Other DHCP functions should
only be called if the DhcpCApiinitialize function executes successfully.

Parameters
pdwVersion

Pointer to the DHCP version implemented by the client.

Return Values
Returns ERROR_SUCCESS upon successful completion.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Dhcpcsdk.h.
Library: Use Dhcpcsvc.lib.

DHCP Overview, DHCP Functions, DhcpCApiCleanup

DhcpCApiCleanup
The DhcpCApiCleanup function enables DHCP to properly clean up resources
allocated throughout the use of DHCP function calls. The DhcpCApiCleanup function
must only be called if a previous call to DhcpCApiinitialize executed successfully.

Parameters
This function has no parameters.

Chapter 7 Dynamic Host Configuration Protocol (DHCP) 75

Windows NT/2000: Requires Windows 2000.
Header: Declared in Dhcpcsdk.h.
Library: Use Dhcpcsvc.lib.

DHCP Overview, DHCP Functions, DhcpCApiinitialize

DhcpRequestParams
The DhcpRequestParams function enables callers to synchronously, or synchronously
and persistently obtain DHCP data from a DHCP Server.

Parameters
dwFlags

[in] Flags that specify the data being requested. Must be set to
DHCPAPI_REOUEST _SYNCHRONOUS, and may optionally be set with the
additional DHCPAPI_REOUEST _PERSISTENT flag. This parameter is optional.

pReserved
[in] Reserved for future use. Must be set to NULL.

pszAdapterName
[in] Name of the adapter on which requested data is being made.

pClassld
[in] Class ID that should be used if DHCP INFORM messages are being transmitted
onto the network. This parameter is optional.

76 Volume 2 Network Protocols and Interfaces

pSendParams
[in] Optional data to be requested, in addition to the data requested in the
pRecdParams array. The pSendParams parameter cannot contain any of the
standard options that the DHCP client sends by default. This parameter is optional.

pRecdParams
[in, out] Array of DHCP data the caller is interested in receiving. This array must be
empty prior to the DhcpRequestParams function call.

pbBuffer
[in] Buffer used for storing the data associated with requests made in pRecdParams.

pdwSize
[in] Size of pbBuffer.

[out] Required size of the buffer, if pbBuffer is insufficiently sized to hold the data,
otherwise indicates size of the successfully filled pbBuffer.

pszRequestldStr
[in] Application Identifier (ID) used to facilitate a persistent request. Must be a
printable string with no special characters (for example, commas, backslashes,
colons, or other illegal characters may not be used). The specified application ID is
used in a subsequent DhcpUndoRequestParams function call to clear the persistent
request, as necessary.

Remarks
DHCP clients store data obtained from a DHCP server in their local cache. If the DHCP
client cache contains all data requested in the pRecdParams array of a
DhcpRequestParams function call, the client returns data from its cache. If requested
data is not available in the client cache, the client processes the DhcpRequestParams
function call by submitting a DHCP-INFORM message to the DHCP server.

When the client submits a DHCP-INFORM message to the DHCP server, it includes any
requests provided in the optional pSendParams parameter, and provides the Class ID
specified in the pClassld parameter, if provided.

Clients can also specify that DHCP data be retrieved from the DHCP server each time
the DHCP client boots, which is considered a persistent request. To enable persistent
requests, the caller must specify the pszRequestldStr parameter, and also specify the
additional DHCPAPI_REQUEST _PERSISTENT flag in the dwFlags parameter. This
persistent request capability is especially useful when clients need to al,ltomatically
request application-critical information at each boot. To disable a persist request, clients
must call the DhcpUndoRequestParams function.

For more information about DHCP INFORM messages, and other standards-based
information about DHCP, consult DHCP Standards.

To see the DhcpRequestParams function in use, see DHCP Examples.

Chapter 7 Dynamic Host Configuration Protocol (DHCP) 77

Return Values
Returns ERROR_SUCCESS upon successful completion.

Upon return, pRecdParams is filled with pOinters to requested data, with corresponding
data placed in pbBuffer. If pdwSize indicates that pbBuffer has insufficient space to store
returned data,the DhcpRequestParams function returns ERROR_MaRE_DATA, and
returns the required buffer siz~ in pdwSize. Note that the required size of pbBuffer may
increase during the time that elapses between the initial function call's return and a
subsequent call; therefore, the required size of pbBuffer (indicated in pdwSize) provides
an indication of the approximate size required of pbBuffer, rather than guaranteeing that
subsequent calls will return successfully if pbBuffer is set to the size indicated in
pdwSize.

Other errors return appropriate Win32 error codes.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Dhcpcsdk.h.
Library: Use Dhcpcsvc.lib.

DHCP Overview, DHCP Functions, DhcpCApiinitialize, DhcpUndoRequestParams

DhcpUndoRequestParams
The DhcpUndoRequestParams function removes perSistent requests previously made
with a DhcpRequestParams function call.

Parameters
dwFlags

[in] Must be zero.

pReserved
[in] Reserved for future use. Must be set to NULL.

78 Volume 2 Network Protocols and Interfaces

pszAdapterName
[in] Name of the adapter for which information is no longer required.

pszRequestldStr
[in] Application Identifier (ID) originally used to make a persistent request. This string
must match the pszRequestldStr parameter used in the DhcpRequestParams
function call that obtained the corresponding persistent request. Note that this must
match the previous application ID used, and must be a printable string with no special
characters (for example, commas, backslashes, colons, or other illegal characters
may not be used).

Remarks
Persistent requests are typically made by the setup or installer process associated with
the application. When appropriate, the setup or installer process would likely make the
DhcpUndoRequestParams function call to cancel its associated persistent request.

Return Values
Returns ERROR_SUCCESS upon successful completion. Otherwise, returns Win32
error codes.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Dhcpcsdk.h.
Library: Use Dhcpcsvc.lib.

DHCP Overview, DHCP Functions, DhcpCApiinitialize, DhcpRequestParams

DhcpRegisterParamChange
The DhcpRegisterParamChange function enables clients to register for notification of
changes in DHCP configuration parameters.

Parameters
dwFlags

Chapter 7 Dynamic Host Configuration Protocol (DHCP) 79

[in] Identifies the notification mechanism to be used. In version 2 of the Microsoft
DHCP Application Programming Interface (API), only event-based notification is
supported, and dwFlags must be set to DHCPAPLREGISTER_HANDLE_EVENT.

pReserved
[in] Reserved for future use. Must be set to NULL.

pszAdapterName
[in] Name of the adapter for which event notification is being requested.

pClassld
[in] Class ID with which requested notification parameters are to be associated.

pParams
[in] Parameters for which the client is interested in registering for notification.

pHandle
[in, out] Attributes of pHandle are determined by the value of dwFlags. In version 2 of
the DHCP API, dwFlags must be set to DHCPAPI_REGISTER_HANDLE_EVENT,
and therefore, pHandle must be a pOinter to a HANDLE variable that will hold the
handle to a Windows event that gets signaled when parameters specified in pParams
change. Note that pHandle is used in a subsequent cal.1 to the
DhcpDeRegisterParamChange function to de-register event notifications associated
with this particular call to the DhcpRegisterParamChange function.

Remarks
Version 2 of the DHCP API provides only event-based notification. With event-based
notification in DHCP, clients enable notification by having pHandle point to a variable
that, upon successful return, holds the EVENT handles that are signaled whenever
changes occur to the parameters requested in pParams.

Return Values
Returns ERROR_SUCCESS upon successful completion. Otherwise, returns Win32
error codes.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Dhcpcsdk.h.
Library: Use Dhcpcsvc.lib.

DHCP Overview, DHCP Functions, DhcpCApiinitialize,
DhcpDeRegisterParamChange

80 Volume 2 Network Protocols and Interfaces

DhcpDeRegisterParamChange
The DhcpDeRegisterParamChange function releases resources associated with
previously registered event notifications, and closes the associated event handle.

Parameters
dwFlags

[in] Must be the same value as the dwFlags parameter in the
DhcpRegisterParamChange function call associated with hEvent.

pReserved
[in] Reserved for future use. Must be set to NULL.

hEvent
[in] Must be the same value as the hEvent parameter in the
DhcpRegisterParamChange function call for which the client is de-registering event
notification.

Remarks
The DhcpDeRegisterParamChange function must be made subsequent to an
associated DhcpRegisterParamChange function call, and the dwFlags and hEvents
parameters of DhcpDeRegisterParamChange must match corresponding parameters
of the previous and associated DhcpRegisterParamChange function call.

Return Values
Returns ERROR_SUCCESS upon successful completion. Otherwise, returns Win32
error codes.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Dhcpcsdk.h.
Library: Use Dhcpcsvc.lib.

DHCP Overview, DHCP Functions, DhcpRegisterParamChange, DhcpCApiinitialize

CHAPTER 8

Multicast Address Dynamic Client
Allocation Protocol (MADCAP)

MADCAP Overview

81

Multicast Address Dynamic Client Allocation Protocol (MADCAP) enables clients to
query and request multicast addresses from multicast (MADCAP) servers. By using this
set of client APls, MADCAP clients can lease, renew, and release multicast addresses
from qualifying MADCAP servers across the network.

MADCAP is based on an Internet standard recommendation being developed and
reviewed by the Multicast-Address Allocation (MALLOC) Internet E Task Force working
group.

For more information about IETF and the MALLOC working group, visit
www.ietf.org/html.charterslmalloc-charter.html. For more information about MADCAP,
review the IETF Internet-Draft titled draft-ietf-malloc-madcap-OS.txt, available at
www.ietf.org/internet-draftsldraft-ietf-malloc-madcap-05.txt.

MADCAP Functions
The following reference pages explain the functions that are available for MADCAP
clients.

McastApiStartup
McastApiCleanup
McastEnumerateScopes
McastGenUID

McastRequestAddress
McastRenewAddress
McastReleaseAddress

82 Volume 2 Network Protocols and Interfaces

McastApiStartup
The McastApiStartup function facilitates MADCAP-version negotiation between
requesting clients and the version of MADCAP implemented on the system. Calling
McastApiStartup allocates necessary resources; it must be called before any other
MADCAP client functions are called.

Parameters
pVersion

[in] Pointer to the version of multicast (MCAST) that the client wishes to use.

[out] Pointer to the version of MCAST implemented on the system.

Remarks
Clients can specify which version they want to use in the pVersion parameter. If the
system's implementation supports the requested MCAST version, the function call
succeeds. If the system's implementation does not support the requested version, the
function fails with MCAST_API_CURRENT_VERSION.

The client can automatically negotiate the first version of MCAST
(MCAST _APLVERSION_1) by setting the pVersion parameter to zero.

The McastApiStartup function always returns the most recent version of MADCAP
available on the system (MCAST _API_CURRENT _VERSION) in pVersion, enabling
clients to discover the most recent version implemented on the system.

Return Values
If the client requests a version of MADCAP that is not supported by the system, the
McastApiStartup function returns ERROR_NOT _SUPPORTED. If resources fail to be
allocated for the function call, ERROR_NO_SYSTEM_RESOURCES is returned.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Madcapcl.h.

McastApiCleanup
The McastApiCleanup function deallocates resources that are allocated with
McastApiStartup. The Mc.astApiCleanup function must only be called after a
successful call to McastApiStartup.

Chapter 8 Multicast Address Dynamic Client Allocation Protocol (MADCAP) 83

Parameters
The McastApiCleanup function has no parameters.

Return Values
The McastApiCleanup function does not return any values.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Madcapcl.h.

McastEnumerateScopes
The McastEnumerateScopes function enumerates multicast scopes available on the
network.

Parameters
AddrFamily

[in] Specifies the address family to be used in enumeration, in the form of an
IPNG_ADDRESS structure. Use AF _INET for IPv4 addresses and AF _INET6 for IPv6
addresses.

ReQuery
[in] Enables a caller to requery a list. Set this parameter to TRUE if the list is to be
requeried. Otherwise, set it to FALSE.

pScopeList
[in, out] Pointer to a buffer used for storing scope list information, in the form of an
MCAST _SCOPE_ENTRY structure. The return value of pScopeList depends on its
input value, and on the value of the buffer to which it points:

If pScopeList is a valid painter on input, the scope list is returned.

If pScopeList is NULL on input, the length of the buffer required to hold the scope
list is returned.

If the buffer pointed to in pScopeList is NULL on input, McastEnumerateScopes
forces a requerying of scope lists from MCAST servers.

84 Volume 2 Network Protocols and Interfaces

To determine the size of buffer required to hold scope list data, set pScopeListto
NULL and pScopeLen to a non-NULL value. The McastEnumerateScopes function
will then return ERROR_SUCCESS and store the size of the scope list data, in bytes,
in pScopeLen.

pScopeLen
[in, out] Pointer to a value used to communicate the size of data or buffer space in
pScopeList. On input, pScopeLen points to the size, in bytes, of the buffer pOinted to
by pScopeList. On return, pScopeLen pOints to the size of the data copied to
pScopeList.

The pScopeLen parameter cannot be NULL. If the buffer pointed to by pScopeList is
not large enough to hold the scope list data, McastEnumerateScopes returns
ERROR_MORE_DATA and stores the required buffer size, in bytes, in pScopeLen.

To determine the size of buffer required to hold scope list data, set pScopeListto
NULL and pScopeLen to a non-NULL value. The McastEnumerateScopes function
will then return ERROR_SUCCESS and store the size of the scope list data, in bytes,
in pScopeLen.

pScopeCount
[out] Pointer to the number of scopes returned in pScopeList.

Return Values
If the function succeeds, it returns ERROR_SUCCESS.

If the buffer pointed to by pScopeList is too small to hold the scope list, the
McastEnumerateScopes function returns ERROR_MORE_DATA, and stores the
required buffer size, in bytes, in pScopeLen.

If the McastApiStartup function has not been called (it must be called before any other
MADCAP client functions may be called), the McastEnumerateScopes function returns
ERROR_NOT _READY.

Remarks
The McastEnumerateSc9pesfunction queries multicast scopes for each network
interface, and the interface on which the scope is retrieved is returned as part of the
pScopeList parameter. Therefore, on multihomed computers it is possible that some
scopes will get listed multiple times; once for each interface.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Madcapcl.h.

Chapter 8 Multicast Address Dynamic Client Allocation Protocol (MADCAP) 85

McastGenUID
The McastGenUID function generates a unique identifier, subsequently used by clients
to request and renew addresses.

Parameters
pRequestlD

[in] Pointer to the MCAST_CLlENT_UlD structure into which the unique identifier is
stored. The size of the buffer to which pRequestlD points must be at least
MCAST_CLlENT_ID_LEN in size.

Return Values
The McastGenUID function returns the status of the operation.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Madcapcl,h.

McastRequestAddress
The McastRequestAddress function requests one or more multicast addresses from a
MADCAP server.

Parameters
AddrFamily

[in] Specifies the address family to be used in the request, in the form of an
IPNG_ADDRESS structure. Use AF _INET for IPv4 addresses and AF _INET6 for IPv6
addresses.

86 Volume 2 Network Protocols and Interfaces

pRequestlD
[in] Pointer to a unique identifier for the request, in the form of an
MCAST _CLIENT _UID structure. Clients are responsible for ensuring that each
request contains a unique identifier; unique identifiers can be obtained by calling the
McastGenUID function.

pScopeCtx
[in] Pointer to the context of the scope from which the address is to be allocated, in
the form of an MCAST_SCOPE_CTX structure. The scope context mustbe retrieved
by calling the McastEnumerateScopes function prior to calling the
McastRequestAddress function.

pAddrRequest
[in] Pointer to the MCAST _LEASE_REQUEST structure containing multicast lease
request parameters.

pAddrResponse
[in, out] Pointer to a buffer containing response parameters for the multicast address
request, in the form of an MCAST _LEASE_RESPONSE structure. The caller is
responsible for allocating sufficient buffer space for the pAddrBuf member of the
MCAST _LEASE_RESPONSE structure to hold the requested number of addresses;
the caller is also responsible for setting the pointer to that buffer.

Return Values
The McastRequestAddress function returns the status of the operation.

Remarks
Before the McastRequestAddress function is called, the scope context must be
retrieved by calling the McastEnumerateScopes function.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Madcapcl.h.

McastRenewAddress
The McastRenewAddress function renews one or more multicast addresses from a
MADCAP server.

Parameters
AddrFamily

Chapter 8 Multicast Address Dynamic Client Allocation Protocol (MADCAP) 87

[in] Designates the address family. Use AF _INET for Internet Protocol version 4
(IPv4), and AF _INET6 for Internet Protocol version 6 (IPv6).

pRequestiD
[in] Unique identifier used when.the address or addresses were initially obtained.

pRenewRequest
[in] Pointer to the MCAST _LEASE_REQUEST structure containing multicast renew
request parameters.

pRenewResponse
[in, out] Pointer to a buffer containing response parameters for the multicast address
renew request, in the form of an MCAST _LEASE_RESPONSE structure. The caller is
responsible for allocating sufficient buffer space for the pAddrBuf member of the
MCAST _LEASE_RESPONSE structure to hold the requested number of addresses;
the caller is also responsible for setting the painter to that buffer.

Return Values
The McastRenewAddress function returns the status of the operation.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Madcapcl.h.

McastReleaseAddress
The McastReleaseAddress function releases leased multicast addresses from the
MCAST server.

Parameters
AddrFamily

[in] Designates the address family. Use AF _INET for Internet Protocol version 4
(IPv4), and AF _INET6 for Internet Protocol version 6 (IPv6).

pRequestiD
[in] Unique identifier used when the address or addresses were initially obtained.

88 Volume 2 Network Protocols and Interfaces

pReleaseRequest
[in] Pointer to the MCAST_LEASE_REQUEST structure containing multicast
parameters associated with the release request.

Return Values
The McastReleaseAddress function returns the status of the operation.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Madcapcl.h.

MADCAP Structures
The following reference pages explain the union and structures that facilitate
programming for Multicast Address Dynamic Client Allocation Protocol (MADCAP).

IPNG_ADDRESS
MCAST _CLIENT _UlD
MCAST _SCOPE_CTX
MCAST_SCOPE_ENTRY
MCAST_LEASE_REQUEST
MCAST_LEASE_RESPONSE

The IPNG_ADDRESS union provides Internet Protocol version 4 (IPv4) and Internet
Protocol version 6 (IPv6) addresses.

Members
IpAddrV4

Internet Protocol (IP) address, in version 4 format (IPv4).

IpAddrV6
Internet Protocol (IP) address, in version 6 format (IPv6).

Windows NT/2000: Requires Windows 2000.
Header: Declared in Madcapcl.h.

Chapter 8 Multicast Address Dynamic Client Allocation Protocol (MADCAP) 89

The MCAST _CLIENT _UID structure describes the unique client identifier for each
multicast request

Members
ClientUID

Buffer containing the unique client identifier.

ClientUIDLength
Size of the ClientUID member, in bytes.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Madcapcl,h.

The MCAST _SCOPE_CTX structure defines the scope context for programmatic
interaction with multicast addresses. The MCAST _SCOPE_CTX structure is used by
various MADCAP functions as a handle for allocating, renewing, or releasing MADCAP
addresses.

Members
ScopelD

Identifier for the multicast scope,· in the form of an IPNG_ADDRESS structure.

Interface
Interface on which the multicast scope is available, in the form of an
IPNG_ADDRESS structure.

ServerlD
Internet Protocol (IP) address of the MADCAP server, in the form of an
IPNG_ADDRESS structure.

90 Volume 2 Network Protocols and Interfaces

Windows NT/2000: Requires Windows 2000.
Header: Declared in Madcapcl,h.

The MCAST _SCOPE_ENTRY structure provides a complete set of information about a
given multicast scope.

Members
ScopeCtx

Handle for the multicast scope, in the form of an MCAST _SCOPE_CTX structure.

LastAddr
Internet Protocol (IP) address of the last address in the scope, in the form of an
IPNG_ADDRESS structure.

TTL
Time To Live (TTL) value of the scope.

ScopeDesc
Description of the scope, in user,friendly format.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Madcapcl,h.

The MCAST _LEASE_REQUEST structure defines the request, renew, or release
parameters for a given multicast scope. In the MCAST _APLVERSION_1
implementation, only one IP address may be allocated at a time.

Chapter 8 Multicast Address Dynamic Client Allocation Protocol (MADCAP) 91

Members
LeaseStartTime

Requested start time, in seconds, for the multicast scope lease elapsed since
midnight of January 1, 1970, coordinated universal time. To request the current time
as the lease start time, set LeaseStartTime to zero.

MaxLeaseStartTime
Maximum start time, in seconds, elapsed since midnight of January 1, 1970,
coordinated universal time, that the client is willing to accept.

LeaseDuration
Duration of the lease request, in seconds. To request the default lease duration, set
LeaseDuration to zero.

MinLeaseDuration
Minimum lease duration, in seconds, that the client is willing to accept.

Server Address
Internet Protocol (IP) address of the server on which the lease is to be requested or
renewed, in the form of an IPNG_ADDRESS structure. If the IP address of the server
is unknown, such as when using this structure in an McastRequestAddress function
call, set ServerAddress to zero.

MinAddrCount
Minimum number of IP addresses the client is willing to accept.

AddrCount
Number of requested IP addresses. Note that the value of this member dictates the
size of pAddrBuf.

pAddrBuf
Pointer to a buffer containing the requested IP addresses. For IPv4 addresses, the
pAddrBuf member points to 4-byte addresses; for IPv6 addresses, the pAddrBuf
member paints to 16-byte addresses. If no specific addresses are requested, set
pAddrBuf to NULL.

Remarks
In MCAST _APL VERSION_1 version, MaxLeaseStartTime, MinLeaseDuration, and
MinAddrCount members are ignored. Clients should still set appropriate values for
these members, however, to take advantage of their implementation in future updates.

92 Volume 2 Network Protocols and Interfaces

Windows NT/2000: Requires Windows 2000.
Header: Declared in Madcapcl,h.

The MCAST _LEASE_RESPONSE structure is used to respond to multicast lease
requests.

Members
LeaseStartTime

Start time, in seconds, for the multicast scope lease elapsed since midnight of
January 1, 1970, coordinated universal time.

LeaseEndTime
Expiration time, in seconds of the multicast scope lease elapsed since midnight of
January 1, 1970, coordinated universal time.

ServerAddress
Internet Protocol (IP) address of the server on which the lease request has been
granted or renewed, in the form of an IPNG_ADDRESS structure.

AddrCount
Number of IP addresses that are granted or renewed with the lease. Note that the
value of this member dictates the size of pAddrBuf.

pAddrBuf
Pointer to a buffer containing the granted IP addresses. For IPv4 addresses, the
pAddrBuf member points to 4-byte addresses; for IPv6 addresses, the pAddrBuf
member points to 16-byte addresses.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Madcapcl,h.

CHAPTER 9

Internet Authentication
Service (lAS)

lAS Overview
Internet Authentication Service (lAS) is a feature of Microsoft® Windows® that extends
networking capabilities. You can use lAS to implement session control and accounting
plug-ins, to add your own authorizations, and to use your own network authentication
methods.

93

lAS is incorporated into Microsoft® WindowS® 2000. lAS can also be installed into
Microsoft® Windows NT® version 4.0 from the Windows NT® Option Pack or Microsoft®
Commercial Internet Service (MCIS).

Scope

lAS requires Windows 2000, or Windows NT 4.0 with Service Pack 5 or higher.

The Windows 2000 version of lAS is more fully extensible than the Windows NT 4.0
version. Windows 2000 supports an additional function, RadiusExtensionProcessEx,
and also supports authorization DLLs. These features are not available in the
Windows NT 4.0 version of lAS ..

This chapter describes the following topics:

• Scope
• Authentication and Accounting

• Implementing DLLs to Extend lAS

• RADIUS Accounting Packets

• Working with a State Server

You can use extensions to Internet Authentication Service (lAS) to implement the
following capabilities:

• Control the number of end-user network sessions, using a state server.

• Extend the remote access authorizations currently provided by lAS
(on Windows® 2000 and later versions only).

94 Volume 2 Network Protocols and Interfaces

• Connect to Windows NT® Domain authentication databases and the Windows 2000
Active Directory .

• Create custom authentication methods· for Windows NT version 4.0 SP5, and for
Windows 2000.

Authentication and Accounting
Internet Authentication Service (lAS) fully supports, as a client and server, the Remote
Authentication Dial-In User Service (RADIUS) protocol. The RADIUS protocol is the de
facto standard for remote user authentication. (See Figure 9-1.)

User

Point-to-Point Protocol
(PPP)

~
RADIUS
Protocol

~

Network Access Server
(NAS)

User
database

lAS server

Figure 9-1: The RADIUS Protocol in Remote User Authentication.

The following paragraphs describe the roles played by the various elements of a
RADIUS authentication solution.

1. A Network Access Server (NAS) operates as a client of the server that supports the
RADIUS protocol. The server that supports the RADIUS protocol is generally referred
to as the RADIUS server. The RADIUS client, that is, the NAS, passes user
information to designated RADIUS servers, and then acts on the response that the
servers return. The request sent by the client to the server in order to authenticate the
user is generally called an "authentication requesf'.

2. The NAS also sends information to designated RADIUS servers when the user logs
on and logs off. The requests sent by the client to the server to record logonllogoff
and usage information are generally called "accounting requests". The Internet
Engineering Task Force (IETF) RADIUS Interim Accounting Draft also allows the NAS
to send usage information on a periodic basis while the session is in progress.

3. RADIUS servers receive connection requests from remote users. For each user, the
RADIUS server authenticates the user, and returns configuration information to the
NAS so that it can provide network service to the user. Thi~ configuration information
is composed of "authorizations". The RADIUS server also collects a variety of
information sent by the NAS that can be used for accounting and for reporting on
network activity.

4. A RADIUS server can act as a proxy client to other RADIUS servers. In these cases,
the RADIUS server contacted by the NAS passes the authentication request to
another RADIUS server that actually performs the authentication.

Chapter 9 Internet Authentication Service (lAS) 95

While the RADIUS server is processing the authentication request, it can perform
authorization functions such as verifying the user's telephone number and checking
whether the user already has a session in progress. The RADIUS server can determine
whether the user already has a session in progress by contacting a state server.

Implementing DLLs to Extend lAS
This section describes how to implement DLLs to extend the Internet Authentication
Service (lAS). It describes the interaction between lAS and the DLLs, and presents
some design considerations regarding the DLLs.

lAS provides two "plug-in" points, one for authentication and the other for authorization.
Authentication refers to verifying the identity of the user. Authorization refers to
determining what services the network should provide to the user. The two plug-in pOints
correspond to Extension DLLs and Authorization DLLs. (Authorization DLLs are
supported only on Windows 2000 and later systems.) Each plug-in point can support
multiple DLLs.

lAS provides both authentication and authorization services. Extension DLLs are called
by lAS prior to the built-in lAS authentication and authorization. Authorization DLLs are
called after lAS authentication and authorization. (See Figure 9-2.)

Setting Up the Extension and Authorization DLLs
At startup, lAS checks the registry for a list of third-party DLLs to call.

To set up an Extension or Authorization DLL on an lAS server, list the paths to the DLLs
in values below the following registry key:

HKLM\System\CurrentControISet\Services\AuthSrv\Parameters\

The value in which to list the Extension DLLs is:

ExtensionDLLs

The value in which to list the Authorization DLLs is:

AuthorizationDLLs

Both the ExtensionDLLs and AuthorizationDLLs values must be of type
REG_MUL TLSZ. This type allows you to list multiple DLLs.

Authentication and Authorization Process
Both Extension DLLs and Authorization DLLs must export the function,
RadiusExtensionProcess. The prototype for this function is in the Authif.h header file.
lAS calls this function for each valid authentication or accounting packet that it receives
from the Network Access Server (NAS). lAS calls RadiusExtensionProcess in each of
the DLLs listed below the preceding registry key. The DLLs are cal.led in the order in
which they are listed.

96 Volume 2 Network Protocols and Interfaces

Incoming
Packet

lAS
Authentication

Discard

lAS
Authorization

Accounting
Log

Figure 9-2: Authentication and Authorization Services in the lAS.

Error

I

On Windows 2000 and later systems, the DLLs may export
RadiusExtensionProcessEx instead of RadiusExtensionProcess.
RadiusExtensionProcessEx enables the DLL to append additional authorization
attributes to the authentication response. The DLL cannot, however, modify or remove
any of the attributes that are already present.

If a scenario arises in which the DLL must modify or remove attributes, the only option is
to use the lAS user interface to ensure that the attributes are not present. (By default, no
authorization attributes will be present. Any that are present must have been added
through the user interface.)

In other respects, RadiusExtensionProcessEx behaves the same as
RadiusExtensionProcess. The following discussion of RadiusExtensionProcess is
applicable to both functions.

Chapter 9 Internet Authentication Service (lAS) 97

The RadiusExtensionProcess function has access to all the attributes received in the
authentication or accounting request. Using these attributes, the function can perform
additional validations, validate the user's authorizations, or send accounting records to a
central state server.

lAS will take various actions depending on the return value of
RadiusExtensionProcess, and the value returned in the pfAction parameter of
RadiusExtensionProcess:

pfAction

Accept

Reject

Continue

Extension DLL

~ypasses any further
Extension DLLs and also
bypasses the lAS
authentication mechanism.

Bypasses any further
Extension DLLs and also
bypasses the lAS
authentication mechanism.
Access-Reject packet is sent.

The packet is sent to the next
Extension DLL or to the lAS
authentication mechanism if
no more Extension DLLs ar~
listed in the registry.

Authorization DLL

Accept not allowed.

Bypasses any further
Authorization DLLs.

The packet is sent to the
next Authorization DLL or to
the lAS accounting log if no
more Authorization DLLs
are listed in the registry.

In the case of both Extension and Authorization DLLs, if RadiusExtensionProcess(Ex)
returns an error, the packet is discarded. Packets that are discarded because of an error
are not processed by the lAS accounting log.

If an error occurs, lAS posts a generic error event to the Event Log. It is recommended
that the Extension or Authorization DLL provide additional error logging.

RadiusExtensionProcess(Ex) should return an error if it cannot reach a decision
regarding the acceptance or rejection of the packet. Such a situation might arise if a
network problem prevents RadiusExtensionProcess(Ex} from communicating with its
user authentication database.

DLLs that process accounting packets should return either an error, or a pfAction of
Continue.

98 Volume 2 Network Protocols and Interfaces

Note Some authentication functions may also implement authorizations within them;
omitting such an authentication function may cause authorizations to be omitted as well.
For example, Windows NT Domain Authentication also checks some of the
authorizations. If RadiusExtensionProcess returns an accept, it is important not to
make any assumptions about the authorizations retrieved or evaluated by current or
future versions of lAS. After receiving an accept, lAS does not call the remaining
RadiusExtensionProcess DLLs in the sequence.

If a continue or accept is returned, the profile corresponding to the realm will be sent
back in the Access-Accept packet.

Extension DLLs should be designed to coexist with the built-in lAS authentication
providers and with other Extension DLLs. If an extension is only applicable to a certain
user database (e.g., Windows NT Domain Authentication or Active Directory), then it
should check the ratProvider attribute passed in through the pAttrs parameter, before
processing the request. The ratProvider attribute would be one of a list of attributes
pointed to by the pAttrs parameter.

Extension and Authorization DLLs should generally not reject requests simply because
needed attributes are missing. For example, if an authentication extension requires the
User-Password attribute (ratUserPassword), and the attribute is not present, the
extension should return an action of raContinue to give other extensions and providers a
chance to process the request.

. lAS calls the RadiusExtensionProcess function after the decision to use a particular
authentication database is made, but before the user is authenticated. Therefore,
information about which authentication database to use is available to the function, so
that the function can check for the user's authorizations in the appropriate authentication
database. Windows lAS can support various authentication databases including:
Windows NT Domain Authentication, and the Windows 2000 Active Directory.

If the DLL exports both RadiusExtensionProcess and RadiusExtensionProcessEx,
lAS will call RadiusExtensionProcess Windows NT 4.0 and
RadiusExtensionProcessEx on Windows 2000.

The DLL may also export RadiusExtensionlnit and RadiusExtensionTerm functions.
lAS will call these functions if they are present.

The declarations for RadiusExtensionProcess and other functions supported for
RADIUS extension DLLs can be found in the header file Authif.h.

Chapter 9 Internet Authentication Service (lAS) 99

User Identification Attributes
The identity of the user requesting authentication is supplied to the Extension and
Authorization DLLs in a number of different attributes:

• ratUserName

• ratStrippedUserName

• ratFQUserName

Each attribute provides the user identity in a different format. In general, developers
should use ratStrippedUserName. The uses of the ratUserName and ratFQUserName
attributes are more specialized.

ratUserName

The ratUserName attribute contains the name that was actually sent "over the wire". lAS
has not in any way processed or validated the contents of this attribute. This attribute
may not be available at all because the user may have been identified through a means
such as caller ID. If this attribute is available, it is available only at the Extension DLL
plug-in point. It is not available at the Authorization DLL plug-in pOint because
Authorization DLLs see only the "outbound" attributes.

ratStrippedUserName

The ratStrippedUserName is the user's identity after "realm stripping". This attribute will
always be present at both the Extension DLL plug-in point and the Authorization DLL
plug-in point. The format of the contents of this attribute may differ between
Windows NT 4.0 and Windows 2000. On Windows 2000, this attribute is guaranteed to
have the format:

Domain\UserName

Where "Domain" is the NetBios domain name. On Windows NT 4.0, this attribute
generally has the above format, but lAS does not guarantee it.

ratFQUserName

The ratFQUserName attribute is the "fully-qualified" user name. This name is available at
both the Extension DLL plug-in point and the Authorization DLL plug-in point. However,
the format of the name may differ between the two plug-in points. At the Extension DLL
plug-in point, the user name will always be of the form:

Domain\UserName

100 Volume 2 Network Protocols and Interfaces

The format of the name at the Authorization DLL plug-in point depends on whether the
user is an Active Directory user. If the user is a local user, or a Windows NT 4.0 user,
ratFQUserName will have the same format at the Authorization DLL plug-in point. If the
user is an Active Directory user, ratFQUserName will contain the user's name in
"canonical" format. Canonical format is the format used by the Active Directory to identify
the user. It is the path from the root of the Active Directory tree, and includes the user's
Organizational Unit (aU). The lAS server must be running Windows 2000 in order for
ratFQUserName to be in canonical format.

RADIUS Accounting Packets
This section describes only the most important aspects of the RADIUS accounting
packets. The RADIUS Accounting RFC (RFC 2139) provides detailed information on
these packets.

RADIUS accounting packets can be divided into:

1. Accounting-Start packet contains userid, nas-identifier/ipaddress, plus other
information received from the NAS.

2. Accounting-Stop record contains userid, nas-identifier/ipaddress, plus other
information received from the NAS.

3. Accounting-On record contains nas-identifier/ipaddress record and indicates that a
particular NAS has restarted.

4. Accounting-Off record contains nas-identifier/ipaddress record and indicates that a
particular NAS has been shutdown.

5. Accounting-Interim record is an accounting record that could be received from the
NAS. This record is sent periodically by the NAS for each user that is logged on at
the NAS. This feature is generally supported in newer versions of the NASs.

The following issues are important to consider when collecting accounting information
made available through RADIUS: In rare cases, records could be lost during
transmission and may never reach the RADIUS server.

1. The RADIUS server is not notified if the NAS aborts.

2. If the authentication and accounting requests are received from a RADIUS Proxy,
then the other ISP may not forward accounting-on, off records.

3. ISDN supports multiple sessions and each session generates an accounting start/stop
pair of records. There is an accounting attribute called multi-session identifier that
clearly identifies such multi-session records. Check for the multi-session identifier in
addition to the session identifier to calculate the number of sessions.

Chapter 9 Internet Authentication Service (lAS) 101

Working With a State Server
Internet Authentication Service (lAS) performs authentications using a database that is
configured at the lAS server site. This authentication database could be the user
database for a Microsoft® Windows NT®lWindows® 2000 Domain or it could draw upon
the user information obtained from the Windows 2000 Active Directory. Figure 9-3
illustrates a typical configuration that shows how lAS interacts with authentication
databases such as a Windows Domain user database or Active Directory. The diagram
also shows how lAS could interact with a state server that is provided by a third party.

User

Point-to-Point Protocol
(PPP)

~

Network Access Server
(NAS)

Primary lAS
server

Backup lAS
server

Authentication database:
Windows NT v4.0 Domain or
Windows 2000 Active Directory

State server

Figure 9-3: Authentications Performed Using a Database Configured at an lAS
Server Site.

The primary purpose of a state server is to limit the number of simultaneous logon
sessions a single user can run.

There are two pOints of interaction between lAS and the state server. One interaction
takes place when lAS receives an authentication request from the NAS. The state server
provides information from its database to determine whether to accept or deny the
request. The other interaction takes place when lAS receives accounting records from
the NAS. The state server uses these accounting records to update its database.

State Server Design Considerations
Depending on your design, you may need a server to track the users that are currently
logged onto the network. The main challenge with the state server is maintaining
accurate information about current users in the state server database. If the information
in the state server is out of date, unauthorized users may succeed in having multiple
sessions. Also, users who do not have multiple sessions could be inadvertently
penalized. The following should be taken into consideration in implementing the state
server.

102 Volume 2 Network Protocols and Interfaces

1. The state server must rnake tIle decision oniine in a few seconds. For ihis reasOn the
state server requires a scalable infrastructure that can support many updates and
queries per second. Relational databases are not appropriate for such large queries
with simultaneous updates. Relational databases are primarily built to keep data
consistent and to provide a consistent view of the data to all consumers. They are not
built for quick updates.

2. Transactional consistency on updates between multiple objects is not important. This
is because the state server can tolerate a small window of opportunity. However,
transactional consistency of a single update is important to reduce the chances of
leaving the state server in an inconsistent state if one of the RADIUS servers is shut
down in the middle of the update.

3. Persistence (saving the state of the network to persistent storage) is not important
because the persistent information will quickly fall out of sync with the current state of
the network.

4. If ISDN or other forms of multilink are supported on the network, the state server
should be able to handle scenarios that use these features.

One possible design is to implement both an Extension DLL and an Authorization DLL.
Each of these DLLs can communicate over the network with a database. The
Authorization DLL can update the database with information about who is currently
logged onto the network. The Extension DLL can query the database for this information
to decide whether to accept or reject a particular user's authentication request; if the
user is already logged on, the request is rejected.

The advantage of having the Authorization DLL update the state-server database is that
the Authorization DLL has access to more information about the authenticated user. The
Authorization DLL has access to all of the authorization attributes from the lAS
Authorization mechanism. For example, some users may have authorizations that allow
them to have multiple sessions. The state server should treat such users as a
special case.

Using Internet Authentication Service
The following sample code implements the functions for a RADIUS extension DLL that
checks the dial-in bit for the user.

Chapter 9 Internet Authentication Service (lAS) 103

(continued)

104 Volume 2 Network Protocols and Interfaces

(continued)

Chapter 9 Internet Authentication Service (lAS) 105

(continued)

106 Volume 2 Network Protocols and Interfaces

(continued)

Internet Authentication Service Reference
The following section describes the functions, structures, enumeration types to use when
implementing RADIUS extension DLLs for Internet Authentication Service (lAS).

• Internet Authentication Service Functions

• Internet Authentication Service Structures

• Internet Authentication Service Enumerated Types

Internet Authentication Service Functions
An architecture for RADIUS extension DLLs supports the following exported functions:

RadiusExtensionlnit

RadiusExtensionTerm

RadiusExtensionProcess

RadiusExtensionProcessEx

Chapter 9 Internet Authentication Service (lAS) 107

The RadiusExtensionlnit and RadiusExtensionTerm functions are optional. However,
the extension DLL must export either RadiusExtensionProcess or
RadiusExtensionProcessEx.

RadiusExtensionlnit
The RadiusExtensionlnit function is called by lAS while the service is starting up. Use
RadiusExtensionlnit to perform any initialization operations for the extension DLL.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value should be an appropriate error code from Winerror.h.

Remarks
A return value other then NO_ERROR will cause lAS to fail to start.

RadiusExtensionlnit is an optional function. The RADIUS extension DLL need not
implement RadiusExtensionlnit.

Windows NT/2000: Requires Windows 2000. Available as a redistributable for
Windows NT 4.0.
Header: Declared in Authlf.h.

About Internet Authentication Service Overview, Internet Authentication Service
Functions, RadiusExtensionTerm

RadiusExtension Term
The RadiusExtensionTerm function is called by lAS prior to unloading the extension
DLL. Use RadiusExtensionTerm to perform any clean-up operations for the extension
DLL.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value should be an appropriate error code from Winerror.h.

108 Volume 2 Network Protocols and Interfaces

Remarks
RadiusExtensionTerm is an optional function. The RADIUS extension DLL need not
implement RadiusExtensionTerm.

Windows NT/2000: Requires Windows 2000. Available as a redistributable for
Windows NT 4.0.
Header: Declared in Authlf.h.

About Internet Authentication Service Overview, Internet Authentication Service
Functions, RadiusExtensionlnit

RadiusExtension Process
The RadiusExtensionProcess function is called by lAS for each authentication or
accounting packet that lAS receives from the NAS.

Parameters
pAttrs

Pointer to an array of attributes from the request. The array is terminated by an
attribute with dwAttrType set to ratMinimum. These attributes should be treated as
read-only; they should not be modified by RadiusExtensionProcess. Also, these
attributes should not be referenced in any way after RadiusExtensionProcess
returns.

pfAction
Pointer to a value of type RADIUS_ACTION. This parameter specifies the action that
lAS should take in response to an Access-Request. If the request is not an access
request, RadiusExtensionProcess should return NULL for this parameter.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value should be an appropriate error code from Winerror.h.

Chapter 9 Internet Authentication Service (lAS) 109

Remarks
If the return value is anything other than NO_ERROR, lAS discards the request.

lAS supports multiple extension DLLs. lAS calls RadiusExtensionProcess for each of
the DLLs listed in the registry.

On Windows 2000, the extension DLL may export RadiusExtensionProcessEx instead
of RadiusExtensionProcess.

Windows NT/2000: Requires Windows 2000. Available as a redistributable for
Windows NT 4.0.
Header: Declared in Authlf.h.

About Internet Authentication Service Overview, Internet Authentication Service
Functions, RADIUS_ACTION, RADIUS_ATTRIBUTE, RADIUS_A TTRIBUTE_ TYPE,
RadiusExtensionProcessEx

RadiusExtensionProcessEx
The RadiusExtensionProcessEx function is called by lAS for each authentication or
accounting packet that lAS receives from the NAS. This function is similar to
RadiusExtensionProcess. However, RadiusExtensionProcessEx enables the
extension DLL to append attributes to the authentication response.

Parameters
plnAttrs

Pointer to an array of attributes from the request. The array is terminated by an
attribute with dwAttrType set to ratMinimum. These attributes should be treated as
read-only; they should not be modified by RadiusExtensionProcessEx. Also, these
attributes should not be referenced in any way after RadiusExtensionProcessEx
returns.

110 Volume 2 Network Protocols and Interfaces

pOutAttrs
Pointer to an array of attributes from the request. The array is terminated by an
attribute with dwAttrType set to ratMinimum. Internet Authentication Service adds
these attributes to the authentication response.

pfAction
Pointer to a value of type RADIUS_ACTION. This parameter specifies the action that
lAS should take in response to an Access-Request. If the request is not an access
request, RadiusExtensionProcessEx should return NULL for this parameter.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value should be an appropriate error code from Winerror.h.

Remarks
If the return value is anything other than NO_ERROR, lAS discards the request.

lAS supports multiple extension DLLs. lAS calls RadiusExtensionProcessEx for each
of the DLLs listed in the registry.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Authlf.h.

About Internet Authentication Service Overview, Internet Authentication Service
Functions, RADIUS_ACTION, RADIUS_ATTRIBUTE, RADIUS_ATTRIBUTE_TYPE,
RadiusExtensionProcess

Internet Authentication Service Structures
Use the RADIUS_ATTRIBUTE structure to represent a RADIUS attribute or an extended
attribute when developing RADIUS extension DLLs.

RADIUS_ATTRIBUTE
The RADIUS_ATTRIBUTE structure represents a RADIUS attribute or an extended
attribute.

Members
dwAttrType

Chapter 9 Internet Authentication Service (lAS) 111

Stores a value from the RADIUS_ATTRIBUTE_TYPE enumeration. This value
specifies the type of the attribute represented by the RADIUS_ATTRIBUTE structure.

fDataType
Stores a value from the RADIUS_DATA_TYPE enumeration. This value specifies the
type of the value stored in the union containing the dwValue and IpValue members.

cbDataLength
Stores the length, in bytes, of the data. The cbDataLength member is used only if
IpValue member is used.

dwValue
Stores a value of type DWORD. The dwValue member is used if the fDataType
member specifies rdtAddress, rdtlnteger or rdtTime.

IpValue
Stores a pointer to a multi-byte data value. The IpValue member is used if the
fDataType member specifies rdtUnknown or rdtString.

Windows NT/2000: Requires Windows 2000. Available as a redistributable for
Windows NT 4.0.
Header: Declared in Authlf.h.

About Internet Authentication Service Overview, Internet Authentication Service
Structures, RADIUS_A TTRIBUTE_ TYPE, RADIUS_DATA_ TYPE

Internet Authentication Service Enumerated Types
Use the following enumerated types when developing RADIUS extension DLLs:

RADIUS_ACTION

RADIUS_ATTRIBUTE_ TYPE

RADIUS_AUTHENTICATION_PROVIDER

RADIUS_DATA_ TYPE

112 Volume 2 Network Protocols and Interfaces

RADIUS_ACTION
The RADIUS_ACTION type enumerates the responses that a RADIUS extension DLL
can generate in response to an Access-Request.

Values
raContinue

lAS continues to process the request. lAS also continues to call
RadiusExtensionProcess in other extension DLLs.

raReject
Return an Access-Reject packet. The Access-Request is declined. In this case,IAS
does not call RadiusExtensionProcess in any other extension DLLs.

raAccept
lAS accepts the Access-Request. lAS does not continue to call
RadiusExtensionProcess in this case. However, it does continue to obtain
authorizations for the user requesting access.

Windows NT/2000: Requires Windows 2000. Available as a redistributable for
Windows NT 4.0.
Header: Declared in Authlf.h.

About Internet Authentication Service Overview, Internet Authentication Service
Enumerated Types, RadiusExtensionProcess

The RADIUS_ATTRIBUTE_TYPE type enumerates the possible types for a RADIUS
attribute.·

Chapter 9 Internet Authentication Service (lAS) 113

(continued)

114 Volume 2 Network Protocols and Interfaces

(continued)

Values
ratMinimum

This value is equal to zero, and used as the NULL terminator in any array of
RADIUS_ATTRIBUTE structures.

ratUserName
Specifies the name of the user to be authenticated. The value field in
RADIUS_ATTRIBUTE for this type is a pointer. See RFC 2138 for more information.
Also see User Identification Attributes.

ratUserPassword
Specifies the password of the user to be authenticated. The value field in
RADIUS_ATTRIBUTE for this type is a pointer. See RFC 2138 for more information.

ratCHAPPassword
Specifies the password provided by the user in response to an Challenge Handshake
Authentication Protocol (CHAP) challenge. The value field in RADIUS_ATTRIBUTE
for this type is a pOinter. See RFC 2138 for more information.

ratNASIPAddress
Specifies the NAS IP address. An Access-Request should specify either an NAS IP
address or an NAS identifier. The value field in RADIUS_ATTRIBUTE for this type is
a 32-bit integral value. See RFC 2138 for more information.

ratNASPort
Identifies the physical or virtual private network (VPN) through which the user is
connecting to the NAS. Note that this value is not a port number in the sense of TCP
or UDP. The value field in RADIUS_ATTRIBUTE for this type is a 32-bit integral
value. See RFC 2138 for more information.

Chapter 9 Internet Authentication Service (lAS) 115

ratService Type
Specifies the type of service the user has requested or the type of service to be
provided. The value field in RADIUS_ATTRIBUTE for this type is a 32-bit integral
value. See RFC 2138 for more information.

ratFramedProtocol
Specifies the type of framed protocol to use for framed access, for example SLIP,
PPP, or ARAP (AppleTalk Remote Access Protocol). The value field in
RADIUS_ATTRIBUTE for this type is a 32-bit integral value. See RFC 2138 for more
information.

ratFramedlPAddress
Specifies the IP address that will be configured for the user requesting authentication.
This attribute is typically returned by the authentication provider. However, the NAS
may use it in an authentication requestto specify a preferred IP address. The value
field in RADIUS_ATTRIBUTE for this type is a 32-bit integral value. See RFC 2138
for more information.

ratFramedl PNetmask
Specifies the IP network mask for a user that is a router to a network. The value field
in RADIUS_ATTRIBUTE for this type is a 32-bit integral value. See RFC 2138 for
more information.

ratFramedRouting
Specifies the routing method for a user that is a router to a network. The value field in
RADIUS_ATTRIBUTE for this type is a 32-bit integral value. See RFC 2138 for more
information.

ratFilterld
Identifies the filter list for the user requesting authentication. The value field in
RADIUS_ATTRIBUTE for this type is a painter. See RFC 2138 for more information.

ratFramedMTU
Specifies the Maximum Transmission Unit (MTU) for the user. This attribute is used in
cases where the MTU is not negotiated through some other means, such as PPP.
The value field in RADIUS_ATTRIBUTE for this type is a 32-bit integral value. See
RFC 2138 for more information.

ratFramedCompression
Specifies a compression protocol to use for the connection. The value field in
RADIUS_ATTRIBUTE for this type is a 32-bit integral value. RFC 2138.

ratLoginlPHost
Specifies the system with which to connect the user. The value field in
RADIUS_ATTRIBUTE for this type is a 32-bit integral value. See RFC 2138 for more
information.

ratLoginService
Specifies the service to use to connect the user to the host specified by
ratLoginlPHost. The value field in RADIUS_ATTRIBUTE for this type is a 32-bit
integral value. See RFC 2138 for more information.

116 Volume 2 Network Protocols and Interfaces

ratLogin Port
Specifies the port to which to connect the user. This attribute is present only if the
ratLoginService attribute is present. The value field in RADIUS_ATTRIBUTE for this
type is a 32-bit integral value. See RFC 2138 for more information.

ratReplyMessage
Specifies a message to display to the user. The value field in RADIUS_ATTRIBUTE
for this type is a pointer. See RFC 2138 for more information.

ratCalibackNumber
Specifies a callback number. The value field in RADIUS_ATTRIBUTE for this type is
a pOinter. See RFC 2138 for more information.

ratCalibackld
Identifies a location to callback. The value of this attribute is interpreted by the NAS.
The value field in RADIUS_ATTRIBUTE for this type is a pointer. See RFC 2138 for
more information.

ratFramedRoute
Provides routing information to configure on the NAS for the user. The value field in
RADIUS_ATTRIBUTE for this type is a pOinter. See RFC 2138 for more information.

ratFramedlPXNetwork
Specifies the IPX network number to configure for the user. The value field in
RADIUS_ATTRIBUTE for this type is a 32-bit integral value. See RFC 2138 for more
information.

ratState
Please refer to RFC 2138 for detailed information about this value. The value field in
RADIUS_ATTRIBUTE for this type is a pointer.

ratClass
Specifies a value that is provided to the NAS by the authentication provider. The NAS
should use this value when communicating with the accounting provider. The value
field in RADIUS_ATTRIBUTE for this type is a pOinter. See RFC 2138 for more
information.

ratVendorSpecific
Allows vendors to provide their own extended attributes. The value field in
RADIUS_ATTRIBUTE for this type is a pOinter. See RFC 2138 for more information.

ratSessionTimeout
Specifies the maximum number of seconds for which to provide service to the user.
After this time, the session is terminated. The value field in RADIUS_ATTRIBUTE for
this type is a 32-bit integral value. See AFC 2138 for more information.

ratldleTimeout
Specifies the maximum number of consecutive seconds the session can be idle. If the
idle time exceeds this value, the session is terminated. The value field in
RADIUS_ATTRIBUTE for this type is a 32-bit integral value. See RFC 2138 for more
information.

Chapter 9 Internet Authentication Service (lAS) 117

ratTerminationAction
Please refer to the above-referenced files at dS.internic.net for detailed information
about this value. The value field in RADIUS_ATTRIBUTE for this type is 32-bit
integral value. See RFC 2138 for more information.

ratCaliedStationld
Specifies the number that the user dialed to connect to the NAS. The value field in
RADIUS_ATTRIBUTE for this type is a pOinter. See RFC 2138 for more information.

ratCaliingStationld
Specifies the number from which the user is calling. The value field in
RADIUS_ATTRIBUTE for this type is a pOinter. See RFC 2138 for more information.

ratNASldentifier
Specifies the NAS identifier. An Access-Request should specify either an NAS
identifier or an NAS IPaddress. The value field in RADIUS_ATTRIBUTE for this type
is a pointer. See RFC 2138 for more information.

ratProxyState
Specifies a value that a proxy server includes when forwarding an authentication
request. The value field in RADIUS_ATTRIBUTE for this type is a pOinter. See RFC
2138 for more information.

ratLoginLATService
This attribute is not currently used for authentication on Windows 2000. See RFC
2138 for more information.

ratLogin LATNode
This attribute is not currently used for authentication on Windows 2000. See RFC
2138 for more information.

ratLoginLATGroup
This attribute is not currently used for authentication on Windows 2000. See RFC
2138 for more information.

ratFramedAppleTalkLink
Specifies the AppleTalk network number for a user that is another router. The value
field in RADIUS_ATTRIBUTE for this type is 32-bit integral value. See RFC 2138 for
more information.

ratFramedAppleTalkNetwork
Specifies the AppleTalk network number that the NAS should use to allocate an
AppleTalk node for the user. This attribute is used only when the user is not another
router. The value field in RADIUS_ATTRIBUTE for this type is a 32-bit integral value.
See RFC 2138 for more information.

ratFramedAppleTalkZone
Specifies the AppleTalk default zone for the user. The value field in
RADIUS_ATTRIBUTE for this type is a pOinter. See RFC 2138 for more information.

ratAcctStatusType
Specifies whether the accounting provider should start or stop accounting for the user.
The value field in RADIUS_ATTRIBUTE for this type is a 32-bit integral value. See
RFC 2139 for more information.

118 Volume 2 Network Protocols and Interfaces

ratAcctDelayTime
Specifies the length of time that the client has been attempting to send the current
request. The value field in RADIUS_ATTRIBUTE for this type is a 32-bit integral
value. See RFC 2139for more information.

ratAcctlnputOctets
Specifies the number of octets that have been received during the current accounting
session. The value field in RADIUS_ATTRIBUTE for this type is a 32-bit integral
value. See RFC 2139 for more information.

ratAcctOutputOctets
Specifies the number of octets sent during the current accounting session. The value
field in RADIUS_ATTRIBUTE for this type is a 32-bit integral value. See RFC 2139
for more information.

ratAcctSessionld
Specifies a value to enable the identification of matching start and stop records within
a log file. The start and stop records are sent in the ratAcctStatusType attribute. The
value field in RADIUS_ATTRIBUTE for this type is a pointer. See RFC 2139 for more
information.

ratAcctAuthentic
Specifies, to the accounting provider, how the user was authenticated; for example by
Windows 2000 Directory Services, RADIUS, or some other authentication provider.
The value field in RADIUS_ATTRIBUTE for this type is a 32-bit integral value. See
RFC 2139 for more information.

ratAcctSessionTime
Specifies the number of seconds that have elapsed in the current accounting session.
The value field in RADIUS_ATTRIBUTE for this type is a 32-bit integral value. See
RFC 2139 for more information.

ratAcctlnputPackets
Specifies the number of packets that have been received during the current
accounting session. The value field in RADIUS_ATTRIBUTE for this type is a 32-bit
integral value. See RFC 2139 for more information.

ratAcctOutputPackets
Specifies the number of packets that have been sent during the current accounting
session. The value field in RADIUS_ATTRIBUTE for this type is a 32-bit integral
value. See RFC 2139 for more information.

ratAcctTerminationCause
Specifies how the current accounting session was terminated. The value field in
RADIUS_ATTRIBUTE for this type is a 32-bit integral value. See RFC 2139 for more
information.

ratCHAPChalienge
Specifies the CHAP challenge sent by the NAS to a CHAP user. The value field in
RADIUS_ATTRIBUTE for this type is a pOinter. See RFC 2138 for more information.

Chapter 9 Internet Authentication Service (lAS) 119

ratNASPortType
Specifies the type of the port through which the user is connecting, for example,
asynchronous, ISDN, virtual. The value field in RADIUS_ATTRIBUTE for this type is
a 32-bitintegral value. See RFC 2138 for more information.

ratPortLimit
Specifies the number of ports the NAS should make available to the user for multilink
sessions. The value field in RADIUS_ATTRIBUTE for this type is a 32-bit integral
value. See RFC 2138 for more information.

ratCode
Specifies the request type code. This is an extended attribute.

ratldentifier
Specifies the request identifier. This is an extended attribute.

ratAuthenticator
Specifies the request authenticator. This is an extended attribute.

ratSrclPAddress
Specifies the source IP address. This is an extended attribute.

ratSrcPort
Specifies the source IP port. This is an extended attribute.

ratProvider
Specifies the authentication provider. The value for this attribute is taken from the
RADIUS_AUTHENTICATION_PROVIDER enumerated type. This is an extended
attribute.

ratStrippedUserName
Specifies the user name with the realm removed. See User Identification Attributes for
more information. This is an extended attribute.

ratFQUserName
Specifies the fully-qualified user name. See Userldentification Attributes for more
information. This is an extended attribute.

ratPolicyName
Specifies the policy name. This is an extended attribute.

Remarks
The value for an attribute of type ratProvider is taken from the
RADIUS_AUTHENTICATION_PROVIDER enumerated type.

Windows NT/2000: Requires Windows 2000. Available as a redistributable for
Windows NT 4.0.
Header: Declared in Authlf.h.

120 Volume 2 Network Protocols and Interfaces

About Internet Authentication Service Overview, Internet Authentication Service
Enumerated Types, RADIUS_ATTRIBUTE, RADIUS_AUTHENTICATION_PROVIDER

The RADIUS_AUTHENTICATION_PROVIDER type enumerates the possible
authentication providers that Internet Authentication Service can use.

Values
rapUnknown

The authentication provider is unknown.

rapUsersFile
A users' file is providing the authentication information.

rap Proxy
Authentication is provided by a RADIUS proxy server.

rapWindowsNT
Authentication is provided by Window 2000 Domain Authentication.

rapMCIS
Authentication is provided by a Microsoft Commercial Internet System (MCIS)
database.

rapODBC
Authentication is provided by an Open Database Connectivity (ODBC) compliant
database.

Remarks
The ratProvider extended attribute in RADIUS_ATTRIBUTE_ TYPE uses values from the
RADIUS_AUTHENTICATION_PROVIDER enumeration type.

Windows NT/2000: Requires Windows 2000. Available as a redistributable for
Windows NT 4.0.
Header: Declared in Authlf.h.

Chapter 9 Internet Authentication Service (lAS) 121

About Internet Authentication Service Overview, Internet Authentication Service
Enumerated Types, RADIUS_ATTRIBUTE, RADIUS_A TTRIBUTE_ TYPE

The RADIUS_DATA_TYPE type enumerates the possible data type for a RADIUS
attribute or extended attribute.

Values
rdtUnknown

The value is a pOinter. However, the attribute is not recognized by the dictionary.

rdtString
The value of attribute is a pointer to a character string.

rdtAddress
The value of the attribute is a 32-bit DWORD value representing address.

rdtlnteger
The value of the attribute is a 32-bit DWORD value representing an integer.

rdtTime
The value of the attribute is a 32"bit DWORD value representing a time.

Windows NT/2000: Requires Windows 2000. Available as a redistributable for
Windows NT 4.0.
Header: Declared in Authlf.h.

About Internet Authentication Service Overview, Internet Authentication Service
Enumerated Types, RADIUS_ATTRIBUTE, RADIUS_ATTRIBUTE_ TYPE

123

CHAPTER 10

The NetBIOS Interface

A Win32-based application can use the Network Basic Input/Output System (NetBIOS)
interface to communicate with applications on other computers in a network. The
NetBIOS interface provides commands and support for the following services:

• Network name registration and verification

• Session establishment and termination

• Reliable connection-oriented data transfer

• Unreliable connectionless data transfer (datagram)

• Protocol and adapter monitoring and management

The NetBIOS interface exposes an explicit set of commands that are submitted through
a structure known as the Network Control Block (NCB). An application can issue
NetBIOS commands over any protocol that supports the NetBIOS interface.

NetBIOS Interface Overview
The NetBIOS interface is provided primarily for existing applications that use IBM
NetBIOS 3.0 and need to be ported to the Win32 API. New applications and applications
.not requiring compatibility with NetBIOS should use other interfaces, such as mailslots,
named pipes, RPC, sockets, or distributed COM to accomplish tasks similar to those
supported by NetBIOS. These interfaces are more flexible and portable than NetBIOS. In
addition, you can use sockets over NetBIOS to communicate with NetBIOS applications.

The Netbios function takes one parameter, a pointer to a structure describing the NCB.
The NCB structure contains information about the command to perform, an optional post
routine, an optional event handle, and a pOinter to a buffer that is used for messages or
other data.

This overview discusses the following topics:

• NetBIOS Operation •

• NetBIOS LANA Numbers •

• NetBIOS Name Table •

NetBIOS Session

NetBIOS Enhancements

NetBIOS Commands

The NetBlOS Requests for Comments (RFC) are 1001, 1002, and 1088. For more
informati()n on NetBIOS 3.0, contact IBM and order the IBM Local Area Network
Technical Reference: IEEE 802.2 and NETB/OS Application Programming Interfaces.

124 Volume 2 Network Protocols and Interfaces

NetBIOS Operation
Protocol drivers expose the NetSIOS interface and map NetSIOS commands to their
own native commands. The NetSIOS Frames protocol (NSFP) can be implemented by
the underlying protocol software to perform the network 110 required by the NetSIOS
interface.

The NetS lOS emulator accepts NetS lOS commands, translates them to Transport Driver
Interface (TOI) calls, and forwards them to the transport driver using the TOI interface.
NetSIOS emulation requires some functionality that is not required for all TOI drivers. A
TOI driver that provides this functionality is called a NetSIOS-compatible TOI driver.

Figure 10-1 shows how NetSIOS works on Windows NTIWindows 2000.

NetBIOS Interface

NBF TCPIIP IPX

Figure 10-1: NetBIOS in Windows 2000IWindows NT.

The NetSIOS over TCPIIP (NetST or NST) protocol provides NetSIOS support for the
TCPIIP protocol. It is defined by RFCs 1001 and 1002. The NetBlOS over NetBEUI
protocol provides NetS lOS support for the NetSEUI protocol. This protocol is also called
NetSIOS Frames (NSF). The NetSIOS over IPX (NSIPX) protocol provides IPX support.
This protocol is also called NetSIOS on NetWare (NWNSLlNK). It is based on Novell's
NetSIOS.

For more information about the protocol and driver layers and the TOI interface, see the
Device Development Kit (OOK) documentation.

Chapter 10 The NetBIOS Interface 125

NetBIOS LANA Numbers
The NetBlOS LANA number identifies the transport driver, network interface card (NIC)
driver, and adapter that will be used to send and receive NetBIOS packets. This is
known as the network route. The following example shows the network route that will be
used when you specify a LANA value of 1 :

001 NetBT -> IEEPRO -> IEEPR01

Specify the LANA number in the ncb_lana_num member of the NCB structure when
you issue a NetBIOS command.

The IBM NetBlOS 3.0 specification supports only two LANA numbers, because NetBEUI
was originally the only protocol that supported NetBIOS, and a computer could contain
only two network adapters at that time. Specifying LANA 0 directed a command to the
first adapter, and specifying LANA 1 directed a command to the second adapter.
Because many computers had only one network adapter, many MS-DOS-based
applications sent all their requests to LANA O. If a second network adapter was installed,
some applications allowed the user to specify the use of LANA 1 instead. As a result,
LANA 0 became the default setting, though it was never intended as such.

Windows NTlWindows 2000 enables NetBlOS to use transport protocols other than
NetBEUI. Therefore, Microsoft has extended the meaning of a LANA number to indicate
a specific transport protocol on a specific adapter. For example, if you have two network
adapters, and have three transport protocols installed, you have six LANA numbers. The
LANA numbers are not necessarily sequential.

In addition to extending the meaning of a LANA number, Microsoft also added the
NCBENUM command to enumerate the available LANA numbers. As an example, the
LANA_ENUM structure filled by NCBENUM might hold an array with values 0, 3, 5, and
6. Zero might map to IPXlSPX on the first adapter, three might map to NETBEUI on a
second adapter, and so on.

Windows NT/2000: You can associate specific LANA numbers with specific network
routes using the following steps.

~ To associate a LANA number with a network route
1. Start the Network Control Panel application.

2. Click the Services tab.

3. Double-click NetBIOS Interface.

4. Click the LANA number you want to change.

5. Enter the new LANA number to be associated with the network route.

Windows 95/98: You cannot configure LANA numbers because of the way plug and
play was designed. LANA numbers can change as users install plug and play devices.
You may set only LANA 0, which is the default protocol. The next protocol is LANA 7,
then LANA 6, and so on. If no protocol is set as the default, there may not be a LANA O.

126 Volume 2 Network Protocols and Interfaces

You can set the default protocol in the control panel using the following steps:

~ To set LANA 0 on Windows 95/98
1. Start the Network Control Panel application.

2. Choose the protocol you want as the default.

3. Click Properties.

4. Click the Advanced tab.

5. Click Set this protocol to be the default protocol.

The best way to write a NetSIOS application is to support all LANA numbers, and
establish connections over any LANA number. This allows your application to
transparently support any transport protocol that supports NetSIOS, as well as dynamic
LANA numbers associated with dial-up adapters or plug-and-play hardware. A good
approach is outlined in the following steps.

~ To support connections over any LANA
1. Enumerate the LANA numbers by issuing an NCSENUM command.

2. Reset each LANA by issuing one NCSRESET command per LANA number.

3. Add your local NetSIOS name to each LANA. The name may be the same on each
LANA.

4. Connect using any LANA number:

• For servers, issue an NCSLlSTEN command on each LANA. If necessary, cancel
any outstanding listen operation after the first listen operation has been completed.

• For clients, issue an NCSFINDNAME (Windows NTlWindows 2000 only) or an
NCSCALL (Windows NTlWindows 2000 or Windows 95/98) command on each
LANA. The first successful NCSFINDNAME or NCSCALL operation will indicate
which LANA to use. When using NCSCALL instead of NCSFINDNAME, you must
cancel any pending NCSCALL commands and hang up any extra completed calls.

Though this is the best technique for writing a NetSIOS application, it generates several
datagrams, making the NetSIOS interface less desirable than other networking
interfaces.

NetBIOS Name Table
NetSlOS names are used as the basis for communication between applications.
NetSlOS maintains a name table for each LANA for each process that contains the
names by which the process is known on the network. These names are used when
forming connections between processes.

Names are provided to NetSIOS by the application through the ncb_name member of
the NCB structure. A name can be a unique name or a group name. NetSIOS checks
the network to verify that a unique name is not already in use by another adapter. A
group name can be used by several adapters.

Chapter 10 The NetBIOS Interface 127

NetBlOS names can be up to 16 characters long. This is large enough to accommodate
a text version of the media access control (MAC) address, plus a few other characters.
Using the MAC address in this way results in a name that is guaranteed unique on any
network. The name NAME_NUMBER_1 is always present and has the value 1.

For more information, see Name Support.

NetBIOS Session
A NetBlOS session is a logical connection between any two processes on the network.
The NetBIOS local session number identifies the virtual circuit established between two
processes. Local session numbers are provided to applications by NetBlOS through the
ncb_lsn member of the NCB structure.

To establish a session, have one process issue an NCBLlSTEN command, and have the
other process issue an NCBCALL command. After a session is established, the
computers can exchange data using NetBIOS commands.

Each process can establish 254 sessions per LANA number. Because names are
maintained on a per-process basis, the NetBlOS emulator can identify two separate
sessions even if they have the same local session number in their respective processes.
The emulator maps each local session number to a unique TOI connection endpoint
handle.

For more information, see Session Support.

NetBIOS Enhancements
The Win32 implementation of NetBIOS is based on the NetBIOS 3.0 specification.
However, the Win32 implementation includes the following enhancements that are not
part of the NetBlOS 3.0 specification:

• NetBlOS emulator manages resources separately per process. For example, the
network name numbers are assigned on a per-process basis. Therefore, if a process
issues the NCBRESET command, the names, sessions, and outstanding NCBs
allocated for that process are cleared, but those of other processes are not affected.
Also, requests for the status of the local adapter retrieve only the names that were
added by the process making the request.

• The NetBlOS emulator supports 254 sessions per process, per LANA number.

• You can supply an event in the ncb_event member of the NCB structure. This is not
a standard NetBIOS 3.0 NCB member. The event is set to the signaled state when
NetBlOS completes an asynchronous command. This method of issuing
asynchronous commands is faster than using post routines and it uses fewer system
resources. The system creates an event and a worker thread for each command that
uses a post routine.

128 Volume 2 Network Protocols and Interfaces

• A process can enable extensions to the transport interface by using the NCBACTION
command in the ncb_command member of the NCB structure. This is not a standard
NetBIOS 3.0 command.

• A process can enumerate all available LAN adapters by using the NCBENUM
command in the ncb_command member of the NCB structure. This is not a standard
NetBlOS 3.0 command.

• A process is required to issue the NCB RESET command on each LANA number
before it can issue any other NetBIOS command on the LANA number, with the
exception of NCBENUM.

• The NetBIOS 3.0 specification allows LANA numbers 0 and 1. Win32 allows
additional LANA numbers.

• The value 1 for the ncb_num member of the NCB structure is not exclusive when the
NCBRESET command is issued. All MS-DOS and 16-bit Windows-based applications
also share access to NAME_NUMBER_1.

NetBIOS Commands
A NetBIOS application issues commands to an underlying transport driver using the
Netbios function. You provide information in the NCB structure. The appropriate
transport driver receives the information, performs the command, and reports status by
filling in selected NCB members.

When a command is issued synchronously, Netbios does not return until the protocol
driver completes the command. Both the ncb_retcode and ncb_cmd_cplt members
contain the return value.

When a command is issued asynchronously, Netbios does not return until the protocol
driver checks the command syntax, checks whether the session is valid, and checks
whether there are sufficient available resources. Both the ncb_retcode and
ncb_cmd_cplt members contain the return value. The return value is an error code if
the command was not successfully queued. A return value of NRC_PENDING indicates
that the protocol driver has successfully queued the command. When the protocol driver
completes the command, it places the final return value in both the ncb_retcode and
ncb_cmd_cplt members. If the ncb_post member specifies a post routine, the protocol
driver calls the post routine.

Post routines are called in the context of the calling process. The post routine in a
Win32-based application typically posts a message to an appropriate window and then
exits. The thread that receives the message uses it as an indication that the
asynchronous command has been completed. The system creates an event and a
worker thread for each command that uses a post routine. As a result, it is faster to use
the ncb_event member instead of a post routine for asynchronous commands.

Chapter 10 The NetBIOS Interface 129

The NetBIOS commands can be divided into the following categories:

• Name Support • Datagram Support

• Session Support • General Support

• Data-Transfer Support • Extension Support

Name Support
The following are the name support commands:

• NCBADDGRNAME (add group name)

• NCBADDNAME (add name)

• NCBDELNAME (delete name)

• NCBFINDNAME (find name)

The NCBADDGRNAME and NCBADDNAME commands register names. The transport
driver verifies the name, registers itin the name table, and returns a corresponding
name number in the ncb_num member of the NCB structure. The registration process is
shown in Figure 10-2.·The names "station1" and "station2" will be used in subsequent
examples.

Station 1

NetBIOS Application

I NCBADDNAME
... ("station1",

ncbJana_num)

t NCBADDNAME
(NRC_GOODRET,
ncb_num)

Station 2

NetBIOS A~plication

I NCBADDNAME
... ("station2",

ncbJana_num)

t NCBADDNAME
(NRC_GOODRET,
ncb_num)

Transport Driver

NIC Driver and NIC

Figure 10-2: Registering Names with the Name Support Commands.

The NCBFINDNAME command obtains the MAC header information for the computer
that has registered the specified name. The protocol driver queries the network for the
specified name. If any computers have registered the name, they respond with an
indication of whether the name is a unique name or a group name. Multiple computers
may respond. The ncb_buffer member receives a FIND_NAME_HEADER structure,
followed by one or more FIND_NAME_BUFFER structures. The length of the buffer is
returned in the neb_length member. This process is shown in Figure 10-3.

130 Volume 2 Network Protocols and Interfaces

Station 1

NetBIOS Application

I NCBFINDNAME
• (ncb_buffer,

ncb_callname,
"station2")

t NCBFINDNAME
(NRC_GOODRET,
ncbJength)

Station 2

NetBIOS Application

Figure 10-3: Name Registering Process.

The NCBDELNAME command deletes a name from its name table. Names are stored
with a reference to the process that registered the name and a corresponding LANA
number. A process cannot delete a name that was added by another process, even if it
has the name number. The deletion process is shown in Figure 10-4.

Station 1
NetBIOS App .

I NCBDELNAME
• (ncb_num,

ncb_lana_num)

t NCBDELNAME
(NRC_GOODRET)

Transport Driver

NIC Driver and NIC

Figure 10-4: Name Deletion Process.

Session Support
The following are the session support commands:

• NCBCALL (call)

• NCBHANGUP (hang up)

• NCBLlSTEN (listen)

• NCBSSTAT (session status)

Chapter 10 The NetBIOS Interface 131

The NCBCALL and NCBLlSTEN commands establish a session between processes.
One process issues the NCBLlSTEN command to prepare to open a session. The other
process issues the NCBCALL command to open the session. The remote computer
must have an NCBLlSTEN command pending. When the session is established, the
NCBLlSTEN command is completed and the calling process receives a local session
number and the name of the remote session partner. In addition, the NCBCALL
command is completed and the calling process receives a local session number in the
ncb_lsn member of the NCB structure. The process of establishing a session is shown
in Figure 10-5.

Station 1

NetBIOS Applica

I NCBCALL
.. ("station2",

"station 1 " ,
ncb_rto, ncb_sto)

t NCBCALL
(NRC_GOODRET,3)

, Transport Driver

NIC Driver and NIC

Station 2
NetBIOS Applicatio

I NCBLlSTEN
.. ("*", "station2",

ncbJto, ncb_sto)

t NCBLlSTEN
(NRC_GOODRET,
14, "station1")

Transport Driver

NIC Driver and NIC

Figure 10-5: Establishing a Session.

The NCBSSTAT command obtains the status of any sessions that were opened using
the specified name. The ncb_buffer member receives a SESSION_HEADER structure,
followed by one or more SESSION_BUFFER structures. The process of obtaining the
session status is shown in Figure 10-6.

132 Volume 2 Network Protocols and Interfaces

Station 1

NetBIOS Application

I NCBSSTAT
.. (ncb_buffer,

ncb_length,
"station 1 " ,
IcbJana_num)

t NCBSSTAT
(NRC_GOODRET,
ncbJength)

Figure 10-6: Obtaining Session Status.

The NCBHANGUP command closes the session identified by the specified local session
number, as shown in Figure 10-7.

Station 1

NetBIOS Appli .

I NCBHANGUP
.. (3)

t NCBREVCANY
(NRC_SCLOSED, 3)

t NCBHANGUP
(NRC_GOODRET)

Station 2

NetBIOS Applica

t NCBRECVANY
(NRC_SCLOSED, 14)

I NCBHANGUP
.. (14)

t NCBHANGUP
(NRC_SNUMOUT)

Figure 10-7: Closing the Session.

This example assumes that there are NCBRECVANY commands pending on both
computers.

Data-Transfer Support
The following page shows the data-transfer support commands.

Chapter 10 The NetBIOS Interface 133

• NCBCHAINSEND (chain send) • NCBRECVANY (receive any)O

• NCBCHAINSENDNA (chain send noack) • NCBSEND (send)

• NCBRECV (receive) • NCBSENDNA (send noack)

These commands provide reliable connection-oriented data transfer between session
partners. Each data block is sent as a single message and received as a single
message. The buffer supplied on a receive request must be large enough to hold an
entire incoming message. If the receiving transport driver does not have enough space
to store the message in the client-supplied buffer, it returns an error indicating that the
buffer does not contain the entire message. The client must issue a subsequent receive
command to obtain the remaining portion of the message.

The NCBSEND and NCBRECV commands transfer a single data buffer to the specified
session partner, as shown in Figure 10-8.

Station 1

NetBIOS Application

I NCBRECV
• (3, ncb_buffer,

ncbJength)

I NCBSEND
• (3, ncb_buffer,

ncbJength)

t NCBRECV
(NRC_ GOODRET,
ncbJength)

t NCBSEND
(NRC_GOODRET)

I NCBRECV
• (3, ncb_buffer,

ncbJength)

Transport Driver

NIC Driver and NIC

Station 2
NetBIOS Application

I NCBRECV
.(14, ncb_buffer,

ncb_length)

t NCBRECV
. (NRC_GOODRET,

ncbJength)

I NCBRECV
• (14, ncb_buffer,

ncbJength)

I NCBSEND
• (14, ncb_buffer,

ncbJength)

t NCBSEND
(NRC_GOODRET)

Transport Driver

NIC Driver and NIC

Figure 10-8: Transfering a Single Data Buffer to a Session Partner.

134 Volume 2 Network Protocols and Interfaces

The NCBRECVANY command receives data from any session that was opened with the
specified name, as shown in Figure 10-9.

Station 1

NetBIOS Application

I NCBRECVANY
• (ncb_buffer,

ncb_buffer,
ncb-'ength)

I NCBSEND
• (3, ncb_buffer,

ncb-'ength)

t NCBRECVANY
(NRC_GOODRET.
3, ncb-'ength)

t NCBSEND
(NRC_ GOODRET)

I NCBRECVANY
• (ncb_num,

ncb_buffer.
ncb-'ength)

Transport Driver

NIC Driver and NIC

Station 2

NetBIOS Application

I NCBRECVANY
• (ncb_num,

ncb_buffer,
ncb-'ength)

t NCBRECVANY
(NRC_GOODRET,
14, ncb_length)

I NCBRECVANY
• (ncb_num,

ncb_buffer,
ncb_length)

I NCBSEND
.(14, ncb_buffer,

ncb-'ength)

t NCBSEND
(NRC_GOODRET)

Figure 10-9: Receiving Data from a Specified Session.

The NCBCHAINSEND command sends two data buffers to the specified session partner
as one message. The NCBSENDNA and NCBCHAINSENDNA commands are similar to
the NCBSEND and NCBCHAINSEND commands, respectively. However, no
acknowledgment is required.

Chapter 10 The NetBIOS Interface 135

Datagram Support
The following are the datagram support commands:

• NCBDGRECV (receive datagram)

• NCBDGRECVBC (receive broadcast datagram)

• NCBDGSEND (send datagram)

• NCBDGSENDBC (send broadcast datagram)

Datagram support provides unreliable connection less data transfer. The message is a
single data frame whose size is limited to a MAC frame minus any headers. The protocol
driver ensures that the message is transmitted to the network medium. The receiver
does not generate a response to the sender to indicate that the datagram was received.
Therefore,. unreliable connection less data transfer requires fewer system resources than
reliable connection-oriented data transfer.

The NCBDGRECV and NCBDGSEND commands transfer a datagram to a specified
NetBIOS name. If the specified name is a unique name, the datagram is received by the
single process that registered the name. If the specified name is a group name, the
datagram is received by all processes that registered the name. This process is shown in
Figure 10-10.

Station 1

NetBIOS Application

I NCBDGSEND
• (ncb_num.

ncb_buffer.
ncb_length.

"station2")

t NCBDGSEND
(NRC_GOODRET)

Transport Driver

NIC Driver and NIC

Station 2

NetBIOS Application

I NCBDGRECV
• (ncb_num.

ncb_buffer,
ncb_length)

t NCBDGRECV
/ (ncb-'ength.

"station1")

I NCBDGRECV
• (ncb_num.

ncb_buffer.
ncb-,ength)

Figure 10-10: A Datagram Received by All Processes That Registered the Name.

136 Volume 2 Network Protocols and Interfaces

The NCBDGSENDBC command broadcasts a datagram to all computers on the
network. The datagram is received by all processes that have issued the
NCBDGRECVBC command, as shown in Figure 10-11.

Station 1

NetBIOS Application

I' NCBDGSENDBC
T(ncb_num,

ncb_buffer,
ncbJength)

t NCBDGSENDBC
(NRC_GOODRED

Transport Driver

NIC Driver and NIC

Station 2

NetBIOS Application

I NCBDGRECVBC
T(ncb_num,

ncb_buffer,
ncbJength)

t NCBDGRECVBC
(ncbJength,
"station 1")

I NCBDGRECVBC
T(ncb_num,

ncb_buffer,
ncb_'ength)

Transport Driver

NIC Driver and NIC

Figure 10-11: A Datagram Received by All Processes That Have Issued the
NCBDGRECVBC command.

General Support
The following are the general support commands:

• NCBASTAT (adapter status)

• NCBCANCEL (cancel)

• NCBRESET (reset)

The NCBRESET command clears the name and session tables. It also ends all pending
commands and sessions for the network route specified by the ncb_'ana_num member
of the NCB structure. A process is required to issue the NCBRESET command on each
LANA number before it can issue any other NetBIOS command on the LANA number,
with the exception of NCBENUM. This process is shown in Figure 10-12.

Station 1

NetBIOS Application

I NCBRESET
.(ncb_lsn, ncb_callname, nbc_lana_num)

ncb_lsn: 1= clear, 0 = clear and resize
ncb_caliname[O] = new max sessions
nbc_callname[2] = new max names

t NCBRESET
(NRC_GOODRET)

Transport Driver

NIC Driver and NIC

Chapter 10 The NetBIOS Inter1ace 137

Figure 10-12: Issuing the NCBRESET Command on Each LANA Number.

The NCBASTAT command returns the current status and operation information about
the network route specified in the ncb_lana_num member of the NCB structure. The
ncb_buffer member receives an ADAPTER_STATUS structure, followed by an array of
NAME_BUFFER structures.

The NCBASTAT command can be issued for the local computer or a remote computer. If
the ncb_callname member contains an asterisk (*), information is returned for the local
computer. If ncb_callname contains a NetBIOS name, the transport provider requests
information from the remote computer where the name is registered, as shown in
Figure 10-13.

The NCBCANCEL command cancels the command listed in the ncb_command
member of the NCB structure passed to the Netbios function. NCBCANCEL closes the
associated session when canceling the following commands:

- NCBCALL -NCBLlSTEN

- NCBCHAINSEND -NCBSEND

- NCBHANGUP

The emulator simply returns NRC_CMDCAN if the following commands are successfully
canceled or it returns NRC_CANOCCR if they finish before they could b~ canceled:

- NCBDGRECV - NCBRECV

- NCBDGRECVBC -NCBRECVANY

- NCBLANSTALERT

138 Volume 2 Network Protocols and Interfaces

Station 1

NetBIOS Application

I NCBASTAT
.. (ncb_buffer,

ncbJength, "station2",
ncbJana_num)

t NCBASTAT
(NRC_GOODRET,
ncbJength)

I NCBASTAT
.. (ncb_buffer,

ncbJength, "*",
ncbJana_num)

t NCBASTAT
(NRC_GOODRET,
ncb_length)

Station 2

NetBIOS Application

Figure 10-13: Transport Provider Requesting Information from the Remote
Computer Where the Name Is Registered.

The following commands cannot be canceled:

• NCBADDGRNAME • NCBDGSEND

• NCBADDNAME • NCBDGSENDBC

• NCBCANCEL • NCBRESET

• NCBDELNAME • NCBSSTAT

An asynchronous NCBACTION command cannot be canceled using NCBCANCEL. To
cancel a synchronous NCBACTION command, the transport provider must support an
action code that cancels other action codes. Alternatively, you can cancel the command
by hanging up the session, deleting the name, or resetting the LANA number.

Chapter 10 The NetBIOS Interface 139

Extension Support
The following commands are Windows NTlWindows 2000 extensions to the NetBIOS
interface:

• NCBACTION (action)

• NCBENUM (enumerate)

• NCBLANST ALERT (LAN status alert)

The NCBACTION command enables extensions to the NetBIOS interface. The
ncb_buffer member of the NCB structure pOints to an ACTION_HEADER structure,
which specifies the transport provider and the provider-defined action code. The process
of issuing the NCBACTION command is shown in Figure 10-14.

Station 1

NetBIOS Application

I NCBACTION
... (ncb-'sn. ncb_num. ncb_buffer,

ncb_length, nbc-'ana_num)

ncb-'sn = 0 ncb-'sn!= 0
ncb_num = 0 applies to network route applies to session
ncb_num != 0 applies to name number illegal

t NCBACTION
(NRC_GOODRET)

Figure 10-14: Issuing the NCBACTION Command.

The NCBENUM command enables enumeration of all LANA numbers. The ncb_buffer
member of the NCB structure points to a LANA_ENUM structure, which specifies how
many valid LANA numbers were returned, and an array of LANA numbers. The process
of issuing the NCBENUM command is shown in Figure 10-15.

140 Volume 2 Network Protocols and Interfaces

Station 1

NetBIOS Application

I NCBENUM
.. (ncb_buffer, ncb_length)

t NCBENUM
(NRC_GOODRET)

Figure 10-15: Issuing the NCBENUM Command.

The NCBLANST ALERT command notifies the user of catastrophic network failures,
which can occur, for example, when there are duplicate names on the network.
NCBLANSTALERT is typically issued as an asynchronous command. The command
returns if an error occurs. At that time, the application should cease to use the network
route. When the command returns, ncb_retcode does not indicate the error status
associated with the network error condition. It indicates the success or failure of the
NCBLANST ALERT command. The process of issuing the NCBLANST ALERT command
is shown in Figure 10-16.

Station 1

NetBIOS Application

I NCBLANSTALERT
.. (ncb_lana_num)

t NCBLANSTALERT
(NRC _ GOODRET)

Figure 10-16: Issuing the NCBLANSTALERT Command.

Using the NetBIOS Interface

Listing All NetBIOS Names on a LANA

Chapter 10 The NetBIOS Interface 141

You can use the Netbios function to list all the NetBIOS names on a LANA. The
following example uses a unique name as the name in the ncb_call name member of
the NCB structure. This causes the adapter status to be treated as a remote call, which
enables you to retrieve names added by other processes.

(continued)

142 Volume 2 Network Protocols and Interfaces

(continued)

Chapter 10 The NetBIOS Interface 143

144 Volume 2 Network Protocols and Interfaces

Getting the MAC Address for an Ethernet Adapter
You can use the Netbios function to get the Media Access Control (MAC) address for an
ethernet adapter if your card is bound to NetBIOS. The following example uses the
NCBASTAT command, providing an asterisk (*) as the name in the ncb_call name
member of the NCB structure.

Note The following code does not work reliably on Windows 95 or Windows 98.

Chapter 10 The NetBIOS Interface 145

NetBIOS Reference

NetBIOS Functions

Netbios
The Netbios function interprets and executes the specified Network Control Block
(NCB).

The Netbios function is provided primarily for applications that were written for the
NetBIOS interface and need to be ported to Win32. Applications not requiring
compatibility with NetBIOS should use other interfaces, such as mailslots, named pipes,
RPC, or distributed COM to accomplish tasks similar to those supported by NetBIOS.
These other interfaces are more flexible and portable.

Parameters
pncb

[in] Pointer to an NCB structure that describes the network control block.

Return Values
For synchronous requests, the return value is the return code of the NCB structure. That
value is also returned in the ncb_retcode member of the NCB structure.

For asynchronous requests, there are the following possibilities:

• If the asynchronous command has already completed when Netbios returns to its
caller, the return value is the return code of the NCB structure, just as if it were a
synchronous NCB structure.

146 Volume 2 Network Protocols and Interfaces

• If the asynchronous command is still pending when Netbios returns to its caller, the
return value is zero.

If the address specified by the pncb parameter is invalid, the return value is
NRC_BADNCB.

If the buffer length specified in the ncbjength member of the NCB structure is
incorrect, or if the buffer specified by the ncb_buffer member is protected from write
operations, the return value is NRC_BUFLEN.

Remarks
When an asynchronous network control block finishes and the neb_post member is
nonzero, the routine specified in ncb_post is called with a single parameter of type
PNCB. This parameter contains a pointer to the Network Control Block.

The NCB structure also contains a handle of an event (the ncb_event member). The
system sets the event to the nonsignaled state when an asynchronous NetBIOS
command is accepted, and sets the event to the signaled state when the asynchronous
NetBIOS command is completed. Only manual reset events should be used for
synchronization. A specified event should not be associated with more than one active
asynchronous NetBIOS command.

, Using ncb_event to submit asynchronous requests requires fewer system resources
than using neb_post. Also, when ncb_event is nonzero, the pending request is
canceled if the thread terminates before the request is processed. This is not true for
requests sent by using neb_post.

Win32s: This function does not support features that conflict with the non-preemptive,
shared-memory design of Windows 3.1. Because the system does not implement
events, this function ignores the ncb_event member of the NCB structure. Also, the
system maintains one system-wide name table rather the a per-process name table.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Nb30.h.
Library: Use Netapi32.lib.

The NetBIOSlnterface Overview, NetBIOS Functions, NCB

NetBIOS Structures
The following structures are used in NetBIOS.

ACTION_HEADER
ADAPTER_STATUS
FIND_NAME_BUFFER
FIND_NAME_HEADER
LANA_ENUM

ACTION_HEADER

Chapter 10 The NetBIOS Interface 147

NAME_BUFFER
NCB
SESSION_BUFFER
SESSION_HEADER

The ACTION_HEADER structure contains information about an action. This action is an
extension to the standard transport interface.

Members
transporCid

Specifies the transport provider. This member can be used to check the validity of the
request by the transport.

This member is always a four-character string. All strings starting with the letter Mare
reserved, as shown in the following example.

String Meaning

MOOO

MNBF

MABF

MXNS

All transports

NBF

AsyBEUI

XNS

action_code
Specifies the action.

reserved
Reserved.

Remarks
The scope of the action is determined by the ncb_lsn and ncb_num members of the
NCB structure, as shown on the following page.

148 Volume 2 Network Protocols and Interfaces

ncb_num = 0 Action applies to control channel
associated lJYith the valid LAN adapter.

ncb_num != 0 Action applies to address associated
with the valid LAN adapter.

Action applies to connection identifier
associated with the valid local
session number.

Illegal combination.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Nb30.h.

The NetBIOS Interface Overview, NetBIOS Structures, NCB

ADAPTER_STATUS
The ADAPTER_STATUS structure contains information about a network adapter. This
structure is pointed to by the ncb_buffer member of the NCB structure.
ADAPTER_STATUS is followed by as many NAME_BUFFER structures as required to
describe the network adapters on the system.

Members
adaptecaddress

Specifies encoded address of the adapter.

rev_major

Chapter 10 The NetBIOS Interface 149

Specifies the major software-release level. This value is 3 for IBM NetBlOS 3.x.

reservedO
Reserved. This value is always zero.

adapter_type
Specifies the adapter type. This value is OxFF for a Token Ring adapter or OxFE for
an Ethernet adapter.

rev_minor
Specifies the minor software-release level. This value is zero for IBM NetBIOS x.O.

duration
Specifies the duration of the reporting period, in minutes.

frmr3ecv
Specifies the number of FRMR frames received.

frmr_xmit
Specifies the number of FRMR frames transmitted.

iframe_recv_err
Specifies the number of I frames received in error.

xmiCaborts
Specifies the number of aborted transmissions.

xmiCsuccess
Specifies the number of successfully transmitted packets.

recv_success
Specifies the number of successfully received packets.

iframe_xmiCerr
Specifies the number of I frames transmitted in error.

recv _bufLunavaii
Specifies the number of times a buffer was not available to service a request from a
remote computer.

150 Volume 2 Network Protocols and Interfaces

t1_timeouts
Specifies the number of times that the DLC T1 timer timed out.

tUimeouts
Specifies the number of times that the ti inactivity timer timed out. The ti timer is used
to detect links that have been broken.

reserved1
Reserved. This value is always zero.

free_ncbs
Specifies the current number of free NCBs.

max_cfg_ncbs
Undefined for IBM NetBlOS 3.0.

max_ncbs
Undefined for IBM NetBIOS 3.0.

xmiLbuCunavaii
Undefined for IBM NetBlOS 3.0.

max_dgram_size
Specifies the maximum size of a datagram packet. This value is always at least 512
bytes.

pending_sess
Specifies the number of pending sessions.

max_cfg_sess
Specifies the configured maximum pending sessions.

max_sess
Undefined for IBM NetBIOS 3.0.

max_sess_pkLsize
Specifies the maximum size of a session data packet.

name_count
Specifies the number of names in the local names table.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Nb30.h.

The NetBIOS Interface Overview, NetBIOS Structures, NAME_BUFFER, NCB

Chapter 10 The NetBIOS Interface 151

The FIND_NAME_BUFFER structure contains information about a local network
session. One or more FIND_NAME_BUFFER structures follows a
FIND_NAME_HEADER structure when an application specifies the NCBFINDNAME
command in the ncb_command member of the NCB structure.

Members
length

Specifies the length, in bytes, of the FIND_NAME_BUFFER structure. Although this
structure always occupies 33 bytes, not all of the structure is necessarily valid.

access_control
Specifies the access control for the LAN header.

frame_control
Specifies the frame control for the LAN header.

destination_addr
Specifies the destination address of the remote node where the name was found.

source_addr
Specifies the source address for the remote node where the name was found.

routing_info
Specifies additional routing information.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Nb30.h.

The NetBIOS Interface Overview, Net810S Structures, FIND_NAME_HEADER, NCB

152 Volume 2 Network Protocols and Interfaces

FIND NAME HEADER - -
The FIND_NAME_HEADER structure contains information about a network name. This
structure is followed by as many FIND_NAME_BUFFER structures as are required to
describe the name.

Members
node_count

Specifies the number of nodes on which the specified name was found. This structure
is followed by the number of FIND_NAME_BUFFER structures specified by the
node_count member.

reserved
_ Reserved.

unique_group
Specifies whether the name is unique. This value is 0 to specify a unique name or 1 to
specify a group.

Remarks
The FIND_NAME_HEADER structure is pointed to by the ncb_buffer member of the
NCB structure when an application issues an NCBFINDNAME command.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Nb30.h.

The NetBIOS Interface Overview, NetBlOS Structures, FIND_NAME_BUFFER, NCB

The LANA_ENUM structure contains the numbers for the current LAN adapters.

Members
length

Chapter 10 The NetBIOS Interface 153

Specifies the number of valid entries in the array of LAN adapter numbers.

lana
Specifies an array of LAN adapter numbers.

Remarks
The LANA_ENUM structure is pointed to by the ncb_buffer member of the NCB
structure when an application issues the NCBENUM command. The NCBENUM
command is not part of the IBM NetBlOS 3.0 specification.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Nb30.h.

The NetBIOS Interface Overview, NetBIOS Structures, ~CB

The NAME_BUFFER structure contains information about a local network name. One or
more NAME_BUFFER structures follows an ADAPTER_STATUS structure when an
application specifies the NCBAST AT command in the ncb_command member of the
NCB structure.

Members
name

Specifies the local network name. This value is in the ncb_name member of the NCB
structure.

name_num
Specifies the number for the local network name. This value is in the ncb_num
member of the NCB structure.

name_flags
Specifies the current state of the name table entry. This member can be one of the
following values.

154 Volume 2 Network Protocols and Interfaces

NCB

Value

REGISTERING

REGISTERED

DEREGISTERED

DUPLICATE

DUPLICATE_DEREG

GROUP_NAME

Meaning

The name specified by the name member is being
added to the network.

The name specified by the name member has been
successfully added to the network.

The name specified by the name member has an
active session when an NCBDELNAME command is
issued. The name will be removed from the name table
when the session is closed.

A duplicate name was detected during registration.

A duplicate name was detected with a pending
deregistration.

The name specified by the name member was created
by using the NCBADDGRNAME command.

The name specified by the name member was created
by using the NCBADDNAME command.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Nb30.h.

The NetBlOS Interface Overview, NetBIOS Structures, ADAPTER_STATUS, NCB

The NCB structure represents a network control block. It contains information about the
command to perform, an optional post routine, an optional event handle, and a pointer to
a buffer that is used for messages or other data. A pointer to this structure is passed to
the Netbios function.

Chapter 10 The NetBIOS Interface 155

Members
ncb_command

Specifies the command code and a flag that indicates whether the NCB structure is
processed asynchronously. The most significant bit contains the flag. If the ASYNCH
constant is combined with a command code (by using the OR operator), the NCB
structure is processed asynchronously. The following command codes are supported.

Code

NCBACTION

NCBADDGRNAME

NCBADDNAME

NCBASTAT

NCBCALL

NCBCANCEL

NCBCHAINSEND

. NCBCHAINSENDNA

Meaning

Windows NT/2000: Enables extensions to the transport interface.
NCBACTION is mapped to TdiAction. When this code is specified, the
ncb_bUffer member pOints to a buffer to be filled with an
ACTION_HEADER structure, which is optionally followed by data.
NCBACTION commands cannot be canceled by using NCBCANCEL.

NCBACTION is not a standard NetBIOS 3.0 command.

Adds a group name to the local name table .. This name cannot be used by
another process on the network as a unique name, but it can be added by
anyone as a group name.

Adds a unique name to the local name table. The TDI driver ensures that
the name is unique across the network.

Retrieves the status of either a local or remote adapter. When this code is
specified, the ncb_buffer member pOints to a buffer to be filled with an
ADAPTER_STATUS structure, followed by an array of NAME_BUFFER
structures.

Opens a session with another name.

Cancels a previous pending command.

Sends the contents of two data buffers to the specified session partner.

Sends the contents of two data buffers to the specified session partner
and does not wait for acknowledgment.

(continued)

156 Volume 2 Network Protocols and Interfaces

(continued)

Code

NCBDELNAME

NCBDGRECV

NCBDGRECVBC

NCBDGSEND

NCBDGSENDBC

NCBENUM

NCBFINDNAME

NCBHANGUP

NCBLANSTALERT

NCBLlSTEN

NCBRECV

NCBRECVANY

NCBRESET

NCBSEND

NCBSENDNA

NCBSSTAT

Meaning

Deletes a name from the local name table.

Receives a datagram from any name.

Receives a broadcast datagram from any name.

Sends datagram to a specified name.

Sends a broadcast datagram to every host on the
Local Area Network (LAN).

Windows NT/2000: Enumerates LAN adapter (LANA) numbers. When
this code is specified, the ncb_buffer member points to a buffer to be
filled with a LANA_ENUM structure.

NCBENUM is not a standard NetBIOS 3.0 command.

Determines the location of a name on the network. When this code is
specified, the ncb_buffer member points to a buffer to be filled with a
FIND_NAME_HEADER structure followed by one or more
FIND_NAME_BUFFER structures.

Closes a specified session.

Windows NT/2000: Notifies the user of LAN failures that last for more
than one minute.

Enables a session to be opened with another name (local or remote).

Receives data from the specified session partner.

Receives data from any session corresponding to a specified name.

Resets a LAN adapter. An adapter must be reset before it can accept any
other NCB command that specifies the same number in the
ncb_lana_num member.

Use the following values to specify how resources are to be freed:

• If ncb_lsn is not OxOO, all resources associated with ncb_lana_num
are to be freed.

• If ncb_lsn is OxOO, all resources associated with ncb_lana_num are to
be freed, and new resources are to be allocated. The ncb_caliname[O]
byte specifies the maximum number of sessions, and the
nCb_caliname[2] byte specifies the maximum number of names. A
nonzero value for the ncb_callname[3] byte requests that the
application use NAME_NUMBER_1.

Sends data to the specified session partner.

Sends data to specified session partner and does not wait for
acknowledgment.

Retrieves the status of the session. When this value is specified, the
ncb_buffer member points to a buffer to be filled with a
SESSION_HEADER structure, followed by one or more
SESSION_BUFFER structures.

Chapter 10 The NetBIOS Interface 157

Code Meaning

NCBTRACE

NCBUNLINK

Activates or deactivates NCB tracing.

This command is not supported.

Unlinks the adapter.

This command is provided for compatibility with earlier versions of
NetBIOS. It has no effect in Win32.

ncb_retcode
Specifies the return code. This value is set to NRC_PENDING while an asynchronous
operation is in progress. The system returns one of the following values:

Value

NRC_GOODRET

NRC_BUFLEN

NRC_ILLCMD

NRC_CMDTMO

NRC_INCOMP

NRC_BADDR

NRC_SNUMOUT

NRC_NORES

NRC_SCLOSED

NRC_CMDCAN

NRC_DUPNAME

NRC_NAMTFUL

NRC_ACTSES

NRC_LOCTFUL

NRC_REMTFUL

NRC_ILLNN

NRC_NOCALL

NRC_NOWILD

NRC_INUSE

NRC_NAMERR

NRC_SABORT

NRC_NAMCONF

NRC_IFBUSY

Meaning

The operation succeeded.

An illegal buffer length was supplied.

An illegal command was supplied.

The command was timed out.

The message was incomplete. The application is to
issue another command.

The buffer address was illegal.

The session number was out of range.

No resource was available.

The session was closed.

The command was canceled.

A duplicate name existed in the local name table.

The name table was full.

The command finished; the name has active sessions
and is no longer registered.

The local session table was full.

The remote session table was full. The request to open
a session was rejected.

An illegal name number was specified.

The system did not find the name that was called.

Wildcards are not permitted in the ncb_name member.

The name was already in use on the remote adapter.

The name was deleted.

The session ended abnormally.

A name conflict was detected.

The interface was busy.

(continued)

158 Volume 2 Network Protocols and Interfaces

(continued)

Value

NRC_DUPENV

NRC_ENVNOTDEF

NRC_OSRESNOTAV

NRC_MAXAPPS

NRC_NOSAPS

NRC_NORESOURCES

NRC_INVADDRESS

NRC_INVDDID

NRC_LOCKFAIL

NRC_OPENERR

NRC_SYSTEM

NRC_PENDING

ncb_lsn

Meaning

Too many commands were outstanding; the
applicatiol1 can retry the command later.

The ncb_lana_num member did not specify a valid
network number.

The command finished while a cancel operation was
occurring.

The NCBCANCEL command was not valid; the
command was not canceled.

The name was defined by another local process.

The environment was not defined. A reset command
must be issued.

Operating system resources were exhausted. The
application can retry the command later.

The maximum number of applications was exceeded.

No service access points (SAPs) were available for
NetBIOS.

The requested resources were not available.

The NCB address was not valid.

This return code is not part of the IBM NetBIOS 3.0
specification and is not returned in the NCB structure.
Instead, it is returned by Netbios.

The NCB DDID was invalid.

The attempt to lock the user area failed.

An error occurred during an open operation being
performed by the device driver. This error code is not
part of the NetBIOS 3.0 specification.

A system error occurred.

An asynchronous operation is not yet finished.

Identifies the local session number. This number uniquely identifies a session within
an environment. This number is returned by Netbios after a successful NCBCALL
command.

ncb_num
Specifies the number for the local network name. This number is returned by Netbios
after a successful NCBADDNAME or NCBADDGRNAME command. This number, not
the name, must be used with all datagram commands and for NCBRECVANY
commands.

The number for NAME_NUMBER_1 is always Ox01. Netbios assigns values in the
range Ox02 to OxFE for the remaining names.

Chapter 10 The NetBIOS Interface 159

ncb_buffer
Pointer to the message buffer. The buffer must have write access. Its uses are as
follows:

Command

NCBSEND

NCBRECV

NCBSSTAT

ncb_length

Purpose

Contains the message to be sent.

Receives the message.

Receives the requested status information.

Specifies the size, in bytes, of the message buffer. For receive commands, this
member is set by the Netbios function to indicate the number of bytes received.

If the buffer length is incorrect, the Netbios function returns the NRC_BUFLEN
error code.

ncb_call name
Specifies the name of the remote application. Trailing-space characters should be
supplied to make the length of the string equal to NCBNAMSZ.

ncb_name
Specifies the name by which the application is known. Trailing-space characters
should be supplied to make the length of the string equal to NCBNAMSZ.

ncb_rto
Specifies the time-out period for receive operations, in 500-millisecond units, for the
session. A value of zero implies no time-out. Specify with the NCBCALL or
NCBLlSTEN command. Affects subsequent NCBRECV commands.

ncb_sto
Specifies the time-out period for send operations, in 500-millisecond units, for the
session. A value of zero implies no time-out. Specify with the NCBCALL or
NCBLlSTEN command. Affects subsequent NCBSEND and NCBCHAINSEND
commands.

nCb_post
Specifies the address of the post routine to call when the asynchronous command is
completed. The post routine is defined as:

NCB_POST PostRoutine(PNCB pncb);

where the pncb parameter is a pointer to the completed network control block.

ncb_lana_num
Specifies the LAN adapter number. This zero-based number corresponds to a
particular transport provider using a particular LAN adapter board.

ncb_cmd_cplt
Specifies the command complete flag. This value is the same as the ncb_retcode
member.

ncb_reserve
Reserved; must be zero.

160 Volume 2 Network Protocols and Interfaces

ncb_event
Specifies a handle to an event object that is set to the nonsignaled state when an
asynchronous command is accepted, and it is set to the signaled state when the
asynchronous command is completed. The event is signaled if the Netbios function
returns a nonzero value. Only manual reset events should be used for
synchronization. A specified event should not be associated with more than one
active asynchronous command.

The ncb_event member must be zero if the ncb_command member does not have
the ASYNCH flag set or if ncb_post is nonzero. Otherwise, Netbios returns the
NRC_ILLCMD error code.

Remarks
Using ncb_event to issue asynchronous requests requires fewer system resources than
using ncb_post. In addition, when ncb_event is nonzero, the pending request is
canceled if the thread terminates before the request is processed. This is not true for
asynchronous requests sent using ncb_post.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Nb30.h.

The NetBlOS Interface Overview, NetBIOS Structures, ACTION_HEADER,
ADAPTER_STATUS, FIND_NAME_BUFFER, FIND_NAME_HEADER, LANA_ENUM,
NAME_BUFFER, Netbios, SESSION_BUFFER, SESSION_HEADER

SESSION_BUFFER
The SESSION_BUFFER structure contains information about a local network session.
One or more SESSION_BUFFER structures follows a SESSION_HEADER structure
when an application specifies the NCBSST AT command in the ncb_command member
of the NCB structure.

Members
Isn

Chapter 10 The NetBIOS Interface 161

Specifies the local session number.

state
Specifies the state of the session. This member can be one of the following values.

Value Meaning

LISTEN_OUTSTANDING

SESSION_ESTABLISHED

HANGUP _PENDING

HANGUP _COMPLETE

SESSION_ABORTED

local_name

The session is waiting for a call from a remote
computer.

The session is attempting to connect to a remote
computer.

The session connected and is able to transfer data.

The session is being deleted due to a command by
the local user.

The session was deleted due to a command by the
local user.

The session was abandoned due to a network or user
problem.

Specifies the 16-byte NetBlOS name on the local computer used for this session.

remote_name
Specifies the 16-byte NetBIOS name on the remote computer used for this session.

revs_outstanding
Specifies the number of pending NCBRECV commands.

sends_outstanding
Specifies the number of pending NCBSEND and NCBCHAINSEND commands.

Windows NT/2000: Requires Windows NT3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Nb30.h.

The NetBIOS Interface Overview, NetBIOS Structures, NCB, SESSION_HEADER

162 Volume 2 Network Protocols and Interfaces

SESSION_HEADER
The SESSION_HEADER structure contains information about a network session. This
structure is pOinted to by the ncb_buffer member of the NCB structure.

SESSION_HEADER is followed by as many SESSION_BUFFER structures as are
required to describe the current network sessions.

Members
sess_name

Specifies the name number of the session. This value corresponds to the neb_num
member of the NCB structure.

num_sess
Specifies the number of sessions that have the name specified by the sess_name
member.

rev_dg_outstanding
Specifies the number of outstanding NCBDGRECV and NCBDGRECVBC commands.

rev_any _outstanding
Specifies the number of outstanding NCBRECVANY commands.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Nb30.h.

The NetBlOS Interface Overview, NetBIOS Structures, NCB, SESSION_BUFFER

163

CHAPTER 11

Synchronization Manager

To enable applications for mobile computing, the operating system provides a
synchronization manager (SyncMgr). Together with the connectivity functions,
notifications (System Event Notification Service), and client side caching, the SyncMgr
provides an infrastructure to support mobile computing. Instead of each application
implementing its own technology to cache and synchronize network resources for local
use, the operating system provides an integrated model that all applications can use.

To help you find the information you need, the following list describes each section of
this Synchronization Manager chapter:

• Synchronization Manager Overview offers a broad overview of SyncMgr technology,
including a discussion of mobile computing configurations where SyncMgr would be
useful.

• SyncMgr Reference lists methods and interfaces for Synchronization Manager.

Synchronization Manager Overview
The Synchronization Manager provides a centralized, standard technology for
synchronizing files for offline use on a local computer. The user can prepare a computer
for offline use by updating the needed files from the network storage. Then, when the
computer is brought back online, any offline changes can be copied back to the network.
SyncMgr provides a common user interface that all applications can share for
synchronizing their files.

Files are transferred independent of the protocol. For example, an e-mail program can
transfer its messages using SMTP, NMTP, or POP3, while a browser can use HTTP and
a database can use RPC. The protocol is transparent to the SyncMgr.

SyncMgr is also storage independent and can transfer files, e-mail messages, HTML
pages, or database information transparently.

Mobile Computing Configurations
The Synchronization Manager is useful for computers configured as follows:

• Mobile computer used in a docking station on a high bandwidth network but
occasionally used via a dial-in connection.

• Mobile computer used mostly via a dial-in connection

164 Volume 2 Network Protocols and Interfaces

• Desktop computer used strictly via a dial-in connection, such as a computer used by a
telecommuter

• Desktop computer used strictly via a high bandwidth network.

Although the last case is not a typical mobile scenario, latency issues with network
access may make it convenient to cache resources locally. In all these configurations,
the application can use the SyncMgr to keep files and other resources cached locally
and synchronized between online and offline use.

Application Scenarios
Applications and services that can use the Synchronization Manager include the
following:

• Microsoft® Office applications that need to prepare files for offline use

• Client side caching that let you cache files locally

• Browsers that can cache HTML pages locally

• Mail programs that can cache e-mail messages locally

• Databases that can store information locally

Synchronization Manager Architecture
The Synchronization Manager includes user interface components, such as the tabbed
dialogs in the SyncMgr service, error dialogs, and progress dialogs. With the user
interface components the end user can schedule applications for synchronization and
set up automatic synchronization to occur in conjunction with specified system events.
For example, the SyncMgr can be invoked at user logon or system shutdown. The user
can also invoke a manual synchronization.

The user selects an application and specifies the items within the application to be
synchronized and sets a trigger event. For example, within an e-mail application, the
Inbox, the Outbox, or some other folder containing messages can be a separate item for
the application.

SyncMgr also includes a programming interface so that applications can register to use
synchronization features, can process errors, and can receive progress information and
notifications during the synchronization process.

Using Synchronization Manager from a Program
To enable your application to work with the Sychronization Manager you must implement
a COM object to handle synchronization notifications that you receive from SyncMgr.
Your application's handler performs the synchronization for the items that you handle.
Included in your handler, you must implement the ISyncMgrSynchronize interface.
Also, you must provide an enumerator object and ISyncMgrEnumltems for any
separate items that your application can synchronize.

Chapter 11 Synchronization Manager 165

SyncMgr implements ISyncMgrSynchronizeCaliback and
ISyncMgrSynchronizelnvoke.

The SyncMgr calls methods in your ISyncMgrSynchronize to get information on the
items that your application handles and information on the handler that you provide for
synchronizing these items.

At runtime, the synchronization process follows these steps:

1. SyncMgr notifies your application that it is time for synchronization to occur for one of
the items that your application handles by calling your
ISyncMgrSynchronize::lnitialize method.

2. SyncMgr calls ISyncMgrSynchronize::EnumSyncMgrltems to obtain the
ISyncMgrEnumltems interface for the items handled by your application.

3. SyncMgr calls ISyncMgrSynchronize::SetProgressCaliback to provide your
handler with the interface pointer for the ISyncMgrSynchronizeCaliback interface.
Your handler uses this interface to call back to the SyncMgr during synchronization.

4. SyncMgr then calls your ISyncMgrSynchronize::PrepareForSync method to give
your handler a chance to display any user interface element that is necessary before
synchronization begins. For example, an e-mail application may display a user logon
dialog.

5. Your handler calls ISyncMgrSynchronizeCaliback::EnableModeless before and
after displaying any user interface elements. Your handler calls
ISyncMgrSynchronizeCaliback::PrepareForSyncCompleted when you are done.

6. SyncMgr calls your ISyncMgrSynchronize::Synchronize method to start the
synchronization.

During the synchronization process, SyncMgr continues to call methods in your
ISyncMgrSynchronize interface. It can send your handler errors, progress, and
notifications. It can also enumerate through the items that your application handles or
allow your application to show properties for the items.

Your handler calls methods in ISyncMgrSynchronizeCaliback to determine if an item
should be skipped, to log errors, and to post progress information during' the
synchronization process.

For further information, see the related reference pages for the interfaces involved.

When the synchronization is completed, your handler calls
ISyncMgrSynchronizeCallback::SynchronizeCompleted.

166 Volume 2 Network Protocols and Interfaces

SyncMgr Reference
This section lists the following methods and interfaces for Synchronization Manager:

• ISyncMgrEnumltems

• ISyncMgrSynchronize

• ISyncMgrSynchronizeCaliback

• ISyncMgrSynchronizelnvoke

• ISyncMgrRegister

ISyncMgrEnu~ltems
The ISyncMgrEnumltems interface is used to enumerate through an array of
SYNCMGRITEM structures. Each of these structures provides information on an item
that can be synchronized. ISyncMgrEnumltems has the same methods as all standard
enumerator interfaces: Next, Skip, Reset, and Clone. For general information on these
methods, refer to IEnumXXXx.

When to Implement

If the registered application works with the Synchronization Manager to synchronize
items, it must implement an enumerator object with this interface to enumerate through
the items.

When to Use
The SyncMgr obtains a pOinter to this interface and calls each method during the
synchronization process.

The prototypes of the methods are as follows:

Remarks
ISyncMgrEnumltems::Next

Chapter 11 Synchronization Manager 167

Enumerates the next celt elements in the enumerator's list, returning them in rgelt
along with the actual number of enumerated elements in pceltFetched.

E_NOTIMPL is not allowed as a return value. If an error value is returned, no entries
in the rgelt array are valid on exit and require no release.

ISyncMgrEnumltems::Skip
Instructs the enumerator to skip the next celt elements in the enumeration so the next
call to ISyncMgrEnumltems::Next does not return those elements.

ISyncMgrEnumltems:: Reset
Instructs the enumerator to position itself at the beginning of the list of elements.

There is no guarantee that the same set of elements are enumerated on each pass
through the list, nor are the elements necessarily be enumerated in the same order.
The exact behavior depends on the collection being enumerated. It is too expensive in
terms of memory for some collections, such as files in a directory, to maintain a
specific state.

ISyncMgrEnumltems: :Clone
Creates another items enumerator with the same state as the current enumerator to
iterate over the same list. This method makes it possible to record a point in the
enumeration sequence in order to return to that point at a later time.

The caller mustrelease this new enumerator separately from the first enumerator.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet
Explorer 5 or later).
Windows 95/98: Requires Windows 95 or later (with Internet Explorer 5 or later).
Header: Declared in Mobsync.h.

SYNCMGRITEM

168 Volume 2 Network Protocols and Interfaces

ISyncMgrSynchronize
The ISyncMgrSynchronize interface enables the registered application or service to
receive notifications from the Synchronization Manager.

When to Implement

This interface should be implemented on the registered application's handler to receive
notifications from the SyncMgr and to partiCipate in the synchronization process.

When to Use

The SyncMgr calls the methods of this interface to send notifications to the registered
application or service during synchronization.

Methods in Vtable Order
. IUnknown methods

Querylnterface

AddRef

Release

ISyncMgrSynchronize
methods

Initialize

GetHandlerlnfo

EnumSyncMgrltems

GetltemObject

ShowProperties

SetProgressCaliback

PrepareForSync

Synchronize

SetltemStatus .

ShowError

Description

Returns pointers to supported interfaces.

Increments reference count.

Decrements reference count.

Description

Determines whether the registered application handles the
synchronization event.

Called by SyncMgr to obtain handler information.

Called by SyncMgr to obtain the enumeration interface for
the items maintained by the registered application.

Called by SyncMgr to obtain an interface on the requested
server's Items.

Called by SyncMgr when the item is selected in the Choice
dialog box and the user clicks the Properties button.

Called by SyncMgr to set the
ISyncMgrSynchronizeCaliback interface.

Called by SyncMgr to give the registered application a
chance to show any user interface and do any necessary
initialization before calling the Synchronize method.

Called by SyncMgr once for each selected group after the
user has selected applications for synchronization.

Called by SyncMgr to set the status of an item being
synchronized.

Called by SyncMgr to set an error status for the item being
synchronized.

Chapter 11 Synchronization Manager 169

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet
Explorer 5 or later).
Windows 95/98: Requires Windows 95 or later (with Internet Explorer 5 or later).
Header: Declared in Mobsync.h.

ISyncMgrEnumltems, ISyncMgrSynchronizeCallback, ISyncMgrSynchronizelnvoke

ISyncMgrSynchronize::lnitialize
The Synchronization Manager calls the ISyncMgrSynchronize::lnitialize method in the
registered application's handler to determine whether the handler will process the
synchronization event.

Parameters
dwReserved

[in] Reserved; must be zero.

dwSyncMgrFJags
[in] Specifies the SYNCMGRFLAG enumeration values that describe how the
synchronization event was initiated.

cbCookie
[in] Specifies the size in bytes of the JpCookie data.

JpCookie
[in] Points to the token identifying the application. This token was passed when the
application programmatically invoked SyncMgr.

Return Values
This method supports the standard return values, E_INVALIDARG, E_UNEXPECTED,
and E_OUTOFMEMORY, as well as the following:

S_OK
Initialization was successful.

S_FALSE
Application handler will not process the synchronize event.

170 Volume 2 Network Protocols and Interfaces

Remarks
The SYNCMGRFLAG enumeration values apply through the lifetime of the
ISyncMgrSynchronize interface and are used by the other ISyncMgrSynchronize
methods.

If the application does not recognize the SYNCMGRFLAG event, the application should
treat the event as a manual synchronization.

The registered application's handler cannot display a user interface within this call unless
it is the very first time the initialize method is called. The application is allowed to display
anyone-time initialization it needs to set up items and introduce the user to the
application's feature. If you need to display a user interface for any other reason as part
of the synchronization process, you can do so in the
ISyncMgrSynchronize:: PrepareForSync method.

IpCookie is NULL unless the handling application invoked the Synchronization Manager
programmatically using ISyncMgrSynchronizelnvoke::Updateltems. In this case the
CLSID is that of the handling application and the value of IpCookie is passed in by the
handling application and is passed back by SyncMgr during synchronization for context.
IpCookie is only meaningful if SYNCMGRFLAG_INVOKE is set.

Windows NTl2000: Requires Windows 2000 (or Windows NT 4.0 with Internet
Explorer 5 or later).
Windows 95/98: Requires Windows 95 or later (with Internet Explorer 5 or later).
Header: Declared in Mobsync.h.

ISyncMgrSynchronize:: PrepareForSync,
ISyncMgrSynchronizelnvoke::Updateltems, SYNCMGRFLAG

ISyncMgrSynch ron ize: : GetHand lerl nfo
The ISyncMgrSynchronize::GetHandlerlnfo method obtains handler information.

Parameters
ppSyncMgrHandlerlnfo

[out] Returns a pointer to a SYNCMGRHANDLERINFO structure.

Chapter 11 Synchronization Manager 171

Return Values
This method supports the standard return values, E_INVALIDARG, E_UNEXPECTED,
and E_OUTOFMEMORY, as well as the following:

S_OK
Handler information was returned successfully.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet
Explorer 5 or later).
Windows 95/98: Requires Windows 95 orlater (with Internet Explorer 5 or later).
Header: Declared in Mobsync.h.

SYNCMGRHANDLERINFO

ISyncMgrSynchronize:: EnumSyncMgrltems
This method obtains the ISyncMgrEnumltems interface for the items handled by the
registered application.

Parameters
ppSyncMgrEnumltems

[out] Address of variable that receives a pointer to a valid ISyncMgrEnumltems
interface.

Return Values
This method supports the standard return values, E_INVALIDARG, E_UNEXPECTED,
and ~OUTOFMEMORY, as well as the following.

S_OK
The enumeration interface was successfully returned.

S_SYNCMGR_MISSINGITEMS
The enumeration interface object is successfully returned but some items are missing.
When this success code is returned SyncMgr does not remove any stored
preferences for Item Ids that were not returned in the enumerator.

172 Volume 2 Network Protocols and Interfaces

Remarks
The enumeration object created by this method implements the ISyncMgrEnumltems
interface, a standard enumeration interfaces that contains the Next, Reset, Clone, and
Skip methods.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet
Explorer 5 or later).
Windows 95/98: Requires Windows 95 or later (with Internet Explorer 5 or later).
Header: Declared in Mobsync.h.

ISyncMgrEnumltems

ISyncMgrSynchronize: :GetltemObject
The ISyncMgrSynchronize::GetltemOl'>ject method obtains an interface on a specified
item handled by the registered application.

Parameters
ltemlD

[in] Identifier for the requested item.

riid
[in] Identifier for the requested interface.

ppv
[out] Address of a variable that receives a pointer to the requested interface.

Return Values
E_NOTIMPL

The requested interface was not found.

Chapter 11 Synchronization Manager 173

Remarks
This method is for future use. There are currently no interfaces defined on an Item.
Application implementers must return E_NOTIMPL from this method.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet
Explorer 5 or later).
Windows 95/98: Requires Windows 95 or later (with Internet Explorer 5 or later).
Header: Declared in Mobsync.h.

ISyncMgrSynchronize: :ShowProperties
The ISyncMgrSynchronize::ShowProperties method is called by the Synchronization
Manager when the user selects an item in the choice dialog box and clicks the properties
button.

Parameters
hWndParent

[in] Specifies the parent hWnd for any user interface the registered application
displays to set properties. This value may be NULL.

ltemID
[in] Identifies the item for which properties are requested.

Return Values
This method supports the standard return values, E_INVALIDARG, E_UNEXPECTED,
and E_OUTOFMEMORY, as well as the following: .

S_OK
Properties dialog for this item was handled properly.

Remarks
If a registered application provides a properties dialog box for an item, it must set the
SYNCMGRITEM_HASPROPERTIES bit in the dwFlags member of the SYNCMGRITEM
structure.

If ItemID is GUID_NULL the handler should show the Properties dialog for the overall
handler.

174 Volume 2 Network Protocols and Interfaces

The appearance of the displayed dialog box should be consistent with a standard
Property Page dialog box.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet
Explorer 5 or later).
Windows 95/98: Requires Windows 95 or later (with Internet Explorer 5 or later).
Header: Declared in Mobsync.h.

SYNCMGRITEM, SYNCMGRITEMFLAGS

ISyncMgrSynchronize: :SetProgressCaliback
The ISyncMgrSynchronize::SetProgressCaliback method sets the
ISyncMgrSynchronizeCaliback interface. Registered applications use this callback
interface to give status information from within the
ISyncMgrSynchronize:: PrepareForSync and ISyncMgrSynchronize: :Synchronize
methods.

Parameters
pSyncCallBack

[in] Pointer to ISyncMgrSynchronizeCaliback interface the registered application
uses to provide feedback to SyncMgr about the synchronization status and to notify
SyncMgr when the synchronization is complete.

Return Values
This method supports the standard return values, E_INVALIDARG, E_UNEXPECTED,
and E_OUTOFMEMORY, as well as the following:

S_OK
Synchronization callback interface was successfully set.

Remarks
Registered applications must call the Add Ref method in the
ISyncMgrSynchronizeCallback interface and use it when calling SyncMgr to provide
status text and progress indicator feedback.

Chapter 11 Synchronization Manager 175

If the registered application already has an ISyncMgrSynchronizeCaliback interface
when the method is called, the old interface must be released and the Add Ref method
of the new interface must be called. The new interface must be maintained by the
registered application.

Before the ISyncMgrSynchronize interface is released, SyncMgr calls this method with
pSyncCa/l8ack parameter set to NULL. The registered application should then release
the pSyncCa/lback interface previously passed.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet
Explorer 5 or later).
Windows 95/98: Requires Windows 95 or later (with Internet Explorer 5 or later).
Header: Declared in Mobsync.h.

ISyncMgrSynchronizeCallback

ISyncMgrSynchronize:: PrepareForSync
The ISyncMgrSynchronize::PrepareForSync method allows the registered application
to display any user interface and perform any necessary initialization before the
ISyncMgrSynchronize::Synchronize method is called. For example, an application
such as the Microsoft® Outlook® e-mail client may need to display the password dialog
box to enable the user to log onto the mail server.

Parameters
cbNum/tems

[in] Number of items in the Item/d array pointed to by pltem/Ds.

pltemlDs
[in] Array of Item/Os the user has chosen to synchronize.

hWndParent
[in] Handle to the parent hWndthat the registered application should use for any user
interface element displayed. This value may be NULL.

dwReserved
[in] Reserved. Registered applications should ignore this value.

176 ,Volume 2 Network Protocols and Interfaces

Return Values
This method supports the standard return values, E_INVALIDARG, E_UNEXPECTED,
and E_OUTOFMEMORY, as well as the following:

S_OK
Preparation was successful.

Remarks
The registered application's handler should return from this method as soon as possible
and then call the ISyncMgrSynchronizeCallback::PrepareForSyncCompleted
method. It is possible for the registered application's handler to call the
ISyncMgrSynchronizeCallback::PrepareForSyncCompleted method before returning
from this method.

Registered applications should only show a user interface if the
SYNCMGRFLAG_MAYBOTHERUSER flag was set in the dwSyncF/ags parameter of
the ISyncMgrSynchronize::lnitialize method. If a registered application cannot prepare
for synchronization without showing a user interface when the
SYNCMGRFLAG_MAYBOTHERUSER flag is not set it should return S_FALSE from this
method.

The array of Item/Os that are passed into this method are relevant to the
ISyncMgrSynchronize: :Synchronize method also.

The ISyncMgrSynchronizeCaliback methods can be called on any thread in the
registered application.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet
Explorer 5 or later).
Windows 95/98: Requires Windows 95 or later (with Internet Explorer 5 or later).
Header: Declared in Mobsync.h.

ISyncMgrSynchronize: :Synchronize, ISyncMgrSynchronize:: Initialize,
ISyncMgrSynchronizeCallback::PrepareForSyncCompleted,
ISyncMgrSynchronizeCallback, SYNCMGRFLAG

ISyncMgrSynchronize: :Synchronize
The Synchronization Manager calls the ISyncMgrSynchronize::Synchronize method
once for each selected group after the user has chosen the registered applications to be
synchronized.

Parameters
hWndParent

Chapter 11 Synchronization Manager 177

[in] Handle to the parent hWndthe registered application should use for any user
interface elements that it displays. This value may be NULL.

Return Values
This method supports the standard return values, E_INVALIDARG, E_UNEXPECTED,
and E_OUTOFMEMORY, as well as the following:

S_OK
Synchronization was successful.

E_FAIL
Synchronization failed.

Remarks
If the user does not select any item choices for the registered application, the
ISyncMgrSynchronize::Synchronize method is not called and the interface is
released. If this method is called, the application must synchronize the items that were
specified in the ISyncMgrSynchronize::PrepareForSync method.

The registered application's handler should return from the
ISyncMgrSynchronize::Synchronize method as soon as possible and then call the
ISyncMgrSynchronizeCallback::SynchronizeCompleted method. It is acceptable for
the handler to call the ISyncMgrSynchronizeCallback::SynchronizeCompleted call
before returning from the ISyncMgrSynchronize::Synchronize method.

The application must give progress feedback and check whether the synchronization
should be canceled by using the pSyncCallBack interface pOinter that was setup in the
ISyncMgrSynchronize::SetProgressCallback method.

Applications must provide progress information even if the
SYNCMGRFLAG_MAYBOTHERUSER was not specified in
ISyncMgrSynchronize::lnitialize.,

Applications should attempt not to show user interface elements from within the
ISyncMgrSynchronize::Synchronize method. Any user interface elements should be
shown in the ISyncMgrSynchronize::PrepareForSync and
ISyncMgrSynchronize::ShowError methods so the end user experiences a consistent
user interface which is limited to logon and to specifying shares to be synchronized.
Subsequently, the synchronization can be performed without any user intervention. After
the synchronization is complete, conflicts or other error messages can be shown.

178 Volume 2 Network Protocols and Interfaces

The ISyncMgrSynchronizeCaliback methods can be called on any thread in your
application.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet
Explorer 5 or later).
Windows 95/98: Requires Windows 95 or later (with Internet Explorer 5 or later).
Header: Declared in Mobsync.h.

ISyncMgrSynchronize:: Initialize, ISyncMgrSynchronize:: PrepareForSync,
ISyncMgrSynchronize::SetProgressCallback, ISyncMgrSynchronize::ShowError,
ISyncMgrSynchronizeCaliback::SynchronizeCompleted .

ISyncMgrSynch ron ize: : SetitemStatu5
The Synchronization Manager calls the ISyncMgrSynchronize::SetltemStatus method
in a registered application's handler to change the status of an item either between the
time the handler has returned from the ISyncMgrSynchronize::PrepareForSync
method and called the ISyncMgrSynchronizeCaliback::PrepareForSyncCompleted
callback method or after the handler has returned from the
ISyncMgrSynchronize: :Synchronize method but has not yet called the
ISyncMgrSynchronizeCaliback: :SynchronizeCompleted callback method.

Parameters
pltemlD

[injldentifies the item with changed status.

dwSyncMgrStatus
[inj New status for the specified item taken from the SYNCMGRSTATUS
enumeration.

Return Values
This method supports the standard return values, E_INVALIDARG, E_UNEXPECTED,
and E_OUTOFMEMORY, as well as the values on the next page.

Chapter 11 Synchronization Manager 179

S_OK
Status was set.

Remarks
Currently, the only SYNCMGRSTATUS status value supported by the SyncMgr is
SYNCMGRSTATUS_SKIPPED. The registered application's handler should skip the
item specified in pltemlD when it receives this status value.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet
Explorer 5 or later).
Windows 95/98: Requires Windows 95 or later (with Internet Explorer 5 or later).
Header: Declared in Mobsync.h.

ISyncMgrSynchronize:: PrepareForSync,
ISyncMgrSynchronize::SetProgressCallback, ISyncMgrSynchronize::Synchronize,
ISyncMgrSynchronizeCallback::PrepareForSyncCompleted,
ISyncMgrSynchronizeCaliback: :SynchronizeCompleted, SYNCMG RST ATUS

ISyncMgrSynchronize: :ShowError
The Synchronization Manager calls the ISyncMgrSynchronize::ShowError method in a
registered application's handler when the user double-clicks on the associated message
in the error tab.

Parameters
hWndParent

[in] Handle to the parent hWndtthe registered application should use to display the
user interface. This value may be NULL.

dwErrorlD
[in] Error identifier associated with this error message. The ErrorlD value is passed in
the ISyncMgrSynchronizeCaliback::logError method.

180 Volume 2 Network Protocols and Interfaces

Return Values
This method supports the standard return values, E_INVALIDARG, E_UNEXPECTED,
and E_OUTOFMEMORY, as well as the following:

S_OK
Call completed successfully.

Remarks
Handlers should return as soon as possible from this method and call the
ISyncMgrSynchronizeCaliback::ShowErrorCompleted method. It is acceptable for
the handler to make a call to ISyncMgrSynchronizeCaliback::ShowErrorCompleted
before returning from this method. If a handler returns a failure code from this method, it
should not call the ISyncMgrSynchronizeCaliback::ShowErrorCompleted method.

Applications may display user interface elements in this method even if the
SYNCMGRFLAG_MA YBOTHERUSER was not set in the dwSyncFlags parameter of
the ISyncMgrSynchronize::lnitialize method. Applications must still call
ISyncMgrSynchronizeCaliback::EnableModeless and check the return code before
showing user interface.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet
Explorer 5 or later).
Windows 95/98: Requires Windows 95 or later (with Internet Explorer 5 or later).
Header: Declared in Mobsync.h.

ISyncMgrSynchronizeCallback:: EnableModeless,
ISyncMgrSynchronizeCallback: :LogError,
ISyncMgrSynchronizeCallback::ShowErrorCompleted,
ISyncMgrSynchronize::lnitialize, SYNCMGRFLAG

ISyncMgrSynchronizeCallback
The ISyncMgrSynchronizeCaliback interface manages the synchronization process.

When to Implement

This interface is implemented by the Synchronization Manager to receive status, error,
and progress information and display the user interface during the synchronization
process.

Chapter 11 Synchronization Manager 181

When to Use

Applications should call the methods of this interface as often as possible and must call it
before starting each new ItemlD to check whether the user has canceled an
individual item.

Methods in Vtable Order
IUnknown methods Description

Querylnterface Returns pointers to supported interfaces.

AddRef Increments reference count.

Release Decrements reference count.

ISyncMgrSynchronizeCallback
methods Description

Progress Updates the progress information and determines if
the operation should continue.

ShowPropertiesCompleted Must by called by the handler before or after its
ShowProperties method is complete.

PrepareForSyncCompleted Must be called by the handler when its
PrepareForSync method is complete.

SynchronizeCompleted Must be called by the application when its
Synchronize method is complete.

ShowErrorCompleted Must be called by the handler before or after its
PrepareForSync method is complete.

EnableModeless Must be called by the application before and after
any dialog boxes are displayed from within the
PrepareForSync and Synchronize methods.

Log Error Called by the application to log an information,
warning, or error message into the Error tab on the
SyncMgr status dialog.

DeleteLogError Called by the handler to delete a previously logged
Errorlnformation, warning, or error message in the
error tab on the SyncMgr status dialog box.

EstablishConnection Called by the handler when it requires the system
to establish a network a network connection.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet
Explorer 5 or later). '
Windows 95/98: Requires Windows 95 or later (with Internet Explorer 5 or later).
Header: Declared in Mobsync.h.

182 Volume 2 Network Protocols and Interfaces

ISyncMgrSynchronize

ISyncMgrSynchronizeCaliback:: Progress
The registered application calls the ISyncMgrSynchronizeCaliback::Progress method
to update the progress information and determine whether the operation should
continue.

Parameters
pltemlD

[in] Item identifier for the item being updated.

IpSyncProgtessltem
[in] Pointer to a SYNCMGRPROGRESSITEM structure containing the updated
progress information.

Return Values
S_OK

Continues the synchronization.

S_SYNCMGR_CANCELITEM
Cancel the synchronization on the specified ltemlD as soon as possible.

S_SYNCMGR_CANCELALL
Cancel the synchronization on all items associated with this application as soon as
possible.

Remarks
Registered applications should call this to provide normal feedback even when the
SYNCMGRFLAG_MAYBOTHERUSER flag has been set.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet
Explorer 5 or later).
Windows 95/98: Requires Windows 95 or later (with Internet Explorer 5 or later).
Header: Declared in Mobsync.h.

Chapter 11 Synchronization Manager 183

SYNCMGRFLAG, SYNCMGRPROGRESSITEM

ISyncMgrSynchronizeCallback::ShowPropertiesCompleted
The registered application's handler must call the
ISyncMgrSynchronizeCaliback: :ShowPropertiesCompleted method before or after
its ShowProperties operation is completed.

Parameters
hrResult

[in] indicates whether the ISyncMgrSynchronize::ShowProperties was successful.

Return Values
S_OK

Call was completed successfully.

Remarks
. It is acceptable for the registered application's handler to call this method before

returning from the ISyncMgrSynchronize::ShowProperties method.

This method shoUld not be called if the registered application's handler does not return a
success code from the ISyncMgrSynchronize::ShowProperties method.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet
Explorer 5 or later).
Windows 95/98: Requires Windows 95 or later (with Internet Explorer 5 or later).
Header: Declared in Mobsync.h.

ISyncMgrSynchronize: :ShowProperties

184 Volume 2 Network Protocols and Interfaces

ISyncMgrSynchronizeCallback:: PrepareForSyncCompleted
The registered application's handler must call the
ISyncMgrSynchronizeCaliback:: PrepareForSyncCompleted method after the
ISyncMgrSynchronize::PrepareForSync method has completed execution.

Parameters
hr

[in] Return value of the ISyncMgrSynchronize::PrepareForSync method. If S_OK is
returned, SyncMgr calls ISyncMgrSynchronize::Synchronize for the item. If the
HRESULT is set to anything other than S_OK, SyncMgr releases the handler without
calling the ISyncMgrSynchronize::Synchronize method.

Return Values
S_OK

Call was completed successfully.

Remarks
A registered application's handler should return as soon as possible from the
ISyncMgrSynchronize::PrepareForSync method and then call this method to notify the
SyncMgr that the registered application is preparing for synchronization.

It is acceptable for the registered application's handler to call this method before
returning from the ISyncMgrSynchronize::PrepareForSync method.

The registered application's handler should not call this method if the
ISyncMgrSynchronize::PrepareForSync method returns any value other than S_OK.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet
Explorer 5 or later).
Windows 95/98: Requires Windows 95 or later (with Internet Explorer 5 or later).
Header: Declared in Mobsync.h.

ISyncMgrSynchronize:: PrepareForSync, ISyncMgrSynchronize: :Synchronize

Chapter 11 Synchronization Manager 185

ISyncMgrSynchronizeCallback: :SynchronizeCompleted
The application must call the ISyncMgrSynchronizeCaliback::SynchronizeCompleted
method when its ISyncMgrSynchrenize::Synchronize method has completed
execution.

Parameters
hr

[in] Returned result from the ISyncMgrSynchronize::Synchronize method.

Return Values
S_OK

Call was completed successfully.

Remarks
A registered application's handler should return from the
ISyncMgrSynchronize::Synchronize method as soon as possible and then call this
method to notify the SyncMgr that the synchronization process has completed.

It is acceptable for the registered application's handler to call this method before
returning from the ISyncMgrSynchronize::Synchronize method.

The registered application's handler should not call this method if the
ISyncMgrSynchronize::Synchronize method returns any value other than S_OK.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet
Explorer 5 or later).
Windows 95/98: Requires Windows 95 or later (with Internet Explorer 5 or later).
Header: Declared in Mobsync.h.

ISyncMgrSynchronize: :Synchronize

186 Volume 2 Network Protocols and Interfaces

ISyncMgrSynchronizeCallback:: EnableModeless
The registered application must call the
ISyncMgrSynchronizeCaliback::EnableModeless method before and after any dialog
boxes are displayed from within the ISyncMgrSynchronize::PrepareForSync and
ISyncMgrSynchronize: :Synchronize methods.

Parameters
tEnable

[in] TRUE if the registered application is requesting permission to display a dialog box
or FALSE if the registered application has finished displaying a dialog box.

Return Values
S_OK

Continue the synchronization.

S_FALSE
The dialog box should not be displayed.

Remarks
To request permission to display a dialog box, the registered application first calls
ISyncMgrSynchronize::EnableModeless with tEnable set to TRUE. If S_OK is
returned, the registered application may display the dialog box. Once the dialog box has
been displayed, the registered application must call
ISyncMgrSynchronize::EnableModeless with tEnable set to FALSE to notify SyncMgr
that other items may now display user interface elements.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet
Explorer 5 or later). .
Windows 95/98: Requires Windows 95 or later (with Internet Explorer 5 or later).
Header: Declared in Mobsync.h.

ISyncMgrSynchronize:: PrepareForSync, ISyncMgrSynchronize: :Synchronize

Chapter 11. Synchronization Manager 187

ISyncMg rSynchron izeCal1 back: : Log Error
The registered application calls the ISyncMgrSynchronizeCallback::LogError method
by the to log an information, warning, or error message into the error tab on the
Synchronization Manager status dialog box.

Parameters
dwErrorLevel

[in] Indicates the error level. Values are taken from the SYNCMGRLOGLEVEL
enumeration.

IpcErrorText
[in] Pointer to error text to be displayed in the Error tab.

IpSyncLogError
[in] Pointer to the SYNCMGRLOGERRORINFO structure containing additional error
information. Registered applications that do not provide this data can pass NULL.

Return Values
This method supports the standard return values, E_INVALIDARG, E_UNEXPECTED,
and E_OUTOFMEMORY, as well as the following:

S_OK
The error information was successfully logged.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet
Explorer 5 or later).
Windows 95/98: Requires Windows 95 or later (with Internet Explorer 5 or later).
Header: Declared in Mobsync.h.

SYNCMGRLOGLEVEL, SYNCMGRLOGERRORINFO

188 Volume 2 Network Protocols and Interfaces

ISyncMgrSynchronizeCallback::ShowErrorCompleted
The registered application's handler must call the
ISyncMgrSynchronizeCaliback::ShowErrorCompleted method before or after its
ISyncMgrSynchronize::PrepareForSync operation has been completed.

Parameters
hrResult

[in] indicates whether ISyncMgrSynchronize::ShowError was successful. This value
is S_SYNCMGR_RETRYSYNC if the registered application's handler requires
SyncMgr to retry the Synchronization. When this value is returned to SyncMgr both
the ISyncMgrSynchronize::PrepareForSync and
ISyncMgrSynchronize::Synchronize methods are called again.

cbNumltems
[in] Indicates the number of Item Ids in the pltemlDs parameter. This parameter is
ignored unless hrResult is S_SYNCMGR_RETRYSYNC.

pltemlDs
[in] pOinter to array of Item Ids to pass to ISyncMgrSynchronize::PrepareForSync in
the event of a retry. This parameter is ignored unless hrResult is
S_SYNCMGR_RETRYSYNC.

Return Values
S_OK

The operation completed successfully.

Remarks
pltemlDs is an [in] parameter and the calling function owns the memory pOinted to by
pltemlDs. SyncMgr makes a copy of the array before returning.

The registered application's handler should return from the
ISyncMgrSynchronize::ShowError method as soon as possible and then call this
method to notify SyncMgr that it has completed processing the
ISyncMgrSynchronize::ShowError call.

It is acceptable for the registered application's handler to call this method before
returning from the ISyncMgrSynchronize::ShowError method.

The registered application's handler should not call this method unless a success code is
returned from the ISyncMgrSynchronize::Showerror method.

Chapter 11 Synchronization Manager 189

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet
Explorer 5 or later).
Windows 95/98: Requires Windows 95 or later (with Internet Explorer 5 or later).
Header: Declared in Mobsync.h.

ISyncMgrSynchronize: :ShowError

ISyncMgrSynchronizeCallback:: DeleteLogError
The registered application's handler calls the
ISyncMgrSynchronizeCaliback::DeleteLogError method to delete a previously logged
Errorlnformation, warning, or error message in the error tab on the Synchronization
Manager status dialog box.

Parameters
ErrorlD

[in] Identifies LogError to be deleted. If ErrorlD is GUID_NULL all errors logged by the
instance of the registered application's handler will be deleted.

dwReserved
[in] Reserved for future use. Must be set to zero.

Return Values
This method supports the standard return values E_INVALIDARG, E_UNEXPECTED,
and E_OUTOFMEMORY, as well as the following:

S_OK
The item was successfully deleted from the log.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet
Explorer 5 or later).
Windows 95/98: Requires Windows 95 or later (with Internet Explorer 5 or later).
Header: Declared in Mobsync.h.

190 Volume 2 Network Protocols and Interfaces

ISyncMgrSynch ron izeCallback: : Establ ishCon nection
The registered application's handler calls the
ISyncMgrSynchronizeCaliback::EstablishConnection method when a network
connection is required.

Parameters
Ipw5zConnection

[in] Identifies the name of the connection to dial.

dwReserved
[in] Reserved for future use. Must be set to zero.

Return Values
This method supports the standard return values E_INVALIDARG, E_UNEXPECTED,
and E_OUTOFMEMORY, as well as the following:

S_OK
The connection was successfully established.

Remarks
SyncMgr should use the default autodial connection if IpwszConnection is NULL.

When an instance of EstablishConnection is called by a handler then SyncMgr tries to
establish the connection If a subsequent EstablishConnection is called then SyncMgr
attempts the new connection without hanging up the previous connection. All
connections remain until all handlers have finished synchronizing. After all handlers have
synchronized, then any opened connections are closed by SyncMgr.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet
Explorer 5 or later).
Windows 95/98: Requires Windows 95 or later (with Internet Explorer 5 or later).
Header: Declared in Mobsync.h.

Chapter 11 Synchronization Manager 191

ISyncMgrSynchronizelnvoke
The ISyncMgrSynchronizelnvoke interface enables a registered application to invoke
the Synchronization Manager to update items.

When to Implement

This interface is implemented by SyncMgr.

When to Use

A registered application calls the methods of this interface to update all items or to
update specific items.

Methods in Vtable Order
IUnknown methods Description

Querylnterface Returns pointers to supported interfaces.

Add Ref Increments reference count.

Release Decrements reference count.

ISyncMgrSynchronizelnvoke methods Description

Updateltems Updates the specified items

UpdateAIi Updates all items

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet
Explorer 5 or later).
Windows 95/98: Requires Windows 95 or later (with Internet Explorer 5 or later).
Header: Declared in Mobsync.h.

ISyncMgrSynchronizelnvoke:: Updateltems
The ISyncMgrSynchronizelnvoke::Updateltems method programmatically starts an
update for the specified items.

192 Volume 2 Network Protocols and Interfaces

Parameters
dw/nvokeF/ags

[in] Specifies how item should be invoked using the SYNCMGRINVOKEFLAGS
enumeration values.

re/sid
[in] CLSID of the registered application that should be invoked to handle the Update.

ebCookie
[in] Size in bytes of /pCookie data.

/pCookie
[in] Pointer to the private token that SyncMgr uses to identify the application. This
token is passed in the ISyncMgrSynchronize::lnitialize method.

Return Values
This method supports the standard return values, E_INVALIDARG, E_UNEXPECTED,
and E_OUTOFMEMORY, as well as the following:

S_OK
The synchronization was successfully updated.

E_FAIL
Errors occurred during the synchronization update.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet
Explorer 5 or later).
Windows 95/98: Requires Windows 95 or later (with Internet Explorer 5 or later).
Header: Declared in Mobsync.h.

ISyncMgrSynchronize::lnitialize, SYNCMGRINVOKEFLAGS

ISyncMg rSynch ron izel nvoke:: U pdateAl1
The ISyncMgrSynchronizelnvoke::UpdateAIi method programmatically starts an
update for all items.

Return Values
S_OK

Call was completed successfully.

Chapter 11 Synchronization Manager 193

Remarks
This method returns immediately and the Synchronization Manager performs the
synchronizations in a separate process from the calling application.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet
Explorer 5 or later).
Windows 95198: Requires Windows 95 or later (with Internet Explorer 5 or later).
Header: Declared in Mobsync.h.

ISyncMgrRegister
An application can register with the Synchronization Manager either through the
ISyncMgrRegister interface or by registering directly in the registry.

The handler must be a standard OLE server. It must register the standard OLE keys for
an InProc OLE server in addition to the SyncMgr key.

IUnknown methods Description

Querylnterface

Add Ref

Release

ISyncMgrRegister methods

RegisterSyncMgrHandler

UnregisterSyncMgrHandler

GetHandlerRegistrationlnfo

Returns pOinter to supported interfaces.

Increments reference count.

Decrements reference count.

Description

A handler calls this to register with SyncMgr
when it has items to synchronize

A handler calls this to indicate it no longer has
an items to synchronize

Called by the handler to obtain registration
information.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet
Explorer 5 or later).
Windows 95/98: Requires Windows 95 or later (with Internet Explorer 5 or later).
Header: Declared in Mobsync.h.

194 Volume 2 Network Protocols and Interfaces

ISyncMgrRegister:: RegisterSyncMgrHandler
A handler should call the ISyncMgrRegister::RegisterSyncMgrHandler method to
register with the Synchronization Manager when it has items to synchronize.

Parameters
re/sid

[in] CLSID of the handler that should be registered to do synchronizations.

pwsDeseription
[in] Text identifying the handler. This parameter may be NULL.

dwReserved
[in] Reserved for future use. Must be zero.

Return Values
This method supports the standard return values E_INVALIDARG, E_UNEXPECTED,
and E_OUTOFMEMORY, as well as the following:

S_OK
The handler was successfully registered.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet
Explorer 5 or later).
Windows 95/98: Requires Windows 95 or later (with Internet Explorer 5 or later).
Header: Declared in Mobsync.h.

ISyncMgrRegister:: UnregisterSyncMgrHandler
The handler calls the ISyncMgrRegister::UnregisterSyncMgrHandler method to
remove its CLSID from the registration. A handler should call this when it no longer has
any items to synchronize.

Parameters
rclsidHandler

Chapter 11 Synchronization Manager 195

[in] CLSID of the handler that should be unregistered

dwReserved
[in] Reserved for future use. Must be zero.

Return Values
This method supports the standard return values E_INVALIDARG, E_UNEXPECTED,
and E_OUTOFMEMORY, as well as the following:

S_OK
The handler was successfully removed from the registry with SyncMgr.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet
Explorer 5 or later).
Windows 95/98: Requires Windows 95 or later (with Internet Explorer 5 or later).
Header: Declared in Mobsync.h.

ISyncMgrRegister::GetHandlerRegistrationlnfo
The registered application's handler calls the
ISyncMgrRegister::GetHandlerRegistrationlnfo method to get current registration
information.

Parameters
rclsidHandler

[in] CLSID of the handler.

pdwSyncMgrRegisterFlags
[in,out] Returns registration flags.

Return Values
This method supports the standard return values E_INVALIDARG, E_UNEXPECTED,
and E_OUTOFMEMORY, as well as the following:

S_OK
Call was successful, the handler is registered.

196 Volume 2 Network Protocols and Interfaces

S_FALSE
Call was not successful, the handler is not registered.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet
Explorer 5 or later).
Windows 95/98: Requires Windows 95 or later (with Internet Explorer 5 or later).
Header: Declared in Mobsync.h.

SYNCMGRFLAG
The SYNCMGRFLAG enumeration values are used in the
ISyncMgrSynchronize::lnitialize method to indicate how the synchronization event was
initiated.

Elements
SYNCMG RFLAG_CONNECT

. Synchronization was initiated by a network connect event.

SYNCMGRFLAG_PENDINGDISCONNECT
Synchronization was initiated by a pending network disconnect event.

SYNCMGRFLAG_MANUAL
Synchronization was initiated manually by the end user.

SYNCMGRFLAG_IDLE
Synchronization was programmatically invoked.

SYNCMGRFLAG_INVOKE
Synchronization was programmatically invoked.

SYNCMGRFLAG_SCHEDULED
Synchronization was initiated by a scheduled update event.

SYNCMGRFLAG_EVENTMASK
Synchronization mask value.

Chapter 11 Synchronization Manager 197

SYNCMGRFLAG_SETIINGS
Synchronization was initiated for configuration purposes only in the System Properties
dialog box.

SYNCMGRFLAG_MAYBOTHERUSER
Interaction with the user is permitted. The application is allowed to show user
interface elements and interact with the user. If this flag is not set, the application
must not display any user interface elements other than using the
ISynchronizeCallback interface. If an application cannot complete the
synchronization without displaying user interface elements .and this flag is not set, the
application fails the synchronization.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet
Explorer 5 or later).
Windows 95/98: Requires Windows 95 or later (with Internet Explorer 5 or later).
Header: Declared in Mobsync:h.

ISyncMgrSynchronize: :Initialize

SYNCMGRHANDLERFLAGS
The SYNCMGRHANDLERFLAGS enumeration values are used in the
SYNCMGRHANDLERINFO structure as flags that apply to the current handler.

Elements
SYNCMGRHANDLER_HASPROPERTIES

The current handler provides a Property Sheet dialog.

Windows NT/2000: Requires Windows 2000 (or .windows NT 4.0 with Internet
Explorer 5 or later).
Windows 95/98: Requires Windows 95 or later (with Internet Explorer 5 or later).
Header: Declared in Mobsync.h.

SYNCMGRHANDLERINFO

198 Volume 2 Network Protocols and Interfaces

SYNCMGRST ATUS
The SVNCMGRSTATUS enumeration values are used in the
ISyncMgrSynchronize::SetltemStatus method to specify the updated status for
the item.

Elements
SYNCMGRSTATUS_STOPPED

Synchronization has been stopped.

SYNCMGRSTATUS_SKIPPED
This item should be skipped.

SYNCMGRSTATUS_PENDING
Synchronization for the item is pending.

SYNCMGRSTATUS_UPDATING
The item is currently being synchronized.

SYNCMGRSTATUS_SUCCEEDED
The synchronization for the item succeeded.

SYNCMGRST ATUS_FAILED
The synchronization for the item failed.

SYNCMGRSTATUS_PAUSED
The synchronization for the item paused.

SYNCMGRST ATUS_RESUMING
The synchronization for the item is resuming.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet
Explorer 5 or later).
Windows 95/98: Requires Windows 95 or later (with Internet Explorer 5 or later).
Header: Declared in Mobsync.h.

Chapter 11 Synchronization Manager 199

ISyncMgrSynchronize::SetltemStatus

SYNCMGRLOGLEVEL
The SYNCMGRLOGLEVEL enumeration values specifies an error level for use in the
ISyncMgrSynchronizeCaliback: :LogError method.

Elements
SYNCMGRLOGLEVEL_INFORMATION

An information message was logged.

SYNCMGRLOGLEVEL_ WARNING
A warning message was logged.

SYNCMGRLOGLEVEL_ERROR
An error message was logged.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet
Explorer 5 or later).
Windows 95/98: Requires Windows 95 or later (with Internet Explorer 5 or later).
Header: Declared in Mobsync.h.

ISyncMgrSynchronizeCallback::LogError

SYNCMGRITEMFLAGS
The SVNCMGRITEMFLAGS enumeration value specifies information for the current
item in the SVNCMGRITEM structure.

200 Volume 2 Network Protocols and Interfaces

Elements
SYNCMGRITEM_HASPROPERTI ES

The item has a properties dialog.

SYNCMGRITEM_ TEMPORARY
The item is temporary and any stored preferences can be removed.

SYNCMGRITEM_ROAMINGUSER
The item roams with the user and is not specific to a machine.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet
Explorer 5 or later).
Windows 95/98: Requires Windows 95 or later (with Internet Explorer 5 or later).
Header: Declared in Mobsync.h.

SYNCMGRITEM

SYNCMGRINVOKEFLAGS
The SYNCMGRINVOKEFLAGS enumeration value specifies how the SyncMgr is to be
invoked in the ISyncMgrSynchronizelnvoke::Updateltems method.

Elements
SYNCMGRINVOKE_STARTSYNC

Immediately start the synchronization without displaying the Choice dialog box.

SYNCMGRINVOKE_MINIMIZED
The Choice dialog should be minimized by default.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet
Explorer 5 or later) ..
Windows 95/98: Requires Windows 95 or later (with Internet Explorer 5 or later).
Header: Declared in Mobsync.h.

ISyncMgrSynchronizelnvoke:: Updateltems

Chapter 11 Synchronization Manager 201

SYNCMGRHANDLERINFO
The SYNCMGRHANDLERINFO structure provides information about the handler for use
in the ISyncMgrSynchronize::GetHandlerlnfo method.

Members
cbSize

Size of the structure in bytes.

hlcon
Icon for the handler

SyncMgrHandlerFlags
Value of the SYNCMGRHANDLERFLAGS enumeration.

wszHandlerName[MAX_SYNCMGRHANDLERNAME]
Name to use for the handler.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet
Explorer 5 or later).
Windows 95/98: Requires Windows 95 or later (with Internet Explorer 5 or later).
Header: Declared in Mobsync.h.

ISyncMgrSynchronize::GetHandlerlnfo, SYNCMGRHANDLERFLAGS

SYNCMGRPROGRESSITEM
The SYNCMGRPROGRESSITEM structure provides status information for the progress
dialog for use in the ISyncMgrSynchronizeCaliback::Progress method.

(continued)

202 Volume 2 Network Protocols and Interfaces

(continued)

Members
cbSize

Size of the structure in bytes.

mask
Mask value.

IpcStatusText
Status text.

dwStatusType
Status type.

iProgValue
Integer indicating the progress value.

iMaxValue
Integer indicating the maximum progress value.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet
Explorer 5 or later).
Windows 95/98: Requires Windows 95 or later (with Internet Explorer 5 or later).
Header: Declared in Mobsync.h.

ISyncMgrSynchronizeCallback::Progress

SYNCMGRLOGERRORINFO
The SYNCMGRLOGERRORINFO structure provides error information for use in the
ISyncMgrSynchronizeCaliback:: Log Error method.

Members
cbSize

Size of the structure.

Chapter 11 Synchronization Manager 203

mask
Mask value.

dwErrorlD
Error identifier

ItemlD
Item in which the error occurred.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet
Explorer 5 or later).
Windows 95/98: Requires Windows 95 or later (with Internet Explorer 5 or later).
Header: Declared in Mobsync.h.

ISyncMgrSynchronizeCaliback:: Log Error

SYNCMGRITEM
The SYNCMGRITEM structure provides information on the next item being enumerated
in the ISyncMgrEnumltems interface.

Members
cbSize

Size of the structure.

dwFlags
Value of the SYNCMGRITEMFLAGS enumeration.

ItemlD
Identifier of the next item.

dwltemState
State of the next item.

204 Volume 2 Network Protocols and Interfaces

hleon
Icon for the handler for the next item.

wszltemName[MA)CSYNCMGRITEMNAME]
Item name.

wszStatus[MAX_SYNCMGRITEMSTATUS]
Item status.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet
Explorer 5 or later).
Windows 95/98: Requires Windows 95 or later (with Internet Explorer 5 or later).
Header: Declared in Mobsync.h.

SYNCMGRITEMFLAGS

CHAPTER 12

System Event Notification Service

The System Event Notification Service (SENS) creates a uniform connectivity
and notification interface for applications designed for mobile use.

205

For more information, System Event Notification Service Overview provides an overview,
and SENS Reference lists methods and interfaces used for SENS.

System Event Notification Service Overview
Applications designed for use by mobile users require a unique set of connectivity
functions and notifications, and in the past individual applications were required to
implement these features internally. The System Event Notification Service (SENS) now
provides these capabilities in the operating system, creating a uniform connectivity and
notification interface for applications. SENS, the Synchronization Manager, and Client
Side Caching combine to provide the infrastructure to fully support mobile computing.

The topics in this section offer an overview about SENS:

• Mobile Computing Configurations for SENS

Lists several mobile computer configurations that can benefit from the use of SENS
enabled applications.

• Application Scenarios for SENS

Lists several types of applications that can benefit by utilizing SENS functionality.

• Notifications

Lists the system events that SENS monitors and dispatches.

• SENS Architecture

A description of the internal architecture of SENS.

Mobile Computing Configurations for SENS
Connectivity functions and notifications are useful for computers configured as follows:

• A mobile computer used in a docking station on a high bandwidth network which
may occasionally use a dial-in connection .

• A mobile computer using a dial-in connection exclusively.

• A desktop computer using a dial-in connection exclusively.

• A desktop computer connected to a high bandwidth network with latency issues.

206 Volume 2 Network Protocols and Interfaces

In each of these configurations, the connection bandwidth and latency information can
be used by an application to dynamically optimize its operations for network availability.

Application Scenarios for SENS
Several types of applications can utilize the connectivity functions and notification
services that the System Event Notification Service offers:

• An application that requires network connectivity status, such as an application that
utilizes directory services.

• An application that adapts its operations depending on the level of connectivity and
the quality of network services, such as an Internet browser application that functions
at a reduced level on a low bandwidth connection.

• An application that can perform deferred operations such as an e-mail program that
can queue messages while offline and send them when a connection is established.

Notifications
The System Event Notification Service enables mobile-aware applications to receive
notifications from system events that SENS monitors. When the requested event occurs,
SENS notifies the application.

SENS can notify applications about three classes of system events:

• TCP/IP network events, such as the status of a TCP/IP network connection or the
quality of the connection.

• User logon events.

• Battery and AC power events.

For example, an application can subscribe to any of the following system events:

• Establishment of network connectivity

• Notification when a specified destination can be reached within specified Quality
of Connection (QOC) parameters

• The computer has switched to battery power

• The percentage of remaining battery power is within a .specified parameter

• Scheduled events using Synchronization Manager occur

SENS Architecture
The System Event Notification Service works with the COM+ Event System. SENS
is an event publisher for the classes of events that it monitors: network, logon, and
power/battery events. The application receiving a notification is called an event
subscriber.

Chapter 12 System Event Notification Service 207

When an application subscribes to receive notifications, it can also specify filters
associated with the subscribed events. SENS and COM+ Events use the filters to further
determine when the application should be notified.

Notifications are asynchronous, so the application receiving the notification does not
have to be active when the notification is sent. When an application subscribes to
receive notifications, it can specify whether it should be activated when the event occurs
or notified later when it is active.

The subscription can be transient and valid only until the application stops running, or it
can be persistent and valid until the application is removed from the system.

A COM+ Events data store contains information about the event publisher (SENS),
event subscribers, and filters. During setup when you install or upgrade to Microsoft®
Windows® 2000, SENS adds itself to the COM+ Events data store and provides
information on the classes of events that it monitors using a GUID for each class of
events. SENS also predefines an outgoing interface for each event class in a

. type library.

Event Class GUID

Network events SENSGUID_EVENTCLASS_NETWORK

Logon events SENSGUID_EVENTCLASS_LOGON

Power events SENSGUID_EVENTCLASS_ONNOW

Interface

ISensNetwork

ISensLogon

ISensOnNow

To receive notifications for any of these events, your application must do two things:

• Subscribe to the SENS events that interest you. To subscribe to an event, use the
IEventSubscription and IEventSystem interfaces in COM+ Events. You need to
supply an identifier for the event classes and the SENS publisher identifier,
SENSGUID_PUBLISHER. SubscriptionS are on a per event level so the subscribing
application must also specify which events within the class are of interest. Each event
corresponds to a method in the interface corresponding to its event class.

Note Programmers using SENS on the Internet Explorer 5 platform should use only
the IEventSubscription and IEventSystem COM+ Events interfaces.

• Create a sink object with an implementation for each interface that you handle.
See ISensNetwork, ISensLogon, and ISensOnNow for more information about
these interfaces and the events supported in each one.

When one of the monitored events occurs, . SENS processes each subscription with
any associated filters and notifies the subscribersthrough the COM+ Event system.

208 Volume 2 Network Protocols and Interfaces

SENS Reference
This section lists the following methods for the System Event Notification
Service (SENS):

• IsDestinationReachable

• IsNetworkAlive

The following interfaces are supported by the SENS object:

• ISensLogon

• ISensNetwork

• ISensOnNow

IsDestinationReachable
Determines if the specified destination can be reached and provides Quality
of Connection (QOC) information for the destination.

Parameters
/pszDestination

Pointer to a string that specifies the destination. The destination can be an
IP address, a UNC name, or an URL.

/paOe/nfo
Pointer to the QOCINFO structure that receives the Quality of Connection (QOC)
information. You can supply a NULL pointer if the QOC information is not desired.

Return Values
TRUE

The destination can be reached~

FALSE
Call GetLastError to determine the reason why the destination cannot be reached.

Chapter 12 System Event Notification Service 209

Remarks
This function is used by client applications to determine the QOC information before
proceeding with network operations. For standalone computers that are directly
connected to the network through a network card or Remote Access Server (RAS), this
function generates minimal network traffic with RPC calls to the nearest router. For
computers that are part of a network where the destination can be reached using
RAS or a network gateway, thls function pings to the destination to generate accurate
QOC information.

Note This function is only available for TCP/IP connections.

The caller supplies the buffer for the QOCINFO structure and must release this memory
when it is no longer needed.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 5 or later).
Windows 95/98: Requires Windows 95 or later (with Internet Explorer 5 or later).
Header: Declared in SensapLh.
Library: Use SensapLlib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

IsNetworkAlive, aOCINFO, About System Event Notification Service

QOCINFO
The aOCINFO structure is returned by the IsDestinationReachable function
and provides Quality of Connection information to the caller.

Members
dwSize

Upon calling the IsDestinationReachable function, the caller supplies the size of the
aoc structure in this member. On return from the function, this member contains the
actual size of the structure that was filled in.

210 Volume 2 Network Protocols and Interfaces

dwFlags
Speed of connection. Flag bits indicate whether the connection is slow, medium, fast.

dwlnSpeed
Speed of data coming in from the destination in bytes per second.

dwOutSpeed
Speed of data sent to the destination in bytes per second.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet
Explorer 5 or later).
Windows 95/98: Requires Windows 95 or later (with Internet Explorer 5 or later).

IsDestinationReachable

IsNetworkAlive
Determines whether the local system is connected to a network and the type of network
connection, for example, LAN, WAN, or both.

Parameters
IpdwFlags

Provides information on the type of network connection available when the return
value is TRUE. The flags can be:

NETWORK_ALlVE_LAN
The computer has one or more LAN cards that areactive.

NETWORK_ALlVE_WAN
The computer has one or more active RAS connections.

NETWORK_ALlVE_AOL
This flag is only valid in Windows 95 and Windows 98. Indicates the computer
is connected to the America Online network.

Return Values
TRUE

The local system is connected to a network.

FALSE
Call GetLastError to determine the reason for no connectivity.

Chapter 12 System Event Notification Service 211

Remarks
This function can be used by applications to determine whether there is network
connectivity before proceeding with network operations. Applications such as directory
service applications, e-mail clients, or Internet browsers can adapt to various types of
network connectivity. For example, a printing operation can be deferred untilthe network
connection is available.

Note This function is only available for TCP/IP connections.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 5 or later).
Windows 95/98: Requires Windows 95 or later (with Internet Explorer 5 or later).
Header: Declared in Sensapi.h.
Library: Use Sensapi.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

IsDestinationReachable, About System Event Notification Service

SENS Object
The System Event Notification Service (SENS) defines the SENS coclass as part of the
SENS type library.

Implementation
The SENS object implementation is provided by the operating system.

Creation/Access Functions
Function

CoCreatelnstance

Interfaces
Interface

IsensNetwork

IsensOnNow

IsensLogon

Description

Creates an instance of the SENS object using its CLSID.

Description

Default Outgoing interface implemented by sink object in
subscriber application.

Outgoing interface implemented by sink object in
subscriber application.

Outgoing interface implemented by sink object in
subscriber application.

212 Volume 2 Network Protocols and Interfaces

ISensLogon, ISensNetwork, ISensOnNow, About System Event Notification Service

ISensLogon
The ISensLogon interface handles logon events fired by SENS.

When to Implement

Implement this interface on your sink object if you subscribe to any of the SENS logon
events. Each event corresponds to a method in this interface. This interface is an
outgoing interface defined by SENS and implemented by the subscriber application
as a dispatch interface.

When to Use

SENS and the COM Event System call the ISensLogon methods on your sink object
to fire the corresponding event.

Methods in Vtable Order
lunknown methods

Querylnterface

AddRef

Release

Idispatch methods

GetTypelnfoCount

GetTypelnfo

GetlDsOfNames

Invoke

ISenslLogon methods

Logon

Logoff

StartShell

DisplayLock

DisplayUnlock

Description

Returns pointers to supported interfaces.

Increments reference count.

Decrements reference count.

Description

Retrieves the number of type descriptions.

Retrieves a description of the object's programmable
interface.

Maps name of method or property to DISPID.

Calls one of the object's methods, or gets/sets one of its
properties.

Description

A user has logged on.

A user has logged off.

Shell has been started.

Screen display has been locked.

Screen display has been unlocked.

Chapter 12 System Event Notification Service 213

ISenslLogon methods Description

StartScreenSaver Screen saver has been started.

StopScreenSaver Screen saver has been stopped.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Sensevts.h.
Library: Use Sensevts.tlb.

ISensNetwork, ISensOnNow, About System Event Notification Service

ISensLogon:: Logon
A user has logged on.

Parameters
bstrUserName

[in] Name of the user who logged on.

Dispatch Identifier
[id(Ox00000001)]

Return Values
S_OK

Method returned successfully.

Remarks
SENS calls this method to notify your application that a user has now logged on.

Filtering
Filtering is not currently supported for this event.

214 Volume 2 Network Protocols and Interfaces

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Sensevts.h.
Library: Use Sensevts.tlb.

ISensLogon::Logoff, About System Event Notification Service, IEventSubscription,
IEventSubscription::PutPublisherProperty

ISensLogon:: Logoff
A user has logged off.

Parameters
bstrUserName

[in] Name of the user who logged off.

Dispatch Identifier
[id (Ox00000002) 1

Return Values
S_OK

Method returned successfully.

Remarks
SENS calis this method to notify your application that a user has logged off.

Filtering
Filtering is not currently supported for this event.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Sensevts.h.
Library: Use Sensevts.tlb.

Chapter 12 System Event Notification Service 215

ISensLogon::Logon, About System Event Notification Service, IEventSubscription,
IEventSubscription:: PutPublisherProperty

ISensLogon: : StartShel1
Shell has been started.

Parameters
bstrUserName

[in] Name of the current user.

Dispatch Identifier
[id(Ox00000004)]

Return Values
S_OK

Method returned successfully.

Remarks
SENS calls this method to notify your application that the shell has been started.

Filtering
Filtering is not currently supported for this event.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Sensevts.h.
Library: Use Sensevts.tlb.

About System Event Notification Service, IEventSubscription,
IEventSubscription:: PutPublisherProperty

216 Volume 2 Network Protocols and Interfaces

ISensLogon: :DisplayLock
Screen display has been locked.

Parameters
bstrUserName

[in] Name of the current user.

Dispatch Identifier
[id(Ox00000006)]

Return Values
S_OK'

Method returned successfully.

Remarks
SENS calls this method to notify your application that the screen display has
been locked.

Filtering
Filtering is not currently supported for this event.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Sensevts.h.
Library: ,Use Sensevts.tlb.

ISensLogon::DisplayUnLock, ISensLogon::StartScreenSaver,
ISensLogon::StopScreenSaver, About System Event Notification Service,
IEventSubscription, IEventSubscription::PutPublisherProperty

Chapter 12 System Event Notification Service 217

ISensLogon:: DisplayUnLock
Screen display has been unlocked.

Parameters
bstrUserName

[in] Name of the current user.

Dispatch Identifier
[id(Ox00000007)]

Return Values
S_OK

Method returned successfully.

Remarks
SENS calls this method to notify your application that the screen display has
been unlocked.

Filtering
Filtering is not currently supported for this event.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Sensevts.h.
Library: Use Sensevts.tlb.

ISensLogon:: DisplayLock, ISensLogon: :StartScreenSaver,
ISensLogon::StopScreenSaver, About System Event Notification Service,
IEventSubscription, IEventSubscription::PutPublisherProperty

218 Volume2 Network Protocols and Interfaces

ISensLogon: : StartScreenSaver
Screen saver has been started.

Parameters
bstrUserName

[in] Name of the current user.

Dispatch Identifier
[id(Ox00000008)]

Return Values
S_OK

Method returned successfully.

Remarks
SENS calls this method to notify your application that the screen saver has been started.

Filtering
Filtering is not currently supported for this event.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Sensevts.h.
Library: Use Sensevts.tlb.

ISensLogon::DisplayLock,ISensLogon::DisplayUnLock,
ISensLogon::StopScreenSaver, About System Event Notification Service,
IEventSubscription, IEventSubscription:: PutPublisherProperty

Chapter 12 System Event Notification Service 219

ISensLogon: :StopScreenSaver
Screen saver has been stopped.

Parameters
bstrUserName

[in] Name of the current user.

Dispatch Identifier
[id(Ox00000009)]

Return Values
S_OK

Method returned successfully.

Remarks
SENS calls this method to notify your application that the screen saver has
been stopped.

Filtering
Filtering is not currently supported for this event.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Sensevts.h.
Library: Use Sensevts. tlb.

ISensLogon::DisplayLock,IS.ensLogon::DisplayUnLock,
ISensLogon::StartScreenSaver, About System Event Notification Service,
IEventSubscription, IEventSubscription::PutPublisherProperty

220 Volume 2 Network Protocols and Interfaces

ISensNetwork
The ISensNetwork interface handles network events fired by the System Event
Notification Service (SENS).

When to Implement

Implement this interface on your sink object if you subscribe to any of the SENS network
events. Each event corresponds to a method in this interface. This interface is an
outgoing interface defined by SENS and implemented by the subscriber application
as a dispatch interface.

When to Use

SENS and the COM Event System call the ISensNetwork methods on your sink object
to fire the corresponding event.

Methods in Vtable Order
IUnknown methods

Querylnterface

AddRef

Release

IDispatch methods

GetTypelnfoCount

GetTypelnfo

GetlDsOfNames

Invoke

ISensNetwork methods

Connection Made

ConnectionMadeNoQOClnfo

Connection Lost

DestinationReachable

DestinationReachableNoQO
Clnfo

Description

Returns pointers to supported interfaces.

Increments reference count.

Decrements reference count.

Description

Retrieves the number of type descriptions.

Retrieves a description of the object's programmable
interface.

Maps name of method or property to DISPID.

Calls one of the object's methods, or gets/sets one
of its properties.

Description

Specified connection has been established.

Specified connection has been established with
no Quality of Connection information available.

Specified connection has been dropped.

Specified connection can be reached.

Specified connection can be reached with no Quality
of Connection information.

Chapter 12 System Event Notification Service 221

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 5 or later).
Windows 95/98: Requires Windows 95 or later (with Internet Explorer 5 or later).
Header: Declared in Sensevts.h.
Library: Use Sensevts.·tlb.

ISensLogon, ISensOnNow, About System Event Notification Service

ISensNetwork: :ConnectionMade
Specified connection has been established.

Parameters
bstrConnection

[in] Name of the connection. For WAN connections, the connection name is the name
of the phone book entry; for LAN connections, it is the name of the network card.

ulType
[in] Connection type. This value can be CONNECTION_LAN or CONNECTION_WAN.

IpQOClnfo
[out] Pointer to the SENS_QOCINFO structure which contains Quality of Connection
information.

Dispatch Identifier
[id(Ox00000001 }]

Return 'Values
S_OK

Method returned successfully.

Remarks
SENS calls this method to notify your application that the specified connection has
been established. SENS also provides a pointer to a structure containing Quality
of Connection information.

222 Volume 2 Network Protocols and Interfaces

type
Connection type. Use 0 for LAN or 1 for WAN.

Note This function is only available for TCP/IP connections.

Filtering
Filtering can be performed on the publisher property ulConnectionMadeType by setting
it to either CONNECTION_LAN or CONNECTION_WAN or both.
Use IEventSubscription::PutPublisherProperty to set the publisher property.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 5 or later).
Windows 95/98: Requires Windows 95 or later (with Internet Explorer 5 or later).
Header: Declared in Sensevts.h.
Library: Use Sensevts.tlb.

ISensNetwork::ConnectionMadeNoQOClnfo, SENS_QOCINFO, About System Event
Notification Service, IEventSubscription, IEventSubscription:: PutPublisherProperty

ISensNetwork::ConnectionMadeNoQOClnfo
Specified connection has been established with no Quality of Connection
information available.

Parameters
bstrConnection

[in] Name of the connection. For WAN connections, the connection name is the name
of the phone book entry; for LAN connections, it is the name of the network card.

ulType
[in] Connection type. This value can be CONNECTION_LAN or CONNECTION_WAN.

Dispatch Identifier
[id(Ox00000002}]

Return Values
S_OK

Method returned successfully.

Remarks

Chapter 12 System Event Notification Service 223

SENS calls this method to notify your application that the specified connection has been
established when Quality of Connection information is not available.

type
Connection type. Use 0 for LAN or 1 for WAN.

Note This function is only available for TCP/IP connections.

Filtering
Filtering can be performed on the publisher property ulConnectionMadeTypeNoQOC
by setting it to either CONNECTION_LAN or CONNECTION_WAN or both.
Use IEventSubscription::PutPublisherProperty to set the publisher property.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet
Explorer 5 or later).
Windows 95/98: Requires Windows 95 or later (with Internet Explorer 5 or later).
Header: Declared in Sensevts.h.
Library: Use Sensevts.tlb.

ISensNetwork::ConnectionMade, About System Event Notification Service,
IEventSubscription, IEventSubscription:: PutPublisherProperty

ISensNetwork: :Connection Lost
Specified connection has been dropped.

224 Volume 2 Network Protocols and Interfaces

Parameters
bstrConnection

[in] Name of the connection. For WAN connections, the connection name is the name
of the phone book entry; for LAN connections, it is the name of the network card.

ulType
[in] Connection type. This value can be CONNECTION_LAN or CONNECTION_WAN.

Dispatch Identifier
[id(Ox00000003}]

Return Values
S_OK

Method returned successfully.

Remarks
SENS calls this method to notify your application that the specified connection has been
dropped.

type
Connection type. Use 0 for LAN or 1 for WAN.

Note This function is only available for TCP/IP connections.

Filtering
Filtering can be performed on the publisher property ulConnectionLostType by
setting it to either CONNECTION_LAN or CONNECTION_WAN or both.
Use IEventSubscription::PutPublisherProperty to set the publisher property.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet
Explorer 5 or later).
Windows 95/98: Requires Windows 95 or later (with Internet Explorer 5 or later).
Header: Declared in Sensevts.h.
Library: Use Sensevts.tlb.

About System Event Notification Service, IEventSubscription,
IEventSubscription:: PutPublisherProperty

Chapter 12 System Event Notification Service 225

ISensNetwork:: DestinationReachable
Specified connection can be reached.

Parameters
bstrDestination

[in] Name of the destination. Can be an IP address, a URL, a UNC, or a
NetBIOS name.

bstrConnection
[in] Name of the connection. For WAN connections, the connection name is the name
of the phone book entry; for LAN connections, it is the name of the network card.

ulType .
[in] Connection type. This value can be CONNECTION_LAN or CONNECTION_WAN.

IpQOClnfo
[out] Pointer to the SENS_QOCINFO structure which contains Quality of Connection
information.

Dispatch Identifier
[id(Ox00000004)]

Return Values,
S_OK

Method returned successfully.

Remarks
SENS calls this method to notify your application that the specified destination can
be reached. A pointer to a structure containing Quality of Connection information is
also provided.

Note This function is only available for TCP/IP connections.

226 Volume 2 Network Protocols and Interfaces

Filtering
Filtering can be performed on the publisher property bstrDestination. To determine
reachability, set bstrDestination to the name of desired destination. Filtering can also
be performed on the property ulType by setting it to either CONNECTION_LAN
or CONNECTION_WAN, or both. Use IEventSubscription::PutPublisherProperty
to set the publisher property. Note: if a bstrDestination property is not specified, the
DestinationReachable event is returned for all destinations.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet
Explorer 5 or later).
Windows 95/98: Requires Windows 95 or later (with Internet Explorer 5 or later).
Header: Declared in Sensevts.h.
Library: Use Sensevts.tlb.

ISensNetwork: :DestinationReachableNoQOClnfo, SENS_QOCINFO, About System
Event Notification Service, IEventSubscription,
IEventSubscription:: PutPublisherProperty

ISensNetwork:: DestinationReachableNoQOClnfo
Specified connection can be reached with no Quality of Connection information.

Parameters
bstrDestination

[in] Name of the destination. Can be an IP address, a URL, a UNC, or a NetBIOS
name.

bstrConnection
[in] Name of the connection. For WAN connections, the connection name is the name
of the phone book entry; for LAN connections, it is the name of the network card.

ulType
[in] Connection type. This value can be CONNECTION_LAN or CONNECTION_WAN.

Dispatch Identifier
[id(Ox00000005)]

Chapter 12 System Event Notification Service 227

Return Values
S_OK

Method returned successfully.

Remarks
SENS calls this method to notify your application that the specified destination
can be reached when Quality of Connection information is not available.

Note This function is only available for TCP/IP connections.

Filtering
Filtering can be performed on the publisher property bstrDestinationNoQOC.
To determine reachability, set bstrDestinationNoQOC to the name of desired destination.
Filtering can also be performed on the property ulDestinationTypeNoQOC by setting
it to either CONNECTION_LAN or CONNECTION_WAN, or both. Use
IEventSubscription::PutPublisherProperty to set the publisher property. Note: if
a bstrDestinationNoQOC property is not specified, the DestinationReachableNoQOCO
event is returned for all destinations.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 5 or later).
Windows 95/98: Requires Windows 95 or later (with Internet Explorer 5 or later).
Header: Declared in Sensevts.h.
Library: Use Sensevts.tlb.

ISensNetwork::DestinationReachable, About System Event Notification Service,
I EventSubscription , IEventSubscription::PutPublisherProperty

The SENS_QOCINFO structure is provided by the ISensNetwork::ConnectionMade
method and the ISensNetwork::DestinationReachable method. This structure contains
Quality of Connection information to the sink object in an application that subscribes
to SENS.

(continued)

228 Volume 2 Network Protocols and Interfaces

(continued)

Members
dwSize

This member contains the actual size of the structure that was filled in.

dwFlags
Speed of connection. Flag bits indicate whether the connection is slow, medium, fast.

dwOutSpeed
Speed of data sent to the destination in bits per second.

dwlnSpeed
Speed of data coming in from the destination in bits per second.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet
Explorer 5 or later).
Windows 95/98: Requires Windows 95 or later (with Internet Explorer 5 or later).

ISensNetwork: :Connection Made, ISensNetwork:: DestinationReachable, About
System Event Notification Service, IEventSubscription,
IEventSubscription:: PutPublisherProperty

ISensOnNow
The ISensOnNow interface handles AC and battery power events fired by the System
Event Notification Service (SENS).

When to Implement

Implement this interface on your sink object if you subscribe to any of the SENS power
events. Each event corresponds to a method in this interface. This interface is an
outgoing interface defined by SENS and implemented by the subscriber application
as a dispatch interface.

When to Use

SENS and the COM Event System call the ISensOnNow methods on your sink object
to fire the corresponding event.

Methods in Vtable Order
IUnknown methods

Querylnterface

Add Ref

Release

IDispatch methods

GetTypelnfoCount

GetTypelnfo

GetlDsOfNames

Invoke

ISensOnNoVlf methods

OnACPower

OnBatteryPower

BatteryLow

Chapter 12 System Event Notification Service 229

Description

Returns pOinters to supported interfaces.

Increments reference count.

Decrements reference count.

Description

Retrieves the number of type descriptions.

Retrieves a description of the object's programmable
interface.

Maps name of method or property to DISPID.

Calls one of the object's methqds, or gets/sets one of its
properties.

Description

Switched to AC power.

Switched to Battery power.

Battery power is low.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Sensevts.h.
Library: Use Sense'vts.tlb.

ISensLogon, ISensNetwork, About System Event Notification Service

ISensOnNow: :OnACPower
SENS calls this method to notify your application that the computer is using AC power.

Dispatch Identifier
[id(Ox00000001)]

230 Volume 2 Network Protocols and Interfaces

Return Values
S_OK

Method returned successfully.

Remarks
SENS calls this method to notify your application that AC power has been activated.

Filtering
Filtering is not currently supported for this event.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Sensevts.h.
Library: Use Sensevts.tlb.

ISensOnNow::OnBatteryPower, About System Event Notification Service,
IEventSubscription, IEventSubscription::PutPublisherProperty

ISensOnNow::OnBatteryPower
SENS calls this method to notify your application that the computer is using
battery power.

Parameters
dwBatteryLifePercent

[in] Specifies the percent of battery power remaining.

Dispatch Identifier
[id(Ox00000002)]

Return Values
S_OK

Method returned successfully.

Chapter 12 System Event Notification Service 231

Remarks
SENS calls this method to notify your application that the computer is using battery
power. The remaining percentage of battery power is specified.

Filtering
Filtering is not currently supported for this event.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Sensevts.h.
Library: Use Sensevts.tlb.

ISensOnNow:: BatteryLow, ISensOnNow: :OnACPower, About System Event
Notification Service, IEventSubscription, IEventSubscription:: PutPublisherProperty

ISensOnNow: : Battery Low
Battery power is low.

Parameters
dwBatteryUfePercent

[in] Specifies the percent of battery power remaining.

Dispatch Identifier
[id(Ox00000003)]

Return Values
S_OK

Method returned successfully.

Remarks
SENS calls this method to notify your application that the computer is using battery
power. The remaining percentage of battery power is specified.

232 Volume 2 Network Protocols and Interfaces

Filtering
Filtering is not currently supported for this event.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Sensevts.h.
Library: Use Sensevts.tlb.

ISensOnNow::OnBatteryPower, About System Event Notification Service,
IEventSubscription, IEventSubscription:: PutPublisherProperty

233

CHAPTER 13

IP Helper

IP Helper Overview
Internet Protocol Helper (IP Helper) is an API that assists in the network administration
of the local computer. You can use IP Helper to programmatically retrieve information
about the network configuration of the local computer, and to modify that configuration.
IP Helper also provides notification mechanisms to ensure that an application is signaled
when certain aspects of the network configuration change on the local computer.

Many of the IP Helper functions pass structure parameters that represent data types
seen in the Management Information Base technology. These data types are also used
by the MIS API, and are described in the Management Information Base Reference.

IP Helper provides capabilities in the following areas:

• Retrieving Information About Network Configuration

• Managing Network Adapters

• Managing Interfaces

• Managing IP Addresses

• Using the Address. Resolution protocol

• Retrieving Information on the Internet Protocol and the Internet Control
Message Protocol

• Managing Routing

• Receiving Notification of Network Events

• Retrieving Information About the Transmission Control Protocol and the
User Datagram Protocol

Retrieving Information About Network Configuration
IP Helper provides information about the network configuration of the local computer.
To retrieve general configuration information, use the GetNetworkParams function.
This function returns information that is not specific to a particular adapter or interface.
For example, GetNetworkParams returns a list of the DNS servers that are used by
the local computer.

234 Volume 2 Network Protocols and Interfaces

Managing Network Adapters
IP Helper provides capabilities for managing network adapters. The functions
described following are used to retrieve information about the network adapters
in the local computer.

The GetAdapterslnfo function returns an array of IP _ADAPTER_INFO structures,
one for each adapter in the local computer. The GetPerAdapterlnfo function returns
additional information about a specific adapter. The GetPerAdapterlnfo function
requires the caller to specify the index of the adapter. To obtain the adapter index from
the adapter name, use the GetAdapterlndex function.

Some applications use adapters that can receive datagrams, but cannot transmit them.
To obtain information about such adapters, use the GetUniDirectionalAdapterlnfo
function.

Managing Interfaces
IP Helper extends your abilities to manage network interfaces. Use the
functions described fOllowing to manage interfaces on the local computer.

Interfaces are related to adapters in that there is a one-to-one correspondence between
the interfaces and adapters on a given computer. An interface is an IP-Ievel abstraction,
whereas an adapter is a datalink-Ievel abstraction.

The GetNumberOflnterfaces function returns the number of interfaces on the
local computer.

The Getlnterfacelnfo function returns a table that contains the names and
corresponding indexes for the interfaces on the local computer.

The GetFriendlylflndex function takes an interface index and returns a backward
compatible interface index, that is, one that uses only the lower 24 bits. This type
of index is sometimes referred to as a "friendly" interface index.

The GetlfEntry function returns a MIB_IFROW structure that contains information about
a particular interface on the local computer. This function requires the caller to supply the
index of the interface.

The GetlfTable function returns a table of MIB_IFROW entries, one for each interface
on the computer.

Use the Set If Entry function to modify the configuration of a particular interface.

Managing IP Addresses
IP Helper can assist you in managing IP addresses that are associated with interfaces
on the local computer. Use the functions described following for IP address
management.

Chapter 13 IP Helper 235

The GetlpAddrTable function retrieves a table that contains the mapping of
IP addresses to interfaces. More than one IP address may to associated with the
same interface.

Use the AddlPAddress function to add an IP address to a particular interface.
To remove IP addresses that were previously added using AddlPAddress, use the
DeletelPAddress function.

The IpReleaseAddress and IpRenewAddress functions require the local computer
to be using Dynamic Host Configuration Protocol (DHCP). The IpReleaseAddress
function releases an IP address that was previously obtained from DHCP.
The IpRenewAddress function renews a DHCP lease on a particular IP address.

Using the Address Resolution Protocol
You can use IP Helper to perform Address Resolution Protocol (ARP) operations for the
local computer. Use the following functions to retrieve and modify the ARP table.

The GetlpNetTable retrieves the ARP table. The ARP table contains the mapping of
IP addresses to physical addresses. Physical addresses are sometimes referred to as
Media Access Controller (MAC) addresses.

Use the CreatelpNetEntry and DeletelpNetEntry functions to add or remove particular
ARP entries to or from the table. The FlushlpNetTable function deletes all entries from
the table.

To create or delete proxy ARP entries, use the CreateProxyArpEntry and
DeleteProxyArpEntry functions.

The SendARP function sends an ARP request to the local network.

Retrieving Information on the Internet Protocol and the Internet
Control Message Protocol

IP Helper provides information retrieval capabilities that are useful for the network
administration of the local computer. The following functions retrieve statistics for the
Internet Protocol (IP) and the Internet Control Message Protocol (ICMP). You can also
use these functions to set certain configuration parameters for IP.

The GetlpStatistics function retrieves the current IP statistics for the local machine.
The GetlcmpStatistics function retrieves the current ICMP statistics.

Use the SetlpStatistics function to enable or disable IP forwarding. This function also
makes it possible for you to set the default Time-To-Live (TTL) for IP datagrams.
Alternatively, you can set the TTL by using the SetipTTL function.

236 Volume 2 Network Protocols and Interfaces

Managing Routing
IP Helper provides features to manage network routing. Use the following functions
to manage the IP routing table, and to obtain other routing information.

You can manipulate specific entries in the IP routing table. Use the
CreatelpForwardEntry function to add a new routing table entry. Use the
DeletelpForwardEntry function to remove an existing entry. The SetlpForwardEntry
function modifies an existing entry. You can retrieve the contents of the IP routing table
by making a call to the GetlpForwardTable function.

You can also use the router management capabilities of IP Helper to retrieve information
about how datagrams are routed over the network. The GetBestRoute function retrieves
the best route to a specified destination address. The GetBestlnterface function
retrieves the index of the interface used by the best route to a specified destination
address. Lastly, the GetRTI AndHopCount function retrieves the Round-Trip Time
(RTI) and number of hops to a specified destination address.

Receiving Notification of Network Events
Use the following functions to ensure that an application receives notification of certain
network events.

The NotifyAddrChange function enables an application to request notification of any
change that occurs in the table that maps IP addresses to interfaces on the local
computer.

Similarly, the NotifyRouteChange function enables an application to request notification
of any change that occurs in the IP routing table.

The notifications provided by these functions do not specify what changed. They simply
specify that something changed. Use other IP Helper functions to determine the exact
nature of the change.

Retrieving Information About the Transmission Control Protocol
and the User Datagram Protocol

IP Helper makes it possible to access information about network protocols that are used
on the local computer. Use the functions described following to retrieve information
about the Transmission Control Protocol (TCP) and User Datagram Protocol (UDP)
on the local computer.

The GetTcpStatistics function retrieves the current statistics for TCP. Similarly,
the GetUdpStatistics function retrieves the current statistics for UDP.

The GetTcpTable function retrieves the TCP connection table. The GetUdpTable
retrieves the UDP listener table.

Chapter 13 IP Helper 237

The SetTcpEntry function enables a developer to set the state of a specified
TCP connection to MIB_ TCP _STATE_DELETE_ TCB.

IP Helper Function Reference
Use the following' functions and structures to retrieve and modify configuration settings
for the Transmission Control Protocol/Internet Protocol (TCP/IP) transport suite on the
local computer:

• IP Helper Functions

• IP Helper Structures

• IPX Service Table Management

IP Helper Functions
Use the following functions to retrieve and modify configuration settings for the TCP/IP
transport suite on the local computer. These functions are declared in IpHlpApi.h.

Alphabetical Listing
AddlPAddress
CreatelpForwardEntry
CreatelpNetEntry
Create Proxy ArpEntry

DeletelPAddress
DeletelpForwardEntry

DeletelpNetEntry
DeleteProxy ArpEntry

FlushlpNetTable
GetAdapterlndex
GetAdapterslnfo

GetBestlnterface
GetBestRoute
GetFriendlylflndex
GetlcmpStatistics
GetlfEntry

GetlfTable
Getlnterfacelnfo
GetlpAddrTable

GetlpForwardTable
GetlpNetTable

GetipStatistics
GetNetworkParams

GetNumberOflnterfaces
GetPerAdapterlnfo

GetRTT AndHopCount
GetTcpStatistics

GetTcpTable
GetUdpStatistics

GetUdpTable
GetUniDirectionalAdapterlnfo

IpReleaseAddress
IpRenewAddress
Notify AddrChange

NotifyRouteChange
SendARP
SetlfEntry
SetlpForwardEntry
SetlpNetEntry

SetlpStatistics
SetlpTTL

SetTcpEntry

238 Volume 2 Network Protocols and Interfaces

Categorical Listing
Adapter Management

GetAdapterlndex

GetAdapterslnfo

GetPerAdapterlnfo

GetUniDirectionalAdapterlnfo

Address Resolution Protocol
CreatelpNetEntry

CreateProxy ArpEntry

DeletelpNetEntry

DeleteProxy ArpEntry

FlushlpNetTable

GetlpNetTable

SendARP

SetlpNetEntry

Interface Management
GetFriendlylflndex

GetlfEntry

GetlfTable

Getlnterfacelnfo

GetNumberOflnterfaces

SetlfEntry

Internet Protocol and Internet Control Message Protocol
GetlcmpStatistics

GetlpStatistics

SetlpStatistics

SetipTTL

IP Address Management
AddlPAddress

DeletelPAddress

GetlpAddrTable

IpReleaseAddress

IpRenew Address

Network Configuration
GetNetworkParams

Notification
NotifyAddrChange

NotifyRouteChange

Routing
CreatelpForwardEntry

DeletelpForwardEntry

GetBestlnterface

GetBestRoute

GetlpForwardTable

GetRTT AndHopCount

SetlpForwardEntry

Chapter 13 IP Helper 239

Transmission Control Protocol and User Datagram Protocol
GetTcpStatistics

GetTcpTable

SetTcpEntry

GetUdpStatistics

GetUdpTable

AddlPAddress
The AddlPAddress function adds the specified IP address to the specified adapter.

Parameters
Address

Specifies the IP address to add to the adapter.

IpMask
Specifies the subnet mask for the IP address.

240 Volume 2 Network Protocols and Interfaces

IfIndex
Specifies the adapter to which to add the address.

NTEContext
Pointer to a ULONG variable that, on successful return, points to the Net Table Entry
(NTE) context for this IP address. The caller can later use this context in a call
to DeletelPAddress.

NTElnstance
Pointer to a ULONG variable that, on successful return, points to the NTE instance
for this IP address.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, use FormatMessage to obtain the message string for the
returned error.

Remarks
For information about the IPAddr and IPMask data types, see Win32 Simple Data
Types. To convert an IP address between dotted decimal notation and IPAddr format,
use the ineLaddr and ineLntoa functions.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Iphlpapi.h.
Library: Use IphlpapLlib.

DeletelPAddress, GetAdapterlndex

CreatelpForwardEntry
The CreatelpForwardEntry function creates a route in the local computer's
IP routing table.

Parameters
pRoute

Chapter 13 IP Helper 241

Pointer to a MIB_IPFORWARDROW structure that specifies the information for the
new route. The caller must specify values for all members of this structure. The caller
must specify PROTO_IP _NETMGMT for the dwForwardProto member
of MIB_IPFORWARDROW.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_INVALlD_PARAMETER The pRoute parameter is NULL, or
SetlpFowardEntry is unable to read from the
memory pointed to by pRoute, or one of the
members of the MIB_IPFORWARDROW structure
is invalid.

ERROR_NOT _SUPPORTED The IP transport is not configured on the local
computer.

Other Use FormatMessage to obtain the message string
for the returned error.

Remarks
To modify an existing route in the IP routing table, use the SetlpForwardEntry function.

The caller should not specify a routing protocol-for example, PROTO_IP _OSPF-
for the dwForwardProto member of the MIB_IPFORWARDROW structure. Routing
protocol identifiers are used only to identify route information received through the
specified routing protocol. For example, PROTO_IP _OSPF is used only to identify route
information received through the OSPF routing protocol.

The dwForwardPolicy member of the MIB_IPFORWARDROW structure is currently
unused. The caller should specify zero for this member.

Windows NT/2000: Requires Windows NT 4.0 SP4 or later.
Windows 95/98: Requires Windows 98.
Header: Declared in Iphlpapi.h.
Library: Use Iphlpapi.lib.

DeletelpForwardEntry, MIB_IPFORWARDROW, SetlpForwardEntry

242 Volume 2 Network Protocols and Interfaces

CreatelpNetEntry
The CreatelpNetEntry function creates an Address Resolution Protocol (ARP) entry
in the ARP table on the local computer.

Parameters
pArpEntry

Pointer to a MIB_IPNETROW structure that specifies information for the new entry.
The caller must specify values for all members of this structure.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, use FormatMessage to obtain the message string for the
returned error.

Windows NT/2000: Requires Windows NT 4.0 SP4 or later.
Windows 95/98: Requires Windows 98.
Header: Declared in IphlpapLh.
Library: Use Iphlpapi.lib.

DeletelpNetEntry, MIB_IPNETROW, SetlpNetEntry

Create Proxy ArpEntry
The CreateProxyArpEnry function creates a Proxy Address Resolution Protocol
(PARP) entry on the local computer for the specified IP address.

Parameters
dwAddress

Specifies the IP address for which this computer acts as a proxy.

Chapter 13 IP Helper 243

dwMask
Specifies the subnet mask for the IP address specified by the dwAddress parameter.

dwlflndex
Specifies the index of the interface on which to proxy ARP for the IP address specified
by the dwAddress parameter. In other words, when an ARP request for dwAddress
is received on this interface, the local computer responds with the physical address
of this interface. If this interface is of a type that does not support ARP, such as PPP,
then the call fails.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, use FormatMessage to obtain the message string for the
returned error.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Iphlpapi.h.
Library: Use IphlpapUib.

DeleteProxyArpEntry, MIB_PROXYARP

DeletelPAddress
Use the DeletelPAddress to delete an IP address that was previously added using
AddlPAddress.

Parameters
NTEContext

Specifies the Net Table Entry (NTE) context for thelP address. This context was
returned by the previous call to AddlPAddress.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, use FormatMessage to obtain the message string for the·
returned error.

244 Volume 2 Network Protocols and Interfaces

Windows NT/2000: RequirE;!s Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in IphlpapLh.
Library: Use Iphlpapi.lib.

AddlPAddress

DeletelpForwardEntry
The DeletelpForwardEntry function deletes an existing route in the local computer's
IP routing table.

Parameters
pRoute

Pointer to a MIB_IPFORWARDROW structure. This structure specifies information
that identifies the route to delete. The caller must specify values for the
dwForwardlflndex, dwForwardDest, dwForwardMask, dwForwardNextHop,
and dwForwardPolicy members of the structure.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, use FormatMessage t6 obtain the message string for the
returned error.

Remarks
The dwForwardPolicy member of the MIB_IPFORWARDROW structure is currently
unused. The caller should specify zero for this member.

Windows NT/2000: Requires Windows NT 4.0 SP4 or later.
Windows 95/98: Requires Windows 98.
Header: Declared in IphlpapLh.
Library: Use Iphlpapi.lib.

Chapter 13 IP Helper 245

CreatelpForwardEntry, MIB_IPFORWARDROW, SetlpForwardEntry

DeletelpNetEntry
The DeletelpNetEntry function deletes an ARP entry from the ARP table on the
local computer.

Parameters
pArpEntry

Pointer to a MIB_IPNETROW structure. The information in this structure identifies the
entry to delete. The caller must specify values for at least the dwlndex and dwAddr
members of this structure.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, use FormatMessage to obtain the message string for the
returned error.

Windows NT/2000: Requires Windows NT 4.0 SP4 or later.
Windows 95/98: Requires Windows 98.
Header: Declared in Iphlpapi.h.
Library: Use Iphlpapi.lib.

CreatelpNetEntry, MIB_IPNETROW, SetipNetEntry

DeleteProxy ArpEntry
The DeleteProxyArpEntry function deletes the PARP entry on the local computer
specified by the dwAddress and dwlflndexparameters.

246 Volume 2 Network Protocols and Interfaces

Parameters
dwAddress

Specifies the IP address for which this computer is acting as a proxy.

dwMask
Specifies the subnet mask for the IP address specified by the dwAddress parameter.

dwlflndex
Specifies the index of the interface on which this computer is supporting proxy
ARP for the IP address specified by dwAddress.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, use FormatMessage to obtain the message string for the
returned error. .

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.

~~. Header: Declared in IphlpapLh.
Library: Use IphlpapLlib.

CreateProxyArpEntry, MIB_PROXYARP

FlushlpNetTable
The FlushlpNetTable function deletes all ARP entries for the specified interface from
the ARP table on the local computer.

Parameters
dwlflndex

Specifies the index of the interface for which to delete all ARP entries.

Chapter 13 IP Helper 247

Return Values
If the function succeeds, the return value.is NO_ERROR.

If the function fails, use FormatMessage to obtain the message string for the
returned error.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Iphlpapi.h.
Library: Use Iphlpapi.lib.

GetlfTable, GetlpNetTable

GetAdapterlndex
The GetAdapterlndex function obtains the index of an adapter, given its name.

Parameters
AdapterName

Pointer to a Unicode string that contains the name of the adapter.

IfIndex
Pointer to a ULONG variable that, on successful return, points to the index of the
adapter.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, use FormatMessage to obtain the message string for the
returned error.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Iphlpapi.h.
Library: Use Iphlpapi.lib.

248 Volume 2 Network Protocols and Interfaces

MprConfigGetFriendlyName, MprConfigGetGuidName

GetAdapterslnfo
The GetAdapterslnfo function retrieves adapter information for the local computer.

Parameters
pAdapterlnfo

Pointer to a buffer that, on successful return, receives a linked list
of IP _ADAPTER_INFO structures.

pOutBufLen
Pointer to a ULONG variable that contains the size of the buffer pointed to by the
pAdapterlnfo parameter. If this size is insufficient to hold the adapter information,
GetAdapterslnfo fills in this variable with the required size, and returns an error code
of ERROR_BUFFER_OVERFLOW.

Return Values
If the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_BUFFER_OVERFLOW The buffer size indicated by the pOutBufLen
parameter is too small to hold the adapter
information. The pOutBufLen parameter pOints
to the required size.

ERROR_INVALID_PARAMETER The pOutBufLen parameter is NULL, or the calling
process does not have read/write access to the
memory' pOinted to by pOutBufLen, or the calling
process does not have write access to the memory
pointed to by the pAdapterlnfo parameter.

ERROR_NO_DATA No adapter information exists for the local
computer.

ERROR_NOT _SUPPORTED GetAdapterslnfo is not supported by the operating
system running on the local computer.

Other If the function fails, use FormatMessage to obtain
the message string for the returned error.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Header: Declared in IphlpapLh.
Library: Use Iphlpapi.lib.

GetBestl nterface

Chapter 13 IP Helper 249

The GetBestlnterface function retrieves the index of the interface that has the best
route to the specified IP address.

Parameters
dwDestAddr

Specifies the destination IP address for which to retrieve the interface that has the
best route.

pdwBestlflndex
Pointer to a DWORD variable. On successful return, this variable contains the index
of the interface that has the best route to the address specified by the dwDestAddr
parameter.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, use FormatMessage to obtain the message string for the
returned error.

Remarks
For information about the IPAddr data type, see Win32 Simple Data Types. To convert
an IP address between dotted decimal notation and IPAddr format, use the ineCaddr
and ineCntoa functions.

250 Volume 2 Network Protocols and Interfaces

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Header: Declared in IphlpapLh.
Library: Use IphlpapLlib.

GetBestRoute
The GetBestRoute function retrieves the best route to the specified destination
IP address.

Parameters
dwDestAddr

Specifies the destination IP address for which to obtain the best route.

dwSourceAddr
Specifies a source IP address. This IP address corresponds to an interface on the
local computer. If multiple best routes to the destination address exist, the function
selects the route that uses this interface.

This parameter is optional. The caller may specify zero for this parameter.

pBestRoute
Pointer to a MIB_IPFORWARDROW structure. On successful return, this structure
contains the best route for the IP address specified by dwDestAddr.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, use FormatMessage to obtain the message string for the
returned error.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Header: Declared in Iphlpapi.h.
Library: Use IphlpapLlib.

GetBestlnterface, MIB_IPFORWARDROW

GetFriend Iylfl ndex

Chapter 13 IP Helper 251

The GetFriendlylflndex function takes an interface index and returns
a backward-compatible interface index, that is, one that uses only the lower 24 bits.

Parameters
IfIndex

Specifies an interface index from which the backward-compatible or "friendly"
interface index is derived.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, use FormatMessage to obtain the message string for the
returned error.

Windows NT/2000: Requires Windows NT 4.0 SP4 or later.
Windows 95/98: Requires Windows 98.
Header: Declared in Iphlpapi.h.
Library: Use IphlpapUib.

GetlfEntry, MIB_IFROW

252 Volume 2 Network Protocols and Interfaces

GetlcmpStatistics
The GetlcmpStatistics function retrieves the Internet Control Message Protocol
(ICMP) statistics for the local computer.

Parameters
pStats

Pointer to a MIB_ICMP structure that, on successful return, contains the
ICMP statistics for the local computer.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, use FormatMessage to obtain the message string for the
returned error.

Windows NT/2000: Requires Windows NT 4.0 SP4 or later.
Windows 95/98: Requires Windows 98.
Header: Declared in Iphlpapi.h.
Library: Use Iphlpapi.lib.

GetlpStatistics, GetTcpStatistics, GetUdpStatistics, MIB_ICMP

GetlfEntry
The GetlfEntry function retrieves information for the specified interface on the local
computer.

Parameters
plfRow

Pointer to a MIB_IFROW structure that, on successful return, contains information
for an interface on the local computer. Set the dwlndex member of MIB_IFROW
to the index of the interface for which to retrieve information.

Chapter 13 IP Helper 253

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, use FormatMessage to obtain the message string for the
returned error.

Windows NT/2000: Requires Windows NT 4.0 SP4 or later.
Windows 95/98: Requires Windows 98.
Header: Declared in IphlpapLh.
Library: Use IphlpapLlib.

GetNumberOflnterfaces, MIB_IFROW

GetlfTable
The GetlfTable function retrieves the MIS-II interface table.

Parameters
plfTable

Pointer to a buffer that, on successful return, contains the interface table
as a MIB_IFTABLE structure.

pdwSize
Specifies the size of the buffer pOinted to by the plfTable parameter. If the buffer is
not large enough to hold the returned interface table, the function sets this parameter
equal to the required buffer size.

bOrder
Specifies whether the returned interface table should be sorted in ascending order
by interface index. If this parameter is TRUE, the table is sorted.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, use FormatMessage to obtain the message string for the
returned error.

254 Volume 2 Network Protocols and Interfaces

Windows NT/2000: Requires Windows NT 4.0 SP4 or later.
Windows 95/98: Requires Windows 98.
Header: Declared in IphlpapLh.
Library: Use IphlpapLlib.

GetlfEntry, GetNumberOflnterfaces, MIB_IFTABLE

Getl nterfacel nfo
The Getlnterfacelnfo function obtains a list of the network interface adapters on the
local system.

Parameters
p/fTab/e

Pointer to a buffer that receives an IP _INTERFACE_INFO structure that contains
the list of adapters. This buffer should be allocated by the caller.

dwOutBufLen
Pointer to a DWORD variable. If the buffer pOinted to by the plfTable parameter is
NULL, or is not large enough to contain the list of adapters, Getlnterfacelnfo returns
the required size in this DWORD variable.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_INVALlD_PARAMETER The dwOutBufLen parameter is NULL, or
Getlnterfacelnterface is unable to write to the
memory pointed to by the dwOutBufLen
parameter.

ERROR_INSUFFICIENT_BUFFER The buffer pointed to by the pltTable parameter is
not large enough. The required size is returned in
the DWORD variable pointed to by the
dwOutBufLen parameter.

Value

Other

Chapter 13 IP Helper 255

Meaning

This function is not supported on the operating
system in use on the local system.

Use FormatMessage to obtain the message
string for·the returned error.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Header: Declared in IphlpapLh.
Library: Use IphlpapLlib.

GetlpAddrTable
The GetlpAddrTable function retrieves the interface-to~IP address mapping table.

. Parameters .
plpAddrTable

Pointer to a buffer that, on successful return, contains the interface-to-IP address
mapping table as a MIB_IPADDRTABLE structure.

pdwSize
Specifies the size of the buffer pOinted to by the plpAddrTable parameter. If the buffer
is not large enough to hold the returned mapping table, the function sets this
parameter equal to the required buffer size.

bOrder
Specifies whether the returned mapping table should be sorted in ascending order
by IP address. If this paramet~r is TRUE, the table is sorted.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, use FormatMessage to obtain the message string for the
returned error.

256 Volume 2 Network Protocols and Interfaces

Windows NT/2000: Requires Windows NT 4.0 SP4 or later.
Windows 95/98: Requires Windows 98.
Header: Declared in IphlpapLh.
Library: Use Iphlpapi.lib.

MIB~IPADDRTABLE

GetlpForwardTable
The GetlpForwardTable function retrieves the IP routing table.

Parameters
plpForwardTable

Pointer to a buffer that, on successful return, contains the IP routing table
as a MIB_IPFORWARDTABLE structure.

pdwSize
Specifies the size of the buffer pointed to by the plpForwardTable parameter. If the
buffer is not large enough to hold the returned routing table, the function sets this
parameter equal to the required buffer size.

bOrder
Specifies whether the returned table should be sorted. If this parameter is TRUE,
the table is sorted in order of:

1. Destination address

2. Protocol that generated the route

3. Multipath routing policy

4. Next-hop address

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, use FormatMessage to obtain the message string for the
returned error.

Windows NT/2000: Requires Windows NT 4.0 SP4 or later.
Windows 95/98: Requires Windows 98.
Header: Declared in IphlpapLh.
Library: Use IphlpapLlib.

GetlpNetTable

Chapter 13 IP Helper 257

The GetlpNetTable function retrieves the IP-to-physical address mapping table.

Parameters
plpNetTable

Pointer to a buffer that, on successful return, contains the IP-to-physical address
mapping table as a MIB_IPNETTABLE structure.

pdwS;ze
Specifies the size of the buffer pOinted to by the plpNetTable parameter. If the buffer
is not large enough to hold the returned mapping table, the function sets this
parameter equal to the required buffer size. '

bOrder
Specifies whether the returned mapping table should be sorted in ascending order
by IP address. If this parameter is TRUE, the table is sorted.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, use FormatMessage to obtain the message string for the
returned error.

Windows NT/2000: Requires Windows NT 4.0 SP4 or later.
Windows 95/98: Requires Windows 98.
Header: Declared in IphlpapLh.
Library: Use IphlpapLlib.

258 Volume 2 Network Protocols and Interfaces

GetlpStatistics
The GetlpStatisticsfunction retrieves the IP statistics for the current computer.

Parameters
pStats

Pointer to a MIB_IPSTATS structure that, on successful return, contains the
IP statistics for the local computer.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, use FormatMessage to obtain the message string for the
returned error.

Windows NT/2000: Requires Windows NT 4.0 SP4 or later.
Windows 95/98: Requires Windows 98.
Header: Declared in IphlpapLh.
Library: Use IphlpapUib.

GetlcmpStatistics, GetTcpStatistics, GetUdpStatistics, MIB_IPSTATS

GetNetworkParams
The GetNetworkParams function retrieves network parameters for the 10ca.1 computer.

Parameters
pFixedlnfo

Chapter 13 IP Helper 259

Pointer to a FIXED_INFO structure that, on successful return, contains the network
parameters for the local computer.

pOutBufLen
Pointer to a ULONG variable that specifies the size of the FIXED_INFO structure. If
this size is insufficient to hold the information, GetNetworkParams fills in this variable
with the required size, and returns an error code of ERROR_SUFFER_OVERFLOW.

Return Values
If the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_SUFFER_OVERFLOW The buffer size indicated by the pOutBufLen
parameter is too small to hold the adapter
information. The pOutBufLen parameter points to
the required size.

ERROR_INVALlD_PARAMETER The pOutBufLen parameter is NULL, or the calling
process does not have read/write access to the
memory pointed to by pOutBufLen, or the calling
process does not have write access to the memory
pOinted to by the pAdapterlnfo parameter.

ERROR_NO_DATA No adapter information exists for the local
computer.

ERROR_NOT_SUPPORTED GetNetworkParams is not supported by the
operating system running on the local computer.

Other If the function fails, use FormatMessage to obtain
the message string for the returned error.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Header: Declared in IphlpapLh.
Library: Use IphlpapLlib.

260 Volume 2 Network Protocols and Interfaces

GetN umberOflnterfaces
The GetNumberOflnterfaces functions retrieves the number of interfaces on the local
computer.

Parameters
pdwNumlf

Pointer to a DWORD variable that, on successful return, contains the number of
interfaces on the local computer.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, use FormatMessage to obtain the message string for the
returned error.

Windows NT/2000: Requires Windows NT 4.0 SP4 or later.
Windows 95/98: Requires Windows 98.
Header: Declared in Iphlpapi.h.
Library: Use Iphlpapi.lib.

GetlfEntry

GetPer Adapterlnfo
The GetPerAdapterlnfo function retrieves information about the adapter corresponding
to the specified interface.

Parameters
IfIndex

Chapter 13 IP Helper 261

Specifies the index of an interface. GetPerAdapterlnfo will retrieve information for the
adapter corresponding to this interface.

pPerAdapterlnfo
Pointer to an IP _PER_ADAPTER_INFO structure that, on successful return, contains
information about the adapter.

pOutBufLen
Pointer to a ULONG variable that specifies the size of the IP _PER_ADAPTER_INFO
structure. If this size is insufficient to hold the information, GetPerAdapterlnfo fills
in this variable with the required size, and returns an error code
of ERROR_SUFFER_OVERFLOW.

Return Values
If the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_SUFFER_OVERFLOW The buffer size indicated by the pOutBufLen
parameter is too small to hold the adapter
information. The pOutBufLen parameter points to
the required size.

ERROR_INVALlD_PARAMETER The pOutBufLen parameter is NULL, or the calling
process does not have read/write access to the
memory pointed to by pOutBufLen, or the calling
process does not have write access to the memory
pointed to by the pAdapterlnfo parameter.

ERROR_NOT _SUPPORTED GetPerAdapterlnfo is not supported by the
operating system running on the local computer.

Other If the function fails, use FormatMessage to obtain
the message string for the returned error.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Iphlpapi.h.
Library: Use Iphlpapi.lib.

262 Volume 2 Network Protocols and Interfaces

GetRTTAndHopCount
The GetRTTAndHopCount function determines the round-trip time (RTT) and hop count
to the specified destination.

Parameters
DestlpAddress

Specifies the IP address of the destination for which to determine the RTT and
hop count.

HopCount
Pointer to a ULONG variable. On successful return, this variable contains the
hop count to the destination specified by the DestlpAddress parameter.

MaxHops
Specifies the maximum number of hops to search for the destination. If the number
of hops to the destination exceeds this number, the function terminates the search
and returns FALSE.

RTT
Round-trip time in milliseconds to the destination specified by DestlpAddress.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. Call GetLastError to obtain the error
code for the failure.

Remarks
For information about the IPAddr data type, see Types. To convert an IP address
between dotted decimal notation and IPAddr format, use the ineCaddr and ineCntoa
functions.

Windows NT/2000: Requires Windows NT 4.0 SP4 or later.
Windows 95/98: Requires Windows 98.
Header: Declared in IphlpapLh.
Library: Use IphlpapLlib.

Chapter 13 IP Helper 263

GetBestlnterface, GetBestRoute

GetTcpStatistics
The GetTcpStatistics functions retrieves the TCP statistics for the local computer.

Parameters
pStats

Pointer to a MIB_ TCPSTATS structure that, on successful return, contains the
TCP statistics for the local computer.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, use FormatMessage to obtain the message string for the
returned error.

Windows NT/2000: Requires Windows NT 4.0 SP4 or later.
Windows 95/98: Requires Windows 98.
Header: Declared in IphlpapLh.
Library: Use IphlpapUib.

GetlcmpStatistics, GetlpStatistics, GetUdpStatistics, MIB_ TCPSTATS

GetTcpTable
The GetTcpTable function retrieves the TCP connection table.

264 Volume 2 Network Protocols and Interfaces

Parameters
pTcpTable

Pointer to a buffer that, on successful return, contains the Tep connection table
as a MIB_TCPTABLE structure.

pdwSize
Specifies the size of the buffer pOinted to by the pTcpTable parameter. If the buffer
is not large enough to hold the returned connection table, the function sets this
parameter equal to the required buffer size.

bOrder
Specifies whether the connection table should be sorted. If this parameter is TRUE,
the table is sorted in order of:

1. LocallP address

2. Local port

3. Remote IP address

4. Remote port

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, use FormatMessage to obtain the message string for the
returned error.

Windows NT/2000: Requires Windows NT 4.0 SP4 or later.
Windows 95/98: Requires Windows 98.
Header: Declared in Iphlpapi.h.
Library: Use Iphlpapi.lib.

GetUdpStatistics
The GetUdpStatistics function retrieves the User Datagram Protocol (UDP) statistics
for the local computer.

Parameters
pStats

Chapter 13 IP Helper 265

Pointer to a MIB_UDPSTATS structure that, on successful return, contains the
UDP statistics for the local computer.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, use FormatMessage to obtain the message string for the
returned error.

Windows NT/2000: Requires Windows NT 4.0 SP4 or later.
Windows 95/98: Requires Windows 98.
Header: Declared in Iphlpapi.h.
Library: Use Iphlpapi.lib.

GetlcmpStatistics, GetlpStatistics, GetTcpStatistics, MIB_UDPSTATS

GetUdpTable
The GetUdpTable function retrieves the User Datagram Protocol (UDP) listener table.

Parameters
pUdpTable

Pointer to a buffer that, on successful return, contains the UDP listener table
as a MIB_UDPTABLE structure.

pdwS;ze
Specifies the size of the buffer painted to by the pUdpTable parameter. If the buffer
is not large enough to hold the returned listener table, the function sets this parameter
equal to the required buffer size.

bOrder
Specifies whether the returned table should be sorted. If this parameter is TRUE,
the table is sorted in order of:

1. IP address

2. Port

266 Volume 2 Network Protocols and Interfaces

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, use FormatMessage to obtain the message string for the
returned error.

Windows NT/2000: Requires Windows NT 4.0 SP4 or later.
Windows 95/98: Requires Windows 98.
Header: Declared in IphlpapLh.
Library: Use IphlpapLlib.

GetU niDi rectionalAdapterl nfo
The GetUniDirectionalAdapterlnfo function retrieves information about the
unidirectional adapters installed on the local computer. A unidirectional adapter
is an adapter that can receive datagrams, but not transmit them.

Parameters
plPlflnfo
. Pointer to an IP _UNIDIRECTIONAL_ADAPTER_ADDRESS structure that receives

information about the unidirectional adapters installed on the local computer.

dwOutBufLen
Pointer to a ULONG variable that, on successful return, contains the size of the
structure pointed to by the plPlflnfo parameter.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, use FormatMessage to obtain the message string for the
returned error.

Windows NT/2000: Unsupported.
Windows 95/98: Requires Windows 98.
Header: Declared in Iphlpapi.h.
Library: Use Iphlpapi.lib.

IP _UNIDIRECTIONAL_ADAPTER_ADDRESS

IpReleaseAddress

Chapter 13 IP Helper 267

. The IpReleaseAddress function releases an IP address previously obtained through
Dynamic Host Configuration Protocol (DHCP).

Parameters
Adapter/nfo

Pointer to an IP _ADAPTER_INDEX_MAP structure that identifies the adapter
associated with the IP address to release.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, use FormatMessage to obtain the message string for the
returned error.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Header: Declared in Iphlpapi.h.
Library: Use Iphlpapi.lib.

IpRenewAddress

268 Volume 2 Network Protocols and Interfaces

IpRenewAddress
The IpRenewAddress function renews a lease on an IP address previously obtained
through Dynamic Host Configuration Protocol (DHCP).

Parameters
Adapterlnfo

Pointer to an IP _ADAPTER_INDEX_MAP structure that identifies the adapter
associated with the IP address to renew.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, use FormatMessage to obtain the message string for the
returned error.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Header: Declared in Iphlpapi.h.
Library: Use Iphlpapi.lib.

IpReleaseAddress

Notify AddrChange
The NotifyAddrChange function causes a notification to be sent to the caller whenever
a change occurs in the table that maps IP addresses to interfaces.

Parameters
Handle

Pointer to a HANDLE variable that receives a handle to use in asynchronous
notification.

Chapter 13 IP Helper 269

overlapped
Pointer to an OVERLAPPED structure that will notify the caller of any changes in the
table that maps IP addresses to interfaces.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, use FormatMessage to obtain the message string for the
returned error.

Remarks
If the caller specifies NULL for the Handle and overlapped parameters, the call
to NotifyAddrChange blocks until an IP address change occurs.

If the caller specifies a handle variable and an OVERLAPPED structure, the caller can
use the returned handle with the OVERLAPPED structure to receive asynchronous
notification of IP address changes. See GetQueuedCompletionStatus and the 110
Completion Ports overview for information about using the handle and OVERLAPPED
structure to receive notifications.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in IphlpapLh.
Library: Use IphlpapLlib.

NotifyRouteChange, OVERLAPPED

NotifyRouteChange
The NotifyRouteChange function causes a notification to be sent to the caller whenever
a change occurs in the IP routing table.

Parameters
Handle

Pointer to a HANDLE variable that receives a handle to use in asynchronous
notification.

270 . Volume 2 Network Protocols and Interfaces

overlapped
Pointer to an OVERLAPPED structure that will notify the caller of any changes in the
routing table.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, use FormatMessage to obtain the message string for the
returned error.

Remarks
If the caller specifies NULL for the Handle and overlapped parameters, the call

. to NotifyRouteChange blocks until a routing table change occurs.

If the caller specifies a handle variable and an OVERLAPPED structure, the caller can
use the returned handle with the OVERLAPPED structure to receive asynchronous
notification of routing table changes. See GetQueuedCompletionStatus and the
110 Completion Ports overview for information about using the handle and
OVERLAPPED structure to receive notifications.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in IphlpapLh.
Library: Use IphlpapLlib.

NotifyAddrChange, OVERLAPPED

SendARP
The SendARP function sends an ARP request to obtain the physical address that
corresponds to the specified destination IP address.

Parameters
DestlP

Chapter 13 IP Helper 271

Specifies the destination IP address. The ARP request attempts to obtain the physical
address that corresponds to this IP address.

SrclP
Specifies the IP address of the sender. This parameter is optional. The caller may
specify zero for the parameter.

pMacAddr
Pointer to a ULONG variable. On successful return, this variable contains the physical
address that corresponds to the IP address specified by the DestlP parameter.

PhyAddrLen
Pointer to a ULONG variable. On successful return, this variable contains the length
of the physical address pOinted to by the pMacAddr parameter.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, use FormatMessage to obtain the message string for the
returned error.

Remarks
For information about the IPAddr data type, see Win32 Simple Data Types. To convert
an IP address between dotted decimal notation and IPAddr format, use theineLaddr
and ineLntoa functions.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Iphlpapi.h.
Library: Use Iphlpapi.lib.

CreatelpNetEntry, DeletelpNetEntry, FlushlpNetTable, SetlpNetEntry

SetlfEntry
Use the SetlfEntry function to set the administrative status of an interface.

272· Volume 2 Network Protocols and Interfaces

Parameters
plfRow

Pointer to a MIB_IFROW structure. The dwlndex member of this structure should
specify the interface on which to set administrative status. The dwAdminStatus
member specifies the new administrative status. The dwAdminStatus member can
be one of the following values.

Value Meaning

MIB_IF _ADMIN_STATUS_UP The interface is administratively enabled.

MIB_IF _ADMIN_STATUS_DOWN The interface is administratively disabled.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, use FormatMessage to obtain the message string for the
returned error.

WindowsNT/2000: Requires Windows NT 4.0 SP4 or later.
Windows 95/98: Requires Windows 98.
Header: Declared in Iphlpapi.h.
Library: Use Iphlpapi.lib.

SetlpForwardEntry
The SetlpForwardEntry function modifies an existing route in the local computer's
IP routing table.

Parameters
pRoute

Pointer to a MIB_IPFORWARDROW structure that specifies the new information
for the existing route. The caller must specify PROTO_IP _NETMGMT for the
dwForwardProto member of this structure. The caller must also specify values for
the dwForwardlflndex, dwForwardDest, dwForwardMask, dwForwardNextHop,
and dwForwardPolicy members of the structure.

Chapter 13 IP Helper 273

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

. ERROR_INVALlD_PARAMETER The pRoute parameter is NULL, or
SetlpFowardEntry is unable to read from the
memory pointed to by pRoute, or one of the
members of the MIB_IPFORWARDROW structure
is invalid.

ERROR_NOT _SUPPORTED The IP transport is not configured on the local
computer.

Other Use FormatMessage to obtain the message string
for the returned error.

Remarks
To create a new route in the IP routing table, use the CreatelpForwardEntry function.

The caller should not specify a routing protocol, such as PROTO_IP _OSPF, for the
dwForwardProto member of the MIB_IPFORWARDROW structure. Routing protocol
identifiers are used to identify route information received through the specified routing
protocol only. For example, PROTO_IP _OSPF is used to identify route information
received through the OSPF routing protocol only.

The dwForwardPolicy member of the MIB_IPFORWARDROW structure is currently
unused. The caller should specify zero for this member.

Windows NT/2000: Requires Windows NT 4.0 SP4 or later.
Windows 95/98: Requires Windows 98.
Header: Declared in IphlpapLh.
Library: Use IphlpapUib.

CreatelpForwardEntry, DeletelpForwardEntry, MIB_IPFORWARDROW

SetlpNetEntry
The SetlpNetEntry function modifies an existing ARP entry in the ARP table on the local
computer.

274 Volume2 Network Protocols and Interfaces

Parameters
pArpEntry

Pointer to a MIB_IPNETROW structure. The information in this structure identifies the
entry to modify and specifies the new information for the entry. The caller must specify
values for all members of this structure.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, use FormatMessage to obtain the message string for the
returned error.

Windows NT/2000: Requires Windows NT 4.0 SP4 or later.
Windows 95/98: Requires Windows 98.
Header: Declared in IphlpapLh.
Library: Use Iphlpapi.lib.

CreatelpNetEntry, DeletelpNetEntry, MIB_IPNETROW

SetlpStatistics
The SetlpStatistics function toggles IP forwarding on or off and sets the default
Time-To-Live (TTL) value for the local computer.

Parameters
plpStats

Pointer to a MIB_IPSTATS structure. The caller should set the dwForwarding
and dwDefaultTTL members of this structure to the new values. To keep one
of the members at its current value, use MIB_USE_CURRENT _ TTL
or MIB_USE_CURRENT _FORWARDING.

Chapter 13 IP Helper 275

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, use FormatMessage to obtain the message string for the
returned error.

Remarks
To set only the default TTL, the caller can also use the SetipTTL function.

Windows NT/2000: Requires Windows NT 4.0 SP4 or later.
Windows 95/98: Requires Windows 98.
Header: Declared in Iphlpapi.h.
Library: Use Iphlpapi.lib.

MIB_IPSTATS, SetipTTL

SetlpTTL
The SetlpTTL function sets the default Time-To-Live (TTL) value for the local computer.

Parameters
nTTL

Specifies the new TTL value for the local computer.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, use FormatMessage to obtain the message string for the
returned error.

Remarks
The default TTL can also be set using the SetlpStatistics function.

276 Volume 2 Network Protocols and Interfaces

. Windows NT/2000: Requires Windows NT 4.0 SP4 or later.
Windows 95/98: Requires Windows 98.
Header: Declared in IphlpapLh.
Library: Use IphlpapLlib.

MIB_IPSTATS, SetlpStatistics

SetTcpEntry
The SetTcpEntry function sets the state of a TCP connection.

Parameters
pTcpRow

Pointer to a MIB_ TCPROW structure. This structure contains information to identify
the TCP connection to modify. It also specifies the new state for the TCP connection.
The caller must specify values for all the members in this structure.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, use FormatMessage to obtain the message string for the
returned error.

Remarks
Currently, the only state to which a TCP connection can be set
is MIB_TCP _STATE_DELETE_TCB.

Windows NT/2000: Requires Windows NT 4.0 SP4 or later.
Windows 95/98: Requires Windows 98.
Header: Declared in IphlpapLh.
Library: Use IphlpapLlib.

Chapter 13 IP Helper 277

IP Helper Structures
Use the following structures to retrieve and modify configuration settings for the
TCP/IP transport suite on the local computer:

FIXED_INFO
IP _ADAPTER_INDEX_MAP
IP _ADAPTER_INFO
IP _INTERFACE_INFO
IP _PER_ADAPTER_INFO
IP _UNIDIRECTIONAL_ADAPTER_ADDRESS

FIXED_INFO
The FIXED_INFO structure contains information that is the same across all the
interfaces in a computer.

Members
HostName[MAX_HOSTNAME_LEN + 4]

SpeCifies the host name for the local computer.

DomainName[MAX_DOMAIN_NAME_LEN + 4]
Specifies the domain in which the local computer is registered.

CurrentDnsServer
Specifies the current DNS server.

DnsServerList
Specifies the set of DNS servers used by the local computer.

NodeType
Specifies whether the local computer uses dynamic host configuration protocol
(DHCP).

278 . Volume 2 Network Protocols and Interfaces

Scopeld[MAX_SCOPE_ID_LEN + 4]
Specifies the DHCP scope name.

EnableRouting
Specifies whether routing is enabled on the local computer.

EnableProxy
Specifies whether the local computer is acting as an ARP proxy.

EnableDns
Specifies whether DNS is enabled on the local computer.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Header: Declared in Iptypes.h.

GetNetworkParams

IP ADAPTER INDEX MAP - --
The IP _ADAPTER_INDEX_MAP structure pairs an adapter name with the index of that
adapter.

Members
Index

Specifies the index of the adapter.

Name[MAX_ADAPTER_NAME]
Pointer to a Unicode string that contains the name of the adapter.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Header: Declared in Ipexport.h.

IP _INTERFACE_INFO, Getlnterfacelnfo

Chapter 13 IP Helper 279

The IP _ADAPTER_INFO structure contains information about a particular network
adapter on the local computer.

Members
Next

Pointer to the next adapter in the linked list of adapters.

Combolndex
This member is unused.

AdapterName[MAX_ADAPTER_NAME_LENGTH + 4]
Specifies the name of the adapter.

Description[MAX_ADAPTER_DESCRIPTION_LENGTH + 4]
Specifies a description for the adapter.

AddressLength
Specifies the length of hardware address for the adapter.

Address[MAX_ADAPTER_ADDRESS_LENGTH]
Specifies the hardware address for the adapter.

Index
Specifies the adapter index.

Type
Specifies the adapter type.

280 Volume 2 Network Protocols and Interfaces

DhcpEnabled
Specifies whether Dynamic Host Configuration Protocol (DHCP) is enabled
for this adapter.

CurrentlpAddress
Specifies the current IP address for this adapter.

IpAddressList
Specifies the list of IP addresses associated with this adapter.

GatewayList
Specifies the IP address of the default gateway for this adapter.

DhcpServer
Specifies the IP address of the DHCP server for this adapter.

HaveWins
Specifies whether this adapter uses Windows Internet Name Service (WINS).

PrimaryWinsServer.
Specifies the IP address of the primary WINS server.

SecondaryWinsServer
Specifies the IP address of the secondary WINS server.

LeaseObtai ned
Specifies the time when the current DHCP lease was obtained.

LeaseExpires
Specifies the time when the current DHCP lease will expire.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Header: Declared in Iptypes.h.

GetAdapterslnfo

The IP _INTERFACE_INFO structure contains a list of the network interface adapters on
the local system.

Members
NumAdapters

Chapter 13 IP Helper 281

Specifies the number of adapters listed in the array pointed to by the Adapter
member.

Adapter[1]
Specifies an array of IP _ADAPTER_INDEX_MAP structures. Each structure maps an
adapter index to that adapter's name.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Header: Declared in Ipexport.h.

IP _ADAPTER_INDEX_MAP, Getlnterfacelnfo

The IP _PER_ADAPTER_INFO function contains information specific to a particular
adapter.

Members
AutoconfigEnabled

Specifies whether auto-configuration is enabled on this adapter.

AutoconfigActive
Specifies whether auto-configuration is active on this adapter.

CurrentDnsServer
Specifies the IP address of the current DNS server for this adapter.

DnsServerList
Specifies the list of possible DNS servers for this adapter.

282 Volume 2 Network Protocols and Interfaces

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Iptypes.h.

GetPerAdapterlnfo

IP _UNIDIRECTIONAL_ADAPTER_ADDRESS
The IP _UNIDIRECTIONAL_ADAPTER_ADDRESS structure contains the number of
unidirectional adapters on the local computer, and the IP addresses that are associated
with those adapters.

Members
NumAdapters

Specifies the number of unidirectional adapters on the local computer.

Address[1]
Specifies an array of IPAddr values. These are the IP addresses of the unidirectional
adapters on the local computer.

Remarks
For information about the IPAddr data type, see Win32 Simple Data Types. To convert
an IP address between dotted decimal notation and IPAddr format, use the inet_addr
and ineCntoa functions.

Windows NT/2000: Unsupported.
Windows 95/98: Requires Windows 98.
Header: Declared in Ipexport.h.

GetUniDirectionalAdapterlnfo

CHAPTER 14

Simple Network Management
Protocol (SNMP)

283

The Simple Network Management Protocol (SNMP) is the Internet standard protocol for
exchanging management information between management console applications such
as HP Openview, Novell NMS, IBM NetView, or Sun Net Manager, and managed
entities. The managed entities can include hosts, routers, bridges, and hubs.

New.SNMP Programming Elements
The Microsoft® SNMP service for Windows® 2000 adds support for the following
programming features and elements:

• New SNMP extension agent functions

• New SNMP utility functions

In addition, the SNMP service adds support for the following structure:

• AsnCounter64

The SNMP service also introduces the following changes:

• Modified SNMP variable types

• Modified SNMP PDU request types

New SNMP Extension Agent Functions
The following new SNMP extension agent functions are available to SNMP extension
agents that run on Windows 2000.

• SnmpExtensionClose

• SnmpExtension~onitor

• SnmpExtensionQueryEx

New SNMPUtility Functions
The following new SNMP utility functions simplify manipulation of octet strings and
AsnAny structures, and provide functionality that is useful during the development of
SNMP applications.

284 Volume 2 Network Protocols and Interfaces

• SnmpSvcGetUptime • SnmpUtiiOctetsCmp

• SnmpSvcSetLogLevel • SnmpUtiiOctetsCpy

• SnmpSvcSetLogType • SnmpUtiiOctetsFree

• SnmpUtiiAsnAnyCpy • SnmpUtiiOctetsNCmp

• SnmpUtiiAsnAnyFree • SnmpUtiiOidToA

• SnmpUtilDbgPrint • SnmpUtilPrintOid

• SnmpUtilldsToA

Modified SNMP Variable Types
The definitions for some SNMP variable types have changed. The SNMP.H file maps old
variable types to the corresponding new types .

. You should use the new SNMP variable type when you develop manager applications
that use the Microsoft SNMP Management API. The following table lists the old SNMP
variable types with the corresponding new variable type.

Old Variable Type New Variable Type

ASN_RFC1155_IPADDRESS

ASN_RFC1155_COUNTER

ASN_RFC1155_GAUGE

ASN_RFC1155_ TIMETICKS

ASN_RFC1155_0PAQUE

ASN_RFC1213_DISPSTRING

Modified SNMP PDU Request Types

ASN_IPADDRESS

ASN_COUNTER32

ASN_GAUGE32

ASN_ TIMETICKS

ASN_OPAQUE

ASN_OCTETSTRING

The definitions for some SNMP PDU types have changed. The SNMP.H file maps old
PDU types to the corresponding new types.

You should use the new SNMP PDU type when you develop manager applications that
use the Microsoft SNMP Management API. The following table lists the old SNMP PDU
types with the corresponding new PDU type.

Old PDU Type

ASN_RFC1157 _GETREQUEST

ASN_RFC1157_GETNEXTREQUEST

ASN_RFC1157 _GETRESPONSE

ASN_RFC1157_SETREQUEST

ASN_RFC1157 _TRAP

New PDU Type

SNMP _PDU_GET

SNMP _PDU_GETNEXT

SNMP_PDU_RESPONSE

SNMP _PDU_SET

SNMP _PDU_ V1TRAP

Chapter 14 Simple Network Management Protocol (SNMP) 285

About SNMP
SNMP uses a distributed architecture consisting of managers and agents. An agent is an
SNMP application that responds to queries from SNMP manager applications. The
SNMP agent is responsible for retrieving and updating local management information
based on the requests of the SNMP manager. The agent also notifies registered
managers when significant events or traps occur. A manager is an SNMP application
that generates queries to SNMP agent applications and receives traps from SNMP agent
applications.

On computers running Microsoft® Windows NT®IWindows® 2000 the SNMP agent is
implemented by the SNMP service (SNMP.EXE). The SNMP manager is typically a
third-party SNMP management console application. The management console
application does not need to run on the same host as the SNMP agent. To use the
information the Microsoft SNMP service provides, you need at least one SNMP
management console application. The system includes libraries that support SNMP
management console applications, but it does not include an SNMP management
console application at this time.

How SNMP Works
The following steps outline how a third-party SNMP management console application
returns information from the SNMP service:

1. The SNMP management console application formulates an SNMP message based on
input from the user. The message includes a protocol data unit (PDU) and
authentication information. The management console application can use the
Microsoft SNMP Management API library (MGMTAPI,DLL) or the Microsoft WinSNMP
API library (WSNMP32.DLL) to perform this step.

2. The SNMP management console application sends the SNMP message to the SNMP
service, using the SNMP service libraries.

3. The SNMP service receives the request. It verifies the authentication information and
the source IP address.

4. The SNMP service selects the appropriate extension agent and requests that the
agent retrieve the requested information.

5. The SNMP service sends the response to the SNMP management console
application.

The SNMP Management Information Base (MIB)
A Management Information Base (MIB) describes a set of managed objects. An SNMP
management console application can manipulate the objects on a specific computer if
the SNMP service has an extension agent DLL that supports the MIB.

286 Volume 2 Network Protocols and Interfaces

Each managed object in a MIS has a unique identifier. The identifier includes the
object's type (such as counter, string, gauge, or address), the object's access level (such
as read or read/write), size restrictions, and range information.

The following table contains a partial list of the MISs that ship with
Windows NTIWindows 2000. They are installed with the SNMP service. For a complete
listing of MISs, refer to the Windows NT/Windows 2000 Resource Kit.

MIB

DHCP.MIS

HOSTMIS.MIS

LMMIS2.MIS

MIS_II.MIS

WINS. MIS

Description

Microsoft-defined MIS that contains object types for monitoring the
network traffic between remote hosts and DHCP servers

Contains object types for monitoring and managing host resources

Covers workstation and server services

Contains the Management Information Sase (MIS-II), which provides
a simple, workable architecture and system for managing TCP/lP
based internets

Microsoft-defined MIS for the Windows Internet Name Service (WINS)

The extension agent DLLs for MIS-II, LAN Manager MIS-II, and the Host Resources MIS
are installed with the SNMP service. The extension agent DLLs for the other MISs are
installed when their respective services are installed. At service startup time, the SNMP
service loads all of the extension agent DLLs that are listed in the registry.

Users can add other extension agent DLLs that implement additional MISs. To do this,
they must add a registry entry for the new DLL under the SNMP service. They must also
register the new MIS with the SNMP management console application. For more
information, see the documentation included with your management console application.

MIB Name Tree
The name space for MIS object identifiers is hierarchical. It is structured so that each
manageable object can be assigned a globally unique name.

Authority for parts of the name space is assigned to individual organizations. This allows
organizations to assign names without consulting an Internet authority for each
assignment. For example, the name space assigned to Microsoft is 1.3.6.1.4.1.311,
which is defined in MSFT.MIS. Microsoft has the authority to assign names to objects
anywhere below that name space.

The object identifier in the hierarchy is written as a sequence of subidentifiers beginning
at the root and ending at the object. Subidentifiers are separated with a period.

Relevant RFCs
TCP/IP standards are defined in Requests for Comments (RFCs), which.are published
by the Internet Engineering Task Force (IETF). The following table lists the RFCs that
are relevant to SNMP.

RFC
number

1155

1157

1213

1901

1902

1903

1904

1905

1906

1907

1908

2089

Chapter 14 Simple Network Management Protocol (SNMP) 287

Title

"Structure and Identification of Management Information forTCP/lP
based Internets." It defines SMI.MIS.

"A Simple Network Management Protocol (SNMP)." It defines SNMP
itself.

"Management Information Base for Network Management of TCP/lP
based internets: MIS-II." It defines MIS_".MIS.

"Introduction to Community-based SNMPv2"

"Structure of Management Information for Version 2 of the Simple
Network Management Protocol (SNMPv2)"

''Textual Conventions for Version 2 of the Simple Network Management
Protocol (SNMPv2)"

"Conformance Statements for Version 2 of the Simple Network
Management Protocol (SNMPv2)"

"Protocol Operations for Version 2 of the Simple Network Management
Protocol (SNMPv2)"

"Transport Mappings for Version 2 of the Simple Network Management
Protocol (SNMPv2)"

"Management Information Sase for Version 2 of the Simple Network
Management Protocol (SNMPv2)"

"Coexistence between Version 1 and Version 2 of the Internet-standard
Network Management Framework"

"V2ToV1 Mapping SNMPv2 onto SNMPv1 within a bi-lingual SNMP
agenf'

System Files for SNMP
The following table describes the principal files that relate to the SNMP service.

Filename

DHCPMIB.DLL

EVNTAGNT.DLL

HOSTMIB.DLL

LMMIS2.DLL

MGMTAPI.DLL

Description

Extension agent DLL that implements the Microsoft-defined DHCP MII;3.
Installed only on DHCP servers, and not available on Windows NT 3.1.

SNMP DLL that translates event logs intoSNMP ~raps; also known as
the SNMP event translator.

Extension agent DLL that implements the Host Resources MIB.

Extension agent DLL that implements LAN Manager MIS-II.

Microsoft Windows 2000-based SNMP Management API library. This
API allows SNMP manager applications to "listen" for SNMP manager
requests, and send requests to and receive responses from SNMP
agents.

(continued)

288 Volume 2 Network Protocols and Interfaces

(continued)

Filename

MIB.BIN

SNMP.EXE

SNMPAPI,DLL

SNMPSNAP.DLL

Description

Compiled MIB information used by MGMTAPI,DLL.

SNMP service. This is the master agent that receives SNMP requests
and delivers them to the appropriate extension agent DLL.

SNMP utilities DLL used by SNMP extension agent DLLs and manager
applications. This DLL contains a framework for developing extension
agent DLLs.

SNMP configuration application that is a Microsoft Management
Console (MMC) snap-in component. The snap-in adds several pages to
the SNMP Service Properties sheet. For more information, see the
online help for the SNMP service.

SNMPTRAP.EXE SNMP trap service. Receives SNMP traps and forwards them to SNMP
manager applications.

WINSMIB.DLL

WSNMP32.DLL

Extension agent DLL that implements the Microsoft-defined WINS MIB.
Installed only on WINS servers, and not available on Windows NT 3.1.
Microsoft Windows 2000-based WinSNMP API library. This API allows
SNMP manager applications to "listen" for SNMP manager requests,
and send requests to and receive responses from SNMP agents.

For additional information, see The SNMP Management Information Base (MIB).
(You can also refer to the Windows NTlWindows 2000 Resource Kit.)

SNMP Utilities
The following table lists the SNMP utilities that are available in the Microsoft Windows
Resource Kit.

Filename Description

EVNTCMD.EXE A command-line application for configuring the SNMP event
translator

EVNTWIN.EXE An application that provides a user interface for configuring the
SNMP event translator

MIBCC.EXE The SNMP MIB Compiler

SNMPUTIL.EXE A sample SNMP manager console application

Configuring the SNMP Service
On occasion, you may need to reconfigure SNMP. In these instances, you need to know
community names in your network, the trap destination for each community, and IP
addresses or computer names for SNMP management hosts before you use or
reconfigure SNMP services. For more information, refer to the
Windows NTlWindows 2000 Resource Kit and to the SNMP service online
documentation.

Chapter 14 Simple Network Management Protocol (SNMP) 289

The following topics contain information relevant to configuring the SNMP service:

• Community names

• Host names and IP addresses

• Configuring SNMP security

• Configuring SNMP agent information

Community Names
A community name identifies a collection of SNMP managers and agents. The use of a
community name provides primitive security and context checking for both agents and
managers that receive requests and initiate trap operations. An agent won't accept a
request from a manager outside the community.

Host Names and IP Addresses
If the computer does not have access to a WINS server, the SNMP service uses the
HOSTS file to resolve host names to IP addresses. The HOST file is merely a text file
listing explicit host names and IP addresses. If you use host names, be sure to add all
host name and IP address mappings of the participating systems.

Configuring SNMP Security
SNMP security allows you to specify the communities and hosts from which a computer
accepts requests, as well as the type of operations to accept from the computers
belonging to a community. The security also allows you to specify whether to send an
authentication trap when an unauthorized community or host requests information.

Configuring SNMP Agent Information
SNMP agent information allows you to specify comments about the user and the
physical location of the computer and to indicate the types of service to report. The types
of service that can be reported are based on the computer's configuration.

SNMP Reference
This section provides the SNMP functions and structures. These elements support the
development of SNMP agent applications and SNMP manager applications for
Windows NT®IWindows® 2000.

SNMP Functions
The SNMP functions fall into the following three functional groupings:

• SNMP Extension Agent API functions

• SNMP Management API functions

• SNMP Utility API functions

290 Volume 2 Network Protocols and Interfaces

SNMP Extension Agent API Functions
The SNMP Extension Agent API functions define the interface between the SNMP
service and the third-party SNMP extension agent DLLs. Applications use these
functions to resolve the variable bindings specified by incoming SNMP PDUs.

SnmpExtensionClose
SnmpExtensionlnit
SnmpExtensionlnitEx
SnmpExtensionMonitor

SNMP Management API Functions

SnmpExtensionQuery
SnmpExtensionQueryEx
SnmpExtensionTrap

The SNMP Management API functions define the interface between third-party SNMP
manager applications and the management function dynamic-link library MGMTAPI.DLL.
The DLL works in conjunction with the SNMP trap service (SNMPTRAP.EXE), and can
interact with one or more third-party SNMP manager applications. Third-party manager
applications can use the management functions to perform SNMP manager operations.

SnmpMgrClose SnmpMgrRequest
SnmpMgrGetTrap SnmpMgrStrToOid
SnmpMgrOidToStr SnmpMgrTrapListen
SnmpMgrOpen

SNMP Utility API Functions
The SNMP Utility API functions simplify manipulation of SNMP data structures and
provide functionality that is useful during the development of SNMP applications.

SnmpSvcGetUptime SnmpUtiiOctetsNCmp
SnmpSvcSetLogLevel SnmpUtiiOidAppend
SnmpSvcSetLogType SnmpUtiiOidCmp
SnmpUtiiAsnAnyCpy SnmpUtiiOidCpy
SnmpUtiiAsnAnyFree SnmpUtiiOidFree
SnmpUtilDbgPrintSnmpUtilldsToA SnmpUtilOidNCmpSnmpUtiiOidToA
SnmpUtilMemAlloc SnmpUtilPrintAsnAnySnmpUtilPrintOid
SnmpUtilMemFree SnmpUtilVarBindCpy
SnmpUtilMemReAlloc SnmpUtilVarBindListCpy
SnmpUtiiOctetsCmp SnmpUtilVarBindFree
SnmpUtiiOctetsCpy SnmpUtilVarBindListFree
SnmpUtiiOctetsFree

SnmpExtensionClose
The Microsoft SNMP service calls the SnmpExtensionClose function to request that the
SNMP extension agent deallocate resources and terminate operations. This function is
an element of the SNMP Extension Agent API.

Chapter 14 Simple Network Management Protocol (SNMP) 291

Note The SNMP service calls the SnmpExtensionClose function only if the extension
agent is running on Windows 2000. For more information, see the following Remarks
section.

Parameters
This function has no parameters.

Return Values
None.

Remarks
An SNMP extension agent that runs on Windows NT 3.51 or 4.0 can also export the
SnmpExtensionClosefunction. Because the SNMP service does not call this function
under these conditions, the extension agent must call SnmpExtensionClose manually.
It should do this when the SNMP service calls the extension agent's DIIMain function
with the value DLL_PROCESS_DETACH. The extension agent must clean up allocated
resources and terminate services at this time.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Snmp.h.

Simple Network Management Protocol (SNMP) Overview, SNMP Functions,
SnmpExtensionlnit, SnmpExtensionlnitEx

SnmpExtensionlnit
The Microsoft SNMP service calls the SnmpExtensionlnit function to initialize the
SNMP extensionagent DLL. This function is an element of the SNMP Extension
Agent API.

292 Volume 2 Network Protocols and Interfaces

Parameters
dwUptimeReference

[in] Specifies a time-zero reference for the extension agent.

~ote Extension agents should ignore this parameter. The SNMP extension agent
DLL should use the SnmpSvcGetUptime function to retrieve the number of
centiseconds the SNMP service has been running. For more information, see the
following Remarks section.

phSubagentTrapEvent
[out] Pointer to an event handle the extension agent passes back to the SNMP
service. This handle is used to notify the service that the extension agent has one or
more traps to send. For additional information about allocating and deallocating the
event handle, see the following Remarks section.

pFirstSupportedRegion
[out] Pointer to an AsnObjectldentifier structure to receive the first MIB subtree that
the extension agent supports. For additional information about allocating and
deallocating resources for this structure, see the following Remarks section.

The extension agent can register additional MIB subtrees by implementing the
SnmpExtensionlnitEx entry point function.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE.

Remarks
Extension agents should ignore the dwUptimeReference parameter. Instead, they
should call the SnmpSvcGetUptime function to retrieve the number of centiseconds that
the Microsoft SNMP service has been running. Because the dwUptimeReference
parameter stores the elapsed time as a DWORD value in milliseconds, the time can
wrap to zero and reflect an inaccurate time interval.

The extension agent notifies the SNMP service that it needs to send one or more traps
by setting the event handle passed back in the phSubagentTrapEvent parameter to the
signaled state. After this event has been signaled, the SNMP service repeatedly calls the
extension agent's SnmpExtensionTrap entry point until the function returns a value of
FALSE. This indicates that the extension agent has no more traps to send. If the
extension agent does not generate traps, the phSubagentTrapEvent parameter should
return a value of NULL.

The SNMP extension agent must allocate and deallocate resources for the trap event
handle. When the SNMP service calls the SnmpExtensionlnit function, the extension
agent must call the CreateEvent function to allocate the event handle. The extension

Chapter 14 Simple Network Management Protocol (SNMP) 293

agent passes the handle to the SNMP service in the phSubagentTrapEvent parameter.
When the SNMP service calls the SnmpExtensionClose function, the extension agent
must deallocate resources for the trap event handle.

The SNMP service makes a copy of the AsnObjectldentifier structure the extension
agent returns in the pFirstSupportedRegion parameter. The extension agent must
allocate and deallocate the resources associated with the original structure. It can do this
when the SNMP service calls the SnmpExtensionClose function.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Snmp.h.

Simple Network Management Protocol (SNMP) Overview, SNMP Functions,
AsnObjectldentifier, CreateEvent, SnmpExtensionTrap, SnmpSvcGetUptime,
SnmpExtensionClose, SnmpExtensionMonitor

SnmpExtensionlnitEx
The Microsoft SNMP service calls the SnmpExtensionlnitEx function to identify any
additional management information base (MIS) subtrees the SNMP extension agent
supports. This function is an element of the SNMP Extension Agent API.

Parameters
pNextSupportedRegion

[out] Pointer to an AsnObjectldentifier structure to receive the next MIS subtree that
the extension agent supports.

Return Values
If the pNextSupportedRegion parameter has been initialized with an additional MIS
subtree, the return'\,alue is TRUE.

If there are no more MIS subtrees to register, the return value is FALSE.

294 Volume 2 Network Protocols and Interfaces

Remarks
The SNMP service repeatedly calls the SnmpExtensionlnitEx function entry point so
the extension agent can register support for additional MIB subtrees.

The SNMP service makes a copy of the AsnObjectldentifier structure the extension
agent returns in the pNextSuppot1edRegion parameter. The extension agent must
allocate and deallocate the resources associated with the original structure. It can do this
when the SNMP service calls the SnmpExtensionClose function.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Snmp.h.

Simple Network Management Protocol (SNMP) Overview, SNMP Functions,
SnmpExtensionlnit, SnmpExtensionClose, AsnObjectldentifier,
SnmpExtensionMonitor

SnmpExtensionMonitor
The Microsoft SNMP service calls the SnmpExtensionMonitor function to provide the
SNMP extension agent with a view to the service's internal counters and parameters.
This function is an element of the SNMP Extension Agent API.

The SnmpExtensionMonitor function is optional. Extension agents should implement
the function if they are interested in a view of the SNMP service's internal management
objects, as defined in RFC 1213, "Management Information Base for Network
Management of TCP/IP-based internets: MIB-II."

Parameters
pAgentMgmtData

[in] Pointer to an array of AsnAny objects (structures). The number of objects, and
the type and description of each object, are in accordance with RFC 1213. For more
information, see the following Remarks section.

Chapter 14 Simple Network Management Protocol (SNMP) 295

Return Values
Unless an unexpected error occurs while the SNMP extension agent is processing the
value of the pAgentMgmtData parameter, the extension agent should return TRUE. If the
extension agent returns FALSE, the SNMP service does no! load the extension agent,
and the service stops directing SNMP requests to the extension agent.

Remarks
If the extension agent exports the SnmpExtensionMonitor function, the SNMP service
calls the function during initialization of the extension agent, immediately after the
service calls the SnmpExtensionlnit and the SnmpExtensionlnitEx functions.

The SNMP service dynamically updates the SNMP counters (for example, the
snmplnPkts and the snmpOutNoSuchNames counters) in the array pOinted to by the
pAgentMgmtData parameter. In orderto be able to read these values while the SNMP
service is running, the extension agent must store the pointer to pAgentMgmtData.

Note that an SNMP extension agent should not update the memory pointed to by the
pAgentMgmtData parameter. This is because the values of the SNMP service's internal
counters would no longer be valid, and the behavior of the SNMP service could become
unpredictable. As long as the extension agent does not alter it, the memory pointed to by
pAgentMgmtData is valid while the SNMP service is running.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Snmp.h.

Simple Network Management Protocol (SNMP) Overview, SNMP Functions,
SnmpExtensionlnit, SnmpExtensionlnitEx, SnmpExtensionClose, AsnAny

SnmpExtensionQuery
The Microsoft SNMP service calls the SnmpExtensionQuery function to resolve SNMP
requests that contain variables within one or more of the SNMP extension agent's
registered MIS subtrees. This function is an element of the SNMP Extension Agent API.

Note The extension agent must export the SnmpExtensionQuery function if the
extension agent runs on Windows NT 3.51 or 4.0. However, it is recommended that you
use the SnmpExtensionQueryEx function, which supports SNMP version 2C
(SNMPv2C) data types and multiphase SNMP SET operations.

296 Volume 2 Network Protocols and Interfaces

Parameters
bPduType

[in] Specifies the SNMP version 1 (SNMPv1) PDU request type. This parameter can
be one of the following values.

Value Meaning

SNMP _PDU_GET

SNMP _PDU_GETNEXT

Retrieve the value or values of the specified variables.

Retrieve the value or values of the lexicographic
successor of the specified variable.

Write a value within a specific variable.

Note that PDU request types have been renamed. For additional information, see
Modified SNMP PDU Request Types.

pVarBindList
[in/out] Pointer to the variable bindings list.

pErrorStatus
[out] Pointer to a variable in which the error status result will be returned. This
parameter can be one of the following values defined by SNMPv1.

Value

SNMP_ERRORSTATUS_NOERROR

SNMP _ERRORSTATUS_ TOOBIG

SNMP_ERRORSTATUS_NOSUCHNAME

SNMP _ERRORSTATUS_BADVALUE

Meaning

The agent reports that no errors
occurred during transmission.

The agent could not place the results
of the requested operation into a
single SNMP message.

The requested operation identified
an unknown variable.

The requested operation tried to
change a variable but it specified
either a syntax or value error.

Chapter 14 Simple Network Management Protocol (SNMP) 297

Value

SNMP_ERRORSTATUS_READONLY

pErrorlndex

Meaning

The requested operation tried to
change a variable that was not
allowed to change acoording to the
community profile of the variable.

An error other than one of those
listed here occurred during the
requested operation.

[out] Pointer to a variable in which the error index result will be returned.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE.

Remarks
When the SNMP service receives an SNMP PDU request, it calls the
SnmpExtensionQuery function to process the request. The extension agent must follow
the rules in RFC 1157 to either resolve the variable bindings or generate an error.

If the extension agent cannot resolve the variable bindings on a Get Next request, it
must change the name field of the SnmpVarBind structure to the value of the object
identifier immediately following that of the currently supported MIS subtree view. For
example, if the extension agent supports view ".1.3.6.1.4.1.77.1", a Get Next request on
".1.3.6.1.4.1.77.1.5.1" would result in a modified name field of ".1.3.6.1.4.1.77.2". This
signals the SNMP service to continue the attempt to resolve the variable bindings with
other extension agents.

It is important to note that the SNMP service and the extension agent may need to
exchange dynamically allocated memory during a call to the SnmpExtensionQuery
function. The service dynamically allocates the object identifier in each SnmpVarBind
structure it passes to the extension agent. However, the extension agent must release
this memory in order to replace the object identifier when it processes a Get Next
request. The extension agent allocates dynamic memory for variable-length object types.
The SNMP service releases this memory after the object is placed in the response PDU.

In order to avoid heap corruption and memory leaks, both the SNMP service and the
extension agent must use memory allocation routines that resolve to the same heap.
The extension agent must use the SnmpUtilMemAlioc function to allocate memory that
it passes to the SNMP service. It must use the SnmpUtilMemFree function to release
the memory the service passes back to the extension agent. These functions are located
in the utility dynamic-link library SNMPAPI,DLL.

298 Volume 2 Network Protocols and Interfaces

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Snmp.h.

Simple Network Management Protocol (SNMP) Overview, SNMP Functions,
SnmpVarBind, SnmpExtensionlnit, SnmpUtilMemAlloc, SnmpUtilMemFree

SnmpExtensionQueryEx
The Microsoft SNMP service calls the SnmpExtensionQueryEx function to process
SNMP requests that specify variables in one or more MIB subtrees registered by SNMP
extension agents. This function is an element of the SNMP Extension Agent API:

Note It is recommended that you use the SnmpExtensionQueryEx function, which
supports SNMP version 2C (SNMPv2C) data types and multiphase SNMP SET
operations. However, the extension agent must also export the SnmpExtensionQuery
function if the extension agent runs on Windows NT 3.51 or 4.0. The SNMP service does
not call the SnmpExtensionQuery function if the extension agent exports the
SnmpExtensionQueryEx function.

Parameters
dwRequestType

Specifies the type of operation that the SNMP service is requesting the extension
agent to perform. This parameter can be one of the following values.

Value

Chapter 14 Simple Network Management Protocol (SNMP) 299

Meaning

Retrieve the value or values of the
specified variables.

Retrieve the value or values of the
lexicographic successor of the specified
variables.

Validate the values of the specified
variables. This operation maximizes the
probability of a successful write during
the COMMIT request.

Write the new values to the specified
variables.

Reset the values of the specified
variables to their values before the
COMMIT request.

Release the resources allocated in
previous requests and operations.

For additional information about the SET request types, that is, those that begin with
SNMP _EXTENSION_SET _, see the following Remarks section.

dwTransactionld
Specifies a DWORD variable that is the unique identifier of the incoming SNMP
request PDU. The extension agent can use this value to correlate multiple calls by the
SNMP service that involve the same PDU.

pVarBindList
Pointer to the variable binding list containing the variables of interest.

pContextlnfo
Pointer to an octet string that contains user-defined context information.

The extension agent can use this parameter to store context information used during
multi phase SNMP SET operations. The extension agent must release resources
associated with this parameter during the CLEANUP request. The SNMP service
does not release any resources associated with this parameter. For additional
information, see the following Remarks section.

pErrorStatus
Pointer to a variable to receive the error status result. This parameter can be one of
the followingvalues defined by SNMPv2C.

Error Code

SNMP_ERRORSTATUS_
NOERROR

SNMP_ERRORSTATUS_
TOOBIG

Meaning

The agent reports that no errors occurred during transmission.

The agent could not place the results of the requested SNMP
operation into a single SNMP message.

(continued)

300 Volume 2 Network Protocols and Interfaces

(continued)
Error Code

SNMP_ERRORSTATUS_
NOSUCHNAME

SNMP_ERRORSTATUS_
BADVALUE

SNMP_ERRORSTATUS_
READONLY

SNMP_ERRORSTATUS_
GENERR

SNMP_ERRORSTATUS_
NOACCESS

SNMP_ERRORSTATUS
WRONGTYPE

SNMP_ERRORSTATUS_
WRONGLENGTH

SNMP_ERRORSTATUS_

WRONGENCODING

SNMP_ERRORSTATUS_

WRONGVALUE

SNMP_ERRORSTATUS_
NOCREATION

SNMP_ERRORSTATUS_
INCONSISTENTVALUE

SNMP_ERRORSTATUS_
RESOURCEUNAVAILABLE

SNMP_ERRORSTATUS_
COMMITFAILED

SNMP_ERRORSTATUS
UNDOFAILED

SNMP_ERRORSTATUS_
AUTHORIZATION ERROR

SNMP_ERRORSTATUS_
NOTWRIT ABLE

SNMP_ERRORSTATUS_
INCONSISTENTNAME

Meaning

The requested SNMP operation identified an unknown variable.

The requested SNMP operation tried to change a variable but it
specified either a syntax or value error.

The requested SNMP operation tried to change a variable that
was not allowed to change, according to the community profile
of the variable.

An error other than one ofthose listed here occurred during the
requested SNMP operation.

The specified SNMP variable is not accessible.

The value specifies a type that is inconsistent with the type
required for the variable.

The value specifies a length that is inconsistent with the length
required for the variable.

The value contains an Abstract Syntax Notation One (ASN.1)
encoding that is inconsistent with the ASN.1 tag of the field.

The value cannot be assigned to the variable.

The variable does not exist, and the agent cannot create it.

The value is inconsistent with values of other managed objects.

Assigning the value to the variable requires allocation of
resources that are currently unavailable.

No validation errors occurred, but no variables were updated.

No validation errors occurred. Some variables were updated
because it was not possible to undo their assignment.

An authorization error occurred.

The variable exists but the agent cannot modify it.

The variable does not exist; the agent cannot create it because
the named object instance is inconsistent with the values of
other managed objects.

Chapter 14 Simple Network Management Protocol (SNMP) 301

pErrorlndex
Pointer to a variable to receive the error index result.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE.

Remarks
The SNMP service calls the SnmpExtensionQueryEx function multiple times to process
an incoming SNMP SET request. The service can call SnmpExtensionQueryEx during
the TEST request phase, the COMMIT request phase, the UNDO request phase, and
the CLEANUP request phase.

TEST request
The SNMP service processes an SNMP SET request type by first calling the
SnmpExtensionQueryEx function with a dwRequestType of
SNMP _EXTENSION_SET _TEST. The service calls each extension agent responsible
for the variable bindings in the request. Each extension agent must validate the variables
in the variable binding list. They can optionally store any context information required for
the following requests in the variable pOinted to by the pContextlnfo parameter.

If the TEST request fails, the service initiates a CLEANUP request. The service calls
each extension agent that previously returned TRUE to the TEST request again with the
SnmpExtensionQueryEx function. The service calls each extension agent using the
SNMP _EXTENSION_SET _CLEANUP dwRequestType.

COMMIT request
If all extension agents return TRUE to the TEST request, the SNMP service calls each
extension agent with the SnmpExtensionQueryEx function, using the
SNMP _EXTENSION_SET _COMMIT dwRequestType. The service returns to the
extension agent context information that the extension agent passed to the service. This
is the context information the extension agent passed in the pContextlnfo parameter
during the TEST request. The extension agent can use the context information to update
the values of the specified variables in an instrumentation-specific manner.

If the extension agent supports rollback processing, it can update the context information
in the pContextlnfo parameter at this time. The SNMP service passes th§l information
ba.ck to the extension agent during the UNDO request.

If all extension agents return TRUE to the COMMIT request, the service calls each
extension agent with the SnmpExtensionQueryEx function, using the
SNMP _EXTENSION_SET _CLEANUP dwRequestType,

If any extension agent fails the COMMIT request, the service also initiates a CLEANUP
request. The service calls each extension agent that previously returned TRUE to the
COMMIT request again with the SnmpExtensionQueryEx function. The service calls
each extension agent using the SNMP _EXTENSION_SET _CLEANUP dwRequestType.

302 Volume 2 Network Protocols and Interfaces

CLEANUP request
The service returns to the extension agent the context information passed in the
pContextlnfo parameter during the TEST or COMMIT request. The extension agent must
release the resources associated with the parameter at this time.

UNDO request
If any extension agent returns FALSE to the COMMIT request, the SNMP service
terminates the COMMIT request. The service calls each extension agent that returned
TRUE to the COMMIT request with a dwRequestType of
SNMP _EXTENSION_SET _UNDO. This signals the extension agents that the COMMIT
request failed, and they must initiate rollback processing.

The extension agents must attempt to reset the values of the variables of interest, back
to the values they were before the COMMIT request failed. To do this, the extension
agents use the context information returned in the pContextinfo parameter during the
COMMIT request.

If any extension agent returns FALSE to the UNDO request, the entire SET operation
fails with the error code SNMP _ERRORSTATUS_UNDOFAILED. If all extension agents
return TRUE to the UNDO request, the SNMP SET operation fails with the error code set
by the extension agent that failed the COMMIT request.

After the UNDO request the service always calls each extension agent with the
SnmpExtensionQueryEx function, using the SNMP _EXTENSION_SET _CLEANUP
dwRequestType.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Snmp.h.

Simple Net)Nork Management Protocol (SNMP) Overview, SNMP Functions,
SnmpExtensionQuery, AsnOctetString, SnmpVarBindList

SnmpExtensionTrap
The Microsoft SNMP service calls the SnmpExtensionTrap function to retrieve
information the service needs to generate traps for the SNMP extension agent. The
service calls this function only after the extension agent sets the trap event handle to the
signaled state during a call to the SnmpExtensionlnit function. The
SnmpExtensionTrap function is an element of the SNMP Extension Agent API.

Parameters
pEnterpriseOid

Chapter 14 Simple Network Management Protocol (SNMP) 303

[out] Pointer to an AsnObjectldentifier structure to receive the object identifier of the
enterprise that generated the trap. The SNMP service does not free the memory for
this variable.

pGenericTrapld
[out] Pointer to a variable to receive an indication of the generic trap. This parameter
can be one of the following values.

Value

SNMP _GENERICTRAP _
COLDSTART

SNMP _GENERICTRAP _
WARMSTART

SNMP _GENERICTRAP _
L1NKDOWN

SNMP _GENERICTRAP _
LINKUP

SNMP _GENERICTRAP _
AUTHFAILURE

SNMP _GENERICTRAP _
EGPNEIGHLOSS

SNMP:GENERICTRAP _
ENTERSPECI FIC

pSpecificTrapld

Meaning

The agent is initializing protocol entities on the managed mode. It
may alter objects in its view.

The agent is re-initializing itself but will not alter objects within its
view.

An attached interface has changed from the up state to the
down state. The first variable identifies the interface.

An attached interface has change.d from the down state to the
up state. The first variable identifies the interface.

An SNMP entity has sent an SNMP message, but has falsely
claimed to belong to a known community.

An EGP peer has changed to the down state. The first variable
identifies the IP address of the EGP peer.

Signals an extraordinary event that is identified in the
pSpecific Trapld parameter.

[out] Pointer to a variable to receive an indication of the specific trap generated.

pTimeStamp
[out] Pointer to a variable to receive the time stamp. It is recommended that you
initialize this parameter with the value returned by a call to the SnmpSvcGetUptime
function.

304 Volume 2 Network Protocols and Interfaces

pVarBindList
[out] Pointer to the variable bindings list. The extension agent must allocate the
memory for this parameter. The SNMP service frees the memory with a call to the
SnmpUtilVarBindListFree function.

Return Values
If the SnmpExtensionTrap function returns a trap, the return value is TRUE. The SNMP
service repeatedly calls the function until it returns a value of FALSE. For additional
information, see the following Remarks section.

Remarks
The SNMP service repeatedly calls the SnmpExtensionTrap function when the
phSubagentTrapEvent event handle is set to the signaled state. This handle is passed
back during the call to the SnmpExtensionlnit entry pOint function. The
SnmpExtensionTrap function must return TRUE to indicate that the parameters contain
valid data for a single trap. The function must return FALSE to indicate that the
parameters do not represent valid trap data, and to stop the service's repeated calls.

Note that after the SNMP service sends a trap, it frees the memory associated with the
variable binding list.

It is important to note that earlier documentation stated that the extension agent should
dynamically allocate memory for the enterprise object identifier because the SNMP
service would attempt to release the memory after sending a trap. The service will not
release the memory associated with the enterprise object identifier. It is recommended
that you return a pOinter to a static AsnObjectldentifier structure instead.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Snmp.h.

Simple Network Management Protocol (SNMP) Overview, SNMP Functions, SetEvent,
SnmpUtilMemAlloc, SnmpUtilVarBindListFree, SnmpVarBindList,
SnmpSvcGetUptime, SnmpExtensionlnit

SnmpMgrClose
The SnmpMgrClose function closes communications sockets and data structures
associated with the specified session. This function is an element of the SNMP
Management API.

Parameters
session

Chapter 14 Simple Network Management Protocol (SNMP) 305

[in] Pointer to an internal structure that specifies the session to close.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. This function may return Windows Sockets
error codes.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.
Header: Declared in MgmtapLh.
Library: Use Mgmtapi.lib.

Simple Network Management Protocol (SNMP) Overview, SNMP Functions,
SnmpMgrOpen, SnmpMgrRequest

SnmpMgrGetTrap
The SnmpMgrGetTrap function returns outstanding trap data that the caller has not
received if trap reception is enabled. This function is an element of the SNMP
Management API:

306 Volume 2 Network Protocols and Interfaces

Parameters
enterprise

[out] Pointer to an object identifier to receive the enterprise that generated the SNMP
trap.

IPAddress
[out] Pointer to a variable to receive the IP address of the enterprise that generated
the SNMP trap.

generic Trap
[out] Pointer to a variable to receive an indicator of the generic trap. This parameter
can be one of the following values.

Value Meaning

SNMP _GENERICTRAP _
COLDSTART

SNMP _GENERICTRAP _
WARMSTART

SNMP _GENERICTRAP
LlNKDOWN

SNMP _GENERICTRAP _
LINKUP

SNMP _GENERICTRAP _
AUTHFAILURE

SNMP _GENERICTRAP _
EGPNEIGHLOSS

SNMP _GENERICTRAP _
ENTERSPECI FIC

specific Trap

The agent is initializing protocol entities on the managed mode. It
may alter objects in its view.

The agent is re-initializing itself but it will not alter objects in its view.

An attached interface has changed from the up state to the down
state. The first variable in the variable bindings list identifies the
interface.

An attached interface has changed from the down state to the up
state. The first variable in the variable bindings list identifies the
interface.

An SNMP entity has sent an SNMP message, but it has falsely
claimed to belong to a known community.

An EGP peer has changed to the down state. The first variable in
the variable bindings list identifies the IP address of the EGP peer.

An extraordinary event has occurred and it is identified in the
specificTrap parameter with an enterprise-specific value.

[out] Pointer to a variable to receive an indication of the specific trap generated.

timeStamp
[out] Pointer to a variable to receive the time stamp.

variableBindings
[out] Pointer to an SnmpVarBindList structure to receive the variable bindings list.

Return Values
If the function returns a trap, the return value is nonzero.

You should call the SnmpMgrGetTrap function repeatedly until GetLastError returns
zero. GetLastError may also return the following error codes.

Chapter 14 Simple Network Management Protocol (SNMP) 307

Error Code

SNMP _MGMTAPLTRAP _ERRORS

SNMP _MGMTAPLNOTRAPS

SNMP _MEM_ALLOC_ERROR

Remarks

Meaning

Indicates errors were encountered; traps are
not accessible.

Indicates no traps are available.

Indicates a memory allocation error.

The application must always call the SnmpMgrTrapListen function before calling the
SnmpMgrGetTrap function. This is because the event handle pOinted to by the
phTrapAvailable parameter of the SnmpMgrTrapListen function enables the event
driven acquisition of SNMP traps. The SNMP Management API signals an application's
event when the SNMP Trap Service delivers a trap.

The application can also poll the SnmpMgrGetTrap function for traps at regular
intervals. In this case, the application should repeatedly call SnmpMgrGetTrap until the
function returns zero.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.
Header: Declared in Mgmtapi.h.
Library: Use Mgmtapi.lib.

Simple Network Management Protocol (SNMP) Overview, SNMP FUnctions,
SnmpMgrTrapListen, SnmpVarBindList

SnmpMgrOidToStr
The SnmpMgrOidToStr function converts an internal object identifier structure to its
string representation. This function is an element of the SNMP ManagementAPI.

Parameters
oid

[in] Pointer to an object identifier variable to convert.

string
[out] Pointer to a null-terminated string to receive the converted value.

308 Volume 2 Network Protocols and Interfaces

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. This function may return Windows Sockets
error codes.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.
Header: Declared in MgmtapLh.
Library: Use MgmtapLlib.

Simple Network Management Protocol (SNMP) Overview, SNMP Functions,
SnmpMgrStrToOid

SnmpMgrOpen
The SnmpMgrOpen function initializes communications sockets and data structures,
allowing communications with the specified SNMP agent. This function is an element of
the SNMP Management API.

Parameters
IpAgentAddress

[in] Pointer to a null-terminated string specifying either a dotted-decimallP address or
a host name that can be resolved to an IP address, an IPX address (in 8.12 notation),
or an ethernet address.

IpAgentCommunity
[in] Pointer to a null-terminated string specifying the SNMP community name used
when communicating with the agent specified in the IpAgentAddress parameter.

nTimeOut
[in] Specifies the communications time-out in milliseconds.

Chapter 14 Simple Network Management Protocol (SNMP) 309

nRetries
[in] Specifies the communications retry count. The time-out specified in the nTimeOut
parameter is doubled each time a retry attempt is transmitted.

Return Values
If the function succeeds, the return value is a pointer to an LPSNMP _MGR_SESSION
structure. This structure is used internally and the programmer should not alter it.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError. GetLastError may return the SNMP _MEM_ALLOC_ERROR error code,
which indicates a memory allocation error.

This function may also return Windows Sockets error codes.

The name and address of the SNMP target, or the string pOinted to by the
IpAgentAddress parameter, should conform to one of the following forms.

Name/Address Form (example)

IP Address

IP Hostname

Ethernet Address

IPX Address

Remarks

157.57.8.160

merlin.microsoft.com

OOaaOObbccdd

00006112.00aaOObbccdd

Names can be provided for agents only if TCP/IP is loaded and the names are TCP/IP
host names. NetBlOS names cannot be supplied for IPX hosts.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.
Header: Declared in MgmtapLh.
Library: Use Mgmtapi.lib.

Simple Network Management Protocol (SNMP) Overview, SNMP Functions,
SnmpMgrClose, SnmpMgrRequest

SnmpMgrRequest
The SnmpMgrRequest function requests the specified operation be performed with the
specified agent. This function is an element of the SNMP Management API.

310 Volume 2 Network Protocols and Interfaces

Parameters
session

[in] Pointer to an internal structure that specifies the session that will perform the
request.

requestType
[in] Specifies the SNMP request type. This parameter can be one of the following
values defined by SNMPv1:

Value Meaning

SNMP _PDU_GET

SNMP _PDU_GETNEXT

Retrieve the value or values of the specified variables.

Retrieve the value or values of the lexicographic
successor of the specified variable.

Write a value within a specific variable.

Note that PDU request types have been renamed. For additional information, see
Modified SNMP PDU Request Types.

variableBindings
[in/out] Pointer to the variable bindings list.

errorStatus
[out] Pointer to a variable in which the error status result will be returned. This
parameter can be one of the following values defined by SNMPv1:

Value

SNMP_ERRORSTATUS_
NOERROR

SNMP_ERRORSTATUS_
TOOBIG

SNMP_ERRORSTATUS_
NOSUCHNAME

SNMP_ERRORSTATUS_
BADVALUE

SNMP_ERRORSTATUS_
READONLY

SNMP_ERRORSTATUS_
GENERR

Meaning

The agent reports that no errors occurred during transmission.

The agent could not place the results of the requested operation into
a single SNMP message.

The requested operation identified an unknown variable.

The requested operation tried to change a variable but it specified
either a syntax or value error.

The requested operation tried to change a variable that was not
allowed to change according to the community profile of the variable.

An error other than one of those listed here occurred during the
requested operation.

Chapter 14 Simple Network Management Protocol (SNMP) 311

errorlndex
[out] Pointer to a variable in which the error index result will be returned.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError. GetLastError may return one of the following error codes.

Error Code Meaning

SNMP _MGMTAPL TIMEOUT

SNMP _MGMTAPLSELECT _FDERRORS

Remarks

The request timed-out.

Unexpected error file descriptors indicated by the
Windows Sockets select function.

Retries and time-outs are supplied to the SnmpMgrOpen function. Each variable in the
variable bindings list must be initialized to type ASN_NULL for Get and Get Next
requests.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.
Header: Declared in MgmtapLh.
Library: Use Mgmtapi.lib.

Simple Network Management Protocol (SNMP) Overview, SNMP Functions,
SnmpMgrOpen, SnmpMgrClose

SnmpMgrStrToOid
The SnmpMgrStrToOid function converts the string format of an object identifier to its
internal object identifier structure. This function is an element of the SNMP
Management API.

312 Volume 2 Network Protocols and Interfaces

Parameters
string

[in] Pointer to a null-terminated string to convert.

aid
[out] Pointer to an object identifier variable to receive the converted value.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. This function does not return Windows
Sockets error codes.

Remarks
If an application passes a valid object identifier to SnmpMgrStrToOid, yet is unable to
obtain the requested variable, then the syntax of the system group and object identifier is
incorrect. This occurs because SnmpMgrStrToOid assumes that the object identifier is
under the Internet MIS of the management subtree.

You must always precede the object identifier with a period (.) to obtain the correct
system group (for example, ".1.3.6.1.2.1.1 "). If an application passes the variable
"1.3.6.1.2.1.1", SnmpMgrStrToOid cannot interpret the object identifier correctly.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.
Header: Declared in Mgmtapi.h.
Library: Use Mgmtapi.lib.

Simple Network Management Protocol (SNMP) Overview, SNMP Functions,
SnmpMgrOidToStr .

SnmpMgrTrapListen
The SnmpMgrTrapListen function registers the ability of an SNMP manager application
to receive SNMP traps from the SNMP Trap Service. This function is an element of the
SNMP Management API.

Chapter 14 Simple Network Management Protocol (SNMP) 313

Parameters
ph TrapA vailable

[out] Pointer to an event handle to receive an indication that there are traps available,
and that the application should call the SnmpMgrGetTrap function.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
G.etLastError. GetLastError may return any of the following error codes.

Error Code Description

SNMP _MEM_ALLOC_ERROR

SNMP _MGMTAPI_TRAP _DUPINIT

SNMP _MGMTAPLAGAIN

Indicates a memory allocation error.

Indicates that this function has already been
called.

Indicates an error occurred; the application can
attempt to call the function again.

This function may return other system errors as well.

Remarks
It is important to note that the SnmpMgrTrapListen function succeeds on Windows
NT® 4.0 and Windows® 2000 only if the SNMP trap service has been started.

The application must always call the SnmpMgrTrapListen function before calling the
SnmpMgrGetTrap function. This is because the event handle pointed to by the
phTrapAvailable parameter enables the event-driven acquisition of SNMP traps. The
SNMP Management API signals an application's event when the SNMP Trap Service
delivers a trap.

The application can also poll the SnmpMgrGetTrap function for traps at regular
intervals. In this case, the application should repeatedly call SnmpMgrGetTrap until the
function returns zero.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.
Header: Declared in Mgmtapi.h.
Library: Use Mgmtapi.lib.

Simple Network Management Protocol (SNMP) Overview, SNMP Functions,
SnmpMgrGetTrap

314 Volume 2 Network Protocols and Interfaces

SnmpSvcGetUptime
The SnmpSvcGetUptime function retrieves the number of centiseconds that the SNMP
service has been running. This function is an element of the SNMP Utility API.

Parameters
This function has no parameters.

Return Values
The function returns a DWORD value that is the number of centiseconds the SNMP
service has been running.

Remarks
An extension agent should call the SnmpSvcGetUptime function only if the extension
agent DLL is loaded within the address space of the SNMP service.

The SNMP extension agent DLL is encouraged to use the SnmpSvcGetUptime function
to retrieve the number of centiseconds that the SNMP service has been running.
Extension agents should use SnmpSvcGetUptime rather than calculate the uptime
using the dwUptimeReference parameter. The service passes this parameter to the
extension agent as the result of a call to the SnmpExtensionlnit function. Because the
dwUptimeReference parameter stores the elapsed time as a DWORD value in
milliseconds, the time can wrap to zero and reflect an inaccurate time interval.

An extension agent that sends traps must initialize the timeStamp parameter to the
SnmpExtensionTrap function with the value returned by a call to the
SnmpSvcGetUptime function.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Snmp.h.
Library: Use SnmpapLlib.

Simple Network Management Protocol (SNMP) Overview, SNMP Functions,
SnmpExtensionlnit, SnmpExtensionTrap

Chapter 14 Simple Network Management Protocol (SNMP) 315

SnmpSvcSetLogLevel
The SnmpSvcSetLogLevel function adjusts the level of detail of the debug output from
the SNMP service and from SNMP extension agents using the SnmpUtilDbgPrint
function. This function is an element of the SNMP Utility API.

Parameters
nLogLevel

Specifies a signed integer variable that indicates the level of detail of the debug output
from the SnmpUtilDbgPrint function. This parameter can be one of the following
values.

Value Meaning

SNMP _LOG_SILENT

SNMP _LOG_FATAL

SNMP _LOG_ERROR

SNMP _LOG_WARNING

SNMP _LOG_TRACE

SNMP_LOG_VERBOSE

Return Values
None.·

Remarks

Disable all debugging output.

Display fatal errors only.

Display recoverable errors.

Display warnings and recoverable errors.

Display trace informat~on.

Display verbose trace information.

Extension agents are encouraged to use the SnmpSvcSetLogType and
SnmpSvcSetLogLevel functions during development to adjust the output of debugging
information. Extension agents can integrate the information with the debug output from
the SNMP service.

Windows NT/2000: Requires Windows 2000.
Windows 95198: Requires Windows 95 or later.
Header: Declared in Shrrip.h.
Library: Use Snmpapi.Hb.

Simple Network Management Protocol (SNMP) Overview, SNMP Functions,
SnmpUtilDbgPrint, SnmpSvcSetLogType

316 Volume 2 Network Protocols and Interfaces

SnmpSvcSetLogType
The SnmpSvcSetLogType function adjusts the destination for the debug output from
the SNMP service and from SNMP extension agents using the SnmpUtilDbgPrint
function. This function is an element of the SNMP Utility API.

Parameters
nLogType

Specifies a signed integer variable that represents the destination for the debug
output from the SnmpUtilDbgPrint function. This parameter can be one of the
following values.

Value Meaning

Return Values
None.

Remarks

The destination for the debug output is a
console window.

The destination for the debug output is the
SNMPDBG.LOG file in the SYSTEM32
directory.

The destination for the debug output is a
debugger utility.

Extension agents are encouraged to use the SnmpSvcSetLogType and
SnmpSvcSetLogLevel functions during development to adjust the output of debugging
information. Extension agents can integrate the information with the debug output from
the SNMP service.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Snmp.h.
Library: Use Snmpapi.lib.

Simple Network Management Protocol (SNMP) Overview, SNMP Functions,
SnmpUtilDbgPrint, SnmpSvcSetLogLevel

Chapter 14 Simple Network Management Protocol (SNMP) 317

SnmpUtiiAsnAnyCpy
The SnmpUtiiAsnAnyCpy function copies the variable pointed to by the pAnySrc
parameter to the pAnyDst parameter. The function allocates any necessary memory for
the destination's copy. The SnmpUtiiAsnAnyCpy function is an element of the SNMP
Utility API.

Parameters
pAnyDst

Pointer to an AsnAny structure to receive the copy.

pAnySrc
Pointer to an AsnAny structure to copy.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Remarks
Call the SnmpUtiiAsnAnyFree function to free the memory that the
SnmpUtiiAsnAnyCpy function allocates for the destination structure.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Snmp.h.
Library: Use Snmpapi.lib.

Simple Network Management Protocol (SNMP) Overview, SNMP Functions, AsnAny,
SnmpUtilAsnAnyFree

SnmpUtiiAsnAnyFree .
The SnmpUtiiAsnAnyFree function frees the memory allocated for the specified
AsnAny structure. This function is an element of the SNMP Utility API.

318 Volume 2 Network Protocols and Interfaces

Parameters
pAny

Pointer to an AsnAny structure whose memory should be freed.

Return Values
None.

Remarks
Call the SnmpUtiiAsnAnyFree function to free the memory that the
SnmpUtiiAsnAnyCpy function allocates.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Snmp.h.
Library: Use SnmpapLlib.

Simple Network Management Protocol (SNMP) Overview, SNMP Functions, AsnAny,
SnmpUtiiAsnAnyCpy

SnmpUtilDbgPrint
The SnmpUtilDbgPrint function enables debugging output from the SNMP service. This
function is an element of the SNMP Utility API:

Parameters
nLogLevel

Specifies a signed integer variable that indicates the level of detail of the log event.
This parameter can be one of the following values shown on the next page.

Value

SNMP _LOG_SILENT

SNMP _LOG_FATAL

SNMP _LOG_ERROR

SNMP _LOG_WARNING

SNMP _LOG_TRACE

SNMP_LOG_VERBOSE

szFormat

Chapter 14 Simple Network Management Protocol (SNMP) 319

Meaning

Disable all debugging output.

Display fatal errors only.

Display recoverable errors.

Display warnings and recoverable errors.

Display trace information.

Display verbose trace information.

Pointer to a null-terminated format string that is similar to the standard C library
function printf style.

Return Values
None.

Remarks
Extension agents are encouraged to use this function during development to enable
debug output from the SNMP service.

Use the SnmpSvcSetLogLevel function to set the level of detail of the debug output
from the SNMP service or from an extension agent's call to tbe SnmpUtilDbgPrint
function. Call the SnmpSvcSetLogType function to specify the destination for the debug
output.

Windows NT/2000: Requires Windows 2000 .
. Windows 95/98: Requires Windows 95 or later.
Header: Declared in Snmp.h.
Library: Use SnrnpapLlib.

Simple Network Management Protocol (SNMP) Overview, SNMP Functions,
SnmpSvcSetLogType, SnmpSvcSetLogLevel

SnmpUtilidsToA
The SnmpUtilidsToA function converts an object idehtifer (OlD) to a null-terminated
string. This function is an element of the SNMP Utility API.

320 Volume 2 Network Protocols and Interfaces

Parameters
Ids

[in] Pointer to an array of unsigned integers. The array contains the sequence of
numbers that the OlD contains. The IdLength parameter specifies the array's length.

For more information, see the following Return Values and Remarks sections.

IdLength
[in] Specifies the number of elements in the array pOinted to by the Ids parameter.

Return Values
The function returns a null-terminated string that contains the string representation of the
array of numbers pOinted to by the Ids parameter. The string contains a sequence of
numbers separated by periods ,("."); for example, 1.3.6.1.4.1.311.

If the Ids parameter is null, or if the IdLength parameter specifies zero, the function
returns the string "<null oid>".

The maximum length of the returned string is 256 characters. If the string's length
exceeds 256 characters, the string is truncated and terminated with a sequence of three
periods (" ... ").

Remarks
The SnmpUtilidsToA function can assist with the debugging of SNMP applications.

Note that the following memory restrictions apply when you call SnmpUtilidsToA:

• The Ids parameter must point to a valid memory block of at least IdLength integers, or
the function call results in an access violation exception.

• The string returned by SnmpUtilidsToA resides in memory that the SNMP Utility API
allocates. The application should not make any assumptions about the memory
allocation. The data is guaranteed to be valid until you call SnmpUtilldsToA again, so
before calling the function again you should copy the data to another location.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Snmp.h.
Library: Use Snmpapi.lib.

Chapter 14 Simple Network Management Protocol (SNMP) 321

Simple Network Management Protocol (SNMP) Overview, SNMP Functions,
SnmpUtiiOidToA

SnmpUtilMemAlioc
The SnmpUtilMemAlioc function allocates dynamic memory from the process heap.
This function is an element of the SNMP Utility API.

Parameters
nBytes

[in] Specifies the number of bytes to allocate for the memory object.

Return Values
If the function succeeds, the return value is a pointer to the newly allocated memory
object.

If the function fails, the return value is NULL.

Remarks
Use the SnmpUtilMemFree function to release memory that the SnmpUtilMemAlioc
function allocates.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Snmp.h.
Library: Use Snmpapi.lib.

Simple Network Management Protocol (SNMP) Overview, SNMP Functions,
SnmpUtilMemFree, SnmpUtilMemReAlloc

SnmpUtilMemFree
The SnmpUtilMemFree function frees the specified memory object. This function is an
element of the SNMP Utility API.

322 Volume 2 Network Protocols and Interfaces

Parameters
pMem

[in/out] Pointer to the memory object to release.

Return Values
None.

Remarks
Call the SnmpUtilMemAlioc function to allocate the memory for the object.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Snmp.h.
Library: Use Snmpapi.lib.

Simple Network Management Protocol (SNMP) Overview, SNMP Functions,
SnmpUtilMemAlloc, SnmpUtilMemReAlloc

SnmpUtilMemReAlloc
The SnmpUtilMemReAlioc function changes the size of the specified memory object.
This function is an element of the SNMP Utility API.

Parameters
pMem

[in] Pointer to the memory object to resize.

nBytes
[in] Specifies the number of bytes to allocate for the new memory object.

Chapter 14 Simple Network Management Protocol (SNMP) 323

Return Values
If the function succeeds, the return value is a pointer to the newly allocated memory
object.

If the function fails, the return value is NULL.

Remarks
Call the SnmpUtilMemFree function to release memory that the SnmpUtilMemReAlloc
function allocates.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Snmp.h.
Library: Use Snmpapi.lib.

Simple Network Management Protocol (SNMP) Overview, SNMP Functions,
SnmpUtilMemAlloc, SnmpUtilMemFree

SnmpUtiiOctetsCmp
The SnmpUtilOctetsCmp function compares two octet strings. This function is an
element of the SNMP Utility API.

Parameters
pOctets1

Pointer to an AsnOctetString structure to compare.

pOctets2
Pointer to a second AsnOctetString structure to compare.

Return Values
The function returns a value greater than zero if pOctets1 is greater than pOctets2, zero
if pOctets1 equals pOctets2, and less than zero if pOctets1 is less than pOctets2.

-Remarks
The SnmpUtiiOctetsCmp function calls the SnmpUtiiOctetsNCmp function.

324 Volume 2 Network Protocols and Interfaces

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Snmp.h.
Library: Use SnmpapLlib.

Simple Network Management Protocol (SNMP) Overview, SNMP Functions,
AsnOctetString, SnmpUtiiOctetsNCmp

SnmpUtiiOctetsCpy
The SnmpUtiiOctetsCpy function copies the variable pOinted to by the pOctetsSrc
parameter to the variable pointed to by the pOctetsDst parameter. The function allocates
any necessary memory for the destination's copy. The SnmpUtiiOctetsCpy function is
an element of the SNMP Utility API.

Parameters
pOctetsDst

Pointer to an AsnOctetString structure to receive the copy.

pOctetsSrc
Pointer to an AsnOctetString structure to copy.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Remarks
Call the SnmpUtiiOctetsFree function to free the memory that the SnmpUtiiOctetsCpy
function allocates for the destination structure.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Snmp.h.
Library: Use SnmpapLlib.

Chapter 14 Simple Network Management Protocol (SNMP) 325

Simple Network Management Protocol (SNMP) Overview, SNMP Functions,
AsnOctetString, SnmpUtiiOctetsFree

SnmpUtiiOctetsFree
The SnmpUtiiOctetsFree function frees the memory allocated for the specified octet
string. This function is an element of the SNMP Utility API.

Parameters
pOctets

Pointer to an AsnOctetString structure whose memory should be freed.

Return Values
None.

Remarks
Call the SnmpUtilOctetsFree function to free the memory that the SnmpUtiiOctetsCpy
function allocates.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Snmp.h.
Library: Use Snmpapi.lib.

Simple Network Management Protocol (SNMP) Overview, SNMP Functions,
AsnOctetString, SnmpUtiiOctetsCpy

SnmpUtiiOctetsNCmp
The SnmpUtiiOctetsNCmp function compares two octet strings. The function compares
the sub identifiers in the strings until it reaches the number of subidentifiers specified by
the nChars parameter. SnmpUtiiOctetsNCmp is an element of the SNMP Utility API.

326 Volume 2 Network Protocols and Interfaces

Parameters
pOctets1

Pointer to an AsnOctetString structure to compare.

pOctets2
Pointer to a second AsnOctetString structure to compare.

nChars
Specifies the number of subidentifiers to compare.

Return Values
The function returns a value greater than zero if pOctets1 is greater than pOctets2, zero
if pOctets1 equals pOctets2, and less than zero if pOctets1 is less than pOctets2.

Remarks
The SnmpUtiiOctetsCmp function calls the SnmpUtiiOctetsNCmp function.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Snmp.h.
Library: Use Snmpapi.lib.

Simple Network Management Protocol (SNMP) Overview, SNMP Functions,
AsnOctetString, SnmpUtiiOctetsCmp

SnmpUtiiOidAppend
The SnmpUtiiOidAppend function appends the source object identifier to the
destination object identifier. This function is an element of the SNMP Utility API.

Chapter 14 Simple Network Management Protocol (SNMP) 327

Parameters
pOidDsf

[in/out] Pointer to an AsnObjectldentifier structure to receive the source structure.

pOidSrc
[in] Pointer to an AsnObjectldentifier structure to append.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. This function does not generate Windows
Sockets errors. The application should call the GetLastError function. GetLastError
may return the following error codes.

Error Code

SNMP _BERAPI_OVERFLOW

SNMP _MEM_ALLOC_ERROR

Remarks

Description

Indicates an overflow condition

Indicates a memory allocation error

The SnmpUtiiOidAppend function calls the SnmpUtilMemReAlloc function. The
SnmpUtilMemReAlloc function expands the buffer for the destination object identifier.

Call the SnmpUtilOidFree function to free memory that the SnmpUtiiOidAppend
function allocates for the destination.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Snmp.h.
Library: Use SnmpapLlib.

Simple Network Management Protocol (SNMP) Overview, SNMP Functions,
SnmpUtilMemReAlloc, SnmpUtilOidFree

SnmpUtiiOidCmp
The SnmpUtilOidCmp function compares two object identifiers. This function is an
element of the SNMP Utility API.

328 Volume 2 Network Protocols and Interfaces

Parameters
pOid1

[in] Pointer to an AsnObjectldentifier structure to compare.

pOid2
[in] Pointer to a second AsnObjectldentifier structure to compare.

Return Values
The function returns a value greater than zero if pOid1 is greater than pOid2, zero if
pOid1 equals pOid2, and less than zero if pOid1 is less than pOid2.

Remarks
The SnmpUtiiOidCmp function calls the SnmpUtiiOidNCmp function.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Snmp.h.
Library: Use Snmpapi.lib.

Simple Network Management Protocol (SNMP) Overview, SNMP Functions,
SnmpUtiiOidNCmp

SnmpUtiiOidCpy
The SnmpUtiiOidCpy function copies the variable pOinted to by the pOidSrc parameter
to the pOidDst parameter, allocating any necessary memory for the destination's copy.
This function is an element of the SNMP Utility API.

Parameters
pOidDst

Chapter 14 Simple Network Management Protocol (SNMP) 329

[out] Pointer to an AsnObjectldentifier structure to receive the copy.

pOidSrc
[in] Pointer to an AsnObjectldentifier structure to copy.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Remarks
Call the SnmpUtiiOidFree function to free memory that the SnmpUtiiOidCpy function
allocates for the destination structure.

Windows NT/2000: Requires Windows NT 3.1 or latei'.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Snmp.h.
Library: Use SnmpapUib.

Simple Network Management Protocol (SNMP) Overview, SNMP Functions,
SnmpUtiiOidFree

SnmpUtiiOidFree
The SnmpUtiiOidFree function frees the memory allocated for the specified object
identifier. This function is an element of the SNMP Utility API.

Parameters
pOid

[in/out] POinter to an AsnObjectldentifier structure whose memory should be freed.

Return Values
None.

330 Volume 2 Network Protocols and Interfaces

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Snmp.h.
Library: Use SnmpapLlib.

Simple Network Management Protocol (SNMP) Overview, SNMP Functions,
SnmpUtiiOidAppend

SnmpUtiiOidNCmp
The SnmpUtiiOidNCmp function compares two object identifiers. The function
compares the subidentifiers in the variables until it reaches the number of subidentifiers
specified by the nSublds parameter. SnmpUtiiOldNCmp is an element of the SNMP
Utility API.

Parameters
pOid1

[in] Pointer to an AsnObjectldentifier structure to compare.

pOid2
[in] Pointer to a second AsnObjectldentifier structure to compare.

nSublds
[in] Specifies the number of subidentifiers to compare.

Return Values
The function returns a value greater than zero if pOid1 is greater than pOid2, zero if
pOid1 equals pOid2, and less than zero if pOid1 is less than pOid2.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Snmp.h.
Library: Use SnmpapLlib.

Chapter 14 Simple Network Management Protocol (SNMP) 331

Simple Network Management Protocol (SNMP) Overview, SNMP Functions,
SnmpUtiiOidCmp

SnmpUtiiOidToA
The SnmpUtiiOidToA function converts an object identifier (OlD) to a null-terminated
string. This function is an element of the SNMP Utility API.

Parameters
Oid

[in] Pointer to an AsnObjectldentifier structure to convert.

Return Values
The function returns a null-terminated string of characters that contains the string
representation of the object identifier pointed to by the Oid parameter.

Remarks
The SnmpUtiiOidToA function can assist with the debugging of SNMP applications.

For more information, see the SnmpUtilidsToA function. SnmpUtiiOidToA calls
SnmpUtilidsToA internally to format the string.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Snmp.h.
Library: Use SnmpapLlib.

Simple Network Management Protocol (SNMP) Overview, SNMP Functions,
SnmpUtilidsToA, AsnObjectldentifier

SnmpUtilPrintAsnAny
The SnmpUtilPrintAsnAny function prints the value of the Any parameter to the
standard output. This function is an element of the SNMP Utility API.

332 Volume 2 Network Protocols and Interfaces

Parameters
pAny

[in] Pointer to an AsnAny structure for a value to print.

Return Values
None.

Remarks
Use the SnmpUtilPrintAsnAny function for debugging and development purposes. This
function does not generally print the data in a form that a manager application would
typically need.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Snmp.h.
Library: Use SnmpapLlib.

Simple Network Management Protocol (SNMP) Overview, SNMP Functions, AsnAny

SnmpUtilPrintOid
The SnmpUtilPrintOid function formats the specified object identifier (010) and prints
the result to the standard output device. This function is an element of the SNMP
Utility API.

Parameters
Oid

[in] Pointer to an AsnObjectldentifier structure to print.

Return Values
None.

Chapter 14 Simple Network Management Protocol (SNMP) 333

Remarks
The SnmpUtilPrintOid function can assist with the debugging of command-line SNMP
applications. The function prints the object identifier as a sequence of numbers
separated by periods ("."); for example, 1.3.6.1.4.1.311.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Snmp.h.
Library: Use SnmpapUib.

Simple Network Management Protocol (SNMP) Overview, SNMP Functions,
SnmpUtilDbgPrint, AsnObjectldentifier

SnmpUtilVarBi ndCpy
The SnmpUtilVarBindCpy function copies the specified SnmpVarBind structure, and
allocates any memory necessary for the destination structure. The
SnmpUtilVarBindCpy function is an element of the SNMP Utility API.

Parameters
pVbDst

[out] Pointer to an SnmpVarBind structure to receive the copy.

pVbSrc
[in] Pointer to an SnmpVarBind structure to copy.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Remarks
Call the SnmpUtilVarBindFree function to free memory that the SnmpUtilVarBindCpy
function allocates for the destination structure.

334 Volume 2 Network Protocols and Interfaces

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Snmp.h.
Library: Use SnmpapLlib.

Simple Network Management Protocol (SNMP) Overview, SNMP Functions,
SnmpVarBind, SnmpUtilVarBindFree

SnmpUtilVarBindListCpy
The SnmpUtilVarBindListCpy function copies the specified SnmpVarBindList
structure, and allocates any necessary memory for the destination's copy. This function
is an element of the SNMP Utility API.

Parameters
pVblDst

[out] Pointer to an SnmpVarBindList structure to receive the copy.

pVblSrc
[in] Pointer to an SnmpVarBindList structure to copy.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Remarks
Call the SnmpUtilVarBindListFree function to free memory that the
SnmpUtilVarBindListCpy function allocates for the destination structure.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Snmp.h.
Library: Use SnmpapLlib.

Chapter 14 Simple Network Management Protocol (SNMP) 335

Simple Network Management Protocol (SNMP) Overview, SNMP Functions,
SnmpVarBindList, SnmpUtilVarBindListFree, SnmpUtiiOidCpy

SnmpUtilVarBindFree
The SnmpUtilVarBindFree function frees the memory allocated for an SnmpVarBind
structure. This function is an element of the SNMP Utility API.

Parameters
pVb

[in/out] Pointer to an SnmpVarBind structure whose memory should be freed.

Return Values
None.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Snmp.h.
Library: Use SnmpapUib.

Simple Network Management Protocol (SNMP) Overview, SNMP Functions,
SnmpVarBind, SnmpUtilVarBindListFree

SnmpUtilVarBindListFree
The SnmpUtilVarBindListFree function frees the memory allocated for an
SnmpVarBindList structure. This function is an element of the SNMP Utility API.

336 Volume 2 Network Protocols and Interlaces

Parameters
pVbl

[in/out] Pointer to an SnmpVarBindList structure whose allocated memory should be
freed.

Return Values
No return value.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Snmp.h.
Library: Use SnmpapLlib.

Simple Network Management Protocol (SNMP) Overview, SNMP Functions,
SnmpVarBindList, SnmpUtilVarBindFree

SNMP Structures
The following structures are used with SNMP.

AsnAny
AsnCounter64
AsnObjectldentifier

AsnAny

AsnOctetString
SnmpVarBind
SnmpVarBindList

The AsnAny structure contains an SNMP variable type and value. This structure is a
member of the SnmpVarBind structure that is used as a parameter in many of the
SNMP functions. This structure is not used by the WinSNMP API functions.

Members
asnType

Chapter 14 Simple Network Management Protocol (SNMP) 337

Indicates the variable's type. This member must be only one of the following values.

Value

ASN_INTEGER32

ASN_COUNTER64

ASN_OCTETSTRING

Meaning

Indicates a 32-bit signed integer variable.

Indicates a 32-bit signed integer variable.

Indicates a 32-bit unsigned integer variable.

Indicates a counter variable that increases until it
reaches a maximum value of (2A64)-1.

Indicates an octet string variable.

Indicates a variable that is an enumeration of
named bits.

ASN_OBJECTIDENTIFIER Indicates an object identifier variable.

ASN_SEQUENCE Indicates an ASN sequence variable.

ASN_IPADDRESS Indicates an IP address variable.

ASN_COUNTER32 Indicates a counter variable.

ASN_GAUGE32 Indicates a gauge variable.

ASN_ TIMETICKS Indicates a timeticks variable.

ASN_OPAQUE Indicates an opaque variable.

asnValue
Contains the variable's value. This member can be only one of the following values.

Value Meaning

number

unsigned32

counter64

String

Accesses a 32-bit signed integer variable.

Accesses a 32-bit unsigned integer variable.

Accesses a counter variable that increases until it
reaches a maximum value of (2"64)-1.

Accesses an octet string variable.

(continued)

338 Volume 2 Network Protocols and Interfaces

(continued)

Value

bits

Object

sequence

address

counter

Gauge

ticks

Arbitrary

Meaning

Accesses a variable that is an enumeration of named
bits with non-negative, contiguous values, starting
at zero.

Accesses an object identifier variable.

Accesses an ASN sequence variable.

Accesses an IP address variable.

Accesses a counter variable that increases until it
reaches a maximum value of (21\32)-1.

Accesses a gauge variable.

Accesses a timeticks counter variable that is relative
to a specific timer event.

Accesses an opaque variable.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Snmp.h.

Simple Network Management Protocol (SNMP) Overview, SNMP Structures,
SnmpVarBind, SnmpExtensionMonitor

AsnCounter64
The AsnCounter64 structure contains a 64-bit unsigned integer value and represents a
64-bit counter. This structure is used by multiple SNMP functions. This structure is not
used by the WinSNMP API functions.

Members
low Part

Specifies the low-order 32 bits of the counter.

HighPart
Specifies the high-order 32 bits of the counter.

Chapter 14 Simple Network Management Protocol (SNMP) 339

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Snmp.h.

Simple Network Management Protocol (SNMP) Overview, SNMP Structures, AsnAny
~

AsnObjectldentifier
The AsnObjectldentifier structure represents object identifiers. This structure is used by
multiple SNMP functions. This structure is not used by the WinSNMP API functions.

Members
idLength

Specifies the number of integers in the object identifier.

ids
Pointer to an array of integers that represents the object identifier.

Remarks
None.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Snmp.h.

Simple Network Management Protocol (SNMP) Overview, SNMP Structures

AsnOctetString
The AsnOctetString structure contains octet quantities, usually bytes. This structure is
used by multiple SNMP functions. This structure is not used by the WinSNMP API
functions.

340 Volume 2 Network Protocols and Interfaces

Members
stream

Pointer to the octet stream.

length
The number of octets in the data stream.

dynamic
Flag that specifies whether the data stream has been dynamically allocated with the
SnmpUtilMemAlioc function.

Remarks
Use the AsnOctetString structure to transfer string values. For example, use it to
transfer the string that represents a computer name as a MIS object value.

You must check the flag specified in the dynamic member before you release the data
stream of an octet string. Call the SnmpUtilMemFree function only if the dynamic
member is set to TRUE.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Snmp.h.

Simple Network Management Protocol (SNMP) Overview, SNMP Structures,
SnmpUtilMemFree, SnmpUtilMemAlioc

SnmpVarBind
The SnmpVarBind structure represents an SNMP variable binding. This structure is
used by multiple SNMP functions. This structure is not used by the WinSNMP API
functions.

Members
name

Chapter 14 Simple Network Management Protocol (SNMP) 341

Indicates the variable's name, as an object identifier.

value
Contains the variable's value.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Snmp.h.

Simple Network Management Protocol (SNMP) Overview, SNMP Structures

SnmpVarBindList
The SnmpVarBindList structure represents an SNMP variable bindings list. This
structure is used by multiple SNMP functions. This structure is not used by the
WinSNMP API functions.

Members
list

A pointer that references an array to access individual variable bindings.

len
Contains the number of variable bindings in the list.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Snmp.h.

Simple Network Management Protocol (SNMP) Overview, SNMP Structures,
SnmpVarBind

CHAPTER 15

The WinSNMP API

The Microsoft® Windows® SNMP Application Programming Interface (the WinSNMP
API) versions 1.1 a and 2.0 allow you to develop SNMP-based network management
applications that execute in the Windows® 2000 operating environment. The Simple
Network Management Protocol (SNMP) is a request-response protocol that transfers
management information between protocol entities.

WinSNMP has been jointly developed with the cooperation, input, and support from
several companies, associations and individuals.

343

The first part of this overview provides information about the WinSNMP 2.0 Addendum,
SNMP versions, and a list of the relevant Requests for Comments (RFCs). It also
describes the WinSNMP model, and the components and features of the Microsoft
WinSNMP implementation. It also provides information about data management and
communications concepts you need to program in the WinSNMP environment.

The second section discusses the WinSNMP functions and the following related
WinSNMP programming tasks:

• Opening and closing a WinSNMP application

• Opening and closing a WinSNMP session

• Managing traps and notifications

• Working with variable binding lists

• Working with protocol data units

• Sending SNMP messages

• Receiving SNMP messages

• Managing object identifiers

• Freeing WinSNMP descriptors

• Setting the entity and context translation mode

• Managing the retransmission policy

• Writing WinSNMP applications with multiple threads

• Registering an SNMP agent application

You should be familiar with the basic concepts of SNMP and Windows programming
before reading this overview. For more information about SNMP, see Simple Network
Management Protocol and the relevant Requests for Comments (RFCs) which are
published by the Internet Engineering Task Force (IETF).

344 Volume 2 Network Protocols and Interfaces

New WinSNMP Programming Elements
The Microsoft® implementation of the WinSNMP API for Windows® 2000 adds support
for the following functions. These additions are documented in the WinSNMP version 2.0
Addendum, dated 12/05/97. For more information, see About the WinSNMP 2.0
Addendum.

New WinSNMP Functions
The following new WinSNMP 2.0 functions are available to SNMP applications that are
compliant with WinSNMP. These functions enable an application to cancel
retransmission attempts and time-out notifications for an SNMP message. You can also
register and unregister applications as SNMP agents, and modify the port assigned to a
destination entity.

When developing new WinSNMP applications, it is recommended that you call the
SnmpCreateSession function to open a WinSNMP session instead of calling the
SnmpOpen function.

• SnmpCancelMsg

• SnmpCreateSession

• SnmpGetVendorlnfo

• SnmpListen

• SnmpSetPort

For information about WinSNMP 2.0 features that the Microsoft WinSNMP
implementation supports, see the following topics:

• Levels of SNMP Support

• Support for IPX Address Strings in WinSNMP

• Registering an SNMP Agent Application

About the WinSNMP API
The WinSNMP API is an interface for the development of SNMP-enabled network
management applications.

The WinSNMP API provides the following features:
\

• SNMP-enabling technology for network management applications

• SNMP version 1 (SNMPv1) and SNMP version 2C (SNMPv2C) support

In addition to SNMP manager operations, WinSNMP API version 2.0 also supports
SNMP agent operations.

Chapter 15 The WinSNMP API 345

The WinSNMP API supports 32-bit applications, and it executes in single- and multi
threaded environments. Support for the WinSNMP API is available for applications that
execute in the Windows 2000 operating environment.

About the WinSNMP 2.0 Addendum
The WinSNMP version 2.0 Addendum is an update to the WinSNMP Manager API
specification, version 1.1 a. (At this time no specification defines version 2.0 of the
WinSNMP API.) The Addendum was jOintly developed with the cooperation, input, and
support from several companies, associations, and individuals.

The WinSNMP 1.1 a specification defines the WinSNMP Manager application
programming interface for developing SNMP-based network management applications.
In the WinSNMP version 2.0 Addendum, the interface is renamed as the WinSNMP API.
This is because WinSNMP 2.0 supports both agent and manager SNMP operations. You
should be familiar with both documents if you are programming in the WinSNMP
environment.

The Microsoft WinSNMP implementation is compliant with WinSNMP 2.0. It supports all
the functions and operations defined in both the WinSNMP 1.1 a specification and the
WinSNMP 2.0 Addendum.

For information about new functionality the addendum provides, see New WinSNMP
Programming Elements.

About SNMP Versions
The original Internet standard Network Management Framework, described in RFCs·
1155,1157, and 1213, is called the SNMP version 1 (SNMPv1) framework. Relevant
portions of the proposed framework for version 2C of the Simple Network Management
Protocol (SNMPv2C) are described in RFCs 1901 through 1908.

The WinSNMP API supports the SNMP protocol functionality described in the relevant
Internet RFCs. WinSNMP places no constraints on the use of SNMPv1 or SNMPv2C by
WinSNMP applications.

A management entity can support a different version of SNMP than the one the
WinSNMP application supports. The Microsoft WinSNMP implementation performs the
appropriate translations from SNMPv1 to SNMPv2C in accordance with the
relevant RFC.

RFCs Relevant to WinSNMP
TCP/IP standards are defined in Requests for Comments (RFCs), which are published
by the Internet Engineering Task Force (IETF). The RFCs that are relevant to WinSNMP
features are listed in the table on the following page.

346 Volume 2 Network Protocols and Interfaces

RFC number

1155

1157

1213

1901

1902

1903

1904

1905

1906

1907

1908

2089

Title

"Structure and Identification of Management Information for
TCP/IP-based Internets"

"A Simple Network Management Protocol (SNMP)"

"Management Information Base for Network Management of
TCP/IP-based internets: MIB-II"

"Introduction to Community-based SNMPv2"

"Structure of Management Information for Version 2 of the Simple
Network Management Protocol (SNMPv2)"

"Textual Conventions for Version 2 of the Simple Network
Management Protocol (SNMPv2)"

"Conformance Statements for Version 2 of the Simple Network
Management Protocol (SNMPv2)"

"Protocol Operations for Version 2 of the Simple Network
Management Protocol (SNMPv2)"

"Transport Mappings for Version 2 of the Simple Network
Management Protocol (SNMPv2)"

"Management Information Base for Version 2 of the Simple
Network Management Protocol (SNMPv2)"

"Coexistence between Version 1 and Version 2 of the Internet
standard Network Management Framework"

"V2ToV1 Mapping SNMPv2 onto SNMPv1 within a bi-lingual
SNMP agent"

Software Requirements for the WinSNMP API
A WinSNMP application must access the WinSNMP API through the dynamic-link library
WSNMP32.DLL.

The following files are required to support the functionality of the WinSNMP API.

Filename

WSNMP32.LlB

WSNMP32.DLL

WINSNMP.H

SNMPTRAP.EXE

SNMPAPI.DLL

Description

WinSNMP Library

Provides WinSNMP interface

WinSNMP header file

Receives SNMP traps and forwards them to MGMTAPI.DLL, the
Microsoft SNMP Manager API library

Provides SNMP utilities

Chapter 15 The WinSNMP API 347

The WinSNMP Model
The WinSNMP-compliant model includes the following basic components:

• A WinSNMP-enabled SNMP network management application, that is, a WinSNMP
compliant application

• The WinSNMP function layer

• A WinSNMP-enabled SNMP service provider, that is, a WinSNMP-compliant
implementation .

Network management applications that must convey SNMP messages operate efficiently
in an event-driven environment. This is because SNMP is a datagram-based or
connection less protocol between remote entities that do not establish virtual circuits.

Since Microsoft Windows applications are also event-driven, WinSNMP uses a
programming model in which the receipt and processing of asynchronous message
events drive management applications. An asynchronous message-event can be an
SNMP operation request by a manager application, or the response to a request by an
agent application.

SNMPsends requests and responses as SNMP messages. An SNMP message is an
SNMP Protocol Data Unit (PDU) plus additional message header elements defined by
the relevant RFC. For more information, see About SNMP Messages, Working with
Variable Binding Lists and Working with Protocol Data Units.

About the Microsoft WinSNMP Implementation
The Microsoft WinSNMP implementation complies with WinSNMP version 2.0. It
supports all the functions and operations defined in both the WinSNMP version 1.1 a
specification and the WinSNMP version 2.0 Addendum. The implementation provides
the following services for WinSNMP applications:

• Manages communications to and from management entities. The entity can reside on
the local computer or be connected through a local or wide-area network, or the
Internet. For more information, see Levels of SNMP Support.

• Hides the details of SNMP protocol, Abstract Syntax Notation One (ASN.1), and the
Basic Encoding Rules (BER) for describing transfer syntax.

• Verifies the correctness of PDUs and rejects invalid PDUs. For more information,
see Working with Protocol Data Units.

• Transforms SNMPv2C PDU types when necessary in accordance with the
relevant RFCs.

• Converts SNMPv1 traps from an SNMPv1 agent to SNMPv2C traps in accordance
with RFC 1908, "Coexistence between Version 1 and Version 2 of the Internet
standard Network Management Framework." For more information, see Translating
Traps from SNMPv1 to SNMPv2G.

348 Volume 2 Network Protocols and Interfaces

• Supports the application's retransmission policy and provides retransmission
execution support. For more information, see The WinSNMP Database and About
Retransmission.

• Provides entity and context translation support for the application. For more
information, see The WinSNMP Database and Setting the Entity and Context
Translation Mode.

For additioinal information about the relationship between a WinSNMP application and
the implementation, see WinSNMP Data Management Concepts and WinSNMP .
Sessions.

The WinSNMP Database
The Microsoft WinSNMP implementation maintains a store of administrative information
in a database. The database includes the following information:

• Network and version properties. The implementation uses these properties to
determine which network transport protocol and SNMP version framework to use to
complete transmission requests. For more information, see About SNMP Versions.

• Entity and context translation mode. The implementation uses this mode to
interpret user-friendly names for SNMP entities and contexts. For more information,
see Setting the Entity and Context Translation Mode.

• Retransmission policy setting. The implementation uses this setting to determine
whether or not it should execute the application's retransmission policy. The
implementation stores a time-out value and a retry count for each destination entity.
For more information, see About Retransmission and Managing the Retransmission
Policy.

Levels of SNMP Support
The Microsoft WinSNMP implementation provides level 2 SNMP communications
support. Level 2 supports the Internet Engineering Task Force (IETF) standard SNMPv2
protocol as defined in RFCs 1902-1908. It also supports the community-based message
wrapper as defined in RFC 1901 (SNMPv2C).

Level 2 communications support includes message encoding and decoding services,
previously called Level 0 communications support in WinSNMP version 1.1 a. Level 2
also supports all SNMPv1 protocol operations, previously called Level 1 communications
support in WinSNMP version 1.1 a.

The implementation returns the maximum level of SNMP communications it supports in
response to a call by the WinSNMP application to the SnmpStartup function.

If the WinSNMP application uses the implementation for SNMP message encoding and
decoding only, the application must perform required transformations that the
implementation would have performed. This includes translating SNMPv1 traps returned

. Chapter 15 The WinSNMP API 349

by a call to the SnmpRecvMsg function, to SNMPv2C traps. It also includes translating
PDU types defined by SNMPv1 to the relevant PDU type defined by SNMPv2C, in
accordance with RFC 1908.

WinSNMP Sessions
A session is the basic unit of resource and communications management between a
calling WinSNMP application and the Microsoft WinSNMP implementation. It is
recommended that an application use sessions to organize its operations and reduce the
demand on the implementation's resources.

For more information, see Opening and Closing a WinSNMP Session.

WinSNMP Data Management Concepts
The topics in this section cover the major concepts of data management that apply to
programming with the WinSNMP API.

• Object identifiers

• WinSNMP Descriptors

• Resource handle objects

• C-style strings

• Allocating WinSNMP memory objects

Object Identifiers
An SNMP object identifier uniquely names an object and identifies its location within a
Management Information Base (MIB) tree structure. Object identifiers are application
independent Abstract Syntax Notation One (ASN.1) data types that consist of a
sequence of non-negative integers, or subidentifiers. Object identifiers must have a
minimum of two subidentifiers and they must not exceed 128 subidentifiers.

The WinSNMP programming environment uses the smiOID structure to manage object
identifiers. The format of the object identifier array in an smiOID structure is one
subidentifier per array element.

The dotted numeric string representation of an object identifier separates its
subidentifiers with periods; for example, "1.2.3.4.5.6".

For more information, see The SNMP Management Information Base (MIB) and the
relevant RFCs.

WinSNMP Descriptors
In the WinSNMP programming environment a descriptor is one of the following two
structures:

• An smiOCTETS structure which describes an octet string variable

• An smiOID structure which describes an SNMP object identifier variable

350 Volume 2 Network Protocols and Interfaces

A WinSNMP descriptor is a structure that has two members: a length member, len, and
a pOinter member, ptr. The ptr member points to the octet string or object identifier of
interest. The ptr member can be either the smiLPBYTE or smiLPUINT32 data type.

An smiOCTETS descriptor or an smiOID descriptor can be the value member of an
smiVALUE structure. The smiVALUE structure describes the value associated with a
variable name in a variable binding entry.

The Microsoft WinSNMP implementation allocates and deallocates memory for all output
smiOCTETS and smiOID structures. Therefore, the application must call the
SnmpFreeDescriptor function to free the memory for the ptr member of these
structures.

String members in descriptors do not require a NULL terminating byte. For additional
information about managing the memory allocated for descriptors, see Allocating
WinSNMP Memory Objects.

Resource Handle Objects
The structure of a resource object is restricted to the Microsoft WinSNMP
implementation. A WinSNMP application can access a resource object with a handle.

The implementation can allocate one of the following types of resource handles for a
WinSNMP application.

Handle type Description

HSNMP _SESSION

HSNMP _ENTITY

HSNMP _CONTEXT

HSNMP_PDU

HSNMP_VBL

Handle to a WinSNMP session

Handle to an SNMP entity

Handle to a WinSNMP context

Handle to a protocol data unit

Handle to a variable binding list

A WinSNMP application can request that the implementation create or delete resource
handles, but the implementation performs the operation. For additional information about
freeing individual resources, see the SnmpFreeDescriptor, SnmpFreeVbl,
SnmpFreePdu, SnmpFreeEntity, and SnmpFreeContext functions.

C-Style Strings
A WinSNMP application can use NULL-terminated C-style strings to convert entity and
object identifier (010) objects to and from their string representations.

The WinSNMP functions that manipulate C-style strings include SnmpStrToEntity,
SnmpEntityToStr, SnmpStrToOid, and SnmpOidToStr. Because SnmpEntityToStr
and SnmpOidToStr return a pOinter to a C-style string variable, the WinSNMP
application must pass an appropriate value in the size parameter when it makes calls to
these functions.

Chapter 15 The WinSNMP API 351

Note The context parameter of the SnmpStrToContext and SnmpContextToStr
functions must be an octet string structure, that is, an smiOCTETS structure. The
context parameter cannot be a C-style string. The string contained in an smiOCTETS
structure does not require a NULL-terminating byte.

Allocating WinSNMP Memory Objects
Descriptors, resource handles and C-style strings are the three types of memory objects
in the WinSNMP programming environment.

The type of object determines whether the Microsoft WinSNMP implementation or the
WinSNMP application allocates and deallocates the memory for the object. This reduces
unnecessary allocation of temporary buffer space and unnecessary copying of buffers.

The following table summarizes the allocation and deallocation of resources for
WinSNMP memory objects.

Object type Description

smiOID or smiOCTETS If the WinSNMP application allocates the memory, it must
descriptor deallocate the memory with a call to an appropriate

function. If the implementation allocates the memory, the
application must call the SnmpFreeDescriptor function to
deallocate the memory.

smiVALUE structure If the value member is an smiOID or an smiOCTETS
descriptor, the application must proceed as indicated above
for descriptors.

Resource handle

C-style string

The implementation allocates, manages, and frees the
memory.

The WinSNMP application must manage and free the
memory it allocates.

For more information, see Freeing WinSNMP Descriptors.

WinSNMP Communications Management Concepts
The WinSNMP API provides network transport independence for SNMP-based network
management applications that execute in the Microsoft Windows® 2000 operating
environment. The topics in this section cover concepts of communications management
that apply to programming with WinSNMP.

About SNMP Messages
The Simple Network Management Protocol uses messages to communicate and
exchange information between remote SNMP entities. SNMP messages contain
Protocol Data Units (PDUs) plus additional message header elements defined by the
relevant RFC. A PDU isa data packet that contains SNMP data components (or fields).

352 Volume 2 Network Protocols and Interfaces

The format of an SNMP message is the same for both SNMPv1 and SNMPv2C.
However, SNMPv2C supports additional PDU types. For example, it supports the
SNMP _PDU_GETBULK request type, which enables an application to efficiently retrieve
large blocks of data from target entities.

Translating Message Requests
If a WinSNMP application requests functionality that is available under the SNMP
version 2C framework (SNMPv2C), but the target entity supports only the SNMP version
1 framework (SNMPv1), the Microsoft WinSNMP implementation attempts to translate
the request to the SNMPv1 format. To do this, the implementation uses the procedures
defined in RFC 1908, "Coexistence Between Version 1 and Version 2 of the Internet
Standard Network Management Framework." If translation is not possible, the
SnmpSendMsg function fails with the extended error code
SNMPAPLOPERATION_INVALID.

About Traps and Notifications
One type of message an SNMP agent application can send to a WinSNMP application is
an asynchronous message that informs the application of a significant event. An
example of a significant event is when a network link shuts down or when an
authentication failure occurs.

These types of messages are called traps under SNMPv1 and notifications under
SNMPv2C. The Microsoft WinSNMP implementation always translates SNMPv1 traps to
the SNMPv2C format, as defined by RFC 1908.

When you call the SnmpCreatePdu function to create a trap PDU, you can create only
an SNMPv2C trap PDU. The only type of trap PDU you can update with a call to the
SnmpSetPduData function is an SNMPv2C trap PDU.

For more information, see the followlng topics:

• Translating Traps from SNMPv1 to SNMPv2C

• Trap Formats

Translating Traps from SNMPv1 to SNMPv2C
When the Microsoft WinSNMP implementation receives traps from an entity operating
under the SNMPv1 framework, it translates the traps to the SNMPv2C format. Therefore,
when SnmpRecvMsg delivers a trap it is always in the SNMPv2C format. RFC 1908,
"Coexistence between Version 1 and Version 2 of the Internet-standard Network
Management Framework," specifies the rules for translating from the SNMPv1 to the
SNMPv2C trap format.

A WinSNMP application can check the last variable binding entry in a variable binding
list to determine if the entry is a trap translated from the SNMPv1 to the SNMPv2C
format. If so, the last variable binding will always be equal to the value
"snmpTrapEnterpriseOID.O".

For more information, see Managing Traps and Notifications.

Chapter 15 The WinSNMP API 353

Trap Formats
The format of trap PDUs is different than that of other PDUs. The format of SNMPv1
traps and SNMPv2C traps is also different.

Under the SNMPv2C framework, the PDU trap format is a variable binding list of n
variable binding entries organized in the following manner:

• The first variable binding entry contains a time-stamp.

• The second variable binding entry is an object identifier that identifies the trap .

• The third through n variable binding entries, if present, contain additional information
associated with the trap.

Under the SNMPv1 framework, the PDU trap format is as follows.

Field

enterprise

agent-addr

generic-trap/specific-trap

time-stamp

variable-bindings

Description

Identifies the type of device that generated the trap

Identifies the IP address of the device that generated
the trap

Identifies a predefined trap type

Identifies when the trap was generated

Contains additional information associated with the trap

The SnmpRecvMsg function always returns a message in the SNMPv2C format. If the
message contains the operation type SNMP _PDU_TRAP, the application can read the
variable binding entries of the message and retrieve the information associated with
the trap.

About Retransmission
A WinSNMP application can make SNMP operation requests in various ways. The
application can issue several requests to an SNMP agent, without waiting for a
response, or it can issue a single request and wait for the response. Since SNMP can be
implemented on multiple transport protocols, delivery mechanisms and reliability
characteristics can vary.

When you code the WinSNMP application you must determine the level of reliability you
need for communications operations, based on the way the application issues operation
requests. Then you must select a retransmission strategy and implement a
retransmission policy.

A retransmission policy includes a time-out period and a retry count. A time-out period is
the elapsed time, in hundredths of a second, between an application's issuance of an
SnmpSendMsg request and its receipt of the corresponding message. The application
receives the message as a result of a call to the SnmpRecvMsg function. The time-out
value is the period of time the Microsoft WinSNMP implementation waits for an entity to
respond to a communication request. If there is no response within the time-out period,

354 Volume 2 Network Protocols and Interfaces

the implementation either retransmits the request if the retry count value specifies
retransmission attempts, or it fails the call to SnmpSendMsg. A retry count is the
maximum number' of retransmission attempts the implementation makes if an SNMP
transmission request fails.

The implementation stores time-out values and retry counts in its database for the
application. The implementation stores individual values for each destination entity.

Applications must establish their own polling frequencies and they must manage timer
variables. For more information, see Managing the Retransmission Policy.

WinSNMP Programming Tasks
The following table summarizes the basic programming procedures that you must
perform to code a WinSNMP application, and the topics that provide information about
these tasks.

Programming task

Open the WinSNMP application.

Open one or more WinSNMP
sessions.

Register to receive traps or
notifications.

Create one or more variable
binding lists for incorporation in a
PDU.

Create one or more PDUs for
transmission and processing.

Submit one or more SNMP
operation requests.

Task-related function and topics

Use SnmpStartup.

See Opening and Closing a WinSNMP Application.

Use SnmpCreateSession.

See Opening and Closing a WinSNMP Session.

Use SnmpRegister.

See Managing Traps and Notifications.

Use SnmpCreateVbl, SnmpDuplicateVbl,
SnmpSetVb.

See Working with Variable Binding Lists.

Note The application may need to call other
variable binding functions to create the variable
binding list.

Use SnmpCreatePDU, SnmpSetPduData,
SnmpDuplicatePDU.

See Working with Protocol Data Units.

Note The application may need to call other PDU
functions and WinSNMP utility functions to create
the PDU.

Use SnmpSendMsg.

See Sending SNMP Messages.

Programming task

Retrieve the response to the
SNMP operation request.

Process the request response.

Close each WinSNMP session.

Close the WinSNMP application.

Chapter 15 The WinSNMP API 355

Task-related function and topics

Use SnmpRecvMsg.

See Receiving SNMP Messages.

Use application-specific logic.

Use SnmpClose.

See Opening and Closing a WinSNMP Session.

Use SnmpCleanup.

See Opening and Closing a WinSNMP Application.

The following topics contain additional information about other general programming
concepts specific to the WinSNMP environment.

General programming tasks Managing Object Identifiers

Freeing WinSNMP Descriptors

Setting the Entity and Context Translation Mode

Managing the Retransmission Policy

Writing WinSNMP Applications with Multiple
Threads

Registering an SNMP Agent Application

In addition, the WinSNMP application may need to incorporate calls to the following
WinSNMP functions: SnmpFreeVbl, SnmpFreeEntity, SnmpFreeDescriptor,
SnmpFreeContext, and SnmpFreePdu. This enables the Microsoft WinSNMP
implementation to free WinSNMP memory objects. As a general rule, the WinSNMP
application should free all resources allocated as the result of a call to a WinSNMP
function. For additional information about deallocating resources, see Allocating
WinSNMP Memory Objects.

Opening and ClOSing a WinSNMP Application
The WinSNMP application must call the SnmpStartup function successfully before it
calls any other WinSNMP function. The SnmpStartup function enables the Microsoft
WinSNMP implementation to perform initialization procedures. The function also returns
to the application the version of the WinSNMP API that the implementation supports, the
level of SNMP communications it supports, and the implementation's default translation
and retransmission modes.

The WinSNMP application must call theSnmpCleanup function when the application no
longer requires the implementation's services. Even though SnmpCleanup enables the
implementation to deallocate all resources allocated to the application, it is
recommended that the application first call the SnmpClose function once for each open
WinSNMP session, to maximize the implementation's performance. The WinSNMP
application must call SnmpCleanup as the last WinSNMP function before it terminates.

356 Volume 2' Network Protocols and Interfaces

Opening and Closing a WinSNMP Session
To open a session, an application calls the SnmpCreateSession function. If the function
completes successfully, the Microsoft WinSNMP implementation opens a session, and
the function returns a session identifier in the form of an HSNMP _SESSION handle. All
WinSNMP functions that return handle variables include the session identifier as an input
parameter. This enables the implementation to use the handle to efficiently manage
resources at the session level.

An application can have multiple sessions open at one time. Multiple sessions within an
application can share handle variables.

If the implementation cannot open a session because of resource limitations, it returns
SNMPAPLFAILURE when the application calls SnmpCreateSession. If the application
then calls the SnmpGetLastError function, it returns SNMPAPLALLOC_ERROR.

A call to the SnmpClose function enables the implementation to free any remaining
resources and to close the session.

For more information, see Resource Handle Objects and WinSNMP Sessions.

Managing Traps and Notifications
The WinSNMP application must register to receive traps and notifications by calling the
SnmpRegister function with SNMPAPI_ON. The application can unregisterand disable
traps and notifications by calling the function with SNMPAPI_OFF.

Several options are available when the application calls SnmpRegister. The application
can register or unregister for the following traps and notifications:

• One type of trap or notification

• All traps and notifications

• All sources of trap and notification requests

• Traps and notifications from all management entities

• Traps and notifications for every context

To register and receive a predefined trap or notification type, the application must define
an object identifier (an smiOID structure) for each predefined type. The structure must
contain a pattern-matching sequence for the type of trap or notification. RFC 1907,
"Management Information Base for Version 2 of the Simple Network Management
Protocol (SNMPv2)," defines trap and notification object identifiers.

To retrieve outstanding trap data and notifications for a WinSNMP session, a WinSNMP
application must call the SnmpRecvMsg function with the session handle returned by
the SnmpCreateSession function.

For more information, see Sending SNMP Messages and Receiving SNMP Messages.
For additional information about allocation and deallocation of resources for traps and
notifications, see Allocating WinSNMP Memory Objects.

Chapter 15 The WinSNMP API 357

Multiple Trap Registrations
Several options are available when a WinSNMP application registers a WinSNMP
session for traps or notifications. Because of this, an application can call the
SnmpRegister function multiple times, in effect defining a custom filter for the reception
of traps and notifications. For example, you can register for one type of trap or
notification, or for all traps and notifications, depending on the value of the notification
parameter. Additionally, the application can specify values in other parameters to the
SnmpRegister function to further define the traps and notifications that should reach an
application. For more information, see Managing Traps and Notifications.

Following are instances in which multiple calls to SnmpRegister are redundant. In these
instances SnmpRegister returns SNMPAPI_SUCCESS if the function completes
successfully, but the redundant registration is ineffective.

1. A call to the SnmpRegister function requesting filtered delivery of traps and
notifications to the session, after a previous call to SnmpRegister requesting delivery
of all traps and notifications (unfiltered delivery). This call is redundant because the
session is already receiving all traps and notifications, including the single type
defined by the filter.

2. A duplicate call to SnmpRegister, or one in which the parameter list is identical to the
parameter list in a previous call to SnmpRegister for the session.

3. A call to the SnmpRegister function requesting filtered delivery of traps and
notifications based on an object identifier (OlD) whose prefix is an OlD specified in a
previous call to SnmpRegister. For example, you can specify "1.3.6.1.4.1.311" in the
notification parameter to receive notifications originating from any Microsoft SNMP
agent entity. If you call SnmpRegister again and specify "1.3.6.1.4.1.311.1 ", the
second call is redundant because the session is already receiving all traps and
notifications that contain the OlD prefix "1.3.6.1.4.1.311 ".

To unregister the session, you must match each unique registration call to the
SnmpRegister function. Call SnmpRegister to unregister the session, and ensure that
the first five parameters to SnmpRegister are identical to those in the initial registration
call. The only difference between the initial call and the unregistering call is that when
registering you must specify the value SNMPAPLON in the status parameter, and when
you call the function to unregister, you must specify SNMPAPLOFF. You do not need to
match redundant registration calls to the SnmpRegister function. You need only match
the first unique registration call.

To change filtering criteria, it may be necessary for an application to first unregister and
disable delivery of certain traps or notifications. Then the application can create a new
filter by calling SnmpRegister, passing appropriate values.

358 Volume 2 Network Protocols and Interfaces

Working with Variable Binding Lists
A variable binding is the pairing of an SNMP object instance name with an associated
value. A variable binding list is a series of variable binding entries. In the WinSNMP
programming environment, a Protocol Data Unit (PDU) includes a variable binding list.

The details of the variable binding list structure are restricted to the Microsoft WinSNMP
implementation. A WinSNMP application can access a variable binding list with a handle
of the type HSNMP _VBL. For more information, see Resource Handle Objects.

The WinSNMP application can construct and manipulate variable binding lists, and
include them in PDUs. To perform these operations, the application uses the WinSNMP
variable binding functions. For additional information about working with WinSNMP and
variable binding lists, see the following topics:

• Creating a Variable Binding List

• Managing a Variable Binding List

For additional information about variable bindings and variable binding lists, see
RFC1905, "Protocol Operations for Version 2 of the Simple Network Management
Protocol (SNMPv2), "and the WinSNMP Variable Binding Functions.

Creating a Variable Binding List
The SnmpCreateVbl function creates a new variable binding list. If the WinSNMP
application specifies a variable name and a value, the function creates the list and adds
the name and value as the first entry in the list. If the application specifies NULL for the
variable name, the function creates an empty list.

To copy a variable binding list, call the SnmpDuplicateVbl function. The function
creates a new variable binding list and initializes the new list with a copy of the data in
the source variable binding list.

The SnmpCreateVbl function and the SnmpDuplicateVbl function allocate any
necessary memory for the new variable binding list. The WinSNMP application must
release the resources associated with these lists. It is recommended that the application
do this by matching each call to SnmpCreateVbl and SnmpDuplicateVbl with a
corresponding call to the SnmpFreeVbl function when it is appropriate to free the
allocated memory.

Managing a Variable Binding List
The SnmpGetVb function retrieves variable binding information from a variable binding
list. The function retrieves the variable name and the variable's associated value from
the variable binding entry specified by the WinSNMP application.

To update variable binding entries in a variable binding list, call the SnmpSetvb
function. The SnmpSetVb function also appends new variable binding entries to an
existing variable binding list.

Chapter 15 The WinSNMP API 359

The WinSNMP application must call the SnmpDeleteVb function to remove entries from
a variable binding list.

To retrieve, modify or delete a variable binding entry, the WinSNMP application must
specify the position of the entry in the variable binding list.

A call to the SnmpSetPduData function associates a variable binding list with a PDU. A
call to the SnmpGetPduData function retrieves a variable binding list from a PDU. An
individual variable binding is not directly associated with a PDU, but it is indirectly
associated through its inclusion in a variable binding list.

Working with Protocol Data Units
The Simple Network Management Protocol sends operation requests and responses as
SNMP messages. An SNMP message is an SNMP protocol data unit (PDU) plus
additional message header elements defined by the relevant RFC. A PDU includes a
variable binding list.

The structure of a PDU is restricted to the Microsoft WinSNMPimplementation. A
WinSNMP application can access a PDU with a handle of the type HSNMP _PDU. The
WinSNMP application must create a PDU before it calls the SnmpSendMsg function or
the SnmpEncodeMsg function.

The application can extract and update the data elements of a PDU, and release
resources allocated for PDUs. To perform these operations, the application uses the
WinSNMP PDU functions. For additional information about working with PDUs in the
WinSNMP programming environment, see the following topics:

• Creating a PDU

• Updating a PDU

• Duplicating a PDU

• Validating a PDU

• Matching Response and Request PDUs

For more information, see Working with Variable Binding Lists and Resource Handle
Objects.

Creating a PDU
To create and initialize a PDU a WinSNMP application calls the SnmpCreatePdu
function. The application must call SnmpCreatePdu before it calls theSnmpSendMsg
function to request that the Microsoft WinSNMP implementation transmit a PDU. The
application must also call SnmpCreatePdu before it calls the SnmpEncodeMsg
function to request encoding of an SNMP message.

The application must call the SnmpFreePdu function to release the resources that the
SnmpCreatePdu function allocates for new PDUs.

360 Volume 2 Network Protocols and Interfaces

Updating a PDU
A WinSNMP application can retrieve and update selected PDU fields by using the
SnmpGetPduData and the SnmpSetPduData functions.

The application can retrieve the PDU type, request identifier, error status, and error
index fields from a specific PDU. It can also retrieve the handle to the variable binding
list. The application can update the PDU_type and requesCid fields.

If the PDU type is equal to SNMP _PDU_GETBULK, the application can also update the
non_repeaters and the max_repetitions fields of the PDU.

Duplicating a PDU
The SnmpDuplicatePdu function duplicates a PDU, allocating any necessary memory.
To release resources allocated by SnmpDuplicatePdu for a new PDU, a WinSNMP
application must call the SnmpFreePdu function.

Validating a PDU
When the WinSNMP application calls the SnmpSendMsg function or the
SnmpEncodeMsg function, the Microsoft WinSNMP implementation verifies the validity
of the PDU and the other function parameters.

The value of one PDU data component (or field) can be valid individually, but it may be
invalid in combination with values for other fields. For example, unless the PDU_type
field of the PDU is SNMP _PDU_GETBULK or SNMP _PDU_RESPONSE, both the
errocstatus and error_index fields must be equal to zero. Any other value combination
constitutes an invalid PDU.

The implementation rejects invalid PDUs and returns the error status
SNMPAPI_FAILURE. It sets an extended error code equal to SNMPAPI_PDU_INVALID.

Matching Response and Request PDUs
The order in which the WinSNMP application receives SNMP responses may not match
the order in which the application submits SNMP operation requests. To match the
response with the request, the application must use the request identifier field (the
requesUd) of the response.

The requesCid field is a unique numeric value that identifies the PDU. Applications can
assign request identifiers by calling the SnmpCreatePdu function or the
SnmpSetPduData function. Call the SnmpGetPduData function to retrieve a PDU's
requesCid.

Assigning Request Identifiers
A WinSNMP application can call the SnmpCreatePdu function or the SnmpSetPduData
function to assign an application-generated request identifier to a PDU. The application
must pass the value in the requesUd parameter.

Chapter 15 The WinSNMP API 361

An application can request that the Microsoft WinSNMP implementation generate and
assign a request identifier to a PDU by passing zero in the requesUd parameter of the
SnmpCreatePdu function. The application can retrieve the assigned request identifier
with a call to the SnmpGetPduData function.

To assign a request identifier equal to a specific value, including zero, the application
must pass that value in the requesUd parameter of the SnmpSetPduData function.

When the implementation executes the application's retransmission policy, it includes
the requesUd field of the original PDU in each retransmitted SNMP message. For more
information, see About Retransmission and Managing the Retransmission Policy.

Note When the implementation receives traps from an SNMPv1 entity, it assigns a non
zero value to the requesCid field of the PDU. This value may duplicate a request
identifier used by the application in a request PDU. Applications must check for
duplication.

Sending SNMP Messages
A WinSNMP application initiates a transmission request by sending an SNMP message.
SNMP messages include an SNMP protocol data unit. For more information, see
Working with Protocol Data Units.

A WinSNMP application must call the SnmpSendMsg function to request that the
Microsoft WinSNMP implementation transmit the PDU, with the other required message
elements defined by the relevant RFC. In addition to the destination entity, the
application must specify the source entity and a context for the request. The
SnmpSendMsg function executes asynchronously.

The WinSNMP application must call the SnmpRecvMsg functi.on to retrieve the
response to an SnmpSendMsg request.

The implementation verifies the validity of the PDU and the other message elements
when an application calls SnmpSendMsg.

Receiving SNMP Messages
The WinSNMP application must call the SnmpRecvMsg function to retrieve the
response to an SnmpSendMsg request.

The SnmpCreateSession function passes an application window handle and a
notification message identifier to the Microsoft WinSNMP implementation. When the
application window receives this message, it signals the application to call the
SnmpRecvMsg function using the session handle returned by SnmpCreateSession.

The SnmpRecvMsg function returns two entity handles, a context handle, and the
handle to a PDU. It is recommended that the WinSNMP application free these resources
using the SnmpFreeEntity, SnmpFreeContext, and SnmpFreePdu functions.

362 Volume 2 Network Protocols and Interfaces

For additional information about managing the time between a call to the
SnmpSendMsg function and the receipt of the corresponding response, see About
Retransmission. For additional information about using the requesCid PDU field to
match a response PDU with its request PDU, see Matching Response and
Request PDUs.

General WinSNMP Programming Tasks
The following topics contain information about general programming concepts specific to
the WinSNMP environment.

Managing Object Identifiers
The WinSNMP API provides several WinSNMP utility functions that simplify the
manipulation of object identifiers for WinSNMP applications.

The SnmpOidToStr function converts the internal binary representation of an object
identifier to its dotted numeric string format. When you call SnmpOidToStr, specify a
string buffer of MAXOBJIDSTRSIZE length (1408 bytes) to ensure that the output buffer
is large enough to hold the converted string. To convert an object identifier from the
dotted numeric string format to its internal binary representation, call the SnmpStrToO"id
function.

To copy an SNMP object identifier call the SnmpOidCopy function. This function
allocates any necessary memory for the new object identifier.

A WinSNMP application must call the SnmpFreeDescriptor function to free resources
allocated for the ptr member of the smiOID structure specified by both the
SnmpStrToOid and the SnmpOidCopy functions.

The SnmpOidCompare function compares two SNMP object identifiers. The WinSNMP
application can specify the number of subidentifiers to compare. Call SnmpOidCompare
to determine whether two object identifiers have common prefixes.

For additional information about managing the memory allocated for object identifiers,
see Allocating WinSNMP Memory Objects.

Freeing WinSNMP Descriptors
The WinSNMP programming environment assigns the deallocation of descriptor
resources to the WinSNMP implementation or the WinSNMP application, depending on
which component allocates the memory for the descriptor.

To free the resources for an smiOID or an smiOCTETS descriptor, the rules on the
following page apply.

Chapter 15 The WinSNMP API 363

• For input parameters

Because the WinSNMP application allocates the memory for input objects with
variable lengths, the application must free that memory using an appropriate function.
For example, if the application allocated the resources with a call to the GlobalAlioc
function, it should use the GlobalFree function to deallocate the resources. If the
application allocated the resources with a call to the HeapAlioc function, it should call
the HeapFree function.

• For output parameters

A call to any of the following functions results in the implementation allocating memory
for an smiOID or an smiOCTETS descriptor: SnmpGetVb, SnmpEncodeMsg,
SnmpOidCopy, SnmpContextToStr, and SnmpStrToOid.

Because the implementation allocates the memory for these output objects, the
application must call the SnmpFreeDescriptor function to deallocate the resources.
This function enables the implementation to free the memory allocated for the ptr
member of these structures.

To free the resources for an smiVALUE structure, the following rules apply:

A WinSNMP application must check the syntax member of an smiVALUE structure
to correctly evaluate the value member of the structure. If the syntax member
indicates that the value member is an smiOCTETS or an smiOID descriptor, and the
implementation allocated the resources for the descriptor,the application must call
SnmpFreeDescriptor. This enables the implementation to free the memory. If the
application allocated the resources, it must free the memory using an appropriate
function, as indicated earlier.

For more information, see Allocating WinSNMP Memory Objects.

Setting the Entity and Context Translation Mode
The WinSNMP application can specify the interpretation and translation of entity and
context parameters by setting the entity and context translation mode. The Microsoft
WinSNMP implementation stores the mode in a database.

The setting of the entity and context translation mode determines the manner in which
the SnmpStrToEntity function and the SnmpStrToContext function interpret input
strings. The setting also determines the type of output string that the SnmpEntityToStr
and the SnmpContextToStr functions return. For more information, see Support for IPX
Address Strings in WinSNMP.

The implementation returns the current default entity and context translation mode in the
nTranslateMode parameter of the SnmpStartup function.To retrieve the current entity
and context translation mode in effect for the implementation, an application can call the
SnmpGetTranslateModefunction at any time.

364 Volume 2 Network Protocols and Interfaces

The valjd entity and context translation modes follow.

Mode Meaning

SNMPAPLTRANSLATED The implementation uses its database to translate
user-friendly names for SNMP entities and
managed objects. The implementation translates
them into their SNMPv1 or SNMPv2C components.

SNMPAPI_UNTRANSLATED_V1 The implementation inte'rprets SNMP entity
parameters as literal SNMP transport addresses,
and context parameters as literal SNMP
community strings. For SNMPv2 destination
entities, the implementation creates outgoing
SNMP messages that contain a value of zero in
the version field.

SNMPAPLUNTRANSLATED_V2 The implementation interprets SNMP entity
parameters as SNMP transport addresses, and
context parameters as literal SNMP community
strings. For SNMPv2 destination entities, the
implementation creates outgoing SNMP messages
that contain a value of 1 in the version field.

The implementation tries to associate resources in its database with the literal transport
address of the management entity .

. To change the entity and context translation mode setting a WinSNMP application must
call the SnmpSetTranslateMode function. If the requested translation mode is invalid,
the function fails, and SnmpGetLastError returns the error code
SNMPAPI_MODE_INVALID.

Support for IPX Address Strings in WinSNMP
WinSNMP 2.0 formalizes the use of IPX address strings. If you specify an IPX address
string as an input parameter to the SnmpStrToEntity function, you must format the
string using the following standards:

• A network number that consists of eight hexadecimal digits (zero-filled if necessary)

• A separator (either ":", "." or "-')

• A node number that consists of 12 hexadecimal digits (zero-filled if necessary)

For example, 00000001 :00081 AOD01 C2 or 00000001.00081 aOd01 c2. Hexadecimal
digits can be uppercase or lowercase.

This is the format the SnmpEntityToStr fun~tion uses to return an IPX address string.
The string is returned when an application that is operating in one of the
SNMPAPLUNTRANSLATED modes calls the SnmpEntityToStr function. The string
can also be returned when the application is operating in SNMPAPLTRANSLATED
mode and no user-friendly name is available for the entity.

Chapter 15 The WinSNMP API 365

Managing the Retransmission Policy
The WinSNMP application can request that the Microsoft WinSNMP implementation
execute the application's retransmission policy. When the implementation manages
retransmission, it uses the tima-out period and the retry count values in its database.

The implementation identifies the default retransmission mode in a return value from the
SnmpStartup function during initialization. The mode can be one of the following values.

Value

SNMPAPLON

SNMPAPLOFF

Meaning

The implementation is executing the application's
retransmission policy.

The implementation is not executing the application's
retransmission policy.

A WinSNMP application can retrieve at any time the current retransmission mode in
effect for the implementation by calling the SnmpGetRetransmitMode function. The
WinSNMP API provides other database functions that simplify management of the
retransmission policy.

At any time during program execution, the WinSNMP application can adjust execution of
the policy by performing one of the following steps:

• Request that the implementation start or stop executing the retransmission policy by
calling the SnmpSetRetransmitMode function. For more information, see Turning
Retransmission On and Off.

• Modify the time-out period and retry count values in the implementation's database.
For more information, see Changing the Retransmission Policy.

• Call the the SnmpCancelMsg function to cancel the retransmission cycle and release
internal data structures associated with a single SNMP message request. For more
information, see Canceling Retransmission.

The application can execute its own retransmission policy. In this case, execution mayor
may not be based on the values in the database.

Turning Retransmission On and Off
An application can set the retransmission mode with a call to the
SnmpSetRetransmitMode function. The new retransmission mode applies to
subsequent ·calls to the SnmpSendMsg function.

When the application calls SnmpSetRetransmitMode with the retransmission mode
value SNMPAPLON, the Microsoft WinSNMP implementation begins execution of the
application's retransmission policy. The new retransmission mode does not affect
outstanding SNMP messages. An outstanding message is one that has no response at
the time the application changes the retransmission mode.

366 Volume 2 Network Protocols and Interfaces

When the WinSNMP application calls the SnmpSetRetransmitMode function with the
retransmission mode value SNMPAPLOFF, the implementation stops executing the
retransmission policy. The implementation cancels retransmission attempts for
outstanding SNMP messages. This is because it may not be possible for the
implementation to handle all outstanding SNMP requests and operations plus new
requests, before an application time-out or retry counter signals an event.

Canceling Retransmission
If there is no response to a communication request within the time-out period specified
for a destination entity, and if retransmissions are specified for the entity, the Microsoft
WinSNMP implementation retransmits the request. A call to the SnmpCancelMsg
function can cancel this retransmission cycle and release internal data structures
associated with the message request.

Note that it is possible for a destination entity to receive an SNMP message that has
been cancelled by a call to the SnmpCancelMsg function. It is also possible that a
destination entity can respond to a cancelled SNMP message. This is because
transaction queuing occurs at multiple levels. However, once a message has been
cancelled by a call to SnmpCancelMsg, the Microsoft WinSNMP implementation will not
retransmit the message, submit a response PDU, or send a time-out notification to the
application for that message.

Changing the Retransmission Policy
The Microsoft WinSNMP implementation provides retransmission policy support by
storing a time-out value and a retry count for the WinSNMP application in a database.
The implementation stores values for individual destination entities. The implementation
initially supplies default values for these elements, but an application can add or modify
values for individual entities.

A call to the SnmpGetTimeout and SnmpGetRetry functions returns the time-out and
retry count values for a specific destination entity. To change the time-out value, a
WinSNMP application must call the SnmpSetTimeout function. To change the retry
count value the application must call the SnmpSetRetry function. The updated settings
affect new SNMP message requests to the destination entity.

Writing WinSNMP Applications with Multiple Threads
The Microsoft WinSNMP implementation ensures that the WinSNMP operations of one
process do not modify the WinSNMP settings of another process.

A WinSNMP application with multiple threads must ensure that WinSNMP operations
that set application-level parameters are thread-safe. The functions that set application
level parameters are SnmpSetTranslateMode and SnmpSetRetransmitMode. These
functions modify settings for the entity and context translation mode and the
retransmission mode.

For more information, see Multiple Threads.

Chapter 15 The WinSNMP API 367

Registering an SNMP Agent Application
In addition to SNMP manager operations, the WinSNMP API version 2.0 also supports
SNMP agent operations.

To register a WinSNMP application as an SNMP agent, the application can call the
SnmpListen function. This function informs the Microsoft WinSNMP implementation that
an SNMP entity will be acting in the role of an SNMP agent. The application can also call
SnmpListen to inform the implementation when it will no longer be acting as an agent.

If an application calls the SnmpListen function and passes the value SNMPAPI_ON in
the IStatus parameter, the following actions occur:

1. The entity that will be functioning in an SNMP agent role binds to its assigned port,
and "listens" for incoming SNMP message requests.

2. The agent uses application-specific logic to process each SNMP request.

3. The agent forms appropriate responses to each request.

4. The agent transmits the response to the requesting entity by calling the
SnmpSendMsg function. When the agent calls SnmpSendMsg, it.specifies the
address of the agent in the srcEntity parameter, and the address of the remote
manager entity in the dstEntity parameter. (These values are the reverse of the values
the agent entity received in these parameters when it called the SnmpRecvMsg
function to retrieve an SNMP request.)

For more information about SNMP management applications and agent applications,
see About SNMP.

WinSNMP API Reference
The following sections describe in detail the functions, structures, data types, function
return values, and common error codes of the WinSNMP API.

• WinSNMP Data Types

• WinSNMP Common Error Codes

• WinSNMP Function Return Values

• WinSNMP Functions

• WinSNMP Structures

WinSNMP Data Types
The standard WinSNMP data types are defined in the WINSNMP.H file.

Note that WinSNMP specifies some parameters with the signed long integer type,
smiiNT. This enables WinSNMP to comply with the data elements, especially the PDU
components, defined in the relevant RFCs.

368 Volume 2 Network Protocols and Interfaces

WinSNMP Error Codes
Note The errors described in this topic are distinct from the SNMP error codes defined
by the relevant RFCs.

All WinSNMP functions return the value SNMPAPI FAILURE if the function fails. The
WinSNMP application must immediately call the SnmpGetLastError function to retrieve
extended error information when a WinSNMP function fails. For additional information
about the extended error codes WinSNMP functions return, see the following topics:

• WinSNMP Common Error Codes

• Network Transport Errors

The WinSNMP errors that convey context-specific information are noted in each
function's reference page.

WinSNMP Common Error Codes
The SnmpGetLastError function can return a general error code after a WinSNMP
function fails. The following table lists the WinSNMP common error codes.

Error code

SNMPAPI_NOT_
INITIALIZED

SNMPAPI_ALLOC_
ERROR

Meaning

The SnmpStartup
function did not complete
successfully either since
program execution
began, or since a call to
the SnmpCleanup
function completed
successfully.

The application specified
an invalid pointer, or an
error occurred during
memory allocation. The
Microsoft WinSNMP
implementation could not
obtain sufficient
resources to execute the
request.

. Recommended action

The application should call
SnmpGetLastError before it calls
any other WinSNMP API function
when SnmpStartup fails. The
SnmpGetLastError function
returns extended error information
aboutthe failure of SnmpStartup.

The application should provide valid
memory pointers for all output
parameters. It should free
resources, reduce resource
requirements, or facilitate a graceful
shutdown. A graceful shutdown
includes multiple calls to the
SnmpClose function, one for each
open WinSNMP session. It also
includes a call to the
SnmpCleanup function.

Error code Meaning

SNMPAPLNOOP The function did not
complete successfully
because all output
parameters are NULL.

SNMPAPI_OTHER_ An unknown or undefined
ERROR error occurred.

Chapter 15 The WinSNMP API 369

Recommended action

The application must specify at
least one output parameter that is
not NULL when calling a function
that returns information to the
application.

The application should usually
respond with a graceful shutdown.
A graceful shutdown includes
multiple calls to the SnmpClose
function, one for each open
WinSNMP session. It also includes
a call to the SnmpCleanup
function.

The WinSNMP errors that convey context-specific information are noted in each
function's reference page.

Network Transport Errors
The Microsoft WinSNMP implementation can detect a network transport error after it
transmits an SNMP message. When this occurs, the implementation sends a data
receipt notification to the WinSNMP session that initiated the communication request.
The implementation also returns SNMPAPLFAILURE on the next call to the
SnmpRecvMsg function for the session. The SnmpRecvMsg function fails with an
extended error code that indicates a network transport layer error.

For a list of specific transport layer errors, see the reference pages for the
SnmpRegister, SnmpSendMsg, and SnmpRecvMsg functions.

WinSNMP Function Return Values
The return value from a WinSNMP function call can be a handle to a resource that the
MicrosoftWinSNMP implementation allocates for the WinSNMP application.

The following table lists the five types of resource handles that the implementation
allocates.

Handle type

HSNMP _SESSION

HSNMP _ENTITY

HSNMP _CONTEXT

HSNMP_PDU

HSNMP_VBL

Description

Handle to a WinSNMP session

Handle to an SNMP entity

Handle to an SNMP context

Handle to a protocol data unit

Handle to a variable binding list

370 Volume 2 Network Protocols and Interfaces

For more information, see Resource Handle Objects.

The return value can also be an unsigned long integer value of the smiUINT32 type that
represents an SNMPAPI_STATUS value.

The following table lists the WinSNMP status values and their meaning.

Status Description

SNMPAPI_FAILURE

, SNMPAPI_SUCCESS

WinSNMP Functions

Indicates an error. Equates to 0 or NULL.

Indicates the function completed successfully. Equates
to 1 or a positive count.

The functions used with WinSNMP fall into the following functional groupings. An
alphabetic list follows.

• Communications Functions

• Entity and Context Functions

• Database Functions

• PDU Functions

• Utility Functions

• Variable Binding Functions

• WinSNMP Functions-Alphabetic List

WinSNMP. Communications Functions
The WinSNMP communications functions provide an interface between the calling
WinSNMP application and the Microsoft WinSNMP implementation. The implementation
handles communication between the application and other management entities.

Function

SnmpCancelMsg

SnmpCleanup

SnmpClose

Description

Requests that the Microsoft WinSNMP implementation
cancel retransmission attempts and time-out
notifications for an SNMP request message.

Informs the implementation that an application is
disconnecting and no longer requires allocated
resources. An application must call the SnmpCleanup
function as the last WinSNMP function before it
terminates.

Enables the implementation to deallocate resources
associated with a session, and to close communications
mechanisms.

Function

SnmpCreateSession

SnmpListen

SnmpOpen

SnmpRecvMsg

SnmpRegister

SnmpSendMsg

SnmpStartup

SNMPAPLCALLBACK

Chapter 15 The WinSNMP API 371

Description

Requests the implementation to open a WinSNMP
session and allocate resources and communications
mechanisms. When developing new WinSNMP
applications, it is recommended that you call the
SnmpCreateSession function to open a WinSNMP
session instead of calling the SnmpOpen function.

Registers or unregisters a WinSNMP application as an
SNMP agent.

Requests the implementation to open a WinSNMP
session and allocate resources and communications
mechanisms. When developing new WinSNMP
applications, tt is recommended that you call the
SnmpCreateSession function to open a WinSNMP
session instead of calling the SnmpOpen fUnction.

Returns SNMP messages and outstanding trap data and
notifications.

Informs the implementation that the application needs to
register or unregister for traps and notifications.

Requests that the implementation transmit a protocol
data unit.

Notifies the implementation to perform initialization
procedures for the application. An application must call
the SnmpStartup function successfully before it calls
any other WinSNMP function.

Notifies a WinSNMP session that an SNMP message or
asynchronous event is available. Note: This callback
function applies only to sessions opened as a result of a
call to the SnmpCreateSession function.

WinSNMP Entity and Context Functions
The WinSNMP entity and context functions enable a WinSNMP application to specify
user-friendly names for SNMP entities and contexts. The Microsoft WinSNMP
implementation translates the name to its SNMPv1 or SNMPv2C components using the
implementation's database.

Function

SnmpContextToStr ..

SnmpEntitytoStr

Description

Returns a string that identifies an SNMP context (a set
of managed object resources).

Returns a string that identifies an SNMP management
entity.

(continued)

372 . Volume 2 Network Protocols and Interfaces

(continued)

Function

SnmpFreeContext

SnmpFreeEntity

SnmpSetPort

SnmpStrToContext

SnmpStrToEntity

Description

Releases resources allocated by the
SnmpStrToContext function for an SNMP context.

Releases resources allocated by the SnmpStrToEntity
function for an SNMP management entity.

Changes the port assigned to an SNMP destination
entity.

Returns a handle to SNMP context information that is
specific to the implementation.

Returns a handle to SNMP management entity
information that is specific to the implementation.

WinSNMP Database Functions
The WinSNMP database functions provide a WinSNMP application with access to the
current settings in the Microsoft WinSNMP implementation's store of administrative
information. These functions permit changing the retransmission mode and the entity
and context translation mode. The database functions also provide the application with
the ability to manipulate the time-out and retry count values.

Function

SnmpGetRetransmitMode

SnmpGetRetry

SnmpGetTimeout

SnmpGetTranslateMode

SnmpGetVendorlnfo

SnmpSetRetransmitMode

SnmpSetRetry

SnmpSetTimeout

SnmpSetTranslateMode

WinSNMP PDU Functions

Description

Returns the current setting of the retransmission mode.

Returns the retry count value, in units, for the
retransmiSsion of SNMP message requests.

Returns the time-out value, in hundredths of a second,
for the transmission of SNMP message requests.

Returns the current setting of the entity and context
translation mode.

Retrieves information that identifies the WinSNMP
vendoL

Changes the retransmission mode.

Changes the retry count value for the retransmission of
SNMP message requests.

Changes the time-out value for the transmission of
SNMP message requests.

Changes the entity and context translation mode.

The WinSNMP PDU functions enable WinSNMP applications to extract and update the
data elements (or fields) of a PDU. This includes PDUs returned by a call to the
SnmpRecvMsg function or the SnmpDecodeMsg function. The PDU functions also
construct PDUs for use in the SnmpSendMsg and SnmpEncodeMsg functions.

Function

SnmpCreatePdu

SnmpDuplicatePdu

SnmpFreePdu

SnmpGetPduData

SnmpSetPduData

WinSNMP Utility Functions

Chapter 15 The WinSNMP API 373

Description

Creates and initializes an SNMP protocol data unit.

Duplicates an SNMP protocol data unit.

Releases resources associated with an SNMP protocol
data unit created by the SnmpCreatePdu or the
SnmpDuplicatePdu function.

Returns selected data elements from a specified SNMP
protocol data unit.

Updates selected data elements in a specified SNMP
protocol data unit.

The WinSNMP utility functions enable a WinSNMP application to manage objects and
SNMP messages across the WinSNMP interface.

Function

SnmpDecodeMsg

SnmpEncodeMsg

SnmpFreeDescriptor

SnmpGetLastError

SnmpOidCompare

SnmpOidCopy

SnmpOidToStr

SnmpStrToOid

Description

Decodes an encoded or serialized SNMP message into
its constituent components.

Creates an encoded SNMP message.

Signals the Microsoft WinSNMP implementation that it
should free the memory it allocated for a specific
descriptor.

Returns the last-error code value for the last SNMP
operation.

Compares two SNMP object identifiers.

Copies an SNMP object identifier.

Converts the internal binary representation of an SNMP
object identifier to its dotted numeric string format.

Converts the dotted numeric string format of an SNMP
object identifier to its internal binary representation.

WinSNMP Variable Binding Functions
The WinSNMP variable binding functions enable WinSNMP applications to construct and
manipulate variable binding lists, and include them in PDUs.

Function

SnmpCountVbl

SnmpCreateVbl

Description

Enumerates the variable binding entries in a specified
variable binding list.

Creates a new variable binding list.

(continued)

374 Volume 2 Network Protocols and Interfaces

(continued)

Function

SnmpDeleteVb

SnmpDuplicateVbl

SnmpFreeVbl

SnmpGetVb

SnmpSetVb

Description

Removes a variable binding entry from a variable
binding list.

Copies a variable binding list.

Releases resources for a variable binding list allocated
previously by the SnmpCreateVbl or the
SnmpDuplicateVbl function.

Retrieves information from a specified variable binding
entry.

Changes variable binding entries in a variable binding
list; appends new variable binding entries to an existing
variable binding list.

WinSNMP Functions-Alphabetic List
SNMPAPI_CALLBACK
SnmpCancelMsg

SnmpGetTimeout
SnmpGetTranslateMode
SnmpGetVb
SnmpGetVendorlnfo
SnmpListen
SnmpOidCompare
SnmpOidCopy
SnmpOidToStr
SnmpOpen
SnmpRecvMsg
SnmpRegister
SnmpSendMsg
SnmpSetPduData
SnmpSetPort
SnmpSetRetransmitMode
SnmpSetRetry
SnmpSetTimeout
SnmpSetTranslateMode
SnmpSetVb

SnmpCleanup
SnmpClose
SnmpContextToStr
SnmpCountVbl
SnmpCreatePdu
SnmpCreateSession
SnmpCreateVbl
SnmpDecodeMsg
SnmpDeleteVb
SnmpDuplicatePdu
SnmpDuplicateVbl
SnmpEncodeMsg
SnmpEntityToStr
SnmpFreeContext
SnmpFreeDescriptor
SnmpFreeEntity
SnmpFreePdu
SnmpFreeVbl
SnmpGetLastError
SnmpGetPduData
SnmpGetRetransmitMode
SnmpGetRetry

SnmpStartup
SnmpStrToContext
SnmpStrToEntity
SnmpStrToOid

Chapter 15 The WinSNMP API 375

SNMPAPI_CALLBACK
The Microsoft WinSNMP implementation calls the SNMPAPI_CALLBACK function to
notify a WinSNMP session that an SNMP message or asynchronous event is available.

SNMPAPLCALLBACK is a placeholder for an application- or library-defined callback
function name.

Parameters
hSession

[in] Handle to the WinSNMP session.

hWnd
[in] Handle to a window of the WinSNMP application to notify when an asynchronous
request completes, or when trap notification occurs. This parameter does not have
significance forthe WinSNMP session, but the implementation always passes the
value to the callback function.

wMsg
[in] Specifies an unsigned integer that identifies the notification message to send to
the WinSNMP application window. This parameter does not have significance for the
WinSNMP session, but the implementation always passes the value to the callback
function.

wParam
[in] Specifies an application-defined 32-bit value that identifies the type of notification.
If this parameter is equal to zero, an SNMP message is available for the session. The
application should call the SnmpRecvMsg function to retrieve the message. If this
parameter is not equal to zero, it indicates an asynchronous event notification for the
Session. For additional information, see the following Remarks section.

IParam
[in] Specifies an application-defined 32-bit value that specifies the request identifier of
the PDU being processed.

376 Volume 2 Network Protocols and Interfaces

IpClientData
[in] If the IpClientData parameter was not NULL on the call to the
SnmpCreateSession function for this session, this parameter is a pOinter to
application-defined data.

Return Values
The function must return SNMPAPLSUCCESS to continue execution of the application.
If the function returns any other value, the implementation responds as if the application
called the SnmpClose function for the indicated session.

Remarks
When the implementation is executing the retransmission policy for the WinSNMP
application and a transmission time-out occurs, the implementation informs the session
of the error. In this situation the value of the wParam parameter would be
SNMPAPI_ TL_ TIMEOUT. For a list of other transport layer errors, see the reference
pages for the SnmpRegister, SnmpSendMsg, and SnmpRecvMsg functions.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Winsnmp.h.

WinSNMP API Overview, WinSNMP Functions, SnmpCreateSessJon, SnmpClose

SnmpCancelMsg
A WinSNMPapplication calls the SnmpCancelMsg function to request that the
Microsoft WinSNMP implementation cancel retransmission attempts and time-out
notifications for an SNMP request message.· The SnmpCancelMsg function is an
element of the WinSNMP API, version 2.0.

Parameters
session

[in] Handle to the WinSNMP session that submitted the SNMP request message
(PDU) to be canceled.

Chapter 15 The WinSNMP API 377

req/d
[in] Specifies a unique numeric value that identifies the PDU of interest. This
parameter must match the request identifier (requesCid) of the PDU parameter
specified in the application's initial call to the SnmpSendMsg function.

Return Values
If the function succeeds, the return value is SNMPAPLSUCCESS.

If the function fails, the return value is SNMPAPI_FAILURE. To get extended error
information, call SnmpGetLastError. The SnmpGetLastError function can return one
of the following errors.

Error code

SNMPAPLSESSION_INVALID

SNMPAPLPDU_INVALID

SNMPAPLALLOC_ERROR

SNMPAPI_OTHER_ERROR

Remarks

Description

The session parameter is invalid.

The req/d parameter does not identify an outstanding
message for the specified session.

The SnmpStartup function did not complete
successfully.

An error occurred during memory allocation.

An unknown or undefined error occurred.

Calling the SnmpCancelMsg function is equivalent to calling the
SnmpSetRetransmitMode function, for a specific SNMP message, with the
retransmission mode equal to SNMPAPLOFF.

For more information, see Canceling Retransmission and Managing the Retransmission
Policy.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Winsnmp.h.
Library: Use Wsnmp32.lib.

WinSNMP API Overview, WinSNMP Functions, SnmpSendMsg,
SnmpSetRetransmitMode

378 Volume 2 Network Protocols and Interfaces

SnmpCleanup
The SnmpCleanup function informs the Microsoft WinSNMP implementation that the
calling WinSNMP application no longer requires the implementation's services.

Note A WinSNMP application must call the SnmpCleanup function as the last
WinSNMP function before it terminates.

Parameters
This function has no parameters.

Return Values
If the function succeeds, the return value is SNMPAPLSUCCESS. Until the WinSNMP
application successfully recalls the SnmpStartup function, any other.call to a WinSNMP
function returns SNMPAPLFAILURE, with an extended error code of
SNMPAPI_NOT _INITIALIZED.

If the function fails, the return value is SNMPAPI_FAILURE, but the WinSNMP
application does not need to retry the call to SnmpCleanup. To get extended error
information, call SnmpGetLastError specifying a NULL value in its session parameter.
The SnmpGetLastError function can return one of the following errors.

Error Code Description

SNMPAPI_NOT _INITIALIZED The SnmpStartup function did not complete
successfully.

SNMPAPI_ALLOC_ERROR An error occurred during memory allocation.

SNMPAPLOTHER_ERROR An unknown or undefined error occurred.

Remarks
Before the WinSNMP application calls SnmpCleanup, it should call the SnmpClose
function once for each session the implementation opens as a result of a call to the
SnmpCreateSession function.

When a WinSNMP application calls the SnmpCleanup function, the implementation
deal locates all resources allocated to the application. However, it is recommended that a
WinSNMP application free the specific resources that the implementation allocates for it
with the WinSNMP function that corresponds to the resource. For additional information
about freeing individual resources, see SnmpFreeEntity, SnmpFreeVbl,
SnmpFreeDescriptor, SnmpFreeContext, and SnmpFreePdu.

Chapter 15 The WinSNMP API 379

If a WinSNMP application must perform an emergency exit, and it calls SnmpCleanup
without freeing individual resources and without calling SnmpClose for every open
session, the implementation deallocates all resources allocated to the WinSNMP
application. However, to enable this functionality in the implementation, the application
must still call SnmpCleanup.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Winsnmp.h.
Library: Use Wsnmp32.lib.

WinSNMP API Overview, WinSNMP Functions, SnmpCreateSession, SnmpStartup,
SnmpClose, SnmpFreeEntity, SnmpFreeVbl, SnmpFreeDescriptor,
SnmpFreeContext, SnmpFreePdu

SnmpClose
The SnmpClose function enables the Microsoft WinSNMP implementation to deallocate
memory, resources, and data structures associated with a WinSNMP session. The
WinSNMP SnmpClose function also closes communications mechanisms the
implementation opened as a result of a call to the SnmpCreateSession function.

Parameters
session

[in] Handle to the WinSNMP session to close.

Return Values
If the function succeeds, the return value is SNMPAPI_SUCCESS.

If the function fails, the return value is SNMPAPLFAILURE. To get extended error
information, call SnmpGetLastError specifying a NULL value in its session parameter.
The SnmpGetLastError function can return one of the errors on the next page.

380 Volume 2 Network Protocols and Interfaces

Error Code Description

SNMPAPI_NOT _INITIALIZED The SnmpStartup function did not complete
successfully.

SNMPAPI_ALLOC_ERROR An error occurred during memory allocation.

SNMPAPLSESSION_INVALID The session parameter is invalid.

SNMPAPI_OTHER_ERROR An unknown or undefined error occurred.

Remarks
It is recommended that a WinSNMP application call the SnmpClose function once for
each session that the application opened using the SnmpCreateSession function. If a
WinSNMP application terminates unexpectedly, it must call SnmpCleanup before it
terminates to enable the implementation to deallocate all resources. The implementation
processes one SnmpCleanup call as if it were a series of SnmpClose calls, one call for
each session opened as a result of a call to SnmpCreateSession.

When the implementation closes a session it discards all outstanding incoming and
outgoing asynchronous requests and replies for the session. For additional information,
see WinSNMP Sessions.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Winsnmp.h.
Library: Use Wsnmp32.lib.

WinSNMP API Overview, WinSNMP Functions, SnmpCleanup, SnmpCreateSession

SnmpContextToStr
The WinSNMP SnmpContextToStr function returns a string that identifies an SNMP
context, which is a set of managed object resources. The function returns the string in an
smiOCTETS structure.

Parameters
cont{3xt

[in] Handle to the SNMP context of interest.

string

Chapter 15 The WinSNMP API 381

[out] Pointer to an smiOCTETS structure to receive the string that identifies the
context of interest. The string can have a null-terminating byte.

Return Values
If the function succeeds, the return value is SNMPAPI...:.SUCCESS.

If the function fails, the return value is SNMPAPI_FAILURE. To get extended error
information, call SnmpGetLastError. The SnmpGetLastError function can retlirn one
of the following errors.

Error Code Description

SNMPAPLNOT _INITIALIZED The SnmpStartup function did not complete
successfully.

SNMPAPLALLOC_ERROR An error occurred during memory allocation.

SNMPAPLCONTEXT_INVALID The context parameter is invalid.

SNMPAPLOTHER_ERROR An unknown or undefined error occurred.

Remarks
The current setting of the entity and context translation mode determines the type of
output string SnmpContextToStr returns. For additional information, see Setting the
Entity and Context Translation Mode.

The WinSNMP application must provide the address of a valid smiOCTETS structure for
the string parameter. If the SnmpContextToStr function completes successfully, the
Microsoft WinSNMP implementation initializes the len and ptr members of the structure.
The WinSNMP application must call the SnmpFreeDescriptor function to enable the
implementation to free the resources for these members.

When the entity and context translation mode is SNMPAPLTRANSLATED, and the
entry exists in the implementation's database, the implementation returns the associated
user-friendly name of the context. If an entry does not exist for the context name,
SnmpContextToStr returns the SNMP community string.

When the entity and context translation mode is SNMPAPLUNTRANSLATED_V1 or
SNMPAPLUNTRANSLATED_V2, the implementation also returns the SNMP
community string.

382 Volume 2 Network Protocols and Interfaces

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Winsnmp.h.
Library: Use Wsnmp32.lib.

WinSNMP API Overview, WinSNMP Functions, SnmpFreeDescriptor, smiOCTETS

SnmpCountVbl
A WinSNMP application calls the WinSNMP SnmpCountVbl function to enumerate the
variable binding entries in the specified variable bindings list.

Parameters
vbl

[in] Handle to the variable bindings list to enumerate.

Return Values
If the function succeeds, the return value is the count of variable binding entries in the
variable bindings list.

If the function fails, the return value is SNMPAPLFAILURE. To get extended error
information, call SnmpGetLastError specifying a NULL value in its session parameter.
The SnmpGetLastError function can return one of the following errors.

Error Code Description

SNMPAPI_NOT _INITIALIZED The SnmpStartup function did not complete
successfully.

SNMPAPLALLOC_ERROR An error occurred during memory allocation.

SNMPAPLNOOP The variable bindings list does not contain any
variable binding entries at this time.

SNMPAPLVBL_INVALID The vb/parameter is invalid.

SNMPAPLOTHER_ERROR An unknown or undefined error occurred.

Chapter 15 The WinSNMP API 383

Remarks
The SnmpCountVbl function returns an unsigned integer value that is the maximum
value the WinSNMP application can specify for the index parameter in the SnmpGetVb,
SnmpSetVb, and SnmpDeleteVb functions.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Winsnmp.h.
Library: Use Wsnmp32.lib.

WinSNMP API Overview, WinSNMP Functions, SnmpGetVb, SnmpSetVb,
SnmpDeleteVb

SnmpCreatePdu
The WinSNMP SnmpCreatePdu function creates and initializes an SNMP Protocol Data
Unit (PDU).

, Parameters
session

[in] Handle to the WinSNMP session.

PDU_type
[in] Specifies a PDU type that identifiesthe SNMP operation. This parameter can be
NULL, or it can be one of the following values. If this parameter is NULL, the Microsoft
WinSNMP implementation supplies the default PDU type SNMP _PDU_GETNEXT.
The only type of trap PDU you can create with a call to the SnmpCreatePdu function
is an SNMPv2C trap PDU.

384 Volume 2 Network Protocols and Interfaces

Value Meaning

SNMP _PDU_GET Search and retrieve a value from a specified SNMP
variable.

SNMP _PDU_GETNEXT Search and retrieve the value of an SNMP variable
without knowing the exact name of the variable.

SNMP _PDU_RESPONSE Reply to an SNMP _PDU_GET or an
SNMP _PDU_GETNEXT request.

SNMP _PDU_SET Store a value in a specified SNMP variable.

SNMP _PDU_GETBULK Search and retrieve multiple values with a single
request.

SNMP _PDU_ TRAP Alerts the management system to an event under
SNMPv2C.

requesUd
[in] Specifies a unique numeric value that the WinSNMP application supplies to
identify the PDU. If this parameter is NULL, the implementation assigns a value.

errocstatus
[in] If the PDU_type parameter is equal to SNMP _PDU_GETBULK, this parameter
specifies a value for the non_repeaters field of the PDU. For other PDU types, this
parameter specifies a value for the errocstatus field of the PDU. This parameter can
be NULL.

errocindex
[in] If the PDU_type parameter is equal to SNMP _PDU_GETBULK, this parameter
specifies a value for the max_repetitions field of the PDU. For other PDU types, this
parameter specifies a value for the errocindex field of the PDU. This parameter can
be NULL. .

varbindlist
[in] Handle to a structure that represents an SNMP variable bindings list. This
parameter can be NULL.

Return Values
If the function succeeds, the return value is the handle to a new SNMP PDU.

If the function fails, the return value is SNMPAPLFAILURE.To get extended error
information, call SnmpGetLastError. The SnmpGetLastError function can return one
of the following errors.

Error code Description

SNMPAPLNOT _INITIALIZED The SnmpStartup function did not complete
successfully.

SNMPAPLALLOC_ERROR An error occurred during memory allocation.

Chapter 15 The WinSNMP API 385

Error code Description

SNMPAPLSESSION_INVALID The session handle is invalid.

SNMPAPLPDU_INVALID The PDU type is invalid.

SNMPAPI_VBL_INVALID The variable bindings list is invalid.

SNMPAPLOTHER_ERROR An unknown or undefined error occurred.

Remarks
A WinSNMP application must create a PDU before it calls the SnmpSendMsg or the
SnmpEncodeMsg functions.

All of the parameters of the SnmpCreatePdu function are required. However, all
parameters, except the session parameter, can be NULL. In this instance, the new PDU
has the following default values.

Field Contents

PDU_type

requesCid

errocstatus
error_index

varbindlist

SNMP_PDU_GETNEXT

The implementation generates a numeric value.

SNMP_ERROR_NOERROR

o
NULL

The ap'plication must call the SnmpFreePdu function to .release the resources that the
SnmpCreatePdu function allocates for the new PDU.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Winsnmp.h.
Library: Use Wsnmp32.lib.

WinSNMP API Overview, WinSNMP Functions, SnmpFreePdu, SnmpSendMsg,
SnmpEncodeMsg

SnmpCreateSession
The SnmpCreateSession function requests the Microsoft WinSNMP implementation to
open a session for the WinSNMP application. The application can specify how the
implementation should inform the WinSNMP session of available SNMP messages and
asynchronous events. The application can specify a window notification message or an
SNMPAPI_CALLBACK function to notify the session.

386 Volume 2 Network Protocols and Interfaces

The SnmpCreateSession function is an element of the WinSNMP API, version 2.0.
When developing new WinSNMP applications, it is recommended that you call
SnmpCreateSession to open a WinSNMP session instead of calling the SnmpOpen
function.

Parameters
hWnd

[in] Handle to a window of the WinSNMP application to notify when an asynchronous
request completes, or when trap notification occurs. This parameter is required for
window notification messages for the session.

wMsg
[in] Specifies an unsigned integer that identifies the notification'message to send to
the WinSNMP application window. This parameter is required for window notification
messages for the session.

tCallback
[in] Specifies the address of an application-defined, session-specific
SNMPAPI_CALLBACK function. The implementation will call this function to inform
the WinSNMP session when notifications are available.

This parameter is required to specify callback notifications for the session. This
parameter must be NULL to specify window notification messages for the session. For
additional information, see the following Remarks section.

IpClientData
[in] Pointer to application-defined data to pass to the callback function specified by the
tCallback parameter. This parameter is optional and can be NULL. If the tCallback
parameter is NULL, the implementation ignores this parameter.

Return Values
If the function succeeds, the return value is a handle that identifies the WinSNMP
session that the implementation opens for the calling application.

If the function fails, the return value is SNMPAPLFAILURE. To get extended error
information, call SnmpGetLastError. The SnmpGetLastError function can return one
of the errors on the following page.

Chapter 15 The WinSNMP API 387

Error Code Description

SNMPAPI_NOT _INITIALIZED The SnmpStartup function did not complete
successfully.

SNMPAPI_ALLOC_ERROR An error occurred during memory allocation.

SNMPAPI_HWND_INVALID The fCallbackparameter is NULL, but the hWnd
parameter is not a valid window handle.

SNMPAPI_MSG_INVALID The fCallbackparameter is NULL, but the wMsg
parameter is not a valid message value.

SNMPAPI_MODE_INVALID The fCallbackparameter is NULL and the hWnd
and wMsg parameters are valid individually.
However, the values are mutually incompatible
on the Windows platform.

SNMPAPI_OPERATION_INVALID The combination of parameter values does not
specify callback notifications or window
notification messages.

SNMPAPI_OTHER_ERROR An unknown or undefined error occurred.

Remarks
The SnmpCreateSession function returns a unique handle to each open WinSNMP
session within the calling WinSNMP application. The application must use the session
handle that SnmpCreateSession returns in other WinSNMP function calls to facilitate
allocation and deal location of resources by the implementation.

It is recommended that a WinSNMP application call the SnmpClose function once for
each session that the implementation opens as a result of a call to the
SnmpCreateSession function. If a WinSNMP application terminates unexpectedly, it
must call SnmpCleanup before it terminates to enable the implementation to deallocate
all resources.

Callback Notifications
If the fCallback parameter is not NULL on a successful call to the SnmpCreateSession
function, the implementation alerts the session to notifications using the callback function
specified by the fCallback parameter.

Following is an example of a call to the SnmpCreateSession function, requesting that
the implementation signal the session about messages and events using callback
notifications.

388 Volume 2 Network Protocols and Interfaces

Window Notification Messages
The SnmpCreateSession function passes to the implementation the handle to an
application window and a notification message identifier. When the application window
receives the notification message specified by the wMsg parameter, the WinSNMP

application must retrieve the incoming protocol data unit (PDU). The application does
this by calling the SnmpRecvMsg function with the session handle returned by
SnmpCreateSession.

One WinSNMP application can open multiple WinSNMP sessions. If an application
opens multiple sessions using the same window handle, it is recommended that the
WinSNMP application specify a unique wMsg parameter for each session.

Following is an example of a call to the SnmpCreateSession function, requesting that
the implementation signal the session about messages and events using window
notification messages.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Winsnmp.h.
Library: Use Wsnmp32.1ib.

WinSNMP API Overview, WinSNMP Functions, SNMPAPLCALLBACK, SnmpClose,
SnmpCleanup, SnmpRecvMsg

SnmpCreateVbl
The WinSNMP SnmpCreateVbl function creates a new variable bindings list for the
calling WinSNMP application. If the name and value parameters are not NULL,
SnmpCreateVbl uses their values to create the first variable binding entry for the new
variable bindings list. The SnmpCreateVbl function returns a handle to the new variable
bindings list and allocates any necessary memory for it.

Parameters
session

[in] Handle to the WinSNMP session.

name

Chapter 15 The WinSNMP API 389

[in] Pointer to an smiOID structure that contains the variable name for the first
variable binding entry. This parameter can be NULL. For additional information, see
the following Remarks section.

value
[in] Pointer to an smiVALUE structure that contains a value to associate with the
variable in the first variable binding entry. This parameter can be NULL. For additional
information, see the following Remarks section.

Return Values
If the function succeeds, the return value is a handle to a new variable bindings list.

If the function fails, the return value is SNMPAPLFAILURE. To get extended error
information, call SnmpGetLastError. The SnmpGetLastError function can return one
of the following errors.

Error Code Description

SNMPAPLNOT _INITIALIZED The SnmpStartup function did not complete
successfully.

SNMPAPI_ALLOC_ERROR An error occurred during memory allocation.

SNMPAPLSESSION_INVALID The session handle is invalid.

SNMPAPI_OID_INVALID The name parameter references an invalid smiOID
structure.

SNMPAPI_SYNTAX_INVALID The syntax member of the structure pOinted to by the
value parameter is invalid.

SNMPAPI_OTHER_ERROR An unknown or undefined error occurred.

Remarks
The SnmpCreateVbl function uses the values of the name and value parameters to
create and initialize the first variable binding entry of a new variable bindings list. If the
name parameter is NULL, the Microsoft WinSNMP implementation ignores the value
parameter and creates an empty variable bindings list.

If the name parameter is not NULL, but the value parameter is NULL, the implementation
creates and initializes the first variable binding entry in the variable bindings list. It
initializes the syntax member of the structure pOinted to by the value parameter with the
value SNMP _SYNTAX_NULL.

The WinSNMP application must release the resources associated with each variable
bindings list. It should do this by matching each call to the SnmpCreateVbl and
SnmpDuplicateVbl functions with a corresponding call to the SnmpFreeVbl function.

390 Volume 2 Network Protocols and Interfaces

To avoid memory leaks, a WinSNMP application must call SnmpFreeVbl before it
reuses the handle to a variable bindings list in a subsequent call to SnmpCreateVbl or
SnmpDuplicateVbl. For additional information, see WinSNMP Data Management
Concepts.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Winsnmp.h.
Library: Use Wsnmp32.lib.

WinSNMP API Overview, WinSNMP Functions, SnmpDuplicateVbl, SnmpFreeVbl,
smiOID, smiVALUE

SnmpDecodeMsg
The WinSNMP SnmpDecodeMsg function decodes an encoded SNMP message into its
components. This function performs the opposite action of the WinSNMP
SnmpEncodeMsg function.

Parameters
session

[in] Handle to the WinSNMP session. This parameter is required. For additional
information, see the following Remarks section.

srcEntity
[out] Pointer to a variable that receives a handle to the source management entity. For
more information, see the following Remarks section.

dstEntity
[out] Pointer to a variable that receives a handle to the target management entity. For
more information, see the following Remarks section.

context
[out] Pointer to a variable that receives a handle to the context (a set of managed
object resources) that the target management entity controls.

Chapter 15 The WinSNMP API 391

pdu
[out] Pointer to a variable that receives a handle to the SNMP protocol data unit
(PDU).

msgBufDesc
[in] Pointer to an smiOCTETS structure that contains the SNMP message to decode
into its components. The len member of the structure specifies the maximum number
of bytes to process; the ptr member points to the encoded SNMP message.

Return Values
If the function succeeds, the return value is the number of decoded bytes. This value can
be equal to, or less than, the len member of the smiOCTETS structure pOinted to by the
msgBufDesc parameter.

If the function fails, the return value is SNMPAPLFAILURE. To get extended error
information, call SnmpGetLastError. The SnmpGetLastError function can return one
of the following errors.

Error code

SNMPAPI_ALLOC_ERROR

SNMPAPI_SESSION_INVALID

SNMPAPI~ENTITY _INVALID

SNMPAPI_CONTEXT _INVALID

SNMPAPI_PDU_INVALID

SNMPAPI_OUTPUT _TRUNCATED

SNMPAPI_MESSAGE_INVALID

Remarks

Description

The SnmpStartup function did not complete
successfully.

An error occurred during memory allocation.

The session parameter is invalid.

One or both of the entity parameters is invalid.

The context parameter is invalid.

The pdu parameter is invalid.

The output buffer length is insufficient. No output
parameters were created.

The SNMP message format in the buffer
indicated by the msgBufDesc parameter is
invalid. No output parameters were created.

An unknown or undefined error occurred.

The Microsoft WinSNMP implementation returns a value of zero in the srcEntityand the
dstEntity parameters when an application submits an SNMPv1 or an SNMPv2C
message to the SnmpDecodeMsg function. This is because the message format does
not include the address information necessary to create WinSNMP entity resources.

The Microsoft WinSNMP implementation allocates resources to the WinSNMP
application as a result of a successful call to the SnmpDecodeMsg function. It is
recommended that the WinSNMP application free individual resources with the
WinSNMP function that corresponds to the resource. For additional information, see
Freeing WinSNMP Descriptors and WinSNMP Data Management Concepts.

392 Volume 2 Network Protocols and Interfaces

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Winsnmp.h.
Library: Use Wsnmp32.lib.

WinSNMP API Overview, WinSNMP Functions, SnmpEncodeMsg, SnmpFreeEntity,
SnmpFreeContext, SnmpFreePdu, SnmpSendMsg, smiOCTETS

SnmpDeleteVb
The WinSNMP SnmpDeleteVb function removes a variable binding entry from a
variable bindings list.

Parameters
vbl

[in] Handle to the variable bindings list to update.

index
[in] Specifies an unsigned long integer variable that identifies the variable binding
entry to remove. This variable contains the position of the variable binding entry,
within the variable bindings list.

Valid values for this parameter are in the range from 1 to n, where 1 indicates the first
variable binding entry in the variable bindings list, and n is the total number of entries
in the variable bindings list. For additional information, see the following Remarks
section.

Return Values
If the function succeeds, the return value is SNMPAPLSUCCESS.

If the function fails, the return value is SNMPAPI_FAILURE. To get extended error
information, call SnmpGetLastError. The SnmpGetLastError function can return one
of the following errors.

Error Code

SNMPAPI_ALLOC_ERROR

SNMPAPUNDEX_INVALID

SNMPAPI_ VBL_INVALID

SNMPAPI_OTHER_ERROR

Remarks

Chapter 15 The WinSNMP API 393

Description

The SnmpStartup function did not complete
successfully.

An error occurred during memory allocation.

The index parameter is invalid.

The vbl parameter is invalid.

An unknown or undefined error occurred.

A WinSNMP application can use the SnmpDeleteVb function to delete invalid variable
binding entries. When an SNMP _PDU_RESPONSE protocol data unit (PDU) includes
an error that indicates an invalid variable binding entry, the application can call
SnmpDeleteVb to delete the entry. Then the application can resubmit the request PDU
with a call to the SnmpSendMsg function, without the invalid variable binding entry in
the variable bindings list. Request PDUs include the SNMP _PDU_GET,
SNMP _PDU_GETNEXT, and SNMP _PDU_GETBULK PDU data types.

After the SnmpDeleteVb function deletes a variable binding entry, the index value of all
entries after the deleted entry will decrement by one. A call to the SnmpCountVbl
function returns the new total number of entries in the variable bindings list. The new
total is one less than the count returned by a call to SnmpCountVbl before the current
call to SnmpDeleteVb.

If a WinSNMP application calls the SnmpDeleteVb function and deletes the last variable
binding entry in a variable bindings list, the result is an empty variable bindings list. The
variable bindings list still has a valid handle and the WinSNMP application must release
the handle with a call to the SnmpFreeVbl function.

The following are valid values to use for the index parameter:

• The return value from a call to the SnmpCountVbl function

• The error index field of an SNMP _PDU_RESPONSE PDU returned by a call to the
SnmpRecvMsg function .

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Winsnmp.h.
Library: Use Wsnmp32.lib.

WinSNMP API Overview, WinSNMP Functions, SnmpCountVbl, SnmpRecvMsg,
SnmpFreeVbl

394 Volume 2 Network Protocols and Interfaces

SnmpDuplicatePdu
The WinSNMP SnmpDuplicatePdu function duplicates the SNMP protocol data unit
(PDU) that the PDU parameter identifies, allocating any necessary memory for the
duplicate PDU.

Parameters
session

[in] Handle to the WinSNMP session.

PDU
[in] Handle to the PDU to duplicate. The SnmpDuplicatePdu function provides a
unique handle to each PDU within the calling application.

Return Values
If the function succeeds, the return value is a handle that identifies the new
duplicate PDU.

If the function fails, the return value is SNMPAPLFAILURE. To get extended error
information, call SnmpGetLastError. The SnmpGetLastError function can return one
of the following errors.

Error Code Description

SNMPAPLNOT _INITIALIZED

SNMPAPLALLOC_ERROR

SNMPAPI_SESSION_INVALID

SNMPAPLPDU_INVALID

SNMPAPI_OTHER_ERROR

Remarks

The SnmpStartup function did not complete
successfully.

An error occurred during memory allocation.

The session handle is invalid.

The PDU handle is invalid.

An unknown or undefined error occurred.

To release resources allocated by the SnmpDuplicatePdu function for a new PDU, a
WinSNMP application must call the SnmpFreePdu function.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Winsnmp.h.
Library: Use Wsnmp32.lib.

Chapter 15 The WinSNMP API 395

WinSNMP API Overview, WinSNMP Functions, SnmpFreePdu, SnmpGetPduData

SnmpDuplicateVbl
The WinSNMP SnmpDuplicateVbl function copies a variable bindings list for the
specified WinSNMP session. This function returns a handle to the copied variable
bindings list and allocates any necessary memory for it.

Parameters
session

[in] Handle to the WinSNMP session.

vbl
[in] Handle to the variable bindings list to copy. The source variable bindings list can
be empty.

Return Values
If the function succeeds, the return value is a handle to a new variable bindings list.

If the function fails, the return value is SNMPAPLFAILURE. To get extended error
information, call SnmpGetLastError. The SnmpGetLastError function can return one
of the following errors.

Error Code

SNMPAPLALLOC_ERROR

SNMPAPI_SESSION_INVALID

SNMPAPI_VBL_INVALID

SNMPAPI_OTHER_ERROR

Remarks

Description

The SnmpStartup function did not complete
successfully.

An error occurred during memory allocation.

The session handle is invalid.

The vbl parameter is invalid.

An unknown or undefined error occurred.

The SnmpDuplicateVbl function creates a new variable bindings list for the specified
WinSNMP session. This function initializes the new list with a copy of the data in the
source variable bindings list.

396 Volume 2 Network Protocols and Interfaces

The handle the SnmpDuplicateVbl function returns is unique among the variable
bindings list handles that are active within the WinSNMP application.

The WinSNMP application must release the resources associated with each variable
bindings list. It should do this by matching each call to the SnmpCreateVbl and
SnmpDuplicateVbl functions with a corresponding call to the SnmpFreeVbl function.
To avoid memory leaks, a WinSNMP application must call SnmpFreeVbl before it
reuses the handle to a variable bindings list in a subsequent call to SnmpCreateVbl or
SnmpDuplicateVbl. For additional information, see WinSNMP Data Management
Concepts.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Winsnmp.h.
Library: Use Wsnmp32.lib.

WinSNMP API Overview, WinSNMP Functions, SnmpFreeVbl, SnmpCreateVbl

SnmpEncodeMsg
The Microsoft WinSNMP implementation uses the parameters passed in the WinSNMP
SnmpEncodeMsg function to encode an SNMP message. The implementation returns
the encoded SNMP message to the WinSNMP application in the buffer specified by the
msgBufDesc parameter.

Parameters
session

[in] Handle to the WinSNMP session.

srcEntity
[in] Handle to the management entity that initiates the request to encode the SNMP
message.

Chapter 15 The WinSNMP API 397

dstEntity
[in] Handle to the target management entity.

context
[in] Handle to the context (a set of managed object resources) that the target
management entity controls.

pdu
[in] Handle to the PDU that contains the SNMP operation request.

msgBufDesc
[out] Pointer to an smiOCTETS structure that receives the encoded SNMP message.

Return Values
If the function succeeds, the return value is the length, in bytes, of the encoded SNMP
message. This number is also the value of the len member of the smiOCTETS structure
pOinted to by the msgBufDesc parameter.

If the function fails, the return value is SNMPAPI_FAILURE. For additional information,
see the following Remarks section. To get extended error information, call
SnmpGetLastError. The SnmpGetLastError function can return one of the following
errors.

Error code

SNMPAPI_ALLOC_ERROR

SNMPAPLSESSION_INVALID

SNMPAPI_ENTITY _INVALID

SNMPAPI_CONTEXT _INVALID

SNMPAPLPDU_INVALID

SNMPAPLOTHER_ERROR

Remarks

Description

The SnmpStartup function did not complete
successfully.

An error occurred during memory allocation.

The session parameter is invalid.

One or both of the entity parameters is invalid.

The context parameter is invalid.

The pdu parameter is invalid.

An unknown or undefined error occurred.

The first five parameters passed to the SnmpEncodeMsg function are the same
parameters that are passed to the SnmpSendMsg function.

The WinSNMP application must call the SnmpFreeDescriptor function to free resources
allocated for the ptr member of the smiOCTETS structure. This is the structure pointed
to by the msgBufDesc parameter. For additional information, see WinSNMP Data
Management Concepts.

On input, the SnmpEncodeMsg function ignores the members of the structure pOinted
to by the msgBufDesc parameter. The implementation overwrites the members of the
structure if the function completes successfully.

398 Volume 2 Network Protocols and Interfaces

The implementation verifies the format of the first five input parameters. If one of the
parameters is invalid, SnmpEncodeMsg returns SNMPAPLFAILURE, and
SnmpGetLastError returns an extended error code.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Winsnmp.h.
Library: Use Wsnmp32.lib.

WinSNMP API Overview, WinSNMP Functions, SnmpFreeDescriptor,
SnmpDecodeMsg, SnmpSendMsg, smiOCTETS

SnmpEntityToStr
The WinSNMP SnmpEntityToStr function returns a string that identifies an SNMP
management entity.

Parameters
entity

[in] Handle to the SNMP management entity of interest.

size
[in] Specifies the size, in bytes, of the buffer painted to by the string parameter. The
WinSNMP application must allocate a buffer that is large enough to contain the output
string.

string
[out] Pointer to a buffer to receive the null-terminated string that identifies the SNMP
management entity of interest.

Return Values
If the function succeeds, the return value is the number of bytes, including a terminating
null byte, that SnmpEntityToStr returns in the string buffer. This value can be less than
or equal to the value of the size parameter, but it cannot be greater.

Chapter 15 The WinSNMP API 399

If the function fails, the return value is SNMPAPLFAILURE. To get extended error
information, call SnmpGetLastError. The SnmpGetLastError function can return one
of the following errors.

Error Code

SNMPAPLNOT _INITIALIZED

SNMPAPI_ALLOC_ERROR

SNMPAPI_ENTITY _INVALID

SNMPAPLOUTPUT _TRUNCATED

SNMPAPLOTHER_ERROR

Remarks

Description

The SnmpStartup function did not complete
successfully.

An error occurred during memory allocation.

The entity parameter is invalid.

The output buffer length is insufficient.

An unknown or undefined error occurred.

The current setting of the entity and context translation mode determines the type of
output string SnmpEntityToStr returns. For additional information, see Support for IPX
Address Strings in WinSNMP and Setting the Entity and Context Translation Mode.

When the entity and context translation mode is SNMPAPI_TRANSLATED, and an entry
exists in the implementation's database, the implementation returns the associated user
friendly name of the management entity. If an entry does not exist for the management
entity, SnmpEntityToStr returns the literal SNMP transport address of the management
entity.

When the entity and context translation mode is SNMPAPI_UNTRANSLATED_V1 or
SNMPAPI_UNTRANSLATED_V2, the Microsoft WinSNMP implementation also returns
the literal SNMP transport address of the management entity.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Winsnmp.h.
Library: Use Wsnmp32.lib.

WinSNMP API Overview, WinSNMP Functions, SnmpStrToEntity

SnmpFreeContext
The WinSNMP SnmpFreeContext function releases resources associated with an
SNMP context, which is a set of managed object resources.

400 Volume 2 Network Protocols and Interfaces

Parameters
context

[in] Handle to the SNMP context that will have its resources released.

Return Values
If the function succeeds, the return value is SNMPAPI_SUCCESS.

If the function fails, the return value is SNMPAPI_FAILURE. To get extended error
information, call SnmpGetLastError speCifying a NULL value in its session parameter.
The SnmpGetLastError function can return one of the following errors.

Error Code Description

SNMPAPLNOT _INITIALIZED

SNMPAPI_ALLOC_ERROR

SNMPAPI_CONTEXT _INVALID

SNMPAPLOTHER_ERROR

Remarks

The SnmpStartup function did not complete
successfully.

An error occurred during memory allocation.

The context parameter is invalid.

An unknown or undefined error occurred.

When the WinSNMP application calls the SnmpClose function or the SnmpCleanup
function, the Microsoft WinSNMP implementation frees all resources it allocated for the
WinSNMP session. However, it is recommended that the WinSNMP application free
individual resources with the WinSNMP function that corresponds to the resource. For
example, applications should call the SnmpFreeContext function to release resources
allocated by a call to the SnmpStrToContext function. This reduces the
implementation's work load, and should enhance the seNice of the implementation to all
applications.

For additional information, see WinSNMP Data Management Concepts.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Winsnmp.h.
Library: Use Wsnmp32.lib.

WinSNMP API OveNiew, WinSNMP Functions, SnmpClose, SnmpCleanup,
SnmpStrToContext

Chapter 15 The WinSNMP API 401

SnmpFreeDescriptor .
A WinSNMP application uses the SnmpFreeDescriptor function to inform the Microsoft
WinSNMP implementation that it no longer requires access to a descriptor object. This
WinSNMP function signals the implementation to free the memory it allocated for the
descriptor object.

Parameters
syntax

[in] Specifies the syntax data type of the target descriptor object.

descriptor
[in] Pointer to an smiOPAQUE structure that contains the target descriptor object to
release.

Return Values
If the function succeeds, the return value is SNMPAPI_SUCCESS.

If the function fails, the return value is SNMPAPI_FAILURE. To get extended error
information, call SnmpGetLastError specifying a NULL value in its session parameter.
The SnmpGetLastError function can return one of the following errors.

Error code

SNMPAPI_ALLOC_ERROR

SNMPAPLSYNTAX_INVALID

SNMPAPI_OPERATION_INVALID

SNMPAPLOTHER_ERROR

Remarks

Description

The SnmpStartup function did not complete
successfully.

An error occurred during memory allocation.

The syntax parameter is invalid.

The descriptor parameter is invalid. For
additional information, see the following
Remarks section.

An unknown or undefined error occurred.

The implementation allocates and deallocates memory for output descriptor objects with
variable lengths. This memory allocation and deallocation are restricted to the
implementation, except for the interface that the SnmpFreeDescriptor function
provides. For additional information, see Freeing WinSNMP Descriptors.

402 Volume 2 Network Protocols and Interfaces

The implementation returns the SNMPAPLOPERATION_INVALID error code if the
descriptor parameter specifies a memory allocation that the implementation released in a
prior call to SnmpFreeDescriptor. The function returns the same error code if the
descriptor parameter specifies a memory allocation that the implementation did not make
for the calling WinSNMP application.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Winsnmp.h.
Library: Use Wsnmp32.lib.

WinSNMP API Overview, WinSNMP Functions, SnmpStrToOid, SnmpOidCopy,
SnmpEncodeMsg

SnmpFreeEntity
The WinSNMP SnmpFreeEntity function releases resources associated with an SNMP
management entity.

Parameters
entity

[in] Handle to the SNMP management entity that will have its resources released.

Return Values
If the function succeeds, the return value is SNMPAPI_SUCCESS.

If the function fails, the return value is SNMPAPI_FAILURE. To get extended error
information, call SnmpGetLastError specifying a NULL value in its session parameter.
The SnmpGetLastError function can return one of the following errors.

Error Code Description

SNMPAPLNOT _INITIALIZED

SNMPAPLALLOC_ERROR

SNMPAPLENTITY _INVALID

SNMPAPLOTHER_ERROR

The SnmpStartup function did not complete
successfully.

An error occurred during memory allocation.

The entity parameter is invalid.

An unknown or undefined error occurred.

Chapter 15 The WinSNMP API 403

Remarks
When the WinSNMP application calls the SnmpClose function or the SnmpCleanup
function, the Microsoft WinSNMP implementation frees all resources it allocated for the
WinSNMP session. However, it is recommended that the WinSNMP application free
individual resources by using the WinSNMP function that corresponds to the resource.
For example, applications should call the SnmpFreeEntity function to release resources
allocated by a call to the SnmpStrToEntity function. This reduces the implementation's
work load, and should enhance the implementation's service to all applications.

For additional information, see WinSNMP Data Management Concepts.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Winsnmp.h.
Library: Use Wsnmp32.lib.

WinSNMP API Overview, WinSNMP Functions, SnmpClose, SnmpCleanup,
SnmpStrToEntity

SnmpFreePdu
The WinSNMP SnmpFreePdu function releases resources associated with an SNMP
protocol data unit (PDU) created by the SnmpCreatePdu or the SnmpDuplicatePdu
function.

Parameters
PDU

[in] Handle to the SNMP PDU to free.

Return Values
If the function succeeds, the return value is SNMPAPI_SUCCESS.

If the function fails, the return value is SNMPAPI_FAILURE. To get extended error
information, call SnmpGetLastError specifying a NULL value in its session parameter.
The SnmpGetLastError function can return one of the errors on the next page.

404 Volume 2 Network Protocols and Interfaces

Error Code

SNMPAPI_ALLOC_ERROR

SNMPAPI_PDU_INVALID

SNMPAPI_OTHER_ERROR

Remarks

Description

The SnmpStartup function did not complete
successfully.

An error occurred during memory allocation.

The PDU handle is invalid.

An unknown or undefined error occurred.

If the application calls the SnmpClose or the SnmpCleanup function, the Microsoft
WinSNMP implementation frees all resources it allocates for the WinSNMP session.
However, it is recommended that the application free individual resour,ces with the
WinSNMP function that corresponds to the resource. This reduces the implementation's
work load, and should enhance the implementation's service to all applications. The
application should use the SnmpFreeVbl function to deallocate variable bindings list
resources. For additional information, see WinSNMP Data Management Concepts.

Under WinSNMP, a variable binding entry exists only within a variable bindings list, even
if the variable bindings list contains just one entry.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Winsnmp.h.
Library: Use Wsnmp32.lib.

WinSNMP API Overview, WinSNMP Functions, SnmpFreeVbl, SnmpClose,
SnmpCleanup

SnmpFreeVbl
The WinSNMP SnmpFreeVbl function releases resources associated with a variable
bindings list. These are resources allocated previously by a call to the SnmpCreateVbl
function or the SnmpDuplicateVbl function in a WinSNMP application.

Parameters
vb!

[in] Handle to the variable bindings list to release.

Chapter 15 The WinSNMP API 405

Return Values
If the function succeeds, the return value is SNMPAPI_SUCCESS.

If the function fails, the return value is SNMPAPLFAILURE. To get extended error
information, call SnmpGetLastError specifying a NULL value in its session parameter.
The SnmpGetLastError function can return one of the following errors.

Error Code Description

SNMPAPI_ALLOC_ERROR

SNMPAPLVBL_INVALID

SNMPAPLOTHER_ERROR

Remarks

The SnmpStartup function did not complete
successfully.

An error occurred during memory allocation.

The vbl parameter is invalid.

An unknown or undefined error occurred.

The WinSNMP application must release the resources associated with each variable
bindings list. It should do this by matching each call to the SnmpCreateVbl and
SnmpDuplicateVbl functions with a corresponding call to the SnmpFreeVbl function.
To avoid memory leaks, a WinSNMP application must call SnmpFreeVbl before it
reuses the handle to a variable bindings list in a subsequent call to SnmpCreateVbl or
SnmpDuplicateVbl.

If the application calls the SnmpClose or the SnmpCleanup function, the Microsoft
WinSNMP implementation frees all resources it allocates for the WinSNMP session.
However, even if the application does not reuse a variable bindings list handle, it is
recommended that the application free individual variable bindings resources with the
SnmpFreeVbl function. This reduces the implementation's work load, and should
enhance its service to all applications. For additional information, see WinSNMP Data
Management Concepts.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Winsnmp.h.
Library: Use Wsnmp32.lib.

WinSNMP API Overview, WinSNMP Functions, SnmpDuplicateVbl, SnmpCreateVbl,
SnmpClose, SnmpCleanup

406 Volume 2 Network Protocols and Interfaces

SnmpGetLastError
The WinSNMP SnmpGetLastError function returns the calling application's last-error
code value. The value indicates the reason why the last function call executed by the
WinSNMP application failed.

Parameters
session

[in] Handle to the WinSNMP session. This parameter can also be NULL.

In certain cases, when a function call fails you can pass a NULL session value to the
SnmpGetLastError function to retrieve the last-error code value. This is true for
function calls that do not involve a session parameter, and cases in which the session
parameter value is invalid. These cases are noted in the Return Values section on the
function's reference page.

A single-thread application can pass a NULL session value to SnmpGetLastError to
retrieve last-error information for the entire application.

For more information, see the following Remarks and Return Values sections.

Return Values
If the session parameter is a valid WinSNMP session handle, the SnmpGetLastError
function returns the last WinSNMP error that occurred for the indicated session.

If the session parameter is NULL-for example, if the SnmpStartup function fails,
SnmpGetLastError returns the last WinSNMP error that occurred.

Remarks
A WinSNMP application must call SnmpGetLastError immediately after a function fails,
to retrieve the last-error code. If another function fails, it overwrites the last-error code
set by the most recently failed function. For more information, see WinSNMP Error
Codes.

Although the session parameter accommodates both multithread and single-thread
Windows operating environments, the potential still exists for the last-error code from
one thread to overwrite the last-error code from another thread.

Note that SnmpGetLastError must be able to return the last-error code to a WinSNMP
application under the following conditions:

• After the SnmpStartup function fails

• Before the SnmpCreateSession function creates any WinSNMP sessions for the
instance of the application

Chapter 15 The WinSNMP API 407

• After the SnmpClose function closes all WinSNMP sessions for the instance of the
application

• After the SnmpCleanup function disconnects the WinSNMP application from the
Microsoft WinSNMP implementation

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Winsnmp.h.
Library: Use Wsnmp32.1ib.

WinSNMP API Overview, WinSNMP Functions, SnmpStartup, SnmpCreateSession,
SnmpClose, SnmpCleanup

SnmpGetPduData
The WinSNMP SnmpGetPduData function returns selected data fields from a specified
SNMP protocol data unit (PDU).

Parameters
PDU

[in] Handle to the SNMP PDU.

PDU~type
[out] Pointer to a variable that receives the PDU_type field of the specified PDU. This
parameter can be NULL, or one of the following values.

408 Volume 2 Network Protocols and Interfaces

Value

requesUd

Meaning

Search and retrieve a value from a
specified SNMP variable.

Search and retrieve the value of an
SNMP variable without knowing the
exact name of the variable.

Reply to an SNMP _PDU_GET or an
SNMP _PDU_GETNEXT request.

Store a value in a specified SNMP
variable.

Search and retrieve multiple values with
a single request.

Alerts the management system to an
extraordinary event under SNMPv2C.

[out] Pointer to a variable that receives the requesCid field of the specified PDU. This
parameter can be NULL.

errocstatus
[out] Pointer to a variable that receives the errocstatus field of the specified PDU. If
the PDU_type parameter is equal to SNMP _PDU_GETBULK, this parameter receives
the value of the non_repeaters field of the PDU.

This parameter can be NULL, or one of the following values. The first six errors are
common to the SNMP version 1 (SNMPv1) and SNMP version 2C frameworks
(SNMPv2C). The remaining errors are available under SNMPv2C only.

Error Code Meaning

The agent reports that no errors
occurred during transmission.

The agent could not place the results of
the requested SNMP operation into a
single SNMP message.

The requested SNMP operation
identified an unknown variable.

The requested SNMP operation tried to
change a variable but it specified either
a syntax or value error.

The requested SNMP operation tried to
change a variable that was not allowed
to change, according to the community
profile of the variable.

Error Code

SNMP _ERROR_WRONGTYPE

SNMP _ERROR_WRONGENCODING

SNMP _ERROR_WRONGVALUE

SNMP _ERROR_NOCREATION

SNMP _ERROR_INCONSISTENTVALUE

SNMP _ERROR_
RESOURCEUNAVAILABLE

SNMP _ERROR_COMMITFAILED

SNMP _ERROR_UNDOFAILED

SNMP _ERROR_
AUTHORIZATIONERROR

SNMP _ERROR_NOTWRITABLE

SNMP _ERROR_INCONSISTENTNAME

Chapter 15 The WinSNMP API 409

Meaning

An error other than one of those listed
here occurred during the requested
SNMP operation.

The specified SNMP variable is not
accessible.

The value specifies a type that is
inconsistent with the type required for
the variable.

The value specifies a length that is
inconsistent with the length required for
the variable.

The value contains an Abstract Syntax
Notation One (ASN.1) encoding that is
inconsistent with the ASN.1 tag of the
field.

The value cannot be assigned to the
variable.

The variable does not exist, and the
agent cannot create it.

The value is inconsistent with values of
other managed objects.

Assigning the value to the variable
requires allocation of resources that are
currently unavailable.

No validation errors occurred, but no
variables were updated.

No validation errors occurred. Some
variables were updated because it was
not possible to undo their assignment.

An authorization error occurred.

The variable exists but the agent cannot
modify it.

The variable does not exist; the agent
cannot create it because the named
object instance is inconsistent with the
values of other managed objects.

410 Volume 2 Network Protocols and Interfaces

errocindex
[out] Pointer to a variable that receives the error_index field of the specified PDU.

If the PDU_type parameter is equal to SNMP _PDU_GETBULK, this parameter
receives the value of the max_repetitions field of the specified PDU. This parameter
can be NULL.

varbindlist
[out] Pointer to a variable that receives a handle to the variable bindings list field of
the specified PDU. This parameter can be NULL. For additional information, see the
following Remarks section.

Return Values
If the function succeeds, the return value is SNMPAPLSUCCESS.

If the function fails, the return value is SNMPAPI_FAILURE. To get extended error
information, call SnmpGetLastError. The SnmpGetLastError function can return one
of the following errors.

Error Code

SNMPAPLNOT _INITIALIZED

SNMPAPLALLOC_ERROR

SNMPAPLNOOP

SNMPAPLPDU_INVALID

SNMPAPLOTHER_ERROR

Remarks

Description

The SnmpStartup function did not complete
successfully.

An error occurred during memory allocation.

All output parameters are NULL. The SNMP
operation was not performed.

The PDU type is invalid.

An unknown or undefined error occurred.

All parameters of the SnmpGetPduData function are required. However, all parameters,
except the PDU parameter, can be NULL. In parameters the application passes as
NULL, the SnmpGetPduData function does not return a value.

The SnmpGetPduData function always returns a handle to a new variable bindings list
object if the varbindlist parameter is not NULL. Additionally, if the PDU parameter
specifies a new PDU, the function also attaches a handle to the new PDU.

When an application calls SnmpGetPduData with a varbindlist parameter that is not
NULL, but the PDU parameter specifies an existing PDU, the function returns a handle
to a new duplicate variable bindings list. The function call does not disturb the handle
attached to the existing PDU. An existing PDU is one that an application creates with a
call to the SnmpCreatePdu function, or one that the application receives and then reads
using a call to SnmpGetPduData.

Chapter 15 The WinSNMP API 411

When an application creates a PDU with SnmpCreatePdu, or after the application reads
a PDU using SnmpGetPduData, the Microsoft WinSNMP implementation expects that
the application "knows" the values of the PDU fields. If an application reads a PDU a
second time with SnmpGetPduData, the call results in a copy of the variable bindings
list of the specified PDU. This type of call to SnmpGetPduData also duplicates the
handle to the PDU.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Winsnmp.h.
Library: Use Wsnmp32.lib.

WinSNMP API Overview, WinSNMP Functions, SnmpDuplicateVbl, SnmpCreatePdu

SnmpGetRetransmitMode
The WinSNMP SnmpGetRetransmitMode function returns the current setting of the
retransmission mode to a WinSNMP application. The Microsoft WinSNMP
implementation uses the retransmission mode to govern transmission time-outs and
retransmission attempts on calls to the SnmpSendMsg function.

Parameters
nRetransmitMode

[out] Pointer to an unsigned long integer variable to receive the current retransmission
mode in effect for the implementation. This parameter can be one of the following
values.

Value Meaning

SNMPAPLON

Return Values

The implementation is executing the WinSNMP
application's retransmission policy.

The implementation is not executing the WinSNMP
application's retransmission policy.

If the function succeeds, the return value is SNMPAPI_SUCCESS.

412 Volume 2 Network Protocols and Interfaces

If the function fails, the return value is SNMPAPI_FAILURE. If
SnmpGetRetransmitMode fails, the value of the nRetransmitMode parameter has no
meaning for the application. To get extended error information, call SnmpGetLastError
specifying a NULL value in its session parameter. The SnmpGetLastError function can
return one of the following errors.

Error Code Description

SNMPAPLALLOC_ERROR

SNMPAPLOTHER_ERROR

Remarks

The SnmpStartup function did not complete
successfully.

An error occurred during memory allocation.

An unknown or undefined error occurred.

Typically a WinSNMP application, rather than an agent application, calls the
SnmpGetRetransmitMode function. For additional information, see About
Retransmission and Managing the Retransmission Policy.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Winsnmp.h.
Library: Use Wsnmp32.lib.

WinSNMP API Overview, WinSNMP Functions, SnmpStartup,
SnmpSetRetransmitMode

SnmpGetRetry
The WinSNMP SnmpGetRetry function returns the retry count value, in units, for the
retransmission of SNMP message requests. The retry count applies to calls that a
WinSNMP application makes to the SnmpSendMsg function for a specified
management entity.

Parameters
hEntity

Chapter 15 The WinSNMP API 413

[in] Handle to the destination management entity of interest.

nPolicyRetry
[out] Pointer to an unsigned long integer variable to receive the retry count value for
the specified management entity. This is a value that the Microsoft WinSNMP
implementation stores in a database. If you do not need the information returned in
this parameter, nPolicyRetry must be a NULL pOinter.

nActualRetry
[out] Pointer to an unsigned long integer variable to receive the last actual or
estimated response retry count for the destination entity, as reported by the
implementation. If you do not need the information returned in this parameter,
nActualRetry must be a NULL pOinter.

Note This feature has not yet been implemented. If this parameter is a valid pointer,
the function returns O. For additional information, see the following Remarks section.

Return Values
If the function succeeds, the return value is SNMPAPI_SUCCESS.

If the function fails, the return value is SNMPAPLFAILURE. To get extended error
information, call SnmpGetLastError specifying a NULL value in its session parameter.
The SnmpGetLastError function can return one of the following errors.

Error Code Description

SNMPAPI_NOT _INITIALIZED

SNMPAPLALLOC_ERROR

SNMPAPI_ENTITY _INVALID

SNMPAPI_NOOP

SNMPAPLOTHER_ERROR

Remarks

The SnmpStartup function did not complete
successfully.

An error occurred during memory allocation.

The hEntity parameter is invalid.

The nPolicyRetry and nActualRetry parameters are
both NULL. The operation was not performed.

An unknown or undefined error occurred.

Typically a WinSNMP application, rather than an agent application, calls the
SnmpGetRetry function.

A WinSNMP application can modify the retry count value with a call to the
SnmpSetRetry function.

The WinSNMP application can monitor the value of the nActualRetry parameter and
compare it to the value of the nPolicyRetry parameter to optimize transmission
performance. For additional information, see About Retransmission and Managing the
Retransmission Policy.

414 Volume 2 Network Protocols and Interfaces

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Winsnmp.h.
Library: Use Wsnmp32.lib.

WinSNMP API Overview, WinSNMP Functions, SnmpSetRetry,
SnmpSetRetransmitMode, SnmpGetRetransmitMode

SnmpGetTimeout
The WinSNMP SnmpGetTimeout function returns the time-out value, in hundredths of a
second, for the transmission of SNMP message requests. The time-out value applies to
calls that a WinSNMP application makes to the SnmpSendMsg function for a specified
management entity.

Parameters
hEntity

[in] Handle to the destination management entity of interest.

nPolicyTimeout
[out] Pointer to an integer variable to receive the time-out value, in hundredths of a
second, for the specified management entity. This is a value that the Microsoft
WinSNMP implementation stores in a database. If you do not need the information
returned in this parameter, nPolicyTimeou(must be a NULL pointer.

nActualTimeout
[out] Pointer to an integer variable to receive the last actual or estimated response
interval for the destination entity, as reported by the implementation. If you do not
need the information returned in this parameter, nActualTimeout must be a NULL
pOinter.

Note This feature has not yet been implemented. If this parameter is a valid pointer,
the function returns O. For additional information, see the following Remarks section.

Chapter 15 The WinSNMP API 415

Return Values
If the function succeeds, the return value is SNMPAPLSUCCESS.

If the function fails, the return value is SNMPAPLFAILURE. To get extended error
information, call SnmpGetLastError specifying a NULL value in its session parameter.
The SnmpGetLastError function can return one of the following errors.

Error Code Description

SNMPAPLNOT _INITIALIZED

SNMPAPI_ALLOC_ERROR

SNMPAPLENTITY _INVALID

SNMPAPLNOOP

SNMPAPLOTHER_ERROR

Remarks

The SnmpStartup function did not complete
successfully.

An error occurred during memory allocation.

The hEntity parameter is invalid,

The nPolicyTimeout and nActualTimeout
parameters are both NULL. The operation was not
performed.

An unknown or undefined error occurred.

Typically a WinSNMP application, rather than an agent application, calls the
SnmpGetTimeout function.

The time-out period is the interval between the application's call to the SnmpSendMsg
function and its call to the SnmpRecvMsg function.

A WinSNMP application can modify the time-out value with a call to the
SnmpSetTimeout function.

The WinSNMP application can monitor the value of the nActualTimeout parameter and
compare it to the value of the nPolicyTimeout parameter to optimize transmission
performance. For additional information, see About Retransmission and Managing the
Retransmission Policy.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Winsnmp.h.
Library: Use Wsnmp32.lib.

WinSNMP API Overview, WinSNMP Functions, Snmp5etTimeout,
SnmpSetRetransmitMode, SnmpGetRetransmitMode

416 Volume 2 Network Protocols and Interfaces

SnmpGetTranslateMode
The WinSNMP SnmpGetTranslateMode function returns the current setting of the entity
and context translation mode to a WinSNMP application. The entity and context
translation mode affects the interpretation and return of WinSNMP input and output
string parameters.

Parameters
n TranslateMode

[out] Pointer to an unsigned long integer variable to receive the entity and context
translation mode in effect for the Microsoft WinSNMP implementation. This parameter
can be one of the following values.

Value Meaning

SNMPAPI_TRANSLATED The implementation uses its database to
translate user-friendly names for SNMP entities
and managed objects. The implementation
translates them into their SNMPv1 or
SNMPv2C components.

SNMPAPLUNTRANSLATED_V1 The implementation interprets SNMP entity
parameters as SNMP transport addresses, and
context parameters as SNMP community
strings. For SNMPv2 destination entities, the
implementation creates outgoing SNMP
messages that contain a value of zero in the
version field.

SNMPAPLUNTRANSLATED_V2 The implementation interprets SNMP entity
parameters as SNMP transport addresses, and
context parameters as SNMP community
strings. For SNMPv2 destination entities, the
implementation creates outgoing SNMP
messages that contain a value of 1 in the
version field.

Return Values
If the function succeeds, the return value is SNMPAPLSUCCESS.

Chapter 15 The WinSNMP API 417

If the function fails, the return value is SNMPAPLFAILURE. If SnmpGetTranslateMode
fails, the value of the nTranslateMode parameter has no meaning for the application. To
get extended error information, call SnmpGetLastError specifying a NULL value in its
session parameter. The SnmpGetLastError function can return one of the following
errors.

Error Code

SNMPAPI_ALLOC_ERROR

SNMPAPLOTHER_ERROR

Remarks

. Description

The SnmpStartup function did not complete
successfully.

An error occurred during memory allocation.

An unknown or undefined error occurred.

The entity and context translation mode affects calls to the SnmpStrToEntity,
SnmpStrToContext, SnmpContextToStr and SnmpEntityToStr functions. For
additional information, see Setting the Entity and Context Translation Mode.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Winsnmp.h.
Library: Use Wsnmp32.lib.

WinSNMP API Overview, WinSNMP Functions, SnmpStrToContext,
SnmpStrToEntity, SnmpContextToStr, SnmpEntityToStr, SnmpStartup,
SnmpSetTranslateMode

SnmpGetVb
A WinSNMP application calls the SnmpGetVb function to retrieve information from a
variable bindings list. This WinSNMP function retrieves a variable name and its
associated value from the variable binding entry specified by the index parameter.

418 Volume 2 Network Protocols and Interfaces

Parameters
vbl

[in] Handle to the variable bindings list to retrieve.

index
[in] Specifies an unsigned long integer variable that identifies the variable binding
entry to retrieve. This variable contains the position of the variable binding entry,
within the variable bindings list.

Valid values for this parameter are in the range from 1 to n, where 1 indicates the first
variable binding entry in the variable bindings list, and n is the total number of entries
in the list. For additional information, see the following Remarks section.

name
[out] Pointer to an smiOID structure to receive the variable name of the variable
binding entry.

value
[out] Pointer to an smiVALUE structure to receive the value associated with the
variable identified by the name parameter.

If the function succeeds, the syntax member of the structure pointed to by the value
parameter can be one of the following syntax data types. For additional information,
see RFC 1902, "Structure of Management Information for Version 2 of the Simple
Network Management Protocol (SNMPv2)."

Syntax data type

SNMP _SYNTAX_I NT

SNMP_SYNTAX_OCTETS

SNMP_SYNTAX_NULL

SNMP _SYNTAX_OlD

SNMP _SYNTAX_INT32

SNMP _SYNTAX_IPADDR

SNMP_SYNTAX_CNTR32

SNMP _SYNTAX_TIMETICKS

Meaning

Indicates a 32-bit signed integer variable.

Indicates an octet string variable that is binary or
textual data.

Indicates a NULL value.

Indicates an object identifier variable that is an
assigned name with a maximum of 128
subidentifiers.

Indicates a 32-bit signed integer variable.

Indicates a 32-bit Internet address variable.

Indicates a counter variable that increases until it
reaches a maximum value of (2A32) -1.

Indicates a gauge variable that is a non-negative
integer that can increase or decrease, but never
exceed a maximum value.

Indicates a counter variable that measures the time
in hundredths of a second, until it reaches a
maximum value of (2A32) -1. It is a non-negative
integer that is relative to a specific timer event.

Syntax data type

SNMP _SYNTAX_
NOSUCHOBJECT

SNMP _SYNTAX_
NOSUCHINSTANCE

SNMP _SYNT AX_
ENDOFMIBVIEW

Chapter 15 The WinSNMP API 419

Meaning

This type provides backward compatibility, and
should not be used for new object types. It supports
the capability to pass arbitrary Abstract Syntax
Notation One (ASN.1) syntax.

Indicates a counter variable that increases until it
reaches a maximum value of (2A64) -1.

Indicates a 32-bit unsigned integer variable.

Indicates that the agent does not support the object
type that corresponds to the variable.

Indicates that the object instance does not exist for
the operation.

Indicates the WinSNMP application is attempting to
reference an object identifier that is beyond the end
of the MIB tree that the agent supports.

The last three syntax types describe exception conditions under the SNMP version
2C(SNMPv2C) framework.

Return Values
If the function succeeds, the return value is SNMPAPI_SUCCESS.

If the function fails, the return value is SNMPAPI_FAILURE. To get extended error
information, call SnmpGetLastError. The SnmpGetLastError function can return one
of the following errors.

Error Code Description

SNMPAPLALLOC_ERROR

SNMPAPUNDEX_INVALlQ

SNMPAPI_ VBL_INVALID

SNMPAPLOTHER_ERROR

Remarks

The SnmpStartup function did not complete
successfully.

An error occurred during memory allocation.

The index parameter is invalid.

The vbl parameter is invalid.

An unknown or undefined error occurred.

The SnmpGetVb function returns the variable name of the variable binding entry in the
structure pointed to by the name parameter. It returns the variable's associated value in
the structure pointed to by the value parameter.

On input, the SnmpGetVb function ignores the members of the smiOID and smiVALUE
structures pointed to by the name and value parameters respectively. The Microsoft
WinSNMP implementation overwrites the members if the function completes
successfully.

420 Volume 2 Network Protocols and Interfaces

Valid values for a WinSNMP application to use for the index parameter are as follows:

• The return value from a call to the SnmpCountVbl function

• The error index field of an SNMP _PDU_RESPONSE protocol data unit (PDU)
returned by a call to the SnmpRecvMsg function

The WinSNMP application must call the SnmpFreeDescriptor function to free resources
allocated for the ptr member of the smiOID structure pOinted to by the name parameter.
The application must also call the SnmpFreeDescriptor function to release resources
allocated for the smiVALUE structure pOinted to by the value parameter under the
conditions following. If the value member is an smiOCTETS or an smiOID structure, the
application must call SnmpFreeDescriptor to free the resources allocated for these
structures. For additional information, see WinSNMP Data Management Concepts.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Winsnmp.h.
Library: Use Wsnmp32.lib.

WinSNMP API Overview, WinSNMP Functions, SnmpCountVbl, SnmpRecvMsg,
SnmpFreeDescriptor, smiOID, smiVALUE, smiOCTETS

SnmpGelVendorlnfo
A WinSNMP application calls the SnmpGetVendorlnfo function to retrieve information
about the Microsoft WinSNMP implementation. The function returns the information in an
smiVENDORINFO structure. The SnmpGetVendorlnfo function is an element of the
WinSNMP API, version 2.0.

Parameters
vendorlnfo

[out] Pointer to an smiVENDORINFO structure to receive information. The information
includes a way to contact Microsoft and the enterprise number assigned to Microsoft
by the Internet Assigned Numbers Authority (lANA).

Chapter 15 The WinSNMP API 421

Return Values
If the function succeeds, the return value is SNMPAPLSUCCESS.

If the function fails, the return value is SNMPAPI_FAILURE. To get extended error
information, call SnmpGetLastError specifying a NULL value in its session parameter.
The SnmpGetLastError function can return one of the following errors.

Error Code Description

SNMPAPLNOT _INITIALIZED

SNMPAPI_ALLOC_ERROR

SNMPAPI_NOOP

SNMPAPI_OTHER_ERROR

The SnmpStartup function did not complete
successfully.

An error occurred during memory allocation.

The vendorlnfo parameter is NULL.

An unknown or undefined error occurred.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Winsnmp.h.
Library: Use Wsnmp32.lib.

WinSNMP API Overview, WinSNMP Functions, smiVENDORINFO

SnmpListen
The WinSNMP SnmpListen function registers a WinSNMP application as an SNMP
agent. An agent application calls this function to inform the Microsoft WinSNMP
implementation that an entity will be acting in the role of an SNMP agent. An application
also calls this function to inform the implementation when an entity will no longer be
acting in this role. The SnmpListen function is an element of the WinSNMP API,
version 2.0.

422 Volume 2 Network Protocols and Interfaces

Parameters
hEntity

[in] Handle to the WinSNMP entity to notify when the Microsoft WinSNMP
implementation receives an incoming SNMP request message (PDU) This parameter
identifies the agent application. For more information, see the following Remarks and
Return Values sections.

When you call the SnmpCreateSession function, you can specify whether the
implementation should use a window notification message or an
SNMPAPLCALLBACK function to notify the application when an SNMP message or
asynchronous event is available.

IStatus
[in] Specifies an unsigned long integer variable that indicates whether the WinSNMP
entity identified by the hEntity parameter is acting in an SNMP agent role, or if it is no
longer acting in this role. This parameter can be one of the following values.

Value Meaning

The specified WinSNMP entity is functioning in
an agent role.

The specified WinSNMP entity is not functioning
in an agent role.

Passing a value of SNMPAPI_OFF releases both the resources allocated to the entity
and the port assigned it. For more information, see the following Remarks section.

Return Values
If the function succeeds, the return value is SNMPAPI_SUCCESS.

If the function fails, the return value is SNMPAPI_FAILURE. To get extended error
information, call SnmpGetLastError. The SnmpGetLastError function can return one
of the following errors.

Error Code

SNMPAPLALLOC_ERROR

SNMPAPLENTITY _INVALID

SNMPAPI_MODE_I NVALID

SNMPAPLNOOP

Description

The SnmpStartup function did not complete
successfully.

An error occurred during memory allocation.

The hEntity parameter is invalid. This
parameter must be a handle returned by a
previous call to the SnmpStrToEntity
function.

The IStatus parameter is invalid.

The entity specified by the hEntity parameter
is already functioning in the role of an SNMP
agent.

Error Code

Remarks

Chapter 15 The WinSNMP API 423

Description

There is a network transport layer error.
A socket could not be created for the entity
specified by the hEntity parameter.

An error occurred in the network transport
layer while trying to bind a socket for the
entity specified by the hEntity parameter.

An unknown or undefined error occurred.

When you specify an entity, you explicitly specify the address family, interface address,
and port for the entity. This is because Win$NMP assigns these attributes to each
WinSNMP entity as a result of a call to the SnmpStrToEntity function. The
implementation uses the address and port settings currently assigned to the entity
specified by the hEntity parameter when it sends notifications to the agent application.
For more information, see SnmpSetPort.

When you call the SnmpClose function for a WinSNMP session and the SnmpCleanup
function for a WinSNMP application, you must release all ports associated with
WinSNMP agent applications.

For more information about SNMP management applications and agent applications,
see Registering an SNMP Agent Application and About SNMP.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Winsnmp.h.
Library: Use Wsnmp32.lib.

WinSNMP API Overview, WinSNMP Functions, SnmpRecvMsg, SnmpSendMsg,
SnmpSetPort, SnmpStrToEntity, SnmpClose, SnmpCleanup

SnmpOidCompare
The WinSNMP SnmpOidCompare function lexicographically compares two SNMP
object identifiers, up to the length specified by the max/en parameter.

424 Volume 2 Network Protocols and Interfaces

(continued)

Parameters
xOID

[in] Pointer to the first smiOID object identifier to compare. The length of the object
identifier can be zero.

yOID
[in] Pointer to the second smiOID object identifier to compare. The length of the
object identifier can be zero.

maxlen
[in] If not equal to zero, specifies the number of subidentifiers to compare. This
parameter must be less than MAXOBJIDSIZE: 128 subidentifiers, the maximum
number of components in an object identifier. For additional information, see the
following Remarks section.

result
[out] Pointer to an integer variable to receive the result of the comparison. The
variable can receive one of the following results.

Result Meaning

Greater than 0

Equal to 0

Less than 0

xOID is greater than yOlO

xOID equals yOID

xOID is less than yOID

For additional comparison conditions, see the following Remarks section.

Return Values
If the function succeeds, the return value is SNMPAPI_SUCCESS.

If the function fails, the return value is SNMPAPI_FAILURE. To get extended error
information, call SnmpGetLastError specifying a NULL value in its session parameter.
The SnmpGetLastError function can return one of the following errors.

Error code

SNMPAPI_ALLOC_ERROR

SNMPAPI_OID_INVALID

SNMPAPLSIZE_INVALID

Description

The SnmpStartup function did not complete
successfully.

An error occurred during memory allocation.

One or both of the xOID and yOID parameters is
invalid.

The maxlen parameter is invalid. The parameter
size is greater than MAXOBJIDSIZE.

An unknown or undefined error occurred.

Chapter 15 The WinSNMP API 425

Remarks
A WinSNMP application can call the SnmpOidCompare function to determine whether
two object identifiers have common prefixes.

If the max/en parameter is not equal to zero, and not greater than MAXOBJIDSIZE, the
value of max/en sets the upper limit for the number of subidentifiers to compare. The
maximum number of subidentifiers that the SnmpOidCompare function compares
defaults to whichever is the smallest number-the maxlen parameter, or the len member
of one of the smiOID structures pointed to by the xO/D and yOlO parameters.

If the max/en parameter is equal to zero, the maximum number of subidentifiers that the
SnmpOidCompare function compares defaults to the number that is the smaller of the
len members of the two smiOID structures.

The value of the result parameter will indicate that xOID equals yOlO if the two smiOID
structures are lexicographically equal and one of the following occurs:

• SnmpOidCompare compares a maxlen number of subidentifiers.

• SnmpOidCompare compares the maximum number of sub identifiers, and the len
members of both smiOID structures are equal, but less than the max/en parameter.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Winsnmp.h.
Library: Use Wsnmp32.lib.

WinSNMP API Overview, WinSNMP Functions, smiOID

SnmpOidCopy
The WinSNMP SnmpOidCopy function copies an SNMP object identifier, allocating any
necessary memory for the copy.

Parameters
srcO/D

[in] Pointer to an smiOID structure to copy.

426 Volume 2 Network Protocols and Interfaces

dstOID
[out] Pointer to an smiOID structure to receive a copy of the object identifier specified
by the srcOID parameter.

Return Values
If the function succeeds, the return value is the number of subidentifiers in the copied
object identifier. This number is also the value of the len member of the smiOID
structure pointed to by the dstOID parameter.

If the function fails, the return value is SNMPAPI_FAILURE. To get extended error
information, call SnmpGetLastError specifying a NULL value in its session parameter.
The SnmpGetLastError function can return one of the following errors.

Error code

SNMPAPI_ALLOC_ERROR

SNMPAPI_OID_INVALID

SNMPAPI_OTHER_ERROR

Remarks

Description

The SnmpStartup function did not complete
successfully.

An error occurred during memory allocation.

The srcO/D parameter is invalid.

An unknown or undefined error occurred.

On input, the SnmpOidCopy function ignores the members of the smiOID structure
pointed to by the dstOID parameter. The Microsoft WinSNMP implementation overwrites
the smiOID members if the function completes successfully.

The WinSNMP application must call the SnmpFreeDescriptor function to enable the
implementation to free resources allocated for the ptr member of the smiOID structure
pointed to by the dstOID parameter. For additional information, see WinSNMP Data
Management Concepts and Freeing WinSNMP Descriptors.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Winsnmp.h.
Library: Use Wsnmp32.1ib.

WinSNMP API Overview, WinSNMP Functions, SnmpFreeDescriptor, smiOID

Chapter 15 The WinSNMP API 427

SnmpOidToStr
The WinSNMP SnmpOidToStr function converts the internal binary representation of an
SNMP object identifier to its dotted numeric string format, for example, to "1.2.3.4.5.6".

Parameters
srcOID

[in] Pointer to an smiOID structure with an object identifier to convert.

size
[in] Specifies the size, in bytes, of the buffer indicated by the string parameter.

string
[out] Pointer to a buffer to receive the converted string object identifier that specifies
the SNMP management entity.

Return Values
If the function succeeds, the return value is the length, in bytes, of the string that the
WinSNMP application writes to the string parameter. The returnvalue includes a nulI
terminating byte. This value may be less than or equal to the value ofthe size
parameter, but it may not be greater.

If the function fails, the return value is SNMPAPLFAILURE. To get extended error
information, callSnmpGetLastError specifying a NULL value in its session parameter.
The SnmpGetLastError function can return one of the following errors.

Error code Description

SNMPAPI_NOT _INITIALIZED The SnmpStartupfunction did not complete
successfully.

SNMPAPLALLOC_ERROR An error occurred during memory allocation.

SNMPAPLSIZE_INVALID The size parameter is inval.id. This parameter
cannot be equal to zero; it must indicate the size .
of the buffer pointed to by the string parameter.

SNMPAPLOID_INVALID The srcOID parameter is invalid. For additional
information, see the following Remarks sectiol'l.

SNMPAPLOUTPUT _TRUNCATED The output buffer length is insufficient

SNMPAPLOTHER_ERROR An unknown or undefined error occurred.

428 Volume 2 Network Protocols and Interfaces

Remarks
It is recommended that a WinSNMP application specify, with the size parameter, a string
buffer of MAXOBJIDSTRSIZE length (1408 bytes). This ensures that the output buffer is
large enough to hold the converted string. Because the converted string is usually less
than MAXOBJIDSTRSIZE, the WinSNMP application can copy the converted string to a
smaller buffer. The application can then reuse or free the memory that it allocated for the
initial buffer. For additional information, see WinSNMP Data Management Concepts.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Winsnmp.h.
Library: Use Wsnmp32.lib.

WinSNMP API Overview, WinSNMP Functions, SnmpStrToOid, smiOID

SnmpOpen
The SnmpOpen function requests the Microsoft WinSNMP implementation to open a
session for the WinSNMP application. This WinSNMP function enables the
implementation to allocate and initialize memory, resources, data structures, and
communications mechanisms. The SnmpOpen function returns a handle to the new
WinSNMP session.

Note When developing new WinSNMP applications, it is recommended that you call
the SnmpCreateSession function to open a WinSNMP session instead of calling the
SnmpOpen function.

Parameters
hWnd

[in] Handle to a window of the WinSNMP application to notify when an asynchronous
request completes, or when trap notification occurs.

wMsg
[in] Specifies an unsigned integer that identifies the notification message to send to
the WinSNMP application window.

Chapter 15 The WinSNMP API 429

Return Values
If the function succeeds, the return value is a handle that identifies the WinSNMP
session that the implementation opens for the calling application.

If the function fails, the return value is SNMPAPI_FAILURE. To get extended error
information, call SnmpGetLastError specifying a NULL value in its session parameter.
The SnmpGetLastError function can return one of the following errors.

Error Code

SNMPAPI_ALLOC_ERROR

SNMPAPI_HWND_INVALID

SNMPAPI_OTHER_ERROR

Remarks

Description

The SnmpStartup function did not complete
successfully.

An error occurred during memory allocation.

The hWnd parameter is not a valid window handle.

An unknown or undefined error occurred.

The SnmpOpen function returns a unique handle to each open WinSNMP session
within the calling WinSNMP application. The application must use the session handle
that SnmpOpen returns in other WinSNMP function calls to facilitate allocation and
deallocation of resources by the implementation. When the implementation allocates
resources to an individual session, it performs an orderly release of resources in
response to a call to SnmpClose for the session.

The SnmpOpen function passes to the implementation the handle to an application
window and a notification message identifier. If the wParam component of the
notification message specified by the wMsgparameter is equal to zero, the WinSNMP
application must retrieve the incoming protocol data unit (PDU). The application does
this by calling the SnmpRecvMsg function with the session handle returned by
SnmpOpen. If the wParam parameter of the notification message is not equal to zero, it
represents a WinSNMP error code. The error code applies to the PDU identified by the
request identifier in the IParam parameter of the notification message.

One WinSNMP application can open multiple WinSNMP sessions. If an application
opens multiple sessions using the same window handle, it is recommended that the
WinSNMP application specify a unique wMsg parameter for each session.

"

It is recommended that a WinSNMP application call the SnmpClosefunction once for
each session that the implementation opens as a result of a call to the SnmpOpen
function. If a WinSNMP application terminates unexpectedly, it must call SnmpCleanup
before it terminates to enable the implementation to deallocate all resources. The
implementation treats one SnmpCleanup callas if it were a series of SnmpClose calls,
one call for each session the implementation opens as a result of a call to SnmpOpen.

430 Volume 2 Network Protocols and Interfaces

For information about opening a WinSNMP session and specifying the method used to
inform the session of available SNMP messages and asynchronous events, see
SnmpCreateSession. When you call SnmpCreateSession you can specify a window
notification message or an SNMPAPI_CALLBACK function to notify the session.

For more information, see WinSNMP Sessions.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Winsnmp.h.
Library: Use Wsnmp32.lib.

WinSNMP API Overview, WinSNMP Functions, SnmpClose, SnmpCleanup,
SnmpRecvMsg, SNMPAPI_CALLBACK, SnmpCreateSession

SnmpRecvMsg
The WinSNMP SnmpRecvMsg function retrieves the results of a completed
asynchronous request submitted by a call to the SnmpSendMsg function, in the form of
an SNMP message. The SnmpRecvMsg function also returns outstanding trap data and
notifications registered for a WinSNMP session.

Parameters
session

[in] Handle to the WinSNMP session.

srcEntity
[out] Pointer to a variable that receives a handle to the entity that sends the message.
Note that the srcEntity parameter to the SnmpRegister function specifies a handle to
the management entity that registers for trap notification.

dstEntity
[out] Pointer to a variable that receives a handle to the entity that receives the
message. Note that the dstEntity parameter to the SnmpRegister function specifies a
handle to the management entity that sends traps.

Chapter 15 The WinSNMP API 431

context
[out] Pointer to a variable that receives a handle to the context, which is a set of
managed object resources. The entity specified by the srcEntity parameter issues the
message from this context.

PDU
[out] Pointer to a variable that receives a handle to the Protocol Data Unit (PDU)
component of the message.

Return Values
If the function succeeds, the return value is SNMPAPI_SUCCESS, and the output
parameters contain the values indicated in the preceding parameter descriptions.

If the function fails, the return value is SNMPAPI_FAILURE. If the function fails with an
extended error code that indicates a network transport layer error, that is, one that
begins with SNMPAPLTL_, the output parameters also contain the values indicated
preceding to enable the WinSNMP application to recover gracefully.

To get extended error information, call SnmpGetLastError. The SnmpGetLastError
function may return one of the following WinSNMP or network transport layer errors.

Error Code Description

SNMPAPLNOT _INITIALIZED

SNMPAPLALLOC_ERROR

SNMPAPI_SESSION_INVALI D

SNMPAPI_NOOP

SNMPAPL TL_NOT _AVAILABLE

SNMPAPLTL_RESOURCE_ERROR

The SnmpStartup function did not complete
successfully.

An error occurred during memory allocation.

The session parameter is invalid.

The specified session has no messages in
its queue at this time.

The network transport layer was not
initialized.

The network transport layer does not support
the SNMP protocol.

The network subsystem failed.

A resource error occurred in the network
transport layer.

The entity specified by the dstEntity
parameter is unavailable.

The entity specified by the srcEntity
parameter was not initialized.

A network transport layer function call
received an invalid input parameter.

The PDU is too large for the network
transport layer to send or receive.

(continued)

432 Volume 2 Network Protocols and Interfaces

(continued)

Error Code

SNMPAPLOTHER_ERROR

Description

An undefined network transport layer error
occurred.

An unknown or undefined error occurred.

For additional information, see Network Transport Errors.

Remarks
The SnmpCreateSession function passes an application window handle and
notification message identifier to the Microsoft WinSNMP implementation. When the
application window receives the notification message specified by the wMsg parameter,
the WinSNMP application must call the SnmpRecvMsg function with the session handle
returned by SnmpCreateSession to retrieve an incoming protocol data unit (PDU). For
additional information, see About SNMP Messages.

The SnmpRecvMsg function instantiates four objects and allocates their resources: two
entity handles, a context handle, and a PDU handle. The handle to the variable bindings
list component of the returned PDU is not instantiated until the WinSNMP application
calls the SnmpGetPduData function. When it no longer needs the resources
SnmpRecvMsg returns, the WinSNMP application must free the individual resources
using the WinSNMP function that corresponds to the resource. For additional
information, see SnmpFreePdu, SnmpFreeEntity, and SnmpFreeContext.

When the implementation receives traps from an entity operating under the SNMP
version 1 framework (SNMPv1), it translates the traps to the SNMP version 2C
(SNMPv2C) format. Therefore, when SnmpRecvMsg delivers a trap it is always in the
SNMPv2C format. For additional information, see Translating Traps from SNMPv1 to
SNMPv2C and WinSNMP Programming Tasks.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Winsnmp.h.
Library: Use Wsnmp32.lib.

WinSNMP API Overview, WinSNMP Functions, SnmpFreePdu, SnmpFreeEntity,
SnmpFreeContext, SnmpSendMsg, SnmpRegister, SnmpGetPduData

Chapter 15 The WinSNMP API 433

SnmpRegister
The WinSNMP SnmpRegister function registers or unregisters a WinSNMP application
for trap and notification reception. The application can register and receive traps and
notifications, or unregister and disable traps and notifications.

A WinSNMP application can register or unregister for one type of trap or notification, or
for all traps and notifications, depending on the value of the notification parameter.

Parameters
session

[in] Handle to the WinSNMP session that is registering or unregistering for traps and
notifications.

srcEntity
[in] Handle to the management entity that is. the source of the registration request.
This entity, acting in an SNMP manager role, will receive the trap or notification.

If this parameter is NULL, the Microsoft WinSNMP implementation registers or
unregisters all sources of trap and notification requests.

Note that the srcEntity parameter to the SnmpRecvMsg function has a different role.
In that function, srcEntity receives a handle to the entity that sent the trap.

dstEntity
[in] Handle to the managemententity that is the recipient of the registration request.
This entity, acting in an SNMP agent role, will send the trap or notification.

If this parameter is NULL, the implementation registers or unregisters the WinSNMP
application for traps and notifications from all management entities.

Note that the dstEntity parameter to the SnmpRecvMsg function receives a handle to
the management entity that registers for trap notification.

context
[in] Handle to the context, which is a set of managed object resources.

If this parameter is NULL, the implementation registers or unregisters the WinSNMP
application for traps and notifications for every context.

434 Volume 2 Network Protocols and Interfaces

notification
[in] Pointer to an smiOID structure that contains the pattern-matching sequence for
one type of trap or notification. The implementation uses this sequence to identify the
type of trap or notification for which the WinSNMP application is registering or
unregistering. For additional information, see the following Remarks section.

If this parameter is NULL, the implementation registers or unregisters the WinSNMP
application for all traps and notifications from the management entity or entities
specified by the dstEntity parameter.

state
[in] Specifies an unsigned long integer variable that indicates whether the WinSNMP
application is registering to receive traps and notifications, or if it is unregistering. This
parameter should be equal to one of the following values, but if it contains a different
value, the implementation registers the application.

Value Meaning

SNMPAPLOFF

SNMPAPLON

Return Values

Disable traps and notifications.

Register to receive traps and notifications.

If the function succeeds, the return value is SNMPAPLSUCCESS.

If the function fails, the return value is SNMPAPI_FAILURE. To get extended error
information, call SnmpGetLastError. The SnmpGetLastError function may return one
of the following WinSNMP or network transport layer errors.

Error Code

SNMPAPLALLOC_ERROR

SNMPAPI_SESSION_INVALID

SNMPAPI_ENTITY _INVALID

SNMPAPLCONTI;XT _INVALID

SNMPAPI_OID_INVALID

SNMPAPI_ TL_NOT _INITIALIZED

SNMPAPI_ TL_IN-.:.USE

SNMPAPL TL_NOT _AVAILABLE

SNMPAPI_OTHER_ERROR

Description

The SnmpStartup function did not complete
successfully.

An error occurred during memory allocation.

The session parameter is invalid.

One or both of the entity parameters is invalid.

The context parameter is invalid.

The notification parameter is invalid.

The network transport layer was not initialized.

The trap port is not available.

The network subsystem failed.

An unknown or undefined error occurred.

For additional information, see Network Transport Errors.

Chapter 15 The WinSNMP API 435

Remarks
Typically a WinSNMP manager application, rather than an agent application, calls the
SnmpRegister function.

If a WinSNMP application passes NULL in a call tothe SnmpRegister function in the
srcEntity, dstEntity, context, or notification parameters, the implementation does not use
that parameter to filter traps and notifications from reaching the WinSNMP application. If
an application passes NULL in all of the parameters mentioned previously, the
implementation delivers all received notifications to the session.

If a WinSNMP application registers to receive a specific type of trap or notification, it
must define an object identifier, that iS,an smiOID structure, that corresponds to that
type of trap. The notification parameter must point to this structure. RFC 1907,
"Management Information Base for Version 2 of the Simple Network Management
Protocol (SNMPv2)," defines trap and notification object identifiers. For additional
information, see Managing Traps and Notifications and Translating Traps from SNMPv1
to SNMPv2C.

The implementation uses the value of the notification parameter as a pattern to match
against received traps and notifications. For example, if the WinSNMP application
passes n number of subidentifiers in the notification parameter, and the first n
subidentifiers in a received trap match all the passed subidentifiers, then the trap object
identifier is a match. If a received trap has fewer subidentifiers than n, the object
identifier does not match. If there is a match, the implementation sends the trap or
notification to the WinSNMP application.

If any or all of the dstEntity, srcEntity, or context parameters are NULL, the
implementation may need to allocate resources on a subsequent call to the
SnmpRecvMsg function,for that function's corresponding parameters. When the
WinSNMP application no longer needs the resources SnmpRecvMsg returns, the
application must free the individual resources with the function that corresponds to the
resource. For additional information, see SnmpFreeEntityand SnmpFreeContext.

For more information, see Multiple Trap Registrations.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Winsnmp.h.
Library: Use Wsnmp32.lib.

WinSNMP API Overview, WinSNMP Functions, SnmpCreateSession, SnmpRecvMsg,
SnmpFreeEntity, SnmpFreeContext

436 Volume 2 Network Protocols and Interfaces

SnmpSendMsg
A WinSNMP application calls the SnmpSendMsg function to request that the Microsoft
WinSNMP implementation transmit an SNMP Protocol Data Unit (PDU), in the form of an
SNMP message. The WinSNMP application specifies a source entity, a destination
entity, and a context for the request.

If a WinSNMP application expects a PDU in response to a SnmpSendMsg request, it
must retrieve the PDU. To do this, the application must call the SnmpRecvMsg function
using the session handle returned by SnmpCreateSession.

Parameters
session

[in] Handle to the WinSNMP session.

srcEntity
[in] Handle to the management entity that initiates the request to send the SNMP
message.

dstEntity
[in] Handle to the target entity that will respond to the SNMP request.

context
[in] Handle to the context, (a set of managed object resources), that the target
management entity controls.

PDU
[in] Handle to the protocol data unit that contains the SNMP operation request.

Return Values
If the function succeeds, the return value is SNMPAPI_SUCCESS.

If the function fails,the return value is SNMPAPLFAILURE. To get extended error
information, call SnmpGetLastError. The SnmpGetLastError function may return one
of the following WinSNMP or network transport layer errors.

Error Code

SNMPAPLNOT _INITIALIZED

Description

The SnmpStartup function did not complete
successfully.

An error occurred during memory allocation.

Chapter 15 The WinSNMP API 437

Error Code Description

SNMPAPI_SESSION_INVALID The session parameter is invalid.

SNMPAPI_ENTITY _INVALID One or both of the entity parameters is invalid.

SNMPAPLCONTEXT_INVALID The context parameter is invalid.

SNMPAPLPDU_INVALID The PDU parameter is invalid.

SNMPAPLOPERATION_INVALID The operation specified in the PDU_type field
of the PDU is inappropriate for the destination
entity. For more information, see the following
Remarks section.

SNMPAPLTL_NOT _INITIALIZED The network transport layer was not initialized.

SNMPAPI_ TL_NOT _SUPPORTED The network transport layer does not support
the SNMP protocol.

SNMPAPI_TL_NOT_AVAILABLE The network subsystem failed.

SNMPAPI_ TL_RESOURCE_ERROR A resource error occurred in the network
transport layer.

SNMPAPI_ TL_SRC_INVALID The entity specified by the srcEntity parameter
was not initialized.

SNMPAPLTL_INVALlD_PARAM A network transport layer function call received
an invalid input parameter.

SNMPAPI_ TL_PDU_ TOO_BIG The PDU is too large for the network transport
layer to send or receive.

SNMPAPLTL_OTHER An undefined network transport layer error
occurred.

SNMPAPI_OTHER_ERROR An unknown or undefined error occurred.

For additional information, see Network Transport Errors.

Remarks
The SnmpSendMsg function executes asynchronously and therefore returns
immediately.

The implementation notifies the WinSNMP application when the asynchronous request is
completed. The implementation does this by sending a notification message to the
window specified by the wMsg and hWnd parameters, respectively, in the initial call to
SnmpCreateSession for the session. When the application window receives the
notification message, the WinSNMP application must retrieve the incoming PDU. The
application does this by calling the SnmpRecvMsg function with the session handle
returned by SnmpCreateSession.

When a WinSNMP application calls the SnmpSendMsg function, the implementation
determines which network transport protocol and SNMP version framework to use to
complete the transmission request. The implementation determines this by matching its

438 Volume 2 Network Protocols and Interfaces

capabilities with properties associated with the requesting session and with the target
management entity. This information is available from values in the implementation's
database.

If a WinSNMP application requests functionality that is available under the SNMP
version 2C framework (SNMPv2C), but the target entity uses the SNMP version 1
framework (SNMPv1), the implementation attempts to translate the request to SNMPv1.
To do this, the implementation uses the procedures defined in RFC1908, "Coexistence
between Version 1 and Version 2 of the Internet-standard Network Management
Framework." If translation is not possible, SnmpSendMsg fails with the extended error
code SNMPAPI_OPERATION_INVALID. This situation occurs, for example, when an
application attempts to send a PDU with the SNMP _PDU_'nformRequest data type to
an SNMPv1 destination entity.

For additional information, see WinSNMP Programming Tasks and About SNMP
Messages.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Winsnmp.h.
Library: Use Wsnmp32.lib.

WinSNMP API Overview, WinSNMP Functions, SnmpCreateSession, SnmpRecvMsg

SnmpSetPduData
The WinSNMP SnmpSetPduData function updates selected data fields in the specified
SNMP Protocol Data Unit (PDU).

Parameters
PDU

[in] Handle to an SNMP PDU.

PDU_type

Chapter 15 The WinSNMP API 439

[in] Pointer to a variable with a value to update the PDU_type field of the specified
PDU. This parameter can also be NULL.

requesUd
[in] Pointer to a variable with a value to update the requesLid field of the specified
PDU. This parameter can also be NULL.

nonJepeaters
[in] If the PDU_type parameter is equal to SNMP _PDU_GETBULK, this parameter
points to a variable with a value to update the non_repeaters field of the specified
PDU. The Microsoft WinSNMP implementation ignores this parameter for other PDU
types. This parameter can also be NULL.

maJcrepetitions
[in] If the PDU_type parameter is equal to SNMP _PDU_GETBULK, this parameter
points to a variable with a value to update the max_repetitions field of the. specified
PDU. The implementation ignores this parameter for other PDU types. This parameter
can also be NULL.

varbindlist
[in] Pointer to a variable with a value that updates the handle to the variable bindings
list field of the specified PDU. This parameter can also be NULL.

Return Values
If the function succeeds, the return value is SNMPAPLSUCCESS.

If the function fails, the return value is SNMPAPLFAllURE. To get extended error
information, call SnmpGetLastError. The SnmpGetLastErrorfunction can return one
of the following errors.

Error Code Description

SNMPAPLNOT _INITIALIZED

SNMPAPI~llOC_ERROR

SNMPAPLPDU_INVALID

SNMPAPL VBl_INVALID

SNMPAPI_NOOP

SNMPAPLOTHER_ERROR

The SnmpStartup function did not complete
successfully.

An error occurred during memory allocation.

The PDU type is invalid.

The variable bindings list is invalid.

All input parameters are NULL. The SNMP
operation was not performed.

An unknown or undefined error occurred.

440 Volume 2 Network Protocols and Interfaces

Remarks
All parameters of the SnmpSetPduData function are required. However, all parameters,
except the PDU parameter, can be NULL. If the WinSNMP application passes NULL in a
parameter, SnmpSetPduData does not update the corresponding field in the PDU.
Because SnmpSetPduData passes parameters as pointers to values, an application
can still update a PDU field with NULL.

The value of one PDU field can be valid alone, but may be invalidated in combination
with values for other fields. The implementation validates the PDU and the other
message elements when the application calls the SnmpSendMsg or the
SnmpEncodeMsg functions. The implementation rejects invalid PDUs.

The only type of trap PDU you can update with a call to the SnmpSetPduData function
is an SNMPv2C trap PDU.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Winsnmp.h.
Library: Use Wsnmp32.lib.

WinSNMP API Overview, WinSNMP Functions, SnmpSendMsg, SnmpEncodeMsg

SnmpSetPort
A WinSNMP application calls the SnmpSetPort function to change the port assigned to
a destination entity. The SnmpSetPort function is an element of the WinSNMP API,
version 2.0.

Parameters
hEntity

[in] Handle to a WinSNMP destination entity. This parameter can specify the handle to
an entity acting in the role of an SNMP agent application as a result of a call to the
SnmpListen function. For more information, see the following Remarks section.

nPort
[in] Specifies an unsigned integer that identifies the new port assignment for the
destination entity. If you specify a local address that is busy, or if you specify a remote
address that is unavailable, a call to the SnmpSetPort function fails.

Chapter 15 The WinSNMP API 441

Return Values
If the function succeeds, the return value is SNMPAPLSUCCESS.

If the function fails, the return value is SNMPAPLFAILURE. To get extended error
information, call SnmpGetLastError specifying a NULL value in its session parameter.
The SnmpGetLastError function can return one of the following errors.

Error Code Description

SNMPAPLNOT _INITIALIZED

SNMPAPLENTITY _INVALID

Remarks

The SnmpStartup function did not complete
successfully.

The entity specified by the hEntity parameter is
already functioning in an agent role as the
result of a call to the SnmpListen function. For
more information, see the following Remarks
section.

The hEntity parameter is invalid. This
parameter must be a handle returned by a
previous call to the SnmpStrToEntity function.

An unknown or undefined error occurred.

The Microsoft WinSNMP implementation assigns a port to each management entity as a
result of a WinSNMP application's call to the SnmpStrToEntity function. If the
SNMPAPLUNTRANSLATED mode is in effect when the implementation creates an
entity, the implementation typically assigns the standard SNMP request port for the
respective protocol family to the entity; for example, UDP 161 or IPX 36879. If the
SNMPAPLTRANSLATED mode is in effect, the implementation assigns the port
specified for the entity in the WinSNMP database. To retrieve the current entity and
context translation mode in effect for the implementation, an application can call the
SnmpGetTranslateMode function. For more information, see Setting the Entity and
Context Trans/ation Mode and The WinSNMP Database.

A call to the SnmpSetPort function fails if the entity specified by the hEntity parameter is
currently functioning in an agent role. This is because the entity has already been
assigned to a port other than the one specified by the nPort parameter. To ensure
assignment of an agent application to a specific port, a WinSNMP application can
perform the steps outlined in the following code sample.

where <addrStri ng> contains the string representation of an IP address or an IPX
address, and <nPort> contains the new port assignment for the agent application.

442 Volume 2 Network Protocols and Interfaces

Note that an IPX address contains a network number that consists of eight hexadecimal
digits (zero-filled if necessary); a separator (either ":", "." or "-"); and a node number that
consists of 12 hexadecimal digits (zero-filled if necessary). For example,
00000001 :00081AOD01C2. For more information, see Support for IPX Address Strings
in WinSNMP.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Winsnmp.h.
Library: Use Wsnmp32.lib.

WinSNMP API Overview, WinSNMP F.unctions, SnmpListen, SnmpStrToEntity,
SnmpSetPort, Snmp.GetTranslateMode

SnmpSetRetransmitMode
The WinSNMP SnmpSetRetransmitMode function enables a WinSNMP application to
set the retransmission mode. The Microsoft WinSNMP implementation uses the new
retransmission mode to govern transmission time-outs and retransmission attempts on
subsequent calls to the SnmpSendMsg function.

Parameters
nRetransmitMode

[in] Specifies a value for the new retransmission mode. This parameter must be one
of the following values.

Value Meaning

SNMPAPLON

SNMPAPLOFF

Return Values

The implementation executes the WinSNMP application's
retransmission policy.

The implementation does not execute the WinSNMP
application's retransmission poliCy.

If the function succeeds, the return value is SNMPAPI_SUCCESS.

Chapter 15 The WinSNMP API 443

If the function fails, the return va.lue is SNMPAPI_FAILURE. To get extended error
information, call SnmpGetLastError specifying a NULL value in its session parameter.
The SnmpGetLastError function can return one of the following errors.

Error Code

SNMPAPLNOT _INITIALIZED

SNMPAPLALLOC_ERROR

SNMPAPI_MODE_INVALI D

SNMPAPLOTHER_ERROR

Remarks

Description

The SnmpStartup function did not complete
successfully.

An error occurred during memory allocation.

The implementation does not support the
requested retransmission mode.

An unknown or undefined error occurred.

Typically a WinSNMP manager application, rather than an agent application, calls the
SnmpSetRetransmitMode function.

If a WinSNMP application sets the retransmission mode to SNMPAPI_OFFj the
implementation does not initiate retransmission attempts for new SNMP communications
operations. The new setting affects all subsequent calls to the SnmpSendMsg function,
until the WinSNMP application sets the retransmission mode back to SNMPAPI_ON.

Calling the SnmpCancelMsg function is equivalent to calling the
SnmpSetRetransmitMode function, for a specific SNMP message, with the
retransmission mode equal to SNMPAPLOFF.

Note if the implementation returns the error SNMPAPLMODE_INVALID to a call to
SnmpSetRetransmitMode, the WinSNMP application must execute the retransmission
policy.

For additional information, see About Retransmission and Managing the Retransmission
Policy.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Winsnmp.h.
Library: Use Wsnmp32.lib.

WinSNMP API Overview, WinSNMP Functions, SnmpSendMsg, SnmpRegister,
SnmpGetRetransmitMode, SnmpGetTimeout, SnmpGetRetry, SnmpCancelMsg

444 Volume 2 Network Protocols and Interfaces

SnmpSetRetry
The WinSNMP SnmpSetRetry function enables a WinSNMP application to change the
retry count value for the retransmission of SNMP message requests. The retry count
applies to calls that a WinSNMP application makes to the SnmpSendMsg function for a
specified management entity. The Microsoft WinSNMP implementation stores the value
in a database.

Parameters
hEntity

[in] Handle to the destination management entity of interest.

nPolicyRetry
[in] Specifies a new value for the retry count for the management entity. This value
replaces the value currently stored in the implementation's database.

If this parameter is equal to zero, and the current retransmission mode is equal to
SNMPAPI_ON, the implementation selects a value for the retry count. The
implementation uses this value when it executes the WinSNMP application's
retransmission policy.

Return Values
If the function succeeds, the return value is SNMPAPI_SUCCESS.

If the function fails, the return value is SNMPAPLFAILURE. To get extended error
information, call SnmpGetLastError specifying a NULL value in its session parameter.
The SnmpGetLastError function can return one of the following errors.

Error Code Description

SNMPAPLALLOC_ERROR

SNMPAPI_ENTITY _INVALID

SNMPAPLOTHER_ERROR

Remarks

The SnmpStartup function did not complete
successfully.

An error occurred during memory allocation.

The hEntity parameter is invalid.

An unknown or undefined error occurred.

Typically a WinSNMP manager application, rather than an agent application, calls the
SnmpSetRetry function.

For additional information, see About Retransmission and Managing the Retransmission
Policy.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Winsnmp.h.
Library: Use Wsnmp32.lib.

Chapter 15 The WinSNMP API 445

WinSNMP API Overview, WinSNMP Functions, SnmpSetRetransmitMode,
SnmpGetRetry, SnmpGetRetransmitMode

SnmpSetTimeout
The WinSNMP SnmpSetTimeout function enables a WinSNMP application to change
the time-out value for the transmission of SNMP message requests. The time-out value
applies to calls that a WinSNMP application makes to the SnmpSendMsg function for a
specified management entity. The Microsoft WinSNMP implementation stores the value
in a database.

Parameters
hEntity

[in] Handle to the destination management entity of interest.

nPolicyTimeouf
[in] Specifies a new time-out value, in hundredths of a second, for the management
entity. This value replaces the value currently stored in the implementation's
database.

If this parameter is equal to zero, and the current retransmission mode is equal to
SNMPAPI_ON, the implementation selects a time-out value. The implementation uses
this time-out value when it executes the WinSNMP application's retransmission policy.

Return Values
If the function succeeds, the return value is SNMPAPI_SUCCESS.

If the function fails, the return value is SNMPAPI_FAILURE. To get extended error
information, call SnmpGetLastError specifying a NULL value in its session parameter.
The SnmpGetLastError function can return one of the errors on the next page.

446 Volume 2 Network Protocols and Interfaces

Error Code

SNMPAPI_ALLOC_ERROR

SNMPAPI_ENTITY _INVALID

SNMPAPI_OTHER_ERROR

Remarks

Description

The SnmpStartup function did not complete
successfully.

An error occurred during memory allocation.

The hEntity parameter is invalid.

An unknown or undefined error occurred.

Typically a WinSNMP manager application, rather than an agent application, calls the
SnmpSetTimeout function.

For additional information, see About Retransmission and Managing the Retransmission
Policy.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Winsnmp.h.
Library: Use Wsnmp32.lib.

WinSNMP API Overview, WinSNMP Functions, SnmpGetTimeout,
SnmpSetRetransmitMode, SnmpGetRetransmitMode

SnmpSetTranslateMode
The WinSNMP SnmpSetTranslateMode function enables a WinSNMP application to
change the entity and context translation mode. The entity and context translation mode
affects the interpretation and return of WinSNMP input and output string parameters.

Parameters
nTranslateMode

[in] Specifies a value for the new entity and context translation mode. This parameter
must be one of the following values.

Chapter 15 The WinSNMP API 447

Value Meaning

SNMPAPLTRANSLATED The Microsoft WinSNMP implementation uses
its database to translate user-friendly names for
SNMP entities and managed objects. The
implementation translates them into their
SNMPv1 or SNMPv2C components.

SNMPAPI_UNTRANSLATED_V1 The implementation interprets SNMP entity
parameters as SNMP transport addresses, and
context parameters as SNMP community
strings. For SNMPv2 destination entities, the
implementation creates outgoing SNMP
messages that contain a value of zero in the
version field.

SNMPAPI_UNTRANSLATED-,-V2 The implementation interprets SNMP entity
parameters as SNMP transport addresses, and
context parameters as SNMP community
strings. For SNMPv2 destination entities, the
implementation creates outgoing SNMP
messages that contain a value of 1 in the
version field.

Return Values
If the function succeeds, the return value is SNMPAPI_SUCCESS.

If the function fails, the return value is SNMPAPI_FAILURE. To get extended error
information, call SnmpGetLastError specifying a NULL value in its session parameter.
The SnmpGetLastError function can return one of the following errors.

Error Code Description

SNMPAPLNOT _INITIALIZED

SNMPAPI_ALLOC_ERROR

SNMPAPLMODE_INVALID

Remarks

The SnmpStartup function did not complete
successfully.

An error occurred during memory allocation.

The implementation does not support the
requested translation mode.

An unknown or undefined error occurred.

The new entity and context translation mode affects subsequent calls to the
SnmpStrToEntity, SnmpStrToContext, SnmpContextToStr, and SnmpEntityToStr
functions. The WinSNMP application can change the entity and context translation mode
again by making another call to SnmpSetTranslateMode with a different
nTranslateMode value.

For additional information, see Setting the Entity and Context Translation Mode.

448 Volume 2 Network Protocols and Interfaces

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Winsnmp.h.
Library: Use Wsnmp32.lib.

WinSNMP API Overview, WinSNMP Functions, SnmpStrToContext,
SnmpStrToEntity, SnmpContextToStr, SnmpEntityToStr, SnmpGetTranslateMode

SnmpSetVb
The WinSNMP SnmpSetVb function changes variable binding entries in a variable
bindings list. This function also appends new variable binding entries to an existing
variable bindings list.

Parameters
vbl

[in] Handle to the variable bindings list to update.

index
[in] Specifies an unsigned long integer variable that contains the position of the
variable binding entry, within the variable bindings list, if this is an update operation. If
this is an append operation, this parameter must be equal to zero. For more
information, see the following Remarks section.

name
[in] Pointer to an smiOID structure that represents the name of the variable to append
or change. For more information, see the following Remarks section.

value
[in] Pointer to an smiVALUE structure. The structure contains the value associated
with the variable specified by the name parameter.

Chapter 15 The WinSNMP API 449

Return Values
If the function succeeds, the return value is the position of the updated or appended
variable binding entry in the variable bindings list. For additional information, see the
following Remarks section.

If the function fails, the return value is SNMPAPLFAILURE. To get extended error
information, call SnmpGetLastError. The SnmpGetLastError function can return one
of the following errors.

Error Code Description

SNMPAPI_ALLOC_ERROR

SNMPAPLVBL_INVALID

. SNMPAPUNDEX_INVALID

SNMPAPLOID_INVALID

SNMPAPLSYNT AX_INVALID

Remarks

The SnmpStartup function did not complete
successfully.

An error occurred during memory allocation.

The vbl parameter is invalid.

The index parameter is invalid.

The name parameter is invalid.

The syntax member of the structure pointed to by
the value parameter is invalid.

An unknown or undefined error occurred.

Valid values for the index parameter range from zero to n. The value zero indicates an
append operation. The value n is the total number of variable binding entries in the
variable bindings list. A WinSNMP application should call the SnmpCountVbl function
before it calls SnmpSetVb to obtain the total number of variable binding entries.

If the function successfully performs an update operation, the return value equals the
value of the index parameter. If the function appends a variable binding entry, the return
value is n+ 1.

If the name P?lrameter is not NULL, but the value parameter is NULL, the Microsoft
WinSNMP implementation initializes the new variable binding entry with the value
member set to NULL and with the syntax member set to SNMP _SYNTAX_NULL.

If the index parameter is not equal to zero, and the name parameter is NULL, the
Microsoft WinSNMP implementation updates only the value of the variable pointed to by
the index parameter.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Winsnmp.h.
Library: Use Wsnmp32.lib.

450 Volume 2 Network Protocols and Interfaces

WinSNMP API Overview, WinSNMP Functions, SnmpCountVbl, smiOID, smiVALUE

SnmpStartup
The SnmpStartup function notifies the Microsoft WinSNMP implementation that the
WinSNMP application requires the implementation's services. The WinSNMP

• SnmpStartup function enables the implementation to initialize and to return to the
application the version of the Windows SNMP Application Programming Interface
(WinSNMP API), the level of SNMP communications that the implementation supports,
and the implementation's default translation and retransmission modes.

Note A WinSNMP application must call the SnmpStartup function successfully before
it calls any other WinSNMP function.

Parameters
nMajorVersion

[out] Pointer to an unsigned long integer variable to receive the major version number
of the WinSNMP API that the implementation supports. For example, to indicate that
the implementation supports WinSNMP version 2.0, the function returns a value of 2.

nMinorVersion
[out] Pointer to an unsigned long integer variable to receive the minor version number
of the WinSNMP API that the implementation supports. For example, to indicate that
the implementation supports WinSNMP version 2.0, the function returns a value of 0.

nLevel
[out] Pointer to an unsigned long integer variable to receive the highest level of SNMP
communications the implementation supports. Upon successful return, this parameter
contains a value of 2. For a description of level 2 support, see Levels of SNMP
Support.

Chapter 15 The WinSNMP API 451

n TranslateMode
[out] Pointer to an unsigned long integer variable to receive the default translation
mode in effect for the implementation. The translation mode applies to the
implementation's interpretation of the entity parameter that the WinSNMP application
passes to the SnmpStrToEntity function. The translation mode also applies to the
string parameter that the WinSNMP application passes to the SnmpStrToContext
function. This parameter can be one of the following values.

Value Meaning

SNMPAP,-TRANSLATED

SNMPAPLUNTRANSLATED~ V2

The implementation uses its database to
translate user-friendly names for SNMP
entities and managed objects. The
implementation translates them into their
SNMPv1 or SNMPv2C components.

The implementation interprets SNMP entity
parameters as SNMP transport addresses,
and context parameters as SNMP
community strings. For SNMPv2 destination
entities, the implementation creates outgoing
SNMP messages that contain a value of zero
in the version field.

The implementation interprets SNMP entity
parameters as SNMP transport addresses,
and context parameters as SNMP
community strings. For SNMPv2 destination
entities, the implementation creates outgoing
SNMP messages that contain a value of 1 in
the version field.

For additional information, see Setting the Entity and Context Translation Mode.

nRetransmitMode
[out] Pointer to an unsigned long integer variable to receive the default retransmission
mode in effect for the implementation. This parameter can be one of the following
values.

Value Meaning

SNMPAPLOFF The implementation is not executing the
retransmission policy of the WinSNMP
application.

The implementation is executing the
retransmission policy of the WinSNMP
application.

For additional information, see About Retransmission.

452 Volume 2 Network Protocols and Interfaces

Return Values
If the function succeeds, the return value is SNMPAPI_SUCCESS, and the parameters
contain appropriate values, as indicated in the preceding parameter descriptions.

If the function fails, the return value is SNMPAPLFAILURE. To get extended error
information, call SnmpGetLastError specifying a NULL value in its session parameter.
The SnmpGetLastError function can return one of the following errors. For additional
information, see the Remarks section that follows.

Error C6de

SNMPAPI_ALLOC_ERROR

SNMPAPLOTHER_ERROR

Remarks

Description

The SnmpStartup function did not complete
successfully.

An error occurred during memory allocation.

An unknown or undefined error occurred.

A WinSNMP application must call the SnmpStartup function successfully at least once,
before it calls any other WinSNMP function. If a WinSNMP application does call another
WinSNMP function, before it successfully calls SnmpStartup, the implementation
returns the error SNMPAPI_NOT _INITIALIZED.

The WinSNMP application can call SnmpGetLastError for error information, or retry
SnmpStartup if a call to the SnmpStartup function fails. When SnmpStartup returns
SNMPAPLFAILURE, and a subsequent call to SnmpGetLastError returns
SNMP _ALLOC_ERROR, the WinSNMP application can elect to wait. It can retry the call
to SnmpStartup when the implementation has adequate free resources.

A WinSNMP application can call SnmpStartup multiple times. For example, it may need
to retry the function call for the reasons discussed preceding. A WinSNMP application
must also call SnmpCleanup at least once, as the last WinSNMP function call before it
terminates. Multiple SnmpStartup calls do not require multiple SnmpCleanup calls.

For additional information, see Levels of SNMP Support and About SNMP Versions.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Winsnmp.h.
Library: Use Wsnmp32.lib.

WinSNMP API Overview, WinSNMP Functions, SnmpStrToEntity,
SnmpStrToContext, SnmpCleanup

Chapter 15 The WinSNMP API 453

SnmpStrToContext
The WinSNMP SnmpStrToContext function returns a handle to SNMP context
information that is specific to the Microsoft WinSNMP implementation. The handle is a
valid value that a WinSNMP application can use as the context parameter in a call to the
SnmpSendMsg and SnmpRegister functions.

Parameters
session

[in] Handle to the WinSNMP session.

string
[in] Pointer to an smiOCTETS structure that contains a string to interpret. The string
can identify a collection of managed objects, or it can be a community string.

The current setting of the entity and context translation mode determines the way
SnmpStrToContext interprets the input string structure as shown in the following
table.

Entity/Context Translation Mode

SNMPAPI_ TRANSLATED

SNMPAPLUNTRANSLATED_ V1

SNMPAPI_UNTRANSLATED_ V2

Return Values

Meaning

The implementation interprets the string
parameter as a user-friendly name for a
collection of managed objects. The
implementation translates the name into its
SNMPv1 or SNMPv2C components using
the implementation's database.

The implementation interprets the string
parameter as a literal SNMP community
string.

The implementation interprets the string
parameter as a literal SNMP community
string.

If the function succeeds, the return value is a handle to the context of interest.

If the function fails, the return value is SNMPAPLFAILURE. To get extended error
information, call SnmpGetLastError. The SnmpGetLastError function can return one
of the errors on the following page.

454 Volume 2 Network Protocols and Interfaces

Error Code

SNMPAPLNOT _INITIALIZED

SNMPAPI_ALLOC_ERROR

SNMPAPLSESSION_INVALID

SNMPAPLCONTEXT _INVALID

SNMPAPLCONTEXT _UNKNOWN

Remarks

Description

The SnmpStartup function did not complete
successfully.

An error occurred during memory allocation.

The session parameter is invalid.

The string parameter format is invalid. For
example, the len member or the ptr member
of the smiOCTETS structure pOinted to by the
string parameter is NULL.

The value referenced in the string parameter
does not exist.

An unknown or undefined error occurred.

The current setting of the entity and context translation mode determines the manner in
which SnmpStrToContext interprets the input string structure. For additional
information, see Setting the Entity and Context Trans/ation Mode.

The WinSNMP application must call the SnmpFreeContext function to release the
context handle allocated by the SnmpStrToContext function. For additional information
about releasing resources, see WinSNMP Data Management Concepts.

The WinSNMP application should free the memory associated with the ptr member of
the smiOCTETS structure pointed to by the string parameter. This is because the
application defines and allocates the resources. For example, if the application allocated
resources with a call to the GlobalAlioc function, it should use the GlobalFree function
to deallocate the resources. For additional information, see Freeing WinSNMP
Descriptors.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Winsnmp.h.
Library: Use Wsnmp32.lib.

WinSNMP API Overview, WinSNMP Functions, SnmpSendMsg, SnmpRegister,
SnmpFreeDescriptor, SnmpFreeContext, smiOCTETS

Chapter 15 The WinSNMP API 455

SnmpStrToEntity
The WinSNMP SnmpStrToEntity function returns a handle to information about an
SNMP management entity that is specific to the Microsoft WinSNMP implementation.

Parameters
session

[in] Handle to the WinSNMP session.

string
[in] Pointer to a nUll-terminated string that identifies the SNMP management entity of
interest. The current setting of the entity and context translation mode determines the
manner in which SnmpStrToEntity interprets the input string as follows.

Entity/Context Translation Mode Meaning

SNMPAPI_ TRANSLATED

SNMPAPI_UNTRANSLATED_ V1

SNMPAPI_UNTRANSLATED_ V2

Return Values

The implementation interprets the string
parameter as a user-friendly name. The
implementation translates the name into its
SNMPv1 or SNMPv2C components using
the implementation's database.

The implementation interprets the string
parameter as a literal SNMP transport
address.

The implementation interprets the string
parameter as a literal SNMP transport
address.

If the function succeeds, the return value is a handle to the SNMP management entity of
interest.

If the function fails, the return value is SNMPAPI_FAILURE. To get extended error
information, call SnmpGetLastError. The SnmpGetLastError function can return one
of the following errors.

Error Code Description

SNMPAP'-ALLOC~ERROR

The SnmpStartup function did not complete
successfully.

An error occurred during memory allocation.

(continued)

456 Volume 2 Network Protocols and Interfaces

(continued)

Error Code

SNMPAPLSESSION_INVALID

SNMPAPLENTITY _UNKNOWN

SNMPAPI_OTHER_ERROR

Remarks

Description

The session parameter is invalid.

The entity string is invalid.

An unknown or undefined error occurred.

The current setting of the entity and context translation mode determines the manner in
which SnmpStrToEntity interprets the input string that identifies the management entity
of interest. For additional information, see Support for IPX Address Strings in WinSNMP
and Setting the Entity and Context Translation Mode.

The WinSNMP application should call the SnmpFreeEntity function to release the entity
handle allocated by the SnmpStrToEntity function. For additional information, see
WinSNMP Data Management Concepts.

The SnmpStrToEntity function returns a valid entity handle that a WinSNMP application
can use as the srcEntity or the dstEntity parameter in multiple WinSNMP functions.
These functions include the SnmpSendMsg, SnmpRecvMsg, SnmpRegister,
SnmpEncodeMsg, and SnmpDecodeMsg functions.

The implementation returns the current entity and context translation mode in the
nTranslateMode parameter of the SnmpStartup function. A WinSNMP application can
change the setting of the entity and context translation mode with a call to the
SnmpSetTranslateMode function.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Winsnmp.h.
Library: Use Wsnmp32.lib.

WinSNMP API Overview, WinSNMP Functions, SnmpFreeEntity,
SnmpSetTranslateMode, SnmpStartup, SnmpSendMsg, SnmpRecvMsg,
SnmpRegister, SnmpEncodeMsg, SnmpDecodeMsg

SnmpStrToOid
The WinSNMP SnmpStrToOid function converts the dotted numeric string format of an
SNMP object identifier, for example, "1.2.3.4.5.6", to its internal binary representation.

Parameters
string

Chapter 15 The WinSNMP API 457

[in] Pointer to a null-terminated object identifier string to convert.

dstOID
[out] Pointer to an smiOID structure that receives the converted value.

Return Values
If the function succeeds, the return value is the number of subidentifiers in the converted
object identifier. This number is also the value of the len member of the smiOID
structure pointed to by the dstOID parameter.

If the function fails, the return value is SNMPAPI_FAILURE. To get extended error
information, call SnmpGetLastError specifying a NULL value in its session parameter.
The SnmpGetLastError function can return one of the following errors.

Error code

SNMPAPI_ALLOC_ERROR

SNMPAPLOID_INVALID

Remarks

Description

The SnmpStartup function did not complete
successfu lIy.

An error occurred during memory allocation.

The string parameter is invalid. For additional
information, see the following Remarks section.

An unknown or undefined error occurred.

The WinSNMP application must call the SnmpFreeDescriptor function to free resources
allocated for the ptr member of the smiOID structure pOinted to by the dstOID
parameter. On input, SnmpFreeDescriptor ignores the members of this smiOID
structure. The Microsoft WinSNMP implementation overwrites the smiOID members if
the function completes successfully.

The SnmpStrToOid function fails and returns the SNMPAPLOID_INVALID error code if
the string parameter meets one of the following conditions:

• Is not null-terminated.

• Is not the textual form of a valid object identifier.

• Is insufficient in length; all object identifiers must have twosubidentifiers.

• Exceeds the MAXOBJIDSTRSIZE of 1408 bytes.

458 Volume 2 Network Protocols and Interfaces

For additional information, see WinSNMP Data Management Concepts and Freeing
WinSNMP Descriptors.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Winsnmp.h.
Library: Use Wsnmp32.lib.

WinSNMP API Overview, WinSNMP Functions, SnmpFreeDescriptor, smiOID

WinSNMP Structures
The WinSNMP API functions use the following structures:

smiCNTR64
smiOCTETS
smiOID
smiVALUE
smiVENDORINFO

smiCNTR64
The WinSNMP smiCNTR64 structure contains a 64-bit unsigned integer value. The
structure represents a 64-bit counter.

Members
hipart

Specifies the high-order 32 bits of the counter.

lopart
Specifies the low-order 32 bits of the counter.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Winsnmp.h.

Chapter 15 The WinSNMP API 459

WinSNMP API Overview, WinSNMP Structures, SnmpGetVb, smiVALUE

smiOCTETS
The WinSNMP smiOCTETS structure passes context strings to multiple WinSNMP
functions. The structure also describes and receives encoded SNMP messages.

The smiOCTETS structure contains a pOinter to an SNMP octet string of variable length.
The structure can be a member of the smiVALUE structure.

Members
len

Specifies an unsigned long integer value that indicates the number of bytes in the
octet string array pointed to by the ptr member.

ptr
Pointer to a byte array that contains the octet string of interest. A NULL-terminating
byte is not required.

Remarks
The Microsoft WinSNMP implementation allocates and deallocates memory for all output
smiOCTETS structures. The WinSNMP application should not free memory that the
implementation allocates for the ptr member of an smiOCTETS structure. Instead, the
application must call the SnmpFreeDescriptor function to free the memory.

Because the WinSNMP application allocates memory for input descriptor objects with
variable lengths, it must free that memory. For more information, see Win$NMP Data
Management Concepts.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Winsnmp.h.

WinSNMP API Overview, WinSNMP Structures, SnmpStrToContext,
SnmpContextToStr, SnmpEncodeMsg, SnmpDecodeMsg, SnmpFreeDescriptor,
smiVALUE

460 Volume 2 Network Protocols and Interfaces

smiOIO
The WinSNMP smiOID structure passes object identifiers to multiple WinSNMP
functions. The structure also receives the variable name of a variable binding entry in a
call to the SnmpGetVb function.

The smiOID structure contains a pointer to a variable length array of a named object's
subidentifiers. The structure can be a member of the smiVALUE structure.

Members
len

Specifies an unsigned long integer value that indicates the number of elements in the
array pOinted to by the ptr member.

ptr
Pointer to an array of unsigned long integers that represent the object identifier's
subidentifiers.

Remarks
In an smiOID structure, the format of the array pOinted to by the ptr member is one
sub identifier per array element. For example, the string "1.3.6.1" would be an array of
four elements {1 ,3,6,1}.

The Microsoft WinSNMP implementation allocates and deallocates memory for all output
smiOID structures. The WinSNMP application should not free memory that the
implementation allocates for the ptr member of an smiOID structure. Instead, the
application must call the SnmpFreeDescriptor function to free the memory.

Because the WinSNMP application allocates memory for input descriptor objects with
variable lengths, it must free that memory. For more information, see WinSNMP Data
Management Concepts.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Winsnmp.h.

Chapter 15 The WinSNMP API 461

WinSNMP API Overview, WinSNMP Structures, SnmpGetVb, SnmpStrToOid,
SnmpOidToStr, SnmpOidCopy, SnmpOidCompare, SnmpFreeDescriptor,
smiVALUE

smiVALUE
The WinSNMP smiVALUE structure describes the value associated with a variable
name in a variable binding entry.

The syntax member of the smiVALUE structure contains a WinSNMP data type that
indicates the type of data in the value member. The value memberof the structure is the
union of all possible WinSNMP data types.

Members
syntax

Specifies an unsigned long integer that indicates the syntax data type of the value
member. This member can be only one of the types listed in the following table. For
more information, see WinSNMP Data Types and RFC 1902, "Structure of
Management Information for Version 2 of the Simple Network Management Protocol
(SNMPv2)."

462 Volume 2 Network Protocols and Interfaces

Syntax data type

SNMP_SYNTAX_NULL

SNMP _SYNTAX_OlD

SNMP _SYNTAX_ TIMETICKS

Meaning

Indicates a 32-bit signed integer
variable.

Indicates an octet string variable that is
binary or textual data.

Indicates a NULL value.

Indicates an object identifier variable that
is an assigned name with a maximum of
128 subidentifiers.

Indicates a 32-bit signed integer
variable.

Indicates a 32-bit Internet address
variable.

Indicates a counter variable that
increases until it reaches a maximum
value of (21\32) -1.

Indicates a gauge variable that is a non
negative integer that can increase or
decrease, but never exceed a maximum
value.

Indicates a counter variable that
measures the time in hundredths of a
second, until it reaches a maximum
value of (21\32) -1. It is a non-negative
integer that is relative to a specific timer
event.

This type provides backward
compatibility, and should not be used for
new object types. It supports the
capability to pass arbitrary Abstract
Syntax Notation One (ASN.1) syntax.

Indicates a counter variable that
increases until it reaches a maximum
value of (2"64) -1.

Indicates a 32-bit unsigned integer
variable.

Indicates that the agent does not support
the object type that corresponds to the
variable.

Syntax data type

SNMP _SYNTAX_NOSUCHINSTANCE

Chapter 15 The WinSNMP API 463

Meaning

Indicates that the object instance does
not exist for the operation.

Indicates the WinSNMP application is
attempting to reference an object
identifier that is beyond the end of the
MIS tree that the agent supports.

The last three syntax types describe exception conditions under the SNMP version 2C
(SNMPv2C) framework.

value
Specifies the union of all possible WinSNMP syntax data types, including the smiOID
or smiOCTETS descriptor types.

Remarks
A WinSNMP application must check the syntax member of an smiVALUE structure to
correctly dereference the value member. The value member can contain a simple scalar
value or a non-scalar value like an smiOCTETS or an smiOID descriptor structure.

If the syntax member indicates that the value member is an smiOCTETS or an smiOID
descriptor structure, the WinSNMP application must determine whether to free the
resources allocated for the structure. The Microsoft WinSNMP implementation allocates
and de allocates memory for all outputsmiOCTETSand smiOID structures. The
application must call the SnmpFreeDescriptor function to free the memory for the ptr
member of these structures.

Because the WinSNMP application allocates memory for input descriptors with variable
lengths, it must free that memory. For more information, see WinSNMP Data
Management Concepts.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Winsnmp.h.

WinSNMP API Overview; WinSNMP Structures, smiOCTETS, smiOID, SnmpGetVb,
SnmpCreateVbl, SnmpFreeDescriptor

464 Volume 2 Network Protocols and Interfaces

smiVENDORINFO
The smiVENDORINFO structure contains information about the Microsoft WinSNMP
implementation. A WinSNMP application can call the SnmpGetVendorlnfo function to
retrieve this structure. The smiVENDORINFO structure is an element of the WinSNMP
API, version 2.0.

Members
vendorName

Contains the null-terminated string "Microsoft Corporation". The string is suitable for
display to end users.

vendorContact
Specifies a null-terminated character string that indicates how Microsoft can be
contacted for WinSNMP-related information. For example, this member can contain a
postal address, a telephone number or a fax number, a URL, or an e-mail address
such as "snmpinfo@microsoft.com". The string is suitable for display.

vendorVersionld
Specifies a null-terminated character string that identifies the version number of the
WinSNMP API the Microsoft WinSNMP implementation is currently supporting. The
string is suitable for display.

vendorVersionDate
Specifies a null-terminated character string that indicates the release date of the
version of the WinSNMP API the Microsoft WinSNMP implementation is currently
supporting. The string is suitable for display.

vendorEnterprise
Contains the value 311, Microsoft's enterprise number (permanent address) assigned
by the Internet Assigned Numbers Authority (lANA).

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Winsnmp.h.

SnmpGetVendorlnfo

465

CHAPTER 16

Network Management

Microsoft® Windows NT®, Windows® 2000, Windows® 95, and Windows® 98 support a
variety of networking APls. The network management functions provide the ability to
manage user accounts and network resources. Many of the capabilities provided by the
network management functions are not provided by other networking functions.
However, if the capabilities are provided by another set of functions, the documentation
for the network management functions will refer you to other functions you can use for
the same task.

About Network Management
The network management functions allow you to manage network shares as Windows
Explorer and the Net command do. You can also manage user accounts as User
Manager does.

Network Management Function Groups
The network management functions can be divided into the following groups:

• Access functions (Windows 95 and • Schedule functions
Windows 98 only) • Server functions

• Alert functions • Server and workstation transport
• Api Buffer functions functions

• Directory Service functions

• Distributed File System (Dfs) functions

• Get functions

• Group functions

• Local group functions

• Message functions

• NetFile functions

• Remote Utility functions

• Replicator functions

• Session functions

• Share functions

• Statistics functions

• Use functions

• User functions

• User modal functions

• Workstation and workstation user
functions

If you are programming for Active Directory, you may be able to call certain ADSI
interface methods to achieve the same functionality you can achieve by calling certain
network management functions. For more information, see Mapping ADSllnterfaces to
the Network Management Functions.

466 Volume 2 Network Protocols and Interfaces

The system also provides a network-independent set of network functions (WNet
functions) that allow network functions to work across different network vendors'
products. If your application could be converted to use a WNet function, you should
perform the conversion. There are at least two reasons to make the change:

1. The WNet functions are network independent, while the network management
functions work only on Microsoft networks.

2. Some of the Win32 functions documented in this SDK may not be supported in future
releases of Microsoft operating systems if they have been superseded. Microsoft does
not plan to remove specific functions unless equivalent or better functionality is
available.

Windows NT/2000: The following groups of network management functions are
obsolete on this platform:

• Access functions

• Audit functions

• Configuration functions

• Error Logging functions

• NetService functions

Access Functions
Windows NT/2000: The access functions are obsolete on Windows NTlWindows 2000.
These functions work only when the function is accessed with a LAN Manager 2.x
system. The Win32 API provides a full set of access control functions. Use these in
place of the network management access functions.

Windows 95/98: The access functions examine or modify user or group access
permissions for particular network resources. An Access-Control List (ACL) contains the
name of a resource, an audit attribute field, and a list of access-control entries. An
Access-Control Entry (ACE) is a user name or a group name, and the corresponding
access permissions.

The access functions that are supported on Windows 95 and Windows 98 are listed
following.

Function

NetAccessAdd

NetAccessCheck

NetAccessDel

NetAccessEnum

NetAccessGetlnfo

Description

Creates a new ACL for a resource and sets the user or
group access permissions.

Verifies whether a user has permission to perform a
specified operation on a particular resource.

Deletes the ACL for a resource.

Retrieves information about all ACLs.

Returns the ACL for a particular resource.

Chapter 16 Network Management 467

Function Description

NetAccessGetUserPerms Returns a user's or group's access permissions for a
particular resource.

NetAccessSetlnfo

NetSecurityGetlnfo

Changes the ACL for a resource and grants access
permissions.

Returns access control information in a
security_info_1 structure.

Only users or applications with admin group membership or special permission for the
resource can define or examine access permissions. Users have special permissions for
a resource when they are granted ACCESS_PERM permission for that resource; this is
also known as P permission.

Access permission information is available at the following levels:

access_info_O
access_info_1
access_info_2
access_info_12

Access list information is available at the following level:

access_list

Alert Functions
The network management alert functions notify network service programs and
applications of network events. An event is a particular instance of a process,
occurrence, or state of hardware as defined by an application. The alert functions allow
applications to indicate when predefined events occur.

The alert functions are listed following.

Function

NetAlertRaise

NetAlertRaiseEx

Description

Notifies all registered clients that a particular event has occurred.

Simplifies notifying registered clients that a particular event has
occurred, because, unlike NetAlertRaise, NetAlertRaiseEx does
not require a STD_ALERT structure.

The alerter service must be running on the client computer when you call the
NetAlertRaise function or the NetAlertRaiseEx function. If the service is not running,
the functions fail with ERROR_FILE_NOT _FOUND. The alerter service on the client
calls the NetMessageBufferSend function to send information to recipients.

Applications, network services, and internal network components use the network
management alert functions to raise an alert, notifying various applications or users
when a particular type of event occurs. The alert category functions, data types,

468 Volume 2 Network Protocols and Interfaces

structures, and constants are defined in the LMCONS.H, LMERR.H, and LMALERT.H
header files. To access these definitions, define the constants INCL_NETERRORS and
INCL_NETALERT, and include the header file LM.H.

The LMALERT.H file predefines the following alert classes (types of network events) for
sending alerts:

• Network events requiring administrative assistance

• Addition of an entry to an error log file

• Reception of a broadcast message by a user or an application

• Completion of a print job

• Use of certain applications or resources by users

You can define other classes of alerts for network applications as needed. For example,
if an application on a server routinely writes large amounts of data to a disk drive, the
application runs the risk of filling the disk. In this case, you might want to add the event
"no free disk space" to trigger an alert that notifies the application to pause or to
terminate the process that is filling the disk. The event name for an alert can be any
text string.

When you raise an alert with a call to the NetAlertRaise function, the message data
should consist of one STD_ALERT header structure, followed by additional fixed-length
data that is alert-specific in one ADMIN_OTHER_INFO, ERRLOG_OTHER_INFO,
PRINT _OTHER_INFO, or USER_OTHER_INFO structure. Additional variable-length
data can follow the alert-specific structure. (Calls to the NetAlertRaiseEx function do not
require a STD_ALERT structure.) The calling application must allocate the memory for
all structures and variable-length data, and free the memory after the call returns.

The following macros are available for use with alert data buffers.

Macro Description

Returns a pointer to the fixed-length data that follows the
STD_ALERT structure in an alert message.

Returns a pOinter to the variable-length data that follows
the alert-specific data in an alert message.

Instead of using the network management alert functions, you may be able to use the
Windows Management Instrumentation (WMI) SDK for event notification. For more
information about the platforms that support the WMI event model, see Event Notification
in the WMI documentation.

Api Buffer Functions
The network management ApiBuffer functions are used to manage memory allocation.
However, in general, you should use the memory management functions provided by the
Win32 API.

Chapter 16 Network Management 469

The ApiBuffer functions are listed following.

Function

NetApiBufferAllocate

NetApiBufferFree

NetApiBufferReallocate

NetApiBufferSize

Description

Allocates memory from the heap. Call this function when
you require compatibility with the NetApiBufferFree
function.

Frees memory allocated by the NetApiBufferAliocate
function and other network management functions.

Changes the size of a buffer allocated by a call to the
NetApiBufferAliocate function.

Returns the size, in bytes, of a buffer allocated by a call to
the NetApiBufferAllocate function.

Windows NT/2000: For remotable functions that return information to the caller, the
RPC run-time library allocates the buffer containing the return information. When the
caller has finished processing the information, it must call the NetApiBufferFree function
to free the allocated buffer.

Audit Functions

Note The network management auditing functions are obsolete on
Windows NTlWindows 2000 because the system uses an integrated event logging
mechanism for reporting both audits and errors.

The network management auditing functions and error logging functions are provided to
access LAN Manager 2.x logs. They will report ERROR_NOT _SUPPORTED if called on
a Windows NTlWindows 2000 system.

Configuration Functions

Note The network management configuration functions are obsolete on
Windows NTlWindows 2000. They are only for LAN Manager 2.x support. Use the
registry functions to retrieve configuration information for Windows NTlWindows 2000
computers.

Directory Service Functions
The network management directory service functions allow developers to work with the
domain controller and domain membership in the directory service.

470 Volume 2 Network Protocols and Interfaces

The network management directory service functions are listed following.

Function

NetGetJoinableOUs

NetGetJoinlnformation

NetJoinDomain

NetRenameMachinelnDomain

NetUnjoinDomain

NetValidateName

Description

Retrieves a list of organizational units (OUs) in
which a computer account can be created.

Retrieves join status information for the specified
computer.

Joins a computer to a workgroup or domain.

Changes the name of a computer in a domain.

Unjoins a computer from a workgroup or a domain.

Verifies the validity of a computer name, workgroup
name, or domain name.

For more information, see the Active Directory Reference.

Distributed File System (Dfs) Functions
The Distributed File System (Dfs) functions provide the ability to logically group shares
on multiple servers and to transparently link shares into a single hierarchical name
space. Dfs organizes shared resources on a network in a treelike structure.

Dfs supports stand-alone implementations of Dfs, those with one host server, and
domain-based implementations that have multiple host servers and high availability. The
Dfs topology data for domain-based implementations is stored in Active Directory. The
data includes the Dfs root, Dfs links and a replica set.

Each Dfs tree structure has one or more root shares, which are stored on a physical
server running the Dfs process. A root share can contain one or more Dfs links. Each
Dfs link points to one or more shared folders on the network. You can add, modify and
delete Dfs links from a Dfs root share. When you remove the last share associated with
a Dfs link, Dfs deletes the Dfs link in the Dfs root share. (In earlier documentation, Dfs
links were called junction pOints.)

When a Dfs link points to more than one shared folder, the folders are called replicas.
When users access a Dfs link, the Dfs server selects one of the replicas based on site
information, if it is available, and connects the user to the replica. This helps to distribute
client requests across the replicas and can improve performance.

An application can use the Dfs functions to:

• Add a Dfs link to a Dfs root.

• Create or remove stand-alone and domain-based Dfs roots.

• Add shares to an existing Dfs link.

• Remove a Dfs link from a Dfs root.

• Remove a Dfs path from a Dfs link.

• View and configure information about the Dfs links in a named Dfs root.

Chapter 16 Network Management 471

The Dfs functions are listed following.

Function

NetDfsAdd

NetDfsAddFtRoot

NetDfsAddStdRoot

NetDfsAddStdRootForced

NetDfsEnum

NetDfsGetClientlnfo

NetDfsGetlnfo

NetDfsManagerlnitialize

NetDfsRemove

NetDfsRemoveFtRoot

NetDfsRemoveFtRootForced

NetDfsRemoveStdRoot

NetDfsSetClientlnfo

NetDfsSetlnfo

Description

Creates a -new Dfs link or adds a share to an existing
link.

Creates a new domain-based Dfs root, or adds a new
server and share to an existing domain-based Dfs
implementation.

Creates the root for a new stand-alone Dfs
implementation.

Creates the root for a new stand-alone Dfs
implementation in a cluster technology environment,
allowing an offline share to host the Dfs root.

Enumerates all Dfs links in a named Dfs root.

Returns the client's cached information about a
specific Dfs link.

Returns information about a specific Dfs link.

Reinitializes the Dfs service on a specified server.

Removes a share from a Dfs link; removes the Dfs
link if the share is the last associated with the
specified link.

Removes a server and share from a domain-based
Dfs implementation; deletes the Dfs root if there are
no more associated shares.

Removes the specified server from a domain-based
Dfs implementation, even if the server is offline.

Deletes the root of a stand-alone Dfs implementation.

Modifies cached information about a Dfs link on a
client computer.

Associates information with a Dfs link.

Dfs functions are available at the following information levels:

DFS_INFO~1
DFS_INFO_2
DFS_INFO_3
DFS--.:INFO_4
DFS_INFO_100
DFS_INFO_101
DFS_INFO_102
DFS_INFO_200
DFS_STORAGE_INFO

472 Volume 2 Network Protocols and Interfaces

Shares on computers that are running Windows NT Workstation, Windows 2000
Professional, Windows 95, Windows 98, or Windows for Workgroups can be published in
a Dfs name space. You can also publish any non-Microsoft shares for which client
redirectors are available in a Dfs name space. However, unlike a share that is published
on a server that is running Windows NT Server 4.0 or Windows 2000 Server, they
cannot host a Dfs share or point to other Dfs shares.

Dfs uses the Windows 2000 file replication service to copy changes between replicated
shares. Users can modify files stored on one replica, and the file replication service
propagates the changes to the other deSignated replicas. The service preserves the
most recent change to a document or files.

Error Logging Functions

Note The network management error logging functions are obsolete on
Windows NTIWindows 2000 because the system uses an integrated event logging
mechanism for reporting both audits and errors.

The network management auditing functions and error logging functions are provided to
access LAN Manager 2.x logs. They will report ERROR_NOT _SUPPORTED if called on
a Windows NTIWindows 2000 system.

Get Functions
The network management get functions retrieve information about a domain. You can
also call these functions to retrieve information about local, global, workstation, and
server user accounts.

The network management get functions are listed following.

Function

NetGetAnyDCName

NetGetDCName

NetGetDisplaylnformationlndex

NetQueryDisplaylnformation

Description

Returns the name of any domain controller for a
domain that is directly trusted by a specified
server.

Returns the name of the Primary Domain
Controller (PDC) for the specified domain.

Returns the index of the first display information
entry whose name begins with a specified string
or alphabetically follows the string.

.Returns user, computer, or global group account
information.

Chapter 16 Network Management 473

The information returned by the NetQueryDisplaylnformation function is available at
the following levels:

NET_DISPLAY _GROUP
NET _DISPLAY_MACHINE
NET _DISPLAY_USER

Group Functions
A global group contains user accounts from one domain that are grouped together under
one group account name. A global group can contain only members (users) from the
domain where the global group is created; it cannot contain local groups or other global
groups. A global group is available within its own domain and within any trusting domain.

The network management group functions control global groups. The group functions
are listed following.

Function

NetGroupAdd

NetGroupAddUser

NetGroupDel

NetGroupDelUser

NetGroupEnum

NetGroupGetlnfo

NetGroupGetUsers

NetGroupSetlnfo

NetGroupSetUsers

Description

Creates a global group.

Adds one user to an existing global group.

Removes a global group whether or not the group has any
members.

Removes one user name from a global group.

Lists all global groups on a server.

Returns information about a particular global group.

Lists all members of a particular global group.

Sets general information about a global group.

Assigns members to a new global group; replaces the
members of an existing group.

When you call the NetGroupAdd function to create a global group, you must supply a
group name. Initially, a new group has no members.

User accounts automatically belong to one of the special global groups Domain, Users,
or None, according to the user's security requirements. Membership in these groups is
indirectly controlled by the NetUserAdd, NetUserDel, and NetUserSetlnfo functions.

Global group account information is available at the following levels:

GROUP _INFO_O
GROUP _INFO_1
GROUP _INFO_2
GROUP _INFO_1002
GROUP _INFO_1005

The 1002 and 1005 levels are valid only for the NetGroupSetlnfo function.

474 Volume 2 Network Protocols and Interfaces

Global group member information is available at the following information level:

GROUP _USERS_INFO_O

For more information, see the network management Local Group Functions.

If you are programming for Active DirectoryTM, you may be able to call certain Active
Directory Service Interface (ADSI) methods to achieve the same functionality you can
achieve by calling the network management group functions. For more information, see
IADsGroup.

Local Group Functions
A local group can contain user accounts or global group accounts from one or more
domains. (Global groups can contain users from only one domain.) A local group shares
common privileges and rights only within its own domain.

The network management local group functions control members of local groups in a
way that the functions can only be called locally on the system on which the local group
is defined. On a Windows NTlWindows 2000 workstation, or on a server that is not a
domain controller, you can use only a local group defined on that system. A local group
defined on the primary domain controller is replicated to all other domain controllers in
the domain. Therefore, a local group is available on all domain controllers within the
domain in which it was created.

The local group functions create or delete local groups, and review or adjust the
memberships of local groups. These functions are listed following.

Function

NetLocalGroupAdd

NetLocalGroupAddMembers

NetLocalGroupDel

NetLocalGroupDelMembers

NetLocalGroupEnum

NetLocalGroupGetlnfo

NetLocalGroupGetMembers

NetLocalGroupSetlnfo

NetLocalGroupSetMembers

Description

Creates a local group.

Adds one or more users or global groups to an
existing local group.

Deletes a local group, removing all existing
members from the group.

Removes one or more members from an existing
local group.

Returns information about each local group account
on a server.

Returns information about a particular local group
account on a server.

Lists all members of a specified local group.

Sets general information about a local group.

Assigns members to a local group.

Chapter 16 Network Management 475

You can add a member to a local group by specifying the Security Identifier (SID) of the
member. To translate a member account name to a SID, call the LookupAccountName
function.

When you create a local group by calling the NetLocalGroupAdd function, you must
supply a local group name. Initially, the local group has no members.

Local group account information is available at the following levels:

LOCALGROUP _INFO_O
LOCALGROUP _INFO_1
LOCALGROUP _INFO_1 002

Local group membership information is available at the following information levels:

LOCALGROUP _MEMBERS_INFO_O
LOCALGROUP _MEMBERS_INFO_1
LOCALGROUP _MEMBERS_INFO_2
LOCALGROUP _MEMBERS_INFO_3

You can retrieve the names of the local groups to which a user belongs by calling the
NetUserGetLocalGroups function, specifying the following information level:

LOCALGROUP _USERS_INFO_O

For more information, see the network management Group Functions.

If you are programming for Active DirectoryTM, you may be able to call certain Active
Directory Service Interface (ADSI) methods to achieve the same functionality you can
achieve by calling the network management local group functions. For more information,
see IADsGroup.

Message Functions
The network management message functions send messages and maintain message
aliases. The message functions are listed following.

Function Description

NetMessageBufferSend Sends a message to a registered message alias.

NetMessageNameAdd Registers a message alias in the message name table.

NetMessageNameDel Deletes a message alias from the message name table.

NetMessageNameEnum Lists all the message aliases stored in the message
name table.

NetMessageNameGetlnfo Returns information about a particular message alias in
the message name table.

476 Volume 2 Network Protocols and Interfaces

A message is a buffer of text data sent to a user or application on the network. To
receive a message, a user or application must register a message alias in a computer's
table of message names. This can be done by calling the NetMessageNameAdd
function. A message name table contains a list of registered message aliases (users and
applications) permitted to receive messages. The aliases registered in the message
name table are case insensitive.

The messenger service must be running on the receiving computer to display a pop-up
message when the message is received. In addition, the Workstation service must be
running on the local computer. Netbios is the transport mechanism used between the
sender and receiver.

Message functions are available at two information levels:

MSG_INFO_O
MSG_INFO_1

MSG_INFO_1 exists only for compatibility. The messenger service does not forward
names or allow names to be forwarded to it.

NetFile Functions
The network management file functions provide a way to monitor and close the file,
device, and pipe resources open on a server. The file functions are listed following.

Function

NetFileClose

NetFileEnum

NetFileGetlnfo

Description

Forces a resource to close.

Returns information about open files on a server.

Returns information about a particular opening of a server
resource.

Call the NetFileClose function when the file cannot be closed by any other means. This
function should be used with caution because NetFileClose does not write data cached
on the client system to the file before closing the file.

The NetFileEnum function returns information about resources open on a server. A file
can be opened one or more times by one or more applications. Each file opening is
uniquely identified. The NetFileEnum function returns an entry for each file opening. The
NetFileGetlnfo function returns information about one opening of a resource.

File information is available at the following levels:

FILE_INFO_2
FILE_INFO_3

Levels 0 and 1 are not supported. Level 2 returns only the identification number
assigned to the resource when it was opened. Level 3 returns the identification number,
permissions, file locks, and the name of the user who opened the resource.

Chapter 16 Network Management 477

If you are programming for Active DirectoryTM, you may be able to call certain Active
Directory Service Interface (ADSI) methods to achieve the same functionality you can
achieve by calling the NetFileEnum and NetFileGetlnfo functions. For more
information, see IADsResource and IADsFileServiceOperations.

Windows 95/98: The NetFileClose2 function forces a resource to close. This function
can be used when an error prevents closure by any other means. The file_info_50
structure is supported on Windows 95 and Windows 98.

NetService Functions

Note The network management NetService functions are obsolete on
Windows NTlWindows 2000 because the system provides a complete set of service
functions. These should be used in place of the NetService functions, unless you need
to control services on a LAN Manager 2.x server.

A service can be started using the service functions. At startup time, the service defines
whether it can be stopped, paused, and continued. Windows NTlWindows 2000
networking provides several standard services, such as the workstation, server, and
messenger services.

Remote Utility Functions
The network management remote utility functions are listed following.

Function Description

NetRemoteComputerSupports Queries the redirector to retrieve the optional
features that a remote system supports.

NetRemoteTOD Enables applications to access the time-of-day
information on a remote server.

The remote time-of-day information is available at one information level:

TIME_OF _DAY_INFO Replicator Functions

The Windows NT replicator service maintains identical sets of files and directories on
different servers and workstations. When you update files on one server, the file
replicator service replaces the corresponding files on other servers and workstations with
the updated files. The replication process simplifies the task of updating and
coordinating files, and maintains the integrity of the replicated data. For more information
about replication, see the following topics:

• About export and import servers

• About the file replicator service

Replication is controlled by options you set in the LANMAN.INI file using the following
categories of network management replicator functions.

478 Volume 2 Network Protocols and Interfaces

• Replicator configuration functions

• Replicator export directory functions

• Replicator import directory functions

About Export and Import Servers
To replicate a set of files and directories on several computers, you must create a
master set of files and directories on a server that you designate as an export server.
Export servers maintain the master files in an export directory tree with a maximum of 32
levels. Each directory can contain as many as 1000 files.

Import servers are servers and workstations that receive replicated files. Import servers
and workstations have import directories that correspond to the export directories. When
a file changes in the export directory, the file replicator service copies the changes to the
corresponding import directories on all designated import servers and workstations. The
service replicates all directory and file additions and deletions to the import servers.

A network can have any number of export and import servers. A server can be
designated as both an export and an import server. You can configure workstations only
as import servers.

About the File Replicator Service
Before using the replicator functions, check the Control Panel Services application to
make sure the file replicator service is configured to log on using a specific user account.
The user account must be a member of the Replicator local group, the account must not
be disabled, and the account must have permission to access the import and export
trees on the respective servers.

Changing from file system replication control in LAN Manager 2.x to replicator function
control in Windows NT has the following implications:

• To terminate replication from a client's master, applications can no longer delete a
directory in the client's import path.

• To control the method of replication, applications can no longer use the REPUNI file
located in each replicated directory on the master.

• To control replication of a master directory, applications can no longer create or delete
USERLOCK.* files.

• To prevent replication on a client from a master directory, applications can no longer
create or delete USERLOCK.* files.

• You will need to modify applications that depend on the LAN Manager2.xbehavior of
ignoring locks for file integrity trees. (The Windows NTlWindows 2000 policy differs
from LAN Manager 2.x policy; under Windows NTlWindows 2000 the locks are always
respected.)

Each of the options listed preceding can be specified to the file replicator service by
calling the appropriate network management replicator function.

Chapter 16 Network Management 479

Any user or application logged on as a member of either the administration group or the
server operator group can modify the parameters that control the file replicator service.
(This applies to both local and remote export servers.)

You can use the Windows NT file replicator service to copy relatively small directory
trees. If you are attempting to replicate multimegabyte directory trees or trees containing
thousands of directories and files, you should consider some other means of doing so.

Replicator Configuration Functions
You can use the replicator configuration functions to examine and modify the
configuration parameters for the file replicator service. The replicator configuration
functions are listed following.

Function

NetReplGetlnfo

NetReplSetlnfo

Description

Returns configuration information for the file replicator
service.

Modifies configuration information for the file replicator
service.

Configuration information for the file replicator service is available at the following levels:

REPL_INFO_O
REPL_INFO_1000
REPL_INFO_1001
REPL_INFO_1002
REPL_INFO_1003

Replicator Export Directory Functions
The replicator export directory functions control top-level directories under the export
path on the master directory.

The replicator export directory functions are listed following.

Function

NetReplExportDirAdd

NetReplExportDirDel

NetRepl ExportDirEnum

NetRepl ExportDirGetlnfo

NetReplExportDirLock

NetReplExportDirSetlnfo

NetReplExportDirUnlock

Description

Registers an existing directory in the export path for
replication.

Removes the registration of a replicated directory.

Lists the replicated directories in the export path.

Returns the control information for a replicated directory.

Locks a directory so that replication of it can be
suspended.

Modifies the control information for a replicated directory.

Unlocks a directory so that replication of it can resume.

A master directory can be registered for replication in a variety of ways.

480 Volume 2 Network Protocols and Interfaces

• The file replicator service automatically registers a new directory for replication when
a user creates it under the master directory's export path. In this case, the file
replicator service gives the directory the REPL_INTEGRITY _FILE and
REPL_EXTENT _TREE settings for the integrity and extent replication controls.

• An application can call the NetReplExportDirAdd function to register a pre-existing
directory in the export path for replication. When adding a directory in this manner,
you must specify the settings for the integrity and extent replication controls using
the rpedX_integrity and rpedX_extent members of the appropriate
REPL_EDIR_INFO structure.

The integrity control determines when a master updates a client. The control can be
one of the following values.

Value Meaning

REPL_INTEGRITY _FILE The client receives a replica of a file within the directory
when the directory isn't being modified or replicated.

REPL_INTEGRITY _TREE Before the file replicator service updates the client, each
file and directory within the replicated directory must be
stable for a specific period of time. This time is specified
by the rpO_guardtime member of the REPL_INFO_O
structure. (Call the NetReplGetlnfo function to retrieve
this type of configuration information for the file replicator
service.)

The extent control specifies the selection of files for replication within the main export
directory. The control can be one of the following values.

Value Meaning

The file replicator service replicates the entire tree within
the directory.

The file replicator service replicates only the files in the
first-level directory.

For additional information about these replication controls, see REPL_EDIR_INFO_1.

On systems running LAN Manager 2.x, the replication controls used to be specified in
the REPUNI file in each replicated directory. The controls could not be dynamically set.
To examine the replication controls of a directory on Windows NTIWindows 2000, call
the NetReplExportDirGetlnfo function; to modify them, call NetReplExportDirSetlnfo.
Windows NTIWindows 2000 ignores the REPUNI file.

You can call the replicator export directory functions whether or not the file replicator
service is running. If the service is running on a master, modifications to the directory
controls take effect immediately, and the changes persist after the file replicator service
stops. If the service has not started, the changes to the directory controls are stored as
persistent information and take effect when the file replicator service starts.

Chapter 16 Network Management 481

The replicator export directory functions are available at the following information levels:

REPL_EDIR_INFO_O
REPL_EDIR_INFO_1
REPL_EDIR_INFO_2
REPL_EDIR_INFO_1000
REPL_EDIR_INFO_1001

The rped2_lockcount and rped2_locktime members of the REPL_EDIR_INFO_2
structure contain lock status information.

Replicator Import Directory Functions
The replicator import directory functions designate the top-level directories in the client's
import path that should receive updates from the master. The functions also return status
information about a replicated directory on the client. (On LAN Manager 2.x, after a user
creates a directory under the import path, the file replicator service automatically
replicates to it.)

The replicator import directory functions are listed following.

Function

NetRepllmportDirAdd

NetReplimportDirDel

NetRepllmportDirEnum

NetRepllmportDirGetlnfo

NetReplimportDirLock

NetRepllmportDirUnlock

Descri ption

Registers an existing directory in the import path to
receive replication from a master.

Removes the registration of a directory in the import
path so that it no longer receives updates from the
master; the function does not delete the directory from
the file system.

Lists the client directories that are registered for
replication.

Returns status information for a replicated directory on
an import server.

Locks a directory so that replication to it can be
suspended.

Unlocks a directory so that replication to it can resume.

You can register a client directory for replication in one of the following ways:

• The file replicator service automatically adds a directory to the client's import path if
the directory is exported by a master from which the import server is already
importing.

• An application can call the NetReplimportDirAdd function to register a preexisting
directory in the import path for replication. This can be useful if you want to modify the
import directory's properties prior to importing the directory; for example, you may
want to lock the directory and suspend replication. (The function does not create the
directory.)

482 Volume 2 Network Protocols and Interfaces

You can call the replicator import directory functions whether or not the file replicator
service is running. If the service is running on a client, directory additions and deletions
take effect immediately, and the changes persist after the file replicator service stops. If
the service has not started, and if there is a master that exports the directory, directory
additions receive updates when the file replicator service starts.

The replicator import directory functions are available at the following information levels:

REPL_IDIR_INFO_O
REPL_IDIR_INFO_1

Schedule Functions
The network management schedule service functions submit and manage jobs that
execute on a specified computer at a particular time (or times) in the future. Jobs can
include commands and programs. The functions manage jobs at remote and local
computers, provided the schedule service is running on the computer.

The schedule service functions are listed following.

Function

NetScheduleJobAdd

NetScheduleJobDel

NetScheduleJobEnum

NetScheduleJobGetlnfo

Description

Submits a job to run at a specified future date and time.

Cancels a range of jobs queued to run on a computer.

Lists the jobs queued on a specified computer.

Returns information about a particular job queued on a
computer.

For the network management schedule functions to succeed, a caller must have
administrator's privilege at a computer where the schedule service is running. The
schedule service functions are also known as "Job" and "AT command" functions.

The AT_INFO structure is used by the NetScheduleJobAdd function to specify
information when submitting a job, and by the NetScheduleJobGetlnfo function to
retrieve information about a job that has been submitted. The AT_ENUM structure is
used by NetScheduleJobEnum to enumerate and return information about an entire
queue of submitted jobs.

Server Functions
The network management server functions perform administrative tasks on a local or
remote server. The server functions are listed following.

Function

NetServerDiskEnum

NetServerEnum

Description

Returns a list of local disk drives on a server.

Lists all visible servers of a particular type (or types) in the
specified domain.

Function

NetServerGetlnfo

NetServerSetlnfo

Chapter 16 Network Management 483

Description

Returns configuration information about a specified server.

Sets the operating parameters for a server.

Any user or application with admin group membership on a local or remote server can
perform administrative tasks on that server to control the server's operation, user
access, and resource sharing. The low-level parameters that affect a server's operation
can be examined and modified by calling the NetServerGetlnfo and NetServerSetlnfo
functions. These parameters are defined in the server's LANMAN.INI file.

Most network management server functions execute only on a remote server. The
NetServerEnum function executes on either a local workstation or a remote server. If
you attempt to execute other server functions on a local workstation, the functions return
the error NERR_RemoteOnly.

Server-specific information is available at the following levels, starting at level 100:

SERVER_INFO_100
SERVER_INFO _101
SERVER_INFO_102
SERVER_INFO_ 402
SERVER_INFO_ 403
SERVER_INFO_1501
SERVER_INFO_1502
SERVER_INFO_1503
SERVER_INFO_1506
SERVER_INFO_1509
SERVER_INFO_1510
SERVER_INFO_1511
SERVER_INFO_1512
SERVER_INFO_1513
SERVER_INFO_1515
SERVER_INFO_1516

SERVER_INFO_1518
SERVER_INFO_1523
SERVER_INFO_1528
SERVER_INFO_1529
SERVER_INFO_1530
SERVER_INFO_1533
SERVER_INFO_1536
SERVER_INFO-,--1538
SERVER_INFO_1539
SERVER_INFO_1540
SERVER_INFO_1541
SERVER_INFO_1542
SERVER_INFO_1544
SERVER_INFO_1550
SERVER_INFO_1552

The server information levels that were available in LAN Manager 2.x are no longer
available. However, the following structures are supported on LAN Manager 2.x
systems:

SERVER_INFO_1005
SERVER_INFO_1010
SERVER_INFO_1016
SERVER_INFO_1017
SERVER_INFO_1018
SERVER_INFO_1107

484 Volume 2 Network Protocols and Interfaces

If you are programming for Active DirectoryTM, you may be able to call certain Active
Directory Service Interface (ADSI) methods to achieve the same functionality you can
achieve by calling the network management server functions. For more information, see
IADsComputer.

Windows 95/98: The following information levels are supported on Windows 95 and
Windows 98:

servecinfo_1
server_info_50

For more information, see the Server and Workstation Transport Functions.

Server and Workstation Transport Functions
The network management server and workstation transport functions handle binding and
unbinding of transport protocols to and from the server and redirector. The server
transport functions deal with transport protocols managed by the server; the workstation
transport functions deal with transport protocols managed by the redirector.

File sharing between a transport device and a server has two components:

• The server computer where the files reside

• A Server Message Block (SMB) client that accesses the files

The client computer communicates with the server computer over a local area network
using a transport protocol; for example, TCP, NetBEUI, or XNS. The client sends
requests to the server to retrieve data. The software on the client computer that
generates the file requests is called the redirector because it redirects local file requests
to the server computer. The software on the computer that receives and acts on the file
requests is called the server because it serves the clients. The format specific to these
requests is called the 5MB protocol.

The server transport functions are listed following.

Function

NetServerComputerNameAdd

NetServerComputerNameDel

NetServerTransportAdd

Description

Binds an emulated server name to each of the
transport protocols on which a server is active.
(Combines the functionality of the
NetServerTransportEnum function and the
NetServerTransportAddEx function.)

Disconnects each network transport protocol from
an emulated server name set by a previous call to
the NetServerComputerNameAdd function.

Binds the specified server to the transport protocol.
(This function supports only the
SERVER_TRANSPORT _INFO_O information level.)

Chapter 16 Network Management 485

Function Description

NetServerTransportAddEx Binds the specified server to the transport protocol.
(This extended function supports the
SERVER_TRANSPORT _INFO_1,
SERVER_TRANSPORT _INFO_2, and
SERVER_TRANSPORT _INFO_3 information
levels.)

NetServerTransportDel

NetServerTransportEnum

Disconnects the transport protocol from the server.

Enumerates the transport protocols managed by the
server.

Server transport functions are available at the following information levels:

SERVER_TRANSPORT _INFO_O
SERVER_TRANSPORT _INFO_1
SERVER_TRANSPORT _INFO_2
SERVER_TRANSPORT _INFO_3

The workstation transport functions perform equivalent operations for the workstation.
The workstation transport functions are listed following.

Function

NetWkstaTransportAdd

NetWkstaTransportDel

NetWkstaTransportEnum

Description

Connects the redirector to the transport protocol.

Disconnects the transport protocol from the redirector.

Lists the transport protocols that are managed by the
redirector.

Workstation transport functions are available at one information level:

WKSTA_ TRANSPORT _INFO_O

Session Functions
The network management session functions control network sessions established
between workstations and servers. The functions require that the server service be
started on the server.

The session functions are listed following.

Function

NetSessionDel

NetSessionEnum

NetSessionGetinfo

Description

Deletes the current connections between a workstation and
server; terminates the network session.

Returns information about all current sessions established
for a server.

Returns information about a particular session.

486 Volume 2 Network Protocols and Interfaces

A session is a link between a workstation and a server. A session is established the first
time a workstation makes a connection to a shared resource on the server. Until the
session ends, all further connections between the workstation and the server are part of
the same session. To end a session, an application on the server end of a connection
calls the NetSessionDel function.

The network management session functions manage information on a per-user basis
with the username parameter. Because there can be multiple users per session, this
parameter is necessary to access the user-specific information for the session.

Session functions are available at five information levels:

SESSION_INFO_O
SESSION_INFO_1
SESSION_INFO_2
SESSION_INFO_10
SESSION_INFO_502

If you are programming for Active DirectoryTM, you may be able to call certain Active
Directory Service Interface (ADSI) methods to achieve the same functionality you can
achieve by calling the network management session functions. For more information,
see IADsSession and IADsFileServiceOperations.

Windows 95/98: The following information levels are supported on Windows 95 and
Windows 98:

session_info_O
session_info_1
session_info_2
session_info_10
session_info_50

Share Fu nctions
The network management share functions control shared resources. A shared resource
is a local resource on a server (for example, a disk directory, print device, or named
pipe) that can be accessed by users and applications on the network.

The share functions are listed following.

Function

NetShareAdd

NetShareCheck

NetShareDel

NetShareEnum

Description

Shares a resource on a server.

Queries whether a server is sharing a device.

Deletes a share name from a server's list of shared
resources.

Retrieves share information about each shared
resource on a server.

Function

NetShareGetlnfo

NetShareSetlnfo

Chapter 16 Network Management 487

Description

Retrieves information about a specified shared
resource on a server.

Sets a shared resource's parameters.

The NetShareAdd function allows a user or application to share a resource of a specific
type using the specified share name. The NetShareAdd function requires the share
name and local device name to share the resource. A user or application must have an
account on the server to access the resource.

You can also specify a security descriptor to be associated with a share. Security
descriptors specify which users are allowed to access files through the share, and with
what type of access.

The network management functions use the following special share names for
interprocess communication (IPC) and remote administration of the server.

• IPC$, reserved for interprocess communication

• ADMIN$, reserved for remote administration

• A$, B$, C$ (and other local disk names followed by a dollar sign), assigned to local
disk devices

To list all connections made to a shared resource on a server, or to list all connections
established from a particular computer, call the NetConnectionEnum function. You can
call NetConnectionEnum at the CONNECTION_INFO_O and CONNECTION_INFO_1
information levels.

Share functions are available at the following information levels:

SHARE_INFO_O
SHARE_INFO_1
SHARE_INFO_2
SHARE_INFO_501
SHARE_INFO_502
SHARE_INFO_1005

The following information levels are valid only for NetShareSetlnfo:

SHARE_INFO_1004
SHARE_INFO_1006

If you are programming for Active DirectoryTM, you may be able to call certain Active
Directory Service Interface (ADSI) methods to achieve the same functionality you can
achieve by calling the network management share functions. For more information, see
IADsFileShare.

Windows 2000: The SHARE_INFO_1S01 information level is supported only on
Windows 2000.

488 Volume 2 Network Protocols and Interfaces

Windows 95/98: The following information levels are supported on Windows 95 and
Windows 98:

connection_info_O
connection_info_1
connection_info_50
share_info_O
share_info_1
share_info_2
share_info_50

Statistics Functions
Windows NTlWindows 2000 accumulates a set of operating statistics for workstations
and servers from the time that the workstation or server service is started. To retrieve
these statistics, you can call the following network management statistics function.

Function

NetStatisticsGet

Description

Retrieves operating statistics for a service; supports the
workstation and server services.

Because Windows NTlWindows 2000 and LAN Manager 2.xworkstations collect a
different set of statistics, the caller must know whether the server is running
Windows NTlWindows 2000 or LAN Manager 2.x. You can call the NetServerGetlnfo
function to determine the type of server and interpret the returned buffer accordingly.

The NetStatisticsGet function returns a STAT_WORKSTATION_O structure when
workstation statistics are requested; the function returns a STAT_SERVER_O structure
when server statistics are requested.

Use Functions
The network management use functions examine and manage connections (uses)
between workstations and servers. The use functions are listed following.

Function

NetUseAdd

NetUseDel

NetUseEnum

NetUseGetlnfo

Description

Creates a connection between a local computer and a server.

Ends a connection to a shared resource.

Lists all current connections between the local computer and
resources on remote servers.

Returns information about a connection to a shared resource.

Connections are distinguished from sessions: a session is established the first time a
workstation makes a connection to a shared resource on the server. All additional
connections between the workstation and the server are part of this same session until

Chapter 16 Network Management 489

the session ends. Two types of connections can be made: device-name connections
(which can only be explicit) and Universal-Naming Convention (UNC) connections
(which can be explicit or implicit).

Connections are made on a per-user basis. A connection made by a user is deleted
when that user logs off. For this reason the network management use functions are local
only, because a connection set up by a remote user would not be accessible to any
other users, even the user that was interactively logged on to that computer.

The NetUseAdd function establishes an explicit connection between the local computer
and a resource shared on a server by redirecting a local device name to the share name
of a remote server resource 0\servername\sharename). Once a device-name connection
is made, users or applications can use the remote resource by specifying the local
device name.

Implicit UNC connections are made by the function responsible for the connection. To
establish an implicit UNC connection, an application passes the share name of a
resource to any function that accepts UNC paths. The function accepts the UNC name
and makes a connection to the specified share name. All further requests on this
connection require the full share name.

The use functions are available at the following information levels:

USE_INFO_O
USE_INFO_1
USE_INFO_2

Information level 2 is not available if the function is accessed with a LAN Manager 2.x
system. In that case, the function returns ERROR_NOT _SUPPORTED.

User Functions
The network management user functions control a user's account in the security
database. The user functions are listed following.

Function Description

NetUserAdd Adds a user account and assigns a password and
privilege level.

NetUserChangePassword Changes a user's password for a specified network
server or domain.

NetUserDel Deletes a user account from the server.

NetUserEnum Lists all user accounts on a server.

NetUserGetGroups Returns a list of global group names to which a user
belongs.

NetUserGetlnfo Returns information about a particular user account on a
server.

(continued)

490 Volume 2 Network Protocols and Interfaces

(continued)

Function

NetUserGetLocalGroups

NetUserSetGroups

NetUserSetlnfo

Description

Returns a list of local group names to which a user
belongs.

Sets global group memberships for a specified user
account.

Sets the password and other elements of a user account.

Each user or application that accesses network resources must have an account in the
security database. The Windows NTlWindows 2000 Server directory services use this
account to verify that the user or application has permission to connect to a resource.
When a user or an application requests access to a resource, the security system
checks for an appropriate user account or group account to permit the access.

Once you remove a user account by calling the NetUserDel function, the user can no
longer access the server except by using the guest account.

Because a user's password is confidential, it is not returned by the NetUserEnum
function or the NetUserGetlnfo function. The password is initially assigned when you
call NetUserAdd.

User account information is available at the following levels:

USER_INFO_O
USER_INFO_1
USER_INFO_2
USER_INFO_3
USER_INFO_10
USER_INFO_11
USER_INFO_20
USER_INFO_21
USER_INFO_22

In addition, the following information levels are valid when you call the NetUserSetlnfo
function:

USER_INFO_1003
USER_INFO_1005
USER_INFO_1006
USER_INFO_1007
USER_INFO_1008
USER_INFO_1009
USER_INFO_1010
USER_INFO_1011
USER_INFO_1012
USER_INFO_1013

USER_INFO_1014
USER_INFO_1017
USER_INFO_1018
USER_INFO_1020
USER_INFO_1023
USER_INFO_1024
USER_INFO _1025
USER_INFO _1051
USER_INFO_1052
USER_INFO_1053

Chapter 16 Network Management 491

If you are programming for Active DirectoryTM, you may be able to call certain Active
Directory Service Interface (ADSI) methods to achieve the same functionality you can
achieve by calling the network management user functions. For more information, see
IADsUser and IADsComputer.

User Modal Functions
The network management user modal functions control the system-wide parameters that
affect the Windows NTlWindows 2000 security system behavior.

The user modal functions are listed following.

Function

NetUserModalsGet

NetUserModalsSet

Description

Returns global information for all users and global
groups in the security database.

Sets global information for all users and global groups
in the security database.

The NetUserModalsGet and NetUserModalsSet functions examine and modify the
modal settings, which are global parameters that affect every account in the security
database (for example,the minimum allowable password length). All modal settings can
be altered by calling NetUserModalsSet. Most of the modals can also be altered by
using the net accounts command. The network management user modal functions do
not require the server to have user-level security.

User modal information is available at the following levels:

USER_MODALS_INFO_O
USER_MODALS_INFO_1
USER_MODALS_INFO _2
USER_MODALS_INFO _3

The following information levels are valid only for NetUserModalsSet and replace the
older way of passing in a Parmnum to set a specific field:

USER_MODALS_INFO_1001
USER_MODALS_INFO_1002
USER_MODALS_INFO_1003
USER_MODALS_INFO_1004
USER_MODALS_INFO_1005
USER_MODALS_INFO_1006
USER_MODALS_INFO_1007

If you are programming for Active DirectoryTM, you may be able to call certain Active
Directory Service Interface (ADSI) methods to achieve the same functionality you can
achieve by calling the network management user modal functions. For more information,
see IADsDomain.

492 Volume 2 Network Protocols and Interfaces

Workstation and Workstation User Functions
The network management workstation functions perform administrative tasks on a local
or remote workstation. Any user or application with admin group membership, on a local
or remote server, can perform administrative tasks on a workstation to control its
operation, user access, and resource sharing.

The workstation functions are listed following.

Function

NetWkstaGetlnfo

NetWkstaSetlnfo

Description

Returns information about the configuration elements
for a workstation.

Configures a workstation.

The workstation functions allow access to two discrete types of workstation information:

• System information

• Platform-specific information (Windows NT, OS/2, MS-DOS, and so on)

Within each type the data is categorized by security access. Data that is guest
accessible is a subset of the data that is user-accessible, which is in turn a subset of the
admin-accessible data.

The workstation information structures have been restructured from those of LAN
Manager 2.x to allow the information to be grouped by type and security accesses. The
LAN Manager 2.x workstation information format has been discontinued due to the
following:

• The base levels (0 and 1) were not grouped by accessibility. A non-superset level
(level 10) was required to allow guest access to the information.

• Platform-specific implementation information was included in the base levels such that·
every platform had to return all information including a default for non-relevant fields.
This increased the size of the information structures unnecessarily, making the
functions cumbersome to use.

Workstation information is available at the following levels:

WKSTA_INFO_100
WKST A_INFO _101
WKSTA_INFO_102

The network management workstation user functions allow access to user-specific
information. The user-specific information is separated from the workstation information
because there can be more than one user on a workstation.

Chapter 16 Network Management 493

The workstation user functions are listed following.

Function

NetWkstaUserEnum

NetWkstaUserGetlnfo

NetWkstaUserSetlnfo

Description

Lists information about all users currently logged on to
the workstation.

Returns information about one currently logged-on user.

Sets the user-specific information for the configuration
elements of a workstation.

Workstation user information is available at the following levels:

WKSTA_USER_INFO_O
WKSTA_USER_INFO_1
WKSTA_USER_INFO_1101

Network Management Data
The following topics discuss the data buffers, alignment, structures, and handles used by
the network management functions.

• Network Management Function Buffers

• Network Management Function Buffer Lengths

• API Data Alignment

• Embedded Strings

• Enumeration Resume Handles

• Function Status

• NLS Support

• Parameter Error Reporting

• RPC Buffer Allocation Errors

• Obsolete Information Fields

Network Management Function Buffers
Windows NT/2000: The RPC run-time library handles the buffers required by the 32-bit
data retrieval network management functions as follows:

• Sending data to the server (data specified by [in] parameters).

The caller must allocate the buffer for the relevant information structure (or structures)
and pass a pOinter variable to the function. The caller does not need to specify the
buffer length.

Example: NetGroupAdd

• Retrieving data from the server (data specified by [out] parameters).

494 Volume 2 Network Protocols and Interfaces

The system allocates the buffer for the returned information. The caller must pass a
pointer variable to the function on input. On successful return, the pOinter receives the
address of the system-allocated buffer that contains the returned information. This
simplifies the calling code, because the caller does not need to estimate the size of
the buffer, or resize the buffer and reissue the function.

When the caller has finished processing the returned information, it must free the
system-allocated memory by calling the NetApiBufferFree function. For more
information about specifying buffer sizes, see Network Management Function Buffer
Lengths.

Example: NetGroupEnum

Windows 95/98: The caller must provide and free all buffers required by the network
management functions.

Network Management Function Buffer Lengths
Applications that specify buffer sizes when calling network management enumeration
functions (and various data retrieval functions) must specify buffers large enough to hold
the returned information structure (or structures) plus the strings to which their members
point. If you do not specify a large enough buffer to receive all the available entries, the
function returns ERROR_MORE_DAT A. Enumeration calls do not return partial entries.

Windows NT/2000: The network management functions take an advisory maximum
data-length parameter, prefmaxlen. This parameter allows an application to suggest the
number of bytes the server should return from a function call.

If you specify the value MAX_PREFERRED_LENGTH in the prefmaxlen parameter, the
network management functions allocate the amount of memory required for the data.

Windows 95/98: The caller must provide and free all buffers required by the network
management functions.

For more information, see Network Management Function Buffers.

API Data Alignment
All structures specified for the network managementfunctions must be 32-bit word
aligned. The base size for a structure element is a DWORD.

Embedded Strings
Information structures will not contain embedded strings. This improves the alignment of
the information structures and allows for OEM flexibility in the core functions.

Any information field that is returned in an enumeration call that can be subsequently
used as a key for a Getlnfo call is guaranteed to be present in the enumeration buffer. If
the variable-length information string that would specify the key field value will not fit,
then the entire fixed-length structure for the entry is not returned. Other variable-length
fields will be returned as a NULL pointer for the case in which the string does not fit.

Chapter 16 Network Management 495

Enumeration Resume Handles
Enumeration resume handles are identifiers for the actual resume key contained in the
instance data for the function. This is required for security, interoperability, and to
simplify the caller code for the function.

If a NULL is passed for the pointer to the resume handle, no handle is stored and the
enumeration search cannot be continued. This is useful in cases where the application
does not want to enumerate all the items.

If an error is returned from an enumeration call, the resume handle must be treated as
invalid and not used for any subsequent enumeration calls. When this occurs you must
restart the enumeration from the beginning.

Function Status
The network management functions return zero on success; a nonzero return code
indicates an errOL Because the network management functions use RPC, the error
definitions include RPC error codes. For more information, see Net E"or Codes.

NLS Support
Windows NT/2000: The network management functions take Unicode strings as input
and provide Unicode strings on output. If your application generally works with ANSI
strings, care must be taken to convert to and from Unicode where appropriate.

Windows 95198: Because the system does not support Unicode, the network
management functions require ANSI strings.

Parameter Error Reporting
The Add and Setlnfo functions return an index for a parameter in error. The caller may
pass a NULL pOinter for the paim_e" parameter indicating that the field should not be
set by the function. Forfunctions that are accessed through LAN Manager 2.x servers,
this field is returned as· PARM_ERROR_UNKNOWN.

RPC Buffer. Allocation Errors
Because the RPC run-time library allocates memory for send and receive buffers, the
function should expect RPCaliocation errors. In the event of an RPC allocation error, a
resumable handle il). invalidated. This is a requirement because resumable functions are
not rewindable ..

Obsolete Information Fields
Many of the information fi~lds in the core information structures will be obsolete. These
fields will remain in the information structure for compatibility with 16-bit versions of
Windows and wtll return an intelligent default on 32-bit Windows systems.

496 Volume 2 Network Protocols and Interfaces

Platform Support
The network management functions are implemented on all Win32 platforms. However,
there are implementation differences between the platforms. The following sections
contain platform-specific information.

• Windows 95/98 support

• Functions that only have support for remoting to LAN Manager 2.x

• Requests from 16-bit LAN Manager clients

• Calling 16-bit LAN Manager servers

Windows 95/98 Support
The following 32-bit network management functions are supported by Windows 95 and
Windows 98:

• NetAccessAdd • NetSecurityGetlnfo

• NetAccessCheck • NetServerGetlnfo

• NetAccessDel • NetSessionDel

• NetAccessEnum • NetSessionEnum

• NetAccessGetlnfo • NetSessionGetlnfo

• NetAccessGetUserPerms • NetShareAdd

• NetAccessSetlnfo • NetShareDel

• NetConnectionEnum • NetShareEnum

• NetFileClose2 • NetShareGetlnfo

• NetFileEnum • NetShareSetlnfo

You can also thunk to the 16-bit LAN Manager functions on Windows 95/98. For
information on these functions, please see the 16-bit LanMan Programmer's Toolkit. This
toolkit is available through the Microsoft Developer Network (MSDN). For information on
thunking, see Thunk Compiler.

In addition, the following network management structures are supported by Windows 95
and Windows 98.

connection_info_O
connection_info_1
connection_info_50
file_info_50
security _info_1
servecinfo_1
servecinfo_50
session_info_O

session_info_1
session_info_2
session_info_10
session_info_50
share_info_O
share_info_1
share_info_2
share_info_50

For more information, see Windows 95/98 network management code samples.

Chapter 16 Network Management 497

Functions That Only Have Support for Remoting to
LAN Manager 2.x
On Windows NTIWindows 2000, the following functions are supported only for remoting
to a LAN Manager 2.x computer.

• NetAccessAdd

• NetAccessCheck

• NetAccessDel
• NetAccessEnum
• NetAccessGetUserPerms

• NetAccessSetlnfo
• NetAuditClear

• NetAuditRead

•
•
•
•
•
•
•

NetAuditWrite

NetConfigGet
NetConfigGetAl1

NetConfigSet
NetErrorLogClear

NetErrorLogRead
NetErrorLogWrite

For information on these functions, please see the 16-bit LanMan Programmer's Toolkit.
This toolkit is available through the Microsoft Developer Network (MSDN).

Requests from 16-bit LAN Manager Clients
Windows NTIWindows 2000 provides support for most remote functions called from LAN
Manager 2.x clients. However, the following function calls are not supported when they
are accessed with a LAN Manager 2.xclient to a Windows NTIWindows 2000 server:

• DosPrintDriverEnum • NetFileEnum
• DosPrintQProcessorEnum • NetFileGetlnfo

• DosPrintPortEnum • NetHandleGetlnfo

• DosPrintDest • NetHandleSetlnfo

• NetAccessCheck • NetMessageFileSend

• NetAlertRaise • NetMessageLogFileSet

• NetAlertStart • NetMessageLogFileGet

• NetAlertStop • NetMessageNameFwd

• NetAuditClear • NetMessageNameUnFwd

• NetAuditOpen • NetNetBiosEnum
• NetAuditRead • NetNetBiosGetlnfo
• NetAuditWrite • NetProfileSave

• NetConfigGet2 • NetProfileLoad
• NetConfigGetAII2 • NetServerAdminCommand

• NetConfigSet • NetServerEnum
• NetErrorLogOpen • NetServiceStatus
• NetErrorLo~Clear • NetStatisticsGet
• NetFileClose • NetStatistlcsClear

498 Volume 2 Network Protocols and Interfaces

• NetUseAdd • NetUserAdd

• NetUseDel • NetUserSetlnfo

• NetUseEnum • NetUserVaiidate2

• NetUseGetlnfo • NetWkstaSetUID

For information on these functions, please see the 16-bit LanMan Programmer's Toolkit.
This toolkit is available through the Microsoft Developer Network (MSDN).

Calling 16-bit LAN Manager Servers
When an RPC-based function fails to connect to the appropriate interface, the client-side
stub may attempt to initiate a function request to activate the selected server. For most
of the Win32 networking functions specified in this document, and any API where the
functionality and data formats are changed only for 32-bit usage, the conversion is
straightforward. For components that offer new functionality the caller of the function
should generally be aware of the destination type. When the new function offers a
superset of the functionality of the LAN Manager 2.x station the same function is used for
both destinations, but the new function members must have either a reserved value of
an associated field to inform the conversion layer the field may be ignored if going LAN
Manager 2.x systems. This is required so that a function caller is not misled as to the
action performed when the function was called.

Security Requirements for the Network Management Functions
Calling some of the network management functions does not require special group
membership. Other functions require that users have a specific privilege level to execute
successfully. When applicable, the Security Requirements section on a function's
reference page indicates the privilege level a user must have to execute the particular
function.

The security requirements that apply when you make calls to certain network
management functions on Windows 2000 are different than the requirements that apply
when you call the functions on Windows NT. The functions include, among others, all
those that begin with NetGroup, NetLocalGroup, and NetUser. For a complete list of
affected functions, see the end of this topic. For requirements that apply to an individual
network management function, please see the function's reference page.

Windows 2000 Active Directory domain controllers: If you call one of the affected
functions on a Windows 2000 domain controller running Active Directory, access to a
securable object is allowed or denied based on the access-control list (ACL) for the
object. (ACLs are specified in the directory.)

For queries, the default ACL permits all authenticated users and members of the
"Pre-Windows 2000 compatible access" group to view information. For updates, the
default ACL permits only Administrators and account operators to write information.

Chapter 16 Network Management 499

Note By default, the "Pre-Windows 2000 compatible access" group includes Everyone
as a member. This enables anonymous access (Anonymous Logon) to information if the
system allows anonymous access. Administrators can remove Everyone from the
"Pre-Windows 2000 Compatible Access" group when installing a domain controller.
Removing Everyone from the group restricts information access to authenticated users
only.

Anonymous access to securable objects can also be restricted by setting the following
key in the registry to the value 1. (This is also referred to as the RestrictAnonymous
policy setting.)

HKEY _LOCAL_MACHINE\System\CurrentControISet\ControI\Lsa

Windows 2000 servers and workstations: If you call one of the affected functions on a
Windows 2000 member server or workstation to perform a query, all authenticated users
can view the information. Anonymous access is also possible if the RestrictAnonymous
policy setting allows anonymous access. For updates, only Administrators and account
operators can write information.

The preceding security requirements apply to the following network management query
functions when you call them on Windows 2000:

NetGroupEnum
NetGroupGetinfo
NetGroupGetUsers
NetLocalGroupEnum
NetLocalGroupGetlnfo
NetLocalGroupGetMembers
NetQueryDisplaylnformation
NetSessionGetlnfo

(levels 1 and 2 only)

NetShareEnum (level 2 only)
NetUserEnum
NetUserGetGroups
NetUserGetlnfo
NetUserGetLocalGroups
NetUserModalsGet
NetWkstaGetlnfo
NetWkstaUserEnum

The security requirements also apply to the following network management update
functions on Windows 2000:

NetGroupAdd
NetGroupAddUser
NetGroupDel
NetGroupDelUser
NetGroupSetlnfo
NetGroupSetUsers
NetLocalGroupAdd
NetLocalGroupAddMembers
NetLocalGroupDel
NetLocalGroupDelMembers

NetLocalGroupSetlnfo
NetLocalGroupSetMembers
NetMessageBufferSend
NetUserAdd
NetUserChangePassword
NetUserDel
NetUserModalsSet
NetUserSetGroups
NetUserSetlnfo

For more information about the Windows NTlWindows 2000 security model for
controlling access to securable objects, see Access Control.

500 Volume 2 Network Protocols and Interfaces

Using Network Management
This section discusses how to use the network management functions in your
application.

• Looking up a user's full name

• Forcing a user to change the logon password

• Changing elements of user information

• Creating a new computer account

• Creating a local group and adding a user

• Determining the validating server on Windows 95/98

• Looking up text for error code numbers

This section also provides code samples demonstrating use of the 32-bit network
management functions that are supported by Windows 95 and Windows 98. (You can
find code samples demonstrating the network management functions supported by
Windows NTlWindows 2000 on the appropriate reference page.)

• Windows 95/98 network management code samples

Looking Up a User's Full Name
Computers running Windows NTlWindows 2000 can be organized into a domain, which
is a collection of computers on a Windows NT ServerlWindows 2000 Server network.
The domain administrator maintains centralized user and group account information.

To find the full name of a user, given the user name and domain name:

• Convert the user name and domain name to Unicode, if they are not already Unicode
strings.

• Look up the computer name of the domain controller (DC) by calling NetGetDCName.

• Look up the user name on the DC computer by calling NetUserGetlnfo.

• Convert the full user name to ANSI, unless the program is expecting to work with
Unicode strings.

The following sample code is a function (GetFuIiName) that takes a user name and a
domain name in the first two arguments and returns the user's full name in the third
argument.

Chapter 16 Network Management 501

Forcing a User to Change the Logon Password
This code sample demonstrates how to force a user to change the logon password on
the next logon using the NetUserGetlnfo and NetUserSetlnfo functions and the
USER_INFO_3 structure.

Set the usri3_password_expired member of the USER_INFO_3 structure to a nonzero
value using the following code fragment.

502 Volume 2 Network Protocols and Interfaces

Chapter 16 Network Management 503

Changing Elements of User Information
The network management functions provide a variety of information levels to assist in
changing user information. Some levels require administrative privileges to execute
successfully.

The sample code in this topic demonstrates how to change several elements of user
information by calling the NetUserSetlnfo function. The code uses various network
management information structures.

When changing user information, it is best to use the specific level for that piece of
information. This prevents the accidental resetting of unrelated information when using
the lower level values.

Setting some of the more commonly used levels is illustrated in the following code
samples:

• Setting the User Password, Level 1003

• Setting the User Privilege, Level 1005

• Setting the User Home Directory, Level 1006

• Setting the User Comment Field, Level 1007

• Setting the User Flags, Level 1008

• Setting the User Script Path, Level 1 009

• Setting The User Authority Flags, Level 1010

• Setting The User Full Name, Level 1011

All code fragments assume that the user has defined the UNICODE compile directive
and included the appropriate SDK header files, as follows:

Setting the User Passwordt Level 1 003
The following code fragment illustrates how to set a user's password to a known value
with a call to the NetUserSetlnfofunction. The USER_INFO_1003 topic contains
additional information.

504 Volume 2 Network Protocols and Interfaces

(continued)

Setting the User Privilege, level 1 005
The following code fragment illustrates how to specify the level of privilege assigned to a
user with a call to the NetUserSetlnfo function. The USER_INFO_1005 topic contains
additional information.

Setting the User Home Directory, level 1006
The following code fragment illustrates how to specify the path of a user's home
directory with a call to the NetUserSetlnfo function. The directory can be a hard-coded
path or a valid Unicode path. The USER_INFO_1006 topic contains additional
information.

Chapter 16 Network Management 505

Setting the User Comment Field, Level 1 007
The following code fragment illustrates how to associate a comment with a user by
calling the NetUserSetlnfo function. The USER_INFO_1007 topic contains additional
information.

Setting the User Flags, Level 1 008
The following code fragment illustrates how to set user flags with a call to the
NetUserSetlnfo function. The USER_INFO_100B topic contains a list of valid values for
the flags and a description of each flag.

Note that the UF _SCRIPT flag must be set for Windows NTlWindows 2000 and LAN
Manager networks. Trying to set other flags without setting UF _SCRIPT on a
Windows NTlWindows 2000 or LAN Manager network will cause the NetUserSetlnfo
function to fail.

Setting the User Script Path, Level 1 009
The following code fragment illustrates how to set the path for the logon script file of a
particular user with a call to the NetUserSetlnfo function. The script file can be a .CMD
file, an .EXE file, or a .BAT file. The string can also be null. The USER_INFO_1009 topic
contains additional information.

506 Volume 2 Network Protocols and Interfaces

Setting The User Authority Flags, Level 1 01 0
The following code fragment illustrates how to set the operator privilege flags for a user
with a call to the NetUserSetlnfo function. The USER_INFO_1010 topic contains a list
of valid values for the flags and a description of each flag.

Setting The User Full Name, Level 1 011
The following code fragment illustrates how to set a user's full name with a call to the
NetUserSetlnfo function. The USER_INFO_1011 topic contains additional information.

Chapter 16 Network Management 507

Creating a New Computer Account
The following code sample demonstrates how to create a new computer account using
the NetUserAdd function.

The following are considerations for managing computer accounts:

• The computer account name should be all uppercase for consistency with
Windows NTIWindows 2000 account management utilities.

• A computer account name always has a trailing dollar sign ($). Any functions used to
manage computer accounts must build the computer name such that the last
character of the computer account name is a dollar sign ($). For interdomain trust, the
account name is TrustingDomainName$.

• The maximum computer name length is MAX_COMPUTERNAME_LENGTH (15).
This length does not include the trailing dollar sign ($).

• The password for a new computer account should be the lowercase representation of
the computer account name, without the trailing dollar sign ($). For interdomain trust,
the password can be an arbitrary value that matches the value specified on the trust
side of the relationship.

• The maximum password length is LM20_PWLEN (14). The password should be
truncated to this length if the computer account name exceeds this length.

• The password provided at computer-account-creation time is valid only until the
computer account becomes active on the domain. A new password is established
during trust relationship activation.

(continued)

508 Volume 2 Network Protocols and Interfaces

(continued)

Chapter 16 Network Management 509

(continued)

510 Volume 2 Network Protocols and Interfaces

(continued)

The user that calls the account management functions must have Administrator privilege
on the target computer. In the case of existing computer accounts, the creator of the
account can manage the account, regardless of administrative membership.

The SeMachineAccountPrivilege can be granted on the target computer to give specified
users the ability to create computer accounts. This gives non-administrators the ability to
create computer accounts. The caller needs to enable this privilege prior to adding the
computer account.

Creating a Local Group and Adding a User
Windows NTlWindows 2000 and Windows NT ServerlWindows 2000 Server use the
same functions that Microsoft LAN Manager uses to create and maintain user and local
group-account information. A member of a Users group can create, maintain, and delete
accounts in local groups. For example, to create a new local group, call the
NetLocalGroupAdd function. To add a user to that group, call the
NetLocalGroupAddMembers function.

The following program allows you to create a user and a local group and add the user to
the local group.

Chapter 16 Network Management 511

(continued)

512 Volume 2 Network Protocols and Interfaces

(continued)

Chapter 16 Network Management 513

Determining the Validating Server on Windows 95/98
The code sample in this topic demonstrates how to determine the validating server on
Windows 95/98, using the network management functions.

Determining the Windows NTlWindows 2000 domain server that validates a user's logon
password from Windows 95/98 is an involved task. On Windows NTlWindows 2000, the
32-bit NetWkstaUserGetlnfo function determines the validating server. The function
uses level 1 to return a WKSTA_USER_INFO_1 structure. The wkui1_logon_server
member will contain a pOinter to a Unicode string specifying the validating server.

514 Volume 2 Network Protocols and Interfaces

On Windows 95/98, there is no 32-bit function that will return the same information. You
must use the 16-bit network management functions to retrieve the same information. The
functions are exported from NETAPI.OLL. The link libraries are included with the 16-bit
version of Microsoft® Visual C++ (version 1.5x).

Use the following basic steps to determine the validating server:

1. Oetermine the user's logon domain using NetWkstaGetlnfo.

2. Find the primary domain controller (POC) using NetGetDCName.

3. Get the user information from the POC for comparison to the backup domain
controller (BOC) data using NetUserGetinfo.

4. Get a list of BOCs using the NetServerEnum function.

5. Loop through the list of BOCs, using NetUserGetlnfo to retrieve the specific user
information, comparing each last logon time, searching for the greatest value.

The largest last logon value will be the latest logon time; it will be associated with the last
server to validate the user's logon password.

The following short 16-bit program illustrates how to determine the validating server for a
Windows 95 user.

You must use the LAN.H and the NETAPI.LlB files distributed with the SOK for the
sample to work. The user must be certain that the directories for the .H and .LlB files are
in the search path for the project.

Global Variables:

• Users. Pointer to the USER_INFO _11 structure that contains user information about
the username derived from the Wksta array. The element of interest:
usi11_lasUogon - seconds since Jan 1, 1970. Time that this server last validated this
user's logon password.

• Wksta. Pointer to the WKSTA_INFO_10 structure that contains information about the
WFW workstation. This structure is filled first and the information placed therein is
used to get additional information. The domain name is used to get a list of BOCs that
will be queried for user data. The username is the element that will qualify the user
data request. The information of interest:
wki10_username - the current logged-on user.
wki10_logon_domain - the domain the user logged onto.

• Servers. List of backup domain controllers for the user's logon domain. Each server
in the array will be queried for information about the current logged-on user as
described in the user's variable comments.

Chapter 16 Network Management 515

(continued)

516 Volume 2 Network Protocols and Interfaces

(continued)

Chapter 16 Network Management 517

(continued)

518 Volume 2 Network Protocols and Interfaces

(continued)

Chapter 16 Network Management 519

520 Volume 2 Network Protocols and Interfaces

(continued)

Looking Up Text for Error Code Numbers
In Windows NT/windows 2000, it is sometimes necessary to display error text
associated with error codes returned from networking-related functions. You may need
to perform this task with the network management functions provided by the system.

The error text for these messages is found in the message table file named Netmsg.dll,
which is found in %systemroot%\system32. This file contains error messages in the
range NERR_BASE (2100) through MAX_NERR(NERR_BASE+899}. These error codes
are defined in the SDK header file Imerr.h. .

The LoadLibrary and LoadLibraryEx Win32 functions can load Netmsg.dll. The
FormatMessage Win32 function maps an error code .to message text, given a module
handle to the Netmsg.dll file.

The following sample illustrates how to display error text associated with network
management functions, in addition to displaying error text associated with system-related
error codes. If the supplied error number is in a specific range, the netmsg.dll message
module is loaded and used to look up the specified error number with the
FormatMessage function.

Chapter 16 Network Management 521

(continued)

522 Volume 2 Network Protocols and Interfaces

(continued)

After you compile this program, you can insert the error code number as an argument
and the program will display the text. For example:

Chapter 16 Network Management 523

Windows 95/98 Network Management Code Samples
The following code samples demonstrate how to use the 32-bit network management
functions that are supported by Windows 95 and Windows 98. (You can find code
samples demonstrating the network management functions supported by
Windows NTlWindows 2000 on the appropriate reference page.)

• NetConnectionEnum Sample • NetSessionGetlnfo Sample

• NetFileEnum Sample • NetShareAdd Sample

• NetSecurityGetlnfo Sample • NetShareDel Sample

• NetServerGetinfo Sample • NetShareEnum Sample

• NetSessionDel Sample • NetShareGetlnfo Sample

• NetSessionEnum Sample • NetShareSetlnfoSample

NetConnectionEnum Sample (Windows 95/98)
Windows 95/98: The following code sample demonstrates how to list the connections
made to a shared resource with a call to the NetConnectionEnum function.

The sample allocates the memory required to receive 20connection_info_50
structures. If this size is inadequate, the sample warns the caller that there are more
entries to enumerate. Finally, the sample frees the allocated memory.

(continued)

524 Volume 2 Network Protocols and Interfaces

(continued)

Chapter 16 Network Management 525

NetFileEnum Sample (Windows 95/98)
Windows 95/98: The following code sample demonstrates how to list the open files on a
server with a call to the NetFileEnum function.

The sample allocates the memory required to receive 20 file_info_50 structures. If this
size is inadequate, the sample warns the caller that there are more entries to enumerate.
Finally, the sample frees the allocated memory.

(continued)

526 Volume 2 Network Protocols and Interfaces

(continued)

Chapter 16 Network Management 527

528 Volume 2 Network Protocols and Interfaces

(continued)

,NetSecurityGetlnfo Sample (Windows 95/98)
Windows 95/98: The following code sample demonstrates use of the
NetSecurityGetlnfo function.

The code sample specifies the security_info_1 information level. The example allocates
and frees the memory required for the information buffer.

Chapter 16 Network Management 529

NetServerGetlnfo Sample (Windows 95/98)
Windows 95198: The following code sample demonstrates how to retrieve a server's
configuration information using a call to the NetServerGetlnfo function.

The sample calls NetServerGetlnfo once to determine the size of the buffer needed for
the returned data. The code allocates memory for the buffer. Then the sample calls
NetServerGetlnfo again to retrieve the data. Finally, the sample displays the information
and frees the allocated memory.

(continued)

530 Volume 2 Network Protocols and Interfaces

(continued)

Chapter 16 Network Management 531

NetSessionDel Sample (Windows 95/98)
Windows 95198: The following code sample demonstrates how to terminate a session
with a call to the NetSessionDel function.

532 Volume 2 Network Protocols and Interfaces

(continued)

NetSessionEnum Sample (Windows 95/98)
Windows 95/98: The following code sample demonstrates how to list the current
sessions on a server with a call to the NetSessionEnum function.

The sample allocates the memory required to receive 20 session_info_50 structures. If
this size is inadequate, the sample warns the caller that there are more entries to
enumerate. Finally, the sample frees the allocated memory.

Chapter 16 Network Management 533

(continued)

534 Volume 2 Network Protocols and Interfaces

(continued)

Chapter 16 Network Management 535

NetSessionGetlnfo Sample (Windows 95/98)
Windows 95/98: The following code sample demonstrates how to retrieve information
about a particular session using a call to the NetSessionGetlnfo function.

The sample calls NetSessionGetlnfo once to determine the size of the buffer needed
for the returned data. The code allocates memory for the buffer. Then the sample calls
NetSessionGetlnfo again to retrieve the data. Finally, the sample displays the
information and frees the allocated memory.

(continued)

536 Volume 2 Network Protocols and Interfaces

(continued)

Chapter 16 Network Management 537

NetShareAdd Sample (Windows 95/98)
Windows 95/98: The following code sample demonstrates how to share a resource on
the local computer with a call to the NetShareAdd function.

The code sample specifies the share_info_50 structure and no password on the share.
The sample also allocates and frees the memory required for the information buffer.

(continued)

538 Volume 2 Network Protocols and Interfaces

(continued)

NetShareDel Sample (Windows 95/98)
Windows 95/98: The following code sample demonstrates how to delete a share with a
call to the NetShareDel function.

Chapter 16 Network Management ·539

NetShareEnum Sample (Windows 95/98)
Windows 95/98: The following code sample demonstrates how to list information about
each shared resource on a server with a call to the NetShareEnum function.

The sample allocates the memory required to receive 20 share_info_50 structures. If
this size is inadequate, the sample warns the caller that there are more entries to
enumerate. Finally, the sample frees the allocated memory.

(continued)

540 Volume 2 Network Protocols and Interfaces

(continued)

Chapter 16 Network Management 541

NetShareGetlnfo Sample (Windows 95/98)
Windows 95/98: The following code sample demonstrates how to retrieve information
about a shared resource with a call to the NetShareGetlnfo function.

The sample calls NetShareGetlnfo once to determine the size of the buffer needed for
the returned data. The code allocates memory for the buffer. Then the sample calls
NetShareGetlnfo again to retrieve the data. Finally, the sample displays the information
and frees the allocated memory.

(continued) .

542 Volume 2 Network Protocols and Interfaces

(continued)

Chapter 16 Network Management 543

NetShareSetlnfo Sample (Windows9S/98)
Windows 95/98: The following code sample demonstrates how to change the
parameters associated with a network share using a call to the NetShareSetlnfo
function.

The sample uses the following basic steps to change the remark associated with a
network share:

1. Determine the size of the buffer needed to receive share information by calling the
NetShareGetlnfo function.

2. Retrieve share information by calling the NetShareGetlnfo function a second time,
specifying information level 50.

544 Volume 2 Network Protocols and Interfaces

3. Copy the returned information to a second buffer with a call to the CopyMemory
function. (This is necessary to prevent resetting share information other than the
comment.)

4. Modify the remark associated with the share by calling the NetShareSetlnfo function.

The code also allocates and deallocates the memory required for both buffers.

Chapter 16 Network Management 545

(continued)

546 Volume 2 Network Protocols and Interfaces

(continued)

547

CHAPTER 17

Network Management Reference

Due to the constraints associated with putting network development reference into
printed form, the network management reference information isn't provided in its entirety
(it's over 550 pages by itself!). However, I've provided a grouping of network
management flmctions in the following sections, and the DVD that accompanies this
Network Services Library of course has the entire body of network management
reference information as just part of its extensive information.

Network Management Functions
The network management functions can be grouped as follows:

Alert Functions
NetAlertRaise
NetAlertRaiseEx

API Buffer Functions
NetApiBufferAllocate
NetApiBufferFree
NetApiBufferReallocate
NetApiBufferSize

Directory Service Functions
NetGetJoinableOUs
NetGetJoinlnformation
NetJoinDomain
NetRenameM~chinelnDomain

NetUnjoinDomain
NetValidateName

548 Volume 2 Network Protocols and Interfaces

Distributed File System (Dfs) Functions
NetDfsAdd
NetDfsAddFtRoot
NetDfsAddStdRoot
NetDfsAddStdRootForced
NetDfsEnum
NetDfsGetClientlnfo
NetDfsGetlnfo

Get Functions
NetGetAnyDCName
NetGetDCName
NetGetDisplaylnformationlndex
NetQueryDisplaylnformation

Group Functions
NetGroupAdd
NetGroupAddUser
NetGroupDel
NetGroupDelUser
NetGroupEnum
NetGroupGetlnfo
NetGroupGetUsers
NetGroupSetinfo
NetGroupSetUsers

Local Group Functions
NetLocalGroupAdd
NetLocalGroupAddMembers
NetLocalGroupDel
NetLocalGroupDelMembers
NetLocalGroupEnum
NetLocalGroupGetlnfo
NetLocalGroupGetMembers
NetLocalGroupSetlnfo
NetLocalGroupSetMembers

NetDfsManagerlnitialize
NetDfsRemove
NetDfsRemoveFtRoot
NetDfsRemoveFtRootForced
NetDfsRemoveStd Root
NetDfsSetClientlnfo
NetDfsSetlnfo

Message Functions
NetMessageBufferSend
NetMessageNameAdd
NetMessageNameDel
NetMessageNameEnum
NetMessageNameGetlnfo

NetFile Functions
NetFileClose
NetFileClose2
NetFileEnum
NetFileGetlnfo

Remote Utility Functions
NetRemoteComputerSupports
NetRemoteTOD

Replicator Functions
NetReplExportDirAdd
NetReplExportDirDel
NetReplExportDirEnum
NetReplExportDirGetlnfo
NetRepl ExportDi rLock
NetReplExportDirSetlnfo
NetReplExportDirUnlock
NetReplGetlnfo

Schedule Functions
NetScheduleJobAdd
NetScheduleJobDel
NetScheduleJobEnum
NetScheduleJobGetlnfo

Server Functions
NetServerDiskEnum
NetServerEnum
NetServerGetlnfo
NetServerSetlnfo

Chapter 17 Network Management Reference 549

NetRepllmportDirAdd
NetReplimportDirDel
NetRepllmportDirEnum
NetRepllmportDirGetlnfo
NetReplimportDirLock
NetRepllmportDirUnlock
NetReplSetlnfo

550 Volume 2 Network Protocols and Interfaces

Server and Workstation Transport Functions
NetServerComputerNameAdd
NetServerComputerNameDel
NetServerTransportAdd
NetServerTransportAddEx
NetServerTransportDel
NetServerTransportEnum
NetWkstaTransportAdd
NetWkstaTransportDel
NetWkstaTransportEnum

Session Functions
NetSessionDel
NetSessionEnum
NetSessionGetlnfo

Share Functions
NetConnectionEnum
NetShareAdd
NetShareCheck
NetShareDel
NetShareEnum
NetShareGetlnfo
NetShareSetlnfo

Statistics Function
NetStatisticsGet

Use Functions
NetUseAdd
NetUseDel
NetUseEnum
NetUseGetlnfo

User Functions
NetUserAdd
NetUserChangePassword
NetUserDel
NetUserEnum
NetUserGetGroups
NetUserGetlnfo
NetUserGetLocalGroups
NetUserSetGroups
NetUserSetlnfo

User Modals Functions
NetUserModalsGet
NetUserModalsSet

Chapter 17 Network Management Reference 551

Workstation and Workstation User Functions
NetWkstaGetlnfo
NetWkstaSetlnfo
NetWkstaUserGetlnfo
NetWkstaUserSetlnfo
NetWkstaUserEnum

Access and Security Functions (Windows 95/98 only)
NetAccessAdd
NetAccessCheck
NetAccessDel
NetAccessEnum
NetAccessGetlnfo
NetAccessGetUserPerms
NetAccessSetlnfo
NetSecurityGetlnfo

Obsolete Functions
NetAuditClear
NetAuditRead
NetAuditWrite
NetConfigGet
NetConfigGetAl1
NetConfigSet
NetErrorLogClear
NetErrorLogRead

NetErrorLogWrite
NetLocalGroupAddMember
NetLocalGroupDelMember
NetServiceControl
NetServiceEnum
NetServiceGetlnfo
NetServicelnstali

552 Volume 2 Network Protocols and Interfaces

Network Management Structures
The network management structures can be grouped as follows:

Alert Structures
STD_ALERT
ADMIN_OTHER_INFO
ERRLOG_OTHER_INFO
PRINT_OTHER_INFO
USER_OTHER_INFO

Distrib~ted File System (Dfs) Structures
DFS_INFO_1
DFS_INFO_2 '
DFS_INFO_3
DFS_INFO_4
DFS_INFO_100
DFS_INFO_101
DFS_INFO_102
DFS_INFO_200
DFS_STORAGE_INFO

File Structures
FILE_INFO_2
FILE_INFO_3

Get Structures
NET _DISPLAY_GROUP
NET _DISPLAY_MACHINE
NET _DISPLAY_USER

Group Structures
GROUP _IN FO_O
GROUP _IN FO_1
GROUP _IN FO_2
GROUP _INFO_1002
GROUP _IN FO_1 005
GROUP ~USERS_INFO_O

Local Group Structures
LOCALGROUP _INFO_O
LOCALGROUP _INFO_1
LOCALGROUP _INFO_1002
LOCALGROUP _MEMBERS_INFO_O
LOCALGROUP _MEMBERS_INFO_1
LOCALGROUP _MEMBERS_INFO_2
LOCALGROUP _MEMBERS_INFO_3
LOCALGROUP _USERS_INFO_O

Message Structures
MSG_INFO_O
MSG_INFO_1

Remote Utility Structure
TIME_OF _DAY_INFO

Replicator Structures
REPL_EDIR_INFO_O
REPL_EDIR_INFO_1
REPL_EDIR_INFO_2
REPL_EDIR_INFO_1000
REPL_EDIR_INFO_1001
REPL_IDIR_INFO_O

Schedule Structures
AT_ENUM
AT_INFO

Chapter 17 Network Management Reference 553

REPL_IDIR_INFO_1
REPL_INFO_O
REPL_INFO_1000
REPL_INFO_1001
REPL_INFO_1002
REPL_INFO_1003

554 Volume 2 Network Protocols and Interfaces

Server Structures
SERVER_INFO_100
SERVER_INFO_101
SERVER_INFO_102
SERVER_INFO_ 402
SERVER_INFO_ 403
SERVER_INFO_1005
SERVER_INFO_1010
SERVER_INFO_1016
SERVER_INFO_1017
SERVER_INFO_1018
SERVER_INFO_1107
SERVER_INFO_1501
SERVER_INFO_1502
SERVER_INFO_1503
SERVER_INFO_1506
SERVER_INFO_1509
SERVER_INFO_1510
SERVER_INFO_1511
SERYER_INFO_1512

SERVER_INFO_1513
SERVER_INFO_1515
SERVER_INFO_1516
SERVER_INFO_1518
SERVER_INFO_1523
SERVER_INFO_1528
SERVER_INFO_1529
SERVER_INFO_1530
SERVER_INFO_1533
SERVER_INFO_1536
SERVER_INFO_1538
SERVER_INFO_1539
SERVER_INFO_1540
SERVER_INFO_1541
SERVER_INFO_1542
SERVER_INFO_1544
SERVER_INFO_1550
SERVER_INFO_1552

Server and Workstation Transport Structures
SERVER_TRANSPORT _INFO_O
SERVER:.... TRANSPORT _INFO_1
SERVER_TRANSPORT _INFO_2
SERVER_TRANSPORT _INFO_3
WKSTA_ TRANSPORT _INFO_O

Session Structures
SESSION_INFO_O
SESSION_INFO_1
SESSION_INFO_2
SESSION_INFO_10
SESSION_INFO_502

Share Structures
CONNECTION_INFO_O
CONNECTION_INFO_1
SHARE_INFO_O
SHARE_INFO_1
SHARE_INFO_2
SHARE_INFO_501

SHARE_INFO_502
SHARE_INFO_1004
SHARE_INFO_1005
SHARE_INFO_1006
SHARE_INFO_1501

Statistics Structures
STAT_SERVER_O
STAT _ WORKSTATION_O

Use Structures
USE_INFO_O
USE_INFO_1
USE_INFO_2

User Structures
USER_INFO_O
USER_INFO_1
USER_INFO_2
USER_INFO_3
USER_INFO_10
USER_INFO_11
USER_INFO_20
USER_INFO_21
USER_INFO_22
USER_INFO_1003
USER_INFO_1005
USER_INFO_1006
USER_INFO_1007
USER_INFO_1008
USER_INFO_1009

User Modals Structures
USER_MODALS_INFO_O
USER_MODALS_INFO_1
USER_MODALS_INFO_2
USER_MODALS_INFO_3
USER_MODALS_INFO_1001
USER_MODALS_INFO_1002

Chapter 17 Network Management Reference 555

USER_INFO_1010
USER_INFO_1011
USER_INFO_1012
USER_INFO_1013
USER_INFO_1014
USER_INFO _1017
USER_INFO_1018
USER_INFO _1020
USER_INFO_1023
USER_INFO_1 024.
USER_INFO_1025
USER_INFO_10S1
USER_INFO_10S2
USER_INFO_1053

USER_MODALS_INFO_1003
USER_MODALS_INFO_1004
USER_MODALS_INFO _1005
USER_MODALS_INFO_1006
USER_MODALS_INFO _1007

556 Volume 2 Network Protocols and Interfaces

Workstation and Workstation User Structures
WKSTA_INFO_100
WKSTA_INFO_101
WKSTA_INFO_102
WKSTA_USER_INFO_O
WKSTA_USER_INFO_1
WKSTA_USER_INFO_1101

In addition, the following network management structures are supported by Windows 95
and Windows 98.

Windows 95/98 Structures
access_info_O
access_info_1
access_info_2
access_info_12

connection_info_O
connection_info_1
connection_info_50
file_info_50
security_info_1
server_info_1

Network Management Macros

serveUnfo_50
session_info_O
session_info_1
session_info_2
session_info_10
session_info_50
share_info_O
share_info_1
share_info_2
share_info_50

The following macros can be used with network management alert data buffers:

ALERT _OTHER_INFO
ALERT _ VAR_DAT A

Mapping ADSllnterfaces to the Network Management
Functions

The Active DirectoryTM Service Interfaces (ADSI) are a set of COM interfaces used to
access the capabilities of directory services from different network providers. ADSI
presents a single set of directory service interfaces for managing network resources in a
distributed computing environment.

If you are programming for Active Directory, you may be able to call certain ADSI
interface methods to achieve the same functionality you can achieve by calling certain
network management functions.

Chapter 17 Network Management Reference 557

The following table lists network management functions and function groups, and the
ADS I interfaces to which the functions map.

Functions

NetFileEnum, NetFileGetlnfo

NetGroup*

NetLocalGroup*

NetServer*

NetSession*

NetShare*

NetUser*

NetUserModals*

Interfaces

IADsResource, IADsFileServiceOperations

IADsGroup

IADsGroup

IADsComputer

IADsSession, IADsFileServiceOperations

IADsFileShare

IADsUser, IADsComputer

IADsDomain

For more information about directory services and programming with ADSI, see Active
Directory Developer's Reference Library, also available from Microsoft Press.
Information about the custom properties the WinNT provider makes available for the
User class, and the property methods of the IADsUser interface the WinNT provider
does not support, are also provided in the Active Directory Developer's Reference
Library.

Part 3 559

IN D E X

Networking Services Programming Elements -
Alphabetical Listing

This final part, found in each volume in the Networking Services Library, provides a
comprehensive programming element index that has been designed to make your life
easier.

Rather than cluttering the TOGs of each individual volume in this library with the names
of programming elements, I've relegated such per-element information to a central
location: the back of each volume. This index points you to the volume that has the
information you need, and organizes the information in a way that lends itself to easy
use.

Also, to keep you as informed and up-to-date as possible about Microsoft technologies,
I've created (and maintain)a live Web-based document that maps Microsoft
technologies to the locations where you can get more information about them. The
following link gets you to the live index of technologies:

www.iseminger.comlwinprs/technologies

The format of this index is in a constant state of improvement. I've designed it to be as
useful as possible, but the real test comes when you put it to use. If you can think of
ways to make improvements, send me feedback at winprs@microsoft.com. While I can't
guarantee a reply, I'll read the input, and if others can benefit, I will incorporate the idea
into future libraries.

Locators are arranged by Volume Numberfollowed by Page Number.

A B
accept ... Vol. 1, 133 bind ... VoI.1, 139
AcceptEx .. Vol. 1, 135 Binding Option Constants Vol. 3,333
ACTION_HEADER Vol. 2, 147 Binding Time-out Constants Vol. 3, 333
ADAPTER_STATUS Vol. 2, 148 BLOB .. Vol. 1, 378
Addlnterface Vol. 5, 266 BlockConvertServicesToStatic Vol. 5, 316
AddlPAddress Vol. 2, 239 BlockDeleteStaticServices Vol. 5, 317
ADDRESS_LIST _DESCRiPTOR Vol. 1, 835
AFPROTOCOLS Vol. 1, 377
AsnAny ... Vol. 2, 336 c
AsnCounter64 Vol. 2, 338
AsnObjectidentifier Vol. 2, 339
AsnOctetString Vol. 2, 339
Authentication-Level Constants Vol. 3, 330
Authentication-Service Constants Vol. 3, 331
Authorization-Service Constants Vol. 3, 332

cbpAdmitRsvpMsg Vol. 1,860
cbpGetRsvpObjects Vol. 1,861
Change Notification Flags Vol. 5, 505
CIAddFlowComplete Vol. 1, 830
CIDeleteFlowComplete Vol..1, 831
CIModifyFlowComplete Vol. 1,831

560 Volume 2 Network Protocols and Interfaces

CINotifyHandler Vol. 1, 832 Enumeration Flags Vol. 5, 505
CloseServiceEnumerationHandle Vol. 5, 318 ENUMERATION_BUFFER Vol. 1,835
closesocket... Vol. 1,142 EnumProtocols Vol. 1, 149
connect ... Vol. 1, 145
ConnectClient... Vol. 5, 268
CONNECTDLGSTRUCT Vol. 3, 656 F
CreatelpForwardEntry Vol. 2, 240
CreatelpNetEntry Vol. 2, 242
CreateProxyArpEntry Vol. 2, 242
CreateServiceEnumerationHandle ... Vol. 5, 319
CreateStaticService Vol. 5, 320
CSADDR_INFO Vol. 1, 378

fd set .. Vol. 1, 380
FIND NAME BUFFER Vol. 2,151
FIND-NAME - HEADER Vol. 2,152
FIXED INFO-:-.................................... Vol. 2, 277
FLOW8PEC Vol. 1, 380
FLOWSPEC Vol. 1, 791
FlushlpNetTable Vol. 2, 246

D
DCE C ERROR STRING_LEN Vol. 3, 336
DceErrorlnqText ::-............................. Vol. 3, 349
Deletelnterface Vol. 5, 269
DeletelPAddress Vol. 2, 243
DeletelpForwardEntry : Vol. 2, 244
DeletelpNetEntry Vol. 2, 245
DeleteProxyArpEntry Vol. 2, 245
DeleteStaticService Vol. 5, 321
DemandDialRequest Vol. 5, 306
DhcpCApiCleanup Vol. 2, 74
DhcpCApilnitialize Vol. 2, 74
DhcpDeRegisterParamChange Vol. 2, 80
DhcpRegisterParamChange Vol. 2, 78
DhcpRequestParams Vol. 2, 75
DhcpUndoRequestParams Vol. 2, 77
DISCDLGSTRUCT Vol. 3, 658
DisconnectClient Vol. 5, 270
DnsAcquireContextHandle Vol. 2, 49
DnsExtractRecordsFromMessage Vol. 2, 50
DnsFreeRecordList Vol. 2, 51
DnsModifyRecordslnSet... Vol. 2, 51
DnsNameCompare Vol. 2, 53
DnsQuery ... Vol. 2, 61
DnsQueryConfig Vol. 2, 63
DnsRecordCompare Vol. 2, 55
DnsRecordCopyEx Vol. 2, 55
DnsRecordSetCompare Vol. 2, 56
DnsRecordSetCopyEx Vol. 2, 57
DnsRecordSetDetach Vol. 2, 58
DnsReleaseContextHandle Vol. 2, 54
DnsReplaceRecordSet... Vol. 2, 59
DnsValidateName Vol. 2, 64
DnsWriteQuestionToBuffer Vol. 2, 67
DoUpdateRoutes Vol. 5, 271
DoUpdateServices Vol. 5, 271

G
GetAcceptExSockaddrs Vol. 1, 153
GetAdapterlndex Vol. 2, 247
GetAdapterslnfo Vol. 2, 248
GetAddressByName Vol. 1, 154
GetBestlnterface Vol. 2, 249
GetBestRoute Vol. 2, 250
GetEventMessage Vol. 5, 272
GetFirstOrderedService Vol. 5, 323
GetFriendlylflndex Vol. 2, 251
GetGloballnfo Vol. 5, 274
gethostbyaddr Vol. 1, 159
gethostbyname Vol. 1, 160
gethostname Vol. 1, 162
GetlcmpStatistics Vol. 2, 252
GetifEntry .. Vol. 2, 252
GetifTable ... Vol. 2, 253
Getlnterfacelnfo Vol. 2, 254
Getlnterfacelnfo Vol. 5, 275
GetipAddrTable Vol. 2, 255
GetipForwardTable Vol. 2, 256
GetlpNetTable Vol. 2, 257
GetlpStatistics Vol. 2, 258
GetMfeStatus Vol. 5, 277
GetNameByType Vol. 1, 163
GetNeighbors Vol. 5, 278
GetNetworkParams Vol. 2, 258
GetNextOrderedService Vol. 5, 324
GetNumberOflnterfaces Vol. 2, 260
getpeername Vol. 1,164
GetPerAdapterlnfo Vol. 2, 260
getprotobyname Vol. 1, 165
getprotobynumber. Vol. 1, 167
GetRTTAndHopCount Vol. 2, 262
getservbyname Vol. 1, 168
getservbyport Vol. 1, 169

E GetService .. Vol. 1, 171
GetServiceCount Vol. 5, 325

EnumerateGetNextService Vol. 5, 322 getsockname Vol. 1, 175

Index Networking Services Programming Elements - Alphabetical Listing 561

getsockopt .. Vol. 1, 176
GetTcpStatistics Vol. 2, 263
GetTcpTable Vol. 2, 263
GetTypeByName Vol. 1, 185
GetUdpStatistics Vol. 2, 264
GetUdpTable Vol. 2, 265
GetUniDirectionalAdapterlnfo Vol. 2, 266
GLOBAL FILTER Vol. 5, 262
GUARAN-TEE Vol. 1, 413
GUID ... Vol. 1, 848
GUID ... Vol. 3, 295

H
hostent .. Vol. 1, 381
htonl .. Vol. 1, 186
htons ... Vol. 1, 187

IEAPProviderConfig Vol. 4, 426
IEAPProviderConfig::

RouterlnvokeConfigUI Vol. 4, 430
IEAPProviderConfig::

RouterlnvokeCredentialsUI Vol. 4, 432
IEAPProviderConfig::

ServerlnvokeConfigUI Vol. 4, 429
IEAPProviderConfig::lnitialize Vol. 4, 426
IEAPProviderConfig::UninitiaHze Vol. 4, 428
in addr .. Vol. 1,381
inet addr ... Vol. 1, 187
inet-ntoa .. VoI.1,189
Intertace Registration Flags Vol. 3, 336
InterfaceStatus Vol. 5, 280
ioctlsocket.. Vol. 1, 190
IP Info Types for Router

Information Blocks Vol. 5,183
IP ADAPTER BINDING_INFO Vol. 5,149
IP -ADAPTER -INDEX_MAP Vol. 2, 278
IP-ADAPTER-INFO Vol. 2, 279
IP -INTERFAC-E INFO Vol. 2, 280
IP -LOCAL BINDING Vol. 5, 150
IP - NETWORK Vol. 5, 352
IP - NEXT HOP ADDRESS Vol. 5, 352
IP -PATTERN . .-:: Vol. 1,842
IP -PER ADAPTER_INFO Vol. 2, 281
IP -SPECIFIC DATA Vol. 5, 353
IP - UNIDIRECTIONAL_ADAPTER_

ADDRESS Vol. 2, 282
IPNG ADDRESS Vol. 2, 88
IpReleaseAddress Vol. 2, 267
IpRenewAddress Vol. 2, 2.68
IPX Info Types for Router

Information Blocks Vol. 5, 184

IPX ADAPTER BINDING INFO Vol. 5, 151
IPX-ADDRESS- DATA ~ Vol. 1, 670
IPX -IF INFO .. .-:: Vol. 5, 181
IPX-NETNUM DATA VoI.1, 672
IPX-NETWORK Vol. 5, 355
IPX - NEXT HOP_ADDRESS Vol. 5, 355
IPX -SERVER ENTRYvol. 5, 327
IPX - SERVICE-.................................. Vol. 5, 328
IPX -SPECIFIC DATA Vol. 5, 356
IPX-SPXCONNSTATUS_DATA VOI.1,673
IPX-STATIC SERVICE INFO Vol. 5,181
IPXWAN IF INFO ::-.................. Vol. 5,182
ISensLogon:-: Vol. 2, 212
ISensLogon::DisplayLock Vol. 2, 216
ISensLogon::DisplayUnLock Vol. 2, 217
ISensLogon::Logoffvol. 2, 214
ISensLogon::Logon Vol. 2, 213
ISensLogon::StartScreenSaver Vol. 2, 218
ISensLogon::StartSheli Vol. 2, 215
ISensLogon::StopScreenSaver Vol. 2, 219
ISensNetwork Vol. 2, 220
ISensNetwork: :

ConnectionMadeNoQOClnfo Vol. 2, 222
ISensNetwork::

DestinationReachable Vol. 2, 225
ISensNetwork::

DestinationReachable
NoQOClnfo Vol. 2, 226

ISensNetwork::ConnectionLost Vol. 2, 223
ISensNetwork::ConnectionMade Vol. 2, 221
ISensOnNow Vol. 2, 228
ISensOnNow::BatteryLow Vol. 2, 231
ISensOnNow::OnACPower Vol. 2, 229
ISensOnNow::OnBatteryPower Vol. 2, 230
IsService ... Vol. 5, 326
ISyncMgrEnumltems Vol. 2, 166
ISyncMgrRegister Vol. 2,193
ISyncMgrRegister::

GetHandlerRegistrationlnfo Vol. 2, 195
ISyncMgrRegister::

RegisterSyncMgrHandlervol. 2, 194
ISyncMgrRegister: :

UnregisterSyncMgrHandler Vol. 2,194
ISyncMgrSynchronize Vol. 2, 168
ISyncMgrSynchronize::

EnumSyncMgrltems Vol. 2, 171
ISyncMgrSynchronize::

GetHandlerlnfo Vol. 2,170
ISyncMgrSynchronize::

GetitemObject.. Vol. 2, 172
ISyncMgrSynchronize::

PrepareForSync Vol. 2, 175
ISyncMgrSynchronize::

SetltemStatus Vol. 2, 178

562 Volume 2 Network Protocols and Interfaces

ISyncMgrSynchronize:: MCAST _SCOPE_ENTRY Vol. 2, 90
SetProgressCaliback Vol. 2,174 McastApiCleanup Vol. 2, 82

ISyncMgrSynchronize:: McastApiStartup Vol. 2, 82
ShowProperties Vol. 2, 173 McastEnumerateScopes Vol. 2, 83

ISyncMgrSynchronize:: McastGenUID Vol. 2, 85
Synchronize Vol. 2,176 McastReleaseAddress Vol. 2, 87

ISyncMgrSynchronize::lnitialize Vol. 2,169 McastRenewAddress Vol. 2, 86
ISyncMgrSynchronize::ShowError ... Vol. 2, 179 McastRequestAddress Vol. 2, 85
ISyncMgrSynchronizeCaliback Vol. 2, 180 MesBufferHandleReset... Vol. 3, 350
I SyncMgrSynchronizeCaliback:: MesDecodeBufferHandleCreate Vol. 3, 351

DeleteLogError Vol. 2, 189 MesDecodelncrementalHandle
ISyncMgrSynchronizeCaliback: : Create .. Vol. 3, 353

EnableModeless Vol. 2, 186 MesEncodeDynBufferHandle
ISyncMgrSynchronizeCaliback: : Create .. Vol. 3, 354

EstablishConnection Vol. 2,190 MesEncodeFixedBufferHandle
ISyncMgrSynchronizeCaliback: : Create .. Vol. 3, 355

Log Error ... Vol. 2, 187 MesEncodelncrementalHandle
I SyncMgrSynchronizeCaliback:: Create .. Vol. 3, 356

PrepareForSyncCompleted Vol. 2,184 MesHandleFree Vol. 3, 357
ISyncMgrSynchronizeCaliback: : MeslncrementalHandleReset Vol. 3, 358

Progress .. Vol. 2, 182 MeslnqProcEncodingld Vol. 3, 359
ISyncMgrSynchronizeCaliback: : MESSAGE .. Vol. 5, 297

ShowErrorCompleted Vol. 2, 188 MGM_ENUM_ TYPES Vol. 5, 564
I SyncMgrSynchronizeCaliback:: MGM_IF _ENTRY Vol. 5, 561

ShowPropertiesCompleted Vol. 2, 183 MgmAddGroupMembershipEntry Vol. 5, 524
ISyncMgrSynchronizeCaliback: : MgmDeleteGroupMembership

SynchronizeCompleted Vol. 2, 185 Entry ... Vol. 5, 526
ISyncMgrSynchronizelnvoke Vol. 2,191 MgmDeRegisterMProtocol. Vol. 5, 527
ISyncMgrSynchronizelnvoke:: MgmGetFirstMfe Vol. 5, 528

UpdateAII Vol. 2, 192 MgmGetFirstMfeStats Vol. 5, 530
ISyncMgrSynchronizelnvoke:: MgmGetMfe Vol. 5, 531

Updateltems Vol. 2, 191 MgmGetMfeStats Vol. 5, 533
MgmGetNextMfe Vol. 5, 534

L
MgmGetNextMfeStats Vol. 5, 536
MgmGetProtocoIOnlnterface Vol. 5, 537

LANA_ENUM Vol. 2, 152
linger ... Vol. 1, 382
listen ... Vol. 1, 192
LPM_AdmitRsvpMsg Vol. 1,863
LPM_CommitResv Vol. 1, 866
LPM_Deinitialize Vol. 1, 867
LPM_DeleteState Vol. 1, 868
LPM_GetRsvpObjects Vol. 1,870
LPM_lnitialize Vol. 1, 872
Lpm_lpAddressTable Vol. 1,874
LPMIPTABLE Vol. 1,875

MgmGroupEnumerationEnd Vol. 5, 539
MgmGroupEnumerationGetNext Vol. 5, 539
MgmGroupEnumerationStart Vol. 5, 541
MgmRegisterMProtocol Vol. 5, 542
MgmReleaselnterfaceOwnership Vol. 5, 543
MgmSetMfe Vol. 5, 545
MgmTakelnterfaceOwnership Vol. 5, 545
MIB_BEST _IF Vol. 5, 202
MIB_ICMP ... Vol. 5, 203
MIB_IFNUMBER Vol. 5, 203
MIB_IFROW Vol. 5, 204
MIB_IFSTATUS Vol. 5, 206

M
MIB_IFTABLE Vol. 5, 207
MIB_IPADDRROW Vol. 5, 207

MACYIELDCALLBACK Vol. 3, 575
MCAST _CLIENT _UID Vol. 2, 89
MCAST _LEASE_REQUEST Vol. 2, 90
MCAST _LEASE_RESPONSE Vol. 2, 92
MCAST _SCOPE_CTX Vol. 2, 89

MIB_IPADDRTABLE VOL 5,208
MIB_IPFORWARDNUMBER Vol. 5, 209
MIB_IPFORWARDROW Vol. 5, 210
MIB_IPFORWARDTABLE Vol. 5, 212
MIB_IPMCAST_GLOBAL. Vol. 5, 212
MIB_IPMCAST _IF_ENTRY Vol. 5, 213

Index Networking Services Programming Elements - Alphabetical Listing 563

MIB_IPMCAST _IF_TABLE Vol. 5, 214 MprAdminConnectionHangup
MIB_IPMCAST _MFE Vol. 5, 214 Notification2 Vol. 4, 345
MIB_IPMCAST_MFE_STATS Vol. 5, 216 MprAdminDeregisterConnection
MIB_IPMCAST _OIF Vol. 5, 218 Notification Vol. 5, 71
MIB_IPMCAST _OIF _STATS Vol. 5, 219 MprAdminGetErrorString Vol. 5, 72
MIB_IPNETROW Vol. 5, 220 MprAdminGetipAddressForUser Vol. 4, 346
MIB_IPNETT ABLE Vol. 5, 221 MprAdminGetPDCServer Vol. 4, 349
MIB_IPSTATS Vol. 5, 222 MprAdminlnterfaceConnect... Vol. 5, 73
MIB_MFE_STATS_ TABLE Vol. 5, 224 MprAdminlnterfaceCreate Vol. 5, 75
MIB_MFE_ TABLE Vol. 5, 224 MprAdminlnterfaceDelete Vol. 5, 76
MIB_OPAQUE_INFO Vol. 5, 225 MprAdminlnterfaceDisconnect... Vol. 5, 77
MIB_OPAQUE_QUERY Vol. 5, 225 MprAdminlnterfaceEnum Vol. 5, 78
MIB_PROXYARP Vol. 5, 226 MprAdminlnterfaceGetCredentials Vol. 5, 80
MIB_ TCPROW Vol. 5, 227 MprAdmin InterfaceGetCredentials
MIB_TCPSTATS Vol. 5, 228 Ex ... Vol. 5, 82
MIB_ TCPTABLE Vol. 5, 230 MprAdminlnterfaceGetHandle Vol. 5, 83
MIB_UDPROW Vol. 5, 230 MprAdminlnterfaceGetlnfo Vol. 5, 84
MIB_UDPSTATS Vol. 5, 231 MprAdminlnterfaceQueryUpdate
MIB_UDPTABLE ,. Vol. 5, 232 Result ... ; Vol. 5, 86
MibCreate ... Vol. 5, 281 MprAdminlnterfaceSetCredentials Vol. 5, 87
MibDelete ... Vol. 5, 282 MprAdminlnterfaceSetCredentials
MibEntryCreate Vol. 5, 307 Ex ... Vol. 5, 89
MibEntryDelete Vol. 5, 308 MprAdminlnterfaceSetinfo Vol. 5, 90
MibEntryGet... Vol. 5, 309 MprAdmin Interface Transport
MibEntryGetFirst Vol. 5, 311 Getlnfo ... Vol. 5, 93
MibEntryGetNext Vol. 5, 312 MprAdminlnterfaceTransport
MibEntrySet Vol. 5, 313 Remove .. Vol. 5, 94
MibGet.. .. Vol. 5, 283 MprAdminlnterfaceTransport
MibGetFirst.. Vol. 5, 284 Setlnfo ; .. Vol. 5, 95
MibGetNext... Vol. 5, 285 MprAdminlnterfaceTransportAdd Vol. 5, 91
MibGetTraplnfo Vol. 5, 286 MprAdminlnterfaceUpdate
MIBICMPINFO Vol. 5, 232 Phonebooklnfo Vol. 5, 97
MIBICMPSTATS Vol. 5, 233 MprAdminlnterfaceUpdateRoutes Vol. 5, 98
MibSet .. Vol. 5, 287 MprAdminlsServiceRunning Vol. 5, 100
MibSetTraplnfo Vol. 5, 288 MprAdminLinkHangupNotification Vol. 4, 347
MPR_CREDENTIALSEX_O Vol. 5, 152 MprAdminMIBBufferFree Vol. 5, 188
MPR_IFTRANSPORT _0 Vol. 5, 152 MprAdminMIBEntryCreate Vol. 5, 188
MPR_INTERFACE_O Vol. 5, 153 MprAdminMIBEntryDelete Vol. 5, 190
MPR_INTERFACE_1 Vol. 5, 154 MprAdminMIBEhtryGet Vol. 5, 191
MPR_INTERFACE_2 Vol. 5, 156 MprAdminMIBEntryGetFirst... Vol. 5, 193
MPR_ROUTING_ MprAdminMIBEntryGetNext Vol. 5,195

CHARACTERISTICS Vol. 5, 297 MprAdminMIBEntrySet Vol. 5,196
MPR_SERVER_O Vol. 5, 166 MprAdminMIBGetTraplnfo Vol. 5, 198
MPR_SERVICE_ MprAdminMIBServerConnect.. Vol. 5, 199

CHARACTERISTICS Vol. 5, 301 MprAdminMIBServerDisconnect Vol. 5, 200
MPR_ TRANSPORT _0 Vol. 5, 167 MprAdminMIBSetTraplnfo Vol. 5, 200
MprAdminAcceptNewConnection Vol. 4, 341 MprAdminPortClearStats Vol. 4, 334
MprAdminAcceptNewConnection2 .. Vol. 4, 342 MprAdminPortDisconnect Vol. 4, 335
MprAdminAcceptNewLink Vol. 4, 343 MprAdminPortEnum Vol. 4, 336
MprAdminBufferFree Vol. 5, 70 MprAdminPortGetinfo Vol. 4, 338
MprAdminConnectionClearStats Vol. 4, 329 MprAdminPortReset Vol. 4, 339
MprAdminConnectionEnum Vol. 4, 330 MprAdminRegisterConnection
MprAdminConnectionGetinfo Vol. 4, 332 Notification Vol. 5, 100
MprAdminConnectionHangup MprAdminReleaselpAddress Vol. 4, 348

Notification Vol. 4, 344 MprAdminSendUserMessagevol. 4, 351

564 Volume 2 Network Protocols and Interfaces

MprAdminServerConnect Vol. 5, 102 NCB .. Vol. 2,154
MprAdminServerDisconnect Vol. 5, 102 NDR_USER_MARSHAUNFO Vol. 3, 296
MprAdminServerGetlnfo Vol. 5, 103 NdrGetUserMarshallnfo Vol. 3, 360
MprAdminTransportCreate Vol. 5,104 Netbios .. Vol. 2,145
MprAdminTransportGetlnfo Vol. 5,106 NETCONNECTINFOSTRUCT Vol. 3, 659
MprAdminTransportSetinfo Vol. 5, 108 NETINFOSTRUCT Vol. 3, 661
MprAdminUserGetlnfo Vol. 4, 352 NETRESOURCE Vol. 3, 663
MprAdminUserSetinfo Vol. 4, 353 Next Hop Flags Vol. 5, 503
MprConfigBufferFree Vol. 5, 110 NotifyAddrChange Vol. 2,268
MprConfigGetFriendlyName Vol. 5, 110 NotifyRouteChange Vol. 2, 269
MprConfigGetGuidName Vol. 5, 112 NS_SERVICE_INFO Vol. 1,383
MprConfiglnterfaceCreate Vol. 5, 114 NSPCleanup Vol. 1,497
MprConfiglnterfaceDelete Vol. 5, 115 NSPGetServiceClasslnfo Vol. 1,498
MprConfiglnterfaceEnum Vol. 5, 116 NSPlnstaliServiceClass Vol. 1, 499
MprConfiglnterfaceGetHandle Vol. 5, 118 NSPLookupServiceBegin Vol. 1,500
MprConfiglnterfaceGetlnfo Vol. 5, 119 NSPLookupServiceEnd Vol. 1,504
MprConfiglnterfaceSetinfo Vol. 5,121 NSPLookupServiceNext Vol. 1,505
MprConfiglnterfaceTransport NSPRemoveServiceClass Vol. 1,509

Enum ... Vol. 5, 124 NSPSetService Vol. 1, 510
MprConfiglnterfaceTransport NSPStartup Vol. 1,513

GetHandle Vol. 5, 126 ntohl .. Vol. 1, 194
MprConfiglnterfaceTransport ntohs ... VoI.1, 195

Getlnfo ... Vol. 5,128
MprConfiglnterfaceTransport

Remove ... Vol. 5, 130 o
MprConfiglnterfaceTransport

Setlnfo ... Vol. 5, 131
ORASADFunc Vol. 4,103

MprConfiglnterfaceTransportAdd Vol. 5, 122
MprConfigServerBackup Vol. 5,133 p
MprConfigServerConnect.. Vol. 5, 134
MprConfigServerDisconnect Vol. 5, 135
MprConfigServerGetinfo Vol. 5, 136
MprConfigServerlnstall Vol. 5, 113
MprConfigServerRestore Vol. 5, 137
MprConfigTransportCreate Vol. 5, 138
MprConfigTransportDelete Vol. 5,140
MprConfigTransportEnum Vol. 5, 141
MprConfigTransportGetHandle Vol. 5, 143
MprConfigTransportGetlnfo Vol. 5, 144
MprConfigTransportSetlnfo Vol. 5,147
MprlnfoBlockAdd Vol. 5, 170
MprlnfoBlockFind Vol. 5, 172
MprlnfoBlockQuerySize Vol. 5,173
MprlnfoBlockRemove Vol. 5,174
MprlnfoBlockSet Vol. 5, 175
MprlnfoCreate Vol. 5, 176
MprlnfoDelete Vol. 5, 177
MprlnfoDuplicate Vol. 5, 178
MprlnfoRemoveAII. Vol. 5, 179
MultinetGetConnection

Performance Vol. 3, 609

PALLOCMEM Vol. 1,876
PF _FILTER_DESCRIPTOR Vol. 5, 256
PF _FILTER_STATS Vol. 5, 257
PF _INTERFACE_STATS Vol. 5, 258
PF _LATEBIND_INFO Vol. 5, 260
PfAddFiltersTolnterface Vol. 5, 239
PfAddGlobalFilterTolnterface Vol. 5, 241
PFADDRESSTYPE Vol. 5, 262
PfBindlnterfaceTolndex Vol. 5, 241
PfBindlnterfaceTolPAddress Vol. 5, 242
PfCreatelnterface Vol. 5, 243
PfDeletelnterface Vol. 5, 245
PfDeleteLog Vol. 5, 246
PFFORWARD_ACTION Vol. 5, 263
PFFRAMETYPE Vol. 5, 264
PfGetinterfaceStatistics Vol. 5, 246
PFLOGFRAME Vol. 5, 260
PfMakeLog .. Vol. 5, 248
PfRebindFilters Vol. 5, 249
PFREEMEM Vol. 1, 876
PfRemoveFilterHandles Vol. 5, 250
PfRemoveFiltersFromlnterface Vol. 5, 250
PfRemoveGlobalFilterFrom

N nterface .. Vol. 5, 252

NAME_BUFFER Vol. 2,153
PfSetLogBuffer Vol. 5, 252

Index Networking Services Programming Elements - Alphabetical Listing 565

PfTestPacket Vol. 5, 253 OOS_OBJECT_DS_CLASS Vol. 1,857
PfUnBindlnterface Vol. 5, 255 OOS_OBJECT_HDR Vol. 1,799
PMGM_ CREATION_ALERT_ OOS OBJECT_SD_MODE Vol. 1, 801

CALLBACK Vol. 5, 547 OOS_OBJECT_SHAPING_RATE Vol. 1,802
PMGM_DISABLE_IGMP _ OOS_OBJECT_TRAFFIC_CLASS .. Vol. 1,856

CALLBACK Vol. 5, 549 OueryPower Vol. 5, 289
PMGM_ENABLE_IGMP _

CALLBACK Vol. 5, 549
PMGM_JOIN_ALERT _ R

CALLBACK Vol. 5, 550
PMGM_LOCAL_JOIN_

CALLBACK Vol. 5, 552
PMGM_LOCAL_LEAVE_

CALLBACK Vol. 5, 554
PMGM_PRUNE_ALERT _

CALLBACK Vol. 5, 555
PMGM_RPF _CALLBACK Vol. 5, 558
PMGM_WRONG_IF _CALLBACK Vol. 5, 560
Portability Macros Vol. 3, 583
PPP ~ATCP _INFO Vol. 4, 355
PPP _CCP _INFO Vol. 4, 356
PPP _EAP _ACTION Vol. 4, 414
PPP _EAP _INFO Vol. 4, 403
PPP _EAP _INPUT Vol. 4, 404
PPP _EAP _OUTPUT Vol. 4, 409
PPP _EAP _PACKET Vol. 4, 412
PPP _INFO .. Vol. 4, 358
PPP _INFO_2 Vol. 4, 358
PPP _IPCP _INFO Vol. 4, 359
PPP _~PCP _INF02 Vol. 4, 360
PPP _IPXCP _INFO Vol. 4, 361
PPP _LCP _INFO Vol. 4, 362
PPP _NBFCP _INFO Vol. 4, 364
Protection Level Constants Vol. 3, 337
Protocol Identifiers Vol. 5, 235
Protocol Sequence Constants Vol. 3, 338
PROTOCOUNFO Vol. 1, 384
PROTOCOL_SPECIFIC_DATA Vol. 5, 357
protoent .. Vol. 1, 387
PROTSEO .. Vol. 3, 317
PS_ADAPTER_STATS Vol. 1, 851
PS_COMPONENT_STATS Vol. 1,850
PS_CONFORMER_STATS Vol. 1,853
PS_DRRSEO_STATS VoI.1, 854
PS_FLOW_STATS Vol. 1,852
PS_SHAPER_STATS Vol. 1,853

RADIUS_ACTION Vol. 2, 112
RADIUS_ATTRIBUTE Vol. 2,110
RADIUS_ATTRIBUTE_TYPE Vol. 2,112
RADIUS_AUTHENTICATION_

PROVIDERvol. 2,120
RADIUS_DATA_TYPE Vol. 2,121
RadiusExtensionlnit... Vol. 2, 107
RadiusExtensionProcess Vol. 2,108
RadiusExtensionProcessEx Vol. 2, 109
RadiusExtensionTerm Vol. 2, 107
RAS_AUTH_ATTRIBUTE Vol. 4, 413
RAS_AUTH_ATTRIBUTE_TYPE Vol. 4, 415
RAS_CONNECTION_O Vol. 4, 365
RAS_CONNECTION_l Vol. 4,367
RAS_CONNECTION_2 Vol. 4, 368
RAS_HARDWARE_CONDITION Vol. 4, 375
RAS_PARAMETERS Vol. 4, 293
RAS PARAMS FORMAT Vol. 4, 314
RAS=PARAMS=VALUE Vol. 4, 312
RAS_PORT_O Vol. 4,294
RAS PORT O Vol. 4, 369
RAS=PORT=l Vol. 4, 297
RAS PORT 1 Vol. 4, 370
RAS=PORT =CONDITION Vol. 4, 376
RAS_PORT_STATISTICS Vol. 4, 298
RAS_PPP _ATCP _RESULTvol. 4, 302
RAS_PPP _IPCP _RESUL Tvol. 4, 303
RAS_PPP _IPXCP _RESULT Vol. 4, 303
RAS_PPP _NBFCP _RESULT Vol. 4, 304
RAS_PPP _PROJECTION_

RESULT ... Vol. 4, 305
RAS_SECURITY _INFO Vol. 4, 306
RAS_SERVER_O Vol. 4, 307
RAS_STATS Vol. 4, 308
RAS USER O Vol. 4, 310
RAS - USER - O Vol. 4, 372
RAS=USER=l Vol. 4, 373
RASADFunc Vol. 4,105

Q RasAdminAcceptNewConnection Vol. 4, 277
RasAdminConnectionHangup

OOCINFO ... Vol. 2, 209 Notificationvol. 4, 279
OOS ' Vol. 1,388 RasAdminFreeBuffer Vol. 4, 265
OOS .. Vol. 1,797 RasAdminGetErrorString Vol. 4, 266
OOS_DIFFSERV _RULE Vol. 1, 844 RasAdminGetlpAddressForUser Vol. 4, 281
OOS_OBJECT _DESTADDR Vol. 1,800 RasAdminGetUserAccountServer Vol. 4, 267
OOS_OBJECT _DIFFSERV Vol. 1,858 RasAdminPortClearStatistics Vol. 4, 269

566 Volume 2 Network Protocols and Interfaces

RasAdminPortDisconnect Vol. 4, 270 RasFreeBuffer Vol. 4, 199
RasAdminPortEnum Vol. 4, 271 RasFreeEapUserldentity Vol. 4,142
RasAdminPortGetinfo Vol. 4, 272 RasGetAutodialAddress Vol. 4,143
RasAdminReleaselpAddress Vol. 4, 282 RasGetAutodialEnable Vol. 4, 144
RasAdminServerGetlnfo Vol. 4, 274 RasGetAutodialParam Vol. 4, 145
RasAdminUserGetinfo Vol. 4, 275 RasGetBuffer Vol. 4, 198
RasAdminUserSetlnfo Vol. 4, 276 RasGetConnectionStatistics Vol. 4, 147
RASADPARAMS Vol. 4, 205 RasGetConnectStatus Vol. 4, 148
RASAMB .. Vol. 4, 206 RasGetCountrylnfo Vol. 4, 149
RASAUTODIALENTRY Vol. 4, 207 RasGetCredentials Vol. 4,151
RasClearConnectionStatistics Vol. 4,107 RasGetCustomAuthData Vol. 4,153
RasClearLinkStatistics Vol. 4, 107 RasGetEapUserData Vol. 4,155
RASCONN .. Vol. 4, 208 RasGetEapUserldentity Vol. 4, 156
RasConnectionNotification Vol. 4, 109 RasGetEntryDiaIParams Vol. 4,158
RASCONNSTATE Vol. 4, 258 RasGetEntryProperties Vol. 4, 160
RASCONNSTATUS Vol. 4, 210 RasGetErrorString Vol. 4, 162
RasCreatePhonebookEntry Vol. 4, 110 RasGetLinkStatistics Vol. 4, 164
RASCREDENTIALS Vol. 4, 211 RasGetProjectionlnfo Vol. 4,165
RASCTRYINFO Vol. 4, 212 RasGetSubEntryHandle Vol. 4, 167
RasCustomDeleteEntryNotify Vol. 4, 111 RasGetSubEntryProperties Vol. 4, 168
RasCustomDial Vol. 4, 112 RasHangUp Vol. 4, 170
RasCustomDialDlg Vol. 4, 114 RaslnvokeEapUI Vol. 4, 171
RasCustomEntryDlg Vol. 4, 116 RASIPADDR Vol. 4, 239
RasCustomHangUp Vol. 4, 118 RasMonitorDlg Vol. 4, 173
RasCustomScriptExecute Vol. 4, 197 RASMONITORDLG Vol. 4, 240
RasDeleteEntry Vol. 4, 119 RASNOUSER Vol. 4, 241
RASDEVINFO Vol. 4, 214 RASPBDLG Vol. 4, 243
RasDial ... Vol. 4, 120 RasPBDlgFunc Vol. 4,174
RasDialDlg Vol. 4,123 RasPhonebookDlg Vol. 4,176
RASDIALDLG .. : Vol. 4, 215 RASPPPCCP Vol. 4, 245
RASDIALEXTENSIONS Vol. 4, 217 RASPPPIP ... ; Vol. 4, 247
RasDiaIFunc Vol. 4,125 RASPPPIPX Vol. 4, 251
RasDiaiFunc1 Vol. 4,127 RASPPPLCP Vol. 4, 248
RasDiaiFunc2 Vol. 4, 129 RASPPPNBF Vol. 4, 252
RASDIALPARAMS Vol. 4, 219 RASPROJECTION Vol. 4, 263
RasEapBegin Vol. 4, 389 RasReceiveBuffer Vol. 4, 201
RasEapEnd Vol. 4, 391 RasRenameEntry Vol. 4, 178
RasEapFreeMemory Vol. 4, 391 RasRetrieveBuffer Vol. 4, 203
RasEapGetidentity Vol. 4, 392 RasSecurityDialogBegin Vol. 4, 284
RasEapGetlnfo Vol. 4, 395 RasSecurityDialogComplete Vol. 4, 286
RASEAPINFO Vol. 4, 222 RasSecurityDialogEnd Vol. 4, 287
RasEaplnitialize Vol. 4, 396 RasSecurityDialogGetlnfo Vol. 4, 288
RasEaplnvokeConfigUI Vol. 4, 397 RasSecurityDialogReceive Vol. 4, 289
RasEaplnvokelnteractiveUI Vol. 4, 399 RasSecurityDialogSend Vol. 4, 291
RasEapMakeMessage Vol. 4, 401 RasSendBuffer Vol. 4, 200
RASEAPUSERIDENTITY Vol. 4, 222 RasSetAutodialAddress Vol. 4, 179
RasEditPhonebookEntry Vol. 4, 131 RasSetAutodiaIEnable Vol. 4, 181
RASENTRY Vol. 4, 223 RasSetAutodialParam Vol. 4,182
RasEntryDlg Vol. 4, 133 RasSetCredentials Vol. 4,184
RASENTRYDLG Vol. 4, 236 RasSetCustomAuthData Vol. 4, 186
RASENTRYNAME Vol. 4, 238 RasSetEapUserData Vol. 4,187
RasEnumAutodialAddresses Vol. 4, 135 RasSetEntryDiaIParams Vol. 4,189
RasEnumConnections Vol. 4, 136 RasSetEntryProperties Vol. 4, 191
RasEnumDevices Vol. 4, 137 RasSetSubEntryProperties Vol. 4, 193
RasEnumEntries Vol. 4,139 RASSLIP ... Vol. 4, 253

Index Networking Services Programming Elements - Alphabetical Listing 567

RASSUBENTRY Vol. 4, 254 RpcBindingServerFromClient Vol. 3, 385
RasValidateEntryName Vol. 4,195 RpcBindingSetAuthlnfo Vol. 3, 387
recv ... V01.1,196 RpcBindingSetAuthlnfoEx Vol. 3, 389
recvfrom .. Vol. 1, 199 RpcBindingSetObject... Vol. 3, 391
RegisterProtocol. Vol. 5, 290 RpcBindingSetOption Vol. 3, 392
REMOTE_NAME_INFO Vol. 3, 665 RpcBindingToStringBinding Vol. 3, 394
Route Flags Vol. 5, 501 RpcBindingVectorFree Vol. 3, 395
ROUTER_CONNECTION_STATE .. Vol. 5, 167 RpcCanceIThread Vol. 3, 396
ROUTER_INTERFACE_ TYPE Vol. 5, 168 RpcCanceIThreadEx Vol. 3, 397
Routing Table Ouery Flags Vol. 5, 504 RpcCertGeneratePrincipalNamevol. 3, 398
ROUTING_PROTOCOL_CONFIG .. Vol. 5, 562 RpcEndExcept Vol. 3, 586
RPC_ASYNC_EVENT Vol. 3, 315 RpcEndFinally Vol. 3, 586
RPC_ASYNC_STATE Vol. 3, 298 RpcEpRegister Vol. 3, 399
RPC_AUTH_IDENTITY _HANDLE ... Vol. 3, 318 RpcEpRegisterNoReplace Vol. 3, 401
RPC_AUTH_KEY _RETRIEVAL_ RpcEpResolveBinding Vol. 3, 404

FN .. Vol. 3, 576 RpcEpUnregister Vol. 3, 405
RPC_AUTHZ_HANDLE Vol. 3, 319 RpcExcept... Vol. 3, 587
RPC_BINDING_HANDLE Vol. 3, 319 RpcExceptionCode Vol. 3, 407
RPC_BINDING_ VECTOR Vol. 3, 301 RpcFinally ... Vol. 3, 588
RPC_CLlENT _INTERFACE Vol. 3, 302 RpclfldVectorFree Vol. 3, 407
RPC_DISPATCH_ TABLE Vol. 3, 302 Rpclflnqld .. Vol. 3, 408
RPC_EP _INO_HANDLE Vol. 3, 320 RpclmpersonateClientvol. 3, 409
RPC_IF _CALLBACK_FN Vol. 3, 577 RpcMacSetYieldlnfo Vol. 3, 410
RPC_IF _HANDLE Vol. 3, 321 RpcMgmtEnableldleCleanup Vol. 3, 411
RPC_IF _ID Vol. 3, 303 RpcMgmtEpEltlnqBegin Vol. 3, 412
RPC_IF _ID_ VECTOR Vol. 3, 304 . RpcMgmtEpEltlnqDone Vol. 3, 415
RPC_MGMT _AUTHORIZATION_ RpcMgmtEpEltlnqNext Vol. 3, 416

FN .. Vol. 3, 577 RpcMgmtEpUnregister Vol. 3, 417
RPC_MGR_EPV Vol. 3, 321 RpcMgmtlnqComTimeout... Vol. 3, 418
RPC_NOTIFICATION_TYPES Vol. 3, 315 RpcMgmtlnqDefaultProtectLevel. Vol. 3, 419
RPC_NS_HANDLE Vol. 3, 322 RpcMgmtlnqlflds Vol. 3, 421
RPC_OBJECT _INO_FN Vol. 3, 579 RpcMgmtlnqServerPrincName Vol. 3, 422
RPC_POLICY Vol. 3, 304 RpcMgmtlnqStats Vol. 3, 423
RPC_PROTSEO_ VECTOR Vol. 3, 308 RpcMgmtisServerListening Vol. 3, 425
RPC_SECURITY _OOS Vol. 3, 308 RpcMgmtSetAuthorizationFn Vol. 3, 426
RPC_STATS_VECTOR VoL 3,310 RpcMgmtSetCanceITimeout... Vol. 3, 427
RPC_STATUS Vol. 3, 323 RpcMgmtSetComTimeout Vol. 3, 428
RpcAbnormaITermination Vol. 3, 362 RpcMgmtSetServerStackSize Vol. 3, 429
RpcAsyncAbortCall Vol. 3, 362 RpcMgmtStatsVectorFree Vol. 3, 430
RpcAsyncCanceICall... Vol. 3, 363 RpcMgmtStopServerListening Vol. 3, 431
RpcAsyncCompleteCall Vol. 3, 365 RpcMgmtWaitServerListen Vol. 3, 432
RpcAsyncGetCaIiHandle Vol. 3, 585 RpcNetworklnqProtseqs Vol. 3, 433
RpcAsyncGetCaliStatus Vol. 3, 366 RpcNetworklsProtseqValid Vol. 3, 434
RpcAsynclnitializeHandle Vol. 3, 367 RPCNOTIFICATION_ROUTINE Vol. 3, 579
RpcAsyncRegisterlnfo Vol. 3, 368 RpcNsBindingExport Vol. 3, 435
RpcBindingCopy Vol. 3, 369 RpcNsBindingExportPnP Vol. 3, 438
RpcBindingFree Vol. 3, 370 RpcNsBindinglmportBegin Vol. 3, 440
RpcBindingFromStringBinding Vol. 3, 372 RpcNsBindinglmportDone Vol. 3, 442
RpcBindinglnqAuthClient Vol. 3, 373 RpcNsBindinglmportNext Vol. 3, 443
RpcBindinglnqAuthClientEx Vol. 3, 375 RpcNsBindinglnqEntryName Vol. 3, 445
RpcBindinglnqAuthlnfo Vol. 3, 377 RpcNsBindingLookupBegin Vol. 3,446
RpcBindinglnqAuthlnfoEx Vol. 3, 380 RpcNsBindingLookupDone Vol. 3, 449
RpcBindinglnqObject... Vol. 3, 382 RpcNsBindingLookupNext Vol. 3, 450
RpcBindinglnqOption Vol. 3, 383 RpcNsBindingSelect Vol. 3, 452
RpcBindingReset... Vol. 3, 384 RpcNsBindingUnexport Vol. 3, 453

568 Volume 2 Network Protocols and Interfaces

RpcNsBindingUnexportPnP Vol. 3, 456 RpcSmEnableAliocate Vol. 3, 542
RpcNsEntryExpandName Vol. 3, 457 RpcSmFree Vol. 3, 543
RpcNsEntryObjectlnqBegin Vol. 3, 458 RpcSmGetThreadHandle Vol. 3, 544
RpcNsEntryObjectlnqDone Vol. 3, 460 RpcSmSetClientAllocFree Vol. 3, 545
RpcNsEntryObjectlnqNext Vol. 3, 461 RpcSmSetThreadHandle Vol. 3, 546
RpcNsGroupDelete Vol. 3, 462 RpcSmSwapClientAllocFree Vol. 3, 547
RpcNsGroupMbrAdd Vol. 3, 463 RpcSsAliocate Vol. 3, 548
RpcNsGroupMbrlnqBegin Vol. 3, 465 RpcSsDestroyClientContext Vol. 3, 549
RpcNsGroupMbrlnqDone Vol. 3, 466 RpcSsDisableAliocate Vol. 3, 550
RpcNsGroupMbrlnqNext.. ... ; Vol. 3, 467 RpcSsDontSerializeContext Vol. 3, 550
RpcNsGroupMbrRemove Vol. 3, 468 RpcSsEnableAliocate Vol. 3, 551
RpcNsMgmtBindingUnexport Vol. 3, 470 RpcSsFree .. Vol. 3, 552
RpcNsMgmtEntryCreate Vol. 3, 473 RpcSsGetThreadHandle Vol. 3, 553
RpcNsMgmtEntryDelete Vol. 3, 474 RpcSsSetClientAllocFree Vol. 3, 554
RpcNsMgmtEntrylnqlflds Vol. 3, 475 RpcSsSetThreadHandle Vol. 3, 555
RpcNsMgmtHandleSetExpAge Vol. 3, 476 RpcSsSwapClientAllocFree Vol. 3, 556
RpcNsMgmtlnqExpAge Vol. 3, 478 RpcStringBindingCompose Vol. 3, 558
RpcNsMgmtSetExpAge Vol. 3, 480 RpcStringBindingParse Vol. 3, 559
RpcNsProfileDelete Vol. 3, 481 RpcStringFree Vol. 3, 561
RpcNsProfileEltAdd Vol. 3, 482 RpcTestCancel Vol. 3, 562
RpcNsProfileEltlnqBegin Vol. 3, 484 RpcTryExcept Vol. 3, 590
RpcNsProfileEltlnqDone Vol. 3, 488 RpcTryFinally Vol. 3, 590
RpcNsProfileEltlnqNext.. Vol. 3, 488 RpcWinSetYieldlnfo Vol. 3, 563
RpcNsProfileEltRemove Vol. 3, 490 RpcWinSetYieldTimeout.. Vol. 3, 566
RpcObjectlnqType Vol. 3, 492 RSVP _ADSPEC Vol. 1,802
RpcObjectSetlnqFn Vol. 3, 493 RSVP _RESERVE_INFO Vol. 1, 803
RpcObjectSetType Vol. 3, 494 RSVP _STATUS_INFO Vol. 1,805
RpcProtseqVectorFree Vol. 3, 496 RTM_DEST_INFO Vol. 5, 480
RpcRaiseException Vol. 3, 497 RTM_ENTITY _EXPORT _
RpcRevertToSelf Vol. 3, 501 METHOD Vol. 5, 477
RpcRevertToSelfEx Vol. 3, 502 RTM_ENTITY _EXPORT_
RpcServerlnqBindings Vol. 3, 503 METHODS Vol. 5, 481
RpcServerlnqDefaultPrincName Vol. 3, 504 RTM_ENTITY _ID Vol. 5, 482
RpcServerlnqlf Vol. 3, 505 RTM_ENTITY_INFO Vol. 5, 483
RpcServerListen Vol. 3, 506 RTM_ENTITY _METHOD_
RpcServerRegisterAuthlnfo Vol. 3, 508 OUTPUT .. Vol. 5, 484
RpcServerRegisterlf Vol. 3, 511 RTM_ENTITY_METHOD_INPUT Vol. 5, 483
RpcServerRegisterlf2 Vol. 3, 512 RTM_EVENT_CALLBACK Vol. 5, 478
RpcServerRegisterlfEx Vol. 3, 514 RTM_EVENT_TYPE Vol. 5, 506
RpcServerTestCancel Vol. 3, 516 RTM_IP _ROUTE Vol. 5, 357
RpcServerUnregisterlf Vol. 3, 517 RTM_IPV4_GET _ADDR_AND_
RpcServerUseAIiProtseqs Vol. 3, 519 LEN .. Vol. 5, 492
RpcServerUseAIiProtseqsEx Vol. 3, 521 RTM_IPV4_GET _ADDR_AND_
RpcServerUseAIiProtseqslf.. Vol. 3, 523 MASK ... Vol. 5, 493
RpcServerUseAIiProtseqslfEx Vol. 3, 524 RTM_IPV4_LEN_FROM_MASK Vol. 5, 494
RpcServerUseProtseq Vol. 3, 526 RTM_IPV4_MAKE_NET _
RpcServerUseProtseqEp Vol. 3, 530 ADDRESS Vol. 5, 495
RpcServerUseProtseqEpEx Vol. 3, 532 RTM_IPV4_MASK_FROM_LEN Vol. 5, 496
RpcServerUseProtseqEx Vol. 3, 528 RTM_IPV4_SET _ADDR_AND_
RpcServerUseProtseqlf.. Vol. 3, 534 LEN .. Vol. 5, 497
RpcServerUseProtseqlfEx Vol. 3, 536 RTM_IPV4_SET _AD DR_AND _
RpcSmAliocate Vol. 3, 538 MASK ... Vol. 5, 498
RpcSmClientFree Vol. 3, 539 RTM_IPX_ROUTE Vol. 5, 358
RpcSmDestroyClientContext Vol. 3, 540 RTM_NET _ADDRESS Vol. 5, 485
RpcSmDisableAliocate Vol. 3, 541 RTM_NEXTHOP _INFO VoL 5, 486

Index Networking Services Programming Elements - Alphabetical Listing 569

RTM_NEXTHOP _LIST Vol. 5, 487 RtmHoldDestination Vol. 5, 451
RTM_PREF _INFO Vol. 5, 488 RtmlgnoreChangedDests Vol. 5, 452
RTM_REGN_PROFILE Vol. 5, 488 RtmlnsertlnRouteList... Vol. 5, 453
RTM_ROUTE_INFO Vol. 5, 489 RtmlnvokeMethod Vol. 5, 454
RTM_SIZE_OF _DEST _INFO Vol. 5, 499 RtmlsBestRoute Vol. 5, 455
RTM_SIZE_OF _ROUTE_INFO Vol. 5, 500 RtmlsMarkedForChange
RtmAddNextHop Vol. 5, 405 Notification Vol. 5, 456
RtmAddRoute Vol. 5, 335 RtmlsRoute Vol. 5, 340
RtmAddRouteToDest Vol. 5, 406 RtmLockDestination Vol. 5, 457
RtmBlockDeleteRoutes Vol. 5, 347 RtmLockNextHop Vol. 5, 459
RtmBlockMethods Vol. 5, 409 RtmLockRoute Vol. 5, 460
RtmCloseEnumerationHandle Vol. 5, 346 RtmMarkDestForChange
RtmCreateDestEnum Vol. 5, 410 Notificationvol. 5, 461
RtmCreateEnumerationHandle Vol. 5, 343 RtmReferenceHandles Vol. 5, 463
RtmCreateNextHopEnum Vol. 5, 413 RtmRegisterClient.. Vol. 5, 331
RtmCreateRouteEnum Vol. 5, 414 RtmRegisterEntity Vol. 5, 464
RtmCreateRouteList.. Vol. 5, 417 RtmRegisterForChange
RtmCreateRouteListEnum Vol. 5, 418 Notification Vol. 5, 466
RtmDeleteEnumHandle Vol. 5, 419 RtmReleaseChangedDests Vol. 5, 467
RtmDeleteNextHop Vol. 5, 420 RtmReleaseDestlnfo Vol. 5, 469
RtmDeleteRoute Vol. 5, 338 RtmReleaseDests Vol. 5, 469
RtmDeleteRouteList Vol. 5, 421 RtmReleaseEntities Vol. 5, 471
RtmDeleteRouteToDest Vol. 5, 422 RtmReleaseEntitylnfo Vol. 5, 471
RtmDequeueRouteChange RtmReleaseNextHoplnfo Vol. 5, 472

Message .. Vol. 5, 333 RtmReleaseNextHops Vol. 5, 473
RtmDeregisterClient Vol. 5, 332 RtmReleaseRoutelnfo Vol. 5, 474
RtmDeregisterEntity Vol. 5, 423 RtmReleaseRoutes Vol. 5, 475
RtmDeregisterFromChange RtmUpdateAndUnlockRoute Vol. 5, 476

Notification Vol. 5, 424
RtmEnumerateGetNextRoute Vol. 5, 345
RtmFindNextHop Vol. 5, 425 s
RtmGetChangedDests Vol. 5, 426
RtmGetChangeStatus Vol. 5, 428
RtmGetDestlnfo Vol. 5, 429
RtmGetEntitylnfo Vol. 5, 430
RtmGetEntityMethods Vol. 5, 431
RtmGetEnumDests Vol. 5, 432
RtmGetEnumNextHops Vol. 5, 434
RtmGetEnumRoutes Vol. 5, 435
RtmGetExactMatchDestination Vol. 5, 436
RtmGetExactMatchRoute Vol. 5, 438
RtmGetFirstRoute Vol. 5, 348
RtmGetLessSpecificDestination Vol. 5, 440
RtmGetListEnumRoutes Vol. 5, 441
RtmGetMostSpecificDestination Vol. 5, 443
RtmGetNetworkCount Vol. 5, 341
RtmGetNextHoplnfo Vol. 5, 444
RtmGetNextHopPointer Vol. 5, 445
RtmGetNextRoute Vol. 5, 350
RtmGetOpaquelnformation

Pointer ... Vol. 5, 446
RtmGetRegisteredEntities Vol. 5, 447
RtmGetRouteAge Vol. 5, 342
RtmGetRoutelnfo Vol. 5, 449
RtmGetRoutePointer Vol. 5, 450

SEC_WINNT_AUTH_IDENTITY Vol. 3,312
SECURITY _MESSAGE Vol. 4,311
select.. ... Vol. 1,202
send .. Vol. 1,206
SendARP .. Vol. 2, 270
sendto ... VoI.1, 209
SENS_QOCINFO Vol. 2, 227
servent .. Vol. 1, 388
SERVICE_ADDRESS Vol. 1, 389
SERVICE_ADDRESSES Vol. 1, 390
SERVICE_INFO Vol. 1,390
SERVICE_ TYPE_INFO_ABS Vol. 1, 393
SERVICE3YPE_VALUE_ABS Vol. 1,394
SESSION_BUFFER Vol. 2,160
SESSION_HEADER Vol. 2,162
SetGlobalinfo Vol. 5, 291
SetlfEntry .. Vol. 2, 271
Setinterfacelnfo Vol. 5, 292
SetlnterfaceReceiveType Vol. 5, 314
SetlpForwardEntry Vol. 2, 272
SetlpNetEntry Vol. 2, 273
SetlpStatistics Vol. 2, 274
SetipTIL ... Vol. 2, 275
SetPower .. Vol. 5, 293

570 Volume 2 Network Protocols and Interfaces

SetService .. Vol. 1,212 SnmpOpen .. Vol. 2, 428
setsockopt .. Vol. 1,215 SnmpRecvMsg Vol. 2, 430
SetTcpEntry Vol. 2, 276 SnmpRegister Vol. 2, 433
shutdown .. Vol. 1,223 SnmpSendMsg Vol. 2, 436
smiCNTR64 Vol. 2, 458 SnmpSetPduData Vol. 2, 438
smiOCTETS Vol. 2, 459 SnmpSetPort Vol. 2, 440
smiOID .. Vol. 2, 460 SnmpSetRetransmitMode Vol. 2, 442
smiVALUE .. Vol. 2, 461 SnmpSetRetry Vol. 2, 444
smiVENDORINFO Vol. 2, 464 SnmpSetTimeout Vol. 2, 445
SNMPAPI_CALLBACK Vol. 2, 375 SnmpSetTranslateMode Vol. 2, 446
SnmpCancelMsg Vol. 2, 376 SnmpSetVb Vol. 2, 448
SnmpCleanup Vol. 2, 378 SnmpStartup Vol. 2, 450
SnmpClose Vol. 2, 379 SnmpStrToContext Vol. 2, 453
SnmpContextToStr Vol. 2, 380 SnmpStrToEntity Vol. 2, 455
SnmpCountVbl Vol. 2, 382 SnmpStrToOid Vol. 2, 456
SnmpCreatePdu Vol. 2, 383 SnmpSvcGetUptime Vol. 2, 314
SnmpCreateSession Vol. 2, 385 SnmpSvcSetLogLevel Vol. 2, 315
SnmpCreateVbl Vol. 2, 388 SnmpSvcSetLogType Vol. 2, 316
SnmpDecodeMsg Vol. 2, 390 SnmpUtiiAsnAnyCpy Vol. 2, 317
SnmpDeleteVb Vol. 2, 392 SnmpUtilAsnAnyFree Vol. 2, 317
SnmpDuplicatePdu Vol. 2, 394 SnmpUtilDbgPrint Vol. 2, 318
SnmpDuplicateVbl Vol. 2, 395 SnmpUtilidsToA Vol. 2, 319
SnmpEncodeMsg Vol. 2, 396 SnmpUtilMemAlioc Vol. 2, 321
SnmpEntityToStr Vol. 2, 398 SnmpUtilMemFree Vol. 2, 321
SnmpExtensionClose Vol. 2, 290 SnmpUtiIMemReAlloc Vol. 2, 322
SnmpExtensionlnit Vol. 2, 291 SnmpUtiiOctetsCmp Vol. 2, 323
SnmpExtensionlnitEx Vol. 2, 293 SnmpUtilOctetsCpy Vol. 2, 324
SnmpExtensionMonitor Vol. 2, 294 SnmpUtiiOctetsFree Vol. 2, 325
SnmpExtensionQuery Vol. 2, 295 SnmpUtiIOctetsNCmp Vol. 2, 325
SnmpExtensionQueryEx Vol. 2, 298 SnmpUtiiOidAppend Vol. 2, 326
SnmpExtensionTrap Vol. 2, 302 SnmpUtilOidCmp Vol. 2, 327
SnmpFreeContext Vol. 2, 399 SnmpUtilOidCpy Vol. 2, 328
SnmpFreeDescriptor Vol. 2, 401 SnmpUtilOidFree Vol. 2, 329
SnmpFreeEntity Vol. 2, 402 SnmpUtiiOidNCmp Vol. 2, 330
SnmpFreePdu Vol. 2, 403 SnmpUtilOidToA Vol. 2, 331
SnmpFreeVbl Vol. 2, 404 SnmpUtilPrintAsnAny Vol. 2, 331
SnmpGetLastError Vol. 2, 406 SnmpUtilPrintOid Vol. 2, 332
SnmpGetPduData Vol. 2, 407 SnmpUtilVarBindCpy Vol. 2, 333
SnmpGetRetransmitMode Vol. 2, 411 SnmpUtilVarBindFree Vol. 2, 335
SnmpGetRetry Vol. 2, 412 SnmpUtilVarBindListCpy Vol. 2, 334
SnmpGetTimeout Vol. 2, 414 SnmpUtilVarBindListFree Vol. 2, 335
SnmpGetTranslateMode Vol. 2, 416 SnmpVarBind Vol. 2, 340
SnmpGetVb Vol. 2, 417 SnmpVarBindList Vol. 2, 341
SnmpGetVendorlnfo Vol. 2, 420 sockaddr ... Vol. 1,396
SnmpListen Vol. 2, 421 SOCKADDR_IRDA Vol. 1,397
SnmpMgrClose Vol. 2, 304 socket.. .. Vol. 1,225
SnmpMgrGetTrap Vol. 2, 305 SOCKET _ADDRESS Vol. 1, 397
SnmpMgrOidToStr Vol. 2, 307 SOURCE_GROUP _ENTRY Vol. 5, 563
SnmpMgrOpen Vol. 2, 308 StartComplete Vol. 5, 293
SnmpMgrRequest Vol. 2, 309 StartProtocol Vol. 5, 294
SnmpMgrStrToOid Vol. 2, 311 Stop Protocol Vol. 5, 295
SnmpMgrTrapListen Vol. 2, 312 String Binding Vol. 3, 324
SnmpOidCompare Vol. 2, 423 String UUID Vol. 3, 329
SnmpOidCopy Vol. 2, 425 SUPPORT_FUNCTIONS Vol. 5, 305
SnmpOidToStr Vol. 2, 427 SYNCMGRFLAG Vol. 2,196

Index Networking Services Programming Elements - Alphabetical Listing 571

SYNCMGRHANDLERFLAGS Vol. 2,197 UPDATE_COMPLETE_
SYNCMGRHANDLERINFO Vol. 2, 201 MESSAGE Vol. 5, 303
SYNCMGRINVOKEFLAGS Vol. 2, 200 UUID ... Vol. 3, 313
SYNCMGRITEM Vol. 2, 203 UUID_VECTOR Vol. 3, 314
SYNCMGRITEMFLAGS Vol. 2, 199 UuidCompare Vol. 3, 567
SYNCMGRLOGERRORINFO Vol. 2, 202 UuidCreate .. Vol. 3, 568
SYNCMGRLOGLEVEL Vol. 2, 199 UuidCreateNil.vol. 3, 570
SYNCMGRPROGRESSITEM Vol. 2, 201 UuidCreateSequential. Vol. 3, 569
SYNCMGRSTATUS Vol. 2,198 UuidEqual ... Vol. 3, 570

UuidFromString Vol. 3, 571

T
UuidHashvol. 3, 572
UuidlsNil. .. .vol. 3, 573

TC_GEN_FIL TER Vol. 1, 845 UuidToString Vol. 3, 574

TC_GEN~FLOW Vol. 1, 846
TC_IFC_DESCRIPTOR Vol. 1, 847
TcAddFilter Vol. 1, 807 v
TcAddFlow .. Vol. 1, 809 Validate Route Vol. 5, 315
TcCloselnterface Vol. 1,811 View Flags .. Vol. 5, 501
TcDeleteFilter Vol. 1,812
TcDeleteFlow Vol. 1,813
TcDeregisterClient... Vol. 1 ,814 w
TcEnumerateFlows Vol. 1,815
TcEnumeratelnterfaces Vol. 1, 817
TcGetFlowName Vol. 1, 819
TCI_CLlENT _FUNC_L1ST Vol. 1, 847
TcModifyFlow Vol. 1, 820
TcOpenlnterface Vol. 1, 822
TcQueryFlow Vol. 1,823
TcQuerylnterface Vol. 1, 824
TcRegisterClient Vol. 1, 826
TcSetFlow ... Vol. 1, 827
TcSetlnterface Vol. 1, 828
The ProviderSpecific Buffer Vol. 1, 799
timeval .. Vol. 1, 398
TraceDeregister Vol. 4, 438
TraceDump Vol. 4, 438
TraceDumpEx Vol. 4, 440
TracePrintf .. Vol. 4, 441
TracePrintfEx Vol. 4, 442
TracePuts ... Vol. 4, 444
TracePutsEx Vol. 4, 445
TraceRegister Vol. 4, 446
TraceRegisterEx Vol. 4, 447
TraceVprintf Vol. 4, 449
TraceVprintfEx Vol. 4, 450
TRANSMIT _FILE_BUFFERS Vol. 1,399
TransmitFile Vol. 1,228
Transport Identifiers ; Vol. 5, 235

WM_RASDIALEVENT Vol. 4, 257
WNetAddConnectionvol. 3, 611
WNetAddConnection2vol. 3, 613
WNetAddConnec;tion3vol. 3, 616
WNetCancelConnection Vol. 3, 620
WNetCanceiConnection2 Vol. 3, 622
WNetCloseEnum Vol. 3, 624
WNetConnectionDialog Vol. 3, 625
WNetConnectionDialog1 Vol. 3, 626
WNetDisconnectDialog Vol. 3, 628
WNetDisconnectDialog1 Vol. 3, 629
WNetEnumResource Vol. 3, 630
WNetGetConnection Vol. 3, 632
WNetGetLastError Vol. 3, 634
WNetGetNetworklnformation Vol. 3, 635
WNetGetProviderName Vol. 3, 636
WNetGetResourcelnformation Vol. 3, 638
WNetGetResourceParent. Vol. 3, 640
WNetGetUniversalName Vol. 3, 642
WNetGetUser Vol. 3, 645
WNetOpenEnum Vol. 3, 647
WNetUseConnection Vol. 3, 650
WPUCloseEvenlvol. 1,515
WPUCloseSocketHandle Vol. 1, 515
WPUCloseThread Vol. 1,516
WPUCompleteOverlapped

Request... Vol. 1,517
WPUCreateEvent Vol. 1,520

u WPUCreateSockelHandle Vol. 1,521
WPUFDlsSet... Vol. 1, 523

Unbindlnterface Vol. 5, 296 WPUGeIProviderPalh Vol. 1,524
UNIVERSAL~NAME_INFO Vol. 3, 667 WPUGetQOSTemplate Vol. 1,783

WPUModifyIFSHandle Vol. 1,525

572 Volume 2 Network Protocols and Interfaces

WPUOpenCurrentThread Vol. 1, 527 WSARecv ... ,Vol. 1,326
WPUPostMessage Vol. 1,528 WSARecvDisconnect... Vol. 1, 332
WPUQueryBlockingCaliback Vol. 1, 529 WSARecvEx ,Vol. 1, 334
WPUQuerySocketHandleContext Vol. 1, 530 WSARecvFrom Vol. 1, 337
WPUQueueApc Vol. 1, 531 WSARemoveServiceClass Vol. 1, 343
WPUResetEvent Vol. 1, 533 WSAResetEvent Vol. 1, 344
WPUSetEvent Vol. 1, 534 WSASend ... Vol. 1,345
WSAAccept : Vol. 1,231 WSASendDisconnect Vol. 1,350
WSAAddressToString Vol. 1,235 WSASendTo Vol. 1,352
WSAAsyncGetHostByAddr Vol. 1, 236 WSASERVICECLASSINFO ,Vol. 1, 411
WSAAsyncGetHostByName Vol. 1, 239 WSASetBlockingHook Vol. 1,357
WSAAsyncGetProtoByName Vol. 1, 242 WSASetEvent Vol. 1, 358
WSAAsyncGetProtoByNumber Vol. 1, 245 WSASetLastError Vol. 1,359
WSAAsyncGetServByName Vol. 1, 248 WSASetService Vol. 1, 360
WSAAsyncGetServByPort Vol. 1,251 WSASocket... Vol. 1,363
WSAAsyncSelect Vol. 1, 254 WSAStartup Vol. 1,367
WSABUF .. Vol. 1,399 WSAStringToAddress Vol. 1, 371
WSACanceIAsyncRequest... Vol. 1, 263 WSATHREADID Vol. 1,412
WSACanceIBlockingCall Vol. 1, 265 WSAUnhookBlockingHook Vol. 1, 372
WSACleanup Vol. 1, 265 WSAWaitForMultipleEvents Vol. 1,373
WSACloseEvent... Vol. 1, 267 WSCDeinstaliProvider Vol. 1,535
WSAConnect... Vol. 1, 268 WSCEnableNSProvider Vol. 1,536
WSACreateEvent Vol. 1, 272 WSCEnumProtocols Vol. 1,537
WSADATA .. Vol. 1,400 WSCGetProviderPath Vol. 1,539
WSADuplicateSocket Vol. .1, 273 WSClnstaliNameSpace Vol. 1,540
WSAECOMPARATOR Vol. 1,413 WSClnstaIiProvider Vol. 1,541
WSAEnumNameSpaceProviders Vol. 1, 276 WSClnstallQOSTemplate Vol. 1,786
WSAEnumNetworkEvents Vol. 1, 277 WSCRemoveQOSTemplate Vol. 1,788
WSAEnumProtocols Vol. 1,279 WSCUnlnstaIiNameSpace Vol. 1,543
WSAEventSelect Vol. 1, 281 WSCWriteProviderOrder Vol. 1, 543
WSAGetLastError Vol. 1,287 WSPAccept... Vol. 1, 545
WSAGetOverlappedResult Vol. 1, 288 WSPAddressToString Vol. 1,549
WSAGetQOSByName Vol. 1, 290 WSPAsyncSelect.. Vol. 1, 550
WSAGetQOSByName Vol. 1, 784 WSPBind ... \7ol. 1,558
WSAGetServiceClasslnfo Vol. 1, 292 WSPCanceIBlockingCall. Vol. 1,560
WSAGetServiceClassNameBy WSPCleanup Vol. 1, 562

Classld ... Vol. 1,293 WSPCloseSocket Vol. 1,564
WSAHtonl ... Vol. 1, 294 WSPConnect Vol. 1, 566
WSAHtons .. Vol. 1,295 WSPDuplicateSocket... Vol. 1,570
WSAlnstaIiServiceClass Vol. 1,296 WSPEnumNetworkEvents Vol. 1,573
WSAloctl. .. Vol. 1, 297 WSPEventSelect Vol. 1, 576
WSAlsBlocking Vol. 1, 308 WSPGetOverlappedResult Vol. 1, 581
WSAJoinLeaf... Vol. 1, 309 WSPGetPeerName Vol. 1,584
WSALookupServiceBegin Vol. 1, 313 WSPGetQOSByName Vol. 1, 585
WSALookupServiceEnd Vol. 1, 317 WSPGetQOSByName Vol. 1, 789
WSALookupServiceNext Vol. 1, 318 WSPGetSockName Vol. 1, 586
WSANAMESPACE_INFO Vol. 1,401 WSPGetSockOpt Vol. 1, 588
WSANETWORKEVENTS Vol. 1, 402 WSPloctl ... Vol. 1, 593
WSANtohl ... Vol. 1, 322 WSPJoinLeaf Vol. 1, 604
WSANtohs .. Vol. 1, 323 WSPListen .. Vol. 1, 608
WSAOVERLAPPED Vol. 1,403 WSPRecv .. VoI.1, 610
WSAPROTOCOUNFO Vol. 1, 404 WSPRecvDisconnect... Vol. 1,617
WSAPROTOCOLCHAIN Vol. 1, 408 WSPRecvFrom Vol. 1, 618
WSAProviderConfigChange Vol. 1,324 WSPSelect... Vol. 1,624
WSAQUERYSET Vol. 1,409 WSPSend ... Vol. 1,628

Index Networking Services Programming Elements - Alphabetical Listing 573

WSPSendDisconnect Vol. 1, 633 WSPStringToAddress Vol. 1,654
WSPSendTo Vol. 1, 634
WSPSetSockOpt Vol. 1, 640
WSPShutdown Vol. 1, 644 y
WSPSocket Vol. 1, 645
WSPStartup Vol. 1, 649

YieldFunctionName Vol. 3, 580

Unleash
the power of

+
in the enterprise!

U.K.
Canada

£32.99 [V.A.T. included]
$74.99

ISBN 0-7356-0728-1

Mcrosoft Press® products are available worldwide wherever quality
omputer books are sold. For more information, contact your book or
omputer retailer, software reseller, or local Microsoft Sales Office, or visit
,ur Web site at msoress.microsoft.com. To locate your nearest source for
~icrosoft Press products, or to order directly, call 1-800-MSPRESS in the
I.S. (in Canada, call 1-800-268-2222).

'rices and availability dates are subject to change.

The powerful new Microsoft® Win

dows® Component Object Model

(COM+) makes it easy to develop

scalable component-based business

solutions_ INSIDE COM+ BASE SER

VICES presents the information you

need to take advantage of all the

possibilities of COM+_ This book

presents complete details about the

fundamental programming architec

ture of COM+. It also includes valu

able cross-language code samples

that you can apply in your applica

tions. From concepts to practical

advice, this is the definitive guide to

using COM+ in the enterprise.

mspress.microsoft.com

Master
the building blocks of

32-bit and 64-bit
development

Canada
£38.99 [VAT. included]
$89.99

ISBN 1-57231-996-8

v'licrosoft Press@ products are available worldwide wherever quality
:omputer books are sold. For more information. contact your book or
:omputer retailer. software reseller. or local Microsoft® Sales Office. or visit
lur Web site at mspress.microsoft.com. To locate your nearest source for
mcrosoft Press products. or to order directly. call1-800-MSPRESS in the
J.S. (in Canada. call 1-800-268-2222).

'rices and availability dates are subject to change.

Here's definitive instruction for
advancing the next generation of
Windows®-based applications-faster,
sleeker, and more potent than ever!
This fully updated expansion of the
best-selling Advanced Windows
digs even deeper into the advanced
features and state-of-the-art tech
niques you can exploit for more
robust Windows development
including authoritative insights on the
new Windows 2000 platform.

mspress.microsoft.com

Part No. 097-0002784

Network Protocols
and Interfaces
This essential reference book is part of the five-volume
NETWORKING SERVICES DEVELOPER'S REFERENCE LIBRARY.

In its printed form, this material is portable, easy to use,
and easy to browse-a highly condensed, completely
indexed, intelligently organized complement to the
information available on line and through the Microsoft
Developer Network (MSDNTM). Each book includes an
overview of the five-volume library, an appendix of
programming elements, an index of referenced MicrosoW
technologies, and tips on how and where to find other
Microsoft developer reference resources you may need.

Network Protocols and Interfaces

This volume provides concise reference materials about
how to use important Windows4D network interfaces,
protocols, and services. It discusses the Domain Name
System (DNS), the Dynamic Host Configuration Protocol
(DHCP), the Multicast Address Dynamic Client Allocation
Protocol (MADCAP), Network Basic Input/Output System
(NetBIOS), the Simple Network Management Protocol
(SNMP) and the WinSNMP API, the Internet Protocol Helper
(IP Helper), the Synchronization Manager, the System
Event Notification Service (SENS), and the Internet
Authentication Service (lAS).

6ficlOSOft

